WorldWideScience

Sample records for arm docking complex

  1. Characterization of a subunit of the outer dynein arm docking complex necessary for correct flagellar assembly in Leishmania donovani.

    Directory of Open Access Journals (Sweden)

    Simone Harder

    Full Text Available BACKGROUND: In order to proceed through their life cycle, Leishmania parasites switch between sandflies and mammals. The flagellated promastigote cells transmitted by the insect vector are phagocytized by macrophages within the mammalian host and convert into the amastigote stage, which possesses a rudimentary flagellum only. During an earlier proteomic study of the stage differentiation of the parasite we identified a component of the outer dynein arm docking complex, a structure of the flagellar axoneme. The 70 kDa subunit of the outer dynein arm docking complex consists of three subunits altogether and is essential for the assembly of the outer dynein arm onto the doublet microtubule of the flagella. According to the nomenclature of the well-studied Chlamydomonas reinhardtii complex we named the Leishmania protein LdDC2. METHODOLOGY/PRINCIPAL FINDINGS: This study features a characterization of the protein over the life cycle of the parasite. It is synthesized exclusively in the promastigote stage and localizes to the flagellum. Gene replacement mutants of lddc2 show reduced growth rates and diminished flagellar length. Additionally, the normally spindle-shaped promastigote parasites reveal a more spherical cell shape giving them an amastigote-like appearance. The mutants lose their motility and wiggle in place. Ultrastructural analyses reveal that the outer dynein arm is missing. Furthermore, expression of the amastigote-specific A2 gene family was detected in the deletion mutants in the absence of a stage conversion stimulus. In vitro infectivity is slightly increased in the mutant cell line compared to wild-type Leishmania donovani parasites. CONCLUSIONS/SIGNIFICANCE: Our results indicate that the correct assembly of the flagellum has a great influence on the investigated characteristics of Leishmania parasites. The lack of a single flagellar protein causes an aberrant morphology, impaired growth and altered infectiousness of the parasite.

  2. FlexAID: Revisiting Docking on Non-Native-Complex Structures.

    Science.gov (United States)

    Gaudreault, Francis; Najmanovich, Rafael J

    2015-07-27

    Small-molecule protein docking is an essential tool in drug design and to understand molecular recognition. In the present work we introduce FlexAID, a small-molecule docking algorithm that accounts for target side-chain flexibility and utilizes a soft scoring function, i.e. one that is not highly dependent on specific geometric criteria, based on surface complementarity. The pairwise energy parameters were derived from a large dataset of true positive poses and negative decoys from the PDBbind database through an iterative process using Monte Carlo simulations. The prediction of binding poses is tested using the widely used Astex dataset as well as the HAP2 dataset, while performance in virtual screening is evaluated using a subset of the DUD dataset. We compare FlexAID to AutoDock Vina, FlexX, and rDock in an extensive number of scenarios to understand the strengths and limitations of the different programs as well as to reported results for Glide, GOLD, and DOCK6 where applicable. The most relevant among these scenarios is that of docking on flexible non-native-complex structures where as is the case in reality, the target conformation in the bound form is not known a priori. We demonstrate that FlexAID, unlike other programs, is robust against increasing structural variability. FlexAID obtains equivalent sampling success as GOLD and performs better than AutoDock Vina or FlexX in all scenarios against non-native-complex structures. FlexAID is better than rDock when there is at least one critical side-chain movement required upon ligand binding. In virtual screening, FlexAID results are lower on average than those of AutoDock Vina and rDock. The higher accuracy in flexible targets where critical movements are required, intuitive PyMOL-integrated graphical user interface and free source code as well as precompiled executables for Windows, Linux, and Mac OS make FlexAID a welcome addition to the arsenal of existing small-molecule protein docking methods.

  3. Re-docking scheme for generating near-native protein complexes by assembling residue interaction fingerprints.

    Directory of Open Access Journals (Sweden)

    Nobuyuki Uchikoga

    Full Text Available Interaction profile method is a useful method for processing rigid-body docking. After the docking process, the resulting set of docking poses could be classified by calculating similarities among them using these interaction profiles to search for near-native poses. However, there are some cases where the near-native poses are not included in this set of docking poses even when the bound-state structures are used. Therefore, we have developed a method for generating near-native docking poses by introducing a re-docking process. We devised a method for calculating the profile of interaction fingerprints by assembling protein complexes after determining certain core-protein complexes. For our analysis, we used 44 bound-state protein complexes selected from the ZDOCK benchmark dataset ver. 2.0, including some protein pairs none of which generated near-native poses in the docking process. Consequently, after the re-docking process we obtained profiles of interaction fingerprints, some of which yielded near-native poses. The re-docking process involved searching for possible docking poses in a restricted area using the profile of interaction fingerprints. If the profile includes interactions identical to those in the native complex, we obtained near-native docking poses. Accordingly, near-native poses were obtained for all bound-state protein complexes examined here. Application of interaction fingerprints to the re-docking process yielded structures with more native interactions, even when a docking pose, obtained following the initial docking process, contained only a small number of native amino acid interactions. Thus, utilization of the profile of interaction fingerprints in the re-docking process yielded more near-native poses.

  4. Re-docking scheme for generating near-native protein complexes by assembling residue interaction fingerprints.

    Science.gov (United States)

    Uchikoga, Nobuyuki; Matsuzaki, Yuri; Ohue, Masahito; Hirokawa, Takatsugu; Akiyama, Yutaka

    2013-01-01

    Interaction profile method is a useful method for processing rigid-body docking. After the docking process, the resulting set of docking poses could be classified by calculating similarities among them using these interaction profiles to search for near-native poses. However, there are some cases where the near-native poses are not included in this set of docking poses even when the bound-state structures are used. Therefore, we have developed a method for generating near-native docking poses by introducing a re-docking process. We devised a method for calculating the profile of interaction fingerprints by assembling protein complexes after determining certain core-protein complexes. For our analysis, we used 44 bound-state protein complexes selected from the ZDOCK benchmark dataset ver. 2.0, including some protein pairs none of which generated near-native poses in the docking process. Consequently, after the re-docking process we obtained profiles of interaction fingerprints, some of which yielded near-native poses. The re-docking process involved searching for possible docking poses in a restricted area using the profile of interaction fingerprints. If the profile includes interactions identical to those in the native complex, we obtained near-native docking poses. Accordingly, near-native poses were obtained for all bound-state protein complexes examined here. Application of interaction fingerprints to the re-docking process yielded structures with more native interactions, even when a docking pose, obtained following the initial docking process, contained only a small number of native amino acid interactions. Thus, utilization of the profile of interaction fingerprints in the re-docking process yielded more near-native poses.

  5. Four-arm single docking full robotic surgery for low rectal cancer: technique standardization

    Directory of Open Access Journals (Sweden)

    José Reinan Ramos

    Full Text Available The authors present the four-arm single docking full robotic surgery to treat low rectal cancer. The eight main operative steps are: 1- patient positioning; 2- trocars set-up and robot docking; 3- sigmoid colon, left colon and splenic flexure mobilization (lateral-to-medial approach; 4-Inferior mesenteric artery and vein ligation (medial-to-lateral approach; 5- total mesorectum excision and preservation of hypogastric and pelvic autonomic nerves (sacral dissection, lateral dissection, pelvic dissection; 6- division of the rectum using an endo roticulator stapler for the laparoscopic performance of a double-stapled coloanal anastomosis (type I tumor; 7- intersphincteric resection, extraction of the specimen through the anus and lateral-to-end hand sewn coloanal anastomosis (type II tumor; 8- cylindric abdominoperineal resection, with transabdominal section of the levator muscles (type IV tumor. The techniques employed were safe and have presented low rates of complication and no mortality.

  6. CCDC151 Mutations Cause Primary Ciliary Dyskinesia by Disruption of the Outer Dynein Arm Docking Complex Formation

    NARCIS (Netherlands)

    Hjeij, R.; Onoufriadis, A.; Watson, C.M.; Slagle, C.E.; Klena, N.T.; Dougherty, G.W.; Kurkowiak, M.; Loges, N.T.; Diggle, C.P.; Morante, N.F.; Gabriel, G.C.; Lemke, K.L.; Li, Y.; Pennekamp, P.; Menchen, T.; Konert, F.; Marthin, J.K.; Mans, D.A.; Letteboer, S.J.F.; Werner, C.; Burgoyne, T.; Westermann, C.; Rutman, A.; Carr, I.M.; O'Callaghan, C.; Moya, E.; Chung, E.M.; Consortium, U.K.; Sheridan, E.; Nielsen, K.G.; Roepman, R.; Bartscherer, K.; Burdine, R.D.; Lo, C.W.; Omran, H.; Mitchison, H.M.

    2014-01-01

    A diverse family of cytoskeletal dynein motors powers various cellular transport systems, including axonemal dyneins generating the force for ciliary and flagellar beating essential to movement of extracellular fluids and of cells through fluid. Multisubunit outer dynein arm (ODA) motor complexes,

  7. Stellar complexes in spiral arms of galaxies

    Science.gov (United States)

    Efremov, Yu. N.

    The history of the introduction and development of the star complexes conception is briefly described. These large groups of stars were picked out and named as such ones in our Galaxy with argumentation and evidence for their physical unity (using the Cepheid variables the distances and ages of which are easy determined from their periods); anyway earlier the complexes were noted along the spiral arms of the Andromeda galaxy, but were not recognized as a new kind of star group. The chains of complexes along the spiral arms are observed quite rarely; their origin is explained by magneto- gravitational or purely gravitational instability developing along the arm. It is not clear why these chains are quite a rare phenomenon - and more so why sometimes the regular chain of complexes are observed in one arm only. Probably intergalactic magnetic field participated in formation of such chains. Apart from the complexes located along the arms, there are isolated giant complexes known (up to 700 pc in diameter) which look like super-gigantic but rather rarefied globular clusters. Until now only two of these formations are studied, in NGC 6946 and M51.

  8. Determining Complex Structures using Docking Method with Single Particle Scattering Data

    Directory of Open Access Journals (Sweden)

    Haiguang Liu

    2017-04-01

    Full Text Available Protein complexes are critical for many molecular functions. Due to intrinsic flexibility and dynamics of complexes, their structures are more difficult to determine using conventional experimental methods, in contrast to individual subunits. One of the major challenges is the crystallization of protein complexes. Using X-ray free electron lasers (XFELs, it is possible to collect scattering signals from non-crystalline protein complexes, but data interpretation is more difficult because of unknown orientations. Here, we propose a hybrid approach to determine protein complex structures by combining XFEL single particle scattering data with computational docking methods. Using simulations data, we demonstrate that a small set of single particle scattering data collected at random orientations can be used to distinguish the native complex structure from the decoys generated using docking algorithms. The results also indicate that a small set of single particle scattering data is superior to spherically averaged intensity profile in distinguishing complex structures. Given the fact that XFEL experimental data are difficult to acquire and at low abundance, this hybrid approach should find wide applications in data interpretations.

  9. DockingShop: A Tool for Interactive Molecular Docking

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Ting-Cheng; Max, Nelson L.; Ding, Jinhui; Bethel, E. Wes; Crivelli, Silvia N.

    2005-04-24

    Given two independently determined molecular structures, the molecular docking problem predicts the bound association, or best fit between them, while allowing for conformational changes of the individual molecules during construction of a molecular complex. Docking Shop is an integrated environment that permits interactive molecular docking by navigating a ligand or protein to an estimated binding site of a receptor with real-time graphical feedback of scoring factors as visual guides. Our program can be used to create initial configurations for a protein docking prediction process. Its output--the structure of aprotein-ligand or protein-protein complex--may serve as an input for aprotein docking algorithm, or an optimization process. This tool provides molecular graphics interfaces for structure modeling, interactive manipulation, navigation, optimization, and dynamic visualization to aid users steer the prediction process using their biological knowledge.

  10. Protein-protein docking with F(2Dock 2.0 and GB-rerank.

    Directory of Open Access Journals (Sweden)

    Rezaul Chowdhury

    Full Text Available Computational simulation of protein-protein docking can expedite the process of molecular modeling and drug discovery. This paper reports on our new F(2 Dock protocol which improves the state of the art in initial stage rigid body exhaustive docking search, scoring and ranking by introducing improvements in the shape-complementarity and electrostatics affinity functions, a new knowledge-based interface propensity term with FFT formulation, a set of novel knowledge-based filters and finally a solvation energy (GBSA based reranking technique. Our algorithms are based on highly efficient data structures including the dynamic packing grids and octrees which significantly speed up the computations and also provide guaranteed bounds on approximation error.The improved affinity functions show superior performance compared to their traditional counterparts in finding correct docking poses at higher ranks. We found that the new filters and the GBSA based reranking individually and in combination significantly improve the accuracy of docking predictions with only minor increase in computation time. We compared F(2 Dock 2.0 with ZDock 3.0.2 and found improvements over it, specifically among 176 complexes in ZLab Benchmark 4.0, F(2 Dock 2.0 finds a near-native solution as the top prediction for 22 complexes; where ZDock 3.0.2 does so for 13 complexes. F(2 Dock 2.0 finds a near-native solution within the top 1000 predictions for 106 complexes as opposed to 104 complexes for ZDock 3.0.2. However, there are 17 and 15 complexes where F(2 Dock 2.0 finds a solution but ZDock 3.0.2 does not and vice versa; which indicates that the two docking protocols can also complement each other.The docking protocol has been implemented as a server with a graphical client (TexMol which allows the user to manage multiple docking jobs, and visualize the docked poses and interfaces. Both the server and client are available for download. Server: http

  11. Protein-Protein Docking with F2Dock 2.0 and GB-Rerank

    Science.gov (United States)

    Chowdhury, Rezaul; Rasheed, Muhibur; Keidel, Donald; Moussalem, Maysam; Olson, Arthur; Sanner, Michel; Bajaj, Chandrajit

    2013-01-01

    Motivation Computational simulation of protein-protein docking can expedite the process of molecular modeling and drug discovery. This paper reports on our new F2 Dock protocol which improves the state of the art in initial stage rigid body exhaustive docking search, scoring and ranking by introducing improvements in the shape-complementarity and electrostatics affinity functions, a new knowledge-based interface propensity term with FFT formulation, a set of novel knowledge-based filters and finally a solvation energy (GBSA) based reranking technique. Our algorithms are based on highly efficient data structures including the dynamic packing grids and octrees which significantly speed up the computations and also provide guaranteed bounds on approximation error. Results The improved affinity functions show superior performance compared to their traditional counterparts in finding correct docking poses at higher ranks. We found that the new filters and the GBSA based reranking individually and in combination significantly improve the accuracy of docking predictions with only minor increase in computation time. We compared F2 Dock 2.0 with ZDock 3.0.2 and found improvements over it, specifically among 176 complexes in ZLab Benchmark 4.0, F2 Dock 2.0 finds a near-native solution as the top prediction for 22 complexes; where ZDock 3.0.2 does so for 13 complexes. F2 Dock 2.0 finds a near-native solution within the top 1000 predictions for 106 complexes as opposed to 104 complexes for ZDock 3.0.2. However, there are 17 and 15 complexes where F2 Dock 2.0 finds a solution but ZDock 3.0.2 does not and vice versa; which indicates that the two docking protocols can also complement each other. Availability The docking protocol has been implemented as a server with a graphical client (TexMol) which allows the user to manage multiple docking jobs, and visualize the docked poses and interfaces. Both the server and client are available for download. Server: http

  12. AnchorDock for Blind Flexible Docking of Peptides to Proteins.

    Science.gov (United States)

    Slutzki, Michal; Ben-Shimon, Avraham; Niv, Masha Y

    2017-01-01

    Due to increasing interest in peptides as signaling modulators and drug candidates, several methods for peptide docking to their target proteins are under active development. The "blind" docking problem, where the peptide-binding site on the protein surface is unknown, presents one of the current challenges in the field. AnchorDock protocol was developed by Ben-Shimon and Niv to address this challenge.This protocol narrows the docking search to the most relevant parts of the conformational space. This is achieved by pre-folding the free peptide and by computationally detecting anchoring spots on the surface of the unbound protein. Multiple flexible simulated annealing molecular dynamics (SAMD) simulations are subsequently carried out, starting from pre-folded peptide conformations, constrained to the various precomputed anchoring spots.Here, AnchorDock is demonstrated using two known protein-peptide complexes. A PDZ-peptide complex provides a relatively easy case due to the relatively small size of the protein, and a typical peptide conformation and binding region; a more challenging example is a complex between USP7 N-term and a p53-derived peptide, where the protein is larger, and the peptide conformation and a binding site are generally assumed to be unknown. AnchorDock returned native-like solutions ranked first and third for the PDZ and USP7 complexes, respectively. We describe the procedure step by step and discuss possible modifications where applicable.

  13. Analysis of protein-protein docking decoys using interaction fingerprints: application to the reconstruction of CaM-ligand complexes

    Directory of Open Access Journals (Sweden)

    Uchikoga Nobuyuki

    2010-05-01

    Full Text Available Abstract Background Protein-protein docking for proteins with large conformational changes was analyzed by using interaction fingerprints, one of the scales for measuring similarities among complex structures, utilized especially for searching near-native protein-ligand or protein-protein complex structures. Here, we have proposed a combined method for analyzing protein-protein docking by taking large conformational changes into consideration. This combined method consists of ensemble soft docking with multiple protein structures, refinement of complexes, and cluster analysis using interaction fingerprints and energy profiles. Results To test for the applicability of this combined method, various CaM-ligand complexes were reconstructed from the NMR structures of unbound CaM. For the purpose of reconstruction, we used three known CaM-ligands, namely, the CaM-binding peptides of cyclic nucleotide gateway (CNG, CaM kinase kinase (CaMKK and the plasma membrane Ca2+ ATPase pump (PMCA, and thirty-one structurally diverse CaM conformations. For each ligand, 62000 CaM-ligand complexes were generated in the docking step and the relationship between their energy profiles and structural similarities to the native complex were analyzed using interaction fingerprint and RMSD. Near-native clusters were obtained in the case of CNG and CaMKK. Conclusions The interaction fingerprint method discriminated near-native structures better than the RMSD method in cluster analysis. We showed that a combined method that includes the interaction fingerprint is very useful for protein-protein docking analysis of certain cases.

  14. AnchorDock: Blind and Flexible Anchor-Driven Peptide Docking.

    Science.gov (United States)

    Ben-Shimon, Avraham; Niv, Masha Y

    2015-05-05

    The huge conformational space stemming from the inherent flexibility of peptides is among the main obstacles to successful and efficient computational modeling of protein-peptide interactions. Current peptide docking methods typically overcome this challenge using prior knowledge from the structure of the complex. Here we introduce AnchorDock, a peptide docking approach, which automatically targets the docking search to the most relevant parts of the conformational space. This is done by precomputing the free peptide's structure and by computationally identifying anchoring spots on the protein surface. Next, a free peptide conformation undergoes anchor-driven simulated annealing molecular dynamics simulations around the predicted anchoring spots. In the challenging task of a completely blind docking test, AnchorDock produced exceptionally good results (backbone root-mean-square deviation ≤ 2.2Å, rank ≤15) for 10 of 13 unbound cases tested. The impressive performance of AnchorDock supports a molecular recognition pathway that is driven via pre-existing local structural elements. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Solvated protein–DNA docking using HADDOCK

    International Nuclear Information System (INIS)

    Dijk, Marc van; Visscher, Koen M.; Kastritis, Panagiotis L.; Bonvin, Alexandre M. J. J.

    2013-01-01

    Interfacial water molecules play an important role in many aspects of protein–DNA specificity and recognition. Yet they have been mostly neglected in the computational modeling of these complexes. We present here a solvated docking protocol that allows explicit inclusion of water molecules in the docking of protein–DNA complexes and demonstrate its feasibility on a benchmark of 30 high-resolution protein–DNA complexes containing crystallographically-determined water molecules at their interfaces. Our protocol is capable of reproducing the solvation pattern at the interface and recovers hydrogen-bonded water-mediated contacts in many of the benchmark cases. Solvated docking leads to an overall improvement in the quality of the generated protein–DNA models for cases with limited conformational change of the partners upon complex formation. The applicability of this approach is demonstrated on real cases by docking a representative set of 6 complexes using unbound protein coordinates, model-built DNA and knowledge-based restraints. As HADDOCK supports the inclusion of a variety of NMR restraints, solvated docking is also applicable for NMR-based structure calculations of protein–DNA complexes.

  16. Solvated protein-DNA docking using HADDOCK

    Energy Technology Data Exchange (ETDEWEB)

    Dijk, Marc van; Visscher, Koen M.; Kastritis, Panagiotis L.; Bonvin, Alexandre M. J. J., E-mail: a.m.j.j.bonvin@uu.nl [Utrecht University, Bijvoet Center for Biomolecular Research, Faculty of Science-Chemistry (Netherlands)

    2013-05-15

    Interfacial water molecules play an important role in many aspects of protein-DNA specificity and recognition. Yet they have been mostly neglected in the computational modeling of these complexes. We present here a solvated docking protocol that allows explicit inclusion of water molecules in the docking of protein-DNA complexes and demonstrate its feasibility on a benchmark of 30 high-resolution protein-DNA complexes containing crystallographically-determined water molecules at their interfaces. Our protocol is capable of reproducing the solvation pattern at the interface and recovers hydrogen-bonded water-mediated contacts in many of the benchmark cases. Solvated docking leads to an overall improvement in the quality of the generated protein-DNA models for cases with limited conformational change of the partners upon complex formation. The applicability of this approach is demonstrated on real cases by docking a representative set of 6 complexes using unbound protein coordinates, model-built DNA and knowledge-based restraints. As HADDOCK supports the inclusion of a variety of NMR restraints, solvated docking is also applicable for NMR-based structure calculations of protein-DNA complexes.

  17. A python-based docking program utilizing a receptor bound ligand shape: PythDock.

    Science.gov (United States)

    Chung, Jae Yoon; Cho, Seung Joo; Hah, Jung-Mi

    2011-09-01

    PythDock is a heuristic docking program that uses Python programming language with a simple scoring function and a population based search engine. The scoring function considers electrostatic and dispersion/repulsion terms. The search engine utilizes a particle swarm optimization algorithm. A grid potential map is generated using the shape information of a bound ligand within the active site. Therefore, the searching area is more relevant to the ligand binding. To evaluate the docking performance of PythDock, two well-known docking programs (AutoDock and DOCK) were also used with the same data. The accuracy of docked results were measured by the difference of the ligand structure between x-ray structure, and docked pose, i.e., average root mean squared deviation values of the bound ligand were compared for fourteen protein-ligand complexes. Since the number of ligands' rotational flexibility is an important factor affecting the accuracy of a docking, the data set was chosen to have various degrees of flexibility. Although PythDock has a scoring function simpler than those of other programs (AutoDock and DOCK), our results showed that PythDock predicted more accurate poses than both AutoDock4.2 and DOCK6.2. This indicates that PythDock could be a useful tool to study ligand-receptor interactions and could also be beneficial in structure based drug design.

  18. Synthesis, crystal structures, molecular docking and urease inhibition studies of Ni(II) and Cu(II) Schiff base complexes

    Science.gov (United States)

    Sangeeta, S.; Ahmad, K.; Noorussabah, N.; Bharti, S.; Mishra, M. K.; Sharma, S. R.; Choudhary, M.

    2018-03-01

    [Ni(L)2] 1 and [Cu(L)2] 2 [HL = 2-((E)-(2-methoxyphenylimino)methyl)-4,6-dichlorophenol] Schiff base complexes have been successfully synthesized and were characterized by FT-IR, UV-Vis, fluorescence spectroscopy and thermogravimetric analysis. The crystal structures of the two complexes were determined through X-ray crystallography. Its inhibitory activity against Helicobacter pylori urease was evaluated in vitro and showed strong inhibitory activity against H. pylori urease compared with acetohydroxamic acid (IC50 = 42.12 μmolL-1), which is a positive reference. A docking analysis using the AutoDock 4.0 program could explain the inhibitory activity of the complex against urease.

  19. Text Mining for Protein Docking.

    Directory of Open Access Journals (Sweden)

    Varsha D Badal

    2015-12-01

    Full Text Available The rapidly growing amount of publicly available information from biomedical research is readily accessible on the Internet, providing a powerful resource for predictive biomolecular modeling. The accumulated data on experimentally determined structures transformed structure prediction of proteins and protein complexes. Instead of exploring the enormous search space, predictive tools can simply proceed to the solution based on similarity to the existing, previously determined structures. A similar major paradigm shift is emerging due to the rapidly expanding amount of information, other than experimentally determined structures, which still can be used as constraints in biomolecular structure prediction. Automated text mining has been widely used in recreating protein interaction networks, as well as in detecting small ligand binding sites on protein structures. Combining and expanding these two well-developed areas of research, we applied the text mining to structural modeling of protein-protein complexes (protein docking. Protein docking can be significantly improved when constraints on the docking mode are available. We developed a procedure that retrieves published abstracts on a specific protein-protein interaction and extracts information relevant to docking. The procedure was assessed on protein complexes from Dockground (http://dockground.compbio.ku.edu. The results show that correct information on binding residues can be extracted for about half of the complexes. The amount of irrelevant information was reduced by conceptual analysis of a subset of the retrieved abstracts, based on the bag-of-words (features approach. Support Vector Machine models were trained and validated on the subset. The remaining abstracts were filtered by the best-performing models, which decreased the irrelevant information for ~ 25% complexes in the dataset. The extracted constraints were incorporated in the docking protocol and tested on the Dockground unbound

  20. Towards ligand docking including explicit interface water molecules.

    Directory of Open Access Journals (Sweden)

    Gordon Lemmon

    Full Text Available Small molecule docking predicts the interaction of a small molecule ligand with a protein at atomic-detail accuracy including position and conformation the ligand but also conformational changes of the protein upon ligand binding. While successful in the majority of cases, docking algorithms including RosettaLigand fail in some cases to predict the correct protein/ligand complex structure. In this study we show that simultaneous docking of explicit interface water molecules greatly improves Rosetta's ability to distinguish correct from incorrect ligand poses. This result holds true for both protein-centric water docking wherein waters are located relative to the protein binding site and ligand-centric water docking wherein waters move with the ligand during docking. Protein-centric docking is used to model 99 HIV-1 protease/protease inhibitor structures. We find protease inhibitor placement improving at a ratio of 9:1 when one critical interface water molecule is included in the docking simulation. Ligand-centric docking is applied to 341 structures from the CSAR benchmark of diverse protein/ligand complexes [1]. Across this diverse dataset we see up to 56% recovery of failed docking studies, when waters are included in the docking simulation.

  1. Protein docking prediction using predicted protein-protein interface

    Directory of Open Access Journals (Sweden)

    Li Bin

    2012-01-01

    Full Text Available Abstract Background Many important cellular processes are carried out by protein complexes. To provide physical pictures of interacting proteins, many computational protein-protein prediction methods have been developed in the past. However, it is still difficult to identify the correct docking complex structure within top ranks among alternative conformations. Results We present a novel protein docking algorithm that utilizes imperfect protein-protein binding interface prediction for guiding protein docking. Since the accuracy of protein binding site prediction varies depending on cases, the challenge is to develop a method which does not deteriorate but improves docking results by using a binding site prediction which may not be 100% accurate. The algorithm, named PI-LZerD (using Predicted Interface with Local 3D Zernike descriptor-based Docking algorithm, is based on a pair wise protein docking prediction algorithm, LZerD, which we have developed earlier. PI-LZerD starts from performing docking prediction using the provided protein-protein binding interface prediction as constraints, which is followed by the second round of docking with updated docking interface information to further improve docking conformation. Benchmark results on bound and unbound cases show that PI-LZerD consistently improves the docking prediction accuracy as compared with docking without using binding site prediction or using the binding site prediction as post-filtering. Conclusion We have developed PI-LZerD, a pairwise docking algorithm, which uses imperfect protein-protein binding interface prediction to improve docking accuracy. PI-LZerD consistently showed better prediction accuracy over alternative methods in the series of benchmark experiments including docking using actual docking interface site predictions as well as unbound docking cases.

  2. Protein docking prediction using predicted protein-protein interface.

    Science.gov (United States)

    Li, Bin; Kihara, Daisuke

    2012-01-10

    Many important cellular processes are carried out by protein complexes. To provide physical pictures of interacting proteins, many computational protein-protein prediction methods have been developed in the past. However, it is still difficult to identify the correct docking complex structure within top ranks among alternative conformations. We present a novel protein docking algorithm that utilizes imperfect protein-protein binding interface prediction for guiding protein docking. Since the accuracy of protein binding site prediction varies depending on cases, the challenge is to develop a method which does not deteriorate but improves docking results by using a binding site prediction which may not be 100% accurate. The algorithm, named PI-LZerD (using Predicted Interface with Local 3D Zernike descriptor-based Docking algorithm), is based on a pair wise protein docking prediction algorithm, LZerD, which we have developed earlier. PI-LZerD starts from performing docking prediction using the provided protein-protein binding interface prediction as constraints, which is followed by the second round of docking with updated docking interface information to further improve docking conformation. Benchmark results on bound and unbound cases show that PI-LZerD consistently improves the docking prediction accuracy as compared with docking without using binding site prediction or using the binding site prediction as post-filtering. We have developed PI-LZerD, a pairwise docking algorithm, which uses imperfect protein-protein binding interface prediction to improve docking accuracy. PI-LZerD consistently showed better prediction accuracy over alternative methods in the series of benchmark experiments including docking using actual docking interface site predictions as well as unbound docking cases.

  3. Arbitrary protein−protein docking targets biologically relevant interfaces

    International Nuclear Information System (INIS)

    Martin, Juliette; Lavery, Richard

    2012-01-01

    Protein-protein recognition is of fundamental importance in the vast majority of biological processes. However, it has already been demonstrated that it is very hard to distinguish true complexes from false complexes in so-called cross-docking experiments, where binary protein complexes are separated and the isolated proteins are all docked against each other and scored. Does this result, at least in part, reflect a physical reality? False complexes could reflect possible nonspecific or weak associations. In this paper, we investigate the twilight zone of protein-protein interactions, building on an interesting outcome of cross-docking experiments: false complexes seem to favor residues from the true interaction site, suggesting that randomly chosen partners dock in a non-random fashion on protein surfaces. Here, we carry out arbitrary docking of a non-redundant data set of 198 proteins, with more than 300 randomly chosen "probe" proteins. We investigate the tendency of arbitrary partners to aggregate at localized regions of the protein surfaces, the shape and compositional bias of the generated interfaces, and the potential of this property to predict biologically relevant binding sites. We show that the non-random localization of arbitrary partners after protein-protein docking is a generic feature of protein structures. The interfaces generated in this way are not systematically planar or curved, but tend to be closer than average to the center of the proteins. These results can be used to predict biological interfaces with an AUC value up to 0.69 alone, and 0.72 when used in combination with evolutionary information. An appropriate choice of random partners and number of docking models make this method computationally practical. It is also noted that nonspecific interfaces can point to alternate interaction sites in the case of proteins with multiple interfaces. We illustrate the usefulness of arbitrary docking using PEBP (Phosphatidylethanolamine binding

  4. Arbitrary protein−protein docking targets biologically relevant interfaces

    Directory of Open Access Journals (Sweden)

    Martin Juliette

    2012-05-01

    Full Text Available Abstract Background Protein-protein recognition is of fundamental importance in the vast majority of biological processes. However, it has already been demonstrated that it is very hard to distinguish true complexes from false complexes in so-called cross-docking experiments, where binary protein complexes are separated and the isolated proteins are all docked against each other and scored. Does this result, at least in part, reflect a physical reality? False complexes could reflect possible nonspecific or weak associations. Results In this paper, we investigate the twilight zone of protein-protein interactions, building on an interesting outcome of cross-docking experiments: false complexes seem to favor residues from the true interaction site, suggesting that randomly chosen partners dock in a non-random fashion on protein surfaces. Here, we carry out arbitrary docking of a non-redundant data set of 198 proteins, with more than 300 randomly chosen "probe" proteins. We investigate the tendency of arbitrary partners to aggregate at localized regions of the protein surfaces, the shape and compositional bias of the generated interfaces, and the potential of this property to predict biologically relevant binding sites. We show that the non-random localization of arbitrary partners after protein-protein docking is a generic feature of protein structures. The interfaces generated in this way are not systematically planar or curved, but tend to be closer than average to the center of the proteins. These results can be used to predict biological interfaces with an AUC value up to 0.69 alone, and 0.72 when used in combination with evolutionary information. An appropriate choice of random partners and number of docking models make this method computationally practical. It is also noted that nonspecific interfaces can point to alternate interaction sites in the case of proteins with multiple interfaces. We illustrate the usefulness of arbitrary docking

  5. Involvement of complexin 2 in docking, locking and unlocking of different SNARE complexes during sperm capacitation and induced acrosomal exocytosis.

    Directory of Open Access Journals (Sweden)

    Pei-Shiue J Tsai

    Full Text Available Acrosomal exocytosis (AE is an intracellular multipoint fusion reaction of the sperm plasma membrane (PM with the outer acrosomal membrane (OAM. This unique exocytotic event enables the penetration of the sperm through the zona pellucida of the oocyte. We previously observed a stable docking of OAM to the PM brought about by the formation of the trans-SNARE complex (syntaxin 1B, SNAP 23 and VAMP 3. By using electron microscopy, immunochemistry and immunofluorescence techniques in combination with functional studies and proteomic approaches, we here demonstrate that calcium ionophore-induced AE results in the formation of unilamellar hybrid membrane vesicles containing a mixture of components originating from the two fused membranes. These mixed vesicles (MV do not contain the earlier reported trimeric SNARE complex but instead possess a novel trimeric SNARE complex that contained syntaxin 3, SNAP 23 and VAMP 2, with an additional SNARE interacting protein, complexin 2. Our data indicate that the earlier reported raft and capacitation-dependent docking phenomenon between the PM and OAM allows a specific rearrangement of molecules between the two docked membranes and is involved in (1 recruiting SNAREs and complexin 2 in the newly formed lipid-ordered microdomains, (2 the assembly of a fusion-driving SNARE complex which executes Ca(2+-dependent AE, (3 the disassembly of the earlier reported docking SNARE complex, (4 the recruitment of secondary zona binding proteins at the zona interacting sperm surface. The possibility to study separate and dynamic interactions between SNARE proteins, complexin and Ca(2+ which are all involved in AE make sperm an ideal model for studying exocytosis.

  6. Assembly factors for the membrane arm of human complex I.

    Science.gov (United States)

    Andrews, Byron; Carroll, Joe; Ding, Shujing; Fearnley, Ian M; Walker, John E

    2013-11-19

    Mitochondrial respiratory complex I is a product of both the nuclear and mitochondrial genomes. The integration of seven subunits encoded in mitochondrial DNA into the inner membrane, their association with 14 nuclear-encoded membrane subunits, the construction of the extrinsic arm from 23 additional nuclear-encoded proteins, iron-sulfur clusters, and flavin mononucleotide cofactor require the participation of assembly factors. Some are intrinsic to the complex, whereas others participate transiently. The suppression of the expression of the NDUFA11 subunit of complex I disrupted the assembly of the complex, and subcomplexes with masses of 550 and 815 kDa accumulated. Eight of the known extrinsic assembly factors plus a hydrophobic protein, C3orf1, were associated with the subcomplexes. The characteristics of C3orf1, of another assembly factor, TMEM126B, and of NDUFA11 suggest that they all participate in constructing the membrane arm of complex I.

  7. Protein-Protein Docking in Drug Design and Discovery.

    Science.gov (United States)

    Kaczor, Agnieszka A; Bartuzi, Damian; Stępniewski, Tomasz Maciej; Matosiuk, Dariusz; Selent, Jana

    2018-01-01

    Protein-protein interactions (PPIs) are responsible for a number of key physiological processes in the living cells and underlie the pathomechanism of many diseases. Nowadays, along with the concept of so-called "hot spots" in protein-protein interactions, which are well-defined interface regions responsible for most of the binding energy, these interfaces can be targeted with modulators. In order to apply structure-based design techniques to design PPIs modulators, a three-dimensional structure of protein complex has to be available. In this context in silico approaches, in particular protein-protein docking, are a valuable complement to experimental methods for elucidating 3D structure of protein complexes. Protein-protein docking is easy to use and does not require significant computer resources and time (in contrast to molecular dynamics) and it results in 3D structure of a protein complex (in contrast to sequence-based methods of predicting binding interfaces). However, protein-protein docking cannot address all the aspects of protein dynamics, in particular the global conformational changes during protein complex formation. In spite of this fact, protein-protein docking is widely used to model complexes of water-soluble proteins and less commonly to predict structures of transmembrane protein assemblies, including dimers and oligomers of G protein-coupled receptors (GPCRs). In this chapter we review the principles of protein-protein docking, available algorithms and software and discuss the recent examples, benefits, and drawbacks of protein-protein docking application to water-soluble proteins, membrane anchoring and transmembrane proteins, including GPCRs.

  8. A New Approach for Flexible Molecular Docking Based on Swarm Intelligence

    Directory of Open Access Journals (Sweden)

    Yi Fu

    2015-01-01

    Full Text Available Molecular docking methods play an important role in the field of computer-aided drug design. In the work, on the basis of the molecular docking program AutoDock, we present QLDock as a tool for flexible molecular docking. For the energy evaluation, the algorithm uses the binding free energy function that is provided by the AutoDock 4.2 tool. The new search algorithm combines the features of a quantum-behaved particle swarm optimization (QPSO algorithm and local search method of Solis and Wets for solving the highly flexible protein-ligand docking problem. We compute the interaction of 23 protein-ligand complexes and compare the results with those of the QDock and AutoDock programs. The experimental results show that our approach leads to substantially lower docking energy and higher docking precision in comparison to Lamarckian genetic algorithm and QPSO algorithm alone. QPSO-ls algorithm was able to identify the correct binding mode of 74% of the complexes. In comparison, the accuracy of QPSO and LGA is 52% and 61%, respectively. This difference in performance rises with increasing complexity of the ligand. Thus, the novel algorithm QPSO-ls may be used to dock ligand with many rotatable bonds with high accuracy.

  9. "Flexible Ligand Docking Studies of Matrix Metalloproteinase Inhibitors Using Lamarckian Genetic Algorithm "

    Directory of Open Access Journals (Sweden)

    lOrkideh Ghorban Dadrass

    2004-06-01

    Full Text Available As important therapeutic drug targets, matrix metalloproteinases (MMPs have recently attracted great interest in the search for potent and selective inhibitors using computer-aided molecular modelling and docking techniques. Availability of more than 60 X-ray crystal structures or NMR solution structures related to MMPs in Protein Data Bank (PDB of which more than half of them are in complex with various MMP inhibitors (MMPIs, provides a great opportunity for docking studies. In this study AutoDock 3.0.5 along with its LGA algorithm were used for automated flexible ligand docking of 32 MMPI-MMP complexes and docking accuracy and reliability of the estimated inhibition constants were evaluated. Twenty-six out of 32 docks had RMSD less than 3.0 Å which is considered as well-docked, however, for the most of the cases (15 out of 27, predicted pKi values were considerably overestimated in comparison to experimental values. To improve pKi prediction regarding MMPI-MMP complexes, inclusion of at least one such a complex in calibration of empirical free energy function in the next release of AutoDock is highly recommended.

  10. The HADDOCK web server for data-driven biomolecular docking

    NARCIS (Netherlands)

    de Vries, S.J.|info:eu-repo/dai/nl/304837717; van Dijk, M.|info:eu-repo/dai/nl/325811113; Bonvin, A.M.J.J.|info:eu-repo/dai/nl/113691238

    2010-01-01

    Computational docking is the prediction or modeling of the three-dimensional structure of a biomolecular complex, starting from the structures of the individual molecules in their free, unbound form. HADDOC K is a popular docking program that takes a datadriven approach to docking, with support for

  11. CT-docking patient stretcher

    International Nuclear Information System (INIS)

    Mirvis, S.E.; Owens, E.; Maslyn, J.; Rizutto, M.

    1990-01-01

    This paper assesses the use of a patient stretcher that directly docks to a CT scanner for acutely injured and/or critically ill patients. The stretcher permits performance of radiography and acts as a platform for critical care monitoring and patient support devices. During a 1-year period, the prototype CT-docking stretcher was used for 35 patients sustaining acute trauma and 25 patients from critical care units. Observations were elicited from physicians, nurses and technologists concerning the advantages or disadvantages of the docking stretcher. Advantages of the CT-docking stretcher included time saved in moving patients to the CT table from the admitting/emergency ward, transfer of critically ill patients onto the stretcher in the controlled environment of the intensive care unit rather than the CT suite, increasing CT throughput by direct docking of the patient stretcher to the CT scanner rather than manual transfer of complex support and monitoring devices with the patient, decreased risk associated with physical movement of patients with potentially unstable spinal injuries or unstable physiologic status, and decrease in potential for injury to medical personnel performing patient transfer

  12. PaFlexPepDock: parallel ab-initio docking of peptides onto their receptors with full flexibility based on Rosetta.

    Science.gov (United States)

    Li, Haiou; Lu, Liyao; Chen, Rong; Quan, Lijun; Xia, Xiaoyan; Lü, Qiang

    2014-01-01

    Structural information related to protein-peptide complexes can be very useful for novel drug discovery and design. The computational docking of protein and peptide can supplement the structural information available on protein-peptide interactions explored by experimental ways. Protein-peptide docking of this paper can be described as three processes that occur in parallel: ab-initio peptide folding, peptide docking with its receptor, and refinement of some flexible areas of the receptor as the peptide is approaching. Several existing methods have been used to sample the degrees of freedom in the three processes, which are usually triggered in an organized sequential scheme. In this paper, we proposed a parallel approach that combines all the three processes during the docking of a folding peptide with a flexible receptor. This approach mimics the actual protein-peptide docking process in parallel way, and is expected to deliver better performance than sequential approaches. We used 22 unbound protein-peptide docking examples to evaluate our method. Our analysis of the results showed that the explicit refinement of the flexible areas of the receptor facilitated more accurate modeling of the interfaces of the complexes, while combining all of the moves in parallel helped the constructing of energy funnels for predictions.

  13. PaFlexPepDock: parallel ab-initio docking of peptides onto their receptors with full flexibility based on Rosetta.

    Directory of Open Access Journals (Sweden)

    Haiou Li

    Full Text Available Structural information related to protein-peptide complexes can be very useful for novel drug discovery and design. The computational docking of protein and peptide can supplement the structural information available on protein-peptide interactions explored by experimental ways. Protein-peptide docking of this paper can be described as three processes that occur in parallel: ab-initio peptide folding, peptide docking with its receptor, and refinement of some flexible areas of the receptor as the peptide is approaching. Several existing methods have been used to sample the degrees of freedom in the three processes, which are usually triggered in an organized sequential scheme. In this paper, we proposed a parallel approach that combines all the three processes during the docking of a folding peptide with a flexible receptor. This approach mimics the actual protein-peptide docking process in parallel way, and is expected to deliver better performance than sequential approaches. We used 22 unbound protein-peptide docking examples to evaluate our method. Our analysis of the results showed that the explicit refinement of the flexible areas of the receptor facilitated more accurate modeling of the interfaces of the complexes, while combining all of the moves in parallel helped the constructing of energy funnels for predictions.

  14. Septin 7 reduces nonmuscle myosin IIA activity in the SNAP23 complex and hinders GLUT4 storage vesicle docking and fusion

    Energy Technology Data Exchange (ETDEWEB)

    Wasik, Anita A.; Dumont, Vincent [Department of Pathology, University of Helsinki, 00014 Helsinki (Finland); Tienari, Jukka [Department of Pathology, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, 05850 Hyvinkää (Finland); Nyman, Tuula A. [Institute of Biotechnology, University of Helsinki, 00014 Helsinki (Finland); Fogarty, Christopher L.; Forsblom, Carol; Lehto, Markku [Folkhälsan Institute of Genetics, Folkhälsan Research Center, 00290 Helsinki (Finland); Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, 000290 Helsinki (Finland); Diabetes& Obesity Research Program, Research Program´s Unit, 00014 University of Helsinki (Finland); Lehtonen, Eero [Department of Pathology, University of Helsinki, 00014 Helsinki (Finland); Laboratory Animal Centre, University of Helsinki, 00014 Helsinki (Finland); Groop, Per-Henrik [Folkhälsan Institute of Genetics, Folkhälsan Research Center, 00290 Helsinki (Finland); Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, 000290 Helsinki (Finland); Diabetes& Obesity Research Program, Research Program´s Unit, 00014 University of Helsinki (Finland); Baker IDI Heart & Diabetes Institute, 3004 Melbourne (Australia); Lehtonen, Sanna, E-mail: sanna.h.lehtonen@helsinki.fi [Department of Pathology, University of Helsinki, 00014 Helsinki (Finland)

    2017-01-15

    Glomerular epithelial cells, podocytes, are insulin responsive and can develop insulin resistance. Here, we demonstrate that the small GTPase septin 7 forms a complex with nonmuscle myosin heavy chain IIA (NMHC-IIA; encoded by MYH9), a component of the nonmuscle myosin IIA (NM-IIA) hexameric complex. We observed that knockdown of NMHC-IIA decreases insulin-stimulated glucose uptake into podocytes. Both septin 7 and NM-IIA associate with SNAP23, a SNARE protein involved in GLUT4 storage vesicle (GSV) docking and fusion with the plasma membrane. We observed that insulin decreases the level of septin 7 and increases the activity of NM-IIA in the SNAP23 complex, as visualized by increased phosphorylation of myosin regulatory light chain. Also knockdown of septin 7 increases the activity of NM-IIA in the complex. The activity of NM-IIA is increased in diabetic rat glomeruli and cultured human podocytes exposed to macroalbuminuric sera from patients with type 1 diabetes. Collectively, the data suggest that the activity of NM-IIA in the SNAP23 complex plays a key role in insulin-stimulated glucose uptake into podocytes. Furthermore, we observed that septin 7 reduces the activity of NM-IIA in the SNAP23 complex and thereby hinders GSV docking and fusion with the plasma membrane. - Highlights: • Septin 7, nonmuscle myosin heavy chain IIA (NMHC-IIA) and SNAP23 form a complex. • Knockdown of septin 7 increases NM-IIA activity in the SNAP23 complex. • Insulin decreases septin 7 level and increases NM-IIA activity in the SNAP23 complex. • Septin 7 hinders GSV docking/fusion by reducing NM-IIA activity in the SNAP23 complex.

  15. Septin 7 reduces nonmuscle myosin IIA activity in the SNAP23 complex and hinders GLUT4 storage vesicle docking and fusion

    International Nuclear Information System (INIS)

    Wasik, Anita A.; Dumont, Vincent; Tienari, Jukka; Nyman, Tuula A.; Fogarty, Christopher L.; Forsblom, Carol; Lehto, Markku; Lehtonen, Eero; Groop, Per-Henrik; Lehtonen, Sanna

    2017-01-01

    Glomerular epithelial cells, podocytes, are insulin responsive and can develop insulin resistance. Here, we demonstrate that the small GTPase septin 7 forms a complex with nonmuscle myosin heavy chain IIA (NMHC-IIA; encoded by MYH9), a component of the nonmuscle myosin IIA (NM-IIA) hexameric complex. We observed that knockdown of NMHC-IIA decreases insulin-stimulated glucose uptake into podocytes. Both septin 7 and NM-IIA associate with SNAP23, a SNARE protein involved in GLUT4 storage vesicle (GSV) docking and fusion with the plasma membrane. We observed that insulin decreases the level of septin 7 and increases the activity of NM-IIA in the SNAP23 complex, as visualized by increased phosphorylation of myosin regulatory light chain. Also knockdown of septin 7 increases the activity of NM-IIA in the complex. The activity of NM-IIA is increased in diabetic rat glomeruli and cultured human podocytes exposed to macroalbuminuric sera from patients with type 1 diabetes. Collectively, the data suggest that the activity of NM-IIA in the SNAP23 complex plays a key role in insulin-stimulated glucose uptake into podocytes. Furthermore, we observed that septin 7 reduces the activity of NM-IIA in the SNAP23 complex and thereby hinders GSV docking and fusion with the plasma membrane. - Highlights: • Septin 7, nonmuscle myosin heavy chain IIA (NMHC-IIA) and SNAP23 form a complex. • Knockdown of septin 7 increases NM-IIA activity in the SNAP23 complex. • Insulin decreases septin 7 level and increases NM-IIA activity in the SNAP23 complex. • Septin 7 hinders GSV docking/fusion by reducing NM-IIA activity in the SNAP23 complex.

  16. Synthesis, Cytotoxicity and Molecular Docking Study of Complexes Containing Thiazole Moiety

    Directory of Open Access Journals (Sweden)

    Mohammed Shafeeulla

    2017-07-01

    Full Text Available The ligand 5-methyl-2-phenyl-4-[(E-1,3-thiazol-2-yldiazenyl]-2,4-dihydro-3H-pyrazol-3-one (Dy has been synthesized by diazo coupling reactions of 5-methyl-2-phenyl- 2,4-dihydro-3H-pyrazol-3-one with 2-aminothiazole and ferric hydrogen sulfate (FHS, as a catalyst, under solvent-free conditions. A series of complexes of the ligand with Co(II, Ni(II, Cu(II, and Zn(II ions are synthesized and structurally characterized by 1H NMR, FTIR, and UV–Visible spectral techniques. The cytotoxic activity of the complexes and the uncoordinated ligand against human breast cancer (MCF-7 and chronic myelogenous leukemia cell line (human erythroleukemia (K-562 cell lines exhibits good viability in the range of 50.16–55.16% at a concentration of >100-110 µg/mL as compared to the inhibition in the untreated cells. Further, the metal complexes and ligand were screened against antibacterial strains of S. typhi, S. aureus, and E. coli. Both the cytotoxicity and antioxidant studies are correlated with computational docking analysis and powder XRD studies reviles that all complexes are in crystalline nature.

  17. New generation of docking programs: Supercomputer validation of force fields and quantum-chemical methods for docking.

    Science.gov (United States)

    Sulimov, Alexey V; Kutov, Danil C; Katkova, Ekaterina V; Ilin, Ivan S; Sulimov, Vladimir B

    2017-11-01

    Discovery of new inhibitors of the protein associated with a given disease is the initial and most important stage of the whole process of the rational development of new pharmaceutical substances. New inhibitors block the active site of the target protein and the disease is cured. Computer-aided molecular modeling can considerably increase effectiveness of new inhibitors development. Reliable predictions of the target protein inhibition by a small molecule, ligand, is defined by the accuracy of docking programs. Such programs position a ligand in the target protein and estimate the protein-ligand binding energy. Positioning accuracy of modern docking programs is satisfactory. However, the accuracy of binding energy calculations is too low to predict good inhibitors. For effective application of docking programs to new inhibitors development the accuracy of binding energy calculations should be higher than 1kcal/mol. Reasons of limited accuracy of modern docking programs are discussed. One of the most important aspects limiting this accuracy is imperfection of protein-ligand energy calculations. Results of supercomputer validation of several force fields and quantum-chemical methods for docking are presented. The validation was performed by quasi-docking as follows. First, the low energy minima spectra of 16 protein-ligand complexes were found by exhaustive minima search in the MMFF94 force field. Second, energies of the lowest 8192 minima are recalculated with CHARMM force field and PM6-D3H4X and PM7 quantum-chemical methods for each complex. The analysis of minima energies reveals the docking positioning accuracies of the PM7 and PM6-D3H4X quantum-chemical methods and the CHARMM force field are close to one another and they are better than the positioning accuracy of the MMFF94 force field. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Structure dependent hydrophobic and hydrophilic interactions between nickel(II) Schiff base complexes and serum albumins: Spectroscopic and docking studies

    Energy Technology Data Exchange (ETDEWEB)

    Koley Seth, Banabithi; Ray, Aurkie; Banerjee, Mousumi; Bhattacharyya, Teerna [Chemical Sciences Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064 (India); Bhattacharyya, Dhananjay [Computational Sciences Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064 (India); Basu, Samita, E-mail: samita.basu@saha.ac.in [Chemical Sciences Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064 (India)

    2016-03-15

    A systematic and comparative binding study between serum-albumins (SA) and a series of monomeric nickel(II)-Schiff-base-complexes (NSCs), which might be imperative to investigate the function of SA behind nickel allergy, has been carried out through docking and different spectroscopic techniques. The initial docking studies indicate structure-dependent selective hydrophobic and hydrophilic interactions. The pyridine and phenyl containing NSCs, which are more aromatic, show better π–π staking compared to pyrrole one. Again all the NSCs bind with BSA though amino acid residues of IB domain affecting local environment of the Trp-134 surrounded by both hydrophobic and hydrophilic residues instead of the hydrophobically buried Trp-212. In HSA the hydophobically buried Trp-214 is influenced by NSCs. The experimental results nicely support the docking outcomes. The changes in Gibbs free energy, binding affinity and the nature of hydrophilic/hydrophobic interactions of NSC–SA systems indicate greater accessibility of N{sub 2}O{sub 2} donor set complex compared to N{sub 4} one towards SA. Quantum chemical structure optimizations support the better planarity of NSC with N{sub 2}O{sub 2} which provides better binding. Therefore the structural variation of N{sub 2}O{sub 2} donor set complexes becomes much more useful compared to N{sub 4} one to search out the most compatible NSC towards SAs.

  19. Dockomatic - automated ligand creation and docking.

    Science.gov (United States)

    Bullock, Casey W; Jacob, Reed B; McDougal, Owen M; Hampikian, Greg; Andersen, Tim

    2010-11-08

    The application of computational modeling to rationally design drugs and characterize macro biomolecular receptors has proven increasingly useful due to the accessibility of computing clusters and clouds. AutoDock is a well-known and powerful software program used to model ligand to receptor binding interactions. In its current version, AutoDock requires significant amounts of user time to setup and run jobs, and collect results. This paper presents DockoMatic, a user friendly Graphical User Interface (GUI) application that eases and automates the creation and management of AutoDock jobs for high throughput screening of ligand to receptor interactions. DockoMatic allows the user to invoke and manage AutoDock jobs on a single computer or cluster, including jobs for evaluating secondary ligand interactions. It also automates the process of collecting, summarizing, and viewing results. In addition, DockoMatic automates creation of peptide ligand .pdb files from strings of single-letter amino acid abbreviations. DockoMatic significantly reduces the complexity of managing multiple AutoDock jobs by facilitating ligand and AutoDock job creation and management.

  20. Dockomatic - automated ligand creation and docking

    Directory of Open Access Journals (Sweden)

    Hampikian Greg

    2010-11-01

    Full Text Available Abstract Background The application of computational modeling to rationally design drugs and characterize macro biomolecular receptors has proven increasingly useful due to the accessibility of computing clusters and clouds. AutoDock is a well-known and powerful software program used to model ligand to receptor binding interactions. In its current version, AutoDock requires significant amounts of user time to setup and run jobs, and collect results. This paper presents DockoMatic, a user friendly Graphical User Interface (GUI application that eases and automates the creation and management of AutoDock jobs for high throughput screening of ligand to receptor interactions. Results DockoMatic allows the user to invoke and manage AutoDock jobs on a single computer or cluster, including jobs for evaluating secondary ligand interactions. It also automates the process of collecting, summarizing, and viewing results. In addition, DockoMatic automates creation of peptide ligand .pdb files from strings of single-letter amino acid abbreviations. Conclusions DockoMatic significantly reduces the complexity of managing multiple AutoDock jobs by facilitating ligand and AutoDock job creation and management.

  1. Modeling holo-ACP:DH and holo-ACP:KR complexes of modular polyketide synthases: a docking and molecular dynamics study

    Directory of Open Access Journals (Sweden)

    Anand Swadha

    2012-05-01

    Full Text Available Abstract Background Modular polyketide synthases are multifunctional megasynthases which biosynthesize a variety of secondary metabolites using various combinations of dehydratase (DH, ketoreductase (KR and enoyl-reductase (ER domains. During the catalysis of various reductive steps these domains act on a substrate moiety which is covalently attached to the phosphopantetheine (P-pant group of the holo-Acyl Carrier Protein (holo-ACP domain, thus necessitating the formation of holo-ACP:DH and holo-ACP:KR complexes. Even though three dimensional structures are available for DH, KR and ACP domains, no structures are available for DH or KR domains in complex with ACP or substrate moieties. Since Ser of holo-ACP is covalently attached to a large phosphopantetheine group, obtaining complexes involving holo-ACP by standard protein-protein docking has been a difficult task. Results We have modeled the holo-ACP:DH and holo-ACP:KR complexes for identifying specific residues on DH and KR domains which are involved in interaction with ACP, phosphopantetheine and substrate moiety. A novel combination of protein-protein and protein-ligand docking has been used to first model complexes involving apo-ACP and then dock the phosphopantetheine and substrate moieties using covalent connectivity between ACP, phosphopantetheine and substrate moiety as constraints. The holo-ACP:DH and holo-ACP:KR complexes obtained from docking have been further refined by restraint free explicit solvent MD simulations to incorporate effects of ligand and receptor flexibilities. The results from 50 ns MD simulations reveal that substrate enters into a deep tunnel in DH domain while in case of KR domain the substrate binds a shallow surface exposed cavity. Interestingly, in case of DH domain the predicted binding site overlapped with the binding site in the inhibitor bound crystal structure of FabZ, the DH domain from E.Coli FAS. In case of KR domain, the substrate binding site

  2. Technology Development of Automated Rendezvous and Docking/Capture Sensors and Docking Mechanism for the Asteroid Redirect Crewed Mission

    Science.gov (United States)

    Hinkel, Heather; Strube, Matthew; Zipay, John J.; Cryan, Scott

    2016-01-01

    This paper will describe the technology development efforts NASA has underway for Automated Rendezvous and Docking/Capture (AR&D/C) sensors and a docking mechanism and the challenges involved. The paper will additionally address how these technologies will be extended to other missions requiring AR&D/C whether robotic or manned. NASA needs AR&D/C sensors for both the robotic and crewed segments of the Asteroid Redirect Mission (ARM). NASA recently conducted a commonality assessment of the concept of operations for the robotic Asteroid Redirect Vehicle (ARV) and the crewed mission segment using the Orion spacecraft. The commonality assessment also considered several future exploration and science missions requiring an AR&D/C capability. Missions considered were asteroid sample return, satellite servicing, and planetary entry, descent, and landing. This assessment determined that a common sensor suite consisting of one or more visible wavelength cameras, a three-dimensional LIDAR along with long-wavelength infrared cameras for robustness and situational awareness could be used on each mission to eliminate the cost of multiple sensor developments and qualifications. By choosing sensor parameters at build-time instead of at design-time and, without having to requalify flight hardware, a specific mission can design overlapping bearing, range, relative attitude, and position measurement availability to suit their mission requirements with minimal non-recurring engineering costs. The resulting common sensor specification provides the union of all performance requirements for each mission and represents an improvement over the current systems used for AR&D/C today. These sensor specifications are tightly coupled to the docking system capabilities and requirements for final docking conditions. The paper will describe NASA's efforts to develop a standard docking system for use across NASA human spaceflight missions to multiple destinations. It will describe the current

  3. Protein-protein docking using region-based 3D Zernike descriptors

    Directory of Open Access Journals (Sweden)

    Sael Lee

    2009-12-01

    Full Text Available Abstract Background Protein-protein interactions are a pivotal component of many biological processes and mediate a variety of functions. Knowing the tertiary structure of a protein complex is therefore essential for understanding the interaction mechanism. However, experimental techniques to solve the structure of the complex are often found to be difficult. To this end, computational protein-protein docking approaches can provide a useful alternative to address this issue. Prediction of docking conformations relies on methods that effectively capture shape features of the participating proteins while giving due consideration to conformational changes that may occur. Results We present a novel protein docking algorithm based on the use of 3D Zernike descriptors as regional features of molecular shape. The key motivation of using these descriptors is their invariance to transformation, in addition to a compact representation of local surface shape characteristics. Docking decoys are generated using geometric hashing, which are then ranked by a scoring function that incorporates a buried surface area and a novel geometric complementarity term based on normals associated with the 3D Zernike shape description. Our docking algorithm was tested on both bound and unbound cases in the ZDOCK benchmark 2.0 dataset. In 74% of the bound docking predictions, our method was able to find a near-native solution (interface C-αRMSD ≤ 2.5 Å within the top 1000 ranks. For unbound docking, among the 60 complexes for which our algorithm returned at least one hit, 60% of the cases were ranked within the top 2000. Comparison with existing shape-based docking algorithms shows that our method has a better performance than the others in unbound docking while remaining competitive for bound docking cases. Conclusion We show for the first time that the 3D Zernike descriptors are adept in capturing shape complementarity at the protein-protein interface and useful for

  4. A Novel Docking System for Modular Self-Reconfigurable Robots

    Directory of Open Access Journals (Sweden)

    Tan Zhang

    2017-10-01

    Full Text Available Existing self-reconfigurable robots achieve connections and disconnections by a separate drive of the docking system. In this paper, we present a new docking system with which the connections and disconnections are driven by locomotion actuators, without the need for a separate drive, which reduces the weight and the complexity of the modules. This self-reconfigurable robot consists of two types of fundamental modules, i.e., active and passive modules. By the docking system, two types of connections are formed with the fundamental modules, and the docking and undocking actions are achieved through simple control with less sensory feedback. This paper describes the design of the robotic modules, the docking system, the docking process, and the docking force analysis. An experiment is performed to demonstrate the self-reconfigurable robot with the docking system.

  5. Protein-protein docking with dynamic residue protonation states.

    Directory of Open Access Journals (Sweden)

    Krishna Praneeth Kilambi

    2014-12-01

    Full Text Available Protein-protein interactions depend on a host of environmental factors. Local pH conditions influence the interactions through the protonation states of the ionizable residues that can change upon binding. In this work, we present a pH-sensitive docking approach, pHDock, that can sample side-chain protonation states of five ionizable residues (Asp, Glu, His, Tyr, Lys on-the-fly during the docking simulation. pHDock produces successful local docking funnels in approximately half (79/161 the protein complexes, including 19 cases where standard RosettaDock fails. pHDock also performs better than the two control cases comprising docking at pH 7.0 or using fixed, predetermined protonation states. On average, the top-ranked pHDock structures have lower interface RMSDs and recover more native interface residue-residue contacts and hydrogen bonds compared to RosettaDock. Addition of backbone flexibility using a computationally-generated conformational ensemble further improves native contact and hydrogen bond recovery in the top-ranked structures. Although pHDock is designed to improve docking, it also successfully predicts a large pH-dependent binding affinity change in the Fc-FcRn complex, suggesting that it can be exploited to improve affinity predictions. The approaches in the study contribute to the goal of structural simulations of whole-cell protein-protein interactions including all the environmental factors, and they can be further expanded for pH-sensitive protein design.

  6. Molecular docking.

    Science.gov (United States)

    Morris, Garrett M; Lim-Wilby, Marguerita

    2008-01-01

    Molecular docking is a key tool in structural molecular biology and computer-assisted drug design. The goal of ligand-protein docking is to predict the predominant binding mode(s) of a ligand with a protein of known three-dimensional structure. Successful docking methods search high-dimensional spaces effectively and use a scoring function that correctly ranks candidate dockings. Docking can be used to perform virtual screening on large libraries of compounds, rank the results, and propose structural hypotheses of how the ligands inhibit the target, which is invaluable in lead optimization. The setting up of the input structures for the docking is just as important as the docking itself, and analyzing the results of stochastic search methods can sometimes be unclear. This chapter discusses the background and theory of molecular docking software, and covers the usage of some of the most-cited docking software.

  7. The Performance of Several Docking Programs at Reproducing Protein–Macrolide-Like Crystal Structures

    Directory of Open Access Journals (Sweden)

    Alejandro Castro-Alvarez

    2017-01-01

    Full Text Available The accuracy of five docking programs at reproducing crystallographic structures of complexes of 8 macrolides and 12 related macrocyclic structures, all with their corresponding receptors, was evaluated. Self-docking calculations indicated excellent performance in all cases (mean RMSD values ≤ 1.0 and confirmed the speed of AutoDock Vina. Afterwards, the lowest-energy conformer of each molecule and all the conformers lying 0–10 kcal/mol above it (as given by Macrocycle, from MacroModel 10.0 were subjected to standard docking calculations. While each docking method has its own merits, the observed speed of the programs was as follows: Glide 6.6 > AutoDock Vina 1.1.2 > DOCK 6.5 >> AutoDock 4.2.6 > AutoDock 3.0.5. For most of the complexes, the five methods predicted quite correct poses of ligands at the binding sites, but the lower RMSD values for the poses of highest affinity were in the order: Glide 6.6 ≈ AutoDock Vina ≈ DOCK 6.5 > AutoDock 4.2.6 >> AutoDock 3.0.5. By choosing the poses closest to the crystal structure the order was: AutoDock Vina > Glide 6.6 ≈ DOCK 6.5 ≥ AutoDock 4.2.6 >> AutoDock 3.0.5. Re-scoring (AutoDock 4.2.6//AutoDock Vina, Amber Score and MM-GBSA improved the agreement between the calculated and experimental data. For all intents and purposes, these three methods are equally reliable.

  8. Failure of Arm Movement Control in Stroke Patients, Characterized by Loss of Complexity.

    Science.gov (United States)

    Goh, Segun; Han, Kyungreem; Ryu, Jehkwang; Kim, Seonjin; Choi, MooYoung

    2015-01-01

    We study the mechanism of human arm-posture control by means of nonlinear dynamics and quantitative time series analysis methods. Utilizing linear and nonlinear measures in combination, we find that pathological tremors emerge in patient dynamics and serve as a main feature discriminating between normal and patient groups. The deterministic structure accompanied with loss of complexity inherent in the tremor dynamics is also revealed. To probe the underlying mechanism of the arm-posture dynamics, we further analyze the coupling patterns between joints and components, and discuss their roles in breaking of the organization structure. As a result, we elucidate the mechanisms in the arm-posture dynamics of normal subjects responding to the gravitational force and for the reduction of the dynamic degrees of freedom in the patient dynamics. This study provides an integrated framework for the origin of the loss of complexity in the dynamics of patients as well as the coupling structure in the arm-posture dynamics.

  9. Snapin mediates insulin secretory granule docking, but not trans-SNARE complex formation

    Energy Technology Data Exchange (ETDEWEB)

    Somanath, Sangeeta [Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT (United Kingdom); Partridge, Christopher J. [Diabetes Research Laboratories, Oxford Centre for Diabetes, Endocrinology and Churchill Hospital, University of Oxford, Oxford, OX3 7LJ (United Kingdom); Marshall, Catriona [Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT (United Kingdom); Rowe, Tony [CSL Limited, 45 Poplar Road, Parkville, Victoria 3052 (Australia); Turner, Mark D., E-mail: mark.turner@ntu.ac.uk [Interdisciplinary Biomedical Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS (United Kingdom)

    2016-04-29

    Secretory granule exocytosis is a tightly regulated process requiring granule targeting, tethering, priming, and membrane fusion. At the heart of this process is the SNARE complex, which drives fusion through a coiled-coil zippering effect mediated by the granule v-SNARE protein, VAMP2, and the plasma membrane t-SNAREs, SNAP-25 and syntaxin-1A. Here we demonstrate that in pancreatic β-cells the SNAP-25 accessory protein, snapin, C-terminal H2 domain binds SNAP-25 through its N-terminal Sn-1 domain. Interestingly whilst snapin binds SNAP-25, there is only modest binding of this complex with syntaxin-1A under resting conditions. Instead synataxin-1A appears to be recruited in response to secretory stimulation. These results indicate that snapin plays a role in tethering insulin granules to the plasma membrane through coiled coil interaction of snapin with SNAP-25, with full granule fusion competency only resulting after subsequent syntaxin-1A recruitment triggered by secretory stimulation. - Highlights: • Snapin mediates granule docking. • Snapin binds SNAP-25. • SNARE complex forms downstream.

  10. Snapin mediates insulin secretory granule docking, but not trans-SNARE complex formation

    International Nuclear Information System (INIS)

    Somanath, Sangeeta; Partridge, Christopher J.; Marshall, Catriona; Rowe, Tony; Turner, Mark D.

    2016-01-01

    Secretory granule exocytosis is a tightly regulated process requiring granule targeting, tethering, priming, and membrane fusion. At the heart of this process is the SNARE complex, which drives fusion through a coiled-coil zippering effect mediated by the granule v-SNARE protein, VAMP2, and the plasma membrane t-SNAREs, SNAP-25 and syntaxin-1A. Here we demonstrate that in pancreatic β-cells the SNAP-25 accessory protein, snapin, C-terminal H2 domain binds SNAP-25 through its N-terminal Sn-1 domain. Interestingly whilst snapin binds SNAP-25, there is only modest binding of this complex with syntaxin-1A under resting conditions. Instead synataxin-1A appears to be recruited in response to secretory stimulation. These results indicate that snapin plays a role in tethering insulin granules to the plasma membrane through coiled coil interaction of snapin with SNAP-25, with full granule fusion competency only resulting after subsequent syntaxin-1A recruitment triggered by secretory stimulation. - Highlights: • Snapin mediates granule docking. • Snapin binds SNAP-25. • SNARE complex forms downstream.

  11. Rendezvous and Docking Strategy for Crewed Segment of the Asteroid Redirect Mission

    Science.gov (United States)

    Hinkel, Heather D.; Cryan, Scott P.; D'Souza, Christopher; Dannemiller, David P.; Brazzel, Jack P.; Condon, Gerald L.; Othon, William L.; Williams, Jacob

    2014-01-01

    This paper will describe the overall rendezvous, proximity operations and docking (RPOD) strategy in support of the Asteroid Redirect Crewed Mission (ARCM), as part of the Asteroid Redirect Mission (ARM). The focus of the paper is on the crewed mission phase of ARM, starting with the establishment of Orion in the Distant Retrograde Orbit (DRO) and ending with docking to the Asteroid Redirect Vechicle (ARV). The paper will detail the sequence of maneuvers required to execute the rendezvous and proximity operations mission phases along with the on-board navigation strategies, including the final approach phase. The trajectories to be considered will include target vehicles in a DRO. The paper will also discuss the sensor requirements for rendezvous and docking and the various trade studies associated with the final sensor selection. Building on the sensor requirements and trade studies, the paper will include a candidate sensor concept of operations, which will drive the selection of the sensor suite; concurrently, it will be driven by higher level requirements on the system, such as crew timeline constraints and vehicle consummables. This paper will address how many of the seemingly competing requirements will have to be addressed to create a complete system and system design. The objective is to determine a sensor suite and trajectories that enable Orion to successfully rendezvous and dock with a target vehicle in trans lunar space. Finally, the paper will report on the status of a NASA action to look for synergy within RPOD, across the crewed and robotic asteroid missions.

  12. Comparing the Suitability of Autodock, Gold and Glide for the Docking and Predicting the Possible Targets of Ru(II-Based Complexes as Anticancer Agents

    Directory of Open Access Journals (Sweden)

    Adebayo A. Adeniyi

    2013-03-01

    Full Text Available In cancer chemotherapy, metal-based complexes have been recognized as the most promising means of inhibiting cancer growth due to the successful application of cis-platin and its derivatives above many of the existing organic anticancer agents. The limitations in their rational design can be traced to the complexity of the mechanism of their operations, lack of proper knowledge of their targets and lack of force fields in docking packages to appropriately define the metal centre of the organometallic complexes. In this paper, some of the promising anticancer complexes of Ru(II such as the rapta-based complexes formulated as [Ru(η6-p-cymeneL2(pta] and those with unusual ligands are considered. CatB and kinases which have been experimentally confirmed as possible targets of the complexes are also predicted by the three methods as one of the most targeted receptors while TopII and HDAC7 are predicted by two and one of the methods as best targets. The interesting features of the binding of the complexes show that some of the complexes preferentially target specific macromolecules than the others, which is an indication of their specificity and possibility of their therapeutic combination without severe side effects that may come from competition for the same target. Also, introduction of unusual ligands is found to significantly improve the activities of most of the complexes studied. Strong correlations are observed for the predicted binding sites and the orientation of the complexes within the binding site by the three methods of docking. However there are disparities in the ranking of the complexes by the three method of docking, especially that of Glide.

  13. Synthesis, spectroscopy, X-ray crystallography, DFT calculations, DNA binding and molecular docking of a propargyl arms containing Schiff base.

    Science.gov (United States)

    Balakrishnan, C; Subha, L; Neelakantan, M A; Mariappan, S S

    2015-11-05

    A propargyl arms containing Schiff base (L) was synthesized by the condensation of 1-[2-hydroxy-4-(prop-2-yn-1-yloxy)phenyl]ethanone with trans-1,2-diaminocyclohexane. The structure of L was characterized by IR, (1)H NMR, (13)C NMR and UV-Vis spectroscopy and by single crystal X-ray diffraction analysis. The UV-Visible spectral behavior of L in different solvents exhibits positive solvatochromism. Density functional calculation of the L in gas phase was performed by using DFT (B3LYP) method with 6-31G basis set. The computed vibrational frequencies and NMR signals of L were compared with the experimental data. Tautomeric stability study inferred that the enolimine is more stable than the ketoamine form. The charge delocalization has been analyzed using natural bond orbital (NBO) analysis. Electronic absorption and emission spectral studies were used to study the binding of L with CT-DNA. The molecular docking was done to identify the interaction of L with A-DNA and B-DNA. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Vehicle Routing Problem for Fashion Supply Chains with Cross-Docking

    Directory of Open Access Journals (Sweden)

    Zhi-Hua Hu

    2013-01-01

    Full Text Available Cross-docking, as a strategy to reduce lead time and enhance the efficiency of the fashion supply chain, has attracted substantial attention from both the academy and the industry. Cross-docking is a critical part of many fashion and textiles supply chains in practice because it can help to achieve many supply chain strategies such as postponement. We consider a model where there are multiple suppliers and customers in a single cross-docking center. With such a model setting, the issue concerning the coordinated routing between the inbound and outbound routes is much more complex than many traditional vehicle routing problems (VRPs. We formulate the optimal route selection problems from the suppliers to the cross-docking center and from the cross-docking center to the customers as the respective VRPs. Based on the relationships between the suppliers and the customers, we integrate the two VRP models to optimize the overall traveling time, distance, and waiting time at the cross-docking center. In addition, we propose a novel mixed 0/1 integer linear programming model by which the complexity of the problem can be reduced significantly. As demonstrated by the simulation analysis, our proposed model can be solved very efficiently by a commonly used optimization software package.

  15. Protein-protein docking using region-based 3D Zernike descriptors.

    Science.gov (United States)

    Venkatraman, Vishwesh; Yang, Yifeng D; Sael, Lee; Kihara, Daisuke

    2009-12-09

    Protein-protein interactions are a pivotal component of many biological processes and mediate a variety of functions. Knowing the tertiary structure of a protein complex is therefore essential for understanding the interaction mechanism. However, experimental techniques to solve the structure of the complex are often found to be difficult. To this end, computational protein-protein docking approaches can provide a useful alternative to address this issue. Prediction of docking conformations relies on methods that effectively capture shape features of the participating proteins while giving due consideration to conformational changes that may occur. We present a novel protein docking algorithm based on the use of 3D Zernike descriptors as regional features of molecular shape. The key motivation of using these descriptors is their invariance to transformation, in addition to a compact representation of local surface shape characteristics. Docking decoys are generated using geometric hashing, which are then ranked by a scoring function that incorporates a buried surface area and a novel geometric complementarity term based on normals associated with the 3D Zernike shape description. Our docking algorithm was tested on both bound and unbound cases in the ZDOCK benchmark 2.0 dataset. In 74% of the bound docking predictions, our method was able to find a near-native solution (interface C-alphaRMSD 3D Zernike descriptors are adept in capturing shape complementarity at the protein-protein interface and useful for protein docking prediction. Rigorous benchmark studies show that our docking approach has a superior performance compared to existing methods.

  16. Experimental, molecular docking investigations and bioavailability study on the inclusion complexes of finasteride and cyclodextrins

    Directory of Open Access Journals (Sweden)

    Mady FM

    2017-06-01

    Full Text Available Fatma M Mady,1,2 Usama Farghaly Aly2 1Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Taibah University, Medina, Saudi Arabia; 2Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia, Egypt Abstract: Finasteride (FIN is a Class II candidate of the Biopharmaceutics Classification System (BCS. The lipophilic cavity of cyclodextrins (CyDs enables it to construct a non-covalent inclusion complex with different insoluble drugs. Only β-cyclodextrin (β-CyD and hydroxypropyl-β-CyD (HP-β-CyD have been previously examined with FIN. This study aimed to investigate the consistence of FIN with different kinds of β-CyDs, including dimethyl-β-cyclodextrin (DM-β-CyD, carboxymethyl-β-cyclodextrin (CM-β-CyD, HP-β-CyD, sulfobutyl ether-β-cyclodextrin (SBE-β-CyD, and β-CyD, by the coprecipitation method. The resultant inclusion systems were characterized by differential scanning calorimetry, infrared spectroscopy, X-ray diffractometry, and dissolution studies. Moreover, molecular docking for the selected inclusion systems was carried out to explore the suitable arrangements of FIN in the cavity of β-CyD or its derivatives. The results suggested that the DM-β-CyD inclusion system gave the higher complexation efficiency for improvement in solubility of FIN and hence enhancement of its bioavailability. Pharmacokinetic parameters displayed a higher absorption rate and higher area under the curve of the FIN/DM-β-CyD inclusion complex when compared with the drug alone, which indicates an improvement in the absorption and bioavailability of FIN in the DM-β-CyD inclusion system. Keywords: finasteride, cyclodextrins, molecular docking, pharmacokinetics, bioavailability

  17. Prediction of homoprotein and heteroprotein complexes by protein docking and template-based modeling: A CASP-CAPRI experiment

    KAUST Repository

    Lensink, Marc F.; Velankar, Sameer; Kryshtafovych, Andriy; Huang, Shen-You; Schneidman-Duhovny, Dina; Sali, Andrej; Segura, Joan; Fernandez-Fuentes, Narcis; Viswanath, Shruthi; Elber, Ron; Grudinin, Sergei; Popov, Petr; Neveu, Emilie; Lee, Hasup; Baek, Minkyung; Park, Sangwoo; Heo, Lim; Rie Lee, Gyu; Seok, Chaok; Qin, Sanbo; Zhou, Huan-Xiang; Ritchie, David W.; Maigret, Bernard; Devignes, Marie-Dominique; Ghoorah, Anisah; Torchala, Mieczyslaw; Chaleil, Raphaë l A.G.; Bates, Paul A.; Ben-Zeev, Efrat; Eisenstein, Miriam; Negi, Surendra S.; Weng, Zhiping; Vreven, Thom; Pierce, Brian G.; Borrman, Tyler M.; Yu, Jinchao; Ochsenbein, Franç oise; Guerois, Raphaë l; Vangone, Anna; Rodrigues, Joã o P.G.L.M.; van Zundert, Gydo; Nellen, Mehdi; Xue, Li; Karaca, Ezgi; Melquiond, Adrien S.J.; Visscher, Koen; Kastritis, Panagiotis L.; Bonvin, Alexandre M.J.J.; Xu, Xianjin; Qiu, Liming; Yan, Chengfei; Li, Jilong; Ma, Zhiwei; Cheng, Jianlin; Zou, Xiaoqin; Shen, Yang; Peterson, Lenna X.; Kim, Hyung-Rae; Roy, Amit; Han, Xusi; Esquivel-Rodriguez, Juan; Kihara, Daisuke; Yu, Xiaofeng; Bruce, Neil J.; Fuller, Jonathan C.; Wade, Rebecca C.; Anishchenko, Ivan; Kundrotas, Petras J.; Vakser, Ilya A.; Imai, Kenichiro; Yamada, Kazunori; Oda, Toshiyuki; Nakamura, Tsukasa; Tomii, Kentaro; Pallara, Chiara; Romero-Durana, Miguel; Jimé nez-Garcí a, Brian; Moal, Iain H.; Fé rnandez-Recio, Juan; Joung, Jong Young; Kim, Jong Yun; Joo, Keehyoung; Lee, Jooyoung; Kozakov, Dima; Vajda, Sandor; Mottarella, Scott; Hall, David R.; Beglov, Dmitri; Mamonov, Artem; Xia, Bing; Bohnuud, Tanggis; Del Carpio, Carlos A.; Ichiishi, Eichiro; Marze, Nicholas; Kuroda, Daisuke; Roy Burman, Shourya S.; Gray, Jeffrey J.; Chermak, Edrisse; Cavallo, Luigi; Oliva, Romina; Tovchigrechko, Andrey; Wodak, Shoshana J.

