Sample records for ares launch vehicles

  1. Ares Launch Vehicles Lean Practices Case Study (United States)

    Doreswamy, Rajiv; Self, Timothy A.


    The Ares launch vehicles team, managed by the Ares Projects Office (APO) at NASA Marshall Space Flight Center, has completed the Ares I Crew Launch Vehicle System Requirements Review and System Definition Review and early design work for the Ares V Cargo Launch Vehicle. This paper provides examples of how Lean Manufacturing, Kaizen events, and Six Sigma practices are helping APO deliver a new space transportation capability on time and within budget, while still meeting stringent technical requirements. For example, Lean philosophies have been applied to numerous process definition efforts and existing process improvement activities, including the Ares I-X test flight Certificate of Flight Readiness (CoFR) process, risk management process, and review board organization and processes. Ares executives learned Lean practices firsthand, making the team "smart buyers" during proposal reviews and instilling the team with a sense of what is meant by "value-added" activities. Since the goal of the APO is to field launch vehicles at a reasonable cost and on an ambitious schedule, adopting Lean philosophies and practices will be crucial to the Ares Project's long-term SUCCESS.

  2. Ares Launch Vehicles Lean Practices Case Study (United States)

    Doreswamy, Rajiv, N.; Self, Timothy A.


    This viewgraph presentation describes test strategies and lean philisophies and practices that are applied to Ares Launch Vehicles. The topics include: 1) Testing strategy; 2) Lean Practices in Ares I-X; 3) Lean Practices Applied to Ares I-X Schedule; 4) Lean Event Results; 5) Lean, Six Sigma, and Kaizen Practices in the Ares Projects Office; 6) Lean and Kaizen Success Stories; and 7) Ares Six Sigma Practices.

  3. Ares Launch Vehicles Overview: Space Access Society (United States)

    Cook, Steve


    America is returning to the Moon in preparation for the first human footprint on Mars, guided by the U.S. Vision for Space Exploration. This presentation will discuss NASA's mission, the reasons for returning to the Moon and going to Mars, and how NASA will accomplish that mission in ways that promote leadership in space and economic expansion on the new frontier. The primary goals of the Vision for Space Exploration are to finish the International Space Station, retire the Space Shuttle, and build the new spacecraft needed to return people to the Moon and go to Mars. The Vision commits NASA and the nation to an agenda of exploration that also includes robotic exploration and technology development, while building on lessons learned over 50 years of hard-won experience. NASA is building on common hardware, shared knowledge, and unique experience derived from the Apollo Saturn, Space Shuttle, and contemporary commercial launch vehicle programs. The journeys to the Moon and Mars will require a variety of vehicles, including the Ares I Crew Launch Vehicle, which transports the Orion Crew Exploration Vehicle, and the Ares V Cargo Launch Vehicle, which transports the Lunar Surface Access Module. The architecture for the lunar missions will use one launch to ferry the crew into orbit, where it will rendezvous with the Lunar Module in the Earth Departure Stage, which will then propel the combination into lunar orbit. The imperative to explore space with the combination of astronauts and robots will be the impetus for inventions such as solar power and water and waste recycling. This next chapter in NASA's history promises to write the next chapter in American history, as well. It will require this nation to provide the talent to develop tools, machines, materials, processes, technologies, and capabilities that can benefit nearly all aspects of life on Earth. Roles and responsibilities are shared between a nationwide Government and industry team. The Exploration Launch

  4. Rapid Trajectory Optimization for the ARES I Launch Vehicle (United States)

    Dukeman, Greg A.; Hill, Ashley D.


    A simplified ascent trajectory optimization procedure has been developed with application to NASA's proposed Ares I launch vehicle. In the interest of minimizing bending loads and ensuring safe separation of the first-stage solid rocket motor, the vehicle is con- strained to follow a gravity-turn trajectory. This reduces the design space to just two free parameters, the pitch rate after a short vertical rise phase to clear the launch pad, and initial launch azimuth. The pitch rate primarily controls the in-plane parameters (altitude, speed, flight path angle) of the trajectory whereas the launch azimuth primarily controls the out-of-plane portion (velocity heading.) Thus, the optimization can be mechanized as two one-dimensional searches that converge quickly and reliably. The method is compared with POST-optimized trajectories to verify its optimality.

  5. Design for Safety - The Ares Launch Vehicles Paradigm Change (United States)

    Safie, Fayssal M.; Maggio, Gaspare


    The lessons learned from the S&MA early involvement in the Ares I launch vehicle design phases proved that performing an in-line function jointly with engineering is critical for S&MA to have an effective role in supporting the system, element, and component design. These lessons learned were used to effectively support the Ares V conceptual design phase and planning for post conceptual design phases. The Top level Conceptual LOM assessment for Ares V performed by the S&MA community jointly with the engineering Advanced Concept Office (ACO) was influential in the final selection of the Ares V system configuration. Post conceptual phase, extensive reliability effort should be planned to support future Heavy Lift Launch Vehicles (HLLV) design. In-depth reliability analysis involving the design, manufacturing, and system engineering communities is critical to understand design and process uncertainties and system integrated failures.

  6. Ensuring Safe Exploration: Ares Launch Vehicle Integrated Vehicle Ground Vibration Testing (United States)

    Tuma, M. L.; Chenevert, D. J.


    Integrated vehicle ground vibration testing (IVGVT) will be a vital component for ensuring the safety of NASA's next generation of exploration vehicles to send human beings to the Moon and beyond. A ground vibration test (GVT) measures the fundamental dynamic characteristics of launch vehicles during various phases of flight. The Ares Flight & Integrated Test Office (FITO) will be leading the IVGVT for the Ares I crew launch vehicle at Marshall Space Flight Center (MSFC) from 2012 to 2014 using Test Stand (TS) 4550. MSFC conducted similar GVT for the Saturn V and Space Shuttle vehicles. FITO is responsible for performing the IVGVT on the Ares I crew launch vehicle, which will lift the Orion crew exploration vehicle to low Earth orbit, and the Ares V cargo launch vehicle, which can launch the lunar lander into orbit and send the combined Orionilander vehicles toward the Moon. Ares V consists of a six-engine core stage with two solid rocket boosters and an Earth departure stage (EDS). The same engine will power the EDS and the Ares I second stage. For the Ares IVGVT, the current plan is to test six configurations in three unique test positions inside TS 4550. Position 1 represents the entire launch stack at liftoff (using inert first stage segments). Position 2 consists of the entire launch stack at first stage burn-out (using empty first stage segments). Four Ares I second stage test configurations will be tested in Position 3, consisting of the Upper Stage and Orion crew module in four nominal conditions: J-2X engine ignition, post Launch Abort System (LAS) jettison, critical slosh mass, and J-2X burn-out. Because of long disuse, TS 4550 is being repaired and reactivated to conduct the Ares I IVGVT. The Shuttle-era platforms have been removed and are being replaced with mast climbers that provide ready access to the test articles and can be moved easily to support different positions within the test stand. The electrical power distribution system for TS 4550 was

  7. Foundation for Heavy Lift - Early Developments in the Ares V Launch Vehicle (United States)

    McArthur, J. Craig; Pannell, Bill; Lacey, Matt


    The Ares V Cargo Launch Vehicle (CaLV) is NASA's primary vessel for safe, reliable delivery of the Lunar Surface Access Module (LSAM) and other resources into Earth orbit, as articulated in the U.S. Vision for Space Exploration. The Ares V launch concept is shown. The foundation for this heavy-lift companion to the Ares I Crew Launch Vehicle (CLV) is taking shape within NASA and with its government and industry partners. This paper will address accomplishments in the Ares V Launch Vehicle during 2006 and 2007 and offer a preview of future activities.

  8. Foundation for Heavy Lift: Early Developments in the Ares V Cargo Launch Vehicle (United States)

    Sumrall, John P.; McArthur, J. Craig


    The Ares V Cargo Launch Vehicle (CaLV) is NASA's primary vessel for safe, reliable delivery of the Lunar Surface Access Module (LSAM) and other resources into Earth orbit, as articulated in the U.S. Vision for Space Exploration.' The Ares V launch concept is shown. The foundation for this heavy-lift companion to the Ares I Crew Launch Vehicle (CLV) is taking shape within NASA and with its government and industry partners. This paper will address accomplishments in the Ares V Launch Vehicle during 2006 and 2007 and offer a preview of future activities.

  9. Human Factors Analysis to Improve the Processing of Ares-1 Launch Vehicle (United States)

    Stambolian, Damon B.; Dippolito, Gregory M.; Nyugen, Bao; Dischinger, Charles; Tran, Donald; Henderson, Gena; Barth, Tim


    This slide presentation reviews the use of Human Factors analysis in improving the ground processing procedures for the Ares-1 launch vehicle. The light vehicle engineering designers for Ares-l launch vehicle had to design the flight vehicle for effective, efficient and safe ground operations in the cramped dimensions in a rocket design. The use of a mockup of the area where the technician would be required to work proved to be a very effective method to promote the collaboration between the Ares-1 designers and the ground operations personnel.

  10. AST Launch Vehicle Acoustics (United States)

    Houston, Janice; Counter, D.; Giacomoni, D.


    The liftoff phase induces acoustic loading over a broad frequency range for a launch vehicle. These external acoustic environments are then used in the prediction of internal vibration responses of the vehicle and components which result in the qualification levels. Thus, predicting these liftoff acoustic (LOA) environments is critical to the design requirements of any launch vehicle. If there is a significant amount of uncertainty in the predictions or if acoustic mitigation options must be implemented, a subscale acoustic test is a feasible pre-launch test option to verify the LOA environments. The NASA Space Launch System (SLS) program initiated the Scale Model Acoustic Test (SMAT) to verify the predicted SLS LOA environments and to determine the acoustic reduction with an above deck water sound suppression system. The SMAT was conducted at Marshall Space Flight Center and the test article included a 5% scale SLS vehicle model, tower and Mobile Launcher. Acoustic and pressure data were measured by approximately 250 instruments. The SMAT liftoff acoustic results are presented, findings are discussed and a comparison is shown to the Ares I Scale Model Acoustic Test (ASMAT) results.

  11. NASA's Ares I and Ares V Launch Vehicles--Effective Space Operations Through Efficient Ground Operations (United States)

    Singer, Christopher E.; Dumbacher, Daniel L.; Lyles, Gary M.; Onken, Jay F.


    The United States (U.S.) is charting a renewed course for lunar exploration, with the fielding of a new human-rated space transportation system to replace the venerable Space Shuttle, which will be retired after it completes its missions of building the International Space Station (ISS) and servicing the Hubble Space Telescope. Powering the future of space-based scientific exploration will be the Ares I Crew Launch Vehicle, which will transport the Orion Crew Exploration Vehicle to orbit where it will rendezvous with the Altair Lunar Lander, which will be delivered by the Ares V Cargo Launch Vehicle (fig. 1). This configuration will empower rekindled investigation of Earth's natural satellite in the not too distant future. This new exploration infrastructure, developed by the National Aeronautics and Space Administration (NASA), will allow astronauts to leave low-Earth orbit (LEO) for extended lunar missions and preparation for the first long-distance journeys to Mars. All space-based operations - to LEO and beyond - are controlled from Earth. NASA's philosophy is to deliver safe, reliable, and cost-effective architecture solutions to sustain this multi-billion-dollar program across several decades. Leveraging SO years of lessons learned, NASA is partnering with private industry and academia, while building on proven hardware experience. This paper outlines a few ways that the Engineering Directorate at NASA's Marshall Space Flight Center is working with the Constellation Program and its project offices to streamline ground operations concepts by designing for operability, which reduces lifecycle costs and promotes sustainable space exploration.

  12. A New Heavy-Lift Capability for Space Exploration: NASA's Ares V Cargo Launch Vehicle (United States)

    Sumrall, John P.; McArthur, J. Craig


    The National Aeronautics and Space Administration (NASA) is developing new launch systems and preparing to retire the Space Shuttle by 2010, as directed in the United States (U.S.) Vision for Space Exploration. The Ares I Crew Launch Vehicle (CLV) and the Ares V heavy-lift Cargo Launch Vehicle (CaLV) systems will build upon proven, reliable hardware derived from the Apollo-Saturn and Space Shuttle programs to deliver safe, reliable, affordable space transportation solutions. This approach leverages existing aerospace talent and a unique infrastructure, as well as legacy knowledge gained from nearly 50 years' experience developing space hardware. Early next decade, the Ares I will launch the new Orion Crew Exploration Vehicle (CEV) to the International Space Station (ISS) or to low-Earth orbit for trips to the Moon and, ultimately, Mars. Late next decade, the Ares V's Earth Departure Stage will carry larger payloads such as the lunar lander into orbit, and the Crew Exploration Vehicle will dock with it for missions to the Moon, where astronauts will explore new territories and conduct science and technology experiments. Both Ares I and Ares V are being designed to support longer future trips to Mars. The Exploration Launch Projects Office is designing, developing, testing, and evaluating both launch vehicle systems in partnership with other NASA Centers, Government agencies, and industry contractors. This paper provides top-level information regarding the genesis and evolution of the baseline configuration for the Ares V heavy-lift system. It also discusses riskbased, management strategies, such as building on powerful hardware and promoting common features between the Ares I and Ares V systems to reduce technical, schedule, and cost risks, as well as development and operations costs. Finally, it summarizes several notable accomplishments since October 2005, when the Exploration Launch Projects effort officially kicked off, and looks ahead at work planned for 2007

  13. The Ares Launch Vehicles: Critical for America's Continued Leadership in Space (United States)

    Cook, Stephen A.


    This video is designed to accompany the presentation of the paper delivered at the Joint Army, Navy, NASA, Airforce (JANNAF) Propulsion Meeting held in 2009. It shows various scenes: from the construction of the A-3 test stand, construction of portions of the vehicles, through various tests of the components of the Ares Launch Vehicles, including wind tunnel testing of the Ares V, shell buckling tests, and thermal tests of the avionics, to the construction of the TPS thermal spray booth.

  14. NASA's Ares I and Ares V Launch Vehicles -- Effective Space Operations Through Efficient Ground Operations (United States)

    Dumbacher, Daniel L.; Singer, Christopher E.; Onken, Jay F.


    The United States (U.S.) plans to return to the Moon by 2020, with the development of a new human-rated space transportation system to replace the Space Shuttle, which is due for retirement in 2010 after it completes its missions of building the International Space Station and servicing the Hubble Space Telescope. Powering the future of space-based scientific exploration will be the Ares I Crew Launch Vehicle, which will transport the Orion Crew Exploration Vehicle to orbit where it will rendezvous with the Lunar Lander. which will be delivered by the Ares V Cargo Launch Vehicle. This new transportation infrastructure, developed by the National Aeronautics and Space Administration (NASA), will allow astronauts to leave low-Earth orbit for extended lunar exploration and preparation for the first footprint on Mars. All space-based operations begin and are controlled from Earth. NASA's philosophy is to deliver safe, reliable, and cost-effective solutions to sustain a multi-billion-dollar program across several decades. Leveraging 50 years of lessons learned, NASA is partnering with private industry, while building on proven hardware experience. This paper will discuss how the Engineering Directorate at NASA's Marshall Space Flight Center is working with the Ares Projects Office to streamline ground operations concepts and reduce costs. Currently, NASA's budget is around $17 billion, which is less than 1 percent of the U.S. Federal budget. Of this amount, NASA invests approximately $4.5 billion each year in Space Shuttle operations, regardless of whether the spacecraft is flying or not. The affordability requirement is for the Ares I to reduce this expense by 50 percent, in order to allow NASA to invest more in space-based scientific operations. Focusing on this metric, the Engineering Directorate provides several solutions-oriented approaches, including Lean/Six Sigma practices and streamlined hardware testing and integration, such as assembling major hardware

  15. Ares I Crew Launch Vehicle Upper Stage Avionics and Software Overview (United States)

    Nola, Charles L.


    This viewgraph presentation gives an overall description of the avionics and software functions of the Ares I Upper Stage Crew Launch Vehicle. The contents include: 1) IUA Team - Development Approach Roadmap; 2) Ares I US Avionics and Software Development Approach; 3) NDT Responsibilities; 4) Ares I Upper Stage Avionics Locations; 5) Ares I Overall Avionics & Software Functions; 6) Block Diagram Version of Avionics Architecture; 7) Instrument Unit Avionics Preliminary Design; and 8) Upper Stage Avionics External Interfaces.

  16. NASA Ares I Crew Launch Vehicle Upper Stage Avionics and Software Overview (United States)

    Nola, Charles L.; Blue, Lisa


    Building on the heritage of the Saturn and Space Shuttle Programs for the Design, Development, Test, and Evaluation (DDT and E) of avionics and software for NASA's Ares I Crew Launch Vehicle (CLV), the Ares I Upper Stage Element is a vital part of the Constellation Program's transportation system. The Upper Stage Element's Avionics Subsystem is actively proceeding toward its objective of delivering a flight-certified Upper Stage Avionics System for the Ares I CLV.

  17. Predicting the Acoustic Environment Induced by the Launch of the Ares I Vehicle (United States)


    The exhaust plumes of launch vehicles impose severe heating rates, pressures, and vibroacoustic loads on ground support equipment (GSE) on the Mobile Launcher (ML), as well as on the vehicle itself. The vibroacoustic environment must be predicted before the criteria for the acceptance and qualification testing of GSE components and their installations can be determined. This project updates launch noise modeling.

  18. Building Operations Efficiencies into NASA's Ares I Crew Launch Vehicle Design (United States)

    Dumbacher, Daniel L.; Davis, Stephan R.


    The U.S. Vision for Space Exploration guides the National Aeronautics and Space Administration's (NASA's) challenging missions that expand humanity's boundaries and open new routes to the space frontier. With the Agency's commitment to complete the International Space Station (ISS) and to retire the venerable Space Shuttle by 2010, the NASA Administrator commissioned the Exploration Systems Architecture Study (ESAS) in 2005 to analyze options for safe, simple, cost-efficient launch solutions that could deliver human-rated space transportation capabilities in a timely manner within fixed budget guidelines. The Exploration Launch Projects (ELP) Office, chartered by the Constellation Program in October 2005, has been conducting systems engineering studies and business planning to successively refine the design configurations and better align vehicle concepts with customer and stakeholder requirements, such as significantly reduced life-cycle costs. As the Agency begins the process of replacing the Shuttle with a new generation of spacecraft destined for missions beyond low-Earth orbit to the Moon and Mars, NASA is designing the follow-on crew and cargo launch systems for maximum operational efficiencies. To sustain the long-term exploration of space, it is imperative to reduce the $4 billion NASA typically spends on space transportation each year. This paper gives toplevel information about how the follow-on Ares I Crew Launch Vehicle (CLV) is being designed for improved safety and reliability, coupled with reduced operations costs. These methods include carefully developing operational requirements; conducting operability design and analysis; using the latest information technology tools to design and simulate the vehicle; and developing a learning culture across the workforce to ensure a smooth transition between Space Shuttle operations and Ares vehicle development.

  19. FUN3D Grid Refinement and Adaptation Studies for the Ares Launch Vehicle (United States)

    Bartels, Robert E.; Vasta, Veer; Carlson, Jan-Renee; Park, Mike; Mineck, Raymond E.


    This paper presents grid refinement and adaptation studies performed in conjunction with computational aeroelastic analyses of the Ares crew launch vehicle (CLV). The unstructured grids used in this analysis were created with GridTool and VGRID while the adaptation was performed using the Computational Fluid Dynamic (CFD) code FUN3D with a feature based adaptation software tool. GridTool was developed by ViGYAN, Inc. while the last three software suites were developed by NASA Langley Research Center. The feature based adaptation software used here operates by aligning control volumes with shock and Mach line structures and by refining/de-refining where necessary. It does not redistribute node points on the surface. This paper assesses the sensitivity of the complex flow field about a launch vehicle to grid refinement. It also assesses the potential of feature based grid adaptation to improve the accuracy of CFD analysis for a complex launch vehicle configuration. The feature based adaptation shows the potential to improve the resolution of shocks and shear layers. Further development of the capability to adapt the boundary layer and surface grids of a tetrahedral grid is required for significant improvements in modeling the flow field.

  20. Launch Vehicle Control Center Architectures (United States)

    Watson, Michael D.; Epps, Amy; Woodruff, Van; Vachon, Michael Jacob; Monreal, Julio; Williams, Randall; McLaughlin, Tom


    This analysis is a survey of control center architectures of the NASA Space Launch System (SLS), United Launch Alliance (ULA) Atlas V and Delta IV, and the European Space Agency (ESA) Ariane 5. Each of these control center architectures have similarities in basic structure, and differences in functional distribution of responsibilities for the phases of operations: (a) Launch vehicles in the international community vary greatly in configuration and process; (b) Each launch site has a unique processing flow based on the specific configurations; (c) Launch and flight operations are managed through a set of control centers associated with each launch site, however the flight operations may be a different control center than the launch center; and (d) The engineering support centers are primarily located at the design center with a small engineering support team at the launch site.

  1. Real-Time Hardware-in-the-Loop Simulation of Ares I Launch Vehicle (United States)

    Tobbe, Patrick; Matras, Alex; Walker, David; Wilson, Heath; Fulton, Chris; Alday, Nathan; Betts, Kevin; Hughes, Ryan; Turbe, Michael


    The Ares Real-Time Environment for Modeling, Integration, and Simulation (ARTEMIS) has been developed for use by the Ares I launch vehicle System Integration Laboratory at the Marshall Space Flight Center. The primary purpose of the Ares System Integration Laboratory is to test the vehicle avionics hardware and software in a hardware - in-the-loop environment to certify that the integrated system is prepared for flight. ARTEMIS has been designed to be the real-time simulation backbone to stimulate all required Ares components for verification testing. ARTE_VIIS provides high -fidelity dynamics, actuator, and sensor models to simulate an accurate flight trajectory in order to ensure realistic test conditions. ARTEMIS has been designed to take advantage of the advances in underlying computational power now available to support hardware-in-the-loop testing to achieve real-time simulation with unprecedented model fidelity. A modular realtime design relying on a fully distributed computing architecture has been implemented.

  2. The Scout Launch Vehicle program (United States)

    Foster, L. R., Jr.; Urash, R. G.


    The Scout Launch Vehicle Program to utilize solid propellant rockets by the DOD and to provide a reliable, low cost vehicle for scientific and applications aircraft is discussed. The program's history is reviewed and a vehicle description is given. The Vandenberg Air Force Base and the San Marco launch sites are described, and capabilities such as payload weight, orbital inclinations, payload volume and mission integration time spans are discussed. Current and future plans for improvement, including larger heat shields and individual rocket motors are also reviewed.

  3. Preliminary Investigation on Battery Sizing Investigation for Thrust Vector Control on Ares I and Ares V Launch Vehicles (United States)

    Miller, Thomas B.


    An investigation into the merits of battery powered Electro Hydrostatic Actuation (EHA) for Thrust Vector Control (TVC) of the Ares I and Ares V launch vehicles is described. A top level trade study was conducted to ascertain the technical merits of lithium-ion (Li-ion) and thermal battery performance to determine the preferred choice of an energy storage system chemistry that provides high power discharge capability for a relatively short duration.

  4. Analytical Approach for Estimating Preliminary Mass of ARES I Crew Launch Vehicle Upper Stage Structural Components (United States)

    Aggarwal, Pravin


    In January 2004, President Bush gave the National Aeronautics and Space Administration (NASA) a vision for Space Exploration by setting our sight on a bold new path to go back to the Moon, then to Mars and beyond. In response to this vision, NASA started the Constellation Program, which is a new exploration launch vehicle program. The primary mission for the Constellation Program is to carry out a series of human expeditions ranging from Low Earth Orbit to the surface of Mars and beyond for the purposes of conducting human exploration of space, as specified by the Vision for Space Exploration (VSE). The intent is that the information and technology developed by this program will provide the foundation for broader exploration activities as our operational experience grows. The ARES I Crew Launch Vehicle (CLV) has been designated as the launch vehicle that will be developed as a "first step" to facilitate the aforementioned human expeditions. The CLV Project is broken into four major elements: First Stage, Upper Stage Engine, Upper Stage (US), and the Crew Exploration Vehicle (CEV). NASA's Marshall Space Flight Center (MSFC) is responsible for the design of the CLV and has the prime responsibility to design the upper stage of the vehicle. The US is the second propulsive stage of the CLV and provides CEV insertion into low Earth orbit (LEO) after separation from the First Stage of the Crew Launch Vehicle. The fully integrated Upper Stage is a mix of modified existing heritage hardware (J-2X Engine) and new development (primary structure, subsystems, and avionics). The Upper Stage assembly is a structurally stabilized cylindrical structure, which is powered by a single J-2X engine which is developed as a separate Element of the CLV. The primary structure includes the load bearing liquid hydrogen (LH2) and liquid oxygen (LOX) propellant tanks, a Forward Skirt, the Intertank structure, the Aft Skirt and the Thrust Structure. A Systems Tunnel, which carries fluid and

  5. Reusable Launch Vehicle Technology Program (United States)

    Freeman, Delma C., Jr.; Talay, Theodore A.; Austin, R. Eugene


    Industry/NASA reusable launch vehicle (RLV) technology program efforts are underway to design, test, and develop technologies and concepts for viable commercial launch systems that also satisfy national needs at acceptable recurring costs. Significant progress has been made in understanding the technical challenges of fully reusable launch systems and the accompanying management and operational approaches for achieving a low cost program. This paper reviews the current status of the RLV technology program including the DC-XA, X-33 and X-34 flight systems and associated technology programs. It addresses the specific technologies being tested that address the technical and operability challenges of reusable launch systems including reusable cryogenic propellant tanks, composite structures, thermal protection systems, improved propulsion and subsystem operability enhancements. The recently concluded DC-XA test program demonstrated some of these technologies in ground and flight test. Contracts were awarded recently for both the X-33 and X-34 flight demonstrator systems. The Orbital Sciences Corporation X-34 flight test vehicle will demonstrate an air-launched reusable vehicle capable of flight to speeds of Mach 8. The Lockheed-Martin X-33 flight test vehicle will expand the test envelope for critical technologies to flight speeds of Mach 15. A propulsion program to test the X-33 linear aerospike rocket engine using a NASA SR-71 high speed aircraft as a test bed is also discussed. The paper also describes the management and operational approaches that address the challenge of new cost effective, reusable launch vehicle systems.

  6. Reusable launch vehicle technology program (United States)

    Freeman, Delma C.; Talay, Theodore A.; Austin, R. Eugene

    Industry/NASA reusable launch vehicle (RLV) technology program efforts are underway to design, test, and develop technologies and concepts for viable commercial launch systems that also satisfy national needs at acceptable recurring costs. Significant progress has been made in understanding the technical challenges of fully reusable launch systems and the accompanying management and operational approaches for achieving a low-cost program. This paper reviews the current status of the RLV technology program including the DC-XA, X-33 and X-34 flight systems and associated technology programs. It addresses the specific technologies being tested that address the technical and operability challenges of reusable launch systems including reusable cryogenic propellant tanks, composite structures, thermal protection systems, improved propulsion, and subsystem operability enhancements. The recently concluded DC-XA test program demonstrated some of these technologies in ground and flight tests. Contracts were awarded recently for both the X-33 and X-34 flight demonstrator systems. The Orbital Sciences Corporation X-34 flight test vehicle will demonstrate an air-launched reusable vehicle capable of flight to speeds of Mach 8. The Lockheed-Martin X-33 flight test vehicle will expand the test envelope for critical technologies to flight speeds of Mach 15. A propulsion program to test the X-33 linear aerospike rocket engine using a NASA SR-71 high speed aircraft as a test bed is also discussed. The paper also describes the management and operational approaches that address the challenge of new cost-effective, reusable launch vehicle systems.

  7. NASA Ares 1 Crew Launch Vehicle Upper Stage Configuration Selection Process (United States)

    Cook, Jerry R.


    The Upper Stage Element of NASA s Ares I Crew Launch Vehicle (CLV) is a "clean-sheet" approach that is being designed and developed in-house, with Element management at MSFC. The USE concept is a self-supporting cylindrical structure, approximately 115 long and 216" in diameter. While the Reusable Solid Rocket Booster (RSRB) design has changed since the CLV inception, the Upper Stage Element design has remained essentially a clean-sheet approach. Although a clean-sheet upper stage design inherently carries more risk than a modified design, it does offer many advantages: a design for increased reliability; built-in extensibility to allow for commonality/growth without major redesign; and incorporation of state-of-the-art materials, hardware, and design, fabrication, and test techniques and processes to facilitate a potentially better, more reliable system.

  8. Synergistic Development, Test, and Qualification Approaches for the Ares I and V Launch Vehicles (United States)

    Cockrell, Charles E.; Taylor, James L.; Patterson, Alan; Stephens, Samuel E.; Tyson, Richard W.; Hueter, Uwe


    The U.S. National Aeronautics and Space Administration is designing and developing the Ares I and Ares V launch vehicles for access to the International Space Station (ISS) and human exploration of the Moon. The Ares I consists of a first stage reusable five-segment solid rocket booster, a upper stage using a J-2X engine derived from heritage experience (Saturn and Space Shuttle External Tank programs), and the Orion crew exploration vehicle (CEV). The Ares V is designed to minimize the development and overall life-cycle costs by leveraging off of the Ares I design. The Ares V consists of two boosters, a core stage, an earth departure stage (EDS), and a shroud. The core stage and EDS use LH2/LO2 propellants, metallic propellant tanks, and composite dry structures. The core stage has six RS-68B upgraded Delta IV engines while the EDS uses a J-2X engine for second stage ascent and trans-lunar injection (TLI) burn. System and propulsion tests and qualification approaches for Ares V elements are being considered as follow-on extensions of the Ares I development program. Following Ares I IOC, testing will be conducted to verify the J-2X engine's orbital restart and TLI burn capability. The Ares I upper stage operation will be demonstrated through integrated stage development and acceptance testing. The EDS will undergo similar development and acceptance testing with additional testing to verify aspects of cryogenic propellant management, operation of sub-systems in a space simulation environment, and orbital re-start of the main propulsion system. RS-68B certification testing will be conducted along with integrated core stage development and acceptance testing. Structural testing of the Ares V EDS and core stage propellant tanks will be conducted similar to the Ares I upper stage. The structural qualification testing may be accomplished with separate propellant tank test articles. Structural development and qualification testing of the dry structure will be pursued as

  9. NASA Ares I Launch Vehicle First Stage Roll Control System Cold Flow Development Test Program Overview (United States)

    Butt, Adam; Popp, Christopher G.; Holt, Kimberly A.; Pitts, Hank M.


    The Ares I launch vehicle is the selected design, chosen to return humans to the moon, Mars, and beyond. It is configured in two inline stages: the First Stage is a Space Shuttle derived five-segment Solid Rocket Booster and the Upper Stage is powered by a Saturn V derived J-2X engine. During launch, roll control for the First Stage (FS) is handled by a dedicated Roll Control System (RoCS) located on the connecting Interstage. That system will provide the Ares I with the ability to counteract induced roll torque while any induced yaw or pitch moments are handled by vectoring of the booster nozzle. This paper provides an overview of NASA s Ares I FS RoCS cold flow development test program including detailed test objectives, types of tests run to meet those objectives, an overview of the results, and applicable lessons learned. The test article was built and tested at the NASA Marshall Space Flight Center in Huntsville, AL. The FS RoCS System Development Test Article (SDTA) is a full scale, flight representative water flow test article whose primary objective was to obtain fluid system performance data to evaluate integrated system level performance characteristics and verify analytical models. Development testing and model correlation was deemed necessary as there is little historical precedent for similar large flow, pulsing systems such as the FS RoCS. The cold flow development test program consisted of flight-similar tanks, pressure regulators, and thruster valves, as well as plumbing simulating flight geometries, combined with other facility grade components and structure. Orifices downstream of the thruster valves were used to simulate the pressure drop through the thrusters. Additional primary objectives of this test program were to: evaluate system surge pressure (waterhammer) characteristics due to thruster valve operation over a range of mission duty cycles at various feed system pressures, evaluate temperature transients and heat transfer in the

  10. VEGA, a small launch vehicle (United States)

    Duret, François; Fabrizi, Antonio


    Several studies have been performed in Europe aiming to promote the full development of a small launch vehicle to put into orbit one ton class spacecrafts. But during the last ten years, the european workforce was mainly oriented towards the qualification of the heavy class ARIANE 5 launch vehicle.Then, due also to lack of visibility on this reduced segment of market, when comparing with the geosatcom market, no proposal was sufficiently attractive to get from the potentially interrested authorities a clear go-ahead, i.e. a financial committment. The situation is now rapidly evolving. Several european states, among them ITALY and FRANCE, are now convinced of the necessity of the availability of such a transportation system, an important argument to promote small missions, using small satellites. Application market will be mainly scientific experiments and earth observation; some telecommunications applications may be also envisaged such as placement of little LEO constellation satellites, or replacement after failure of big LEO constellation satellites. FIAT AVIO and AEROSPATIALE have proposed to their national agencies the development of such a small launch vehicle, named VEGA. The paper presents the story of the industrial proposal, and the present status of the project: Mission spectrum, technical definition, launch service and performance, target development plan and target recurring costs, as well as the industrial organisation for development, procurement, marketing and operations.

