WorldWideScience

Sample records for area polymer solar

  1. Roll-to-Roll printed large-area all-polymer solar cells with 5% efficiency based on a low crystallinity conjugated polymer blend

    Science.gov (United States)

    Gu, Xiaodan; Zhou, Yan; Gu, Kevin; Kurosawa, Tadanori; Yan, Hongping; Wang, Cheng; Toney, Micheal; Bao, Zhenan

    The challenge of continuous printing in high efficiency large-area organic solar cells is a key limiting factor for their widespread adoption. We present a materials design concept for achieving large-area, solution coated all-polymer bulk heterojunction (BHJ) solar cells with stable phase separation morphology between the donor and acceptor. The key concept lies in inhibiting strong crystallization of donor and acceptor polymers, thus forming intermixed, low crystallinity and mostly amorphous blends. Based on experiments using donors and acceptors with different degree of crystallinity, our results showed that microphase separated donor and acceptor domain sizes are inversely proportional to the crystallinity of the conjugated polymers. This methodology of using low crystallinity donors and acceptors has the added benefit of forming a consistent and robust morphology that is insensitive to different processing conditions, allowing one to easily scale up the printing process from a small scale solution shearing coater to a large-scale continuous roll-to-roll (R2R) printer. We were able to continuously roll-to-roll slot die print large area all-polymer solar cells with power conversion efficiencies of 5%, with combined cell area up to 10 cm2. This is among the highest efficiencies realized with R2R coated active layer organic materials on flexible substrate. DOE BRIDGE sunshot program. Office of Naval Research.

  2. Cost Effective Polymer Solar Cells Research and Education

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Sam-Shajing [Norfolk State Univ, Norfolk, VA (United States)

    2015-10-13

    The technical or research objective of this project is to investigate and develop new polymers and polymer based optoelectronic devices for potentially cost effective (or cost competitive), durable, lightweight, flexible, and high efficiency solar energy conversion applications. The educational objective of this project includes training of future generation scientists, particularly young, under-represented minority scientists, working in the areas related to the emerging organic/polymer based solar energy technologies and related optoelectronic devices. Graduate and undergraduate students will be directly involved in scientific research addressing issues related to the development of polymer based solar cell technology.

  3. Low Band Gap Polymers for Roll-to-Roll Coated Polymer Solar Cells

    DEFF Research Database (Denmark)

    Bundgaard, Eva; Hagemann, Ole; Manceau, Matthieu

    2010-01-01

    connected cells were prepared with a total module active area of 96 cm2. The devices were tested for operational stability under simulated sunlight (AM1.5G) and natural sunlight, and the photochemical stability of the polymer was examined using a combination of UV−vis and IR spectroscopy.......We present the synthesis of a low band gap copolymer based on dithienothiophene and dialkoxybenzothiadiazole (poly(dithienothiophene-co-dialkoxybenzothiadiazole), PDTTDABT). The optical properties of the polymer showed a band gap of 1.6 eV and a sky-blue color in solid films. The polymer...... around a 1:2 mixing ratio. Roll-to-roll coated polymer solar cell devices were prepared under ambient conditions employing solution processing in all steps including the metallic back electrode that was printed as a grid giving semitransparent solar cell devices. Solar cell modules comprising 16 serially...

  4. Review of Polymer, Dye-Sensitized, and Hybrid Solar Cells

    Directory of Open Access Journals (Sweden)

    S. N. F. Mohd-Nasir

    2014-01-01

    Full Text Available The combination of inorganic nanoparticles semiconductor, conjugated polymer, and dye-sensitized in a layer of solar cell is now recognized as potential application in developing flexible, large area, and low cost photovoltaic devices. Several conjugated low bandgap polymers, dyes, and underlayer materials based on the previous studies are quoted in this paper, which can provide guidelines in designing low cost photovoltaic solar cells. All of these materials are designed to help harvest more sunlight in a wider range of the solar spectrum besides enhancing the rate of charge transfer in a device structure. This review focuses on developing solid-state dye-synthesized, polymer, and hybrid solar cells.

  5. Business, market and intellectual property analysis of polymer solar cells

    DEFF Research Database (Denmark)

    Damgaard Nielsen, Torben; Cruickshank, C.; Foged, S.

    2010-01-01

    and manufacturing cost leaves little room for competition on the thin film photovoltaic market. However, polymer solar cells do enable the competitive manufacture of low cost niche products and is viewed as financially viable in its currently available form in a large volume approximation. Finally, it is found......The business potential of polymer solar cells is reviewed and the market opportunities analyzed on the basis of the currently reported and projected performance and manufacturing cost of polymer solar cells. Possible new market areas are identified and described. An overview of the present patent...... and intellectual property situation is also given and a patent map of polymer solar cells is drawn in a European context. It is found that the business potential of polymer solar cells is large when taking the projections for future performance into account while the currently available performance...

  6. Large area flexible polymer solar cells with high efficiency enabled by imprinted Ag grid and modified buffer layer

    International Nuclear Information System (INIS)

    Lu, Shudi; Lin, Jie; Liu, Kong; Yue, Shizhong; Ren, Kuankuan; Tan, Furui; Wang, Zhijie; Jin, Peng; Qu, Shengchun; Wang, Zhanguo

    2017-01-01

    To take a full advantage of polymer semiconductors on realization of large-area flexible photovoltaic devices, herein, we fabricate polymer solar cells on the basis of polyethylene terephthalate (PET) with imprinted Ag grid as transparent electrode. The key fabrication procedure is the adoption of a modified PEDOT:PSS (PH1000) solution for spin-coating the buffer layer to form a compact contact with the substrate. In comparison with the devices with intrinsic PEDOT:PSS buffer layer, the advanced devices present a much higher efficiency of 6.51%, even in a large device area of 2.25 cm"2. Subsequent characterizations reveal that such devices show an impressive performance stability as the bending angle is enlarged to 180° and bending time is up to 1000 cycles. Not only providing a general methodology to construct high efficient and flexible polymer solar cells, this paper also involves deep insights on device working mechanism in bending conditions.

  7. A complete process for production of flexible large area polymer solar cells entirely using screen printing-First public demonstration

    DEFF Research Database (Denmark)

    Krebs, Frederik C; Jørgensen, Mikkel; Norrman, Kion

    2009-01-01

    , complete processing in air using commonly available screen printing, and finally, simple mechanical encapsulation using a flexible packaging material and electrical contacting post-production using crimped contacts. We detail the production of more than 2000 modules in one production run and show......A complete polymer solar cell module prepared in the ambient atmosphere under industrial conditions is presented. The versatility of the polymer solar cell technology is demonstrated through the use of abstract forms for the active area, a flexible substrate, processing entirely from solution...

  8. A round robin study of flexible large-area roll-to-roll processed polymer solar cell modules

    DEFF Research Database (Denmark)

    Krebs, Frederik C; Gevorgyan, Suren; Gholamkhass, Bobak

    2009-01-01

    A round robin for the performance of roll-to-roll coated flexible large-area polymer solar-cell modules involving 18 different laboratories in Northern America, Europe and Middle East is presented. The study involved the performance measurement of the devices at one location (Risø DTU) followed b...

  9. Grid-connected polymer solar panels: initial considerations of cost, lifetime, and practicality.

    Science.gov (United States)

    Medford, Andrew J; Lilliedal, Mathilde R; Jørgensen, Mikkel; Aarø, Dennis; Pakalski, Heinz; Fyenbo, Jan; Krebs, Frederik C

    2010-09-13

    Large solar panels were constructed from polymer solar cell modules prepared using full roll-to-roll (R2R) manufacture based on the previously published ProcessOne. The individual flexible polymer solar modules comprising multiple serially connected single cell stripes were joined electrically and laminated between a 4 mm tempered glass window and black Tetlar foil using two sheets of 0.5 mm thick ethylene vinyl acetate (EVA). The panels produced up to 8 W with solar irradiance of ~960 Wm⁻², and had outer dimensions of 1 m x 1.7 m with active areas up to 9180 cm². Panels were mounted on a tracking station and their output was grid connected between testing. Several generations of polymer solar cells and panel constructions were tested in this context to optimize the production of polymer solar panels. Cells lacking a R2R barrier layer were found to degrade due to diffusion of oxygen after less than a month, while R2R encapsulated cells showed around 50% degradation after 6 months but suffered from poor performance due to de-lamination during panel production. A third generation of panels with various barrier layers was produced to optimize the choice of barrier foil and it was found that the inclusion of a thin protective foil between the cell and the barrier foil is critical. The findings provide a preliminary foundation for the production and optimization of large-area polymer solar panels and also enabled a cost analysis of solar panels based on polymer solar cells.

  10. Business, market and intellectual property analysis of polymer solar cells

    International Nuclear Information System (INIS)

    Nielsen, Torben D.; Krebs, Frederik C.; Cruickshank, Craig; Foged, Soeren; Thorsen, Jesper

    2010-01-01

    The business potential of polymer solar cells is reviewed and the market opportunities analyzed on the basis of the currently reported and projected performance and manufacturing cost of polymer solar cells. Possible new market areas are identified and described. An overview of the present patent and intellectual property situation is also given and a patent map of polymer solar cells is drawn in a European context. It is found that the business potential of polymer solar cells is large when taking the projections for future performance into account while the currently available performance and manufacturing cost leaves little room for competition on the thin film photovoltaic market. However, polymer solar cells do enable the competitive manufacture of low cost niche products and is viewed as financially viable in its currently available form in a large volume approximation. Finally, it is found that the polymer solar cell technology is very poorly protected in Europe with the central patents being valid in only France, Germany, the Netherlands and the United Kingdom. Several countries with a large potential for PV such as Portugal and Greece are completely open and have apparently no relevant patents. This is viewed as a great advantage for the possible commercialization of polymer solar cells in a European setting as the competition for the market will be based on the manufacturing performance rather than domination by a few patent stakeholders. (author)

  11. Production of large-area polymer solar cells by industrial silk screen printing, lifetime considerations and lamination with polyethyleneterephthalate

    DEFF Research Database (Denmark)

    Krebs, Frederik C; Alstrup, J.; Spanggaard, H.

    2004-01-01

    The possibility of making large area (100 cm(2)) polymer solar cells based on the conjugated polymer poly 1,4-(2-methoxy-5-ethylhexyloxy)phenylenevinylene (MEH-PPV) was demonstrated. Devices were prepared by etching an electrode pattern on ITO covered polyethyleneterephthalate (PET) substrates....... A pattern of conducting silver epoxy allowing for electrical contacts to the device was silk screen printed and hardened. Subsequently a pattern of MEH-PPV was silk screen printed in registry with the ITO electrode pattern on top of the substrate. Final evaporation of an aluminum electrode or sublimation......). The half-life based on I-sc in air for the devices were 63 h. The cells were laminated in a 125 mum PET encasement. Lamination had a negative effect on the lifetime. We demonstrate the feasibility of industrial production of large area solar cells (1 m(2)) by silk screen printing and envisage...

  12. Polymer-fullerene bulk heterojunction solar cells

    NARCIS (Netherlands)

    Janssen, RAJ; Hummelen, JC; Saricifti, NS

    Nanostructured phase-separated blends, or bulk heterojunctions, of conjugated Polymers and fullerene derivatives form a very attractive approach to large-area, solid-state organic solar cells.The key feature of these cells is that they combine easy, processing from solution on a variety of

  13. Grid-connected polymer solar panels: initial considerations of cost, lifetime, and practicality

    DEFF Research Database (Denmark)

    Medford, Andrew James; Lilliedal, Mathilde Raad; Jørgensen, Mikkel

    2010-01-01

    Large solar panels were constructed from polymer solar cell modules prepared using full roll-to-roll (R2R) manufacture based on the previously published ProcessOne. The individual flexible polymer solar modules comprising multiple serially connected single cell stripes were joined electrically...... and laminated between a 4 mm tempered glass window and black Tetlar foil using two sheets of 0.5 mm thick ethylene vinyl acetate (EVA). The panels produced up to 8 W with solar irradiance of ~960 Wm−2, and had outer dimensions of 1 m x 1.7 m with active areas up to 9180 cm2. Panels were mounted on a tracking...... station and their output was grid connected between testing. Several generations of polymer solar cells and panel constructions were tested in this context to optimize the production of polymer solar panels. Cells lacking a R2R barrier layer were found to degrade due to diffusion of oxygen after less than...

  14. Polymer Solar Cells – Non Toxic Processing and Stable Polymer Photovoltaic Materials

    DEFF Research Database (Denmark)

    Søndergaard, Roar

    The field of polymer solar cell has experienced enormous progress in the previous years, with efficiencies of small scale devices (~1 mm2) now exceeding 8%. However, if the polymer solar cell is to achieve success as a renewable energy resource, mass production of sufficiently stable and efficient...... and development of more stable materials. The field of polymer solar cells has evolved around the use of toxic and carcinogenic solvents like chloroform, benzene, toluene, chlorobenzene, dichlorobenzene and xylene. As large scale production of organic solar cells is envisaged to production volumes corresponding...... synthesis of polymers carrying water coordinating side chains which allow for processing from semi-aqueous solution. A series of different side chains were synthesized and incorporated into the final polymers as thermocleavable tertiary esters. Using a cleavable side chain induces stability to solar cells...

  15. Stability and Degradation of Organic and Polymer Solar Cells

    DEFF Research Database (Denmark)

    Organic photovoltaics (OPV) are a new generation of solar cells with the potential to offer very short energy pay back times, mechanical flexibility and significantly lower production costs compared to traditional crystalline photovoltaic systems. A weakness of OPV is their comparative instability...... during operation and this is a critical area of research towards the successful development and commercialization of these 3rd generation solar cells. Covering both small molecule and polymer solar cells, Stability and Degradation of Organic and Polymer Solar Cells summarizes the state of the art...... understanding of stability and provides a detailed analysis of the mechanisms by which degradation occurs. Following an introductory chapter which compares different photovoltaic technologies, the book focuses on OPV degradation, discussing the origin and characterization of the instability and describing...

  16. Diketopyrrolopyrrole Polymers for Organic Solar Cells.

    Science.gov (United States)

    Li, Weiwei; Hendriks, Koen H; Wienk, Martijn M; Janssen, René A J

    2016-01-19

    Conjugated polymers have been extensively studied for application in organic solar cells. In designing new polymers, particular attention has been given to tuning the absorption spectrum, molecular energy levels, crystallinity, and charge carrier mobility to enhance performance. As a result, the power conversion efficiencies (PCEs) of solar cells based on conjugated polymers as electron donor and fullerene derivatives as electron acceptor have exceeded 10% in single-junction and 11% in multijunction devices. Despite these efforts, it is notoriously difficult to establish thorough structure-property relationships that will be required to further optimize existing high-performance polymers to their intrinsic limits. In this Account, we highlight progress on the development and our understanding of diketopyrrolopyrrole (DPP) based conjugated polymers for polymer solar cells. The DPP moiety is strongly electron withdrawing and its polar nature enhances the tendency of DPP-based polymers to crystallize. As a result, DPP-based conjugated polymers often exhibit an advantageously broad and tunable optical absorption, up to 1000 nm, and high mobilities for holes and electrons, which can result in high photocurrents and good fill factors in solar cells. Here we focus on the structural modifications applied to DPP polymers and rationalize and explain the relationships between chemical structure and organic photovoltaic performance. The DPP polymers can be tuned via their aromatic substituents, their alkyl side chains, and the nature of the π-conjugated segment linking the units along the polymer chain. We show that these building blocks work together in determining the molecular conformation, the optical properties, the charge carrier mobility, and the solubility of the polymer. We identify the latter as a decisive parameter for DPP-based organic solar cells because it regulates the diameter of the semicrystalline DPP polymer fibers that form in the photovoltaic blends with

  17. Thermo-cleavable solvents for printing conjugated polymers: Application in polymer solar cells

    DEFF Research Database (Denmark)

    Jørgensen, Mikkel; Hagemann, Ole; Alstrup, Jan

    2009-01-01

    large-scale production of polymer solar cells using screen printing. Screen-printed solar cells are still very inferior to state of the art P3HT/PCBM technology, but it is our view that it is necessary to explore these printing technologies if polymer solar cells are to ever become commercial products.......The synthesis and characterization of a number of so-called thermo-cleavable solvents are described with their application in all-air, all-solution and all-screen-printed polymer solar cells. These solvents were developed to meet some requirements for printing techniques such as long “open time...... (TGA) and high-temperature NMR established the onset temperature of decomposition, the rate of the reaction and the nature of the products. Printing experiments with inks based on these solvents together with conjugated polymers are exemplified for polymer solar cell devices to show how they enable...

  18. Unconventional device concepts for polymer solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Veenstra, S.C.; Slooff, L.H.; Verhees, W.J.H.; Cobussen-Pool, E.M.; Lenzmann, F.O.; Kroon, J.M. [ECN Solar Energy, Petten (Netherlands); Sessolo, M.; Bolink, H.J. [Instituto de Ciencia Molecular, Universidad de Valencia, Valencia (Spain)

    2009-09-15

    The inclusion of metal-oxide layers in polymer solar cells enables the fabrication of a series of unconventional device architectures. These devices include: semi-transparent polymer solar cells, devices with inverted polarity, as well as devices with air stable electrodes. A proof-of-principle of these devices is presented. The anticipated benefits of these novel device structures over conventional polymer solar cells are discussed.

  19. Polymer solar cells - Non toxic processing and stable polymer photovoltaic materials

    Energy Technology Data Exchange (ETDEWEB)

    Soendergaard, R

    2012-07-01

    high to allow processing on flexible substrates like PET. As a final result, the reduction in cleavage temperature of thermocleavable thiophene polymers with ester side chains, through acid catalysis have been examined. The study shows that substantial lowering of the temperatures can be obtained for tertiary, secondary and primary esters, but further research needs to be performed in order to transfer the reaction to solar cells. From a stability point of view, the current state of the art polymers are not stable enough to be processed by large area processing methods like roll-to-roll (R2R) coating techniques, as this has to be performed in air. This calls for the development of new materials, which can endure such processing conditions, and in this context it would be preferable to have a guideline towards which properties of a polymer that either induces stability or causes it to degrade. As part of a larger study, aiming at mapping the relative stability influence of different donors and acceptors in low-band-gap polymers, four polymers were synthesized for examination of their photochemical stabilities. Two of these were furthermore optimized for R2R processing and were tested together with other cells, in an outdoor study involving 8 countries. Panels containing the cells encapsulated in polyurethane were manufactured, measured and installed by travelling between the different locations. Following 4 1/2 months outdoor exposure the trip was done again in order to dismount the panels for shipment back to Denmark, where final characterization was made. The use of polyurethane for encapsulation showed improved conservations of the cells compared to previous studies. (Author)

  20. Development of polymers for large scale roll-to-roll processing of polymer solar cells

    DEFF Research Database (Denmark)

    Carlé, Jon Eggert

    Development of polymers for large scale roll-to-roll processing of polymer solar cells Conjugated polymers potential to both absorb light and transport current as well as the perspective of low cost and large scale production has made these kinds of material attractive in solar cell research....... The research field of polymer solar cells (PSCs) is rapidly progressing along three lines: Improvement of efficiency and stability together with the introduction of large scale production methods. All three lines are explored in this work. The thesis describes low band gap polymers and why these are needed....... Polymer of this type display broader absorption resulting in better overlap with the solar spectrum and potentially higher current density. Synthesis, characterization and device performance of three series of polymers illustrating how the absorption spectrum of polymers can be manipulated synthetically...

  1. Pyramid shape of polymer solar cells: a simple solution to triple efficiency

    International Nuclear Information System (INIS)

    Xia, Yuxin; Hou, Lintao; Ma, Kaijie; Wang, Biao; Xiong, Kang; Liu, Pengyi; Liao, Jihai; Wen, Shangsheng; Wang, Ergang

    2013-01-01

    Pyramid-shaped polymer solar cells fabricated on flexible substrates were investigated. Effective light trapping can be realized due to light reflection in all 360° directions, and 100% space utilization is achieved when assembled into arrays. The power conversion efficiency is enhanced by 200% ([60]PCBM as the acceptor) and 260% ([70]PCBM as the acceptor) with a dihedral angle of 30° between the opposite sides of the pyramid compared with a planar device, and a high V oc of 3.5 V in series connection is obtained. Considering the material utilization, an angle of 90° for pyramid-shaped polymer solar cells is proposed. Pyramid-shaped polymer solar cells are particularly suitable for installation on roof of vehicles and houses, which have limited surface area. (paper)

  2. Fullerene surfactants and their use in polymer solar cells

    Science.gov (United States)

    Jen, Kwan-Yue; Yip, Hin-Lap; Li, Chang-Zhi

    2015-12-15

    Fullerene surfactant compounds useful as interfacial layer in polymer solar cells to enhance solar cell efficiency. Polymer solar cell including a fullerene surfactant-containing interfacial layer intermediate cathode and active layer.

  3. The interplay of nanostructure and efficiency of polymer solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Chunhong, Yin

    2008-12-04

    The aim of this thesis is to achieve a deep understanding of the working mechanism of polymer based solar cells and to improve the device performance. Two types of the polymer based solar cells are studied here: the polymer-polymer solar cells, and the polymer-small molecule solar cell which has polymer as electron donor incorporating with organic small molecule as electron acceptor. For the polymer-polymer devices, I compared the photocurrent characteristics of bilayer and blend devices as well as the blend devices with different nano-morphology, which is fine tuned by applying solvents with different boiling points. The main conclusion based on the complementary measurements is that the performance-limiting step is the field-dependent generation of free charge carriers, while bimolecular recombination and charge extraction do not compromise device performance. Regarding polymer-small molecular hybrid solar cells I combined the hole-transporting polymer M3EH-PPV with a novel small molecule electron acceptor vinazene. This molecule can be either deposited from solution or by thermal evaporation, allowing for a large variety of layer architectures to be realized. I then demonstrated that the layer architecture has a large influence on the photovoltaic properties. Solar cells with very high fill factors of up to 57 % and an open circuit voltage of 1V without thermal treatment of the devices were achieved. In the past, fill factors of solar cells exceeding 50 % have only been observed when using fullerene-derivatives as the electron-acceptor. The finding that proper processing of polymer-vinazene devices leads to similar high values is a major step towards the design of efficient polymer-based solar cells. (orig.)

  4. All polymer photovoltaics: From small inverted devices to large roll-to-roll coated and printed solar cells

    DEFF Research Database (Denmark)

    Liu, Yao; Larsen-Olsen, Thue Trofod; Zhao, Xingang

    2013-01-01

    Inverted all polymer solar cells based on a blend of a perylene diimide based polymer acceptor and a dithienosilole based polymer donor were fabricated from small area devices to roll-to-roll (R2R) coated and printed large area modules. The device performance was successfully optimized by using...

  5. Industrialization of polymer solar cells - phase 1

    Energy Technology Data Exchange (ETDEWEB)

    Lauritzen, H.; Krebs, F.C. [Technical Univ. of Denmark. DTU Energy Conversion, DTU Risoe Campus, Roskilde (Denmark); Andersen, Rasmus B. [Mekoprint A/S, Stoevrimg (Denmark); Bork, J.; Bentzen, B.

    2012-03-15

    . The line was at the same time adjusted and updated to handle the new production. The very first solar cells produced on this line appeared in July 2010. The line has subsequently been upgraded on a running basis, and Mekoprint's operators have been trained. The technology transfer is continued in the project's phase 2, where the goal is that Mekoprint fully masters both the production process and the production line. During the course of the project several applications for polymer solar cells have been investigated from a technical -, a design , and a market point of view. Faktor 3 has sketched and visualized a range of ideas. The ideas are communicated to a broader audience by means of a brochure. An on-line version of the brochure and a computer tool developed for guiding the designer through the process of dimensioning the electronic system comprising a polymer solar cell, a battery and the electronic function to be powered, are available on Faktor 3's homepage, www.faktor-3.dk. Small LED torches have served as a case for gaining experiences with development and production of solar powered products. A range of conceptual lamps have been evaluated, and two lamps have been produced in large series and demonstrated in public. Some hundred lamps targeted at school children in non-electrified areas in 3rd world countries were produced and distributed to target users in Asia, Africa and South America in collaboration with the Stroemme Foundation (NO). The feedback received was highly positive and proves the necessity for low-cost, off-grid lightening to replace the presently used kerosene lamps. A small credit-card sized lamp was produced in a series of 10.000 units in order to test the production setup's ability to handle large series. Several thousands of the lamps were handed out at an international conference for printed electronics, (LOPE-C, 2011). The response from this audience, who is well qualified to judge the news value of lamp's, has also been highly

  6. Conjugated Polymer Solar Cells

    National Research Council Canada - National Science Library

    Paraschuk, Dmitry Y

    2006-01-01

    This report results from a contract tasking Moscow State University as follows: Conjugated polymers are promising materials for many photonics applications, in particular, for photovoltaic and solar cell devices...

  7. Polymer solar cells with enhanced open-circuit voltage and efficiency

    Science.gov (United States)

    Chen, Hsiang-Yu; Hou, Jianhui; Zhang, Shaoqing; Liang, Yongye; Yang, Guanwen; Yang, Yang; Yu, Luping; Wu, Yue; Li, Gang

    2009-11-01

    Following the development of the bulk heterojunction structure, recent years have seen a dramatic improvement in the efficiency of polymer solar cells. Maximizing the open-circuit voltage in a low-bandgap polymer is one of the critical factors towards enabling high-efficiency solar cells. Study of the relation between open-circuit voltage and the energy levels of the donor/acceptor in bulk heterojunction polymer solar cells has stimulated interest in modifying the open-circuit voltage by tuning the energy levels of polymers. Here, we show that the open-circuit voltage of polymer solar cells constructed based on the structure of a low-bandgap polymer, PBDTTT, can be tuned, step by step, using different functional groups, to achieve values as high as 0.76 V. This increased open-circuit voltage combined with a high short-circuit current density results in a polymer solar cell with a power conversion efficiency as high as 6.77%, as certified by the National Renewable Energy Laboratory.

  8. Characterization of Thin Films for Polymer Solar Cells

    DEFF Research Database (Denmark)

    Tromholt, Thomas

    , but a large number of additional degradation mechanisms are introduced. Consequently, research in the stability of polymer solar cells is impractical since the extensive timeframe of stability testing reduces the pace of the research. This thesis reports the first results on the response of polymer solar...... cells to concentrated light, both in terms of performance as well as stability. Additionally, concentrated light was used to study some of the mechanisms governing solar cells operation, which are dominant when currents are very high as a consequence of high photon flux. The response in terms......The field of polymer solar cells has undergone an extensive development in recent years after the invention of semiconducting polymers in 1991. Efficiencies have gradually increased to above 10 %, and high throughput processing methods such as roll-to-roll coating allow for production of thousands...

  9. Dye-sensitized solar cells and solar module using polymer electrolytes: Stability and performance investigations

    Directory of Open Access Journals (Sweden)

    Jilian Nei de Freitas

    2006-01-01

    Full Text Available We present recent results on solid-state dye-sensitized solar cell research using a polymer electrolyte based on a poly(ethylene oxide derivative. The stability and performance of the devices have been improved by a modification in the method of assembly of the cells and by the addition of plasticizers in the electrolyte. After 30 days of solar irradiation (100 mW cm-2 no changes in the cell's efficiency were observed using this new method. The effect of the active area size on cell performance and the first results obtained for the first solar module composed of 4.5 cm2 solid-state solar cells are also presented.

  10. Hybrid Silicon Nanocone–Polymer Solar Cells

    KAUST Repository

    Jeong, Sangmoo

    2012-06-13

    Recently, hybrid Si/organic solar cells have been studied for low-cost Si photovoltaic devices because the Schottky junction between the Si and organic material can be formed by solution processes at a low temperature. In this study, we demonstrate a hybrid solar cell composed of Si nanocones and conductive polymer. The optimal nanocone structure with an aspect ratio (height/diameter of a nanocone) less than two allowed for conformal polymer surface coverage via spin-coating while also providing both excellent antireflection and light trapping properties. The uniform heterojunction over the nanocones with enhanced light absorption resulted in a power conversion efficiency above 11%. Based on our simulation study, the optimal nanocone structures for a 10 μm thick Si solar cell can achieve a short-circuit current density, up to 39.1 mA/cm 2, which is very close to the theoretical limit. With very thin material and inexpensive processing, hybrid Si nanocone/polymer solar cells are promising as an economically viable alternative energy solution. © 2012 American Chemical Society.

  11. Hybrid Silicon Nanocone–Polymer Solar Cells

    KAUST Repository

    Jeong, Sangmoo; Garnett, Erik C.; Wang, Shuang; Yu, Zongfu; Fan, Shanhui; Brongersma, Mark L.; McGehee, Michael D.; Cui, Yi

    2012-01-01

    Recently, hybrid Si/organic solar cells have been studied for low-cost Si photovoltaic devices because the Schottky junction between the Si and organic material can be formed by solution processes at a low temperature. In this study, we demonstrate a hybrid solar cell composed of Si nanocones and conductive polymer. The optimal nanocone structure with an aspect ratio (height/diameter of a nanocone) less than two allowed for conformal polymer surface coverage via spin-coating while also providing both excellent antireflection and light trapping properties. The uniform heterojunction over the nanocones with enhanced light absorption resulted in a power conversion efficiency above 11%. Based on our simulation study, the optimal nanocone structures for a 10 μm thick Si solar cell can achieve a short-circuit current density, up to 39.1 mA/cm 2, which is very close to the theoretical limit. With very thin material and inexpensive processing, hybrid Si nanocone/polymer solar cells are promising as an economically viable alternative energy solution. © 2012 American Chemical Society.