    2016-01-01

    We present the results for CAPRI Round 30, the first joint CASP-CAPRI experiment, which brought together experts from the protein structure prediction and protein-protein docking communities. The Round comprised 25 targets from amongst those submitted for the CASP11 prediction experiment of 2014. The targets included mostly homodimers, a few homotetramers, and two heterodimers, and comprised protein chains that could readily be modeled using templates from the Protein Data Bank. On average 24 CAPRI groups and 7 CASP groups submitted docking predictions for each target, and 12 CAPRI groups per target participated in the CAPRI scoring experiment. In total more than 9500 models were assessed against the 3D structures of the corresponding target complexes. Results show that the prediction of homodimer assemblies by homology modeling techniques and docking calculations is quite successful for targets featuring large enough subunit interfaces to represent stable associations. Targets with ambiguous or inaccurate oligomeric state assignments, often featuring crystal contact-sized interfaces, represented a confounding factor. For those, a much poorer prediction performance was achieved, while nonetheless often providing helpful clues on the correct oligomeric state of the protein. The prediction performance was very poor for genuine tetrameric targets, where the inaccuracy of the homology-built subunit models and the smaller pair-wise interfaces severely limited the ability to derive the correct assembly mode. Our analysis also shows that docking procedures tend to perform better than standard homology modeling techniques and that highly accurate models of the protein components are not always required to identify their association modes with acceptable accuracy. © 2016 Wiley Periodicals, Inc.

  18. Prediction of homoprotein and heteroprotein complexes by protein docking and template-based modeling: A CASP-CAPRI experiment

    KAUST Repository

    Lensink, Marc F.

    2016-04-28

    We present the results for CAPRI Round 30, the first joint CASP-CAPRI experiment, which brought together experts from the protein structure prediction and protein-protein docking communities. The Round comprised 25 targets from amongst those submitted for the CASP11 prediction experiment of 2014. The targets included mostly homodimers, a few homotetramers, and two heterodimers, and comprised protein chains that could readily be modeled using templates from the Protein Data Bank. On average 24 CAPRI groups and 7 CASP groups submitted docking predictions for each target, and 12 CAPRI groups per target participated in the CAPRI scoring experiment. In total more than 9500 models were assessed against the 3D structures of the corresponding target complexes. Results show that the prediction of homodimer assemblies by homology modeling techniques and docking calculations is quite successful for targets featuring large enough subunit interfaces to represent stable associations. Targets with ambiguous or inaccurate oligomeric state assignments, often featuring crystal contact-sized interfaces, represented a confounding factor. For those, a much poorer prediction performance was achieved, while nonetheless often providing helpful clues on the correct oligomeric state of the protein. The prediction performance was very poor for genuine tetrameric targets, where the inaccuracy of the homology-built subunit models and the smaller pair-wise interfaces severely limited the ability to derive the correct assembly mode. Our analysis also shows that docking procedures tend to perform better than standard homology modeling techniques and that highly accurate models of the protein components are not always required to identify their association modes with acceptable accuracy. © 2016 Wiley Periodicals, Inc.

  19. DockQ: A Quality Measure for Protein-Protein Docking Models.

    Directory of Open Access Journals (Sweden)

    Sankar Basu

    Full Text Available The state-of-the-art to assess the structural quality of docking models is currently based on three related yet independent quality measures: Fnat, LRMS, and iRMS as proposed and standardized by CAPRI. These quality measures quantify different aspects of the quality of a particular docking model and need to be viewed together to reveal the true quality, e.g. a model with relatively poor LRMS (>10Å might still qualify as 'acceptable' with a descent Fnat (>0.50 and iRMS (<3.0Å. This is also the reason why the so called CAPRI criteria for assessing the quality of docking models is defined by applying various ad-hoc cutoffs on these measures to classify a docking model into the four classes: Incorrect, Acceptable, Medium, or High quality. This classification has been useful in CAPRI, but since models are grouped in only four bins it is also rather limiting, making it difficult to rank models, correlate with scoring functions or use it as target function in machine learning algorithms. Here, we present DockQ, a continuous protein-protein docking model quality measure derived by combining Fnat, LRMS, and iRMS to a single score in the range [0, 1] that can be used to assess the quality of protein docking models. By using DockQ on CAPRI models it is possible to almost completely reproduce the original CAPRI classification into Incorrect, Acceptable, Medium and High quality. An average PPV of 94% at 90% Recall demonstrating that there is no need to apply predefined ad-hoc cutoffs to classify docking models. Since DockQ recapitulates the CAPRI classification almost perfectly, it can be viewed as a higher resolution version of the CAPRI classification, making it possible to estimate model quality in a more quantitative way using Z-scores or sum of top ranked models, which has been so valuable for the CASP community. The possibility to directly correlate a quality measure to a scoring function has been crucial for the development of scoring functions for

  20.  α-Cyclodextrin dimer complexes of dopamine and levodopa derivatives to assess drug delivery to the central nervous system: ADME and molecular docking studies

    Directory of Open Access Journals (Sweden)

    Shityakov S

    2012-06-01

    Full Text Available Sergey Shityakov, Jens Broscheit, Carola FörsterDepartment of Anesthesiology and Critical Care, University of Würzburg, Würzburg, GermanyAbstract: This paper attempts to predict and emphasize molecular interactions of dopamine, levodopa, and their derivatives (Dopimid compounds containing 2-phenyl-imidazopyridine moiety with the α-cyclodextrin dimer in order to assess and improve drug delivery to the central nervous system. The molecular docking method is used to determine the energetic profiles, hydrogen bond formation, and hydrophobic effect of 14 host–guest complexes. The results show that the “chemical branching” represented by additional ethyl-acetate residue is energetically unfavorable and promotes a conformational shift due to the high root mean square deviation levels. This phenomenon is characterized by a low number of H-bonds and a significant decrease of the host–guest hydrophobic potential surface. Finally, the overall docking procedure presents a powerful rationale for screening and analyzing various sets of promising drug-like chemical compounds in the fields of supramolecular chemistry, molecular sensing, synthetic receptors, and nanobiotechnology.Keywords: dopamine, levodopa, Dopimid compounds, α-CD dimer, molecular docking, complexation

  1. Dynamic Docking: A Paradigm Shift in Computational Drug Discovery

    Directory of Open Access Journals (Sweden)

    Dario Gioia

    2017-11-01

    Full Text Available Molecular docking is the methodology of choice for studying in silico protein-ligand binding and for prioritizing compounds to discover new lead candidates. Traditional docking simulations suffer from major limitations, mostly related to the static or semi-flexible treatment of ligands and targets. They also neglect solvation and entropic effects, which strongly limits their predictive power. During the last decade, methods based on full atomistic molecular dynamics (MD have emerged as a valid alternative for simulating macromolecular complexes. In principle, compared to traditional docking, MD allows the full exploration of drug-target recognition and binding from both the mechanistic and energetic points of view (dynamic docking. Binding and unbinding kinetic constants can also be determined. While dynamic docking is still too computationally expensive to be routinely used in fast-paced drug discovery programs, the advent of faster computing architectures and advanced simulation methodologies are changing this scenario. It is feasible that dynamic docking will replace static docking approaches in the near future, leading to a major paradigm shift in in silico drug discovery. Against this background, we review the key achievements that have paved the way for this progress.

  2. DockQ: A Quality Measure for Protein-Protein Docking Models

    Science.gov (United States)

    Basu, Sankar

    2016-01-01

    The state-of-the-art to assess the structural quality of docking models is currently based on three related yet independent quality measures: Fnat, LRMS, and iRMS as proposed and standardized by CAPRI. These quality measures quantify different aspects of the quality of a particular docking model and need to be viewed together to reveal the true quality, e.g. a model with relatively poor LRMS (>10Å) might still qualify as 'acceptable' with a descent Fnat (>0.50) and iRMS (iRMS to a single score in the range [0, 1] that can be used to assess the quality of protein docking models. By using DockQ on CAPRI models it is possible to almost completely reproduce the original CAPRI classification into Incorrect, Acceptable, Medium and High quality. An average PPV of 94% at 90% Recall demonstrating that there is no need to apply predefined ad-hoc cutoffs to classify docking models. Since DockQ recapitulates the CAPRI classification almost perfectly, it can be viewed as a higher resolution version of the CAPRI classification, making it possible to estimate model quality in a more quantitative way using Z-scores or sum of top ranked models, which has been so valuable for the CASP community. The possibility to directly correlate a quality measure to a scoring function has been crucial for the development of scoring functions for protein structure prediction, and DockQ should be useful in a similar development in the protein docking field. DockQ is available at http://github.com/bjornwallner/DockQ/ PMID:27560519

  3. Spectroscopic and molecular docking studies on the interaction of human serum albumin with copper(II) complexes

    Science.gov (United States)

    Guhathakurta, Bhargab; Pradhan, Ankur Bikash; Das, Suman; Bandyopadhyay, Nirmalya; Lu, Liping; Zhu, Miaoli; Naskar, Jnan Prakash

    2017-02-01

    Two osazone based ligands, butane-2,3-dione bis(2‧-pyridylhydrazone) (BDBPH) and hexane-3,4-dione bis(2‧-pyridylhydrazone) (HDBPH), were synthesized out of the 2:1 M Schiff base condensation of 2-hydrazino pyridine respectively with 2,3-butanedione and 3,4-hexanedione. The X-ray crystal structures of both the ligands have been determined. The copper(II) complex of HDBPH has also been synthesized and structurally characterized. HDBPH and its copper(II) complex have thoroughly been characterized through various spectroscopic and analytical techniques. The X-ray crystal structure of the copper complex of HDBPH shows that it is a monomeric Cu(II) complex having 'N4O2' co-ordination chromophore. Interaction of human serum albumin (HSA) with these ligands and their monomeric copper(II) complexes have been studied by various spectroscopic means. The experimental findings show that the ligands as well as their copper complexes are good HSA binders. Molecular docking investigations have also been done to unravel the mode of binding of the species with HSA.

  4. SAMPL4 & DOCK3.7: lessons for automated docking procedures

    Science.gov (United States)

    Coleman, Ryan G.; Sterling, Teague; Weiss, Dahlia R.

    2014-03-01

    The SAMPL4 challenges were used to test current automated methods for solvation energy, virtual screening, pose and affinity prediction of the molecular docking pipeline DOCK 3.7. Additionally, first-order models of binding affinity were proposed as milestones for any method predicting binding affinity. Several important discoveries about the molecular docking software were made during the challenge: (1) Solvation energies of ligands were five-fold worse than any other method used in SAMPL4, including methods that were similarly fast, (2) HIV Integrase is a challenging target, but automated docking on the correct allosteric site performed well in terms of virtual screening and pose prediction (compared to other methods) but affinity prediction, as expected, was very poor, (3) Molecular docking grid sizes can be very important, serious errors were discovered with default settings that have been adjusted for all future work. Overall, lessons from SAMPL4 suggest many changes to molecular docking tools, not just DOCK 3.7, that could improve the state of the art. Future difficulties and projects will be discussed.

  5. HDOCK: a web server for protein–protein and protein–DNA/RNA docking based on a hybrid strategy

    Science.gov (United States)

    Yan, Yumeng; Zhang, Di; Zhou, Pei; Li, Botong

    2017-01-01

    Abstract Protein–protein and protein–DNA/RNA interactions play a fundamental role in a variety of biological processes. Determining the complex structures of these interactions is valuable, in which molecular docking has played an important role. To automatically make use of the binding information from the PDB in docking, here we have presented HDOCK, a novel web server of our hybrid docking algorithm of template-based modeling and free docking, in which cases with misleading templates can be rescued by the free docking protocol. The server supports protein–protein and protein–DNA/RNA docking and accepts both sequence and structure inputs for proteins. The docking process is fast and consumes about 10–20 min for a docking run. Tested on the cases with weakly homologous complexes of server. The HDOCK web server is available at http://hdock.phys.hust.edu.cn/. PMID:28521030

  6. PEPSI-Dock: a detailed data-driven protein–protein interaction potential accelerated by polar Fourier correlation

    OpenAIRE

    Neveu , Emilie; Ritchie , David; Popov , Petr; Grudinin , Sergei

    2016-01-01

    International audience; Motivation: Docking prediction algorithms aim to find the native conformation of a complex of proteins from knowledge of their unbound structures. They rely on a combination of sampling and scoring methods, adapted to different scales. Polynomial Expansion of Protein Structures and Interactions for Docking (PEPSI-Dock) improves the accuracy of the first stage of the docking pipeline , which will sharpen up the final predictions. Indeed, PEPSI-Dock benefits from the pre...

  7. A unified conformational selection and induced fit approach to protein-peptide docking.

    Directory of Open Access Journals (Sweden)

    Mikael Trellet

    Full Text Available Protein-peptide interactions are vital for the cell. They mediate, inhibit or serve as structural components in nearly 40% of all macromolecular interactions, and are often associated with diseases, making them interesting leads for protein drug design. In recent years, large-scale technologies have enabled exhaustive studies on the peptide recognition preferences for a number of peptide-binding domain families. Yet, the paucity of data regarding their molecular binding mechanisms together with their inherent flexibility makes the structural prediction of protein-peptide interactions very challenging. This leaves flexible docking as one of the few amenable computational techniques to model these complexes. We present here an ensemble, flexible protein-peptide docking protocol that combines conformational selection and induced fit mechanisms. Starting from an ensemble of three peptide conformations (extended, a-helix, polyproline-II, flexible docking with HADDOCK generates 79.4% of high quality models for bound/unbound and 69.4% for unbound/unbound docking when tested against the largest protein-peptide complexes benchmark dataset available to date. Conformational selection at the rigid-body docking stage successfully recovers the most relevant conformation for a given protein-peptide complex and the subsequent flexible refinement further improves the interface by up to 4.5 Å interface RMSD. Cluster-based scoring of the models results in a selection of near-native solutions in the top three for ∼75% of the successfully predicted cases. This unified conformational selection and induced fit approach to protein-peptide docking should open the route to the modeling of challenging systems such as disorder-order transitions taking place upon binding, significantly expanding the applicability limit of biomolecular interaction modeling by docking.

  8. The low molecular weight protein PsaI stabilizes the light-harvesting complex II docking site of photosystem I

    DEFF Research Database (Denmark)

    Plöchinger, Magdalena; Torabi, Salar; Rantala, Marjaana

    2016-01-01

    PsaI represents one of three low molecular weight peptides of PSI. Targeted inactivation of the plastid PsaI gene in Nicotiana tabacum has no measurable effect on photosynthetic electron transport around PSI or on accumulation of proteins involved in photosynthesis. Instead, the lack of Psa......I destabilizes the association of PsaL and PsaH to PSI, both forming the light-harvesting complex (LHC)II docking site of PSI. These alterations at the LHCII binding site surprisingly did not prevent state transition but led to an increased incidence of PSI-LHCII complexes, coinciding with an elevated...

  9. Robotics in hostile environment I. S. I. S. robot - automatic positioning and docking with proximity and force feed back sensors

    Energy Technology Data Exchange (ETDEWEB)

    Gery, D

    1987-01-01

    Recent improvements in control command systems and the development of tactile proximity and force feed back sensors make it possible to robotize complex inspection and maintenance operations in hostile environment, which could have not been possible by classical remotely operated manipulators. We describe the I.S.I.S. robot characteristics, the control command system software principles and the tactile and force-torque sensors which have been developed for the different sequences of an hostile environment inspection and repair: access trajectories generation with obstacles shunning, final positioning and docking using parametric algorithms taking into account measurement of the end of arm proximity and force-torque sensors.

  10. Docking of B-cell epitope antigen to specific hepatitis B antibody

    Indian Academy of Sciences (India)

    The interaction of pres1 region of hepatitis B virus B-cell epitope antigen with specific hepatitis B neutralizing monoclonal antibody was examined by docking study. We modelled the 3D complex structure of B-cell epitope antigen residues CTTPAQGNSMFPSCCCTKPTDGNCY by homology modelling and docked it with the ...

  11. Evaluation of multiple protein docking structures using correctly predicted pairwise subunits

    Directory of Open Access Journals (Sweden)

    Esquivel-Rodríguez Juan

    2012-03-01

    Full Text Available Abstract Background Many functionally important proteins in a cell form complexes with multiple chains. Therefore, computational prediction of multiple protein complexes is an important task in bioinformatics. In the development of multiple protein docking methods, it is important to establish a metric for evaluating prediction results in a reasonable and practical fashion. However, since there are only few works done in developing methods for multiple protein docking, there is no study that investigates how accurate structural models of multiple protein complexes should be to allow scientists to gain biological insights. Methods We generated a series of predicted models (decoys of various accuracies by our multiple protein docking pipeline, Multi-LZerD, for three multi-chain complexes with 3, 4, and 6 chains. We analyzed the decoys in terms of the number of correctly predicted pair conformations in the decoys. Results and conclusion We found that pairs of chains with the correct mutual orientation exist even in the decoys with a large overall root mean square deviation (RMSD to the native. Therefore, in addition to a global structure similarity measure, such as the global RMSD, the quality of models for multiple chain complexes can be better evaluated by using the local measurement, the number of chain pairs with correct mutual orientation. We termed the fraction of correctly predicted pairs (RMSD at the interface of less than 4.0Å as fpair and propose to use it for evaluation of the accuracy of multiple protein docking.

  12. HDOCK: a web server for protein-protein and protein-DNA/RNA docking based on a hybrid strategy.

    Science.gov (United States)

    Yan, Yumeng; Zhang, Di; Zhou, Pei; Li, Botong; Huang, Sheng-You

    2017-07-03

    Protein-protein and protein-DNA/RNA interactions play a fundamental role in a variety of biological processes. Determining the complex structures of these interactions is valuable, in which molecular docking has played an important role. To automatically make use of the binding information from the PDB in docking, here we have presented HDOCK, a novel web server of our hybrid docking algorithm of template-based modeling and free docking, in which cases with misleading templates can be rescued by the free docking protocol. The server supports protein-protein and protein-DNA/RNA docking and accepts both sequence and structure inputs for proteins. The docking process is fast and consumes about 10-20 min for a docking run. Tested on the cases with weakly homologous complexes of server. The HDOCK web server is available at http://hdock.phys.hust.edu.cn/. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. Transformation of the fourth power block of the Chernobyl atomic power station into a ecologically safe system by a dock-caisson technological complex

    International Nuclear Information System (INIS)

    Konyukhov, S.N.; Kokulin, Eh.M.; Kozin, S.Ya.; Kurinnoj, V.N.

    1999-01-01

    The designers of the technical solution do not doubt that it is possible to transform the fourth power block of the Chernobyl APS into an ecologically safe system by help of Dock-Caisson technological complex. Application of the Dock-Caisson allows to make the operations of phases 1 and 2 of the Shelter installation transformation at the same time, i.e. to make the installation stabilization and preparation to radioactive wastes extraction simultaneously. By completion of first two phases the conditions are created for instant beginning of phase 3, i.e. disassembling of the content of the crashed power block

  14. Port positioning and docking for single-stage totally robotic dissection for rectal cancer surgery with the Si and Xi Da Vinci Surgical System.

    Science.gov (United States)

    Toh, James Wei Tatt; Kim, Seon-Hahn

    2017-11-04

    We have previously reported our technique of single-docking totally robotic dissection for rectal cancer surgery using the Da Vinci ® Si Surgical System in 2009. However, we have since optimised our port placement for the Si system and have developed a novel configuration of port placement and docking for the Da Vinci ® Xi Surgical System. We have performed over 700 cases using this technique with the Si system and have used our Xi technique since 2016 for totally robotic dissection for rectal cancer. We have kept the configuration of port placements for both the Xi and Si system as similar as possible, with the priorities to avoid arm collisions as well as to provide a workable port configuration of two left-handed instruments and one right-handed instrument. To date, there have had no major complications or arm collisions related to this technique of docking, port positioning and instrument placement.

  15. Solvated protein-DNA docking using HADDOCK

    NARCIS (Netherlands)

    van Dijk, Marc; Visscher, Koen M; Bonvin, Alexandre M.J.J; Kastritis, Panagiotis L.

    2013-01-01

    Interfacial water molecules play an important role in many aspects of protein-DNA specificity and recognition. Yet they have been mostly neglected in the computational modeling of these complexes. We present here a solvated docking protocol that allows explicit inclusion of water molecules in the

  16. Evaluation of the novel algorithm of flexible ligand docking with moveable target-protein atoms.

    Science.gov (United States)

    Sulimov, Alexey V; Zheltkov, Dmitry A; Oferkin, Igor V; Kutov, Danil C; Katkova, Ekaterina V; Tyrtyshnikov, Eugene E; Sulimov, Vladimir B

    2017-01-01

    We present the novel docking algorithm based on the Tensor Train decomposition and the TT-Cross global optimization. The algorithm is applied to the docking problem with flexible ligand and moveable protein atoms. The energy of the protein-ligand complex is calculated in the frame of the MMFF94 force field in vacuum. The grid of precalculated energy potentials of probe ligand atoms in the field of the target protein atoms is not used. The energy of the protein-ligand complex for any given configuration is computed directly with the MMFF94 force field without any fitting parameters. The conformation space of the system coordinates is formed by translations and rotations of the ligand as a whole, by the ligand torsions and also by Cartesian coordinates of the selected target protein atoms. Mobility of protein and ligand atoms is taken into account in the docking process simultaneously and equally. The algorithm is realized in the novel parallel docking SOL-P program and results of its performance for a set of 30 protein-ligand complexes are presented. Dependence of the docking positioning accuracy is investigated as a function of parameters of the docking algorithm and the number of protein moveable atoms. It is shown that mobility of the protein atoms improves docking positioning accuracy. The SOL-P program is able to perform docking of a flexible ligand into the active site of the target protein with several dozens of protein moveable atoms: the native crystallized ligand pose is correctly found as the global energy minimum in the search space with 157 dimensions using 4700 CPU ∗ h at the Lomonosov supercomputer.

  17. Field guide to the Mesozoic accretionary complex along Turnagain Arm and Kachemak Bay, south-central Alaska

    Science.gov (United States)

    Bradley, Dwight C.; Kusky, Timothy M.; Karl, Susan M.; Haeussler, Peter J.

    1997-01-01

    Turnagain Arm, just east of Anchorage, provides a readily accessible, world-class cross section through a Mesozoic accretionary wedge. Nearly continuous exposures along the Seward Highway, the Alaska Railroad, and the shoreline of Turnagain Arm display the two main constituent units of the Chugach terrane: the McHugh Complex and Valdez Group. In this paper we describe seven bedrock geology stops along Turnagain Arm, and two others in the Chugach Mountains just to the north (Stops 1-7 and 9), which will be visited as part of the May, 1997 field trip of the Alaska Geological Society. Outcrops along Turnagain Arm have already been described in two excellent guidebook articles (Clark, 1981; Winkler and others 1984), both of which remain as useful and valid today as when first published. Since the early 1980's, studies along Turnagain Arm have addressed radiolarian ages of chert and conodont ages of limestone in the McHugh Complex (Nelson and others, 1986, 1987); geochemistry of basalt in the McHugh Complex (Nelson and Blome, 1991); post-accretion brittle faulting (Bradley and Kusky, 1990; Kusky and others, 1997); and the age and tectonic setting of gold mineralization (Haeussler and others, 1995). Highlights of these newer findings will described both in the text below, and in the stop descriptions.Superb exposures along the southeastern shore of Kachemak Bay show several other features of the McHugh Complex that are either absent or less convincing along Turnagain Arm. While none of these outcrops can be reached via the main road network, they are still reasonably accessible - all are within an hour by motorboat from Homer, seas permitting. Here, we describe seven outcrops along the shore of Kachemak Bay that we studied between 1989 and 1993 during geologic mapping of the Seldovia 1:250,000- scale quadrangle. These outcrops (Stops 61-67) will not be part of the 1997 itinerary, but are included here tor the benefit of those who may wish to visit them later.

  18. PSOVina: The hybrid particle swarm optimization algorithm for protein-ligand docking.

    Science.gov (United States)

    Ng, Marcus C K; Fong, Simon; Siu, Shirley W I

    2015-06-01

    Protein-ligand docking is an essential step in modern drug discovery process. The challenge here is to accurately predict and efficiently optimize the position and orientation of ligands in the binding pocket of a target protein. In this paper, we present a new method called PSOVina which combined the particle swarm optimization (PSO) algorithm with the efficient Broyden-Fletcher-Goldfarb-Shannon (BFGS) local search method adopted in AutoDock Vina to tackle the conformational search problem in docking. Using a diverse data set of 201 protein-ligand complexes from the PDBbind database and a full set of ligands and decoys for four representative targets from the directory of useful decoys (DUD) virtual screening data set, we assessed the docking performance of PSOVina in comparison to the original Vina program. Our results showed that PSOVina achieves a remarkable execution time reduction of 51-60% without compromising the prediction accuracies in the docking and virtual screening experiments. This improvement in time efficiency makes PSOVina a better choice of a docking tool in large-scale protein-ligand docking applications. Our work lays the foundation for the future development of swarm-based algorithms in molecular docking programs. PSOVina is freely available to non-commercial users at http://cbbio.cis.umac.mo .

  19. GalaxyDock BP2 score: a hybrid scoring function for accurate protein-ligand docking

    Science.gov (United States)

    Baek, Minkyung; Shin, Woong-Hee; Chung, Hwan Won; Seok, Chaok

    2017-07-01

    Protein-ligand docking is a useful tool for providing atomic-level understanding of protein functions in nature and design principles for artificial ligands or proteins with desired properties. The ability to identify the true binding pose of a ligand to a target protein among numerous possible candidate poses is an essential requirement for successful protein-ligand docking. Many previously developed docking scoring functions were trained to reproduce experimental binding affinities and were also used for scoring binding poses. However, in this study, we developed a new docking scoring function, called GalaxyDock BP2 Score, by directly training the scoring power of binding poses. This function is a hybrid of physics-based, empirical, and knowledge-based score terms that are balanced to strengthen the advantages of each component. The performance of the new scoring function exhibits significant improvement over existing scoring functions in decoy pose discrimination tests. In addition, when the score is used with the GalaxyDock2 protein-ligand docking program, it outperformed other state-of-the-art docking programs in docking tests on the Astex diverse set, the Cross2009 benchmark set, and the Astex non-native set. GalaxyDock BP2 Score and GalaxyDock2 with this score are freely available at http://galaxy.seoklab.org/softwares/galaxydock.html.

  20. Mixed and Complex Mixed Migration during Armed Conflict: Multidimensional Empirical Evidence from Nepal.

    Science.gov (United States)

    Williams, Nathalie E

    Historically, legal, policy, and academic communities largely ascribed to a dichotomy between forced and voluntary migration, creating a black and white vision that was convenient for legal and policy purposes. More recently, discussions have begun addressing the possibility of mixed migration, acknowledging that there is likely a wide continuum between forced and voluntary, and most migrants likely move with some amount of compulsion and some volition, even during armed conflict. While the mixed migration hypothesis is well-received, empirical evidence is disparate and somewhat blunt at this point. In this article, I contribute a direct theoretical and causal pathway discussion of mixed migration. I also propose the complex mixed migration hypothesis, which argues that not only do non-conflict related factors influence migration during conflict, but they do so differently than during periods of relative peace. I empirically test both hypotheses in the context of the recent armed conflict in Nepal. Using detailed survey data and event history models, results provide strong evidence for both mixed migration and complex mixed migration during conflict hypotheses. These hypotheses and evidence suggest that armed conflict might have substantial impacts on long-term population growth and change, with significant relevance in both academic and policy spheres.

  1. Dimerization of DOCK2 is essential for DOCK2-mediated Rac activation and lymphocyte migration.

    Directory of Open Access Journals (Sweden)

    Masao Terasawa

    Full Text Available The migratory properties of lymphocytes depend on DOCK2, an atypical Rac activator predominantly expressed in hematopoietic cells. Although DOCK2 does not contain the Dbl homology domain typically found in guanine nucleotide exchange factors (GEFs, DOCK2 mediates the GTP-GDP exchange reaction for Rac via its DOCK homology region (DHR-2 (also known as CZH2 or Docker domain. DOCK2 DHR-2 domain is composed of three lobes, and Rac binding site and catalytic center are generated entirely from lobes B and C. On the other hand, lobe A has been implicated in dimer formation, yet its physiological significance remains unknown. Here, we report that lobe A-mediated DOCK2 dimerization is crucial for Rac activation and lymphocyte migration. We found that unlike wild-type DOCK2, DOCK2 mutant lacking lobe A failed to restore motility and polarity when expressed in thymoma cells and primary T cells lacking endogenous expression of DOCK2. Similar results were obtained with the DOCK2 point mutant having a defect in dimerization. Deletion of lobe A from the DHR-2 domain did not affect Rac GEF activity in vitro. However, fluorescence resonance energy transfer analyses revealed that lobe A is required for DOCK2 to activate Rac effectively during cell migration. Our results thus indicate that DOCK2 dimerization is functionally important under the physiological condition where only limited amounts of DOCK2 and Rac are localized to the plasma membrane.

  2. istar: a web platform for large-scale protein-ligand docking.

    Directory of Open Access Journals (Sweden)

    Hongjian Li

    Full Text Available Protein-ligand docking is a key computational method in the design of starting points for the drug discovery process. We are motivated by the desire to automate large-scale docking using our popular docking engine idock and thus have developed a publicly-accessible web platform called istar. Without tedious software installation, users can submit jobs using our website. Our istar website supports 1 filtering ligands by desired molecular properties and previewing the number of ligands to dock, 2 monitoring job progress in real time, and 3 visualizing ligand conformations and outputting free energy and ligand efficiency predicted by idock, binding affinity predicted by RF-Score, putative hydrogen bonds, and supplier information for easy purchase, three useful features commonly lacked on other online docking platforms like DOCK Blaster or iScreen. We have collected 17,224,424 ligands from the All Clean subset of the ZINC database, and revamped our docking engine idock to version 2.0, further improving docking speed and accuracy, and integrating RF-Score as an alternative rescoring function. To compare idock 2.0 with the state-of-the-art AutoDock Vina 1.1.2, we have carried out a rescoring benchmark and a redocking benchmark on the 2,897 and 343 protein-ligand complexes of PDBbind v2012 refined set and CSAR NRC HiQ Set 24Sept2010 respectively, and an execution time benchmark on 12 diverse proteins and 3,000 ligands of different molecular weight. Results show that, under various scenarios, idock achieves comparable success rates while outperforming AutoDock Vina in terms of docking speed by at least 8.69 times and at most 37.51 times. When evaluated on the PDBbind v2012 core set, our istar platform combining with RF-Score manages to reproduce Pearson's correlation coefficient and Spearman's correlation coefficient of as high as 0.855 and 0.859 respectively between the experimental binding affinity and the predicted binding affinity of the docked

  3. istar: a web platform for large-scale protein-ligand docking.

    Science.gov (United States)

    Li, Hongjian; Leung, Kwong-Sak; Ballester, Pedro J; Wong, Man-Hon

    2014-01-01

    Protein-ligand docking is a key computational method in the design of starting points for the drug discovery process. We are motivated by the desire to automate large-scale docking using our popular docking engine idock and thus have developed a publicly-accessible web platform called istar. Without tedious software installation, users can submit jobs using our website. Our istar website supports 1) filtering ligands by desired molecular properties and previewing the number of ligands to dock, 2) monitoring job progress in real time, and 3) visualizing ligand conformations and outputting free energy and ligand efficiency predicted by idock, binding affinity predicted by RF-Score, putative hydrogen bonds, and supplier information for easy purchase, three useful features commonly lacked on other online docking platforms like DOCK Blaster or iScreen. We have collected 17,224,424 ligands from the All Clean subset of the ZINC database, and revamped our docking engine idock to version 2.0, further improving docking speed and accuracy, and integrating RF-Score as an alternative rescoring function. To compare idock 2.0 with the state-of-the-art AutoDock Vina 1.1.2, we have carried out a rescoring benchmark and a redocking benchmark on the 2,897 and 343 protein-ligand complexes of PDBbind v2012 refined set and CSAR NRC HiQ Set 24Sept2010 respectively, and an execution time benchmark on 12 diverse proteins and 3,000 ligands of different molecular weight. Results show that, under various scenarios, idock achieves comparable success rates while outperforming AutoDock Vina in terms of docking speed by at least 8.69 times and at most 37.51 times. When evaluated on the PDBbind v2012 core set, our istar platform combining with RF-Score manages to reproduce Pearson's correlation coefficient and Spearman's correlation coefficient of as high as 0.855 and 0.859 respectively between the experimental binding affinity and the predicted binding affinity of the docked conformation. istar

  4. IFACEwat: the interfacial water-implemented re-ranking algorithm to improve the discrimination of near native structures for protein rigid docking.

    Science.gov (United States)

    Su, Chinh; Nguyen, Thuy-Diem; Zheng, Jie; Kwoh, Chee-Keong

    2014-01-01

    Protein-protein docking is an in silico method to predict the formation of protein complexes. Due to limited computational resources, the protein-protein docking approach has been developed under the assumption of rigid docking, in which one of the two protein partners remains rigid during the protein associations and water contribution is ignored or implicitly presented. Despite obtaining a number of acceptable complex predictions, it seems to-date that most initial rigid docking algorithms still find it difficult or even fail to discriminate successfully the correct predictions from the other incorrect or false positive ones. To improve the rigid docking results, re-ranking is one of the effective methods that help re-locate the correct predictions in top high ranks, discriminating them from the other incorrect ones. Our results showed that the IFACEwat increased both the numbers of the near-native structures and improved their ranks as compared to the initial rigid docking ZDOCK3.0.2. In fact, the IFACEwat achieved a success rate of 83.8% for Antigen/Antibody complexes, which is 10% better than ZDOCK3.0.2. As compared to another re-ranking technique ZRANK, the IFACEwat obtains success rates of 92.3% (8% better) and 90% (5% better) respectively for medium and difficult cases. When comparing with the latest published re-ranking method F2Dock, the IFACEwat performed equivalently well or even better for several Antigen/Antibody complexes. With the inclusion of interfacial water, the IFACEwat improves mostly results of the initial rigid docking, especially for Antigen/Antibody complexes. The improvement is achieved by explicitly taking into account the contribution of water during the protein interactions, which was ignored or not fully presented by the initial rigid docking and other re-ranking techniques. In addition, the IFACEwat maintains sufficient computational efficiency of the initial docking algorithm, yet improves the ranks as well as the number of the near

  5. An Insight into the Anticancer Activities of Ru(II-Based Metallocompounds Using Docking Methods

    Directory of Open Access Journals (Sweden)

    Peter A. Ajibade

    2013-09-01

    Full Text Available Unlike organic molecules, reports on docking of metal complexes are very few; mainly due to the inadequacy of force fields in docking packages to appropriately characterize the metal atoms that consequentially hinder the rational design of metal-based drug complexes. In this study we have made used Molegro and Autodock to predict the anticancer activities of selected Ru(II complexes against twelve anticancer targets. We observed that introducing the quantum calculated atomic charges of the optimized geometries significantly improved the docking predictions of these anticancer metallocompounds. Despite several limitations in the docking of metal-based complexes, we obtained results that are highly correlated with the available experimental results. Most of our newly proposed metallocompounds are found theoretically to be better anticancer metallocompounds than all the experimentally proposed RAPTA complexes. An interesting features of a strong interactions of new modeled of metallocompounds against the two base edges of DNA strands suggest similar mechanisms of anticancer activities similar to that of cisplatin. There is possibility of covalent bonding between the metal center of the metallocompounds and the residues of the receptors DNA-1, DNA-2, HDAC7, HIS and RNR. However, the general results suggest the possibility of metals positioning the coordinated ligands in the right position for optimal receptor interactions and synergistic effects, rather than forming covalent bonds.

  6. Shedding lights on the flexible-armed porphyrins: Human telomeric G4 DNA interaction and cell photocytotoxicity research.

    Science.gov (United States)

    Sun, Xiang-Yu; Zhao, Ping; Jin, Shu-Fang; Liu, Min-Chao; Wang, Xia-Hong; Huang, Yu-Min; Cheng, Zhen-Feng; Yan, Si-Qi; Li, Yan-Yu; Chen, Ya-Qing; Zhong, Yan-Mei

    2017-08-01

    DNA polymorphism exerts a fascination on a large scientific community. Without crystallographic structural data, clarification of the binding modes between G-quadruplex (G4) and ligand (complex) is a challenging job. In the present work, three porphyrin compounds with different flexible carbon chains (arms) were designed, synthesized and characterized. Their binding, folding and stabilizing abilities to human telomeric G4 DNA structures were comparatively researched. Positive charges at the end of the flexible carbon chains seem to be favorable for the DNA-porphyrin interactions, which were evidenced by the spectral results and further confirmed by the molecular docking calculations. Biological function analysis demonstrated that these porphyrins show no substantial inhibition to Hela, A549 and BEL 7402 cancer cell lines under dark while exhibit broad inhibition under visible light. This significantly enhanced photocytotoxicity relative to the dark control is an essential property of photochemotherapeutic agents. The feature of the flexible arms emerges as critical influencing factors in the cell photocytotoxicity. Moreover, an ROS-mediated mitochondrial dysfunction pathway was suggested for the cell apoptosis induced by these flexible-armed porphyrins. It is found that the porphyrins with positive charges located at the end of the flexible arms represent an exciting opportunity for photochemotherapeutic anti-cancer drug design. Copyright © 2017. Published by Elsevier B.V.

  7. CovalentDock Cloud: a web server for automated covalent docking.

    Science.gov (United States)

    Ouyang, Xuchang; Zhou, Shuo; Ge, Zemei; Li, Runtao; Kwoh, Chee Keong

    2013-07-01

    Covalent binding is an important mechanism for many drugs to gain its function. We developed a computational algorithm to model this chemical event and extended it to a web server, the CovalentDock Cloud, to make it accessible directly online without any local installation and configuration. It provides a simple yet user-friendly web interface to perform covalent docking experiments and analysis online. The web server accepts the structures of both the ligand and the receptor uploaded by the user or retrieved from online databases with valid access id. It identifies the potential covalent binding patterns, carries out the covalent docking experiments and provides visualization of the result for user analysis. This web server is free and open to all users at http://docking.sce.ntu.edu.sg/.

  8. Design and Preliminary Testing of the International Docking Adapter's Peripheral Docking Target

    Science.gov (United States)

    Foster, Christopher W.; Blaschak, Johnathan; Eldridge, Erin A.; Brazzel, Jack P.; Spehar, Peter T.

    2015-01-01

    The International Docking Adapter's Peripheral Docking Target (PDT) was designed to allow a docking spacecraft to judge its alignment relative to the docking system. The PDT was designed to be compatible with relative sensors using visible cameras, thermal imagers, or Light Detection and Ranging (LIDAR) technologies. The conceptual design team tested prototype designs and materials to determine the contrast requirements for the features. This paper will discuss the design of the PDT, the methodology and results of the tests, and the conclusions pertaining to PDT design that were drawn from testing.

  9. Hardware-Software Complex for Functional and Parametric Tests of ARM Microcontrollers STM32F1XX

    Directory of Open Access Journals (Sweden)

    Egorov Aleksey

    2016-01-01

    Full Text Available The article presents the hardware-software complex for functional and parametric tests of ARM microcontrollers STM32F1XX. The complex is based on PXI devices by National Instruments and LabVIEW software environment. Data exchange procedure between a microcontroller under test and the complex hardware is describes. Some test results are also presented.

  10. Combined Docking with Classical Force Field and Quantum Chemical Semiempirical Method PM7

    Directory of Open Access Journals (Sweden)

    A. V. Sulimov

    2017-01-01

    Full Text Available Results of the combined use of the classical force field and the recent quantum chemical PM7 method for docking are presented. Initially the gridless docking of a flexible low molecular weight ligand into the rigid target protein is performed with the energy function calculated in the MMFF94 force field with implicit water solvent in the PCM model. Among several hundred thousand local minima, which are found in the docking procedure, about eight thousand lowest energy minima are chosen and then energies of these minima are recalculated with the recent quantum chemical semiempirical PM7 method. This procedure is applied to 16 test complexes with different proteins and ligands. For almost all test complexes such energy recalculation results in the global energy minimum configuration corresponding to the ligand pose near the native ligand position in the crystalized protein-ligand complex. A significant improvement of the ligand positioning accuracy comparing with MMFF94 energy calculations is demonstrated.

  11. Combined Docking with Classical Force Field and Quantum Chemical Semiempirical Method PM7.

    Science.gov (United States)

    Sulimov, A V; Kutov, D C; Katkova, E V; Sulimov, V B

    2017-01-01

    Results of the combined use of the classical force field and the recent quantum chemical PM7 method for docking are presented. Initially the gridless docking of a flexible low molecular weight ligand into the rigid target protein is performed with the energy function calculated in the MMFF94 force field with implicit water solvent in the PCM model. Among several hundred thousand local minima, which are found in the docking procedure, about eight thousand lowest energy minima are chosen and then energies of these minima are recalculated with the recent quantum chemical semiempirical PM7 method. This procedure is applied to 16 test complexes with different proteins and ligands. For almost all test complexes such energy recalculation results in the global energy minimum configuration corresponding to the ligand pose near the native ligand position in the crystalized protein-ligand complex. A significant improvement of the ligand positioning accuracy comparing with MMFF94 energy calculations is demonstrated.

  12. MAGIC: Marine ARM GPCI Investigation of Clouds

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, ER; Wiscombe, WJ; Albrecht, BA; Bland, GL; Flagg, CN; Klein, SA; Kollias, P; Mace, G; Reynolds, RM; Schwartz, SE; Siebesma, AP; Teixeira, J; Wood, R; Zhang, M

    2012-10-03

    The second Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF2) will be deployed aboard the Horizon Lines cargo container ship merchant vessel (M/V) Spirit for MAGIC, the Marine ARM GPCI1 Investigation of Clouds. The Spirit will traverse the route between Los Angeles, California, and Honolulu, Hawaii, from October 2012 through September 2013 (except for a few months in the middle of this time period when the ship will be in dry dock). During this field campaign, AMF2 will observe and characterize the properties of clouds and precipitation, aerosols, and atmospheric radiation; standard meteorological and oceanographic variables; and atmospheric structure. There will also be two intensive observational periods (IOPs), one in January 2013 and one in July 2013, during which more detailed measurements of the atmospheric structure will be made.

  13. Sensitivity of molecular docking to induced fit effects in influenza virus neuraminidase

    Science.gov (United States)

    Birch, Louise; Murray, Christopher W.; Hartshorn, Michael J.; Tickle, Ian J.; Verdonk, Marcel L.

    2002-12-01

    Many proteins undergo small side chain or even backbone movements on binding of different ligands into the same protein structure. This is known as induced fit and is potentially problematic for virtual screening of databases against protein targets. In this report we investigate the limits of the rigid protein approximation used by the docking program, GOLD, through cross-docking using protein structures of influenza neuraminidase. Neuraminidase is known to exhibit small but significant induced fit effects on ligand binding. Some neuraminidase crystal structures caused concern due to the bound ligand conformation and GOLD performed poorly on these complexes. A `clean' set, which contained unique, unambiguous complexes, was defined. For this set, the lowest energy structure was correctly docked (i.e. RMSD < 1.5 Å away from the crystal reference structure) in 84% of proteins, and the most promiscuous protein (1mwe) was able to dock all 15 ligands accurately including those that normally required an induced fit movement. This is considerably better than the 70% success rate seen with GOLD against general validation sets. Inclusion of specific water molecules involved in water-mediated hydrogen bonds did not significantly improve the docking performance for ligands that formed water-mediated contacts but it did prevent docking of ligands that displaced these waters. Our data supports the use of a single protein structure for virtual screening with GOLD in some applications involving induced fit effects, although care must be taken to identify the protein structure that performs best against a wide variety of ligands. The performance of GOLD was significantly better than the GOLD implementation of ChemScore and the reasons for this are discussed. Overall, GOLD has shown itself to be an extremely good, robust docking program for this system.

  14. CPdock: the complementarity plot for docking of proteins: implementing multi-dielectric continuum electrostatics.

    Science.gov (United States)

    Basu, Sankar

    2017-12-07

    The complementarity plot (CP) is an established validation tool for protein structures, applicable to both globular proteins (folding) as well as protein-protein complexes (binding). It computes the shape and electrostatic complementarities (S m , E m ) for amino acid side-chains buried within the protein interior or interface and plots them in a two-dimensional plot having knowledge-based probabilistic quality estimates for the residues as well as for the whole structure. The current report essentially presents an upgraded version of the plot with the implementation of the advanced multi-dielectric functionality (as in Delphi version 6.2 or higher) in the computation of electrostatic complementarity to make the validation tool physico-chemically more realistic. The two methods (single- and multi-dielectric) agree decently in their resultant E m values, and hence, provisions for both methods have been kept in the software suite. So to speak, the global electrostatic balance within a well-folded protein and/or a well-packed interface seems only marginally perturbed by the choice of different internal dielectric values. However, both from theoretical as well as practical grounds, the more advanced multi-dielectric version of the plot is certainly recommended for potentially producing more reliable results. The report also presents a new methodology and a variant plot, namely CP dock , based on the same principles of complementarity specifically designed to be used in the docking of proteins. The efficacy of the method to discriminate between good and bad docked protein complexes has been tested on a recent state-of-the-art docking benchmark. The results unambiguously indicate that CP dock can indeed be effective in the initial screening phase of a docking scoring pipeline before going into more sophisticated and computationally expensive scoring functions. CP dock has been made available at https://github.com/nemo8130/CPdock . Graphical Abstract An example showing

  15. Analysis and Ranking of Protein-Protein Docking Models Using Inter-Residue Contacts and Inter-Molecular Contact Maps

    KAUST Repository

    Oliva, Romina; Chermak, Edrisse; Cavallo, Luigi

    2015-01-01

    In view of the increasing interest both in inhibitors of protein-protein interactions and in protein drugs themselves, analysis of the three-dimensional structure of protein-protein complexes is assuming greater relevance in drug design. In the many cases where an experimental structure is not available, protein-protein docking becomes the method of choice for predicting the arrangement of the complex. However, reliably scoring protein-protein docking poses is still an unsolved problem. As a consequence, the screening of many docking models is usually required in the analysis step, to possibly single out the correct ones. Here, making use of exemplary cases, we review our recently introduced methods for the analysis of protein complex structures and for the scoring of protein docking poses, based on the use of inter-residue contacts and their visualization in inter-molecular contact maps. We also show that the ensemble of tools we developed can be used in the context of rational drug design targeting protein-protein interactions.

  16. Analysis and Ranking of Protein-Protein Docking Models Using Inter-Residue Contacts and Inter-Molecular Contact Maps

    KAUST Repository

    Oliva, Romina

    2015-07-01

    In view of the increasing interest both in inhibitors of protein-protein interactions and in protein drugs themselves, analysis of the three-dimensional structure of protein-protein complexes is assuming greater relevance in drug design. In the many cases where an experimental structure is not available, protein-protein docking becomes the method of choice for predicting the arrangement of the complex. However, reliably scoring protein-protein docking poses is still an unsolved problem. As a consequence, the screening of many docking models is usually required in the analysis step, to possibly single out the correct ones. Here, making use of exemplary cases, we review our recently introduced methods for the analysis of protein complex structures and for the scoring of protein docking poses, based on the use of inter-residue contacts and their visualization in inter-molecular contact maps. We also show that the ensemble of tools we developed can be used in the context of rational drug design targeting protein-protein interactions.

  17. New modulated design, docking and synthesis of carbohydrate-conjugate heterobimetallic CuII-SnIV complex as potential topoisomerase II inhibitor: in vitro DNA binding, cleavage and cytotoxicity against human cancer cell lines.

    Science.gov (United States)

    Tabassum, Sartaj; Afzal, Mohd; Arjmand, Farukh

    2014-03-03

    New carbohydrate-conjugate heterobimetallic complexes [C₂₂H₅₀N₆O₁₃CuSnCl₂] (3) and [C₂₂H₅₈N₆O₁₇NiSnCl₂] (4) were synthesized from their monometallic analogs [C₂₂H₅₂N₆O₁₃Cu] (1) and [C₂₂H₆₀N₆O₁₇Ni] (2) containing N-glycoside ligand (L). In vitro DNA binding studies of L and complexes (1-4) with CT DNA were carried out by employing various biophysical and molecular docking techniques which revealed that heterobimetallic complex 3 strongly binds to DNA in comparison to 4, monometallic complexes (1 and 2) and the free ligand. Complex 3 cleaves pBR322 DNA via hydrolytic pathway (confirmed by T4 DNA ligase assay) and inhibited Topo-II activity in a dose-dependent manner. Furthermore, complex 3 was docked into the ATPase domain of human-Topo-II in order to probe the possible mechanism of inhibition. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  18. Dock/Nck facilitates PTP61F/PTP1B regulation of insulin signalling.

    Science.gov (United States)

    Wu, Chia-Lun; Buszard, Bree; Teng, Chun-Hung; Chen, Wei-Lin; Warr, Coral G; Tiganis, Tony; Meng, Tzu-Ching

    2011-10-01

    PTP1B (protein tyrosine phosphatase 1B) is a negative regulator of IR (insulin receptor) activation and glucose homoeostasis, but the precise molecular mechanisms governing PTP1B substrate selectivity and the regulation of insulin signalling remain unclear. In the present study we have taken advantage of Drosophila as a model organism to establish the role of the SH3 (Src homology 3)/SH2 adaptor protein Dock (Dreadlocks) and its mammalian counterpart Nck in IR regulation by PTPs. We demonstrate that the PTP1B orthologue PTP61F dephosphorylates the Drosophila IR in S2 cells in vitro and attenuates IR-induced eye overgrowth in vivo. Our studies indicate that Dock forms a stable complex with PTP61F and that Dock/PTP61F associate with the IR in response to insulin. We report that Dock is required for effective IR dephosphorylation and inactivation by PTP61F in vitro and in vivo. Furthermore, we demonstrate that Nck interacts with PTP1B and that the Nck/PTP1B complex inducibly associates with the IR for the attenuation of IR activation in mammalian cells. Our studies reveal for the first time that the adaptor protein Dock/Nck attenuates insulin signalling by recruiting PTP61F/PTP1B to its substrate, the IR.

  19. The focal adhesion-associated proteins DOCK5 and GIT2 comprise a rheostat in control of epithelial invasion

    DEFF Research Database (Denmark)

    Frank, Scott R; Köllmann, C P; van Lidth de Jeude, J F

    2017-01-01

    DOCK proteins are guanine nucleotide exchange factors for Rac and Cdc42 GTPases. DOCK1 is the founding member of the family and acts downstream of integrins via the canonical Crk-p130Cas complex to activate Rac GTPases in numerous contexts. In contrast, DOCK5, which possesses the greatest similar......:10.1038/onc.2016.345....

  20. Crusader Automated Docking System: Technology support for the Crusader Resupply Team. Interim report, Ammunition Logistics Program

    Energy Technology Data Exchange (ETDEWEB)

    Kring, C.T.; Varma, V.K.; Jatko, W.B.

    1995-11-01

    The US Army and Team Crusader (United Defense, Lockheed Martin Armament Systems, etc.) are developing the next generation howitzer, the Crusader. The development program includes an advanced, self-propelled liquid propellant howitzer and a companion resupply vehicle. The resupply vehicle is intended to rendezvous with the howitzer near the battlefront and replenish ammunition, fuel, and other material. The Army has recommended that Crusader incorporate new and innovative technologies to improve performance and safety. One conceptual design proposes a robotic resupply boom on the resupply vehicle to upload supplies to the howitzer. The resupply boom would normally be retracted inside the resupply vehicle during transit. When the two vehicles are within range of the resupply boom, the boom would be extended to a receiving port on the howitzer. In order to reduce exposure to small arms fire or nuclear, biological, and chemical hazards, the crew would remain inside the resupply vehicle during the resupply operation. The process of extending the boom and linking with the receiving port is called docking. A boom operator would be designated to maneuver the boom into contact with the receiving port using a mechanical joystick. The docking operation depends greatly upon the skill of the boom operator to manipulate the boom into docking position. Computer simulations at the National Aeronautics and Space Administration have shown that computer-assisted or autonomous docking can improve the ability of the operator to dock safely and quickly. This document describes the present status of the Crusader Autonomous Docking System (CADS) implemented at Oak Ridge National laboratory (ORNL). The purpose of the CADS project is to determine the feasibility and performance limitations of vision systems to satisfy the autonomous docking requirements for Crusader and conduct a demonstration under controlled conditions.

  1. No dry dock: safely strategy for avoiding unplanned dry dock and reducing safety, health and environment risks

    Energy Technology Data Exchange (ETDEWEB)

    Constantinis, Danny A.; Brett, David E. [EM and I Alliance, Cheshire (United Kingdom)

    2012-07-01

    There are currently over 150 operational FPUs with an expected increase of a further 100 units in the next 5 years. This results from several factors: increasing demand for hydrocarbons; new reserves in deep water; pipeline infrastructure is not required and FPU design fits many field requirements. FPUs are increasingly chosen for large, deep water, longer life developments. Units are bigger and more complex. Regulators and oil majors are imposing more stringent integrity requirements to protect against safety, environmental and operational risks related to loss of containment and loss of hull structure integrity which could lead to HSE risks, increased costs and production losses which would become particularly onerous should the unit have to dry dock. There are a number of other important components the context of asset integrity, e.g. mooring and sub sea systems, but these are outside the scope of this paper. The 'No Dry dock....Safely' approach is based on the principle of Criticality Based Integrity which identifies components whose integrity is critical to avoiding incidents and the risk of dry docking. Once critical components are identified the challenge is to establish integrity status and maintain fitness-for-service. Various JIPs e.g. the Hull Inspection Techniques and Strategies are looking at best practice inspection methodologies. The industry is progressing ways of maintaining and repairing critical items without going to dry dock. The challenges include coating maintenance, structural and pressure system repairs. Advances in cathodic protection and coating maintenance strategies are proving successful as are techniques for carrying out major structural repairs. The 'No Dry dock...Safely' methodology is a proven solution and case histories have been included. Technological advances will further improve integrity in the industry. There is no reason why FPUs cannot be kept on station and in production for 25 years or more whilst

  2. A simple and reliable approach to docking protein-protein complexes from very sparse NOE-derived intermolecular distance restraints

    International Nuclear Information System (INIS)

    Tang, Chun; Clore, G. Marius

    2006-01-01

    A simple and reliable approach for docking protein-protein complexes from very sparse NOE-derived intermolecular distance restraints (as few as three from a single point) in combination with a novel representation for an attractive potential between mapped interaction surfaces is described. Unambiguous assignments of very sparse intermolecular NOEs are obtained using a reverse labeling strategy in which one the components is fully deuterated with the exception of selective protonation of the δ-methyl groups of isoleucine, while the other component is uniformly 13 C-labeled. This labeling strategy can be readily extended to selective protonation of Ala, Leu, Val or Met. The attractive potential is described by a 'reduced' radius of gyration potential applied specifically to a subset of interfacial residues (those with an accessible surface area ≥ 50% in the free proteins) that have been delineated by chemical shift perturbation. Docking is achieved by rigid body minimization on the basis of a target function comprising the sparse NOE distance restraints, a van der Waals repulsion potential and the 'reduced' radius of gyration potential. The method is demonstrated for two protein-protein complexes (EIN-HPr and IIA Glc -HPr) from the bacterial phosphotransferase system. In both cases, starting from 100 different random orientations of the X-ray structures of the free proteins, 100% convergence is achieved to a single cluster (with near identical atomic positions) with an overall backbone accuracy of ∼2 A. The approach described is not limited to NMR, since interfaces can also be mapped by alanine scanning mutagenesis, and sparse intermolecular distance restraints can be derived from double cycle mutagenesis, cross-linking combined with mass spectrometry, or fluorescence energy transfer

  3. Development and Control of the Naval Postgraduate School Planar Autonomous Docking Simulator (NPADS)

    Science.gov (United States)

    Porter, Robert D.

    2002-09-01

    The objective of this thesis was to design, construct and develop the initial autonomous control algorithm for the NPS Planar Autonomous Docking Simulator (NPADS) The effort included hardware design, fabrication, installation and integration; mass property determination; and the development and testing of control laws utilizing MATLAB and Simulink for modeling and LabView for NPADS control, The NPADS vehicle uses air pads and a granite table to simulate a 2-D, drag-free, zero-g space environment, It is a completely self-contained vehicle equipped with eight cold-gas, bang-bang type thrusters and a reaction wheel for motion control, A 'star sensor' CCD camera locates the vehicle on the table while a color CCD docking camera and two robotic arms will locate and dock with a target vehicle, The on-board computer system leverages PXI technology and a single source, simplifying systems integration, The vehicle is powered by two lead-acid batteries for completely autonomous operation, A graphical user interface and wireless Ethernet enable the user to command and monitor the vehicle from a remote command and data acquisition computer. Two control algorithms were developed and allow the user to either control the thrusters and reaction wheel manually or simply specify a desired location and rotation angle,

  4. Improved performance in CAPRI round 37 using LZerD docking and template-based modeling with combined scoring functions.

    Science.gov (United States)

    Peterson, Lenna X; Shin, Woong-Hee; Kim, Hyungrae; Kihara, Daisuke

    2018-03-01

    We report our group's performance for protein-protein complex structure prediction and scoring in Round 37 of the Critical Assessment of PRediction of Interactions (CAPRI), an objective assessment of protein-protein complex modeling. We demonstrated noticeable improvement in both prediction and scoring compared to previous rounds of CAPRI, with our human predictor group near the top of the rankings and our server scorer group at the top. This is the first time in CAPRI that a server has been the top scorer group. To predict protein-protein complex structures, we used both multi-chain template-based modeling (TBM) and our protein-protein docking program, LZerD. LZerD represents protein surfaces using 3D Zernike descriptors (3DZD), which are based on a mathematical series expansion of a 3D function. Because 3DZD are a soft representation of the protein surface, LZerD is tolerant to small conformational changes, making it well suited to docking unbound and TBM structures. The key to our improved performance in CAPRI Round 37 was to combine multi-chain TBM and docking. As opposed to our previous strategy of performing docking for all target complexes, we used TBM when multi-chain templates were available and docking otherwise. We also describe the combination of multiple scoring functions used by our server scorer group, which achieved the top rank for the scorer phase. © 2017 Wiley Periodicals, Inc.

  5. α-Cyclodextrin dimer complexes of dopamine and levodopa derivatives to assess drug delivery to the central nervous system: ADME and molecular docking studies

    Science.gov (United States)

    Shityakov, Sergey; Broscheit, Jens; Förster, Carola

    2012-01-01

    This paper attempts to predict and emphasize molecular interactions of dopamine, levodopa, and their derivatives (Dopimid compounds) containing 2-phenyl-imidazopyridine moiety with the α-cyclodextrin dimer in order to assess and improve drug delivery to the central nervous system. The molecular docking method is used to determine the energetic profiles, hydrogen bond formation, and hydrophobic effect of 14 host–guest complexes. The results show that the “chemical branching” represented by additional ethyl-acetate residue is energetically unfavorable and promotes a conformational shift due to the high root mean square deviation levels. This phenomenon is characterized by a low number of H-bonds and a significant decrease of the host–guest hydrophobic potential surface. Finally, the overall docking procedure presents a powerful rationale for screening and analyzing various sets of promising drug-like chemical compounds in the fields of supramolecular chemistry, molecular sensing, synthetic receptors, and nanobiotechnology. PMID:22811606

  6. SKATE: a docking program that decouples systematic sampling from scoring.

    Science.gov (United States)

    Feng, Jianwen A; Marshall, Garland R

    2010-11-15

    SKATE is a docking prototype that decouples systematic sampling from scoring. This novel approach removes any interdependence between sampling and scoring functions to achieve better sampling and, thus, improves docking accuracy. SKATE systematically samples a ligand's conformational, rotational and translational degrees of freedom, as constrained by a receptor pocket, to find sterically allowed poses. Efficient systematic sampling is achieved by pruning the combinatorial tree using aggregate assembly, discriminant analysis, adaptive sampling, radial sampling, and clustering. Because systematic sampling is decoupled from scoring, the poses generated by SKATE can be ranked by any published, or in-house, scoring function. To test the performance of SKATE, ligands from the Asetex/CDCC set, the Surflex set, and the Vertex set, a total of 266 complexes, were redocked to their respective receptors. The results show that SKATE was able to sample poses within 2 A RMSD of the native structure for 98, 95, and 98% of the cases in the Astex/CDCC, Surflex, and Vertex sets, respectively. Cross-docking accuracy of SKATE was also assessed by docking 10 ligands to thymidine kinase and 73 ligands to cyclin-dependent kinase. 2010 Wiley Periodicals, Inc.

  7. SwarmDock and the Use of Normal Modes in Protein-Protein Docking

    Directory of Open Access Journals (Sweden)

    Paul A. Bates

    2010-09-01

    Full Text Available Here is presented an investigation of the use of normal modes in protein-protein docking, both in theory and in practice. Upper limits of the ability of normal modes to capture the unbound to bound conformational change are calculated on a large test set, with particular focus on the binding interface, the subset of residues from which the binding energy is calculated. Further, the SwarmDock algorithm is presented, to demonstrate that the modelling of conformational change as a linear combination of normal modes is an effective method of modelling flexibility in protein-protein docking.

  8. Ranking multiple docking solutions based on the conservation of inter-residue contacts

    KAUST Repository

    Oliva, Romina M.

    2013-06-17

    Molecular docking is the method of choice for investigating the molecular basis of recognition in a large number of functional protein complexes. However, correctly scoring the obtained docking solutions (decoys) to rank native-like (NL) conformations in the top positions is still an open problem. Herein we present CONSRANK, a simple and effective tool to rank multiple docking solutions, which relies on the conservation of inter-residue contacts in the analyzed decoys ensemble. First it calculates a conservation rate for each inter-residue contact, then it ranks decoys according to their ability to match the more frequently observed contacts. We applied CONSRANK to 102 targets from three different benchmarks, RosettaDock, DOCKGROUND, and Critical Assessment of PRedicted Interactions (CAPRI). The method performs consistently well, both in terms of NL solutions ranked in the top positions and of values of the area under the receiver operating characteristic curve. Its ideal application is to solutions coming from different docking programs and procedures, as in the case of CAPRI targets. For all the analyzed CAPRI targets where a comparison is feasible, CONSRANK outperforms the CAPRI scorers. The fraction of NL solutions in the top ten positions in the RosettaDock, DOCKGROUND, and CAPRI benchmarks is enriched on average by a factor of 3.0, 1.9, and 9.9, respectively. Interestingly, CONSRANK is also able to specifically single out the high/medium quality (HMQ) solutions from the docking decoys ensemble: it ranks 46.2 and 70.8% of the total HMQ solutions available for the RosettaDock and CAPRI targets, respectively, within the top 20 positions. © 2013 Wiley Periodicals, Inc.

  9. Designing coarse grained-and atom based-potentials for protein-protein docking

    Directory of Open Access Journals (Sweden)

    Tobi Dror

    2010-11-01

    Full Text Available Abstract Background Protein-protein docking is a challenging computational problem in functional genomics, particularly when one or both proteins undergo conformational change(s upon binding. The major challenge is to define a scoring function soft enough to tolerate these changes and specific enough to distinguish between near-native and "misdocked" conformations. Results Using a linear programming (LP technique, we developed two types of potentials: (i Side chain-based and (ii Heavy atom-based. To achieve this we considered a set of 161 transient complexes and generated a large set of putative docked structures (decoys, based on a shape complementarity criterion, for each complex. The demand on the potentials was to yield, for the native (correctly docked structure, a potential energy lower than those of any of the non-native (misdocked structures. We show that the heavy atom-based potentials were able to comply with this requirement but not the side chain-based one. Thus, despite the smaller number of parameters, the capability of heavy atom-based potentials to discriminate between native and "misdocked" conformations is improved relative to those of the side chain-based potentials. The performance of the atom-based potentials was evaluated by a jackknife test on a set of 50 complexes taken from the Zdock2.3 decoys set. Conclusions Our results show that, using the LP approach, we were able to train our potentials using a dataset of transient complexes only the newly developed potentials outperform three other known potentials in this test.

  10. Cell adhesion controlled by adhesion G protein-coupled receptor GPR124/ADGRA2 is mediated by a protein complex comprising intersectins and Elmo-Dock.

    Science.gov (United States)

    Hernández-Vásquez, Magda Nohemí; Adame-García, Sendi Rafael; Hamoud, Noumeira; Chidiac, Rony; Reyes-Cruz, Guadalupe; Gratton, Jean Philippe; Côté, Jean-François; Vázquez-Prado, José

    2017-07-21

    Developmental angiogenesis and the maintenance of the blood-brain barrier involve endothelial cell adhesion, which is linked to cytoskeletal dynamics. GPR124 (also known as TEM5/ADGRA2) is an adhesion G protein-coupled receptor family member that plays a pivotal role in brain angiogenesis and in ensuring a tight blood-brain barrier. However, the signaling properties of GPR124 remain poorly defined. Here, we show that ectopic expression of GPR124 promotes cell adhesion, additive to extracellular matrix-dependent effect, coupled with filopodia and lamellipodia formation and an enrichment of a pool of the G protein-coupled receptor at actin-rich cellular protrusions containing VASP, a filopodial marker. Accordingly, GPR124-expressing cells also displayed increased activation of both Rac and Cdc42 GTPases. Mechanistically, we uncover novel direct interactions between endogenous GPR124 and the Rho guanine nucleotide exchange factors Elmo/Dock and intersectin (ITSN). Small fragments of either Elmo or ITSN1 that bind GPR124 blocked GPR124-induced cell adhesion. In addition, Gβγ interacts with the C-terminal tail of GPR124 and promotes the formation of a GPR124-Elmo complex. Furthermore, GPR124 also promotes the activation of the Elmo-Dock complex, as measured by Elmo phosphorylation on a conserved C-terminal tyrosine residue. Interestingly, Elmo and ITSN1 also interact with each other independently of their GPR124-recognition regions. Moreover, endogenous phospho-Elmo and ITSN1 co-localize with GPR124 at lamellipodia of adhering endothelial cells, where GPR124 expression contributes to polarity acquisition during wound healing. Collectively, our results indicate that GPR124 promotes cell adhesion via Elmo-Dock and ITSN. This constitutes a previously unrecognized complex formed of atypical and conventional Rho guanine nucleotide exchange factors for Rac and Cdc42 that is putatively involved in GPR124-dependent angiogenic responses. © 2017 by The American Society for

  11. Empirical scoring functions for advanced protein-ligand docking with PLANTS.

    Science.gov (United States)

    Korb, Oliver; Stützle, Thomas; Exner, Thomas E

    2009-01-01

    In this paper we present two empirical scoring functions, PLANTS(CHEMPLP) and PLANTS(PLP), designed for our docking algorithm PLANTS (Protein-Ligand ANT System), which is based on ant colony optimization (ACO). They are related, regarding their functional form, to parts of already published scoring functions and force fields. The parametrization procedure described here was able to identify several parameter settings showing an excellent performance for the task of pose prediction on two test sets comprising 298 complexes in total. Up to 87% of the complexes of the Astex diverse set and 77% of the CCDC/Astex clean listnc (noncovalently bound complexes of the clean list) could be reproduced with root-mean-square deviations of less than 2 A with respect to the experimentally determined structures. A comparison with the state-of-the-art docking tool GOLD clearly shows that this is, especially for the druglike Astex diverse set, an improvement in pose prediction performance. Additionally, optimized parameter settings for the search algorithm were identified, which can be used to balance pose prediction reliability and search speed.

  12. A simple and reliable approach to docking protein-protein complexes from very sparse NOE-derived intermolecular distance restraints

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Chun; Clore, G. Marius [National Institutes of Health, Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases (United States)], E-mail: mariusc@intra.niddk.nih.gov

    2006-09-15

    A simple and reliable approach for docking protein-protein complexes from very sparse NOE-derived intermolecular distance restraints (as few as three from a single point) in combination with a novel representation for an attractive potential between mapped interaction surfaces is described. Unambiguous assignments of very sparse intermolecular NOEs are obtained using a reverse labeling strategy in which one the components is fully deuterated with the exception of selective protonation of the {delta}-methyl groups of isoleucine, while the other component is uniformly {sup 13}C-labeled. This labeling strategy can be readily extended to selective protonation of Ala, Leu, Val or Met. The attractive potential is described by a 'reduced' radius of gyration potential applied specifically to a subset of interfacial residues (those with an accessible surface area {>=} 50% in the free proteins) that have been delineated by chemical shift perturbation. Docking is achieved by rigid body minimization on the basis of a target function comprising the sparse NOE distance restraints, a van der Waals repulsion potential and the 'reduced' radius of gyration potential. The method is demonstrated for two protein-protein complexes (EIN-HPr and IIA{sup Glc}-HPr) from the bacterial phosphotransferase system. In both cases, starting from 100 different random orientations of the X-ray structures of the free proteins, 100% convergence is achieved to a single cluster (with near identical atomic positions) with an overall backbone accuracy of {approx}2 A. The approach described is not limited to NMR, since interfaces can also be mapped by alanine scanning mutagenesis, and sparse intermolecular distance restraints can be derived from double cycle mutagenesis, cross-linking combined with mass spectrometry, or fluorescence energy transfer.

  13. Hydrogenation of esters catalyzed by ruthenium PN3-Pincer complexes containing an aminophosphine arm

    KAUST Repository

    Chen, Tao

    2014-08-11

    Hydrogenation of esters under mild conditions was achieved using air-stable ruthenium PN3-pincer complexes containing an aminophosphine arm. High efficiency was achieved even in the presence of water. DFT studies suggest a bimolecular proton shuttle mechanism which allows H2 to be activated by the relatively stable catalyst with a reasonably low transition state barrier. © 2014 American Chemical Society.

  14. Scheduling Trucks in a Cross-Dock with Mixed Service Mode Dock Doors

    DEFF Research Database (Denmark)

    Bodnar, Peter; Azadeh, Kaveh; Koster, René de

    2017-01-01

    The problem considered in this paper is how to schedule inbound and outbound trucks subject to time windows at a multidoor cross-dock. Dock doors can either be dedicated to inbound or outbound trucks or be capable of handling both truck types. In addition, loads are allowed to be temporarily...

  15. Multilevel Parallelization of AutoDock 4.2

    Directory of Open Access Journals (Sweden)

    Norgan Andrew P

    2011-04-01

    Full Text Available Abstract Background Virtual (computational screening is an increasingly important tool for drug discovery. AutoDock is a popular open-source application for performing molecular docking, the prediction of ligand-receptor interactions. AutoDock is a serial application, though several previous efforts have parallelized various aspects of the program. In this paper, we report on a multi-level parallelization of AutoDock 4.2 (mpAD4. Results Using MPI and OpenMP, AutoDock 4.2 was parallelized for use on MPI-enabled systems and to multithread the execution of individual docking jobs. In addition, code was implemented to reduce input/output (I/O traffic by reusing grid maps at each node from docking to docking. Performance of mpAD4 was examined on two multiprocessor computers. Conclusions Using MPI with OpenMP multithreading, mpAD4 scales with near linearity on the multiprocessor systems tested. In situations where I/O is limiting, reuse of grid maps reduces both system I/O and overall screening time. Multithreading of AutoDock's Lamarkian Genetic Algorithm with OpenMP increases the speed of execution of individual docking jobs, and when combined with MPI parallelization can significantly reduce the execution time of virtual screens. This work is significant in that mpAD4 speeds the execution of certain molecular docking workloads and allows the user to optimize the degree of system-level (MPI and node-level (OpenMP parallelization to best fit both workloads and computational resources.

  16. Multilevel Parallelization of AutoDock 4.2.

    Science.gov (United States)

    Norgan, Andrew P; Coffman, Paul K; Kocher, Jean-Pierre A; Katzmann, David J; Sosa, Carlos P

    2011-04-28

    Virtual (computational) screening is an increasingly important tool for drug discovery. AutoDock is a popular open-source application for performing molecular docking, the prediction of ligand-receptor interactions. AutoDock is a serial application, though several previous efforts have parallelized various aspects of the program. In this paper, we report on a multi-level parallelization of AutoDock 4.2 (mpAD4). Using MPI and OpenMP, AutoDock 4.2 was parallelized for use on MPI-enabled systems and to multithread the execution of individual docking jobs. In addition, code was implemented to reduce input/output (I/O) traffic by reusing grid maps at each node from docking to docking. Performance of mpAD4 was examined on two multiprocessor computers. Using MPI with OpenMP multithreading, mpAD4 scales with near linearity on the multiprocessor systems tested. In situations where I/O is limiting, reuse of grid maps reduces both system I/O and overall screening time. Multithreading of AutoDock's Lamarkian Genetic Algorithm with OpenMP increases the speed of execution of individual docking jobs, and when combined with MPI parallelization can significantly reduce the execution time of virtual screens. This work is significant in that mpAD4 speeds the execution of certain molecular docking workloads and allows the user to optimize the degree of system-level (MPI) and node-level (OpenMP) parallelization to best fit both workloads and computational resources.

  17. Post processing of protein-compound docking for fragment-based drug discovery (FBDD): in-silico structure-based drug screening and ligand-binding pose prediction.

    Science.gov (United States)

    Fukunishi, Yoshifumi

    2010-01-01

    For fragment-based drug development, both hit (active) compound prediction and docking-pose (protein-ligand complex structure) prediction of the hit compound are important, since chemical modification (fragment linking, fragment evolution) subsequent to the hit discovery must be performed based on the protein-ligand complex structure. However, the naïve protein-compound docking calculation shows poor accuracy in terms of docking-pose prediction. Thus, post-processing of the protein-compound docking is necessary. Recently, several methods for the post-processing of protein-compound docking have been proposed. In FBDD, the compounds are smaller than those for conventional drug screening. This makes it difficult to perform the protein-compound docking calculation. A method to avoid this problem has been reported. Protein-ligand binding free energy estimation is useful to reduce the procedures involved in the chemical modification of the hit fragment. Several prediction methods have been proposed for high-accuracy estimation of protein-ligand binding free energy. This paper summarizes the various computational methods proposed for docking-pose prediction and their usefulness in FBDD.

  18. 20(S-Protopanaxadiol Phospholipid Complex: Process Optimization, Characterization, In Vitro Dissolution and Molecular Docking Studies

    Directory of Open Access Journals (Sweden)

    Yiqiong Pu

    2016-10-01

    Full Text Available 20(S-Protopanaxadiol (PPD, a bioactive compound extracted from ginseng, possesses cardioprotective, neuroprotective, anti-inflammatory, antiestrogenic, anticancer and anxiolytic effects. However, the clinical application of PPD is limited by its weak aqueous solubility. In this study, we optimized an efficient method of preparing its phospholipid complex (PPD-PLC using a central composite design and response surface analysis. The prepared PPD-PLC was characterized by differential scanning calorimetric, powder X-ray diffraction, Fourier-transformed infrared spectroscopy and nuclear magnetic resonance analyses associated with molecular docking calculation. The equilibrium solubility of PPD-PLC in water and n-octanol increased 6.53- and 1.53-times, respectively. Afterwards, using PPD-PLC as the intermediate, the PPD-PLC-loaded dry suspension (PPD-PLC-SU was prepared with our previous method. In vitro evaluations were conducted on PPD-PLC and PPD-PLC-SU, including dissolution behaviors and stability properties under different conditions. Results of in vitro dissolution behavior revealed the improved dissolution extents and rates of PPD-PLC and PPD-PLC-SU (p < 0.05. Results of the formulation stability investigation also exposed the better stability of PPD-PLC-SU compared with free PPD. Therefore, phospholipid complex technology is a useful formulation strategy for BCS II drugs, as it could effectively improve their hydrophilicity and lipophilicity.

  19. On the analysis of protein-protein interactions via knowledge-based potentials for the prediction of protein-protein docking

    DEFF Research Database (Denmark)

    Feliu, Elisenda; Aloy, Patrick; Oliva, Baldo

    2011-01-01

    Development of effective methods to screen binary interactions obtained by rigid-body protein-protein docking is key for structure prediction of complexes and for elucidating physicochemical principles of protein-protein binding. We have derived empirical knowledge-based potential functions for s...... and with independence of the partner. This information is encoded at the residue level and could be easily incorporated in the initial grid scoring for Fast Fourier Transform rigid-body docking methods.......Development of effective methods to screen binary interactions obtained by rigid-body protein-protein docking is key for structure prediction of complexes and for elucidating physicochemical principles of protein-protein binding. We have derived empirical knowledge-based potential functions...... for selecting rigid-body docking poses. These potentials include the energetic component that provides the residues with a particular secondary structure and surface accessibility. These scoring functions have been tested on a state-of-art benchmark dataset and on a decoy dataset of permanent interactions. Our...