  11. The Scout Launch Vehicle System


    Tanck, Pamela; Williams, James


    SCOUT, a four-stage, solid-rocket launch vehicle originally developed by LTV Missiles and Electronics Group, is completing its third decade of service. NASA-Langley started the program in 1958 with the intent of providing a simple, low-cost, reliable launch vehicle for orbital, probe and re-entry missions. On July 1, 1960, the first SCOUT vehicle was launched. Since SCOUT became operational in 1963, there have been 88 launches of which 84 were successful, representing a reliability record of ...

  12. Magnetic Launch Assist Vehicle-Artist's Concept (United States)


    This artist's concept depicts a Magnetic Launch Assist vehicle clearing the track and shifting to rocket engines for launch into orbit. The system, formerly referred as the Magnetic Levitation (MagLev) system, is a launch system developed and tested by Engineers at the Marshall Space Flight Center (MSFC) that could levitate and accelerate a launch vehicle along a track at high speeds before it leaves the ground. Using an off-board electric energy source and magnetic fields, a Magnetic Launch Assist system would drive a spacecraft along a horizontal track until it reaches desired speeds. The system is similar to high-speed trains and roller coasters that use high-strength magnets to lift and propel a vehicle a couple of inches above a guideway. A full-scale, operational track would be about 1.5-miles long, capable of accelerating a vehicle to 600 mph in 9.5 seconds, and the vehicle would then shift to rocket engines for launch into orbit. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.

  13. The Falcon I Launch Vehicle


    Koenigsmann, Hans; Musk, Elon; Shotwell, Gwynne; Chinnery, Anne


    Falcon I is the first in a family of launch vehicles designed by Space Exploration Technologies to facilitate low cost access to space. Falcon I is a mostly reusable, two stage, liquid oxygen and kerosene powered launch vehicle. The vehicle is designed above all for high reliability, followed by low cost and a benign flight environment. Launched from Vandenberg, a standard Falcon I can carry over 1000 lbs to sun-synchronous orbit and 1500 lbs due east to 100 NM. To minimize failure modes, the...

  14. Advanced Manufacturing at the Marshall Space Flight Center and Application to Ares I and Ares V Launch Vehicles (United States)

    Carruth, Ralph


    There are various aspects of advanced manufacturing technology development at the field centers of the National Aeronautics and Space Administration (NASA). The Marshall Space Flight Center (MSFC) has been given the assignment to lead the National Center for Advanced Manufacturing (NCAM) at MSFC and pursue advanced development and coordination with other federal agencies for NASA. There are significant activities at the Marshall Center as well as at the Michoud Assembly Facility (MAF) in New Orleans which we operate in conjunction with the University of New Orleans. New manufacturing processes in metals processing, component development, welding operations, composite manufacturing and thermal protection system material and process development will be utilized in the manufacturing of the United States two new launch vehicles, the Ares I and the Ares V. An overview of NCAM will be presented as well as some of the development activities and manufacturing that are ongoing in Ares Upper Stage development. Some of the tools and equipment produced by Italian owned companies and their application in this work will be mentioned.

  15. Designing the Ares I Crew Launch Vehicle Upper Stage Element and Integrating the Stack at NASA's Marshall Space Flight Center (United States)

    Lyles, Garry; Otte, Neil E.


    Fielding an integrated launch vehicle system entails many challenges, not the least of which is the fact that it has been over 30 years since the United States has developed a human-rated vehicle - the venerable Space Shuttle. Over time, whole generations of rocket scientists have passed through the aerospace community without the opportunity to perform such exacting, demanding, and rewarding work. However, with almost 50 years of experience leading the design, development, and end-to-end systems engineering and integration of complex launch vehicles, NASA's Marshall Space Flight Center offers the in-house talent - both junior- and senior-level personnel - to shape a new national asset to meet the requirements for safe, reliable, and affordable space exploration solutions.' These personnel are housed primarily in Marshall's Engineering Directorate and are matrixed into the programs and projects that reside at the rocket center. Fortunately, many Apollo era and Shuttle engineers, as well as those who gained valuable hands-on experience in the 1990s by conducting technology demonstrator projects such as the Delta-Clipper Experimental Advanced, X-33, X-34, and X-37, as well as the short-lived Orbital Space Plane, work closely with industry partners to advance the nation's strategic capability for human access to space. Currently, only three spacefaring nations have this distinction, including the United States, Russia, and, more recently, China. The U.S. National Space Policy of2006 directs that NASA provide the means to travel to space, and the NASA Appropriations Act of2005 provided the initial funding to begin in earnest to replace the Shuttle after the International Space Station construction is complete in 20 IO? These and other strategic goals and objectives are documented in NASA's 2006 Strategic Plan.3 In 2005, a team of NASA aerospace experts conducted the Exploration Systems Architecture Study, which recommended a two-vehicle approach to America's next space

  16. A Large-Scale Design Integration Approach Developed in Conjunction with the Ares Launch Vehicle Program (United States)

    Redmon, John W.; Shirley, Michael C.; Kinard, Paul S.


    This paper presents a method for performing large-scale design integration, taking a classical 2D drawing envelope and interface approach and applying it to modern three dimensional computer aided design (3D CAD) systems. Today, the paradigm often used when performing design integration with 3D models involves a digital mockup of an overall vehicle, in the form of a massive, fully detailed, CAD assembly; therefore, adding unnecessary burden and overhead to design and product data management processes. While fully detailed data may yield a broad depth of design detail, pertinent integration features are often obscured under the excessive amounts of information, making them difficult to discern. In contrast, the envelope and interface method results in a reduction in both the amount and complexity of information necessary for design integration while yielding significant savings in time and effort when applied to today's complex design integration projects. This approach, combining classical and modern methods, proved advantageous during the complex design integration activities of the Ares I vehicle. Downstream processes, benefiting from this approach by reducing development and design cycle time, include: Creation of analysis models for the Aerodynamic discipline; Vehicle to ground interface development; Documentation development for the vehicle assembly.

  17. Use of Probabilistic Engineering Methods in the Detailed Design and Development Phases of the NASA Ares Launch Vehicle (United States)

    Fayssal, Safie; Weldon, Danny


    The United States National Aeronautics and Space Administration (NASA) is in the midst of a space exploration program called Constellation to send crew and cargo to the international Space Station, to the moon, and beyond. As part of the Constellation program, a new launch vehicle, Ares I, is being developed by NASA Marshall Space Flight Center. Designing a launch vehicle with high reliability and increased safety requires a significant effort in understanding design variability and design uncertainty at the various levels of the design (system, element, subsystem, component, etc.) and throughout the various design phases (conceptual, preliminary design, etc.). In a previous paper [1] we discussed a probabilistic functional failure analysis approach intended mainly to support system requirements definition, system design, and element design during the early design phases. This paper provides an overview of the application of probabilistic engineering methods to support the detailed subsystem/component design and development as part of the "Design for Reliability and Safety" approach for the new Ares I Launch Vehicle. Specifically, the paper discusses probabilistic engineering design analysis cases that had major impact on the design and manufacturing of the Space Shuttle hardware. The cases represent important lessons learned from the Space Shuttle Program and clearly demonstrate the significance of probabilistic engineering analysis in better understanding design deficiencies and identifying potential design improvement for Ares I. The paper also discusses the probabilistic functional failure analysis approach applied during the early design phases of Ares I and the forward plans for probabilistic design analysis in the detailed design and development phases.

  18. Scout launch vehicle, phases 4 and 5 (United States)

    Mccracken, D. C.; Leiss, A.; Horrocks, E. R.; Turpen, N. H.


    The historical data of the Scout launch vehicle program for Phases IV and V (vehicles 138 through 177) is presented for the FY 1966 through FY 1971 time period. Technical data and accounting information are detailed to provide a total picture of the program.

  19. Designing the Ares I Crew Launch Vehicle Upper Stage Element and Integrating the Stack at NASA's Marshall Space Flight Center (United States)

    Otte, Neil E.; Lyles, Garry; Reuter, James L.; Davis, Daniel J.


    Fielding an integrated launch vehicle system entails many challenges, not the least of which is the fact that it has been over 30 years since the United States has developed a human-rated vehicle - the venerable Space Shuttle. Over time, whole generations of rocket scientists have passed through the aerospace community without the opportunity to perform such exacting, demanding, and rewarding work. However, with almost 50 years of experience leading the design, development, and end-to-end systems engineering and integration of complex launch vehicles, the National Aeronautics and Space Administration's (NASA's) Marshall Space Flight Center offers the in-house talent - both junior- and senior-level personnel - to shape a new national asset to meet the requirements for safe, reliable, and affordable space exploration solutions. The technical personnel are housed primarily in Marshall's Engineering Directorate and are matrixed into the programs and projects that reside at the rocket center. Fortunately, many Apollo-era and Shuttle engineers, as well as those who gained valuable hands-on experience in the 1990s by conducting technology demonstrator projects such as the Delta-Clipper Experimental Advanced, X-33, X-34, and X-37, as well as the short-lived Orbital Space Plane, work closely with industry partners to advance the nation's strategic capability for human access to space. The Ares Projects Office, resident at Marshall, is managing the design and development of America's new space fleet, including the Ares I, which will loft the Orion crew capsule for its first test flight in the 2013 timeframe, as well as the heavy-lift Ares V, which will round out the capability to leave low-Earth orbit once again, when it delivers the Altair lunar lander to orbit late next decade. This paper provides information about the approach to integrating the Ares I stack and designing the upper stage in house, using unique facilities and an expert workforce to revitalize the nation

  20. From Concept to Design: Progress on the J-2X Upper Stage Engine for the Ares Launch Vehicles (United States)

    Byrd, Thomas


    In accordance with national policy and NASA's Global Exploration Strategy, the Ares Projects Office is embarking on development of a new launch vehicle fleet to fulfill the national goals of replacing the space shuttle fleet, returning to the moon, and exploring farther destinations like Mars. These goals are shaped by the decision to retire the shuttle fleet by 2010, budgetary constraints, and the requirement to create a new fleet that is safer, more reliable, operationally more efficient than the shuttle fleet, and capable of supporting long-range exploration goals. The present architecture for the Constellation Program is the result of extensive trades during the Exploration Systems Architecture Study and subsequent refinement by the Ares Projects Office at Marshall Space Flight Center.

  1. Cost and Economics for Advanced Launch Vehicles (United States)

    Whitfield, Jeff


    Market sensitivity and weight-based cost estimating relationships are key drivers in determining the financial viability of advanced space launch vehicle designs. Due to decreasing space transportation budgets and increasing foreign competition, it has become essential for financial assessments of prospective launch vehicles to be performed during the conceptual design phase. As part of this financial assessment, it is imperative to understand the relationship between market volatility, the uncertainty of weight estimates, and the economic viability of an advanced space launch vehicle program. This paper reports the results of a study that evaluated the economic risk inherent in market variability and the uncertainty of developing weight estimates for an advanced space launch vehicle program. The purpose of this study was to determine the sensitivity of a business case for advanced space flight design with respect to the changing nature of market conditions and the complexity of determining accurate weight estimations during the conceptual design phase. The expected uncertainty associated with these two factors drives the economic risk of the overall program. The study incorporates Monte Carlo simulation techniques to determine the probability of attaining specific levels of economic performance when the market and weight parameters are allowed to vary. This structured approach toward uncertainties allows for the assessment of risks associated with a launch vehicle program's economic performance. This results in the determination of the value of the additional risk placed on the project by these two factors.

  2. Launch Vehicle Demonstrator Using Shuttle Assets (United States)

    Creech, Dennis M.; Threet, Grady E., Jr.; Philips, Alan D.; Waters, Eric D.


    The Advanced Concepts Office at NASA's George C. Marshall Space Flight Center undertook a study to define candidate early heavy lift demonstration launch vehicle concepts derived from existing space shuttle assets. The objective was to determine the performance capabilities of these vehicles and characterize potential early demonstration test flights. Given the anticipated budgetary constraints that may affect America's civil space program, and a lapse in U.S. heavy launch capability with the retirement of the space shuttle, an early heavy lift launch vehicle demonstration flight would not only demonstrate capabilities that could be utilized for future space exploration missions, but also serve as a building block for the development of our nation s next heavy lift launch system. An early heavy lift demonstration could be utilized as a test platform, demonstrating capabilities of future space exploration systems such as the Multi Purpose Crew Vehicle. By using existing shuttle assets, including the RS-25D engine inventory, the shuttle equipment manufacturing and tooling base, and the segmented solid rocket booster industry, a demonstrator concept could expedite the design-to-flight schedule while retaining critical human skills and capital. In this study two types of vehicle designs are examined. The first utilizes a high margin/safety factor battleship structural design in order to minimize development time as well as monetary investment. Structural design optimization is performed on the second, as if an operational vehicle. Results indicate low earth orbit payload capability is more than sufficient to support various vehicle and vehicle systems test programs including Multi-Purpose Crew Vehicle articles. Furthermore, a shuttle-derived, hydrogen core vehicle configuration offers performance benefits when trading evolutionary paths to maximum capability.

  3. Strategy of Khrunichev's Launch Vehicles Further Evolution (United States)

    Medvedev, A. A.; Kuzin, A. I.; Karrask, V. K.


    vehicles and it is concerned with a further evolution of its launcher fleet in order to meet arising demands of their services customers. Continuing to provide an operation of current "Proton" heavy launch vehicle and "Rockot" small launch vehicle, Khrunichev is carrying out a permanent improvement of these launchers as well as is developing new advanced launch systems. Thus, the `Proton' just has the improved "Proton-M" version, which was successfully tested in a flight, while an improvement of the "Rockot" is provided by a permanent modernization of its "Breeze-KM" upper stage and a payload fairing. Enhancing of the "Proton/Proton-M's" lift capabilities and flexibility of operation is being provided by introduction of advanced upper stages, the "Breeze- M", which was just put into service, and KVRB being in the development. "Angara-1.1" small launcher is scheduled to a launch in 2003. A creation of this family foresees not only a range of small, medium and heavy launch vehicles based on a modular principle of design but also a construction of high-automated launch site at the Russian Plesetsk spaceport. An operation of the "Angara" family's launchers will allow to inject payloads of actually all classes from Russian national territory into all range of applicable orbits with high technical and economic indices. ecological safety of drop zones, Khrunichev is developing the "Baikal" fly-back reusable booster. This booster would replace expendable first stages of small "Angaras" and strap-ons of medium/heavy launchers, which exert a most influence on the Earth's environment. intercontinental ballistic missiles to current and advanced space launch vehicles of various classes. A succession of the gained experience and found technological solutions are shown.

  4. The Ares Launch Vehicles: Critical Capabilities for America's Continued Leadership in Space (United States)

    Cook, Stephen A.


    The Constellation Program renews the nation's commitment to human space exploration a) Access to ISS. b) Human explorers to the Moon and beyond. c) Large telescopes and other hardware to LEO . Hardware is being built today. Development made easier by applying lessons learned from 50 years of spaceflight experience. Ares V heavy-lift capability will be a strategic asset for the nation. Constellation provides a means for world leadership through inspiration and strategic capability.

  5. LM-2C Series Launch Vehicles

    Institute of Scientific and Technical Information of China (English)



    On December 30, 2003, a LM-2C/SM launch vehicle was launched from Xichang Satellite Launch Center (XSLC), successfully sending TC-1 satellite into orbit. The satellite is the first one of the two scientific satellites known as Double Star. The operation orbit of the satellite is the highest compared with China's other satellites ever launched.

  6. Rocket Propulsion Engineering Company Small Launch Vehicle


    Grote, James; Pavia, Tom


    Rocket Propulsion Engineering (RPe) is developing the first in a family of two low-cost, two stage, small rocket vehicles suitable for target, suborbital, and small-sat orbital applications. The first of these two launch vehicles, the Prospect LV-1 will have an orbital payload of 300-400 lb. The larger vehicle, the Prospect LV-2, uses about 80% of the components and technology of the LV-1 and will orbit payloads of 1500-1700 lb. Two engines are being developed. A first stage 30,000 lbf class ...

  7. Modal survey of the Brazilian launch vehicle (United States)

    Carneiro, S. H. S.; Teixeira, H. S., Jr.; Pirk, R.; Arruda, J. R. F.

    This paper describes the Brazilian satellite launch vehicle modal analysis program being currently performed. A full scale mock-up of the solid propellant four-stage launcher will be tested in five different configurations. To simulate free-free boundary conditions, a pneumatic suspension system was developed, and its influence in the mock-up dynamic behavior was investigated. The theoretical FEM models and preliminary results of the modal test are shown, along with theoretical/experimental correlation discussions.

  8. International Launch Vehicle Selection for Interplanetary Travel (United States)

    Ferrone, Kristine; Nguyen, Lori T.


    In developing a mission strategy for interplanetary travel, the first step is to consider launch capabilities which provide the basis for fundamental parameters of the mission. This investigation focuses on the numerous launch vehicles of various characteristics available and in development internationally with respect to upmass, launch site, payload shroud size, fuel type, cost, and launch frequency. This presentation will describe launch vehicles available and in development worldwide, then carefully detail a selection process for choosing appropriate vehicles for interplanetary missions focusing on international collaboration, risk management, and minimization of cost. The vehicles that fit the established criteria will be discussed in detail with emphasis on the specifications and limitations related to interplanetary travel. The final menu of options will include recommendations for overall mission design and strategy.

  9. GPS Attitude Determination for Launch Vehicles Project (United States)

    National Aeronautics and Space Administration — Toyon Research Corporation proposes to develop a family of compact, low-cost GPS-based attitude (GPS/A) sensors for launch vehicles. In order to obtain 3-D attitude...

  10. Metric Tracking of Launch Vehicles Project (United States)

    National Aeronautics and Space Administration — NASA needs reliable, accurate navigation for launch vehicles and other missions. GPS is the best world-wide navigation system, but operates at low power making it...

  11. Reusable launch vehicle facts and fantasies (United States)

    Kaplan, Marshall H.


    Many people refuse to address many of the realities of reusable launch vehicle systems, technologies, operations and economics. Basic principles of physics, space flight operations, and business limitations are applied to the creation of a practical vision of future expectations. While reusable launcher concepts have been proposed for several decades, serious review of potential designs began in the mid-1990s, when NASA decided that a Space Shuttle replacement had to be pursued. A great deal of excitement and interest was quickly generated by the prospect of ``orders-of-magnitude'' reduction in launch costs. The potential for a vastly expanded space program motivated the entire space community. By the late-1990s, and after over one billion dollars were spent on the technology development and privately-funded concepts, it had become clear that there would be no new, near-term operational reusable vehicle. Many factors contributed to a very expensive and disappointing effort to create a new generation of launch vehicles. It began with overly optimistic projections of technology advancements and the belief that a greatly increased demand for satellite launches would be realized early in the 21st century. Contractors contributed to the perception of quickly reachable technology and business goals, thus, accelerating the enthusiasm and helping to create a ``gold rush'' euphoria. Cost, schedule and performance margins were all highly optimistic. Several entrepreneurs launched start up companies to take advantage of the excitement and the availability of investor capital. Millions were raised from private investors and venture capitalists, based on little more than flashy presentations and animations. Well over $500 million were raised by little-known start up groups to create reusable systems, which might complete for the coming market in launch services. By 1999, it was clear that market projections, made just two years earlier, were not going to be realized. Investors

  12. Technique applied in electrical power distribution for Satellite Launch Vehicle

    Directory of Open Access Journals (Sweden)

    João Maurício Rosário


    Full Text Available The Satellite Launch Vehicle electrical network, which is currently being developed in Brazil, is sub-divided for analysis in the following parts: Service Electrical Network, Controlling Electrical Network, Safety Electrical Network and Telemetry Electrical Network. During the pre-launching and launching phases, these electrical networks are associated electrically and mechanically to the structure of the vehicle. In order to succeed in the integration of these electrical networks it is necessary to employ techniques of electrical power distribution, which are proper to Launch Vehicle systems. This work presents the most important techniques to be considered in the characterization of the electrical power supply applied to Launch Vehicle systems. Such techniques are primarily designed to allow the electrical networks, when submitted to the single-phase fault to ground, to be able of keeping the power supply to the loads.

  13. Rockot Launch Vehicle Commercial Operations for Grace and Iridium Program (United States)

    Viertel, Y.; Kinnersley, M.; Schumacher, I.


    The GRACE mission and the IRIDIUM mission on ROCKOT launch vehicle are presented. Two identical GRACE satellites to measure in tandem the gravitational field of the earth with previously unattainable accuracy - it's called the Gravity Research and Climate Experiment, or and is a joint project of the U.S. space agency, NASA and the German Centre for Aeronautics and Space Flight, DLR. In order to send the GRACE twins into a 500x500 km , 89deg. orbit, the Rockot launch vehicle was selected. A dual launch of two Iridium satellites was scheduled for June 2002 using the ROCKOT launch vehicle from Plesetsk Cosmodrome in Northern Russia. This launch will inject two replacement satellites into a low earth orbit (LEO) to support the maintenance of the Iridium constellation. In September 2001, Eurockot successfully carried out a "Pathfinder Campaign" to simulate the entire Iridium mission cycle at Plesetsk. The campaign comprised the transport of simulators and related equipment to the Russian port-of-entry and launch site and also included the integration and encapsulation of the simulators with the actual Rockot launch vehicle at Eurockot's dedicated launch facilities at Plesetsk Cosmodrome. The pathfinder campaign lasted four weeks and was carried out by a joint team that also included Khrunichev, Russian Space Forces and Eurockot personnel on the contractors' side. The pathfinder mission confirmed the capability of Eurockot Launch Services to perform the Iridium launch on cost and on schedule at Plesetsk following Eurockot's major investment in international standard preparation, integration and launch facilities including customer facilities and a new hotel. In 2003, Eurockot will also launch the Japanese SERVI'S-1 satellite for USEF. The ROCKOT launch vehicle is a 3 stage liquid fuel rocket whose first 2 stages have been adapted from the Russian SS-19. A third stage, called "Breeze", can be repeatedly ignited and is extraordinarily capable of manoeuvre. Rockot can place

  14. Adaptive Attitude Control of the Crew Launch Vehicle (United States)

    Muse, Jonathan


    An H(sub infinity)-NMA architecture for the Crew Launch Vehicle was developed in a state feedback setting. The minimal complexity adaptive law was shown to improve base line performance relative to a performance metric based on Crew Launch Vehicle design requirements for all most all of the Worst-on-Worst dispersion cases. The adaptive law was able to maintain stability for some dispersions that are unstable with the nominal control law. Due to the nature of the H(sub infinity)-NMA architecture, the augmented adaptive control signal has low bandwidth which is a great benefit for a manned launch vehicle.

  15. Fiber Optic Sensing Systems for Launch Vehicles Project (United States)

    National Aeronautics and Space Administration — The FOSS project primary test objectives are to demonstrate by flying on an Antares launch vehicle, the ability of FOSS flight hardware to measure strain and...

  16. Electromagnetic Cavity Effects from Transmitters Inside a Launch Vehicle Fairing (United States)

    Trout, Dawn H.; Wahid, Parveen F.; Stanley, James E.


    This paper provides insight into the difficult analytical issue for launch vehicles and spacecraft that has applicability outside of the launch industry. Radiation from spacecraft or launch vehicle antennas located within enclosures in the launch vehicle generates an electromagnetic environment that is difficult to accurately predict. This paper discusses the test results of power levels produced by a transmitter within a representative scaled vehicle fairing model and provides preliminary modeling results at the low end of the frequency test range using a commercial tool. Initially, the walls of the fairing are aluminum and later, layered with materials to simulate acoustic blanketing structures that are typical in payload fairings. The effects of these blanketing materials on the power levels within the fairing are examined.

  17. Integrated Vehicle Ground Vibration Testing in Support of Launch Vehicle Loads and Controls Analysis (United States)

    Askins, Bruce R.; Davis, Susan R.; Salyer, Blaine H.; Tuma, Margaret L.


    All structural systems possess a basic set of physical characteristics unique to that system. These unique physical characteristics include items such as mass distribution and damping. When specified, they allow engineers to understand and predict how a structural system behaves under given loading conditions and different methods of control. These physical properties of launch vehicles may be predicted by analysis or measured by certain types of tests. Generally, these properties are predicted by analysis during the design phase of a launch vehicle and then verified by testing before the vehicle becomes operational. A ground vibration test (GVT) is intended to measure by test the fundamental dynamic characteristics of launch vehicles during various phases of flight. During the series of tests, properties such as natural frequencies, mode shapes, and transfer functions are measured directly. These data will then be used to calibrate loads and control systems analysis models for verifying analyses of the launch vehicle. NASA manned launch vehicles have undergone ground vibration testing leading to the development of successful launch vehicles. A GVT was not performed on the inaugural launch of the unmanned Delta III which was lost during launch. Subsequent analyses indicated had a GVT been performed, it would have identified instability issues avoiding loss of the vehicle. This discussion will address GVT planning, set-up, execution and analyses, for the Saturn and Shuttle programs, and will also focus on the current and on-going planning for the Ares I and V Integrated Vehicle Ground Vibration Test (IVGVT).

  18. The Standard Deviation of Launch Vehicle Environments (United States)

    Yunis, Isam


    Statistical analysis is used in the development of the launch vehicle environments of acoustics, vibrations, and shock. The standard deviation of these environments is critical to accurate statistical extrema. However, often very little data exists to define the standard deviation and it is better to use a typical standard deviation than one derived from a few measurements. This paper uses Space Shuttle and expendable launch vehicle flight data to define a typical standard deviation for acoustics and vibrations. The results suggest that 3dB is a conservative and reasonable standard deviation for the source environment and the payload environment.

  19. Ground Vibration Testing Options for Space Launch Vehicles (United States)

    Patterson, Alan; Smith, Robert K.; Goggin, David; Newsom, Jerry


    New NASA launch vehicles will require development of robust systems in a fiscally-constrained environment. NASA, Department of Defense (DoD), and commercial space companies routinely conduct ground vibration tests as an essential part of math model validation and launch vehicle certification. Although ground vibration testing must be a part of the integrated test planning process, more affordable approaches must also be considered. A study evaluated several ground vibration test options for the NASA Constellation Program flight test vehicles, Orion-1 and Orion-2, which concluded that more affordable ground vibration test options are available. The motivation for ground vibration testing is supported by historical examples from NASA and DoD. The approach used in the present study employed surveys of ground vibration test subject-matter experts that provided data to qualitatively rank six test options. Twenty-five experts from NASA, DoD, and industry provided scoring and comments for this study. The current study determined that both element-level modal tests and integrated vehicle modal tests have technical merits. Both have been successful in validating structural dynamic math models of launch vehicles. However, element-level testing has less overall cost and schedule risk as compared to integrated vehicle testing. Future NASA launch vehicle development programs should anticipate that some structural dynamics testing will be necessary. Analysis alone will be inadequate to certify a crew-capable launch vehicle. At a minimum, component and element structural dynamic tests are recommended for new vehicle elements. Three viable structural dynamic test options were identified. Modal testing of the new vehicle elements and an integrated vehicle test on the mobile launcher provided the optimal trade between technical, cost, and schedule.

  20. Technology Requirements for Affordable Single-Stage Rocket Launch Vehicles (United States)

    Stanley, Douglas O.; Piland, William M.


    A number of manned Earth-to-orbit (ETO) vehicle options for replacing or complementing the current Space Transportation System are being examined under the Advanced Manned Launch System (AMLS) study. The introduction of a reusable single-stage vehicle (SSV) into the U.S. launch vehicle fleet early in the next century could greatly reduce ETO launch costs. As a part of the AMLS study, the conceptual design of an SSV using a wide variety of enhancing technologies has recently been completed and is described in this paper. This paper also identifies the major enabling and enhancing technologies for a reusable rocket-powered SSV and provides examples of the mission payoff potential of a variety of important technologies. This paper also discusses the impact of technology advancements on vehicle margins, complexity, and risk, all of which influence the total system cost.

  1. Integrated Vehicle Ground Vibration Testing in Support of NASA Launch Vehicle Loads and Controls Analysis (United States)

    Tuma, Margaret L.; Davis, Susan R.; Askins, Bruce R.; Salyer, Blaine H.


    The National Aeronautics and Space Administration (NASA) Ares Projects Office (APO) is continuing to make progress toward the final design of the Ares I crew launch vehicle and Ares V cargo launch vehicle. Ares I and V will form the space launch capabilities necessary to fulfill NASA's exploration strategy of sending human beings to the Moon, Mars, and beyond. As with all new space vehicles there will be a number of tests to ensure the design can be Human Rated. One of these is the Integrated Vehicle Ground Vibration Test (IVGVT) that will be measuring responses of the Ares I as a system. All structural systems possess a basic set of physical characteristics unique to that system. These unique characteristics include items such as mass distribution, frequency and damping. When specified, they allow engineers to understand and predict how a structural system like the Ares I launch vehicle behaves under given loading conditions. These physical properties of launch vehicles may be predicted by analysis or measured through certain types of tests. Generally, these properties are predicted by analysis during the design phase of a launch vehicle and then verified through testing before the vehicle is Human Rated. The IVGVT is intended to measure by test the fundamental dynamic characteristics of Ares I during various phases of operational/flight. This testing includes excitations of the vehicle in lateral, longitudinal, and torsional directions at vehicle configurations representing different trajectory points. During the series of tests, properties such as natural frequencies, mode shapes, and transfer functions are measured directly. These data will then be used to calibrate loads and Guidance, Navigation, and Controls (GN&C) analysis models for verifying analyses of Ares I. NASA launch vehicles from Saturn to Shuttle have undergone Ground Vibration Tests (GVTs) leading to successful launch vehicles. A GVT was not performed on the unmanned Delta III. This vehicle was

  2. Wireless Data Acquisition System for Launch Vehicles

    Directory of Open Access Journals (Sweden)

    Sabooj Ray


    Full Text Available Present launch vehicle integration architecture for avionics uses wired link to transfer data between various sub-systems. Depending on system criticality and complexity, MIL1553 and RS485 are the common protocols that are adopted. These buses have their inherent complexity and failure issues due to harness defects or under adverse flight environments. To mitigate this problem, a prototype wireless, data acquisition system for telemetry applications has been developed and demonstrated. The wireless system simplifies the integration, while reducing weight and costs. Commercial applications of wireless systems are widespread. Few systems have recently been developed for complex and critical environments. Efforts have been underway to make such architectures operational in promising application scenarios. This paper discusses the system concept for adapting a wireless system to the existing bus topology. The protocol involved and the internal implementation of the different modules are described. The test results are presented; some of the issues faced are discussed and the; future course of action is identified.Defence Science Journal, 2013, 63(2, pp.186-191, DOI:

  3. Engine-Out Capabilities Assessment of Heavy Lift Launch Vehicles (United States)

    Holladay, Jon; Baggett, Keithe; Thrasher, Chad; Bellamy, K. Scott; Feldman, Stuart


    Engine-out (EO) is a condition that might occur during flight due to the failure of one or more engines. Protection against this occurrence can be called engine-out capability (EOC) whereupon significantly improved loss of mission may occur, in addition to reduction in performance and increased cost. A standardized engine-out capability has not been studied exhaustively as it pertains to space launch systems. This work presents results for a specific vehicle design with specific engines, but also uniquely provides an approach to realizing the necessity of EOC for any launch vehicle system design. A derived top-level approach to engine-out philosophy for a heavy lift launch vehicle is given herein, based on an historical assessment of launch vehicle capabilities. The methodology itself is not intended to present a best path forward, but instead provides three parameters for assessment of a particular vehicle. Of the several parameters affected by this EOC, the three parameters of interest in this research are reliability (Loss of Mission (LOM) and Loss of Crew (LOC)), vehicle performance, and cost. The intent of this effort is to provide insight into the impacts of EO capability on these parameters. The effects of EOC on reliability, performance and cost are detailed, including how these important launch vehicle metrics can be combined to assess what could be considered overall launch vehicle affordability. In support of achieving the first critical milestone (Mission Concept Review) in the development of the Space Launch System (SLS), a team assessed two-stage, large-diameter vehicles that utilized liquid oxygen (LOX)-RP propellants in the First Stage and LOX/LH2 propellant in the Upper Stage. With multiple large thrust-class engines employed on the stages, engine-out capability could be a significant driver to mission success. It was determined that LOM results improve by a factor of five when assuming EOC for both Core Stage (CS) (first stage) and Upper Stage (US

  4. Computation of launch vehicle system requirements using hybrid computer. (United States)

    Ryan, R. S.; Ernsberger, G. R.; Long, G. S.