  12. Indaceno-Based Conjugated Polymers for Polymer Solar Cells.

    Science.gov (United States)

    Yin, Yuli; Zhang, Yong; Zhao, Liancheng

    2018-01-04

    Polymer solar cells have received considerable attention due to the advantages of low material cost, tunable band gaps, ultralight weight, and high flexible properties, and they have been a promising organic photovoltaic technology for alternative non-renewable fossil fuels for the past decade. Inspired by these merits, numerous state-of-the-art organic photovoltaic materials have been constructed. Among them, indaceno-based polymer materials have made an impact in obtaining an impressive power conversion efficiency of more than 11%, which shows the momentous potential of this class of materials for commercial applications. In this review, recent progress of indaceno-based organic polymer solar cells are reviewed, and the structure-property device performance correlations of the reported materials are highlighted. Then, common regularities of these successful cases are collected, and encouraging viewpoints on the further development of more exciting indaceno-based organic photovoltaic materials are provided. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Polymer-Polymer Förster Resonance Energy Transfer Significantly Boosts the Power Conversion Efficiency of Bulk-Heterojunction Solar Cells.

    Science.gov (United States)

    Gupta, Vinay; Bharti, Vishal; Kumar, Mahesh; Chand, Suresh; Heeger, Alan J

    2015-08-01

    Optically resonant donor polymers can exploit a wider range of the solar spectrum effectively without a complicated tandem design in an organic solar cell. Ultrafast Förster resonance energy transfer (FRET) in a polymer-polymer system that significantly improves the power conversion efficiency in bulk heterojunction polymer solar cells from 6.8% to 8.9% is demonstrated, thus paving the way to achieving 15% efficient solar cells. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Diketopyrrolopyrrole polymers for organic solar cells

    NARCIS (Netherlands)

    Li, Wei Wei; Hendriks, K.H.; Wienk, M.M.; Janssen, R.A.J.

    2016-01-01

    Conspectus Conjugated polymers have been extensively studied for application in organic solar cells. In designing new polymers, particular attention has been given to tuning the absorption spectrum, molecular energy levels, crystallinity, and charge carrier mobility to enhance performance. As a

  15. Photo-degradation of high efficiency fullerene-free polymer solar cells.

    Science.gov (United States)

    Upama, Mushfika Baishakhi; Wright, Matthew; Mahmud, Md Arafat; Elumalai, Naveen Kumar; Mahboubi Soufiani, Arman; Wang, Dian; Xu, Cheng; Uddin, Ashraf

    2017-12-07

    Polymer solar cells are a promising technology for the commercialization of low cost, large scale organic solar cells. With the evolution of high efficiency (>13%) non-fullerene polymer solar cells, the stability of the cells has become a crucial parameter to be considered. Among the several degradation mechanisms of polymer solar cells, burn-in photo-degradation is relatively less studied. Herein, we present the first systematic study of photo-degradation of novel PBDB-T:ITIC fullerene-free polymer solar cells. The thermally treated and as-prepared PBDB-T:ITIC solar cells were exposed to continuous 1 sun illumination for 5 hours. The aged devices exhibited rapid losses in the short-circuit current density and fill factor. The severe short-circuit current and fill factor burn in losses were attributed to trap mediated charge recombination, as evidenced by an increase in Urbach energy for aged devices.

  16. Efficient CsF interlayer for high and low bandgap polymer solar cell

    Science.gov (United States)

    Mitul, Abu Farzan; Sarker, Jith; Adhikari, Nirmal; Mohammad, Lal; Wang, Qi; Khatiwada, Devendra; Qiao, Qiquan

    2018-02-01

    Low bandgap polymer solar cells have a great deal of importance in flexible photovoltaic market to absorb sun light more efficiently. Efficient wide bandgap solar cells are always available in nature to absorb visible photons. The development and incorporation of infrared photovoltaics (IR PV) with wide bandgap solar cells can improve overall solar device performance. Here, we have developed an efficient low bandgap polymer solar cell with CsF as interfacial layer in regular structure. Polymer solar cell devices with CsF shows enhanced performance than Ca as interfacial layer. The power conversion efficiency of 4.5% has been obtained for PDPP3T based polymer solar cell with CsF as interlayer. Finally, an optimal thickness with CsF as interfacial layer has been found to improve the efficiency in low bandgap polymer solar cells.

  17. Fullerene solubility-current density relationship in polymer solar cells

    International Nuclear Information System (INIS)

    Renz, Joachim A.; Gobsch, Gerhard; Hoppe, Harald; Troshin, Pavel A.; Razumov, V.F.

    2008-01-01

    During the last decade polymer solar cells have undergone a steady increase in overall device efficiency. To date, essential efficiency improvements of polymer-fullerene solar cells require the development of new materials. Whilst most research efforts aim at an improved or spectrally extended absorption of the donor polymer, not so much attention has been paid to the fullerene properties themselves. We have investigated a number of structurally related fullerenes, in order to study the relationship between chemical structure and resulting polymer-fullerene bulk heterojunction photovoltaic properties. Our study reveals a clear connection between the fullerene solubility as material property on one hand and the solar cells short circuit photocurrent on the other hand. The tendency of the less soluble fullerene derivates to aggregate was accounted for smaller current densities in the respective solar cells. Once a minimum solubility of approx. 25 mg/ml in chlorobenzene was overcome by the fullerene derivative, the short circuit current density reached a plateau, of about 8-10 mA/cm 2 . Thus the solubility of the fullerene derivative directly influences the blend morphology and displays an important parameter for efficient polymer-fullerene bulk heterojunction solar cell operation. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  18. Development of a Polymer-carbon Nanotubes based Economic Solar Collector

    OpenAIRE

    Kim, S. I.; Kissick, John; Spence, Stephen; Boyle, Christine

    2014-01-01

    A low cost solar collector was developed by using polymeric components as opposed to metal and glass components of traditional solar collectors. In order to utilize polymers for the absorber of the solar collector, Carbon Nanotubes (CNT) has been added as a filler to improve the thermal conductivity and the solar absorptivity of polymers. The solar collector was designed as a multi-layer construction with considering the economic manufacturing. Through the mathematical heat transfer analysis,...

  19. Scalability and stability of very thin roll-to-roll processed large area indium-tin-oxide free polymer solar cell modules

    DEFF Research Database (Denmark)

    Angmo, Dechan; Gevorgyan, Suren; Larsen-Olsen, Thue Trofod

    2013-01-01

    Polymer solar cell modules were prepared directly on thin flexible barrier polyethylene terephthalate foil. The performance of the modules was found to be scalable from a single cell with an area of 6 cm2 to modules with a total area of up to 186 cm2. The substrate thickness was also explored...... employing P3HT:PCBM as the active material and were found to exhibit a total area efficiency of >1% (1000 W/m2; AM1.5G) with a typical active-area efficiency in the 1.5–1.6% for total module area of >110 cm2 due to high fill factors in excess of 50%. The modules were also found to have an active...

  20. Photovoltaic properties of conjugated polymer/fullerene composites on large area flexible substrates

    Directory of Open Access Journals (Sweden)

    Desta Gebeyehu

    2000-06-01

    Full Text Available In this paper we present measurements of the photovoltaic response of bulk donor-acceptor heterojunction between the conjugated polymer, poly(3-octylthiophene, P3OT, (as a donor, D and fullerene (methanofullerene, (as acceptor, A, deposited between indium tin oxide and aluminum electrodes. The innovation involves the substrate, which is a polymer foil instead of glass. These devices are based on ultrafast, reversible, metastable photoinduced electron transfer and charge separation. We also present the efficiency and stability studies on large area (6 cm x 6 cm flexible plastic solar cells with monochromatic energy conversion efficiency (e of about 1.5% and carrier collection efficiency of nearly 20%. Further more, we have investigated the surface network morphology of these films layers by atomic force microscope (AFM. The development of solar cells based on composites of organic conjugated semi-conducting polymers with fullerene derivatives can provide a new method in the exploitation of solar energy.

  1. Conjugated polymer zwitterions and solar cells comprising conjugated polymer zwitterions

    Science.gov (United States)

    Emrick, Todd; Russell, Thomas; Page, Zachariah; Liu, Yao

    2018-06-05

    A conjugated polymer zwitterion includes repeating units having structure (I), (II), or a combination thereof ##STR00001## wherein Ar is independently at each occurrence a divalent substituted or unsubstituted C3-30 arylene or heteroarylene group; L is independently at each occurrence a divalent C1-16 alkylene group, C6-30arylene or heteroarylene group, or alkylene oxide group; and R1 is independently at each occurrence a zwitterion. A polymer solar cell including the conjugated polymer zwitterion is also disclosed.

  2. Preorganization of Nanostructured Inks for Roll-to-Roll-Coated Polymer Solar Cells

    DEFF Research Database (Denmark)

    Krebs, Frederik C; Senkovskyy, Volodymyr; Kiriy, Anton

    2010-01-01

    , a preorganized ink was obtained that was used to make polymer solar cell modules in a full roll-to-roll coating and printing process operating in ambient air. The polymer solar cells were thus prepared by a mixture of slot die and flat-bed screen printing. Various polymer solar cell modules were prepared ranging...

  3. Nanomorphological study of polymer bulk heterojuntion used in flexible solar devices

    Science.gov (United States)

    Calderón-Ortiz, Gabriel; Carrasco, Hector; Vedrine-Pauleus, Josee

    2014-03-01

    Solar cells fabricated with organic polymeric materials can enable large area fabrication on printable and flexible substrates, but increasing their efficiency is coupled to understanding their electrical properties and mechanical function on the nanoscale. In this study we measure the nanoscale conducting and mechanical properties of organic bulk heterojunction polymers coated on graphene and flexible PET or Si substrates. We characterize the nanomorphology of bulk heterojunction conducting polymers by applying conductive atomic force microscope (c-AFM), and force volume mapping for quantitative nanomechanical property calculations.

  4. Using Light-Induced Thermocleavage in a Roll-to-Roll Process for Polymer Solar Cells

    DEFF Research Database (Denmark)

    Krebs, Frederik C; Norrman, Kion

    2010-01-01

    We report on the use of intense visible light with a narrow spectral distribution matched to the region where the conjugated polymer material absorbs to selectively heat the active material and induce thermocleavage. We show a full roll-to-roll process, leading to complete large-area polymer solar...... ion mass spectrometry, attenuated total reflectance infrared, and transmission/reflection UV−vis techniques....

  5. Inkjet Printing of Back Electrodes for Inverted Polymer Solar cells

    DEFF Research Database (Denmark)

    Angmo, Dechan; Sweelssen, Jorgen; Andriessen, Ronn

    2013-01-01

    in an otherwise fast roll-to-roll production line. In this paper, the applicability of inkjet printing in the ambient processing of back electrodes in inverted polymer solar cells with the structure ITO/ZnO/P3HT:PCBM/PEDOT:PSS/ Ag is investigated. Furthermore, the limitation of screen printing, the commonly......Evaporation is the most commonly used deposition method in the processing of back electrodes in polymer solar cells used in scientifi c studies. However, vacuum-based methods such as evaporation are uneconomical in the upscaling of polymer solar cells as they are throughput limiting steps...... employed method in the ambient processing of back electrode, is demonstrated and discussed. Both inkjet printing and screen printing of back electrodes are studied for their impact on the photovoltaic properties of the polymer solar cells measured under 1000 Wm−2 AM1.5. Each ambient processing technique...

  6. Efficient low bandgap polymer solar cell with ordered heterojunction defined by nanoimprint lithography.

    Science.gov (United States)

    Yang, Yi; Mielczarek, Kamil; Zakhidov, Anvar; Hu, Walter

    2014-11-12

    In this work, we demonstrate the feasibility of using nanoimprint lithography (NIL) to make efficient low bandgap polymer solar cells with well-ordered heterojunction. High quality low bandgap conjugated polymer poly[2,6-(4,4-bis(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b']-dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)] (PCPDTBT) nanogratings are fabricated using this technique for the first time. The geometry effect of PCPDTBT nanostructures on the solar cell performance is investigated by making PCPDTBT/C70 solar cells with different feature sizes of PCPDTBT nanogratings. It is found that the power conversion efficiency (PCE) increases with increasing nanograting height, PCPDTBT/C70 junction area, and decreasing nanograting width. We also find that NIL makes PCPDTBT chains interact more strongly and form an improved structural ordering. Solar cells made on the highest aspect ratio PCPDTBT nanostructures are among the best reported devices using the same material with a PCE of 5.5%.

  7. Atomic-Layer-Deposited AZO Outperforms ITO in High-Efficiency Polymer Solar Cells

    KAUST Repository

    Kan, Zhipeng

    2018-05-11

    Tin-doped indium oxide (ITO) transparent conducting electrodes are widely used across the display industry, and are currently the cornerstone of photovoltaic device developments, taking a substantial share in the manufacturing cost of large-area modules. However, cost and supply considerations are set to limit the extensive use of indium for optoelectronic device applications and, in turn, alternative transparent conducting oxide (TCO) materials are required. In this report, we show that aluminum-doped zinc oxide (AZO) thin films grown by atomic layer deposition (ALD) are sufficiently conductive and transparent to outperform ITO as the cathode in inverted polymer solar cells. Reference polymer solar cells made with atomic-layer-deposited AZO cathodes, PCE10 as the polymer donor and PC71BM as the fullerene acceptor (model systems), reach power conversion efficiencies of ca. 10% (compared to ca. 9% with ITO-coated glass), without compromising other figures of merit. These ALD-grown AZO electrodes are promising for a wide range of optoelectronic device applications relying on TCOs.

  8. Atomic-Layer-Deposited AZO Outperforms ITO in High-Efficiency Polymer Solar Cells

    KAUST Repository

    Kan, Zhipeng; Wang, Zhenwei; Firdaus, Yuliar; Babics, Maxime; Alshareef, Husam N.; Beaujuge, Pierre

    2018-01-01

    Tin-doped indium oxide (ITO) transparent conducting electrodes are widely used across the display industry, and are currently the cornerstone of photovoltaic device developments, taking a substantial share in the manufacturing cost of large-area modules. However, cost and supply considerations are set to limit the extensive use of indium for optoelectronic device applications and, in turn, alternative transparent conducting oxide (TCO) materials are required. In this report, we show that aluminum-doped zinc oxide (AZO) thin films grown by atomic layer deposition (ALD) are sufficiently conductive and transparent to outperform ITO as the cathode in inverted polymer solar cells. Reference polymer solar cells made with atomic-layer-deposited AZO cathodes, PCE10 as the polymer donor and PC71BM as the fullerene acceptor (model systems), reach power conversion efficiencies of ca. 10% (compared to ca. 9% with ITO-coated glass), without compromising other figures of merit. These ALD-grown AZO electrodes are promising for a wide range of optoelectronic device applications relying on TCOs.

  9. Flexible ITO-Free Polymer Solar Cells

    DEFF Research Database (Denmark)

    Angmo, Dechan; Krebs, Frederik C

    2013-01-01

    Indium tin oxide (ITO) is the material-of-choice for transparent conductors in any optoelectronic application. However, scarce resources of indium and high market demand of ITO have created large price fluctuations and future supply concerns. In polymer solar cells (PSCs), ITO is the single......-cost alternatives to ITO suitable for use in PSCs. These alternatives belong to four material groups: polymers; metal and polymer composites; metal nanowires and ultra-thin metal films; and carbon nanotubes and graphene. We further present the progress of employing these alternatives in PSCs and identify future...

  10. Influence of Side Chain Position on the Electrical Properties of Organic Solar Cells Based on Dithienylbenzothiadiazole-alt-phenylene Conjugated Polymers

    DEFF Research Database (Denmark)

    Livi, Francesco; Zawacka, Natalia Klaudia; Angmo, Dechan

    2015-01-01

    backbone for polymer solar cells. All the polymers were roll slot die coated under ambient conditions on flexible ITO-free plastic substrates to give inverted polymer solar cell devices with an upscaled active area of 1 cm2. The best characteristics were found for the polymer carrying alkoxy side chains...... showed excellent performance under constant illumination and high temperature (exhibiting stable photovoltaic properties even after 670 h under conditions similar to ISOS-L-2 lifetime protocol). This makes P7 a good candidate for further upscaling and device optimization. The photovoltaic performance...

  11. Life-cycle analysis of product integrated polymer solar cells

    DEFF Research Database (Denmark)

    Espinosa Martinez, Nieves; García-Valverde, Rafael; Krebs, Frederik C

    2011-01-01

    A life cycle analysis (LCA) on a product integrated polymer solar module is carried out in this study. These assessments are well-known to be useful in developmental stages of a product in order to identify the bottlenecks for the up-scaling in its production phase for several aspects spanning from...... economics through design to functionality. An LCA study was performed to quantify the energy use and greenhouse gas (GHG) emissions from electricity use in the manufacture of a light-weight lamp based on a plastic foil, a lithium-polymer battery, a polymer solar cell, printed circuitry, blocking diode......, switch and a white light emitting semiconductor diode. The polymer solar cell employed in this prototype presents a power conversion efficiency in the range of 2 to 3% yielding energy payback times (EPBT) in the range of 1.3–2 years. Based on this it is worthwhile to undertake a life-cycle study...

  12. Influence of electron-donating polymer addition on the performance of polymer solar cells

    International Nuclear Information System (INIS)

    Kim, Youngkyoo; Shin, Minjung; Kim, Hwajeong; Ha, Youri; Ha, Chang-Sik

    2008-01-01

    Here we report the influence of electron-donating polymer addition on the performance of poly(3-hexylthiophene) (P3HT) : 1-(3-methoxycarbonyl)-propyl-1-phenyl-(6,6)C 61 (PCBM) solar cells. Poly[2-methoxy-5-(3',7'-dimethyloctyloxy)-1,4-phenylenevinylene] (MDMO-PPV) was chosen as the electron-donating polymer to improve the open circuit voltage (V OC ) due to its higher level of the highest occupied molecular orbital energy compared with P3HT. Results showed that the MDMO-PPV addition led to an improved V OC for ternary blend (P3HT : MDMO-PPV : PCBM) solar cells. In particular, after thermal annealing at 110 deg. C, the short circuit current density of ternary blend solar cells was greatly improved, close to that of comparative binary blend (P3HT : PCBM) solar cells.

  13. A round robin study of flexible large-area roll-to-roll processed polymer solar cell modules

    DEFF Research Database (Denmark)

    Gevorgyan, Suren

    2010-01-01

    by transportation to a participating laboratory for performance measurement and return to the starting location (Risø DTU) for re-measurement of the performance. It was found possible to package polymer solar-cell modules using a flexible plastic barrier material in such a manner that degradation of the devices...

  14. All-Polymer Solar Cell Performance Optimized via Systematic Molecular Weight Tuning of Both Donor and Acceptor Polymers.

    Science.gov (United States)

    Zhou, Nanjia; Dudnik, Alexander S; Li, Ting I N G; Manley, Eric F; Aldrich, Thomas J; Guo, Peijun; Liao, Hsueh-Chung; Chen, Zhihua; Chen, Lin X; Chang, Robert P H; Facchetti, Antonio; Olvera de la Cruz, Monica; Marks, Tobin J

    2016-02-03

    The influence of the number-average molecular weight (Mn) on the blend film morphology and photovoltaic performance of all-polymer solar cells (APSCs) fabricated with the donor polymer poly[5-(2-hexyldodecyl)-1,3-thieno[3,4-c]pyrrole-4,6-dione-alt-5,5-(2,5-bis(3-dodecylthiophen-2-yl)thiophene)] (PTPD3T) and acceptor polymer poly{[N,N'-bis(2-octyldodecyl)naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5'-(2,2'-bithiophene)} (P(NDI2OD-T2); N2200) is systematically investigated. The Mn effect analysis of both PTPD3T and N2200 is enabled by implementing a polymerization strategy which produces conjugated polymers with tunable Mns. Experimental and coarse-grain modeling results reveal that systematic Mn variation greatly influences both intrachain and interchain interactions and ultimately the degree of phase separation and morphology evolution. Specifically, increasing Mn for both polymers shrinks blend film domain sizes and enhances donor-acceptor polymer-polymer interfacial areas, affording increased short-circuit current densities (Jsc). However, the greater disorder and intermixed feature proliferation accompanying increasing Mn promotes charge carrier recombination, reducing cell fill factors (FF). The optimized photoactive layers exhibit well-balanced exciton dissociation and charge transport characteristics, ultimately providing solar cells with a 2-fold PCE enhancement versus devices with nonoptimal Mns. Overall, it is shown that proper and precise tuning of both donor and acceptor polymer Mns is critical for optimizing APSC performance. In contrast to reports where maximum power conversion efficiencies (PCEs) are achieved for the highest Mns, the present two-dimensional Mn optimization matrix strategy locates a PCE "sweet spot" at intermediate Mns of both donor and acceptor polymers. This study provides synthetic methodologies to predictably access conjugated polymers with desired Mn and highlights the importance of optimizing Mn for both polymer

  15. Naphthalene Diimide Based n-Type Conjugated Polymers as Efficient Cathode Interfacial Materials for Polymer and Perovskite Solar Cells.

    Science.gov (United States)

    Jia, Tao; Sun, Chen; Xu, Rongguo; Chen, Zhiming; Yin, Qingwu; Jin, Yaocheng; Yip, Hin-Lap; Huang, Fei; Cao, Yong

    2017-10-18

    A series of naphthalene diimide (NDI) based n-type conjugated polymers with amino-functionalized side groups and backbones were synthesized and used as cathode interlayers (CILs) in polymer and perovskite solar cells. Because of controllable amine side groups, all the resulting polymers exhibited distinct electronic properties such as oxidation potential of side chains, charge carrier mobilities, self-doping behaviors, and interfacial dipoles. The influences of the chemical variation of amine groups on the cathode interfacial effects were further investigated in both polymer and perovskite solar cells. We found that the decreased electron-donating property and enhanced steric hindrance of amine side groups substantially weaken the capacities of altering the work function of the cathode and trap passivation of the perovskite film, which induced ineffective interfacial modifications and declining device performance. Moreover, with further improvement of the backbone design through the incorporation of a rigid acetylene spacer, the resulting polymers substantially exhibited an enhanced electron-transporting property. Upon use as CILs, high power conversion efficiencies (PCEs) of 10.1% and 15.2% were, respectively, achieved in polymer and perovskite solar cells. Importantly, these newly developed n-type polymers were allowed to be processed over a broad thickness range of CILs in photovoltaic devices, and a prominent PCE of over 8% for polymer solar cells and 13.5% for perovskite solar cells can be achieved with the thick interlayers over 100 nm, which is beneficial for roll-to-roll coating processes. Our findings contribute toward a better understanding of the structure-performance relationship between CIL material design and solar cell performance, and provide important insights and guidelines for the design of high-performance n-type CIL materials for organic and perovskite optoelectronic devices.

  16. Polymer solar cells with novel fullerene-based acceptor

    International Nuclear Information System (INIS)

    Riedel, I.; Martin, N.; Giacalone, F.; Segura, J.L.; Chirvase, D.; Parisi, J.; Dyakonov, V.

    2004-01-01

    Alternative acceptor materials are possible candidates to improve the optical absorption and/or the open circuit voltage of polymer-fullerene solar cells. We studied a novel fullerene-type acceptor, DPM-12, for application in polymer-fullerene bulk heterojunction photovoltaic devices. Though DPM-12 has the identical redox potentials as methanofullerene PCBM, surprisingly high open circuit voltages in the range V OC =0.95 V were measured for OC 1 C 10 -PPV:DPM-12-based samples. The potential for photovoltaic application was studied by means of photovoltaic characterization of solar cells including current-voltage measurements and external quantum yield spectroscopy. Further studies were carried out by profiling the solar cell parameters vs. temperature and white light intensity

  17. Increasing the efficiency of polymer solar cells by silicon nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Eisenhawer, B; Sivakov, V; Pietsch, M; Andrae, G; Falk, F [Institute of Photonic Technology, Albert-Einstein-Strasse 9, 07743 Jena (Germany); Sensfuss, S, E-mail: bjoern.eisenhawer@ipht-jena.de [Thuringian Institute for Textile and Plastics Research, Breitscheidstrasse 97, 07407 Rudolstadt (Germany)

    2011-08-05

    Silicon nanowires have been introduced into P3HT:[60]PCBM solar cells, resulting in hybrid organic/inorganic solar cells. A cell efficiency of 4.2% has been achieved, which is a relative improvement of 10% compared to a reference cell produced without nanowires. This increase in cell performance is possibly due to an enhancement of the electron transport properties imposed by the silicon nanowires. In this paper, we present a novel approach for introducing the nanowires by mixing them into the polymer blend and subsequently coating the polymer/nanowire blend onto a substrate. This new onset may represent a viable pathway to producing nanowire-enhanced polymer solar cells in a reel to reel process.

  18. Increasing the efficiency of polymer solar cells by silicon nanowires

    International Nuclear Information System (INIS)

    Eisenhawer, B; Sivakov, V; Pietsch, M; Andrae, G; Falk, F; Sensfuss, S

    2011-01-01

    Silicon nanowires have been introduced into P3HT:[60]PCBM solar cells, resulting in hybrid organic/inorganic solar cells. A cell efficiency of 4.2% has been achieved, which is a relative improvement of 10% compared to a reference cell produced without nanowires. This increase in cell performance is possibly due to an enhancement of the electron transport properties imposed by the silicon nanowires. In this paper, we present a novel approach for introducing the nanowires by mixing them into the polymer blend and subsequently coating the polymer/nanowire blend onto a substrate. This new onset may represent a viable pathway to producing nanowire-enhanced polymer solar cells in a reel to reel process.

  19. Lengthening the lifetime of roll-to-roll produced polymer solar cells

    DEFF Research Database (Denmark)

    Madsen, Morten Vesterager

    the knowledge of the degradation mechanisms involved in roll-to-roll coated polymer solar cells. While only a part of the experiments have directly involved roll-to-roll coated devices, most of the work is applicable to coated devices. The first part of the dissertation is devoted to the study of in......The field of polymer solar cells is a field with an exponential growth in the number of published papers. It is a field defined by a set of challenges including; efficiency, stability and processability. Before all of these challenges have been addressed; polymer solar cells...... will not be a commercial success. This dissertation is devoted primarily to the study of the stability of polymer solar cells, and more specifically to designing and verifying experimental techniques, procedures, and automated solutions to stability tests and characterization. The goal of the project was to expand...

  20. 9.0% power conversion efficiency from ternary all-polymer solar cells

    NARCIS (Netherlands)

    Li, Z.; Xu, X.; Zhang, W.; Meng, X.; Genene, Z.; Ma, W.; Mammo, W.; Yartsev, A.; Andersson, M.; Janssen, R.A.J.; Wang, E.

    2017-01-01

    Integration of a third component into a single-junction polymer solar cell (PSC) is regarded as an attractive strategy to enhance the performance of PSCs. Although binary all-polymer solar cells (all-PSCs) have recently emerged with compelling power conversion efficiencies (PCEs), the PCEs of

  1. Polymer solar cells. Morphology-property-correlation; Polymere Solarzellen. Morphologie-Eigenschafts-Korrelation

    Energy Technology Data Exchange (ETDEWEB)

    Erb, Tobias

    2008-09-22

    The aim of the presented dissertation is to clarify open questions concerning the development and control of the morphology in the active layer of polymer bulk heterojunction solar cells. The new findings hereby derived shall modify the existing models of the active layer morphology as found in today's literature. The experimental investigations were performed by X-ray diffraction, spectroscopic ellipsometry, and photoluminescence spectroscopy. In addition to those methods, light microscopy and differential scanning calorimetry were applied to investigate three chosen material systems: P3HT/PCBM-C{sub 60}, P3HT/MDHE-C{sub 60}, and P3HT/(MDHE){sub 2}-C{sub 60}. On the basis of experimental results a morphological model is developed, which is discussed in the context of existing literature. The solar cells were electrically characterised by current-voltage and external quantum efficiency measurements. The structural model is set into relation with photovoltaic parameters of the polymer solar cell, such as short circuit photocurrent, open circuit voltage, fill factor, and power conversion efficiency. This contributes to the explanation and analysis of the electrical properties of the organic solar cell as a device. In summary, this work yields morphology-property-relations that are able to explain the interaction between physical properties, such as light absorption, charge carrier generation, and transport, with the morphology present within the active layer. Finally, the three investigated systems are compared and evaluated with respect to their applicability in polymer solar cells. Further on, the morphology-propertyrelations are used to develop a strategy to estimate the suitability of new twocomponent polymer-fullerene donor-acceptor systems for polymer solar cells. Based on these findings it becomes possible to evaluate the optimization potential for new materials. In conclusion, this helps to develop polymer solar cells with increased power conversion

  2. Nanoparticle-doped Polymer Foils for Use in Solar Control Glazing

    Science.gov (United States)

    Smith, G. B.; Deller, C. A.; Swift, P. D.; Gentle, A.; Garrett, P. D.; Fisher, W. K.

    2002-04-01

    Since nanoparticles can provide spectrally selective absorption without scattering they can be used to dope polymers for use in windows, to provide a clear view while strongly attenuating both solar heat gain and UV, at lower cost than alternative technologies. The underlying physics and how it influences the choice and concentration of nanoparticle materials is outlined. Spectral data, visible and solar transmittance, and solar heat gain coefficient are measured for clear polymers and some laminated glass, in which the polymer layer is doped with conducting oxide nanoparticles. Simple models are shown to apply making general optical design straightforward. Use with clear glass and tinted glass is considered and performance shown to match existing solar control alternatives. A potential for widespread adoption in buildings and cars is clearly demonstrated, and scopes for further improvements are identified, so that ultimately both cost and performance are superior.

  3. Nanoparticle-doped Polymer Foils for Use in Solar Control Glazing

    International Nuclear Information System (INIS)

    Smith, G.B.; Deller, C.A.; Swift, P.D.; Gentle, A.; Garrett, P.D.; Fisher, W.K.

    2002-01-01

    Since nanoparticles can provide spectrally selective absorption without scattering they can be used to dope polymers for use in windows, to provide a clear view while strongly attenuating both solar heat gain and UV, at lower cost than alternative technologies. The underlying physics and how it influences the choice and concentration of nanoparticle materials is outlined. Spectral data, visible and solar transmittance, and solar heat gain coefficient are measured for clear polymers and some laminated glass, in which the polymer layer is doped with conducting oxide nanoparticles. Simple models are shown to apply making general optical design straightforward. Use with clear glass and tinted glass is considered and performance shown to match existing solar control alternatives. A potential for widespread adoption in buildings and cars is clearly demonstrated, and scopes for further improvements are identified, so that ultimately both cost and performance are superior

  4. Perspective: Hybrid solar cells: How to get the polymer to cooperate?

    Directory of Open Access Journals (Sweden)

    Jonas Weickert

    2013-08-01

    Full Text Available Lately, a lot of attention has been paid to metal oxide-organic hybrid solar cells. In these devices, conjugated polymers replace the typically transparent hole transporter as usually used in solid-state dye-sensitized solar cells in order to maximize the photon absorption efficiency. However, to unleash the full potential of hybrid solar cells it is imperative to push the photocurrent contribution of the absorbing polymer.