  20. Molecular Dynamics and Docking of Biphenyl: A Potential ...

    African Journals Online (AJOL)

    Purpose: To develop a new drug that inhibits viral attachment and entry for the treatment of HIV/AIDS patients. Methods: Two Protein Databank (PDB) crystal structures of HIV-1 gp120-CD4 complexes, namely, 1RZK and 1G9N, were mutated at amino acid position 43 to a biphenylalanine (biPhe-43) residue. FireDock web ...

  1. Systematic Protein-Protein Docking and Molecular Dynamics Studies of HIV-1 gp120 and CD4: Insights for New Drug Development

    Directory of Open Access Journals (Sweden)

    M. Rizman-Idid

    2011-12-01

    Full Text Available Background and the purpose of the study: The interactions between HIV-1 gp120 and mutated CD4 proteins were investigated in order to identify a lead structure for therapy based on competitive blocking of the HIV binding receptor for human T-cells. Crystal structures of HIV gp120-CD4 complexes reveal a close interaction of the virus receptor with CD4 Phe43, which is embedded in a pocket of the virus protein.Methods: This study applies computer simulations to determine the best binding of amino acid 43 CD4 mutants to HIV gp120. Besides natural CD4, three mutants carrying alternate aromatic residues His, Trp and Tyr at position 43 were investigated. Several docking programs were applied on isolated proteins based on selected crystal structures of gp120-CD4 complexes, as well as a 5 ns molecular dynamics study on the protein complexes. The initial structures were minimized in Gromacs to avoid crystal packing effects, and then subjected to docking experiments using AutoDock4, FireDock, ClusPro and ZDock. In molecular dynamics, the Gibbs free binding energy was calculated for the gp120-CD4 complexes. The docking outputs were analyzed on energy within the respective docking software.Results and conclusion: Visualization and hydrogen bonding analysis were performed using the Swiss-PdbViewer. Strong binding to HIV gp120 can be achieved with an extended aromatic group (Trp. However, the sterical demand of the interaction affects the binding kinetics. In conclusion, a ligand for an efficient blocking of HIV gp120 should involve an extended but conformational flexible aromatic group, i.e. a biphenyl. A docking study on biphenylalanine-43 confirms this expectation

  2. Conceptual design of the hot cell facility universal docking station at ITER

    International Nuclear Information System (INIS)

    Dammann, A.; Benchikhoune, M.; Friconneau, J.P.; Ivanov, V.; Lemee, A.; Martins, J.P.; Tamassy, G.

    2011-01-01

    Between main shutdowns of the ITER machine, in-vessel components and Iter Remote Maintenance System (IRMS) are transferred between the Tokamak complex and the Hot Cell Facility using different types of sealed casks. Transfer Casks have different physical interfaces with the Vacuum Vessel, which need to be the same at the docking stations of the HCF. It means that in-vessel components and IRMS are cleaned in the same cells, which is in fact not convenient. Furthermore, logistic studies showed that the use rate of the cells is very inhomogeneous. In order to have dedicated cell for decontamination of Remote Handling tools, in order to increase the operability efficiency and to removes the hot cell docking operation from the critical path, the concept of a universal docking station has been investigated. Based on an existing design, the work was focused on a review of requirements, the re-design and the integration within the HCF layout. The universal docking station has been proposed and is now integrated in HCF design.

  3. Conceptual design of the hot cell facility universal docking station at ITER

    Energy Technology Data Exchange (ETDEWEB)

    Dammann, A., E-mail: alexis.dammann@iter.org [ITER Organization, CS 90 046, 13067 St Paul Lez Durance Cedex (France); Benchikhoune, M.; Friconneau, J.P.; Ivanov, V. [ITER Organization, CS 90 046, 13067 St Paul Lez Durance Cedex (France); Lemee, A. [SOGETI High Tech, 180 Rue Rene Descartes, 13851 Aix en Provence (France); Martins, J.P. [ITER Organization, CS 90 046, 13067 St Paul Lez Durance Cedex (France); Tamassy, G. [SOGETI High Tech, 180 Rue Rene Descartes, 13851 Aix en Provence (France)

    2011-10-15

    Between main shutdowns of the ITER machine, in-vessel components and Iter Remote Maintenance System (IRMS) are transferred between the Tokamak complex and the Hot Cell Facility using different types of sealed casks. Transfer Casks have different physical interfaces with the Vacuum Vessel, which need to be the same at the docking stations of the HCF. It means that in-vessel components and IRMS are cleaned in the same cells, which is in fact not convenient. Furthermore, logistic studies showed that the use rate of the cells is very inhomogeneous. In order to have dedicated cell for decontamination of Remote Handling tools, in order to increase the operability efficiency and to removes the hot cell docking operation from the critical path, the concept of a universal docking station has been investigated. Based on an existing design, the work was focused on a review of requirements, the re-design and the integration within the HCF layout. The universal docking station has been proposed and is now integrated in HCF design.

  4. HPEPDOCK: a web server for blind peptide-protein docking based on a hierarchical algorithm.

    Science.gov (United States)

    Zhou, Pei; Jin, Bowen; Li, Hao; Huang, Sheng-You

    2018-05-09

    Protein-peptide interactions are crucial in many cellular functions. Therefore, determining the structure of protein-peptide complexes is important for understanding the molecular mechanism of related biological processes and developing peptide drugs. HPEPDOCK is a novel web server for blind protein-peptide docking through a hierarchical algorithm. Instead of running lengthy simulations to refine peptide conformations, HPEPDOCK considers the peptide flexibility through an ensemble of peptide conformations generated by our MODPEP program. For blind global peptide docking, HPEPDOCK obtained a success rate of 33.3% in binding mode prediction on a benchmark of 57 unbound cases when the top 10 models were considered, compared to 21.1% for pepATTRACT server. HPEPDOCK also performed well in docking against homology models and obtained a success rate of 29.8% within top 10 predictions. For local peptide docking, HPEPDOCK achieved a high success rate of 72.6% on a benchmark of 62 unbound cases within top 10 predictions, compared to 45.2% for HADDOCK peptide protocol. Our HPEPDOCK server is computationally efficient and consumed an average of 29.8 mins for a global peptide docking job and 14.2 mins for a local peptide docking job. The HPEPDOCK web server is available at http://huanglab.phys.hust.edu.cn/hpepdock/.

  5. Evaluation of Docking Target Functions by the Comprehensive Investigation of Protein-Ligand Energy Minima.

    Science.gov (United States)

    Oferkin, Igor V; Katkova, Ekaterina V; Sulimov, Alexey V; Kutov, Danil C; Sobolev, Sergey I; Voevodin, Vladimir V; Sulimov, Vladimir B

    2015-01-01

    The adequate choice of the docking target function impacts the accuracy of the ligand positioning as well as the accuracy of the protein-ligand binding energy calculation. To evaluate a docking target function we compared positions of its minima with the experimentally known pose of the ligand in the protein active site. We evaluated five docking target functions based on either the MMFF94 force field or the PM7 quantum-chemical method with or without implicit solvent models: PCM, COSMO, and SGB. Each function was tested on the same set of 16 protein-ligand complexes. For exhaustive low-energy minima search the novel MPI parallelized docking program FLM and large supercomputer resources were used. Protein-ligand binding energies calculated using low-energy minima were compared with experimental values. It was demonstrated that the docking target function on the base of the MMFF94 force field in vacuo can be used for discovery of native or near native ligand positions by finding the low-energy local minima spectrum of the target function. The importance of solute-solvent interaction for the correct ligand positioning is demonstrated. It is shown that docking accuracy can be improved by replacement of the MMFF94 force field by the new semiempirical quantum-chemical PM7 method.

  6. Evaluation of Docking Target Functions by the Comprehensive Investigation of Protein-Ligand Energy Minima

    Directory of Open Access Journals (Sweden)

    Igor V. Oferkin

    2015-01-01

    Full Text Available The adequate choice of the docking target function impacts the accuracy of the ligand positioning as well as the accuracy of the protein-ligand binding energy calculation. To evaluate a docking target function we compared positions of its minima with the experimentally known pose of the ligand in the protein active site. We evaluated five docking target functions based on either the MMFF94 force field or the PM7 quantum-chemical method with or without implicit solvent models: PCM, COSMO, and SGB. Each function was tested on the same set of 16 protein-ligand complexes. For exhaustive low-energy minima search the novel MPI parallelized docking program FLM and large supercomputer resources were used. Protein-ligand binding energies calculated using low-energy minima were compared with experimental values. It was demonstrated that the docking target function on the base of the MMFF94 force field in vacuo can be used for discovery of native or near native ligand positions by finding the low-energy local minima spectrum of the target function. The importance of solute-solvent interaction for the correct ligand positioning is demonstrated. It is shown that docking accuracy can be improved by replacement of the MMFF94 force field by the new semiempirical quantum-chemical PM7 method.

  7. Prediction of Biomolecular Complexes

    KAUST Repository

    Vangone, Anna; Oliva, Romina; Cavallo, Luigi; Bonvin, Alexandre M. J. J.

    2017-01-01

    Almost all processes in living organisms occur through specific interactions between biomolecules. Any dysfunction of those interactions can lead to pathological events. Understanding such interactions is therefore a crucial step in the investigation of biological systems and a starting point for drug design. In recent years, experimental studies have been devoted to unravel the principles of biomolecular interactions; however, due to experimental difficulties in solving the three-dimensional (3D) structure of biomolecular complexes, the number of available, high-resolution experimental 3D structures does not fulfill the current needs. Therefore, complementary computational approaches to model such interactions are necessary to assist experimentalists since a full understanding of how biomolecules interact (and consequently how they perform their function) only comes from 3D structures which provide crucial atomic details about binding and recognition processes. In this chapter we review approaches to predict biomolecular complexesBiomolecular complexes, introducing the concept of molecular dockingDocking, a technique which uses a combination of geometric, steric and energetics considerations to predict the 3D structure of a biological complex starting from the individual structures of its constituent parts. We provide a mini-guide about docking concepts, its potential and challenges, along with post-docking analysis and a list of related software.

  8. Prediction of Biomolecular Complexes

    KAUST Repository

    Vangone, Anna

    2017-04-12

    Almost all processes in living organisms occur through specific interactions between biomolecules. Any dysfunction of those interactions can lead to pathological events. Understanding such interactions is therefore a crucial step in the investigation of biological systems and a starting point for drug design. In recent years, experimental studies have been devoted to unravel the principles of biomolecular interactions; however, due to experimental difficulties in solving the three-dimensional (3D) structure of biomolecular complexes, the number of available, high-resolution experimental 3D structures does not fulfill the current needs. Therefore, complementary computational approaches to model such interactions are necessary to assist experimentalists since a full understanding of how biomolecules interact (and consequently how they perform their function) only comes from 3D structures which provide crucial atomic details about binding and recognition processes. In this chapter we review approaches to predict biomolecular complexesBiomolecular complexes, introducing the concept of molecular dockingDocking, a technique which uses a combination of geometric, steric and energetics considerations to predict the 3D structure of a biological complex starting from the individual structures of its constituent parts. We provide a mini-guide about docking concepts, its potential and challenges, along with post-docking analysis and a list of related software.

  9. Architecture of the RNA polymerase II-Mediator core initiation complex.

    Science.gov (United States)

    Plaschka, C; Larivière, L; Wenzeck, L; Seizl, M; Hemann, M; Tegunov, D; Petrotchenko, E V; Borchers, C H; Baumeister, W; Herzog, F; Villa, E; Cramer, P

    2015-02-19

    The conserved co-activator complex Mediator enables regulated transcription initiation by RNA polymerase (Pol) II. Here we reconstitute an active 15-subunit core Mediator (cMed) comprising all essential Mediator subunits from Saccharomyces cerevisiae. The cryo-electron microscopic structure of cMed bound to a core initiation complex was determined at 9.7 Å resolution. cMed binds Pol II around the Rpb4-Rpb7 stalk near the carboxy-terminal domain (CTD). The Mediator head module binds the Pol II dock and the TFIIB ribbon and stabilizes the initiation complex. The Mediator middle module extends to the Pol II foot with a 'plank' that may influence polymerase conformation. The Mediator subunit Med14 forms a 'beam' between the head and middle modules and connects to the tail module that is predicted to bind transcription activators located on upstream DNA. The Mediator 'arm' and 'hook' domains contribute to a 'cradle' that may position the CTD and TFIIH kinase to stimulate Pol II phosphorylation.

  10. Synthesis, crystal structures, molecular docking, and in vitro biological activities evaluation of transition metal complexes with 4-(3,4-dichlorophenyl) piperazine-1-carboxylic acid

    Science.gov (United States)

    Chen, Zhi-Jian; Chen, Ya-Na; Xu, Chun-Na; Zhao, Shan-Shan; Cao, Qi-Yue; Qian, Shao-Song; Qin, Jie; Zhu, Hai-Liang

    2016-08-01

    Three novel mononuclear complexes, [MⅡ(L)2·2H2O], (M = Cu, Ni or Cd; HL = 4-(3,4-dichlorophenyl)piperazine-1-carboxylic acid)were synthesized and structurally determined by single-crystal X-ray diffraction. Molecular docking study preliminarily revealed that complex 1 had potential urease inhibitory activity. In accordance with the result of calculation, in vitro tests of the inhibitory activities of complexes 1-3 against jack bean urease showed complex 1 (IC50 = 8.17 ± 0.91 μM) had better inhibitory activities than the positive reference acetohydroxamic acid (AHA) (IC50 = 26.99 ± 1.43 μM), while complexes 2 and 3 showed no inhibitory activities., kinetics study was carried out to explore the mechanism of the inhibiting of the enzyme, and the result indicated that complex 1 was a competitive inhibitor of urease. Albumin binding experiment and in vitro toxicity evaluation of complex 1 were implemented to explore its Pharmacological properties.

  11. Advances in GPCR modeling evaluated by the GPCR Dock 2013 assessment

    DEFF Research Database (Denmark)

    Kufareva, Irina; Katritch, Vsevolod; Biggin, Phil

    2014-01-01

    Despite tremendous successes of GPCR crystallography, the receptors with available structures represent only a small fraction of human GPCRs. An important role of the modeling community is to maximize structural insights for the remaining receptors and complexes. The community-wide GPCR Dock asse...

  12. Complete cDNA sequence coding for human docking protein

    Energy Technology Data Exchange (ETDEWEB)

    Hortsch, M; Labeit, S; Meyer, D I

    1988-01-11

    Docking protein (DP, or SRP receptor) is a rough endoplasmic reticulum (ER)-associated protein essential for the targeting and translocation of nascent polypeptides across this membrane. It specifically interacts with a cytoplasmic ribonucleoprotein complex, the signal recognition particle (SRP). The nucleotide sequence of cDNA encoding the entire human DP and its deduced amino acid sequence are given.

  13. An NMR-based scoring function improves the accuracy of binding pose predictions by docking by two orders of magnitude

    Energy Technology Data Exchange (ETDEWEB)

    Orts, Julien [EMBL, Structure and Computational Biology Unit (Germany); Bartoschek, Stefan [Industriepark Hoechst, Sanofi-Aventis Deutschland GmbH, R and D LGCR/Parallel Synthesis and Natural Products (Germany); Griesinger, Christian [Max Planck Institute for Biophysical Chemistry (Germany); Monecke, Peter [Industriepark Hoechst, Sanofi-Aventis Deutschland GmbH, R and D LGCR/Structure, Design and Informatics (Germany); Carlomagno, Teresa, E-mail: teresa.carlomagno@embl.de [EMBL, Structure and Computational Biology Unit (Germany)

    2012-01-15

    Low-affinity ligands can be efficiently optimized into high-affinity drug leads by structure based drug design when atomic-resolution structural information on the protein/ligand complexes is available. In this work we show that the use of a few, easily obtainable, experimental restraints improves the accuracy of the docking experiments by two orders of magnitude. The experimental data are measured in nuclear magnetic resonance spectra and consist of protein-mediated NOEs between two competitively binding ligands. The methodology can be widely applied as the data are readily obtained for low-affinity ligands in the presence of non-labelled receptor at low concentration. The experimental inter-ligand NOEs are efficiently used to filter and rank complex model structures that have been pre-selected by docking protocols. This approach dramatically reduces the degeneracy and inaccuracy of the chosen model in docking experiments, is robust with respect to inaccuracy of the structural model used to represent the free receptor and is suitable for high-throughput docking campaigns.

  14. Slit stimulation recruits Dock and Pak to the roundabout receptor and increases Rac activity to regulate axon repulsion at the CNS midline.

    Science.gov (United States)

    Fan, Xueping; Labrador, Juan Pablo; Hing, Huey; Bashaw, Greg J

    2003-09-25

    Drosophila Roundabout (Robo) is the founding member of a conserved family of repulsive axon guidance receptors that respond to secreted Slit proteins. Here we present evidence that the SH3-SH2 adaptor protein Dreadlocks (Dock), the p21-activated serine-threonine kinase (Pak), and the Rac1/Rac2/Mtl small GTPases can function during Robo repulsion. Loss-of-function and genetic interaction experiments suggest that limiting the function of Dock, Pak, or Rac partially disrupts Robo repulsion. In addition, Dock can directly bind to Robo's cytoplasmic domain, and the association of Dock and Robo is enhanced by stimulation with Slit. Furthermore, Slit stimulation can recruit a complex of Dock and Pak to the Robo receptor and trigger an increase in Rac1 activity. These results provide a direct physical link between the Robo receptor and an important cytoskeletal regulatory protein complex and suggest that Rac can function in both attractive and repulsive axon guidance.

  15. A Steric-inhibition model for regulation of nucleotide exchange via the Dock180 family of GEFs.

    Science.gov (United States)

    Lu, Mingjian; Kinchen, Jason M; Rossman, Kent L; Grimsley, Cynthia; Hall, Matthew; Sondek, John; Hengartner, Michael O; Yajnik, Vijay; Ravichandran, Kodi S

    2005-02-22

    CDM (CED-5, Dock180, Myoblast city) family members have been recently identified as novel, evolutionarily conserved guanine nucleotide exchange factors (GEFs) for Rho-family GTPases . They regulate multiple processes, including embryonic development, cell migration, apoptotic-cell engulfment, tumor invasion, and HIV-1 infection, in diverse model systems . However, the mechanism(s) of regulation of CDM proteins has not been well understood. Here, our studies on the prototype member Dock180 reveal a steric-inhibition model for regulating the Dock180 family of GEFs. At basal state, the N-terminal SH3 domain of Dock180 binds to the distant catalytic Docker domain and negatively regulates the function of Dock180. Further studies revealed that the SH3:Docker interaction sterically blocks Rac access to the Docker domain. Interestingly, ELMO binding to the SH3 domain of Dock180 disrupted the SH3:Docker interaction, facilitated Rac access to the Docker domain, and contributed to the GEF activity of the Dock180/ELMO complex. Additional genetic rescue studies in C. elegans suggested that the regulation of the Docker-domain-mediated GEF activity by the SH3 domain and its adjoining region is evolutionarily conserved. This steric-inhibition model may be a general mechanism for regulating multiple SH3-domain-containing Dock180 family members and may have implications for a variety of biological processes.

  16. GREEN: A program package for docking studies in rational drug design

    Science.gov (United States)

    Tomioka, Nobuo; Itai, Akiko

    1994-08-01

    A program package, GREEN, has been developed that enables docking studies between ligand molecules and a protein molecule. Based on the structure of the protein molecule, the physical and chemical environment of the ligand-binding site is expressed as three-dimensional grid-point data. The grid-point data are used for the real-time evaluation of the protein-ligand interaction energy, as well as for the graphical representation of the binding-site environment. The interactive docking operation is facilitated by various built-in functions, such as energy minimization, energy contribution analysis and logging of the manipulation trajectory. Interactive modeling functions are incorporated for designing new ligand molecules while considering the binding-site environment and the protein-ligand interaction. As an example of the application of GREEN, a docking study is presented on the complex between trypsin and a synthetic trypsin inhibitor. The program package will be useful for rational drug design, based on the 3D structure of the target protein.

  17. Surfing the Protein-Protein Interaction Surface Using Docking Methods: Application to the Design of PPI Inhibitors.

    Science.gov (United States)

    Sable, Rushikesh; Jois, Seetharama

    2015-06-23

    Blocking protein-protein interactions (PPI) using small molecules or peptides modulates biochemical pathways and has therapeutic significance. PPI inhibition for designing drug-like molecules is a new area that has been explored extensively during the last decade. Considering the number of available PPI inhibitor databases and the limited number of 3D structures available for proteins, docking and scoring methods play a major role in designing PPI inhibitors as well as stabilizers. Docking methods are used in the design of PPI inhibitors at several stages of finding a lead compound, including modeling the protein complex, screening for hot spots on the protein-protein interaction interface and screening small molecules or peptides that bind to the PPI interface. There are three major challenges to the use of docking on the relatively flat surfaces of PPI. In this review we will provide some examples of the use of docking in PPI inhibitor design as well as its limitations. The combination of experimental and docking methods with improved scoring function has thus far resulted in few success stories of PPI inhibitors for therapeutic purposes. Docking algorithms used for PPI are in the early stages, however, and as more data are available docking will become a highly promising area in the design of PPI inhibitors or stabilizers.

  18. Modeling complexes of modeled proteins.

    Science.gov (United States)

    Anishchenko, Ivan; Kundrotas, Petras J; Vakser, Ilya A

    2017-03-01

    Structural characterization of proteins is essential for understanding life processes at the molecular level. However, only a fraction of known proteins have experimentally determined structures. This fraction is even smaller for protein-protein complexes. Thus, structural modeling of protein-protein interactions (docking) primarily has to rely on modeled structures of the individual proteins, which typically are less accurate than the experimentally determined ones. Such "double" modeling is the Grand Challenge of structural reconstruction of the interactome. Yet it remains so far largely untested in a systematic way. We present a comprehensive validation of template-based and free docking on a set of 165 complexes, where each protein model has six levels of structural accuracy, from 1 to 6 Å C α RMSD. Many template-based docking predictions fall into acceptable quality category, according to the CAPRI criteria, even for highly inaccurate proteins (5-6 Å RMSD), although the number of such models (and, consequently, the docking success rate) drops significantly for models with RMSD > 4 Å. The results show that the existing docking methodologies can be successfully applied to protein models with a broad range of structural accuracy, and the template-based docking is much less sensitive to inaccuracies of protein models than the free docking. Proteins 2017; 85:470-478. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. Dry dock gate stability modelling

    Science.gov (United States)

    Oktoberty; Widiyanto; Sasono, E. J.; Pramono, S.; Wandono, A. T.

    2018-03-01

    The development of marine transportation needs in Indonesia increasingly opens national shipyard business opportunities to provide shipbuilding services to the shipbuilding vessels. That emphasizes the stability of prime. The ship's decking door becomes an integral part of the efficient place and the specification of the use of the asset of its operational ease. This study aims to test the stability of Dry Dock gate with the length of 35.4 meters using Maxsurf and Hydromax in analyzing the calculation were in its assessment using interval per 500 mm length so that it can get detail data toward longitudinal and transverse such as studying Ship planning in general. The test result shows dry dock gate meets IMO standard with ballast construction containing 54% and 68% and using fix ballast can produce GMt 1,924 m, tide height 11,357m. The GMt value indicates dry dick gate can be stable and firmly erect at the base of the mouth dry dock. When empty ballast produces GMt 0.996 which means dry dock date is stable, but can easily be torn down. The condition can be used during dry dock gate treatment.

  20. Automated docking screens: a feasibility study.

    Science.gov (United States)

    Irwin, John J; Shoichet, Brian K; Mysinger, Michael M; Huang, Niu; Colizzi, Francesco; Wassam, Pascal; Cao, Yiqun

    2009-09-24

    Molecular docking is the most practical approach to leverage protein structure for ligand discovery, but the technique retains important liabilities that make it challenging to deploy on a large scale. We have therefore created an expert system, DOCK Blaster, to investigate the feasibility of full automation. The method requires a PDB code, sometimes with a ligand structure, and from that alone can launch a full screen of large libraries. A critical feature is self-assessment, which estimates the anticipated reliability of the automated screening results using pose fidelity and enrichment. Against common benchmarks, DOCK Blaster recapitulates the crystal ligand pose within 2 A rmsd 50-60% of the time; inferior to an expert, but respectrable. Half the time the ligand also ranked among the top 5% of 100 physically matched decoys chosen on the fly. Further tests were undertaken culminating in a study of 7755 eligible PDB structures. In 1398 cases, the redocked ligand ranked in the top 5% of 100 property-matched decoys while also posing within 2 A rmsd, suggesting that unsupervised prospective docking is viable. DOCK Blaster is available at http://blaster.docking.org .

  1. Modelling substrate specificity and enantioselectivity for lipases and esterases by substrate-imprinted docking

    Directory of Open Access Journals (Sweden)

    Tyagi Sadhna

    2009-06-01

    Full Text Available Abstract Background Previously, ways to adapt docking programs that were developed for modelling inhibitor-receptor interaction have been explored. Two main issues were discussed. First, when trying to model catalysis a reaction intermediate of the substrate is expected to provide more valid information than the ground state of the substrate. Second, the incorporation of protein flexibility is essential for reliable predictions. Results Here we present a predictive and robust method to model substrate specificity and enantioselectivity of lipases and esterases that uses reaction intermediates and incorporates protein flexibility. Substrate-imprinted docking starts with covalent docking of reaction intermediates, followed by geometry optimisation of the resulting enzyme-substrate complex. After a second round of docking the same substrate into the geometry-optimised structures, productive poses are identified by geometric filter criteria and ranked by their docking scores. Substrate-imprinted docking was applied in order to model (i enantioselectivity of Candida antarctica lipase B and a W104A mutant, (ii enantioselectivity and substrate specificity of Candida rugosa lipase and Burkholderia cepacia lipase, and (iii substrate specificity of an acetyl- and a butyrylcholine esterase toward the substrates acetyl- and butyrylcholine. Conclusion The experimentally observed differences in selectivity and specificity of the enzymes were reproduced with an accuracy of 81%. The method was robust toward small differences in initial structures (different crystallisation conditions or a co-crystallised ligand, although large displacements of catalytic residues often resulted in substrate poses that did not pass the geometric filter criteria.

  2. The Development of Bispecific Hexavalent Antibodies as a Novel Class of DOCK-AND-LOCKTM (DNLTM Complexes

    Directory of Open Access Journals (Sweden)

    Chien-Hsing Chang

    2013-05-01

    Full Text Available The DOCK-AND-LOCKTM (DNLTM method provides a modular approach to develop multivalent, multifunctional complexes of defined structures, of which bispecific hexavalent antibodies (bsHexAbs are prominent examples with potential applications in targeted therapy for malignant, autoimmune, and infectious diseases. Currently, bsHexAbs are constructed by derivatizing a divalent IgG, at the carboxyl termini of either the heavy chain (the CH3-format or the light chain (the Ck-format, to contain two stabilized dimers of Fab having a different specificity from the IgG. In this review, we briefly outline the features of the DNLTM method and describe key aspects of bsHexAbs examined with diverse preclinical studies, which include binding affinity to target cells, induction of signaling pathways, effector functions, serum stability, pharmacokinetics, and antitumor activity in human tumor xenograft models. Our findings favor the selection of the CK- over the CH3-format for further exploration of bsHexAbs in clinical trials.

  3. NASA Docking System (NDS) Technical Integration Meeting

    Science.gov (United States)

    Lewis, James L.

    2010-01-01

    This slide presentation reviews the NASA Docking System (NDS) as NASA's implementation of the International Docking System Standard (IDSS). The goals of the NDS, is to build on proven technologies previously demonstrated in flight and to advance the state of the art of docking systems by incorporating Low Impact Docking System (LIDS) technology into the NDS. A Hardware Demonstration was included in the meeting, and there was discussion about software, NDS major system interfaces, integration information, schedule, and future upgrades.

  4. α-Synuclein may cross-bridge v-SNARE and acidic phospholipids to facilitate SNARE-dependent vesicle docking.

    Science.gov (United States)

    Lou, Xiaochu; Kim, Jaewook; Hawk, Brenden J; Shin, Yeon-Kyun

    2017-06-06

    Misfolded α-synuclein (A-syn) is widely recognized as the primal cause of neurodegenerative diseases including Parkinson's disease and dementia with Lewy bodies. The normal cellular function of A-syn has, however, been elusive. There is evidence that A-syn plays multiple roles in the exocytotic pathway in the neuron, but the underlying molecular mechanisms are unclear. A-syn has been known to interact with negatively charged phospholipids and with vesicle SNARE protein VAMP2. Using single-vesicle docking/fusion assays, we find that A-syn promotes SNARE-dependent vesicles docking significantly at 2.5 µM. When phosphatidylserine (PS) is removed from t-SNARE-bearing vesicles, the docking enhancement by A-syn disappears and A-syn instead acts as an inhibitor for docking. In contrast, subtraction of PS from the v-SNARE-carrying vesicles enhances vesicle docking even further. Moreover, when we truncate the C-terminal 45 residues of A-syn that participates in interacting with VAMP2, the promotion of vesicle docking is abrogated. Thus, the results suggest that the A-syn's interaction with v-SNARE through its C-terminal tail and its concurrent interaction with PS in trans through its amphipathic N-terminal domain facilitate SNARE complex formation, whereby A-syn aids SNARE-dependent vesicle docking. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  5. Surfing the Protein-Protein Interaction Surface Using Docking Methods: Application to the Design of PPI Inhibitors

    Directory of Open Access Journals (Sweden)

    Rushikesh Sable

    2015-06-01

    Full Text Available Blocking protein-protein interactions (PPI using small molecules or peptides modulates biochemical pathways and has therapeutic significance. PPI inhibition for designing drug-like molecules is a new area that has been explored extensively during the last decade. Considering the number of available PPI inhibitor databases and the limited number of 3D structures available for proteins, docking and scoring methods play a major role in designing PPI inhibitors as well as stabilizers. Docking methods are used in the design of PPI inhibitors at several stages of finding a lead compound, including modeling the protein complex, screening for hot spots on the protein-protein interaction interface and screening small molecules or peptides that bind to the PPI interface. There are three major challenges to the use of docking on the relatively flat surfaces of PPI. In this review we will provide some examples of the use of docking in PPI inhibitor design as well as its limitations. The combination of experimental and docking methods with improved scoring function has thus far resulted in few success stories of PPI inhibitors for therapeutic purposes. Docking algorithms used for PPI are in the early stages, however, and as more data are available docking will become a highly promising area in the design of PPI inhibitors or stabilizers.

  6. Total robotic radical rectal resection with da Vinci Xi system: single docking, single phase technique.

    Science.gov (United States)

    Tamhankar, Anup Sunil; Jatal, Sudhir; Saklani, Avanish

    2016-12-01

    This study aims to assess the advantages of Da Vinci Xi system in rectal cancer surgery. It also assesses the initial oncological outcomes after rectal resection with this system from a tertiary cancer center in India. Robotic rectal surgery has distinct advantages over laparoscopy. Total robotic resection is increasing following the evolution of hybrid technology. The latest Da Vinci Xi system (Intuitive Surgical, Sunnyvale, USA) is enabled with newer features to make total robotic resection possible with single docking and single phase. Thirty-six patients underwent total robotic resection in a single phase and single docking. We used newer port positions in a straight line. Median distance from the anal verge was 4.5 cm. Median robotic docking time and robotic procedure time were 9 and 280 min, respectively. Median blood loss was 100 mL. One patient needed conversion to an open approach due to advanced disease. Circumferential resection margin and longitudinal resection margins were uninvolved in all other patients. Median lymph node yield was 10. Median post-operative stay was 7 days. There were no intra-operative adverse events. The latest Da Vinci Xi system has made total robotic rectal surgery feasible in single docking and single phase. With the new system, four arm total robotic rectal surgery may replace the hybrid technique of laparoscopic and robotic surgery for rectal malignancies. The learning curve for the new system appears to be shorter than anticipated. Early perioperative and oncological outcomes of total robotic rectal surgery with the new system are promising. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  7. DOCLASP - Docking ligands to target proteins using spatial and electrostatic congruence extracted from a known holoenzyme and applying simple geometrical transformations.

    Science.gov (United States)

    Chakraborty, Sandeep

    2014-01-01

    The ability to accurately and effectively predict the interaction between proteins and small drug-like compounds has long intrigued researchers for pedagogic, humanitarian and economic reasons. Protein docking methods (AutoDock, GOLD, DOCK, FlexX and Glide to name a few) rank a large number of possible conformations of protein-ligand complexes using fast algorithms. Previously, it has been shown that structural congruence leading to the same enzymatic function necessitates the congruence of electrostatic properties (CLASP). The current work presents a methodology for docking a ligand into a target protein, provided that there is at least one known holoenzyme with ligand bound - DOCLASP (Docking using CLASP). The contact points of the ligand in the holoenzyme defines a motif, which is used to query the target enzyme using CLASP. If there are significant matches, the holoenzyme and the target protein are superimposed based on congruent atoms. The same linear and rotational transformations are also applied to the ligand, thus creating a unified coordinate framework having the holoenzyme, the ligand and the target enzyme. In the current work, the dipeptidyl peptidase-IV inhibitor vildagliptin was docked to the PI-PLC structure complexed with myo-inositol using DOCLASP. Also, corroboration of the docking of phenylthiourea to the modelled structure of polyphenol oxidase (JrPPO1) from walnut is provided based on the subsequently solved structure of JrPPO1 (PDBid:5CE9). Analysis of the binding of the antitrypanosomial drug suramin to nine non-homologous proteins in the PDB database shows a diverse set of binding motifs, and multiple binding sites in the phospholipase A2-likeproteins from the Bothrops genus of pitvipers. The conformational changes in the suramin molecule on binding highlights the challenges in docking flexible ligands into an already 'plastic' binding site. Thus, DOCLASP presents a method for 'soft docking' ligands to proteins with low computational

  8. Rendezvous and Docking for Space Exploration

    Science.gov (United States)

    Machula, M. F.; Crain, T.; Sandhoo, G. S.

    2005-01-01

    To achieve the exploration goals, new approaches to exploration are being envisioned that include robotic networks, modular systems, pre-positioned propellants and in-space assembly in Earth orbit, Lunar orbit and other locations around the cosmos. A fundamental requirement for rendezvous and docking to accomplish in-space assembly exists in each of these locations. While existing systems and technologies can accomplish rendezvous and docking in low earth orbit, and rendezvous and docking with crewed systems has been successfully accomplished in low lunar orbit, our capability must extend toward autonomous rendezvous and docking. To meet the needs of the exploration vision in-space assembly requiring both crewed and uncrewed vehicles will be an integral part of the exploration architecture. This paper focuses on the intelligent application of autonomous rendezvous and docking technologies to meet the needs of that architecture. It also describes key technology investments that will increase the exploration program's ability to ensure mission success, regardless of whether the rendezvous are fully automated or have humans in the loop.

  9. Vehicle routing with cross-docking

    DEFF Research Database (Denmark)

    Wen, Min; Larsen, Jesper; Clausen, Jens

    2009-01-01

    a set of homogeneous vehicles are used to transport orders from the suppliers to the corresponding customers via a cross-dock. The orders can be consolidated at the cross-dock but cannot be stored for very long because the cross-dock does not have long-term inventory-holding capabilities. The objective...... of the VRPCD is to minimize the total travel time while respecting time window constraints at the nodes and a time horizon for the whole transportation operation. In this paper, a mixed integer programming formulation for the VRPCD is proposed. A tabu search heuristic is embedded within an adaptive memory...... values) within very short computational time....

  10. The Rac Activator DOCK2 Mediates Plasma Cell Differentiation and IgG Antibody Production.

    Science.gov (United States)

    Ushijima, Miho; Uruno, Takehito; Nishikimi, Akihiko; Sanematsu, Fumiyuki; Kamikaseda, Yasuhisa; Kunimura, Kazufumi; Sakata, Daiji; Okada, Takaharu; Fukui, Yoshinori

    2018-01-01

    A hallmark of humoral immune responses is the production of antibodies. This process involves a complex cascade of molecular and cellular interactions, including recognition of specific antigen by the B cell receptor (BCR), which triggers activation of B cells and differentiation into plasma cells (PCs). Although activation of the small GTPase Rac has been implicated in BCR-mediated antigen recognition, its precise role in humoral immunity and the upstream regulator remain elusive. DOCK2 is a Rac-specific guanine nucleotide exchange factor predominantly expressed in hematopoietic cells. We found that BCR-mediated Rac activation was almost completely lost in DOCK2-deficient B cells, resulting in defects in B cell spreading over the target cell-membrane and sustained growth of BCR microclusters at the interface. When wild-type B cells were stimulated in vitro with anti-IgM F(ab') 2 antibody in the presence of IL-4 and IL-5, they differentiated efficiently into PCs. However, BCR-mediated PC differentiation was severely impaired in the case of DOCK2-deficient B cells. Similar results were obtained in vivo when DOCK2-deficient B cells expressing a defined BCR specificity were adoptively transferred into mice and challenged with the cognate antigen. In addition, by generating the conditional knockout mice, we found that DOCK2 expression in B-cell lineage is required to mount antigen-specific IgG antibody. These results highlight important role of the DOCK2-Rac axis in PC differentiation and IgG antibody responses.

  11. Proximity Operations and Docking Sensor Development

    Science.gov (United States)

    Howard, Richard T.; Bryan, Thomas C.; Brewster, Linda L.; Lee, James E.

    2009-01-01

    The Next Generation Advanced Video Guidance Sensor (NGAVGS) has been under development for the last three years as a long-range proximity operations and docking sensor for use in an Automated Rendezvous and Docking (AR&D) system. The first autonomous rendezvous and docking in the history of the U.S. Space Program was successfully accomplished by Orbital Express, using the Advanced Video Guidance Sensor (AVGS) as the primary docking sensor. That flight proved that the United States now has a mature and flight proven sensor technology for supporting Crew Exploration Vehicles (CEV) and Commercial Orbital Transport Systems (COTS) Automated Rendezvous and Docking (AR&D). NASA video sensors have worked well in the past: the AVGS used on the Demonstration of Autonomous Rendezvous Technology (DART) mission operated successfully in spot mode out to 2 km, and the first generation rendezvous and docking sensor, the Video Guidance Sensor (VGS), was developed and successfully flown on Space Shuttle flights in 1997 and 1998. 12 Parts obsolescence issues prevent the construction of more AVGS units, and the next generation sensor was updated to allow it to support the CEV and COTS programs. The flight proven AR&D sensor has been redesigned to update parts and add additional capabilities for CEV and COTS with the development of the Next Generation AVGS at the Marshall Space Flight Center. The obsolete imager and processor are being replaced with new radiation tolerant parts. In addition, new capabilities include greater sensor range, auto ranging capability, and real-time video output. This paper presents some sensor hardware trades, use of highly integrated laser components, and addresses the needs of future vehicles that may rendezvous and dock with the International Space Station (ISS) and other Constellation vehicles. It also discusses approaches for upgrading AVGS to address parts obsolescence, and concepts for minimizing the sensor footprint, weight, and power requirements

  12. ARF1 and ARF6 regulate recycling of GRASP/Tamalin and the Rac1-GEF Dock180 during HGF-induced Rac1 activation.

    Science.gov (United States)

    Koubek, Emily J; Santy, Lorraine C

    2018-05-04

    Hepatocyte growth factor (HGF) is a potent signaling factor that acts on epithelial cells, causing them to dissociate and scatter. This migration is coordinated by a number of small GTPases, such as ARF6 and Rac1. Active ARF6 is required for HGF-stimulated migration and intracellular levels of ARF6-GTP and Rac1-GTP increase following HGF treatment. During migration, cross talk between ARF6 and Rac1 occurs through formation of a multi-protein complex containing the ARF-GEF cytohesin-2, the scaffolding protein GRASP/Tamalin, and the Rac1-GEF Dock180. Previously, the role of ARF6 in this process was unclear. We have now found that ARF6 and ARF1 regulate trafficking of GRASP and Dock180 to the plasma membrane following HGF treatment. Trafficking of GRASP and Dock180 is impaired by blocking ARF6-mediated recycling pathways and is required for HGF-stimulated Rac1 activation. Finally, HGF treatment stimulates association of GRASP and Dock180. Inhibition of ARF6 trafficking pathways traps GRASP and Dock180 as a complex in the cell.

  13. Effects of wood preservative leachates from docks

    Energy Technology Data Exchange (ETDEWEB)

    Wendt, P.H.; Van Dolah, R.F.; Bobo, M.Y.; Mathews, T.D. [South Carolina Marine Resources Research Inst., Charleston, SC (United States)

    1994-12-31

    Recent evidence indicates that the wood preservative commonly used in dock pilings (chromated copper arsenate or CCA) is highly toxic to several estuarine organisms in laboratory experiments. Increasing demand for residential docks prompted a field study intended to complement these earlier laboratory investigations. Objectives of the study were to: (1) examine concentrations of Cu, Cr, and As in sediments and oysters from intertidal locations in several creeks with and without high densities of docks; (2) examine the bioaccumulation of wood preservative leachates by laboratory-reared oysters transferred to field sites near and distant from newly constructed docks; and (3) investigate the acute toxicity of wood preservative leachates for several species of estuarine fishes and invertebrates exposed to these compounds in the field. Preliminary results indicate that sediment concentrations of all three metals were well below ER-L levels reported by Long and Morgan at all but one dock site. In an ancillary study, 24h LC{sub 50} bioassays were performed using rotifers (Brachionus plicatilis) which were exposed to pore water from sediments in creeks with and without docks. Toxicities of bulk sediments from the same sites were examined using Microtox which measures decreases in bioluminescence of marine bacteria (Photobacterium phosphoreum) as a function of sediment concentration. Neither the rotifer nor the Microtox bioassays showed any significant differences in toxicity between creeks with and without docks.

  14. Improving binding mode and binding affinity predictions of docking by ligand-based search of protein conformations: evaluation in D3R grand challenge 2015

    Science.gov (United States)

    Xu, Xianjin; Yan, Chengfei; Zou, Xiaoqin

    2017-08-01

    The growing number of protein-ligand complex structures, particularly the structures of proteins co-bound with different ligands, in the Protein Data Bank helps us tackle two major challenges in molecular docking studies: the protein flexibility and the scoring function. Here, we introduced a systematic strategy by using the information embedded in the known protein-ligand complex structures to improve both binding mode and binding affinity predictions. Specifically, a ligand similarity calculation method was employed to search a receptor structure with a bound ligand sharing high similarity with the query ligand for the docking use. The strategy was applied to the two datasets (HSP90 and MAP4K4) in recent D3R Grand Challenge 2015. In addition, for the HSP90 dataset, a system-specific scoring function (ITScore2_hsp90) was generated by recalibrating our statistical potential-based scoring function (ITScore2) using the known protein-ligand complex structures and the statistical mechanics-based iterative method. For the HSP90 dataset, better performances were achieved for both binding mode and binding affinity predictions comparing with the original ITScore2 and with ensemble docking. For the MAP4K4 dataset, although there were only eight known protein-ligand complex structures, our docking strategy achieved a comparable performance with ensemble docking. Our method for receptor conformational selection and iterative method for the development of system-specific statistical potential-based scoring functions can be easily applied to other protein targets that have a number of protein-ligand complex structures available to improve predictions on binding.

  15. Combining self- and cross-docking as benchmark tools: the performance of DockBench in the D3R Grand Challenge 2

    Science.gov (United States)

    Salmaso, Veronica; Sturlese, Mattia; Cuzzolin, Alberto; Moro, Stefano

    2018-01-01

    Molecular docking is a powerful tool in the field of computer-aided molecular design. In particular, it is the technique of choice for the prediction of a ligand pose within its target binding site. A multitude of docking methods is available nowadays, whose performance may vary depending on the data set. Therefore, some non-trivial choices should be made before starting a docking simulation. In the same framework, the selection of the target structure to use could be challenging, since the number of available experimental structures is increasing. Both issues have been explored within this work. The pose prediction of a pool of 36 compounds provided by D3R Grand Challenge 2 organizers was preceded by a pipeline to choose the best protein/docking-method couple for each blind ligand. An integrated benchmark approach including ligand shape comparison and cross-docking evaluations was implemented inside our DockBench software. The results are encouraging and show that bringing attention to the choice of the docking simulation fundamental components improves the results of the binding mode predictions.

  16. Binding affinities of Schiff base Fe(II) complex with BSA and calf-thymus DNA: Spectroscopic investigations and molecular docking analysis

    Science.gov (United States)

    Rudra, Suparna; Dasmandal, Somnath; Patra, Chiranjit; Kundu, Arjama; Mahapatra, Ambikesh

    2016-09-01

    The binding interaction of a synthesized Schiff base Fe(II) complex with biological macromolecules viz., bovine serum albumin (BSA) and calf thymus(ct)-DNA have been investigated using different spectroscopic techniques coupled with viscosity measurements at physiological pH and 298 K. Regular amendments in emission intensities of BSA upon the action of the complex indicate significant interaction between them, and the binding interaction have been characterized by Stern Volmer plots and thermodynamic binding parameters. On the basis of this quenching technique one binding site with binding constant (Kb = (7.6 ± 0.21) × 105) between complex and protein have been obtained at 298 K. Time-resolved fluorescence studies have also been encountered to understand the mechanism of quenching induced by the complex. Binding affinities of the complex to the fluorophores of BSA namely tryptophan (Trp) and tyrosine (Tyr) have been judged by synchronous fluorescence studies. Secondary structural changes of BSA rooted by the complex has been revealed by CD spectra. On the other hand, hypochromicity of absorption spectra of the complex with the addition of ct-DNA and the gradual reduction in emission intensities of ethidium bromide bound ct-DNA in presence of the complex indicate noticeable interaction between ct-DNA and the complex with the binding constant (4.2 ± 0.11) × 106 M- 1. Life-time measurements have been studied to determine the relative amplitude of binding of the complex to ct-DNA base pairs. Mode of binding interaction of the complex with ct-DNA has been deciphered by viscosity measurements. CD spectra have also been used to understand the changes in ct-DNA structure upon binding with the metal complex. Density functional theory (DFT) and molecular docking analysis have been employed in highlighting the interactive phenomenon and binding location of the complex with the macromolecules.

  17. Spent fuel canister docking station

    International Nuclear Information System (INIS)

    Suikki, M.

    2006-01-01

    The working report for the spent fuel canister docking station presents a design for the operation and structure of the docking equipment located in the fuel handling cell for the spent fuel in the encapsulation plant. The report contains a description of the basic requirements for the docking station equipment and their implementation, the operation of the equipment, maintenance and a cost estimate. In the designing of the equipment all the problems related with the operation have been solved at the level of principle, nevertheless, detailed designing and the selection of final components have not yet been carried out. In case of defects and failures, solutions have been considered for postulated problems, and furthermore, the entire equipment was gone through by the means of systematic risk analysis (PFMEA). During the docking station designing we came across with needs to influence the structure of the actual disposal canister for spent nuclear fuel, too. Proposed changes for the structure of the steel lid fastening screw were included in the report. The report also contains a description of installation with the fuel handling cell structures. The purpose of the docking station for the fuel handling cell is to position and to seal the disposal canister for spent nuclear fuel into a penetration located on the cell floor and to provide suitable means for executing the loading of the disposal canister and the changing of atmosphere. The designed docking station consists of a docking ring, a covering hatch, a protective cone and an atmosphere-changing cap as well as the vacuum technology pertaining to the changing of atmosphere and the inert gas system. As far as the solutions are concerned, we have arrived at rather simple structures and most of the actuators of the system are situated outside of the actual fuel handling cell. When necessary, the equipment can also be used for the dismantling of a faulty disposal canister, cut from its upper end by machining. The

  18. MM-ISMSA: An Ultrafast and Accurate Scoring Function for Protein-Protein Docking.

    Science.gov (United States)

    Klett, Javier; Núñez-Salgado, Alfonso; Dos Santos, Helena G; Cortés-Cabrera, Álvaro; Perona, Almudena; Gil-Redondo, Rubén; Abia, David; Gago, Federico; Morreale, Antonio

    2012-09-11

    An ultrafast and accurate scoring function for protein-protein docking is presented. It includes (1) a molecular mechanics (MM) part based on a 12-6 Lennard-Jones potential; (2) an electrostatic component based on an implicit solvent model (ISM) with individual desolvation penalties for each partner in the protein-protein complex plus a hydrogen bonding term; and (3) a surface area (SA) contribution to account for the loss of water contacts upon protein-protein complex formation. The accuracy and performance of the scoring function, termed MM-ISMSA, have been assessed by (1) comparing the total binding energies, the electrostatic term, and its components (charge-charge and individual desolvation energies), as well as the per residue contributions, to results obtained with well-established methods such as APBSA or MM-PB(GB)SA for a set of 1242 decoy protein-protein complexes and (2) testing its ability to recognize the docking solution closest to the experimental structure as that providing the most favorable total binding energy. For this purpose, a test set consisting of 15 protein-protein complexes with known 3D structure mixed with 10 decoys for each complex was used. The correlation between the values afforded by MM-ISMSA and those from the other methods is quite remarkable (r(2) ∼ 0.9), and only 0.2-5.0 s (depending on the number of residues) are spent on a single calculation including an all vs all pairwise energy decomposition. On the other hand, MM-ISMSA correctly identifies the best docking solution as that closest to the experimental structure in 80% of the cases. Finally, MM-ISMSA can process molecular dynamics trajectories and reports the results as averaged values with their standard deviations. MM-ISMSA has been implemented as a plugin to the widely used molecular graphics program PyMOL, although it can also be executed in command-line mode. MM-ISMSA is distributed free of charge to nonprofit organizations.

  19. Octopus-inspired multi-arm robotic swimming.

    Science.gov (United States)

    Sfakiotakis, M; Kazakidi, A; Tsakiris, D P

    2015-05-13

    The outstanding locomotor and manipulation characteristics of the octopus have recently inspired the development, by our group, of multi-functional robotic swimmers, featuring both manipulation and locomotion capabilities, which could be of significant engineering interest in underwater applications. During its little-studied arm-swimming behavior, as opposed to the better known jetting via the siphon, the animal appears to generate considerable propulsive thrust and rapid acceleration, predominantly employing movements of its arms. In this work, we capture the fundamental characteristics of the corresponding complex pattern of arm motion by a sculling profile, involving a fast power stroke and a slow recovery stroke. We investigate the propulsive capabilities of a multi-arm robotic system under various swimming gaits, namely patterns of arm coordination, which achieve the generation of forward, as well as backward, propulsion and turning. A lumped-element model of the robotic swimmer, which considers arm compliance and the interaction with the aquatic environment, was used to study the characteristics of these gaits, the effect of various kinematic parameters on propulsion, and the generation of complex trajectories. This investigation focuses on relatively high-stiffness arms. Experiments employing a compliant-body robotic prototype swimmer with eight compliant arms, all made of polyurethane, inside a water tank, successfully demonstrated this novel mode of underwater propulsion. Speeds of up to 0.26 body lengths per second (approximately 100 mm s(-1)), and propulsive forces of up to 3.5 N were achieved, with a non-dimensional cost of transport of 1.42 with all eight arms and of 0.9 with only two active arms. The experiments confirmed the computational results and verified the multi-arm maneuverability and simultaneous object grasping capability of such systems.

  20. α-Terpineol, a monoterpene alcohol, complexed with β-cyclodextrin exerts antihyperalgesic effect in animal model for fibromyalgia aided with docking study.

    Science.gov (United States)

    Oliveira, Makson G B; Brito, Renan G; Santos, Priscila L; Araújo-Filho, Heitor G; Quintans, Jullyana S S; Menezes, Paula P; Serafini, Mairim R; Carvalho, Yasmim M B G; Silva, Juliane C; Almeida, Jackson R G S; Scotti, Luciana; Scotti, Marcus T; Shanmugam, Saravanan; Thangaraj, Parimelazhagan; Araújo, Adriano A S; Quintans-Júnior, Lucindo J

    2016-07-25

    The anti-hyperalgesic effect of the complex containing α-terpineol (αTPN) and β-cyclodextrin (βCD) was analyzed in a non-inflammatory chronic muscle pain model, as well as its mechanism of action through docking study for a possible interaction with receptors. The αTPN-βCD complex was prepared and characterized through the thermogravimetry/derivate thermogravimetry (TG/DTG), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscope (SEM). The model of chronic muscle pain was induced by two injections of pH 4.0 saline (20 μl) into the left gastrocnemius 5 days apart. After confirming hyperalgesia, male mice were treated with αTPN-βCD (25, 50 or 100 mg/kg; p.o.) or vehicle (saline 0.9%, p.o.) daily for 10 days. 1 h after the mechanical hyperalgesia, motor performance was evaluated. In addition, the systemic administration of naloxone and ondansetron tested the analgesic effect on the active opioid and serotonin receptors, respectively. The characterization tests indicated that αTPN was efficiently incorporated into βCD. The oral treatment with αTPN-βCD, at all doses tested, produced a significant (p force and in motor performance. This analgesic effect was reversed by the systemic administration of naloxone or ondansetron. These findings are corroborated by the docking study described in the present study, which verified a possible interaction of αTPN-βCD with opioid (MU, Kappa, Delta) and 5-HT receptors. Thus, it can be concluded that αTPN-βCD reduced the hyperalgesia followed by the chronic muscle pain model, probably evoked by the descending inhibitory pain system, specifically by opioid and serotoninergic receptors. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. QuickVina: accelerating AutoDock Vina using gradient-based heuristics for global optimization.

    Science.gov (United States)

    Handoko, Stephanus Daniel; Ouyang, Xuchang; Su, Chinh Tran To; Kwoh, Chee Keong; Ong, Yew Soon

    2012-01-01

    Predicting binding between macromolecule and small molecule is a crucial phase in the field of rational drug design. AutoDock Vina, one of the most widely used docking software released in 2009, uses an empirical scoring function to evaluate the binding affinity between the molecules and employs the iterated local search global optimizer for global optimization, achieving a significantly improved speed and better accuracy of the binding mode prediction compared its predecessor, AutoDock 4. In this paper, we propose further improvement in the local search algorithm of Vina by heuristically preventing some intermediate points from undergoing local search. Our improved version of Vina-dubbed QVina-achieved a maximum acceleration of about 25 times with the average speed-up of 8.34 times compared to the original Vina when tested on a set of 231 protein-ligand complexes while maintaining the optimal scores mostly identical. Using our heuristics, larger number of different ligands can be quickly screened against a given receptor within the same time frame.

  2. Exploring the selectivity of auto-inducer complex with LuxR using molecular docking, mutational studies and molecular dynamics simulations

    Science.gov (United States)

    Rajamanikandan, Sundaraj; Srinivasan, Pappu

    2017-03-01

    Bacteria communicate with one another using extracellular signaling molecules called auto-inducers (AHLs), a process termed as quorum sensing. The quorum sensing process allows bacteria to regulate various physiological activities. In this regard, quorum sensing master regulator LuxR from Vibrio harveyi represents an attractive therapeutic target for the development of novel anti-quorum sensing agents. Eventhough the binding of AHL complex with LuxR is evidenced in earlier reports, but their mode of binding is not clearly determined. Therefore, in the present work, molecular docking, in silico mutational studies, molecular dynamics simulations and free energy calculations were performed to understand the selectivity of AHL into the binding site of LuxR. The results revealed that Asn133 and Gln137 residues play a crucial role in recognizing AHL more effectively into the binding site of LuxR with good binding free energy. In addition to that, the carbonyl group presents in the lactone ring and amide group of AHL plays a vital role in the formation of hydrogen bond interactions with the protein. Further, structure based virtual screening was performed using ChemBridge database to screen potent lead molecules against LuxR. 4-benzyl-2-pyrrolidinone and N-[2(1-cyclohexen-1-yl) enthyl]-N'(2-ethoxyphenyl) were selected based on dock score, binding affinity and mode of interactions with the receptor. Furthermore, binding free energy, density functional theory and ADME prediction were performed to rank the lead molecules. Thus, the identified lead molecules can be used for the development of anti-quorum sensing drugs.

  3. Homology modeling and docking of AahII-Nanobody complexes reveal the epitope binding site on AahII scorpion toxin.

    Science.gov (United States)

    Ksouri, Ayoub; Ghedira, Kais; Ben Abderrazek, Rahma; Shankar, B A Gowri; Benkahla, Alia; Bishop, Ozlem Tastan; Bouhaouala-Zahar, Balkiss

    2018-02-19

    Scorpion envenoming and its treatment is a public health problem in many parts of the world due to highly toxic venom polypeptides diffusing rapidly within the body of severely envenomed victims. Recently, 38 AahII-specific Nanobody sequences (Nbs) were retrieved from which the performance of NbAahII10 nanobody candidate, to neutralize the most poisonous venom compound namely AahII acting on sodium channels, was established. Herein, structural computational approach is conducted to elucidate the Nb-AahII interactions that support the biological characteristics, using Nb multiple sequence alignment (MSA) followed by modeling and molecular docking investigations (RosettaAntibody, ZDOCK software tools). Sequence and structural analysis showed two dissimilar residues of NbAahII10 CDR1 (Tyr27 and Tyr29) and an inserted polar residue Ser30 that appear to play an important role. Indeed, CDR3 region of NbAahII10 is characterized by a specific Met104 and two negatively charged residues Asp115 and Asp117. Complex dockings reveal that NbAahII17 and NbAahII38 share one common binding site on the surface of the AahII toxin divergent from the NbAahII10 one's. At least, a couple of NbAahII10 - AahII residue interactions (Gln38 - Asn44 and Arg62, His64, respectively) are mainly involved in the toxic AahII binding site. Altogether, this study gives valuable insights in the design and development of next generation of antivenom. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Binding Studies of Andrographolide with Human serum albumin: Molecular Docking, Chromatographic and Spectroscopic studies.

    Science.gov (United States)

    Godugu, Deepika; Rupula, Karuna; Beedu, Sashidhar Rao

    2018-02-11

    Andrographolide, sourced from Andrographis paniculata, is an established therapeutic agent with variety of pharmacological properties in treatment of various diseases. The present study is designed to evaluate the interaction and binding affinity of andrographolide with HSA by docking and spectral studies. The docking study for screening the interaction of andrographolide with HSA protein was carried out using Auto Dock Vina software and the binding score of andrographolide was -8.7 kcal mol-1 and formed one hydrogen bond with Arg 218 residue of HSA in sub-domains IIA region. The formation of HSA-andrographolide complex was characterized by spectroscopic methods - UV absorption, HPLC, CD and FTIR analysis. The UV spectral analysis revealed a decrease in the absorption peak of HSA due to its interaction with andrographolide. A new peak was observed at retention time 7.45 min by HPLC analysis and the Bmax was found to be 7.5 ± 0.4 mg protein with a Kd value of 1.89 mM, indicating interaction of andrographolide with HSA. The CD spectra results suggested, a marginal decrease in the negative ellipticity without any significant shift in peak, indicating the stabilization of the HSA-andrographolide complex. The FTIR analysis further confirmed, a shift of amide I groups from 1646 to 1637 cm-1 and a peak at 1016 cm-1 in andrographolide, was observed in the complex, indicating the interaction. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. The Rac Activator DOCK2 Mediates Plasma Cell Differentiation and IgG Antibody Production

    Directory of Open Access Journals (Sweden)

    Miho Ushijima

    2018-02-01

    Full Text Available A hallmark of humoral immune responses is the production of antibodies. This process involves a complex cascade of molecular and cellular interactions, including recognition of specific antigen by the B cell receptor (BCR, which triggers activation of B cells and differentiation into plasma cells (PCs. Although activation of the small GTPase Rac has been implicated in BCR-mediated antigen recognition, its precise role in humoral immunity and the upstream regulator remain elusive. DOCK2 is a Rac-specific guanine nucleotide exchange factor predominantly expressed in hematopoietic cells. We found that BCR-mediated Rac activation was almost completely lost in DOCK2-deficient B cells, resulting in defects in B cell spreading over the target cell-membrane and sustained growth of BCR microclusters at the interface. When wild-type B cells were stimulated in vitro with anti-IgM F(ab′2 antibody in the presence of IL-4 and IL-5, they differentiated efficiently into PCs. However, BCR-mediated PC differentiation was severely impaired in the case of DOCK2-deficient B cells. Similar results were obtained in vivo when DOCK2-deficient B cells expressing a defined BCR specificity were adoptively transferred into mice and challenged with the cognate antigen. In addition, by generating the conditional knockout mice, we found that DOCK2 expression in B-cell lineage is required to mount antigen-specific IgG antibody. These results highlight important role of the DOCK2–Rac axis in PC differentiation and IgG antibody responses.

  6. DECK: Distance and environment-dependent, coarse-grained, knowledge-based potentials for protein-protein docking

    Directory of Open Access Journals (Sweden)

    Vakser Ilya A

    2011-07-01

    Full Text Available Abstract Background Computational approaches to protein-protein docking typically include scoring aimed at improving the rank of the near-native structure relative to the false-positive matches. Knowledge-based potentials improve modeling of protein complexes by taking advantage of the rapidly increasing amount of experimentally derived information on protein-protein association. An essential element of knowledge-based potentials is defining the reference state for an optimal description of the residue-residue (or atom-atom pairs in the non-interaction state. Results The study presents a new Distance- and Environment-dependent, Coarse-grained, Knowledge-based (DECK potential for scoring of protein-protein docking predictions. Training sets of protein-protein matches were generated based on bound and unbound forms of proteins taken from the DOCKGROUND resource. Each residue was represented by a pseudo-atom in the geometric center of the side chain. To capture the long-range and the multi-body interactions, residues in different secondary structure elements at protein-protein interfaces were considered as different residue types. Five reference states for the potentials were defined and tested. The optimal reference state was selected and the cutoff effect on the distance-dependent potentials investigated. The potentials were validated on the docking decoys sets, showing better performance than the existing potentials used in scoring of protein-protein docking results. Conclusions A novel residue-based statistical potential for protein-protein docking was developed and validated on docking decoy sets. The results show that the scoring function DECK can successfully identify near-native protein-protein matches and thus is useful in protein docking. In addition to the practical application of the potentials, the study provides insights into the relative utility of the reference states, the scope of the distance dependence, and the coarse-graining of

  7. PEPSI-Dock: a detailed data-driven protein-protein interaction potential accelerated by polar Fourier correlation.

    Science.gov (United States)

    Neveu, Emilie; Ritchie, David W; Popov, Petr; Grudinin, Sergei

    2016-09-01

    Docking prediction algorithms aim to find the native conformation of a complex of proteins from knowledge of their unbound structures. They rely on a combination of sampling and scoring methods, adapted to different scales. Polynomial Expansion of Protein Structures and Interactions for Docking (PEPSI-Dock) improves the accuracy of the first stage of the docking pipeline, which will sharpen up the final predictions. Indeed, PEPSI-Dock benefits from the precision of a very detailed data-driven model of the binding free energy used with a global and exhaustive rigid-body search space. As well as being accurate, our computations are among the fastest by virtue of the sparse representation of the pre-computed potentials and FFT-accelerated sampling techniques. Overall, this is the first demonstration of a FFT-accelerated docking method coupled with an arbitrary-shaped distance-dependent interaction potential. First, we present a novel learning process to compute data-driven distant-dependent pairwise potentials, adapted from our previous method used for rescoring of putative protein-protein binding poses. The potential coefficients are learned by combining machine-learning techniques with physically interpretable descriptors. Then, we describe the integration of the deduced potentials into a FFT-accelerated spherical sampling provided by the Hex library. Overall, on a training set of 163 heterodimers, PEPSI-Dock achieves a success rate of 91% mid-quality predictions in the top-10 solutions. On a subset of the protein docking benchmark v5, it achieves 44.4% mid-quality predictions in the top-10 solutions when starting from bound structures and 20.5% when starting from unbound structures. The method runs in 5-15 min on a modern laptop and can easily be extended to other types of interactions. https://team.inria.fr/nano-d/software/PEPSI-Dock sergei.grudinin@inria.fr. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e

  8. Docking studies on a new human immunodeficiency virus integrase-Mg-DNA complex: phenyl ring exploration and synthesis of 1H-benzylindole derivatives through fluorine substitutions.

    Science.gov (United States)

    Ferro, Stefania; De Luca, Laura; Barreca, Maria Letizia; Iraci, Nunzio; De Grazia, Sara; Christ, Frauke; Witvrouw, Myriam; Debyser, Zeger; Chimirri, Alba

    2009-01-22

    A new model of HIV-1 integrase-Mg-DNA complex that is useful for docking experiments has been built. It was used to study the binding mode of integrase strand transfer inhibitor 1 (CHI-1043) and other fluorine analogues. Molecular modeling results prompted us to synthesize the designed derivatives which showed potent enzymatic inhibition at nanomolar concentration, high antiviral activity, and low toxicity. Microwave assisted organic synthesis (MAOS) was employed in several steps of the synthetic pathway, thus reducing reaction times and improving yields.

  9. Systematic and efficient side chain optimization for molecular docking using a cheapest-path procedure.

    Science.gov (United States)

    Schumann, Marcel; Armen, Roger S

    2013-05-30

    Molecular docking of small-molecules is an important procedure for computer-aided drug design. Modeling receptor side chain flexibility is often important or even crucial, as it allows the receptor to adopt new conformations as induced by ligand binding. However, the accurate and efficient incorporation of receptor side chain flexibility has proven to be a challenge due to the huge computational complexity required to adequately address this problem. Here we describe a new docking approach with a very fast, graph-based optimization algorithm for assignment of the near-optimal set of residue rotamers. We extensively validate our approach using the 40 DUD target benchmarks commonly used to assess virtual screening performance and demonstrate a large improvement using the developed side chain optimization over rigid receptor docking (average ROC AUC of 0.693 vs. 0.623). Compared to numerous benchmarks, the overall performance is better than nearly all other commonly used procedures. Furthermore, we provide a detailed analysis of the level of receptor flexibility observed in docking results for different classes of residues and elucidate potential avenues for further improvement. Copyright © 2013 Wiley Periodicals, Inc.

  10. The pepATTRACT web server for blind, large-scale peptide-protein docking.

    Science.gov (United States)

    de Vries, Sjoerd J; Rey, Julien; Schindler, Christina E M; Zacharias, Martin; Tuffery, Pierre

    2017-07-03

    Peptide-protein interactions are ubiquitous in the cell and form an important part of the interactome. Computational docking methods can complement experimental characterization of these complexes, but current protocols are not applicable on the proteome scale. pepATTRACT is a novel docking protocol that is fully blind, i.e. it does not require any information about the binding site. In various stages of its development, pepATTRACT has participated in CAPRI, making successful predictions for five out of seven protein-peptide targets. Its performance is similar or better than state-of-the-art local docking protocols that do require binding site information. Here we present a novel web server that carries out the rigid-body stage of pepATTRACT. On the peptiDB benchmark, the web server generates a correct model in the top 50 in 34% of the cases. Compared to the full pepATTRACT protocol, this leads to some loss of performance, but the computation time is reduced from ∼18 h to ∼10 min. Combined with the fact that it is fully blind, this makes the web server well-suited for large-scale in silico protein-peptide docking experiments. The rigid-body pepATTRACT server is freely available at http://bioserv.rpbs.univ-paris-diderot.fr/services/pepATTRACT. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  11. Structure and Sequence Search on Aptamer-Protein Docking

    Science.gov (United States)

    Xiao, Jiajie; Bonin, Keith; Guthold, Martin; Salsbury, Freddie

    2015-03-01

    Interactions between proteins and deoxyribonucleic acid (DNA) play a significant role in the living systems, especially through gene regulation. However, short nucleic acids sequences (aptamers) with specific binding affinity to specific proteins exhibit clinical potential as therapeutics. Our capillary and gel electrophoresis selection experiments show that specific sequences of aptamers can be selected that bind specific proteins. Computationally, given the experimentally-determined structure and sequence of a thrombin-binding aptamer, we can successfully dock the aptamer onto thrombin in agreement with experimental structures of the complex. In order to further study the conformational flexibility of this thrombin-binding aptamer and to potentially develop a predictive computational model of aptamer-binding, we use GPU-enabled molecular dynamics simulations to both examine the conformational flexibility of the aptamer in the absence of binding to thrombin, and to determine our ability to fold an aptamer. This study should help further de-novo predictions of aptamer sequences by enabling the study of structural and sequence-dependent effects on aptamer-protein docking specificity.

  12. Orion Handling Qualities During ISS Rendezvous and Docking

    Science.gov (United States)

    Hart, Jeremy J.; Stephens, J. P.; Spehar, P.; Bilimoria, K.; Foster, C.; Gonzalex, R.; Sullivan, K.; Jackson, B.; Brazzel, J.; Hart, J.

    2011-01-01

    The Orion spacecraft was designed to rendezvous with multiple vehicles in low earth orbit (LEO) and beyond. To perform the required rendezvous and docking task, Orion must provide enough control authority to perform coarse translational maneuvers while maintaining precision to perform the delicate docking corrections. While Orion has autonomous docking capabilities, it is expected that final approach and docking operations with the International Space Station (ISS) will initially be performed in a manual mode. A series of evaluations was conducted by NASA and Lockheed Martin at the Johnson Space Center to determine the handling qualities (HQ) of the Orion spacecraft during different docking and rendezvous conditions using the Cooper-Harper scale. This paper will address the specifics of the handling qualities methodology, vehicle configuration, scenarios flown, data collection tools, and subject ratings and comments. The initial Orion HQ assessment examined Orion docking to the ISS. This scenario demonstrates the Translational Hand Controller (THC) handling qualities of Orion. During this initial assessment, two different scenarios were evaluated. The first was a nominal docking approach to a stable ISS, with Orion initializing with relative position dispersions and a closing rate of approximately 0.1 ft/sec. The second docking scenario was identical to the first, except the attitude motion of the ISS was modeled to simulate a stress case ( 1 degree deadband per axis and 0.01 deg/sec rate deadband per axis). For both scenarios, subjects started each run on final approach at a docking port-to-port range of 20 ft. Subjects used the THC in pulse mode with cues from the docking camera image, window views, and range and range rate data displayed on the Orion display units. As in the actual design, the attitude of the Orion vehicle was held by the automated flight control system at 0.5 degree deadband per axis. Several error sources were modeled including Reaction

  13. Spacecraft rendezvous and docking

    DEFF Research Database (Denmark)

    Jørgensen, John Leif

    1999-01-01

    The phenomenons and problems encountered when a rendezvous manoeuvre, and possible docking, of two spacecrafts has to be performed, have been the topic for numerous studies, and, details of a variety of scenarios has been analysed. So far, all solutions that has been brought into realization has...... been based entirely on direct human supervision and control. This paper describes a vision-based system and methodology, that autonomously generates accurate guidance information that may assist a human operator in performing the tasks associated with both the rendezvous and docking navigation...

  14. Electro-optical rendezvous and docking sensors

    Science.gov (United States)

    Tubbs, David J.; Kesler, Lynn O.; Sirko, Robert J.

    1991-01-01

    Electro-optical sensors provide unique and critical functionality for space missions requiring rendezvous, docking, and berthing. McDonnell Douglas is developing a complete rendezvous and docking system for both manned and unmanned missions. This paper examines our sensor development and the systems and missions which benefit from rendezvous and docking sensors. Simulation results quantifying system performance improvements in key areas are given, with associated sensor performance requirements. A brief review of NASA-funded development activities and the current performance of electro-optical sensors for space applications is given. We will also describe current activities at McDonnell Douglas for a fully functional demonstration to address specific NASA mission needs.

  15. Docking screens: right for the right reasons?

    Science.gov (United States)

    Kolb, Peter; Irwin, John J

    2009-01-01

    Whereas docking screens have emerged as the most practical way to use protein structure for ligand discovery, an inconsistent track record raises questions about how well docking actually works. In its favor, a growing number of publications report the successful discovery of new ligands, often supported by experimental affinity data and controls for artifacts. Few reports, however, actually test the underlying structural hypotheses that docking makes. To be successful and not just lucky, prospective docking must not only rank a true ligand among the top scoring compounds, it must also correctly orient the ligand so the score it receives is biophysically sound. If the correct binding pose is not predicted, a skeptic might well infer that the discovery was serendipitous. Surveying over 15 years of the docking literature, we were surprised to discover how rarely sufficient evidence is presented to establish whether docking actually worked for the right reasons. The paucity of experimental tests of theoretically predicted poses undermines confidence in a technique that has otherwise become widely accepted. Of course, solving a crystal structure is not always possible, and even when it is, it can be a lot of work, and is not readily accessible to all groups. Even when a structure can be determined, investigators may prefer to gloss over an erroneous structural prediction to better focus on their discovery. Still, the absence of a direct test of theory by experiment is a loss for method developers seeking to understand and improve docking methods. We hope this review will motivate investigators to solve structures and compare them with their predictions whenever possible, to advance the field.

  16. Application of a Dual-Arm Robot in Complex Sample Preparation and Measurement Processes.

    Science.gov (United States)

    Fleischer, Heidi; Drews, Robert Ralf; Janson, Jessica; Chinna Patlolla, Bharath Reddy; Chu, Xianghua; Klos, Michael; Thurow, Kerstin

    2016-10-01

    Automation systems with applied robotics have already been established in industrial applications for many years. In the field of life sciences, a comparable high level of automation can be found in the areas of bioscreening and high-throughput screening. Strong deficits still exist in the development of flexible and universal fully automated systems in the field of analytical measurement. Reasons are the heterogeneous processes with complex structures, which include sample preparation and transport, analytical measurements using complex sensor systems, and suitable data analysis and evaluation. Furthermore, the use of nonstandard sample vessels with various shapes and volumes results in an increased complexity. The direct use of existing automation solutions from bioscreening applications is not possible. A flexible automation system for sample preparation, analysis, and data evaluation is presented in this article. It is applied for the determination of cholesterol in biliary endoprosthesis using gas chromatography-mass spectrometry (GC-MS). A dual-arm robot performs both transport and active manipulation tasks to ensure human-like operation. This general robotic concept also enables the use of manual laboratory devices and equipment and is thus suitable in areas with a high standardization grade. © 2016 Society for Laboratory Automation and Screening.

  17. Cloud fluid compression and softening in spiral arms and the formation of giant molecular cloud complexes

    International Nuclear Information System (INIS)

    Cowie, L.L.

    1981-01-01

    In this, the second paper of a series on the galactodynamics of the cloudy interstellar medium, we consider the response of such a gas to a forcing potential in the tight-winding density wave theory. The cloud fluid is treated in the hydrodynamic limit with an equation of state which softens at high densities. It is shown that in the inner regions of the galaxy, cooling of the cloud fluid in the arms can result in gravitational instability and the formation of large bound complexes of clouds which we identify with the giant molecular clouds (GMCs). Masses dimensions, distributions, and scale heights of the GMCs are predicted by the theory. It is suggested that the interstellar gas density in the disk is regulated by the gravitational instability mechanism in the arms which siphons material into star formation. Implications for the evolution of individual GMCs and for galactic morphology are discussed

  18. Autonomous spacecraft rendezvous and docking

    Science.gov (United States)

    Tietz, J. C.; Almand, B. J.

    A storyboard display is presented which summarizes work done recently in design and simulation of autonomous video rendezvous and docking systems for spacecraft. This display includes: photographs of the simulation hardware, plots of chase vehicle trajectories from simulations, pictures of the docking aid including image processing interpretations, and drawings of the control system strategy. Viewgraph-style sheets on the display bulletin board summarize the simulation objectives, benefits, special considerations, approach, and results.

  19. DockBench: An Integrated Informatic Platform Bridging the Gap between the Robust Validation of Docking Protocols and Virtual Screening Simulations

    Directory of Open Access Journals (Sweden)

    Alberto Cuzzolin

    2015-05-01

    Full Text Available Virtual screening (VS is a computational methodology that streamlines the drug discovery process by reducing costs and required resources through the in silico identification of potential drug candidates. Structure-based VS (SBVS exploits knowledge about the three-dimensional (3D structure of protein targets and uses the docking methodology as search engine for novel hits. The success of a SBVS campaign strongly depends upon the accuracy of the docking protocol used to select the candidates from large chemical libraries. The identification of suitable protocols is therefore a crucial step in the setup of SBVS experiments. Carrying out extensive benchmark studies, however, is usually a tangled task that requires users’ proficiency in handling different file formats and philosophies at the basis of the plethora of existing software packages. We present here DockBench 1.0, a platform available free of charge that eases the pipeline by automating the entire procedure, from docking benchmark to VS setups. In its current implementation, DockBench 1.0 handles seven docking software packages and offers the possibility to test up to seventeen different protocols. The main features of our platform are presented here and the results of the benchmark study of human Checkpoint kinase 1 (hChk1 are discussed as validation test.

  20. On the computation of molecular surface correlations for protein docking using fourier techniques.

    Science.gov (United States)

    Sakk, Eric

    2007-08-01

    The computation of surface correlations using a variety of molecular models has been applied to the unbound protein docking problem. Because of the computational complexity involved in examining all possible molecular orientations, the fast Fourier transform (FFT) (a fast numerical implementation of the discrete Fourier transform (DFT)) is generally applied to minimize the number of calculations. This approach is rooted in the convolution theorem which allows one to inverse transform the product of two DFTs in order to perform the correlation calculation. However, such a DFT calculation results in a cyclic or "circular" correlation which, in general, does not lead to the same result as the linear correlation desired for the docking problem. In this work, we provide computational bounds for constructing molecular models used in the molecular surface correlation problem. The derived bounds are then shown to be consistent with various intuitive guidelines previously reported in the protein docking literature. Finally, these bounds are applied to different molecular models in order to investigate their effect on the correlation calculation.