    Formulating an adequate statistical statement concerning space vehicle dynamic states requires the combination of the statistics of the environment and the vehicle's basic parameters. The basic ingredient of the environment for the Space Shuttle launch phase is the winds, which are represented by an ensemble of measured winds (150/month), which today constitute the best statistical representation. The problem treated in this paper then becomes twofold: (1) how can the vehicle response be analyzed using wind ensembles, and (2) how can the vehicle parameter variations be treated in conjunction with wind ensembles.

  5. Liquid propellant analogy technique in dynamic modeling of launch vehicle

    Institute of Scientific and Technical Information of China (English)


    The coupling effects among lateral mode,longitudinal mode and torsional mode of a launch vehicle cannot be taken into account in traditional dynamic analysis using lateral beam model and longitudinal spring-mass model individually.To deal with the problem,propellant analogy methods based on beam model are proposed and coupled mass-matrix of liquid propellant is constructed through additional mass in the present study.Then an integrated model of launch vehicle for free vibration analysis is established,by which research on the interactions between longitudinal and lateral modes,longitudinal and torsional modes of the launch vehicle can be implemented.Numerical examples for tandem tanks validate the present method and its necessity.

  6. Large Scale Composite Manufacturing for Heavy Lift Launch Vehicles (United States)

    Stavana, Jacob; Cohen, Leslie J.; Houseal, Keth; Pelham, Larry; Lort, Richard; Zimmerman, Thomas; Sutter, James; Western, Mike; Harper, Robert; Stuart, Michael


    Risk reduction for the large scale composite manufacturing is an important goal to produce light weight components for heavy lift launch vehicles. NASA and an industry team successfully employed a building block approach using low-cost Automated Tape Layup (ATL) of autoclave and Out-of-Autoclave (OoA) prepregs. Several large, curved sandwich panels were fabricated at HITCO Carbon Composites. The aluminum honeycomb core sandwich panels are segments of a 1/16th arc from a 10 meter cylindrical barrel. Lessons learned highlight the manufacturing challenges required to produce light weight composite structures such as fairings for heavy lift launch vehicles.

  7. Plug engine systems for future launch vehicle applications (United States)

    Immich, H.; Parsley, R. C.


    Based on improved viability resulting from modern analysis techniques, plug nozzle rocket engines are once again being investigated with respect to advanced launch vehicle concepts. The advantage of these engines is the external expansion, which self-adapts to external pressure variation, as well as the short compact design for high expansion ratios. This paper describes feasible design options ranging from a plug nozzle engine with an annular combustion chamber to a segmented modular design, to the integration of a number of conventional engines around a common plug. The advantages and disadvantages of these options are discussed for a range of potential applications including single-stage-to-orbit (SSTO) vehicles, as well as upper stage vehicles such as the second stage of the SAeNGER HTOL launch vehicle concept. Also included is a discussion of how maturing computational fluid dynamic (CFD) modeling techniques could significantly reduce installed performance uncertainties, reducing plug engine development risk.

  8. Fight Record Of Long March Series Of Launch Vehicles

    Institute of Scientific and Technical Information of China (English)

    He Ying


    @@ On June 1,2007,China launched SinoSat-3,a communications satellite,onboard a Long March(LM)-3A launch vehicle,marking the 100th flight of the Long March series of launch vehicles and the 58th consecutive success since October 1996 (at the end of 2007,the number of consecutive successes was further increased to 62).

  9. Rapid Contingency Simulation Modeling of the NASA Crew Launch Vehicle (United States)

    Betts, Kevin M.; Rutherford, R. Chad; McDuffie, James; Johnson, Matthew D.


    The NASA Crew Launch Vehicle is a two-stage orbital launcher designed to meet NASA's current as well as future needs for human space flight. In order to free the designers to explore more possibilities during the design phase, a need exists for the ability to quickly perform simulation on both the baseline vehicle as well as the vehicle after proposed changes due to mission planning, vehicle configuration and avionics changes, proposed new guidance and control algorithms, and any other contingencies the designers may wish to consider. Further, after the vehicle is designed and built, the need will remain for such analysis in the event of future mission planning. An easily reconfigurable, modular, nonlinear six-degree-of-freedom simulation matching NASA Marshall's in-house high-fidelity simulator is created with the ability to quickly perform simulation and analysis of the Crew Launch Vehicle throughout the entire launch profile. Simulation results are presented and discussed, and an example comparison fly-off between two candidate controllers is presented.

  10. Tracks for Eastern/Western European Future Launch Vehicles Cooperation (United States)

    Eymar, Patrick; Bertschi, Markus


    exclusively upon Western European elements indigenously produced. Yet some private initiatives took place successfully in the second half of the nineties (Eurockot and Starsem) bringing together companies from Western and Eastern Europe. Evolution of these JV's are already envisioned. But these ventures relied mostly on already existing vehicles. broadening the bases in order to enlarge the reachable world market appears attractive, even if structural difficulties are complicating the process. had recently started to analyze, with KSRC counterparts how mixing Russian and Western European based elements would provide potential competitive edges. and RKA in the frame of the new ESA's Future Launch Preparatory Programme (FLPP). main technical which have been considered as the most promising (reusable LOx/Hydrocarbon engine, experimental reentry vehicles or demonstrators and reusable launch vehicle first stage or booster. international approach. 1 2

  11. Software Quality Assurance-Challenges in Launch Vehicle Projects

    Directory of Open Access Journals (Sweden)

    Poofa Gopalan


    Full Text Available Launch vehicle projects now depend on software, more than ever before, to ensure safetyand efficiency. Such critical software syfiems, which can lead to injury, destruction or loss ofvital equipment, human lives, and damage to environment, must be developed and verified withhigh level of quality and reliability. An overview of current quality practices pursued in launchvehicle projects is presented in this paper. These practices have played a vital role in the successfullaunch vehicle missions of Indian Space Research Organisation. As complexity of softwareincreases, the activity that gets affected is nothing but, software quality assurance (SQA. TheSQA team is facing a lot of challenges in current practices. This paper brings out such challengesin different phases of software life cycle. A set of key points to some techniques and tools, thatcould contribute to meet the software quality 'assurance challenges in launch vehicle projects,are also discussed.

  12. Flight Testing of Wireless Networking for Nanosat Launch Vehicles Project (United States)

    National Aeronautics and Space Administration — The innovation proposed here addresses the testing and evaluation of wireless networking technologies for small launch vehicles by leveraging existing nanosat...

  13. Expandable External Payload Carrier for Existing Launch Vehicles Project (United States)

    National Aeronautics and Space Administration — Numerous existing launch vehicles have excess performance that is not being optimized. By taking advantage of excess, unused, performance, additional NASA...

  14. Future Launch Vehicle Structures - Expendable and Reusable Elements (United States)

    Obersteiner, M. H.; Borriello, G.


    Further evolution of existing expendable launch vehicles will be an obvious element influencing the future of space transportation. Besides this reusability might be the change with highest potential for essential improvement. The expected cost reduction and finally contributing to this, the improvement of reliability including safe mission abort capability are driving this idea. Although there are ideas of semi-reusable launch vehicles, typically two stages vehicles - reusable first stage or booster(s) and expendable second or upper stage - it should be kept in mind that the benefit of reusability will only overwhelm if there is a big enough share influencing the cost calculation. Today there is the understanding that additional technology preparation and verification will be necessary to master reusability and get enough benefits compared with existing launch vehicles. This understanding is based on several technology and system concepts preparation and verification programmes mainly done in the US but partially also in Europe and Japan. The major areas of necessary further activities are: - System concepts including business plan considerations - Sub-system or component technologies refinement - System design and operation know-how and capabilities - Verification and demonstration oriented towards future mission mastering: One of the most important aspects for the creation of those coming programmes and activities will be the iterative process of requirements definition derived from concepts analyses including economical considerations and the results achieved and verified within technology and verification programmes. It is the intention of this paper to provide major trends for those requirements focused on future launch vehicles structures. This will include the aspects of requirements only valid for reusable launch vehicles and those common for expendable, semi-reusable and reusable launch vehicles. Structures and materials is and will be one of the

  15. Payloads for the N-launch vehicles (United States)

    Hirai, M.; Iwata, T.

    Satellites launched by the National Space Development Agency of Japan are discussed. The HIMAWARI-2 meteorological satellite can photograph the earth in the visible and the infrared, and accumulates and distributes meteorological data. The CS-2a and CS-2b satellites, which form the first domestic operational satellite communications system in Japan, are discussed, and plans for the next generation are summarized. The planned satellite broadcasting system is also described, including the orbit and design. Japan's first earth observation satellite MOS-1 will be launched in 1986, its principal missions being the establishment of fundamental technologies common to both land and marine observation satellites, as well as observation of the state of the sea surface and atmosphere by use of visible, infrared, and microwave radiometers. Existing and planned engineering test satellites are discussed, including the systems and objectives of the latter.

  16. Interior noise control of spacecraft launch vehicles (United States)

    Borello, G.; Pinder, J. N.; Borchers, I. U.


    The efforts undertaken in the Ariane 5 program to achieve a quieter vibroacoustic environment at lift-off either by a careful design of the ELA 3 launching pad or by an attempt to optimize the acoustic transmission loss of the fairing are discussed. A review of the potential efficiency of different acoustic protection systems is presented, with comments on the main design sensitive parameters and associated predictive methods.

  17. Energy impact assessment of NASA's past, present, and future space launch vehicles (United States)

    Rice, E. E.


    An approach to analyze the total energy required for overall support of space launch vehicles is outlined along with some of the basic data required for such analyses. Selected results obtained by using this approach are presented for various past (some are already phased out), present, and future NASA launch vehicles, including an estimate of the total annual energy required to support one projected NASA launch vehicle traffic model. The material presented is expected to give a better insight into the details of an energy impact analysis. Major conclusions are that: (1) for expendable launch vehicle systems, the energy required to manufacture hardware and support launch operations is most significant; (2) for totally reusable systems, the energy required to process/manufacture propellants and fluids is by far the most significant contributor; and (3) up to 1991, the projected highest annual energy requirement for the NASA launch vehicles does not constitute a significant energy impact relative to the nation's total energy needs.

  18. Proceedings of the heavy lift launch vehicle tropospheric effects workshop

    Energy Technology Data Exchange (ETDEWEB)


    A workshop, sponsored by the Argonne National Laboratory, on Heavy Lift Launch Vehicle (HLLV) troposheric effects was held in Chicago, Illinois, on September 12, 13, and 14, 1978. Briefings were conducted on the latest HLLV congigurations, launch schedules, and proposed fuels. The geographical, environmental, and ecological background of three proposed launch sites were presented in brief. The sites discussed were launch pads near the Kennedy Space Center (KSC), a site in the southwestern United States near Animus, New Mexico, and an ocean site just north of the equator off the coast of Ecuador. A review of past efforts in atmospheric dynamics modeling, source term prediction, atmospheric effects, cloud rise modeling, and rainout/washout effects for the Space Shuttle tropospheric effects indicated that much of the progress made in these areas has direct applicability to the HLLV. The potential pollutants from the HLLV are different and their chymical interactions with the atmosphere are more complex, but the analytical techniques developed for the Space Shuttle can be applied, with the appropriate modification, to the HLLV. Reviews were presented of the ecological baseline monitoring being performed at KSC and the plant toxicology studies being conducted at North Carolina State. Based on the proposed launch sites, the latest HLLV configuration fuel, and launch schedule, the attendees developed a lit of possible environmental issues associated with the HLLV. In addition, a list of specific recommendations for short- and long-term research to investigate, understand, and possibly mitigate the HLLV environmental impacts was developed.

  19. Beyond Percheron - Launch vehicle systems from the private sector (United States)

    Horne, W. C.; Pavia, T. C.; Schrick, B. L.; Wolf, R. S.; Fruchterman, J. R.; Ross, D. J.

    Private ventures for operation of spacecraft launching services are discussed in terms of alternative strategies for commercialization of space activities. The Percheron was the product of a philosophy of a cost-, rather than a weight-, minimized a lunch vehicle. Although the engine exploded during a static test firing, other private projects continued, including the launch of the Conestoga, an Aries second stage Minuteman I. Consideration is being directed toward commercial production and launch of the Delta rocket, and $1 and a $1.5 billion offers have been tendered for financing a fifth Orbiter for NASA in exchange for marketing rights. Funding for the ventures is contingent upon analyses of the size and projected growth rate of payload markets, a favorable national policy, investor confidence, and agreeable capitalization levels. It is shown that no significant barriers exist against satisfying the criteria, and private space ventures are projected to result in more cost-effective operations due to increased competition.

  20. Estimating Logistics Support of Reusable Launch Vehicles During Conceptual Design (United States)

    Morris, W. D.; White, N. H.; Davies, W. T.; Ebeling, C. E.


    Methods exist to define the logistics support requirements for new aircraft concepts but are not directly applicable to new launch vehicle concepts. In order to define the support requirements and to discriminate among new technologies and processing choices for these systems, NASA Langley Research Center (LaRC) is developing new analysis methods. This paper describes several methods under development, gives their current status, and discusses the benefits and limitations associated with their use.

  1. Features of infrasonic and ionospheric disturbances generated by launch vehicle

    International Nuclear Information System (INIS)

    In this paper we present a model, which describe the propagation of acoustic pulses through a model terrestrial atmosphere produced by launch vehicle, and effects of these pulses on the ionosphere above the launch vehicle. We show that acoustic pulses generate disturbances of electron density. The value of these disturbances is about 0.04-0.7% of background electron density. So such disturbances can not create serious noise-free during monitoring of explosions by ionospheric method. We calculated parameters of the blast wave generated at the ionospheric heights by launch vehicle. It was shown that the blast wave is intense and it can generates disturbance of electron density which 2.6 times as much then background electron density. This disturbance is 'cord' with diameter about 150-250 m whereas length of radio line is hundreds and thousand km. Duration of ionospheric disturbances are from 0.2 s to 3-5 s. Such values of duration can not be observed during underground and surface explosions. (author)

  2. Launch vehicle flight control augmentation using smart materials and advanced composites (CDDF Project 93-05) (United States)

    Barret, C.


    The Marshall Space Flight Center has a rich heritage of launch vehicles that have used aerodynamic surfaces for flight stability such as the Saturn vehicles and flight control such as on the Redstone. Recently, due to aft center-of-gravity locations on launch vehicles currently being studied, the need has arisen for the vehicle control augmentation that is provided by these flight controls. Aerodynamic flight control can also reduce engine gimbaling requirements, provide actuator failure protection, enhance crew safety, and increase vehicle reliability, and payload capability. In the Saturn era, NASA went to the Moon with 300 sq ft of aerodynamic surfaces on the Saturn V. Since those days, the wealth of smart materials and advanced composites that have been developed allow for the design of very lightweight, strong, and innovative launch vehicle flight control surfaces. This paper presents an overview of the advanced composites and smart materials that are directly applicable to launch vehicle control surfaces.

  3. Aero-Assisted Pre-Stage for Ballistic and Aero-Assisted Launch Vehicles (United States)

    Ustinov, Eugene A.


    A concept of an aero-assisted pre-stage is proposed, which enables launch of both ballistic and aero-assisted launch vehicles from conventional runways. The pre-stage can be implemented as a delta-wing with a suitable undercarriage, which is mated with the launch vehicle, so that their flight directions are coaligned. The ample wing area of the pre-stage combined with the thrust of the launch vehicle ensure prompt roll-out and take-off of the stack at airspeeds typical for a conventional jet airliner. The launch vehicle is separated from the pre-stage as soon as safe altitude is achieved, and the desired ascent trajectory is reached. Nominally, the pre-stage is non-powered. As an option, to save the propellant of the launch vehicle, the pre-stage may have its own short-burn propulsion system, whereas the propulsion system of the launch vehicle is activated at the separation point. A general non-dimensional analysis of performance of the pre-stage from roll-out to separation is carried out and applications to existing ballistic launch vehicle and hypothetical aero-assisted vehicles (spaceplanes) are considered.

  4. Flight Record of the Long March Series of Launch Vehicles

    Institute of Scientific and Technical Information of China (English)

    He Ying


    @@ (Continued) THE 56TH LAUNCH The FY-1C meteorological satellite and the Shijian 5 (SJ-5) satellite were put into their predetermined orbits by a LM-4B launch vehicle on May 10,1999. Launch Site: Taiyuan Satellite Launch Center Launch Result: Success At 09:33 on May 10, a LM-4B lifted off with two satellites.749 seconds after the lift-off, the FY-1C satellite separated with the rocket, and the SJ-5 satellite separated with LM-4B 814 seconds after it was fired.The two satellites entered sun-synchronous orbit which is 870km above the Earth.

  5. Gain Scheduling for the Orion Launch Abort Vehicle Controller (United States)

    McNamara, Sara J.; Restrepo, Carolina I.; Madsen, Jennifer M.; Medina, Edgar A.; Proud, Ryan W.; Whitley, Ryan J.


    One of NASAs challenges for the Orion vehicle is the control system design for the Launch Abort Vehicle (LAV), which is required to abort safely at any time during the atmospheric ascent portion of ight. The focus of this paper is the gain design and scheduling process for a controller that covers the wide range of vehicle configurations and flight conditions experienced during the full envelope of potential abort trajectories from the pad to exo-atmospheric flight. Several factors are taken into account in the automation process for tuning the gains including the abort effectors, the environmental changes and the autopilot modes. Gain scheduling is accomplished using a linear quadratic regulator (LQR) approach for the decoupled, simplified linear model throughout the operational envelope in time, altitude and Mach number. The derived gains are then implemented into the full linear model for controller requirement validation. Finally, the gains are tested and evaluated in a non-linear simulation using the vehicles ight software to ensure performance requirements are met. An overview of the LAV controller design and a description of the linear plant models are presented. Examples of the most significant challenges with the automation of the gain tuning process are then discussed. In conclusion, the paper will consider the lessons learned through out the process, especially in regards to automation, and examine the usefulness of the gain scheduling tool and process developed as applicable to non-Orion vehicles.

  6. The European launch vehicle Ariane: Its commercial status - Its evolution (United States)

    Glavany, M.

    The status of the Ariane program is summarized. The shareholders and participating countries in the French private firm Arianespace are listed and the Ariane rocket is very briefly described, depicting the planned models and showing their anticipated performances and the types of fairing available to them, and comparing the available volume in Ariane 3 and 4 and foreign competitors. The current status of the Ariane program, including the development phase, promotional series, and commercial phase are briefly presented. The Guiana space center and second launch pad are described and the advantages of Arianespace's launch service and the vehicle are listed, along with Ariane's advantages over the Space Shuttle. The expected market share for Ariane is shown in comparison with that of the Shuttle and other nations.

  7. Launch Vehicle Design Process Description and Training Formulation (United States)

    Atherton, James; Morris, Charles; Settle, Gray; Teal, Marion; Schuerer, Paul; Blair, James; Ryan, Robert; Schutzenhofer, Luke


    A primary NASA priority is to reduce the cost and improve the effectiveness of launching payloads into space. As a consequence, significant improvements are being sought in the effectiveness, cost, and schedule of the launch vehicle design process. In order to provide a basis for understanding and improving the current design process, a model has been developed for this complex, interactive process, as reported in the references. This model requires further expansion in some specific design functions. Also, a training course for less-experienced engineers is needed to provide understanding of the process, to provide guidance for its effective implementation, and to provide a basis for major improvements in launch vehicle design process technology. The objective of this activity is to expand the description of the design process to include all pertinent design functions, and to develop a detailed outline of a training course on the design process for launch vehicles for use in educating engineers whose experience with the process has been minimal. Building on a previously-developed partial design process description, parallel sections have been written for the Avionics Design Function, the Materials Design Function, and the Manufacturing Design Function. Upon inclusion of these results, the total process description will be released as a NASA TP. The design function sections herein include descriptions of the design function responsibilities, interfaces, interactive processes, decisions (gates), and tasks. Associated figures include design function planes, gates, and tasks, along with other pertinent graphics. Also included is an expanded discussion of how the design process is divided, or compartmentalized, into manageable parts to achieve efficient and effective design. A detailed outline for an intensive two-day course on the launch vehicle design process has been developed herein, and is available for further expansion. The course is in an interactive lecture

  8. Nytrox Oxidizers for NanoSat Launch Vehicles Project (United States)

    National Aeronautics and Space Administration — Space Propulsion Group, Inc. proposes to conduct systems studies to quantify the performance and cost advantages of Nytrox oxidizers for small launch vehicles. This...

  9. Risk Considerations of Bird Strikes to Space Launch Vehicles (United States)

    Hales, Christy; Ring, Robert


    Within seconds after liftoff of the Space Shuttle during mission STS-114, a turkey vulture impacted the vehicle's external tank. The contact caused no apparent damage to the Shuttle, but the incident led NASA to consider the potential consequences of bird strikes during a Shuttle launch. The environment at Kennedy Space Center provides unique bird strike challenges due to the Merritt Island National Wildlife Refuge and the Atlantic Flyway bird migration routes. NASA is currently refining risk assessment estimates for the probability of bird strike to space launch vehicles. This paper presents an approach for analyzing the risks of bird strikes to space launch vehicles and presents an example. The migration routes, types of birds present, altitudes of those birds, exposed area of the launch vehicle, and its capability to withstand impacts affect the risk due to bird strike. A summary of significant risk contributors is discussed.

  10. Platform Independent Launch Vehicle Avionics with GPS Metric Tracking Project (United States)

    National Aeronautics and Space Administration — For this award, Tyvak proposes to develop a complete suite of avionics for a Nano-Launch Vehicle (NLV) based on the architecture determinations performed during...

  11. The X-34 Demonstrator Loading Onto Launch Vehicle (United States)


    Pictured is the X-34 Demonstrator, part of the Pathfinder Program, being attached to an aircraft. After takeoff, the X-34 would be launched from the aircraft to begin its mission. The Pathfinder Program flight experiments would demonstrate a number of advanced launch vehicles and spacecraft technologies such as nontraditional propulsion systems, improvements and irnovations to conventional propulsion systems, safe abort capabilities, vehicle health management systems, composite structures, and new thermal protection systems. The X-34 program was cancelled in 2001.

  12. The DARPA / USAF Falcon Program Small Launch Vehicles


    Weeks, David; Walker, Steven; Thompson, Tim; Sackheim, Robert; London III, John


    Earlier in this decade, the U.S. Air Force Space Command and the Defense Advanced Research Projects Agency (DARPA), in recognizing the need for low-cost responsive small launch vehicles, decided to partner in addressing this national shortcoming. Later, the National Aeronautics and Space Administration (NASA) joined in supporting this effort, dubbed the Falcon Program. The objectives of the Small Launch Vehicle (SLV) element of the DARPA / USAF Falcon Program include the development of a low-...

  13. Lockheed Martin Launch Vehicle - Commercial Access to Space


    Cobb, Jerry; Chase, Charles; Buhaly, David; Galbraeth, Joseph


    This paper will discuss the background and history of the LMLV program and the teaming relationship. We will also discuss the vehicle itself and it's capabilities. The process of reviewing the launch vehicle after the DLV failure will be discussed followed by a review of the highly successful LMLV -1 mission on 22 August 1997. Flight data from this mission will be presented. The paper will conclude with a review of future planned launches and opportunities for new customers.

  14. Recent Advances in Launch Vehicle Toxic Hazard and Risk Analysis (United States)

    Nyman, R. L.


    A number of widely used rocket propellants produce toxic combustion byproducts or are themselves toxic in their un-reacted state. In this paper we focus on the methodology used to evaluate early flight catastrophic failures and nominal launch emissions that release large amounts of propellant or combustion products into the planetary boundary layer that pose a potential risk to launch area personnel, spectators, or the general public. The United States has traditionally used the Rocket Exhaust Effluent Diffusion Model (REEDM) [1] to access the hazard zones associated with such releases. REEDM is a 1970's vintage Gaussian atmospheric dispersion model that is limited in its ability to accurately simulate certain aspects of the initial source geometry and dynamics of a vehicle breakup and propellant fragment dispersion. The Launch Area Toxic Risk Analysis 3-Dimensional (LATRA3D) [2] computer program has been developed that addresses many of REEDM's deficiencies. LATRA3D is a probabilistic risk analysis tool that simulates both nominal vehicle flight and in-flight failure emissions.

  15. Predictability in space launch vehicle anomaly detection using intelligent neuro-fuzzy systems (United States)

    Gulati, Sandeep; Toomarian, Nikzad; Barhen, Jacob; Maccalla, Ayanna; Tawel, Raoul; Thakoor, Anil; Daud, Taher


    Included in this viewgraph presentation on intelligent neuroprocessors for launch vehicle health management systems (HMS) are the following: where the flight failures have been in launch vehicles; cumulative delay time; breakdown of operations hours; failure of Mars Probe; vehicle health management (VHM) cost optimizing curve; target HMS-STS auxiliary power unit location; APU monitoring and diagnosis; and integration of neural networks and fuzzy logic.

  16. Firefly Alpha - A Mass Produced Small Launch Vehicle for the New Space Era


    King, PJ; Weldon, Alex; Bradford, Andy


    The space industry is experiencing a revolution in the growth of small satellites, and yet adequate solutions to launch these new generations of small satellites are not yet available. With a focus on low cost and launching when the customer needs to launch, Firefly Space Systems have developed a new type of small satellite launch vehicle which has been designed with low cost and mass production as primary drivers. From materials selection, through technology selection to production processes...

  17. Antares: A low cost modular launch vehicle for the future (United States)

    The single-stage-to-orbit launch vehicle Antares is a revolutionary concept based on identical modular units, enabling the Antares to efficiently launch communications satellites, as well as heavy payloads, into Earth orbit and beyond. The basic unit of the modular system, a single Antares vehicle, is aimed at launching approximately 10,000 kg (22,000 lb) into low Earth orbit (LEO). When coupled with a standard Centaur upper stage, it is capable of placing 4000 kg (8800 lb) into geosynchronous Earth orbit (GE0). The Antares incorporates a reusable engine, the Dual Mixture Ratio Engine (DMRE), as its propulsive device. This enables Antares to compete and excel in the satellite launch market by dramatically reducing launch costs. Inherent in the design is the capability to attach several of these vehicles together to provide heavy lift capability. Any number of these vehicles can be attached depending on the payload and mission requirements. With a seven-vehicle configuration, the Antares' modular concept provides a heavy lift capability of approximately 70,000 kg (154,000 lb) to LEO. This expandability allows for a wide range of payload options, such as large Earth satellites, Space Station Freedom material, and interplanetary spacecraft, and also offers a significant cost savings over a mixed fleet based on different launch vehicles.

  18. Project Antares: A low cost modular launch vehicle for the future (United States)

    Aarnio, Steve; Anderson, Hobie; Arzaz, El Mehdi; Bailey, Michelle; Beeghly, Jeff; Cartwright, Curt; Chau, William; Dawdy, Andrew; Detert, Bruce; Ervin, Miles


    The single stage to orbit launch vehicle Antares is based upon the revolutionary concept of modularity, enabling the Antares to efficiently launch communications satellites, as well as heavy payloads, into Earth's orbit and beyond. The basic unit of the modular system, a single Antares vehicle, is aimed at launching approximately 10,000 kg into low Earth orbit (LEO). When coupled with a Centaur upper stage it is capable of placing 3500 kg into geostationary orbit. The Antares incorporates a reusable engine, the Dual Mixture Ratio Engine (DMRE), as its propulsive device. This enables Antares to compete and excel in the satellite launch market by dramatically reducing launch costs. Antares' projected launch costs are $1340 per kg to LEO which offers a tremendous savings over launch vehicles available today. Inherent in the design is the capability to attach several of these vehicles together to provide heavy lift capability. Any number of these vehicles, up to seven, can be attached depending on the payload and mission requirements. With a seven vehicle configuration Antares's modular concept provides a heavy lift capability of approximately 70,000 kg to LEO. This expandability allows for a wider range of payload options such as large Earth satellites, Space Station Freedom support, and interplanetary spacecraft, and also offers a significant cost savings over a mixed fleet based on different launch vehicles.

  19. Single-Point Attachment Wind Damper for Launch Vehicle On-Pad Motion (United States)

    Hrinda, Glenn A.


    A single-point-attachment wind-damper device is proposed to reduce on-pad motion of a cylindrical launch vehicle. The device is uniquely designed to attach at only one location along the vehicle and capable of damping out wind gusts from any lateral direction. The only source of damping is from two viscous dampers in the device. The effectiveness of the damper design in reducing vehicle displacements is determined from transient analysis results using an Ares I-X launch vehicle. Combinations of different spring stiffnesses and damping are used to show how the vehicle's displacement response is significantly reduced during a wind gust.

  20. Modular Approach to Launch Vehicle Design Based on a Common Core Element (United States)

    Creech, Dennis M.; Threet, Grady E., Jr.; Philips, Alan D.; Waters, Eric D.; Baysinger, Mike


    With a heavy lift launch vehicle as the centerpiece of our nation's next exploration architecture's infrastructure, the Advanced Concepts Office at NASA's Marshall Space Flight Center initiated a study to examine the utilization of elements derived from a heavy lift launch vehicle for other potential launch vehicle applications. The premise of this study is to take a vehicle concept, which has been optimized for Lunar Exploration, and utilize the core stage with other existing or near existing stages and boosters to determine lift capabilities for alternative missions. This approach not only yields a vehicle matrix with a wide array of capabilities, but also produces an evolutionary pathway to a vehicle family based on a minimum development and production cost approach to a launch vehicle system architecture, instead of a purely performance driven approach. The upper stages and solid rocket booster selected for this study were chosen to reflect a cross-section of: modified existing assets in the form of a modified Delta IV upper stage and Castor-type boosters; potential near term launch vehicle component designs including an Ares I upper stage and 5-segment boosters; and longer lead vehicle components such as a Shuttle External Tank diameter upper stage. The results of this approach to a modular launch system are given in this paper.

  1. The DARPA/USAF Falcon Program Small Launch Vehicles (United States)

    Weeks, David J.; Walker, Steven H.; Thompson, Tim L.; Sackheim, Robert; London, John R., III


    Earlier in this decade, the U.S. Air Force Space Command and the Defense Advanced Research Projects Agency (DARPA), in recognizing the need for low-cost responsive small launch vehicles, decided to partner in addressing this national shortcoming. Later, the National Aeronautics and Space Administration (NASA) joined in supporting this effort, dubbed the Falcon Program. The objectives of the Small Launch Vehicle (SLV) element of the DARPA/USAF Falcon Program include the development of a low-cost small launch vehicle(s) that demonstrates responsive launch and has the potential for achieving a per mission cost of less than $5M when based on 20 launches per year for 10 years. This vehicle class can lift 1000 to 2000 lbm payloads to a reference low earth orbit. Responsive operations include launching the rocket within 48 hours of call up. A history of the program and the current status will be discussed with an emphasis on the potential impact on small satellites.

  2. Performance evaluation of multi-sensor data-fusion systems in launch vehicles

    Indian Academy of Sciences (India)

    B N Suresh; K Sivan


    In this paper, the utilization of multi-sensors of different types, their characteristics, and their data-fusion in launch vehicles to achieve the goal of injecting the satellite into a precise orbit is explained. Performance requirements of sensors and their redundancy management in a typical launch vehicle are also included. The role of an integrated system level-test bed for evaluating multi-sensors and mission performance in a typical launch vehicle mission is described. Some of the typical simulation results to evaluate the effect of the sensors on the overall system are highlighted.

  3. Aerogel Insulation Applications for Liquid Hydrogen Launch Vehicle Tanks (United States)

    Fesmire, J. E.; Sass, J.