  5. Charge Generation Dynamics in Efficient All-Polymer Solar Cells: Influence of Polymer Packing and Morphology.

    Science.gov (United States)

    Gautam, Bhoj R; Lee, Changyeon; Younts, Robert; Lee, Wonho; Danilov, Evgeny; Kim, Bumjoon J; Gundogdu, Kenan

    2015-12-23

    All-polymer solar cells exhibit rapid progress in power conversion efficiency (PCE) from 2 to 7.7% over the past few years. While this improvement is primarily attributed to efficient charge transport and balanced mobility between the carriers, not much is known about the charge generation dynamics in these systems. Here we measured exciton relaxation and charge separation dynamics using ultrafast spectroscopy in polymer/polymer blends with different molecular packing and morphology. These measurements indicate that preferential face-on configuration with intermixed nanomorphology increases the charge generation efficiency. In fact, there is a direct quantitative correlation between the free charge population in the ultrafast time scales and the external quantum efficiency, suggesting not only the transport but also charge generation is key for the design of high performance all polymer solar cells.

  6. Industrialisation of polymer solar cells. Phase 2: Consolidation

    Energy Technology Data Exchange (ETDEWEB)

    Lauritzen, H.; Gevorgyan, S.; Frausig, J.; Andersen, Rasmus B.; Krebs, F.C.

    2013-03-15

    The key results from the project are: a firmly anchoring of DTU's basic polymer solar cell technology, ProcessOne, at Mekoprint, improved documented operational lifetime for polymer solar modules, and optimized processing of such modules. Mekoprint has worked determinedly to stabilize their production of ProcessOne devices, to prepare for full scale production and to build a marked for polymer solar cells. Work has been invested in improvement of process tolerances, documentation of the production process, training of process operators and roll-to-roll characterization of the produced solar cells. The planned and conducted actions have been summed up in a SIPOC diagram. Mekoprint's communication with potential customers reveals that lowering the cost, increasing the efficiency and operational life time is important for reaching the commercial market. Activities aimed at penetrating the market for lighting products in 3{sup rd} world countries are intensified. A new solar cell laser pointer is developed and a series of 2000 has been produced for the purpose of creating a commercial focus on polymer solar cells. DTU has established a characterization laboratory for organic photovoltaics (CLOP). The laboratory allows for real-time - and accelerated lifetime testing of solar cells both indoor and outdoor, and thus for the development of reliable methods for predicting life-time from accelerated testing. An operational lifetime of 2 years has, by means of the method, been documented for polymer solar modules encapsulated in a food-packaging barrier. Preliminary accelerated measurements on an equivalent device encapsulated in the same barrier, but in two layers, show a five times improvement of the solar cell stability. On basis of this it is considered that five years operational lifetime is within reach. DTU has improved of their OPV production technology by replacing the purchased vacuum-processed indium-tin-oxide (ITO) electrode by a roll-to-roll processed

  7. Industrialisation of polymer solar cells. Phase 2: Consolidation

    Energy Technology Data Exchange (ETDEWEB)

    Lauritzen, H.; Gevorgyan, S.; Frausig, J.; Andersen, Rasmus B.; Krebs, F. C.

    2013-03-15

    The key results from the project are: a firmly anchoring of DTU's basic polymer solar cell technology, ProcessOne, at Mekoprint, improved documented operational lifetime for polymer solar modules, and optimized processing of such modules. Mekoprint has worked determinedly to stabilize their production of ProcessOne devices, to prepare for full scale production and to build a marked for polymer solar cells. Work has been invested in improvement of process tolerances, documentation of the production process, training of process operators and roll-to-roll characterization of the produced solar cells. The planned and conducted actions have been summed up in a SIPOC diagram. Mekoprint's communication with potential customers reveals that lowering the cost, increasing the efficiency and operational life time is important for reaching the commercial market. Activities aimed at penetrating the market for lighting products in 3{sup rd} world countries are intensified. A new solar cell laser pointer is developed and a series of 2000 has been produced for the purpose of creating a commercial focus on polymer solar cells. DTU has established a characterization laboratory for organic photovoltaics (CLOP). The laboratory allows for real-time - and accelerated lifetime testing of solar cells both indoor and outdoor, and thus for the development of reliable methods for predicting life-time from accelerated testing. An operational lifetime of 2 years has, by means of the method, been documented for polymer solar modules encapsulated in a food-packaging barrier. Preliminary accelerated measurements on an equivalent device encapsulated in the same barrier, but in two layers, show a five times improvement of the solar cell stability. On basis of this it is considered that five years operational lifetime is within reach. DTU has improved of their OPV production technology by replacing the purchased vacuum-processed indium-tin-oxide (ITO) electrode by a roll-to-roll processed electrode

  8. Doctor Blade-Coated Polymer Solar Cells

    KAUST Repository

    Cho, Nam Chul

    2016-10-25

    In this work, we report polymer solar cells based on blade-coated P3HT:PC71BM and PBDTTT-EFT:PC71BM bulk heterojunction photoactive layers. Enhanced power conversion efficiency of 2.75 (conventional structure) and 3.03% (inverted structure) with improved reproducibility was obtained from blade-coated P3HT:PC71BM solar cells, compared to spin-coated ones. Furthermore, by demonstrating 3.10% efficiency flexible solar cells using blade-coated PBDTTT-EFT:PC71BM films on the plastic substrates, we suggest the potential applicability of blade coating technique to the high throughput roll-to-roll fabrication systems.

  9. Morphology of polymer solar cells

    DEFF Research Database (Denmark)

    Böttiger, Arvid P.L.

    as a function of polymer, type of ink, annealing etc. Ptychography is a new state of the art X-ray imaging technique based on coherent scattering. Together with Scanning X-ray Transmission Microscopy (STXM) it has been used in this study to inspect the morphology of the active layer taken from working solar...

  10. Thieno[3,4-c]Pyrrole-4,6-Dione-Based Polymer Acceptors for High Open-Circuit Voltage All-Polymer Solar Cells

    KAUST Repository

    Liu, Shengjian

    2017-04-20

    While polymer acceptors are promising fullerene alternatives in the fabrication of efficient bulk heterojunction (BHJ) solar cells, the range of efficient material systems relevant to the “all-polymer” BHJ concept remains narrow, and currently limits the perspectives to meet the 10% efficiency threshold in all-polymer solar cells. This report examines two polymer acceptor analogs composed of thieno[3,4-c]pyrrole-4,6-dione (TPD) and 3,4-difluorothiophene ([2F]T) motifs, and their BHJ solar cell performance pattern with a low-bandgap polymer donor commonly used with fullerenes (PBDT-TS1; taken as a model system). In this material set, the introduction of a third electron-deficient motif, namely 2,1,3-benzothiadiazole (BT), is shown to (i) significantly narrow the optical gap (Eopt) of the corresponding polymer (by ≈0.2 eV) and (ii) improve the electron mobility of the polymer by over two orders of magnitude in BHJ solar cells. In turn, the narrow-gap P2TPDBT[2F]T analog (Eopt = 1.7 eV) used as fullerene alternative yields high open-circuit voltages (VOC) of ≈1.0 V, notable short-circuit current values (JSC) of ≈11.0 mA cm−2, and power conversion efficiencies (PCEs) nearing 5% in all-polymer BHJ solar cells. P2TPDBT[2F]T paves the way to a new, promising class of polymer acceptor candidates.

  11. High performance all polymer solar cells fabricated via non-halogenated solvents (Presentation Recording)

    Science.gov (United States)

    Zhou, Yan; Bao, Zhenan

    2015-10-01

    The performance of organic solar cells consisting of a donor/acceptor bulk heterojunction (BHJ) has rapidly improved over the past few years.1. Major efforts have been focused on developing a variety of donor materials to gain access to different regions of the solar spectrum as well as to improve carrier transport properties.2 On the other hand, the most utilized acceptors are still restricted to the fullerene family, which includes PC61BM, PC71BM and ICBA.2b, 3 All-polymer solar cells, consisting of polymers for both the donor and acceptor, gained significantly increased interests recently, because of their ease of solution processing, potentially low cost, versatility in molecular design, and their potential for good chemical and morphological stability due to entanglement of polymers. Unlike small molecular fullerene acceptors, polymer acceptors can benefit from the high mobility of intra-chain charge transport and exciton generation by both donor and acceptor. Despite extensive efforts on all-polymer solar cells in the past decade, the fundamental understanding of all-polymer solar cells is still in its inceptive stage regarding both the materials chemistry and structure physics.4 Thus, rational design rules must be utilized to enable fundamental materials understanding of the all polymer solar cells. We report high performance all-polymer solar cells employing polymeric donors based on isoindigo and acceptor based on perylenedicarboximide. The phase separation domain length scale correlates well with the JSC and is found to be highly sensitive to the aromatic co-monomer structures used in the crystalline donor polymers. With the PS polymer side chain engineering, the phase separation domain length scale decreased by more than 45%. The PCE and JSC of the devices increased accordingly by more than 20%. A JSC as high as 10.0 mA cm-2 is obtained with the donor-acceptor pair despite of a low LUMO-LUMO energy offset of less than 0.1 eV. All the factors such as

  12. Industrialization of Polymer Solar Cells – phase 1

    DEFF Research Database (Denmark)

    Lauritzen, Hanne; Bork, Jakob; Andersen, Rasmus B.

    into more refined products. Such refined products might be self-powered electronic devices designed for easy integration in the customer’s production or solar-powered products for the end-user. A three-phased project with the objective to industrialize DTU’s basic polymer solar cell technology was started...... in the summer of 2009. The technology comprises a specific design of the polymer solar cell and a corresponding roll-to-roll manufacturing process. This basic technology is referred to as ProcessOne in the open literature. The present report relates to the project’s phase 1.The key tasks in phase 1...... to a slot-die printing head manufactured in DTU’s workshop. The line was at the same time adjusted and updated to handle the new production. The very first solar cells produced on this line appeared in July 2010. The line has subse-quently been upgraded on a running basis, and Mekoprint’s operators have...

  13. Present status of solid state photoelectrochemical solar cells and dye sensitized solar cells using PEO-based polymer electrolytes

    International Nuclear Information System (INIS)

    Singh, Pramod Kumar; Bhattacharya, Bhaskar; Nagarale, R K; Pandey, S P; Rhee, H W

    2011-01-01

    Due to energy crises in the future, much effort is being directed towards alternate sources. Solar energy is accepted as a novel substitute for conventional sources of energy. Out of the long list of various types of solar cells available on the market, solid state photoelectrochemical solar cells (SSPECs) and dye sensitized solar cells (DSSCs) are proposed as an alternative to costly crystalline solar cell. This review provides a common platform for SSPECs and DSSCs using polymer electrolyte, particularly on polyethylene oxide (PEO)-based polymer electrolytes. Due to numerous advantageous properties of PEO, it is frequently used as an electrolyte in both SSPECs as well as DSSCs. In DSSCs, so far high efficiency (more than 11%) has been obtained only by using volatile liquid electrolyte, which suffers many disadvantages, such as corrosion, leakage and evaporation. The PEO-based solid polymer proves its importance and could be used to solve the problems stated above. The recent developments in SSPECs and DSSCs using modified PEO electrolytes by adding nano size inorganic fillers, blending with low molecular weight polymers and ionic liquid (IL) are discussed in detail. The role of ionic liquid in modifying the electrical, structural and photoelectrochemical properties of PEO polymer electrolytes is also described. (review)

  14. Present status of solid state photoelectrochemical solar cells and dye sensitized solar cells using PEO-based polymer electrolytes

    Science.gov (United States)

    Singh, Pramod Kumar; Nagarale, R. K.; Pandey, S. P.; Rhee, H. W.; Bhattacharya, Bhaskar

    2011-06-01

    Due to energy crises in the future, much effort is being directed towards alternate sources. Solar energy is accepted as a novel substitute for conventional sources of energy. Out of the long list of various types of solar cells available on the market, solid state photoelectrochemical solar cells (SSPECs) and dye sensitized solar cells (DSSCs) are proposed as an alternative to costly crystalline solar cell. This review provides a common platform for SSPECs and DSSCs using polymer electrolyte, particularly on polyethylene oxide (PEO)-based polymer electrolytes. Due to numerous advantageous properties of PEO, it is frequently used as an electrolyte in both SSPECs as well as DSSCs. In DSSCs, so far high efficiency (more than 11%) has been obtained only by using volatile liquid electrolyte, which suffers many disadvantages, such as corrosion, leakage and evaporation. The PEO-based solid polymer proves its importance and could be used to solve the problems stated above. The recent developments in SSPECs and DSSCs using modified PEO electrolytes by adding nano size inorganic fillers, blending with low molecular weight polymers and ionic liquid (IL) are discussed in detail. The role of ionic liquid in modifying the electrical, structural and photoelectrochemical properties of PEO polymer electrolytes is also described.

  15. Anthracene-containing wide-band-gap conjugated polymers for high-open-circuit-voltage polymer solar cells.

    Science.gov (United States)

    Gong, Xue; Li, Cuihong; Lu, Zhen; Li, Guangwu; Mei, Qiang; Fang, Tao; Bo, Zhishan

    2013-07-25

    The synthesis, characterization, and photophysical and photovoltaic properties of two anthracene-containing wide-band-gap donor and acceptor (D-A) alternating conjugated polymers (P1 and P2) are described. These two polymers absorb in the range of 300-600 nm with a band gap of about 2.12 eV. Polymer solar cells with P1:PC71 BM as the active layer demonstrate a power conversion efficiency (PCE) of 2.23% with a high Voc of 0.96 V, a Jsc of 4.4 mA cm(-2) , and a comparable fill factor (FF) of 0.53 under simulated solar illumination of AM 1.5 G (100 mW cm(-2) ). In addition, P2:PC71 BM blend-based solar cells exhibit a PCE of 1.42% with a comparable Voc of 0.89 V, a Jsc of 3.0 mA cm(-2) , and an FF of 0.53. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Doctor Blade-Coated Polymer Solar Cells

    KAUST Repository

    Cho, Nam Chul; Kim, Jong H.

    2016-01-01

    In this work, we report polymer solar cells based on blade-coated P3HT:PC71BM and PBDTTT-EFT:PC71BM bulk heterojunction photoactive layers. Enhanced power conversion efficiency of 2.75 (conventional structure) and 3.03% (inverted structure

  17. Singlet Exciton Lifetimes in Conjugated Polymer Films for Organic Solar Cells

    KAUST Repository

    Dimitrov, Stoichko

    2016-01-13

    The lifetime of singlet excitons in conjugated polymer films is a key factor taken into account during organic solar cell device optimization. It determines the singlet exciton diffusion lengths in polymer films and has a direct impact on the photocurrent generation by organic solar cell devices. However, very little is known about the material properties controlling the lifetimes of singlet excitons, with most of our knowledge originating from studies of small organic molecules. Herein, we provide a brief summary of the nature of the excited states in conjugated polymer films and then present an analysis of the singlet exciton lifetimes of 16 semiconducting polymers. The exciton lifetimes of seven of the studied polymers were measured using ultrafast transient absorption spectroscopy and compared to the lifetimes of seven of the most common photoactive polymers found in the literature. A plot of the logarithm of the rate of exciton decay vs. the polymer optical bandgap reveals a medium correlation between lifetime and bandgap, thus suggesting that the Energy Gap Law may be valid for these systems. This therefore suggests that small bandgap polymers can suffer from short exciton lifetimes, which may limit their performance in organic solar cell devices. In addition, the impact of film crystallinity on the exciton lifetime was assessed for a small bandgap diketopyrrolopyrrole co-polymer. It is observed that the increase of polymer film crystallinity leads to reduction in exciton lifetime and optical bandgap again in agreement with the Energy Gap Law.

  18. Photochemical stability of π-conjugated polymers for polymer solar cells: a rule of thumb

    DEFF Research Database (Denmark)

    Manceau, Matthieu; Bundgaard, Eva; Carlé, Jon Eggert

    2011-01-01

    A comparative photochemical stability study of a wide range of π-conjugated polymers relevant to polymer solar cells is presented. The behavior of each material has been investigated under simulated sunlight (1 sun, 1000 W m−2, AM 1.5G) and ambient atmosphere. Degradation was monitored during age...... ageing combining UV-visible and infrared spectroscopies. From the comparison of the collected data, the influence of the polymer chemical structure on its stability has been discussed. General rules relative to the polymer structure–stability relationship are proposed....

  19. Characterization of polymer solar cells by TOF-SIMS depth profiling

    NARCIS (Netherlands)

    Bulle-Lieuwma, C.W.T.; Gennip, van W.J.H.; Duren, van J.K.J.; Jonkheijm, P.; Janssen, R.A.J.; Niemantsverdriet, J.W.

    2003-01-01

    Solar cells consisting of polymer layers sandwiched between a transparent electrode on glass and a metal top electrode are studied using dynamic time-of-flight secondary ion mass spectrometry (TOF-SIMS) in dual-beam mode. Because depth profiling of polymers and polymer-metal stacks is a relatively

  20. A comparative study of fluorine substituents for enhanced stability of flexible and ITO-free high-performance polymer solar cells

    DEFF Research Database (Denmark)

    Carlé, Jon Eggert; Helgesen, Martin; Zawacka, Natalia Klaudia

    2014-01-01

    lifetime in flexible large area roll-coated bulk heterojunction solar cells. The two polymer series have different side chains on the BDT unit, namely 2-hexyldecyloxy (BDTHDO) (P1-P3) or 2-hexyldecylthiophene (BDT THD) (P4-P6). The photochemical stability clearly shows that the stability enhances along...... with the number of fluorine atoms incorporated on the polymer backbone. Fabrication of the polymer solar cells based on the materials was carried out in ambient atmosphere on a roll coating/printing machine employing flexible and indium-tin-oxide-free plastic substrates. Solar cells based on the P4-P6 series...... in the performance followed by a much slower decay rate, still retaining 40-55% of their initial performance after 250 h of testing under ISOS-L-1 conditions. © 2014 Wiley Periodicals, Inc....

  1. Interlayer adhesion in roll-to-roll processed flexible inverted polymer solar cells

    DEFF Research Database (Denmark)

    Dupont, Stephanie R.; Oliver, Mark; Krebs, Frederik C

    2012-01-01

    demonstrate how a thin-film adhesion technique can be applied to flexible organic solar cells to obtain quantitative adhesion values. For the P3HT:PCBM-based BHJ polymer solar cells, the interface of the BHJ with the conductive polymer layer PEDOT:PSS was found to be the weakest. The adhesion fracture energy......The interlayer adhesion of roll-to-roll processed flexible inverted P3HT:PCBM bulk heterojunction (BHJ) polymer solar cells is reported. Poor adhesion between adjacent layers may result in loss of device performance from delamination driven by the thermomechanical stresses in the device. We...... energies was observed....

  2. Machine learning-based screening of complex molecules for polymer solar cells

    Science.gov (United States)

    Jørgensen, Peter Bjørn; Mesta, Murat; Shil, Suranjan; García Lastra, Juan Maria; Jacobsen, Karsten Wedel; Thygesen, Kristian Sommer; Schmidt, Mikkel N.

    2018-06-01

    Polymer solar cells admit numerous potential advantages including low energy payback time and scalable high-speed manufacturing, but the power conversion efficiency is currently lower than for their inorganic counterparts. In a Phenyl-C_61-Butyric-Acid-Methyl-Ester (PCBM)-based blended polymer solar cell, the optical gap of the polymer and the energetic alignment of the lowest unoccupied molecular orbital (LUMO) of the polymer and the PCBM are crucial for the device efficiency. Searching for new and better materials for polymer solar cells is a computationally costly affair using density functional theory (DFT) calculations. In this work, we propose a screening procedure using a simple string representation for a promising class of donor-acceptor polymers in conjunction with a grammar variational autoencoder. The model is trained on a dataset of 3989 monomers obtained from DFT calculations and is able to predict LUMO and the lowest optical transition energy for unseen molecules with mean absolute errors of 43 and 74 meV, respectively, without knowledge of the atomic positions. We demonstrate the merit of the model for generating new molecules with the desired LUMO and optical gap energies which increases the chance of finding suitable polymers by more than a factor of five in comparison to the randomised search used in gathering the training set.

  3. Hybrid solar cells composed of perovskite and polymer photovoltaic structures

    Science.gov (United States)

    Phaometvarithorn, Apatsanan; Chuangchote, Surawut; Kumnorkaew, Pisist; Wootthikanokkhan, Jatuphorn

    2018-06-01

    Organic/inorganic lead halide perovskite solar cells have recently attracted much attention in photovoltaic research, due to the devices show promising ways to achieve high efficiencies. The perovskite devices with high efficiencies, however, are typically fabricated in tandem solar cell which is complicated. In this research work, we introduce a solar cell device with the combination of CH3NH3PbI3-xClx perovskite and bulk heterojunction PCDTBT:PC70BM polymer without any tandem structure. The new integrated perovskite/polymer hybrid structure of ITO/PEDOT:PSS/perovskite/PCDTBT:PC70BM/PC70BM/TiOx/Al provides higher power conversion efficiency (PCE) of devices compared with conventional perovskite cell structure. With the optimized PCDTBT:PC70BM thickness of ∼70 nm, the highest PCE of 11.67% is achieved. Variation of conducting donor polymers in this new structure is also preliminary demonstrated. This study provides an attractively innovative structure and a promising design for further development of the new-generation solar cells.

  4. Thieno[3,4-c]Pyrrole-4,6-Dione-Based Polymer Acceptors for High Open-Circuit Voltage All-Polymer Solar Cells

    KAUST Repository

    Liu, Shengjian; Song, Xin; Thomas, Simil; Kan, Zhipeng; Cruciani, Federico; Laquai, Fré dé ric; Bredas, Jean-Luc; Beaujuge, Pierre

    2017-01-01

    limits the perspectives to meet the 10% efficiency threshold in all-polymer solar cells. This report examines two polymer acceptor analogs composed of thieno[3,4-c]pyrrole-4,6-dione (TPD) and 3,4-difluorothiophene ([2F]T) motifs, and their BHJ solar cell

  5. Aesthetically Pleasing Conjugated Polymer: Fullerene Blends for Blue-Green Solar Cells Via Roll-to-Roll Processing

    DEFF Research Database (Denmark)

    Amb, Chad M.; Craig, Michael R.; Koldemir, Unsal

    2012-01-01

    as a thin-film deposition technique due its convenience. We report on the significant differences between the spin-coating of laboratory solar cells and slot-die coating of a blue-green colored, low bandgap polymer (PGREEN). This is one of the first demonstrations of slot-die-coated polymer solar cells OPVs......The practical application of organic photovoltaic (OPV) cells requires high throughput printing techniques in order to attain cells with an area large enough to provide useful amounts of power. However, in the laboratory screening of new materials for OPVs, spin-coating is used almost exclusively...... not utilizing poly(3-hexylthiophene):(6,6)-phenyl-C61-butyric acid methyl ester (PCBM) blends as a light absorbing layer. Through synthetic optimization, we show that strict protocols are necessary to yield polymers which achieve consistent photovoltaic behavior. We fabricated spin-coated laboratory scale OPV...

  6. Reducing burn-in voltage loss in polymer solar cells by increasing the polymer crystallinity

    KAUST Repository

    Heumueller, Thomas

    2014-08-01

    In order to commercialize polymer solar cells, the fast initial performance losses present in many high efficiency materials will have to be managed. This burn-in degradation is caused by light-induced traps and its characteristics depend on which polymer is used. We show that the light-induced traps are in the bulk of the active layer and we find a direct correlation between their presence and the open-circuit voltage loss in devices made with amorphous polymers. Solar cells made with crystalline polymers do not show characteristic open circuit voltage losses, even though light-induced traps are also present in these devices. This indicates that crystalline materials are more resistant against the influence of traps on device performance. Recent work on crystalline materials has shown there is an energetic driving force for charge carriers to leave amorphous, mixed regions of bulk heterojunctions, and charges are dominantly transported in pure, ordered phases. This energetic landscape allows efficient charge generation as well as extraction and also may benefit the stability against light-induced traps. This journal is © the Partner Organisations 2014.

  7. Design, fabrication, and characterization of polymer based bulk heterojunction solar cells with enhanced efficiencies

    Science.gov (United States)

    Lu, Haiwei

    Polymer based bulk heterojunction (BHJ) solar cells offer promising technological advantages for actualization of low-cost and large-area fabrication on flexible substrates. To reach the envisaged market entry figure of 10% power conversion efficiency (PCE), it is crucial that more solar energy is utilized in the active layer, requiring both higher energy conversion efficiency and expansion of the absorption spectrum of the active layer to near infrared (NIR) region. The research introduced in this dissertation is an effort to increase PCE of solar cells from the aforementioned two directions. In the first method, carbon nanotubes (CNTs) were incorporated into polymer-fullerene BHJ solar cells to increase the hole-collection efficiency. Devices with CNT monolayer networks placed at different positions were fabricated, and the impact of CNTs on device performance was studied. It was demonstrated that CNTs placed on the hole-collection side of the device resulted in optimized performance, with PCE increased from 4% to 4.9%. To realize the controlled deposition of a uniform layer of CNTs on different positions, a mild plasma treatment of the active-layer was employed, and the influence of plasma treatment on device performance was also studied. In the second strategy, I developed an approach to expand the absorption spectrum to NIR region. In this case, hybrid polymer based BHJ solar cells composed of pyridine-capped PbS (PbS-py) quantum dots (QDs) and poly(3-hexylthiophene) (P3HT) were proposed. With pyridines as capping ligands, devices showed superior performance compared to with conventionally used oleate agents. PbS QDs with bandgaps of ˜1.13-1.38 eV offered the advantage of energetically favorable charge separation between P3HT and PbS QDs for photoexcitons in both visible and NIR regions. It was also found that thermal annealing leads to the removal of excess and interfacial pyridine ligands in polymer/QDs composites, and thus provides intimate electrical

  8. Flexible CIGS solar cells on large area polymer foils with in-line deposition methods and application of alternative back contacts - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Tiwari, A. N.

    2009-08-15

    This illustrated report for the Swiss Federal Office of Energy (SFOE) summarises the work performed within this project and also reports on synergies with other projects that helped to make a significant contribution to the development of CIGS thin film solar cells on flexible substrates such as polymer foils. The project's aims were to learn more about up-scaling issues and to demonstrate the abilities required for the processing of layers on large area polyimide foils for flexible CIGS solar cells. Custom-built evaporators that were designed and constructed in-house are described. A CIGS system for in-line deposition was also modified for roll-to-roll deposition and alternative electrical back contacts to conventional ones were evaluated on flexible polyimide foils. The objectives of the project and the results obtained are looked at and commented on in detail.

  9. Solar Cell Polymer Based Active Ingredients PPV and PCBM

    Science.gov (United States)

    Hardeli, H.; Sanjaya, H.; Resikarnila, R.; Nitami H, R.

    2018-04-01

    A polymer solar cell is a solar cell based on a polymer bulk heterojunction structure using the method of thin film, which can convert solar energy into electrical energy. Absorption of light is carried by active material layer PPV: PCBM. This study aims to make solar cells tandem and know the value of converting solar energy into electrical energy and increase the value of efficiency generated through morphological control, ie annealing temperature and the ratio of active layer mixture. The active layer is positioned above the PEDOT:PSS layer on ITO glass substrate. The characterization results show the surface morphology of the PPV:PCBM active layer is quite evenly at annealing temperature of 165 ° C. The result of conversion of electrical energy with a UV light source in annealing samples with temperature 165 ° C is 0.03 mA and voltage of 4.085 V with an efficiency of 2.61% and mixed ratio variation was obtained in comparison of P3HT: PCBM is 1: 3

  10. Incorporation of Furan into Low Band-Gap Polymers for Efficient Solar Cells

    KAUST Repository

    Woo, Claire H.

    2010-11-10

    The design, synthesis, and characterization of the first examples of furan-containing low band-gap polymers, PDPP2FT and PDPP3F, with substantial power conversion efficiencies in organic solar cells are reported. Inserting furan moieties in the backbone of the conjugated polymers enables the use of relatively small solubilizing side chains because of the significant contribution of the furan rings to overall polymer solubility in common organic solvents. Bulk heterojunction solar cells fabricated from furan-containing polymers and PC71BM as the acceptor showed power conversion efficiencies reaching 5.0%. © 2010 American Chemical Society.

  11. Incorporation of Furan into Low Band-Gap Polymers for Efficient Solar Cells

    KAUST Repository

    Woo, Claire H.; Beaujuge, Pierre M.; Holcombe, Thomas W.; Lee, Olivia P.; Fréchet, Jean M. J.

    2010-01-01

    The design, synthesis, and characterization of the first examples of furan-containing low band-gap polymers, PDPP2FT and PDPP3F, with substantial power conversion efficiencies in organic solar cells are reported. Inserting furan moieties in the backbone of the conjugated polymers enables the use of relatively small solubilizing side chains because of the significant contribution of the furan rings to overall polymer solubility in common organic solvents. Bulk heterojunction solar cells fabricated from furan-containing polymers and PC71BM as the acceptor showed power conversion efficiencies reaching 5.0%. © 2010 American Chemical Society.