  1. Activated Cdc42 kinase regulates Dock localization in male germ cells during Drosophila spermatogenesis.

    Science.gov (United States)

    Abdallah, Abbas M; Zhou, Xin; Kim, Christine; Shah, Kushani K; Hogden, Christopher; Schoenherr, Jessica A; Clemens, James C; Chang, Henry C

    2013-06-15

    Deregulation of the non-receptor tyrosine kinase ACK1 (Activated Cdc42-associated kinase) correlates with poor prognosis in cancers and has been implicated in promoting metastasis. To further understand its in vivo function, we have characterized the developmental defects of a null mutation in Drosophila Ack, which bears a high degree of sequence similarity to mammalian ACK1 but lacks a CRIB domain. We show that Ack, while not essential for viability, is critical for sperm formation. This function depends on Ack tyrosine kinase activity and is required cell autonomously in differentiating male germ cells at or after the spermatocyte stage. Ack associates predominantly with endocytic clathrin sites in spermatocytes, but disruption of Ack function has no apparent effect on clathrin localization and receptor-mediated internalization of Boss (Bride of sevenless) protein in eye discs. Instead, Ack is required for the subcellular distribution of Dock (dreadlocks), the Drosophila homolog of the SH2- and SH3-containing adaptor protein Nck. Moreover, Dock forms a complex with Ack, and the localization of Dock in male germ cells depends on its SH2 domain. Together, our results suggest that Ack-dependent tyrosine phosphorylation recruits Dock to promote sperm differentiation. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Multi-Axis Independent Electromechanical Load Control for Docking System Actuation Development and Verification Using dSPACE

    Science.gov (United States)

    Oesch, Christopher; Dick, Brandon; Rupp, Timothy

    2015-01-01

    The development of highly complex and advanced actuation systems to meet customer demands has accelerated as the use of real-time testing technology expands into multiple markets at Moog. Systems developed for the autonomous docking of human rated spacecraft to the International Space Station (ISS), envelope multi-operational characteristics which place unique constraints on an actuation system. Real-time testing hardware has been used as a platform for incremental testing and development for the linear actuation system which controls initial capture and docking for vehicles visiting the ISS. This presentation will outline the role of dSPACE hardware as a platform for rapid control-algorithm prototyping as well as an Electromechanical Actuator (EMA) system dynamic loading simulator, both conducted at Moog to develop the safety critical Linear Actuator System (LAS) of the NASA Docking System (NDS).

  3. Does transition from the da Vinci Si to Xi robotic platform impact single-docking technique for robot-assisted laparoscopic nephroureterectomy?

    Science.gov (United States)

    Patel, Manish N; Aboumohamed, Ahmed; Hemal, Ashok

    2015-12-01

    To describe our robot-assisted nephroureterectomy (RNU) technique for benign indications and RNU with en bloc excision of bladder cuff (BCE) and lymphadenectomy (LND) for malignant indications using the da Vinci Si and da Vinci Xi robotic platform, with its pros and cons. The port placement described for Si can be used for standard and S robotic systems. This is the first report in the literature on the use of the da Vinci Xi robotic platform for RNU. After a substantial experience of RNU using different da Vinci robots from the standard to the Si platform in a single-docking fashion for benign and malignant conditions, we started using the newly released da Vinci Xi robot since 2014. The most important differences are in port placement and effective use of the features of da Vinci Xi robot while performing simultaneous upper and lower tract surgery. Patient positioning, port placement, step-by-step technique of single docking RNU-LND-BCE using the da Vinci Si and da Vinci Xi robot are shown in an accompanying video with the goal that centres using either robotic system benefit from the hints and tips. The first segment of video describes RNU-LND-BCE using the da Vinci Si followed by the da Vinci Xi to highlight differences. There was no need for patient repositioning or robot re-docking with the new da Vinci Xi robotic platform. We have experience of using different robotic systems for single docking RNU in 70 cases for benign (15) and malignant (55) conditions. The da Vinci Xi robotic platform helps operating room personnel in its easy movement, allows easier patient side-docking with the help of its boom feature, in addition to easy and swift movements of the robotic arms. The patient clearance feature can be used to avoid collision with the robotic arms or the patient's body. In patients with challenging body habitus and in situations where bladder cuff management is difficult, modifications can be made through reassigning the camera to a different port with

  4. Rosetta Ligand docking with flexible XML protocols.

    Science.gov (United States)

    Lemmon, Gordon; Meiler, Jens

    2012-01-01

    RosettaLigand is premiere software for predicting how a protein and a small molecule interact. Benchmark studies demonstrate that 70% of the top scoring RosettaLigand predicted interfaces are within 2Å RMSD from the crystal structure [1]. The latest release of Rosetta ligand software includes many new features, such as (1) docking of multiple ligands simultaneously, (2) representing ligands as fragments for greater flexibility, (3) redesign of the interface during docking, and (4) an XML script based interface that gives the user full control of the ligand docking protocol.

  5. DARC 2.0: Improved Docking and Virtual Screening at Protein Interaction Sites.

    Directory of Open Access Journals (Sweden)

    Ragul Gowthaman

    Full Text Available Over the past decade, protein-protein interactions have emerged as attractive but challenging targets for therapeutic intervention using small molecules. Due to the relatively flat surfaces that typify protein interaction sites, modern virtual screening tools developed for optimal performance against "traditional" protein targets perform less well when applied instead at protein interaction sites. Previously, we described a docking method specifically catered to the shallow binding modes characteristic of small-molecule inhibitors of protein interaction sites. This method, called DARC (Docking Approach using Ray Casting, operates by comparing the topography of the protein surface when "viewed" from a vantage point inside the protein against the topography of a bound ligand when "viewed" from the same vantage point. Here, we present five key enhancements to DARC. First, we use multiple vantage points to more accurately determine protein-ligand surface complementarity. Second, we describe a new scheme for rapidly determining optimal weights in the DARC scoring function. Third, we incorporate sampling of ligand conformers "on-the-fly" during docking. Fourth, we move beyond simple shape complementarity and introduce a term in the scoring function to capture electrostatic complementarity. Finally, we adjust the control flow in our GPU implementation of DARC to achieve greater speedup of these calculations. At each step of this study, we evaluate the performance of DARC in a "pose recapitulation" experiment: predicting the binding mode of 25 inhibitors each solved in complex with its distinct target protein (a protein interaction site. Whereas the previous version of DARC docked only one of these inhibitors to within 2 Å RMSD of its position in the crystal structure, the newer version achieves this level of accuracy for 12 of the 25 complexes, corresponding to a statistically significant performance improvement (p < 0.001. Collectively then, we find

  6. Differential Regulation of Synaptic Vesicle Tethering and Docking by UNC-18 and TOM-1.

    Science.gov (United States)

    Gracheva, Elena O; Maryon, Ed B; Berthelot-Grosjean, Martine; Richmond, Janet E

    2010-01-01

    The assembly of SNARE complexes between syntaxin, SNAP-25 and synaptobrevin is required to prime synaptic vesicles for fusion. Since Munc18 and tomosyn compete for syntaxin interactions, the interplay between these proteins is predicted to be important in regulating synaptic transmission. We explored this possibility, by examining genetic interactions between C. elegans unc-18(Munc18), unc-64(syntaxin) and tom-1(tomosyn). We have previously demonstrated that unc-18 mutants have reduced synaptic transmission, whereas tom-1 mutants exhibit enhanced release. Here we show that the unc-18 mutant release defect is associated with loss of two morphologically distinct vesicle pools; those tethered within 25 nm of the plasma membrane and those docked with the plasma membrane. In contrast, priming defective unc-13 mutants accumulate tethered vesicles, while docked vesicles are greatly reduced, indicating tethering is UNC-18-dependent and occurs in the absence of priming. C. elegans unc-64 mutants phenocopy unc-18 mutants, losing both tethered and docked vesicles, whereas overexpression of open syntaxin preferentially increases vesicle docking, suggesting UNC-18/closed syntaxin interactions are responsible for vesicle tethering. Given the competition between vertebrate tomosyn and Munc18, for syntaxin binding, we hypothesized that C. elegans TOM-1 may inhibit both UNC-18-dependent vesicle targeting steps. Consistent with this hypothesis, tom-1 mutants exhibit enhanced UNC-18 plasma membrane localization and a concomitant increase in both tethered and docked synaptic vesicles. Furthermore, in tom-1;unc-18 double mutants the docked, primed vesicle pool is preferentially rescued relative to unc-18 single mutants. Together these data provide evidence for the differential regulation of two vesicle targeting steps by UNC-18 and TOM-1 through competitive interactions with syntaxin.

  7. Differential regulation of synaptic vesicle tethering and docking by UNC-18 and TOM-1

    Directory of Open Access Journals (Sweden)

    Elena O Gracheva

    2010-10-01

    Full Text Available The assembly of SNARE complexes between syntaxin, SNAP-25 and synaptobrevin is required to prime synaptic vesicles for fusion. Since Munc18 and tomosyn compete for syntaxin interactions, the interplay between these proteins is predicted to be important in regulating synaptic transmission. We explored this possibility, by examining genetic interactions between C. elegans unc-18(Munc18, unc-64(syntaxin and tom-1(tomosyn. We have previously demonstrated that unc-18 mutants have reduced synaptic transmission, whereas tom-1 mutants exhibit enhanced release. Here we show that the unc-18 mutant release defect is associated with loss of two morphologically distinct vesicle pools; those tethered within 25nm of the plasma membrane and those docked with the plasma membrane. In contrast, priming defective unc-13 mutants accumulate tethered vesicles, while docked vesicles are greatly reduced, indicating tethering is UNC-18-dependent and occurs in the absence of priming. C. elegans unc-64 mutants phenocopy unc-18 mutants, losing both tethered and docked vesicles, whereas overexpression of open syntaxin preferentially increases vesicle docking, suggesting UNC-18/closed syntaxin interactions are responsible for vesicle tethering. Given the competition between vertebrate tomosyn and Munc18, for syntaxin binding, we hypothesized that C. elegans TOM-1 may inhibit both UNC-18-dependent vesicle targeting steps. Consistent with this hypothesis, tom-1 mutants exhibit enhanced UNC-18 plasma membrane localization and a concomitant increase in both tethered and docked synaptic vesicles. Furthermore, in tom-1;unc-18 double mutants the docked, primed vesicle pool is preferentially rescued relative to unc-18 single mutants. Together these data provide evidence for the differential regulation of two vesicle targeting steps by UNC-18 and TOM-1 through competitive interactions with syntaxin

  8. Why are most EU pigs tail docked?

    DEFF Research Database (Denmark)

    D'eath, R.B.; Niemi, J.K.; Vosough Ahmadi, B.

    2016-01-01

    To limit tail biting incidence, most pig producers in Europe tail dock their piglets. This is despite EU Council Directive 2008/120/EC banning routine tail docking and allowing it only as a last resort. The paper aims to understand what it takes to fulfil the intentions of the Directive...... by examining economic results of four management and housing scenarios, and by discussing their consequences for animal welfare in the light of legal and ethical considerations. The four scenarios compared are: ‘Standard Docked’, a conventional housing scenario with tail docking meeting the recommendations...... for Danish production (0.7 m2/pig); ‘Standard Undocked’, which is the same as ‘Standard Docked’ but with no tail docking, ‘Efficient Undocked’ and ‘Enhanced Undocked’, which have increased solid floor area (0.9 and 1.0 m2/pig, respectively) provision of loose manipulable materials (100 and 200 g/straw per...

  9. The Ambiguity of Militarization : The complex interaction between the Congolese armed forces and civilians in the Kivu provinces, eastern DR Congo

    NARCIS (Netherlands)

    Verweijen, J.E.C.

    2015-01-01

    Drawing on extensive ethnographic field research, this dissertation explores the interaction between the Congolese armed forces (FARDC) and civilians in the eastern DR Congo’s conflict-ridden Kivu provinces. It uncovers the multidimensionality, reciprocity and complexities of this interaction, which

  10. Study of the interaction between two newly synthesized cyclometallated platinum (II) complexes and human serum albumin: Spectroscopic characterization and docking simulation

    Energy Technology Data Exchange (ETDEWEB)

    Yousefi, Reza, E-mail: ryousefi@shirazu.ac.ir [Protein Chemistry Laboratory (PCL), Department of Biology, College of Sciences, Shiraz University, Shiraz (Iran, Islamic Republic of); Mohammadi, Roghayeh [Protein Chemistry Laboratory (PCL), Department of Biology, College of Sciences, Shiraz University, Shiraz (Iran, Islamic Republic of); Taheri-Kafrani, Asghar [Department of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of); Bagher Shahsavani, Mohammad [Protein Chemistry Laboratory (PCL), Department of Biology, College of Sciences, Shiraz University, Shiraz (Iran, Islamic Republic of); Dadkhah Aseman, Marzieh; Masoud Nabavizadeh, S.; Rashidi, Mehdi [Department of Chemistry, College of Sciences, Shiraz University, Shiraz (Iran, Islamic Republic of); Poursasan, Najmeh; Moosavi-Movahedi, Ali-Akbar [Institute of Biochemistry and Biophysics (IBB), the University of Tehran, Tehran (Iran, Islamic Republic of)

    2015-03-15

    This study describes HSA binding properties of two cyclometalated platinum (II) complexes with non-leaving lipophilic ligands; deprotonated 2-phenylpyridine (ppy): C{sub 1} and deprotonated benzo [h]quinolone (bhq): C{sub 2}, using UV–vis, fluorescence and circular dichroism (CD) spectroscopy. The absorption spectra of HSA decreased in the presence of increasing concentration of these complexes, reflecting HSA structural alteration after drug's binding. Also the thermodynamic parameters (ΔG, ΔH and ΔS) that obtained from Trp fluorescence study revealed that the interaction between these complexes and HSA were spontaneous. In addition, C{sub 1} with flexible chemical structure indicated significantly higher fluorescence quenching and binding affinity to HSA than C{sub 2} which possesses a higher structural rigidity. The ANS fluorescence results also indicated that two Pt (II) complexes were competing for binding to the hydrophobic regions of HSA. Moreover, CD results demonstrated that C{sub 2} complex induced alteration of HSA conformation to more significant extent compared to C{sub 1}. The molecular docking results revealed the involvement of π–π stacking and hydrophobic interaction between these complexes and the protein. Overall, this study may highlight the significance of structural flexibility in designing of future anticancer Pt (II) complexes with improved binding affinity for HSA. - Highlights: • HSA is a general transport carrier for a wide variety of ligands such as metabolites and pharmaceutical drugs. • The HSA binding properties of two structurally related cyclometallated platinum (II) complexes (C{sub 1} and C{sub 2}) were studied. • The complexes can bind to HSA and induce structural alteration in this protein. • The thermodynamic parameters revealed that the interactions were spontaneous and mainly hydrophobic driven. • C{sub 1} with flexible chemical structure indicated a higher binding affinity for HSA than C{sub 2}.

  11. Linear Actuator System for the NASA Docking System

    Science.gov (United States)

    Dick, Brandon N.; Oesch, Christopher; Rupp, Timothy W.

    2017-01-01

    The Linear Actuator System (LAS) is a major sub-system within the NASA Docking System (NDS). The NDS Block 1 will be used on the Boeing Crew Space Transportation (CST-100) system to achieve docking with the International Space Station. Critical functions in the Soft Capture aspect of docking are performed by the LAS. This paper describes the general function of the LAS, the system's key requirements and technical challenges, and the development and qualification approach for the system.

  12. Prediction of homoprotein and heteroprotein complexes by protein docking and template-based modeling : A CASP-CAPRI experiment

    NARCIS (Netherlands)

    Lensink, Marc F.; Velankar, Sameer; Kryshtafovych, Andriy; Huang, Shen You; Schneidman-Duhovny, Dina; Sali, Andrej; Segura, Joan; Fernandez-Fuentes, Narcis; Viswanath, Shruthi; Elber, Ron; Grudinin, Sergei; Popov, Petr; Neveu, Emilie; Lee, Hasup; Baek, Minkyung; Park, Sangwoo; Heo, Lim; Rie Lee, Gyu; Seok, Chaok; Qin, Sanbo; Zhou, Huan Xiang; Ritchie, David W.; Maigret, Bernard; Devignes, Marie Dominique; Ghoorah, Anisah; Torchala, Mieczyslaw; Chaleil, Raphaël A G; Bates, Paul A.; Ben-Zeev, Efrat; Eisenstein, Miriam; Negi, Surendra S.; Weng, Zhiping; Vreven, Thom; Pierce, Brian G.; Borrman, Tyler M.; Yu, Jinchao; Ochsenbein, Françoise; Guerois, Raphaël; Vangone, Anna; Garcia Lopes Maia Rodrigues, João; van Zundert, Gydo; Nellen, Mehdi; Xue, Li; Karaca, Ezgi; Melquiond, Adrien S J; Visscher, Koen; Kastritis, Panagiotis L.; Bonvin, Alexandre M J J; Xu, Xianjin; Qiu, Liming; Yan, Chengfei; Li, Jilong; Ma, Zhiwei; Cheng, Jianlin; Zou, Xiaoqin; Shen, Yang; Peterson, Lenna X.; Kim, Hyung Rae; Roy, Amit; Han, Xusi; Esquivel-Rodriguez, Juan; Kihara, Daisuke; Yu, Xiaofeng; Bruce, Neil J.; Fuller, Jonathan C.; Wade, Rebecca C.; Anishchenko, Ivan; Kundrotas, Petras J.; Vakser, Ilya A.; Imai, Kenichiro; Yamada, Kazunori; Oda, Toshiyuki; Nakamura, Tsukasa; Tomii, Kentaro; Pallara, Chiara; Romero-Durana, Miguel; Jiménez-García, Brian; Moal, Iain H.; Férnandez-Recio, Juan; Joung, Jong Young; Kim, Jong Yun; Joo, Keehyoung; Lee, Jooyoung; Kozakov, Dima; Vajda, Sandor; Mottarella, Scott; Hall, David R.; Beglov, Dmitri; Mamonov, Artem; Xia, Bing; Bohnuud, Tanggis; Del Carpio, Carlos A.; Ichiishi, Eichiro; Marze, Nicholas; Kuroda, Daisuke; Roy Burman, Shourya S.; Gray, Jeffrey J.; Chermak, Edrisse; Cavallo, Luigi; Oliva, Romina; Tovchigrechko, Andrey; Wodak, Shoshana J.

    2016-01-01

    We present the results for CAPRI Round 30, the first joint CASP-CAPRI experiment, which brought together experts from the protein structure prediction and protein-protein docking communities. The Round comprised 25 targets from amongst those submitted for the CASP11 prediction experiment of 2014.

  13. Prediction of homoprotein and heteroprotein complexes by protein docking and template-based modeling: A CASP-CAPRI experiment

    NARCIS (Netherlands)

    Lensink, Marc F.; Velankar, Sameer; Kryshtafovych, Andriy; Huang, Shen You; Schneidman-Duhovny, Dina; Sali, Andrej; Segura, Joan; Fernandez-Fuentes, Narcis; Viswanath, Shruthi; Elber, Ron; Grudinin, Sergei; Popov, Petr; Neveu, Emilie; Lee, Hasup; Baek, Minkyung; Park, Sangwoo; Heo, Lim; Lee, Gyu Rie; Seok, Chaok; Qin, Sanbo; Zhou, Huan Xiang; Ritchie, David W.; Maigret, Bernard; Devignes, Marie Dominique; Ghoorah, Anisah; Torchala, Mieczyslaw; Chaleil, Raphaël A.G.; Bates, Paul A.; Ben-Zeev, Efrat; Eisenstein, Miriam; Negi, Surendra S.; Weng, Zhiping; Vreven, Thom; Pierce, Brian G.; Borrman, Tyler M.; Yu, Jinchao; Ochsenbein, Françoise; Guerois, Raphaël; Vangone, Anna; Rodrigues, João P.G.L.M.; Van Zundert, Gydo; Nellen, Mehdi; Xue, Li; Karaca, Ezgi; Melquiond, Adrien S.J.; Visscher, Koen; Kastritis, Panagiotis L.; Bonvin, Alexandre M.J.J.; Xu, Xianjin; Qiu, Liming; Yan, Chengfei; Li, Jilong; Ma, Zhiwei; Cheng, Jianlin; Zou, Xiaoqin; Shen, Yang; Peterson, Lenna X.; Kim, Hyung Rae; Roy, Amit; Han, Xusi; Esquivel-Rodriguez, Juan; Kihara, Daisuke; Yu, Xiaofeng; Bruce, Neil J.; Fuller, Jonathan C.; Wade, Rebecca C.; Anishchenko, Ivan; Kundrotas, Petras J.; Vakser, Ilya A.; Imai, Kenichiro; Yamada, Kazunori; Oda, Toshiyuki; Nakamura, Tsukasa; Tomii, Kentaro; Pallara, Chiara; Romero-Durana, Miguel; Jiménez-García, Brian; Moal, Iain H.; Férnandez-Recio, Juan; Joung, Jong Young; Kim, Jong Yun; Joo, Keehyoung; Lee, Jooyoung; Kozakov, Dima; Vajda, Sandor; Mottarella, Scott; Hall, David R.; Beglov, Dmitri; Mamonov, Artem; Xia, Bing; Bohnuud, Tanggis; Del Carpio, Carlos A.; Ichiishi, Eichiro; Marze, Nicholas; Kuroda, Daisuke; Roy Burman, Shourya S.; Gray, Jeffrey J.; Chermak, Edrisse; Cavallo, Luigi; Oliva, Romina; Tovchigrechko, Andrey; Wodak, Shoshana J.

    2016-01-01

    We present the results for CAPRI Round 30, the first joint CASP-CAPRI experiment, which brought together experts from the protein structure prediction and protein-protein docking communities. The Round comprised 25 targets from amongst those submitted for the CASP11 prediction experiment of 2014.

  14. ARCADE small-scale docking mechanism for micro-satellites

    Science.gov (United States)

    Boesso, A.; Francesconi, A.

    2013-05-01

    The development of on-orbit autonomous rendezvous and docking (ARD) capabilities represents a key point for a number of appealing mission scenarios that include activities of on-orbit servicing, automated assembly of modular structures and active debris removal. As of today, especially in the field of micro-satellites ARD, many fundamental technologies are still missing or require further developments and micro-gravity testing. In this framework, the University of Padova, Centre of Studies and Activities for Space (CISAS), developed the Autonomous Rendezvous Control and Docking Experiment (ARCADE), a technology demonstrator intended to fly aboard a BEXUS stratospheric balloon. The goal was to design, build and test, in critical environment conditions, a proximity relative navigation system, a custom-made reaction wheel and a small-size docking mechanism. The ARCADE docking mechanism was designed against a comprehensive set of requirements and it can be classified as small-scale, central, gender mating and unpressurized. The large use of commercial components makes it low-cost and simple to be manufactured. Last, it features a good tolerance to off-nominal docking conditions and a by-design soft docking capability. The final design was extensively verified to be compliant with its requirements by means of numerical simulations and physical testing. In detail, the dynamic behaviour of the mechanism in both nominal and off-nominal conditions was assessed with the multibody dynamics analysis software MD ADAMS 2010 and functional tests were carried out within the fully integrated ARCADE experiment to ensure the docking system efficacy and to highlight possible issues. The most relevant results of the study will be presented and discussed in conclusion to this paper.

  15. Improving Docking Performance Using Negative Image-Based Rescoring.

    Science.gov (United States)

    Kurkinen, Sami T; Niinivehmas, Sanna; Ahinko, Mira; Lätti, Sakari; Pentikäinen, Olli T; Postila, Pekka A

    2018-01-01

    Despite the large computational costs of molecular docking, the default scoring functions are often unable to recognize the active hits from the inactive molecules in large-scale virtual screening experiments. Thus, even though a correct binding pose might be sampled during the docking, the active compound or its biologically relevant pose is not necessarily given high enough score to arouse the attention. Various rescoring and post-processing approaches have emerged for improving the docking performance. Here, it is shown that the very early enrichment (number of actives scored higher than 1% of the highest ranked decoys) can be improved on average 2.5-fold or even 8.7-fold by comparing the docking-based ligand conformers directly against the target protein's cavity shape and electrostatics. The similarity comparison of the conformers is performed without geometry optimization against the negative image of the target protein's ligand-binding cavity using the negative image-based (NIB) screening protocol. The viability of the NIB rescoring or the R-NiB, pioneered in this study, was tested with 11 target proteins using benchmark libraries. By focusing on the shape/electrostatics complementarity of the ligand-receptor association, the R-NiB is able to improve the early enrichment of docking essentially without adding to the computing cost. By implementing consensus scoring, in which the R-NiB and the original docking scoring are weighted for optimal outcome, the early enrichment is improved to a level that facilitates effective drug discovery. Moreover, the use of equal weight from the original docking scoring and the R-NiB scoring improves the yield in most cases.

  16. Structures of the APC–ARM domain in complexes with discrete Amer1/WTX fragments reveal that it uses a consensus mode to recognize its binding partners

    Science.gov (United States)

    Zhang, Zhenyi; Akyildiz, Senem; Xiao, Yafei; Gai, Zhongchao; An, Ying; Behrens, Jürgen; Wu, Geng

    2015-01-01

    The tumor suppressor APC employs its conserved armadillo repeat (ARM) domain to recognize many of its binding partners, including Amer1/WTX, which is mutated in Wilms' tumor and bone overgrowth syndrome. The APC–Amer1 complex has important roles in regulating Wnt signaling and cell adhesion. Three sites A1, A2, and A3 of Amer1 have been reported to mediate its interaction with APC-ARM. In this study, crystal structures of APC–ARM in complexes with Amer1-A1, -A2, and -A4, which is newly identified in this work, were determined. Combined with our GST pull-down, yeast two-hybrid, and isothermal titration calorimetry (ITC) assay results using mutants of APC and Amer1 interface residues, our structures demonstrate that Amer1-A1, -A2, and -A4, as well as other APC-binding proteins such as Asef and Sam68, all employ a common recognition pattern to associate with APC–ARM. In contrast, Amer1-A3 binds to the C-terminal side of APC–ARM through a bipartite interaction mode. Composite mutations on either APC or Amer1 disrupting all four interfaces abrogated their association in cultured cells and impaired the membrane recruitment of APC by Amer1. Our study thus comprehensively elucidated the recognition mechanism between APC and Amer1, and revealed a consensus recognition sequence employed by various APC–ARM binding partners. PMID:27462415

  17. Structures of the APC-ARM domain in complexes with discrete Amer1/WTX fragments reveal that it uses a consensus mode to recognize its binding partners.

    Science.gov (United States)

    Zhang, Zhenyi; Akyildiz, Senem; Xiao, Yafei; Gai, Zhongchao; An, Ying; Behrens, Jürgen; Wu, Geng

    2015-01-01

    The tumor suppressor APC employs its conserved armadillo repeat (ARM) domain to recognize many of its binding partners, including Amer1/WTX, which is mutated in Wilms' tumor and bone overgrowth syndrome. The APC-Amer1 complex has important roles in regulating Wnt signaling and cell adhesion. Three sites A1, A2, and A3 of Amer1 have been reported to mediate its interaction with APC-ARM. In this study, crystal structures of APC-ARM in complexes with Amer1-A1, -A2, and -A4, which is newly identified in this work, were determined. Combined with our GST pull-down, yeast two-hybrid, and isothermal titration calorimetry (ITC) assay results using mutants of APC and Amer1 interface residues, our structures demonstrate that Amer1-A1, -A2, and -A4, as well as other APC-binding proteins such as Asef and Sam68, all employ a common recognition pattern to associate with APC-ARM. In contrast, Amer1-A3 binds to the C-terminal side of APC-ARM through a bipartite interaction mode. Composite mutations on either APC or Amer1 disrupting all four interfaces abrogated their association in cultured cells and impaired the membrane recruitment of APC by Amer1. Our study thus comprehensively elucidated the recognition mechanism between APC and Amer1, and revealed a consensus recognition sequence employed by various APC-ARM binding partners.

  18. Effects of administration of a local anaesthetic and/or an NSAID and of docking length on the behaviour of piglets during 5 h after tail docking

    DEFF Research Database (Denmark)

    Herskin, Mette S.; Di Giminiani, Pierpaolo; Thodberg, Karen

    2016-01-01

    cautery 2–4 days after birth and based on behaviour during docking as well as the following 5 h. The study involved three main factors: local anaesthetic (Lidocain), NSAID (Meloxicam) and docking length. Either 100%, 75%, 50% or 25% of the tails were left on the body of the piglets. Irrespective...... that effects of this management routine are more persistent than earlier suggested, and suggesting that docking length may influence the post-surgical behaviour of piglets. By use of the present sites of injection and dosages, neither local anaesthetic nor NSAID had marked effects on post-surgical behavioural......In many countries, piglets are tail docked to prevent tail biting. The aim of this study was 1) to evaluate the efficacy of a local anaesthetic and/or NSAID to reduce pain caused by tail docking; and 2) to examine interactions with docking length. This was examined in 295 piglets docked by hot iron...

  19. A general approach for developing system-specific functions to score protein-ligand docked complexes using support vector inductive logic programming.

    Science.gov (United States)

    Amini, Ata; Shrimpton, Paul J; Muggleton, Stephen H; Sternberg, Michael J E

    2007-12-01

    Despite the increased recent use of protein-ligand and protein-protein docking in the drug discovery process due to the increases in computational power, the difficulty of accurately ranking the binding affinities of a series of ligands or a series of proteins docked to a protein receptor remains largely unsolved. This problem is of major concern in lead optimization procedures and has lead to the development of scoring functions tailored to rank the binding affinities of a series of ligands to a specific system. However, such methods can take a long time to develop and their transferability to other systems remains open to question. Here we demonstrate that given a suitable amount of background information a new approach using support vector inductive logic programming (SVILP) can be used to produce system-specific scoring functions. Inductive logic programming (ILP) learns logic-based rules for a given dataset that can be used to describe properties of each member of the set in a qualitative manner. By combining ILP with support vector machine regression, a quantitative set of rules can be obtained. SVILP has previously been used in a biological context to examine datasets containing a series of singular molecular structures and properties. Here we describe the use of SVILP to produce binding affinity predictions of a series of ligands to a particular protein. We also for the first time examine the applicability of SVILP techniques to datasets consisting of protein-ligand complexes. Our results show that SVILP performs comparably with other state-of-the-art methods on five protein-ligand systems as judged by similar cross-validated squares of their correlation coefficients. A McNemar test comparing SVILP to CoMFA and CoMSIA across the five systems indicates our method to be significantly better on one occasion. The ability to graphically display and understand the SVILP-produced rules is demonstrated and this feature of ILP can be used to derive hypothesis for

  20. The Role of Ethics in International Arms Transfers

    Science.gov (United States)

    2016-06-01

    i THE ROLE OF ETHICS IN INTERNATIONAL ARMS TRANSFERS BY MAJOR ROB ARNETT A THESIS PRESENTED TO THE FACULTY OF THE SCHOOL OF...War’s Ends” provided the intellectual spark to explore the topic of ethics in international arms sales. Additionally, Dr. Murphy was kind enough to... ethics in American arms transfer policy to determine whether the Just War tradition’s jus ad bellum framework can help policymakers through a complex

  1. Molecular docking study of Papaver alkaloids to some alkaloid receptors

    Directory of Open Access Journals (Sweden)

    A. Nofallah

    2017-11-01

    Full Text Available Background and objectives: More than 40 different alkaloids have been obtained from opium the most important of which are morphine, codeine, papaverine, noscapine and tabaine. Opioid alkaloids produce analgesia by affecting areas of the brain that have peptides with pharmacological pseudo-opioid properties. These alkaloids show important effects on some intracellular peptides like mu, delta, and kappa receptors. Therefore, studying the effects of these alkaloids on different receptors is essential. Methods: Molecular docking is a well-known method in exploring the protein-ligand interactions. In this research, five important alkaloids were docked to crystal structure of human mu opioid receptor (4DKL, human delta opioid receptor (4EJ4 and human kappa opioid receptor (4DJH which were retrieved from protein databank. The 3D-structures of alkaloids were drawn by chembiooffice2010 and minimized with hyperchem package and submitted to molecular docking utilizing autodock-vina. Flexibility of the proteins was considered. The docking studies were performed to compare the affinity of these five alkaloids to the mentioned receptors. Results: We computationally docked each alkaloid compound onto each receptor structure and estimated their binding affinity based on dock scores. Dock score is a criteria including binding energy which utilized here for prediction and comparison of the binding affinities. Binding interactions of the docked alkaloids in receptor pockets were also visually inspected and compared. Conclusion: In this approach, using docking study as a computational method provided a valuable insight of opioid receptor pocket structures which would be essential to design more efficient drugs in pain managements and addiction treatments.

  2. Sequence alignment reveals possible MAPK docking motifs on HIV proteins.

    Directory of Open Access Journals (Sweden)

    Perry Evans

    Full Text Available Over the course of HIV infection, virus replication is facilitated by the phosphorylation of HIV proteins by human ERK1 and ERK2 mitogen-activated protein kinases (MAPKs. MAPKs are known to phosphorylate their substrates by first binding with them at a docking site. Docking site interactions could be viable drug targets because the sequences guiding them are more specific than phosphorylation consensus sites. In this study we use multiple bioinformatics tools to discover candidate MAPK docking site motifs on HIV proteins known to be phosphorylated by MAPKs, and we discuss the possibility of targeting docking sites with drugs. Using sequence alignments of HIV proteins of different subtypes, we show that MAPK docking patterns previously described for human proteins appear on the HIV matrix, Tat, and Vif proteins in a strain dependent manner, but are absent from HIV Rev and appear on all HIV Nef strains. We revise the regular expressions of previously annotated MAPK docking patterns in order to provide a subtype independent motif that annotates all HIV proteins. One revision is based on a documented human variant of one of the substrate docking motifs, and the other reduces the number of required basic amino acids in the standard docking motifs from two to one. The proposed patterns are shown to be consistent with in silico docking between ERK1 and the HIV matrix protein. The motif usage on HIV proteins is sufficiently different from human proteins in amino acid sequence similarity to allow for HIV specific targeting using small-molecule drugs.

  3. In silico predictive studies of mAHR congener binding using homology modelling and molecular docking.

    Science.gov (United States)

    Panda, Roshni; Cleave, A Suneetha Susan; Suresh, P K

    2014-09-01

    The aryl hydrocarbon receptor (AHR) is one of the principal xenobiotic, nuclear receptor that is responsible for the early events involved in the transcription of a complex set of genes comprising the CYP450 gene family. In the present computational study, homology modelling and molecular docking were carried out with the objective of predicting the relationship between the binding efficiency and the lipophilicity of different polychlorinated biphenyl (PCB) congeners and the AHR in silico. Homology model of the murine AHR was constructed by several automated servers and assessed by PROCHECK, ERRAT, VERIFY3D and WHAT IF. The resulting model of the AHR by MODWEB was used to carry out molecular docking of 36 PCB congeners using PatchDock server. The lipophilicity of the congeners was predicted using the XLOGP3 tool. The results suggest that the lipophilicity influences binding energy scores and is positively correlated with the same. Score and Log P were correlated with r = +0.506 at p = 0.01 level. In addition, the number of chlorine (Cl) atoms and Log P were highly correlated with r = +0.900 at p = 0.01 level. The number of Cl atoms and scores also showed a moderate positive correlation of r = +0.481 at p = 0.01 level. To the best of our knowledge, this is the first study employing PatchDock in the docking of AHR to the environmentally deleterious congeners and attempting to correlate structural features of the AHR with its biochemical properties with regards to PCBs. The result of this study are consistent with those of other computational studies reported in the previous literature that suggests that a combination of docking, scoring and ranking organic pollutants could be a possible predictive tool for investigating ligand-mediated toxicity, for their subsequent validation using wet lab-based studies. © The Author(s) 2012.

  4. Synthesis, spectroscopic studies, DFT calculations, electrochemical evaluation, BSA binding and molecular docking of an aroylhydrazone -based cis-dioxido Mo(VI) complex

    Science.gov (United States)

    Mohamadi, Maryam; Faghih-Mirzaei, Ehsan; Ebrahimipour, S. Yousef; Sheikhshoaie, Iran; Haase, Wolfgang; Foro, Sabine

    2017-07-01

    A cis-dioxido Mo(VI) complex, [MoO2(L)(MeOH)], [L2-: (3-methoxy-2-oxidobenzylidene) benzohydrazonate], has been synthesized and characterized using physicochemical and spectroscopic techniques including elemental analysis, FT-IR, 1HNMR, UV-Vis spectroscopy, molar conductivity and single crystal X-ray diffraction. DFT calculations in the ground state of the complex were carried out using hybrid functional B3LYP with DGDZVP as basis set. Non-linear optical properties including electric dipole moment (μ), polarizability (α) and molecular first hyperpolarizability (β) of the compound were also computed. The values of linear polarizability and first hyperpolarizability obtained for the studied molecule indicated that the compound could be a good candidate of nonlinear optical materials. TD-DFT calculation and molecular electrostatic potential (MEP) were also performed. The thermodynamic properties (heat capacity, entropy, and enthalpy) of the complex at different temperatures have been calculated. The interaction of a synthesized complex, with bovine serum albumin was also thoroughly investigated using experimental and theoretical studies. UV-Vis absorption and fluorescence quenching techniques were used to determine the binding parameters as well as the mechanism of the interaction. The values of binding constants were in the range of 104-105 M-1 demonstrating a moderate interaction between the synthesized complex and BSA making the protein suitable for transportation and delivery of the compound. Thermodynamic parameters were also indicating a binding through van der Waals force or hydrogen bond of [MoO2(L)(MeOH)] to BSA. The results obtained from docking studies were consistent to those obtained from experimental studies.

  5. Solvated protein-protein docking using Kyte-Doolittle-based water preferences

    NARCIS (Netherlands)

    Kastritis, P.; Visscher, K.M.; van Dijk, A.D.J.; Bonvin, A.M.J.J.

    2013-01-01

    HADDOCK is one of the few docking programs that can explicitly account for water molecules in the docking process. Its solvated docking protocol starts from hydrated molecules and a fraction of the resulting interfacial waters is subsequently removed in a biased Monte Carlo procedure based on

  6. Solvated protein-protein docking using Kyte-Doolittle-based water preferences

    NARCIS (Netherlands)

    Kastritis, Panagiotis L.; Visscher, Koen M.; van Dijk, Aalt D.J.; Bonvin, Alexandre M.J.J.

    HADDOCK is one of the few docking programs that can explicitly account for water molecules in the docking process. Its solvated docking protocol starts from hydrated molecules and a fraction of the resulting interfacial waters is subsequently removed in a biased Monte Carlo procedure based on

  7. Single HIV-1 Imaging Reveals Progression of Infection through CA-Dependent Steps of Docking at the Nuclear Pore, Uncoating, and Nuclear Transport.

    Science.gov (United States)

    Francis, Ashwanth C; Melikyan, Gregory B

    2018-04-11

    The HIV-1 core consists of capsid proteins (CA) surrounding viral genomic RNA. After virus-cell fusion, the core enters the cytoplasm and the capsid shell is lost through uncoating. CA loss precedes nuclear import and HIV integration into the host genome, but the timing and location of uncoating remain unclear. By visualizing single HIV-1 infection, we find that CA is required for core docking at the nuclear envelope (NE), whereas early uncoating in the cytoplasm promotes proteasomal degradation of viral complexes. Only docked cores exhibiting accelerated loss of CA at the NE enter the nucleus. Interestingly, a CA mutation (N74D) altering virus engagement of host factors involved in nuclear transport does not alter the uncoating site at the NE but reduces the nuclear penetration depth. Thus, CA protects HIV-1 complexes from degradation, mediates docking at the nuclear pore before uncoating, and determines the depth of nuclear penetration en route to integration. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. GOMoDo: A GPCRs online modeling and docking webserver.

    Directory of Open Access Journals (Sweden)

    Massimo Sandal

    Full Text Available G-protein coupled receptors (GPCRs are a superfamily of cell signaling membrane proteins that include >750 members in the human genome alone. They are the largest family of drug targets. The vast diversity and relevance of GPCRs contrasts with the paucity of structures available: only 21 unique GPCR structures have been experimentally determined as of the beginning of 2013. User-friendly modeling and small molecule docking tools are thus in great demand. While both GPCR structural predictions and docking servers exist separately, with GOMoDo (GPCR Online Modeling and Docking, we provide a web server to seamlessly model GPCR structures and dock ligands to the models in a single consistent pipeline. GOMoDo can automatically perform template choice, homology modeling and either blind or information-driven docking by combining together proven, state of the art bioinformatic tools. The web server gives the user the possibility of guiding the whole procedure. The GOMoDo server is freely accessible at http://molsim.sci.univr.it/gomodo.

  9. Synthesis, crystal structures, molecular docking, in vitro monoamine oxidase-B inhibitory activity of transition metal complexes with 2-{4-[bis (4-fluorophenyl)methyl]piperazin-1-yl} acetic acid

    Science.gov (United States)

    Yang, Dan-dan; Wang, Riu; Zhu, Jin-long; Cao, Qi-yue; Qin, Jie; Zhu, Hai-liang; Qian, Shao-song

    2017-01-01

    Three novel complexes, [Cu(L)2(H2O)](1), [Zn(L)2(H2O)2]·CH3OH·1.5H2O(2), and [Ni(L)2(H2O)1.8]·CH3OH·1.2H2O (3) (HL = 2-{4-[bis(4-fluorophenyl)methyl]pipera-zin-1-yl} acetic acid), were synthesized and structurally determined by single-crystal X-ray diffraction. Molecular docking study preliminarily revealed that complex 1 had potential Monoamine oxidase B inhibitory activity. All acquired compounds were tested against rat brain MAO-B in vitro. In accordance with the result of calculation, it showed complex 1 (IC50 = 1.85 ± 0.31 μM) have good inhibitory activity against MAO-B at the same micromolar concentrations with positive control Iproniazid Phosphate (IP, IC50 = 7.59 ± 1.17 μM). These results indicated that complex 1 was a potent MAO-B inhibitor.

  10. Tail Docking of Canine Puppies: Reassessment of the Tail's Role in Communication, the Acute Pain Caused by Docking and Interpretation of Behavioural Responses.

    Science.gov (United States)

    Mellor, David J

    2018-05-31

    Laws, regulations and professional standards increasingly aim to ban or restrict non-therapeutic tail docking in canine puppies. These constraints have usually been justified by reference to loss of tail participation in communication between dogs, the acute pain presumed to be caused during docking itself, subsequent experiences of chronic pain and heightened pain sensitivity, and the occurrence of other complications. These areas are reconsidered here. First, a scientifically robust examination of the dynamic functional foundations, sensory components and key features of body language that are integral to canine communication shows that the role of the tail has been greatly underestimated. More specifically, it shows that tail behaviour is so embedded in canine communication that docking can markedly impede unambiguous interactions between different dogs and between dogs and people. These interactions include the expression of wide ranges of both negative and positive emotions, moods and intentions that are of daily significance for dog welfare. Moreover, all docked dogs may experience these impediments throughout their lives, which challenges assertions by opponents to such bans or restrictions that the tail is a dispensable appendage. Second, and in contrast, a re-examination of the sensory capacities of canine puppies reveals that they cannot consciously experience acute or chronic pain during at least the first week after birth, which is when they are usually docked. The contrary view is based on questionable between-species extrapolation of information about pain from neurologically mature newborns such as calves, lambs, piglets and human infants, which certainly can consciously experience pain in response to injury, to neurologically immature puppies which remain unconscious and therefore unable to experience pain until about two weeks after birth. Third, underpinned by the incorrect conclusion that puppies are conscious at the usual docking age, it is

  11. A Study on Spectro-Analytical Aspects, DNA - Interaction, Photo-Cleavage, Radical Scavenging, Cytotoxic Activities, Antibacterial and Docking Properties of 3 - (1 - (6 - methoxybenzo [d] thiazol - 2 - ylimino) ethyl) - 6 - methyl - 3H - pyran - 2, 4 - dione and its Metal Complexes.

    Science.gov (United States)

    Ravi, Mudavath; Chennam, Kishan Prasad; Ushaiah, B; Eslavath, Ravi Kumar; Perugu, Shyam; Ajumeera, Rajanna; Devi, Ch Sarala

    2015-09-01

    The focus of the present work is on the design, synthesis, characterization, DNA-interaction, photo-cleavage, radical scavenging, in-vitro cytotoxicity, antimicrobial, docking and kinetic studies of Cu (II), Cd (II), Ce (IV) and Zr (IV) metal complexes of an imine derivative, 3 - (1 - (6 - methoxybenzo [d] thiazol - 2 - ylimino) ethyl) - 6 - methyl - 3H - pyran - 2, 4 - dione. The investigation of metal ligand interactions for the determination of composition of metal complexes, corresponding kinetic studies and antioxidant activity in solution was carried out by spectrophotometric methods. The synthesized metal complexes were characterized by EDX analysis, Mass, IR, (1)H-NMR, (13)C-NMR and UV-Visible spectra. DNA binding studies of metal complexes with Calf thymus (CT) DNA were carried out at room temperature by employing UV-Vis electron absorption, fluorescence emission and viscosity measurement techniques. The results revealed that these complexes interact with DNA through intercalation. The results of in vitro antibacterial studies showed the enhanced activity of chelating agent in metal chelated form and thus inferring scope for further development of new therapeutic drugs. Cell viability experiments indicated that all complexes showed significant dose dependent cytotoxicity in selected cell lines. The molecular modeling and docking studies were carried out with energy minimized structures of metal complexes to identify the receptor to metal interactions.

  12. Developing a cross-docking network design model under uncertain environment

    Science.gov (United States)

    Seyedhoseini, S. M.; Rashid, Reza; Teimoury, E.

    2015-06-01

    Cross-docking is a logistic concept, which plays an important role in supply chain management by decreasing inventory holding, order packing, transportation costs and delivery time. Paying attention to these concerns, and importance of the congestion in cross docks, we present a mixed-integer model to optimize the location and design of cross docks at the same time to minimize the total transportation and operating costs. The model combines queuing theory for design aspects, for that matter, we consider a network of cross docks and customers where two M/M/c queues have been represented to describe operations of indoor trucks and outdoor trucks in each cross dock. To prepare a perfect illustration for performance of the model, a real case also has been examined that indicated effectiveness of the proposed model.

  13. Interaction of anthraquinone dyes with lysozyme: Evidences from spectroscopic and docking studies

    International Nuclear Information System (INIS)

    Paramaguru, G.; Kathiravan, A.; Selvaraj, S.; Venuvanalingam, P.; Renganathan, R.

    2010-01-01

    The interaction between lysozyme and anthraquinone dyes such as Alizarin Red S, Acid blue 129 and Uniblue was studied using steady state, time resolved fluorescence measurements and docking studies. Addition of anthraquinone dyes effectively quenched the intrinsic fluorescence of lysozyme. Fluorescence quenching of lysozyme by dyes has revealed the formation of complex. The number of binding sites (n) and binding constant (K) for all the three dyes was calculated by relevant fluorescence quenching data. Based on Foerster's non-radiative energy transfer theory, distance (r 0 ) between the donor (lysozyme) and acceptor (dyes) as well as the critical energy transfer distance (R 0 ) has also been calculated. The interaction between dyes and lysozyme occurs through static quenching mechanism as confirmed by time resolved spectroscopy. The conformational change of lysozyme has been analyzed using synchronous fluorescence measurement. Finally, docking studies revealed that specific interactions were observed with the residue of Trp 62.

  14. GeauxDock: Accelerating Structure-Based Virtual Screening with Heterogeneous Computing

    Science.gov (United States)

    Fang, Ye; Ding, Yun; Feinstein, Wei P.; Koppelman, David M.; Moreno, Juana; Jarrell, Mark; Ramanujam, J.; Brylinski, Michal

    2016-01-01

    Computational modeling of drug binding to proteins is an integral component of direct drug design. Particularly, structure-based virtual screening is often used to perform large-scale modeling of putative associations between small organic molecules and their pharmacologically relevant protein targets. Because of a large number of drug candidates to be evaluated, an accurate and fast docking engine is a critical element of virtual screening. Consequently, highly optimized docking codes are of paramount importance for the effectiveness of virtual screening methods. In this communication, we describe the implementation, tuning and performance characteristics of GeauxDock, a recently developed molecular docking program. GeauxDock is built upon the Monte Carlo algorithm and features a novel scoring function combining physics-based energy terms with statistical and knowledge-based potentials. Developed specifically for heterogeneous computing platforms, the current version of GeauxDock can be deployed on modern, multi-core Central Processing Units (CPUs) as well as massively parallel accelerators, Intel Xeon Phi and NVIDIA Graphics Processing Unit (GPU). First, we carried out a thorough performance tuning of the high-level framework and the docking kernel to produce a fast serial code, which was then ported to shared-memory multi-core CPUs yielding a near-ideal scaling. Further, using Xeon Phi gives 1.9× performance improvement over a dual 10-core Xeon CPU, whereas the best GPU accelerator, GeForce GTX 980, achieves a speedup as high as 3.5×. On that account, GeauxDock can take advantage of modern heterogeneous architectures to considerably accelerate structure-based virtual screening applications. GeauxDock is open-sourced and publicly available at www.brylinski.org/geauxdock and https://figshare.com/articles/geauxdock_tar_gz/3205249. PMID:27420300

  15. GeauxDock: Accelerating Structure-Based Virtual Screening with Heterogeneous Computing.

    Directory of Open Access Journals (Sweden)

    Ye Fang

    Full Text Available Computational modeling of drug binding to proteins is an integral component of direct drug design. Particularly, structure-based virtual screening is often used to perform large-scale modeling of putative associations between small organic molecules and their pharmacologically relevant protein targets. Because of a large number of drug candidates to be evaluated, an accurate and fast docking engine is a critical element of virtual screening. Consequently, highly optimized docking codes are of paramount importance for the effectiveness of virtual screening methods. In this communication, we describe the implementation, tuning and performance characteristics of GeauxDock, a recently developed molecular docking program. GeauxDock is built upon the Monte Carlo algorithm and features a novel scoring function combining physics-based energy terms with statistical and knowledge-based potentials. Developed specifically for heterogeneous computing platforms, the current version of GeauxDock can be deployed on modern, multi-core Central Processing Units (CPUs as well as massively parallel accelerators, Intel Xeon Phi and NVIDIA Graphics Processing Unit (GPU. First, we carried out a thorough performance tuning of the high-level framework and the docking kernel to produce a fast serial code, which was then ported to shared-memory multi-core CPUs yielding a near-ideal scaling. Further, using Xeon Phi gives 1.9× performance improvement over a dual 10-core Xeon CPU, whereas the best GPU accelerator, GeForce GTX 980, achieves a speedup as high as 3.5×. On that account, GeauxDock can take advantage of modern heterogeneous architectures to considerably accelerate structure-based virtual screening applications. GeauxDock is open-sourced and publicly available at www.brylinski.org/geauxdock and https://figshare.com/articles/geauxdock_tar_gz/3205249.

  16. Molecular Dynamics and Docking of Biphenyl: A Potential ...

    African Journals Online (AJOL)

    Results: Molecular docking by FireDock web server showed that biPhe-43 and Trp-43-mutated CD4 inhibited the binding of ... In a 5ns MD simulation, biPhe-43 and Trp-43 mutated CD4 .... 'unbound' MD on UMHPC Linux Cluster SGIAltix.

  17. Combination of scoring schemes for protein docking

    Directory of Open Access Journals (Sweden)

    Schomburg Dietmar

    2007-08-01

    Full Text Available Abstract Background Docking algorithms are developed to predict in which orientation two proteins are likely to bind under natural conditions. The currently used methods usually consist of a sampling step followed by a scoring step. We developed a weighted geometric correlation based on optimised atom specific weighting factors and combined them with our previously published amino acid specific scoring and with a comprehensive SVM-based scoring function. Results The scoring with the atom specific weighting factors yields better results than the amino acid specific scoring. In combination with SVM-based scoring functions the percentage of complexes for which a near native structure can be predicted within the top 100 ranks increased from 14% with the geometric scoring to 54% with the combination of all scoring functions. Especially for the enzyme-inhibitor complexes the results of the ranking are excellent. For half of these complexes a near-native structure can be predicted within the first 10 proposed structures and for more than 86% of all enzyme-inhibitor complexes within the first 50 predicted structures. Conclusion We were able to develop a combination of different scoring schemes which considers a series of previously described and some new scoring criteria yielding a remarkable improvement of prediction quality.

  18. Inspection by docking of nuclear-powered ship 'Mutsu'

    International Nuclear Information System (INIS)

    1989-01-01

    Japan Atomic Energy Research Institute carried out the docking and inspection of the nuclear-powered ship 'Mutsu' at Sekinehama Port, Mutsu City, Aomori Prefecture, from the middle of June to late in July, 1989. In this inspection, the Mutsu was mounted on a floating dock off the coast, the dock was towed by tugboats into the port and moored at the pier, and after completing the works in the dock, the dock was towed to the outside of the port, and the Mutsu was launched. The Mutsu was built as a nuclear power experiment ship, and length 130 m, breadth 19 m, depth 13.2 m, design draft at full load 6.9 m, 8242 GT. One PWR of 36 MWt and one steam turbine of 10000 ps are installed, and velocity is 16.5 knots. In September, 1974, after the first criticality, the leak of radioactivity occurred. The repair of shield and general inspection on safety were carried out in Sasebo Shipyard from August, 1980 to August, 1982. Thereafter, the Mutsu stayed in Ominato, but in January, 1988, after the completion of Sekinehama Port, the Mutsu was brought there. The Sekinehama Port, the test and inspection of the Mutsu carried out so far and the plan of hereafter are reported. (K.I.)

  19. Molecular Docking Study on Galantamine Derivatives as Cholinesterase Inhibitors.

    Science.gov (United States)

    Atanasova, Mariyana; Yordanov, Nikola; Dimitrov, Ivan; Berkov, Strahil; Doytchinova, Irini

    2015-06-01

    A training set of 22 synthetic galantamine derivatives binding to acetylcholinesterase was docked by GOLD and the protocol was optimized in terms of scoring function, rigidity/flexibility of the binding site, presence/absence of a water molecule inside and radius of the binding site. A moderate correlation was found between the affinities of compounds expressed as pIC50 values and their docking scores. The optimized docking protocol was validated by an external test set of 11 natural galantamine derivatives and the correlation coefficient between the docking scores and the pIC50 values was 0.800. The derived relationship was used to analyze the interactions between galantamine derivatives and AChE. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Visual Sensory Signals Dominate Tactile Cues during Docked Feeding in Hummingbirds.

    Science.gov (United States)

    Goller, Benjamin; Segre, Paolo S; Middleton, Kevin M; Dickinson, Michael H; Altshuler, Douglas L

    2017-01-01

    Animals living in and interacting with natural environments must monitor and respond to changing conditions and unpredictable situations. Using information from multiple sensory systems allows them to modify their behavior in response to their dynamic environment but also creates the challenge of integrating different, and potentially contradictory, sources of information for behavior control. Understanding how multiple information streams are integrated to produce flexible and reliable behavior is key to understanding how behavior is controlled in natural settings. Natural settings are rarely still, which challenges animals that require precise body position control, like hummingbirds, which hover while feeding from flowers. Tactile feedback, available only once the hummingbird is docked at the flower, could provide additional information to help maintain its position at the flower. To investigate the role of tactile information for hovering control during feeding, we first asked whether hummingbirds physically interact with a feeder once docked. We quantified physical interactions between docked hummingbirds and a feeder placed in front of a stationary background pattern. Force sensors on the feeder measured a complex time course of loading that reflects the wingbeat frequency and bill movement of feeding hummingbirds, and suggests that they sometimes push against the feeder with their bill. Next, we asked whether the measured tactile interactions were used by feeding hummingbirds to maintain position relative to the feeder. We created two experimental scenarios-one in which the feeder was stationary and the visual background moved and the other where the feeder moved laterally in front of a white background. When the visual background pattern moved, docked hummingbirds pushed significantly harder in the direction of horizontal visual motion. When the feeder moved, and the background was stationary, hummingbirds generated aerodynamic force in the opposite

  1. Control of octopus arm extension by a peripheral motor program.

    Science.gov (United States)

    Sumbre, G; Gutfreund, Y; Fiorito, G; Flash, T; Hochner, B

    2001-09-07

    For goal-directed arm movements, the nervous system generates a sequence of motor commands that bring the arm toward the target. Control of the octopus arm is especially complex because the arm can be moved in any direction, with a virtually infinite number of degrees of freedom. Here we show that arm extensions can be evoked mechanically or electrically in arms whose connection with the brain has been severed. These extensions show kinematic features that are almost identical to normal behavior, suggesting that the basic motor program for voluntary movement is embedded within the neural circuitry of the arm itself. Such peripheral motor programs represent considerable simplification in the motor control of this highly redundant appendage.

  2. Binding interaction of ramipril with bovine serum albumin (BSA): Insights from multi-spectroscopy and molecular docking methods.

    Science.gov (United States)

    Shi, Jie-Hua; Pan, Dong-Qi; Jiang, Min; Liu, Ting-Ting; Wang, Qi

    2016-11-01

    The binding interaction between a typical angiotensin-converting enzyme inhibitor (ACEI), ramipril, and a transport protein, bovine serum albumin (BSA), was studied in vitro using UV-vis absorption spectroscopy, steady-state fluorescence spectroscopic titration, synchronous fluorescence spectroscopy, three dimensional fluorescence spectroscopy, circular dichroism and molecular docking under the imitated physiological conditions (pH=7.4). The experimental results suggested that the intrinsic fluorescence of BSA was quenched by ramipril thought a static quenching mechanism, indicating that the stable ramipril-BSA complex was formed by the intermolecular interaction. The number of binding sites (n) and binding constant of ramipril-BSA complex were about 1 and 3.50×10 4 M -1 at 298K, respectively, suggesting that there was stronger binding interaction of ramipril with BSA. The thermodynamic parameters together with molecular docking study revealed that both van der Waal's forces and hydrogen bonding interaction dominated the formation of the ramipril-BSA complex and the binding interaction of BSA with ramipril is enthalpy-driven processes due to |ΔH°|>|TΔS°| and ΔG°<0. The spatial distance between ramipril and BSA was calculated to be 3.56nm based on Förster's non-radiative energy transfer theory. The results of the competitive displacement experiments and molecular docking confirmed that ramipril inserted into the subdomain IIA (site I) of BSA, resulting in a slight change in the conformation of BSA but BSA still retained its secondary structure α-helicity. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. DOCK8 is critical for the survival and function of NKT cells.

    Science.gov (United States)

    Crawford, Greg; Enders, Anselm; Gileadi, Uzi; Stankovic, Sanda; Zhang, Qian; Lambe, Teresa; Crockford, Tanya L; Lockstone, Helen E; Freeman, Alexandra; Arkwright, Peter D; Smart, Joanne M; Ma, Cindy S; Tangye, Stuart G; Goodnow, Christopher C; Cerundolo, Vincenzo; Godfrey, Dale I; Su, Helen C; Randall, Katrina L; Cornall, Richard J

    2013-09-19

    Patients with the dedicator of cytokinesis 8 (DOCK8) immunodeficiency syndrome suffer from recurrent viral and bacterial infections, hyper-immunoglobulin E levels, eczema, and greater susceptibility to cancer. Because natural killer T (NKT) cells have been implicated in these diseases, we asked if these cells were affected by DOCK8 deficiency. Using a mouse model, we found that DOCK8 deficiency resulted in impaired NKT cell development, principally affecting the formation and survival of long-lived, differentiated NKT cells. In the thymus, DOCK8-deficient mice lack a terminally differentiated subset of NK1.1(+) NKT cells expressing the integrin CD103, whereas in the liver, DOCK8-deficient NKT cells express reduced levels of the prosurvival factor B-cell lymphoma 2 and the integrin lymphocyte function-associated antigen 1. Although the initial NKT cell response to antigen is intact in the absence of DOCK8, their ongoing proliferative and cytokine responses are impaired. Importantly, a similar defect in NKT cell numbers was detected in DOCK8-deficient humans, highlighting the relevance of the mouse model. In conclusion, our data demonstrate that DOCK8 is required for the development and survival of mature NKT cells, consistent with the idea that DOCK8 mediates survival signals within a specialized niche. Accordingly, impaired NKT cell numbers and function are likely to contribute to the susceptibility of DOCK8-deficient patients to recurrent infections and malignant disease.

  4. DOCK8 is critical for the survival and function of NKT cells

    Science.gov (United States)

    Crawford, Greg; Enders, Anselm; Gileadi, Uzi; Stankovic, Sanda; Zhang, Qian; Lambe, Teresa; Crockford, Tanya L.; Lockstone, Helen E.; Freeman, Alexandra; Arkwright, Peter D.; Smart, Joanne M.; Ma, Cindy S.; Tangye, Stuart G.; Goodnow, Christopher C.; Cerundolo, Vincenzo; Godfrey, Dale I.; Su, Helen C.; Randall, Katrina L.

    2013-01-01

    Patients with the dedicator of cytokinesis 8 (DOCK8) immunodeficiency syndrome suffer from recurrent viral and bacterial infections, hyper–immunoglobulin E levels, eczema, and greater susceptibility to cancer. Because natural killer T (NKT) cells have been implicated in these diseases, we asked if these cells were affected by DOCK8 deficiency. Using a mouse model, we found that DOCK8 deficiency resulted in impaired NKT cell development, principally affecting the formation and survival of long-lived, differentiated NKT cells. In the thymus, DOCK8-deficient mice lack a terminally differentiated subset of NK1.1+ NKT cells expressing the integrin CD103, whereas in the liver, DOCK8-deficient NKT cells express reduced levels of the prosurvival factor B-cell lymphoma 2 and the integrin lymphocyte function-associated antigen 1. Although the initial NKT cell response to antigen is intact in the absence of DOCK8, their ongoing proliferative and cytokine responses are impaired. Importantly, a similar defect in NKT cell numbers was detected in DOCK8-deficient humans, highlighting the relevance of the mouse model. In conclusion, our data demonstrate that DOCK8 is required for the development and survival of mature NKT cells, consistent with the idea that DOCK8 mediates survival signals within a specialized niche. Accordingly, impaired NKT cell numbers and function are likely to contribute to the susceptibility of DOCK8-deficient patients to recurrent infections and malignant disease. PMID:23929855

  5. Scheduling trucks in cross docking systems with temporary storage and dock repeat truck holding pattern using genetic algorithm

    Directory of Open Access Journals (Sweden)

    Ehsan Ghobadian

    2013-02-01

    Full Text Available Cross docking is one of the most important issues in management of supply chains. In cross docking, different items delivered to a warehouse by inbound trucks are directly arranged and reorganized based on customer demands, routed and loaded into outbound trucks for delivery purposes to customers without virtually keeping them at the warehouse. If any item is kept in storage, it is normally for a short amount of time, say less than 24 hours. In this paper, we consider a special case of cross docking where there is temporary storage and implements genetic algorithm to solve the resulted problem for some realistic test problems. In our method, we first use some heuristics as initial solutions and then improve the final solution using genetic algorithm. The performance of the proposed model is compared with alternative solution strategy, the GRASP method.

  6. Vision Based Navigation for Autonomous Cooperative Docking of CubeSats

    Science.gov (United States)

    Pirat, Camille; Ankersen, Finn; Walker, Roger; Gass, Volker

    2018-05-01

    A realistic rendezvous and docking navigation solution applicable to CubeSats is investigated. The scalability analysis of the ESA Autonomous Transfer Vehicle Guidance, Navigation & Control (GNC) performances and the Russian docking system, shows that the docking of two CubeSats would require a lateral control performance of the order of 1 cm. Line of sight constraints and multipath effects affecting Global Navigation Satellite System (GNSS) measurements in close proximity prevent the use of this sensor for the final approach. This consideration and the high control accuracy requirement led to the use of vision sensors for the final 10 m of the rendezvous and docking sequence. A single monocular camera on the chaser satellite and various sets of Light-Emitting Diodes (LEDs) on the target vehicle ensure the observability of the system throughout the approach trajectory. The simple and novel formulation of the measurement equations allows differentiating unambiguously rotations from translations between the target and chaser docking port and allows a navigation performance better than 1 mm at docking. Furthermore, the non-linear measurement equations can be solved in order to provide an analytic navigation solution. This solution can be used to monitor the navigation filter solution and ensure its stability, adding an extra layer of robustness for autonomous rendezvous and docking. The navigation filter initialization is addressed in detail. The proposed method is able to differentiate LEDs signals from Sun reflections as demonstrated by experimental data. The navigation filter uses a comprehensive linearised coupled rotation/translation dynamics, describing the chaser to target docking port motion. The handover, between GNSS and vision sensor measurements, is assessed. The performances of the navigation function along the approach trajectory is discussed.

  7. An Efficient ABC_DE_Based Hybrid Algorithm for Protein–Ligand Docking

    Directory of Open Access Journals (Sweden)

    Boxin Guan

    2018-04-01

    Full Text Available Protein–ligand docking is a process of searching for the optimal binding conformation between the receptor and the ligand. Automated docking plays an important role in drug design, and an efficient search algorithm is needed to tackle the docking problem. To tackle the protein–ligand docking problem more efficiently, An ABC_DE_based hybrid algorithm (ADHDOCK, integrating artificial bee colony (ABC algorithm and differential evolution (DE algorithm, is proposed in the article. ADHDOCK applies an adaptive population partition (APP mechanism to reasonably allocate the computational resources of the population in each iteration process, which helps the novel method make better use of the advantages of ABC and DE. The experiment tested fifty protein–ligand docking problems to compare the performance of ADHDOCK, ABC, DE, Lamarckian genetic algorithm (LGA, running history information guided genetic algorithm (HIGA, and swarm optimization for highly flexible protein–ligand docking (SODOCK. The results clearly exhibit the capability of ADHDOCK toward finding the lowest energy and the smallest root-mean-square deviation (RMSD on most of the protein–ligand docking problems with respect to the other five algorithms.

  8. Reactive Path Planning Approach for Docking Robots in Unknown Environment

    Directory of Open Access Journals (Sweden)

    Peng Cui

    2017-01-01

    Full Text Available Autonomous robots need to be recharged and exchange information with the host through docking in the long-distance tasks. Therefore, feasible path is required in the docking process to guide the robot and adjust its pose. However, when there are unknown obstacles in the work area, it becomes difficult to determine the feasible path for docking. This paper presents a reactive path planning approach named Dubins-APF (DAPF to solve the path planning problem for docking in unknown environment with obstacles. In this proposed approach the Dubins curves are combined with the designed obstacle avoidance potential field to plan the feasible path. Firstly, an initial path is planned and followed according to the configurations of the robot and the docking station. Then when the followed path is evaluated to be infeasible, the intermediate configuration is calculated as well as the replanned path based on the obstacle avoidance potential field. The robot will be navigated to the docking station with proper pose eventually via the DAPF approach. The proposed DAPF approach is efficient and does not require the prior knowledge about the environment. Simulation results are given to validate the effectiveness and feasibility of the proposed approach.

  9. Interaction of anthraquinone dyes with lysozyme: Evidences from spectroscopic and docking studies

    Energy Technology Data Exchange (ETDEWEB)

    Paramaguru, G.; Kathiravan, A.; Selvaraj, S.; Venuvanalingam, P. [School of Chemistry, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu (India); Renganathan, R., E-mail: rrengas@gmail.com [School of Chemistry, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu (India)

    2010-03-15

    The interaction between lysozyme and anthraquinone dyes such as Alizarin Red S, Acid blue 129 and Uniblue was studied using steady state, time resolved fluorescence measurements and docking studies. Addition of anthraquinone dyes effectively quenched the intrinsic fluorescence of lysozyme. Fluorescence quenching of lysozyme by dyes has revealed the formation of complex. The number of binding sites (n) and binding constant (K) for all the three dyes was calculated by relevant fluorescence quenching data. Based on Foerster's non-radiative energy transfer theory, distance (r{sub 0}) between the donor (lysozyme) and acceptor (dyes) as well as the critical energy transfer distance (R{sub 0}) has also been calculated. The interaction between dyes and lysozyme occurs through static quenching mechanism as confirmed by time resolved spectroscopy. The conformational change of lysozyme has been analyzed using synchronous fluorescence measurement. Finally, docking studies revealed that specific interactions were observed with the residue of Trp 62.

  10. Rendezvous and docking tracker

    Science.gov (United States)

    Ray, Art J.; Ross, Susan E.; Deming, Douglas R.

    1986-01-01

    A conceptual solid-state rendezvous and docking tracker (RDT) has been devised for generating range and attitude data for a docking vehicle relative to a target vehicle. Emphasis is placed on the approach of the Orbiter to a link with the Space Station. Three laser illuminators ring the optical axis of the lens a directed toward retroreflectors on the target vehicle. Each retroreflector is equipped with a bandpass filter for a designated illumination frequency. Data are collected sequentially over a 20 deg field of view as the range closes to 100-1000 m. A fourth ranging retroreflector 0.3 m from center is employed during close-in maneuvers. The system provides tracking data on motions with 6 deg of freedom, and furnishes 500 msec updates (to be enhanced to 100 msec) to the operator at a computer console.

  11. Exact docking flight controller for autonomous aerial refueling with back-stepping based high order sliding mode

    Science.gov (United States)

    Su, Zikang; Wang, Honglun; Li, Na; Yu, Yue; Wu, Jianfa

    2018-02-01

    Autonomous aerial refueling (AAR) exact docking control has always been an intractable problem due to the strong nonlinearity, the tight coupling of the 6 DOF aircraft model and the complex disturbances of the multiple environment flows. In this paper, the strongly coupled nonlinear 6 DOF model of the receiver aircraft which considers the multiple flow disturbances is established in the affine nonlinear form to facilitate the nonlinear controller design. The items reflecting the influence of the unknown flow disturbances in the receiver dynamics are taken as the components of the "lumped disturbances" together with the items which have no linear correlation with the virtual control variables. These unmeasurable lumped disturbances are estimated and compensated by a specially designed high order sliding mode observer (HOSMO) with excellent estimation property. With the compensation of the estimated lumped disturbances, a back-stepping high order sliding mode based exact docking flight controller is proposed for AAR in the presence of multiple flow disturbances. Extensive simulation results demonstrate the feasibility and superiority of the proposed docking controller.

  12. Tail Docking of Canine Puppies: Reassessment of the Tail’s Role in Communication, the Acute Pain Caused by Docking and Interpretation of Behavioural Responses

    Directory of Open Access Journals (Sweden)

    David J. Mellor

    2018-05-01

    Full Text Available Laws, regulations and professional standards increasingly aim to ban or restrict non-therapeutic tail docking in canine puppies. These constraints have usually been justified by reference to loss of tail participation in communication between dogs, the acute pain presumed to be caused during docking itself, subsequent experiences of chronic pain and heightened pain sensitivity, and the occurrence of other complications. These areas are reconsidered here. First, a scientifically robust examination of the dynamic functional foundations, sensory components and key features of body language that are integral to canine communication shows that the role of the tail has been greatly underestimated. More specifically, it shows that tail behaviour is so embedded in canine communication that docking can markedly impede unambiguous interactions between different dogs and between dogs and people. These interactions include the expression of wide ranges of both negative and positive emotions, moods and intentions that are of daily significance for dog welfare. Moreover, all docked dogs may experience these impediments throughout their lives, which challenges assertions by opponents to such bans or restrictions that the tail is a dispensable appendage. Second, and in contrast, a re-examination of the sensory capacities of canine puppies reveals that they cannot consciously experience acute or chronic pain during at least the first week after birth, which is when they are usually docked. The contrary view is based on questionable between-species extrapolation of information about pain from neurologically mature newborns such as calves, lambs, piglets and human infants, which certainly can consciously experience pain in response to injury, to neurologically immature puppies which remain unconscious and therefore unable to experience pain until about two weeks after birth. Third, underpinned by the incorrect conclusion that puppies are conscious at the usual

  13. Autonomous Vision-Based Tethered-Assisted Rover Docking

    Science.gov (United States)

    Tsai, Dorian; Nesnas, Issa A.D.; Zarzhitsky, Dimitri

    2013-01-01

    Many intriguing science discoveries on planetary surfaces, such as the seasonal flows on crater walls and skylight entrances to lava tubes, are at sites that are currently inaccessible to state-of-the-art rovers. The in situ exploration of such sites is likely to require a tethered platform both for mechanical support and for providing power and communication. Mother/daughter architectures have been investigated where a mother deploys a tethered daughter into extreme terrains. Deploying and retracting a tethered daughter requires undocking and re-docking of the daughter to the mother, with the latter being the challenging part. In this paper, we describe a vision-based tether-assisted algorithm for the autonomous re-docking of a daughter to its mother following an extreme terrain excursion. The algorithm uses fiducials mounted on the mother to improve the reliability and accuracy of estimating the pose of the mother relative to the daughter. The tether that is anchored by the mother helps the docking process and increases the system's tolerance to pose uncertainties by mechanically aligning the mating parts in the final docking phase. A preliminary version of the algorithm was developed and field-tested on the Axel rover in the JPL Mars Yard. The algorithm achieved an 80% success rate in 40 experiments in both firm and loose soils and starting from up to 6 m away at up to 40 deg radial angle and 20 deg relative heading. The algorithm does not rely on an initial estimate of the relative pose. The preliminary results are promising and help retire the risk associated with the autonomous docking process enabling consideration in future martian and lunar missions.

  14. Behaviour of tail-docked lambs tested in isolation

    Directory of Open Access Journals (Sweden)

    Marchewka Joanna

    2016-12-01

    Full Text Available The aims of the current study were to detect behavioural indicators of pain of tail-docked sheep tested in isolation and to determine the relationship between behaviour and the pain levels to which they were exposed. Twenty-four female lambs, randomly assigned to four pens, had their tail docked with a rubber ring (TD; n = 6 without pain control procedures, TD with anaesthesia (TDA; n = 6 or TD with anaesthesia and analgesia (TDAA; n = 6. Additionally, six lambs handled but without tail docking or application of pain relief measures were used as the control (C. On the day prior (Day –1 to the TD and on days 1, 3 and 5 post-procedure, each lamb was individually removed from its group and underwent a 2.5 min open field test in a separate pen. Frequencies of behaviours such as rest, running, standing, walking and exploring were directly observed. Frequencies of exploratory climbs (ECs and abrupt climbs (ACs over the testing pen’s walls were video-recorded. Data were analysed using generalised linear mixed models with repeated measurements, including treatment and day as fixed effects and behaviour on Day –1 as a linear covariate. Control and TDAA lambs stood more frequently than TD lambs. TD lambs performed significantly more ACs compared to all other treatment groups. No other treatment effects were detected. A day effect was detected for all behaviours, while the EC frequency was highest for all tail-docked lambs on Day 5. Findings suggest that standing, ACs and ECs could be used as potential indicators of pain in isolated tail-docked lambs. However, differences in ECs between treatments only appeared 3 d after tail docking.

  15. CLUB-MARTINI: Selecting Favourable Interactions amongst Available Candidates, a Coarse-Grained Simulation Approach to Scoring Docking Decoys.

    Directory of Open Access Journals (Sweden)

    Qingzhen Hou

    Full Text Available Large-scale identification of native binding orientations is crucial for understanding the role of protein-protein interactions in their biological context. Measuring binding free energy is the method of choice to estimate binding strength and reveal the relevance of particular conformations in which proteins interact. In a recent study, we successfully applied coarse-grained molecular dynamics simulations to measure binding free energy for two protein complexes with similar accuracy to full-atomistic simulation, but 500-fold less time consuming. Here, we investigate the efficacy of this approach as a scoring method to identify stable binding conformations from thousands of docking decoys produced by protein docking programs. To test our method, we first applied it to calculate binding free energies of all protein conformations in a CAPRI (Critical Assessment of PRedicted Interactions benchmark dataset, which included over 19000 protein docking solutions for 15 benchmark targets. Based on the binding free energies, we ranked all docking solutions to select the near-native binding modes under the assumption that the native-solutions have lowest binding free energies. In our top 100 ranked structures, for the 'easy' targets that have many near-native conformations, we obtain a strong enrichment of acceptable or better quality structures; for the 'hard' targets without near-native decoys, our method is still able to retain structures which have native binding contacts. Moreover, in our top 10 selections, CLUB-MARTINI shows a comparable performance when compared with other state-of-the-art docking scoring functions. As a proof of concept, CLUB-MARTINI performs remarkably well for many targets and is able to pinpoint near-native binding modes in the top selections. To the best of our knowledge, this is the first time interaction free energy calculated from MD simulations have been used to rank docking solutions at a large scale.

  16. Mathematical Modeling and Kinematics Analysis of Double Spherical Shell Rotary Docking Skirt

    Directory of Open Access Journals (Sweden)

    Gong Haixia

    2017-01-01

    Full Text Available In order to solve the problem of large trim and heel angles of the wrecked submarine, the double spherical shell rotating docking skirt is studied. According to the working principle of the rotating docking skirt, and the fixed skirt, the directional skirt, the angle skirt are simplified as the connecting rod. Therefore, the posture equation and kinematics model of the docking skirt are deduced, and according to the kinematics model, the angle of rotation of the directional skirt and the angle skirt is obtained when the wrecked submarine is in different trim and heel angles. Through the directional skirt and angle skirt with the matching rotation can make docking skirt interface in the 0°~2γ range within the rotation, to complete the docking skirt and the wrecked submarine docking. The MATLAB software is used to visualize the rotation angle of fixed skirt and directional skirt, which lays a good foundation for the development of the control of the double spherical shell rotating docking skirt in future.

  17. Fast and accurate grid representations for atom-based docking with partner flexibility.

    Science.gov (United States)

    de Vries, Sjoerd J; Zacharias, Martin

    2017-06-30

    Macromolecular docking methods can broadly be divided into geometric and atom-based methods. Geometric methods use fast algorithms that operate on simplified, grid-like molecular representations, while atom-based methods are more realistic and flexible, but far less efficient. Here, a hybrid approach of grid-based and atom-based docking is presented, combining precalculated grid potentials with neighbor lists for fast and accurate calculation of atom-based intermolecular energies and forces. The grid representation is compatible with simultaneous multibody docking and can tolerate considerable protein flexibility. When implemented in our docking method ATTRACT, grid-based docking was found to be ∼35x faster. With the OPLSX forcefield instead of the ATTRACT coarse-grained forcefield, the average speed improvement was >100x. Grid-based representations may allow atom-based docking methods to explore large conformational spaces with many degrees of freedom, such as multiple macromolecules including flexibility. This increases the domain of biological problems to which docking methods can be applied. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  18. Companies hone in on radar-docking technology

    Science.gov (United States)

    Howell, Elizabeth

    2009-11-01

    As NASA prepares to retire the Space Shuttle next year, two private space firms have tested docking technology that could be used on the next generation of US spacecraft. In September, Canadian firm Neptec tested a new radar system on the Space Shuttle Discovery that allows spacecraft to dock more easily. Meanwhile, Space Exploration Technologies (SpaceX) based in California has revealed that it tested out a new proximity sensor, dubbed "Dragoneye", on an earlier shuttle mission in July.