    Aerogel based insulation systems for ambient pressure environments were developed for liquid hydrogen (LH2) tank applications. Solutions to thermal insulation problems were demonstrated for the Space Shuttle External Tank (ET) through extensive testing at the Cryogenics Test Laboratory. Demonstration testing was performed using a 1/10th scale ET LH2 intertank unit and liquid helium as the coolant to provide the 20 K cold boundary temperature. Cryopumping tests in the range of 20K were performed using both constant mass and constant pressure methods. Long-duration tests (up to 10 hours) showed that the nitrogen mass taken up inside the intertank is reduced by a factor of nearly three for the aerogel insulated case as compared to the un-insulated (bare metal flight configuration) case. Test results including thermal stabilization, heat transfer effectiveness, and cryopumping confirm that the aerogel system eliminates free liquid nitrogen within the intertank. Physisorption (or adsorption) of liquid nitrogen within the fine pore structure of aerogel materials was also investigated. Results of a mass uptake method show that the sorption ratio (liquid nitrogen to aerogel beads) is about 62 percent by volume. A novel liquid nitrogen production method of testing the liquid nitrogen physical adsorption capacity of aerogel beads was also performed to more closely approximate the actual launch vehicle cooldown and thermal stabilization effects within the aerogel material. The extraordinary insulating effectiveness of the aerogel material shows that cryopumping is not an open-cell mass transport issue but is strictly driven by thermal communication between warm and cold surfaces. The new aerogel insulation technology is useful to solve heat transfer problem areas and to augment existing thermal protection systems on launch vehicles. Examples are given and potential benefits for producing launch systems that are more reliable, robust, reusable, and efficient are outlined.

  4. Modeling and Simulation of Reliability & Maintainability Parameters for Reusable Launch Vehicles using Design of Experiments (United States)

    Unal, Resit; Morris, W. Douglas; White, Nancy H.; Lepsch, Roger A.


    This paper describes the development of a methodology for estimating reliability and maintainability distribution parameters for a reusable launch vehicle. A disciplinary analysis code and experimental designs are used to construct approximation models for performance characteristics. These models are then used in a simulation study to estimate performance characteristic distributions efficiently. The effectiveness and limitations of the developed methodology for launch vehicle operations simulations are also discussed.

  5. Spray-On Foam Insulations for Launch Vehicle Cryogenic Tanks (United States)

    Fesmire, J. E.; Cofman, B. E.; Menghelli, B. J.; Heckle, K. W.


    Spray-on foam insulation (SOFI) has been developed for use on the cryogenic tanks of space launch vehicles beginning in the 1960s with the Apollo program. The use of SOFI was further developed for the Space Shuttle program. The External Tank (ET) of the Space Shuttle, consisting of a forward liquid oxygen tank in line with an aft liquid hydrogen tank, requires thermal insulation over its outer surface to prevent ice formation and avoid in-flight damage to the ceramic tile thermal protection system on the adjacent Orbiter. The insulation also provides system control and stability with throughout the lengthy process of cooldown, loading, and replenishing the tank. There are two main types of SOFI used on the ET: acreage (with the rind) and closeout (machined surface). The thermal performance of the seemingly simple SOFI system is a complex of many variables starting with the large temperature difference of from 200 to 260 K through the typical 25-mm thickness. Environmental factors include air temperature and humidity, wind speed, solar exposure, and aging or weathering history. Additional factors include manufacturing details, launch processing operations, and number of cryogenic thermal cycles. The study of the cryogenic thermal performance of SOFI under large temperature differentials is the subject of this article. The amount of moisture taken into the foam during the cold soak phase, termed Cryogenic Moisture Uptake, must also be considered. The heat leakage rates through these foams were measured under representative conditions using laboratory standard liquid nitrogen boiloff apparatus. Test articles included baseline, aged, and weathered specimens. Testing was performed over the entire pressure range from high vacuum to ambient pressure. Values for apparent thermal conductivity and heat flux were calculated and compared with prior data. As the prior data of record was obtained for small temperature differentials on non-weathered foams, analysis of the

  6. LV-IMLI: Integrated MLI/Aeroshell for Cryogenic Launch Vehicles Project (United States)

    National Aeronautics and Space Administration — Cryogenic propellants have the highest energy density of any rocket fuel, and are used in most NASA and commercial launch vehicles to power their ascent. Cryogenic...

  7. Static stability and control effectiveness of a parametric launch vehicle (United States)

    Ellis, R. R.; Gamble, M.


    An investigation is reported to determine the static aerodynamic characteristics of a space shuttle parametric launch configuration. The orbiter control surfaces were deflected to obtain the control effectiveness for use in launch vehicle control studies. Experimental data were obtained for Mach number from 0.6 to 4.96, angles of attack from minus 10 to plus 10 degrees and angles of sideslip from minus six to six degrees at zero degrees angle of attack.

  8. FY-3A Launched Atop A LM-4C Launch Vehicle

    Institute of Scientific and Technical Information of China (English)



    @@ FY-3A,the first satellite of China's new generation of polar-orbiting meteorological satellites,was launched into space atop a modified LM-4C launch vehicle.The satellite separated from the rocket 19 minutes after the takeoff.Flying at an altitude of 807km with an inclination of 98.8 degrees,the satellite circles in polar orbit 14 times everyday,covering the whole globe twice a day.

  9. Information Flow in the Launch Vehicle Design/Analysis Process (United States)

    Humphries, W. R., Sr.; Holland, W.; Bishop, R.


    This paper describes the results of a team effort aimed at defining the information flow between disciplines at the Marshall Space Flight Center (MSFC) engaged in the design of space launch vehicles. The information flow is modeled at a first level and is described using three types of templates: an N x N diagram, discipline flow diagrams, and discipline task descriptions. It is intended to provide engineers with an understanding of the connections between what they do and where it fits in the overall design process of the project. It is also intended to provide design managers with a better understanding of information flow in the launch vehicle design cycle.

  10. Expendable Launch Vehicles Briefing and Basic Rocketry Physics (United States)

    Delgado, Luis G.


    This slide presentation is composed of two parts. The first part shows pictures of launch vehicles and lift offs or in the case of the Pegasus launch vehicle separations. The second part discusses the basic physics of rocketry, starting with Newton's three physical laws that form the basis for classical mechanics. It includes a review of the basic equations that define the physics of rocket science, such as total impulse, specific impulse, effective exhaust velocity, mass ratio, propellant mass fraction, and the equations that combine to arrive at the thrust of the rocket. The effect of atmospheric pressure is reviewed, as is the effect of propellant mix on specific impulse.

  11. Orion Launch Abort Vehicle Attitude Control Motor Testing (United States)

    Murphy, Kelly J.; Brauckmann, Gregory J.; Paschal, Keith B.; Chan, David T.; Walker, Eric L.; Foley, Robert; Mayfield, David; Cross, Jared


    Current Orion Launch Abort Vehicle (LAV) configurations use an eight-jet, solid-fueled Attitude Control Motor (ACM) to provide required vehicle control for all proposed abort trajectories. Due to the forward position of the ACM on the LAV, it is necessary to assess the effects of jet-interactions (JI) between the various ACM nozzle plumes and the external flow along the outside surfaces of the vehicle. These JI-induced changes in flight control characteristics must be accounted for in developing ACM operations and LAV flight characteristics. A test program to generate jet interaction aerodynamic increment data for multiple LAV configurations was conducted in the NASA Ames and NASA Langley Unitary Plan Wind Tunnels from August 2007 through December 2009. Using cold air as the simulant gas, powered subscale models were used to generate interaction data at subsonic, transonic, and supersonic test conditions. This paper presents an overview of the complete ACM JI experimental test program for Orion LAV configurations, highlighting ACM system modeling, nozzle scaling assumptions, experimental test techniques, and data reduction methodologies. Lessons learned are discussed, and sample jet interaction data are shown. These data, in conjunction with computational predictions, were used to create the ACM JI increments for all relevant flight databases.

  12. The Delta and Thor/Agena launch vehicles for scientific and applications satellites. (United States)

    Gunn, C. R.


    Description of the Delta Model 904 and the Thor/Agena Model 9A4 scientific and applications satellite launch vehicles, with projections of future growth and launch costs. These launch vehicles are shown to offer scientific and applications satellite mission planners a broad spectrum in performance capabilities together with unprecedented mission flexibility. Depending on the mission, these two medium class launch vehicles can be configured on the new universal boattail (UBT) Thor booster in either two or three stages with thrust augmentation of the UBT ranging from three to nine strap-on solid propellant motors. Both vehicles incorporate strapdown inertial guidance systems that allow flexible mission programming by computer so ftware changes rather than by adjustments.

  13. Software Quality Assurance-Challenges in Launch Vehicle Projects


    Poofa Gopalan; S.S. Uma Sankari; D. Mohan Kumar; R. Vikraman Nair


    Launch vehicle projects now depend on software, more than ever before, to ensure safetyand efficiency. Such critical software syfiems, which can lead to injury, destruction or loss ofvital equipment, human lives, and damage to environment, must be developed and verified withhigh level of quality and reliability. An overview of current quality practices pursued in launchvehicle projects is presented in this paper. These practices have played a vital role in the successfullaunch vehicle mission...

  14. Launch vehicle payload adapter design with vibration isolation features (United States)

    Thomas, Gareth R.; Fadick, Cynthia M.; Fram, Bryan J.


    Payloads, such as satellites or spacecraft, which are mounted on launch vehicles, are subject to severe vibrations during flight. These vibrations are induced by multiple sources that occur between liftoff and the instant of final separation from the launch vehicle. A direct result of the severe vibrations is that fatigue damage and failure can be incurred by sensitive payload components. For this reason a payload adapter has been designed with special emphasis on its vibration isolation characteristics. The design consists of an annular plate that has top and bottom face sheets separated by radial ribs and close-out rings. These components are manufactured from graphite epoxy composites to ensure a high stiffness to weight ratio. The design is tuned to keep the frequency of the axial mode of vibration of the payload on the flexibility of the adapter to a low value. This is the main strategy adopted for isolating the payload from damaging vibrations in the intermediate to higher frequency range (45Hz-200Hz). A design challenge for this type of adapter is to keep the pitch frequency of the payload above a critical value in order to avoid dynamic interactions with the launch vehicle control system. This high frequency requirement conflicts with the low axial mode frequency requirement and this problem is overcome by innovative tuning of the directional stiffnesses of the composite parts. A second design strategy that is utilized to achieve good isolation characteristics is the use of constrained layer damping. This feature is particularly effective at keeping the responses to a minimum for one of the most important dynamic loading mechanisms. This mechanism consists of the almost-tonal vibratory load associated with the resonant burn condition present in any stage powered by a solid rocket motor. The frequency of such a load typically falls in the 45-75Hz range and this phenomenon drives the low frequency design of the adapter. Detailed finite element analysis is

  15. Environmental statement for National Aeronautics and Space Administration, Office of Space Science, launch vehicle and propulsion programs (United States)


    NASA OSS Launch Vehicle and Propulsion Programs are responsible for the launch of approximately 20 automated science and applications spacecraft per year. These launches are for NASA programs and those of other U. S. government agencies, private organizations, such as the Comsat Corporation, foreign countries, and international organizations. Launches occur from Cape Kennedy, Florida; Vandenberg Air Force Base, California; Wallops Island, Virginia; and the San Marco Platform in the Indian Ocean off Kenya. Spacecraft launched by this program contribute in a variety of ways to the control of and betterment of the environment. Environmental effects caused by the launch vehicles are limited in extent, duration, and intensity and are considered insignificant.

  16. Explosion/Blast Dynamics for Constellation Launch Vehicles Assessment (United States)

    Baer, Mel; Crawford, Dave; Hickox, Charles; Kipp, Marlin; Hertel, Gene; Morgan, Hal; Ratzel, Arthur; Cragg, Clinton H.


    An assessment methodology is developed to guide quantitative predictions of adverse physical environments and the subsequent effects on the Ares-1 crew launch vehicle associated with the loss of containment of cryogenic liquid propellants from the upper stage during ascent. Development of the methodology is led by a team at Sandia National Laboratories (SNL) with guidance and support from a number of National Aeronautics and Space Administration (NASA) personnel. The methodology is based on the current Ares-1 design and feasible accident scenarios. These scenarios address containment failure from debris impact or structural response to pressure or blast loading from an external source. Once containment is breached, the envisioned assessment methodology includes predictions for the sequence of physical processes stemming from cryogenic tank failure. The investigative techniques, analysis paths, and numerical simulations that comprise the proposed methodology are summarized and appropriate simulation software is identified in this report.

  17. Development of Response Surface Models for Rapid Analysis and Multidisciplinary Optimization of Launch Vehicle Design Concepts (United States)

    Unal, Resit


    Multidisciplinary design optimization (MDO) is an important step in the design and evaluation of launch vehicles, since it has a significant impact on performance and lifecycle cost. The objective in MDO is to search the design space to determine the values of design parameters that optimize the performance characteristics subject to system constraints. Vehicle Analysis Branch (VAB) at NASA Langley Research Center has computerized analysis tools in many of the disciplines required for the design and analysis of launch vehicles. Vehicle performance characteristics can be determined by the use of these computerized analysis tools. The next step is to optimize the system performance characteristics subject to multidisciplinary constraints. However, most of the complex sizing and performance evaluation codes used for launch vehicle design are stand-alone tools, operated by disciplinary experts. They are, in general, difficult to integrate and use directly for MDO.

  18. Modified Universal Design Survey: Enhancing Operability of Launch Vehicle Ground Crew Worksites (United States)

    Blume, Jennifer L.


    Operability is a driving requirement for next generation space launch vehicles. Launch site ground operations include numerous operator tasks to prepare the vehicle for launch or to perform preflight maintenance. Ensuring that components requiring operator interaction at the launch site are designed for optimal human use is a high priority for operability. To promote operability, a Design Quality Evaluation Survey based on Universal Design framework was developed to support Human Factors Engineering (HFE) evaluation for NASA s launch vehicles. Universal Design per se is not a priority for launch vehicle processing however; applying principles of Universal Design will increase the probability of an error free and efficient design which promotes operability. The Design Quality Evaluation Survey incorporates and tailors the seven Universal Design Principles and adds new measures for Safety and Efficiency. Adapting an approach proven to measure Universal Design Performance in Product, each principle is associated with multiple performance measures which are rated with the degree to which the statement is true. The Design Quality Evaluation Survey was employed for several launch vehicle ground processing worksite analyses. The tool was found to be most useful for comparative judgments as opposed to an assessment of a single design option. It provided a useful piece of additional data when assessing possible operator interfaces or worksites for operability.

  19. An Overview of the Launch Vehicle Blast Environments Development Efforts (United States)

    Richardson, Erin; Bangham, Mike; Blackwood, James; Skinner, Troy; Hays, Michael; Jackson, Austin; Richman, Ben


    NASA has been funding an ongoing development program to characterize the explosive environments produced during a catastrophic launch vehicle accident. These studies and small-scale tests are focused on the near field environments that threaten the crew. The results indicate that these environments are unlikely to result in immediate destruction of the crew modules. The effort began as an independent assessment by NASA safety organizations, followed by the Ares program and NASA Engineering and Safety Center and now as a Space Launch Systems (SLS) focused effort. The development effort is using the test and accident data available from public or NASA sources as well as focused scaled tests that are examining the fundamental aspects of uncontained explosions of Hydrogen and air and Hydrogen and Oxygen. The primary risk to the crew appears to be the high-energy fragments and these are being characterized for the SLS. The development efforts will characterize the thermal environment of the explosions as well to ensure that the risk is well understood and to document the overall energy balance of an explosion. The effort is multi-path in that analytical, computational and focused testing is being used to develop the knowledge to understand potential SLS explosions. This is an ongoing program with plans that expand the development from fundamental testing at small-scale levels to large-scale tests that can be used to validate models for commercial programs. The ultimate goal is to develop a knowledge base that can be used by vehicle designers to maximize crew survival in an explosion.

  20. The Application of the NASA Advanced Concepts Office, Launch Vehicle Team Design Process and Tools for Modeling Small Responsive Launch Vehicles (United States)

    Threet, Grady E.; Waters, Eric D.; Creech, Dennis M.


    The Advanced Concepts Office (ACO) Launch Vehicle Team at the NASA Marshall Space Flight Center (MSFC) is recognized throughout NASA for launch vehicle conceptual definition and pre-phase A concept design evaluation. The Launch Vehicle Team has been instrumental in defining the vehicle trade space for many of NASA s high level launch system studies from the Exploration Systems Architecture Study (ESAS) through the Augustine Report, Constellation, and now Space Launch System (SLS). The Launch Vehicle Team s approach to rapid turn-around and comparative analysis of multiple launch vehicle architectures has played a large role in narrowing the design options for future vehicle development. Recently the Launch Vehicle Team has been developing versions of their vetted tools used on large launch vehicles and repackaged the process and capability to apply to smaller more responsive launch vehicles. Along this development path the LV Team has evaluated trajectory tools and assumptions against sounding rocket trajectories and air launch systems, begun altering subsystem mass estimating relationships to handle smaller vehicle components, and as an additional development driver, have begun an in-house small launch vehicle study. With the recent interest in small responsive launch systems and the known capability and response time of the ACO LV Team, ACO s launch vehicle assessment capability can be utilized to rapidly evaluate the vast and opportune trade space that small launch vehicles currently encompass. This would provide a great benefit to the customer in order to reduce that large trade space to a select few alternatives that should best fit the customer s payload needs.


    Institute of Scientific and Technical Information of China (English)

    TianYurong; ZhuDongge


    This paper presents the cryogenic upper stage passivation of Long March 3A series launch vehicles,including venting of residual propellants, residual gas ejection, discharging batteries and analysis of self-destruct systems. It mainly deals with the venting of residual propellants.

  2. Launch vehicle tracking enhancement through Global Positioning System Metric Tracking (United States)

    Moore, T. C.; Li, Hanchu; Gray, T.; Doran, A.

    United Launch Alliance (ULA) initiated operational flights of both the Atlas V and Delta IV launch vehicle families in 2002. The Atlas V and Delta IV launch vehicles were developed jointly with the US Air Force (USAF) as part of the Evolved Expendable Launch Vehicle (EELV) program. Both Launch Vehicle (LV) families have provided 100% mission success since their respective inaugural launches and demonstrated launch capability from both Vandenberg Air Force Base (VAFB) on the Western Test Range and Cape Canaveral Air Force Station (CCAFS) on the Eastern Test Range. However, the current EELV fleet communications, tracking, & control architecture & technology, which date back to the origins of the space launch business, require support by a large and high cost ground footprint. The USAF has embarked on an initiative known as Future Flight Safety System (FFSS) that will significantly reduce Test Range Operations and Maintenance (O& M) cost by closing facilities and decommissioning ground assets. In support of the FFSS, a Global Positioning System Metric Tracking (GPS MT) System based on the Global Positioning System (GPS) satellite constellation has been developed for EELV which will allow both Ranges to divest some of their radar assets. The Air Force, ULA and Space Vector have flown the first 2 Atlas Certification vehicles demonstrating the successful operation of the GPS MT System. The first Atlas V certification flight was completed in February 2012 from CCAFS, the second Atlas V certification flight from VAFB was completed in September 2012 and the third certification flight on a Delta IV was completed October 2012 from CCAFS. The GPS MT System will provide precise LV position, velocity and timing information that can replace ground radar tracking resource functionality. The GPS MT system will provide an independent position/velocity S-Band telemetry downlink to support the current man-in-the-loop ground-based commanded destruct of an anomalous flight- The system

  3. POF hydrogen detection sensor systems for launch vehicles applications (United States)

    Kazemi, Alex A.; Larson, David B.; Wuestling, Mark D.


    This paper describes the first successful Plastic Optical Fiber (POF) cable and glass fiber hydrogen detection sensor systems developed for Delta IV Launch Vehicle. Hydrogen detection in space application is very challenging; the hydrogen detection is priority for rocket industry and every transport device or any application where hydrogen is involved. H2 sensors are necessary to monitor the detection possible leak to avoid explosion, which can be highly dangerous. The hydrogen sensors had to perform in temperatures between -18° C to 60° C (0° F to 140° F). The response of the sensor in this temperature regime was characterized to ensure proper response of the sensors to fugitive hydrogen leakage during vehicle ground operations. We developed the first 75 m combination of POF and glass fiber H2 sensors. Performed detail investigation of POF-glass cables for attenuation loss, thermal, humidity, temperature, shock, accelerate testing for life expectancy. Also evaluated absorption, operating and high/low temperatures, and harsh environmental for glass-POF cables connectors. The same test procedures were performed for glass multi mode fiber part of the H2 and O2 sensors. A new optical waveguides was designed and developed to decrease the impact of both noise and long term drift of sensor. A field testing of sensors was performed at NASA Stennis on the Aerospike X-33 to quantify the element of the sensor package that was responsible for hydrogen detection and temperature.

  4. Macroeconomic Benefits of Low-Cost Reusable Launch Vehicles (United States)

    Shaw, Eric J.; Greenberg, Joel


    The National Aeronautics and Space Administration (NASA) initiated its Reusable Launch Vehicle (RLV) Technology Program to provide information on the technical and commercial feasibility of single-stage to orbit (SSTO), fully-reusable launchers. Because RLVs would not depend on expendable hardware to achieve orbit, they could take better advantage of economies of scale than expendable launch vehicles (ELVs) that discard costly hardware on ascent. The X-33 experimental vehicle, a sub-orbital, 60%-scale prototype of Lockheed Martin's VentureStar SSTO RLV concept, is being built by Skunk Works for a 1999 first flight. If RLVs achieve prices to low-earth orbit of less than $1000 US per pound, they could hold promise for eliciting an elastic response from the launch services market. As opposed to the capture of existing market, this elastic market would represent new space-based industry businesses. These new opportunities would be created from the next tier of business concepts, such as space manufacturing and satellite servicing, that cannot earn a profit at today's launch prices but could when enabled by lower launch costs. New business creation contributes benefits to the US Government (USG) and the US economy through increases in tax revenues and employment. Assumptions about the costs and revenues of these new ventures, based on existing space-based and aeronautics sector businesses, can be used to estimate the macroeconomic benefits provided by new businesses. This paper examines these benefits and the flight prices and rates that may be required to enable these new space industries.

  5. Designing for a new era of launch vehicle operational efficiency (United States)

    Talay, T. A.; Morris, W. D.; Eide, D. G.; Rehder, J. J.


    It is pointed out that early recognition of operational requirements and assessment of their effects provides the best chance of designing an economically viable future space transportation system (FSTS). Operational factors which may influence configuration design include fleet size, operation mode, refurbishment, and the resource requirements. FTST has a simplified operational role compared to the Space Shuttle, which, in addition to transportation, must perform experiments, support payloads, and stay long on orbit. In the future a space station will perform many of these tasks. The FSTS comprises a two-stage fully reusable launch vehicle designed to carry 150,000 lb to a space station, off-load, and return. It would always be launched fully loaded, and its cargo would be processed and redistributed at the space station. Attention is given to ground servicing, flight operations, rendezvous-compatible orbits, launch windows, standard trajectories, entry windows, operational costs, the mission model, and resource requirements.

  6. Design of Launch Vehicle Flight Control Systems Using Ascent Vehicle Stability Analysis Tool (United States)

    Jang, Jiann-Woei; Alaniz, Abran; Hall, Robert; Bedossian, Nazareth; Hall, Charles; Jackson, Mark


    A launch vehicle represents a complicated flex-body structural environment for flight control system design. The Ascent-vehicle Stability Analysis Tool (ASAT) is developed to address the complicity in design and analysis of a launch vehicle. The design objective for the flight control system of a launch vehicle is to best follow guidance commands while robustly maintaining system stability. A constrained optimization approach takes the advantage of modern computational control techniques to simultaneously design multiple control systems in compliance with required design specs. "Tower Clearance" and "Load Relief" designs have been achieved for liftoff and max dynamic pressure flight regions, respectively, in the presence of large wind disturbances. The robustness of the flight control system designs has been verified in the frequency domain Monte Carlo analysis using ASAT.

  7. Dynamical Modeling and Control Simulation of a Large Flexible Launch Vehicle (United States)

    Du, Wei; Wie, Bong; Whorton, Mark


    This paper presents dynamical models of a large flexible launch vehicle. A complete set of coupled dynamical models of propulsion, aerodynamics, guidance and control, structural dynamics, fuel sloshing, and thrust vector control dynamics are described. Such dynamical models are used to validate NASA s SAVANT Simulink-based program which is being used for the preliminary flight control systems analysis and design of NASA s Ares-1 Crew Launch Vehicle. SAVANT simulation results for validating the performance and stability of an ascent phase autopilot system of Ares-1 are also presented.

  8. Reusable launch vehicle: Technology development and test program (United States)


    The National Aeronautics and Space Administration (NASA) requested that the National Research Council (NRC) assess the Reusable Launch Vehicle (RLV) technology development and test programs in the most critical component technologies. At a time when discretionary government spending is under close scrutiny, the RLV program is designed to reduce the cost of access to space through a combination of robust vehicles and a streamlined infrastructure. Routine access to space has obvious benefits for space science, national security, commercial technologies, and the further exploration of space. Because of technological challenges, knowledgeable people disagree about the feasibility of a single-stage-to-orbit (SSTO) vehicle. The purpose of the RLV program proposed by NASA and industry contractors is to investigate the status of existing technology and to identify and advance key technology areas required for development and validation of an SSTO vehicle. This report does not address the feasibility of an SSTO vehicle, nor does it revisit the roles and responsibilities assigned to NASA by the National Transportation Policy. Instead, the report sets forth the NRC committee's findings and recommendations regarding the RLV technology development and test program in the critical areas of propulsion, a reusable cryogenic tank system (RCTS), primary vehicle structure, and a thermal protection system (TPS).

  9. Onboard Sensor Data Qualification in Human-Rated Launch Vehicles (United States)

    Wong, Edmond; Melcher, Kevin J.; Maul, William A.; Chicatelli, Amy K.; Sowers, Thomas S.; Fulton, Christopher; Bickford, Randall


    The avionics system software for human-rated launch vehicles requires an implementation approach that is robust to failures, especially the failure of sensors used to monitor vehicle conditions that might result in an abort determination. Sensor measurements provide the basis for operational decisions on human-rated launch vehicles. This data is often used to assess the health of system or subsystem components, to identify failures, and to take corrective action. An incorrect conclusion and/or response may result if the sensor itself provides faulty data, or if the data provided by the sensor has been corrupted. Operational decisions based on faulty sensor data have the potential to be catastrophic, resulting in loss of mission or loss of crew. To prevent these later situations from occurring, a Modular Architecture and Generalized Methodology for Sensor Data Qualification in Human-rated Launch Vehicles has been developed. Sensor Data Qualification (SDQ) is a set of algorithms that can be implemented in onboard flight software, and can be used to qualify data obtained from flight-critical sensors prior to the data being used by other flight software algorithms. Qualified data has been analyzed by SDQ and is determined to be a true representation of the sensed system state; that is, the sensor data is determined not to be corrupted by sensor faults or signal transmission faults. Sensor data can become corrupted by faults at any point in the signal path between the sensor and the flight computer. Qualifying the sensor data has the benefit of ensuring that erroneous data is identified and flagged before otherwise being used for operational decisions, thus increasing confidence in the response of the other flight software processes using the qualified data, and decreasing the probability of false alarms or missed detections.

  10. Assessment of Microphone Phased Array for Measuring Launch Vehicle Lift-off Acoustics (United States)

    Garcia, Roberto


    The specific purpose of the present work was to demonstrate the suitability of a microphone phased array for launch acoustics applications via participation in selected firings of the Ares I Scale Model Acoustics Test. The Ares I Scale Model Acoustics Test is a part of the discontinued Constellation Program Ares I Project, but the basic understanding gained from this test is expected to help development of the Space Launch System vehicles. Correct identification of sources not only improves the predictive ability, but provides guidance for a quieter design of the launch pad and optimization of the water suppression system. This document contains the results of the NASA Engineering and Safety Center assessment.

  11. Feasibility of SCRAMJET technology for an intermediate propulsive stage of an expendable launch vehicle


    Schafer, Michael D.


    Approved for public release; distribution is unlimited The single largest contributor to the cost of putting objects into space is that of the launch portion. The currently available chemical rockets are only capable of specific impulse (Isp) values on the average of 300-350 seconds, with a maximum of 450 seconds. In order to improve the performance of the current families of launch vehicles, it is necessary to increase the performance of the rocket motors, and conversely the amount of pro...

  12. Building Operations Efficiencies into NASA's Crew Launch Vehicle Design (United States)

    Dumbacher, Daniel L.


    The U.S. Vision for Space Exploration guides NASA's challenging missions of technological innovation and scientific investigation. With the Agency's commitment to complete the International Space Station (ISS) and to retire the Space Shuttle by 2010, the NASA Administrator commissioned the Exploration Systems Architecture Study (ESAS) in mid 2005 to analyze options for a safer, simpler, more cost efficient launch system that could deliver timely human-rated space transportation capabilities. NASA's finite resources yield discoveries with infinite possibilities. As the Agency begins the process of replacing the Shuttle with new launch vehicles destined for missions beyond low-Earth orbit to the Moon and Mars, NASA is designing the follow-on crew and cargo systems for maximum operational efficiencies. This mandate is imperative to reduce the $4.5 billion NASA spends on space transportation each year. This paper gives top-level details of how the follow-on Crew Launch Vehicle (CLV) is being designed for reduced lifecycle costs as a primary catalyst for the expansion of future frontiers.

  13. Hybrid propulsion for launch vehicle boosters: A program status update (United States)

    Carpenter, R. L.; Boardman, T. A.; Claflin, S. E.; Harwell, R. J.


    Results obtained in studying the origin and suppression of large-amplitude pressure oscillations in a 24 in. diameter hybrid motor using a liquid oxygen/hydroxylterminated polybutadiene/polycyclopentadiene propellant system are discussed. Tests conducted with liquid oxygen flow rates varying from 10 to 40 lbm/sec were designed to gauge the effectiveness of various vaporization chamber flow fields, injector designs, and levels of heat addition in suppressing high-frequency longitudinal mode oscillations. Longitudinal acoustic modes did not arise in any tests. However, initial testing revealed the presence of high-amplitude, sinusoidal, nonacoustic oscillations persisting throughout the burn durations. Analysis showed this to be analogous to chug mode instability in liquid rocket engines brought about by a coupling of motor combustion processes and the liquid oxygen feed system. Analytical models were developed and verified by test data to predict the amplitude and frequency of feed-system-coupled combustion pressure oscillations. Subsequent testing showed that increasing the feed system impedance eliminated the bulk mode instability. This paper documents the work completed to date in performance of the Hybrid Propulsion Technology for Launch Vehicle Boosters Program (NAS8-39942) sponsored by NASA's George C. Marshall Space Flight Center.

  14. Exploration Launch Projects RS-68B Engine Requirements for NASA's Heavy Lift Ares V (United States)

    Sumrall, John P.; McArthur, J. Craig; Lacey, Matt


    NASA's Vision for Exploration requires a safe, efficient, reliable, and versatile launch vehicle capable of placing large payloads into Earth orbit for transfer to the Moon and destinations beyond. The Ares V Cargo Launch Vehicle (CaLV) will provide this heavy lift capability. The Ares V launch concept is shown in Fig. 1. When it stands on the launch pad at Kennedy Space Center late in the next decade, the Ares V stack will be almost 360 feet tall. As currently envisioned, it will lift 133,000 to 144,000 pounds to trans-lunar injection, depending on the length of loiter time on Earth orbit. This presentation will provide an overview of the Constellation architecture, the Ares launch vehicles, and, specifically, the latest developments in the RS-68B engine for the Ares V.

  15. The Orbital/Suborbital Program (OSP) "Minotaur" Space Launch Vehicle: Using Surplus ICBM Motors to Achieve Low Cost Space Lift for Small Satellites


    Buckley, Major Steven; Weis, Captain Steven; Marina, Lieutenant Luis; Morris, Lieutenant Christopher; Schoneman, Scott


    The United States Air Force is developing a new family of launch vehicles using surplus Minuteman II rocket motors to support both orbital launches of small satellites and suborbital ICBM-trajectory missions. Under the OSP contract awarded to Orbital Sciences Corporation in September 1997, four different vehicle configurations are being developed: 1) single reentry vehicle ballistic launch, 2) multiple payload ballistic launch, 3) flight test capability for developmental upper stages, and 4) ...