  12. The Role of Polymer Fractionation in Energetic Losses and Charge Carrier Lifetimes of Polymer: Fullerene Solar Cells

    KAUST Repository

    Baran, Derya

    2015-08-10

    Non-radiative recombination reduces the open-circuit voltage relative to its theoretical limit and leads to reduced luminescence emission at a given excitation. Therefore it is possible to correlate changes in luminescence emission with changes in open-circuit voltage and in the charge carrier lifetime. Here we use luminescence studies combined with transient photovoltage and differential charging analyses to study the effect of polymer fractionation in indacenoedithiophene-co-benzothiadiazole (IDTBT):fullerene solar cells. In this system, polymer fractionation increases electroluminescence and reduces non-radiative recombination. High molecular weight and fractionated IDTBT polymers exhibit higher carrier lifetime-mobility product compared to their non-fractionated analogues, resulting in improved solar cell performance.

  13. The Role of Polymer Fractionation in Energetic Losses and Charge Carrier Lifetimes of Polymer: Fullerene Solar Cells

    KAUST Repository

    Baran, Derya; Vezie, Michelle S; Gasparini, Nicola; Deledalle, Florent; Yao, Jizhong; Schroeder, Bob C.; Bronstein, Hugo; Ameri, Tayebeh; Kirchartz, Thomas; McCulloch, Iain; Nelson, Jenny; Brabec, Christoph J

    2015-01-01

    Non-radiative recombination reduces the open-circuit voltage relative to its theoretical limit and leads to reduced luminescence emission at a given excitation. Therefore it is possible to correlate changes in luminescence emission with changes in open-circuit voltage and in the charge carrier lifetime. Here we use luminescence studies combined with transient photovoltage and differential charging analyses to study the effect of polymer fractionation in indacenoedithiophene-co-benzothiadiazole (IDTBT):fullerene solar cells. In this system, polymer fractionation increases electroluminescence and reduces non-radiative recombination. High molecular weight and fractionated IDTBT polymers exhibit higher carrier lifetime-mobility product compared to their non-fractionated analogues, resulting in improved solar cell performance.

  14. EFRC: Polymer-Based Materials for Harvesting Solar Energy (stimulus)"

    Energy Technology Data Exchange (ETDEWEB)

    Russell, Thomas P. [Univ. of Massachusetts, Amherst, MA (United States)

    2016-12-08

    The University of Massachusetts Amherst is proposing an Energy Frontier Research Center (EFRC) on Polymer-Based Materials for Harvesting Solar Energy that will integrate the widely complementary experimental and theoretical expertise of 23 faculty at UMass-Amherst Departments with researchers from the University of Massachusetts Lowell, University of Pittsburgh, the Pennsylvania State University and Konarka Technologies, Inc. Collaborative efforts with researchers at the Oak Ridge National Laboratory, the University of Bayreuth, Seoul National University and Tohoku University will complement and expand the experimental efforts in the EFRC. Our primary research aim of this EFRC is the development of hybrid polymer-based devices with efficiencies more than twice the current organic-based devices, by combining expertise in the design and synthesis of photoactive polymers, the control and guidance of polymer-based assemblies, leadership in nanostructured polymeric materials, and the theory and modeling of non-equilibrium structures. A primary goal of this EFRC is to improve the collection and conversion efficiency of a broader spectral range of solar energy using the directed self-assembly of polymer-based materials so as to optimize the design and fabrication of inexpensive devices.

  15. 3D morphology of photoactive layers of polymer solar cells

    NARCIS (Netherlands)

    Bavel, van S.S.

    2009-01-01

    Nanostructured polymer solar cells (PSCs) have emerged as a promising low-cost alternative to conventional silicon-based photovoltaic devices. Since PSCs can be fabricated by processing polymers, eventually together with other organic materials, from solution and depositing them onto different types

  16. Interfacial Layer Engineering for Performance Enhancement in Polymer Solar Cells

    Directory of Open Access Journals (Sweden)

    Hao Zeng

    2015-02-01

    Full Text Available Improving power conversion efficiency and device performance stability is the most critical challenge in polymer solar cells for fulfilling their applications in industry at large scale. Various methodologies have been developed for realizing this goal, among them interfacial layer engineering has shown great success, which can optimize the electrical contacts between active layers and electrodes and lead to enhanced charge transport and collection. Interfacial layers also show profound impacts on light absorption and optical distribution of solar irradiation in the active layer and film morphology of the subsequently deposited active layer due to the accompanied surface energy change. Interfacial layer engineering enables the use of high work function metal electrodes without sacrificing device performance, which in combination with the favored kinetic barriers against water and oxygen penetration leads to polymer solar cells with enhanced performance stability. This review provides an overview of the recent progress of different types of interfacial layer materials, including polymers, small molecules, graphene oxides, fullerene derivatives, and metal oxides. Device performance enhancement of the resulting solar cells will be elucidated and the function and operation mechanism of the interfacial layers will be discussed.

  17. Design Principles in Polymer-Fullerene BHJ Solar Cells: PBDTTPD as a Case Study

    KAUST Repository

    Beaujuge, Pierre

    2015-06-29

    Among Organic Electronics, solution-processable π-conjugated polymers are proving particularly promising in bulk-heterojunction (BHJ) solar cells with fullerene acceptors such as PCBM.[1] In recent years, great headway has been made in the development of efficient polymer donors across the community, with published power conversion efficiencies (PCE) >8% in single cells and >10% in tandems. In most reports, these systems involve elaborate repeat unit and side chain patterns, and deviating from those patterns induces substantial drops in device PCE. While the range of polymer design parameters that impact BHJ solar cell performance remains a matter of some debate, our recent developments indicate that the combination of side-chain substituents appended to the main chain critically impacts polymer performance. For example, in poly(benzo[1,2-b:4,5-b’]dithiophene–thieno[3,4-c]pyrrole-4,6-dione) (PBDTTPD), side-chain substituents of various size and branching impart distinct molecular packing distances (i.e., π–π stacking and lamellar spacing), varying degrees of nanostructural order in thin films, and preferential backbone orientation relative to the device substrate.[2-5] While these structural variations seem to correlate with BHJ solar cell performance, with power conversion efficiencies ranging from 4% to 8.5%,[2,3] we believe that other contributing parameters – such as the local conformations between the polymer and the fullerene, and the domain distribution/composition across the BHJ (i.e., pure/mixed phases) – should also be taken into account.[6,7] Other discrete modifications of PBDTTPD’s molecular structure affect polymer performance in BHJ solar cells with PCBM, and our recent developments emphasize how systematic structure-property relationship studies impact the design of efficient polymer donors for BHJ solar cell applications.[8-10] It is important to further our understanding of these effects as we look to continue improving BHJ solar

  18. Controlling solution-phase polymer aggregation with molecular weight and solvent additives to optimize polymer-fullerene bulk heterojunction solar cells

    KAUST Repository

    Bartelt, Jonathan A.

    2014-03-20

    The bulk heterojunction (BHJ) solar cell performance of many polymers depends on the polymer molecular weight (M n) and the solvent additive(s) used for solution processing. However, the mechanism that causes these dependencies is not well understood. This work determines how M n and solvent additives affect the performance of BHJ solar cells made with the polymer poly(di(2-ethylhexyloxy)benzo[1,2-b:4,5-b\\']dithiophene-co- octylthieno[3,4-c]pyrrole-4,6-dione) (PBDTTPD). Low M n PBDTTPD devices have exceedingly large fullerene-rich domains, which cause extensive charge-carrier recombination. Increasing the M n of PBDTTPD decreases the size of these domains and significantly improves device performance. PBDTTPD aggregation in solution affects the size of the fullerene-rich domains and this effect is linked to the dependency of PBDTTPD solubility on M n. Due to its poor solubility high M n PBDTTPD quickly forms a fibrillar polymer network during spin-casting and this network acts as a template that prevents large-scale phase separation. Furthermore, processing low M n PBDTTPD devices with a solvent additive improves device performance by inducing polymer aggregation in solution and preventing large fullerene-rich domains from forming. These findings highlight that polymer aggregation in solution plays a significant role in determining the morphology and performance of BHJ solar cells. The performance of poly(di(2-ethylhexyloxy) benzo[1,2-b:4,5-b\\']dithiophene-co-octylthieno[3,4-c]pyrrole-4,6-dione) (PBDTTPD) bulk heterojunction solar cells strongly depends on the polymer molecular weight, and processing these bulk heterojunctions with a solvent additive preferentially improves the performance of low molecular weight devices. It is demonstrated that polymer aggregation in solution significantly impacts the thin-film bulk heterojunction morphology and is vital for high device performance. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Triple junction polymer solar cells for photoelectrochemical water splitting

    NARCIS (Netherlands)

    Esiner, S.; Eersel, van H.; Wienk, M.M.; Janssen, R.A.J.

    2013-01-01

    A triple junction polymer solar cell in a novel 1 + 2 type configuration provides photoelectrochemical water splitting in its maximum power point at V ˜ 1.70 V with an estimated solar to hydrogen energy conversion efficiency of 3.1%. The triple junction cell consists of a wide bandgap front cell and

  20. Refined life-cycle assessment of polymer solar cells

    DEFF Research Database (Denmark)

    Lenzmann, F.; Kroon, J.; Andriessen, R.

    2011-01-01

    A refined life-cycle assessment of polymer solar cells is presented with a focus on critical components, i.e. the transparent conductive ITO layer and the encapsulation components. This present analysis gives a comprehensive sketch of the full environmental potential of polymer-OPV in comparison...... with other PV technologies. It is shown that on a m2 basis the environmental characteristics of polymer-OPV are highly beneficial, while on a watt-peak and on a kWh basis, these benefits are - at the current level of the development - still (over-)compensated by low module efficiency and limited lifetime...

  1. Polymer electronics

    CERN Document Server

    Hsin-Fei, Meng

    2013-01-01

    Polymer semiconductor is the only semiconductor that can be processed in solution. Electronics made by these flexible materials have many advantages such as large-area solution process, low cost, and high performance. Researchers and companies are increasingly dedicating time and money in polymer electronics. This book focuses on the fundamental materials and device physics of polymer electronics. It describes polymer light-emitting diodes, polymer field-effect transistors, organic vertical transistors, polymer solar cells, and many applications based on polymer electronics. The book also disc

  2. Thiophene Rings Improve the Device Performance of Conjugated Polymers in Polymer Solar Cells with Thick Active Layers

    NARCIS (Netherlands)

    Duan, C.; Gao, K.; Colberts, F. J. M.; Liu, F.; Meskers, S. C. J.; Wienk, M. M.; Janssen, R. A. J.

    2017-01-01

    Developing novel materials that tolerate thickness variations of the active layer is critical to further enhance the efficiency of polymer solar cells and enable large-scale manufacturing. Presently, only a few polymers afford high efficiencies at active layer thickness exceeding 200 nm and

  3. Singlet Exciton Lifetimes in Conjugated Polymer Films for Organic Solar Cells

    KAUST Repository

    Dimitrov, Stoichko; Schroeder, Bob; Nielsen, Christian; Bronstein, Hugo; Fei, Zhuping; McCulloch, Iain; Heeney, Martin; Durrant, James

    2016-01-01

    The lifetime of singlet excitons in conjugated polymer films is a key factor taken into account during organic solar cell device optimization. It determines the singlet exciton diffusion lengths in polymer films and has a direct impact

  4. Plastic Electronics and Optoelectronics: New Science and Technology from Soluble Semiconducting Polymers and Bulk Heterojunction Solar Cells Fabricated from Soluble Semiconducting Polymers

    Science.gov (United States)

    2011-11-03

    Seifter, A. J. Heeger, Adv. Mater., 23, 1679–1683 (2011). 8. Efficient, Air-Stable Bulk Heterojunction Polymer Solar Cells Using MoOx as the Anode...distribution is unlimited. 13. SUPPLEMENTARY NOTES None 14. ABSTRACT Bulk heterojunction (BHJ) solar cells were invented at UC Santa Barbara after the...Bulk Heterojunction Solar Cells Fabricated from Soluble Semiconducting Polymers Grant number: AFOSR FA9550-08-1-0248 Dr. Charle Lee, Program

  5. New NIR Absorbing DPP-based Polymer for Thick Organic Solar Cells

    KAUST Repository

    Oklem, Gulce

    2018-02-05

    infrared region (NIR) for better photon harvesting in organic solar cells. It has been shown that copolymers compromising diketopyrrolopyrrole based acceptors and simple donors (thiophene or furan) achieve absorption maximum around 800 nm. In this study, the selenophene based donor units coupled with diketopyrrolopyrrole acceptor unit based polymer (PFDPPSe) was synthesized with an absorption maximum at 830 nm and absorption onset of 930 nm. The optimized organic solar cells with PFDDPSe: PC71BM active layer blends of 210 nm showed maximum PCE of 6.16 % (ave. 6.02 %) via solvent additive engineering with inverted device structure. Charge transport, recombination loss mechanism, and morphology are systematically studied. These results demonstrate that highly efficient NIR polymer can be achieved by the introduction of selenophene and a suitable solvent additive process suitable for NIR organic solar cells. PFDPPSe is also one of the rare examples of a polymer with a PCE over 6% that does not contain any thiophene-based unit in its backbone.

  6. Dye-Incorporated Polynaphthalenediimide Acceptor for Additive-Free High-Performance All-Polymer Solar Cells.

    Science.gov (United States)

    Chen, Dong; Yao, Jia; Chen, Lie; Yin, Jingping; Lv, Ruizhi; Huang, Bin; Liu, Siqi; Zhang, Zhi-Guo; Yang, Chunhe; Chen, Yiwang; Li, Yongfang

    2018-04-16

    All-polymer solar cells (all-PSCs) can offer unique advantages for applications in flexible devices, and naphthalene diimide (NDI)-based polymer acceptors are the widely used polymer acceptors. However, their power conversion efficiency (PCE) still lags behind that of state-of-the-art polymer solar cells, due to low light absorption, suboptimal energy levels and the strong aggregation of the NDI-based polymer acceptor. Herein, a rhodanine-based dye molecule was introduced into the NDI-based polymer acceptor by simple random copolymerization and showed an improved light absorption coefficient, an up-shifted lowest unoccupied molecular orbital level and reduced crystallization. Consequently, additive-free all-PSCs demonstrated a high PCE of 8.13 %, which is one of the highest performance characteristics reported for all-PSCs to date. These results indicate that incorporating a dye into the n-type polymer gives insight into the precise design of high-performance polymer acceptors for all-PSCs. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. A Thieno[2,3-b]pyridine-Flanked Diketopyrrolopyrrole Polymer as an n-Type Polymer Semiconductor for All-Polymer Solar Cells and Organic Field-Effect Transistors

    KAUST Repository

    Chen, Hung-Yang

    2017-12-28

    A novel fused heterocycle-flanked diketopyrrolopyrrole (DPP) monomer, thieno[2,3-b]pyridine diketopyrrolopyrrole (TPDPP), was designed and synthesized. When copolymerized with 3,4-difluorothiophene using Stille coupling polymerization, the new polymer pTPDPP-TF possesses a highly planar conjugated polymer backbone due to the fused thieno[2,3-b]pyridine flanking unit that effectively alleviates the steric hindrance with both the central DPP core and the 3,4-difluorothiophene repeat unit. This new polymer exhibits a high electron affinity (EA) of −4.1 eV and was successfully utilized as an n-type polymer semiconductor for applications in organic field-effect transistors (OFETs) and all polymer solar cells. A promising n-type charge carrier mobility of 0.1 cm2 V–1 s–1 was obtained in bottom-contact, top-gate OFETs, and a power conversion efficiency (PCE) of 2.72% with a high open-circuit voltage (VOC) of 1.04 V was achieved for all polymer solar cells using PTB7-Th as the polymer donor.

  8. A Thieno[2,3-b]pyridine-Flanked Diketopyrrolopyrrole Polymer as an n-Type Polymer Semiconductor for All-Polymer Solar Cells and Organic Field-Effect Transistors

    KAUST Repository

    Chen, Hung-Yang; Nikolka, Mark; Wadsworth, Andrew; Yue, Wan; Onwubiko, Ada; Xiao, Mingfei; White, Andrew J. P.; Baran, Derya; Sirringhaus, Henning; McCulloch, Iain

    2017-01-01

    A novel fused heterocycle-flanked diketopyrrolopyrrole (DPP) monomer, thieno[2,3-b]pyridine diketopyrrolopyrrole (TPDPP), was designed and synthesized. When copolymerized with 3,4-difluorothiophene using Stille coupling polymerization, the new polymer pTPDPP-TF possesses a highly planar conjugated polymer backbone due to the fused thieno[2,3-b]pyridine flanking unit that effectively alleviates the steric hindrance with both the central DPP core and the 3,4-difluorothiophene repeat unit. This new polymer exhibits a high electron affinity (EA) of −4.1 eV and was successfully utilized as an n-type polymer semiconductor for applications in organic field-effect transistors (OFETs) and all polymer solar cells. A promising n-type charge carrier mobility of 0.1 cm2 V–1 s–1 was obtained in bottom-contact, top-gate OFETs, and a power conversion efficiency (PCE) of 2.72% with a high open-circuit voltage (VOC) of 1.04 V was achieved for all polymer solar cells using PTB7-Th as the polymer donor.

  9. Parameter study for polymer solar modules based on various cell lengths and light intensities

    Energy Technology Data Exchange (ETDEWEB)

    Slooff, L.H.; Burgers, A.R.; Bende, E.E.; Kroon, J.M. [ECN Solar Energy, P.O. Box 1, 1755 ZG Petten (Netherlands); Veenstra, S.C. [ECN Solar Energy, Solliance, High Tech Campus 5, P63, 5656AE Eindhoven (Netherlands)

    2013-10-15

    Polymer solar cells may be applied in portable electronic devices, where light intensity and spectral distribution of the illuminating source can be very different compared to outdoor applications. As the power output of solar cells depends on temperature, light intensity and spectrum, the design of the module must be optimized for the specific illumination conditions in the different applications. The interconnection area between cells in a module must be as narrow as possible to maximize the active area, also called geometrical fill factor, of the module. Laser scribing has the potential to realize this. The optimal width of the interconnection zone depends both on technological limitations, e.g. laser scribe width and the minimal distance between scribes, and electrical limitations like resistive losses. The latter depends on the generated current in the cell and thus also on illumination intensity. Besides that, also the type of junction, i.e. a single or tandem junction, will influence the optimal geometry. In this paper a calculation model is presented that can be used for electrical modeling of polymer cells and modules in order to optimize the performance for the specific illumination conditions.

  10. A study of water electrolysis using ionic polymer-metal composite for solar energy storage

    Science.gov (United States)

    Keow, Alicia; Chen, Zheng

    2017-04-01

    Hydrogen gas can be harvested via the electrolysis of water. The gas is then fed into a proton exchange membrane fuel cell (PEMFC) to produce electricity with clean emission. Ionic polymer-metal composite (IPMC), which is made from electroplating a proton-conductive polymer film called Nafion encourages ion migration and dissociation of water under application of external voltage. This property has been proven to be able to act as catalyst for the electrolysis of pure water. This renewable energy system is inspired by photosynthesis. By using solar panels to gather sunlight as the source of energy, the generation of electricity required to activate the IPMC electrolyser is acquired. The hydrogen gas is collected as storable fuel and can be converted back into energy using a commercial fuel cell. The goal of this research is to create a round-trip energy efficient system which can harvest solar energy, store them in the form of hydrogen gas and convert the stored hydrogen back to electricity through the use of fuel cell with minimal overall losses. The effect of increasing the surface area of contact is explored through etching of the polymer electrolyte membrane (PEM) with argon plasma or manually sanding the surface and how it affects the increase of energy conversion efficiency of the electrolyser. In addition, the relationship between temperature and the IPMC is studied. Experimental results demonstrated that increases in temperature of water and changes in surface area contact correlate with gas generation.

  11. Degradation and stability of R2R manufactured polymer solar cells

    DEFF Research Database (Denmark)

    Norrman, Kion; Krebs, Frederik C

    2009-01-01

    Polymer solar cells have many advantages such as light weight, flexibility, environmental friendliness, low thermal budget, low cost and most notably very fast modes of production by printing techniques. Production experiments have shown that it is highly feasible with existing technology to mass...... produce polymer solar cells at a very low cost. We have employed state-of-the-art analytical techniques to address the challenging issues of degradation and stability of R2R manufactured devices. We have specifically studied the relative effect of oxygen and water on the operational devices in regard...

  12. High Performance All-Polymer Solar Cell via Polymer Side-Chain Engineering

    KAUST Repository

    Zhou, Yan; Kurosawa, Tadanori; Ma, Wei; Guo, Yikun; Fang, Lei; Vandewal, Koen; Diao, Ying; Wang, Chenggong; Yan, Qifan; Reinspach, Julia; Mei, Jianguo; Appleton, Anthony Lucas; Koleilat, Ghada I.; Gao, Yongli; Mannsfeld, Stefan C. B.; Salleo, Alberto; Ade, Harald; Zhao, Dahui; Bao, Zhenan

    2014-01-01

    An average PCE of 4.2% for all-polymer solar cells from 20 devices with an average J SC of 8.8 mA cm-2 are obtained with a donor-acceptor pair despite a low LUMO-LUMO energy offset of less than 0.1 eV. Incorporation of polystyrene side chains into the donor polymer is found to assist in reducing the phase separation domain length scale, and results in more than 20% enhancement of PCE. We observe a direct correlation between the short circuit current (J SC) and the length scale of BHJ phase separation, which is obtained by resonance soft X-ray scattering. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. High Performance All-Polymer Solar Cell via Polymer Side-Chain Engineering

    KAUST Repository

    Zhou, Yan

    2014-03-24

    An average PCE of 4.2% for all-polymer solar cells from 20 devices with an average J SC of 8.8 mA cm-2 are obtained with a donor-acceptor pair despite a low LUMO-LUMO energy offset of less than 0.1 eV. Incorporation of polystyrene side chains into the donor polymer is found to assist in reducing the phase separation domain length scale, and results in more than 20% enhancement of PCE. We observe a direct correlation between the short circuit current (J SC) and the length scale of BHJ phase separation, which is obtained by resonance soft X-ray scattering. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Advanced materials and processes for polymer solar cell devices

    DEFF Research Database (Denmark)

    Petersen, Martin Helgesen; Søndergaard, Roar; Krebs, Frederik C

    2010-01-01

    The rapidly expanding field of polymer and organic solar cells is reviewed in the context of materials, processes and devices that significantly deviate from the standard approach which involves rigid glass substrates, indium-tin-oxide electrodes, spincoated layers of conjugated polymer/fullerene...... be performing less than the current state-of-the-art in their present form but that may have the potential to outperform these pending a larger investment in effort....

  15. Controlling solution-phase polymer aggregation with molecular weight and solvent additives to optimize polymer-fullerene bulk heterojunction solar cells

    KAUST Repository

    Bartelt, Jonathan A.; Douglas, Jessica D.; Mateker, William R.; El Labban, Abdulrahman; Tassone, Christopher J.; Toney, Michael F.; Fré chet, Jean Mj J; Beaujuge, Pierre; McGehee, Michael D.

    2014-01-01

    The bulk heterojunction (BHJ) solar cell performance of many polymers depends on the polymer molecular weight (M n) and the solvent additive(s) used for solution processing. However, the mechanism that causes these dependencies is not well

  16. Elaboration of fabrication technology of ITO/CdS/CdTe solar cells on flexible polymer substrates

    International Nuclear Information System (INIS)

    Potlog, T.; Spalatu, N.; Capros, N.

    2007-01-01

    The development of high efficiency, stable, lightweight and flexible solar cell is important for terrestrial and space applications. We have developed a novel process to make solar cells on flexible polymer sheets. A thin layer of CdTe compound semiconductor is used for the absorption of solar light and generation of electrical current. In this work the solar electricity conversion efficiency of 4,66% is the highest efficiency reported for a solar cell grown on a polymer sheet. (authors)

  17. Reducing burn-in voltage loss in polymer solar cells by increasing the polymer crystallinity

    KAUST Repository

    Heumueller, Thomas; Mateker, William R.; Sachs-Quintana, I. T.; Vandewal, Koen; Bartelt, Jonathan A.; Burke, Timothy M.; Ameri, Tayebeh; Brabec, Christoph J.; McGehee, Michael D.

    2014-01-01

    In order to commercialize polymer solar cells, the fast initial performance losses present in many high efficiency materials will have to be managed. This burn-in degradation is caused by light-induced traps and its characteristics depend on which

  18. High Efficiency Polymer Solar Cells with Long Operating Lifetimes

    KAUST Repository

    Peters, Craig H.; Sachs-Quintana, I. T.; Kastrop, John P.; Beaupré , Serge; Leclerc, Mario; McGehee, Michael D.

    2011-01-01

    Organic bulk-heterojunction solar cells comprising poly[N-9'-hepta-decanyl- 2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2', 1',3'-benzothiadiazole) (PCDTBT) are systematically aged and demonstrate lifetimes approaching seven years, which is the longest reported lifetime for polymer solar cells. An experimental set-up is described that is capable of testing large numbers of solar cells, holding each device at its maximum power point while controlling and monitoring the temperature and light intensity. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. High Efficiency Polymer Solar Cells with Long Operating Lifetimes

    KAUST Repository

    Peters, Craig H.

    2011-04-20

    Organic bulk-heterojunction solar cells comprising poly[N-9\\'-hepta-decanyl- 2,7-carbazole-alt-5,5-(4\\',7\\'-di-2-thienyl-2\\', 1\\',3\\'-benzothiadiazole) (PCDTBT) are systematically aged and demonstrate lifetimes approaching seven years, which is the longest reported lifetime for polymer solar cells. An experimental set-up is described that is capable of testing large numbers of solar cells, holding each device at its maximum power point while controlling and monitoring the temperature and light intensity. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Asymmetric diketopyrrolopyrrole conjugated polymers for field-effect transistors and polymer solar cells processed from a non-chlorinated solvent

    NARCIS (Netherlands)

    Ji, Y.; Xiao, C.; Wang, Q.; Zhang, J.; Li, C.; Wu, Y.; Wei, Z.; Zhan, X.; Hu, W.; Wang, Z.; Janssen, R.A.J.; Li, W.W.

    2016-01-01

    Newly designed asymmetric diketopyrrolopyrrole conjugated polymers with two different aromatic substituents possess a hole mobility of 12.5 cm2 V−1 s−1 in field-effect transistors and a power conversion efficiency of 6.5% in polymer solar cells, when solution processed from a nonchlorinated

  1. Thiophene-rich fused-aromatic thienopyrazine acceptor for donor–acceptor low band-gap polymers for OTFT and polymer solar cell applications

    KAUST Repository

    Mondal, Rajib

    2010-01-01

    Thiophene enriched fused-aromatic thieno[3,4-b]pyrazine systems were designed and employed to produce low band gap polymers (Eg = 1.0-1.4 eV) when copolymerized with fluorene and cyclopentadithiophene. The copolymers are mainly investigated for organic thin film transistor and organic photovoltaic applications. Molecular packing in the thin films of these polymers was investigated using Grazing incidence X-ray Scattering. Although both fluorene and cyclopentadithiophene polymers follow similar face to face π-π stacking, the latter polymers show much smaller lamellar d-spacings due to side-chain interdigitation between the lamellae. This lead to the higher charge carrier mobilities in cyclopentadithiophene polymers (up to 0.044 cm2/V.s) compared to fluorene polymers (up to 8.1 × 10-3 cm2/V.s). Power conversion efficiency of 1.4% was achieved using fluorene copolymer in solar cells with a fullerene derivative as an acceptor. Although the cyclopentadithiophene polymers show lower band gaps with higher absorption coefficients compared to fluorene copolymers, but the power conversion efficiencies in solar cells of these polymers are low due to their low ionization potentials. © The Royal Society of Chemistry 2010.

  2. High efficiency polymer solar cells with vertically modulated nanoscale morphology

    International Nuclear Information System (INIS)

    Kumar, Ankit; Hong Ziruo; Yang Yang; Li Gang

    2009-01-01

    Nanoscale morphology has been shown to be a critical parameter governing charge transport properties of polymer bulk heterojunction (BHJ) solar cells. Recent results on vertical phase separation have intensified the research on 3D morphology control. In this paper, we intend to modify the distribution of donors and acceptors in a classical BHJ polymer solar cell by making the active layer richer in donors and acceptors near the anode and cathode respectively. Here, we chose [6,6]-phenyl- C 61 -butyric acid methyl ester (PCBM) to be the acceptor material to be thermally deposited on top of [poly(3-hexylthiophene)] P3HT: the PCBM active layer to achieve a vertical composition gradient in the BHJ structure. Here we report on a solar cell with enhanced power conversion efficiency of 4.5% which can be directly correlated with the decrease in series resistance of the device.

  3. Widely Applicable n-Type Molecular Doping for Enhanced Photovoltaic Performance of All-Polymer Solar Cells.

    Science.gov (United States)

    Xu, Yalong; Yuan, Jianyu; Sun, Jianxia; Zhang, Yannan; Ling, Xufeng; Wu, Haihua; Zhang, Guobing; Chen, Junmei; Wang, Yongjie; Ma, Wanli

    2018-01-24

    A widely applicable doping design for emerging nonfullerene solar cells would be an efficient strategy in order to further improve device photovoltaic performance. Herein, a family of compound TBAX (TBA= tetrabutylammonium, X = F, Cl, Br, or I, containing Lewis base anions are considered as efficient n-dopants for improving polymer-polymer solar cells (all-PSCs) performance. In all cases, significantly increased fill factor (FF) and slightly increased short-circuit current density (J sc ) are observed, leading to a best PCE of 7.0% for all-PSCs compared to that of 5.8% in undoped devices. The improvement may be attributed to interaction between different anions X - (X = F, Cl, Br, and I) in TBAX with the polymer acceptor. We reveal that adding TBAX at relatively low content does not have a significantly impact on blend morphology, while it can reduce the work function (WF) of the electron acceptor. We find this simple and solution processable n-type doping can efficiently restrain charge recombination in all-polymer solar cell devices, resulting in improved FF and J sc. More importantly, our findings may provide new protocles and insights using n-type molecular dopants in improving the performance of current polymer-polymer solar cells.

  4. Interlayer adhesion in roll-to-roll processed flexible inverted polymer solar cells

    KAUST Repository

    Dupont, Stephanie R.