  19. Sedimentation problems in a lateral dock on the Paraná River

    Science.gov (United States)

    Latessa, Gaston; Sabarots Gerbec, Martin; Arecco, Pablo

    2017-04-01

    The Paraná River is one of the largest water courses in the world and along its reach in the Argentine territory, it receives a large load of sediments from the Pilcomayo and Bermejo Rivers, through the Paraguay River, in the upper basin at the North of Argentina and South of Bolivia. The suspended sediment load is estimated in 100 Million ton/year. This unique characteristic drives the Paraná River morphology downstream, as well as the Paraná delta morphodynamics. On top of its natural behaviour, the Paraná-Paraguay river system is an important inland waterway transport corridor, with a significant amount of sea going vessels and inland barges navigating throughout stretches of more than 3000 Km. Consequently, there are numerous port complexes and terminals along the river banks. The typical wet infrastructure of these terminals is usually composed by jetties and quay walls, and occasionally with side or lateral docks. Whereas, the case included within this study presents all these components. This study presents a hydrodynamic and sedimentology 3D model to predict the velocity fields and the associated shear stresses that will drive morphological processes in the lateral dock. The terminal layout, side dock configuration, and sedimentation issues will be analyzed from multidisciplinary point of view, under different hydrological events and considering the correlated sediment loads. Recent bathymetry studies had been carried out and this set of data will be implemented to build the domain geometry. The flow series is as well extended with the up to date gauged flows and levels, to carry out statistical analysis and identify the design flows for different probabilities. The main objective of this analysis will be to understand and identify the scour and deposition processes and the possible problems to the structures safety and the operation of the docks, and introduce variations to the baseline design, if necessary. Results will be contrasted and validated

  20. Molecular docking for thrombolytic activity of some isolated compounds from Clausena lansium.

    Directory of Open Access Journals (Sweden)

    Arkajyoti Paul

    2017-03-01

    Full Text Available Clausena lansium (Family- Rutaceae is commonly known as wampee, is found in fallow lands throughout Bangladesh. Our aim of the study to performed molecular docking studies to identify potential binding affinities of the phytocompounds from Clausena lansium, namely Clausemarin B, Clausenaline C, Clausenaline E, Murrayanine, vanillic acid and Xanthotoxol for searching of lead molecule for thrombolytic activity. A wide range of docking score found during molecular docking by Schrodinger. Clausemarin B , Clausenaline C , Clausenaline E, Murrayanine , vanillic acid and Xanthotoxol showed the docking score -6.926, -4.041, -4.889 , -4.356, -3.007 and -5.816 respectively. Among all the compounds Clausemarin B showed the best docking score. So, Clausemarin B is the best compounds for thrombolytic activity, as it possessed the best value in Molecular docking. Further in vivo investigation need to identify the thrombolytic activity of isolated compounds from Clausena lansium.

  1. Synthesis, spectroscopic properties, molecular docking, anti-colon cancer and anti-microbial studies of some novel metal complexes for 2-amino-4-phenylthiazole derivative

    Science.gov (United States)

    Al-Harbi, Sami A.; Bashandy, Mahmoud S.; Al-Saidi, Hammed M.; Emara, Adel A. A.; Mousa, Tarek A. A.

    2015-06-01

    This article describes the synthesis of novel bidentate Schiff base (H2L) from condensation of 2-amino-4-phenylthiazole (APT) with 4,6-diacetylresorcinol (DAR) in the molar ratio 2:1. We studied interaction of ligand (H2L) with transition metal ions such as Cr(III), Fe(III), Cu(II), Zn(II) and Cd(II). The ligand (H2L) has two bidentate sets of (N-O) units which can coordinate with two metal ions to afford novel binuclear metal complexes. The directions of coordinate bonds are from nitrogen atoms of azomethine groups and oxygen atoms of the phenolic groups. Structures of the newly synthesized complexes were confirmed by elemental analysis, IR, UV, 1H NMR, ESR, TGA and mass spectral data. All of the newly synthesized complexes were evaluated for their antibacterial and anti-fungal activities. They were also evaluated for their in vitro anticancer activity against human colon carcinoma cells (HCT-116) and mammalian cells of African green monkey kidney (VERO). The Cu(II) complex with selectivity index (S.I.) = 21.26 exhibited better activity than methotrexate (MTX) as a reference drug with S.I. value = 13.30, while Zn(II) complex with S.I. value = 10.24 was found to be nearly as active as MTX. Molecular docking studies further helped in understanding the mode of action of the compounds through their various interactions with active sites of dihydrofolate reductase (DHFR) enzyme. The observed activity of Fe(III) and Cu(II) complexes gave rise to the conclusion that they might exert their action through inhibition of the DHFR enzyme.

  2. Seismic vulnerability assessment of an Italian historical masonry dry dock

    OpenAIRE

    Marco Zucca; Pietro Giuseppe Crespi; Nicola Longarini

    2017-01-01

    The paper presents the seismic vulnerability analysis of the military dry dock built in 1861 inside the Messina’s harbor. The study appears very important not only for the relevance of the dry dock itself, but also for its social, military and symbolic role. As a first step, the historical documentation about the dry dock delivered by the Military Technical Office, in charge of its maintenance, was thoroughly examined. This activity was fundamental to understand the construction methods, the ...

  3. Complexing DNA Origami Frameworks through Sequential Self-Assembly Based on Directed Docking.

    Science.gov (United States)

    Suzuki, Yuki; Sugiyama, Hiroshi; Endo, Masayuki

    2018-06-11

    Ordered DNA origami arrays have the potential to compartmentalize space into distinct periodic domains that can incorporate a variety of nanoscale objects. Herein, we used the cavities of a preassembled 2D DNA origami framework to incorporate square-shaped DNA origami structures (SQ-origamis). The framework was self-assembled on a lipid bilayer membrane from cross-shaped DNA origami structures (CR-origamis) and subsequently exposed to the SQ-origamis. High-speed AFM revealed the dynamic adsorption/desorption behavior of the SQ-origamis, which resulted in continuous changing of their arrangements in the framework. These dynamic SQ-origamis were trapped in the cavities by increasing the Mg 2+ concentration or by introducing sticky-ended cohesions between extended staples, both from the SQ- and CR-origamis, which enabled the directed docking of the SQ-origamis. Our study offers a platform to create supramolecular structures or systems consisting of multiple DNA origami components. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Operator learning effects in teleoperated rendezvous & docking

    Science.gov (United States)

    Wilde, M.; Harder, J.; Purschke, R.

    Teleoperation of spacecraft proximity operations and docking requires delicate timing and coordination of spacecraft maneuvers. Experience has shown that human operators show large performance fluctuations in these areas, which are a major factor to be addressed in operator training. In order to allow the quantification of the impact of these human fluctuations on control system performance and the human perception of this performance, a learning curve study was conducted with teleoperated final approach and docking scenarios. Over a period of ten experiment days, three test participants were tasked with repeatedly completing a set of three training scenarios. The scenarios were designed to contain different combinations of the major elements of any final approach and docking situation, and to feature an increasing difficulty level. The individual difficulty levels for the three operators furthermore differed in the level of operator support functions available in their human-machine interfaces. Operator performance in the test scenarios were evaluated in the fields approach success and precision, docking safety, and approach efficiency by a combination of recorded maneuver data and questionnaires. The results show that operator experience and the associated learning curves increase operator performance substantially, regardless of the support system used. The paper also shows that the fluctuations in operator performance and self-perception are substantial between as well as within experiment days, and must be reckoned with in teleoperation system design and mission planning.

  5. Molecular docking as a popular tool in drug design, an in silico travel

    Directory of Open Access Journals (Sweden)

    de Ruyck J

    2016-06-01

    Full Text Available Jerome de Ruyck, Guillaume Brysbaert, Ralf Blossey, Marc F Lensink University Lille, CNRS UMR8576 UGSF, Lille, FranceAbstract: New molecular modeling approaches, driven by rapidly improving computational platforms, have allowed many success stories for the use of computer-assisted drug design in the discovery of new mechanism- or structure-based drugs. In this overview, we highlight three aspects of the use of molecular docking. First, we discuss the combination of molecular and quantum mechanics to investigate an unusual enzymatic mechanism of a flavoprotein. Second, we present recent advances in anti-infectious agents' synthesis driven by structural insights. At the end, we focus on larger biological complexes made by protein–protein interactions and discuss their relevance in drug design. This review provides information on how these large systems, even in the presence of the solvent, can be investigated with the outlook of drug discovery.Keywords: structure-based drug design, protein–protein docking, quaternary structure prediction, residue interaction networks, RINs, water position

  6. A cross docking pipeline for improving pose prediction and virtual screening performance

    Science.gov (United States)

    Kumar, Ashutosh; Zhang, Kam Y. J.

    2018-01-01

    Pose prediction and virtual screening performance of a molecular docking method depend on the choice of protein structures used for docking. Multiple structures for a target protein are often used to take into account the receptor flexibility and problems associated with a single receptor structure. However, the use of multiple receptor structures is computationally expensive when docking a large library of small molecules. Here, we propose a new cross-docking pipeline suitable to dock a large library of molecules while taking advantage of multiple target protein structures. Our method involves the selection of a suitable receptor for each ligand in a screening library utilizing ligand 3D shape similarity with crystallographic ligands. We have prospectively evaluated our method in D3R Grand Challenge 2 and demonstrated that our cross-docking pipeline can achieve similar or better performance than using either single or multiple-receptor structures. Moreover, our method displayed not only decent pose prediction performance but also better virtual screening performance over several other methods.

  7. In silico molecular docking studies of new potential 4-phthalazinyl-hydrazones on selected Trypanosoma cruzi and Leishmania enzyme targets.

    Science.gov (United States)

    Romero, Angel H; López, Simón E

    2017-09-01

    Recently, a series of 4-phthalazinyl-hydrazones under its E-configuration have exhibited excellent in vitro antichagasic and antileishmanial profiles. Preliminary assays on both parasites suggested that the most active derivatives act through oxidative and nitrosative stress mechanisms; however, their exact mode of actions as anti-trypanosomal and anti-leishmanial agents have not been completely elucidated. This motivated to perform a molecular docking study on essential trypanosomatid enzymes such as superoxide dismutase (SOD), trypanothione reductase (TryR), cysteine-protease (CP) and pteridine reductase 1 (PTR1). In addition, to understand the experimental results of nitric oxide production obtained for infected macrophages with Leishmania parasite, a molecular docking was evaluated on nitric oxide synthase (iNOS) enzyme of Rattus norvegicus. Both diastereomers (E and Z) of the 4-phthalazinyl-hydrazones were docked on the mentioned targets. In general, molecular docking on T. cruzi enzymes revealed that the E-diastereomers exhibited lower binding energies than Z-diastereomers on the Fe-SOD and CP enzymes, while Z-diastereomers showed lower docking energies than E-isomers on TryR enzyme. For the Leishmania docking studies, the Z-isomers exhibited the best binding affinities on the PTR1 and iNOS enzymes, while the TryR enzyme showed a minor dependence with the stereoselectivity of the tested phthalazines. However, either the structural information of the ligand-enzyme complexes or the experimental data suggest that the significant antitrypanosomatid activity of the most active derivatives is not associated to the inhibition of the SOD, CP and PTR1 enzymes, while the TryR inhibition and nitric oxide generation in host cells emerge as interesting antitrypanosomatid therapeutic targets. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Exponential Repulsion Improves Structural Predictability of Molecular Docking

    Czech Academy of Sciences Publication Activity Database

    Bazgier, Václav; Berka, K.; Otyepka, M.; Banáš, P.

    2016-01-01

    Roč. 37, č. 28 (2016), s. 2485-2494 ISSN 0192-8651 Institutional support: RVO:61389030 Keywords : cyclin-dependent kinases * structure-based design * scoring functions * cdk2 inhibitors * force-field * ligand interactions * drug discovery * purine * potent * protein-kinase-2 * molecular docking * dock 6.6 * drug design * cyclin-dependent kinase 2 * directory of decoys Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.229, year: 2016

  9. Synthesis, molecular structure, biological properties and molecular docking studies on Mn(II), Co(II) and Zn(II) complexes containing bipyridine-azide ligands.

    Science.gov (United States)

    Thamilarasan, Vijayan; Jayamani, Arumugam; Sengottuvelan, Nallathambi

    2015-01-07

    Metal complexes of the type Mn(bpy)2(N3)2 (1), Co(bpy)2(N3)2·3H2O (2) and Zn2(bpy)2(N3)4 (3) (Where bpy = 2,2-bipyridine) have been synthesized and characterized by elemental analysis and spectral (FT-IR, UV-vis) studies. The structure of complexes (1-3) have been determined by single crystal X-ray diffraction studies and the configuration of ligand-coordinated metal(II) ion was well described as distorted octahedral coordination geometry for Mn(II), Co(II) and distorted square pyramidal geometry for Zn(II) complexes. DNA binding interaction of these complexes (1-3) were investigated by UV-vis absorption, fluorescence circular dichroism spectral and molecular docking studies. The intrinsic binding constants Kb of complexes 1, 2 and 3 with CT-DNA obtained from UV-vis absorption studies were 8.37 × 10(4), 2.23 × 10(5) and 5.52 × 10(4) M(-1) respectively. The results indicated that the three complexes are able to bind to DNA with different binding affinity, in the order 2 > 1 > 3. Complexes (1-3) exhibit a good binding propensity to bovine serum albumin (BSA) proteins having relatively high binding constant values. Gel electrophoresis assay demonstrated the ability of the complexes 1-3 promote the cleavage ability of the pBR322 plasmid DNA in the presence of the reducing agent 3-mercaptopropionic acid (MPA) but with different cleavage mechanisms: the complex 3 cleaves DNA via hydrolytic pathway (T4 DNA ligase assay), while the DNA cleavage by complexes 1 and 2 follows oxidative pathway. The chemical nuclease activity follows the order: 2 > 1 > 3. The effects of various activators were also investigated and the nuclease activity efficacy followed the order MPA > GSH > H2O2 > Asc. The cytotoxicity studies of complexes 1-3 were tested in vitro on breast cancer cell line (MCF-7) and they found to be active. Copyright © 2014. Published by Elsevier Masson SAS.

  10. A non-docking intraoperative electron beam applicator system

    International Nuclear Information System (INIS)

    Palta, J.R.; Suntharalingam, N.

    1989-01-01

    A non-docking intraoperative radiation therapy electron beam applicator system for a linear accelerator has been designed to minimize the mechanical, electrical, and tumor visualization problems associated with a docking system. A number of technical innovations have been used in the design of this system. These include: (a) a new intraoperative radiation therapy cone design that gives a better dose uniformity in the treatment volume at all depths; (b) a collimation system which reduces the leakage radiation dose to tissues outside the intraoperative radiation therapy cone; (c) a non-docking system with a translational accuracy of 2 mm and a rotational accuracy of 0.5 degrees; and (d) a rigid clamping system for the cones. A comprehensive set of dosimetric characteristics of the intraoperative radiation therapy applicator system is presented

  11. Space Shuttle Program (SSP) Dual Docked Operations (DDO)

    Science.gov (United States)

    Sills, Joel W., Jr.; Bruno, Erica E.

    2016-01-01

    This document describes the concept definition, studies, and analysis results generated by the Space Shuttle Program (SSP), International Space Station (ISS) Program (ISSP), and Mission Operations Directorate for implementing Dual Docked Operations (DDO) during mated Orbiter/ISS missions. This work was performed over a number of years. Due to the ever increasing visiting vehicle traffic to and from the ISS, it became apparent to both the ISSP and the SSP that there would arise occasions where conflicts between a visiting vehicle docking and/or undocking could overlap with a planned Space Shuttle launch and/or during docked operations. This potential conflict provided the genesis for evaluating risk mitigations to gain maximum flexibility for managing potential visiting vehicle traffic to and from the ISS and to maximize launch and landing opportunities for all visiting vehicles.

  12. A primer on wood as dock construction material

    Science.gov (United States)

    Stan Lebow

    2007-01-01

    To be a successful marina owner and operator, it’s important to understand all the facets of one’s facility, including the intricacies of one part of the marina that most boaters take for granted: the docks. When it comes to dock construction, marinas have a wide-range of materials to choose from, with one of the most commonly used materials being preservative-treated...

  13. Accounting for Intraligand Interactions in Flexible Ligand Docking with a PMF-Based Scoring Function.

    Science.gov (United States)

    Lizunov, A Y; Gonchar, A L; Zaitseva, N I; Zosimov, V V

    2015-10-26

    We analyzed the frequency with which intraligand contacts occurred in a set of 1300 protein-ligand complexes [ Plewczynski et al. J. Comput. Chem. 2011 , 32 , 742 - 755 .]. Our analysis showed that flexible ligands often form intraligand hydrophobic contacts, while intraligand hydrogen bonds are rare. The test set was also thoroughly investigated and classified. We suggest a universal method for enhancement of a scoring function based on a potential of mean force (PMF-based score) by adding a term accounting for intraligand interactions. The method was implemented via in-house developed program, utilizing an Algo_score scoring function [ Ramensky et al. Proteins: Struct., Funct., Genet. 2007 , 69 , 349 - 357 .] based on the Tarasov-Muryshev PMF [ Muryshev et al. J. Comput.-Aided Mol. Des. 2003 , 17 , 597 - 605 .]. The enhancement of the scoring function was shown to significantly improve the docking and scoring quality for flexible ligands in the test set of 1300 protein-ligand complexes [ Plewczynski et al. J. Comput. Chem. 2011 , 32 , 742 - 755 .]. We then investigated the correlation of the docking results with two parameters of intraligand interactions estimation. These parameters are the weight of intraligand interactions and the minimum number of bonds between the ligand atoms required to take their interaction into account.

  14. Customizable de novo design strategies for DOCK: Application to HIVgp41 and other therapeutic targets.

    Science.gov (United States)

    Allen, William J; Fochtman, Brian C; Balius, Trent E; Rizzo, Robert C

    2017-11-15

    De novo design can be used to explore vast areas of chemical space in computational lead discovery. As a complement to virtual screening, from-scratch construction of molecules is not limited to compounds in pre-existing vendor catalogs. Here, we present an iterative fragment growth method, integrated into the program DOCK, in which new molecules are built using rules for allowable connections based on known molecules. The method leverages DOCK's advanced scoring and pruning approaches and users can define very specific criteria in terms of properties or features to customize growth toward a particular region of chemical space. The code was validated using three increasingly difficult classes of calculations: (1) Rebuilding known X-ray ligands taken from 663 complexes using only their component parts (focused libraries), (2) construction of new ligands in 57 drug target sites using a library derived from ∼13M drug-like compounds (generic libraries), and (3) application to a challenging protein-protein interface on the viral drug target HIVgp41. The computational testing confirms that the de novo DOCK routines are robust and working as envisioned, and the compelling results highlight the potential utility for designing new molecules against a wide variety of important protein targets. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  15. Inverse simulation system for evaluating handling qualities during rendezvous and docking

    Science.gov (United States)

    Zhou, Wanmeng; Wang, Hua; Thomson, Douglas; Tang, Guojin; Zhang, Fan

    2017-08-01

    The traditional method used for handling qualities assessment of manned space vehicles is too time-consuming to meet the requirements of an increasingly fast design process. In this study, a rendezvous and docking inverse simulation system to assess the handling qualities of spacecraft is proposed using a previously developed model-predictive-control architecture. By considering the fixed discrete force of the thrusters of the system, the inverse model is constructed using the least squares estimation method with a hyper-ellipsoidal restriction, the continuous control outputs of which are subsequently dispersed by pulse width modulation with sensitivity factors introduced. The inputs in every step are deemed constant parameters, and the method could be considered as a general method for solving nominal, redundant, and insufficient inverse problems. The rendezvous and docking inverse simulation is applied to a nine-degrees-of-freedom platform, and a novel handling qualities evaluation scheme is established according to the operation precision and astronauts' workload. Finally, different nominal trajectories are scored by the inverse simulation and an established evaluation scheme. The scores can offer theoretical guidance for astronaut training and more complex operation missions.

  16. Competitive binding affinity of two lanthanum(III) macrocycle complexes toward DNA and bovine serum albumin in water

    Energy Technology Data Exchange (ETDEWEB)

    Asadi, Zahra; Mosallaei, Hamta; Sedaghat, Moslem [Shiraz Univ. (Iran, Islamic Republic of). Dept. of Chemistry; Yousefi, Reza [Shiraz Univ. (Iran, Islamic Republic of). Protein Chemistry Lab. (PCL)

    2017-11-15

    In the present study, two water-soluble lanthanum(III) hexaaza Schiff base complexes were synthesized and characterized and also theoretically investigated. The interactions of these complexes with DNA and bovine serum albumin (BSA) were studied using different spectroscopic assessments and docking simulation analysis. The DNA docking studies suggested that these two complexes are able to interact with DNA through the minor groove, and also the binding affinity is in the order of La(L{sup 1}) > La(L{sup 2}). Furthermore, the spectral titration was carried out and viscosity measurements were taken. In this regard, protein-binding studies revealed that these complexes quench the intrinsic fluorescence of BSA, and indicated that the possible binding site is located on the vicinity of Trp 213, which is further validated by docking simulation analysis. The in vitro anticancer activities of these complexes indicated that the La(L{sup 1}) complex is more effective than the other one and also exhibits a better interaction with DNA.

  17. Multi-structure docking analysis of BACE1 crystal structures and non-peptidic ligands.

    Science.gov (United States)

    Haghighijoo, Zahra; Hemmateenejad, Bahram; Edraki, Najmeh; Miri, Ramin; Emami, Saeed

    2017-09-01

    In order to design novel non-peptidic inhibitors of BACE1, many research groups have attempted using computational studies including docking analyses. Since there are too many 3D structures for BACE1 in the protein database, the selection of suitable crystal structures is a key prerequisite for the successful application of molecular docking. We employed a multi-structure docking protocol. In which 615 ligands' structures were docked into 150 BACE1 structures. The large number of the resultant docking scores were post-processed by different data analysis methods including exploratory data analysis, regression analysis and discriminant analysis. It was found that using one crystal structure for docking did not result in high accuracy for predicting activity of the BACE1 inhibitors. Instead, using of the multi-structural docking scores, post-processed by chemometrics methods arrived to highly accurate predictive models. In this regards, the PDB accession codes of 4B70, 4DVF and 2WEZ could discriminate between active and inactive compounds, with higher accuracy. Clustering of the BACE1 structures based on principal component analysis of the crystallographic structures the revealed that the discriminant structures are in the center of the clusters. Thus, these structures can be selected as predominant crystal structures for docking studies of non-peptidic BACE1 inhibitors. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. The Social Networks of Small Arms Proliferation: Mapping an Aviation Enabled Supply Chain

    National Research Council Canada - National Science Library

    Curwen, Philip A

    2007-01-01

    A complex network of dealers, brokers, financiers, and traffickers continue to funnel large quantities of small arms and ammunition into African conflict zones despite the presence of United Nations arms embargoes...

  19. GPU acceleration of Dock6's Amber scoring computation.

    Science.gov (United States)

    Yang, Hailong; Zhou, Qiongqiong; Li, Bo; Wang, Yongjian; Luan, Zhongzhi; Qian, Depei; Li, Hanlu

    2010-01-01

    Dressing the problem of virtual screening is a long-term goal in the drug discovery field, which if properly solved, can significantly shorten new drugs' R&D cycle. The scoring functionality that evaluates the fitness of the docking result is one of the major challenges in virtual screening. In general, scoring functionality in docking requires a large amount of floating-point calculations, which usually takes several weeks or even months to be finished. This time-consuming procedure is unacceptable, especially when highly fatal and infectious virus arises such as SARS and H1N1, which forces the scoring task to be done in a limited time. This paper presents how to leverage the computational power of GPU to accelerate Dock6's (http://dock.compbio.ucsf.edu/DOCK_6/) Amber (J. Comput. Chem. 25: 1157-1174, 2004) scoring with NVIDIA CUDA (NVIDIA Corporation Technical Staff, Compute Unified Device Architecture - Programming Guide, NVIDIA Corporation, 2008) (Compute Unified Device Architecture) platform. We also discuss many factors that will greatly influence the performance after porting the Amber scoring to GPU, including thread management, data transfer, and divergence hidden. Our experiments show that the GPU-accelerated Amber scoring achieves a 6.5× speedup with respect to the original version running on AMD dual-core CPU for the same problem size. This acceleration makes the Amber scoring more competitive and efficient for large-scale virtual screening problems.

  20. Proposed docking interface between peptidoglycan and the target recognition domain of zoocin A

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yinghua [Department of Chemistry, University of Alabama, Tuscaloosa, AL 35487 (United States); Simmonds, Robin S. [Department of Microbiology and Immunology, University of Otago, Dunedin (New Zealand); Timkovich, Russell, E-mail: rtimkovi@bama.ua.edu [Department of Chemistry, University of Alabama, Tuscaloosa, AL 35487 (United States)

    2013-11-15

    Highlights: •Peptidoglycan added to zoocin rTRD perturbs NMR resonances around W115. •Simulations predict docking to a shallow surface groove near W115. •The docking interface is similar to mammalian antibody–antigen sites. •EDTA binds to a distinct surface site. -- Abstract: A docking model is proposed for the target recognition domain of the lytic exoenzyme zoocin A with the peptidoglycan on the outer cell surface of sensitive bacterial strains. Solubilized fragments from such peptidoglycans perturb specific backbone and side chain amide resonances in the recombinant form of the domain designated rTRD as detected in two-dimensional {sup 1}H–{sup 15}N correlation NMR spectra. The affected residues comprise a shallow surface cleft on the protein surface near W115, N53, N117, and Q105 among others, which interacts with the peptide portion of the peptidoglycan. Calculations with AutoDock Vina provide models of the docking interface. There is approximate homology between the rTDR-peptidoglycan docking site and the antigen binding site of Fab antibodies with the immunoglobin fold. EDTA was also found to bind to rTRD, but at a site distinct from the proposed peptidoglycan docking site.

  1. Studies on Pidotimod Enantiomers With Chiralpak-IA: Crystal Structure, Thermodynamic Parameters and Molecular Docking.

    Science.gov (United States)

    Dou, Xiaorui; Su, Xin; Wang, Yue; Chen, Yadong; Shen, Weiyang

    2015-11-01

    Pidotimod, a synthetic dipeptide, has two chiral centers with biological and immunological activity. Its enantiomers were characterized by x-ray crystallographic analysis. A chiral stationary phase (CSP) Chiralpak-IA based on amylose derivatized with tris-(3, 5-dimethylphenyl carbamate) was used to separate pidotimod enantiomers. The mobile phase was prepared in a ratio of 35:65:0.2 of methyl-tert-butyl-ether and acetonitrile trifluoroaceticacid. In addition, thermodynamics and molecular docking methods were used to explain the enantioseparation mechanism by Chiralpak-IA. Thermodynamic studies were carried out from 10 to 45 °C. In general, both retention and enantioselectivity decreased as the temperature increased. Thermodynamic parameters indicate that the interaction force between the pidotimod enantiomer (4S, 2'R) and IA CSP is stronger and their complex model is more stable. According to GOLD molecular docking simulation, Van der Waals force is the leading cause of pidotimod enantiomers separation by IA CSP. © 2015 Wiley Periodicals, Inc.

  2. C-arm CT for planning and guidance of extrahepatic embolizations

    International Nuclear Information System (INIS)

    Wacker, F.K.; Meissner, O.A.; Meyer, B.C.

    2009-01-01

    Interventional radiological vascular embolizations are complex procedures that require exact imaging of the target region to facilitate safe and effective treatment. The purpose of this paper is to present the technique and feasibility of flat detector C-arm computed tomography (C-arm CT) for control and guidance of extrahepatic abdominal embolization procedures. C-arm CT images can provide important information on both vascular and cross-sectional anatomy of the target region, help in determining therapy endpoints and provide follow-up during and immediately after the abdominal interventions.The cases presented demonstrate that C-arm CT images are beneficial for abdominal embolization procedures and facilitate precise treatment. (orig.) [de

  3. Robust coordinated control of a dual-arm space robot

    Science.gov (United States)

    Shi, Lingling; Kayastha, Sharmila; Katupitiya, Jay

    2017-09-01

    Dual-arm space robots are more capable of implementing complex space tasks compared with single arm space robots. However, the dynamic coupling between the arms and the base will have a serious impact on the spacecraft attitude and the hand motion of each arm. Instead of considering one arm as the mission arm and the other as the balance arm, in this work two arms of the space robot perform as mission arms aimed at accomplishing secure capture of a floating target. The paper investigates coordinated control of the base's attitude and the arms' motion in the task space in the presence of system uncertainties. Two types of controllers, i.e. a Sliding Mode Controller (SMC) and a nonlinear Model Predictive Controller (MPC) are verified and compared with a conventional Computed-Torque Controller (CTC) through numerical simulations in terms of control accuracy and system robustness. Both controllers eliminate the need to linearly parameterize the dynamic equations. The MPC has been shown to achieve performance with higher accuracy than CTC and SMC in the absence of system uncertainties under the condition that they consume comparable energy. When the system uncertainties are included, SMC and CTC present advantageous robustness than MPC. Specifically, in a case where system inertia increases, SMC delivers higher accuracy than CTC and costs the least amount of energy.

  4. Molecular docking of Glycine max and Medicago truncatula ureases with urea; bioinformatics approaches.

    Science.gov (United States)

    Filiz, Ertugrul; Vatansever, Recep; Ozyigit, Ibrahim Ilker

    2016-03-01

    Urease (EC 3.5.1.5) is a nickel-dependent metalloenzyme catalyzing the hydrolysis of urea into ammonia and carbon dioxide. It is present in many bacteria, fungi, yeasts and plants. Most species, with few exceptions, use nickel metalloenzyme urease to hydrolyze urea, which is one of the commonly used nitrogen fertilizer in plant growth thus its enzymatic hydrolysis possesses vital importance in agricultural practices. Considering the essentiality and importance of urea and urease activity in most plants, this study aimed to comparatively investigate the ureases of two important legume species such as Glycine max (soybean) and Medicago truncatula (barrel medic) from Fabaceae family. With additional plant species, primary and secondary structures of 37 plant ureases were comparatively analyzed using various bioinformatics tools. A structure based phylogeny was constructed using predicted 3D models of G. max and M. truncatula, whose crystallographic structures are not available, along with three additional solved urease structures from Canavalia ensiformis (PDB: 4GY7), Bacillus pasteurii (PDB: 4UBP) and Klebsiella aerogenes (PDB: 1FWJ). In addition, urease structures of these species were docked with urea to analyze the binding affinities, interacting amino acids and atom distances in urease-urea complexes. Furthermore, mutable amino acids which could potentially affect the protein active site, stability and flexibility as well as overall protein stability were analyzed in urease structures of G. max and M. truncatula. Plant ureases demonstrated similar physico-chemical properties with 833-878 amino acid residues and 89.39-90.91 kDa molecular weight with mainly acidic (5.15-6.10 pI) nature. Four protein domain structures such as urease gamma, urease beta, urease alpha and amidohydro 1 characterized the plant ureases. Secondary structure of plant ureases also demonstrated conserved protein architecture, with predominantly α-helix and random coil structures. In

  5. More tail lesions among undocked than tail docked pigs in a conventional herd

    DEFF Research Database (Denmark)

    Lahrmann, H. P.; Busch, M. E.; D'Eath, R. B.

    2017-01-01

    The vast majority of piglets reared in the European Union (EU) and worldwide is tail docked to reduce the risk of being tail bitten, even though EU animal welfare legislation bans routine tail docking. Many conventional herds experience low levels of tail biting among tail docked pigs, however...

  6. Identification of Phytochemicals Targeting c-Met Kinase Domain using Consensus Docking and Molecular Dynamics Simulation Studies.

    Science.gov (United States)

    Aliebrahimi, Shima; Montasser Kouhsari, Shideh; Ostad, Seyed Nasser; Arab, Seyed Shahriar; Karami, Leila

    2018-06-01

    c-Met receptor tyrosine kinase is a proto-oncogene whose aberrant activation is attributed to a lower rate of survival in most cancers. Natural product-derived inhibitors known as "fourth generation inhibitors" constitute more than 60% of anticancer drugs. Furthermore, consensus docking approach has recently been introduced to augment docking accuracy and reduce false positives during a virtual screening. In order to obtain novel small-molecule Met inhibitors, consensus docking approach was performed using Autodock Vina and Autodock 4.2 to virtual screen Naturally Occurring Plant-based Anti-cancer Compound-Activity-Target database against active and inactive conformation of c-Met kinase domain structure. Two hit molecules that were in line with drug-likeness criteria, desired docking score, and binding pose were subjected to molecular dynamics simulations to elucidate intermolecular contacts in protein-ligand complexes. Analysis of molecular dynamics simulations and molecular mechanics Poisson-Boltzmann surface area studies showed that ZINC08234189 is a plausible inhibitor for the active state of c-Met, whereas ZINC03871891 may be more effective toward active c-Met kinase domain compared to the inactive form due to higher binding energy. Our analysis showed that both the hit molecules formed hydrogen bonds with key residues of the hinge region (P1158, M1160) in the active form, which is a hallmark of kinase domain inhibitors. Considering the pivotal role of HGF/c-Met signaling in carcinogenesis, our results propose ZINC08234189 and ZINC03871891 as the therapeutic options to surmount Met-dependent cancers.

  7. Combined molecular docking and multi-spectroscopic investigation on the interaction between Eosin B and human serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Yang Qing; Zhou Ximin [National Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000 (China); Department of Chemistry, Lanzhou University, Lanzhou 730000 (China); Chen Xingguo, E-mail: chenxg@lzu.edu.c [National Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000 (China); Department of Chemistry, Lanzhou University, Lanzhou 730000 (China)

    2011-04-15

    The binding of Eosin B to human serum albumin (HSA) was studied using molecular docking, fluorescence, UV-vis, circular dichroism (CD) and Fourier transform infrared (FT-IR) spectroscopy. The mechanism of interaction between Eosin B and HSA in terms of the binding parameters, the thermodynamic functions and the effect of Eosin B on the conformation of HSA were investigated. Protein-ligand docking study indicated that Eosin B bound to residues located in the subdomain IIA of HSA and Eosin B-HSA complex was stabilized by hydrophobic force and hydrogen bonding. In addition, fluorescence data revealed that Eosin B strongly quenched the intrinsic fluorescence of HSA through a static quenching procedure. Furthermore, alteration of the secondary structure of HSA in the presence of the dye was conformed by UV-vis, FT-IR and CD spectroscopy.

  8. Combined molecular docking and multi-spectroscopic investigation on the interaction between Eosin B and human serum albumin

    International Nuclear Information System (INIS)

    Yang Qing; Zhou Ximin; Chen Xingguo

    2011-01-01

    The binding of Eosin B to human serum albumin (HSA) was studied using molecular docking, fluorescence, UV-vis, circular dichroism (CD) and Fourier transform infrared (FT-IR) spectroscopy. The mechanism of interaction between Eosin B and HSA in terms of the binding parameters, the thermodynamic functions and the effect of Eosin B on the conformation of HSA were investigated. Protein-ligand docking study indicated that Eosin B bound to residues located in the subdomain IIA of HSA and Eosin B-HSA complex was stabilized by hydrophobic force and hydrogen bonding. In addition, fluorescence data revealed that Eosin B strongly quenched the intrinsic fluorescence of HSA through a static quenching procedure. Furthermore, alteration of the secondary structure of HSA in the presence of the dye was conformed by UV-vis, FT-IR and CD spectroscopy.

  9. Application of the docking program SOL for CSAR benchmark.

    Science.gov (United States)

    Sulimov, Alexey V; Kutov, Danil C; Oferkin, Igor V; Katkova, Ekaterina V; Sulimov, Vladimir B

    2013-08-26

    This paper is devoted to results obtained by the docking program SOL and the post-processing program DISCORE at the CSAR benchmark. SOL and DISCORE programs are described. SOL is the original docking program developed on the basis of the genetic algorithm, MMFF94 force field, rigid protein, precalculated energy grid including desolvation in the frame of simplified GB model, vdW, and electrostatic interactions and taking into account the ligand internal strain energy. An important SOL feature is the single- or multi-processor performance for up to hundreds of CPUs. DISCORE improves the binding energy scoring by the local energy optimization of the ligand docked pose and a simple linear regression on the base of available experimental data. The docking program SOL has demonstrated a good ability for correct ligand positioning in the active sites of the tested proteins in most cases of CSAR exercises. SOL and DISCORE have not demonstrated very exciting results on the protein-ligand binding free energy estimation. Nevertheless, for some target proteins, SOL and DISCORE were among the first in prediction of inhibition activity. Ways to improve SOL and DISCORE are discussed.

  10. Molecular clouds in the Carina arm - the largest objects, associated regions of star formation, and the Carina arm in the Galaxy

    International Nuclear Information System (INIS)

    Grabelsky, D.A.; Cohen, R.S.; Bronfman, L.; Thaddeus, P.

    1988-01-01

    The Columbia CO survey of the southern Galactic plane is used to identify giant molecular clouds and cloud complexes in the Vela-Carina-Centaurus section of the Galaxy. Twenty-seven giant molecular clouds between l = 270 and 300 deg are catalogued and their heliocentric distances given. In addition, 16 clouds at l greater than 300 deg beyond the solar circle extend the catalog to include the very distant portion of the Carina arm. The most massive clouds in the catalog trace the Carina arm over 23 kpc in the plane of the Galaxy. The average mass of these objects is 1.4 x 10 to the 6th solar, and their average spacing along the arm is 700 pc. The composite distribution projected onto the Galactic plane of the largest molecular clouds in the Carina arm and of similarly massive clouds in the first and second quadrants strongly suggests that the Carina and Sagittarius arms form a single spiral arm about 40 kpc in length wrapping two-thirds of the way around the Galaxy. Descriptions of each cloud, including identification of associated star-forming regions, are presented in an appendix. 76 references

  11. Binding analysis for interaction of diacetylcurcumin with β-casein nanoparticles by using fluorescence spectroscopy and molecular docking calculations

    Science.gov (United States)

    Mehranfar, Fahimeh; Bordbar, Abdol-Khalegh; Fani, Najme; Keyhanfar, Mehrnaz

    2013-11-01

    The interaction of diacetylcurcumin (DAC), as a novel synthetic derivative of curcumin, with bovine β-casein (an abundant milk protein that is highly amphiphilic and self assembles into stable micellar nanoparticles in aqueous solution) was investigated using fluorescence quenching experiments, Forster energy transfer measurements and molecular docking calculations. The fluorescence quenching measurements revealed the presence of a single binding site on β-casein for DAC with the binding constant value equals to (4.40 ± 0.03) × 104 M-1. Forster energy transfer measurements suggested that the distance between bound DAC and Trp143 residue is higher than the respective critical distance, hence, the static quenching is more likely responsible for fluorescence quenching other than the mechanism of non-radiative energy transfer. Our results from molecular docking calculations indicated that binding of DAC to β-casein predominantly occurred through hydrophobic contacts in the hydrophobic core of protein. Additionally, in vitro investigation of the cytotoxicity of free DAC and DAC-β-casein complex in human breast cancer cell line MCF7 revealed the higher cytotoxic effect of DAC-β-casein complex.

  12. A molecular docking study of phytochemical estrogen mimics from dietary herbal supplements.

    Science.gov (United States)

    Powers, Chelsea N; Setzer, William N

    2015-01-01

    The purpose of this study is to use a molecular docking approach to identify potential estrogen mimics or anti-estrogens in phytochemicals found in popular dietary herbal supplements. In this study, 568 phytochemicals found in 17 of the most popular herbal supplements sold in the United States were built and docked with two isoforms of the estrogen receptor, ERα and ERβ (a total of 27 different protein crystal structures). The docking results revealed six strongly docking compounds in Echinacea, three from milk thistle (Silybum marianum), three from Gingko biloba, one from Sambucus nigra, none from maca (Lepidium meyenii), five from chaste tree (Vitex agnus-castus), two from fenugreek (Trigonella foenum-graecum), and two from Rhodiola rosea. Notably, of the most popular herbal supplements for women, there were numerous compounds that docked strongly with the estrogen receptor: Licorice (Glycyrrhiza glabra) had a total of 26 compounds strongly docking to the estrogen receptor, 15 with wild yam (Dioscorea villosa), 11 from black cohosh (Actaea racemosa), eight from muira puama (Ptychopetalum olacoides or P. uncinatum), eight from red clover (Trifolium pratense), three from damiana (Turnera aphrodisiaca or T. diffusa), and three from dong quai (Angelica sinensis). Of possible concern were the compounds from men's herbal supplements that exhibited strong docking to the estrogen receptor: Gingko biloba had three compounds, gotu kola (Centella asiatica) had two, muira puama (Ptychopetalum olacoides or P. uncinatum) had eight, and Tribulus terrestris had six compounds. This molecular docking study has revealed that almost all popular herbal supplements contain phytochemical components that may bind to the human estrogen receptor and exhibit selective estrogen receptor modulation. As such, these herbal supplements may cause unwanted side effects related to estrogenic activity.

  13. Multiple receptor conformers based molecular docking study of fluorine enhanced ethionamide with mycobacterium enoyl ACP reductase (InhA).

    Science.gov (United States)

    Khan, Akib Mahmud; Shawon, Jakaria; Halim, Mohammad A

    2017-10-01

    A major limitation in current molecular docking method is that of failure to account for receptor flexibility. Herein we report multiple receptor conformers based molecular docking as a practical alternative to account for the receptor flexibility. Multiple (forty) conformers of Mycobacterium Enoyl ACP Reductase (InhA) are generated from Molecular Dynamics simulation and twenty crystallographic structures of InhA bound to different inhibitors are obtained from the Protein Data Bank. Fluorine directed modifications are performed to currently available anti-tuberculosis drug ethionamide. The modified drugs are optimized using B3LYP 6-31G (d,p) level of theory. Dipole moment, frontier orbital gap and thermodynamical properties such as electronic energy, enthalpy and Gibbs free energy of these optimized drugs are investigated. These drugs are subsequently docked against the conformers of InhA. Molecular docking against multiple InhA conformations show variation in ligand binding affinity and suggest that Ser94, Gly96, Lys165 and Ile194 amino acids play critical role on strong drug-InhA interaction. Modified drug N1 showed greater binding affinity compared to EN in most conformations. Structure of PDB ID: 2NSD and snapshot conformer at 5.5ns show most favorable binding with N1 compared to other conformers. Fluorine participates in forming fluorine bonds and contributes significantly in increasing binding affinity. Our study reveal that addition of trifluoromethyl group explicitly shows promise in improving thermodynamic properties and in enhancing hydrogen bonding and non-bonded interactions. Molecular dynamics (MD) simulation show that EN and N1 remained in the binding pocket similar to the docked pose of EN-InhA and E1-InhA complexes and also suggested that InhA binds to its inhibitor in inhibitor-induced folding manner. ADMET calculations predict modified drugs to have improved pharmacokinetic properties. Our study concludes that multiple receptor conformers based

  14. Frontal cortex and hippocampus neurotransmitter receptor complex level parallels spatial memory performance in the radial arm maze.

    Science.gov (United States)

    Shanmugasundaram, Bharanidharan; Sase, Ajinkya; Miklosi, András G; Sialana, Fernando J; Subramaniyan, Saraswathi; Aher, Yogesh D; Gröger, Marion; Höger, Harald; Bennett, Keiryn L; Lubec, Gert

    2015-08-01

    Several neurotransmitter receptors have been proposed to be involved in memory formation. However, information on receptor complexes (RCs) in the radial arm maze (RAM) is missing. It was therefore the aim of this study to determine major neurotransmitter RCs levels that are modulated by RAM training because receptors are known to work in homo-or heteromeric assemblies. Immediate early gene Arc expression was determined by immunohistochemistry to show if prefrontal cortices (PFC) and hippocampi were activated following RAM training as these regions are known to be mainly implicated in spatial memory. Twelve rats per group, trained and untrained in the twelve arm RAM were used, frontal cortices and hippocampi were taken, RCs in membrane protein were quantified by blue-native PAGE immunoblotting. RCs components were characterised by co-immunoprecipitation followed by mass spectrometrical analysis and by the use of the proximity ligation assay. Arc expression was significantly higher in PFC of trained as compared to untrained rats whereas it was comparable in hippocampi. Frontal cortical levels of RCs containing AMPA receptors GluA1, GluA2, NMDA receptors GluN1 and GluN2A, dopamine receptor D1, acetylcholine nicotinic receptor alpha 7 (nAChR-α7) and hippocampal levels of RCs containing D1, GluN1, GluN2B and nAChR-α7 were increased in the trained group; phosphorylated dopamine transporter levels were decreased in the trained group. D1 and GluN1 receptors were shown to be in the same complex. Taken together, distinct RCs were paralleling performance in the RAM which is relevant for interpretation of previous and design of future work on RCs in memory studies. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. In Silico Molecular Docking Analysis of Natural Pyridoacridines as Anticancer Agents

    Directory of Open Access Journals (Sweden)

    Vikas Sharma

    2016-01-01

    Full Text Available Docking studies are proved to be an essential tool that facilitates the structural diversity of natural products to be harnessed in an organized manner. In this study, pyridoacridines containing natural anticancer pigments were subjected to docking studies using Glide (Schrodinger. Investigations were carried out to find out the potential molecular targets for these selected pigments. The docking was carried out on different cancer macromolecules involved in different cell cycle pathways, that is, CDK-2, CDK-6, Bcl-2, VEGFR-2, IGF-1R kinase, and G-Quadruplexes. CDK-6 was found to be the most suitable anticancer target for the pyridoacridines. In addition, effectiveness of the study was further evaluated by performing docking of known inhibitors against their respective selected macromolecules. However, the results are preliminary and experimental evaluation will be carried out in near future.

  16. Quantum mechanical/molecular mechanical and docking study of the novel analogues based on hybridization of common pharmacophores as potential anti-breast cancer agents.

    Science.gov (United States)

    Asadi, Parvin; Khodarahmi, Ghadamali; Farrokhpour, Hossein; Hassanzadeh, Farshid; Saghaei, Lotfollah

    2017-06-01

    In an attempt to identify some new potential leads as anti-breast cancer agents, novel hybrid compounds were designed by molecular hybridization approach. These derivatives were structurally derived from hybrid benzofuran-imidazole and quinazolinone derivatives, which had shown good cytotoxicity against the breast cancer cell line (MCF-7). Since aromatase enzyme (CYP19) is highly expressed in the MCF-7 cell line, the binding of these novel hybrid compounds to aromatase was investigated using the docking method. In this study, due to the positive charge on the imidazole ring of the designed ligands and also, the presence of heme iron in the active site of the enzyme, it was decided to optimize the ligand inside the protein to obtain more realistic atomic charges for it. Quantum mechanical/molecular mechanical (QM/MM) method was used to obtain more accurate atomic charges of ligand for docking calculations by considering the polarization effects of CYP19 on ligands. It was observed that the refitted charge improved the binding energy of the docked compounds. Also, the results showed that these novel hybrid compounds were adopted properly within the aromatase binding site, thereby suggesting that they could be potential inhibitors of aromatase. The main binding modes in these complexes were through hydrophobic and H bond interactions showing agreement with the basic physicochemical features of known anti aromatase compounds. Finally, the complex structures obtained from the docking study were used for single point QM/MM calculations to obtain more accurate electronic interaction energy, considering the electronic polarization of the ligand by its protein environment.

  17. Potential toxicity of sarafloxacin to catalase: Spectroscopic, ITC and molecular docking descriptions

    Science.gov (United States)

    Cao, Zhaozhen; Liu, Rutao; Yang, Bingjun

    2013-11-01

    The interaction between sarafloxacin and catalase (CAT) was studied by fluorescence spectroscopy, UV-visible absorption spectroscopy, circular dichroism (CD) spectroscopy, isothermal titration microcalorimetry (ITC) and molecular docking method. After deducting the inner filter effect, the fluorescence of CAT was quenched regularly by different concentrations of sarafloxacin. The quenching mechanism was studied by lifetime measurement, and it was proved to be mostly due to static quenching. The formation of sarafloxacin-CAT complex alters the micro-environment of amide moieties and tryptophan (Trp) residues, reduces the α-helix content of the enzyme, changes the peripheral substituents on the porphyrin ring of heme and leads to the inhibition of the enzyme activity. Molecular docking study reveals that sarafloxacin is located between two α-helix of CAT near to Trp 182 and Trp 185 residues, which supports the experimental results and helps to have a more clear understanding about the interaction mechanism. The change in the relative position of His 74 to heme induced by the variation of secondary structure is considered to be the major reason for the reduction of CAT activity. Moreover, sarafloxacin binds into a hydrophobic area of CAT mainly through hydrophobic interactions, which is consistent with the ITC analysis.

  18. Proprioceptive Interaction between the Two Arms in a Single-Arm Pointing Task.

    Directory of Open Access Journals (Sweden)

    Kazuyoshi Kigawa

    Full Text Available Proprioceptive signals coming from both arms are used to determine the perceived position of one arm in a two-arm matching task. Here, we examined whether the perceived position of one arm is affected by proprioceptive signals from the other arm in a one-arm pointing task in which participants specified the perceived position of an unseen reference arm with an indicator paddle. Both arms were hidden from the participant's view throughout the study. In Experiment 1, with both arms placed in front of the body, the participants received 70-80 Hz vibration to the elbow flexors of the reference arm (= right arm to induce the illusion of elbow extension. This extension illusion was compared with that when the left arm elbow flexors were vibrated or not. The degree of the vibration-induced extension illusion of the right arm was reduced in the presence of left arm vibration. In Experiment 2, we found that this kinesthetic interaction between the two arms did not occur when the left arm was vibrated in an abducted position. In Experiment 3, the vibration-induced extension illusion of one arm was fully developed when this arm was placed at an abducted position, indicating that the brain receives increased proprioceptive input from a vibrated arm even if the arm was abducted. Our results suggest that proprioceptive interaction between the two arms occurs in a one-arm pointing task when the two arms are aligned with one another. The position sense of one arm measured using a pointer appears to include the influences of incoming information from the other arm when both arms were placed in front of the body and parallel to one another.

  19. A flow visualization study of single-arm sculling movement emulating cephalopod thrust generation

    Science.gov (United States)

    Kazakidi, Asimina; Gnanamanickam, Ebenezer P.; Tsakiris, Dimitris P.; Ekaterinaris, John A.

    2014-11-01

    In addition to jet propulsion, octopuses use arm-swimming motion as an effective means of generating bursts of thrust, for hunting, defense, or escape. The individual role of their arms, acting as thrust generators during this motion, is still under investigation, in view of an increasing robotic interest for alternative modes of propulsion, inspired by the octopus. Computational studies have revealed that thrust generation is associated with complex vortical flow patterns in the wake of the moving arm, however further experimental validation is required. Using the hydrogen bubble technique, we studied the flow disturbance around a single octopus-like robotic arm, undergoing two-stroke sculling movements in quiescent fluid. Although simplified, sculling profiles have been found to adequately capture the fundamental kinematics of the octopus arm-swimming behavior. In fact, variation of the sculling parameters alters considerably the generation of forward thrust. Flow visualization revealed the generation of complex vortical structures around both rigid and compliant arms. Increased disturbance was evident near the tip, particularly at the transitional phase between recovery and power strokes. These results are in good qualitative agreement with computational and robotic studies. Work funded by the ESF-GSRT HYDRO-ROB Project PE7(281).

  20. Biallelic loss-of-function variants in DOCK3 cause muscle hypotonia, ataxia, and intellectual disability.

    Science.gov (United States)

    Helbig, K L; Mroske, C; Moorthy, D; Sajan, S A; Velinov, M

    2017-10-01

    DOCK3 encodes the dedicator of cytokinesis 3 protein, a member of the DOCK180 family of proteins that are characterized by guanine-nucleotide exchange factor activity. DOCK3 is expressed exclusively in the central nervous system and plays an important role in axonal outgrowth and cytoskeleton reorganization. Dock3 knockout mice exhibit motor deficiencies with abnormal ataxic gait and impaired learning. We report 2 siblings with biallelic loss-of-function variants in DOCK3. Diagnostic whole-exome sequencing (WES) and chromosomal microarray were performed on a proband with severe developmental disability, hypotonia, and ataxic gait. Testing was also performed on the proband's similarly affected brother. A paternally inherited 458 kb deletion in chromosomal region 3p21.2 disrupting the DOCK3 gene was identified in both affected siblings. WES identified a nonsense variant c.382C>G (p.Gln128*) in the DOCK3 gene (NM_004947) on the maternal allele in both siblings. Common features in both affected individuals include severe developmental disability, ataxic gait, and severe hypotonia, which recapitulates the Dock3 knockout mouse phenotype. We show that complete DOCK3 deficiency in humans leads to developmental disability with significant hypotonia and gait ataxia, probably due to abnormal axonal development. © 2017 The Authors. Clinical Genetics published by John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. The Asteroid Redirect Mission (ARM)

    Science.gov (United States)

    Abell, Paul; Gates, Michele; Johnson, Lindley; Chodas, Paul; Mazanek, Dan; Reeves, David; Ticker, Ronald

    2016-07-01

    To achieve its long-term goal of sending humans to Mars, the National Aeronautics and Space Administration (NASA) plans to proceed in a series of incrementally more complex human spaceflight missions. Today, human flight experience extends only to Low-Earth Orbit (LEO), and should problems arise during a mission, the crew can return to Earth in a matter of minutes to hours. The next logical step for human spaceflight is to gain flight experience in the vicinity of the Moon. These cis-lunar missions provide a "proving ground" for the testing of systems and operations while still accommodating an emergency return path to the Earth that would last only several days. Cis-lunar mission experience will be essential for more ambitious human missions beyond the Earth-Moon system, which will require weeks, months, or even years of transit time. In addition, NASA has been given a Grand Challenge to find all asteroid threats to human populations and know what to do about them. Obtaining knowledge of asteroid physical properties combined with performing technology demonstrations for planetary defense provide much needed information to address the issue of future asteroid impacts on Earth. Hence the combined objectives of human exploration and planetary defense give a rationale for the Asteroid Re-direct Mission (ARM). Mission Description: NASA's ARM consists of two mission segments: 1) the Asteroid Redirect Robotic Mission (ARRM), the first robotic mission to visit a large (greater than ~100 m diameter) near-Earth asteroid (NEA), collect a multi-ton boulder from its surface along with regolith samples, demonstrate a planetary defense technique, and return the asteroidal material to a stable orbit around the Moon; and 2) the Asteroid Redirect Crewed Mission (ARCM), in which astronauts will take the Orion capsule to rendezvous and dock with the robotic vehicle, conduct multiple extravehicular activities to explore the boulder, and return to Earth with samples. NASA's proposed

  2. Ternary iron(II) complex with an emissive imidazopyridine arm from Schiff base cyclizations and its oxidative DNA cleavage activity.

    Science.gov (United States)

    Mukherjee, Arindam; Dhar, Shanta; Nethaji, Munirathinam; Chakravarty, Akhil R

    2005-01-21

    The ternary iron(II) complex [Fe(L')(L")](PF6)3(1) as a synthetic model for the bleomycins, where L' and L" are formed from metal-mediated cyclizations of N,N'-(2-hydroxypropane-1,3-diyl)bis(pyridine-2-aldimine)(L), is synthesized and structurally characterized by X-ray crystallography. In the six-coordinate iron(ii) complex, ligands L' and L" show tetradentate and bidentate chelating modes of bonding. Ligand L' is formed from an intramolecular attack of the alcoholic OH group of L to one imine moiety leading to the formation of a stereochemically constrained five-membered ring. Ligand L" which is formed from an intermolecular reaction involving one imine moiety of L and pyridine-2-carbaldehyde has an emissive cationic imidazopyridine pendant arm. The complex binds to double-stranded DNA in the minor groove giving a Kapp value of 4.1 x 10(5) M(-1) and displays oxidative cleavage of supercoiled DNA in the presence of H2O2 following a hydroxyl radical pathway. The complex also shows photo-induced DNA cleavage activity on UV light exposure involving formation of singlet oxygen as the reactive species.

  3. Tail docking in dogs: can attitude change be achieved?

    Science.gov (United States)

    Bennett, P; Perini, E

    2003-05-01

    The debate about tail docking in domestic dogs continues to rage in many developed countries and attitudes expressed by different community groups remain diametrically opposed. Veterinary associations and welfare organisations typically want the practice banned, while many breeders and pure-bred dog associations just as vigorously oppose the introduction of anti-docking legislation. In recent years, much data have been accumulated concerning the welfare implications of tail docking. A recent evaluation of this literature suggests that the practice has little to recommend it and that, in the absence of reasonable case-by-case justification, it may constitute an unacceptable abuse of a sentient species. Given this situation, it is difficult to understand why many canine interest groups, presumably representing those people who care most about the welfare of companion dogs, should continue to hold such strong attitudes in favour of tail docking. In this review we attempt to explain why different community groups might espouse strong but opposing attitudes, despite having access to the same information. We argue that the theory of cognitive dissonance, popular among social psychologists, may provide a useful framework within which to understand, and attempt to alter, attitudes that persist even though they appear contrary to available empirical evidence.

  4. Parallel Evolutionary Optimization Algorithms for Peptide-Protein Docking

    Science.gov (United States)

    Poluyan, Sergey; Ershov, Nikolay

    2018-02-01

    In this study we examine the possibility of using evolutionary optimization algorithms in protein-peptide docking. We present the main assumptions that reduce the docking problem to a continuous global optimization problem and provide a way of using evolutionary optimization algorithms. The Rosetta all-atom force field was used for structural representation and energy scoring. We describe the parallelization scheme and MPI/OpenMP realization of the considered algorithms. We demonstrate the efficiency and the performance for some algorithms which were applied to a set of benchmark tests.

  5. Combined spectroscopic, molecular docking and quantum mechanics study of β-casein and p-coumaric acid interactions following thermal treatment.

    Science.gov (United States)

    Kaur, Jasmeet; Katopo, Lita; Hung, Andrew; Ashton, John; Kasapis, Stefan

    2018-06-30

    The molecular nature of interactions between β-casein and p-coumaric acid was studied following exposure of their solutions to ultra-high temperature (UHT at 145 °C). Interactions were characterised by employing multi-spectroscopic methods, molecular docking and quantum mechanics calculations. FTIR demonstrates that the ligand lies in the vicinity of the protein, hence inverting the absorbance spectrum of the complex. This outcome changes the conformational characteristics of the protein leading to a flexible and open structure that accommodates the phenolic microconstituent. Results are supported by UV-vis, CD and fluorescence quenching showing considerable shifts in spectra with complexation. Molecular docking indicates that there is at least a hydrogen bond between p-coumaric acid and the peptide backbone of isoleucine (Ile27). Quantum mechanics calculations further argue that changes in experimental observations are also due to a covalent interaction in the protein-phenolic adduct, which according to the best predicted binding pose involves the side chain of lysine 47. Copyright © 2018. Published by Elsevier Ltd.

  6. Beyond arms control? Looking for the lost paradigm.

    International Nuclear Information System (INIS)

    Dahan, P.

    2002-01-01

    Since the tragic events of September 11, 2001, the international relations have become more complex and the arms control concept, born during the cold war and implemented during the 3 last decades is today marking time. Disarmament and non-proliferation, which were the keystones of arms control and international negotiations, are today undergoing erosion. This article analyzes the change of situation between the end of the 20. century and the beginning of the 21. century. Three steps are defined by the author: a 'flux' step with the signature of a huge number of international agreements about non-proliferation and arms control, a stagnation step marked by the difficulties of implementing some of the existing treaties and by the violation by some states of some of them, and a 'reflux' step marked by a freezing up of the bilateral US-Russian disarmament process and a general renouncement of the multilateral arms control concept. (J.S.)

  7. Comparison of upper arm and forearm blood pressure.

    Science.gov (United States)

    Domiano, Kathy L; Hinck, Susan M; Savinske, Debra L; Hope, Kathryn L

    2008-11-01

    The upper arm is the primary site used to obtain a blood pressure measurement (BPM); however, when it is not possible to use the upper arm, the forearm is a commonly used alternate site. This study determines if there is a significant difference between upper arm and forearm BPMs among adults and examines the relationship of participant characteristics to the BPM difference. A convenience sample was recruited from a low-income, independent-living, 104-apartment complex in the Midwest. Of the 106 participants, 64% were female and 89% were White. Ages ranged from 20 to 85 years (M = 50.7). The investigators calculated the BMIs (range = 18 to 42, M = 29.3, SD = 5.4) for the 89% (n = 94) of participants who reported their weight. The forearm tended to have higher BPMs than the upper arm (M difference = 4.0 mm Hg systolic, 2.3 mm Hg diastolic). However, site differences were greatest for men, obese adults, and middle aged (36 to 65) adults.

  8. Robotic arm

    Science.gov (United States)

    Kwech, Horst

    1989-04-18

    A robotic arm positionable within a nuclear vessel by access through a small diameter opening and having a mounting tube supported within the vessel and mounting a plurality of arm sections for movement lengthwise of the mounting tube as well as for movement out of a window provided in the wall of the mounting tube. An end effector, such as a grinding head or welding element, at an operating end of the robotic arm, can be located and operated within the nuclear vessel through movement derived from six different axes of motion provided by mounting and drive connections between arm sections of the robotic arm. The movements are achieved by operation of remotely-controllable servo motors, all of which are mounted at a control end of the robotic arm to be outside the nuclear vessel.

  9. Attitudes of Dutch Pig Farmers Towards Tail Biting and Tail Docking

    NARCIS (Netherlands)

    Bracke, M.B.M.; Lauwere, de C.C.; Wind, S.M.M.; Zonderland, J.J.

    2013-01-01

    The Dutch policy objective of a fully sustainable livestock sector without mutilations by 2023 is not compatible with the routine practice of tail docking to minimize the risk of tail biting. To examine farmer attitudes towards docking, a telephone survey was conducted among 487 conventional and 33

  10. Fluorometric and molecular docking investigation on the binding characteristics of SB202190 to human serum albumin

    International Nuclear Information System (INIS)

    Nasruddin, Ahmad N.; Feroz, Shevin R.; Mukarram, Abdul K.; Mohamad, Saharuddin B.; Tayyab, Saad

    2016-01-01

    The interaction of SB202190, a p38 mitogen-activated protein kinase inhibitor with the main drug transporter in human circulation, human serum albumin (HSA) was studied using fluorescence spectroscopy and in silico docking methods. The association constant, K a of the binding reaction was determined to be 3.24±0.07×10 4 M −1 at 25 °C based on fluorescence quenching titration results. The values of enthalpy change and entropy change for the interaction were found as −8.54 kJ mol −1 and 58.01 J mol −1 K −1 , respectively. Both thermodynamic data and docking results suggested the involvement of hydrophobic and van der Waals forces in the complex formation. Three-dimensional fluorescence data of SB202190–HSA complex demonstrated significant changes in the microenvironment around the protein fluorophores upon drug binding. Comparison of HSA thermograms obtained in the absence and the presence of SB202190 suggested improved protein thermal stability upon complexation with the drug. Competitive drug displacement results as well as modeling data concluded the preferred binding site of SB202190 on HSA as Sudlow's site I. - Highlights: • SB202190 interacts with HSA with moderate affinity. • Involvement of hydrophobic and van der Waals forces in SB202190 binding. • SB202190 binding results in microenvironmental changes around fluorophores. • Sudlow's site I is the preferred binding site of SB202190.

  11. Fluorometric and molecular docking investigation on the binding characteristics of SB202190 to human serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Nasruddin, Ahmad N.; Feroz, Shevin R. [Biomolecular Research Group, Biochemistry Programme, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Mukarram, Abdul K. [Bioinformatics Programme, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Mohamad, Saharuddin B. [Bioinformatics Programme, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Centre of Research for Computational Sciences and Informatics for Biology, Bioindustry, Environment, Agriculture and Healthcare, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Tayyab, Saad, E-mail: saadtayyab2004@yahoo.com [Biomolecular Research Group, Biochemistry Programme, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Centre of Research for Computational Sciences and Informatics for Biology, Bioindustry, Environment, Agriculture and Healthcare, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2016-06-15

    The interaction of SB202190, a p38 mitogen-activated protein kinase inhibitor with the main drug transporter in human circulation, human serum albumin (HSA) was studied using fluorescence spectroscopy and in silico docking methods. The association constant, K{sub a} of the binding reaction was determined to be 3.24±0.07×10{sup 4} M{sup −1} at 25 °C based on fluorescence quenching titration results. The values of enthalpy change and entropy change for the interaction were found as −8.54 kJ mol{sup −1} and 58.01 J mol{sup −1} K{sup −1}, respectively. Both thermodynamic data and docking results suggested the involvement of hydrophobic and van der Waals forces in the complex formation. Three-dimensional fluorescence data of SB202190–HSA complex demonstrated significant changes in the microenvironment around the protein fluorophores upon drug binding. Comparison of HSA thermograms obtained in the absence and the presence of SB202190 suggested improved protein thermal stability upon complexation with the drug. Competitive drug displacement results as well as modeling data concluded the preferred binding site of SB202190 on HSA as Sudlow's site I. - Highlights: • SB202190 interacts with HSA with moderate affinity. • Involvement of hydrophobic and van der Waals forces in SB202190 binding. • SB202190 binding results in microenvironmental changes around fluorophores. • Sudlow's site I is the preferred binding site of SB202190.

  12. Beyond arms control? Looking for the lost paradigm..; Au-dela de l'arms control? A la recherche du paradigme perdu..

    Energy Technology Data Exchange (ETDEWEB)

    Dahan, P

    2002-07-01

    Since the tragic events of September 11, 2001, the international relations have become more complex and the arms control concept, born during the cold war and implemented during the 3 last decades is today marking time. Disarmament and non-proliferation, which were the keystones of arms control and international negotiations, are today undergoing erosion. This article analyzes the change of situation between the end of the 20. century and the beginning of the 21. century. Three steps are defined by the author: a 'flux' step with the signature of a huge number of international agreements about non-proliferation and arms control, a stagnation step marked by the difficulties of implementing some of the existing treaties and by the violation by some states of some of them, and a 'reflux' step marked by a freezing up of the bilateral US-Russian disarmament process and a general renouncement of the multilateral arms control concept. (J.S.)

  13. New palladium(II) and platinum(II) 5,5-diethylbarbiturate complexes with 2-phenylpyridine, 2,2'-bipyridine and 2,2'-dipyridylamine: synthesis, structures, DNA binding, molecular docking, cellular uptake, antioxidant activity and cytotoxicity.

    Science.gov (United States)

    Icsel, Ceyda; Yilmaz, Veysel T; Kaya, Yunus; Samli, Hale; Harrison, William T A; Buyukgungor, Orhan

    2015-04-21

    Novel palladium(ii) and platinum(ii) complexes of 5,5-diethylbarbiturate (barb) with 2-phenylpyridine (Hppy), 2,2'-bipyridine (bpy) and 2,2'-dipyridylamine (dpya) have been prepared and characterized by elemental analysis, IR, UV-Vis, NMR and ESI-MS. Single-crystal diffraction measurements show that complex consists of binuclear [Pd2(μ-barb-κN,O)2(ppy-κN,C)2] moieties, while complexes are mononuclear, [M(barb-κN)2(L-κN,N')] (L = bpy or dpya). has a composition of [Pt(dpya-κN,N')2][Ag(barb-κN)2]2·4H2O and was assumed to have a structure of [Pt(barb-κN)(Hppy-κN)(ppy-κN,C)]·3H2O. The complexes were found to exhibit significant DNA binding affinity by a non-covalent binding mode, in accordance with molecular docking studies. In addition, complexes and displayed strong binding with supercoiled pUC19 plasmid DNA. Cellular uptake studies were performed to assess the subcellular localization of the selected complexes. A moderate radical scavenging activity of and was confirmed by DPPH and ABTS tests. Complexes , , and showed selectivity against HT-29 (colon) cell line.

  14. Synthesis, structures, nuclease activity, cytotoxicity, DFT and molecular docking studies of two nitrato bridged homodinuclear (Cu-Cu, Zn-Zn) complexes containing 2,2'-bipyridine and a chalcone derivative.

    Science.gov (United States)

    Gaur, Ruchi; Choubey, Diksha Kumari; Usman, Mohammad; Ward, Benzamin D; Roy, Jagat Kumar; Mishra, Lallan

    2017-08-01

    Nitrato briged dinuclear complexes of type [Cu 2 (L) 2 (bpy) 2 (NO 3 )](NO 3 )·4H 2 O, 1 and [Zn 2 (L) 2 (bpy) 2 (NO 3 )](NO 3 )·4H 2 O, 2 (L=deprotonated form of free ligand LH, [1-(2-hydroxyphenyl)-3-(9-anthracenyl) propenone; bpy=2,2'bipyridine] are synthesized and characterized using a battery of physicochemical techniques and X-ray crystallography. A distorted square pyramidal geometry is assigned to them with N 2 O 3 coordination core around the metal ion. The co-ligand L binds the metal ions through its O,O' atoms in anti-syn mode. The metal centers in complexes 1 and 2 are separated via bridging nitrato group at a distance of 6.073Å and 5.635Å respectively. Their structures and absorption spectra are supported by the computational studies using density functional theory (DFT) and TD-DFT. Both complexes exhibit nuclease activity and cleave supercoiled (form I) DNA. The complex 1 preferentially binds major groove of DNA and follows an oxidative pathway whereas complex 2 binds with minor groove of DNA via hydrolytic pathway. Both complexes inhibit topoisomerase I relaxation activity with IC 50 values of 7 and 35μM. Molecular docking studies support the groove binding and topoisomerase I binding of the complexes. The complex 1 showed a significant cytotoxicity against HeLa cell lines (a cervical cancer cell lines) in vitro with IC 50 value calculated as 2.9±0.021μM as compared to 28.2±0. 044μΜ for complex 2. Complex 2 induces the cell apoptosis at a later-stage as compared to complex 1. The cell apoptosis and topoisomerase inhibition by complexes enable them to be potential candidates as future anticancer drugs. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. GPCR-Bench: A Benchmarking Set and Practitioners' Guide for G Protein-Coupled Receptor Docking.

    Science.gov (United States)

    Weiss, Dahlia R; Bortolato, Andrea; Tehan, Benjamin; Mason, Jonathan S

    2016-04-25

    Virtual screening is routinely used to discover new ligands and in particular new ligand chemotypes for G protein-coupled receptors (GPCRs). To prepare for a virtual screen, we often tailor a docking protocol that will enable us to select the best candidates for further screening. To aid this, we created GPCR-Bench, a publically available docking benchmarking set in the spirit of the DUD and DUD-E reference data sets for validation studies, containing 25 nonredundant high-resolution GPCR costructures with an accompanying set of diverse ligands and computational decoy molecules for each target. Benchmarking sets are often used to compare docking protocols; however, it is important to evaluate docking methods not by "retrospective" hit rates but by the actual likelihood that they will produce novel prospective hits. Therefore, docking protocols must not only rank active molecules highly but also produce good poses that a chemist will select for purchase and screening. Currently, no simple objective machine-scriptable function exists that can do this; instead, docking hit lists must be subjectively examined in a consistent way to compare between docking methods. We present here a case study highlighting considerations we feel are of importance when evaluating a method, intended to be useful as a practitioners' guide.

  16. Effective screening strategy using ensembled pharmacophore models combined with cascade docking: application to p53-MDM2 interaction inhibitors.

    Science.gov (United States)

    Xue, Xin; Wei, Jin-Lian; Xu, Li-Li; Xi, Mei-Yang; Xu, Xiao-Li; Liu, Fang; Guo, Xiao-Ke; Wang, Lei; Zhang, Xiao-Jin; Zhang, Ming-Ye; Lu, Meng-Chen; Sun, Hao-Peng; You, Qi-Dong

    2013-10-28

    Protein-protein interactions (PPIs) play a crucial role in cellular function and form the backbone of almost all biochemical processes. In recent years, protein-protein interaction inhibitors (PPIIs) have represented a treasure trove of potential new drug targets. Unfortunately, there are few successful drugs of PPIIs on the market. Structure-based pharmacophore (SBP) combined with docking has been demonstrated as a useful Virtual Screening (VS) strategy in drug development projects. However, the combination of target complexity and poor binding affinity prediction has thwarted the application of this strategy in the discovery of PPIIs. Here we report an effective VS strategy on p53-MDM2 PPI. First, we built a SBP model based on p53-MDM2 complex cocrystal structures. The model was then simplified by using a Receptor-Ligand complex-based pharmacophore model considering the critical binding features between MDM2 and its small molecular inhibitors. Cascade docking was subsequently applied to improve the hit rate. Based on this strategy, we performed VS on NCI and SPECS databases and successfully discovered 6 novel compounds from 15 hits with the best, compound 1 (NSC 5359), K(i) = 180 ± 50 nM. These compounds can serve as lead compounds for further optimization.

  17. Next-generation site-directed transgenesis in the malaria vector mosquito Anopheles gambiae: self-docking strains expressing germline-specific phiC31 integrase.

    Directory of Open Access Journals (Sweden)

    Janet M Meredith

    Full Text Available Diseases transmitted by mosquitoes have a devastating impact on global health and the situation is complicated due to difficulties with both existing control measures and the impact of climate change. Genetically modified mosquitoes that are refractory to disease transmission are seen as having great potential in the delivery of novel control strategies. The Streptomyces phage phiC31 integrase system has been successfully adapted for site-directed transgene integration in a range of insects, thus overcoming many limitations due to size constraints and random integration associated with transposon-mediated transformation. Using this technology, we previously published the first site-directed transformation of Anopheles gambiae, the principal vector of human malaria. Mosquitoes were initially engineered to incorporate the phiC31 docking site at a defined genomic location. A second phase of genetic modification then achieved site-directed integration of an anti-malarial effector gene. In the current publication we report improved efficiency and utility of the phiC31 integrase system following the generation of Anopheles gambiae self-docking strains. Four independent strains, with docking sites at known locations on three different chromosome arms, were engineered to express integrase under control of the regulatory regions of the nanos gene from Anopheles gambiae. The resulting protein accumulates in the posterior oocyte to provide integrase activity at the site of germline development. Two self-docking strains, exhibiting significantly different levels of integrase expression, were assessed for site-directed transgene integration and found to demonstrate greatly improved survival and efficiency of transformation. In the fight against malaria, it is imperative to establish a broad repertoire of both anti-malarial effector genes and tissue-specific promoters to regulate their expression, enabling those offering maximum effect with minimum fitness

  18. How well do the substrates KISS the enzyme? Molecular docking program selection for feruloyl esterases

    DEFF Research Database (Denmark)

    Udatha, D. B. R. K. Gupta; Sugaya, Nobuyoshi; Olsson, Lisbeth

    2012-01-01

    Molecular docking is the most commonly used technique in the modern drug discovery process where computational approaches involving docking algorithms are used to dock small molecules into macromolecular target structures. Over the recent years several evaluation studies have been reported...

  19. Robotic arm

    International Nuclear Information System (INIS)

    Kwech, H.

    1989-01-01

    A robotic arm positionable within a nuclear vessel by access through a small diameter opening and having a mounting tube supported within the vessel and mounting a plurality of arm sections for movement lengthwise of the mounting tube as well as for movement out of a window provided in the wall of the mounting tube is disclosed. An end effector, such as a grinding head or welding element, at an operating end of the robotic arm, can be located and operated within the nuclear vessel through movement derived from six different axes of motion provided by mounting and drive connections between arm sections of the robotic arm. The movements are achieved by operation of remotely-controllable servo motors, all of which are mounted at a control end of the robotic arm to be outside the nuclear vessel. 23 figs

  20. Rosetta FlexPepDock ab-initio: simultaneous folding, docking and refinement of peptides onto their receptors.

    Science.gov (United States)

    Raveh, Barak; London, Nir; Zimmerman, Lior; Schueler-Furman, Ora

    2011-04-29

    Flexible peptides that fold upon binding to another protein molecule mediate a large number of regulatory interactions in the living cell and may provide highly specific recognition modules. We present Rosetta FlexPepDock ab-initio, a protocol for simultaneous docking and de-novo folding of peptides, starting from an approximate specification of the peptide binding site. Using the Rosetta fragments library and a coarse-grained structural representation of the peptide and the receptor, FlexPepDock ab-initio samples efficiently and simultaneously the space of possible peptide backbone conformations and rigid-body orientations over the receptor surface of a given binding site. The subsequent all-atom refinement of the coarse-grained models includes full side-chain modeling of both the receptor and the peptide, resulting in high-resolution models in which key side-chain interactions are recapitulated. The protocol was applied to a benchmark in which peptides were modeled over receptors in either their bound backbone conformations or in their free, unbound form. Near-native peptide conformations were identified in 18/26 of the bound cases and 7/14 of the unbound cases. The protocol performs well on peptides from various classes of secondary structures, including coiled peptides with unusual turns and kinks. The results presented here significantly extend the scope of state-of-the-art methods for high-resolution peptide modeling, which can now be applied to a wide variety of peptide-protein interactions where no prior information about the peptide backbone conformation is available, enabling detailed structure-based studies and manipulation of those interactions. © 2011 Raveh et al.

  1. Theory and Applications of Covalent Docking in Drug Discovery: Merits and Pitfalls

    Directory of Open Access Journals (Sweden)

    Hezekiel Mathambo Kumalo

    2015-01-01

    Full Text Available he present art of drug discovery and design of new drugs is based on suicidal irreversible inhibitors. Covalent inhibition is the strategy that is used to achieve irreversible inhibition. Irreversible inhibitors interact with their targets in a time-dependent fashion, and the reaction proceeds to completion rather than to equilibrium. Covalent inhibitors possessed some significant advantages over non-covalent inhibitors such as covalent warheads can target rare, non-conserved residue of a particular target protein and thus led to development of highly selective inhibitors, covalent inhibitors can be effective in targeting proteins with shallow binding cleavage which will led to development of novel inhibitors with increased potency than non-covalent inhibitors. Several computational approaches have been developed to simulate covalent interactions; however, this is still a challenging area to explore. Covalent molecular docking has been recently implemented in the computer-aided drug design workflows to describe covalent interactions between inhibitors and biological targets. In this review we highlight: (i covalent interactions in biomolecular systems; (ii the mathematical framework of covalent molecular docking; (iii implementation of covalent docking protocol in drug design workflows; (iv applications covalent docking: case studies and (v shortcomings and future perspectives of covalent docking. To the best of our knowledge; this review is the first account that highlights different aspects of covalent docking with its merits and pitfalls. We believe that the method and applications highlighted in this study will help future efforts towards the design of irreversible inhibitors.