  16. Crew Launch Vehicle (CLV) Upper Stage Configuration Selection Process (United States)

    Davis, Daniel J.; Coook, Jerry R.


    The Crew Launch Vehicle (CLV), a key component of NASA's blueprint for the next generation of spacecraft to take humans back to the moon, is being designed and built by engineers at NASA s Marshall Space Flight Center (MSFC). The vehicle s design is based on the results of NASA's 2005 Exploration Systems Architecture Study (ESAS), which called for development of a crew-launch system to reduce the gap between Shuttle retirement and Crew Exploration Vehicle (CEV) Initial Operating Capability, identification of key technologies required to enable and significantly enhance these reference exploration systems, and a reprioritization of near- and far-term technology investments. The Upper Stage Element (USE) of the CLV is a clean-sheet approach that is being designed and developed in-house, with element management at MSFC. The USE concept is a self-supporting cylindrical structure, approximately 115' long and 216" in diameter, consisting of the following subsystems: Primary Structures (LOX Tank, LH2 Tank, Intertank, Thrust Structure, Spacecraft Payload Adaptor, Interstage, Forward and Aft Skirts), Secondary Structures (Systems Tunnel), Avionics and Software, Main Propulsion System, Reaction Control System, Thrust Vector Control, Auxiliary Power Unit, and Hydraulic Systems. The ESAS originally recommended a CEV to be launched atop a four-segment Space Shuttle Main Engine (SSME) CLV, utilizing an RS-25 engine-powered upper stage. However, Agency decisions to utilize fewer CLV development steps to lunar missions, reduce the overall risk for the lunar program, and provide a more balanced engine production rate requirement prompted engineers to switch to a five-segment design with a single Saturn-derived J-2X engine. This approach provides for single upper stage engine development for the CLV and an Earth Departure Stage, single Reusable Solid Rocket Booster (RSRB) development for the CLV and a Cargo Launch Vehicle, and single core SSME development. While the RSRB design has

  17. Next Generation Heavy-Lift Launch Vehicle: Large Diameter, Hydrocarbon-Fueled Concepts (United States)

    Holliday, Jon; Monk, Timothy; Adams, Charles; Campbell, Ricky


    With the passage of the 2010 NASA Authorization Act, NASA was directed to begin the development of the Space Launch System (SLS) as a follow-on to the Space Shuttle Program. The SLS is envisioned as a heavy lift launch vehicle that will provide the foundation for future large-scale, beyond low Earth orbit (LEO) missions. Supporting the Mission Concept Review (MCR) milestone, several teams were formed to conduct an initial Requirements Analysis Cycle (RAC). These teams identified several vehicle concept candidates capable of meeting the preliminary system requirements. One such team, dubbed RAC Team 2, was tasked with identifying launch vehicles that are based on large stage diameters (up to the Saturn V S-IC and S-II stage diameters of 33 ft) and utilize high-thrust liquid oxygen (LOX)/RP engines as a First Stage propulsion system. While the trade space for this class of LOX/RP vehicles is relatively large, recent NASA activities (namely the Heavy Lift Launch Vehicle Study in late 2009 and the Heavy Lift Propulsion Technology Study of 2010) examined specific families within this trade space. Although the findings from these studies were incorporated in the Team 2 activity, additional branches of the trade space were examined and alternative approaches to vehicle development were considered. Furthermore, Team 2 set out to define a highly functional, flexible, and cost-effective launch vehicle concept. Utilizing this approach, a versatile two-stage launch vehicle concept was chosen as a preferred option. The preferred vehicle option has the capability to fly in several different configurations (e.g. engine arrangements) that gives this concept an inherent operational flexibility which allows the vehicle to meet a wide range of performance requirements without the need for costly block upgrades. Even still, this concept preserves the option for evolvability should the need arise in future mission scenarios. The foundation of this conceptual design is a focus on low

  18. NASA's Space Launch System: One Vehicle, Many Destinations (United States)

    May, Todd A.; Creech, Stephen D.


    The National Aeronautics and Space Administration's (NASA's) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center, is making progress toward delivering a new capability for exploration beyond Earth orbit. Developed with the goals of safety, affordability, and sustainability in mind, the SLS rocket will start its missions in 2017 with 10 percent more thrust than the Saturn V rocket that launched astronauts to the Moon 40 years ago. From there it will evolve into the most powerful launch vehicle ever flown, via an upgrade approach that will provide building blocks for future space exploration and development. The International Space Exploration Coordination Group, representing 12 of the world's space agencies, has created the Global Exploration Roadmap, which outlines paths toward a human landing on Mars, beginning with capability-demonstrating missions to the Moon or an asteroid. The Roadmap and corresponding NASA research outline the requirements for reference missions for all three destinations. This paper will explore the capability of SLS to meet those requirements and enable those missions. It will explain how the SLS Program is executing this development within flat budgetary guidelines by using existing engines assets and developing advanced technology based on heritage systems, from the initial 70 metric ton (t) lift capability through a block upgrade approach to an evolved 130-t capability. It will also detail the significant progress that has already been made toward its first launch in 2017. The SLS will offer a robust way to transport international crews and the air, water, food, and equipment they will need for extended trips to explore new frontiers. In addition, this paper will summarize the SLS rocket's capability to support science and robotic precursor missions to other worlds, or uniquely high-mass space facilities in Earth orbit. As this paper will explain, the SLS is making measurable progress toward becoming a global

  19. A Hydraulic Blowdown Servo System For Launch Vehicle (United States)

    Chen, Anping; Deng, Tao


    This paper introduced a hydraulic blowdown servo system developed for a solid launch vehicle of the family of Chinese Long March Vehicles. It's the thrust vector control (TVC) system for the first stage. This system is a cold gas blowdown hydraulic servo system and consist of gas vessel, hydraulic reservoir, servo actuator, digital control unit (DCU), electric explosion valve, and pressure regulator etc. A brief description of the main assemblies and characteristics follows. a) Gas vessel is a resin/carbon fiber composite over wrapped pressure vessel with a titanium liner, The volume of the vessel is about 30 liters. b) Hydraulic reservoir is a titanium alloy piston type reservoir with a magnetostrictive sensor as the fluid level indicator. The volume of the reservoir is about 30 liters. c) Servo actuator is a equal area linear piston actuator with a 2-stage low null leakage servo valve and a linear variable differential transducer (LVDT) feedback the piston position, Its stall force is about 120kN. d) Digital control unit (DCU) is a compact digital controller based on digital signal processor (DSP), and deployed dual redundant 1553B digital busses to communicate with the on board computer. e) Electric explosion valve is a normally closed valve to confine the high pressure helium gas. f) Pressure regulator is a spring-loaded poppet pressure valve, and regulates the gas pressure from about 60MPa to about 24MPa. g) The whole system is mounted in the aft skirt of the vehicle. h) This system delivers approximately 40kW hydraulic power, by contrast, the total mass is less than 190kg. the power mass ratio is about 0.21. Have finished the development and the system test. Bench and motor static firing tests verified that all of the performances have met the design requirements. This servo system is complaint to use of the solid launch vehicle.

  20. HEUS-RS applications study, volume 1. [for Titan 3 and Thor launch vehicles (United States)


    Studies are given for sizing and integrating a high energy upper stage restartable solid motor into a flight stage with various payloads for use with Titan 3 and Thor launch vehicles. Motor and stage configurations are given along with performance evaluation of the HEUS-RS with the space shuttle.

  1. 14 CFR 431.79 - Reusable launch vehicle mission reporting requirements. (United States)


    ... in accordance with 14 CFR § 415.59 of this chapter and § 431.57; and (2) Flight information, including the vehicle, launch site, planned launch and reentry flight path, and intended landing sites... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Reusable launch vehicle mission...

  2. Flight Force Measurements on a Spacecraft to Launch Vehicle Interface (United States)

    Kaufman, Daniel S.; Gordon, Scott A.


    For several years we had wanted to measure interface forces between a launch vehicle and the Payload. Finally in July 2006 a proposal was made and funded to evaluate the use of flight force measurements (FFM) to improve the loads process of a Spacecraft in its design and test cycle. A NASA/Industry team was formed, the core Team consisted of 20 people. The proposal identified two questions that this assessment would attempt to address by obtaining the flight forces. These questions were: 1) Is flight correlation and reconstruction with acceleration methods sufficient? 2) How much can the loads and therefore the design and qualification be reduced by having force measurements? The objective was to predict the six interface driving forces between the Spacecraft and the Launch Vehicle throughout the boost phase. Then these forces would be compared with reconstructed loads analyses for evaluation in an attempt to answer them. The paper will present the development of a strain based force measurement system and also an acceleration method, actual flight results, post flight evaluations and lessons learned.

  3. TPS Materials and Costs for Future Reusable Launch Vehicles (United States)

    Rasky, Dan J.; Milos, Frank S.; Squire, Tom H.; Arnold, James O. (Technical Monitor)


    There is considerable interest in developing new reusable launch vehicles (RLVs) for reducing the cost of transporting payload to and from orbit. This work reviews thirteen candidate thermal protection system (TPS) options currently available for RLVs. It is useful to begin with the current Shuttle TPS layout as a reference. The nose cap and wing leading edge , which reach the highest temperatures, are made of reinforced carbon-carbon (RCC) that is protected from oxidation by an external coating (about 0.020" thick) of silicon-carbide. Most of the windward surface is 9 lb/cubic ft ceramic tiles (LI-900) with a thin (about 0.012") coating of Reaction Cured Glass (RCG). The leeward side of the vehicle is covered largely by AFRSI, a quilted ceramic blanket, and FRSI, a polyamide felt. These four materials can be considered first generation reusable TPS. Since the time of the Shuttle design, considerable progress has been made advancing TPS technologies in terms of thermal performance, robustness, and cost. For each of the major systems, a second generation ceramic TPS has been developed, tested, and characterized. Metallic-based systems have also been developed. For applications requiring RCC in the past, advanced carbon-carbon (ACC) is now available. This material has better mechanical properties, somewhat higher temperature capability to 2900F and greatly increased oxidation resistance. New carbon fiber reinforced silicon-carbide matrix composites (C/SiCs) have shown additional improvement in properties over ACC with use temperatures to 3000F and above. For rigid tiles, NASA Ames has made two significant advancements. The first is a tile substrate called Alumina Enhanced Thermal Barrier, or AETB, that incorporates alumina fibers for improved dimensional stability at high temperatures, to 2600F and above. This material can be made to densities as low as 8 lb/cubic ft. The second is a coating preparation called Toughened Uni-piece Fibrous Insulation, or TUFT, that

  4. Development of Response Surface Models for Rapid Analysis & Multidisciplinary Optimization of Launch Vehicle Design Concepts (United States)

    Unal, Resit


    Multdisciplinary design optimization (MDO) is an important step in the design and evaluation of launch vehicles, since it has a significant impact on performance and lifecycle cost. The objective in MDO is to search the design space to determine the values of design parameters that optimize the performance characteristics subject to system constraints. Vehicle Analysis Branch (VAB) at NASA Langley Research Center has computerized analysis tools in many of the disciplines required for the design and analysis of launch vehicles. Vehicle performance characteristics can be determined by the use of these computerized analysis tools. The next step is to optimize the system performance characteristics subject to multidisciplinary constraints. However, most of the complex sizing and performance evaluation codes used for launch vehicle design are stand-alone tools, operated by disciplinary experts. They are, in general, difficult to integrate and use directly for MDO. An alternative has been to utilize response surface methodology (RSM) to obtain polynomial models that approximate the functional relationships between performance characteristics and design variables. These approximation models, called response surface models, are then used to integrate the disciplines using mathematical programming methods for efficient system level design analysis, MDO and fast sensitivity simulations. A second-order response surface model of the form given has been commonly used in RSM since in many cases it can provide an adequate approximation especially if the region of interest is sufficiently limited.

  5. High-Fidelity Prediction of Launch Vehicle Liftoff Acoustic Fields Project (United States)

    National Aeronautics and Space Administration — The high-intensity level acoustic load generated by large launch vehicle lift-off propulsion is of major concern for the integrity of the launch complex and the...

  6. Cryogenic Insulation Bondline Studies for Reusable Launch Vehicles (United States)

    Johnson, T. F.; Weiser, E. S.; Duong, P. G.


    Cryogenic insulations bonded to metallic substrates were characterized under simulated mission conditions representative for a reusable launch vehicle. The combined thermal and mechanical test consisted of 50 to a 100 cycles. These combined thermal and mechanical cycles simulated flight missions with temperatures ranging from -423 F to 450 F and a maximum mechanical tension load ranging from 20,000 lbs. to 97,650 lbs. The combined thermal and mechanical (uniaxial tension) test apparatus (1 ft. by 2 ft. Test Apparatus) developed at the NASA Langley Research Center, was used to perform cyclic tests on cryogenic insulations bonded to tank wall substrates. No visual delamination or degradation was observed in the cryogenic insulation-to-metallic substrate bondline or butt joints between cryogenic insulation panels. In addition, after cyclic testing was performed, residual property results from tension-pull and closed-cell content tests of the cryogenic insulations indicated a decrease in the bondline strength and closed-cell content.

  7. Particle swarm optimization of ascent trajectories of multistage launch vehicles (United States)

    Pontani, Mauro


    Multistage launch vehicles are commonly employed to place spacecraft and satellites in their operational orbits. If the rocket characteristics are specified, the optimization of its ascending trajectory consists of determining the optimal control law that leads to maximizing the final mass at orbit injection. The numerical solution of a similar problem is not trivial and has been pursued with different methods, for decades. This paper is concerned with an original approach based on the joint use of swarming theory and the necessary conditions for optimality. The particle swarm optimization technique represents a heuristic population-based optimization method inspired by the natural motion of bird flocks. Each individual (or particle) that composes the swarm corresponds to a solution of the problem and is associated with a position and a velocity vector. The formula for velocity updating is the core of the method and is composed of three terms with stochastic weights. As a result, the population migrates toward different regions of the search space taking advantage of the mechanism of information sharing that affects the overall swarm dynamics. At the end of the process the best particle is selected and corresponds to the optimal solution to the problem of interest. In this work the three-dimensional trajectory of the multistage rocket is assumed to be composed of four arcs: (i) first stage propulsion, (ii) second stage propulsion, (iii) coast arc (after release of the second stage), and (iv) third stage propulsion. The Euler-Lagrange equations and the Pontryagin minimum principle, in conjunction with the Weierstrass-Erdmann corner conditions, are employed to express the thrust angles as functions of the adjoint variables conjugate to the dynamics equations. The use of these analytical conditions coming from the calculus of variations leads to obtaining the overall rocket dynamics as a function of seven parameters only, namely the unknown values of the initial state

  8. Numerical prediction of Plume Induced Flow Separation (PIFS) on launch vehicles

    International Nuclear Information System (INIS)

    Lockheed Martin Astronautics designs and operates launch vehicles that deliver payloads into specific geosynchronous orbits for the government and the commercial market place. Lockheed's family Atlas Launch Vehicles are an industry leader in this very competitive business and remain in this position by continuously optimizing the Atlas design to increase its performance. However, the unknown overall effects of a phenomenon that occurs when aircraft operate at high altitudes is hindering the advancement of the vehicle. Engineers have known for years through observations and calculations that the exhaust plume from an aircraft's engine undergoes changes in shape and increases in size as the aircraft gains altitude and speed. The change in exhaust plum configuration typically leads to interaction between the exhaust gases and freestream air, which is the cause of the phenomenon know as Plume Induced Flow Separation (PIFS). PIFS separates the external flow from the surface of the vehicle allowing the hot exhaust gases to climb forward from the engines toward the aircraft's leading end. Long believed to harmlessly climb the outside surfaces of aircraft, the mostly unknown phenomenon in now feared to hamper the performance of today's launch vehicles. Lockheed Martin has contracted the research study of PIFS to better understand the flowfield and then use that information to optimize the design of their launch vehicles and mitigate ifs effects. A study of the phenomenon, its resulting flowfield and thermal environment, is greatly needed to add to the knowledge of bases of PIFS and aerospace flight. The study presented outlines the development of a numerical model, which was used to investigate the effects of PIFS on an Atlas IIIA Launch Vehicle by simulating the vehicle operating under flight conditions where PIFS is most likely to occur. The model was validated by comparing numerical results with experimental data and verified by reviewing the flow physics captured. The

  9. Transfer Alignment for Space Vehicles Launched from a Moving Base

    Directory of Open Access Journals (Sweden)

    S. K. Chaudhuri


    Full Text Available Alignment of the inertial measurement unit (IMU is a prerequisite for any space vehicle with self-contained navigation and guidance for any mission-critical application. Normally, inertialmeasurement unit is aligned through gyro-compassing using the stored data for heading. In case of launch from a moving base, it is essential to align the inertial measurement unit in the vehicle (slave unit with that mounted on the moving platform (master unit. The master inertial navigation system is more accurate, stable, and calibrated wrt the slave unit. An error propagation system involving the misalignment between the master and the slave has been formulated involving the three misalignment angles, three velocity errors, and three positional errors. The manoeuvre of the moving base excites the sensors of both the master and the slave inertial navigation systems for the generation of data to be used in aligning the slave inertial measurement unit of the inertial navigation system (strapdown mode. The entire duration of manoeuvre has to be reduced to a minimum with minimum effort of manoeuvre. This involves the deployment of an adaptive estimator and a linear quadratic Gaussian regulator for alignment of the strapdown slave inertial navigation system.

  10. Applying Monte Carlo Simulation to Launch Vehicle Design and Requirements Analysis (United States)

    Hanson, J. M.; Beard, B. B.


    This Technical Publication (TP) is meant to address a number of topics related to the application of Monte Carlo simulation to launch vehicle design and requirements analysis. Although the focus is on a launch vehicle application, the methods may be applied to other complex systems as well. The TP is organized so that all the important topics are covered in the main text, and detailed derivations are in the appendices. The TP first introduces Monte Carlo simulation and the major topics to be discussed, including discussion of the input distributions for Monte Carlo runs, testing the simulation, how many runs are necessary for verification of requirements, what to do if results are desired for events that happen only rarely, and postprocessing, including analyzing any failed runs, examples of useful output products, and statistical information for generating desired results from the output data. Topics in the appendices include some tables for requirements verification, derivation of the number of runs required and generation of output probabilistic data with consumer risk included, derivation of launch vehicle models to include possible variations of assembled vehicles, minimization of a consumable to achieve a two-dimensional statistical result, recontact probability during staging, ensuring duplicated Monte Carlo random variations, and importance sampling.

  11. A Near-Term, High-Confidence Heavy Lift Launch Vehicle (United States)

    Rothschild, William J.; Talay, Theodore A.


    The use of well understood, legacy elements of the Space Shuttle system could yield a near-term, high-confidence Heavy Lift Launch Vehicle that offers significant performance, reliability, schedule, risk, cost, and work force transition benefits. A side-mount Shuttle-Derived Vehicle (SDV) concept has been defined that has major improvements over previous Shuttle-C concepts. This SDV is shown to carry crew plus large logistics payloads to the ISS, support an operationally efficient and cost effective program of lunar exploration, and offer the potential to support commercial launch operations. This paper provides the latest data and estimates on the configurations, performance, concept of operations, reliability and safety, development schedule, risks, costs, and work force transition opportunities for this optimized side-mount SDV concept. The results presented in this paper have been based on established models and fully validated analysis tools used by the Space Shuttle Program, and are consistent with similar analysis tools commonly used throughout the aerospace industry. While these results serve as a factual basis for comparisons with other launch system architectures, no such comparisons are presented in this paper. The authors welcome comparisons between this optimized SDV and other Heavy Lift Launch Vehicle concepts.

  12. Considerations in Launch Vehicle Abort Capability and Failure Tolerance (United States)

    Hale, N. W., Jr.; Conte, B. A.


    operations, the Space Shuttle was designed to incur loss of thrust from one engine at liftoff and return safely to a runway. This is a very unusual capability in space launch vehicles and, if desired, must be designed into the system initially. For some extremely high value payloads on future expendable launch vehicles, this capability may be cost effective as well as for human space flights. Current designers may be inclined to design a "simple" emergency escape pod to resolve this issue. That may neither be the most effective nor the safest way to provide ascent failure tolerance. This paper discusses some real-world issues associated with this capability that the designers of the Space Shuttle did take into account that have become serious issues in real operations. paper discusses the affect of payload mass on abort capability. Issues related to abort modes can also be influence by other aspects of payload mass including center of gravity concerns. In a similar mode, consumables such as on-orbit attitude control propellant is a major factor in abort mode design. multiple engine failures during the powered ascent trajectory and have a happy outcome: landing on a runway. This paper discusses options and post-design fixes to the Space Shuttle to enhance multiple engine out capability. scenarios. include propellant underload on STS-61C, off nominal performance of engine clusters on STS-78 and STS-93, and other flights. Designers of these future human rated vehicles should consider the Space Shuttle experience in designing their systems. About the Authors: N. Wayne Hale, Jr. is currently the Deputy Chief for Shuttle of the NASA/JSC Flight Director Office. In 23 years with NASA at Houston's Johnson Space Center, he has served in the Mission Control Center for 41 Space Shuttle flights including 25 as Entry Flight Director. Mr. Hale received his Bachelor of Science Degree in Mechanical Engineering from Rice University in 1976 and his Master of Science Degree in

  13. Grid Fin Stabilization of the Orion Launch Abort Vehicle (United States)

    Pruzan, Daniel A.; Mendenhall, Michael R.; Rose, William C.; Schuster, David M.


    Wind tunnel tests were conducted by Nielsen Engineering & Research (NEAR) and Rose Engineering & Research (REAR) in conjunction with the NASA Engineering & Safety Center (NESC) on a 6%-scale model of the Orion launch abort vehicle (LAV) configured with four grid fins mounted near the base of the vehicle. The objectives of these tests were to 1) quantify LAV stability augmentation provided by the grid fins from subsonic through supersonic Mach numbers, 2) assess the benefits of swept grid fins versus unswept grid fins on the LAV, 3) determine the effects of the LAV abort motors on grid fin aerodynamics, and 4) generate an aerodynamic database for use in the future application of grid fins to small length-to-diameter ratio vehicles similar to the LAV. The tests were conducted in NASA Ames Research Center's 11x11-foot transonic wind tunnel from Mach 0.5 through Mach 1.3 and in their 9x7-foot supersonic wind tunnel from Mach 1.6 through Mach 2.5. Force- and moment-coefficient data were collected for the complete vehicle and for each individual grid fin as a function of angle of attack and sideslip angle. Tests were conducted with both swept and unswept grid fins with the simulated abort motors (cold jets) off and on. The swept grid fins were designed with a 22.5deg aft sweep angle for both the frame and the internal lattice so that the frontal projection of the swept fins was the same as for the unswept fins. Data from these tests indicate that both unswept and swept grid fins provide significant improvements in pitch stability as compared to the baseline vehicle over the Mach number range investigated. The swept fins typically provide improved stability as compared to the unswept fins, but the performance gap diminished as Mach number was increased. The aerodynamic performance of the fins was not observed to degrade when the abort motors were turned on. Results from these tests indicate that grid fins can be a robust solution for stabilizing the Orion LAV over a wide

  14. ATK Launch Vehicle (ALV-X1) Liftoff Acoustic Environments: Prediction vs. Measurement (United States)

    Houston, J.; Counter, Douglas; Kenny, Jeremy; Murphy, John


    Launched from the Mid-Atlantic Regional Spaceport (MARS) Pad 01B on August 22, 2008, the ATK Launch Vehicle (ALV-X1) provided an opportunity to measure liftoff acoustic noise data. Predicted lift-off acoustic environments were developed by both NASA MSFC and ATK engineers. ATK engineers developed predictions for use in determining vibro-acoustic loads using the method described in the monograph NASA SP-8072. The MSFC ALV-X1 lift-off acoustic prediction was made with the Vehicle Acoustic Environment Prediction Program (VAEPP). The VAEPP and SP-8072 methods predict acoustic pressures of rocket systems generally scaled to existing rocket motor data based upon designed motor or engine characteristics. The predicted acoustic pressures are sound-pressure spectra at specific positions on the vehicle. This paper presents the measured liftoff acoustics on the vehicle and tower. This data is useful for the ALV-X1 in validating the pre-launch environments and loads predictions.

  15. Reusable launch vehicles, enabling technology for the development of advanced upper stages and payloads

    International Nuclear Information System (INIS)

    In the near future there will be classes of upper stages and payloads that will require initial operation at a high-earth orbit to reduce the probability of an inadvertent reentry that could result in a detrimental impact on humans and the biosphere. A nuclear propulsion system, such as was being developed under the Space Nuclear Thermal Propulsion (SNTP) Program, is an example of such a potential payload. This paper uses the results of a reusable launch vehicle (RLV) study to demonstrate the potential importance of a Reusable Launch Vehicle (RLV) to test and implement an advanced upper stage (AUS) or payload in a safe orbit and in a cost effective and reliable manner. The RLV is a horizontal takeoff and horizontal landing (HTHL), two-stage-to-orbit (TSTO) vehicle. The results of the study shows that an HTHL is cost effective because it implements airplane-like operation, infrastructure, and flight operations. The first stage of the TSTO is powered by Rocket-Based-Combined-Cycle (RBCC) engines, the second stage is powered by a LOX/LH rocket engine. The TSTO is used since it most effectively utilizes the capability of the RBCC engine. The analysis uses the NASA code POST (Program to Optimize Simulated Trajectories) to determine trajectories and weight in high-earth orbit for AUS/advanced payloads. Cost and reliability of an RLV versus current generation expandable launch vehicles are presented

  16. DUKSUP: A Computer Program for High Thrust Launch Vehicle Trajectory Design and Optimization (United States)

    Spurlock, O. Frank; Williams, Craig H.


    From the late 1960s through 1997, the leadership of NASAs Intermediate and Large class unmanned expendable launch vehicle projects resided at the NASA Lewis (now Glenn) Research Center (LeRC). One of LeRCs primary responsibilities --- trajectory design and performance analysis --- was accomplished by an internally-developed analytic three dimensional computer program called DUKSUP. Because of its Calculus of Variations-based optimization routine, this code was generally more capable of finding optimal solutions than its contemporaries. A derivation of optimal control using the Calculus of Variations is summarized including transversality, intermediate, and final conditions. The two point boundary value problem is explained. A brief summary of the codes operation is provided, including iteration via the Newton-Raphson scheme and integration of variational and motion equations via a 4th order Runge-Kutta scheme. Main subroutines are discussed. The history of the LeRC trajectory design efforts in the early 1960s is explained within the context of supporting the Centaur upper stage program. How the code was constructed based on the operation of the AtlasCentaur launch vehicle, the limits of the computers of that era, the limits of the computer programming languages, and the missions it supported are discussed. The vehicles DUKSUP supported (AtlasCentaur, TitanCentaur, and ShuttleCentaur) are briefly described. The types of missions, including Earth orbital and interplanetary, are described. The roles of flight constraints and their impact on launch operations are detailed (such as jettisoning hardware on heating, Range Safety, ground station tracking, and elliptical parking orbits). The computer main frames on which the code was hosted are described. The applications of the code are detailed, including independent check of contractor analysis, benchmarking, leading edge analysis, and vehicle performance improvement assessments. Several of DUKSUPs many major impacts on

  17. Quality Control Algorithms and Proposed Integration Process for Wind Profilers Used by Launch Vehicle Systems (United States)

    Decker, Ryan; Barbre, Robert E., Jr.


    Impact of winds to space launch vehicle include Design, Certification Day-of-launch (DOL) steering commands (1)Develop "knockdowns" of load indicators (2) Temporal uncertainty of flight winds. Currently use databases from weather balloons. Includes discrete profiles and profile pair datasets. Issues are : (1)Larger vehicles operate near design limits during ascent 150 discrete profiles per month 110-217 seasonal 2.0 and 3.5-hour pairs Balloon rise time (one hour) and drift (up to 100 n mi) Advantages of the Alternative approach using Doppler Radar Wind Profiler (DRWP) are: (1) Obtain larger sample size (2) Provide flexibility for assessing trajectory changes due to winds (3) Better representation of flight winds.

  18. Inviscid and Viscous CFD Analysis of Booster Separation for the Space Launch System Vehicle (United States)

    Dalle, Derek J.; Rogers, Stuart E.; Chan, William M.; Lee, Henry C.


    This paper presents details of Computational Fluid Dynamic (CFD) simulations of the Space Launch System during solid-rocket booster separation using the Cart3D inviscid and Overflow viscous CFD codes. The discussion addresses the use of multiple data sources of computational aerodynamics, experimental aerodynamics, and trajectory simulations for this critical phase of flight. Comparisons are shown between Cart3D simulations and a wind tunnel test performed at NASA Langley Research Center's Unitary Plan Wind Tunnel, and further comparisons are shown between Cart3D and viscous Overflow solutions for the flight vehicle. The Space Launch System (SLS) is a new exploration-class launch vehicle currently in development that includes two Solid Rocket Boosters (SRBs) modified from Space Shuttle hardware. These SRBs must separate from the SLS core during a phase of flight where aerodynamic loads are nontrivial. The main challenges for creating a separation aerodynamic database are the large number of independent variables (including orientation of the core, relative position and orientation of the boosters, and rocket thrust levels) and the complex flow caused by exhaust plumes of the booster separation motors (BSMs), which are small rockets designed to push the boosters away from the core by firing partially in the direction opposite to the motion of the vehicle.

  19. Virtual Instrumentation Techniques in Test and Evaluation of Launch Vehicle Avionics


    R. Sethunadh; S. Athuladevi; S. Sankara Iyer


    This paper presents the concept of virtual instrumentation and its importance in test and evaluation of launch vehicle avionics. The experiences at the Vikram Sarabhai Space Centre (VSSC) with virtual instrumentation systems, highlighting the virtual instrumentation-based checkout systems of pyro current monitoring package and video image processing unit are presented. The virtual instrumentation system-based checkouts present cost-effective, compact, and user-friendly human-machine in...

  20. LQG controller designs from reduced order models for a launch vehicle

    Indian Academy of Sciences (India)

    Ashwin Dhabale; R N Banavar; M V Dhekane


    The suppression of liquid fuel slosh motion is critical in a launch vehicle (LV). In particular, during certain stages of the launch, the dynamics of the fuel interacts adversely with the rigid body dynamics of the LV and the feedback controller must attentuate these effects. This paper describes the effort of a multivariable control approach applied to the Geosynchronous Satellite Launch Vehicle (GSLV) of the Indian Space Research Organization (ISRO) during a certain stage of its launch. The fuel slosh dynamics are modelled using a pendulum model analogy. We describe two design methodologies using the Linear-Quadratic Gaussian (LQG) technique. The novelty of the technique is that we apply the LQG design for models that are reduced in order through inspection alone. This is possible from a perspective that the LV could be viewed as many small systems attached to a main body and the interactions of some of these smaller systems could be neglected at the controller design stage provided sufficient robustness is ensured by the controller. The first LQG design is carried out without the actuator dynamics incorporated at the design stage and for the second design we neglect the slosh dynamics as well.

  1. Optimal trajectory reconfiguration and retargeting for the X-33 reusable launch vehicle


    Shaffer, Patrick J.


    This thesis considers the problem of generating optimal entry trajectories for a reusable launch vehicle following a control surface failure. The thesis builds upon the work of Dr. David Doman, Dr. Michael Oppenheimer and Dr. Michael Bolender of the Air Vehicles Directorate, Air Force Research Lab Dayton Ohio. The primary focus of this work is to demonstrate the feasibility of inner loop reconfiguration and outer loop trajectory retargeting and replanning for the X-33 reusable launch vehicle ...