    2012-02-01

    The interlayer adhesion of roll-to-roll processed flexible inverted P3HT:PCBM bulk heterojunction (BHJ) polymer solar cells is reported. Poor adhesion between adjacent layers may result in loss of device performance from delamination driven by the thermomechanical stresses in the device. We demonstrate how a thin-film adhesion technique can be applied to flexible organic solar cells to obtain quantitative adhesion values. For the P3HT:PCBM-based BHJ polymer solar cells, the interface of the BHJ with the conductive polymer layer PEDOT:PSS was found to be the weakest. The adhesion fracture energy varied from 1.6 J/m2 to 0.1 J/m2 depending on the composition of the P3HT:PCBM layer. Post-deposition annealing time and temperature were shown to increase the adhesion at this interface. Additionally the PEDOT:PSS cells are compared with V2O5 cells whereby adhesive failure marked by high fracture energies was observed. © 2011 Elsevier B.V.

  5. Upscaling of polymer solar cell fabrication using full roll-to-roll processing

    DEFF Research Database (Denmark)

    Krebs, Frederik C; Tromholt, Thomas; Jørgensen, Mikkel

    2010-01-01

    factors (excluding bus bars) of 50, 67 and 75% respectively. In addition modules with lengths of 6, 10, 20, 22.5 and 25 cm were explored. The devices were prepared by full roll-to-roll solution processing in a web width of 305 mm and roll lengths of up to 200 m. The devices were encapsulated...... with a barrier material in a full roll-to-roll process using standard adhesives giving the devices excellent stability during storage and operation. The total area of processed polymer solar cell was around 60 m2 per run. The solar cells were characterised using a roll-to-roll system comprising a solar simulator...... to the cost for electricity using existing technologies the levelized cost of electricity (LCOE) is expected to be significantly higher than the existing technologies due to the inferior operational lifetime. The presented devices are thus competitive for consumer electronics but ill-suited for on...

  6. Applicability of X-ray reflectometry to studies of polymer solar cell degradation

    DEFF Research Database (Denmark)

    Andreasen, Jens Wenzel; Gevorgyan, Suren; Schleputz, C.M.

    2008-01-01

    Although degradation of polymer solar cells is widely acknowledged, the cause, physical or chemical, has not been identified. The purpose of this work is to determine the applicability of X-ray reflectometry for in situ observation of physical degradation mechanisms. We find that the rough...... interfaces of the polymer solar cell constituent layers seriously obstruct the sensitivity of the technique, rendering it impossible to elucidate changes in the layer/interface structure at the sub-nanometer level. (c) 2008 Elsevier B.V. All rights reserved....

  7. Morphology and efficiency : the case of Polymer/ZnO solar cells

    NARCIS (Netherlands)

    Koster, L.J.A.; Stenzel, O.; Oosterhout, S.D.; Wienk, M.M.; Schmidt, V.; Janssen, R.A.J.

    2013-01-01

    The performance of polymer solar cells critically depends on the morphology of the interface between the donor- and acceptor materials that are used to create and transport charge carriers. Solar cells based on poly(3-hexylthiophene) and ZnO were fully characterized in terms of their efficiency and

  8. Morphology and Efficiency : The Case of Polymer/ZnO Solar Cells

    NARCIS (Netherlands)

    Koster, L.J.A.; Stenzel, O.; Oosterhout, S.D.; Wienk, M.M.; Schmidt, V.; Janssen, R.A.J.

    The performance of polymer solar cells critically depends on the morphology of the interface between the donor- and acceptor materials that are used to create and transport charge carriers. Solar cells based on poly(3-hexylthiophene) and ZnO were fully characterized in terms of their efficiency and

  9. Overcoming the Scaling Lag for Polymer Solar Cells

    DEFF Research Database (Denmark)

    Carlé, Jon Eggert; Helgesen, Martin; Hagemann, Ole

    2017-01-01

    -to-roll printed polymer solar cell to a realistic scale across the entire value chain. The materials synthesis, the manufacture, the installation, the failure modes, and the operation have all been covered and addressed. We demonstrate outdoor operation for 2 years through a large-scale, grid-tied, high...

  10. Polymer materials for roll coated solar cells: strategies tom improve performance and stability

    DEFF Research Database (Denmark)

    Heckler, Ilona Maria

    Solar cells are among the renewable energy technologies with a large potential in terms of solar energy availability. The solar cells based on conjugated polymers belong to the third generation of this technology and their attractive features include a fast and cheap solution‐processed production...

  11. The Effect of Dopant-Free Hole-Transport Polymers on Charge Generation and Recombination in Cesium-Bismuth-Iodide Solar Cells.

    Science.gov (United States)

    Zhu, Huimin; Johansson, Malin B; Johansson, Erik M J

    2018-03-22

    The photovoltaic characteristics of CsBi 3 I 10 -based solar cells with three dopant-free hole-conducting polymers are investigated. The effect on charge generation and charge recombination in the solar cells using the different polymers is studied and the results indicate that the choice of polymer strongly affects the device properties. Interestingly, for the solar cell with poly[[2,3-bis(3-octyloxyphenyl)-5,8-quinoxalinediyl]-2,5-thiophenediyl] (TQ1), the photon-to-current conversion spectrum is highly improved in the red wavelength region, suggesting that the polymer also contributes to the photocurrent generation in this case. This report provides a new direction for further optimization of Bi-halide solar cells by using dopant-free hole-transporting polymers and shows that the energy levels and the interaction between the Bi-halide and the conducting polymers are very important for solar cell performance. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Simple roll coater with variable coating and temperature control for printed polymer solar cells

    DEFF Research Database (Denmark)

    Dam, Henrik Friis; Krebs, Frederik C

    2012-01-01

    of solution, enabling roll coating testing of new polymers where only small amounts are often available. We demonstrate the formation of >50 solar cells (each with an active area of 1 cm2) with printed metal back electrodes using as little as 0.1 mL of active layer solution. This approach outperforms spin...... coating with respect to temperature control, ink usage, speed and is directly compatible with industrial processing and upscaling....

  13. Bipolar polaron pair recombination in polymer/fullerene solar cells

    DEFF Research Database (Denmark)

    Kupijai, Alexander J.; Behringer, Konstantin M.; Schaeble, Florian G.

    2015-01-01

    We present a study of the rate-limiting spin-dependent charge-transfer processes in different polymer/fullerene bulk-heterojunction solar cells at 10 K. Observing central spin-locking signals in pulsed electrically detected magnetic resonance and an inversion of Rabi oscillations in multifrequency...

  14. Ambient Layer-by-Layer ZnO Assembly for Highly Efficient Polymer Bulk Heterojunction Solar Cells

    KAUST Repository

    Eita, Mohamed Samir

    2015-02-04

    The use of metal oxide interlayers in polymer solar cells has great potential because metal oxides are abundant, thermally stable, and can be used in fl exible devices. Here, a layer-by-layer (LbL) protocol is reported as a facile, room-temperature, solution-processed method to prepare electron transport layers from commercial ZnO nanoparticles and polyacrylic acid (PAA) with a controlled and tunable porous structure, which provides large interfacial contacts with the active layer. Applying the LbL approach to bulk heterojunction polymer solar cells with an optimized ZnO layer thickness of H25 nm yields solar cell power-conversion effi ciencies (PCEs) of ≈6%, exceeding the effi ciency of amorphous ZnO interlayers formed by conventional sputtering methods. Interestingly, annealing the ZnO/PAA interlayers in nitrogen and air environments in the range of 60-300 ° C reduces the device PCEs by almost 20% to 50%, indicating the importance of conformational changes inherent to the PAA polymer in the LbL-deposited fi lms to solar cell performance. This protocol suggests a new fabrication method for solution-processed polymer solar cell devices that does not require postprocessing thermal annealing treatments and that is applicable to fl exible devices printed on plastic substrates.

  15. Design Principles in Polymer-Fullerene BHJ Solar Cells: PBDTTPD as a Case Study

    KAUST Repository

    Beaujuge, Pierre

    2015-01-01

    For example, in poly(benzo[1,2-b:4,5-b’]dithiophene–thieno[3,4-c]pyrrole-4,6-dione) (PBDTTPD), side-chain substituents of various size and branching impart distinct molecular packing distances (i.e., π–π stacking and lamellar spacing), varying degrees of nanostructural order in thin films, and preferential backbone orientation relative to the device substrate.[2-5] While these structural variations seem to correlate with BHJ solar cell performance, with power conversion efficiencies ranging from 4% to 8.5%,[2,3] we believe that other contributing parameters – such as the local conformations between the polymer and the fullerene, and the domain distribution/composition across the BHJ (i.e., pure/mixed phases) – should also be taken into account.[6,7] Other discrete modifications of PBDTTPD’s molecular structure affect polymer performance in BHJ solar cells with PCBM, and our recent developments emphasize how systematic structure-property relationship studies impact the design of efficient polymer donors for BHJ solar cell applications.[8-10] It is important to further our understanding of these effects as we look to continue improving BHJ solar cell efficiencies.

  16. Solution-processable MoOx nanocrystals enable highly efficient reflective and semitransparent polymer solar cells

    KAUST Repository

    Jagadamma, Lethy Krishnan

    2016-09-09

    Solution-manufacturing of organic solar cells with best-in-class power conversion efficiency (PCE) will require all layers to be solution-coated without compromising solar cell performance. To date, the hole transporting layer (HTL) deposited on top of the organic bulk heterojunction layer in the inverted architecture is most commonly an ultrathin (<10 nm) metal oxide layer prepared by vacuum-deposition. Here, we show that an alcohol-based nanocrystalline MoOx suspension with carefully controlled nanocrystal (NC) size can yield state of the art reflective and semitransparent solar cells. Using NCs smaller than the target HTL thickness (∼10 nm) can yield compact, pinhole-free films which result in highly efficient polymer:fullerene bulk heterojunction (BHJ) solar cells with PCE=9.5%. The solution processed HTL is shown to achieve performance parity with vacuum-evaporated HTLs for several polymer:fullerene combinations and is even shown to work as hole injection layer in polymer light emitting diodes (PLED). We also demonstrate that larger MoOx NCs (30–50 nm) successfully composite MoOx with Ag nanowires (NW) to form a highly conducting, transparent top anode with exceptional contact properties. This yields state-of-the-art semitransparent polymer: fullerene solar cells with PCE of 6.5% and overall transmission >30%. The remarkable performance of reflective and semitransparent OPVs is due to the uncommonly high fill factors achieved using a carefully designed strategy for implementation of MoOx nanocrystals as HTL materials. © 2016 Elsevier Ltd

  17. Roll-to-roll processed polymer tandem solar cells partially processed from water

    DEFF Research Database (Denmark)

    Larsen-Olsen, Thue Trofod; Andersen, Thomas Rieks; Andreasen, Birgitta

    2012-01-01

    Large area polymer tandem solar cells completely processed using roll-to-roll (R2R) coating and printing techniques are demonstrated. A stable tandem structure was achieved by the use of orthogonal ink solvents for the coating of all layers, including both active layers. Processing solvents...... included water, alcohols and chlorobenzene. Open-circuit voltages close to the expected sum of sub cell voltages were achieved, while the overall efficiency of the tandem cells was found to be limited by the low yielding back cell, which was processed from water based ink. Many of the challenges associated...

  18. Polymer Main-Chain Substitution Effects on the Efficiency of Nonfullerene BHJ Solar Cells

    KAUST Repository

    Firdaus, Yuliar; Maffei, Luna Pratali; Cruciani, Federico; Mü ller, Michael A.; Liu, Shengjian; Lopatin, Sergei; Wehbe, Nimer; Ngongang Ndjawa, Guy Olivier; Amassian, Aram; Laquai, Fré dé ric; Beaujuge, Pierre

    2017-01-01

    “Nonfullerene” acceptors are proving effective in bulk heterojunction (BHJ) solar cells when paired with selected polymer donors. However, the principles that guide the selection of adequate polymer donors for high-efficiency BHJ solar cells with nonfullerene acceptors remain a matter of some debate and, while polymer main-chain substitutions may have a direct influence on the donor–acceptor interplay, those effects should be examined and correlated with BHJ device performance patterns. This report examines a set of wide-bandgap polymer donor analogues composed of benzo[1,2-b:4,5-b′]dithiophene (BDT), and thienyl ([2H]T) or 3,4-difluorothiophene ([2F]T) motifs, and their BHJ device performance pattern with the nonfullerene acceptor “ITIC”. Studies show that the fluorine- and ring-substituted derivative PBDT(T)[2F]T largely outperforms its other two polymer donor counterparts, reaching power conversion efficiencies as high as 9.8%. Combining several characterization techniques, the gradual device performance improvements observed on swapping PBDT[2H]T for PBDT[2F]T, and then for PBDT(T)[2F]T, are found to result from (i) notably improved charge generation and collection efficiencies (estimated as ≈60%, 80%, and 90%, respectively), and (ii) reduced geminate recombination (being suppressed from ≈30%, 25% to 10%) and bimolecular recombination (inferred from recombination rate constant comparisons). These examinations will have broader implications for further studies on the optimization of BHJ solar cell efficiencies with polymer donors and a wider range of nonfullerene acceptors.

  19. Polymer Main-Chain Substitution Effects on the Efficiency of Nonfullerene BHJ Solar Cells

    KAUST Repository

    Firdaus, Yuliar

    2017-07-21

    “Nonfullerene” acceptors are proving effective in bulk heterojunction (BHJ) solar cells when paired with selected polymer donors. However, the principles that guide the selection of adequate polymer donors for high-efficiency BHJ solar cells with nonfullerene acceptors remain a matter of some debate and, while polymer main-chain substitutions may have a direct influence on the donor–acceptor interplay, those effects should be examined and correlated with BHJ device performance patterns. This report examines a set of wide-bandgap polymer donor analogues composed of benzo[1,2-b:4,5-b′]dithiophene (BDT), and thienyl ([2H]T) or 3,4-difluorothiophene ([2F]T) motifs, and their BHJ device performance pattern with the nonfullerene acceptor “ITIC”. Studies show that the fluorine- and ring-substituted derivative PBDT(T)[2F]T largely outperforms its other two polymer donor counterparts, reaching power conversion efficiencies as high as 9.8%. Combining several characterization techniques, the gradual device performance improvements observed on swapping PBDT[2H]T for PBDT[2F]T, and then for PBDT(T)[2F]T, are found to result from (i) notably improved charge generation and collection efficiencies (estimated as ≈60%, 80%, and 90%, respectively), and (ii) reduced geminate recombination (being suppressed from ≈30%, 25% to 10%) and bimolecular recombination (inferred from recombination rate constant comparisons). These examinations will have broader implications for further studies on the optimization of BHJ solar cell efficiencies with polymer donors and a wider range of nonfullerene acceptors.

  20. Enhancement of the inverted polymer solar cells via ZnO doped with CTAB

    Science.gov (United States)

    Sivashnamugan, Kundan; Guo, Tzung-Fang; Hsu, Yao-Jane; Wen, Ten-Chin

    2018-02-01

    A facile approach enhancing electron extraction in zinc oxide (ZnO) electron transfer interlayer and improving performance of bulk-heterojunction (BHJ) polymer solar cells (PSCs) by adding cetyltrimethylammonium bromide (CTAB) into sol-gel ZnO precursor solution was demonstrated in this work. The power conversion efficiency (PCE) has a 24.1% increment after modification. Our results show that CTAB can dramatically influence optical, electrical and morphological properties of ZnO electron transfer layer, and work as effective additive to enhance the performance of bulk- heterojunction polymer solar cells.

  1. Hydrophilic Conjugated Polymers with Large Bandgaps and Deep-Lying HOMO Levels as an Efficient Cathode Interlayer in Inverted Polymer Solar Cells.

    Science.gov (United States)

    Kan, Yuanyuan; Zhu, Yongxiang; Liu, Zhulin; Zhang, Lianjie; Chen, Junwu; Cao, Yong

    2015-08-01

    Two hydrophilic conjugated polymers, PmP-NOH and PmP36F-NOH, with polar diethanol-amine on the side chains and main chain structures of poly(meta-phenylene) and poly(meta-phenylene-alt-3,6-fluorene), respectively, are successfully synthesized. The films of PmP-NOH and PmP36F-NOH show absorption edges at 340 and 343 nm, respectively. The calculated optical bandgaps of the two polymers are 3.65 and 3.62 eV, respectively, the largest ones so far reported for hydrophilic conjugated polymers. PmP-NOH and PmP36F-NOH also possess deep-lying highest occupied molecular orbital levels of -6.19 and -6.15 eV, respectively. Inserting PmP-NOH and PmP36F-NOH as a cathode interlayer in inverted polymer solar cells with a PTB7/PC71 BM blend as the active layer, high power conversion efficiencies of 8.58% and 8.33%, respectively, are achieved, demonstrating that the two hydrophilic polymers are excellent interlayers for efficient inverted polymer solar cells. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Enhancing Performance of Large-Area Organic Solar Cells with Thick Film via Ternary Strategy.

    Science.gov (United States)

    Zhang, Jianqi; Zhao, Yifan; Fang, Jin; Yuan, Liu; Xia, Benzheng; Wang, Guodong; Wang, Zaiyu; Zhang, Yajie; Ma, Wei; Yan, Wei; Su, Wenming; Wei, Zhixiang

    2017-06-01

    Large-scale fabrication of organic solar cells requires an active layer with high thickness tolerability and the use of environment-friendly solvents. Thick films with high-performance can be achieved via a ternary strategy studied herein. The ternary system consists of one polymer donor, one small molecule donor, and one fullerene acceptor. The small molecule enhances the crystallinity and face-on orientation of the active layer, leading to improved thickness tolerability compared with that of a polymer-fullerene binary system. An active layer with 270 nm thickness exhibits an average power conversion efficiency (PCE) of 10.78%, while the PCE is less than 8% with such thick film for binary system. Furthermore, large-area devices are successfully fabricated using polyethylene terephthalate (PET)/Silver gride or indium tin oxide (ITO)-based transparent flexible substrates. The product shows a high PCE of 8.28% with an area of 1.25 cm 2 for a single cell and 5.18% for a 20 cm 2 module. This study demonstrates that ternary organic solar cells exhibit great potential for large-scale fabrication and future applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Solid-state, polymer-based fiber solar cells with carbon nanotube electrodes.

    Science.gov (United States)

    Liu, Dianyi; Zhao, Mingyan; Li, Yan; Bian, Zuqiang; Zhang, Luhui; Shang, Yuanyuan; Xia, Xinyuan; Zhang, Sen; Yun, Daqin; Liu, Zhiwei; Cao, Anyuan; Huang, Chunhui

    2012-12-21

    Most previous fiber-shaped solar cells were based on photoelectrochemical systems involving liquid electrolytes, which had issues such as device encapsulation and stability. Here, we deposited classical semiconducting polymer-based bulk heterojunction layers onto stainless steel wires to form primary electrodes and adopted carbon nanotube thin films or densified yarns to replace conventional metal counter electrodes. The polymer-based fiber cells with nanotube film or yarn electrodes showed power conversion efficiencies in the range 1.4% to 2.3%, with stable performance upon rotation and large-angle bending and during long-time storage without further encapsulation. Our fiber solar cells consisting of a polymeric active layer sandwiched between steel and carbon electrodes have potential in the manufacturing of low-cost, liquid-free, and flexible fiber-based photovoltaics.

  4. Comparison of electroluminescence intensity and photocurrent of polymer based solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Hoyer, Ulrich; Swonke, Thomas; Auer, Richard [Bayerisches Zentrum fuer Angewandte Energieforschung e.V., Erlangen (Germany); Pinna, Luigi; Brabec, Christoph J. [Bayerisches Zentrum fuer Angewandte Energieforschung e.V., Erlangen (Germany); I-MEET, University Erlangen (Germany); Stubhan, Tobias; Li, Ning [I-MEET, University Erlangen (Germany)

    2011-11-15

    The reciprocity theorem for solar cell predicts a linear relation between electroluminescence emission and photovoltaic quantum efficiency and an exponential dependence of the electroluminescence signal on the applied voltage. Both dependencies are experimentally verified for polymer based solar cells in this paper. Furthermore it is shown, that electroluminescence imaging of organic solar cells has the potential to visualize the photocurrent distribution significantly faster than standard laser beam induced current mapping (LBIC) techniques. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Performance enhancement of quantum dot-sensitized solar cells based on polymer nano-composite catalyst

    International Nuclear Information System (INIS)

    Seo, Hyunwoong; Gopi, Chandu V.V.M.; Kim, Hee-Je; Itagaki, Naho; Koga, Kazunori; Shiratani, Masaharu

    2017-01-01

    Highlights: •We studied polymer nano-composite containing TiO 2 nano-particles as a catalyst. •Polymer nano-composite was applied for quantum dot-sensitized solar cells. •Polymer nano-composite catalyst was considerably improved with TiO 2 nano-particles. •Polymer nano-composite showed higher photovoltaic performance than conventional Au. -- Abstract: Polymer nano-composite composed of poly(3,4-ethylenedioxythiophene):poly (styrenesulfonate) and TiO 2 nano-particles was deposited on fluorine-doped tin oxide substrate and applied as an alternative to Au counter electrode of quantum dot-sensitized solar cell (QDSC). It became surface-richer with the increase in nano-particle amount so that catalytic reaction was increased by widened catalytic interface. Electrochemical impedance spectroscopy and cyclic voltammetry clearly demonstrated the enhancement of polymer nano-composite counter electrode. A QDSC based on polymer nano-composite counter electrode showed 0.56 V of V OC , 12.24 mA cm −2 of J SC , 0.57 of FF, and 3.87% of efficiency and this photovoltaic performance was higher than that of QDSC based on Au counter electrode (3.75%).

  6. Photovoltaic Performance of Inverted Polymer Solar Cells Using Hybrid Carbon Quantum Dots and Absorption Polymer Materials

    Science.gov (United States)

    Lim, Hwain; Lee, Kyu Seung; Liu, Yang; Kim, Hak Yong; Son, Dong Ick

    2018-05-01

    We report the synthesis and characterization of the carbon quantum dots (C-dots) easily obtained from citric acid and ethanediamine, and also investigated structural, optical and electrical properties. The C-dots have extraordinary optical and electrical features such as absorption of ultraviolet range and effective interface for charge separation and transport in active layer, which make them attractive materials for applications in photovoltaic devices (PV). The C-dots play important roles in charge extraction in the PV structures, they can be synthesized by a simple method and used to insert in active layer of polymer solar cells. In this study, we demonstrate that improve charge transport properties of inverted polymer solar cells (iPSCs) with C-dots and structural, optical and electrical properties of C-dots. As a result, iPSCs with C-dots showed enhancement of more than 30% compared with that of the contrast device in power conversion efficiency.

  7. Thieno[3,4-c]pyrrole-4,6-dione-3,4-difluorothiophene Polymer Acceptors for Efficient All-Polymer Bulk Heterojunction Solar Cells

    KAUST Repository

    Liu, Shengjian

    2016-09-16

    Branched-alkyl-substituted poly(thieno[3,4-c]pyrrole-4,6-dione-alt-3,4-difluorothiophene) (PTPD[2F]T) can be used as a polymer acceptor in bulk heterojunction (BHJ) solar cells with a low-band-gap polymer donor (PCE10) commonly used with fullerenes. The

  8. Quality control of roll-to-roll processed polymer solar modules by complementary imaging methods

    DEFF Research Database (Denmark)

    Rösch, R.; Krebs, Frederik C; Tanenbaum, D.M.

    2012-01-01

    We applied complementary imaging methods to investigate processing failures of roll-to-roll solution processed polymer solar modules based on polymer:fullerene bulk heterojunctions. For investigation of processing deficiencies in solar modules we employed dark lock-in thermography (DLIT......), electroluminescence (ELI) and photoluminescence/reflection imaging (PLI/RI) complemented by optical imaging (OI). The combination of all high resolution images allowed us to allocate the origin of processing errors to a specific deposition process, i.e. the insufficient coverage of an electrode interlayer...

  9. Growth of ZnSe nano-needles by pulsed laser deposition and their application in polymer/inorganic hybrid solar cells

    International Nuclear Information System (INIS)

    Chen, L.; Lai, J.S.; Fu, X.N.; Sun, J.; Ying, Z.F.; Wu, J.D.; Lu, H.; Xu, N.

    2013-01-01

    Using pulsed-laser deposition method, crystalline ZnSe nano-needles have been grown on catalyst-coated silicon (100) substrates. The crystalline ZnSe nano-needles with the middle diameters of about 20–80 nm, and the lengths ranging from 100 to 600 nm can be grown densely on 300–400 °C substrates. The as-grown ZnSe nano-needles were well crystalline and base-grown. They are potential electron-capturing materials in polymer/inorganic hybrid solar cells for their properties of good electron-conductance and high ratio surface area. Based on the ZnSe nano-needle cathode, a five-layer composite structure of polymer/inorganic hybrid solar cell has been designed and fabricated. The absorption spectra of the blend of regioregular poly(3-hexylthiophene-2,5-diyl) and phenyl-C61-butyric acid methyl ester (P3HT:PCBM), ZnSe nano-needles and the combination of P3HT:PCBM and ZnSe nano-needles were examined by ultraviolet–visible-infrared spectrophotometer, respectively. The absorption bands of the combination of P3HT:PCBM and ZnSe nano-needles fit well with the solar spectral distribution. - Highlights: ► Crystalline ZnSe nano-needles grown by pulsed laser deposition. ► A five-layer polymer/inorganic hybrid solar cell based on ZnSe nano-needles cathode. ► ZnSe nano-needles improve light absorption. ► Employment of ZnSe nano-needles increase the open-circuit voltage and fill factor

  10. High-Performance All-Polymer Solar Cells Achieved by Fused Perylenediimide-Based Conjugated Polymer Acceptors.

    Science.gov (United States)

    Yin, Yuli; Yang, Jing; Guo, Fengyun; Zhou, Erjun; Zhao, Liancheng; Zhang, Yong

    2018-05-09

    We report three n-type polymeric electron acceptors (PFPDI-TT, PFPDI-T, and PFPDI-Se) based on the fused perylene diimide (FPDI) and thieno[3,2- b]thiophene, thiophene, or selenophene units for all-polymer solar cells (all-PSCs). These FPDI-based polymer acceptors exhibit strong absorption between 350 and 650 nm with wide optical bandgap of 1.86-1.91 eV, showing good absorption compensation with the narrow bandgap polymer donor. The lowest unoccupied molecular orbital (LUMO) energy levels were located at around -4.11 eV, which are comparable with those of the fullerene derivatives and other small molecular electron acceptors. The conventional all-PSCs based on the three polymer acceptors and PTB7-Th as polymer donor gave remarkable power conversion efficiencies (PCEs) of >6%, and the PFPDI-Se-based all-PSC achieved the highest PCE of 6.58% with a short-circuit current density ( J sc ) of 13.96 mA/cm 2 , an open-circuit voltage ( V oc ) of 0.76 V, and a fill factor (FF) of 62.0%. More interestingly, our results indicate that the photovoltaic performances of the FPDI-based polymer acceptors are mainly determined by the FPDI unit with a small effect from the comonomers, which is quite different from the others reported rylenediimide-based polymer acceptors. This intriguing phenomenon is speculated as the huge geometry configuration of the FPDI unit, which minimizes the effect of the comonomer. These results highlight a promising future for the application of the FPDI-based polymer acceptors in the highly efficient all-PSCs.

  11. The Influence of Conjugated Polymer Side Chain Manipulation on the Efficiency and Stability of Polymer Solar Cells.

    Science.gov (United States)

    Heckler, Ilona M; Kesters, Jurgen; Defour, Maxime; Madsen, Morten V; Penxten, Huguette; D'Haen, Jan; Van Mele, Bruno; Maes, Wouter; Bundgaard, Eva

    2016-03-09

    The stability of polymer solar cells (PSCs) can be influenced by the introduction of particular moieties on the conjugated polymer side chains. In this study, two series of donor-acceptor copolymers, based on bis(thienyl)dialkoxybenzene donor and benzo[ c ][1,2,5]thiadiazole (BT) or thiazolo[5,4- d ]thiazole (TzTz) acceptor units, were selected toward effective device scalability by roll-coating. The influence of the partial exchange (5% or 10%) of the solubilizing 2-hexyldecyloxy by alternative 2-phenylethoxy groups on efficiency and stability was investigated. With an increasing 2-phenylethoxy ratio, a decrease in solar cell efficiency was observed for the BT-based series, whereas the efficiencies for the devices based on the TzTz polymers remained approximately the same. The photochemical degradation rate for PSCs based on the TzTz polymers decreased with an increasing 2-phenylethoxy ratio. Lifetime studies under constant sun irradiance showed a diminishing initial degradation rate for the BT-based devices upon including the alternative side chains, whereas the (more stable) TzTz-based devices degraded at a faster rate from the start of the experiment upon partly exchanging the side chains. No clear trends in the degradation behavior, linked to the copolymer structural changes, could be established at this point, evidencing the complex interplay of events determining PSCs' lifetime.

  12. The Influence of Conjugated Polymer Side Chain Manipulation on the Efficiency and Stability of Polymer Solar Cells

    Directory of Open Access Journals (Sweden)

    Ilona M. Heckler

    2016-03-01

    Full Text Available The stability of polymer solar cells (PSCs can be influenced by the introduction of particular moieties on the conjugated polymer side chains. In this study, two series of donor-acceptor copolymers, based on bis(thienyldialkoxybenzene donor and benzo[c][1,2,5]thiadiazole (BT or thiazolo[5,4-d]thiazole (TzTz acceptor units, were selected toward effective device scalability by roll-coating. The influence of the partial exchange (5% or 10% of the solubilizing 2-hexyldecyloxy by alternative 2-phenylethoxy groups on efficiency and stability was investigated. With an increasing 2-phenylethoxy ratio, a decrease in solar cell efficiency was observed for the BT-based series, whereas the efficiencies for the devices based on the TzTz polymers remained approximately the same. The photochemical degradation rate for PSCs based on the TzTz polymers decreased with an increasing 2-phenylethoxy ratio. Lifetime studies under constant sun irradiance showed a diminishing initial degradation rate for the BT-based devices upon including the alternative side chains, whereas the (more stable TzTz-based devices degraded at a faster rate from the start of the experiment upon partly exchanging the side chains. No clear trends in the degradation behavior, linked to the copolymer structural changes, could be established at this point, evidencing the complex interplay of events determining PSCs’ lifetime.