  2. Transcriptional Dysregulation of MYC Reveals Common Enhancer-Docking Mechanism

    Directory of Open Access Journals (Sweden)

    Jurian Schuijers

    2018-04-01

    Full Text Available Summary: Transcriptional dysregulation of the MYC oncogene is among the most frequent events in aggressive tumor cells, and this is generally accomplished by acquisition of a super-enhancer somewhere within the 2.8 Mb TAD where MYC resides. We find that these diverse cancer-specific super-enhancers, differing in size and location, interact with the MYC gene through a common and conserved CTCF binding site located 2 kb upstream of the MYC promoter. Genetic perturbation of this enhancer-docking site in tumor cells reduces CTCF binding, super-enhancer interaction, MYC gene expression, and cell proliferation. CTCF binding is highly sensitive to DNA methylation, and this enhancer-docking site, which is hypomethylated in diverse cancers, can be inactivated through epigenetic editing with dCas9-DNMT. Similar enhancer-docking sites occur at other genes, including genes with prominent roles in multiple cancers, suggesting a mechanism by which tumor cell oncogenes can generally hijack enhancers. These results provide insights into mechanisms that allow a single target gene to be regulated by diverse enhancer elements in different cell types. : Schuijers et al. show that a conserved CTCF site at the promoter of the MYC oncogene plays an important role in enhancer-promoter looping with tumor-specific super-enhancers. Perturbation of this site provides a potential therapeutic vulnerability. Keywords: gene regulation, super-enhancers, chromosome structure, enhancer docking

  3. Remote docking apparatus

    International Nuclear Information System (INIS)

    Dent, T.H.; Sumpman, W.C.; Wilhelm, J.J.

    1981-01-01

    The remote docking apparatus comprises a support plate with locking devices mounted thereon. The locking devices are capable of being inserted into tubular members for suspending the support plate therefrom. A vertical member is attached to the support plate with an attachment mechanism attached to the vertical member. A remote access manipulator is capable of being attached to the attachment mechanism so that the vertical member can position the remote access manipulator so that the remote access manipulator can be initially attached to the tubular members in a well defined manner

  4. Identification of new 2,5-diketopiperazine derivatives as simultaneous effective inhibitors of αβ-tubulin and BCRP proteins: Molecular docking, Structure-Activity Relationships and virtual consensus docking studies

    Science.gov (United States)

    Fani, Najmeh; Sattarinezhad, Elham; Bordbar, Abdol-Khalegh

    2017-06-01

    In the first part of this paper, docking method was employed in order to study the binding mechanism of breast cancer resistance protein (BCRP) with a group of previously synthesized TPS-A derivatives which known as potent inhibitors of this protein to get insight into drug binding site of BCRP and to explore structure-activity relationship of these compounds. Molecular docking results showed that most of these compounds bind in the binding site of BCRP at the interface between the membrane and outer environment. In the second part, a group of designed TPS-A derivatives which showed good binding energies in the binding site of αβ-tubulin in the previous study were chosen to study their binding energies in the binding site of BCRP to investigate their simultaneous inhibitory effect on both αβ-tubulin and BCRP. The results showed that all of these compounds bind to the binding site of BCRP with relatively suitable binding energies and therefore could be potential inhibitors of both αβ-tubulin and BCRP proteins. Finally, virtual consensus docking method was utilized with the aim of design of new 2,5-diketopiperazine derivatives with significant inhibitory effect on both αβ-tubulin and BCRP proteins. For this purpose binding energies of a library of 2,5-diketopiperazine derivatives in the binding sites of αβ-tubulin and BCRP was investigated by using AutoDock and AutoDock vina tools. Molecular docking results revealed that a group of 36 compounds among them exhibit strong anti-tubulin and anti-BCRP activity.

  5. Improved Harmony Search Algorithm for Truck Scheduling Problem in Multiple-Door Cross-Docking Systems

    Directory of Open Access Journals (Sweden)

    Zhanzhong Wang

    2018-01-01

    Full Text Available The key of realizing the cross docking is to design the joint of inbound trucks and outbound trucks, so a proper sequence of trucks will make the cross-docking system much more efficient and need less makespan. A cross-docking system is proposed with multiple receiving and shipping dock doors. The objective is to find the best door assignments and the sequences of trucks in the principle of products distribution to minimize the total makespan of cross docking. To solve the problem that is regarded as a mixed integer linear programming (MILP model, three metaheuristics, namely, harmony search (HS, improved harmony search (IHS, and genetic algorithm (GA, are proposed. Furthermore, the fixed parameters are optimized by Taguchi experiments to improve the accuracy of solutions further. Finally, several numerical examples are put forward to evaluate the performances of proposed algorithms.

  6. BioShaDock: a community driven bioinformatics shared Docker-based tools registry.

    Science.gov (United States)

    Moreews, François; Sallou, Olivier; Ménager, Hervé; Le Bras, Yvan; Monjeaud, Cyril; Blanchet, Christophe; Collin, Olivier

    2015-01-01

    Linux container technologies, as represented by Docker, provide an alternative to complex and time-consuming installation processes needed for scientific software. The ease of deployment and the process isolation they enable, as well as the reproducibility they permit across environments and versions, are among the qualities that make them interesting candidates for the construction of bioinformatic infrastructures, at any scale from single workstations to high throughput computing architectures. The Docker Hub is a public registry which can be used to distribute bioinformatic software as Docker images. However, its lack of curation and its genericity make it difficult for a bioinformatics user to find the most appropriate images needed. BioShaDock is a bioinformatics-focused Docker registry, which provides a local and fully controlled environment to build and publish bioinformatic software as portable Docker images. It provides a number of improvements over the base Docker registry on authentication and permissions management, that enable its integration in existing bioinformatic infrastructures such as computing platforms. The metadata associated with the registered images are domain-centric, including for instance concepts defined in the EDAM ontology, a shared and structured vocabulary of commonly used terms in bioinformatics. The registry also includes user defined tags to facilitate its discovery, as well as a link to the tool description in the ELIXIR registry if it already exists. If it does not, the BioShaDock registry will synchronize with the registry to create a new description in the Elixir registry, based on the BioShaDock entry metadata. This link will help users get more information on the tool such as its EDAM operations, input and output types. This allows integration with the ELIXIR Tools and Data Services Registry, thus providing the appropriate visibility of such images to the bioinformatics community.

  7. Docking Studies of Binding of Ethambutol to the C-Terminal Domain of the Arabinosyltransferase from Mycobacterium tuberculosis

    Directory of Open Access Journals (Sweden)

    Guillermo Salgado-Moran

    2013-01-01

    Full Text Available The binding of ethambutol to the C-terminal domain of the arabinosyltransferase from Mycobacterium tuberculosis was studied. The analysis was performed using an in silico approach in order to find out, by docking calculations and energy descriptors, the conformer of Ethambutol that forms the most stable complex with the C-terminal domain of arabinosyltransferase. The complex shows that location of the Ethambutol coincides with the cocrystallization ligand position and that amino acid residues ASH1051, ASN740, ASP1052, and ARG1055 should be critical in the binding of Ethambutol to C-terminal domain EmbC.

  8. Synthesis, characterization and biological application of four novel metal-Schiff base complexes derived from allylamine and their interactions with human serum albumin: Experimental, molecular docking and ONIOM computational study.

    Science.gov (United States)

    Kazemi, Zahra; Rudbari, Hadi Amiri; Sahihi, Mehdi; Mirkhani, Valiollah; Moghadam, Majid; Tangestaninejad, Shahram; Mohammadpoor-Baltork, Iraj; Gharaghani, Sajjad

    2016-09-01

    Novel metal-based drug candidate including VOL2, NiL2, CuL2 and PdL2 have been synthesized from 2-hydroxy-1-allyliminomethyl-naphthalen ligand and have been characterized by means of elemental analysis (CHN), FT-IR and UV-vis spectroscopies. In addition, (1)H and (13)C NMR techniques were employed for characterization of the PdL2 complex. Single-crystal X-ray diffraction technique was utilized to characterise the structure of the complexes. The Cu(II), Ni(II) and Pd(II) complexes show a square planar trans-coordination geometry, while in the VOL2, the vanadium center has a distorted tetragonal pyramidal N2O3 coordination sphere. The HSA-binding was also determined, using fluorescence quenching, UV-vis spectroscopy, and circular dichroism (CD) titration method. The obtained results revealed that the HSA affinity for binding the synthesized compounds follows as PdL2>CuL2>VOL2>NiL2, indicating the effect of metal ion on binding constant. The distance between these compounds and HSA was obtained based on the Förster's theory of non-radiative energy transfer. Furthermore, computational methods including molecular docking and our Own N-layered Integrated molecular Orbital and molecular Mechanics (ONIOM) were carried out to investigate the HSA-binding of the compounds. Molecular docking calculation indicated the existence of hydrogen bond between amino acid residues of HSA and all synthesized compounds. The formation of the hydrogen bond in the HSA-compound systems leads to their stabilization. The ONIOM method was utilized in order to investigate HSA binding of compounds more precisely in which molecular mechanics method (UFF) and semi empirical method (PM6) were selected for the low layer and the high layer, respectively. The results show that the structural parameters of the compounds changed along with binding to HSA, indicating the strong interaction between the compounds and HSA. The value of binding constant depends on the extent of the resultant changes. This

  9. The spiral arms of the Milky Way: The relative location of each different arm tracer within a typical spiral arm width

    Energy Technology Data Exchange (ETDEWEB)

    Vallée, Jacques P., E-mail: jacques.vallee@nrc-cnrc.gc.ca [National Research Council Canada, National Science Infrastructure portfolio, Herzberg Astronomy and Astrophysics, 5071 West Saanich Road, Victoria, B.C., V9E 2E7 (Canada)

    2014-07-01

    From the Sun's location in the Galactic disk, different arm tracers (CO, H I, hot dust, etc.) have been employed to locate a tangent to each spiral arm. Using all various and different observed spiral arm tracers (as published elsewhere), we embark on a new goal, namely the statistical analysis of these published data (data mining) to statistically compute the mean location of each spiral arm tracer. We show for a typical arm cross-cut, a separation of 400 pc between the mid-arm and the dust lane (at the inner edge of the arm, toward the Galactic center). Are some arms major and others minor? Separating arms into two sets, as suggested by some, we find the same arm widths between the two sets. Our interpretation is that we live in a multiple (four-arm) spiral (logarithmic) pattern (around a pitch angle of 12°) for the stars and gas in the Milky Way, with a sizable interarm separation (around 3 kpc) at the Sun's location and the same arm width for each arm (near 400 pc from mid-arm to dust lane).

  10. The spiral arms of the Milky Way: The relative location of each different arm tracer within a typical spiral arm width

    International Nuclear Information System (INIS)

    Vallée, Jacques P.

    2014-01-01

    From the Sun's location in the Galactic disk, different arm tracers (CO, H I, hot dust, etc.) have been employed to locate a tangent to each spiral arm. Using all various and different observed spiral arm tracers (as published elsewhere), we embark on a new goal, namely the statistical analysis of these published data (data mining) to statistically compute the mean location of each spiral arm tracer. We show for a typical arm cross-cut, a separation of 400 pc between the mid-arm and the dust lane (at the inner edge of the arm, toward the Galactic center). Are some arms major and others minor? Separating arms into two sets, as suggested by some, we find the same arm widths between the two sets. Our interpretation is that we live in a multiple (four-arm) spiral (logarithmic) pattern (around a pitch angle of 12°) for the stars and gas in the Milky Way, with a sizable interarm separation (around 3 kpc) at the Sun's location and the same arm width for each arm (near 400 pc from mid-arm to dust lane).

  11. Discovery of potential cholesterol esterase inhibitors using in silico docking studies

    Directory of Open Access Journals (Sweden)

    Thirumalaisamy Sivashanmugam

    2013-08-01

    Full Text Available New drug discovery is considered broadly in terms of two kinds of investiga-tional activities such as exploration and exploitation. This study deals with the evaluation of the cholesterol esterase inhibitory activity of flavonoids apigenin, biochanin, curcumin, diosmetin, epipervilline, glycitein, okanin, rhamnazin and tangeritin using in silico docking studies. In silico docking studies were carried out using AutoDock 4.2, based on the Lamarckian genetic algorithm principle. The results showed that all the selected flavonoids showed binding energy ranging between -7.08 kcal/mol to -5.64 kcal/mol when compared with that of the standard compound gallic acid (-4.11 kcal/mol. Intermolecular energy (-9.13 kcal/mol to -7.09 kcal/mol and inhibition constant (6.48 µM to 73.18 µM of the ligands also coincide with the binding energy. All the selected flavonoids contributed cholesterol esterase inhibitory activity, these molecular docking analyses could lead to the further develop-ment of potent cholesterol esterase inhibitors for the treatment of obesity.

  12. Octopus vulgaris uses visual information to determine the location of its arm.

    Science.gov (United States)

    Gutnick, Tamar; Byrne, Ruth A; Hochner, Binyamin; Kuba, Michael

    2011-03-22

    Octopuses are intelligent, soft-bodied animals with keen senses that perform reliably in a variety of visual and tactile learning tasks. However, researchers have found them disappointing in that they consistently fail in operant tasks that require them to combine central nervous system reward information with visual and peripheral knowledge of the location of their arms. Wells claimed that in order to filter and integrate an abundance of multisensory inputs that might inform the animal of the position of a single arm, octopuses would need an exceptional computing mechanism, and "There is no evidence that such a system exists in Octopus, or in any other soft bodied animal." Recent electrophysiological experiments, which found no clear somatotopic organization in the higher motor centers, support this claim. We developed a three-choice maze that required an octopus to use a single arm to reach a visually marked goal compartment. Using this operant task, we show for the first time that Octopus vulgaris is capable of guiding a single arm in a complex movement to a location. Thus, we claim that octopuses can combine peripheral arm location information with visual input to control goal-directed complex movements. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Domain requirements for the Dock adapter protein in growth- cone signaling.

    Science.gov (United States)

    Rao, Y; Zipursky, S L

    1998-03-03

    Tyrosine phosphorylation has been implicated in growth-cone guidance through genetic, biochemical, and pharmacological studies. Adapter proteins containing src homology 2 (SH2) domains and src homology 3 (SH3) domains provide a means of linking guidance signaling through phosphotyrosine to downstream effectors regulating growth-cone motility. The Drosophila adapter, Dreadlocks (Dock), the homolog of mammalian Nck containing three N-terminal SH3 domains and a single SH2 domain, is highly specialized for growth-cone guidance. In this paper, we demonstrate that Dock can couple signals in either an SH2-dependent or an SH2-independent fashion in photoreceptor (R cell) growth cones, and that Dock displays different domain requirements in different neurons.

  14. Cryo-scanning electron microscopy investigation of the Octopus Vulgaris arm structures for the design of an octopus-like arm artefact.

    Science.gov (United States)

    Minnocci, Antonio; Cianchetti, Matteo; Mazzolai, Barbara; Sebastiani, Luca; Laschi, Cecilia

    2015-12-01

    Octopus vulgaris is a cephalopod of the Octopodidae family. It has four pairs of arms and two rows of suckers which perform many functions, including bending and elongation. For this reason the octopus was chosen as model to develop a new generation of soft-body robots. In order to explain some of the fine structures of the octopus arm in relation to its specific ability, we examined the external and internal structures of O. vulgaris arms in a frozen-hydrated state using cryo-scanning electron microscopy. The arms showed skin with a very complex design that is useful to elongation, and a pore pattern distribution on their surface which is functional to cutaneous oxygen uptake. The analysis of freeze-fractured frozen-hydrated arm samples allowed us to describe the developmental differences in the relative proportion of the areas of axial nerve cord, intrinsic and extrinsic musculature, in relation to the growth of the arms and of the increase in functional capability. In the suckers, we analyzed the shedding mechanisms in the outer part of the infundibulum and described the outer and inner characteristics of the denticles, showing in detail their pore system, which is fundamental for their ability to explore the environment. These results are discussed by considering their possible application in the design of new octopus-like artefacts, which will be able to take advantage of some of these ultrastructure characteristics and achieve advanced bioinspired functionalities. © 2015 Wiley Periodicals, Inc.

  15. Rendezvous and Docking Technology for Space Flight%空间交会对接技术

    Institute of Scientific and Technical Information of China (English)

    郑永煌

    2011-01-01

    空间交会对接是载人航天工程非常重要的基本技术.在介绍空间交会对接技术发展历史和中国首次交会对接取得圆满成功的基础上,阐述了空间交会对接技术的基本概念、技术难点、控制方式和交会对接过程,并着重介绍了四种交会对接机构的特点.最后介绍了中国首次交会对接任务规划、天宫一号目标飞行器和神舟八号飞船的特点以及两次空间交会对接过程.%Rendezvous and Docking is a very important basic technology of Manned Space Engineering. Firstly, rendezvous and docking technology development history is provided, and the significance of China first rendezvous and docking success is presented. Secondly, the basic conception, technology difficulty, control mode and docking process of rendezvous and docking technology are explained.Thirdly, four docking mechanism characteristics are special provided. Finally, China first rendezvous and docking mission planning,characteristic of Tiangong-1 target flight vehicle and Shenzhou-8 spacecraft and two rendezvous and docking successes are presented.

  16. α-SNAP prevents docking of the acrosome during sperm exocytosis because it sequesters monomeric syntaxin.

    Directory of Open Access Journals (Sweden)

    Facundo Rodríguez

    Full Text Available α-SNAP has an essential role in membrane fusion that consists of bridging cis SNARE complexes to NSF. α-SNAP stimulates NSF, which releases itself, α-SNAP, and individual SNAREs that subsequently re-engage in the trans arrays indispensable for fusion. α-SNAP also binds monomeric syntaxin and NSF disengages the α-SNAP/syntaxin dimer. Here, we examine why recombinant α-SNAP blocks secretion in permeabilized human sperm despite the fact that the endogenous protein is essential for membrane fusion. The only mammalian organism with a genetically modified α-SNAP is the hyh mouse strain, which bears a M105I point mutation; males are subfertile due to defective sperm exocytosis. We report here that recombinant α-SNAP-M105I has greater affinity for the cytosolic portion of immunoprecipitated syntaxin than the wild type protein and in consequence NSF is less efficient in releasing the mutant. α-SNAP-M105I is a more potent sperm exocytosis blocker than the wild type and requires higher concentrations of NSF to rescue its effect. Unlike other fusion scenarios where SNAREs are subjected to an assembly/disassembly cycle, the fusion machinery in sperm is tuned so that SNAREs progress uni-directionally from a cis configuration in resting cells to monomeric and subsequently trans arrays in cells challenged with exocytosis inducers. By means of functional and indirect immunofluorescense assays, we show that recombinant α-SNAPs--wild type and M105I--inhibit exocytosis because they bind monomeric syntaxin and prevent this SNARE from assembling with its cognates in trans. Sequestration of free syntaxin impedes docking of the acrosome to the plasma membrane assessed by transmission electron microscopy. The N-terminal deletion mutant α-SNAP-(160-295, unable to bind syntaxin, affects neither docking nor secretion. The implications of this study are twofold: our findings explain the fertility defect of hyh mice and indicate that assembly of SNAREs in trans

  17. Methodology for Developing a Probabilistic Risk Assessment Model of Spacecraft Rendezvous and Dockings

    Science.gov (United States)

    Farnham, Steven J., II; Garza, Joel, Jr.; Castillo, Theresa M.; Lutomski, Michael

    2011-01-01

    In 2007 NASA was preparing to send two new visiting vehicles carrying logistics and propellant to the International Space Station (ISS). These new vehicles were the European Space Agency s (ESA) Automated Transfer Vehicle (ATV), the Jules Verne, and the Japanese Aerospace and Explorations Agency s (JAXA) H-II Transfer Vehicle (HTV). The ISS Program wanted to quantify the increased risk to the ISS from these visiting vehicles. At the time, only the Shuttle, the Soyuz, and the Progress vehicles rendezvoused and docked to the ISS. The increased risk to the ISS was from an increase in vehicle traffic, thereby, increasing the potential catastrophic collision during the rendezvous and the docking or berthing of the spacecraft to the ISS. A universal method of evaluating the risk of rendezvous and docking or berthing was created by the ISS s Risk Team to accommodate the increasing number of rendezvous and docking or berthing operations due to the increasing number of different spacecraft, as well as the future arrival of commercial spacecraft. Before the first docking attempt of ESA's ATV and JAXA's HTV to the ISS, a probabilistic risk model was developed to quantitatively calculate the risk of collision of each spacecraft with the ISS. The 5 rendezvous and docking risk models (Soyuz, Progress, Shuttle, ATV, and HTV) have been used to build and refine the modeling methodology for rendezvous and docking of spacecrafts. This risk modeling methodology will be NASA s basis for evaluating the addition of future ISS visiting spacecrafts hazards, including SpaceX s Dragon, Orbital Science s Cygnus, and NASA s own Orion spacecraft. This paper will describe the methodology used for developing a visiting vehicle risk model.

  18. Pharmacophore Modeling and Molecular Docking Studies on Pinus roxburghii as a Target for Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Pawan Kaushik

    2014-01-01

    Full Text Available The present study attempts to establish a relationship between ethnopharmacological claims and bioactive constituents present in Pinus roxburghii against all possible targets for diabetes through molecular docking and to develop a pharmacophore model for the active target. The process of molecular docking involves study of different bonding modes of one ligand with active cavities of target receptors protein tyrosine phosphatase 1-beta (PTP-1β, dipeptidyl peptidase-IV (DPP-IV, aldose reductase (AR, and insulin receptor (IR with help of docking software Molegro virtual docker (MVD. From the results of docking score values on different receptors for antidiabetic activity, it is observed that constituents, namely, secoisoresinol, pinoresinol, and cedeodarin, showed the best docking results on almost all the receptors, while the most significant results were observed on AR. Then, LigandScout was applied to develop a pharmacophore model for active target. LigandScout revealed that 2 hydrogen bond donors pointing towards Tyr 48 and His 110 are a major requirement of the pharmacophore generated. In our molecular docking studies, the active constituent, secoisoresinol, has also shown hydrogen bonding with His 110 residue which is a part of the pharmacophore. The docking results have given better insights into the development of better aldose reductase inhibitor so as to treat diabetes related secondary complications.

  19. Human and server docking prediction for CAPRI round 30-35 using LZerD with combined scoring functions.

    Science.gov (United States)

    Peterson, Lenna X; Kim, Hyungrae; Esquivel-Rodriguez, Juan; Roy, Amitava; Han, Xusi; Shin, Woong-Hee; Zhang, Jian; Terashi, Genki; Lee, Matt; Kihara, Daisuke

    2017-03-01

    We report the performance of protein-protein docking predictions by our group for recent rounds of the Critical Assessment of Prediction of Interactions (CAPRI), a community-wide assessment of state-of-the-art docking methods. Our prediction procedure uses a protein-protein docking program named LZerD developed in our group. LZerD represents a protein surface with 3D Zernike descriptors (3DZD), which are based on a mathematical series expansion of a 3D function. The appropriate soft representation of protein surface with 3DZD makes the method more tolerant to conformational change of proteins upon docking, which adds an advantage for unbound docking. Docking was guided by interface residue prediction performed with BindML and cons-PPISP as well as literature information when available. The generated docking models were ranked by a combination of scoring functions, including PRESCO, which evaluates the native-likeness of residues' spatial environments in structure models. First, we discuss the overall performance of our group in the CAPRI prediction rounds and investigate the reasons for unsuccessful cases. Then, we examine the performance of several knowledge-based scoring functions and their combinations for ranking docking models. It was found that the quality of a pool of docking models generated by LZerD, that is whether or not the pool includes near-native models, can be predicted by the correlation of multiple scores. Although the current analysis used docking models generated by LZerD, findings on scoring functions are expected to be universally applicable to other docking methods. Proteins 2017; 85:513-527. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  20. In vitro study on binding interaction of quinapril with bovine serum albumin (BSA) using multi-spectroscopic and molecular docking methods.

    Science.gov (United States)

    Shi, Jie-Hua; Pan, Dong-Qi; Jiang, Min; Liu, Ting-Ting; Wang, Qi

    2017-08-01

    The binding interaction between quinapril (QNPL) and bovine serum albumin (BSA) in vitro has been investigated using UV absorption spectroscopy, steady-state fluorescence spectroscopic, synchronous fluorescence spectroscopy, 3D fluorescence spectroscopy, Fourier transform infrared spectroscopy, circular dichroism, and molecular docking methods for obtaining the binding information of QNPL with BSA. The experimental results confirm that the quenching mechanism of the intrinsic fluorescence of BSA induced by QNPL is static quenching based on the decrease in the quenching constants of BSA in the presence of QNPL with the increase in temperature and the quenching rates of BSA larger than 10 10  L mol -1  s -1 , indicating forming QNPL-BSA complex through the intermolecular binding interaction. The binding constant for the QNPL-BSA complex is in the order of 10 5  M -1 , indicating there is stronger binding interaction of QNPL with BSA. The analysis of thermodynamic parameters together with molecular docking study reveal that the main binding forces in the binding process of QNPL with BSA are van der Waal's forces and hydrogen bonding interaction. And, the binding interaction of BSA with QNPL is an enthalpy-driven process. Based on Förster resonance energy transfer, the binding distance between QNPL and BSA is calculated to be 2.76 nm. The results of the competitive binding experiments and molecular docking confirm that QNPL binds to sub-domain IIA (site I) of BSA. It is confirmed there is a slight change in the conformation of BSA after binding QNPL, but BSA still retains its secondary structure α-helicity.

  1. Na(+),K (+)-ATPase as a docking station: protein-protein complexes of the Na(+),K (+)-ATPase.

    Science.gov (United States)

    Reinhard, Linda; Tidow, Henning; Clausen, Michael J; Nissen, Poul

    2013-01-01

    The Na(+),K(+)-ATPase, or sodium pump, is well known for its role in ion transport across the plasma membrane of animal cells. It carries out the transport of Na(+) ions out of the cell and of K(+) ions into the cell and thus maintains electrolyte and fluid balance. In addition to the fundamental ion-pumping function of the Na(+),K(+)-ATPase, recent work has suggested additional roles for Na(+),K(+)-ATPase in signal transduction and biomembrane structure. Several signaling pathways have been found to involve Na(+),K(+)-ATPase, which serves as a docking station for a fast-growing number of protein interaction partners. In this review, we focus on Na(+),K(+)-ATPase as a signal transducer, but also briefly discuss other Na(+),K(+)-ATPase protein-protein interactions, providing a comprehensive overview of the diverse signaling functions ascribed to this well-known enzyme.

  2. The Binding of Four Licorice Flavonoids to Bovine Serum Albumin by Multi-Spectroscopic and Molecular Docking Methods: Structure-Affinity Relationship

    Science.gov (United States)

    Hou, J.; Liang, Q.; Shao, S.

    2017-03-01

    Flavanones are the main compound of licorice, and the C'-4 position substitution is a significant structural feature for their biological activity. The ability of three selected flavanones (liquiritigenin, liquiritin, and liquiritin apioside) bearing different substituents (hydroxyl groups, glucose, and glucose-apiose sugar moiety) at the C'-4 position and a chalcone ( isoliquiritigenin, an isomer of liquiritigenin) to bind bovine serum albumin (BSA) was studied by multispectroscopic and molecular docking methods under physiological conditions. The binding mechanism of fl avonoids to BSA can be explained by the formation of a flavonoids-BSA complex, and the binding affinity is the strongest for isoliquiritigenin, followed by liquiritin apioside, liquiritin, and liquiritigenin. The thermodynamic analysis and the molecular docking indicated that the interaction between flavonoids and BSA was dominated by the hydrophobic force and hydrogen bonds. The competitive experiments as well as the molecular docking results suggested the most possible binding site of licorice flavonoids on BSA at subdomain IIA. These results revealed that the basic skeleton structure and the substituents at the C'-4 position of flavanones significantly affect the structure-affinity relationships of the licorice flavonoid binding to BSA.

  3. Boring crustaceans damage polystyrene floats under docks polluting marine waters with microplastic.

    Science.gov (United States)

    Davidson, Timothy M

    2012-09-01

    Boring isopods damage expanded polystyrene floats under docks and, in the process, expel copious numbers of microplastic particles. This paper describes the impacts of boring isopods in aquaculture facilities and docks, quantifies and discusses the implications of these microplastics, and tests if an alternate foam type prevents boring. Floats from aquaculture facilities and docks were heavily damaged by thousands of isopods and their burrows. Multiple sites in Asia, Australia, Panama, and the USA exhibited evidence of isopod damage. One isopod creates thousands of microplastic particles when excavating a burrow; colonies can expel millions of particles. Microplastics similar in size to these particles may facilitate the spread of non-native species or be ingested by organisms causing physical or toxicological harm. Extruded polystyrene inhibited boring, suggesting this foam may prevent damage in the field. These results reveal boring isopods cause widespread damage to docks and are a novel source of microplastic pollution. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Medicinal plant phytochemicals and their inhibitory activities against pancreatic lipase: molecular docking combined with molecular dynamics simulation approach.

    Science.gov (United States)

    Ahmed, Bilal; Ali Ashfaq, Usman; Usman Mirza, Muhammad

    2018-05-01

    Obesity is the worst health risk worldwide, which is linked to a number of diseases. Pancreatic lipase is considered as an affective cause of obesity and can be a major target for controlling the obesity. The present study was designed to find out best phytochemicals against pancreatic lipase through molecular docking combined with molecular dynamics (MD) simulation. For this purpose, a total of 3770 phytochemicals were docked against pancreatic lipase and ranked them on the basis of binding affinity. Finally, 10 molecules (Kushenol K, Rosmarinic acid, Reserpic acid, Munjistin, Leachianone G, Cephamycin C, Arctigenin, 3-O-acetylpadmatin, Geniposide and Obtusin) were selected that showed strong bonding with the pancreatic lipase. MD simulations were performed on top five compounds using AMBER16. The simulated complexes revealed stability and ligands remained inside the binding pocket. This study concluded that these finalised molecules can be used as drug candidate to control obesity.

  5. Evolution of robotic arms.

    Science.gov (United States)

    Moran, Michael E

    2007-01-01

    The foundation of surgical robotics is in the development of the robotic arm. This is a thorough review of the literature on the nature and development of this device with emphasis on surgical applications. We have reviewed the published literature and classified robotic arms by their application: show, industrial application, medical application, etc. There is a definite trend in the manufacture of robotic arms toward more dextrous devices, more degrees-of-freedom, and capabilities beyond the human arm. da Vinci designed the first sophisticated robotic arm in 1495 with four degrees-of-freedom and an analog on-board controller supplying power and programmability. von Kemplen's chess-playing automaton left arm was quite sophisticated. Unimate introduced the first industrial robotic arm in 1961, it has subsequently evolved into the PUMA arm. In 1963 the Rancho arm was designed; Minsky's Tentacle arm appeared in 1968, Scheinman's Stanford arm in 1969, and MIT's Silver arm in 1974. Aird became the first cyborg human with a robotic arm in 1993. In 2000 Miguel Nicolalis redefined possible man-machine capacity in his work on cerebral implantation in owl-monkeys directly interfacing with robotic arms both locally and at a distance. The robotic arm is the end-effector of robotic systems and currently is the hallmark feature of the da Vinci Surgical System making its entrance into surgical application. But, despite the potential advantages of this computer-controlled master-slave system, robotic arms have definite limitations. Ongoing work in robotics has many potential solutions to the drawbacks of current robotic surgical systems.

  6. Effects of tail docking and docking length on neuroanatomical changes in healed tail tips of pigs

    DEFF Research Database (Denmark)

    Herskin, M S; Thodberg, K; Jensen, Henrik Elvang

    2015-01-01

    % (n=19); or leaving 25% (n=11) of the tail length on the pigs. The piglets were docked between day 2 and 4 after birth using a gas-heated apparatus, and were kept under conventional conditions until slaughter at 22 weeks of age, where tails were removed and examined macroscopically and histologically...

  7. Virtual screening for HIV protease inhibitors: a comparison of AutoDock 4 and Vina.

    Directory of Open Access Journals (Sweden)

    Max W Chang

    Full Text Available BACKGROUND: The AutoDock family of software has been widely used in protein-ligand docking research. This study compares AutoDock 4 and AutoDock Vina in the context of virtual screening by using these programs to select compounds active against HIV protease. METHODOLOGY/PRINCIPAL FINDINGS: Both programs were used to rank the members of two chemical libraries, each containing experimentally verified binders to HIV protease. In the case of the NCI Diversity Set II, both AutoDock 4 and Vina were able to select active compounds significantly better than random (AUC = 0.69 and 0.68, respectively; p<0.001. The binding energy predictions were highly correlated in this case, with r = 0.63 and iota = 0.82. For a set of larger, more flexible compounds from the Directory of Universal Decoys, the binding energy predictions were not correlated, and only Vina was able to rank compounds significantly better than random. CONCLUSIONS/SIGNIFICANCE: In ranking smaller molecules with few rotatable bonds, AutoDock 4 and Vina were equally capable, though both exhibited a size-related bias in scoring. However, as Vina executes more quickly and is able to more accurately rank larger molecules, researchers should look to it first when undertaking a virtual screen.

  8. Combination of Ambiguous and Unambiguous Data in the Restraint-driven Docking of Flexible Peptides with HADDOCK: The Binding of the Spider Toxin PcTx1 to the Acid Sensing Ion Channel (ASIC) 1a.

    Science.gov (United States)

    Deplazes, Evelyne; Davies, Josephine; Bonvin, Alexandre M J J; King, Glenn F; Mark, Alan E

    2016-01-25

    Peptides that bind to ion channels have attracted much interest as potential lead molecules for the development of new drugs and insecticides. However, the structure determination of large peptide-channel complexes using experimental methods is challenging. Thus structural models are often derived from combining experimental information with restraint-driven docking approaches. Using the complex formed by the venom peptide PcTx1 and the acid sensing ion channel (ASIC) 1a as a case study, we have examined the effect of different combinations of restraints and input structures on the statistical likelihood of (a) correctly predicting the structure of the binding interface and (b) the ability to predict which residues are involved in specific pairwise peptide-channel interactions. For this, we have analyzed over 200,000 water-refined docked structures obtained with various amounts and types of restraints of the peptide-channel complex predicted using the docking program HADDOCK. We found that increasing the number of restraints or even the use of pairwise interaction data resulted in only a modest improvement in the likelihood of finding a structure within a given accuracy. This suggests that shape complementarity and the force field make a large contribution to the accuracy of the predicted structure. The results also showed that there are large variations in the accuracy of the predicted structure depending on the precise combination of residues used as restraints. Finally, we reflect on the limitations of relying on geometric criteria such as root-mean square deviations to assess the accuracy of docking procedures. We propose that in addition to currently used measures, the likelihood of finding a structure within a given level of accuracy should be also used to evaluate docking methods.

  9. INDUSTRIAL ROBOT ARM SIMULATION SOFTWARE DEVELOPMENT USING JAVA-3D AND MATLAB SIMULINK PROGRAMMING LANGUAGE

    OpenAIRE

    Wirabhuana, Arya

    2011-01-01

    Robot Arms Simulation Software development using Structured Programming Languages, Third Party Language, and Artificial Intelligence Programming Language are the common techniques in simulating robot arms movement. Those three techniques are having its strengths and weaknesses depend on several constraints such as robot type, degree of operation complexity to be simulated, operator skills, and also computer capability. This paper will discuss on Robot Arms Simulation Software (RSS) developmen...

  10. Docking to flexible nicotinic acetylcholine receptors

    DEFF Research Database (Denmark)

    Sander, Tommy; Bruun, Anne T; Balle, Thomas

    2010-01-01

    Computational docking to nicotinic acetylcholine receptors (nAChRs) and other members of the Cys-loop receptor family is complicated by the flexibility of the so-called C-loop. As observed in the large number of published crystal structures of the acetylcholine binding protein (AChBP), a structural...

  11. Tail Docking and Ear Cropping Dogs: Public Awareness and Perceptions.

    Science.gov (United States)

    Mills, Katelyn E; Robbins, Jesse; von Keyserlingk, Marina A G

    2016-01-01

    Tail docking and ear cropping are two surgical procedures commonly performed on many dog breeds. These procedures are classified as medically unnecessary surgeries whose purpose is primarily cosmetic. Available attitude research surrounding these controversial practices has been limited to surveys of veterinarians and dog breeders familiar with both practices. The aim of this project was to: 1) assess public awareness of tail docking and ear cropping, 2) determine whether physical alteration of a dog affects how the dog, and 3) owner are perceived. In Experiment 1 awareness was measured using a combination of both explicit and implicit measures. We found that 42% of participants (n = 810) were unable to correctly explain the reason why tail docked and ear cropped dogs had short ears and tails. Similarly, an implicit measure of awareness ('nature vs nurture task'), found that the majority of participants believed short tails and erect ears were a consequence of genetics rather than something the owner or breeder had done. The results obtained in Experiment 2 (n = 392) provide evidence that ear cropped and tail docked dogs are perceived differently than an identical dog in its 'natural' state. Modified dogs were perceived as being more aggressive, more dominant, less playful and less attractive than natural dogs. Experiment 3 (n = 410) is the first evidence that owners of modified dogs are perceived as being more aggressive, more narcissistic, less playful, less talkative and less warm compared to owners of natural dogs. Taken together, these results suggest that although a significant proportion of subjects appear unaware of the practices of tail docking and ear cropping in dogs, these procedures have significant impacts on how modified dogs and their owners are perceived by others.

  12. Tail Docking and Ear Cropping Dogs: Public Awareness and Perceptions.

    Directory of Open Access Journals (Sweden)

    Katelyn E Mills

    Full Text Available Tail docking and ear cropping are two surgical procedures commonly performed on many dog breeds. These procedures are classified as medically unnecessary surgeries whose purpose is primarily cosmetic. Available attitude research surrounding these controversial practices has been limited to surveys of veterinarians and dog breeders familiar with both practices. The aim of this project was to: 1 assess public awareness of tail docking and ear cropping, 2 determine whether physical alteration of a dog affects how the dog, and 3 owner are perceived. In Experiment 1 awareness was measured using a combination of both explicit and implicit measures. We found that 42% of participants (n = 810 were unable to correctly explain the reason why tail docked and ear cropped dogs had short ears and tails. Similarly, an implicit measure of awareness ('nature vs nurture task', found that the majority of participants believed short tails and erect ears were a consequence of genetics rather than something the owner or breeder had done. The results obtained in Experiment 2 (n = 392 provide evidence that ear cropped and tail docked dogs are perceived differently than an identical dog in its 'natural' state. Modified dogs were perceived as being more aggressive, more dominant, less playful and less attractive than natural dogs. Experiment 3 (n = 410 is the first evidence that owners of modified dogs are perceived as being more aggressive, more narcissistic, less playful, less talkative and less warm compared to owners of natural dogs. Taken together, these results suggest that although a significant proportion of subjects appear unaware of the practices of tail docking and ear cropping in dogs, these procedures have significant impacts on how modified dogs and their owners are perceived by others.

  13. Application of C-arm computed tomography in cardiology; Kardiale Anwendung der C-Arm-Computertomographie

    Energy Technology Data Exchange (ETDEWEB)

    Rieber, J. [Klinikum der Ludwig-Maximilians-Universitaet Muenchen, Campus Innenstadt, Abteilung fuer Kardiologie, Medizinische Poliklinik, Muenchen (Germany); Rohkohl, C. [Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Lehrstuhl fuer Mustererkennung, Department Informatik, Erlangen (Germany); Siemens AG, Healthcare Sector, Forchheim, Forchheim (Germany); Lauritsch, G. [Siemens AG, Healthcare Sector, Forchheim, Forchheim (Germany); Rittger, H. [Krankenhaus Coburg, Abteilung fuer Kardiologie, Coburg (Germany); Meissner, O. [Siemens AG, Healthcare Sector, Forchheim, Forchheim (Germany); Klinikum der Ludwig-Maximilians-Universitaet Muenchen, Institut fuer Klinische Radiologie, Muenchen (Germany)

    2009-09-15

    C-arm computed tomography is currently being introduced into cardiac imaging and offers the potential for three-dimensional imaging of the cardiac anatomy within the interventional environment. This detailed view is necessary to support complex interventional strategies, such as transcutaneous valve replacement, interventional therapy of atrial fibrillation, implantation of biventricular pacemakers and assessment of myocardial perfusion. Currently, the major limitation of this technology is its insufficient temporal resolution which limits the visualization of fast moving parts of the heart. (orig.) [German] Durch die Entwicklung der C-Arm-Computertomographie- (CACT-)Angiographie ist es erstmals moeglich, waehrend einer Herzkatheteruntersuchung eine detaillierte dreidimensionale Darstellung der kardialen Anatomie zu erhalten. Derartige zusaetzliche Informationen koennten die Durchfuehrung der immer komplexer werdenden Strategien der interventionellen Kardiologie wirkungsvoll unterstuetzen. Hierzu zaehlen u. a. der transkutane Klappenersatz, die interventionelle Behandlung von Vorhofflimmern, die Implantation biventrikulaerer Schrittmacher sowie die Beurteilung der Myokardperfusion. Die derzeit groesste Limitation dieser Methode ist die relativ geringe zeitliche Aufloesung, die aufgrund der Bewegung des Herzens die Anwendung dieser Technologie einschraenkt. (orig.)

  14. In-vitro dissolution rate and molecular docking studies of cabergoline drug with β-cyclodextrin

    Science.gov (United States)

    Shanmuga priya, Arumugam; Balakrishnan, Suganya bharathi; Veerakanellore, Giri Babu; Stalin, Thambusamy

    2018-05-01

    The physicochemical properties and dissolution profile of cabergoline drug (CAB) with β-cyclodextrin (β-CD) inclusion complex were investigated by the UV spectroscopy. The inclusion complex has used to calculate the stability constant and gives the stoichiometry molar ratio is 1:1 between CAB and β-CD. The phase solubility diagram and the aqueous solubility of CAB (60%) was found to be enhanced by β-CD. In addition, the phase solubility profile of CAB with β-CD was classified as AL-type. Binary systems of CAB with β-CD were prepared by Physical mixture, Kneading and solvent evaporation methods. The solid-state properties of the inclusion complex were characterized by Fourier transformation-infrared spectroscopy, Differential scanning calorimetry, Powder X-ray diffractometric patterns and Scanning electron microscopic techniques. Theoretically, β-CD and CAB inclusion complex obtained by molecular docking studies, it is in good correlation with the results obtained through experimental methods using the Schrödinger software program. In-vitro dissolution profiles of the inclusion complexes were carried out and obvious increase in dissolution rate was observed when compared with pure CAB drug and the complexes.

  15. HERMES docking/berthing system pilot study. Quantitative assessment

    International Nuclear Information System (INIS)

    Munoz Blasco, J.; Goicoechea Sanchez, F.J.

    1993-01-01

    This study falls within the framework of the incorporation of quantitative risk assessment to the activities planned for the ESA-HERMES project (ESA/ CNES). The main objective behind the study was the analysis and evaluation of the potential contribution of so-called probabilistic or quantitative safety analysis to the optimization of the safety development process for the systems carrying out the safety functions required by the new and complex HERMES Space Vehicle. For this purpose, a pilot study was considered a good start in quantitative safety assessments (QSA), as this approach has been frequently used in the past to establish a solid base in large-scale QSA application programs while avoiding considerable economic risks. It was finally decided to select the HERMES docking/berthing system with Man Tender Free Flyer as the case-study. This report describes the different steps followed in the study, along with the main insights obtained and the general conclusions drawn from the study results. (author)

  16. Molecular docking, QSAR and ADMET based mining of natural compounds against prime targets of HIV.

    Science.gov (United States)

    Vora, Jaykant; Patel, Shivani; Sinha, Sonam; Sharma, Sonal; Srivastava, Anshu; Chhabria, Mahesh; Shrivastava, Neeta

    2018-01-07

    AIDS is one of the multifaceted diseases and this underlying complexity hampers its complete cure. The toxicity of existing drugs and emergence of multidrug-resistant virus makes the treatment worse. Development of effective, safe and low-cost anti-HIV drugs is among the top global priority. Exploration of natural resources may give ray of hope to develop new anti-HIV leads. Among the various therapeutic targets for HIV treatment, reverse transcriptase, protease, integrase, GP120, and ribonuclease are the prime focus. In the present study, we predicted potential plant-derived natural molecules for HIV treatment using computational approach, i.e. molecular docking, quantitative structure activity relationship (QSAR), and ADMET studies. Receptor-ligand binding studies were performed using three different software for precise prediction - Discovery studio 4.0, Schrodinger and Molegrow virtual docker. Docking scores revealed that Mulberrosides, Anolignans, Curcumin and Chebulic acid are promising candidates that bind with multi targets of HIV, while Neo-andrographolide, Nimbolide and Punigluconin were target-specific candidates. Subsequently, QSAR was performed using biologically proved compounds which predicted the biological activity of compounds. We identified Anolignans, Curcumin, Mulberrosides, Chebulic acid and Neo-andrographolide as potential natural molecules for HIV treatment from results of molecular docking and 3D-QSAR. In silico ADMET studies showed drug-likeness of these lead molecules. Structure similarities of identified lead molecules were compared with identified marketed drugs by superimposing both the molecules. Using in silico studies, we have identified few best fit molecules of natural origin against identified targets which may give new drugs to combat HIV infection after wet lab validation.

  17. Mechanical Impedance Modeling of Human Arm: A survey

    Science.gov (United States)

    Puzi, A. Ahmad; Sidek, S. N.; Sado, F.

    2017-03-01

    Human arm mechanical impedance plays a vital role in describing motion ability of the upper limb. One of the impedance parameters is stiffness which is defined as the ratio of an applied force to the measured deformation of the muscle. The arm mechanical impedance modeling is useful in order to develop a better controller for system that interacts with human as such an automated robot-assisted platform for automated rehabilitation training. The aim of the survey is to summarize the existing mechanical impedance models of human upper limb so to justify the need to have an improved version of the arm model in order to facilitate the development of better controller of such systems with ever increase in complexity. In particular, the paper will address the following issue: Human motor control and motor learning, constant and variable impedance models, methods for measuring mechanical impedance and mechanical impedance modeling techniques.

  18. Borda application of selection planning scheduling method in dock engineering consultants in Central Sulawesi province Indonesia

    Directory of Open Access Journals (Sweden)

    Siti Fatimah

    2015-04-01

    Full Text Available The aim of this paper to find out the planning scheduling method that used in dock engineering consultants as a project supervisor dock. This research use qualitative approach to find the most preferred method by engineering consultants, this research was explorative that test and find out the most preferred method. This research showed that dock engineering consultants in Palu City, Central Sulawesi most preferred curve-s method than method such as CPM, PERT, PDM, and Bar Chart. This research can help further research to determine differences and similarities the project planning scheduling method and being basic for The New Dock Engineering Consultans. This research looking for the most preferred method with limited respondents dock engineering consultans in Palu City, Central Sulawesi.

  19. Molecular docking studies on rocaglamide, a traditional Chinese ...

    African Journals Online (AJOL)

    Keywords: Periodontitis, Inflammation, Rocaglamide, Molecular docking, Lamarckian ... Index Medicus, JournalSeek, Journal Citation Reports/Science Edition, ... chronic, bacterial infection-associated auto- .... The binding pocket in this case.

  20. Binding of naringin and naringenin with hen egg white lysozyme: A spectroscopic investigation and molecular docking study

    Science.gov (United States)

    Das, Sourav; Ghosh, Pooja; Koley, Sudipta; Singha Roy, Atanu

    2018-03-01

    The interactions of naringenin (NG) and naringin (NR) with Hen Egg White Lysozyme (HEWL) in aqueous medium have been investigated using UV-vis spectroscopy, steady-state fluorescence, circular dichroism (CD), Fourier Transform infrared spectroscopy (FT-IR) and molecular docking analyses. Both NG and NR can quench the intrinsic fluorescence of HEWL via static quenching mechanism. At 300 K, the value of binding constant (Kb) of HEWL-NG complex (5.596 ± 0.063 × 104 M- 1) was found to be greater than that of HEWL-NR complex (3.404 ± 0.407 × 104 M- 1). The negative ΔG° values in cases of both the complexes specify the spontaneous binding. The binding distance between the donor (HEWL) and acceptor (NG/NR) was estimated using the Försters theory and the possibility of non-radiative energy transfer from HEWL to NG/NR was observed. The presence of metal ions (Ca2 +, Cu2 + and Fe2 +) decreased the binding affinity of NG/NR towards HEWL. Synchronous fluorescence studies indicate the change in Trp micro-environment due to the incorporation of NG/NR into HEWL. CD and FT-IR studies indicated that the α-helicity of the HEWL was slightly enhanced due to ligand binding. NG and NR inhibited the enzymatic activity of HEWL and exhibited their affinity for the active site of HEWL. Molecular docking studies revealed that both NG and NR bind in the close vicinity of Trp 62 and Trp 63 residues which is vital for the catalytic activity.

  1. Binding of Bisphenol-F, a bisphenol analogue, to calf thymus DNA by multi-spectroscopic and molecular docking studies.

    Science.gov (United States)

    Usman, Afia; Ahmad, Masood

    2017-08-01

    BPF (Bisphenol-F), a member of the bisphenol family, having a wide range of industrial applications is gradually replacing Bisphenol-A. It is a recognized endocrine disrupting chemical (EDC). EDCs have been implicated in increased incidences of breast, prostate and testis cancers besides diabetes, obesity and decreased fertility. Due to the adverse effects of EDCs on human health, attempts have been directed towards their mechanism of toxicity especially at the molecular level. Hence, to understand the mechanism at the DNA level, interaction of BPF with calf thymus DNA was studied employing multi-spectroscopic, voltammetric and molecular docking techniques. Fluorescence spectra, cyclic voltammetry (CV), circular dichroism (CD) and molecular docking studies of BPF with DNA were suggestive of minor groove binding of BPF. UV-visible absorption and fluorescence spectra suggested static quenching due to complex formation between BPF and ctDNA. Hoechst 33258 (HO) and ethidium bromide (EB) displacement studies further confirmed such mode of BPF interaction. Thermodynamic and molecular docking parameters revealed the mechanism of binding of BPF with ctDNA to be favorable and spontaneous due to negative ΔG and occurring through hydrogen bonds and van der waals interactions. BPF induced DNA cleavage under in vitro conditions by plasmid nicking assay suggested it to be genotoxic. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Isolated effects of peripheral arm and central body cooling on arm performance.

    Science.gov (United States)

    Giesbrecht, G G; Wu, M P; White, M D; Johnston, C E; Bristow, G K

    1995-10-01

    Whole body cooling impairs manual arm performance. The independent contributions of local (peripheral) and/or whole body (central) cooling are not known. Therefore, a protocol was developed in which the arm and the rest of the body could be independently cooled. Biceps temperature (Tmus), at a depth of 20 mm, and esophageal temperature (Tes) were measured. Six subjects were immersed to the clavicles in a tank (body tank) of water under 3 conditions: 1) cold body-cold arm (CB-CA); 2) warm body-cold arm (WB-CA); and 3) cold body-warm arm (CB-WA). In the latter two conditions, subjects placed their dominant arm in a separate (arm) tank. Water temperature (Tw) in each tank was independently controlled. In conditions requiring cold body and/or cold arm, Tw in the appropriate tanks was 8 degrees C. In conditions requiring warm body and/or warm arm, Tw in the appropriate tanks was adjusted between 29 and 38 degrees C to maintain body/arm temperature at baseline values. A battery of 6 tests, requiring fine or gross motor movements, were performed immediately before immersion and after 15, 45, and 70 minutes of immersion. In CB-CA, Tes decreased from an average of 37.2 to 35.6 degrees C and Tmus decreased from 34.6 to 22.0 degrees C. In WB-CA, Tmus decreased to 18.1 degrees C (Tes = 37.1 degrees C), and in CB-WA, Tes decreased to 35.8 degrees C (Tmus = 34.5 degrees C). By the end of immersion, there were significant decrements (43-85%) in the performance of all tests in CB-CA and WB-CA (p body and/or the arm elicits large decrements in finger, hand and arm performance. The decrements are due almost entirely to the local effects of arm tissue cooling.

  3. System and Method for Automated Rendezvous, Docking and Capture of Autonomous Underwater Vehicles

    Science.gov (United States)

    Stone, William C. (Inventor); Clark, Evan (Inventor); Richmond, Kristof (Inventor); Paulus, Jeremy (Inventor); Kapit, Jason (Inventor); Scully, Mark (Inventor); Kimball, Peter (Inventor)

    2018-01-01

    A system for automated rendezvous, docking, and capture of autonomous underwater vehicles at the conclusion of a mission comprising of comprised of a docking rod having lighted, pulsating (in both frequency and light intensity) series of LED light strips thereon, with the LEDs at a known spacing, and the autonomous underwater vehicle specially designed to detect and capture the docking rod and then be lifted structurally by a spherical end strop about which the vehicle can be pivoted and hoisted up (e.g., onto a ship). The method of recovery allows for very routine and reliable automated recovery of an unmanned underwater asset.

  4. Fragment-based docking: development of the CHARMMing Web user interface as a platform for computer-aided drug design.

    Science.gov (United States)

    Pevzner, Yuri; Frugier, Emilie; Schalk, Vinushka; Caflisch, Amedeo; Woodcock, H Lee

    2014-09-22

    Web-based user interfaces to scientific applications are important tools that allow researchers to utilize a broad range of software packages with just an Internet connection and a browser. One such interface, CHARMMing (CHARMM interface and graphics), facilitates access to the powerful and widely used molecular software package CHARMM. CHARMMing incorporates tasks such as molecular structure analysis, dynamics, multiscale modeling, and other techniques commonly used by computational life scientists. We have extended CHARMMing's capabilities to include a fragment-based docking protocol that allows users to perform molecular docking and virtual screening calculations either directly via the CHARMMing Web server or on computing resources using the self-contained job scripts generated via the Web interface. The docking protocol was evaluated by performing a series of "re-dockings" with direct comparison to top commercial docking software. Results of this evaluation showed that CHARMMing's docking implementation is comparable to many widely used software packages and validates the use of the new CHARMM generalized force field for docking and virtual screening.

  5. Applications of the NRGsuite and the Molecular Docking Software FlexAID in Computational Drug Discovery and Design.

    Science.gov (United States)

    Morency, Louis-Philippe; Gaudreault, Francis; Najmanovich, Rafael

    2018-01-01

    Docking simulations help us understand molecular interactions. Here we present a hands-on tutorial to utilize FlexAID (Flexible Artificial Intelligence Docking), an open source molecular docking software between ligands such as small molecules or peptides and macromolecules such as proteins and nucleic acids. The tutorial uses the NRGsuite PyMOL plugin graphical user interface to set up and visualize docking simulations in real time as well as detect and refine target cavities. The ease of use of FlexAID and the NRGsuite combined with its superior performance relative to widely used docking software provides nonexperts with an important tool to understand molecular interactions with direct applications in structure-based drug design and virtual high-throughput screening.

  6. Sensor-based automated docking of large waste canisters

    International Nuclear Information System (INIS)

    Drotning, W.D.

    1990-01-01

    Sensor-based programmable robots have the potential to speed up remote manipulation operations while protecting operators from exposure to radiation. Conventional master/slave manipulators have proven to be very slow in performing precision remote operations. In addition, inadvertent collisions of remotely manipulated objects with their environment increase the hazards associated with remote handling. This paper describes the development of a robotic system for the sensor-based automated remote manipulation and precision docking of large payloads. Computer vision and proximity sensing are used to control the precision docking of a large object with a passive target cavity. Specifically, a container of nuclear spent fuel on a transport vehicle is mated with an emplacement door on a vertical storage borehole at a waste repository

  7. In silico docking studies of aldose reductase inhibitory activity of commercially available flavonoids

    Directory of Open Access Journals (Sweden)

    Arumugam Madeswaran

    2012-12-01

    Full Text Available The primary objective of this study was to investigate the aldose reductase inhibitory activity of flavonoids using in silico docking studies. In this perspective, flavonoids like biochanin, butein, esculatin, fisetin and herbacetin were selected. Epalrestat, a known aldose reductase inhibitor was used as the standard. In silico docking studies were carried out using AutoDock 4.2, based on the Lamarckian genetic algorithm principle. The results showed that all the selected flavonoids showed binding energy ranging between -9.33 kcal/mol to -7.23 kcal/mol when compared with that of the standard (-8.73 kcal/mol. Inhibition constant (144.13 µM to 4.98 µM and intermolecular energy (-11.42 kcal/mol to -7.83 kcal/mol of the flavonoids also coincide with the binding energy. All the selected flavonoids contributed aldose reductase inhibitory activity because of its structural properties. These molecular docking analyses could lead to the further development of potent aldose reductase inhibitors for the treatment of diabetes.

  8. Molecular docking and molecular dynamics simulation studies on Thermus thermophilus leucyl-tRNA synthetase complexed with different amino acids and pre-transfer editing substrates

    Directory of Open Access Journals (Sweden)

    Rayevsky A. V.

    2016-02-01

    Full Text Available Aim. To investigate the structural bases for the amino acid selectivity of the Thermus thermophilus leucyl-tRNA synthetase (LeuRSTT aminoacylation site and to disclose the binding pattern of pre-transfer editing substrates. Methods. Eight amino acids proposed as semi-cognate substrates for aminoacylation and eight aminoacyl-adenylates (formed from AMP and eight amino acids were prepared in zwitterions form. The protein structure with a co-crystallized substrate in the aminoacylation site [PDBID: 1OBH] was taken from RCSB. Docking settings and evaluation of substrate efficiency were followed by twofold docking function analysis for each conformation with Gold CCDC. The molecular dynamics simulation was performed using Gromacs. The procedures of relaxation and binding study were separated in two different subsequent simulations for 50ns and 5ns. Results. The evaluation of substrate efficiency for 8 amino acids by twofold docking function analysis, based on score values,has shown that the ligands of LeuRSTT can be positioned in the following order: Leu>Nva>Hcy>Nle>Met>Cys>Ile >Val. MD simulation has revealed lower electrostatic interactions of isoleucine with the active site of the enzyme compared with those for norvaline and leucine. In the case of aminoacyl-adenylates no significant differences were found based on score values for both GoldScore and Asp functions. Molecular dynamics of leucyl-, isoleucyl- and norvalyl-adenylates showed that the most stable and conformationally favorable is leucine, then follow norvaline and isoleucine. It has been also found that the TYR43 of the active site covers carboxyl group of leucine and norvaline like a shield and deflected towards isoleucine, allowing water molecules to come closer. Conclusions. In this study we revealed some structural basis for screening unfavorable substrates by shape, size and flexibility of a radical. The results obtained for different amino acids by molecular docking and MD studies

  9. Compodock, a new device for sterile docking

    NARCIS (Netherlands)

    van der Meer, P. F.; Biekart, F. T.; Pietersz, R. N.; Rebers, S. P.; Reesink, H. W.

    2000-01-01

    BACKGROUND: A new device for sterile docking, the Compodock (Fresenius NPBI Transfusion Technology), was developed for connecting PVC tubing for medical use while maintaining sterility. STUDY DESIGN AND METHODS: Sterility of the connections was assessed by welding tubing with a heavy exterior

  10. Transcriptional Dysregulation of MYC Reveals Common Enhancer-Docking Mechanism.

    Science.gov (United States)

    Schuijers, Jurian; Manteiga, John Colonnese; Weintraub, Abraham Selby; Day, Daniel Sindt; Zamudio, Alicia Viridiana; Hnisz, Denes; Lee, Tong Ihn; Young, Richard Allen

    2018-04-10

    Transcriptional dysregulation of the MYC oncogene is among the most frequent events in aggressive tumor cells, and this is generally accomplished by acquisition of a super-enhancer somewhere within the 2.8 Mb TAD where MYC resides. We find that these diverse cancer-specific super-enhancers, differing in size and location, interact with the MYC gene through a common and conserved CTCF binding site located 2 kb upstream of the MYC promoter. Genetic perturbation of this enhancer-docking site in tumor cells reduces CTCF binding, super-enhancer interaction, MYC gene expression, and cell proliferation. CTCF binding is highly sensitive to DNA methylation, and this enhancer-docking site, which is hypomethylated in diverse cancers, can be inactivated through epigenetic editing with dCas9-DNMT. Similar enhancer-docking sites occur at other genes, including genes with prominent roles in multiple cancers, suggesting a mechanism by which tumor cell oncogenes can generally hijack enhancers. These results provide insights into mechanisms that allow a single target gene to be regulated by diverse enhancer elements in different cell types. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  11. Have Third-World Arms Industries Reduced Arms Imports?

    OpenAIRE

    Looney, R.E.

    1989-01-01

    Current Research on Peace and Violence, no. 1, 1989. Refereed Journal Article In 1945 only Argentina, Brazil, India and South Africa in the Third World possessed domestic arms industries which produced weapons systems other than small arms and ammunition (SIPRI, 1987, 76).

  12. Molecular dynamics modeling the synthetic and biological polymers interactions pre-studied via docking

    Science.gov (United States)

    Tsvetkov, Vladimir B.; Serbin, Alexander V.

    2014-06-01

    In previous works we reported the design, synthesis and in vitro evaluations of synthetic anionic polymers modified by alicyclic pendant groups (hydrophobic anchors), as a novel class of inhibitors of the human immunodeficiency virus type 1 ( HIV-1) entry into human cells. Recently, these synthetic polymers interactions with key mediator of HIV-1 entry-fusion, the tri-helix core of the first heptad repeat regions [ HR1]3 of viral envelope protein gp41, were pre-studied via docking in terms of newly formulated algorithm for stepwise approximation from fragments of polymeric backbone and side-group models toward real polymeric chains. In the present article the docking results were verified under molecular dynamics ( MD) modeling. In contrast with limited capabilities of the docking, the MD allowed of using much more large models of the polymeric ligands, considering flexibility of both ligand and target simultaneously. Among the synthesized polymers the dinorbornen anchors containing alternating copolymers of maleic acid were selected as the most representative ligands (possessing the top anti-HIV activity in vitro in correlation with the highest binding energy in the docking). To verify the probability of binding of the polymers with the [HR1]3 in the sites defined via docking, various starting positions of polymer chains were tried. The MD simulations confirmed the main docking-predicted priority for binding sites, and possibilities for axial and belting modes of the ligands-target interactions. Some newly MD-discovered aspects of the ligand's backbone and anchor units dynamic cooperation in binding the viral target clarify mechanisms of the synthetic polymers anti-HIV activity and drug resistance prevention.

  13. Spectrofluoremetric and molecular docking study on the interaction of bisdemethoxycurcumin with bovine β-casein nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Mehranfar, Fahimeh [Department of Chemistry, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of); Bordbar, Abdol-Khalegh, E-mail: bordbar@chem.ui.ac.ir [Department of Chemistry, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of); Keyhanfar, Mehrnaz; Behbahani, Mandana [Faculty of Advanced Sciences and Technologies, Department of Biotechnology, University of Isfahan, Isfahan, 81746-73441 (Iran, Islamic Republic of)

    2013-11-15

    The interaction of bisdemethoxycurcumin (BDMC), as one of the main active component of turmeric (Curcuma longa L.), with bovine β-casein nanoparticle, as an efficient drug carrier system, was investigated using steady-state fluorescence spectroscopy and molecular docking calculations. Results of fluorescence quenching experiments, Forster energy transfer measurements and molecular docking calculations suggested that BDMC bind to the hydrophobic core of β-casein via formation of 3 hydrogen bonds and several vander Waals contacts that represented the encapsulation of BDMC in β-casein micelle nanoparticles. The binding parameters including number of substantive binding sites and the binding constants were evaluated by fluorescence quenching method. Additionally, the cytotoxicity of free BDMC and BDMC-β-casein complex in human breast cancer cell line MCF7 was evaluated in vitro. The study revealed the higher cytotoxic effects of encapsulated BDMC on MCF7 cells compared to equal dose of free BDMC. -- Highlights: • BDMC binds to the hydrophobic core of β-casein. • The effective encapsulation of BDMC in β-casein micelle nanoparticles was shown. • Enhanced cytotoxicity was observed for encapsulated BDMC in β-casein nanoparticles.

  14. Spectrofluoremetric and molecular docking study on the interaction of bisdemethoxycurcumin with bovine β-casein nanoparticles

    International Nuclear Information System (INIS)

    Mehranfar, Fahimeh; Bordbar, Abdol-Khalegh; Keyhanfar, Mehrnaz; Behbahani, Mandana

    2013-01-01

    The interaction of bisdemethoxycurcumin (BDMC), as one of the main active component of turmeric (Curcuma longa L.), with bovine β-casein nanoparticle, as an efficient drug carrier system, was investigated using steady-state fluorescence spectroscopy and molecular docking calculations. Results of fluorescence quenching experiments, Forster energy transfer measurements and molecular docking calculations suggested that BDMC bind to the hydrophobic core of β-casein via formation of 3 hydrogen bonds and several vander Waals contacts that represented the encapsulation of BDMC in β-casein micelle nanoparticles. The binding parameters including number of substantive binding sites and the binding constants were evaluated by fluorescence quenching method. Additionally, the cytotoxicity of free BDMC and BDMC-β-casein complex in human breast cancer cell line MCF7 was evaluated in vitro. The study revealed the higher cytotoxic effects of encapsulated BDMC on MCF7 cells compared to equal dose of free BDMC. -- Highlights: • BDMC binds to the hydrophobic core of β-casein. • The effective encapsulation of BDMC in β-casein micelle nanoparticles was shown. • Enhanced cytotoxicity was observed for encapsulated BDMC in β-casein nanoparticles

  15. Arm Pain

    Science.gov (United States)

    ... be a sign of a heart attack. Seek emergency treatment if you have: Arm, shoulder or back ... http://www.mayoclinic.org/symptoms/arm-pain/basics/definition/SYM-20050870 . Mayo Clinic Footer Legal Conditions and ...

  16. Arm coordination in octopus crawling involves unique motor control strategies.

    Science.gov (United States)

    Levy, Guy; Flash, Tamar; Hochner, Binyamin

    2015-05-04

    To cope with the exceptional computational complexity that is involved in the control of its hyper-redundant arms [1], the octopus has adopted unique motor control strategies in which the central brain activates rather autonomous motor programs in the elaborated peripheral nervous system of the arms [2, 3]. How octopuses coordinate their eight long and flexible arms in locomotion is still unknown. Here, we present the first detailed kinematic analysis of octopus arm coordination in crawling. The results are surprising in several respects: (1) despite its bilaterally symmetrical body, the octopus can crawl in any direction relative to its body orientation; (2) body and crawling orientation are monotonically and independently controlled; and (3) contrasting known animal locomotion, octopus crawling lacks any apparent rhythmical patterns in limb coordination, suggesting a unique non-rhythmical output of the octopus central controller. We show that this uncommon maneuverability is derived from the radial symmetry of the arms around the body and the simple pushing-by-elongation mechanism by which the arms create the crawling thrust. These two together enable a mechanism whereby the central controller chooses in a moment-to-moment fashion which arms to recruit for pushing the body in an instantaneous direction. Our findings suggest that the soft molluscan body has affected in an embodied way [4, 5] the emergence of the adaptive motor behavior of the octopus. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. An Evaluation of Explicit Receptor Flexibility in Molecular Docking Using Molecular Dynamics and Torsion Angle Molecular Dynamics.

    Science.gov (United States)

    Armen, Roger S; Chen, Jianhan; Brooks, Charles L

    2009-10-13

    Incorporating receptor flexibility into molecular docking should improve results for flexible proteins. However, the incorporation of explicit all-atom flexibility with molecular dynamics for the entire protein chain may also introduce significant error and "noise" that could decrease docking accuracy and deteriorate the ability of a scoring function to rank native-like poses. We address this apparent paradox by comparing the success of several flexible receptor models in cross-docking and multiple receptor ensemble docking for p38α mitogen-activated protein (MAP) kinase. Explicit all-atom receptor flexibility has been incorporated into a CHARMM-based molecular docking method (CDOCKER) using both molecular dynamics (MD) and torsion angle molecular dynamics (TAMD) for the refinement of predicted protein-ligand binding geometries. These flexible receptor models have been evaluated, and the accuracy and efficiency of TAMD sampling is directly compared to MD sampling. Several flexible receptor models are compared, encompassing flexible side chains, flexible loops, multiple flexible backbone segments, and treatment of the entire chain as flexible. We find that although including side chain and some backbone flexibility is required for improved docking accuracy as expected, docking accuracy also diminishes as additional and unnecessary receptor flexibility is included into the conformational search space. Ensemble docking results demonstrate that including protein flexibility leads to to improved agreement with binding data for 227 active compounds. This comparison also demonstrates that a flexible receptor model enriches high affinity compound identification without significantly increasing the number of false positives from low affinity compounds.

  18. ASTP crewmen in Docking Module trainer during training session at JSC

    Science.gov (United States)

    1975-01-01

    An interior view of the Docking Module trainer in bldg 35 during Apollo Soyuz Test Project (ASTP) joint crew training at JSC. Astronaut Thomas P. Stafford, commander of the American ASTP prime crew, is on the right. The other crewman is Cosmonaut Aleksey A. Leonov, commander of the Soviet ASTP prime crew. The training session simulated activities on the second day in Earth orbit. The Docking Module is designed to link the Apollo and Soyuz spacecraft.

  19. The unstructured linker arms of Mlh1-Pms1 are important for interactions with DNA during mismatch repair

    Science.gov (United States)

    Plys, Aaron J.; Rogacheva, Maria V.; Greene, Eric C.; Alani, Eric

    2012-01-01

    DNA mismatch repair (MMR) models have proposed that MSH proteins identify DNA polymerase errors while interacting with the DNA replication fork. MLH proteins (primarily Mlh1-Pms1 in baker’s yeast) then survey the genome for lesion-bound MSH proteins. The resulting MSH-MLH complex formed at a DNA lesion initiates downstream steps in repair. MLH proteins act as dimers and contain long (20 – 30 nanometers) unstructured arms that connect two terminal globular domains. These arms can vary between 100 to 300 amino acids in length, are highly divergent between organisms, and are resistant to amino acid substitutions. To test the roles of the linker arms in MMR, we engineered a protease cleavage site into the Mlh1 linker arm domain of baker’s yeast Mlh1-Pms1. Cleavage of the Mlh1 linker arm in vitro resulted in a defect in Mlh1-Pms1 DNA binding activity, and in vivo proteolytic cleavage resulted in a complete defect in MMR. We then generated a series of truncation mutants bearing Mlh1 and Pms1 linker arms of varying lengths. This work revealed that MMR is greatly compromised when portions of the Mlh1 linker are removed, whereas repair is less sensitive to truncation of the Pms1 linker arm. Purified complexes containing truncations in Mlh1 and Pms1 linker arms were analyzed and found to have differential defects in DNA binding that also correlated with the ability to form a ternary complex with Msh2-Msh6 and mismatch DNA. These observations are consistent with the unstructured linker domains of MLH proteins providing distinct interactions with DNA during MMR. PMID:22659005

  20. Assessment of Spatial Navigation and Docking Performance During Simulated Rover Tasks

    Science.gov (United States)

    Wood, S. J.; Dean, S. L.; De Dios, Y. E.; Moore, S. T.

    2010-01-01

    INTRODUCTION: Following long-duration exploration transits, pressurized rovers will enhance surface mobility to explore multiple sites across Mars and other planetary bodies. Multiple rovers with docking capabilities are envisioned to expand the range of exploration. However, adaptive changes in sensorimotor and cognitive function may impair the crew s ability to safely navigate and perform docking tasks shortly after transition to the new gravitoinertial environment. The primary goal of this investigation is to quantify post-flight decrements in spatial navigation and docking performance during a rover simulation. METHODS: Eight crewmembers returning from the International Space Station will be tested on a motion simulator during four pre-flight and three post-flight sessions over the first 8 days following landing. The rover simulation consists of a serial presentation of discrete tasks to be completed within a scheduled 10 min block. The tasks are based on navigating around a Martian outpost spread over a 970 sq m terrain. Each task is subdivided into three components to be performed as quickly and accurately as possible: (1) Perspective taking: Subjects use a joystick to indicate direction of target after presentation of a map detailing current orientation and location of the rover with the task to be performed. (2) Navigation: Subjects drive the rover to the desired location while avoiding obstacles. (3) Docking: Fine positioning of the rover is required to dock with another object or align a camera view. Overall operator proficiency will be based on how many tasks the crewmember can complete during the 10 min time block. EXPECTED RESULTS: Functionally relevant testing early post-flight will develop evidence regarding the limitations to early surface operations and what countermeasures are needed. This approach can be easily adapted to a wide variety of simulated vehicle designs to provide sensorimotor assessments for other operational and civilian populations.

  1. Characterization of interactions of simvastatin, pravastatin, fluvastatin, and pitavastatin with bovine serum albumin: multiple spectroscopic and molecular docking.

    Science.gov (United States)

    Shi, Jie-Hua; Wang, Qi; Pan, Dong-Qi; Liu, Ting-Ting; Jiang, Min

    2017-05-01

    The binding interactions of simvastatin (SIM), pravastatin (PRA), fluvastatin (FLU), and pitavastatin (PIT) with bovine serum albumin (BSA) were investigated for determining the affinity of four statins with BSA through multiple spectroscopic and molecular docking methods. The experimental results showed that SIM, PRA, FLU, and PIT statins quenched the intrinsic fluorescence of BSA through a static quenching process and the stable stains-BSA complexes with the binding constants in the order of 10 4  M -1 at 298 K were formed through intermolecular nonbond interaction. The values of ΔH 0 , ΔS 0 and ΔG 0 in the binding process of SIM, PRA, FLU, and PIT with BSA were negative at the studied temperature range, suggesting that the binding process of four statins and BSA was spontaneous and the main interaction forces were van der Waals force and hydrogen-bonding interactions. Moreover, the binding of four statins with BSA was enthalpy-driven process due to |ΔH°|>|TΔS°| under the studied temperature range. From the results of site marker competitive experiments and molecular docking, subdomain IIIA (site II) was the primary binding site for SIM, PRA, FLU, and PIT on BSA. The results of UV-vis absorption, synchronous fluorescence, 3D fluorescence and FT-IR spectra proved that the slight change in the conformation of BSA, while the significant changes in the conformation of SIM, PRA, FLU, and PIT drug in statin-BSA complexes, indicating that the flexibility of statin molecules plays an important role in increasing the stability of statin-BSA complexes.

  2. Technical Note: Mobile accelerator guidance using an optical tracker during docking in IOERT procedures.

    Science.gov (United States)

    Marinetto, Eugenio; Victores, Juan González; García-Sevilla, Mónica; Muñoz, Mercedes; Calvo, Felipe Ángel; Balaguer, Carlos; Desco, Manuel; Pascau, Javier

    2017-10-01

    Intraoperative electron radiation therapy (IOERT) involves the delivery of a high radiation dose during tumor resection in a shorter time than other radiation techniques, thus improving local control of tumors. However, a linear accelerator device is needed to produce the beam safely. Mobile linear accelerators have been designed as dedicated units that can be moved into the operating room and deliver radiation in situ. Correct and safe dose delivery is a key concern when using mobile accelerators. The applicator is commonly fixed to the patient's bed to ensure that the dose is delivered to the prescribed location, and the mobile accelerator is moved to dock the applicator to the radiation beam output (gantry). In a typical clinical set-up, this task is time-consuming because of safety requirements and the limited degree of freedom of the gantry. The objective of this study was to present a navigation solution based on optical tracking for guidance of docking to improve safety and reduce procedure time. We used an optical tracker attached to the mobile linear accelerator to track the prescribed localization of the radiation collimator inside the operating room. Using this information, the integrated navigation system developed computes the movements that the mobile linear accelerator needs to perform to align the applicator and the radiation gantry and warns the physician if docking is unrealizable according to the available degrees of freedom of the mobile linear accelerator. Furthermore, we coded a software application that connects all the necessary functioning elements and provides a user interface for the system calibration and the docking guidance. The system could safeguard against the spatial limitations of the operating room, calculate the optimal arrangement of the accelerator and reduce the docking time in computer simulations and experimental setups. The system could be used to guide docking with any commercial linear accelerator. We believe that the

  3. Itk tyrosine kinase substrate docking is mediated by a nonclassical SH2 domain surface of PLCgamma1.

    Science.gov (United States)

    Min, Lie; Joseph, Raji E; Fulton, D Bruce; Andreotti, Amy H

    2009-12-15

    Interleukin-2 tyrosine kinase (Itk) is a Tec family tyrosine kinase that mediates signaling processes after T cell receptor engagement. Activation of Itk requires recruitment to the membrane via its pleckstrin homology domain, phosphorylation of Itk by the Src kinase, Lck, and binding of Itk to the SLP-76/LAT adapter complex. After activation, Itk phosphorylates and activates phospholipase C-gamma1 (PLC-gamma1), leading to production of two second messengers, DAG and IP(3). We have previously shown that phosphorylation of PLC-gamma1 by Itk requires a direct, phosphotyrosine-independent interaction between the Src homology 2 (SH2) domain of PLC-gamma1 and the kinase domain of Itk. We now define this docking interface using a combination of mutagenesis and NMR spectroscopy and show that disruption of the Itk/PLCgamma1 docking interaction attenuates T cell signaling. The binding surface on PLCgamma1 that mediates recognition by Itk highlights a nonclassical binding activity of the well-studied SH2 domain providing further evidence that SH2 domains participate in important signaling interactions beyond recognition of phosphotyrosine.