  2. Optimal trajectory designs and systems engineering analyses of reusable launch vehicles (United States)

    Tsai, Hung-I. Bruce

    Realizing a reusable launch vehicle (RLU) that is low cost with highly effective launch capability has become the "Holy Grail" within the aerospace community world-wide. Clear understanding of the vehicle's operational limitations and flight characteristics in all phases of the flight are preponderant components in developing such a launch system. This dissertation focuses on characterizing and designing the RLU optimal trajectories in order to aid in strategic decision making during mission planning in four areas: (1) nominal ascent phase, (2) abort scenarios and trajectories during ascent phase including abort-to-orbit (ATO), transoceanic-abort-landing (TAL) and return-to-launch-site (RTLS), (3) entry phase (including footprint), and (4) systems engineering aspects of such flight trajectory design. The vehicle chosen for this study is the Lockheed Martin X-33 lifting-body design that lifts off vertically with two linear aerospike rocket engines and lands horizontally. An in-depth investigation of the optimal endo-atmospheric ascent guidance parameters such as earliest abort time, engine throttle setting, number of flight phases, flight characteristics and structural design limitations will be performed and analyzed to establish a set of benchmarks for making better trade-off decisions. Parametric analysis of the entry guidance will also be investigated to allow the trajectory designer to pinpoint relevant parameters and to generate optimal constrained trajectories. Optimal ascent and entry trajectories will be generated using a direct transcription method to cast the optimal control problem as a nonlinear programming problem. The solution to the sparse nonlinear programming problem is then solved using sequential quadratic programming. Finally, guidance system hierarchy studies such as work breakdown structure, functional analysis, fault-tree analysis, and configuration management will be developed to ensure that the guidance system meets the definition of

  3. Ares V: A National Launch Asset for the 21st Century (United States)

    Sumrall, Phil; Creech, Steve


    NASA is designing the Ares V as the cargo launch vehicle to carry NASA's exploration plans into the 21st century. The Ares V is the heavy-lift component of NASA's dual-launch architecture that will replace the current space shuttle fleet, complete the International Space Station, and establish a permanent human presence on the Moon as a stepping stone to destinations beyond. During extensive independent and internal architecture and vehicle trade studies as part of the Exploration Systems Architecture Study, NASA selected the Ares I crew launch vehicle and the Ares V to support future exploration. The smaller Ares I will launch the Orion crew exploration vehicle with four to six astronauts into orbit. The Ares V is designed to carry the Altair lunar lander into orbit, rendezvous with Orion, and send the mated spacecraft toward lunar orbit. The Ares V will be the largest and most powerful launch vehicle in history, providing unprecedented payload mass and volume to establish a permanent lunar outpost and explore significantly more of the lunar surface than was done during the Apollo missions. The Ares V also represents a national asset offering opportunities for new science, national security, and commercial missions of unmatched size and scope. Using the dual-launch Earth Orbit Rendezvous approach, the Ares I and Ares V together will be able to inject roughly 57percent more mass to the Moon than the Apollo-era Saturn V. Ares V alone will be able to send nearly 414,000 pounds into low Earth orbit (LEO) or more than 138,000 pounds directly to the Moon, compared with 262,000 pounds and 99,000 pounds, respectively for the Saturn V. Significant progress has been made on the Ares V to support a planned fiscal 2011 authority-to-proceed (ATP) milestone. This paper discusses recent progress on the Ares V and planned future activities.

  4. Application of Fault Management Theory to the Quantitative Selection of a Launch Vehicle Abort Trigger Suite (United States)

    Lo, Yunnhon; Johnson, Stephen B.; Breckenridge, Jonathan T.


    The theory of System Health Management (SHM) and of its operational subset Fault Management (FM) states that FM is implemented as a "meta" control loop, known as an FM Control Loop (FMCL). The FMCL detects that all or part of a system is now failed, or in the future will fail (that is, cannot be controlled within acceptable limits to achieve its objectives), and takes a control action (a response) to return the system to a controllable state. In terms of control theory, the effectiveness of each FMCL is estimated based on its ability to correctly estimate the system state, and on the speed of its response to the current or impending failure effects. This paper describes how this theory has been successfully applied on the National Aeronautics and Space Administration's (NASA) Space Launch System (SLS) Program to quantitatively estimate the effectiveness of proposed abort triggers so as to select the most effective suite to protect the astronauts from catastrophic failure of the SLS. The premise behind this process is to be able to quantitatively provide the value versus risk trade-off for any given abort trigger, allowing decision makers to make more informed decisions. All current and planned crewed launch vehicles have some form of vehicle health management system integrated with an emergency launch abort system to ensure crew safety. While the design can vary, the underlying principle is the same: detect imminent catastrophic vehicle failure, initiate launch abort, and extract the crew to safety. Abort triggers are the detection mechanisms that identify that a catastrophic launch vehicle failure is occurring or is imminent and cause the initiation of a notification to the crew vehicle that the escape system must be activated. While ensuring that the abort triggers provide this function, designers must also ensure that the abort triggers do not signal that a catastrophic failure is imminent when in fact the launch vehicle can successfully achieve orbit. That is

  5. Probabilistic Sensitivity Analysis for Launch Vehicles with Varying Payloads and Adapters for Structural Dynamics and Loads (United States)

    McGhee, David S.; Peck, Jeff A.; McDonald, Emmett J.


    This paper examines Probabilistic Sensitivity Analysis (PSA) methods and tools in an effort to understand their utility in vehicle loads and dynamic analysis. Specifically, this study addresses how these methods may be used to establish limits on payload mass and cg location and requirements on adaptor stiffnesses while maintaining vehicle loads and frequencies within established bounds. To this end, PSA methods and tools are applied to a realistic, but manageable, integrated launch vehicle analysis where payload and payload adaptor parameters are modeled as random variables. This analysis is used to study both Regional Response PSA (RRPSA) and Global Response PSA (GRPSA) methods, with a primary focus on sampling based techniques. For contrast, some MPP based approaches are also examined.

  6. Coupled Solid Rocket Motor Ballistics and Trajectory Modeling for Higher Fidelity Launch Vehicle Design (United States)

    Ables, Brett


    Multi-stage launch vehicles with solid rocket motors (SRMs) face design optimization challenges, especially when the mission scope changes frequently. Significant performance benefits can be realized if the solid rocket motors are optimized to the changing requirements. While SRMs represent a fixed performance at launch, rapid design iterations enable flexibility at design time, yielding significant performance gains. The streamlining and integration of SRM design and analysis can be achieved with improved analysis tools. While powerful and versatile, the Solid Performance Program (SPP) is not conducive to rapid design iteration. Performing a design iteration with SPP and a trajectory solver is a labor intensive process. To enable a better workflow, SPP, the Program to Optimize Simulated Trajectories (POST), and the interfaces between them have been improved and automated, and a graphical user interface (GUI) has been developed. The GUI enables real-time visual feedback of grain and nozzle design inputs, enforces parameter dependencies, removes redundancies, and simplifies manipulation of SPP and POST's numerous options. Automating the analysis also simplifies batch analyses and trade studies. Finally, the GUI provides post-processing, visualization, and comparison of results. Wrapping legacy high-fidelity analysis codes with modern software provides the improved interface necessary to enable rapid coupled SRM ballistics and vehicle trajectory analysis. Low cost trade studies demonstrate the sensitivities of flight performance metrics to propulsion characteristics. Incorporating high fidelity analysis from SPP into vehicle design reduces performance margins and improves reliability. By flying an SRM designed with the same assumptions as the rest of the vehicle, accurate comparisons can be made between competing architectures. In summary, this flexible workflow is a critical component to designing a versatile launch vehicle model that can accommodate a volatile

  7. Optimal control theory determination of feasible return-to-launch-site aborts for the HL-20 Personnel Launch System vehicle (United States)

    Dutton, Kevin E.


    The personnel launch system (PLS) being studied by NASA is a system to complement the space shuttle and provide alternative access to space. The PLS consists of a manned spacecraft launched by an expendable launch vehicle (ELV). A candidate for the manned spacecraft is the HL-20 lifting body. In the event of an ELV malfunction during the initial portion of the ascent trajectory, the HL-20 will separate from the rocket and perform an unpowered return to launch site (RTLS) abort. This work details an investigation, using optimal control theory, of the RTLS abort scenario. The objective of the optimization was to maximize final altitude. With final altitude as the cost function, the feasibility of an RTLS abort at different times during the ascent was determined. The method of differential inclusions was used to determine the optimal state trajectories, and the optimal controls were then calculated from the optimal states and state rates.

  8. Optimal control theory determination of feasible return-to-launch-site aborts for the HL-20 Personnel Launch System vehicle (United States)

    Dutton, Kevin E.


    The personnel launch system (PLS) being studied by NASA is a system to complement the space shuttle and provide alternative access to space. The PLS consists of a manned spacecraft launched by an expendable launch vehicle (ELV). A candidate for the manned spacecraft is the HL-20 lifting body. In the event of an ELV malfunction during the initial portion of the ascent trajectory, the HL-20 will separate from the rocket and perform an unpowered return to launch site (RTLS) abort. This work details an investigation, using optimal control theory, of the RTLS abort scenario. The objective of the optimization was to maximize final altitude. With final altitude as the cost function, the feasibility of an RTLS abort at different times during the ascent was determined. The method of differential inclusions was used to determine the optimal state trajectories, and the optimal controls were then calculated from the optimal states and state rates.

  9. Closed-loop endo-atmospheric ascent guidance for reusable launch vehicle (United States)

    Sun, Hongsheng

    This dissertation focuses on the development of a closed-loop endo-atmospheric ascent guidance algorithm for the 2nd generation reusable launch vehicle. Special attention has been given to the issues that impact on viability, complexity and reliability in on-board implementation. The algorithm is called once every guidance update cycle to recalculate the optimal solution based on the current flight condition, taking into account atmospheric effects and path constraints. This is different from traditional ascent guidance algorithms which operate in a simple open-loop mode inside atmosphere, and later switch to a closed-loop vacuum ascent guidance scheme. The classical finite difference method is shown to be well suited for fast solution of the constrained optimal three-dimensional ascent problem. The initial guesses for the solutions are generated using an analytical vacuum optimal ascent guidance algorithm. Homotopy method is employed to gradually introduce the aerodynamic forces to generate the optimal solution from the optimal vacuum solution. The vehicle chosen for this study is the Lockheed Martin X-33 lifting-body reusable launch vehicle. To verify the algorithm presented in this dissertation, a series of open-loop and closed-loop tests are performed for three different missions. Wind effects are also studied in the closed-loop simulations. For comparison, the solutions for the same missions are also obtained by two independent optimization softwares. The results clearly establish the feasibility of closed-loop endo-atmospheric ascent guidance of rocket-powered launch vehicles. ATO cases are also tested to assess the adaptability of the algorithm to autonomously incorporate the abort modes.

  10. Systems Engineering Approach to Technology Integration for NASA's 2nd Generation Reusable Launch Vehicle (United States)

    Thomas, Dale; Smith, Charles; Thomas, Leann; Kittredge, Sheryl


    The overall goal of the 2nd Generation RLV Program is to substantially reduce technical and business risks associated with developing a new class of reusable launch vehicles. NASA's specific goals are to improve the safety of a 2nd-generation system by 2 orders of magnitude - equivalent to a crew risk of 1-in-10,000 missions - and decrease the cost tenfold, to approximately $1,000 per pound of payload launched. Architecture definition is being conducted in parallel with the maturating of key technologies specifically identified to improve safety and reliability, while reducing operational costs. An architecture broadly includes an Earth-to-orbit reusable launch vehicle, on-orbit transfer vehicles and upper stages, mission planning, ground and flight operations, and support infrastructure, both on the ground and in orbit. The systems engineering approach ensures that the technologies developed - such as lightweight structures, long-life rocket engines, reliable crew escape, and robust thermal protection systems - will synergistically integrate into the optimum vehicle. To best direct technology development decisions, analytical models are employed to accurately predict the benefits of each technology toward potential space transportation architectures as well as the risks associated with each technology. Rigorous systems analysis provides the foundation for assessing progress toward safety and cost goals. The systems engineering review process factors in comprehensive budget estimates, detailed project schedules, and business and performance plans, against the goals of safety, reliability, and cost, in addition to overall technical feasibility. This approach forms the basis for investment decisions in the 2nd Generation RLV Program's risk-reduction activities. Through this process, NASA will continually refine its specialized needs and identify where Defense and commercial requirements overlap those of civil missions.

  11. Sharp-B01: An Important Element of NASA's Launch Vehicle Development Program (United States)

    Rasky, Daniel J.


    Sharp body designs for future reusable launch vehicles offer a number of attractive features including allowing zero staging, enabling airbreathing and lofting ascents, and potentially providing global cross range re-entries with continuous communications. The Slender Hypersonic Aerothermodynamic Research Program (SHARP) was initiated by NASA Ames to demonstrate sharp, passive leading edge designs for hypersonic vehicles, incorporating new ultra-high temperature ceramics. This paper will discuss how SHARP will provide an important technology base for making sharp body hypersonic vehicle designs a reality, and how this activity fits into NASA's overall program for developing next generation reusable launch vehicles.

  12. Regeneratively-Cooled, Pump-Fed Propulsion Technology for Nano / Micro Satellite Launch Vehicles Project (United States)

    National Aeronautics and Space Administration — Ventions proposes the development of a pump-fed, 2-stage nano launch vehicle for low-cost on demand placement of cube and nano-satellites into LEO. The proposed...

  13. High-Fidelity Prediction of Launch Vehicle Lift-off Acoustic Environment Project (United States)

    National Aeronautics and Space Administration — Launch vehicles experience extreme acoustic loads during liftoff driven by the interaction of rocket plumes and plume-generated acoustic waves with ground...

  14. A High-Payload Fraction, Pump-Fed, 2-Stage Nano Launch Vehicle Project (United States)

    National Aeronautics and Space Administration — Ventions proposes the development of a pump-fed, 2-stage nano launch vehicle for low-cost on-demand placement of cube and nano-satellites into LEO. The proposed...

  15. Flexible Low Cost Avionics for NanoSatellite Launch Vehicle Control and GPS Metric Tracking Project (United States)

    National Aeronautics and Space Administration — In this proposal, Tyvak Nano-Satellite Systems LLC (Tyvak) will develop nano-launch vehicle avionics solutions based on the latest commercial electronics products...

  16. Simulation of Ground Winds Time Series for the NASA Crew Launch Vehicle (CLV) (United States)

    Adelfang, Stanley I.


    Simulation of wind time series based on power spectrum density (PSD) and spectral coherence models for ground wind turbulence is described. The wind models, originally developed for the Shuttle program, are based on wind measurements at the NASA 150-m meteorological tower at Cape Canaveral, FL. The current application is for the design and/or protection of the CLV from wind effects during on-pad exposure during periods from as long as days prior to launch, to seconds or minutes just prior to launch and seconds after launch. The evaluation of vehicle response to wind will influence the design and operation of constraint systems for support of the on-pad vehicle. Longitudinal and lateral wind component time series are simulated at critical vehicle locations. The PSD model for wind turbulence is a function of mean wind speed, elevation and temporal frequency. Integration of the PSD equation over a selected frequency range yields the variance of the time series to be simulated. The square root of the PSD defines a low-pass filter that is applied to adjust the components of the Fast Fourier Transform (FFT) of Gaussian white noise. The first simulated time series near the top of the launch vehicle is the inverse transform of the adjusted FFT. Simulation of the wind component time series at the nearest adjacent location (and all other succeeding next nearest locations) is based on a model for the coherence between winds at two locations as a function of frequency and separation distance, where the adjacent locations are separated vertically and/or horizontally. The coherence function is used to calculate a coherence weighted FFT of the wind at the next nearest location, given the FFT of the simulated time series at the previous location and the essentially incoherent FFT of the wind at the selected location derived a priori from the PSD model. The simulated time series at each adjacent location is the inverse Fourier transform of the coherence weighted FFT. For a selected

  17. Apollo Spacecraft and Saturn V Launch Vehicle Pyrotechnics/Explosive Devices (United States)

    Interbartolo, Michael


    The Apollo Mission employs more than 210 pyrotechnic devices per mission.These devices are either automatic of commanded from the Apollo spacecraft systems. All devices require high reliability and safety and most are classified as either crew safety critical or mission critical. Pyrotechnic devices have a wide variety of applications including: launch escape tower separation, separation rocket ignition, parachute deployment and release and electrical circuit opening and closing. This viewgraph presentation identifies critical performance, design requirements and safety measures used to ensure quality, reliability and performance of Apollo pyrotechnic/explosive devices. The major components and functions of a typical Apollo pyrotechnic/explosive device are listed and described (initiators, cartridge assemblies, detonators, core charges). The presentation also identifies the major locations and uses for the devices on: the Command and Service Module, Lunar Module and all stages of the launch vehicle.

  18. Optimal RTLS abort trajectories for an HL-20 personnel launch vehicle (United States)

    Dutton, Kevin


    The primary objective of this study was to determine whether Return To Launch Site (RTLS) abort at T seconds along the launch trajectory of the Personnel Launch System (PLS) is possible using optimal control theory. The secondary objective is to assess effects of bank angle constraint, lift coefficient constraint, free and fixed final boundary conditions, etc. of the vehicle. The PLS is a complementary system to the Space Shuttle.

  19. A LM-3B Launch Vehicle Sent Chinasat-9 Into Space

    Institute of Scientific and Technical Information of China (English)


    @@ The Chinasat-9 direct-broadcast television satellite was launched by a LM-3B launch vehicle from Xichang Satellite Launch Center (XSLC) on June 9.According to Xi'an Satellite Control Center (XSCC),the satellite entered the preset super-geosynchronous transfer orbit 26 minutes after the liftoff with an apogee of 49887km,a perigee of 214km and an inclination of 24.2 degrees.

  20. Optimal RTLS abort trajectories for an HL-20 personnel launch vehicle (United States)

    Dutton, Kevin


    The primary objective of this study was to determine whether Return To Launch Site (RTLS) abort at T seconds along the launch trajectory of the Personnel Launch System (PLS) is possible using optimal control theory. The secondary objective is to assess effects of bank angle constraint, lift coefficient constraint, free and fixed final boundary conditions, etc. of the vehicle. The PLS is a complementary system to the Space Shuttle.

  1. Advanced Control Surface Seal Development at NASA GRC for Future Space Launch Vehicles (United States)

    Dunlap, Patrick H., Jr.; Steinetz, Bruce M.; DeMange, Jeffrey J.


    NASA s Glenn Research Center (GRC) is developing advanced control surface seal technologies for future space launch vehicles as part of the Next Generation Launch Technology project (NGLT). New resilient seal designs are currently being fabricated and high temperature seal preloading devices are being developed as a means of improving seal resiliency. GRC has designed several new test rigs to simulate the temperatures, pressures, and scrubbing conditions that seals would have to endure during service. A hot compression test rig and hot scrub test rig have been developed to perform tests at temperatures up to 3000 F. Another new test rig allows simultaneous seal flow and scrub tests at room temperature to evaluate changes in seal performance with scrubbing. These test rigs will be used to evaluate the new seal designs. The group is also performing tests on advanced TPS seal concepts for Boeing using these new test facilities.

  2. In-Space Repair and Refurbishment of Thermal Protection System Structures for Reusable Launch Vehicles (United States)

    Singh, M.


    Advanced repair and refurbishment technologies are critically needed for the thermal protection system of current space transportation systems as well as for future launch and crew return vehicles. There is a history of damage to these systems from impact during ground handling or ice during launch. In addition, there exists the potential for in-orbit damage from micrometeoroid and orbital debris impact as well as different factors (weather, launch acoustics, shearing, etc.) during launch and re-entry. The GRC developed GRABER (Glenn Refractory Adhesive for Bonding and Exterior Repair) material has shown multiuse capability for repair of small cracks and damage in reinforced carbon-carbon (RCC) material. The concept consists of preparing an adhesive paste of desired ceramic with appropriate additives and then applying the paste to the damaged/cracked area of the RCC composites with an adhesive delivery system. The adhesive paste cures at 100-120 C and transforms into a high temperature ceramic during reentry conditions. A number of plasma torch and ArcJet tests were carried out to evaluate the crack repair capability of GRABER materials for Reinforced Carbon-Carbon (RCC) composites. For the large area repair applications, Integrated Systems for Tile and Leading Edge Repair (InSTALER) have been developed and evaluated under various ArcJet testing conditions. In this presentation, performance of the repair materials as applied to RCC is discussed. Additionally, critical in-space repair needs and technical challenges are reviewed.

  3. Development of computational methods for heavy lift launch vehicles (United States)

    Yoon, Seokkwan; Ryan, James S.


    The research effort has been focused on the development of an advanced flow solver for complex viscous turbulent flows with shock waves. The three-dimensional Euler and full/thin-layer Reynolds-averaged Navier-Stokes equations for compressible flows are solved on structured hexahedral grids. The Baldwin-Lomax algebraic turbulence model is used for closure. The space discretization is based on a cell-centered finite-volume method augmented by a variety of numerical dissipation models with optional total variation diminishing limiters. The governing equations are integrated in time by an implicit method based on lower-upper factorization and symmetric Gauss-Seidel relaxation. The algorithm is vectorized on diagonal planes of sweep using two-dimensional indices in three dimensions. A new computer program named CENS3D has been developed for viscous turbulent flows with discontinuities. Details of the code are described in Appendix A and Appendix B. With the developments of the numerical algorithm and dissipation model, the simulation of three-dimensional viscous compressible flows has become more efficient and accurate. The results of the research are expected to yield a direct impact on the design process of future liquid fueled launch systems.

  4. Natural Atmospheric Environment Model Development for the National Aeronautics and Space Administration's Second Generation Reusable Launch Vehicle (United States)

    Roberts, Barry C.; Leahy, Frank; Overbey, Glenn; Batts, Glen W.; Parker, Nelson (Technical Monitor)


    The National Aeronautics and Space Administration (NASA) recently began development of a new reusable launch vehicle. The program office is located at Marshall Space Flight Center (MSFC) and is called the Second Generation Reusable Launch Vehicle (2GRLV). The purpose of the program is to improve upon the safety and reliability of the first generation reusable launch vehicle, the Space Shuttle. Specifically, the goals are to reduce the risk of crew loss to less than 1-in-10,000 missions and decreased costs by a factor of 10 to approximately $1,000 per pound of payload launched to low Earth orbit. The program is currently in the very early stages of development and many two-stage vehicle concepts will be evaluated. Risk reduction activities are also taking place. These activities include developing new technologies and advancing current technologies to be used by the vehicle. The Environments Group at MSFC is tasked by the 2GRLV Program to develop and maintain an extensive series of analytical tools and environmental databases which enable it to provide detailed atmospheric studies in support of structural, guidance, navigation and control, and operation of the 2GRLV.

  5. A Space Based Internet Protocol System for Launch Vehicle Tracking and Control (United States)

    Bull, Barton; Grant, Charles; Morgan, Dwayne; Streich, Ron; Bauer, Frank (Technical Monitor)


    Personnel from the Goddard Space Flight Center Wallops Flight Facility (GSFC/WFF) in Virginia are responsible for the overall management of the NASA Sounding Rocket and Scientific Balloon Programs. Payloads are generally in support of NASA's Space Science Enterprise's missions and return a variety of scientific data as well as providing a reasonably economical means of conducting engineering tests for instruments and devices used on satellites and other spacecraft. Sounding rockets used by NASA can carry payloads of various weights to altitudes from 50 km to more than 1,300 km. Scientific balloons can carry a payload weighing as much as 3,630 Kg to an altitude of 42 km. Launch activities for both are conducted not only from established ranges, but also from remote locations worldwide requiring mobile tracking and command equipment to be transported and set up at considerable expense. The advent of low earth orbit (LEO) commercial communications satellites provides an opportunity to dramatically reduce tracking and control costs of these launch vehicles and Unpiloted Aerial Vehicles (UAVs) by reducing or eliminating this ground infrastructure. Additionally, since data transmission is by packetized Internet Protocol (IP), data can be received and commands initiated from practically any location. A low cost Commercial Off The Shelf (COTS) system is currently under development for sounding rockets that also has application to UAVs and scientific balloons. Due to relatively low data rate (9600 baud) currently available, the system will first be used to provide GPS data for tracking and vehicle recovery. Range safety requirements for launch vehicles usually stipulate at least two independent tracking sources. Most sounding rockets flown by NASA now carry GP receivers that output position data via the payload telemetry system to the ground station. The Flight Modem can be configured as a completely separate link thereby eliminating the requirement for tracking radar. The

  6. Nonlinear acoustic propagation of launch vehicle and military jet aircraft noise (United States)

    Gee, Kent L.


    The noise from launch vehicles and high-performance military jet aircraft has been shown to travel nonlinearly as a result of an amplitude-dependent speed of sound. Because acoustic pressure compressions travel faster than rarefactions, the waveform steepens and shocks form. This process results in a very different (and readily audible) noise signature and spectrum than predicted by linear models. On-going efforts to characterize the nonlinearity using statistical and spectral measures are described with examples from recent static tests of solid rocket boosters and the F-22 Raptor.

  7. Monte Carlo simulation of stage separation dynamics of a multistage launch vehicle

    Institute of Scientific and Technical Information of China (English)

    J.Roshanian; M.Talebi


    This paper provides the formulation used for studing the cold and hot separating stages of a multistage launch vehicle.Monte Carlo simulation is employed to account for the off nominal design parameters of the bodies undergoing separation to evaluate the risk offailure for the separation event.All disturbances,effect of dynamic unbalance,residual thrust,separation disturbance caused by the separation mechanism and misalignment in cold and hot separation are analyzed to find out nonoccurrence of collision between the separation bodies.The results indicate that the current design satisfies the separation requirements.

  8. A shadowgraph study of the National Launch System's 1 1/2 stage vehicle configuration and Heavy Lift Launch Vehicle configuration. [Using the Marshall Space Flight Center's 14-Inch Trisonic Wind Tunnel (United States)

    Pokora, Darlene C.; Springer, Anthony M.


    A shadowgraph study of the National Launch System's (NLS's) 1 1/2 stage and heavy lift launch vehicle (HLLV) configurations is presented. Shadowgraphs are shown for the range of Mach numbers from Mach 0.6 to 5.0 at various angles-of-attack and roll angles. Since the 1 1/2 stage configuration is generally symmetric, no shadowgraphs of any roll angle are shown for this configuration. The major flow field phenomena over the NLS 1 1/2 stage and HLLV configurations are shown in the shadowgraphs. These shadowgraphs are used in the aerothermodynamic analysis of the external flow conditions the launch vehicle would encounter during the ascent stage of flight. The shadowgraphs presented in this study were obtained from configurations tested in the Marshall Space Flight Center's 14-Inch Trisonic Wind Tunnel during 1992.

  9. L1 Adaptive Control Law for Flexible Space Launch Vehicle and Proposed Plan for Flight Test Validation (United States)

    Kharisov, Evgeny; Gregory, Irene M.; Cao, Chengyu; Hovakimyan, Naira


    This paper explores application of the L1 adaptive control architecture to a generic flexible Crew Launch Vehicle (CLV). Adaptive control has the potential to improve performance and enhance safety of space vehicles that often operate in very unforgiving and occasionally highly uncertain environments. NASA s development of the next generation space launch vehicles presents an opportunity for adaptive control to contribute to improved performance of this statically unstable vehicle with low damping and low bending frequency flexible dynamics. In this paper, we consider the L1 adaptive output feedback controller to control the low frequency structural modes and propose steps to validate the adaptive controller performance utilizing one of the experimental test flights for the CLV Ares-I Program.

  10. The Falcon Launch Vehicle - An Attempt at Making Access to Space More Affordable, Reliable and Pleasant


    Musk, Elon; Koenigsmann, Hans; Gurevich, Gwynne


    Falcon is a mostly reusable, two stage, liquid oxygen and kerosene powered launch vehicle being built by Space Exploration Technologies (SpaceX) from the ground up. The vehicle is designed above all for high reliability, followed by low cost and a benign flight environment. Launched from Vandenberg, a standard Falcon can carry over 470 kg to a 700 km sun-synchronous orbit and a heavy Falcon can deliver 1450 kg to the same orbit. To minimize failure modes, the vehicle has the minimum pragmatic...

  11. Advanced transportation system study: Manned launch vehicle concepts for two way transportation system payloads to LEO (United States)

    Duffy, James B.


    The purpose of the Advanced Transportation System Study (ATSS) task area 1 study effort is to examine manned launch vehicle booster concepts and two-way cargo transfer and return vehicle concepts to determine which of the many proposed concepts best meets NASA's needs for two-way transportation to low earth orbit. The study identified specific configurations of the normally unmanned, expendable launch vehicles (such as the National Launch System family) necessary to fly manned payloads. These launch vehicle configurations were then analyzed to determine the integrated booster/spacecraft performance, operations, reliability, and cost characteristics for the payload delivery and return mission. Design impacts to the expendable launch vehicles which would be required to perform the manned payload delivery mission were also identified. These impacts included the implications of applying NASA's man-rating requirements, as well as any mission or payload unique impacts. The booster concepts evaluated included the National Launch System (NLS) family of expendable vehicles and several variations of the NLS reference configurations to deliver larger manned payload concepts (such as the crew logistics vehicle (CLV) proposed by NASA JSC). Advanced, clean sheet concepts such as an F-1A engine derived liquid rocket booster (LRB), the single stage to orbit rocket, and a NASP-derived aerospace plane were also included in the study effort. Existing expendable launch vehicles such as the Titan 4, Ariane 5, Energia, and Proton were also examined. Although several manned payload concepts were considered in the analyses, the reference manned payload was the NASA Langley Research Center's HL-20 version of the personnel launch system (PLS). A scaled up version of the PLS for combined crew/cargo delivery capability, the HL-42 configuration, was also included in the analyses of cargo transfer and return vehicle (CTRV) booster concepts. In addition to strictly manned payloads, two-way cargo

  12. NASA Crew and Cargo Launch Vehicle Development Approach Builds on Lessons from Past and Present Missions (United States)

    Dumbacher, Daniel L.


    The United States (US) Vision for Space Exploration, announced in January 2004, outlines the National Aeronautics and Space Administration's (NASA) strategic goals and objectives, including retiring the Space Shuttle and replacing it with new space transportation systems for missions to the Moon, Mars, and beyond. The Crew Exploration Vehicle (CEV) that the new human-rated Crew Launch Vehicle (CLV) lofts into space early next decade will initially ferry astronauts to the International Space Station (ISS) Toward the end of the next decade, a heavy-lift Cargo Launch Vehicle (CaLV) will deliver the Earth Departure Stage (EDS) carrying the Lunar Surface Access Module (LSAM) to low-Earth orbit (LEO), where it will rendezvous with the CEV launched on the CLV and return astronauts to the Moon for the first time in over 30 years. This paper outlines how NASA is building these new space transportation systems on a foundation of legacy technical and management knowledge, using extensive experience gained from past and ongoing launch vehicle programs to maximize its design and development approach, with the objective of reducing total life cycle costs through operational efficiencies such as hardware commonality. For example, the CLV in-line configuration is composed of a 5-segment Reusable Solid Rocket Booster (RSRB), which is an upgrade of the current Space Shuttle 4- segment RSRB, and a new upper stage powered by the liquid oxygen/liquid hydrogen (LOX/LH2) J-2X engine, which is an evolution of the J-2 engine that powered the Apollo Program s Saturn V second and third stages in the 1960s and 1970s. The CaLV configuration consists of a propulsion system composed of two 5-segment RSRBs and a 33- foot core stage that will provide the LOX/LED needed for five commercially available RS-68 main engines. The J-2X also will power the EDS. The Exploration Launch Projects, managed by the Exploration Launch Office located at NASA's Marshall Space Flight Center, is leading the design

  13. NiAl Coatings Investigated for Use in Reusable Launch Vehicles (United States)

    Raj, Sai V.; Ghosn, Louis J.; Barrett, Charles A.


    As part of its major investment in the area of advanced space transportation, NASA is developing new technologies for use in the second- and third-generation designs of reusable launch vehicles. Among the prototype rocket engines being considered for these launch vehicles are those designed to use liquid hydrogen as the fuel and liquid oxygen as the oxidizer. Advanced copper alloys, such as copper-chromium-niobium (Cu-8(at.%)Cr- 4(at.%)Nb, also referred to as GRCop-84), which was invented at the NASA Glenn Research Center, are being considered for use as liner materials in the combustion chambers and nozzle ramps of these engines. However, previous experience has shown that, in rocket engines using liquid hydrogen and liquid oxygen, copper alloys are subject to a process called blanching, where the material undergoes environmental attack under the action of the combustion gases. In addition, the copper alloy liners undergo thermomechanical fatigue, which often results in an initially square cooling channel deforming into a dog-house shape. Clearly, there is an urgent need to develop new coatings to protect copper liners from environmental attack inside rocket chambers and to lower the temperature of the liners to reduce the probability of deformation and failure by thermomechanical fatigue.

  14. Development of Non-Optimum Factors for Launch Vehicle Propellant Tank Bulkhead Weight Estimation (United States)

    Wu, K. Chauncey; Wallace, Matthew L.; Cerro, Jeffrey A.