  13. The Curious Case of Fluorination of Conjugated Polymers for Solar Cells.

    Science.gov (United States)

    Zhang, Qianqian; Kelly, Mary Allison; Bauer, Nicole; You, Wei

    2017-09-19

    Organic solar cells (OSCs) have been a rising star in the field of renewable energy since the introduction of the bulk heterojunction (BHJ) in 1992. Recent advances have pushed the efficiencies of OSCs to over 13%, an impressive accomplishment via collaborative efforts in rational materials design and synthesis, careful device engineering, and fundamental understanding of device physics. Throughout these endeavors, several design principles for the conjugated donor polymers used in such solar cells have emerged, including optimizing the conjugated backbone with judicious selection of building blocks, side-chain engineering, and substituents. Among all of the substituents, fluorine is probably the most popular one; improved device characteristics with fluorination have frequently been reported for a wide range of conjugated polymers, in particular, donor-acceptor (D-A)-type polymers. Herein we examine the effect of fluorination on the device performance of solar cells as a function of the position of fluorination (on the acceptor unit or on the donor unit), aiming to outline a clear understanding of the benefits of this curious substituent. As fluorination of the acceptor unit is the most adopted strategy for D-A polymers, we first discuss the effect of fluorination of the acceptor units, highlighting the five most widely utilized acceptor units. While improved device efficiency has been widely observed with fluorinated acceptor units, the underlying reasons vary from case to case and highly depend on the chemical structure of the polymer. Second, the effect of fluorination of the donor unit is addressed. Here we focus on four donor units that have been most studied with fluorination. While device-performance-enhancing effects by fluorination of the donor units have also been observed, it is less clear that fluorine will always benefit the efficiency of the OSC, as there are several cases where the efficiency drops, in particular with "over-fluorination", i.e., when

  14. Planar conjugated polymers containing 9,10-disubstituted phenanthrene units for efficient polymer solar cells.

    Science.gov (United States)

    Li, Guangwu; Kang, Chong; Li, Cuihong; Lu, Zhen; Zhang, Jicheng; Gong, Xue; Zhao, Guangyao; Dong, Huanli; Hu, Wenping; Bo, Zhishan

    2014-06-01

    Four novel conjugated polymers (P1-4) with 9,10-disubstituted phenanthrene (PhA) as the donor unit and 5,6-bis(octyloxy)benzothiadiazole as the acceptor unit are synthesized and characterized. These polymers are of medium bandgaps (2.0 eV), low-lying HOMO energy levels (below -5.3 eV), and high hole mobilities (in the range of 3.6 × 10(-3) to 0.02 cm(2) V(-1) s(-1) ). Bulk heterojunction (BHJ) polymer solar cells (PSCs) with P1-4:PC71 BM blends as the active layer and an alcohol-soluble fullerene derivative (FN-C60) as the interfacial layer between the active layer and cathode give the best power conversion efficiency (PCE) of 4.24%, indicating that 9,10-disubstituted PhA are potential donor materials for high-efficiency BHJ PSCs. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Optimizing the fabrication process and interplay of device components of polymer solar cells using a field-based multiscale solar-cell algorithm

    International Nuclear Information System (INIS)

    Donets, Sergii; Pershin, Anton; Baeurle, Stephan A.

    2015-01-01

    Both the device composition and fabrication process are well-known to crucially affect the power conversion efficiency of polymer solar cells. Major advances have recently been achieved through the development of novel device materials and inkjet printing technologies, which permit to improve their durability and performance considerably. In this work, we demonstrate the usefulness of a recently developed field-based multiscale solar-cell algorithm to investigate the influence of the material characteristics, like, e.g., electrode surfaces, polymer architectures, and impurities in the active layer, as well as post-production treatments, like, e.g., electric field alignment, on the photovoltaic performance of block-copolymer solar-cell devices. Our study reveals that a short exposition time of the polymer bulk heterojunction to the action of an external electric field can lead to a low photovoltaic performance due to an incomplete alignment process, leading to undulated or disrupted nanophases. With increasing exposition time, the nanophases align in direction to the electric field lines, resulting in an increase of the number of continuous percolation paths and, ultimately, in a reduction of the number of exciton and charge-carrier losses. Moreover, we conclude by modifying the interaction strengths between the electrode surfaces and active layer components that a too low or too high affinity of an electrode surface to one of the components can lead to defective contacts, causing a deterioration of the device performance. Finally, we infer from the study of block-copolymer nanoparticle systems that particle impurities can significantly affect the nanostructure of the polymer matrix and reduce the photovoltaic performance of the active layer. For a critical volume fraction and size of the nanoparticles, we observe a complete phase transformation of the polymer nanomorphology, leading to a drop of the internal quantum efficiency. For other particle-numbers and -sizes

  16. Recent advances in polymer solar cells: realization of high device performance by incorporating water/alcohol-soluble conjugated polymers as electrode buffer layer.

    Science.gov (United States)

    He, Zhicai; Wu, Hongbin; Cao, Yong

    2014-02-01

    This Progress Report highlights recent advances in polymer solar cells with special attention focused on the recent rapid-growing progress in methods that use a thin layer of alcohol/water-soluble conjugated polymers as key component to obtain optimized device performance, but also discusses novel materials and device architectures made by major prestigious institutions in this field. We anticipate that due to drastic improvements in efficiency and easy utilization, this method opens up new opportunities for PSCs from various material systems to improve towards 10% efficiency, and many novel device structures will emerge as suitable architectures for developing the ideal roll-to-roll type processing of polymer-based solar cells. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Thermocleavable Materials for Polymer Solar Cells with High Open Circuit Voltage-A Comparative Study

    DEFF Research Database (Denmark)

    Tromholt, Thomas; Gevorgyan, Suren; Jørgensen, Mikkel

    2009-01-01

    The search for polymer solar cells giving a high open circuit voltage was conducted through a comparative study of four types of bulk-heterojunction solar cells employing different photoactive layers. As electron donors the thermo-cleavable polymer poly-(3-(2-methylhexyloxycarbonyl)dithiophene) (P3......MHOCT) and unsubstituted polythiophene (PT) were used, the latter of which results from thermo cleaving the former at 310 °C. As reference, P3HT solar cells were built in parallel. As electron acceptors, either PCBM or bis-[60]PCBM were used. In excess of 300 solar cells were produced under as identical...... conditions as possible, varying only the material combination of the photo active layer. It was observed that on replacing PCBM with bis[60]PCBM, the open circuit voltage on average increased by 100 mV for P3MHOCT and 200 mV for PT solar cells. Open circuit voltages approaching 1 V were observed for the PT:bis...

  18. Recent Advances in Organic Solar Cells

    Directory of Open Access Journals (Sweden)

    Thomas Kietzke

    2007-01-01

    Full Text Available Solar cells based on organic semiconductors have attracted much attention. The thickness of the active layer of organic solar cells is typically only 100 nm thin, which is about 1000 times thinner than for crystalline silicon solar cells and still 10 times thinner than for current inorganic thin film cells. The low material consumption per area and the easy processing of organic semiconductors offer a huge potential for low cost large area solar cells. However, to compete with inorganic solar cells the efficiency of organic solar cells has to be improved by a factor of 2-3. Several organic semiconducting materials have been investigated so far, but the optimum material still has to be designed. Similar as for organic light emitting devices (OLED small molecules are competing with polymers to become the material of choice. After a general introduction into the device structures and operational principles of organic solar cells the three different basic types (all polymer based, all small molecules based and small molecules mixed with polymers are described in detail in this review. For each kind the current state of research is described and the best of class reported efficiencies are listed.

  19. Enhanced thermal stability of a polymer solar cell blend induced by electron beam irradiation in the transmission electron microscope.

    Science.gov (United States)

    Bäcke, Olof; Lindqvist, Camilla; de Zerio Mendaza, Amaia Diaz; Gustafsson, Stefan; Wang, Ergang; Andersson, Mats R; Müller, Christian; Kristiansen, Per Magnus; Olsson, Eva

    2017-05-01

    We show by in situ microscopy that the effects of electron beam irradiation during transmission electron microscopy can be used to lock microstructural features and enhance the structural thermal stability of a nanostructured polymer:fullerene blend. Polymer:fullerene bulk-heterojunction thin films show great promise for use as active layers in organic solar cells but their low thermal stability is a hindrance. Lack of thermal stability complicates manufacturing and influences the lifetime of devices. To investigate how electron irradiation affects the thermal stability of polymer:fullerene films, a model bulk-heterojunction film based on a thiophene-quinoxaline copolymer and a fullerene derivative was heat-treated in-situ in a transmission electron microscope. In areas of the film that exposed to the electron beam the nanostructure of the film remained stable, while the nanostructure in areas not exposed to the electron beam underwent large phase separation and nucleation of fullerene crystals. UV-vis spectroscopy shows that the polymer:fullerene films are stable for electron doses up to 2000kGy. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. The importance of fullerene percolation in the mixed regions of polymer-fullerene bulk heterojunction solar cells

    KAUST Repository

    Bartelt, Jonathan A.

    2012-10-26

    Most optimized donor-acceptor (D-A) polymer bulk heterojunction (BHJ) solar cells have active layers too thin to absorb greater than - 80% of incident photons with energies above the polymer\\'s band gap. If the thickness of these devices could be increased without sacrifi cing internal quantum effi ciency, the device power conversion effi ciency (PCE) could be signifi cantly enhanced. We examine the device characteristics of BHJ solar cells based on poly(di(2- ethylhexyloxy)benzo[1,2- b :4,5- b \\' ]dithiophene- co -octylthieno[3,4- c ]pyrrole-4,6- dione) (PBDTTPD) and [6,6]-phenyl-C 61 -butyric acid methyl ester (PCBM) with 7.3% PCE and fi nd that bimolecular recombination limits the active layer thickness of these devices. Thermal annealing does not mitigate these bimolecular recombination losses and drastically decreases the PCE of PBDTTPD BHJ solar cells. We characterize the morphology of these BHJs before and after thermal annealing and determine that thermal annealing drastically reduces the concentration of PCBM in the mixed regions, which consist of PCBM dispersed in the amorphous portions of PBDTTPD. Decreasing the concentration of PCBM may reduce the number of percolating electron transport pathways within these mixed regions and create morphological electron traps that enhance charge-carrier recombination and limit device quantum effi ciency. These fi ndings suggest that (i) the concentration of PCBM in the mixed regions of polymer BHJs must be above the PCBM percolation threshold in order to attain high solar cell internal quantum effi ciency, and (ii) novel processing techniques, which improve polymer hole mobility while maintaining PCBM percolation within the mixed regions, should be developed in order to limit bimolecular recombination losses in optically thick devices and maximize the PCE of polymer BHJ solar cells. © 2013 WILEY-VCH Verlag GmbH and Co. © 2013 WILEY-VCH Verlag GmbH & Co.

  1. Roll coated large area ITO- and vacuum-free all organic solar cells from diketopyrrolopyrrole based non-fullerene acceptors with molecular geometry effects

    DEFF Research Database (Denmark)

    Brandt, Rasmus Guldbaek; Zhang, Fei; Andersen, Thomas Rieks

    2016-01-01

    morphology, and photovoltaic performance of both spin-coated ITO based and roll coated large area, ITO- and vacuum-free organic solar cells (OSCs). For spin-coated devices based on P3HT as the donor polymer the solar cells gave power conversion efficiencies (PCEs) in the following order for (P3HT:PhDMe(DPP)2...

  2. Large area modules based on low band gap polymers

    DEFF Research Database (Denmark)

    Bundgaard, Eva; Krebs, Frederik C

    2010-01-01

    The use of three low band gap polymers in large area roll-to-roll coated modules is demonstrated. The polymers were prepared by a Stille cross coupling polymerization and all had a band gap around 1.6 eV. The polymers were first tested in small area organic photovoltaic devices which showed...

  3. Patterns of efficiency and degradation of composite polymer solar cells

    NARCIS (Netherlands)

    Jeranko, T; Tributsch, H; Sariciftci, NS; Hummelen, JC

    2004-01-01

    Bulk-heterojunction plastic solar cells (PSC) produced from a conjugated polymer, poly(2-methoxy-5-(3',7'-dimethyloctyl-oxy)-1,4-phenylenevinylene) (MDMO-PPV), and a methanofullerene [6,6]-phenyl C-61-butyric acid methyl ester (PCBM) were investigated using photocurrent imaging techniques to

  4. Ultrabroadband time-resolved THz spectroscopy of polymer-based solar cells

    DEFF Research Database (Denmark)

    Cooke, David G.; Krebs, Frederik C; Jepsen, Peter Uhd

    2011-01-01

    We have developed ultrabroadband THz spectroscopy in reflection mode for characterization of conductivity dynamics in conductive polymer samples used in organic solar cells. The spectrometer is designed to have a time resolution limited only by the duration of the optical pump pulse, thus enabling...

  5. Low-Cost Upscaling Compatibility of Five Different ITO-Free Architectures for Polymer Solar Cells

    DEFF Research Database (Denmark)

    Angmo, Dechan; Gonzalez-Valls, Irene; Veenstra, Sjoerd

    2013-01-01

    Five different indium-tin-oxide free (ITO-free) polymer solar cell architectures provided by four participating research institutions that all presented a laboratory cell performance sufficient for use in mobile and information and communication technology (ICT) were evaluated based on photovoltaic...... performance and lifetime tests according to the ISOS protocols. The comparison of the different device architectures was performed using the same active material (P3HT: PCBM) and tested against an ITO-based reference device. The active area was 1 cm2 and rigid glass or flexible polyester substrates were...

  6. Continuous blade coating for multi-layer large-area organic light-emitting diode and solar cell

    Science.gov (United States)

    Chen, Chun-Yu; Chang, Hao-Wen; Chang, Yu-Fan; Chang, Bo-Jie; Lin, Yuan-Sheng; Jian, Pei-Siou; Yeh, Han-Cheng; Chien, Hung-Ta; Chen, En-Chen; Chao, Yu-Chiang; Meng, Hsin-Fei; Zan, Hsiao-Wen; Lin, Hao-Wu; Horng, Sheng-Fu; Cheng, Yen-Ju; Yen, Feng-Wen; Lin, I.-Feng; Yang, Hsiu-Yuan; Huang, Kuo-Jui; Tseng, Mei-Rurng

    2011-11-01

    A continuous roll-to-roll compatible blade-coating method for multi-layers of general organic semiconductors is developed. Dissolution of the underlying film during coating is prevented by simultaneously applying heating from the bottom and gentle hot wind from the top. The solvent is immediately expelled and reflow inhibited. This method succeeds for polymers and small molecules. Uniformity is within 10% for 5 cm by 5 cm area with a mean value of tens of nanometers for both organic light-emitting diode (OLED) and solar cell structure with little material waste. For phosphorescent OLED 25 cd/A is achieved for green, 15 cd/A for orange, and 8 cd/A for blue. For fluorescent OLED 4.3 cd/A is achieved for blue, 9 cd/A for orange, and 6.9 cd/A for white. For OLED with 2 cm by 3 cm active area, the luminance variation is within 10%. Power conversion efficiency of 4.1% is achieved for polymer solar cell, similar to spin coating using the same materials. Very-low-cost and high-throughput fabrication of efficient organic devices is realized by the continuous blade-only method.

  7. A simple nanostructured polymer/ZnO hybrid solar cell - preparation and operation in air

    DEFF Research Database (Denmark)

    Krebs, Frederik C; Thomann, Yi; Thomann, Ralf

    2008-01-01

    without notable loss in efficiency. The devices do not require any form of encapsulation to gain stability, while a barrier for mechanical protection may be useful. The devices are based on soluble zinc oxide nanoparticles mixed with the thermocleavable conjugated polymer poly-(3-(2-methylhexan-2-yl......A detailed description is given of the preparation of a polymer solar cell and its characterization. The solar cell can be prepared entirely in the ambient atmosphere by solution processing without the use of vacuum coating steps, and it can be operated in the ambient atmosphere with good...

  8. Fullerene-based materials for solar cell applications: design of novel acceptors for efficient polymer solar cells--a DFT study.

    Science.gov (United States)

    Mohajeri, Afshan; Omidvar, Akbar

    2015-09-14

    Fossil fuel alternatives, such as solar energy, are moving to the forefront in a variety of research fields. Polymer solar cells (PSCs) hold promise for their potential to be used as low-cost and efficient solar energy converters. PSCs have been commonly made from bicontinuous polymer:fullerene composites or so-called bulk heterojunctions. The conjugated polymer donors and the fullerene derivative acceptors are the key materials for high performance PSCs. In the present study, we have performed density functional theory calculations to investigate the electronic structures and magnetic properties of several representative C60 fullerene derivatives, seeking ways to improve their efficiency as acceptors of photovoltaic devices. In our survey, we have successfully correlated the LUMO energy level as well as chemical hardness, hyper-hardness, nucleus-independent chemical shift, and static dipole polarizability of PC60BM-like fullerene derivative acceptors with the experimental open circuit voltage of the photovoltaic device based on the P3HT:fullerene blend. The obtained structure-property correlations allow finding the best fullerene acceptor match for the P3HT donor. For this purpose, four new fullerene derivatives are proposed and the output parameters for the corresponding P3HT-based devices are predicted. It is found that the proposed fullerene derivatives exhibit better photovoltaic properties than the traditional PC60BM acceptor. The present study opens the way for manipulating fullerene derivatives and developing promising acceptors for solar cell applications.

  9. Hybrid ZnO:polymer bulk heterojunction solar cells from a ZnO precursor

    NARCIS (Netherlands)

    Beek, W.J.E.; Slooff, L.H.; Wienk, M.M.; Kroon, J.M.; Janssen, R.A.J.; Kafafi, Z.H.

    2005-01-01

    We describe a simple and new method to create hybrid bulk heterojunction solar cells consisting of ZnO and conjugated polymers. A gel-forming ZnO precursor, blended with conjugated polymers, is converted into crystalline ZnO at temperatures as low as 110 °C. In-situ formation of ZnO in MDMO-PPV

  10. Tuning the Properties of Polymer Bulk Heterojunction Solar Cells by Adjusting Fullerene Size to Control Intercalation

    KAUST Repository

    Cates, Nichole C.

    2009-12-09

    We demonstrate that intercalation of fullerene derivatives between the side chains of conjugated polymers can be controlled by adjusting the fullerene size and compare the properties of intercalated and nonintercalated poly(2,5-bis(3-hexadecylthiophen-2-yl)thieno[3,2-b]thiophene (pBTTT):fullerene blends. The intercalated blends, which exhibit optimal solar-cell performance at 1:4 polymer:fullerene by weight, have better photoluminescence quenching and lower absorption than the nonintercalated blends, which optimize at 1:1. Understanding how intercalation affects performance will enable more effective design of polymer:fullerene solar cells. © 2009 American Chemical Society.

  11. Tuning the Properties of Polymer Bulk Heterojunction Solar Cells by Adjusting Fullerene Size to Control Intercalation

    KAUST Repository

    Cates, Nichole C.; Gysel, Roman; Beiley, Zach; Miller, Chad E.; Toney, Michael F.; Heeney, Martin; McCulloch, Iain; McGehee, Michael D.

    2009-01-01

    We demonstrate that intercalation of fullerene derivatives between the side chains of conjugated polymers can be controlled by adjusting the fullerene size and compare the properties of intercalated and nonintercalated poly(2,5-bis(3-hexadecylthiophen-2-yl)thieno[3,2-b]thiophene (pBTTT):fullerene blends. The intercalated blends, which exhibit optimal solar-cell performance at 1:4 polymer:fullerene by weight, have better photoluminescence quenching and lower absorption than the nonintercalated blends, which optimize at 1:1. Understanding how intercalation affects performance will enable more effective design of polymer:fullerene solar cells. © 2009 American Chemical Society.

  12. Ultimate performance of polymer: Fullerene bulk heterojunction tandem solar cells

    NARCIS (Netherlands)

    Kotlarski, J.D.; Blom, P.W.M.

    2011-01-01

    We present the model calculations to explore the potential of polymer:fullerene tandem solar cells. As an approach we use a combined optical and electrical device model, where the absorption profiles are used as starting point for the numerical current-voltage calculations. With this model a maximum

  13. Homo-Tandem Polymer Solar Cells withVOC>1.8 V for Efficient PV-Driven Water Splitting

    KAUST Repository

    Gao, Yangqin

    2016-03-06

    Efficient homo-tandem and triple-junction polymer solar cells are constructed by stacking identical subcells composed of the wide-bandgap polymer PBDTTPD, achieving power conversion efficiencies >8% paralleled by open-circuit voltages >1.8 V. The high-voltage homo-tandem is used to demonstrate PV-driven electrochemical water splitting with an estimated solar-to-hydrogen conversion efficiency of ≈6%. © 2016 WILEY-VCH Verlag GmbH & Co.

  14. Non-Vacuum Processed Polymer Composite Antireflection Coating Films for Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    Abdullah Uzum

    2016-08-01

    Full Text Available A non-vacuum processing method for preparing polymer-based ZrO2/TiO2 multilayer structure antireflection coating (ARC films for crystalline silicon solar cells by spin coating is introduced. Initially, ZrO2, TiO2 and surface deactivated-TiO2 (SD-TiO2 based films were examined separately and the effect of photocatalytic properties of TiO2 film on the reflectivity on silicon surface was investigated. Degradation of the reflectance performance with increasing reflectivity of up to 2% in the ultraviolet region was confirmed. No significant change of the reflectance was observed when utilizing SD-TiO2 and ZrO2 films. Average reflectance (between 300 nm–1100 nm of the silicon surface coated with optimized polymer-based ZrO2 single or ZrO2/SD-TiO2 multilayer composite films was decreased down to 6.5% and 5.5%, respectively. Improvement of photocurrent density (Jsc and conversion efficiency (η of fabricated silicon solar cells owing to the ZrO2/SD-TiO2 multilayer ARC could be confirmed. The photovoltaic properties of Jsc, the open-circuit photo voltage (VOC, the fill factor (FF, and the η were 31.42 mA cm−2, 575 mV, 71.5% and 12.91%. Efficiency of the solar cells was improved by the ZrO2-polymer/SD-TiO2 polymer ARC composite layer by a factor of 0.8% with an increase of Jsc (2.07 mA cm−2 compared to those of fabricated without the ARC.

  15. Fully solution-processing route toward highly transparent polymer solar cells.

    Science.gov (United States)

    Guo, Fei; Kubis, Peter; Stubhan, Tobias; Li, Ning; Baran, Derya; Przybilla, Thomas; Spiecker, Erdmann; Forberich, Karen; Brabec, Christoph J

    2014-10-22

    We report highly transparent polymer solar cells using metallic silver nanowires (AgNWs) as both the electron- and hole-collecting electrodes. The entire stack of the devices is processed from solution using a doctor blading technique. A thin layer of zinc oxide nanoparticles is introduced between photoactive layer and top AgNW electrode which plays decisive roles in device functionality: it serves as a mechanical foundation which allows the solution-deposition of top AgNWs, and more importantly it facilitates charge carriers extraction due to the better energy level alignment and the formation of ohmic contacts between the active layer/ZnO and ZnO/AgNWs. The resulting semitransparent polymer:fullerene solar cells showed a power conversion efficiency of 2.9%, which is 72% of the efficiency of an opaque reference device. Moreover, an average transmittance of 41% in the wavelength range of 400-800 nm is achieved, which is of particular interest for applications in transparent architectures.

  16. Improved power conversion efficiency of dye-sensitized solar cells using side chain liquid crystal polymer embedded in polymer electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Woosum [Department of Chemistry Education, and Department of Frontier Materials Chemistry, and Institute for Plastic Information and Energy Materials, Pusan National University, Busan 609-735 (Korea, Republic of); Lee, Jae Wook, E-mail: jlee@donga.ac.kr [Department of Chemistry, Dong-A University, Busan 604-714 (Korea, Republic of); Gal, Yeong-Soon [Polymer Chemistry Lab, College of General Education, Kyungil University, Hayang 712-701 (Korea, Republic of); Kim, Mi-Ra, E-mail: mrkim2@pusan.ac.kr [Department of Polymer Science and Engineering, Pusan National University, Busan 609-735 (Korea, Republic of); Jin, Sung Ho, E-mail: shjin@pusan.ac.kr [Department of Chemistry Education, and Department of Frontier Materials Chemistry, and Institute for Plastic Information and Energy Materials, Pusan National University, Busan 609-735 (Korea, Republic of)

    2014-02-14

    Side chain liquid crystal polymer (SCLCP) embedded in poly(vinylidenefluoride-co-hexafluoropropylene) (PVdF-co-HFP)-based polymer electrolytes (PVdF-co-HFP:side chain liquid crystal polymer (SCLCP)) was prepared for dye-sensitized solar cell (DSSC) application. The polymer electrolytes contained tetrabutylammonium iodide (TBAI), iodine (I{sub 2}), and 8 wt% PVdF-co-HFP in acetonitrile. DSSCs comprised of PVdF-co-HFP:SCLCP-based polymer electrolytes displayed enhanced redox couple reduction and reduced charge recombination in comparison to those of the conventional PVdF-co-HFP-based polymer electrolyte. The significantly increased short-circuit current density (J{sub sc}, 10.75 mA cm{sup −2}) of the DSSCs with PVdF-co-HFP:SCLCP-based polymer electrolytes afforded a high power conversion efficiency (PCE) of 5.32% and a fill factor (FF) of 0.64 under standard light intensity of 100 mW cm{sup −2} irradiation of AM 1.5 sunlight. - Highlights: • We developed the liquid crystal polymer embedded on polymer electrolyte for DSSCs. • We fabricated the highly efficient DSSCs using polymer electrolyte. • The best PCE achieved for P1 is 5.32% using polymer electrolyte.

  17. Improved power conversion efficiency of dye-sensitized solar cells using side chain liquid crystal polymer embedded in polymer electrolytes

    International Nuclear Information System (INIS)

    Cho, Woosum; Lee, Jae Wook; Gal, Yeong-Soon; Kim, Mi-Ra; Jin, Sung Ho

    2014-01-01

    Side chain liquid crystal polymer (SCLCP) embedded in poly(vinylidenefluoride-co-hexafluoropropylene) (PVdF-co-HFP)-based polymer electrolytes (PVdF-co-HFP:side chain liquid crystal polymer (SCLCP)) was prepared for dye-sensitized solar cell (DSSC) application. The polymer electrolytes contained tetrabutylammonium iodide (TBAI), iodine (I 2 ), and 8 wt% PVdF-co-HFP in acetonitrile. DSSCs comprised of PVdF-co-HFP:SCLCP-based polymer electrolytes displayed enhanced redox couple reduction and reduced charge recombination in comparison to those of the conventional PVdF-co-HFP-based polymer electrolyte. The significantly increased short-circuit current density (J sc , 10.75 mA cm −2 ) of the DSSCs with PVdF-co-HFP:SCLCP-based polymer electrolytes afforded a high power conversion efficiency (PCE) of 5.32% and a fill factor (FF) of 0.64 under standard light intensity of 100 mW cm −2 irradiation of AM 1.5 sunlight. - Highlights: • We developed the liquid crystal polymer embedded on polymer electrolyte for DSSCs. • We fabricated the highly efficient DSSCs using polymer electrolyte. • The best PCE achieved for P1 is 5.32% using polymer electrolyte

  18. Hole transfer from CdSe nanoparticles to TQ1 polymer in hybrid solar cell device

    Science.gov (United States)

    Sohail, Muhammad; Shah, Zawar Hussain; Saeed, Shomaila; Bibi, Nasreen; Shahbaz, Sadia; Ahmed, Safeer; Shabbir, Saima; Siddiq, Muhammad; Iqbal, Azhar

    2018-05-01

    In view of realizing the economic viability, we fabricate a solar cell device containing low band gap and easily processable polymer 5-yl-8-(thiophene-2,5-diyl)-2,3-bis(3-(octyloxy)phenyl) quinoxaline (TQ1) and CdSe nanoparticles (NPs) and investigate its charge transport properties. When the TQ1 is combined with the CdSe NPs a strong photoluminescence quenching and shortening of photoluminescence lifetime of the TQ1 is observed indicating exciton transfer from TQ1 to the CdSe NPs. The time-resolved photoluminescence further reveals that the exciton transfer from the polymer to CdSe NPs is very efficient (68%) and it occurs in solar cell as compared to polymer only device. These observations suggest the importance of other II-VI semiconductor NPs to achieve higher efficiency for photovoltaic devices containing TQ1 polymer.

  19. Dye-sensitized solar cell with natural gel polymer electrolytes and f-MWCNT as counter-electrode

    Science.gov (United States)

    Nwanya, A. C.; Amaechi, C. I.; Ekwealor, A. B. C.; Osuji, R. U.; Maaza, M.; Ezema, F. I.

    2015-05-01

    Samples of DSSCs were made with gel polymer electrolytes using agar, gelatin and DNA as the polymer hosts. Anthocyanine dye from Hildegardia barteri flower is used to sensitize the TiO2 electrode, and the spectrum of the dye indicates strong absorptions in the blue region of the solar spectrum. The XRD pattern of the TiO2 shows that the adsorption of the dye did not affect the crystallinity of the electrode. The f-MWCNT indicates graphite structure of the MWCNTs were acid oxidized without significant damage. Efficiencies of 3.38 and 0.1% were obtained using gelatin and DNA gel polymer electrolytes, respectively, for the fabricated dye-sensitized solar cells.