  4. Uranyl complexes formed with a para-t-butylcalix[4]arene bearing phosphinoyl pendant arms on the lower rim. Solid and solution studies

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez, F. de M. [Instituto Nacional de Investigaciones Nucleares, La Marquesa, Ocoyoacac (Mexico). Dept. de Quimica; Varbanov, S. [Bulgarian Academy of Sciences, Sofia (Bulgaria). Inst. of Organic Chemistry with Center of Phytochemistry; Buenzli, J.C.G. [Ecole Polytechnique Federale de Lausanne (EPFL) (Switzerland). Inst. of Chemical Sciences and Engineering; Rivas-Silva, J.F.; Ocana-Bribiesca, M.A. [Instituto de Fisica de la BUAP, Puebla (Mexico); Cortes-Jacome, M.A.; Toledo-Antonio, J.A. [Instituto Mexicano del Petroleo/Programa de Ingenieria Molecular (Mexico)

    2012-07-01

    The current interest in functionalized calixarenes with phosphorylated pendant arms resides in their coordination ability towards f elements and capability towards actinide/rare earth separation. Uranyl cation forms 1:1 and 1:2 (M:L) complexes with a tetra-phosphinoylated p-tert-butylcalix[4]arene, B{sub 4}bL{sup 4}: UO{sub 2}(NO{sub 3}){sub 2}(B{sub 4}bL{sup 4}){sub n} . xH{sub 2}O (n = 1, x = 2, 1; n = 2, x = 6, 2). Spectroscopic data point to the inner coordination sphere of 1 containing one monodentate nitrate anion, one water molecule and the four phosphinoylated arms bound to UO{sub 2}{sup 2+} while in 2, uranyl is only coordinated to calixarene ligands. In both cases the U(VI) ion is 8-coordinate. Uranyl complexes display enhanced metal-centred luminescence due to energy transfer from the calixarene ligands; the luminescence decays are bi-exponential with associated lifetimes in the ranges 220 {mu}s < {tau}{sub s} < 250 {mu}s and 630 {mu}s < {tau}{sub L} < 640 {mu}s, pointing to the presence of two species with differently coordinated calixarene, as substantiated by a XPS study of U(4f{sub 5/2,7/2}), O(1s) and P(2p) levels on solid state samples. The extraction study of UO{sub 2}{sup 2+} cation and trivalent rare-earth (Y, La, Eu) ions from acidic nitrate media by B{sub 4}bL{sup 4} in chloroform shows the uranyl cation being much more extracted than rare earths. (orig.)

  5. Interfacial hydration, dynamics and electron transfer: multi-scale ET modeling of the transient [myoglobin, cytochrome b5] complex.

    Science.gov (United States)

    Keinan, Shahar; Nocek, Judith M; Hoffman, Brian M; Beratan, David N

    2012-10-28

    Formation of a transient [myoglobin (Mb), cytochrome b(5) (cyt b(5))] complex is required for the reductive repair of inactive ferri-Mb to its functional ferro-Mb state. The [Mb, cyt b(5)] complex exhibits dynamic docking (DD), with its cyt b(5) partner in rapid exchange at multiple sites on the Mb surface. A triple mutant (Mb(3M)) was designed as part of efforts to shift the electron-transfer process to the simple docking (SD) regime, in which reactive binding occurs at a restricted, reactive region on the Mb surface that dominates the docked ensemble. An electrostatically-guided brownian dynamics (BD) docking protocol was used to generate an initial ensemble of reactive configurations of the complex between unrelaxed partners. This ensemble samples a broad and diverse array of heme-heme distances and orientations. These configurations seeded all-atom constrained molecular dynamics simulations (MD) to generate relaxed complexes for the calculation of electron tunneling matrix elements (T(DA)) through tunneling-pathway analysis. This procedure for generating an ensemble of relaxed complexes combines the ability of BD calculations to sample the large variety of available conformations and interprotein distances, with the ability of MD to generate the atomic level information, especially regarding the structure of water molecules at the protein-protein interface, that defines electron-tunneling pathways. We used the calculated T(DA) values to compute ET rates for the [Mb(wt), cyt b(5)] complex and for the complex with a mutant that has a binding free energy strengthened by three D/E → K charge-reversal mutations, [Mb(3M), cyt b(5)]. The calculated rate constants are in agreement with the measured values, and the mutant complex ensemble has many more geometries with higher T(DA) values than does the wild-type Mb complex. Interestingly, water plays a double role in this electron-transfer system, lowering the tunneling barrier as well as inducing protein interface

  6. Plasticity of the Binding Site of Renin: Optimized Selection of Protein Structures for Ensemble Docking.

    Science.gov (United States)

    Strecker, Claas; Meyer, Bernd

    2018-05-02

    Protein flexibility poses a major challenge to docking of potential ligands in that the binding site can adopt different shapes. Docking algorithms usually keep the protein rigid and only allow the ligand to be treated as flexible. However, a wrong assessment of the shape of the binding pocket can prevent a ligand from adapting a correct pose. Ensemble docking is a simple yet promising method to solve this problem: Ligands are docked into multiple structures, and the results are subsequently merged. Selection of protein structures is a significant factor for this approach. In this work we perform a comprehensive and comparative study evaluating the impact of structure selection on ensemble docking. We perform ensemble docking with several crystal structures and with structures derived from molecular dynamics simulations of renin, an attractive target for antihypertensive drugs. Here, 500 ns of MD simulations revealed binding site shapes not found in any available crystal structure. We evaluate the importance of structure selection for ensemble docking by comparing binding pose prediction, ability to rank actives above nonactives (screening utility), and scoring accuracy. As a result, for ensemble definition k-means clustering appears to be better suited than hierarchical clustering with average linkage. The best performing ensemble consists of four crystal structures and is able to reproduce the native ligand poses better than any individual crystal structure. Moreover this ensemble outperforms 88% of all individual crystal structures in terms of screening utility as well as scoring accuracy. Similarly, ensembles of MD-derived structures perform on average better than 75% of any individual crystal structure in terms of scoring accuracy at all inspected ensembles sizes.

  7. Synthesis and molecular docking of pyrimidine incorporated novel ...

    Indian Academy of Sciences (India)

    APOORVA MISRA

    2018-03-09

    Mar 9, 2018 ... aDepartment of Chemistry, Banasthali Vidyapith, Banasthali, Rajasthan 304 022, India ... serotonin 5-HT6 receptor antagonist,22 hepatitis-A virus ..... Molecular docking structure and ligand protein binding sites of MTX- (a) ...

  8. Attitudes of Dutch Pig Farmers Towards Tail Biting and Tail Docking

    OpenAIRE

    Bracke, M.B.M.; Lauwere, de, C.C.; Wind, S.M.M.; Zonderland, J.J.

    2013-01-01

    The Dutch policy objective of a fully sustainable livestock sector without mutilations by 2023 is not compatible with the routine practice of tail docking to minimize the risk of tail biting. To examine farmer attitudes towards docking, a telephone survey was conducted among 487 conventional and 33 organic Dutch pig farmers. “Biting” (of tails, ears, or limbs) was identified by the farmers as a main welfare problem in pig farming. About half of the farmers reported to have no tail biting prob...

  9. A Combined Molecular Docking/Dynamics Approach to Probe the Binding Mode of Cancer Drugs with Cytochrome P450 3A4

    Directory of Open Access Journals (Sweden)

    Suresh Panneerselvam

    2015-08-01

    Full Text Available Cytarabine, daunorubicin, doxorubicin and vincristine are clinically used for combinatorial therapies of cancers in different combinations. However, the knowledge about the interaction of these drugs with the metabolizing enzyme cytochrome P450 is limited. Therefore, we utilized computational methods to predict and assess the drug-binding modes. In this study, we performed docking, MD simulations and free energy landscape analysis to understand the drug-enzyme interactions, protein domain motions and the most populated free energy minimum conformations of the docked protein-drug complexes, respectively. The outcome of docking and MD simulations predicted the productive, as well as the non-productive binding modes of the selected drugs. Based on these interaction studies, we observed that S119, R212 and R372 are the major drug-binding residues in CYP3A4. The molecular mechanics Poisson–Boltzmann surface area analysis revealed the dominance of hydrophobic forces in the CYP3A4-drug association. Further analyses predicted the residues that may contain favorable drug-specific interactions. The probable binding modes of the cancer drugs from this study may extend the knowledge of the protein-drug interaction and pave the way to design analogs with reduced toxicity. In addition, they also provide valuable insights into the metabolism of the cancer drugs.

  10. Multibody dynamical modeling for spacecraft docking process with spring-damper buffering device: A new validation approach

    Science.gov (United States)

    Daneshjou, Kamran; Alibakhshi, Reza

    2018-01-01

    In the current manuscript, the process of spacecraft docking, as one of the main risky operations in an on-orbit servicing mission, is modeled based on unconstrained multibody dynamics. The spring-damper buffering device is utilized here in the docking probe-cone system for micro-satellites. Owing to the impact occurs inevitably during docking process and the motion characteristics of multibody systems are remarkably affected by this phenomenon, a continuous contact force model needs to be considered. Spring-damper buffering device, keeping the spacecraft stable in an orbit when impact occurs, connects a base (cylinder) inserted in the chaser satellite and the end of docking probe. Furthermore, by considering a revolute joint equipped with torsional shock absorber, between base and chaser satellite, the docking probe can experience both translational and rotational motions simultaneously. Although spacecraft docking process accompanied by the buffering mechanisms may be modeled by constrained multibody dynamics, this paper deals with a simple and efficient formulation to eliminate the surplus generalized coordinates and solve the impact docking problem based on unconstrained Lagrangian mechanics. By an example problem, first, model verification is accomplished by comparing the computed results with those recently reported in the literature. Second, according to a new alternative validation approach, which is based on constrained multibody problem, the accuracy of presented model can be also evaluated. This proposed verification approach can be applied to indirectly solve the constrained multibody problems by minimum required effort. The time history of impact force, the influence of system flexibility and physical interaction between shock absorber and penetration depth caused by impact are the issues followed in this paper. Third, the MATLAB/SIMULINK multibody dynamic analysis software will be applied to build impact docking model to validate computed results and

  11. Molecular Docking and Dynamic Simulation of AZD3293 and Solanezumab Effects Against BACE1 to Treat Alzheimer's Disease

    Directory of Open Access Journals (Sweden)

    Mubashir Hassan

    2018-06-01

    Full Text Available The design of novel inhibitors to target BACE1 with reduced cytotoxicity effects is a promising approach to treat Alzheimer's disease (AD. Multiple clinical drugs and antibodies such as AZD3293 and Solanezumab are being tested to investigate their therapeutical potential against AD. The current study explores the binding pattern of AZD3293 and Solanezumab against their target proteins such as β-secretase (BACE1 and mid-region amyloid-beta (Aβ (PDBIDs: 2ZHV & 4XXD, respectively using molecular docking and dynamic simulation (MD approaches. The molecular docking results show that AZD3293 binds within the active region of BACE1 by forming hydrogen bonds against Asp32 and Lys107 with distances 2.95 and 2.68 Å, respectively. However, the heavy chain of Solanezumab interacts with Lys16 and Asp23 of amyloid beta having bond length 2.82, 2.78, and 3.00 Å, respectively. The dynamic cross correlations and normal mode analyses show that BACE1 depicted good residual correlated motions and fluctuations, as compared to Solanezumab. Using MD, the Root Mean Square Deviation and Fluctuation (RMSD/F graphs show that AZD3293 residual fluctuations and RMSD value (0.2 nm was much better compared to Solanezumab (0.7 nm. Moreover, the radius of gyration (Rg results also depicts the significance of AZD3293 docked complex compared to Solanezumab through residual compactness. Our comparative results show that AZD3293 is a better therapeutic agent for treating AD than Solanezumab.

  12. Electromechanical and robot-assisted arm training for improving activities of daily living, arm function, and arm muscle strength after stroke.

    Science.gov (United States)

    Mehrholz, Jan; Pohl, Marcus; Platz, Thomas; Kugler, Joachim; Elsner, Bernhard

    2015-11-07

    Electromechanical and robot-assisted arm training devices are used in rehabilitation, and may help to improve arm function after stroke. To assess the effectiveness of electromechanical and robot-assisted arm training for improving activities of daily living, arm function, and arm muscle strength in people after stroke. We also assessed the acceptability and safety of the therapy. We searched the Cochrane Stroke Group's Trials Register (last searched February 2015), the Cochrane Central Register of Controlled Trials (CENTRAL) (the Cochrane Library 2015, Issue 3), MEDLINE (1950 to March 2015), EMBASE (1980 to March 2015), CINAHL (1982 to March 2015), AMED (1985 to March 2015), SPORTDiscus (1949 to March 2015), PEDro (searched April 2015), Compendex (1972 to March 2015), and Inspec (1969 to March 2015). We also handsearched relevant conference proceedings, searched trials and research registers, checked reference lists, and contacted trialists, experts, and researchers in our field, as well as manufacturers of commercial devices. Randomised controlled trials comparing electromechanical and robot-assisted arm training for recovery of arm function with other rehabilitation or placebo interventions, or no treatment, for people after stroke. Two review authors independently selected trials for inclusion, assessed trial quality and risk of bias, and extracted data. We contacted trialists for additional information. We analysed the results as standardised mean differences (SMDs) for continuous variables and risk differences (RDs) for dichotomous variables. We included 34 trials (involving 1160 participants) in this update of our review. Electromechanical and robot-assisted arm training improved activities of daily living scores (SMD 0.37, 95% confidence interval (CI) 0.11 to 0.64, P = 0.005, I² = 62%), arm function (SMD 0.35, 95% CI 0.18 to 0.51, P arm muscle strength (SMD 0.36, 95% CI 0.01 to 0.70, P = 0.04, I² = 72%), but the quality of the evidence was low to very low

  13. Arm injury produces long-term behavioral and neural hypersensitivity in octopus.

    Science.gov (United States)

    Alupay, Jean S; Hadjisolomou, Stavros P; Crook, Robyn J

    2014-01-13

    Cephalopod molluscs are the most neurally and behaviorally complex invertebrates, with brains rivaling those of some vertebrates in size and complexity. This has fostered the opinion that cephalopods, particularly octopuses, may experience vertebrate-like pain when injured. However, it is not known whether octopuses possess nociceptors or if their somatic sensory neurons exhibit sensitization after injury. Here we show that the octopus Abdopus aculeatus expresses nocifensive behaviors including arm autotomy, and displays marked neural hyperexcitability both in injured and uninjured arms for at least 24h after injury. These findings do not demonstrate that octopuses experience pain-like states; instead they add to the minimal existing literature on how cephalopods receive, process, and integrate noxious sensory information, potentially informing and refining regulations governing use of cephalopods in scientific research. Published by Elsevier Ireland Ltd.

  14. SMC Progressively Aligns Chromosomal Arms in Caulobacter crescentus but Is Antagonized by Convergent Transcription

    Directory of Open Access Journals (Sweden)

    Ngat T. Tran

    2017-08-01

    Full Text Available The structural maintenance of chromosomes (SMC complex plays an important role in chromosome organization and segregation in most living organisms. In Caulobacter crescentus, SMC is required to align the left and the right arms of the chromosome that run in parallel down the long axis of the cell. However, the mechanism of SMC-mediated alignment of chromosomal arms remains elusive. Here, using genome-wide methods and microscopy of single cells, we show that Caulobacter SMC is recruited to the centromeric parS site and that SMC-mediated arm alignment depends on the chromosome-partitioning protein ParB. We provide evidence that SMC likely tethers the parS-proximal regions of the chromosomal arms together, promoting arm alignment. Furthermore, we show that highly transcribed genes near parS that are oriented against SMC translocation disrupt arm alignment, suggesting that head-on transcription interferes with SMC translocation. Our results demonstrate a tight interdependence of bacterial chromosome organization and global patterns of transcription.

  15. Synthesis, in vitro anti-inflammatory activity and molecular docking ...

    Indian Academy of Sciences (India)

    alkyl and heterocyclic alkyl moieties were synthesized, characterized and subsequently evaluated for ... Docking studies with these compounds against cyclooxygenase-2 receptor ...... thiadiazole derivatives as possible anti-tubercular agents.

  16. 对接机构分系统研制%Development of Docking Subsystem

    Institute of Scientific and Technical Information of China (English)

    陈宝东; 郑云青; 邵济明; 陈萌

    2011-01-01

    The composition, control scheduling, design, and reliability and safety of the docking subsystem of China's Shenzhou-8 spaceship and Tiangong-1 target spacecraft were introduced in this paper. The key technologies of the general design, dynamic simulation, test and important part design in the design of the docking subsystem were given out. The tests, such as the general characteristic test, docking and separating test, docking test system in thermal vacuum, and life test, and test results were presented briefly. The whole research phase of the docking subsystem was reviewed.%介绍了我国神舟八号飞船和天宫一号目标飞行器对接试验的对接机构分系统的组成、控制时序、设计方案,以及可靠性与安全性。给出了对接机构分系统研制中总体设计、动力学仿真、试验和关键部件研制等关键技术,以及整机特性测试、连接分离试验、热真空对接与分离试验、寿命试验等验证情况。回顾了对接机构分系统的研制过程。

  17. ARM Airborne Carbon Measurements (ARM-ACME) and ARM-ACME 2.5 Final Campaign Reports

    Energy Technology Data Exchange (ETDEWEB)

    Biraud, S. C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Tom, M. S. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sweeney, C. [NOAA Earth Systems Research Lab., Boulder, CO (United States)

    2016-01-01

    We report on a 5-year multi-institution and multi-agency airborne study of atmospheric composition and carbon cycling at the Atmospheric Radiation Measurement (ARM) Climate Research Facility’s Southern Great Plains (SGP) site, with scientific objectives that are central to the carbon-cycle and radiative-forcing goals of the U.S. Global Change Research Program and the North American Carbon Program (NACP). The goal of these measurements is to improve understanding of 1) the carbon exchange of the Atmospheric Radiation Measurement (ARM) SGP region; 2) how CO2 and associated water and energy fluxes influence radiative-forcing, convective processes, and CO2 concentrations over the ARM SGP region, and 3) how greenhouse gases are transported on continental scales.

  18. Synthesis, docking and anticancer activity studies of D-proline ...

    Indian Academy of Sciences (India)

    D-proline-incorporated wainunuamide — a cyclic octapeptide was synthesized and characterized ... Cyclic octapeptide; molecular docking; solution phase synthesis; anticancer activity ..... dynamics and their binding affinities, using free energy.

  19. ReFlexIn: a flexible receptor protein-ligand docking scheme evaluated on HIV-1 protease.

    Directory of Open Access Journals (Sweden)

    Simon Leis

    Full Text Available For many targets of pharmaceutical importance conformational changes of the receptor protein are relevant during the ligand binding process. A new docking approach, ReFlexIn (Receptor Flexibility by Interpolation, that combines receptor flexibility with the computationally efficient potential grid representation of receptor molecules has been evaluated on the retroviral HIV-1 (Human Immunodeficiency Virus 1 protease system. An approximate inclusion of receptor flexibility is achieved by using interpolation between grid representations of individual receptor conformations. For the retroviral protease the method was tested on an ensemble of protease structures crystallized in the presence of different ligands and on a set of structures obtained from morphing between the unbound and a ligand-bound protease structure. Docking was performed on ligands known to bind to the protease and several non-binders. For the binders the ReFlexIn method yielded in almost all cases ligand placements in similar or closer agreement with experiment than docking to any of the ensemble members without degrading the discrimination with respect to non-binders. The improved docking performance compared to docking to rigid receptors allows for systematic virtual screening applications at very small additional computational cost.

  20. A novel interaction fingerprint derived from per atom score contributions: exhaustive evaluation of interaction fingerprint performance in docking based virtual screening.

    Science.gov (United States)

    Jasper, Julia B; Humbeck, Lina; Brinkjost, Tobias; Koch, Oliver

    2018-03-16

    Protein ligand interaction fingerprints are a powerful approach for the analysis and assessment of docking poses to improve docking performance in virtual screening. In this study, a novel interaction fingerprint approach (PADIF, protein per atom score contributions derived interaction fingerprint) is presented which was specifically designed for utilising the GOLD scoring functions' atom contributions together with a specific scoring scheme. This allows the incorporation of known protein-ligand complex structures for a target-specific scoring. Unlike many other methods, this approach uses weighting factors reflecting the relative frequency of a specific interaction in the references and penalizes destabilizing interactions. In addition, and for the first time, an exhaustive validation study was performed that assesses the performance of PADIF and two other interaction fingerprints in virtual screening. Here, PADIF shows superior results, and some rules of thumb for a successful use of interaction fingerprints could be identified.

  1. Thermodynamic analysis of ferulate complexation with α-, β- and γ-cyclodextrins

    International Nuclear Information System (INIS)

    González-Mondragón, Edith; Torralba-González, Armando; García-Gutiérrez, Ponciano; Robles-González, Vania S.; Salazar-Govea, Alma Y.; Zubillaga, Rafael A.

    2016-01-01

    Highlights: • Ferulate exhibits the highest affinity for the β-cyclodextrin. • The β-CD cavity fits better with FER, according to the docking simulations. • The complexation of FER with β-CD is the only one favored by entropy. • More water molecules seem to be displaced after the complexation of FER with β-CD. - Abstract: Isothermal titration calorimetry (ITC) was used to characterize the thermodynamics of the complexation processes of α-, β- and γ-cyclodextrin (CD) with ferulate (FER) in aqueous solutions. The equilibrium constants of ferulate complexation with CDs (K_c, in dm"3 mol"−"1) at pH 9.0 and 25.0 °C were: 176.5 ± 5.0 (β-CD), 53.2 ± 3.4 (α-CD) and 19.4 ± 0.4 (γ-CD). Although FER–β-CD is the tightest complex of the three studied, its binding reaction is also the least exothermic and the only one that is entropically favored. Calculated binding enthalpies, based on the buried surface area upon complexation, are close to those determined by ITC except for the FER–β-CD complex which is more than two times more exothermic. According to these results and those obtained by molecular docking simulations, it is proposed that ferulate binds to the hydrophobic cavity of β-CD, displacing more water molecules than in the other two CD complexes.

  2. Powered manipulator control arm

    International Nuclear Information System (INIS)

    Le Mouee, Theodore; Vertut, Jean; Marchal, Paul; Germon, J.C.; Petit, Michel

    1975-01-01

    A remote operated control arm for powered manipulators is described. It includes an assembly allowing several movements with position sensors for each movement. The number of possible arm movements equals the number of possible manipulator movements. The control systems may be interrupted as required. One part of the arm is fitted with a system to lock it with respect to another part of the arm without affecting the other movements, so long as the positions of the manipulator and the arm have not been brought into complete coincidence. With this system the locking can be ended when complete concordance is achieved [fr

  3. Spectroscopic and molecular docking techniques study of the interaction between oxymetholone and human serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Madrakian, Tayyebeh, E-mail: madrakian@basu.ac.ir; Bagheri, Habibollah; Afkhami, Abbas; Soleimani, Mohammad

    2014-11-15

    In this study, the binding of oxymetholone (OXM), a doping drug, to human serum albumin (HSA) was explored at pH 7.40 by spectroscopic methods including spectrofluorimetry, three dimensional excitation–emission matrix (3D EEM), UV–vis absorption, resonance rayleigh scattering (RRS) and molecular docking. The fluorescence results showed that there was a considerable quenching of the intrinsic fluorescence of HSA upon binding to OXM by static quenching mechanism. The Stern–Volmer quenching constants (K{sub SV}) between OXM and HSA at three different temperatures 295, 303, 308 K, were obtained as 4.63×10{sup 4}, 3.05×10{sup 4} and 1.49×10{sup 4} L mol{sup −1}, respectively. Furthermore this interaction was confirmed by UV–vis spectrophotometric and RRS techniques. The binding site number, n, apparent binding constant, K{sub b}, and corresponding thermodynamic parameters (ΔS, ΔH and ΔG) were measured at different temperatures. The Van der Waals and hydrogen-bond forces were found to stabilize OXM–HSA complex. The distance (r) between the donor and acceptor was obtained from Förster's theory of fluorescence resonance energy transfer (FRET) and found to be 1.67 nm. The 3D EEM showed that OXM slightly changes the secondary structure of HSA. Furthermore, the molecular docking was employed for identification of drug binding sites and interaction of OXM with amino acid residues. - Highlights: • The binding of OXM as a doping drug with HSA was studied by different techniques. • The binding constant of HSA–OXM was calculated. • The binding site of OXM on HSA was characterized with molecular docking. • The thermodynamic parameters were calculated according to fluorescence technique.

  4. ARM Airborne Carbon Measurements VI (ARM-ACME VI) Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Biraud, Sebastien [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-05-01

    From October 1, 2015 through September 30, 2016, AAF deployed a Cessna 206 aircraft over the Southern Great Plains, collecting observations of trace gas mixing ratios over the ARM/SGP Central Facility. The aircraft payload included two Atmospheric Observing Systems (AOS Inc.) analyzers for continuous measurements of CO2, and a 12-flask sampler for analysis of carbon cycle gases (CO2, CO, CH4, N2O, 13CO2). The aircraft payload also includes solar/infrared radiation measurements. This research (supported by DOE ARM and TES programs) builds upon previous ARM-ACME missions. The goal of these measurements is to improve understanding of: (a) the carbon exchange of the ARM region; (b) how CO2 and associated water and energy fluxes influence radiative forcing, convective processes, and CO2 concentrations over the ARM region, and (c) how greenhouse gases are transported on continental scales.

  5. Electronic structure and driving forces in β-cyclodextrin: Diclofenac inclusion complexes

    International Nuclear Information System (INIS)

    Bogdan, Diana; Morari, C.

    2007-01-01

    We investigate the geometry and electronic structure for complexes of β-cyclodextrin with diclofenac using DFT calculations. The effect of solvent is explicitly taken into account. This investigation allows us to draw meaningful conclusions upon the stability of the complex and the nature of the driving forces leading to the complexation process. In particular we emphasize the role of the water, by pointing out the changes in the solvent's electronic structure for different docking geometries

  6. ARM Mentor Selection Process

    Energy Technology Data Exchange (ETDEWEB)

    Sisterson, D. L. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-10-01

    The Atmospheric Radiation Measurement (ARM) Program was created in 1989 with funding from the U.S. Department of Energy (DOE) to develop several highly instrumented ground stations to study cloud formation processes and their influence on radiative transfer. In 2003, the ARM Program became a national scientific user facility, known as the ARM Climate Research Facility. This scientific infrastructure provides for fixed sites, mobile facilities, an aerial facility, and a data archive available for use by scientists worldwide through the ARM Climate Research Facility—a scientific user facility. The ARM Climate Research Facility currently operates more than 300 instrument systems that provide ground-based observations of the atmospheric column. To keep ARM at the forefront of climate observations, the ARM infrastructure depends heavily on instrument scientists and engineers, also known as lead mentors. Lead mentors must have an excellent understanding of in situ and remote-sensing instrumentation theory and operation and have comprehensive knowledge of critical scale-dependent atmospheric processes. They must also possess the technical and analytical skills to develop new data retrievals that provide innovative approaches for creating research-quality data sets. The ARM Climate Research Facility is seeking the best overall qualified candidate who can fulfill lead mentor requirements in a timely manner.

  7. Extracellular Signal-Regulated Kinase 2 (ERK2) Phosphorylation Sites and Docking Domain on the Nuclear Pore Complex Protein Tpr Cooperatively Regulate ERK2-Tpr Interaction

    Czech Academy of Sciences Publication Activity Database

    Vomastek, Tomáš; Iwanicky, M. P.; Burack, W. R.; Tiwari, D.; Kumar, D.; Parsons, J. T.; Weber, M. J.; Nandicoori, V. K.

    2008-01-01

    Roč. 28, č. 22 (2008), s. 6954-6966 ISSN 0270-7306 R&D Projects: GA AV ČR IAA500200716 Institutional research plan: CEZ:AV0Z50200510 Keywords : erk * docking domain * cell growth Subject RIV: EE - Microbiology, Virology Impact factor: 5.942, year: 2008

  8. Passive, Failure-Tolerant Docking and Undocking with Articulated Magnets

    Data.gov (United States)

    National Aeronautics and Space Administration — Current spacecraft docking relies on active movement (e.g. thrusters) to close the gap between participants, and to separate them when undocking. I intend to develop...

  9. Automated waste canister docking and emplacement using a sensor-based intelligent controller

    International Nuclear Information System (INIS)

    Drotning, W.D.

    1992-08-01

    A sensor-based intelligent control system is described that utilizes a multiple degree-of-freedom robotic system for the automated remote manipulation and precision docking of large payloads such as waste canisters. Computer vision and ultrasonic proximity sensing are used to control the automated precision docking of a large object with a passive target cavity. Real-time sensor processing and model-based analysis are used to control payload position to a precision of ± 0.5 millimeter

  10. The arms race control

    International Nuclear Information System (INIS)

    Nemo, J.

    2010-01-01

    Written in 1961, this paper presents the content of a book entitled 'The arms race control' where the author outlined the difference between disarmament and arms control, described the economic and moral role of arms race, the importance of force balance for international security. He wandered whether arms control could ensure this balance and whether nuclear balance meant force balance. Force balance then appears to be a precarious and unsteady component of international security. He commented the challenges of disarmament, recalled some arguments for a nuclear disarmament. Then he discussed what would be an arms control with or without disarmament (either nuclear or conventional)

  11. How do octopuses use their arms?

    Science.gov (United States)

    Mather, J A

    1998-09-01

    A taxonomy of the movement patterns of the 8 flexible arms of octopuses is constructed. Components consist of movements of the arm itself, the ventral suckers and their stalks, as well as the relative position of arms and the skin web between them. Within 1 arm, combinations of components result in a variety of behaviors. At the level of all arms, 1 group of behaviors is described as postures, on the basis of the spread of all arms and the web to make a 2-dimensional surface whose position differs in the 3rd dimension. Another group of arm behaviors is actions, more or less coordinated and involving several to all arms. Arm control appears to be based on radial symmetry, relative equipotentiality of all arms, relative independence of each arm, and separability of components within the arm. The types and coordination of arm behaviors are discussed with relationship to biomechanical limits, muscle structures, and neuronal programming.

  12. Ligand pose and orientational sampling in molecular docking.

    Directory of Open Access Journals (Sweden)

    Ryan G Coleman

    Full Text Available Molecular docking remains an important tool for structure-based screening to find new ligands and chemical probes. As docking ambitions grow to include new scoring function terms, and to address ever more targets, the reliability and extendability of the orientation sampling, and the throughput of the method, become pressing. Here we explore sampling techniques that eliminate stochastic behavior in DOCK3.6, allowing us to optimize the method for regularly variable sampling of orientations. This also enabled a focused effort to optimize the code for efficiency, with a three-fold increase in the speed of the program. This, in turn, facilitated extensive testing of the method on the 102 targets, 22,805 ligands and 1,411,214 decoys of the Directory of Useful Decoys-Enhanced (DUD-E benchmarking set, at multiple levels of sampling. Encouragingly, we observe that as sampling increases from 50 to 500 to 2000 to 5000 to 20,000 molecular orientations in the binding site (and so from about 1×10(10 to 4×10(10 to 1×10(11 to 2×10(11 to 5×10(11 mean atoms scored per target, since multiple conformations are sampled per orientation, the enrichment of ligands over decoys monotonically increases for most DUD-E targets. Meanwhile, including internal electrostatics in the evaluation ligand conformational energies, and restricting aromatic hydroxyls to low energy rotamers, further improved enrichment values. Several of the strategies used here to improve the efficiency of the code are broadly applicable in the field.

  13. CyARM: Haptic Sensing Device for Spatial Localization on Basis of Exploration by Arms

    Directory of Open Access Journals (Sweden)

    Junichi Akita

    2009-01-01

    Full Text Available We introduce a new type of perception aid device based on user's exploration action, which is named as CyARM (acronym of “Cyber Arm”. The user holds this device in her/his arm, the extension of the arm is controlled by tension in wires, which are attached to her/his body according to the distance to the object. This user interface has unique characteristics that give users the illusion of an imaginary arm that extends to existing objects. The implementations of CyARM and our two experiments to investigate the efficiency and effectiveness of CyARM are described. The results show that we could confirm that CyARM can be used to recognize the presence of an object in front of the user and to measure the relative distance to the object.

  14. China Accomplished Its First Space Rendezvous and Docking

    Institute of Scientific and Technical Information of China (English)

    Chen Xiaoli

    2011-01-01

    At 1:36 am on November 3,China's Shenzhou 8 unmanned spaceship and Tiangong 1 space lab spacecraft accomplished the country's first space docking procedure and coupling in space at more than 343km above Earth's surface,marking a great leap in China's space program.

  15. DOVIS 2.0: an efficient and easy to use parallel virtual screening tool based on AutoDock 4.0.

    Science.gov (United States)

    Jiang, Xiaohui; Kumar, Kamal; Hu, Xin; Wallqvist, Anders; Reifman, Jaques

    2008-09-08

    Small-molecule docking is an important tool in studying receptor-ligand interactions and in identifying potential drug candidates. Previously, we developed a software tool (DOVIS) to perform large-scale virtual screening of small molecules in parallel on Linux clusters, using AutoDock 3.05 as the docking engine. DOVIS enables the seamless screening of millions of compounds on high-performance computing platforms. In this paper, we report significant advances in the software implementation of DOVIS 2.0, including enhanced screening capability, improved file system efficiency, and extended usability. To keep DOVIS up-to-date, we upgraded the software's docking engine to the more accurate AutoDock 4.0 code. We developed a new parallelization scheme to improve runtime efficiency and modified the AutoDock code to reduce excessive file operations during large-scale virtual screening jobs. We also implemented an algorithm to output docked ligands in an industry standard format, sd-file format, which can be easily interfaced with other modeling programs. Finally, we constructed a wrapper-script interface to enable automatic rescoring of docked ligands by arbitrarily selected third-party scoring programs. The significance of the new DOVIS 2.0 software compared with the previous version lies in its improved performance and usability. The new version makes the computation highly efficient by automating load balancing, significantly reducing excessive file operations by more than 95%, providing outputs that conform to industry standard sd-file format, and providing a general wrapper-script interface for rescoring of docked ligands. The new DOVIS 2.0 package is freely available to the public under the GNU General Public License.

  16. DOVIS 2.0: an efficient and easy to use parallel virtual screening tool based on AutoDock 4.0

    Directory of Open Access Journals (Sweden)

    Wallqvist Anders

    2008-09-01

    Full Text Available Abstract Background Small-molecule docking is an important tool in studying receptor-ligand interactions and in identifying potential drug candidates. Previously, we developed a software tool (DOVIS to perform large-scale virtual screening of small molecules in parallel on Linux clusters, using AutoDock 3.05 as the docking engine. DOVIS enables the seamless screening of millions of compounds on high-performance computing platforms. In this paper, we report significant advances in the software implementation of DOVIS 2.0, including enhanced screening capability, improved file system efficiency, and extended usability. Implementation To keep DOVIS up-to-date, we upgraded the software's docking engine to the more accurate AutoDock 4.0 code. We developed a new parallelization scheme to improve runtime efficiency and modified the AutoDock code to reduce excessive file operations during large-scale virtual screening jobs. We also implemented an algorithm to output docked ligands in an industry standard format, sd-file format, which can be easily interfaced with other modeling programs. Finally, we constructed a wrapper-script interface to enable automatic rescoring of docked ligands by arbitrarily selected third-party scoring programs. Conclusion The significance of the new DOVIS 2.0 software compared with the previous version lies in its improved performance and usability. The new version makes the computation highly efficient by automating load balancing, significantly reducing excessive file operations by more than 95%, providing outputs that conform to industry standard sd-file format, and providing a general wrapper-script interface for rescoring of docked ligands. The new DOVIS 2.0 package is freely available to the public under the GNU General Public License.

  17. Study on the interaction of tussilagone with human serum albumin (HSA) by spectroscopic and molecular docking techniques

    Science.gov (United States)

    Xu, Liang; Hu, Yan-Xi; Li, Yan-Cheng; Zhang, Li; Ai, Hai-Xin; Liu, Hong-Sheng; Liu, Yu-Feng; Sang, Yu-Li

    2017-12-01

    Tussilagone is a sesquiterpenoid which exhibits a variety of pharmacological activities. The interaction of tussilagone with human serum albumin (HSA) was investigated using fluorescence spectroscopy, UV-vis absorption, fluorescence probe experiments, synchronous fluorescence, circular dichroism (CD) spectra, three-dimensional spectra and molecular docking techniques under simulative physiological conditions. The results clarified that the fluorescence quenching of HSA by tussilagone was a static quenching process as a result of HSA-tussilagone (1:1) complex. Tussilagone spontaneously bound to HSA in site I (subdomain IIA), which was primarily driven by hydrophobic forces and hydrogen bonds (ΔH° = -13.89 kJ mol-1, ΔS° = 16.39 J mol-1 K-1). The binding constant was calculated to be 2.182 × 103 L mol-1 and the binding distance was estimated to be 2.07 nm at 291 K, showing the occurrence of fluorescence energy transfer. The results of CD, synchronous and three-dimensional fluorescence spectra all revealed that tussilagone induced the conformational changes of HSA. Meanwhile, the study of molecular docking also indicated that tussilagone could bind to the site I of HSA mainly by hydrophobic and hydrogen bond interactions.

  18. Homology modeling, molecular docking and DNA binding studies of nucleotide excision repair UvrC protein from M. tuberculosis.

    Science.gov (United States)

    Parulekar, Rishikesh S; Barage, Sagar H; Jalkute, Chidambar B; Dhanavade, Maruti J; Fandilolu, Prayagraj M; Sonawane, Kailas D

    2013-08-01

    Mycobacterium tuberculosis is a Gram positive, acid-fast bacteria belonging to genus Mycobacterium, is the leading causative agent of most cases of tuberculosis. The pathogenicity of the bacteria is enhanced by its developed DNA repair mechanism which consists of machineries such as nucleotide excision repair. Nucleotide excision repair consists of excinuclease protein UvrABC endonuclease, multi-enzymatic complex which carries out repair of damaged DNA in sequential manner. UvrC protein is a part of this complex and thus helps to repair the damaged DNA of M. tuberculosis. Hence, structural bioinformatics study of UvrC protein from M. tuberculosis was carried out using homology modeling and molecular docking techniques. Assessment of the reliability of the homology model was carried out by predicting its secondary structure along with its model validation. The predicted structure was docked with the ATP and the interacting amino acid residues of UvrC protein with the ATP were found to be TRP539, PHE89, GLU536, ILE402 and ARG575. The binding of UvrC protein with the DNA showed two different domains. The residues from domain I of the protein VAL526, THR524 and LEU521 interact with the DNA whereas, amino acids interacting from the domain II of the UvrC protein included ARG597, GLU595, GLY594 and GLY592 residues. This predicted model could be useful to design new inhibitors of UvrC enzyme to prevent pathogenesis of Mycobacterium and so the tuberculosis.

  19. The development of an affinity evaluation and prediction system by using protein–protein docking simulations and parameter tuning

    Directory of Open Access Journals (Sweden)

    Koki Tsukamoto

    2009-01-01

    Full Text Available Koki Tsukamoto1, Tatsuya Yoshikawa1,2, Kiyonobu Yokota1, Yuichiro Hourai1, Kazuhiko Fukui11Computational Biology Research Center (CBRC, National Institute of Advanced Industrial Science and Technology (AIST, Koto-ku, Tokyo, Japan; 2Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Toyonaka, Osaka, JapanAbstract: A system was developed to evaluate and predict the interaction between protein pairs by using the widely used shape complementarity search method as the algorithm for docking simulations between the proteins. We used this system, which we call the affinity evaluation and prediction (AEP system, to evaluate the interaction between 20 protein pairs. The system first executes a “round robin” shape complementarity search of the target protein group, and evaluates the interaction between the complex structures obtained by the search. These complex structures are selected by using a statistical procedure that we developed called ‘grouping’. At a prevalence of 5.0%, our AEP system predicted protein–protein interactions with a 50.0% recall, 55.6% precision, 95.5% accuracy, and an F-measure of 0.526. By optimizing the grouping process, our AEP system successfully predicted 10 protein pairs (among 20 pairs that were biologically relevant combinations. Our ultimate goal is to construct an affinity database that will provide cell biologists and drug designers with crucial information obtained using our AEP system.Keywords: protein–protein interaction, affinity analysis, protein–protein docking, FFT, massive parallel computing

  20. Fitting multimeric protein complexes into electron microscopy maps using 3D Zernike descriptors.

    Science.gov (United States)

    Esquivel-Rodríguez, Juan; Kihara, Daisuke

    2012-06-14

    A novel computational method for fitting high-resolution structures of multiple proteins into a cryoelectron microscopy map is presented. The method named EMLZerD generates a pool of candidate multiple protein docking conformations of component proteins, which are later compared with a provided electron microscopy (EM) density map to select the ones that fit well into the EM map. The comparison of docking conformations and the EM map is performed using the 3D Zernike descriptor (3DZD), a mathematical series expansion of three-dimensional functions. The 3DZD provides a unified representation of the surface shape of multimeric protein complex models and EM maps, which allows a convenient, fast quantitative comparison of the three-dimensional structural data. Out of 19 multimeric complexes tested, near native complex structures with a root-mean-square deviation of less than 2.5 Å were obtained for 14 cases while medium range resolution structures with correct topology were computed for the additional 5 cases.

  1. Electronic structure and driving forces in {beta}-cyclodextrin: Diclofenac inclusion complexes

    Energy Technology Data Exchange (ETDEWEB)

    Bogdan, Diana [National Institute for Research and Development of Isotopic and Molecular Technologies, Donath street 71-103, 400293 Cluj-Napoca (Romania); Morari, C. [National Institute for Research and Development of Isotopic and Molecular Technologies, Donath street 71-103, 400293 Cluj-Napoca (Romania)]. E-mail: cristim@s3.itim-cj.ro

    2007-07-02

    We investigate the geometry and electronic structure for complexes of {beta}-cyclodextrin with diclofenac using DFT calculations. The effect of solvent is explicitly taken into account. This investigation allows us to draw meaningful conclusions upon the stability of the complex and the nature of the driving forces leading to the complexation process. In particular we emphasize the role of the water, by pointing out the changes in the solvent's electronic structure for different docking geometries.

  2. A QUANTITATIVE STRUCTURE-ACTIVITY RELATIONSHIP AND MOLECULAR DOCKING STUDY ON A SERIES OF PYRIMIDINES ACTING AS ANTI-HEPATITIS C VIRUS AGENTS

    Directory of Open Access Journals (Sweden)

    Sakshi Gupta

    2013-12-01

    Full Text Available A QSAR and molecular modeling study was performed on a series of pyrimidines acting as hepatitis C virus inhibitors. In this case, anti-HCV potency of the compounds was found to be significantly correlated with the hydrophobic property of the molecule, Kier’s first-order valence molecular connectivity index for a particular substituent, total structure connectivity index of the molecule, and an indicator parameter used for the presence of benzothiazole ring. The validity of the correlation was judged by leave-one-out jackknife procedure and predicting the activity of some test compounds. Using the correlation obtained, some new compounds of high potency have been predicted in the series. A docking study using Molegro Virtual Docker was performed on these predicted compounds to decipher their interactions with the receptor. It was observed that all the predicted compounds had better interaction energy and docking score than the ligand complexed with the protein.

  3. Silencing of dedicator of cytokinesis (DOCK180) obliterates pregnancy by interfering with decidualization due to blockage of nuclear entry of autoimmune regulator (AIRE).

    Science.gov (United States)

    Mohan, Jasna Jagan; Narayan, Prashanth; Padmanabhan, Renjini Ambika; Joseph, Selin; Kumar, Pradeep G; Laloraya, Malini

    2018-03-08

    Dedicator of cytokinesis (DOCK 180) involved in cytoskeletal reorganization is primarily a cytosolic molecule. It is recently shown to be nuclear in HeLa cells but its nuclear function is not known. The spatiotemporal distribution of DOCK180 in uterus was studied in uterine cytoplasmic and nuclear compartments during the "window of implantation." The functional significance of nuclear DOCK180 was explored by homology modeling, co-immunoprecipitation assays, and mass spectrometric analysis. Dock180's role in early pregnancy was ascertained by Dock 180 silencing and subsequent quantitative real-time PCR and Western blotting analysis. Our study shows a nuclear DOCK180 in the uterus during "window of implantation." Estrogen and progesterone mediate expression and nuclear translocation of DOCK180. The nuclear function of DOCK180 is attributed to its ability to import autoimmune regulator (AIRE) into the nucleus. Silencing of Dock180 inhibited AIRE nuclear shuttling which influenced its downstream targets, thereby affecting decidualization with AIRE and HOXA-10 as the major players as well as lack of implantation site formation due to impact on angiogenesis-associated genes. DOCK180 has an indispensable role in pregnancy establishment as knocking down Dock180 abrogates pregnancy by a consolidated impact on decidualization and angiogenesis by regulating AIRE nuclear entry. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Synthesis, characterization, in-vitro antimicrobial properties, molecular docking and DFT studies of 3-{(E-[(4,6-dimethylpyrimidin-2-ylimino]methyl} naphthalen-2-ol and Heteroleptic Mn(II, Co(II, Ni(II and Zn(II complexes

    Directory of Open Access Journals (Sweden)

    Chioma Festus

    2018-03-01

    Full Text Available Heteroleptic divalent metal complexes [M(L (bipy(Y]•nH2O (where M = Mn, Co, Ni, and Zn; L = Schiff base; bipy = 2,2’-bipyridine; Y = OAc and n = 0, 1 have been synthesized from pyrimidine Schiff base ligand 3-{(E-[(4,6-dimethylpyrimidin-2-ylimino]methyl} naphthalen-2-ol, 2,2’-bipyridine and metal(II acetate salts. The Schiff base and its complexes were characterized by analytical (CHN elemental analyses, solubility, melting point, conductivity measurements, spectral (IR, UV-vis, 1H and 13C-NMR and MS and magnetometry. The elemental analyses, Uv-vis spectra and room temperature magnetic moment data provide evidence of six coordinated octahedral geometry for the complexes. The metal complexes’ low molar conductivity values in dimethylsulphoxide suggested that they were non-ionic in nature. The compounds displayed moderate to good antimicrobial and antifungal activities against S. aureus, P. aeruginosa, E. coli, B. cereus, P. mirabilis, K. oxytoca, A. niger, A. flevus and R. Stolonifer. The compounds also exhibited good antioxidant potentials with ferrous ion chelation and, 1-diphenyl-2-picryl-hydrazyl (DPPH radical scavenging assays. Molecular docking studies showed a good interaction with drug targets used. The structural and electronic properties of complexes were further confirmed by density functional theory calculations.

  5. The Drosophila DOCK family protein Sponge is required for development of the air sac primordium

    Energy Technology Data Exchange (ETDEWEB)

    Morishita, Kazushge; Anh Suong, Dang Ngoc; Yoshida, Hideki; Yamaguchi, Masamitsu, E-mail: myamaguc@kit.ac.jp

    2017-05-15

    Dedicator of cytokinesis (DOCK) family genes are known as DOCK1-DOCK11 in mammals. DOCK family proteins mainly regulate actin filament polymerization and/or depolymerization and are GEF proteins, which contribute to cellular signaling events by activating small G proteins. Sponge (Spg) is a Drosophila counterpart to mammalian DOCK3/DOCK4, and plays a role in embryonic central nervous system development, R7 photoreceptor cell differentiation, and adult thorax development. In order to conduct further functional analyses on Spg in vivo, we examined its localization in third instar larval wing imaginal discs. Immunostaining with purified anti-Spg IgG revealed that Spg mainly localized in the air sac primordium (ASP) in wing imaginal discs. Spg is therefore predicted to play an important role in the ASP. The specific knockdown of Spg by the breathless-GAL4 driver in tracheal cells induced lethality accompanied with a defect in ASP development and the induction of apoptosis. The monitoring of ERK signaling activity in wing imaginal discs by immunostaining with anti-diphospho-ERK IgG revealed reductions in the ERK signal cascade in Spg knockdown clones. Furthermore, the overexpression of D-raf suppressed defects in survival and the proliferation of cells in the ASP induced by the knockdown of Spg. Collectively, these results indicate that Spg plays a critical role in ASP development and tracheal cell viability that is mediated by the ERK signaling pathway. - Highlights: • Spg mainly localizes in the air sac primordium in wing imaginal discs. • Spg plays a critical role in air sac primordium development. • Spg positively regulates the ERK signal cascade.

  6. An autonomous rendezvous and docking system using cruise missile technologies

    Science.gov (United States)

    Jones, Ruel Edwin

    1991-01-01

    In November 1990 the Autonomous Rendezvous & Docking (AR&D) system was first demonstrated for members of NASA's Strategic Avionics Technology Working Group. This simulation utilized prototype hardware from the Cruise Missile and Advanced Centaur Avionics systems. The object was to show that all the accuracy, reliability and operational requirements established for a space craft to dock with Space Station Freedom could be met by the proposed system. The rapid prototyping capabilities of the Advanced Avionics Systems Development Laboratory were used to evaluate the proposed system in a real time, hardware in the loop simulation of the rendezvous and docking reference mission. The simulation permits manual, supervised automatic and fully autonomous operations to be evaluated. It is also being upgraded to be able to test an Autonomous Approach and Landing (AA&L) system. The AA&L and AR&D systems are very similar. Both use inertial guidance and control systems supplemented by GPS. Both use an Image Processing System (IPS), for target recognition and tracking. The IPS includes a general purpose multiprocessor computer and a selected suite of sensors that will provide the required relative position and orientation data. Graphic displays can also be generated by the computer, providing the astronaut / operator with real-time guidance and navigation data with enhanced video or sensor imagery.

  7. ICRESH-ARMS 2015 Conference

    CERN Document Server

    Ahmadi, Alireza; Verma, Ajit; Varde, Prabhakar

    2016-01-01

    Containing selected papers from the ICRESH-ARMS 2015 conference in Lulea, Sweden, collected by editors with years of experiences in Reliability and maintenance modeling, risk assessment, and asset management, this work maximizes reader insights into the current trends in Reliability, Availability, Maintainability and Safety (RAMS) and Risk Management. Featuring a comprehensive analysis of the significance of the role of RAMS and Risk Management in the decision making process during the various phases of design, operation, maintenance, asset management and productivity in Industrial domains, these proceedings discuss key issues and challenges in the operation, maintenance and risk management of complex engineering systems and will serve as a valuable resource for those in the field.

  8. Thermodynamic analysis of ferulate complexation with α-, β- and γ-cyclodextrins

    Energy Technology Data Exchange (ETDEWEB)

    González-Mondragón, Edith, E-mail: edith@mixteco.utm.mx [Universidad Tecnológica de la Mixteca, C.P. 69000 Huajuapan de León, Oax. (Mexico); Torralba-González, Armando [Universidad Tecnológica de la Mixteca, C.P. 69000 Huajuapan de León, Oax. (Mexico); García-Gutiérrez, Ponciano [Departamento de Química, Universidad Autónoma Metropolitana – Iztapalapa, Apartado Postal 55-534, Iztapalapa, C.P. 09340 México, D.F. (Mexico); Robles-González, Vania S.; Salazar-Govea, Alma Y. [Universidad Tecnológica de la Mixteca, C.P. 69000 Huajuapan de León, Oax. (Mexico); Zubillaga, Rafael A., E-mail: zlra@xanum.uam.mx [Departamento de Química, Universidad Autónoma Metropolitana – Iztapalapa, Apartado Postal 55-534, Iztapalapa, C.P. 09340 México, D.F. (Mexico)

    2016-06-20

    Highlights: • Ferulate exhibits the highest affinity for the β-cyclodextrin. • The β-CD cavity fits better with FER, according to the docking simulations. • The complexation of FER with β-CD is the only one favored by entropy. • More water molecules seem to be displaced after the complexation of FER with β-CD. - Abstract: Isothermal titration calorimetry (ITC) was used to characterize the thermodynamics of the complexation processes of α-, β- and γ-cyclodextrin (CD) with ferulate (FER) in aqueous solutions. The equilibrium constants of ferulate complexation with CDs (K{sub c}, in dm{sup 3} mol{sup −1}) at pH 9.0 and 25.0 °C were: 176.5 ± 5.0 (β-CD), 53.2 ± 3.4 (α-CD) and 19.4 ± 0.4 (γ-CD). Although FER–β-CD is the tightest complex of the three studied, its binding reaction is also the least exothermic and the only one that is entropically favored. Calculated binding enthalpies, based on the buried surface area upon complexation, are close to those determined by ITC except for the FER–β-CD complex which is more than two times more exothermic. According to these results and those obtained by molecular docking simulations, it is proposed that ferulate binds to the hydrophobic cavity of β-CD, displacing more water molecules than in the other two CD complexes.

  9. Armed conflict and child health.

    Science.gov (United States)

    Rieder, Michael; Choonara, Imti

    2012-01-01

    Armed conflict has a major impact on child health throughout the world. One in six children worldwide lives in an area of armed conflict and civilians are more likely to die than soldiers as a result of the conflict. In stark contrast to the effect on children, the international arms trade results in huge profits for the large corporations involved in producing arms, weapons and munitions. Armed conflict is not inevitable but is an important health issue that should be prevented.

  10. Rigid Body Energy Minimization on Manifolds for Molecular Docking.

    Science.gov (United States)

    Mirzaei, Hanieh; Beglov, Dmitri; Paschalidis, Ioannis Ch; Vajda, Sandor; Vakili, Pirooz; Kozakov, Dima

    2012-11-13

    Virtually all docking methods include some local continuous minimization of an energy/scoring function in order to remove steric clashes and obtain more reliable energy values. In this paper, we describe an efficient rigid-body optimization algorithm that, compared to the most widely used algorithms, converges approximately an order of magnitude faster to conformations with equal or slightly lower energy. The space of rigid body transformations is a nonlinear manifold, namely, a space which locally resembles a Euclidean space. We use a canonical parametrization of the manifold, called the exponential parametrization, to map the Euclidean tangent space of the manifold onto the manifold itself. Thus, we locally transform the rigid body optimization to an optimization over a Euclidean space where basic optimization algorithms are applicable. Compared to commonly used methods, this formulation substantially reduces the dimension of the search space. As a result, it requires far fewer costly function and gradient evaluations and leads to a more efficient algorithm. We have selected the LBFGS quasi-Newton method for local optimization since it uses only gradient information to obtain second order information about the energy function and avoids the far more costly direct Hessian evaluations. Two applications, one in protein-protein docking, and the other in protein-small molecular interactions, as part of macromolecular docking protocols are presented. The code is available to the community under open source license, and with minimal effort can be incorporated into any molecular modeling package.

  11. Synthesis and molecular docking of new hydrazones derived from ...

    African Journals Online (AJOL)

    Synthesis and molecular docking of new hydrazones derived from ethyl isonipecotate and their biological activities. A Munir, Aziz-ur Rehman, M.A. Abbasi, S.Z. Siddiqui, A Nasir, S.G. Khan, S Rasool, S.A.A. Shah ...

  12. Hello to Arms

    Science.gov (United States)

    2005-01-01

    This image highlights the hidden spiral arms (blue) that were discovered around the nearby galaxy NGC 4625 by the ultraviolet eyes of NASA's Galaxy Evolution Explorer. The image is composed of ultraviolet and visible-light data, from the Galaxy Evolution Explorer and the California Institute of Technology's Digitized Sky Survey, respectively. Near-ultraviolet light is colored green; far-ultraviolet light is colored blue; and optical light is colored red. As the image demonstrates, the lengthy spiral arms are nearly invisible when viewed in optical light while bright in ultraviolet. This is because they are bustling with hot, newborn stars that radiate primarily ultraviolet light. The youthful arms are also very long, stretching out to a distance four times the size of the galaxy's core. They are part of the largest ultraviolet galactic disk discovered so far. Located 31 million light-years away in the constellation Canes Venatici, NGC 4625 is the closest galaxy ever seen with such a young halo of arms. It is slightly smaller than our Milky Way, both in size and mass. However, the fact that this galaxy's disk is forming stars very actively suggests that it might evolve into a more massive and mature galaxy resembling our own. The armless companion galaxy seen below NGC 4625 is called NGC 4618. Astronomers do not know why it lacks arms but speculate that it may have triggered the development of arms in NGC 4625.

  13. Visual Display of 5p-arm and 3p-arm miRNA Expression with a Mobile Application.

    Science.gov (United States)

    Pan, Chao-Yu; Kuo, Wei-Ting; Chiu, Chien-Yuan; Lin, Wen-Chang

    2017-01-01

    MicroRNAs (miRNAs) play important roles in human cancers. In previous studies, we have demonstrated that both 5p-arm and 3p-arm of mature miRNAs could be expressed from the same precursor and we further interrogated the 5p-arm and 3p-arm miRNA expression with a comprehensive arm feature annotation list. To assist biologists to visualize the differential 5p-arm and 3p-arm miRNA expression patterns, we utilized a user-friendly mobile App to display. The Cancer Genome Atlas (TCGA) miRNA-Seq expression information. We have collected over 4,500 miRNA-Seq datasets from 15 TCGA cancer types and further processed them with the 5p-arm and 3p-arm annotation analysis pipeline. In order to be displayed with the RNA-Seq Viewer App, annotated 5p-arm and 3p-arm miRNA expression information and miRNA gene loci information were converted into SQLite tables. In this distinct application, for any given miRNA gene, 5p-arm miRNA is illustrated on the top of chromosome ideogram and 3p-arm miRNA is illustrated on the bottom of chromosome ideogram. Users can then easily interrogate the differentially 5p-arm/3p-arm expressed miRNAs with their mobile devices. This study demonstrates the feasibility and utility of RNA-Seq Viewer App in addition to mRNA-Seq data visualization.

  14. Visual Display of 5p-arm and 3p-arm miRNA Expression with a Mobile Application

    Directory of Open Access Journals (Sweden)

    Chao-Yu Pan

    2017-01-01

    Full Text Available MicroRNAs (miRNAs play important roles in human cancers. In previous studies, we have demonstrated that both 5p-arm and 3p-arm of mature miRNAs could be expressed from the same precursor and we further interrogated the 5p-arm and 3p-arm miRNA expression with a comprehensive arm feature annotation list. To assist biologists to visualize the differential 5p-arm and 3p-arm miRNA expression patterns, we utilized a user-friendly mobile App to display. The Cancer Genome Atlas (TCGA miRNA-Seq expression information. We have collected over 4,500 miRNA-Seq datasets from 15 TCGA cancer types and further processed them with the 5p-arm and 3p-arm annotation analysis pipeline. In order to be displayed with the RNA-Seq Viewer App, annotated 5p-arm and 3p-arm miRNA expression information and miRNA gene loci information were converted into SQLite tables. In this distinct application, for any given miRNA gene, 5p-arm miRNA is illustrated on the top of chromosome ideogram and 3p-arm miRNA is illustrated on the bottom of chromosome ideogram. Users can then easily interrogate the differentially 5p-arm/3p-arm expressed miRNAs with their mobile devices. This study demonstrates the feasibility and utility of RNA-Seq Viewer App in addition to mRNA-Seq data visualization.

  15. Sensory-Feedback Exoskeletal Arm Controller

    Science.gov (United States)

    An, Bin; Massie, Thomas H.; Vayner, Vladimir

    2004-01-01

    An electromechanical exoskeletal arm apparatus has been designed for use in controlling a remote robotic manipulator arm. The apparatus, called a force-feedback exoskeleton arm master (F-EAM) is comfortable to wear and easy to don and doff. It provides control signals from the wearer s arm to a robot arm or a computer simulator (e.g., a virtual-reality system); it also provides force and torque feedback from sensors on the robot arm or from the computer simulator to the wearer s arm. The F-EAM enables the wearer to make the robot arm gently touch objects and finely manipulate them without exerting excessive forces. The F-EAM features a lightweight design in which the motors and gear heads that generate force and torque feedback are made smaller than they ordinarily would be: this is achieved by driving the motors to power levels greater than would ordinarily be used in order to obtain higher torques, and by providing active liquid cooling of the motors to prevent overheating at the high drive levels. The F-EAM (see figure) includes an assembly that resembles a backpack and is worn like a backpack, plus an exoskeletal arm mechanism. The FEAM has five degrees of freedom (DOFs) that correspond to those of the human arm: 1. The first DOF is that of the side-to-side rotation of the upper arm about the shoulder (rotation about axis 1). The reflected torque for this DOF is provided by motor 1 via drum 1 and a planar four-bar linkage. 2. The second DOF is that of the up-and-down rotation of the arm about the shoulder. The reflected torque for this DOF is provided by motor 2 via drum 2. 3. The third DOF is that of twisting of the upper arm about its longitudinal axis. This DOF is implemented in a cable remote-center mechanism (CRCM). The reflected torque for this DOF is provided by motor 3, which drives the upper-arm cuff and the mechanism below it. A bladder inflatable by gas or liquid is placed between the cuff and the wearer s upper arm to compensate for misalignment

  16. Caffeine and sulfadiazine interact differently with human serum albumin: A combined fluorescence and molecular docking study

    Science.gov (United States)

    Islam, Mullah Muhaiminul; Sonu, Vikash K.; Gashnga, Pynsakhiat Miki; Moyon, N. Shaemningwar; Mitra, Sivaprasad

    2016-01-01

    The interaction and binding behavior of the well-known drug sulfadiazine (SDZ) and psychoactive stimulant caffeine (CAF) with human serum albumin (HSA) was monitored by in vitro fluorescence titration and molecular docking calculations under physiological condition. The quenching of protein fluorescence on addition of CAF is due to the formation of protein-drug complex in the ground state; whereas in case of SDZ, the experimental results were explained on the basis of sphere of action model. Although both these compounds bind preferentially in Sudlow's site 1 of the protein, the association constant is approximately two fold higher in case of SDZ (∼4.0 × 104 M-1) in comparison with CAF (∼9.3 × 102 M-1) and correlates well with physico-chemical properties like pKa and lipophilicity of the drugs. Temperature dependent fluorescence study reveals that both SDZ and CAF bind spontaneously with HSA. However, the binding of SDZ with the protein is mainly governed by the hydrophobic forces in contrast with that of CAF; where, the interaction is best explained in terms of electrostatic mechanism. Molecular docking calculation predicts the binding of these drugs in different location of sub-domain IIA in the protein structure.

  17. Docking studies of antidepressants against single crystal structure of tryptophan 2, 3-dioxygenase using Molegro Virtual Docker software.

    Science.gov (United States)

    Dawood, Shazia; Zarina, Shamshad; Bano, Samina

    2014-09-01

    Tryptophan 2, 3-dioxygenase (TDO) a heme containing enzyme found in mammalian liver is responsible for tryptophan (Trp) catabolism. Trp is an essential amino acid that is degraded in to N-formylkynurenine by the action of TDO. The protein ligand interaction plays a significant role in structural based drug designing. The current study illustrates the binding of established antidepressants (ADs) against TDO enzyme using in-silico docking studies. For this purpose, Fluoxetine, Paroxetine, Sertraline, Fluvoxamine, Seproxetine, Citalopram, Moclobamide, Hyperforin and Amoxepine were selected. In-silico docking studies were carried out using Molegro Virtual Docker (MVD) software. Docking results show that all ADs fit well in the active site of TDO moreover Hyperforin and Paroxetine exhibited high docking scores of -152.484k cal/mol and -139.706k cal/mol, respectively. It is concluded that Hyperforin and Paroxetine are possible lead molecules because of their high docking scores as compared to other ADs examined. Therefore, these two ADs stand as potent inhibitors of TDO enzyme.

  18. Binding free energy analysis of protein-protein docking model structures by evERdock.

    Science.gov (United States)

    Takemura, Kazuhiro; Matubayasi, Nobuyuki; Kitao, Akio

    2018-03-14

    To aid the evaluation of protein-protein complex model structures generated by protein docking prediction (decoys), we previously developed a method to calculate the binding free energies for complexes. The method combines a short (2 ns) all-atom molecular dynamics simulation with explicit solvent and solution theory in the energy representation (ER). We showed that this method successfully selected structures similar to the native complex structure (near-native decoys) as the lowest binding free energy structures. In our current work, we applied this method (evERdock) to 100 or 300 model structures of four protein-protein complexes. The crystal structures and the near-native decoys showed the lowest binding free energy of all the examined structures, indicating that evERdock can successfully evaluate decoys. Several decoys that show low interface root-mean-square distance but relatively high binding free energy were also identified. Analysis of the fraction of native contacts, hydrogen bonds, and salt bridges at the protein-protein interface indicated that these decoys were insufficiently optimized at the interface. After optimizing the interactions around the interface by including interfacial water molecules, the binding free energies of these decoys were improved. We also investigated the effect of solute entropy on binding free energy and found that consideration of the entropy term does not necessarily improve the evaluations of decoys using the normal model analysis for entropy calculation.

  19. Unequal-Arms Michelson Interferometers

    Science.gov (United States)

    Tinto, Massimo; Armstrong, J. W.

    2000-01-01

    Michelson interferometers allow phase measurements many orders of magnitude below the phase stability of the laser light injected into their two almost equal-length arms. If, however, the two arms are unequal, the laser fluctuations can not be removed by simply recombining the two beams. This is because the laser jitters experience different time delays in the two arms, and therefore can not cancel at the photo detector. We present here a method for achieving exact laser noise cancellation, even in an unequal-arm interferometer. The method presented in this paper requires a separate readout of the relative phase in each arm, made by interfering the returning beam in each arm with a fraction of the outgoing beam. By linearly combining the two data sets with themselves, after they have been properly time shifted, we show that it is possible to construct a new data set that is free of laser fluctuations. An application of this technique to future planned space-based laser interferometer detector3 of gravitational radiation is discussed.

  20. Identification of Novel Aldose Reductase Inhibitors from Spices: A Molecular Docking and Simulation Study.

    Directory of Open Access Journals (Sweden)

    Priya Antony

    Full Text Available Hyperglycemia in diabetic patients results in a diverse range of complications such as diabetic retinopathy, neuropathy, nephropathy and cardiovascular diseases. The role of aldose reductase (AR, the key enzyme in the polyol pathway, in these complications is well established. Due to notable side-effects of several drugs, phytochemicals as an alternative has gained considerable importance for the treatment of several ailments. In order to evaluate the inhibitory effects of dietary spices on AR, a collection of phytochemicals were identified from Zingiber officinale (ginger, Curcuma longa (turmeric Allium sativum (garlic and Trigonella foenum graecum (fenugreek. Molecular docking was performed for lead identification and molecular dynamics simulations were performed to study the dynamic behaviour of these protein-ligand interactions. Gingerenones A, B and C, lariciresinol, quercetin and calebin A from these spices exhibited high docking score, binding affinity and sustained protein-ligand interactions. Rescoring of protein ligand interactions at the end of MD simulations produced binding scores that were better than the initially docked conformations. Docking results, ligand interactions and ADMET properties of these molecules were significantly better than commercially available AR inhibitors like epalrestat, sorbinil and ranirestat. Thus, these natural molecules could be potent AR inhibitors.

  1. [Screening of anti-aging active ingredients and mechanism analysis based on molecular docking technology].

    Science.gov (United States)

    Du, Ran-Feng; Zhang, Xiao-Hua; Ye, Xiao-Tong; Yu, Wen-Kang; Wang, Yun

    2016-07-01

    Dampness evil is the source of all diseases, which is easy to cause disease and promote aging, while aging could also promote the occurence and development of diseases. In this paper, the relationship between the dampness evil and aging would be discussed, to find the anti-aging active ingredients in traditional Chinese medicine (TCM), and analyze the anti-aging mechanism of dampness eliminating drug. Molecular docking technology was used, with aging-related mammalian target of rapamycin as the docking receptors, and chemical components of Fuling, Sangzhi, Mugua, Yiyiren and Houpo as the docking molecules, to preliminarily screen the anti-aging active ingredients in dampness eliminating drug. Through the comparison with active drugs already on the market (temsirolimus and everolimus), 12 kinds of potential anti-aging active ingredients were found, but their drug gability still needs further study. The docking results showed that various components in the dampness eliminating drug can play anti-aging activities by acting on mammalian target of rapamycin. This result provides a new thought and direction for the method of delaying aging by eliminating dampness. Copyright© by the Chinese Pharmaceutical Association.

  2. Identification of Novel Aldose Reductase Inhibitors from Spices: A Molecular Docking and Simulation Study.

    Science.gov (United States)

    Antony, Priya; Vijayan, Ranjit

    2015-01-01

    Hyperglycemia in diabetic patients results in a diverse range of complications such as diabetic retinopathy, neuropathy, nephropathy and cardiovascular diseases. The role of aldose reductase (AR), the key enzyme in the polyol pathway, in these complications is well established. Due to notable side-effects of several drugs, phytochemicals as an alternative has gained considerable importance for the treatment of several ailments. In order to evaluate the inhibitory effects of dietary spices on AR, a collection of phytochemicals were identified from Zingiber officinale (ginger), Curcuma longa (turmeric) Allium sativum (garlic) and Trigonella foenum graecum (fenugreek). Molecular docking was performed for lead identification and molecular dynamics simulations were performed to study the dynamic behaviour of these protein-ligand interactions. Gingerenones A, B and C, lariciresinol, quercetin and calebin A from these spices exhibited high docking score, binding affinity and sustained protein-ligand interactions. Rescoring of protein ligand interactions at the end of MD simulations produced binding scores that were better than the initially docked conformations. Docking results, ligand interactions and ADMET properties of these molecules were significantly better than commercially available AR inhibitors like epalrestat, sorbinil and ranirestat. Thus, these natural molecules could be potent AR inhibitors.

  3. Study on the interactions of trans-resveratrol and curcumin with bovine α-lactalbumin by spectroscopic analysis and molecular docking

    International Nuclear Information System (INIS)

    Mohammadi, Fakhrossadat; Moeeni, Marzieh

    2015-01-01

    The ability of bovine α-lactalbumin (BLA) as a whey protein to carry curcumin and trans-resveratrol as two natural polyphenolic compounds was investigated by fluorescence quenching measurements and docking studies. Curcumin is the bioactive component of turmeric and trans-resveratrol is abundant in different types of fruits and vegetables. The binding parameters such as binding constants and the number of substantive binding sites have been estimated from the analysis of fluorescence quenching measurements. The differences in affinities of curcumin and trans-resveratrol for BLA were compared. The short Förster's distance (r) between donor (BLA) and acceptor (curcumin and trans-resveratrol) and also the binding constant values demonstrated the strong interaction between these two polyphenolic compounds and BLA. The thermodynamic parameters were obtained from the fluorescence quenching measurements in different temperatures. It can be concluded from the sign and magnitude of ∆H and ∆S that the final ligand–protein complexes were stabilized by hydrogen bonds. The considerable change in microregion of the Trp residues in BLA is observed upon the binding of the trans-resveratrol to BLA by synchronous fluorescence while this conformation alteration was not observed upon interaction with curcumin. It was indicated by docking studies that curcumin come closer to the Trp-118 than to other tryptophans and trans-resveratrol binds in the vicinity of Trp-60 and Trp-104. Docking studies indicated that these two compounds bind to BLA by two hydrogen bonds. The calculated distances between bound ligands and tryptophans obtained by docking studies were in agreement with fluorescence resonance energy transfer results. Therefore, the strong interaction of curcumin and trans-resveratrol with BLA was confirmed by theoretical and experimental studies. These achieved results may be applicable in the milk industry and drug formulation. - Highlights: • The binding parameters

  4. Study on the interactions of trans-resveratrol and curcumin with bovine α-lactalbumin by spectroscopic analysis and molecular docking

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadi, Fakhrossadat, E-mail: fmohammadi@iasbs.ac.ir; Moeeni, Marzieh

    2015-05-01

    The ability of bovine α-lactalbumin (BLA) as a whey protein to carry curcumin and trans-resveratrol as two natural polyphenolic compounds was investigated by fluorescence quenching measurements and docking studies. Curcumin is the bioactive component of turmeric and trans-resveratrol is abundant in different types of fruits and vegetables. The binding parameters such as binding constants and the number of substantive binding sites have been estimated from the analysis of fluorescence quenching measurements. The differences in affinities of curcumin and trans-resveratrol for BLA were compared. The short Förster's distance (r) between donor (BLA) and acceptor (curcumin and trans-resveratrol) and also the binding constant values demonstrated the strong interaction between these two polyphenolic compounds and BLA. The thermodynamic parameters were obtained from the fluorescence quenching measurements in different temperatures. It can be concluded from the sign and magnitude of ∆H and ∆S that the final ligand–protein complexes were stabilized by hydrogen bonds. The considerable change in microregion of the Trp residues in BLA is observed upon the binding of the trans-resveratrol to BLA by synchronous fluorescence while this conformation alteration was not observed upon interaction with curcumin. It was indicated by docking studies that curcumin come closer to the Trp-118 than to other tryptophans and trans-resveratrol binds in the vicinity of Trp-60 and Trp-104. Docking studies indicated that these two compounds bind to BLA by two hydrogen bonds. The calculated distances between bound ligands and tryptophans obtained by docking studies were in agreement with fluorescence resonance energy transfer results. Therefore, the strong interaction of curcumin and trans-resveratrol with BLA was confirmed by theoretical and experimental studies. These achieved results may be applicable in the milk industry and drug formulation. - Highlights: • The binding parameters

  5. Research on the man in the loop control system of the robot arm based on gesture control

    Science.gov (United States)

    Xiao, Lifeng; Peng, Jinbao

    2017-03-01

    The Man in the loop control system of the robot arm based on gesture control research complex real-world environment, which requires the operator to continuously control and adjust the remote manipulator, as the background, completes the specific mission human in the loop entire system as the research object. This paper puts forward a kind of robot arm control system of Man in the loop based on gesture control, by robot arm control system based on gesture control and Virtual reality scene feedback to enhance immersion and integration of operator, to make operator really become a part of the whole control loop. This paper expounds how to construct a man in the loop control system of the robot arm based on gesture control. The system is a complex system of human computer cooperative control, but also people in the loop control problem areas. The new system solves the problems that the traditional method has no immersion feeling and the operation lever is unnatural, the adjustment time is long, and the data glove mode wears uncomfortable and the price is expensive.

  6. Optimal Rendezvous and Docking Simulator for Elliptical Orbits, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — It is proposed to develop and implement a simulation of spacecraft rendezvous and docking guidance, navigation, and control in elliptical orbit. The foundation of...

  7. Synthesis, biological evaluation and molecular docking studies of ...

    African Journals Online (AJOL)

    Synthesis, biological evaluation and molecular docking studies of Mannich bases derived from 1, 3, 4-oxadiazole- 2-thiones as potential urease inhibitors. ... Mannich bases (5-17) were subjected to in silico screening as urease inhibitors, using crystal structure of urease (Protein Data Bank ID: 5FSE) as a model enzyme.

  8. Computational modeling on the recognition of the HRE motif by HIF-1: molecular docking and molecular dynamics studies.

    Science.gov (United States)

    Sokkar, Pandian; Sathis, Vani; Ramachandran, Murugesan

    2012-05-01

    Hypoxia inducible factor-1 (HIF-1) is a bHLH-family transcription factor that controls genes involved in glycolysis, angiogenesis, migration, as well as invasion factors that are important for tumor progression and metastasis. HIF-1, a heterodimer of HIF-1α and HIF-1β, binds to the hypoxia responsive element (HRE) present in the promoter regions of hypoxia responsive genes, such as vascular endothelial growth factor (VEGF). Neither the structure of free HIF-1 nor that of its complex with HRE is available. Computational modeling of the transcription factor-DNA complex has always been challenging due to their inherent flexibility and large conformational space. The present study aims to model the interaction between the DNA-binding domain of HIF-1 and HRE. Experiments showed that rigid macromolecular docking programs (HEX and GRAMM-X) failed to predict the optimal dimerization of individually modeled HIF-1 subunits. Hence, the HIF-1 heterodimer was modeled based on the phosphate system positive regulatory protein (PHO4) homodimer. The duplex VEGF-DNA segment containing HRE with flanking nucleotides was modeled in the B form and equilibrated via molecular dynamics (MD) simulation. A rigid docking approach was used to predict the crude binding mode of HIF-1 dimer with HRE, in which the putative contacts were found to be present. An MD simulation (5 ns) of the HIF-1-HRE complex in explicit water was performed to account for its flexibility and to optimize its interactions. All of the conserved amino acid residues were found to play roles in the recognition of HRE. The present work, which sheds light on the recognition of HRE by HIF-1, could be beneficial in the design of peptide or small molecule therapeutics that can mimic HIF-1 and bind with the HRE sequence.

  9. Armed conflict and child health

    OpenAIRE

    Rieder, Michael; Choonara, Imti

    2012-01-01

    Armed conflict has a major impact on child health\\ud throughout the world. One in six children worldwide lives\\ud in an area of armed conflict and civilians are more likely\\ud to die than soldiers as a result of the conflict. In stark\\ud contrast to the effect on children, the international arms\\ud trade results in huge profits for the large corporations\\ud involved in producing arms, weapons and munitions.\\ud Armed conflict is not inevitable but is an important\\ud health issue that should be...

  10. Optimization of Spacecraft Rendezvous and Docking using Interval Analysis

    NARCIS (Netherlands)

    Van Kampen, E.; Chu, Q.P.; Mulder, J.A.

    2010-01-01

    This paper applies interval optimization to the fixed-time multiple impulse rendezvous and docking problem. Current methods for solving this type of optimization problem include for example genetic algorithms and gradient based optimization. Unlike these methods, interval methods can guarantee that

  11. An Experimental Investigation of Leak Rate Performance of a Subscale Candidate Elastomer Docking Space Seal

    Science.gov (United States)

    Garafolo, Nicholas G.; Daniels, Christopher C.

    2011-01-01

    A novel docking seal was developed for the main interface seal of NASA s Low Impact Docking System (LIDS). This interface seal was designed to maintain acceptable leak rates while being exposed to the harsh environmental conditions of outer space. In this experimental evaluation, a candidate docking seal assembly called Engineering Development Unit (EDU58) was characterized and evaluated against the Constellation Project leak rate requirement. The EDU58 candidate seal assembly was manufactured from silicone elastomer S0383-70 vacuum molded in a metal retainer ring. Four seal designs were considered with unique characteristic heights. The leak rate performance was characterized through a mass point leak rate method by monitoring gas properties within an internal control volume. The leakage performance of the seals were described herein at representative docking temperatures of -50, +23, and +50 C for all four seal designs. Leak performance was also characterized at 100, 74, and 48 percent of full closure. For all conditions considered, the candidate seal assemblies met the Constellation Project leak rate requirement.

  12. Robotically facilitated virtual rehabilitation of arm transport integrated with finger movement in persons with hemiparesis

    OpenAIRE

    Davidow Amy; Lafond Ian; Saleh Soha; Qiu Qinyin; Fluet Gerard G; Merians Alma S; Adamovich Sergei V

    2011-01-01

    Abstract Background Recovery of upper extremity function is particularly recalcitrant to successful rehabilitation. Robotic-assisted arm training devices integrated with virtual targets or complex virtual reality gaming simulations are being developed to deal with this problem. Neural control mechanisms indicate that reaching and hand-object manipulation are interdependent, suggesting that training on tasks requiring coordinated effort of both the upper arm and hand may be a more effective me...

  13. AggieSat: Autonomous Rendezvous and Docking Technology Demonstrator, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Current autonomous rendezvous and docking (AR&D) capability in low Earth orbit (LEO) is constrained by sensor and effector mass, power, and accuracy limits. To...