    Non-optimum factors are used during aerospace conceptual and preliminary design to account for the increased weights of as-built structures due to future manufacturing and design details. Use of higher-fidelity non-optimum factors in these early stages of vehicle design can result in more accurate predictions of a concept s actual weights and performance. To help achieve this objective, non-optimum factors are calculated for the aluminum-alloy gores that compose the ogive and ellipsoidal bulkheads of the Space Shuttle Super-Lightweight Tank propellant tanks. Minimum values for actual gore skin thicknesses and weld land dimensions are extracted from selected production drawings, and are used to predict reference gore weights. These actual skin thicknesses are also compared to skin thicknesses predicted using classical structural mechanics and tank proof-test pressures. Both coarse and refined weights models are developed for the gores. The coarse model is based on the proof pressure-sized skin thicknesses, and the refined model uses the actual gore skin thicknesses and design detail dimensions. To determine the gore non-optimum factors, these reference weights are then compared to flight hardware weights reported in a mass properties database. When manufacturing tolerance weight estimates are taken into account, the gore non-optimum factors computed using the coarse weights model range from 1.28 to 2.76, with an average non-optimum factor of 1.90. Application of the refined weights model yields non-optimum factors between 1.00 and 1.50, with an average non-optimum factor of 1.14. To demonstrate their use, these calculated non-optimum factors are used to predict heavier, more realistic gore weights for a proposed heavy-lift launch vehicle s propellant tank bulkheads. These results indicate that relatively simple models can be developed to better estimate the actual weights of large structures for future launch vehicles.

  15. Hyper Heuristic Approach for Design and Optimization of Satellite Launch Vehicle

    Institute of Scientific and Technical Information of China (English)

    Amer Farhan RAFIQUE; HE Linshu; Ali KAMRAN; Qasim ZEESHAN


    Satellite launch vehicle lies at the cross-road of multiple challenging technologies and its design and optimization present a typical example of multidisciplinary design and optimization (MDO) process. The complexity of problem demands highly efficient and effective algorithm that can optimize the design. Hyper heuristic approach (HHA) based on meta-heuristics is applied to the optimization of air launched satellite launch vehicle (ASLV). A non-learning random function (NLRF) is proposed to control low-level meta-heuristics (LLMHs) that increases certainty of global solution, an essential ingredient required in product conceptual design phase of aerospace systems. Comprehensive empirical study is performed to evaluate the performance advantages of proposed approach over popular non-gradient based optimization methods. Design of ASLV encompasses aerodynamics,propulsion, structure, stages layout, mass distribution, and trajectory modules connected by multidisciplinary feasible design approach. This approach formulates explicit system-level goals and then forwards the design optimization process entirely over to optimizer. This distinctive approach for launch vehicle system design relieves engineers from tedious, iterative task and enables them to improve their component level models. Mass is an impetus on vehicle performance and cost, and so it is considered as the core of vehicle design process. Therefore, gross launch mass is to be minimized in HHA.

  16. Small Launch Vehicle Design Approaches: Clustered Cores Compared with Multi-Stage Inline Concepts (United States)

    Waters, Eric D.; Beers, Benjamin; Esther, Elizabeth; Philips, Alan; Threet, Grady E., Jr.


    In an effort to better define small launch vehicle design options two approaches were investigated from the small launch vehicle trade space. The primary focus was to evaluate a clustered common core design against a purpose built inline vehicle. Both designs focused on liquid oxygen (LOX) and rocket propellant grade kerosene (RP-1) stages with the terminal stage later evaluated as a LOX/methane (CH4) stage. A series of performance optimization runs were done in order to minimize gross liftoff weight (GLOW) including alternative thrust levels, delivery altitude for payload, vehicle length to diameter ratio, alternative engine feed systems, re-evaluation of mass growth allowances, passive versus active guidance systems, and rail and tower launch methods. Additionally manufacturability, cost, and operations also play a large role in the benefits and detriments for each design. Presented here is the Advanced Concepts Office's Earth to Orbit Launch Team methodology and high level discussion of the performance trades and trends of both small launch vehicle solutions along with design philosophies that shaped both concepts. Without putting forth a decree stating one approach is better than the other; this discussion is meant to educate the community at large and let the reader determine which architecture is truly the most economical; since each path has such a unique set of limitations and potential payoffs.

  17. Development of Constraint Force Equation Methodology for Application to Multi-Body Dynamics Including Launch Vehicle Stage Seperation (United States)

    Pamadi, Bandu N.; Toniolo, Matthew D.; Tartabini, Paul V.; Roithmayr, Carlos M.; Albertson, Cindy W.; Karlgaard, Christopher D.


    The objective of this report is to develop and implement a physics based method for analysis and simulation of multi-body dynamics including launch vehicle stage separation. The constraint force equation (CFE) methodology discussed in this report provides such a framework for modeling constraint forces and moments acting at joints when the vehicles are still connected. Several stand-alone test cases involving various types of joints were developed to validate the CFE methodology. The results were compared with ADAMS(Registered Trademark) and Autolev, two different industry standard benchmark codes for multi-body dynamic analysis and simulations. However, these two codes are not designed for aerospace flight trajectory simulations. After this validation exercise, the CFE algorithm was implemented in Program to Optimize Simulated Trajectories II (POST2) to provide a capability to simulate end-to-end trajectories of launch vehicles including stage separation. The POST2/CFE methodology was applied to the STS-1 Space Shuttle solid rocket booster (SRB) separation and Hyper-X Research Vehicle (HXRV) separation from the Pegasus booster as a further test and validation for its application to launch vehicle stage separation problems. Finally, to demonstrate end-to-end simulation capability, POST2/CFE was applied to the ascent, orbit insertion, and booster return of a reusable two-stage-to-orbit (TSTO) vehicle concept. With these validation exercises, POST2/CFE software can be used for performing conceptual level end-to-end simulations, including launch vehicle stage separation, for problems similar to those discussed in this report.

  18. Design of Neural Network Variable Structure Reentry Control System for Reusable Launch Vehicle

    Institute of Scientific and Technical Information of China (English)

    HU Wei-jun; ZHOU Jun


    A flight control system is designed for a reusable launch vehicle with aerodynamic control surfaces and reaction control system based on a variable-structure control and neural network theory. The control problems of coupling among the channels and the uncertainty of model parameters are solved by using the method. High precise and robust tracking of required attitude angles can be achieved in complicated air space. A mathematical model of reusable launch vehicle is pre-sented first, and then a controller of flight system is presented. Base on the mathematical model, the controller is divided into two parts: variable-structure controller and neural network module which is used to modify the parameters of con-troller. This control system decouples the lateral/directional tunnels well with a neural network sliding mode controller and provides a robust and de-coupled tracking for mission angle profiles. After this a control allocation algorithm is employed to allocate the torque moments to aerodynamic control surfaces and thrusters. The final simulation shows that the control system has a good accurate, robust and de-coupled tracking performance. The stable state error is less than 1°, and the overshoot is less than 5%.

  19. Applying Monte Carlo Simulation to Launch Vehicle Design and Requirements Verification (United States)

    Hanson, John M.; Beard, Bernard B.


    This paper is focused on applying Monte Carlo simulation to probabilistic launch vehicle design and requirements verification. The approaches developed in this paper can be applied to other complex design efforts as well. Typically the verification must show that requirement "x" is met for at least "y" % of cases, with, say, 10% consumer risk or 90% confidence. Two particular aspects of making these runs for requirements verification will be explored in this paper. First, there are several types of uncertainties that should be handled in different ways, depending on when they become known (or not). The paper describes how to handle different types of uncertainties and how to develop vehicle models that can be used to examine their characteristics. This includes items that are not known exactly during the design phase but that will be known for each assembled vehicle (can be used to determine the payload capability and overall behavior of that vehicle), other items that become known before or on flight day (can be used for flight day trajectory design and go/no go decision), and items that remain unknown on flight day. Second, this paper explains a method (order statistics) for determining whether certain probabilistic requirements are met or not and enables the user to determine how many Monte Carlo samples are required. Order statistics is not new, but may not be known in general to the GN&C community. The methods also apply to determining the design values of parameters of interest in driving the vehicle design. The paper briefly discusses when it is desirable to fit a distribution to the experimental Monte Carlo results rather than using order statistics.

  20. Enhancing the NASA Expendable Launch Vehicle Payload Safety Review Process Through Program Activities (United States)

    Palo, Thomas E.


    The safety review process for NASA spacecraft flown on Expendable Launch Vehicles (ELVs) has been guided by NASA-STD 8719.8, Expendable Launch Vehicle Payload Safety Review Process Standard. The standard focused primarily on the safety approval required to begin pre-launch processing at the launch site. Subsequent changes in the contractual, technical, and operational aspects of payload processing, combined with lessons-learned supported a need for the reassessment of the standard. This has resulted in the formation of a NASA ELV Payload Safety Program. This program has been working to address the programmatic issues that will enhance and supplement the existing process, while continuing to ensure the safety of ELV payload activities.

  1. Small Launch Vehicle Trade Space Definition: Development of a Zero Level Mass Estimation Tool with Trajectory Validation (United States)

    Waters, Eric D.


    Recent high level interest in the capability of small launch vehicles has placed significant demand on determining the trade space these vehicles occupy. This has led to the development of a zero level analysis tool that can quickly determine the minimum expected vehicle gross liftoff weight (GLOW) in terms of vehicle stage specific impulse (Isp) and propellant mass fraction (pmf) for any given payload value. Utilizing an extensive background in Earth to orbit trajectory experience a total necessary delta v the vehicle must achieve can be estimated including relevant loss terms. This foresight into expected losses allows for more specific assumptions relating to the initial estimates of thrust to weight values for each stage. This tool was further validated against a trajectory model, in this case the Program to Optimize Simulated Trajectories (POST), to determine if the initial sizing delta v was adequate to meet payload expectations. Presented here is a description of how the tool is setup and the approach the analyst must take when using the tool. Also, expected outputs which are dependent on the type of small launch vehicle being sized will be displayed. The method of validation will be discussed as well as where the sizing tool fits into the vehicle design process.

  2. X33 Reusable Launch Vehicle Control on Sliding Modes: Concepts for a Control System Development (United States)

    Shtessel, Yuri B.


    Control of the X33 reusable launch vehicle is considered. The launch control problem consists of automatic tracking of the launch trajectory which is assumed to be optimally precalculated. It requires development of a reliable, robust control algorithm that can automatically adjust to some changes in mission specifications (mass of payload, target orbit) and the operating environment (atmospheric perturbations, interconnection perturbations from the other subsystems of the vehicle, thrust deficiencies, failure scenarios). One of the effective control strategies successfully applied in nonlinear systems is the Sliding Mode Control. The main advantage of the Sliding Mode Control is that the system's state response in the sliding surface remains insensitive to certain parameter variations, nonlinearities and disturbances. Employing the time scaling concept, a new two (three)-loop structure of the control system for the X33 launch vehicle was developed. Smoothed sliding mode controllers were designed to robustly enforce the given closed-loop dynamics. Simulations of the 3-DOF model of the X33 launch vehicle with the table-look-up models for Euler angle reference profiles and disturbance torque profiles showed a very accurate, robust tracking performance.

  3. Thirteenth Workshop for Computational Fluid Dynamic Applications in Rocket Propulsion and Launch Vehicle Technology. Volume 2 (United States)

    Williams, R. W. (Compiler)


    This conference publication includes various abstracts and presentations given at the 13th Workshop for Computational Fluid Dynamic Applications in Rocket Propulsion and Launch Vehicle Technology held at the George C. Marshall Space Flight Center April 25-27 1995. The purpose of the workshop was to discuss experimental and computational fluid dynamic activities in rocket propulsion and launch vehicles. The workshop was an open meeting for government, industry, and academia. A broad number of topics were discussed including computational fluid dynamic methodology, liquid and solid rocket propulsion, turbomachinery, combustion, heat transfer, and grid generation.

  4. Autonomous Reconfigurable Control Allocation (ARCA) for Reusable Launch Vehicles (United States)

    Hodel, A. S.; Callahan, Ronnie; Jackson, Scott (Technical Monitor)


    The role of control allocation (CA) in modern aerospace vehicles is to compute a command vector delta(sub c) is a member of IR(sup n(sub a)) that corresponding to commanded or desired body-frame torques (moments) tou(sub c) = [L M N](sup T) to the vehicle, compensating for and/or responding to inaccuracies in off-line nominal control allocation calculations, actuator failures and/or degradations (reduced effectiveness), or actuator limitations (rate/position saturation). The command vector delta(sub c) may govern the behavior of, e.g., acrosurfaces, reaction thrusters, engine gimbals and/or thrust vectoring. Typically, the individual moments generated in response to each of the n(sub a) commands does not lie strictly in the roll, pitch, or yaw axes, and so a common practice is to group or gang actuators so that a one-to-one mapping from torque commands tau(sub c) actuator commands delta(sub c) may be achieved in an off-line computed CA function.

  5. Incrementally developing a cultural and regulatory infrastructure for reusable launch vehicles (United States)

    Simberg, Rand


    At this point in time, technology is perhaps the least significant barrier to the development of high-flight-rate, reusable launchers, necessary for low-cost space access. Much more daunting are the issues of regulatory regimes, needed markets, and public/investor perception of their feasibility. The approach currently the focus of the government (X-33) assumes that the necessary conditions will be in place to support a new reusable launch vehicle in the Shuttle class at the end of the X-33 development. For a number of reasons (market size, lack of confidence in the technology, regulations designed for expendable vehicles, difficulties in capital formation) such an approach may prove too rapid a leap for success. More incremental steps, both experimental and operational, could be a higher-probability path to achieving the goal of cheap access through reusables. Such incrementalism, via intermediate vehicles (possibly multi-stage) exploiting suborbital and smaller-payload markets, could provide the gradual acclimatization of the public, regulatory and investment communities to reusable launchers, and build the confidence necessary to go on to subsequent steps to provide truly cheap access, while providing lower-cost access much sooner.

  6. Small Launch Vehicle Concept Development for Affordable Multi-Stage Inline Configurations (United States)

    Beers, Benjamin R.; Waters, Eric D.; Philips, Alan D.; Threet, Grady E., Jr.


    The Advanced Concepts Office at NASA's George C. Marshall Space Flight Center conducted a study of two configurations of a three stage, inline, liquid propellant small launch vehicle concept developed on the premise of maximizing affordability by targeting a specific payload capability range based on current industry demand. The initial configuration, NESC-1, employed liquid oxygen as the oxidizer and rocket propellant grade kerosene as the fuel in all three stages. The second and more heavily studied configuration, NESC-4, employed liquid oxygen and rocket propellant grade kerosene on the first and second stages and liquid oxygen and liquid methane fuel on the third stage. On both vehicles, sensitivity studies were first conducted on specific impulse and stage propellant mass fraction in order to baseline gear ratios and drive the focus of concept development. Subsequent sensitivity and trade studies on the NESC-4 configuration investigated potential impacts to affordability due to changes in gross liftoff weight and/or vehicle complexity. Results are discussed at a high level to understand the severity of certain sensitivities and how those trade studies conducted can either affect cost, performance or both.

  7. Operations Assessment of Launch Vehicle Architectures using Activity Based Cost Models (United States)

    Ruiz-Torres, Alex J.; McCleskey, Carey


    The growing emphasis on affordability for space transportation systems requires the assessment of new space vehicles for all life cycle activities, from design and development, through manufacturing and operations. This paper addresses the operational assessment of launch vehicles, focusing on modeling the ground support requirements of a vehicle architecture, and estimating the resulting costs and flight rate. This paper proposes the use of Activity Based Costing (ABC) modeling for this assessment. The model uses expert knowledge to determine the activities, the activity times and the activity costs based on vehicle design characteristics. The approach provides several advantages to current approaches to vehicle architecture assessment including easier validation and allowing vehicle designers to understand the cost and cycle time drivers.

  8. CFD Simulation of the Space Shuttle Launch Vehicle with Booster Separation Motor and Reaction Control Plumes (United States)

    Gea, L. M.; Vicker, D.


    The primary objective of this paper is to demonstrate the capability of computational fluid dynamics (CFD) to simulate a very complicated flow field encountered during the space shuttle ascent. The flow field features nozzle plumes from booster separation motor (BSM) and reaction control system (RCS) jets with a supersonic incoming cross flow at speed of Mach 4. The overset Navier-Stokes code OVERFLOW, was used to simulate the flow field surrounding the entire space shuttle launch vehicle (SSLV) with high geometric fidelity. The variable gamma option was chosen due to the high temperature nature of nozzle flows and different plume species. CFD predicted Mach contours are in good agreement with the schlieren photos from wind tunnel test. Flow fields are discussed in detail and the results are used to support the debris analysis for the space shuttle Return To Flight (RTF) task.

  9. Hyper-X and Pegasus Launch Vehicle: A Three-Foot Model of the Hypersonic Experimental Research Vehic (United States)


    The configuration of the X-43A Hypersonic Experimental Research Vehicle, or Hyper-X, attached to a Pegasus launch vehicle is displayed in this three-foot-long model at NASA's Dryden Flight Research Center, Edwards, California. Hyper-X, the flight vehicle for which is designated as X-43A, is an experimental flight-research program seeking to demonstrate airframe-integrated, 'air-breathing' engine technologies that promise to increase payload capacity for future vehicles, including hypersonic aircraft (faster than Mach 5) and reusable space launchers. This multiyear program is currently underway at NASA Dryden Flight Research Center, Edwards, California. The Hyper-X schedule calls for its first flight later this year (2000). Hyper-X is a joint program, with Dryden sharing responsibility with NASA's Langley Research Center, Hampton, Virginia. Dryden's primary role is to fly three unpiloted X-43A research vehicles to validate engine technologies and hypersonic design tools as well as the hypersonic test facility at Langley. Langley manages the program and leads the technology development effort. The Hyper-X Program seeks to significantly expand the speed boundaries of air-breathing propulsion by being the first aircraft to demonstrate an airframe-integrated, scramjet-powered free flight. Scramjets (supersonic-combustion ramjets) are ramjet engines in which the airflow through the whole engine remains supersonic. Scramjet technology is challenging because only limited testing can be performed in ground facilities. Long duration, full-scale testing requires flight research. Scramjet engines are air-breathing, capturing their oxygen from the atmosphere. Current spacecraft, such as the Space Shuttle, are rocket powered, so they must carry both fuel and oxygen for propulsion. Scramjet technology-based vehicles need to carry only fuel. By eliminating the need to carry oxygen, future hypersonic vehicles will be able to carry heavier payloads. Another unique aspect of the X-43

  10. Numerical Estimation of Sound Transmission Loss in Launch Vehicle Payload Fairing (United States)

    Chandana, Pawan Kumar; Tiwari, Shashi Bhushan; Vukkadala, Kishore Nath


    Coupled acoustic-structural analysis of a typical launch vehicle composite payload faring is carried out, and results are validated with experimental data. Depending on the frequency range of interest, prediction of vibro-acoustic behavior of a structure is usually done using the finite element method, boundary element method or through statistical energy analysis. The present study focuses on low frequency dynamic behavior of a composite payload fairing structure using both coupled and uncoupled vibro-acoustic finite element models up to 710 Hz. A vibro-acoustic model, characterizing the interaction between the fairing structure, air cavity, and satellite, is developed. The external sound pressure levels specified for the payload fairing's acoustic test are considered as external loads for the analysis. Analysis methodology is validated by comparing the interior noise levels with those obtained from full scale Acoustic tests conducted in a reverberation chamber. The present approach has application in the design and optimization of acoustic control mechanisms at lower frequencies.

  11. Improved airbreathing launch vehicle performance with the use of rocket propulsion (United States)

    Kauffman, H. G.; Grandhi, R. V.; Hankey, W. L.; Belcher, P. J.


    An efficient performance analysis method is developed to evaluate potential airbreathing/rocket propulsion systems for advanced technology single-stage-to-orbit launch vehicles. Evaluated are tradeoffs between airbreathing, rocket, and concurrent airbreathing/rocket propulsion in maximizing payload delivery to orbit for a given ascent flight trajectory. With the analysis method, several modes of airbreathing/rocket propulsion are compared to a baseline 'airbreather alone' propulsion system in terms of fuel/propellant required to attain orbital velocity. Concurrent airbreathing/rocket propulsion shows a reduction in fuel/propellant consumption over straight airbreather to rocket propulsion transition. The optimal switch point (staging) is identified for the transition from airbreathing to rocket propulsion.

  12. Thirteenth Workshop for Computational Fluid Dynamic Applications in Rocket Propulsion and Launch Vehicle Technology. Volume 1 (United States)

    Williams, R. W. (Compiler)


    The purpose of the workshop was to discuss experimental and computational fluid dynamic activities in rocket propulsion and launch vehicles. The workshop was an open meeting for government, industry, and academia. A broad number of topics were discussed including computational fluid dynamic methodology, liquid and solid rocket propulsion, turbomachinery, combustion, heat transfer, and grid generation.

  13. An Empirical Non-TNT Approach to Launch Vehicle Explosion Modeling (United States)

    Blackwood, James M.; Skinner, Troy; Richardson, Erin H.; Bangham, Michal E.


    In an effort to increase crew survivability from catastrophic explosions of Launch Vehicles (LV), a study was conducted to determine the best method for predicting LV explosion environments in the near field. After reviewing such methods as TNT equivalence, Vapor Cloud Explosion (VCE) theory, and Computational Fluid Dynamics (CFD), it was determined that the best approach for this study was to assemble all available empirical data from full scale launch vehicle explosion tests and accidents. Approximately 25 accidents or full-scale tests were found that had some amount of measured blast wave, thermal, or fragment explosion environment characteristics. Blast wave overpressure was found to be much lower in the near field than predicted by most TNT equivalence methods. Additionally, fragments tended to be larger, fewer, and slower than expected if the driving force was from a high explosive type event. In light of these discoveries, a simple model for cryogenic rocket explosions is presented. Predictions from this model encompass all known applicable full scale launch vehicle explosion data. Finally, a brief description of on-going analysis and testing to further refine the launch vehicle explosion environment is discussed.

  14. Virtual Instrumentation Techniques in Test and Evaluation of Launch Vehicle Avionics

    Directory of Open Access Journals (Sweden)

    R. Sethunadh


    Full Text Available This paper presents the concept of virtual instrumentation and its importance in test and evaluation of launch vehicle avionics. The experiences at the Vikram Sarabhai Space Centre (VSSC with virtual instrumentation systems, highlighting the virtual instrumentation-based checkout systems of pyro current monitoring package and video image processing unit are presented. The virtual instrumentation system-based checkouts present cost-effective, compact, and user-friendly human-machine interlaces for the test and evaluation of these packages. The issues of a common hardware-software platform for testing different telemetry packages and the capability of real-time virtual instruments for testing navigation, guidance, and control packages have been investigated.

  15. Mobile Launch Platform Vehicle Assembly Area (SWMU 056) Biosparge Expansion Interim Measures Work Plan (United States)

    Burcham, Michael S.; Daprato, Rebecca C.


    This document presents the design details for an Interim Measure (IM) Work Plan (IMWP) for the Mobile Launch Platform/Vehicle Assembly Building (MLPV) Area, located at the John F. Kennedy Space Center (KSC), Florida. The MLPV Area has been designated Solid Waste Management Unit Number 056 (SWMU 056) under KSC's Resource Conservation and Recovery Act (RCRA) Corrective Action Program. This report was prepared by Geosyntec Consultants (Geosyntec) for the National Aeronautics and Space Administration (NASA) under contract number NNK09CA02B and NNK12CA13B, project control number ENV1642. The Advanced Data Package (ADP) presentation covering the elements of this IMWP report received KSC Remediation Team (KSCRT) approval at the December 2015 Team Meeting; the meeting minutes are included in Appendix A.

  16. Online trajectory planning and guidance for reusable launch vehicles in the terminal area (United States)

    Lan, Xue-Jing; Liu, Lei; Wang, Yong-Ji


    A guidance scheme has been proposed based on a new online trajectory planning algorithm for an unpowered reusable launch vehicle (RLV) in the terminal area energy management (TAEM) phase. The trajectory planning algorithm is able to rapidly generate a feasible path from the current state to a desired state at approach and landing interface (ALI) based on the dynamic pressure profile and new ground track geometry. Simple guidance laws are used to keep the RLV flying along the reference path which can be adjusted online by five related parameters. Then, the effectiveness and adaptability of the proposed TAEM guidance scheme is demonstrated by numerical trials with variations in the initial energy, position and aerodynamic performance.

  17. A Rocket Powered Single-Stage-to-Orbit Launch Vehicle With U.S. and Soviet Engineers (United States)

    MacConochie, Ian O.; Stnaley, Douglas O.


    A single-stage-to-orbit launch vehicle is used to assess the applicability of Soviet Energia high-pressure-hydrocarbon engine to advanced U.S. manned space transportation systems. Two of the Soviet engines are used with three Space Shuttle Main Engines. When applied to a baseline vehicle that utilized advanced hydrocarbon engines, the higher weight of the Soviet engines resulted in a 20 percent loss of payload capability and necessitated a change in the crew compartment size and location from mid-body to forebody in order to balance the vehicle. Various combinations of Soviet and Shuttle engines were evaluated for comparison purposes, including an all hydrogen system using all Space Shuttle Main Engines. Operational aspects of the baseline vehicle are also discussed. A new mass properties program entitles Weights and Moments of Inertia (WAMI) is used in the study.

  18. Characterization of Cold Sprayed CuCrAl Coated GRCop-84 Substrates for Reusable Launch Vehicles (United States)

    Raj, S . V.; Barrett, C. A.; Lerch, B. A.; Karthikeyan, J.; Ghosn, L. J.; Haynes, J.


    An advanced Cu-8(at.%)Cr-4%Nb alloy developed at NASA's Glenn Research Center, and designated as GRCop-84, is currently being considered for use as combustor liners and nozzles in NASA's future generations of reusable launch vehicles (RLVs). Despite the fact that this alloy has superior mechanical and oxidation properties compared to many commercially available copper alloys, it is felt that its high temperature and environmental resistance capabilities can be further enhanced with the development and use of suitable coatings. Several coatings and processes are currently being evaluated for their suitability and future down selection. A newly developed CuCrAl has shown excellent oxidation resistance compared to current generation Cu-Cr coating alloys. Cold spray technology for depositing the CuCrAl coating on a GRCop-84 substrate is currently being developed under NASA's Next Generation Launch Technology (NGLT) Propulsion Research and Technology (PR&T) project. The microstructures, mechanical and thermophysical properties of overlay coated GRCop-84 substrates are discussed.

  19. Active Space Debris Removal using European Modified Launch Vehicle Upper Stages Equipped with Electrodynamic Tethers (United States)

    Nasseri, Ali S.; Emanuelli, Matteo; Raval, Siddharth; Turconi, Andrea; Becker, Cristoph


    During the past few years, several research programs have assessed the current state and future evolution of the Low Earth Orbit region. These studies indicate that space debris density could reach a critical level such that there will be a continuous increase in the number of debris objects, primarily driven by debris-debris collision activity known as the Kessler effect. This cascade effect can be even more significant when intact objects as dismissed rocket bodies are involved in the collision. The majority of the studies until now have highlighted the urgency for active debris removal in the next years. An Active Debris Removal System (ADRS) is a system capable of approaching the debris object through a close-range rendezvous, establishing physical connection, stabilizing its attitude and finally de-orbiting the debris object using a type of propulsion system in a controlled manoeuvre. In its previous work, this group showed that a modified Fregat (Soyuz FG's 4th stage) or Breeze-M upper stage (Proton-M) launched from Plesetsk (Russian Federation) and equipped with an electro-dynamic tether (EDT) system can be used, after an opportune inclination's change, to de-orbit a Kosmos-3M second stage rocket body while also delivering an acceptable payload to orbit. In this paper, we continue our work on the aforementioned concept, presented at the 2012 Beijing Space Sustainability Conference, by comparing its performance to ADR missions using only chemical propulsion from the upper stage for the far approach and the de-orbiting phase. We will also update the EDT model used in our previous work and highlight some of the methods for creating physical contact with the object. Moreover, we will assess this concept also with European launch vehicles (Vega and Soyuz 2-1A) to remove space debris from space. In addition, the paper will cover some economic aspects, like the cost for the launches' operator in term of payload mass' loss at the launch. The entire debris removal

  20. Commercial suborbital reusable launch vehicles: ushering in a new era for turbopause exploration (Invited) (United States)

    Smith, H. T.


    Multiple companies are in the process of developing commercial suborbital reusable launch vehicles (sRLV's). While these companies originally targeted space tourism as the primary customer base, it is rapidly becoming apparent that this dramatic increase in low cost access to space could provide revolutionary opportunities for scientific research, engineering/instrument development and STEM education. These burgeoning capabilities will offer unprecedented opportunities regarding access to space with frequent low-cost access to the region of space from the ground to the boundary of near-Earth space at ~100 km. In situ research of this region is difficult because it is too high for aircraft and balloons and yet too low for orbital satellites and spacecraft. However, this region is very significant because it represents the tenuous boundary of Earth's Atmosphere and Space. It contains a critical portion of the atmosphere where the regime transitions from collisional to non-collisional physics and includes complex charged and neutral particle interactions. These new launch vehicles are currently designed for manned and unmanned flights that reach altitudes up to 110 km for 5K-500K per flight with payload capacity exceeding 600 kg. Considering the much higher cost per flight for a sounding rocket with similar capabilities, high flight cadence, and guaranteed return of payload, commercial spacecraft has the potential to revolutionize access to near space. This unprecedented access to space allows participation at all levels of research, engineering, education and the public at large. For example, one can envision a model where students can conduct complete end to end projects where they design, build, fly and analyze data from individual research projects for thousands of dollars instead of hundreds of thousands. Our community is only beginning to grasp the opportunities and impactions of these new capabilities but with operational flights anticipated in 2014, it is

  1. Guidance Law Design for Terminal Area Energy Management of Reusable Launch Vehicle by Energy-to-Range Ratio


    Wen Jiang; Zhaohua Yang


    A new guidance scheme that utilizes a trajectory planning algorithm by energy-to-range ratio has been developed under the circumstance of surplus energy for the terminal area energy management phase of a reusable launch vehicle. The trajectory planning scheme estimates the reference flight profile by piecing together several flight phases that are defined by a set of geometric parameters. Guidance commands are readily available once the best reference trajectory is determined. The trajectory ...

  2. Preliminary Sizing Completed for Single- Stage-To-Orbit Launch Vehicles Powered By Rocket-Based Combined Cycle Technology (United States)

    Roche, Joseph M.


    Single-stage-to-orbit (SSTO) propulsion remains an elusive goal for launch vehicles. The physics of the problem is leading developers to a search for higher propulsion performance than is available with all-rocket power. Rocket-based combined cycle (RBCC) technology provides additional propulsion performance that may enable SSTO flight. Structural efficiency is also a major driving force in enabling SSTO flight. Increases in performance with RBCC propulsion are offset with the added size of the propulsion system. Geometrical considerations must be exploited to minimize the weight. Integration of the propulsion system with the vehicle must be carefully planned such that aeroperformance is not degraded and the air-breathing performance is enhanced. Consequently, the vehicle's structural architecture becomes one with the propulsion system architecture. Geometrical considerations applied to the integrated vehicle lead to low drag and high structural and volumetric efficiency. Sizing of the SSTO launch vehicle (GTX) is itself an elusive task. The weight of the vehicle depends strongly on the propellant required to meet the mission requirements. Changes in propellant requirements result in changes in the size of the vehicle, which in turn, affect the weight of the vehicle and change the propellant requirements. An iterative approach is necessary to size the vehicle to meet the flight requirements. GTX Sizer was developed to do exactly this. The governing geometry was built into a spreadsheet model along with scaling relationships. The scaling laws attempt to maintain structural integrity as the vehicle size is changed. Key aerodynamic relationships are maintained as the vehicle size is changed. The closed weight and center of gravity are displayed graphically on a plot of the synthesized vehicle. In addition, comprehensive tabular data of the subsystem weights and centers of gravity are generated. The model has been verified for accuracy with finite element analysis. The

  3. On-line robust approach and landing trajectory generation for reusable launch vehicles (United States)

    Jiang, Zhesheng

    A major objective of next generation reusable launch vehicle (RLV) programs includes significant improvements in vehicle safety, reliability, and operational costs. We first discuss trajectory generation on approach and landing (A&L) for RLVs using motion primitives (MPs) and neighboring optimal control (NOC). The proposed approach is based on an MP scheme that consists of trims and maneuvers. From an initial point to a given touchdown point, all feasible trajectories that satisfy certain constraints are generated and stored in a trajectory database. An optimal trajectory can then be found off-line by using Dijkstra's algorithm. If a vehicle failure occurs, perturbations are imposed on the initial states of the off-line optimal trajectory, and it is reshaped into a neighboring feasible trajectory by using NOC approach. If the perturbations are small enough, a neighboring feasible trajectory existence theorem (NFTET) is then investigated. The approach given in the NFTET shows that the vehicle with stuck effectors can be recovered from failures in real time. However, when the perturbations become large, for example, in severe failure scenarios, the NFTET is no longer applicable. A new method is now used to deal with this situation. The NFTET is then extended to trajectory robustness theorem (TRT). According to the TRT, a robustifying term is introduced to compensate for the effects of the linear approximation in the NFTET. The upper bounds with respect to input deviation are adaptively adjusted to eliminate their uncertainty. In order to obtain best performance, sigma-modification is employed. The simulation results verify the excellent robust performance of this method. Until now, the atmosphere has been assumed to be at rest. Since this is the exceptional rather than the usual case, it is necessary to investigate the wind effects on the behavior of RLVs, where the atmosphere has nonuniform and unsteady motion. When wind effect is included, two corollaries will be

  4. The Effects of Foam Thermal Protection System on the Damage Tolerance Characteristics of Composite Sandwich Structures for Launch Vehicles (United States)

    Nettles, A. T.; Hodge, A. J.; Jackson, J. R.