  20. Modelling the short-circuit current of polymer bulk heterojunction solar cells

    International Nuclear Information System (INIS)

    Geens, Wim; Martens, Tom; Poortmans, Jef; Aernouts, Tom; Manca, Jean; Lutsen, Laurence; Heremans, Paul; Borghs, Staf; Mertens, Robert; Vanderzande, Dirk

    2004-01-01

    An analytical model has been developed to estimate the short-circuit current density of conjugated polymer/fullerene bulk heterojunction solar cells. The model takes into account the solvent-dependent molecular morphology of the donor/acceptor blend, which was revealed by transmission electron microscopy. Field-effect transistors based on single and composite organic layers were fabricated to determine values for the charge carrier mobilities of such films. These values served as input parameters of the model. It is shown that the difference in short-circuit current density that was measured between toluene-cast and chlorobenzene-cast conjugated polymer/fullerene photovoltaic cells (Appl. Phys. Lett. 78 (2001) 841) could be very well simulated with the model. Moreover, the calculations illustrate how increasing the hole and electron mobilities in the photoactive blend can improve the overall short-circuit current density of the solar cell

  1. The effect of side-chain substitution and hot processing on diketopyrrolopyrrole-based polymers for organic solar cells

    NARCIS (Netherlands)

    Heintges, G.H.L.; Leenaers, P.J.; Janssen, R.A.J.

    2017-01-01

    The effects of cold and hot processing on the performance of polymer-fullerene solar cells are investigated for diketopyrrolopyrrole (DPP) based polymers that were specifically designed and synthesized to exhibit a strong temperature-dependent aggregation in solution. The polymers, consisting of

  2. Upscaling of Indium Tin Oxide (ITO)-Free Polymer Solar Cells

    DEFF Research Database (Denmark)

    Angmo, Dechan

    Polymer solar cells (PSCs) aim to produce clean energy that is cost-competitive to energy produced by fossil fuel-based conventional energy sources. From an environmental perspective, PSCs already compares favorably to other solar cell technologies in terms of fewer emissions of greenhouse gases......, represents majority of the share of cost and energy footprint in terms of materials and processing in a conventional PSC module. Furthermore, the scarcity of indium is feared to create bottleneck in the dawning PSC industry and its brittle nature is an obstacle for fast processing of PSCs on flexible...

  3. Theoretical and Experimental Study of Plasmonic Polymer Solar Cells

    DEFF Research Database (Denmark)

    Mirsafaei, Mina; Adam, Jost; Madsen, Morten

    The organic bulk hetero-junction solar cell has remarkable advantages such as low cost, mechanical flexibility and simple process techniques. Recently, low-band gap photoactive materials have obtained a significant attention due to their potential to absorb a wider range of the solar spectrum...... to attain higher power conversion efficiencies. Many low-band gap photoactive materials, however, still show a relatively low external quantum efficiency of less than 60% [1]. One possible approach to improve the device performance is to increase the light absorption in the active layer. This may, amongst...... other approaches, be achieved by using nano- or micro-structures that trap light at specific wavelengths [2], or by using the localized surface plasmon resonance effect of metal nanoparticles in the devices. In this work, we theoretically studied planar polymer solar cell based on finite-difference time...

  4. Solidification of liquid electrolyte with imidazole polymers for quasi-solid-state dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Wang Miao; Lin Yuan; Zhou Xiaowen; Xiao Xurui; Yang Lei; Feng Shujing; Li Xueping

    2008-01-01

    Quasi-solid-state electrolytes were prepared by employing the imidazole polymers to solidify the liquid electrolyte containing lithium iodide, iodine and ethylene carbonate (EC)/propylene carbonate (PC) mixed solvent. The ionic conductivity and diffusion behavior of triiodide in the quasi-solid-state electrolytes were examined in terms of the polymer content. Application of the quasi-solid-state electrolytes to the dye-sensitized solar cells, the maximum energy conversion efficiency of 7.6% (AM 1.5, 100 mW cm -2 ) was achieved. The dependence of the photovoltaic performance on the polymer content and on the different anions of the imidazole polymers was studied by electrochemical impedance spectroscopy and cyclic voltammetry. The results indicate the charge transfer behaviors occurred at nanocrystalline TiO 2 /electrolyte and Pt/electrolyte interface play an important role in influencing the photovoltaic performance of quasi-solid-state dye-sensitized solar cells

  5. Homo-Tandem Polymer Solar Cells withVOC>1.8 V for Efficient PV-Driven Water Splitting

    KAUST Repository

    Gao, Yangqin; Le Corre, Vincent M.; Gaï tis, Alexandre; Neophytou, Marios; Hamid, Mahmoud Abdul; Takanabe, Kazuhiro; Beaujuge, Pierre

    2016-01-01

    Efficient homo-tandem and triple-junction polymer solar cells are constructed by stacking identical subcells composed of the wide-bandgap polymer PBDTTPD, achieving power conversion efficiencies >8% paralleled by open-circuit voltages >1.8 V

  6. Enhanced thermal stability of a polymer solar cell blend induced by electron beam irradiation in the transmission electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Bäcke, Olof, E-mail: obacke@chalmers.se [Department of Applied Physics, Chalmers University of Technology, 41296 Göteborg (Sweden); Lindqvist, Camilla; Diaz de Zerio Mendaza, Amaia [Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Göteborg (Sweden); Gustafsson, Stefan [Department of Applied Physics, Chalmers University of Technology, 41296 Göteborg (Sweden); Wang, Ergang; Andersson, Mats R.; Müller, Christian [Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Göteborg (Sweden); Kristiansen, Per Magnus [Institute of Polymer Nanotechnology (INKA), FHNW University of Applied Science and Arts Northwestern Switzerland, 5210 Windisch (Switzerland); Laboratory for Micro- and Nanotechnology, Paul Scherrer Institute, 5232 Villigen (Switzerland); Olsson, Eva, E-mail: eva.olsson@chalmers.se [Department of Applied Physics, Chalmers University of Technology, 41296 Göteborg (Sweden)

    2017-05-15

    We show by in situ microscopy that the effects of electron beam irradiation during transmission electron microscopy can be used to lock microstructural features and enhance the structural thermal stability of a nanostructured polymer:fullerene blend. Polymer:fullerene bulk-heterojunction thin films show great promise for use as active layers in organic solar cells but their low thermal stability is a hindrance. Lack of thermal stability complicates manufacturing and influences the lifetime of devices. To investigate how electron irradiation affects the thermal stability of polymer:fullerene films, a model bulk-heterojunction film based on a thiophene-quinoxaline copolymer and a fullerene derivative was heat-treated in-situ in a transmission electron microscope. In areas of the film that exposed to the electron beam the nanostructure of the film remained stable, while the nanostructure in areas not exposed to the electron beam underwent large phase separation and nucleation of fullerene crystals. UV–vis spectroscopy shows that the polymer:fullerene films are stable for electron doses up to 2000 kGy. - Highlights: • Thermal stability of a polymer: fullerne blend is increased using electron irradiation. • Using in-situ transmission electron microscopy the nanostructure is studied. • Electron irradiation stops phase separation between the polymer and fullerene. • Electron irradiation quenches the formation and nucleation of fullerene crystals.

  7. Conjugated Polymers for Energy Production

    DEFF Research Database (Denmark)

    Livi, Francesco

    This dissertation is aimed at developing materials for flexible, large area, ITO-free polymer solar cells (PSCs) fully printed under ambient conditions. A large screening of conjugated polymers, both novel and well-known materials, has been carried out in order to find suitable candidates...... polymerization method for industrial production of polymers. Several DArP protocols have been employed for the synthesis of PPDTBT leading to polymers with high structural regularity and photovoltaic performances comparable with the same materials synthesized via Stille cross-coupling polymerization...

  8. The importance of fullerene percolation in the mixed regions of polymer-fullerene bulk heterojunction solar cells

    KAUST Repository

    Bartelt, Jonathan A.; Beiley, Zach M.; Hoke, Eric T.; Mateker, William R.; Douglas, Jessica D.; Collins, Brian A.; Tumbleston, John R.; Graham, Kenneth; Amassian, Aram; Ade, Harald W.; Frechet, Jean; Toney, Michael F.; McGehee, Michael D.

    2012-01-01

    Most optimized donor-acceptor (D-A) polymer bulk heterojunction (BHJ) solar cells have active layers too thin to absorb greater than - 80% of incident photons with energies above the polymer's band gap. If the thickness of these devices could be increased without sacrifi cing internal quantum effi ciency, the device power conversion effi ciency (PCE) could be signifi cantly enhanced. We examine the device characteristics of BHJ solar cells based on poly(di(2- ethylhexyloxy)benzo[1,2- b :4,5- b ' ]dithiophene- co -octylthieno[3,4- c ]pyrrole-4,6- dione) (PBDTTPD) and [6,6]-phenyl-C 61 -butyric acid methyl ester (PCBM) with 7.3% PCE and fi nd that bimolecular recombination limits the active layer thickness of these devices. Thermal annealing does not mitigate these bimolecular recombination losses and drastically decreases the PCE of PBDTTPD BHJ solar cells. We characterize the morphology of these BHJs before and after thermal annealing and determine that thermal annealing drastically reduces the concentration of PCBM in the mixed regions, which consist of PCBM dispersed in the amorphous portions of PBDTTPD. Decreasing the concentration of PCBM may reduce the number of percolating electron transport pathways within these mixed regions and create morphological electron traps that enhance charge-carrier recombination and limit device quantum effi ciency. These fi ndings suggest that (i) the concentration of PCBM in the mixed regions of polymer BHJs must be above the PCBM percolation threshold in order to attain high solar cell internal quantum effi ciency, and (ii) novel processing techniques, which improve polymer hole mobility while maintaining PCBM percolation within the mixed regions, should be developed in order to limit bimolecular recombination losses in optically thick devices and maximize the PCE of polymer BHJ solar cells. © 2013 WILEY-VCH Verlag GmbH and Co. © 2013 WILEY-VCH Verlag GmbH & Co.

  9. Synthesis and property characterization of two novel side-chain isoindigo copolymers for polymer solar cells

    Directory of Open Access Journals (Sweden)

    X. Liu

    2015-11-01

    Full Text Available Two novel side-chain conjugated polymers, PTBT-TID and PTBT-TTID, based on the new synthetic thiophene-benzne-thiophene (TBT unit, side-chain isoindigo (ID unit, and the introduced thiophene π-bridge, have been designed and synthesized. The photophysical, electrochemical and photovoltaic properties of the two polymers have been systematically investigated. The two polymers possess relatively good solubility as well as excellent thermal stability up to 380°C, and all of the polymer solar cell (PSC devices based on the two polymers obtain high open circuit voltage (Voc of about 0.8 V. The polymer solar cells based on the polymer PTBT-TID show relatively higher efficiencies than the PTBT-TTID-based ones, due to the broader absorption spectrum, a relatively higher hole mobility, a lower HOMO (the highest occupied molecular orbital energy level, a stronger IPCE (the incident photon to current conversion efficiency response and a better microphase separation, Consequently, the device based on PTBT-TID:PC61BM (1:2, by weight gives the best power conversion efficiency (PCE of 2.04%, with a short-circuit current density (Jsc of 5.39 mA·cm–2, an open-circuit voltage (Voc of 0.83 V, and a fill factor (FF of 0.45.

  10. High stability of benzotriazole and benzodithiophene containing medium band-gap polymer solar cell

    DEFF Research Database (Denmark)

    Unay, Hande; dos Reis Benatto, Gisele A.; Beliatis, Michail J.

    2018-01-01

    The improvement of polymer solar cell stability is a challenge for the scientists and has significant implications commercially. In this study, we investigated the stability of a novel P-SBTBDT active material applied in an inverted type solar cell. Detailed stability experiments comprising shelf......-in phase with T50 from 700 to 840 h, with some P-SBTBDT solar cells did not reach T50 in the time span of the test. Degradation tests on the P-SBTBDT solar cells which were carried out under natural solar light indicated that T40 was reached after 840 h. The results of dark, light, damp and dry stability...

  11. EFFICIENCY OF THE CAPACITY-TYPE SOLAR WATER HEATER WITH THE FLEXIBLE POLYMER ABSORBER.

    Directory of Open Access Journals (Sweden)

    Ermuratschii V.V.

    2008-08-01

    Full Text Available Energetic indexes of solar capacity-type water heaters with flexible polymer absorbers and different constructions of enclosures using the refined method of calculus were obtained.

  12. Influence of injected charge carriers on photocurrents in polymer solar cells

    NARCIS (Netherlands)

    Wehenkel, D.J.; Koster, L.J.A.; Wienk, M.M.; Janssen, R.A.J.

    2012-01-01

    We determine and analyze the photocurrent Jph in polymer solar cells under conditions where, no, one, or two different charge carriers can be injected by choosing appropriate electrodes and compare the experimental results to simulations based on a drift-diffusion device model that accounts for

  13. Fabrication of Hybrid Polymer Solar Cells By Inverted Structure Based on P3HT:PCBM Active Layer

    Directory of Open Access Journals (Sweden)

    Shobih Shobih

    2017-08-01

    Full Text Available Hybrid polymer solar cell has privilege than its conventional structure, where it usually has structure of (ITO/PEDOT:PSS/Active Layer/Al. In humid environment the PEDOT:PSS will absorb water and hence can easily etch the ITO. Therefore it is necessary to use an alternative method to avoid this drawback and obtain more stable polymer solar cells, namely by using hybrid polymer solar cells structure with an inverted device architecture from the conventional, by reversing the nature of charge collection. In this paper we report the results of the fabrication of inverted bulk heterojunction polymer solar cells based on P3HT:PCBM as active layer, utilizing ZnO interlayer as buffer layer between the ITO and active layer with a stacked structure of ITO/ZnO/P3HT:PCBM/PEDOT:PSS/Ag. The ZnO interlayer is formed through short route, i.e. by dissolving ZnO nanoparticles powder in chloroform-methanol solvent blend rather than by sol-gel process. Based on the measurement results on electrical characteristics of inverted polymer solar cells under 500 W/m2 illumination and AM 1.5 direct filter at room temperature, cell with annealing process of active layer at 110 °C for 10 minutes results in higher cell performance than without annealing, with an open-circuit voltage of 0.21 volt, a short-circuit current density of 1.33 mA/cm2 , a fill factor of 43.1%, and a power conversion efficiency of 0.22%. The low cell’s performance is caused by very rough surface of ZnO interlayer.

  14. Roll-to-Roll Fabricated Polymer Solar Cells: Towards Low Environmental Impact and Reporting Consensus

    DEFF Research Database (Denmark)

    Larsen-Olsen, Thue Trofod

    The sun is by far the largest source of renewable energy available; consequently solar cells, which are able to convert light into electricity, have the technical potential to cover the global energy needs. Polymer solar cells (PSCs) on flexible plastic substrate have a low embodied energy and can...... be processed by fast roll-to-roll (R2R) methods, using earth abundant materials, and thus deliver the prospects to fulfil this potential. A strong polarization in PSC research efforts have led to diverging and non-comparable results: While very high power conversion efficiencies (PCEs) above 10% have been......, through R2R processing of tandem PSCs. A final focus area of the thesis is the investigation into the extrinsic variability in standard J-V characterizations done on PSCs, and towards ways to minimize it. Organic solvents are predominant process solvents used for fabricating the active layer of a PSC...

  15. Interlayer adhesion in roll-to-roll processed flexible inverted polymer solar cells

    KAUST Repository

    Dupont, Stephanie R.; Oliver, Mark; Krebs, Frederik C.; Dauskardt, Reinhold H.

    2012-01-01

    The interlayer adhesion of roll-to-roll processed flexible inverted P3HT:PCBM bulk heterojunction (BHJ) polymer solar cells is reported. Poor adhesion between adjacent layers may result in loss of device performance from delamination driven

  16. Blade-coated sol-gel indium-gallium-zinc-oxide for inverted polymer solar cell

    Directory of Open Access Journals (Sweden)

    Yan-Huei Lee

    2016-11-01

    Full Text Available The inverted organic solar cell was fabricated by using sol-gel indium-gallium-zinc-oxide (IGZO as the electron-transport layer. The IGZO precursor solution was deposited by blade coating with simultaneous substrate heating at 120 °C from the bottom and hot wind from above. Uniform IGZO film of around 30 nm was formed after annealing at 400 °C. Using the blend of low band-gap polymer poly[(4,8-bis-(2-ethylhexyloxy-benzo(1,2-b:4,5-b’dithiophene-2,6-diyl-alt- (4-(2-ethylhexanoyl-thieno [3,4-b]thiophene--2-6-diyl] (PBDTTT-C-T and [6,6]-Phenyl C71 butyric acid methyl ester ([70]PCBM as the active layer for the inverted organic solar cell, an efficiency of 6.2% was achieved with a blade speed of 180 mm/s for the IGZO. The efficiency of the inverted organic solar cells was found to depend on the coating speed of the IGZO films, which was attributed to the change in the concentration of surface OH groups. Compared to organic solar cells of conventional structure using PBDTTT-C-T: [70]PCBM as active layer, the inverted organic solar cells showed significant improvement in thermal stability. In addition, the chemical composition, as well as the work function of the IGZO film at the surface and inside can be tuned by the blade speed, which may find applications in other areas like thin-film transistors.

  17. Polymer and organic solar cells viewed as thin film technologies: What it will take for them to become a success outside academia

    DEFF Research Database (Denmark)

    Krebs, Frederik C; Jørgensen, Mikkel

    2013-01-01

    The polymer and organic solar cell technology is critically presented in the context of other thin film technologies with a specific focus on what it will take to make them a commercial success. The academic success of polymer and organic solar cells far outweigh any other solar cell technology w...

  18. Organic solar cell modules for specific applications-From energy autonomous systems to large area photovoltaics

    International Nuclear Information System (INIS)

    Niggemann, M.; Zimmermann, B.; Haschke, J.; Glatthaar, M.; Gombert, A.

    2008-01-01

    We report on the development of two types of organic solar cell modules one for energy autonomous systems and one for large area energy harvesting. The first requires a specific tailoring of the solar cell geometry and cell interconnection in order to power an energy autonomous system under its specific operating conditions. We present an organic solar cell module with 22 interconnected solar cells. A power conversion efficiency of 2% under solar illumination has been reached on the active area of 46.2 cm 2 . A voltage of 4 V at the maximum power point has been obtained under indoor illumination conditions. Micro contact printing of a self assembling monolayer was employed for the patterning of the polymer anode. Large area photovoltaic modules have to meet the requirements on efficiency, lifetime and costs simultaneously. To minimize the production costs, a suitable concept for efficient reel-to-reel production of large area modules is needed. A major contribution to reduce the costs is the substitution of the commonly used indium tin oxide electrode by a cheap material. We present the state of the art of the anode wrap through concept as a reel-to-reel suited module concept and show comparative calculations of the module interconnection of the wrap through concept and the standard ITO-based cell architecture. As a result, the calculated overall module efficiency of the anode wrap through module exceeds the overall efficiency of modules based on ITO on glass (sheet resistance 15 Ω/square) and on foils (sheet resistance 60 Ω/square)

  19. Donor and Acceptor Polymers for Bulk Hetero Junction Solar Cell and Photodetector Applications

    KAUST Repository

    Cruciani, Federico

    2018-04-01

    Bulk heterojunction (BHJ) devices represent a very versatile family of organic cells for both the fields of solar energy conversion and photodetection. Organic photovoltaics (OPV) are an attractive alternative to their silicon-based counterparts because of their potential for low-cost roll-to-roll printing, and their intended application in light-weight mechanically conformable devices and in window-type semi-transparent PV modules. Of all proposed OPV candidates, polymer donor with different absorption range are especially promising when used in conjunction with complementary absorbing acceptor materials, like fullerene derivatives (PCBM), conjugated molecules or polymers, achieving nowadays power conversion efficiencies (PCEs) in the range of 10-13% and being a step closer to practical applications. Among the photodetectors (PD), low band gap polymer blended with PCBM decked out the attention, given their extraordinary range of detection from UV to IR and high detectivity values reached so far, compared to the inorganic devices. Since the research has been focused on the enhancement of those numbers for an effective commercialization of organic cells, the topic of the following thesis has been centered on the synthesis of different polymer structures with diverse absorption ranges, used as donor or acceptor, with emphasis on performance in various BHJ devices either for solar cells and photodetectors. In the first part, two new wide band gap polymers, used as donor material in BHJ devices blended with fullerene and small molecule acceptors, are presented. The PBDT_2FT and PBDTT_2FT have shown nice efficiencies from 7% to 9.8%. The device results are implemented with a morphology study and a specific application in a semi-transparent tandem device, reaching a record PCE of 5.4% for average level of transparency of 48%. In another section two new low band gap polymers (Eopt~ 1.26 eV) named DTP_2FBT and (Eopt~ 1.1 eV) named BDTT_BTQ are presented. While the DTP

  20. Pad printing as a film forming technique for polymer solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Krebs, Frederik C. [Risoe National Laboratory for Sustainable Energy, Technical University of Denmark, Frederiksborgvej 399, DK-4000 Roskilde (Denmark)

    2009-04-15

    Pad printing as a technique for preparing the active layer in polymer solar cells is presented. The technique employs a silicone rubber stamp to pick up the motif from a gravure plate and transfer it to the substrate. The strengths and limitations of pad printing are discussed and polymer solar cells prepared by pad printing are presented. Devices were prepared on indium tin oxide substrates but in principle the entire photovoltaic device comprising front and back electrodes, barrier layers and active layer could be printed with no need for vacuum steps. The device geometry comprises a spin coated transparent zinc oxide front electrode, a pad printed active layer based on a bulk heterojunction of the thermocleavable polymer poly(3-(2-methylhexyloxycarbonyl)thiophene-co-thiopene) (P3MHOCT) and zinc oxide nanoparticles, spin coated PEDOT:PSS and finally a manually cast thermally cured silver paste back electrode. The P3MHOCT was converted to poly(3-carboxy-dithiophene) (P3CT) in situ by heating the film to 200 C for a brief period. The entire printing and device preparation was carried out in the ambient atmosphere and the devices obtained had a good stability in air during storage and operation. (author)

  1. Preliminary study of application of Moringa oleifera resin as polymer electrolyte in DSSC solar cells

    Science.gov (United States)

    Saehana, Sahrul; Darsikin, Muslimin

    2016-04-01

    This study reports the preliminary study of application of Moringa oleifera resin as polymer electrolyte in dye-sensitized solar cell (DSSC). We found that polymer electrolyte membrane was formed by using solution casting methods. It is observed that polymer electrolyte was in elastic form and it is very potential to application as DSSC component. Performance of DSSC which employing Moringa oleifera resin was also observed and photovoltaic effect was found.

  2. Highly efficient polymer solar cells with printed photoactive layer: rational process transfer from spin-coating

    KAUST Repository

    Zhao, Kui

    2016-09-05

    Scalable and continuous roll-to-roll manufacturing is at the heart of the promise of low-cost and high throughput manufacturing of solution-processed photovoltaics. Yet, to date the vast majority of champion organic solar cells reported in the literature rely on spin-coating of the photoactive bulk heterojunction (BHJ) layer, with the performance of printed solar cells lagging behind in most instances. Here, we investigate the performance gap between polymer solar cells prepared by spin-coating and blade-coating the BHJ layer for the important class of modern polymers exhibiting no long range crystalline order. We find that thickness parity does not always yield performance parity even when using identical formulations. Significant differences in the drying kinetics between the processes are found to be responsible for BHJ nanomorphology differences. We propose an approach which benchmarks the film drying kinetics and associated BHJ nanomorphology development against those of the champion laboratory devices prepared by spin-coating the BHJ layer by adjusting the process temperature. If the optimization requires the solution concentration to be changed, then it is crucial to maintain the additive-to-solute volume ratio. Emulating the drying kinetics of spin-coating is also shown to help achieve morphological and performance parities. We put this approach to the test and demonstrate printed PTB7:PC71BM polymer solar cells with efficiency of 9% and 6.5% PCEs on glass and flexible PET substrates, respectively. We further demonstrate performance parity for two other popular donor polymer systems exhibiting rigid backbones and absence of a long range crystalline order, achieving a PCE of 9.7%, the highest efficiency reported to date for a blade coated organic solar cell. The rational process transfer illustrated in this study should help the broader and successful adoption of scalable printing methods for these material systems.

  3. Outdoor fate and environmental impact of polymer solar cells through leaching and emission to rainwater and soil

    DEFF Research Database (Denmark)

    Espinosa Martinez, Nieves; Zimmermann, Yannick-Serge; Benatto, Gisele Alves dos Reis

    2016-01-01

    The emission of silver and zinc to the aqueous environment (rain, fog, dew) from polymer solar cells installed outdoors is presented. Studies included pristine solar cells and solar cells subjected to mechanical damage under natural weather conditions in Denmark. We find the emission of silver...

  4. Thermocleavable π‐Conjugated Polymers – Synthesis and photovoltaic applications

    DEFF Research Database (Denmark)

    Petersen, Martin Helgesen

    Polymer solar cells (plastic solar cells) have seen remarkable improvements in recent years where power conversion efficiencies of up to 6% have been reported for small area devices. However in terms of stability polymer solar cells degrade during illumination and in the dark leading to operational...... lifetimes that are generally very poor. There has been a recent interest in the operational stability of devices and more importantly on the understanding of why devices and materials break down. This has lead to the discovery of a new class of materials that enable exceptionally long device lifetimes...... (>20000 hours). This Ph.D. thesis describes the synthesis, characterization and photovoltaic applications of these novel polymer materials. A key feature of these materials is that solubilizing thermocleavable alkyl ester side chains are introduced on the polymer backbone. The side chains make the polymer...

  5. Highly efficient tandem polymer solar cells with a photovoltaic response in the visible light range.

    Science.gov (United States)

    Zheng, Zhong; Zhang, Shaoqing; Zhang, Maojie; Zhao, Kang; Ye, Long; Chen, Yu; Yang, Bei; Hou, Jianhui

    2015-02-18

    Highly efficient polymer solar cells with a tandem structure are fabricated by using two excellent photovoltaic polymers and a highly transparent intermediate recombination layer. Power conversion -efficiencies over 10% can be realized with a photovoltaic response within 800 nm. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Carbazole-based copolymers via direct arylation polymerization (DArP) for Suzuki-convergent polymer solar cell performance

    DEFF Research Database (Denmark)

    Gobalasingham, Nemal S.; Ekiz, Seyma; Pankow, Robert M.

    2017-01-01

    Although direct arylation polymerization (DArP) has recently emerged as an alternative to traditional cross-coupling methods like Suzuki polymerization, the evaluation of DArP polymers in practical applications like polymer solar cells (PSCs) is limited. Because even the presence of minute...

  7. Outdoor fate and environmental impact of polymer solar cells through leaching and emission to rainwater and soil

    NARCIS (Netherlands)

    Espinosa, Nieves; Zimmermann, Yannick-Serge; Reis Benatto, Dos Gisele A.; Lenz, Markus; Krebs, Frederik C.

    2016-01-01

    The emission of silver and zinc to the aqueous environment (rain, fog, dew) from polymer solar cells installed outdoors is presented. Studies included pristine solar cells and solar cells subjected to mechanical damage under natural weather conditions in Denmark. We find the emission of silver and

  8. Optoelectronic and Photovoltaic Performances of Pyridine Based Monomer and Polymer Capped ZnO Dye-Sensitized Solar Cells.

    Science.gov (United States)

    Singh, Satbir; Raj, Tilak; Singh, Amarpal; Kaur, Navneet

    2016-06-01

    The present research work describes the comparative analysis and performance characteristics of 4-pyridine based monomer and polymer capped ZnO dye-sensitized solar cells. The N, N-dimethyl-N4-((pyridine-4yl)methylene) propaneamine (4,monomer) and polyamine-4-pyridyl Schiff base (5, polymer) dyes were synthesized through one step condensation reaction between 4-pyridinecarboxaldehyde 1 and N, N-dimethylpropylamine 2/polyamine 3. Products obtained N, N-dimethyl-N4-((pyridine-4yl)methylene)propaneamine (4) and polyamine-4-pyridyl Schiff base (5) were purified and characterized using 1H, 13C NMR, mass, IR and CHN spectroscopy. Both the dyes 4 and 5 were further coated over ZnO nanoparticles and characterized using SEM, DLS and XRD analysis. Absorption profile and emission profile was monitored using fluorescence and UV-Vis absorption spectroscopy. A thick layer of these inbuilt dye linked ZnO nanoparticles of dyes (4) and (5) was pasted on one of the conductive side of ITO glass followed with a liquid electrolyte and counter electrode of the same conductive glass. Polyamine-4-pyridyl Schiff base polymer (5) decorated dye sensitized solar cell has shown better exciting photovoltaic properties in the form of short circuit current density (J(sc) = 6.3 mA/cm2), open circuit photo voltage (V(oc) = 0.7 V), fill factor (FF = 0.736) than monomer decorated dye sensitized solar cell. Polymer dye (5) based ZnO solar cell has shown a maximum solar power to electrical conversion efficiency of 3.25%, which is enhanced by 2.16% in case of monomer dye based ZnO solar cell under AM 1.5 sun illuminations.

  9. Nature of the Binding Interactions between Conjugated Polymer Chains and Fullerenes in Bulk Heterojunction Organic Solar Cells

    KAUST Repository

    Ravva, Mahesh Kumar; Wang, Tonghui; Bredas, Jean-Luc

    2016-01-01

    Blends of π-conjugated polymers and fullerene derivatives are ubiquitous as the active layers of organic solar cells. However, a detailed understanding of the weak noncovalent interactions at the molecular level between the polymer chains

  10. Polymer electronics

    CERN Document Server

    Geoghegan, Mark

    2013-01-01

    Polymer electronics is the science behind many important new developments in technology, such as the flexible electronic display (e-ink) and many new developments in transistor technology. Solar cells, light-emitting diodes, and transistors are all areas where plastic electronics is likely to, or is already having, a serious impact on our daily lives. With polymer transistors and light-emitting diodes now being commercialised, there is a clear need for a pedagogic text thatdiscusses the subject in a clear and concise fashion suitable for senior undergraduate and graduate students. The content

  11. Industrialisation of polymer solar cells. Phase 2: Consolidation

    DEFF Research Database (Denmark)

    Lauritzen, Hanne; Gevorgyan, Suren; Frausig, Jesper

    of the OPV devices – targets that are import both for niche applications and bulk power production. Besides the work dedicated to solving these three key targets, two more activities have been included in the project; a pre-study on OPV solar parks and an evaluation of the business opportunities arising......The present report refers to the project “Industrialization of polymer solar cells – phase 2”. Both the project and this report build directly upon the prior phase 1 where the basic OPV technology, ProcessOne, was transferred to Mekoprint. This second phase focuses on an anchoring......-scale power production. The project represents thus a crossroad, where Mekoprint and DTU gradually differentiate themselves with respect to applications and therefore also their R&D priorities. The key targets of phase 2 relate to production cost, stabilization of the production and operational lifetime...