  14. Effects of age, sex and arm on the precision of arm position sense—left-arm superiority in healthy right-handers

    OpenAIRE

    Schmidt, Lena; Depper, Lena; Kerkhoff, Georg

    2013-01-01

    Position sense is an important proprioceptive ability. Disorders of arm position sense (APS) often occur after unilateral stroke, and are associated with a negative functional outcome. In the present study we assessed horizontal APS by measuring angular deviations from a visually defined target separately for each arm in a large group of healthy subjects. We analyzed the accuracy and instability of horizontal APS as a function of age, sex and arm. Subjects were required to specify verbally th...

  15. Performance of arm locking in LISA

    International Nuclear Information System (INIS)

    McKenzie, Kirk; Spero, Robert E.; Shaddock, Daniel A.

    2009-01-01

    For the Laser Interferometer Space Antenna (LISA) to reach its design sensitivity, the coupling of the free-running laser frequency noise to the signal readout must be reduced by more than 14 orders of magnitude. One technique employed to reduce the laser frequency noise will be arm locking, where the laser frequency is locked to the LISA arm length. In this paper we detail an implementation of arm locking. We investigate orbital effects (changing arm lengths and Doppler frequencies), the impact of errors in the Doppler knowledge that can cause pulling of the laser frequency, and the noise limit of arm locking. Laser frequency pulling is examined in two regimes: at lock acquisition and in steady state. The noise performance of arm locking is calculated with the inclusion of the dominant expected noise sources: ultrastable oscillator (clock) noise, spacecraft motion, and shot noise. We find that clock noise and spacecraft motion limit the performance of dual arm locking in the LISA science band. Studying these issues reveals that although dual arm locking [A. Sutton and D. A. Shaddock, Phys. Rev. D 78, 082001 (2008)] has advantages over single (or common) arm locking in terms of allowing high gain, it has disadvantages in both laser frequency pulling and noise performance. We address this by proposing a modification to the dual arm-locking sensor, a hybrid of common and dual arm-locking sensors. This modified dual arm-locking sensor has the laser frequency pulling characteristics and low-frequency noise coupling of common arm locking, but retains the control system advantages of dual arm locking. We present a detailed design of an arm-locking controller and perform an analysis of the expected performance when used with and without laser prestabilization. We observe that the sensor phase changes beneficially near unity-gain frequencies of the arm-locking controller, allowing a factor of 10 more gain than previously believed, without degrading stability. With a time

  16. Design of a multi-arm randomized clinical trial with no control arm.

    Science.gov (United States)

    Magaret, Amalia; Angus, Derek C; Adhikari, Neill K J; Banura, Patrick; Kissoon, Niranjan; Lawler, James V; Jacob, Shevin T

    2016-01-01

    Clinical trial designs that include multiple treatments are currently limited to those that perform pairwise comparisons of each investigational treatment to a single control. However, there are settings, such as the recent Ebola outbreak, in which no treatment has been demonstrated to be effective; and therefore, no standard of care exists which would serve as an appropriate control. For illustrative purposes, we focused on the care of patients presenting in austere settings with critically ill 'sepsis-like' syndromes. Our approach involves a novel algorithm for comparing mortality among arms without requiring a single fixed control. The algorithm allows poorly-performing arms to be dropped during interim analyses. Consequently, the study may be completed earlier than planned. We used simulation to determine operating characteristics for the trial and to estimate the required sample size. We present a potential study design targeting a minimal effect size of a 23% relative reduction in mortality between any pair of arms. Using estimated power and spurious significance rates from the simulated scenarios, we show that such a trial would require 2550 participants. Over a range of scenarios, our study has 80 to 99% power to select the optimal treatment. Using a fixed control design, if the control arm is least efficacious, 640 subjects would be enrolled into the least efficacious arm, while our algorithm would enroll between 170 and 430. This simulation method can be easily extended to other settings or other binary outcomes. Early dropping of arms is efficient and ethical when conducting clinical trials with multiple arms. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Nonspecific Arm Pain

    Directory of Open Access Journals (Sweden)

    Ali Moradi

    2013-12-01

    Full Text Available Nonspecific activity-related arm pain is characterized by an absence of objective physical findings and symptoms that do not correspond with objective pathophysiology. Arm pain without strict diagnosis is often related to activity, work-related activity in particular, and is often seen in patients with physically demanding work. Psychological factors such as catastrophic thinking, symptoms of depression, and heightened illness concern determine a substantial percentage of the disability associated with puzzling hand and arm pains. Ergonomic modifications can help to control symptoms, but optimal health may require collaborative management incorporating psychosocial and psychological elements of illness.

  18. Nonspecific Arm Pain

    Directory of Open Access Journals (Sweden)

    Ali Moradi

    2013-12-01

    Full Text Available   Nonspecific activity-related arm pain is characterized by an absence of objective physical findings and symptoms that do not correspond with objective pathophysiology. Arm pain without strict diagnosis is often related to activity, work-related activity in particular, and is often seen in patients with physically demanding work. Psychological factors such as catastrophic thinking, symptoms of depression, and heightened illness concern determine a substantial percentage of the disability associated with puzzling hand and arm pains. Ergonomic modifications can help to control symptoms, but optimal health may require collaborative management incorporating psychosocial and psychological elements of illness.

  19. Effects of age, sex and arm on the precision of arm position sense-left-arm superiority in healthy right-handers.

    Science.gov (United States)

    Schmidt, Lena; Depper, Lena; Kerkhoff, Georg

    2013-01-01

    Position sense is an important proprioceptive ability. Disorders of arm position sense (APS) often occur after unilateral stroke, and are associated with a negative functional outcome. In the present study we assessed horizontal APS by measuring angular deviations from a visually defined target separately for each arm in a large group of healthy subjects. We analyzed the accuracy and instability of horizontal APS as a function of age, sex and arm. Subjects were required to specify verbally the position of their unseen arm on a 0-90° circuit by comparing the current position with the target position indicated by a LED lamp, while the arm was passively moved by the examiner. Eighty-seven healthy subjects participated in the study, ranging from 20 to 77 years, subdivided into three age groups. The results revealed that APS was not a function of age or sex, but was significantly better in the non-dominant (left) arm in absolute errors (AE) but not in constant errors (CE) across all age groups of right-handed healthy subjects. This indicates a right-hemisphere superiority for left APS in right-handers and neatly fits to the more frequent and more severe left-sided body-related deficits in patients with unilateral stroke (i.e. impaired APS in left spatial neglect, somatoparaphrenia) or in individuals with abnormalities of the right cerebral hemisphere. These clinical issues will be discussed.

  20. Arms control and disarmament

    International Nuclear Information System (INIS)

    Acton, P.

    1992-01-01

    Article VI of the Non-Proliferation Treaty commits each party to work towards nuclear disarmament and to negotiations to stop the nuclear arms race. All parties to the Treaty are included and a wide range of arms control and disarmament issues are covered. However the main focus at Treaty review conferences has been on nuclear disarmament by the nuclear weapon states which are party to the Treaty. This has led to bilateral United States - Soviet Union negotiations resulting in the Intermediate-range Nuclear Forces Treaty in December 1987 and the Strategic Arms Reduction Treaty (START) in July followed by unilateral arms control measures in September and October 1991. (UK)

  1. Covalent docking of selected boron-based serine beta-lactamase inhibitors

    Science.gov (United States)

    Sgrignani, Jacopo; Novati, Beatrice; Colombo, Giorgio; Grazioso, Giovanni

    2015-05-01

    AmpC β-lactamase is a hydrolytic enzyme conferring resistance to β-lactam antibiotics in multiple Gram-negative bacteria. Therefore, identification of non-β-lactam compounds able to inhibit the enzyme is crucial for the development of novel antibacterial therapies. In general, AmpC inhibitors have to engage the highly solvent-exposed catalytic site of the enzyme. Therefore, understanding the implications of ligand-protein induced-fit and water-mediated interactions behind the inhibitor-enzyme recognition process is fundamental for undertaking structure-based drug design process. Here, we focus on boronic acids, a promising class of beta-lactamase covalent inhibitors. First, we optimized a docking protocol able to reproduce the experimentally determined binding mode of AmpC inhibitors bearing a boronic group. This goal was pursued (1) performing rigid and flexible docking calculations aiming to establish the role of the side chain conformations; and (2) investigating the role of specific water molecules in shaping the enzyme active site and mediating ligand protein interactions. Our calculations showed that some water molecules, conserved in the majority of the considered X-ray structures, are needed to correctly predict the binding pose of known covalent AmpC inhibitors. On this basis, we formalized our findings in a docking and scoring protocol that could be useful for the structure-based design of new boronic acid AmpC inhibitors.

  2. Human nucleoporins promote HIV-1 docking at the nuclear pore, nuclear import and integration.

    Directory of Open Access Journals (Sweden)

    Francesca Di Nunzio

    Full Text Available The nuclear pore complex (NPC mediates nucleo-cytoplasmic transport of macromolecules and is an obligatory point of passage and functional bottleneck in the replication of some viruses. The Human Immunodeficiency Virus (HIV has evolved the required mechanisms for active nuclear import of its genome through the NPC. However the mechanisms by which the NPC allows or even assists HIV translocation are still unknown. We investigated the involvement of four key nucleoporins in HIV-1 docking, translocation, and integration: Nup358/RanBP2, Nup214/CAN, Nup98 and Nup153. Although all induce defects in infectivity when depleted, only Nup153 actually showed any evidence of participating in HIV-1 translocation through the nuclear pore. We show that Nup358/RanBP2 mediates docking of HIV-1 cores on NPC cytoplasmic filaments by interacting with the cores and that the C-terminus of Nup358/RanBP2 comprising a cyclophilin-homology domain contributes to binding. We also show that Nup214/CAN and Nup98 play no role in HIV-1 nuclear import per se: Nup214/CAN plays an indirect role in infectivity read-outs through its effect on mRNA export, while the reduction of expression of Nup98 shows a slight reduction in proviral integration. Our work shows the involvement of nucleoporins in diverse and functionally separable steps of HIV infection and nuclear import.

  3. The Design of New HIV-IN Tethered Bifunctional Inhibitors using Multiple Microdomain Targeted Docking.

    Science.gov (United States)

    Ciubotaru, Mihai; Musat, Mihaela Georgiana; Surleac, Marius; Ionita, Elena; Petrescu, Andrei Jose; Abele, Edgars; Abele, Ramona

    2018-04-05

    Currently used antiretroviral HIV therapy drugs exclusively target critical groups in the enzymes essential for the viral life cycle. Increased mutagenesis of their genes, changes these viral enzymes which once mutated can evade therapeutic targeting, effects which confer drug resistance. To circumvent this, our review addresses a strategy to design and derive HIV-Integrase (HIV-IN) inhibitors which simultaneously target two IN functional domains, rendering it inactive even if the enzyme accumulates many mutations. First we review the enzymatic role of IN to insert the copied viral DNA into a chromosome of the host T lymphocyte, highlighting its main functional and structural features to be subjected to inhibitory action. From a functional and structural perspective we present all classes of HIV-IN inhibitors with their most representative candidates. For each chosen compound we also explain its mechanism of IN inhibition. We use the recently resolved cryo EM IN tetramer intasome DNA complex [1] onto which we dock various reference IN inhibitory chemical scaffolds such as to target adjacent functional IN domains. Pairing compounds with complementary activity, which dock in the vicinity of a IN structural microdomain, we design bifunctional new drugs which may not only be more resilient to IN mutations but also may be more potent inhibitors than their original counterparts. In the end of our review we propose synthesis pathways to link such paired compounds with enhanced synergistic IN inhibitory effects. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. Novel Penicillin Analogues as Potential Antimicrobial Agents; Design, Synthesis and Docking Studies.

    Science.gov (United States)

    Ashraf, Zaman; Bais, Abdul; Manir, Md Maniruzzaman; Niazi, Umar

    2015-01-01

    A number of penicillin derivatives (4a-h) were synthesized by the condensation of 6-amino penicillinic acid (6-APA) with non-steroidal anti-inflammatory drugs as antimicrobial agents. In silico docking study of these analogues was performed against Penicillin Binding Protein (PDBID 1CEF) using AutoDock Tools 1.5.6 in order to investigate the antimicrobial data on structural basis. Penicillin binding proteins function as either transpeptidases or carboxypeptidases and in few cases demonstrate transglycosylase activity in bacteria. The excellent antibacterial potential was depicted by compounds 4c and 4e against Escherichia coli, Staphylococcus epidermidus and Staphylococcus aureus compared to the standard amoxicillin. The most potent penicillin derivative 4e exhibited same activity as standard amoxicillin against S. aureus. In the enzyme inhibitory assay the compound 4e inhibited E. coli MurC with an IC50 value of 12.5 μM. The docking scores of these compounds 4c and 4e also verified their greater antibacterial potential. The results verified the importance of side chain functionalities along with the presence of central penam nucleus. The binding affinities calculated from docking results expressed in the form of binding energies ranges from -7.8 to -9.2kcal/mol. The carboxylic group of penam nucleus in all these compounds is responsible for strong binding with receptor protein with the bond length ranges from 3.4 to 4.4 Ǻ. The results of present work ratify that derivatives 4c and 4e may serve as a structural template for the design and development of potent antimicrobial agents.

  5. BioShaDock: a community driven bioinformatics shared Docker-based tools registry [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    François Moreews

    2015-12-01

    Full Text Available Linux container technologies, as represented by Docker, provide an alternative to complex and time-consuming installation processes needed for scientific software. The ease of deployment and the process isolation they enable, as well as the reproducibility they permit across environments and versions, are among the qualities that make them interesting candidates for the construction of bioinformatic infrastructures, at any scale from single workstations to high throughput computing architectures. The Docker Hub is a public registry which can be used to distribute bioinformatic software as Docker images. However, its lack of curation and its genericity make it difficult for a bioinformatics user to find the most appropriate images needed. BioShaDock is a bioinformatics-focused Docker registry, which provides a local and fully controlled environment to build and publish bioinformatic software as portable Docker images. It provides a number of improvements over the base Docker registry on authentication and permissions management, that enable its integration in existing bioinformatic infrastructures such as computing platforms. The metadata associated with the registered images are domain-centric, including for instance concepts defined in the EDAM ontology, a shared and structured vocabulary of commonly used terms in bioinformatics. The registry also includes user defined tags to facilitate its discovery, as well as a link to the tool description in the ELIXIR registry if it already exists. If it does not, the BioShaDock registry will synchronize with the registry to create a new description in the Elixir registry, based on the BioShaDock entry metadata. This link will help users get more information on the tool such as its EDAM operations, input and output types. This allows integration with the ELIXIR Tools and Data Services Registry, thus providing the appropriate visibility of such images to the bioinformatics community.

  6. Structural and dynamical aspects of Streptococcus gordonii FabH through molecular docking and MD simulations.

    Science.gov (United States)

    Shamim, Amen; Abbasi, Sumra Wajid; Azam, Syed Sikander

    2015-07-01

    β-Ketoacyl-ACP-synthase III (FabH or KAS III) has become an attractive target for the development of new antibacterial agents which can overcome the multidrug resistance. Unraveling the fatty acid biosynthesis (FAB) metabolic pathway and understanding structural coordinates of FabH will provide valuable insights to target Streptococcus gordonii for curing oral infection. In this study, we designed inhibitors against therapeutic target FabH, in order to block the FAB pathway. As compared to other targets, FabH has more interactions with other proteins, located on the leading strand with higher codon adaptation index value and associated with lipid metabolism category of COG. Current study aims to gain in silico insights into the structural and dynamical aspect of S. gordonii FabH via molecular docking and molecular dynamics (MD) simulations. The FabH protein is catalytically active in dimerization while it can lock in monomeric state. Current study highlights two residues Pro88 and Leu315 that are close to each other by dimerization. The active site of FabH is composed of the catalytic triad formed by residues Cys112, His249, and Asn279 in which Cys112 is involved in acetyl transfer, while His249 and Asn279 play an active role in decarboxylation. Docking analysis revealed that among the studied compounds, methyl-CoA disulfide has highest GOLD score (82.75), binding affinity (-11 kcal/mol) and exhibited consistently better interactions. During MD simulations, the FabH structure remained stable with the average RMSD value of 1.7 Å and 1.6 Å for undocked protein and docked complex, respectively. Further, crucial hydrogen bonding of the conserved catalytic triad for exhibiting high affinity between the FabH protein and ligand is observed by RDF analysis. The MD simulation results clearly demonstrated that binding of the inhibitor with S. gordonii FabH enhanced the structure and stabilized the dimeric FabH protein. Therefore, the inhibitor has the potential to become

  7. A Numerical Study on a Vertical-Axis Wind Turbine with Inclined Arms

    Directory of Open Access Journals (Sweden)

    Agostino De Marco

    2014-01-01

    Full Text Available This work focuses on a particular type of vertical-axis wind turbine, in which a number of inclined arms with airfoil-shaped cross-sections are mounted to connect the principal blades to their hub. While the majority of the known studies on vertical-axis turbines is devoted to the role of principal blades, in most of the cases without taking into account other parts of the wind turbine, the objective of this work is to investigate the effect of uncommon arm geometries, such as the inclined arms. The inclined arms are known to have a potentially beneficial role in the power extraction from the wind current but, due to the complexity of the phenomena, the investigation on aerodynamics of this type of turbine is often impossible through analytical models, such as blade-element momentum theory. It turns out that adequate studies can only be carried out by wind tunnel experiments or CFD simulations. This work presents a methodical CFD study on how inclined arms can be used on a selected wind turbine configuration to harvest additional power from the wind. The turbine configuration, geometry, and some fundamental definitions are introduced first. Then an in-depth CFD analysis is presented and discussed.

  8. Deletion of Dock10 in B Cells Results in Normal Development but a Mild Deficiency upon In Vivo and In Vitro Stimulations

    Directory of Open Access Journals (Sweden)

    Eva Severinson

    2017-05-01

    Full Text Available We sought to identify genes necessary to induce cytoskeletal change in B cells. Using gene expression microarray, we compared B cells stimulated with interleukin-4 (IL-4 and anti-CD40 antibodies that induce B cell spreading, cell motility, tight aggregates, and extensive microvilli with B cells stimulated with lipopolysaccharide that lack these cytoskeletal changes. We identified 84 genes with 10-fold or greater expression in anti-CD40 + IL-4 stimulated B cells, one of these encoded the guanine nucleotide exchange factor (GEF dedicator of cytokinesis 10 (Dock10. IL-4 selectively induced Dock10 expression in B cells. Using lacZ expression to monitor Dock10 promoter activity, we found that Dock10 was expressed at all stages during B cell development. However, specific deletion of Dock10 in B cells was associated with a mild phenotype with normal B cell development and normal B cell spreading, polarization, motility, chemotaxis, aggregation, and Ig class switching. Dock10-deficient B cells showed lower proliferation in response to anti-CD40 and IL-4 stimulation. Moreover, the IgG response to soluble antigen in vivo was lower when Dock10 was specifically deleted in B cells. Together, we found that most B cell responses were intact in the absence of Dock10. However, specific deletion of Dock10 in B cells was associated with a mild reduction in B cell activation in vitro and in vivo.

  9. Fragment-based drug discovery and molecular docking in drug design.

    Science.gov (United States)

    Wang, Tao; Wu, Mian-Bin; Chen, Zheng-Jie; Chen, Hua; Lin, Jian-Ping; Yang, Li-Rong

    2015-01-01

    Fragment-based drug discovery (FBDD) has caused a revolution in the process of drug discovery and design, with many FBDD leads being developed into clinical trials or approved in the past few years. Compared with traditional high-throughput screening, it displays obvious advantages such as efficiently covering chemical space, achieving higher hit rates, and so forth. In this review, we focus on the most recent developments of FBDD for improving drug discovery, illustrating the process and the importance of FBDD. In particular, the computational strategies applied in the process of FBDD and molecular-docking programs are highlighted elaborately. In most cases, docking is used for predicting the ligand-receptor interaction modes and hit identification by structurebased virtual screening. The successful cases of typical significance and the hits identified most recently are discussed.

  10. Synthesis, anti-microbial activity and molecular docking studies on ...

    Indian Academy of Sciences (India)

    Molecular structures of triazolylcoumarins 1–8. method and are ... organic layer was washed with water (100 mL) and sat- ... (0.5mmol) in a mixture of THF and water (1:1) solution. ..... for docking studies with the target DNA gyrase B (PDB.

  11. A numerical investigation of flow around octopus-like arms: near-wake vortex patterns and force development.

    Science.gov (United States)

    Kazakidi, A; Vavourakis, V; Tsakiris, D P; Ekaterinaris, J A

    2015-01-01

    The fluid dynamics of cephalopods has so far received little attention in the literature, due to their complexity in structure and locomotion. The flow around octopuses, in particular, can be complicated due to their agile and dexterous arms, which frequently display some of the most diverse mechanisms of motion. The study of this flow amounts to a specific instance of the hydrodynamics problem for rough tapered cylinder geometries. The outstanding manipulative and locomotor skills of octopuses could inspire the development of advanced robotic arms, able to operate in fluid environments. Our primary aim was to study the hydrodynamic characteristics of such bio-inspired robotic models and to derive the hydrodynamic force coefficients as a concise description of the vortical flow effects. Utilizing computational fluid dynamic methods, the coefficients were computed on realistic morphologies of octopus-like arm models undergoing prescribed solid-body movements; such motions occur in nature for short durations in time, e.g. during reaching movements and exploratory behaviors. Numerical simulations were performed on translating, impulsively rotating, and maneuvering arms, around which the flow field structures were investigated. The results reveal in detail the generation of complex vortical flow structures around the moving arms. Hydrodynamic forces acting on a translating arm depend on the angle of incidence; forces generated during impulsive rotations of the arms are independent of their exact morphology and the angle of rotation; periodic motions based on a slow recovery and a fast power stroke are able to produce considerable propulsive thrust while harmonic motions are not. Parts of these results have been employed in bio-inspired models of underwater robotic mechanisms. This investigation may further assist elucidating the hydrodynamics underlying aspects of octopus locomotion and exploratory behaviors.

  12. Using the multi-objective optimization replica exchange Monte Carlo enhanced sampling method for protein-small molecule docking.

    Science.gov (United States)

    Wang, Hongrui; Liu, Hongwei; Cai, Leixin; Wang, Caixia; Lv, Qiang

    2017-07-10

    In this study, we extended the replica exchange Monte Carlo (REMC) sampling method to protein-small molecule docking conformational prediction using RosettaLigand. In contrast to the traditional Monte Carlo (MC) and REMC sampling methods, these methods use multi-objective optimization Pareto front information to facilitate the selection of replicas for exchange. The Pareto front information generated to select lower energy conformations as representative conformation structure replicas can facilitate the convergence of the available conformational space, including available near-native structures. Furthermore, our approach directly provides min-min scenario Pareto optimal solutions, as well as a hybrid of the min-min and max-min scenario Pareto optimal solutions with lower energy conformations for use as structure templates in the REMC sampling method. These methods were validated based on a thorough analysis of a benchmark data set containing 16 benchmark test cases. An in-depth comparison between MC, REMC, multi-objective optimization-REMC (MO-REMC), and hybrid MO-REMC (HMO-REMC) sampling methods was performed to illustrate the differences between the four conformational search strategies. Our findings demonstrate that the MO-REMC and HMO-REMC conformational sampling methods are powerful approaches for obtaining protein-small molecule docking conformational predictions based on the binding energy of complexes in RosettaLigand.

  13. Parsing the roles of neck-linker docking and tethered head diffusion in the stepping dynamics of kinesin.

    Science.gov (United States)

    Zhang, Zhechun; Goldtzvik, Yonathan; Thirumalai, D

    2017-11-14

    Kinesin walks processively on microtubules (MTs) in an asymmetric hand-over-hand manner consuming one ATP molecule per 16-nm step. The individual contributions due to docking of the approximately 13-residue neck linker to the leading head (deemed to be the power stroke) and diffusion of the trailing head (TH) that contributes in propelling the motor by 16 nm have not been quantified. We use molecular simulations by creating a coarse-grained model of the MT-kinesin complex, which reproduces the measured stall force as well as the force required to dislodge the motor head from the MT, to show that nearly three-quarters of the step occurs by bidirectional stochastic motion of the TH. However, docking of the neck linker to the leading head constrains the extent of diffusion and minimizes the probability that kinesin takes side steps, implying that both the events are necessary in the motility of kinesin and for the maintenance of processivity. Surprisingly, we find that during a single step, the TH stochastically hops multiple times between the geometrically accessible neighboring sites on the MT before forming a stable interaction with the target binding site with correct orientation between the motor head and the [Formula: see text] tubulin dimer.

  14. An arms race between producers and scroungers can drive the evolution of social cognition

    Science.gov (United States)

    2014-01-01

    The “social intelligence hypothesis” states that the need to cope with complexities of social life has driven the evolution of advanced cognitive abilities. It is usually invoked in the context of challenges arising from complex intragroup structures, hierarchies, and alliances. However, a fundamental aspect of group living remains largely unexplored as a driving force in cognitive evolution: the competition between individuals searching for resources (producers) and conspecifics that parasitize their findings (scroungers). In populations of social foragers, abilities that enable scroungers to steal by outsmarting producers, and those allowing producers to prevent theft by outsmarting scroungers, are likely to be beneficial and may fuel a cognitive arms race. Using analytical theory and agent-based simulations, we present a general model for such a race that is driven by the producer–scrounger game and show that the race’s plausibility is dramatically affected by the nature of the evolving abilities. If scrounging and scrounging avoidance rely on separate, strategy-specific cognitive abilities, arms races are short-lived and have a limited effect on cognition. However, general cognitive abilities that facilitate both scrounging and scrounging avoidance undergo stable, long-lasting arms races. Thus, ubiquitous foraging interactions may lead to the evolution of general cognitive abilities in social animals, without the requirement of complex intragroup structures. PMID:24822021

  15. The distal semimembranosus complex: normal MR anatomy, variants, biomechanics and pathology

    International Nuclear Information System (INIS)

    Beltran, Javier; Jbara, Marlena; Maimon, Ron; Matityahu, Amir; Hwang, Ki; Padron, Mario; Mota, Javier; Beltran, Luis; Sundaram, Murali

    2003-01-01

    To describe the normal MR anatomy and variations of the distal semimembranosus tendinous arms and the posterior oblique ligament as seen in the three orthogonal planes, to review the biomechanics of this complex and to illustrate pathologic examples. The distal semimembranosus tendon divides into five tendinous arms named the anterior, direct, capsular, inferior and the oblique popliteal ligament. These arms intertwine with the branches of the posterior oblique ligament in the posterior medial aspect of the knee, providing stability. This tendon-ligamentous complex also acts synergistically with the popliteus muscle and actively pulls the posterior horn of the medial meniscus during knee flexion. Pathologic conditions involving this complex include complete and partial tears, insertional tendinosis, avulsion fractures and bursitis. (orig.)

  16. The distal semimembranosus complex: normal MR anatomy, variants, biomechanics and pathology

    Energy Technology Data Exchange (ETDEWEB)

    Beltran, Javier; Jbara, Marlena; Maimon, Ron [Department of Radiology, Maimonides Medical Center, 4802 Tenth Avenue, NY 11219, Brooklyn (United States); Matityahu, Amir; Hwang, Ki [Department of Orthopedic Surgery, Maimonides Medical Center, Brooklyn, NY (United States); Padron, Mario [Department of Radiology, Clinica CEMTRO, Madrid (Spain); Mota, Javier [Department of Radiology, Instituto Clinica Corachan, Barcelona (Spain); Beltran, Luis [New York Medical College, Valhalla, NY (United States); Sundaram, Murali [Department of Radiology, Mayo Clinic, Rochester, MN (United States)

    2003-08-01

    To describe the normal MR anatomy and variations of the distal semimembranosus tendinous arms and the posterior oblique ligament as seen in the three orthogonal planes, to review the biomechanics of this complex and to illustrate pathologic examples. The distal semimembranosus tendon divides into five tendinous arms named the anterior, direct, capsular, inferior and the oblique popliteal ligament. These arms intertwine with the branches of the posterior oblique ligament in the posterior medial aspect of the knee, providing stability. This tendon-ligamentous complex also acts synergistically with the popliteus muscle and actively pulls the posterior horn of the medial meniscus during knee flexion. Pathologic conditions involving this complex include complete and partial tears, insertional tendinosis, avulsion fractures and bursitis. (orig.)

  17. Biophysical and molecular docking insight into the interaction of cytosine β-D arabinofuranoside with human serum albumin

    International Nuclear Information System (INIS)

    Alam, Parvez; Chaturvedi, Sumit Kumar; Anwar, Tamanna; Siddiqi, Mohammad Khursheed; Ajmal, Mohd Rehan; Badr, Gamal; Mahmoud, Mohamed H.; Hasan Khan, Rizwan

    2015-01-01

    Interaction of pharmacologically important anticancer drug cytosine β-D arabinofuranoside with human serum albumin (HSA) at physiological pH 7.4 has been studied by utilizing various spectroscopic and molecular docking strategies. Fluorescence results revealed that cytosine β-D arabinofuranoside interacts with HSA through static quenching mechanism with binding affinity of 2.4×10 3 M −1 . The average binding distance between drug and Trp 214 of HSA was found to be 2.23 nm on the basis of the theory of Förster's energy transfer. Synchronous fluorescence data indicated that interaction of drug with HSA changed the microenvironment around the tryptophan residue. UV–visible spectroscopy and circular dichroism results deciphered the complex formation and conformational alterations in the HSA respectively. Dynamic light scattering was utilized to understand the topology of protein in absence and presence of drug. Thermodynamic parameters obtained from isothermal titration calorimetry (ΔH=−26.01 kJ mol −1 and TΔS=6.5 kJ mol −1 ) suggested the involvement of van der Waal interaction and hydrogen bonding. Molecular docking and displacement study with site specific markers suggested that cytosine β-D arabinofuranoside binds to subdomain IB of HSA which is also known as the hemin binding site. This study will be helpful to understand the binding mechanism of cytosine β-D arabinofuranoside with HSA and associated alterations. - Highlights: • Comprehensive insight into the interaction of CBDA with HSA. • The interaction process is spontaneous and exothermic. • The main governing forces for stabilizing HSA–CBDA complex are van der Waal interaction and hydrogen bonding. • CBDA binds at subdomain IB on HSA

  18. Understanding the conventional arms trade

    Science.gov (United States)

    Stohl, Rachel

    2017-11-01

    The global conventional arms trade is worth tens of billions of dollars every year and is engaged in by every country in the world. Yet, it is often difficult to control the legal trade in conventional arms and there is a thriving illicit market, willing to arm unscrupulous regimes and nefarious non-state actors. This chapter examines the international conventional arms trade, the range of tools that have been used to control it, and challenges to these international regimes.

  19. Joint cross-correlation analysis reveals complex, time-dependent functional relationship between cortical neurons and arm electromyograms

    Science.gov (United States)

    Zhuang, Katie Z.; Lebedev, Mikhail A.

    2014-01-01

    Correlation between cortical activity and electromyographic (EMG) activity of limb muscles has long been a subject of neurophysiological studies, especially in terms of corticospinal connectivity. Interest in this issue has recently increased due to the development of brain-machine interfaces with output signals that mimic muscle force. For this study, three monkeys were implanted with multielectrode arrays in multiple cortical areas. One monkey performed self-timed touch pad presses, whereas the other two executed arm reaching movements. We analyzed the dynamic relationship between cortical neuronal activity and arm EMGs using a joint cross-correlation (JCC) analysis that evaluated trial-by-trial correlation as a function of time intervals within a trial. JCCs revealed transient correlations between the EMGs of multiple muscles and neural activity in motor, premotor and somatosensory cortical areas. Matching results were obtained using spike-triggered averages corrected by subtracting trial-shuffled data. Compared with spike-triggered averages, JCCs more readily revealed dynamic changes in cortico-EMG correlations. JCCs showed that correlation peaks often sharpened around movement times and broadened during delay intervals. Furthermore, JCC patterns were directionally selective for the arm-reaching task. We propose that such highly dynamic, task-dependent and distributed relationships between cortical activity and EMGs should be taken into consideration for future brain-machine interfaces that generate EMG-like signals. PMID:25210153

  20. 4-Aminoquinoline-pyrimidine hybrids: synthesis, antimalarial activity, heme binding and docking studies.

    Science.gov (United States)

    Kumar, Deepak; Khan, Shabana I; Tekwani, Babu L; Ponnan, Prija; Rawat, Diwan S

    2015-01-07

    A series of novel 4-aminoquinoline-pyrimidine hybrids has been synthesized and evaluated for their antimalarial activity. Several compounds showed promising in vitro antimalarial activity against both CQ-sensitive and CQ-resistant strains with high selectivity index. All the compounds were found to be non-toxic to the mammalian cell lines. Selected compound 7g exhibited significant suppression of parasitemia in the in vivo assay. The heme binding studies were conducted to determine the mode of action of these hybrid molecules. These compounds form a stable 1:1 complex with hematin suggesting that heme may be one of the possible targets of these hybrids. The interaction of these conjugate hybrids was also investigated by the molecular docking studies in the binding site of PfDHFR. The pharmacokinetic property analysis of best active compounds was also studied using ADMET prediction. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  1. Student measurement of blood pressure using a simulator arm compared with a live subject's arm.

    Science.gov (United States)

    Lee, Jennifer J; Sobieraj, Diana M; Kuti, Effie L

    2010-06-15

    To compare accuracy of blood pressure measurements using a live subject and a simulator arm, and to determine students' preferences regarding measurement. This was a crossover study comparing blood pressure measurements from a live subject and a simulator arm. Students completed an anonymous survey instrument defining opinions on ease of measurement. Fifty-seven students completed blood pressure measurements on live subjects while 72 students completed blood pressure measurements using the simulator arm. There were no significant systematic differences between the 2 measurement techniques. Systolic blood pressure measurements from a live subject arm were less likely to be within 4 mm Hg compared with measurements of a simulator arm. Diastolic blood pressure measurements were not significantly different between the 2 techniques. Accuracy of student measurement of blood pressure using a simulator arm was similar to the accuracy with a live subject. There was no difference in students' preferences regarding measurement techniques.

  2. Borehole tool outrigger arm displacement control mechanism

    International Nuclear Information System (INIS)

    Lee, A.G.

    1985-01-01

    As the outrigger arms of a borehole logging tool are flexed inwardly and outwardly according to the diameter of the borehole opening through which they pass, the corresponding axial displacements of the ends of the arms are controlled to determine the axial positions of the arms relative to the tool. Specifically, as the arm ends move, they are caused to rotate by a cam mechanism. The stiffness of the arms causes the arm ends to rotate in unison, and the exact positions of the arms on the tool are then controlled by the differential movements of the arm ends in the cams

  3. Nonparetic arm force does not overinhibit the paretic arm in chronic poststroke hemiparesis.

    Science.gov (United States)

    Dimyan, Michael A; Perez, Monica A; Auh, Sungyoung; Tarula, Erick; Wilson, Matthew; Cohen, Leonardo G

    2014-05-01

    To determine whether nonparetic arm force overinhibits the paretic arm in patients with chronic unilateral poststroke hemiparesis. Case-control neurophysiological and behavioral study of patients with chronic stroke. Research institution. Eighty-six referred patients were screened to enroll 9 participants (N=9) with a >6 month history of 1 unilateral ischemic infarct that resulted in arm hemiparesis with residual ability to produce 1Nm of wrist flexion torque and without contraindication to transcranial magnetic stimulation. Eight age- and handedness-matched healthy volunteers without neurologic diagnosis were studied for comparison. Not applicable. Change in interhemispheric inhibition targeting the ipsilesional primary motor cortex (M1) during nonparetic arm force. We hypothesized that interhemispheric inhibition would increase more in healthy controls than in patients with hemiparesis. Healthy age-matched controls had significantly greater increases in inhibition from their active to resting M1 than patients with stroke from their active contralesional to resting ipsilesional M1 in the same scenario (20%±7% vs -1%±4%, F1,12=6.61, P=.025). Patients with greater increases in contralesional to ipsilesional inhibition were better performers on the 9-hole peg test of paretic arm function. Our findings reveal that producing force with the nonparetic arm does not necessarily overinhibit the paretic arm. Though our study is limited in generalizability by the small sample size, we found that greater active contralesional to resting ipsilesional M1 inhibition was related with better recovery in this subset of patients with chronic poststroke. Copyright © 2014 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  4. Cooperative Rendezvous and Docking for Underwater Robots Using Model Predictive Control and Dual Decomposition

    DEFF Research Database (Denmark)

    Nielsen, Mikkel Cornelius; Johansen, Tor Arne; Blanke, Mogens

    2018-01-01

    This paper considers the problem of rendezvous and docking with visual constraints in the context of underwater robots with camera-based navigation. The objective is the convergence of the vehicles to a common point while maintaining visual contact. The proposed solution includes the design of a ...... of a distributed model predictive controller based on dual decomposition, which allows for optimization in a decentralized fashion. The proposed distributed controller enables rendezvous and docking between vehicles while maintaining visual contact....

  5. Blinded evaluation of farnesoid X receptor (FXR) ligands binding using molecular docking and free energy calculations

    Science.gov (United States)

    Selwa, Edithe; Elisée, Eddy; Zavala, Agustin; Iorga, Bogdan I.

    2018-01-01

    Our participation to the D3R Grand Challenge 2 involved a protocol in two steps, with an initial analysis of the available structural data from the PDB allowing the selection of the most appropriate combination of docking software and scoring function. Subsequent docking calculations showed that the pose prediction can be carried out with a certain precision, but this is dependent on the specific nature of the ligands. The correct ranking of docking poses is still a problem and cannot be successful in the absence of good pose predictions. Our free energy calculations on two different subsets provided contrasted results, which might have the origin in non-optimal force field parameters associated with the sulfonamide chemical moiety.

  6. Cellulase enzyme: Homology modeling, binding site identification and molecular docking

    Science.gov (United States)

    Selvam, K.; Senbagam, D.; Selvankumar, T.; Sudhakar, C.; Kamala-Kannan, S.; Senthilkumar, B.; Govarthanan, M.

    2017-12-01

    Cellulase is an enzyme that degrades the linear polysaccharide like cellulose into glucose by breaking the β-1,4- glycosidic bonds. These enzymes are the third largest enzymes with a great potential towards the ethanol production and play a vital role in degrading the biomass. The production of ethanol depends upon the ability of the cellulose to utilize the wide range of substrates. In this study, the 3D structure of cellulase from Acinetobacter sp. was modeled by using Modeler 9v9 and validated by Ramachandran plot. The accuracy of the predicted 3D structure was checked using Ramachandran plot analysis showed that 81.1% in the favored region, compatibility of an atomic model (3D) with amino acid sequence (1D) for the model was observed as 78.21% and 49.395% for Verify 3D and ERRAT at SAVES server. As the binding efficacy with the substrate might suggests the choice of the substrate as carbon and nitrogen sources, the cellobiose, cellotetraose, cellotetriose and laminaribiose were employed in the docking studies. The docking of cellobiose, cellotetraose, cellotetriose and laminaribiose with cellulase exhibited the binding energy of -6.1523 kJ/mol, -7.8759 kJ/mol,-6.1590 kJ/mol and -6.7185 kJ/mol, respectively. These docking studies revealed that cellulase has the greater potential towards the cellotetraose as a substrate for the high yield of ethanol.

  7. Elucidating the interaction of clofazimine with bovine liver catalase; a comprehensive spectroscopic and molecular docking approach.

    Science.gov (United States)

    Zaman, Masihuz; Nusrat, Saima; Zakariya, Syed Mohammad; Khan, Mohsin Vahid; Ajmal, Mohammad Rehan; Khan, Rizwan Hasan

    2017-08-01

    Nowadays, understanding of interface between protein and drugs has become an active research area of interest. These types of interactions provide structural guidelines in drug design with greater clinical efficacy. Thus, structural changes in catalase induced by clofazimine were monitored by various biophysical techniques including UV-visible spectrometer, fluorescence spectroscopy, circular dichroism, and dynamic light scattering techniques. Increase in absorption spectra (UV-visible spectrum) confers the complex formation between drug and protein. Fluorescence quenching with a binding constants of 2.47 × 10 4  M -1 revealed that clofazimine binds with protein. Using fluorescence resonance energy transfer, the distance (r) between the protein (donor) and drug (acceptor) was found to be 2.89 nm. Negative Gibbs free energy change (ΔG°) revealed that binding process is spontaneous. In addition, an increase in α-helicity was observed by far-UV circular dichroism spectra by adding clofazimine to protein. Dynamic light scattering results indicate that topology of bovine liver catalase was slightly altered in the presence of clofazimine. Hydrophobic interactions are the main forces between clofazimine and catalase interaction as depicted by molecular docking studies. Apart from hydrophobic interactions, some hydrogen bonding was also observed during docking method. The results obtained from the present study may establish abundant in optimizing the properties of ligand-protein mixtures relevant for numerous formulations. Copyright © 2017 John Wiley & Sons, Ltd.

  8. Novel Penicillin Analogues as Potential Antimicrobial Agents; Design, Synthesis and Docking Studies.

    Directory of Open Access Journals (Sweden)

    Zaman Ashraf

    Full Text Available A number of penicillin derivatives (4a-h were synthesized by the condensation of 6-amino penicillinic acid (6-APA with non-steroidal anti-inflammatory drugs as antimicrobial agents. In silico docking study of these analogues was performed against Penicillin Binding Protein (PDBID 1CEF using AutoDock Tools 1.5.6 in order to investigate the antimicrobial data on structural basis. Penicillin binding proteins function as either transpeptidases or carboxypeptidases and in few cases demonstrate transglycosylase activity in bacteria. The excellent antibacterial potential was depicted by compounds 4c and 4e against Escherichia coli, Staphylococcus epidermidus and Staphylococcus aureus compared to the standard amoxicillin. The most potent penicillin derivative 4e exhibited same activity as standard amoxicillin against S. aureus. In the enzyme inhibitory assay the compound 4e inhibited E. coli MurC with an IC50 value of 12.5 μM. The docking scores of these compounds 4c and 4e also verified their greater antibacterial potential. The results verified the importance of side chain functionalities along with the presence of central penam nucleus. The binding affinities calculated from docking results expressed in the form of binding energies ranges from -7.8 to -9.2kcal/mol. The carboxylic group of penam nucleus in all these compounds is responsible for strong binding with receptor protein with the bond length ranges from 3.4 to 4.4 Ǻ. The results of present work ratify that derivatives 4c and 4e may serve as a structural template for the design and development of potent antimicrobial agents.

  9. The Binding Mode of the Sonic Hedgehog Inhibitor Robotnikinin, a Combined Docking and QM/MM MD Study

    Directory of Open Access Journals (Sweden)

    Manuel Hitzenberger

    2017-10-01

    Full Text Available Erroneous activation of the Hedgehog pathway has been linked to a great amount of cancerous diseases and therefore a large number of studies aiming at its inhibition have been carried out. One leverage point for novel therapeutic strategies targeting the proteins involved, is the prevention of complex formation between the extracellular signaling protein Sonic Hedgehog and the transmembrane protein Patched 1. In 2009 robotnikinin, a small molecule capable of binding to and inhibiting the activity of Sonic Hedgehog has been identified, however in the absence of X-ray structures of the Sonic Hedgehog-robotnikinin complex, the binding mode of this inhibitor remains unknown. In order to aid with the identification of novel Sonic Hedgehog inhibitors, the presented investigation elucidates the binding mode of robotnikinin by performing an extensive docking study, including subsequent molecular mechanical as well as quantum mechanical/molecular mechanical molecular dynamics simulations. The attained configurations enabled the identification of a number of key protein-ligand interactions, aiding complex formation and providing stabilizing contributions to the binding of the ligand. The predicted structure of the Sonic Hedgehog-robotnikinin complex is provided via a PDB file as Supplementary Material and can be used for further reference.

  10. Grid heterogeneity in in-silico experiments: an exploration of drug screening using DOCK on cloud environments.

    Science.gov (United States)

    Yim, Wen-Wai; Chien, Shu; Kusumoto, Yasuyuki; Date, Susumu; Haga, Jason

    2010-01-01

    Large-scale in-silico screening is a necessary part of drug discovery and Grid computing is one answer to this demand. A disadvantage of using Grid computing is the heterogeneous computational environments characteristic of a Grid. In our study, we have found that for the molecular docking simulation program DOCK, different clusters within a Grid organization can yield inconsistent results. Because DOCK in-silico virtual screening (VS) is currently used to help select chemical compounds to test with in-vitro experiments, such differences have little effect on the validity of using virtual screening before subsequent steps in the drug discovery process. However, it is difficult to predict whether the accumulation of these discrepancies over sequentially repeated VS experiments will significantly alter the results if VS is used as the primary means for identifying potential drugs. Moreover, such discrepancies may be unacceptable for other applications requiring more stringent thresholds. This highlights the need for establishing a more complete solution to provide the best scientific accuracy when executing an application across Grids. One possible solution to platform heterogeneity in DOCK performance explored in our study involved the use of virtual machines as a layer of abstraction. This study investigated the feasibility and practicality of using virtual machine and recent cloud computing technologies in a biological research application. We examined the differences and variations of DOCK VS variables, across a Grid environment composed of different clusters, with and without virtualization. The uniform computer environment provided by virtual machines eliminated inconsistent DOCK VS results caused by heterogeneous clusters, however, the execution time for the DOCK VS increased. In our particular experiments, overhead costs were found to be an average of 41% and 2% in execution time for two different clusters, while the actual magnitudes of the execution time

  11. A strategy based on gas chromatography-mass spectrometry and virtual molecular docking for analysis and prediction of bioactive composition in natural product essential oil.

    Science.gov (United States)

    Wang, Haiyang; Gu, Dongyu; Wang, Miao; Guo, Hong; Wu, Huijuan; Tian, Guangliang; Li, Qian; Yang, Yi; Tian, Jing

    2017-06-09

    The discovery of leads from medicinal plants is crucial to drug development. The present study presents a strategy based on GC-MS coupled with molecular docking for analysis, identification and prediction of protein tyrosine phosphatase 1B inhibitors in the essential oil from Himalayan Cedar (HC). The essential oil with IC 50 value of 120.71±0.26μg/mL exhibited potential activity against protein tyrosine phosphatase 1B (PTP1B) in vitro. After GC-MS analysis, 35 compounds were identified from this oil. The identified compounds were individually docked with PTP1B. Caryophyllene oxide with the lowest binding energy of -6.28kcal/mol was completely wrapped by the active site of PTP1B. The docking results indicated that caryophyllene oxide has potential PTP1B inhibitory activity and may be responsible for the PTP1B inhibitory activity of the essential oil. Caryophyllene oxide in the essential oil of Himalayan Cedar was isolated by HSCCC and the PTP1B inhibitory activity of this compound was then evaluated; the IC 50 value was 31.32±0.38μM. The result revealed that the present strategy can effectively discover the active composition from the complex mixture of medicinal plants. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Nature of galaxy spiral arms

    International Nuclear Information System (INIS)

    Efremov, Yu.N.

    1984-01-01

    The nature of galaxy spiral arms is discussed in a popular form. Two approaches in the theory of spiral arms are considered; they are related to the problem of differential galaxy rotation and the spiral structure wave theory. The example of Galaxy M31 is considered to compare the structural peculiarity of its spiral arms with the wave theory predictions. The situation in the central and south-eastern part of arm S4 in Galaxy M31 noted to be completely explained by the wave theory and modern concepts on the origin of massive stars

  13. Arms races between and within species.

    Science.gov (United States)

    Dawkins, R; Krebs, J R

    1979-09-21

    An adaptation in one lineage (e.g. predators) may change the selection pressure on another lineage (e.g. prey), giving rise to a counter-adaptation. If this occurs reciprocally, an unstable runaway escalation or 'arms race' may result. We discuss various factors which might give one side an advantage in an arms race. For example, a lineage under strong selection may out-evolve a weakly selected one (' the life-dinner principle'). We then classify arms races in two independent ways. They may be symmetric or asymmetric, and they may be interspecific or intraspecific. Our example of an asymmetric interspecific arms race is that between brood parasites and their hosts. The arms race concept may help to reduce the mystery of why cuckoo hosts are so good at detecting cuckoo eggs, but so bad at detecting cuckoo nestlings. The evolutionary contest between queen and worker ants over relative parental investment is a good example of an intraspecific asymmetric arms race. Such cases raise special problems because the participants share the same gene pool. Interspecific symmetric arms races are unlikely to be important, because competitors tend to diverge rather than escalate competitive adaptations. Intraspecific symmetric arms races, exemplified by adaptations for male-male competition, may underlie Cope's Rule and even the extinction of lineages. Finally we consider ways in which arms races can end. One lineage may drive the other to extinction; one may reach an optimum, thereby preventing the other from doing so; a particularly interesting possibility, exemplified by flower-bee coevolution, is that both sides may reach a mutual local optimum; lastly, arms races may have no stable and but may cycle continuously. We do not wish necessarily to suggest that all, or even most, evolutionary change results from arms races, but we do suggest that the arms race concept may help to resolve three long-standing questions in evolutionary theory.

  14. JPRS Report Arms Control

    National Research Council Canada - National Science Library

    1993-01-01

    Table of Contents: (1) COMMONWEALTH OF INDEPENDENT STATES - (A) GENERAL Flaws in U.S.-Russian SSD Agreement Viewed, Khariton - Espionage Not Crucial in Soviet Nuclear Arms Development, Further on Espionage Role in Nuclear Arms Projects...

  15. Controlled, Rapid Uprighting of Molars: A surprisingly Simple Solution The Pivot Arm Appliance.

    Science.gov (United States)

    Warise, Timothy R; Galella, Steve A

    2015-01-01

    In orthodontic cases where the regional anatomy provides limited room for eruption, there is etiologically a higher occurrence of tipped/impacted second molars. Although second molar extraction with third molar replacement is a useful option, the "Pivot Arm Appliance" encourages the uprighting of the second molar as a preferred treatment. The most unique and important attribute of the "Pivot Arm Appliance" is the rotating tube. In cases of access limitation, the disto-occlusal surface of the molar presents as one area that is accessible. Other features of the "Pivot Arm Appliance" include: The position of the rotator tube delivers optimal rotational force through the pivoting action of the tube/arm complex. The "Pivot Arm Appliance" takes advantage of the efficiency and simplicity of a Class I lever system. The anatomical fulcrum being the dense cortical bone located anterior to the ascending ramus. The vertical spring system is compact, reliable and delivers gentle controlled force in rotational direction. The lingual location of the "Pivot Arm Appliance" does not hinder the function of the tongue, impinge on the soft tissue or interfere with normal masticatory function. The ease of placement of the rotator tube and subsequent insertion of the spring. It is well to note the uprighting appliance provides a very useful and practical approach to the unique problem of severely tipped second molars with limited buccal access. The "Pivot Arm Appliance" does not function only in these situations but can be used in all cases of second molar uprighting of a moderate to severe nature.

  16. The pickup and delivery problem with cross-docking opportunity

    DEFF Research Database (Denmark)

    Petersen, Hanne Løhmann; Røpke, Stefan

    2011-01-01

    delivery by one truck, or by being picked up and transported to the cross-dock by one vehicle, and subsequently delivered at its final destination by another vehicle. Handling times at customers sites and terminal are given. A typical daily instance includes 500-1,000 requests. We solve the problem using...

  17. Coordinated Resolved Motion Control of Dual-Arm Manipulators with Closed Chain

    Directory of Open Access Journals (Sweden)

    Tianliang Liu

    2016-05-01

    Full Text Available When applied to some tasks, such as payload handling, assembling, repairing and so on, the two arms of a humanoid robot will form a closed kinematic chain. It makes the motion planning and control for dual-arm coordination very complex and difficult. In this paper, we present three types of resolved motion control methods for a humanoid robot during coordinated manipulation. They are, respectively, position-level, velocity-level and acceleration-level resolved motion control methods. The desired pose, velocity and acceleration of each end-effector are then resolved according to the desired motion of the payload and the constraints on the closed-chain system without consideration of the internal force. Corresponding to the three cases above, the joint variables of each arm are then calculated using the inverse kinematic equations, at position-level, velocity-level or acceleration-level. Finally, a dynamic modelling and simulation platform is established based on ADAMS and Matlab software. The proposed methods are verified by typical cases. The simulation results show that the proposed control strategy can realize the dual-arm coordinated operation and the internal force of the closed chain during the operation is controlled in a reasonable range at the same time.

  18. Alpha complexes in protein structure prediction

    DEFF Research Database (Denmark)

    Winter, Pawel; Fonseca, Rasmus

    2015-01-01

    Reducing the computational effort and increasing the accuracy of potential energy functions is of utmost importance in modeling biological systems, for instance in protein structure prediction, docking or design. Evaluating interactions between nonbonded atoms is the bottleneck of such computations......-complexes from scratch for every configuration encountered during the search for the native structure would make this approach hopelessly slow. However, it is argued that kinetic a-complexes can be used to reduce the computational effort of determining the potential energy when "moving" from one configuration...... to a neighboring one. As a consequence, relatively expensive (initial) construction of an a-complex is expected to be compensated by subsequent fast kinetic updates during the search process. Computational results presented in this paper are limited. However, they suggest that the applicability of a...

  19. Organization of octopus arm movements: a model system for studying the control of flexible arms.

    Science.gov (United States)

    Gutfreund, Y; Flash, T; Yarom, Y; Fiorito, G; Segev, I; Hochner, B

    1996-11-15

    Octopus arm movements provide an extreme example of controlled movements of a flexible arm with virtually unlimited degrees of freedom. This study aims to identify general principles in the organization of these movements. Video records of the movements of Octopus vulgaris performing the task of reaching toward a target were studied. The octopus extends its arm toward the target by a wave-like propagation of a bend that travels from the base of the arm toward the tip. Similar bend propagation is seen in other octopus arm movements, such as locomotion and searching. The kinematics (position and velocity) of the midpoint of the bend in three-dimensional space were extracted using the direct linear transformation algorithm. This showed that the bend tends to move within a single linear plane in a simple, slightly curved path connecting the center of the animal's body with the target location. Approximately 70% of the reaching movements demonstrated a stereotyped tangential velocity profile. An invariant profile was observed when movements were normalized for velocity and distance. Two arms, extended together in the same behavioral context, demonstrated identical velocity profiles. The stereotyped features of the movements were also observed in spontaneous arm extensions (not toward an external target). The simple and stereotypic appearance of the bend trajectory suggests that the position of the bend in space and time is the controlled variable. We propose that this strategy reduces the immense redundancy of the octopus arm movements and hence simplifies motor control.

  20. Binding mode and free energy prediction of fisetin/β-cyclodextrin inclusion complexes

    Directory of Open Access Journals (Sweden)

    Bodee Nutho

    2014-11-01

    Full Text Available In the present study, our aim is to investigate the preferential binding mode and encapsulation of the flavonoid fisetin in the nano-pore of β-cyclodextrin (β-CD at the molecular level using various theoretical approaches: molecular docking, molecular dynamics (MD simulations and binding free energy calculations. The molecular docking suggested four possible fisetin orientations in the cavity through its chromone or phenyl ring with two different geometries of fisetin due to the rotatable bond between the two rings. From the multiple MD results, the phenyl ring of fisetin favours its inclusion into the β-CD cavity, whilst less binding or even unbinding preference was observed in the complexes where the larger chromone ring is located in the cavity. All MM- and QM-PBSA/GBSA free energy predictions supported the more stable fisetin/β-CD complex of the bound phenyl ring. Van der Waals interaction is the key force in forming the complexes. In addition, the quantum mechanics calculations with M06-2X/6-31G(d,p clearly showed that both solvation effect and BSSE correction cannot be neglected for the energy determination of the chosen system.

  1. Photodissociation spectroscopy of NbnArm complexes

    International Nuclear Information System (INIS)

    Menezes, W.J.C.; Knickelbein, M.B.

    1993-01-01

    The optical absorption spectra of niobium clusters containing 7 to 20 atoms have been measured from 336 to 634 nm by way of photodissociation action spectroscopy of the corresponding van der Waals complexes with argon atoms: Nb n Ar m → hν Nb n + m Ar. The clusters in this size range do not display discrete absorption bands characteristic of molecular behavior, but rather absorption cross sections which increase monotonically with decreasing wavelength. This behavior is in qualitative accord with the absorption behavior predicted by the spherical Mie model for small niobium spheres, however, the measured cross sections are 2--5 times larger than predicted over this wavelength range, with the smallest clusters displaying the largest deviations. Interpreted within the classical electrodynamic framework, these observations suggest that the absorption spectra derive oscillator strength from an incipient surface plasmon, redshifted from its predicted resonance frequency in the vacuum ultraviolet

  2. High precision detector robot arm system

    Science.gov (United States)

    Shu, Deming; Chu, Yong

    2017-01-31

    A method and high precision robot arm system are provided, for example, for X-ray nanodiffraction with an X-ray nanoprobe. The robot arm system includes duo-vertical-stages and a kinematic linkage system. A two-dimensional (2D) vertical plane ultra-precision robot arm supporting an X-ray detector provides positioning and manipulating of the X-ray detector. A vertical support for the 2D vertical plane robot arm includes spaced apart rails respectively engaging a first bearing structure and a second bearing structure carried by the 2D vertical plane robot arm.

  3. Structure and function of complex I in animals and plants - a comparative view.

    Science.gov (United States)

    Senkler, Jennifer; Senkler, Michael; Braun, Hans-Peter

    2017-09-01

    The mitochondrial NADH dehydrogenase complex (complex I) has a molecular mass of about 1000 kDa and includes 40-50 subunits in animals, fungi and plants. It is composed of a membrane arm and a peripheral arm and has a conserved L-like shape in all species investigated. However, in plants and possibly some protists it has a second peripheral domain which is attached to the membrane arm on its matrix exposed side at a central position. The extra domain includes proteins resembling prokaryotic gamma-type carbonic anhydrases. We here present a detailed comparison of complex I from mammals and flowering plants. Forty homologous subunits are present in complex I of both groups of species. In addition, five subunits are present in mammalian complex I, which are absent in plants, and eight to nine subunits are present in plant complex I which do not occur in mammals. Based on the atomic structure of mammalian complex I and biochemical insights into complex I architecture from plants we mapped the species-specific subunits. Interestingly, four of the five animal-specific and five of the eight to nine plant-specific subunits are localized at the inner surface of the membrane arm of complex I in close proximity. We propose that the inner surface of the membrane arm represents a workbench for attaching proteins to complex I, which are not directly related to respiratory electron transport, like nucleoside kinases, acyl-carrier proteins or carbonic anhydrases. We speculate that further enzyme activities might be bound to this micro-location in other groups of organisms. © 2017 Scandinavian Plant Physiology Society.

  4. A role of proton transfer in peroxidase-catalyzed process elucidated by substrates docking calculations

    Directory of Open Access Journals (Sweden)

    Ziemys Arturas

    2001-08-01

    Full Text Available Abstract Background Previous kinetic investigations of fungal-peroxidase catalyzed oxidation of N-aryl hydroxamic acids (AHAs and N-aryl-N-hydroxy urethanes (AHUs revealed that the rate of reaction was independent of the formal redox potential of substrates. Moreover, the oxidation rate was 3–5 orders of magnitude less than for oxidation of physiological phenol substrates, though the redox potential was similar. Results To explain the unexpectedly low reactivity of AHAs and AHUs we made ab initio calculations of the molecular structure of the substrates following in silico docking in the active center of the enzyme. Conclusions AHAs and AHUs were docked at the distal side of heme in the sites formed by hydrophobic amino acid residues that retarded a proton transfer and finally the oxidation rate. The analogous phenol substrates were docked at different sites permitting fast proton transfer in the relay of distal His and water that helped fast substrate oxidation.

  5. Transformation of armed violence: specific features and trends

    Directory of Open Access Journals (Sweden)

    O. B. Balatska

    2016-08-01

    Full Text Available Social transformations occurring in the world today became a result of globalization, information, changes in the international balance of power, and are reflected in all aspects of political development. One of the most pressing challenges of our time, a consequence of these processes, is the evolution of forms and methods of armed violence. This publication is devoted to determining the specific and major trends transforming the forms and methods of armed violence. Instead of the traditional military conflicts, new forms and means of armed confrontation emerge. Asymmetrical conflicts taking place with the participation of non-state parties and irregular armed groups, are quite common at the moment. «Hard power» methods associated with the use of direct violence are supplemented by means of «soft power». Violent but non-traditional (non-military means of confrontation widen, with informational and psychological influence becoming particularly prominent. Infotechnological and infopsychological methods of intervention have become an integral part of modern military-political confrontation, taking form of hybrid, network and network-centric warfare. The hybrid military conflicts are typically distinguished by asymmetry, latency, priority of small-scale combat actions and dynamic use of indirect violence. Network-centric warfare focused on achieving information superiority over the enemy, complex effects on the enemy’s physical, informational and cognitive domains, strategic flexibility and adaptability, priority of horizontal ties over traditional vertical hierarchy. Horizontal network infrastructure, consisting of multiple independent, highly specialized and geographically dispersed units, determines the effectiveness of network war strategy today. Apart from qualitative changes associated with emergence and proliferation of new forms of armed violence on a global scale, there is a definite global increase in its quantitative

  6. Algorithms for Unequal-Arm Michelson Interferometers

    Science.gov (United States)

    Giampieri, Giacomo; Hellings, Ronald W.; Tinto, Massimo; Bender, Peter L.; Faller, James E.

    1994-01-01

    A method of data acquisition and data analysis is described in which the performance of Michelson-type interferometers with unequal arms can be made nearly the same as interferometers with equal arms. The method requires a separate readout of the relative phase in each arm, made by interfering the returning beam in each arm with a fraction of the outgoing beam.

  7. Application of C-arm computed tomography in cardiology

    International Nuclear Information System (INIS)

    Rieber, J.; Rohkohl, C.; Lauritsch, G.; Rittger, H.; Meissner, O.

    2009-01-01

    C-arm computed tomography is currently being introduced into cardiac imaging and offers the potential for three-dimensional imaging of the cardiac anatomy within the interventional environment. This detailed view is necessary to support complex interventional strategies, such as transcutaneous valve replacement, interventional therapy of atrial fibrillation, implantation of biventricular pacemakers and assessment of myocardial perfusion. Currently, the major limitation of this technology is its insufficient temporal resolution which limits the visualization of fast moving parts of the heart. (orig.) [de

  8. FY1995 development of artificial arm 'SMART ARM' by spherical ultrasonic motor; 1995 nendo kyumen choonpa motor wo mochiita jinko gishu smart arm no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    The project has an intention of development of new type artificial arm by spherical ultrasonic motor. We have succeeded in developing new type of spherical ultrasonic motor with three DOF. And we have succeeded in applying the motor to an artificial arm. This arm have advantages of small size, low weight torque comparing with conventional ones. We demonstrated them the new arm behaved well and it had good controlabilty. (NEDO)

  9. Analysis of the indel at the ARMS2 3′UTR in age-related macular degeneration

    Science.gov (United States)

    Wang, Gaofeng; Spencer, Kylee L.; Scott, William K.; Whitehead, Patrice; Court, Brenda L.; Ayala-Haedo, Juan; Mayo, Ping; Schwartz, Stephen G.; Kovach, Jaclyn L.; Gallins, Paul; Polk, Monica; Agarwal, Anita; Postel, Eric A.; Haines, Jonathan L.; Pericak-Vance, Margaret A.

    2010-01-01

    Controversy remains as to which gene at the chromosome 10q26 locus confers risk for age-related macular degeneration (AMD) and statistical genetic analysis is confounded by the strong linkage disequilibrium (LD) across the region. Functional analysis of related genetic variations could solve this puzzle. Recently Fritsche et al. reported that AMD is associated with unstable ARMS2 transcripts possibly caused by a complex insertion/deletion (indel; consisting of a 443 bp deletion and an adjacent 54 bp insertion) in its 3′UTR (untranslated region). To validate this indel, we sequenced our samples. We found that this indel is even more complex and is composed of two side-by-side indels separated by 17 bp: (1) 9 bp deletion with 10bp insertion; (2) 417 bp deletion with 27 bp insertion. The indel is significantly associated with the risk of AMD, but is also in strong LD with the non-synonymous single nucleotide polymorphism (SNP) rs10490924 (A69S). We also found that ARMS2 is expressed not only in placenta and retina but also in multiple human tissues. Using quantitative PCR, we found no correlation between the indel and ARMS2 mRNA level in human retina and blood samples. The lack of functional effects of the 3′UTR indel, the amino acid substitution of rs10490924 (A69S) and strong LD between them suggest that A69S, not the indel is the variant that confers risk of AMD. To our knowledge, it is the first time it's been shown that ARMS2 is widely expressed in human tissues. Conclusively, the indel at 3′UTR of ARMS2 actually contains two side-by-side indels. The indels are associated with risk of AMD, but not correlated with ARMS2 mRNA level. PMID:20182747

  10. Fast, accurate, and reliable molecular docking with QuickVina 2.

    Science.gov (United States)

    Alhossary, Amr; Handoko, Stephanus Daniel; Mu, Yuguang; Kwoh, Chee-Keong

    2015-07-01

    The need for efficient molecular docking tools for high-throughput screening is growing alongside the rapid growth of drug-fragment databases. AutoDock Vina ('Vina') is a widely used docking tool with parallelization for speed. QuickVina ('QVina 1') then further enhanced the speed via a heuristics, requiring high exhaustiveness. With low exhaustiveness, its accuracy was compromised. We present in this article the latest version of QuickVina ('QVina 2') that inherits both the speed of QVina 1 and the reliability of the original Vina. We tested the efficacy of QVina 2 on the core set of PDBbind 2014. With the default exhaustiveness level of Vina (i.e. 8), a maximum of 20.49-fold and an average of 2.30-fold acceleration with a correlation coefficient of 0.967 for the first mode and 0.911 for the sum of all modes were attained over the original Vina. A tendency for higher acceleration with increased number of rotatable bonds as the design variables was observed. On the accuracy, Vina wins over QVina 2 on 30% of the data with average energy difference of only 0.58 kcal/mol. On the same dataset, GOLD produced RMSD smaller than 2 Å on 56.9% of the data while QVina 2 attained 63.1%. The C++ source code of QVina 2 is available at (www.qvina.org). aalhossary@pmail.ntu.edu.sg Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. Biophysical and molecular docking insight into the interaction of cytosine β-D arabinofuranoside with human serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Alam, Parvez; Chaturvedi, Sumit Kumar [Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, UP (India); Anwar, Tamanna [Center of Bioinformatics Research and Technology, Aligarh 202002 (India); Siddiqi, Mohammad Khursheed; Ajmal, Mohd Rehan [Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, UP (India); Badr, Gamal [Laboratory of Immunology & Molecular Physiology, Zoology Department, Faculty of Science, Assiut University, 71516 Assiut (Egypt); Mahmoud, Mohamed H. [Food Science and Nutrition Department, National Research Center, Dokki, Cairo (Egypt); Deanship of Scientific Research, King Saud University, Riyadh (Saudi Arabia); Hasan Khan, Rizwan, E-mail: rizwanhkhan@hotmail.com [Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, UP (India)

    2015-08-15

    Interaction of pharmacologically important anticancer drug cytosine β-D arabinofuranoside with human serum albumin (HSA) at physiological pH 7.4 has been studied by utilizing various spectroscopic and molecular docking strategies. Fluorescence results revealed that cytosine β-D arabinofuranoside interacts with HSA through static quenching mechanism with binding affinity of 2.4×10{sup 3} M{sup −1}. The average binding distance between drug and Trp{sup 214} of HSA was found to be 2.23 nm on the basis of the theory of Förster's energy transfer. Synchronous fluorescence data indicated that interaction of drug with HSA changed the microenvironment around the tryptophan residue. UV–visible spectroscopy and circular dichroism results deciphered the complex formation and conformational alterations in the HSA respectively. Dynamic light scattering was utilized to understand the topology of protein in absence and presence of drug. Thermodynamic parameters obtained from isothermal titration calorimetry (ΔH=−26.01 kJ mol{sup −1} and TΔS=6.5 kJ mol{sup −1}) suggested the involvement of van der Waal interaction and hydrogen bonding. Molecular docking and displacement study with site specific markers suggested that cytosine β-D arabinofuranoside binds to subdomain IB of HSA which is also known as the hemin binding site. This study will be helpful to understand the binding mechanism of cytosine β-D arabinofuranoside with HSA and associated alterations. - Highlights: • Comprehensive insight into the interaction of CBDA with HSA. • The interaction process is spontaneous and exothermic. • The main governing forces for stabilizing HSA–CBDA complex are van der Waal interaction and hydrogen bonding. • CBDA binds at subdomain IB on HSA.

  12. Soft robotic arm inspired by the octopus: I. From biological functions to artificial requirements.

    Science.gov (United States)

    Margheri, L; Laschi, C; Mazzolai, B

    2012-06-01

    Octopuses are molluscs that belong to the group Cephalopoda. They lack joints and rigid links, and as a result, their arms possess virtually limitless freedom of movement. These flexible appendages exhibit peculiar biomechanical features such as stiffness control, compliance, and high flexibility and dexterity. Studying the capabilities of the octopus arm is a complex task that presents a challenge for both biologists and roboticists, the latter of whom draw inspiration from the octopus in designing novel technologies within soft robotics. With this idea in mind, in this study, we used new, purposively developed methods of analysing the octopus arm in vivo to create new biologically inspired design concepts. Our measurements showed that the octopus arm can elongate by 70% in tandem with a 23% diameter reduction and exhibits an average pulling force of 40 N. The arm also exhibited a 20% mean shortening at a rate of 17.1 mm s(-1) and a longitudinal stiffening rate as high as 2 N (mm s)(-1). Using histology and ultrasounds, we investigated the functional morphology of the internal tissues, including the sinusoidal arrangement of the nerve cord and the local insertion points of the longitudinal and transverse muscle fibres. The resulting information was used to create novel design principles and specifications that can in turn be used in developing a new soft robotic arm.

  13. Soft robotic arm inspired by the octopus: I. From biological functions to artificial requirements

    International Nuclear Information System (INIS)

    Margheri, L; Laschi, C; Mazzolai, B

    2012-01-01

    Octopuses are molluscs that belong to the group Cephalopoda. They lack joints and rigid links, and as a result, their arms possess virtually limitless freedom of movement. These flexible appendages exhibit peculiar biomechanical features such as stiffness control, compliance, and high flexibility and dexterity. Studying the capabilities of the octopus arm is a complex task that presents a challenge for both biologists and roboticists, the latter of whom draw inspiration from the octopus in designing novel technologies within soft robotics. With this idea in mind, in this study, we used new, purposively developed methods of analysing the octopus arm in vivo to create new biologically inspired design concepts. Our measurements showed that the octopus arm can elongate by 70% in tandem with a 23% diameter reduction and exhibits an average pulling force of 40 N. The arm also exhibited a 20% mean shortening at a rate of 17.1 mm s −1 and a longitudinal stiffening rate as high as 2 N (mm s) −1 . Using histology and ultrasounds, we investigated the functional morphology of the internal tissues, including the sinusoidal arrangement of the nerve cord and the local insertion points of the longitudinal and transverse muscle fibres. The resulting information was used to create novel design principles and specifications that can in turn be used in developing a new soft robotic arm. (paper)

  14. Tail docking in pigs: a review on its short- and long-term consequences and effectiveness in preventing tail biting

    Directory of Open Access Journals (Sweden)

    Eleonora Nannoni

    2014-02-01

    Full Text Available In spite of European legislation attempting to limit this practice, tail docking is nowadays the only preventive measure against tail biting which is widely adopted by farmers. Docking consists in amputating, usually without anaesthesia or analgesia, the distal part of the tail, in order to reduce its attractiveness and to sensitize it, increasing avoidance behaviour in the bitten pig. Tail docking results in both acute and chronic effects on pig welfare, and its effectiveness in preventing tail biting is limited, since it reduces the symptoms of a behavioural disorder, but does not address the underlying causes. The aim of the present paper is to review the available literature on the effects of tail docking on swine welfare. Although from a practical standpoint the welfare risks arising from tail docking may appear to be negligible compared to those arising during and after tail biting outbreaks, it should be considered that, apart from acute physiological and behavioural responses, tail docking may also elicit long-term effects on weight gain, tail stump sensitivity and animal freedom to express their normal behaviour. Such chronic effects have been poorly investigated so far. Besides, studies evaluating the effectiveness of anaesthetics or analgesic treatments are often conflicting. Within this framework, further research is recommended in order to reduce the acute and chronic pain and discomfort experienced by the animals, until preventive measures (e.g., environmental enrichment, stocking densities are broadly adopted to prevent tail biting.

  15. The Protective Arm of the Renin Angiotensin System (RAS)

    DEFF Research Database (Denmark)

    understanding of the protective side of the Renin Angiotensin System (RAS) involving angiotensin AT2 receptor, ACE2, and Ang(1-7)/Mas receptor Combines the knowledge of editors who pioneered research on the protective renin angiotensin system including; Dr. Thomas Unger, one of the founders of AT2 receptor......The Protective Arm of the Renin Angiotensin System: Functional Aspects and Therapeutic Implications is the first comprehensive publication to signal the protective role of a distinct part of the renin-angiotensin system (RAS), providing readers with early insight into a complex system which...... will become of major medical importance in the near future. Focusing on recent research, The Protective Arm of the Renin Angiotensin System presents a host of new experimental studies on specific components of the RAS, namely angiotensin AT2 receptors (AT2R), the angiotensin (1-7) peptide with its receptor...

  16. An Efficient Implementation of the Nwat-MMGBSA Method to Rescore Docking Results in Medium-Throughput Virtual Screenings

    Directory of Open Access Journals (Sweden)

    Irene Maffucci

    2018-03-01

    Full Text Available Nwat-MMGBSA is a variant of MM-PB/GBSA based on the inclusion of a number of explicit water molecules that are the closest to the ligand in each frame of a molecular dynamics trajectory. This method demonstrated improved correlations between calculated and experimental binding energies in both protein-protein interactions and ligand-receptor complexes, in comparison to the standard MM-GBSA. A protocol optimization, aimed to maximize efficacy and efficiency, is discussed here considering penicillopepsin, HIV1-protease, and BCL-XL as test cases. Calculations were performed in triplicates on both classic HPC environments and on standard workstations equipped by a GPU card, evidencing no statistical differences in the results. No relevant differences in correlation to experiments were also observed when performing Nwat-MMGBSA calculations on 4 or 1 ns long trajectories. A fully automatic workflow for structure-based virtual screening, performing from library set-up to docking and Nwat-MMGBSA rescoring, has then been developed. The protocol has been tested against no rescoring or standard MM-GBSA rescoring within a retrospective virtual screening of inhibitors of AmpC β-lactamase and of the Rac1-Tiam1 protein-protein interaction. In both cases, Nwat-MMGBSA rescoring provided a statistically significant increase in the ROC AUCs of between 20 and 30%, compared to docking scoring or to standard MM-GBSA rescoring.

  17. An Efficient Implementation of the Nwat-MMGBSA Method to Rescore Docking Results in Medium-Throughput Virtual Screenings

    Science.gov (United States)

    Maffucci, Irene; Hu, Xiao; Fumagalli, Valentina; Contini, Alessandro

    2018-03-01

    Nwat-MMGBSA is a variant of MM-PB/GBSA based on the inclusion of a number of explicit water molecules that are the closest to the ligand in each frame of a molecular dynamics trajectory. This method demonstrated improved correlations between calculated and experimental binding energies in both protein-protein interactions and ligand-receptor complexes, in comparison to the standard MM-GBSA. A protocol optimization, aimed to maximize efficacy and efficiency, is discussed here considering penicillopepsin, HIV1-protease, and BCL-XL as test cases. Calculations were performed in triplicates on both classic HPC environments and on standard workstations equipped by a GPU card, evidencing no statistical differences in the results. No relevant differences in correlation to experiments were also observed when performing Nwat-MMGBSA calculations on 4 ns or 1 ns long trajectories. A fully automatic workflow for structure-based virtual screening, performing from library set-up to docking and Nwat-MMGBSA rescoring, has then been developed. The protocol has been tested against no rescoring or standard MM-GBSA rescoring within a retrospective virtual screening of inhibitors of AmpC β-lactamase and of the Rac1-Tiam1 protein-protein interaction. In both cases, Nwat-MMGBSA rescoring provided a statistically significant increase in the ROC AUCs of between 20% and 30%, compared to docking scoring or to standard MM-GBSA rescoring.

  18. Structural Analysis of the Bacterial Proteasome Activator Bpa in Complex with the 20S Proteasome.

    Science.gov (United States)

    Bolten, Marcel; Delley, Cyrille L; Leibundgut, Marc; Boehringer, Daniel; Ban, Nenad; Weber-Ban, Eilika

    2016-12-06

    Mycobacterium tuberculosis harbors proteasomes that recruit substrates for degradation through an ubiquitin-like modification pathway. Recently, a non-ATPase activator termed Bpa (bacterial proteasome activator) was shown to support an alternate proteasomal degradation pathway. Here, we present the cryo-electron microscopy (cryo-EM) structure of Bpa in complex with the 20S core particle (CP). For docking into the cryo-EM density, we solved the X-ray structure of Bpa, showing that it forms tight four-helix bundles arranged into a 12-membered ring with a 40 Å wide central pore and the C-terminal helix of each protomer protruding from the ring. The Bpa model was fitted into the cryo-EM map of the Bpa-CP complex, revealing its architecture and striking symmetry mismatch. The Bpa-CP interface was resolved to 3.5 Å, showing the interactions between the C-terminal GQYL motif of Bpa and the proteasome α-rings. This docking mode is related to the one observed for eukaryotic activators with features specific to the bacterial complex. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Complex Regional Pain Syndrome

    Science.gov (United States)

    Complex regional pain syndrome (CRPS) is a chronic pain condition. It causes intense pain, usually in the arms, hands, legs, or feet. It may happen ... move the affected body part The cause of CRPS is unknown. There is no specific diagnostic test. ...

  20. Security and arms control

    International Nuclear Information System (INIS)

    Kolodziej, E.A.; Morgan, P.M.

    1989-01-01

    This book attempts to clarify and define selected current issues and problems related to security and arms control from an international perspective. The chapters are organized under the following headings. Conflict and the international system, Nuclear deterrence, Conventional warfare, Subconventional conflict, Arms control and crisis management