    For any structure composed of laminated composite materials, impact damage is one of the greatest risks and therefore most widely tested responses. Typically, impact damage testing and analysis assumes that a solid object comes into contact with the bare surface of the laminate (the outer ply). However, most launch vehicle structures will have a thermal protection system (TPS) covering the structure for the majority of its life. Thus, the impact response of the material with the TPS covering is the impact scenario of interest. In this study, laminates representative of the composite interstage structure for the Ares I launch vehicle were impact tested with and without the planned TPS covering, which consists of polyurethane foam. Response variables examined include maximum load of impact, damage size as detected by nondestructive evaluation techniques, and damage morphology and compression after impact strength. Results show that there is little difference between TPS covered and bare specimens, except the residual strength data is higher for TPS covered specimens.

  5. Online Trajectory Reshaping for a Launch Vehicle to Minimize the Final Error Caused by Navigation and Guidance

    Directory of Open Access Journals (Sweden)

    Tessy Thomas


    Full Text Available Autonomous launch vehicles, once lifted off from the launch pad, equipped with an onboard intelligence which aids in achieving the mission objectives with high accuracy. The accuracy of the mission depends basically on navigation and guidance errors caused at burnout condition, after which the vehicle follows an elliptical path upto impact. The paper describes how to handle the final impact and injection error caused by these navigation and guidance errors. In the current work the initial burnout conditions are tuned and corrected such that the terminal impact point is achieved within the desired tolerance bounds. A two point boundary value problem is solved using the gradient method, for determining the impact errors. The algorithm is validated by simulation studies for various burnout conditions.

  6. The relevance of economic data in the decision-making process for orbital launch vehicle programs, a U.S. perspective (United States)

    Hertzfeld, Henry R.; Williamson, Ray A.; Peter, Nicolas


    Over the past fifteen years, major U.S. initiatives for the development of new launch vehicles have been remarkably unsuccessful. The list is long: NLI, SLI, and X-33, not to mention several cancelled programs aimed at high speed airplanes (NASP, HSCT) which would share some similar technological problems. The economic aspects of these programs are equally as important to their success as are the technical aspects. In fact, by largely ignoring economic realities in the decisions to undertake these programs and in subsequent management decisions, space agencies (and their commercial partners) have inadvertently contributed to the eventual demise of these efforts. The transportation revolution that was envisaged by the promises of these programs has never occurred. Access to space is still very expensive; reliability of launch vehicles has remained constant over the years; and market demand has been relatively low, volatile and slow to develop. The changing international context of the industry (launching overcapacity, etc.) has also worked against the investment in new vehicles in the U.S. Today, unless there are unforeseen technical breakthroughs, orbital space access is likely to continue as it has been with high costs and market stagnation. Space exploration will require significant launching capabilities. The details of the future needs are not yet well defined. But, the question of the launch costs, the overall demand for vehicles, and the size and type of role that NASA will play in the overall launch market is likely to influence the industry. This paper will emphasize the lessons learned from the economic and management perspective from past launch programs, analyze the issues behind the demand for launches, and project the challenges that NASA will face as only one new customer in a very complex market situation. It will be important for NASA to make launch vehicle decisions based as much on economic considerations as it does on solving new technical

  7. Source Data Impacts on Epistemic Uncertainty for Launch Vehicle Fault Tree Models (United States)

    Al Hassan, Mohammad; Novack, Steven; Ring, Robert


    Launch vehicle systems are designed and developed using both heritage and new hardware. Design modifications to the heritage hardware to fit new functional system requirements can impact the applicability of heritage reliability data. Risk estimates for newly designed systems must be developed from generic data sources such as commercially available reliability databases using reliability prediction methodologies, such as those addressed in MIL-HDBK-217F. Failure estimates must be converted from the generic environment to the specific operating environment of the system in which it is used. In addition, some qualification of applicability for the data source to the current system should be made. Characterizing data applicability under these circumstances is crucial to developing model estimations that support confident decisions on design changes and trade studies. This paper will demonstrate a data-source applicability classification method for suggesting epistemic component uncertainty to a target vehicle based on the source and operating environment of the originating data. The source applicability is determined using heuristic guidelines while translation of operating environments is accomplished by applying statistical methods to MIL-HDK-217F tables. The paper will provide one example for assigning environmental factors uncertainty when translating between operating environments for the microelectronic part-type components. The heuristic guidelines will be followed by uncertainty-importance routines to assess the need for more applicable data to reduce model uncertainty.

  8. Second Generation Reusable Launch Vehicle Development and Global Competitiveness of US Space Transportation Industry: Critical Success Factors Assessment (United States)

    Enyinda, Chris I.


    In response to the unrelenting call in both public and private sectors fora to reduce the high cost associated with space transportation, many innovative partially or fully RLV (Reusable Launch Vehicles) designs (X-34-37) were initiated. This call is directed at all levels of space missions including scientific, military, and commercial and all aspects of the missions such as nonrecurring development, manufacture, launch, and operations. According to Wertz, tbr over thirty years, the cost of space access has remained exceedingly high. The consensus in the popular press is that to decrease the current astronomical cost of access to space, more safer, reliable, and economically viable second generation RLVs (SGRLV) must be developed. Countries such as Brazil, India, Japan, and Israel are now gearing up to enter the global launch market with their own commercial space launch vehicles. NASA and the US space launch industry cannot afford to lag behind. Developing SGRLVs will immeasurably improve the US's space transportation capabilities by helping the US to regain the global commercial space markets while supporting the transportation capabilities of NASA's space missions, Developing the SGRLVs will provide affordable commercial space transportation that will assure the competitiveness of the US commercial space transportation industry in the 21st century. Commercial space launch systems are having difficulty obtaining financing because of the high cost and risk involved. Access to key financial markets is necessary for commercial space ventures. However, public sector programs in the form of tax incentives and credits, as well as loan guarantees are not yet available. The purpose of this paper is to stimulate discussion and assess the critical success factors germane for RLVs development and US global competitiveness.

  9. Application of Fault Management Theory to the Quantitative Selection of a Launch Vehicle Abort Trigger Suite (United States)

    Lo, Yunnhon; Johnson, Stephen B.; Breckenridge, Jonathan T.


    This paper describes the quantitative application of the theory of System Health Management and its operational subset, Fault Management, to the selection of Abort Triggers for a human-rated launch vehicle, the United States' National Aeronautics and Space Administration's (NASA) Space Launch System (SLS). The results demonstrate the efficacy of the theory to assess the effectiveness of candidate failure detection and response mechanisms to protect humans from time-critical and severe hazards. The quantitative method was successfully used on the SLS to aid selection of its suite of Abort Triggers.

  10. Parallel Unsteady Turbopump Flow Simulations for Reusable Launch Vehicles (United States)

    Kiris, Cetin; Kwak, Dochan


    An efficient solution procedure for time-accurate solutions of Incompressible Navier-Stokes equation is obtained. Artificial compressibility method requires a fast convergence scheme. Pressure projection method is efficient when small time-step is required. The number of sub-iteration is reduced significantly when Poisson solver employed with the continuity equation. Both computing time and memory usage are reduced (at least 3 times). Other work includes Multi Level Parallelism (MLP) of INS3D, overset connectivity for the validation case, experimental measurements, and computational model for boost pump.

  11. Use of SKW-9 single launch vehicle for three satellites described (United States)


    The ninth scientific experimental satellite (SKW-9) launch in the Chinese Peoples Republic is described. One launch vehicle was used to insert three satellites into orbit simultaneously, the one rocket multiple satellite launch technique. The three satellites have different shapes. The heaviest satellite is composed of two frustum shaped sections which emit radiowaves continuously. The lightest satellite is spherically shaped, consisting of a metallic sphere and a balloon connected by a thin wire. The third satellite is the main component of SKW-9. Its shape is an octagonal prism with a diameter of 1.2 m. Its panels convert solar energy into electrical energy to provide power to the electronic instruments aboard the satellite. The SKW-9's mission is to survey the physical properties of the upper atmosphere.

  12. The Soyuz launch vehicle the two lives of an engineering triumph

    CERN Document Server

    Lardier, Christian


    The Soyuz launch vehicle has had a long and illustrious history. Built as the world's first intercontinental missile, it took the first man into space in April 1961, before becoming the workhorse of Russian spaceflight, launching satellites, interplanetary probes, every cosmonaut from Gagarin onwards, and, now, the multinational crews of the International Space Station. This remarkable book gives a complete and accurate description of the two lives of Soyuz, chronicling the cooperative space endeavor of Europe and Russia. First, it takes us back to the early days of astronautics, when technology served politics. From archives found in the Soviet Union the authors describe the difficulty of designing a rocket in the immediate post-war period. Then, in Soyuz's golden age, it launched numerous scientific missions and manned flights which were publicized worldwide while the many more numerous military missions were kept highly confidential! The second part of the book tells the contemporary story of the second li...

  13. A Concept of Two-Stage-To-Orbit Reusable Launch Vehicle (United States)

    Yang, Yong; Wang, Xiaojun; Tang, Yihua


    Reusable Launch Vehicle (RLV) has a capability of delivering a wide rang of payload to earth orbit with greater reliability, lower cost, more flexibility and operability than any of today's launch vehicles. It is the goal of future space transportation systems. Past experience on single stage to orbit (SSTO) RLVs, such as NASA's NASP project, which aims at developing an rocket-based combined-cycle (RBCC) airplane and X-33, which aims at developing a rocket RLV, indicates that SSTO RLV can not be realized in the next few years based on the state-of-the-art technologies. This paper presents a concept of all rocket two-stage-to-orbit (TSTO) reusable launch vehicle. The TSTO RLV comprises an orbiter and a booster stage. The orbiter is mounted on the top of the booster stage. The TSTO RLV takes off vertically. At the altitude about 50km the booster stage is separated from the orbiter, returns and lands by parachutes and airbags, or lands horizontally by means of its own propulsion system. The orbiter continues its ascent flight and delivers the payload into LEO orbit. After completing orbit mission, the orbiter will reenter into the atmosphere, automatically fly to the ground base and finally horizontally land on the runway. TSTO RLV has less technology difficulties and risk than SSTO, and maybe the practical approach to the RLV in the near future.

  14. Launch Vehicles Based on Advanced Hybrid Rocket Motors: An Enabling Technology for the Commercial Small and Micro Satellite Planetary Science (United States)

    Karabeyoglu, Arif; Tuncer, Onur; Inalhan, Gokhan


    Mankind is relient on chemical propulsion systems for space access. Nevertheless, this has been a stagnant area in terms of technological development and the technology base has not changed much almost for the past forty years. This poses a vicious circle for launch applications such that high launch costs constrain the demand and low launch freqencies drive costs higher. This also has been a key limiting factor for small and micro satellites that are geared towards planetary science. Rather this be because of the launch frequencies or the costs, the access of small and micro satellites to orbit has been limited. With today's technology it is not possible to escape this circle. However the emergence of cost effective and high performance propulsion systems such as advanced hybrid rockets can decrease launch costs by almost an order or magnitude. This paper briefly introduces the timeline and research challenges that were overcome during the development of advanced hybrid LOX/paraffin based rockets. Experimental studies demonstrated effectiveness of these advanced hybrid rockets which incorporate fast burning parafin based fuels, advanced yet simple internal balistic design and carbon composite winding/fuel casting technology that enables the rocket motor to be built from inside out. A feasibility scenario is studied using these rocket motors as building blocks for a modular launch vehicle capable of delivering micro satellites into low earth orbit. In addition, the building block rocket motor can be used further solar system missions providing the ability to do standalone small and micro satellite missions to planets within the solar system. This enabling technology therefore offers a viable alternative in order to escape the viscous that has plagued the space launch industry and that has limited the small and micro satellite delivery for planetary science.

  15. Nontangent, Developed Contour Bulkheads for a Wing-Body Single Stage Launch Vehicle (United States)

    Wu, K. Chauncey; Lepsch, Roger A., Jr.


    Dry weights for a SSTO vehicle which incorporates nontangent, developed contour bulkheads are estimated and compared to a baseline vehicle with 1.41 4 aspect ratio ellipsoidal bulkheads, Weights, volumes and heights of optimized bulkhead designs are computed using a preliminary design bulkhead analysis code. The dry weight of a vehicle which incorporates the optimized bulkheads is predicted using a vehicle weights and sizing code. Two optimization approaches are employed. A structural-level method, where the vehicle s three major bulkhead regions are optimized separately and then incorporated into a model for computation of the vehicle dry weight, predicts a reduction of 4365 Ib (2.2 percent) from the 200,679 Ib baseline vehicle dry weight. In the second, vehicle-level, approach, the vehicle dry weight is the objective function for the optimization. During the vehicle- level analysis, modified bulkhead designs are first analyzed, then incorporated into the weights model for computation of a dry weight. The optimizer simultaneously manipulates design variables for all three bulkheads to reduce the dry weight. The vehicle-level analysis predicts a dry weight reduction of 5129 Ib, a 2.6 percent reduction from the baseline value. These results suggest that nontangent, developed contour bulkheads may provide substantial weight savings for SSTO vehicles.

  16. Solid rocket motor integration on the Atlas/Centaur launch vehicle (United States)

    Arnett, Stephen E.


    The structural design, development, and verification testing required to integrate solid rocket motors (SRM) on the Atlas IIAS launch vehicle is described. It is concluded that the next generation Atlas Centaur based on four strap-on Castor IVA SRMs and capable of lifting 7700 pounds to geosynchronous orbit has undergone a rigorous development program. A new system intended to mount and jettison the SRMs from the core vehicle is characterized by robustness and ease of installation. To insulate the aft end of the vehicle against increased SRM-induced heat fluxes and to seal against ingress of potentially hazardous base gases extensive measures were undertaken. They include nonporous engine boots and a thrust section compartment passive pressurization system.

  17. Computer graphic of Lockheed Martin Venturestar Reusable Launch Vehicle (RLV) releasing a satellite (United States)


    This is an artist's conception of the NASA/Lockheed Martin Single-Stage-To-Orbit (SSTO) Reusable Launch Vehicle (RLV) releasing a satellite into orbit around the earth. NASA's Dryden Flight Research Center, Edwards, California, was to play a key role in the development and flight testing of the X-33, which is a technology demonstrator vehicle for the RLV. The RLV technology program was a cooperative agreement between NASA and industry. The goal of the RLV technology program was to enable significant reductions in the cost of access to space, and to promote the creation and delivery of new space services and other activities that were to improve U.S. economic competitiveness. NASA Headquarter's Office of Space Access and Technology oversaw the RLV program, which was being managed by the RLV Office at NASA's Marshall Space Flight Center, located in Huntsville, Alabama. Responsibilities of other NASA Centers included: Johnson Space Center, Houston, Texas, guidance navigation and control technology, manned space systems, and health technology; Ames Research Center, Mountain View, CA., thermal protection system testing; Langley Research Center, Langley, Virginia, wind tunnel testing and aerodynamic analysis; and Kennedy Space Center, Florida, RLV operations and health management. Lockheed Martin's industry partners in the X-33 program are: Astronautics, Inc., Denver, Colorado, and Huntsville, Alabama; Engineering & Science Services, Houston, Texas; Manned Space Systems, New Orleans, LA; Sanders, Nashua, NH; and Space Operations, Titusville, Florida. Other industry partners are: Rocketdyne, Canoga Park, California; Allied Signal Aerospace, Teterboro, NJ; Rohr, Inc., Chula Vista, California; and Sverdrup Inc., St. Louis, Missouri.

  18. Development tests of LOX/LH 2 tank for H-I launch vehicle (United States)

    Takamatsu, H.; Imagawa, K.; Ichimaru, Y.

    H-I is a future launch vehicle of Japan with a capability of placing more than 550 kg payload into a geostationary orbit. The National Space Development Agency of Japan (NASDA) is now directing its efforts to the final development of H-I launch vehicle. H-I's high launch capability is attained by adopting a newly developed second stage with a LOX/LH 2 propulsion system. The second stage propulsion system consists of a tank and an engine. The tank is 2.5 m in diameter and 5.7 m in length and contains 8.7 tons of propellants. This tank is an integral tank with a common bulkhead which separates the tank into forward LH 2 tank and aft LOX tank. The tank is made of 2219 aluminum alloy and is insulated with sprayed polyurethane foam. The common bulkhead is made of FRP honeycomb core and aluminium alloy surface sheets. The most critical item in the development of the tank is the common bulkhead, therefore the cryogenic structural test was carried out to verify the structural integrity of the bulkhead. The structural integrity of the whole LOX/LH 2 tank was verified by the cryogenic structural test of a sub-scale tank and the room temperature structural test of a prototype tank.

  19. Optimal return-to-launchsite abort trajectories for an HL-20 Personnel Launch System vehicle (United States)

    Dutton, Kevin E.


    The Personnel Launch System (PLS) being studied by NASA is a system to complement the Space Shuttle and provide alternative access to space. The PLS consists of a manned spacecraft launched by an expendable launch vehicle (ELV). A candidate for the manned spacecraft is the HL-20 lifting body. In the event of an ELV malfunction during the initial portion of the ascent trajectory, the HL-20 will separate from the rocket and perform an unpowered return-to-launchsite (RTLS) abort. This paper describes an investigation of the RTLS abort scenario using optimal control theory. The objective of the abort trajectory is to maximize final altitude at a point near the runway. The assumption is then made that there exists a control history to steer the vehicle to any final altitude lower than the final optimal altitude. With this selection of cost function, and with this assumption, the feasibility of an RTLS abort at different times along the ascent trajectory can be determined. The method of differential inclusions, which allows the determination of optimal states and eliminates the need for determining the optimal controls, is used to determine the optimal trajectories.

  20. Optimal return-to-launchsite abort trajectories for an HL-20 Personnel Launch System vehicle (United States)

    Dutton, Kevin E.

    The Personnel Launch System (PLS) being studied by NASA is a system to complement the Space Shuttle and provide alternative access to space. The PLS consists of a manned spacecraft launched by an expendable launch vehicle (ELV). A candidate for the manned spacecraft is the HL-20 lifting body. In the event of an ELV malfunction during the initial portion of the ascent trajectory, the HL-20 will separate from the rocket and perform an unpowered return-to-launchsite (RTLS) abort. This paper describes an investigation of the RTLS abort scenario using optimal control theory. The objective of the abort trajectory is to maximize final altitude at a point near the runway. The assumption is then made that there exists a control history to steer the vehicle to any final altitude lower than the final optimal altitude. With this selection of cost function, and with this assumption, the feasibility of an RTLS abort at different times along the ascent trajectory can be determined. The method of differential inclusions, which allows the determination of optimal states and eliminates the need for determining the optimal controls, is used to determine the optimal trajectories.

  1. Evolution of the Space Shuttle Primary Avionics Software and Avionics for Shuttle Derived Launch Vehicles (United States)

    Ferguson, Roscoe C.


    As a result of recommendation from the Augustine Panel, the direction for Human Space Flight has been altered from the original plan referred to as Constellation. NASA s Human Exploration Framework Team (HEFT) proposes the use of a Shuttle Derived Heavy Lift Launch Vehicle (SDLV) and an Orion derived spacecraft (salvaged from Constellation) to support a new flexible direction for space exploration. The SDLV must be developed within an environment of a constrained budget and a preferred fast development schedule. Thus, it has been proposed to utilize existing assets from the Shuttle Program to speed development at a lower cost. These existing assets should not only include structures such as external tanks or solid rockets, but also the Flight Software which has traditionally been a "long pole" in new development efforts. The avionics and software for the Space Shuttle was primarily developed in the 70 s and considered state of the art for that time. As one may argue that the existing avionics and flight software may be too outdated to support the new SDLV effort, this is a fallacy if they can be evolved over time into a "modern avionics" platform. The technology may be outdated, but the avionics concepts and flight software algorithms are not. The reuse of existing avionics and software also allows for the reuse of development, verification, and operations facilities. The keyword is evolve in that these assets can support the fast development of such a vehicle, but then be gradually evolved over time towards more modern platforms as budget and schedule permits. The "gold" of the flight software is the "control loop" algorithms of the vehicle. This is the Guidance, Navigation, and Control (GNC) software algorithms. This software is typically the most expensive to develop, test, and verify. Thus, the approach is to preserve the GNC flight software, while first evolving the supporting software (such as Command and Data Handling, Caution and Warning, Telemetry, etc

  2. Ares-I-X Vehicle Preliminary Range Safety Malfunction Turn Analysis (United States)

    Beaty, James R.; Starr, Brett R.; Gowan, John W., Jr.


    Ares-I-X is the designation given to the flight test version of the Ares-I rocket (also known as the Crew Launch Vehicle - CLV) being developed by NASA. As part of the preliminary flight plan approval process for the test vehicle, a range safety malfunction turn analysis was performed to support the launch area risk assessment and vehicle destruct criteria development processes. Several vehicle failure scenarios were identified which could cause the vehicle trajectory to deviate from its normal flight path, and the effects of these failures were evaluated with an Ares-I-X 6 degrees-of-freedom (6-DOF) digital simulation, using the Program to Optimize Simulated Trajectories Version 2 (POST2) simulation framework. The Ares-I-X simulation analysis provides output files containing vehicle state information, which are used by other risk assessment and vehicle debris trajectory simulation tools to determine the risk to personnel and facilities in the vicinity of the launch area at Kennedy Space Center (KSC), and to develop the vehicle destruct criteria used by the flight test range safety officer. The simulation analysis approach used for this study is described, including descriptions of the failure modes which were considered and the underlying assumptions and ground rules of the study, and preliminary results are presented, determined by analysis of the trajectory deviation of the failure cases, compared with the expected vehicle trajectory.

  3. Materials in NASA's Space Launch System: The Stuff Dreams are Made of (United States)

    May, Todd A.


    Mr. Todd May, Program Manager for NASA's Space Launch System, will showcase plans and progress the nation s new super-heavy-lift launch vehicle, which is on track for a first flight to launch an Orion Multi-Purpose Crew Vehicle around the Moon in 2017. Mr. May s keynote address will share NASA's vision for future human and scientific space exploration and how SLS will advance those plans. Using new, in-development, and existing assets from the Space Shuttle and other programs, SLS will provide safe, affordable, and sustainable space launch capabilities for exploration payloads starting at 70 metric tons (t) and evolving through 130 t for entirely new deep-space missions. Mr. May will also highlight the impact of material selection, development, and manufacturing as they contribute to reducing risk and cost while simultaneously supporting the nation s exploration goals.

  4. The NASA Lewis Research Center's Expendable Launch Vehicle Program: An Economic Impact Study (United States)

    Austrian, Ziona


    This study investigates the economic impact of the Lewis Research Center's (LeRC) Expendable Launch Vehicle Program (ELVP) on Northeast Ohio's economy. It was conducted by The Urban Center's Economic Development Program in Cleveland State University's Levin College of Urban Affairs. The study measures ELVP's direct impact on the local economy in terms of jobs, output, payroll, and taxes, as well as the indirect impact of these economic activities when they "ripple" throughout the economy. The study uses regional economic multipliers based on input-output models to estimate the effect of ELVP spending on the Northeast Ohio economy.

  5. Design and Analysis of Subscale and Full-Scale Buckling-Critical Cylinders for Launch Vehicle Technology Development (United States)

    Hilburger, Mark W.; Lovejoy, Andrew E.; Thornburgh, Robert P.; Rankin, Charles


    NASA s Shell Buckling Knockdown Factor (SBKF) project has the goal of developing new analysis-based shell buckling design factors (knockdown factors) and design and analysis technologies for launch vehicle structures. Preliminary design studies indicate that implementation of these new knockdown factors can enable significant reductions in mass and mass-growth in these vehicles. However, in order to validate any new analysis-based design data or methods, a series of carefully designed and executed structural tests are required at both the subscale and full-scale levels. This paper describes the design and analysis of three different orthogrid-stiffeNed metallic cylindrical-shell test articles. Two of the test articles are 8-ft-diameter, 6-ft-long test articles, and one test article is a 27.5-ft-diameter, 20-ft-long Space Shuttle External Tank-derived test article.

  6. Time Accurate CFD Simulations of the Orion Launch Abort Vehicle in the Transonic Regime (United States)

    Ruf, Joseph; Rojahn, Josh


    Significant asymmetries in the fluid dynamics were calculated for some cases in the CFD simulations of the Orion Launch Abort Vehicle through its abort trajectories. The CFD simulations were performed steady state with symmetric boundary conditions and geometries. The trajectory points at issue were in the transonic regime, at 0 and 5 angles of attack with the Abort Motors with and without the Attitude Control Motors (ACM) firing. In some of the cases the asymmetric fluid dynamics resulted in aerodynamic side forces that were large enough that would overcome the control authority of the ACMs. MSFC s Fluid Dynamics Group supported the investigation into the cause of the flow asymmetries with time accurate CFD simulations, utilizing a hybrid RANS-LES turbulence model. The results show that the flow over the vehicle and the subsequent interaction with the AB and ACM motor plumes were unsteady. The resulting instantaneous aerodynamic forces were oscillatory with fairly large magnitudes. Time averaged aerodynamic forces were essentially symmetric.

  7. Pseudospectral method based trajectory optimization and fairing rejection time analysis of solid launch vehicle

    Institute of Scientific and Technical Information of China (English)


    The problem of real-time trajectory optimization for small solid launch vehicle of operational responsive space (ORS) was studied by using pseudospectral method. According to the characteristic of the trajectory design, the dynamics model was set up in the inertia right-angled reference frame, and the equation and parameter at the orbit injection point were simplified and converted. The infinite dimension dynamic optimal control problem was converted to a finite dimension static state optimization problem and the algorithm reduced the complexity so as to become a general algorithm in trajectories optimization. With the trajectories optimization of a three-stage solid vehicle with a liquor upper stage as example, the model of the trajectory optimization was set up and simulations were carried out. The results demonstrated the advantage and validity of the pseudospectral method. The rejection time of fairing was also analyzed by the simulation results, and the optimal flight procedure and trajectory were obtained.

  8. Cryo-Tracker mass gauging system testing in a large-scale expendable launch vehicle LOX tank simulator (United States)

    Schieb, Daniel J.; Haberbusch, Mark S.; Yeckley, Alexander J.


    Sierra Lobo tested its patented Cryo-Tracker(R) probe and Mass Gauging System in a large scale Expendable Launch Vehicle (ELV) liquid oxygen tank simulation for NASA. Typical Liquid Oxygen (LOX) tank operations were simulated at Lockheed Martin's Engineering Propulsion Laboratory in Denver, Colorado. The Cryo-Tracker(R) probe is 33 feet long, the longest built to date. It was mounted in the tank at only two locations, separated by 26 feet. Each test simulated typical Lockheed Martin booster pre-launch tanking operations, including filling the tank with LOX at fill rates typically used at the launch pad, and maintaining the fill level for a period representative of a typical pad hold. The Cryo-Tracker(R) Mass Gauging System was the primary instrument used for monitoring the fill and controlling the topping operations. Each test also simulated a typical flight profile, expelling the LOX at representative pressures and expulsion flow rates. During expulsion, the Cryo-Tracker(R) System served to generate an Engine Cut-Off (ECO) signal. Test objectives were as follows: Cryo-Tracker(R) data will be validated by flight-like propellant instruments currently used in launch vehicles; the probe will survive the harsh environment (which will be documented by a digital video camera) with no loss of signal or structural integrity; the system will successfully measure liquid levels and temperatures under all conditions and calculate propellant mass in real-time; the system will successfully demonstrate its feasibility as a control sensor for LOX filling and topping operations, as well as for engine cut-off. All objectives were met and the test results are presented.

  9. Collaborative Analysis Tool for Thermal Protection Systems for Single Stage to Orbit Launch Vehicles (United States)

    Alexander, Reginald Andrew; Stanley, Thomas Troy


    Presented is a design tool and process that connects several disciplines which are needed in the complex and integrated design of high performance reusable single stage to orbit (SSTO) vehicles. Every system is linked to every other system and in the case of SSTO vehicles with air breathing propulsion, which is currently being studied by the National Aeronautics and Space Administration (NASA); the thermal protection system (TPS) is linked directly to almost every major system. The propulsion system pushes the vehicle to velocities on the order of 15 times the speed of sound in the atmosphere before pulling up to go to orbit which results high temperatures on the external surfaces of the vehicle. Thermal protection systems to maintain the structural integrity of the vehicle must be able to mitigate the heat transfer to the structure and be lightweight. Herein lies the interdependency, in that as the vehicle's speed increases, the TPS requirements are increased. And as TPS masses increase the effect on the propulsion system and all other systems is compounded. To adequately determine insulation masses for a vehicle such as the one described above, the aeroheating loads must be calculated and the TPS thicknesses must be calculated for the entire vehicle. To accomplish this an ascent or reentry trajectory is obtained using the computer code Program to Optimize Simulated Trajectories (POST). The trajectory is then used to calculate the convective heat rates on several locations on the vehicles using the Miniature Version of the JA70 Aerodynamic Heating Computer Program (MINIVER). Once the heat rates are defined for each body point on the vehicle, then insulation thickness that are required to maintain the vehicle within structural limits are calculated using Systems Improved Numerical Differencing Analyzer (SINDA) models. If the TPS masses are too heavy for the performance of the vehicle the process may be repeated altering the trajectory or some other input to reduce

  10. Technology developments for thrust chambers of future launch vehicle liquid rocket engines (United States)

    Immich, H.; Alting, J.; Kretschmer, J.; Preclik, D.


    In this paper an overview of recent technology developments for thrust chambers of future launch vehicle liquid rocket engines at Astrium, Space Infrastructure Division (SI), is shown. The main technology. developments shown in this paper are: Technologies Technologies for enhanced heat transfer to the coolant for expander cycle engines Advanced injector head technologies Advanced combustion chamber manufacturing technologies. The main technologies for enhanced heat transfer investigated by subscale chamber hot-firing tests are: Increase of chamber length Hot gas side ribs in the chamber Artificially increased surface roughness. The developments for advanced injector head technologies were focused on the design of a new modular subscale chamber injector head. This injector head allows for an easy exchange of different injection elements: By this, cost effective hot-fire tests with different injection element concepts can be performed. The developments for advanced combustion chamber manufacturing technologies are based on subscale chamber tests with a new design of the Astrium subscale chamber. The subscale chamber has been modified by introduction of a segmented cooled cylindrical section which gives the possibility to test different manufacturing concepts for cooled chamber technologies by exchanging the individual segments. The main technology efforts versus advanced manufacturing technologies shown in this paper are: Soldering techniques Thermal barrier coatings for increased chamber life. A new technology effort is dedicated especially to LOX/Hydrocarbon propellant combinations. Recent hot fire tests on the subscale chamber with Kerosene and Methane as fuel have already been performed. A comprehensive engine system trade-off between the both propellant combinations (Kerosene vs. Methane) is presently under preparation.