  12. Electron Barrier Formation at the Organic-Back Contact Interface is the First Step in Thermal Degradation of Polymer Solar Cells

    KAUST Repository

    Sachs-Quintana, I. T.

    2014-03-24

    Long-term stability of polymer solar cells is determined by many factors, one of which is thermal stability. Although many thermal stability studies occur far beyond the operating temperature of a solar cell which is almost always less than 65 °C, thermal degradation is studied at temperatures that the solar cell would encounter in real-world operating conditions. At these temperatures, movement of the polymer and fullerenes, along with adhesion of the polymer to the back contact, creates a barrier for electron extraction. The polymer barrier can be removed and the performance can be restored by peeling off the electrode and depositing a new one. X-ray photoelectron spectroscopy measurements reveal a larger amount of polymer adhered to electrodes peeled from aged devices than electrodes peeled from fresh devices. The degradation caused by hole-transporting polymer adhering to the electrode can be suppressed by using an inverted device where instead of electrons, holes are extracted at the back metal electrode. The problem can be ultimately eliminated by choosing a polymer with a high glass transition temperature. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Improved Efficiency of Polymer Solar Cells by means of Coating Hole Transporting Layer as Double Layer Deposition

    Science.gov (United States)

    Chonsut, T.; Kayunkid, N.; Rahong, S.; Rangkasikorn, A.; Wirunchit, S.; Kaewprajak, A.; Kumnorkaew, P.; Nukeaw, J.

    2017-09-01

    Polymer solar cells is one of the promising technologies that gain tremendous attentions in the field of renewable energy. Optimization of thickness for each layer is an important factor determining the efficiency of the solar cells. In this work, the optimum thickness of Poly(3,4-ethylenedioxythione): poly(styrenesulfonate) (PEDOT:PSS), a famous polymer widely used as hole transporting layer in polymer solar cells, is determined through the analyzing of device’s photovoltaic parameters, e.g. short circuit current density (Jsc), open circuit voltage (Voc), fill factor (FF) as well as power conversion efficiency (PCE). The solar cells were prepared with multilayer of ITO/PEDOT:PSS/PCDTBT:PC70BM/TiOx/Al by rapid convective deposition. In such preparation technique, the thickness of the thin film is controlled by the deposition speed. The faster deposition speed is used, the thicker film is obtained. Furthermore, double layer deposition of PEDOT:PSS was introduced as an approach to improve solar cell efficiency. The results obviously reveal that, with the increase of PEDOT:PSS thickness, the increments of Jsc and FF play the important role to improve PCE from 3.21% to 4.03%. Interestingly, using double layer deposition of PEDOT:PSS shows the ability to enhance the performance of the solar cells to 6.12% under simulated AM 1.5G illumination of 100 mW/cm2.

  14. Incorporation of ester groups into low band-gap diketopyrrolopyrrole containing polymers for solar cell applications

    DEFF Research Database (Denmark)

    Hu, Xiaolian; Zuo, Lijian; Fu, Weifei

    2012-01-01

    To increase the open circuit voltage (VOC) of polymer solar cells based on diketopyrrolopyrrole (DPP) containing polymers, the weakly electron-withdrawing thiophene-3,4-dicarboxylate unit was introduced into the polymer backbone. Two ester group functionalized DPP containing polymers, PCTDPP...... with a random structure and PDCTDPP with a regular structure, were designed and synthesized by the Stille coupling reaction. The resulting copolymers exhibit broad and strong absorption bands from 350 to 1000 nm with low optical band gaps below 1.40 eV. Through cyclic voltammetry measurements, it is found...

  15. Degradation Patterns in Water and Oxygen of an Inverted Polymer Solar Cell

    DEFF Research Database (Denmark)

    Norrman, Kion; Vesterager Madsen, Morten; Gevorgyan, Suren

    2010-01-01

    The spatial distribution of reaction products in multilayer polymer solar cells induced by water and oxygen atmospheres was mapped and used to elucidate the degradation patterns and failure mechanisms in an inverted polymer solar cell. The active material comprised a bulk heterojunction formed...... by poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) sandwiched between a layer of zinc oxide and a layer of poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) that acted as, respectively, electron and hole transporting layers between the active material...... and the two electrodes indium−tin−oxide (ITO) and printed silver. X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (TOF-SIMS) in conjunction with isotopic labeling using H218O and 18O2 enabled detailed information on where and to what extent uptake took place...

  16. Schottky diodes between Bi2S3 nanorods and metal nanoparticles in a polymer matrix as hybrid bulk-heterojunction solar cells

    International Nuclear Information System (INIS)

    Saha, Sudip K.; Pal, Amlan J.

    2015-01-01

    We report the use of metal-semiconductor Schottky junctions in a conjugated polymer matrix as solar cells. The Schottky diodes, which were formed between Bi 2 S 3 nanorods and gold nanoparticles, efficiently dissociated photogenerated excitons. The bulk-heterojunction (BHJ) devices based on such metal-semiconductor Schottky diodes in a polymer matrix therefore acted as an efficient solar cell as compared to the devices based on only the semiconductor nanorods in the polymer matrix or when gold nanoparticles were added separately to the BHJs. In the latter device, gold nanoparticles offered plasmonic enhancement due to an increased cross-section of optical absorption. We report growth and characteristics of the Schottky junctions formed through an intimate contact between Bi 2 S 3 nanorods and gold nanoparticles. We also report fabrication and characterization of BHJ solar cells based on such heterojunctions. We highlight the benefit of using metal-semiconductor Schottky diodes over only inorganic semiconductor nanorods or quantum dots in a polymer matrix in forming hybrid BHJ solar cells

  17. Morphology control of polymer: Fullerene solar cells by nanoparticle self-assembly

    Science.gov (United States)

    Zhang, Wenluan

    During the past two decades, research in the field of polymer based solar cells has attracted great effort due to their simple processing, mechanical flexibility and potential low cost. A standard polymer solar cell is based on the concept of a bulk-heterojunction composed of a conducting polymer as the electron donor and a fullerene derivative as the electron acceptor. Since the exciton lifetime is limited, this places extra emphasis on control of the morphology to obtain improved device performance. In this thesis, detailed characterization and novel morphological design of polymer solar cells was studied, in addition, preliminary efforts to transfer laboratory scale methods to industrialized device fabrication was made. Magnetic contrast neutron reflectivity was used to study the vertical concentration distribution of fullerene nanoparticles within poly(2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2- b]thiophene (pBTTT) thin film. Due to the wide space between the side chains of polymer, these fullerene nanoparticles intercalate between them creating a stable co-crystal structure. Therefore, a high volume fraction of fullerene was needed to obtain optimal device performance as phase separated conductive pathways are required and resulted in a homogeneous fullerene concentration profile through the film. Small angle neutron scattering was used to find there is amorphous fullerene even at lower concentration since it was previously believed that all fullerene formed a co-crystal. These fullerene molecules evolve into approximately 15 nm sized agglomerates at higher concentrations to improve electron transport. Unfortunately, thermal annealing gives these agglomerates mobility to form micrometer sized crystals and reduce the device performance. In standard poly(3-hexylthiophene) (P3HT):[6,6]-phenyl-C61-butyric acid methyl ester (PCMBM) solar cells, a higher concentration of PCBM at the cathode interface is desired due to the band alignment structure. This was

  18. Highly efficient Cu(In,Ga)Se2 solar cells grown on flexible polymer films.

    Science.gov (United States)

    Chirilă, Adrian; Buecheler, Stephan; Pianezzi, Fabian; Bloesch, Patrick; Gretener, Christina; Uhl, Alexander R; Fella, Carolin; Kranz, Lukas; Perrenoud, Julian; Seyrling, Sieghard; Verma, Rajneesh; Nishiwaki, Shiro; Romanyuk, Yaroslav E; Bilger, Gerhard; Tiwari, Ayodhya N

    2011-09-18

    Solar cells based on polycrystalline Cu(In,Ga)Se(2) absorber layers have yielded the highest conversion efficiency among all thin-film technologies, and the use of flexible polymer films as substrates offers several advantages in lowering manufacturing costs. However, given that conversion efficiency is crucial for cost-competitiveness, it is necessary to develop devices on flexible substrates that perform as well as those obtained on rigid substrates. Such comparable performance has not previously been achieved, primarily because polymer films require much lower substrate temperatures during absorber deposition, generally resulting in much lower efficiencies. Here we identify a strong composition gradient in the absorber layer as the main reason for inferior performance and show that, by adjusting it appropriately, very high efficiencies can be obtained. This implies that future manufacturing of highly efficient flexible solar cells could lower the cost of solar electricity and thus become a significant branch of the photovoltaic industry.

  19. A life cycle analysis of polymer solar cell modules prepared using roll-to-roll methods under ambient conditions

    DEFF Research Database (Denmark)

    Espinosa Martinez, Nieves; García-Valverde, Rafael; Urbina, Antonio

    2011-01-01

    A life cycle analysis was performed on a full roll-to-roll coating procedure used for the manufacture of flexible polymer solar cell modules. The process known as ProcessOne employs a polyester substrate with a sputtered layer of the transparent conductor indium-tin-oxide (ITO). The ITO film was ...... photovoltaic technologies. The results showed that an Energy Pay-Back Time (EPBT) of 2.02 years can be achieved for an organic solar module of 2% efficiency, which could be reduced to 1.35 years, if the efficiency was 3%.......A life cycle analysis was performed on a full roll-to-roll coating procedure used for the manufacture of flexible polymer solar cell modules. The process known as ProcessOne employs a polyester substrate with a sputtered layer of the transparent conductor indium-tin-oxide (ITO). The ITO film...... printed. Finally the polymer solar modules were encapsulated, using a polyester barrier material. All operations except the application of ITO were carried out under ambient conditions. The life cycle analysis delivered a material inventory of the full process for a module production...

  20. Tailoring polymer films for solar-collection use, phase 1

    Science.gov (United States)

    Fouser, J. P.

    1983-09-01

    Several types of Polyacrylonitrile (PAN) polymers in film form that could meet the performance criteria with respect to thermal, ultraviolet, and tensile strength stability for use as exterior glazing in a low cost solar collector or for the internal heat exchange component were evaluated. Seven film specimens were tested. It is concluded that acrylonitrile homopolymer films when properly cast and processed have good mechanical properties, have long uv stability, and are usable for prolonged periods at 300 F.

  1. Polymer solar cells based on poly(3-hexylthiophene) and fullerene: Pyrene acceptor systems

    Energy Technology Data Exchange (ETDEWEB)

    Cominetti, Alessandra; Pellegrino, Andrea; Longo, Luca [Research Center for Renewable Energies and Environment, Istituto Donegani, Eni S.p.A, Via Fauser 4, IT-28100 Novara (Italy); Po, Riccardo, E-mail: riccardo.po@eni.com [Research Center for Renewable Energies and Environment, Istituto Donegani, Eni S.p.A, Via Fauser 4, IT-28100 Novara (Italy); Tacca, Alessandra; Carbonera, Chiara; Salvalaggio, Mario [Research Center for Renewable Energies and Environment, Istituto Donegani, Eni S.p.A, Via Fauser 4, IT-28100 Novara (Italy); Baldrighi, Michele; Meille, Stefano Valdo [Dipartimento di Chimica, Materiali e Ingegneria Chimica “G. Natta”, Politecnico di Milano, via Mancinelli 7, IT-20131 Milano (Italy)

    2015-06-01

    The replacement of widely used fullerene derivatives, e.g. [6,6]-phenyl-C61-butyric acid methyl ester (PCBM), with unfunctionalized C60 and C70 is an effective approach to reduce the costs of organic photovoltaics. However, solubility issues of these compounds have always represented an obstacle to their use. In this study, bulk-heterojunction solar cells made of poly(3-hexylthiophene) donor polymer, C60 or C70 acceptors and a pyrene derivative (1-pyrenebutiric acid butyl ester) are reported. Butyl 1-pyrenebutirate limits the aggregation of fullerenes and improves the active layer morphology, plausibly due to the formation of pyrene-fullerene complexes which, in the case of pyrene-C70, were also obtained in a crystalline form. Maximum power conversion efficiencies of 1.54% and 2.50% have been obtained using, respectively, C60 or C70 as acceptor. Quantum mechanical modeling provides additional insight into the formation of plausible supermolecular structures via π-π interactions and on the redox behaviour of pyrene-fullerene systems. - Highlights: • Pyrene derivatives favour the dispersion of unfunctionalized fullerenes. • Polymer solar cells with pyrene: C60 adduct as acceptor have efficiencies of 1.54%. • When C60 is substituted with C70 the efficiency is increased to 2.50%. • DFT calculations support the plausibility of the formation of pyrene: fullerene adducts. • The use of unfunctionalized fullerenes may decrease the costs of polymer solar cells.

  2. Enhanced regeneration of degraded polymer solar cells by thermal annealing

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Pankaj, E-mail: pankaj@mail.nplindia.ernet.in [CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012 (India); Centre for Organic Electronics, Physics, University of Newcastle, Callaghan NSW-2308 (Australia); Bilen, Chhinder; Zhou, Xiaojing; Belcher, Warwick J.; Dastoor, Paul C., E-mail: Paul.Dastoor@newcastle.edu.au [Centre for Organic Electronics, Physics, University of Newcastle, Callaghan NSW-2308 (Australia); Feron, Krishna [Centre for Organic Electronics, Physics, University of Newcastle, Callaghan NSW-2308 (Australia); CSIRO Energy Technology, P. O. Box 330, Newcastle NSW 2300 (Australia)

    2014-05-12

    The degradation and thermal regeneration of poly(3-hexylethiophene) (P3HT):[6,6]-phenyl-C{sub 61}-butyric acid methyl ester (PCBM) and P3HT:indene-C{sub 60} bisadduct (ICBA) polymer solar cells, with Ca/Al and Ca/Ag cathodes and indium tin oxide/poly(ethylene-dioxythiophene):polystyrene sulfonate anode have been investigated. Degradation occurs via a combination of three primary pathways: (1) cathodic oxidation, (2) active layer phase segregation, and (3) anodic diffusion. Fully degraded devices were subjected to thermal annealing under inert atmosphere. Degraded solar cells possessing Ca/Ag electrodes were observed to regenerate their performance, whereas solar cells having Ca/Al electrodes exhibited no significant regeneration of device characteristics after thermal annealing. Moreover, the solar cells with a P3HT:ICBA active layer exhibited enhanced regeneration compared to P3HT:PCBM active layer devices as a result of reduced changes to the active layer morphology. Devices combining a Ca/Ag cathode and P3HT:ICBA active layer demonstrated ∼50% performance restoration over several degradation/regeneration cycles.

  3. Enhanced regeneration of degraded polymer solar cells by thermal annealing

    International Nuclear Information System (INIS)

    Kumar, Pankaj; Bilen, Chhinder; Zhou, Xiaojing; Belcher, Warwick J.; Dastoor, Paul C.; Feron, Krishna

    2014-01-01

    The degradation and thermal regeneration of poly(3-hexylethiophene) (P3HT):[6,6]-phenyl-C 61 -butyric acid methyl ester (PCBM) and P3HT:indene-C 60 bisadduct (ICBA) polymer solar cells, with Ca/Al and Ca/Ag cathodes and indium tin oxide/poly(ethylene-dioxythiophene):polystyrene sulfonate anode have been investigated. Degradation occurs via a combination of three primary pathways: (1) cathodic oxidation, (2) active layer phase segregation, and (3) anodic diffusion. Fully degraded devices were subjected to thermal annealing under inert atmosphere. Degraded solar cells possessing Ca/Ag electrodes were observed to regenerate their performance, whereas solar cells having Ca/Al electrodes exhibited no significant regeneration of device characteristics after thermal annealing. Moreover, the solar cells with a P3HT:ICBA active layer exhibited enhanced regeneration compared to P3HT:PCBM active layer devices as a result of reduced changes to the active layer morphology. Devices combining a Ca/Ag cathode and P3HT:ICBA active layer demonstrated ∼50% performance restoration over several degradation/regeneration cycles

  4. Structure–property relationships of oligothiophene–isoindigo polymers for efficient bulk-heterojunction solar cells

    KAUST Repository

    Ma, Zaifei

    2014-01-01

    A series of alternating oligothiophene (nT)-isoindigo (I) copolymers (PnTI) were synthesized to investigate the influence of the oligothiophene block length on the photovoltaic (PV) properties of PnTI:PCBM bulk-heterojunction blends. Our study indicates that the number of thiophene rings (n) in the repeating unit alters both polymer crystallinity and polymer-fullerene interfacial energetics, which results in a decreasing open-circuit voltage (Voc) of the solar cells with increasing n. The short-circuit current density (Jsc) of P1TI:PCBM devices is limited by the absence of a significant driving force for electron transfer. Instead, blends based on P5TI and P6TI feature large polymer domains, which limit charge generation and thus Jsc. The best PV performance with a power conversion efficiency of up to 6.9% was achieved with devices based on P3TI, where a combination of a favorable morphology and an optimal interfacial energy level offset ensures efficient exciton separation and charge generation. The structure-property relationship demonstrated in this work would be a valuable guideline for the design of high performance polymers with small energy losses during the charge generation process, allowing for the fabrication of efficient solar cells that combine a minimal loss in Voc with a high Jsc. © 2014 The Royal Society of Chemistry.

  5. Optoelectronic processes at polymer-fullerene heterojunctions : charge transfer states in organic solar cells

    NARCIS (Netherlands)

    Di Nuzzo, D.

    2012-01-01

    Polymer photovoltaic cells currently achieve power conversion efficiencies (PCE) above 10% on lab scale. To compete with the efficiencies above 20% of inorganic solar cells, understanding and elimination of all the loss channels is necessary. This thesis investigates charge generation and

  6. Comparison of selenophene and thienothiophene incorporation into pentacyclic lactam-based conjugated polymers for organic solar cells

    KAUST Repository

    Kroon, Renee; Melianas, Armantas; Zhuang, Wenliu; Bergqvist, Jonas; Diaz De Zerio Mendaza, Amaia; Steckler, Timothy T.; Yu, Liyang; Bradley, Siobhan J.; Musumeci, Chiara; Gedefaw, Desta; Nann, Thomas; Amassian, Aram; Mü ller, Christian; Inganä s, Olle; Andersson, Mats R.

    2015-01-01

    In this work, we compare the effect of incorporating selenophene versus thienothiophene spacers into pentacyclic lactam-based conjugated polymers for organic solar cells. The two cyclic lactam-based copolymers were obtained via a new synthetic method for the lactam moiety. Selenophene incorporation results in a broader and red-shifted optical absorption while retaining a deep highest occupied molecular orbital level, whereas thienothienophene incorporation results in a blue-shifted optical absorption. Additionally, grazing-incidence wide angle X-ray scattering data indicates edge- and face-on solid state order for the selenophene-based polymer as compared to the thienothiophene-based polymer, which orders predominantly edge-on with respect to the substrate. In polymer:PCBM bulk heterojunction solar cells both materials show a similar open-circuit voltage of ∼0.80-0.84 V, however the selenophene-based polymer displays a higher fill factor of ∼0.70 vs. ∼0.65. This is due to the partial face-on backbone orientation of the selenophene-based polymer, leading to a higher hole mobility, as confirmed by single-carrier diode measurements, and a concomitantly higher fill factor. Combined with improved spectral coverage of the selenophene-based polymer, as confirmed by quantum efficiency experiments, it offers a larger short-circuit current density of ∼12 mA cm. Despite the relatively low molecular weight of both materials, a very robust power conversion efficiency ∼7% is achieved for the selenophene-based polymer, while the thienothiophene-based polymer demonstrates only a moderate maximum PCE of ∼5.5%. Hence, the favorable effects of selenophene incorporation on the photovoltaic performance of pentacyclic lactam-based conjugated polymers are clearly demonstrated.

  7. Comparison of selenophene and thienothiophene incorporation into pentacyclic lactam-based conjugated polymers for organic solar cells

    KAUST Repository

    Kroon, Renee

    2015-09-08

    In this work, we compare the effect of incorporating selenophene versus thienothiophene spacers into pentacyclic lactam-based conjugated polymers for organic solar cells. The two cyclic lactam-based copolymers were obtained via a new synthetic method for the lactam moiety. Selenophene incorporation results in a broader and red-shifted optical absorption while retaining a deep highest occupied molecular orbital level, whereas thienothienophene incorporation results in a blue-shifted optical absorption. Additionally, grazing-incidence wide angle X-ray scattering data indicates edge- and face-on solid state order for the selenophene-based polymer as compared to the thienothiophene-based polymer, which orders predominantly edge-on with respect to the substrate. In polymer:PCBM bulk heterojunction solar cells both materials show a similar open-circuit voltage of ∼0.80-0.84 V, however the selenophene-based polymer displays a higher fill factor of ∼0.70 vs. ∼0.65. This is due to the partial face-on backbone orientation of the selenophene-based polymer, leading to a higher hole mobility, as confirmed by single-carrier diode measurements, and a concomitantly higher fill factor. Combined with improved spectral coverage of the selenophene-based polymer, as confirmed by quantum efficiency experiments, it offers a larger short-circuit current density of ∼12 mA cm. Despite the relatively low molecular weight of both materials, a very robust power conversion efficiency ∼7% is achieved for the selenophene-based polymer, while the thienothiophene-based polymer demonstrates only a moderate maximum PCE of ∼5.5%. Hence, the favorable effects of selenophene incorporation on the photovoltaic performance of pentacyclic lactam-based conjugated polymers are clearly demonstrated.

  8. Effect of electrode geometry on photovoltaic performance of polymer solar cells

    International Nuclear Information System (INIS)

    Li, Meng; Ma, Heng; Liu, Hairui; Wu, Dongge; Niu, Heying; Cai, Wenjun

    2014-01-01

    This paper investigates the impact of electrode geometry on the performance of polymer solar cells (PSCs). The negative electrodes with equal area (0.09 cm 2 ) but different shape (round, oval, square and triangular) are evaluated with respect to short-circuit current density, open-circuit voltage, fill factor and power conversion efficiency of PSCs. The results show that the device with round electrodes gives the best photovoltaic performance; in contrast, the device with triangular electrodes reveals the worst properties. A maximum of almost a 19% increase in power conversion efficiency with a round electrode is obtained in the devices compared with that of the triangular electrode. To conclude, the electrode boundary curvature has a significant impact on the performance of PSCs. The larger curvature, i.e. sharper electrodes edges, perhaps has a negative effect on exciton separation and carrier transport in photoelectric conversion processes. (paper)

  9. Effect of hybrid carbon nanotubes-bimetallic composite particles on the performance of polymer solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sun-Young [Department of Material Processing, Korea Institute of Materials Science, Changwon 641-831 (Korea); Division of Applied Chemical Engineering, Department of Polymer Engineering, Pukyong National University, Busan 608-739 (Korea); Kim, Whi-Dong; Kim, Soo H. [Department of Nanosystem and Nanoprocess Engineering, Pusan National University, 30 Jangjeon-dong, Geumjeong-gu, Busan 609-735 (Korea); Kim, Do-Geun; Kim, Jong-Kuk; Jeong, Yong-Soo; Kang, Jae-Wook [Department of Material Processing, Korea Institute of Materials Science, Changwon 641-831 (Korea); Kim, Joo Hyun [Division of Applied Chemical Engineering, Department of Polymer Engineering, Pukyong National University, Busan 608-739 (Korea); Lee, Jae Keun [School of Mechanical Engineering, Pusan National University, 30 Jangjeon-dong, Geumjeong-gu, Busan 609-735 (Korea)

    2010-05-15

    Hybrid carbon nanotubes-bimetallic composite nanoparticles with sea urchin-like structures (SU-CNTs) were introduced to bulk heterojunction polymer-fullerene solar cells to improve their performance. The SU-CNTs were composed of multi-walled CNTs, which were grown radially over the entire surface of the bimetallic nanoparticles composed of Ni and Al. SU-CNTs with a precisely controlled length of {proportional_to}200{+-}40 nm were dispersed homogenously in a polymer active layer. Compared with a pristine device (i.e., without SU-CNTs), the SU-CNTs-doped organic photovoltaic (OPV) cells showed an improved short-circuit current density and power conversion efficiency from 7.5 to 9.5 mA/cm{sup 2} and 2.1{+-}0.1% to 2.2{+-}0.2% (max. 2.5%), respectively. The specially designed SU-CNTs have strong potential as an effective exciton dissociation medium in the polymer active layer to enhance the performance of organic solar cells. (author)

  10. The effects of opening areas on solar chimney performance

    Science.gov (United States)

    Ling, L. S.; Rahman, M. M.; Chu, C. M.; Misaran, M. S. bin; Tamiri, F. M.

    2017-07-01

    To enhance natural ventilation at day time, solar chimney is one of the suitable options for topical country like Malaysia. Solar chimney creates air flow due to stack effect caused by temperature difference between ambient and inside wall. In the solar chimney, solar energy is harvested by the inner wall that cause temperature rise compare to ambient. Therefore, the efficiency of the solar chimney depends on the availability of solar energy as well as the solar intensity. In addition, it is very hard to get good ventilation at night time by using a solar chimney. To overcome this problem one of the suitable valid option is to integrate solar chimney with turbine ventilator. A new type of solar chimney is designed and fluid flow analyzed with the computational fluid dynamics (CFD) software. The aim of CFD and theoretical study are to investigate the effect of opening areas on modified solar chimney performance. The inlet and outlet area of solar chimney are varied from 0.0224m2 to 0.6m2 and 0.1m2 to 0.14m2 respectively based on the changes of inclination angle and gap between inner and outer wall. In the CFD study the constant heat flux is considered as 500W/m2. CFD result shows that there is no significant relation between opening areas and the air flow rate through solar chimney but the ratio between inlet and outlet is significant on flow performance. If the area ratio between inlet and outlet are equal to two or larger, the performance of the solar chimney is better than the solar chimney with ratio lesser than two. The solar chimney performance does not effect if the area ratio between inlet and outlet varies from 1 to 2. This result will be useful for design and verification of actual solar chimney performance.

  11. Thermally reactive Thiazolo[5,4-d]thiazole based copolymers for high photochemical stability in polymer solar cells

    DEFF Research Database (Denmark)

    Helgesen, Martin; Vesterager Madsen, Morten; Andreasen, Birgitta

    2011-01-01

    New thermally reactive copolymers based on dithienylthiazolo[5,4-d]thiazole (DTZ) and silolodithiophene (SDT) have been synthesized and explored in bulk heterojunction solar cells as mixtures with [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). In thin films the polymers had optical band gaps...... in the range of 1.64-1.80 eV. For solubility the polymers have incorporated alkyl groups on the SDT unit and thermally removable ester groups on the DTZ unit that can be eliminated around 200 °C for improved photochemical stability in thin films. The bulkiness of the alkyl chains on the SDT unit proved...... to be very significant in terms of photovoltaic performance of the polymer:PCBM solar cells. Polymers based on 4,4-dihexyl-4H-silolo[3,2-b:4,5-b′]dithiophene reached power conversion efficiencies (PCEs) up to 1.45% but changing the alkyl groups to more bulky ethylhexyl chains reduced the PCE to 1.17%. More...

  12. Fluorescent carbon quantum dots synthesized by chemical vapor deposition: An alternative candidate for electron acceptor in polymer solar cells

    Science.gov (United States)

    Cui, Bo; Yan, Lingpeng; Gu, Huimin; Yang, Yongzhen; Liu, Xuguang; Ma, Chang-Qi; Chen, Yongkang; Jia, Husheng

    2018-01-01

    Excitation-wavelength-dependent blue-greenish fluorescent carbon quantum dots (CQDs) with graphite structure were synthesized by chemical vapor deposition (CVD) method. In comparison with those synthesized by hydrothermal method (named H-CQDs), C-CQDs have less hydrophilic terminal groups, showing good solubility in common organic solvents. Furthermore, these synthesized C-CQDs show a low LUMO energy level (LUMO = -3.84 eV), which is close to that of phenyl-C61-butyric acid methyl ester (PC61BM, LUMO = -4.01 eV), the most widely used electron acceptor in polymer solar cells. Photoluminescence quenching of the poly(3-hexylthiophene-2,5-diyl):C-CQDs blended film (P3HT:C-CQDs) indicated that a photo-induced charge transfer between P3HT and C-CQDs occurs in such a composite film. Bulk heterojunction solar cells using C-CQDs as electron acceptors or doping materials were fabricated and tested. High fill factors were achieved for these C-CQDs based polymer solar cells, demonstrating that CQDs synthesized by CVD could be alternative to the fullerene derivatives for applying in polymer solar cells.

  13. Scattering-layer-induced energy storage function in polymer-based quasi-solid-state dye-sensitized solar cells.

    Science.gov (United States)

    Zhang, Xi; Jiang, Hongrui

    2015-03-09

    Photo-self-charging cells (PSCs) are compact devices with dual functions of photoelectric conversion and energy storage. By introducing a scattering layer in polymer-based quasi-solid-state dye-sensitized solar cells, two-electrode PSCs with highly compact structure were obtained. The charge storage function stems from the formed ion channel network in the scattering layer/polymer electrolyte system. Both the photoelectric conversion and the energy storage functions are integrated in only the photoelectrode of such PSCs. This design of PSC could continuously output power as a solar cell with considerable efficiency after being photo-charged. Such PSCs could be applied in highly-compact mini power devices.

  14. Efficient decommissioning and recycling of polymer solar cells: justification for use of silver

    DEFF Research Database (Denmark)

    Søndergaard, Roar R.; Espinosa Martinez, Nieves; Jørgensen, Mikkel

    2014-01-01

    Large 100 m long polymer solar cell modules were installed in a solar park using fast installation (>100 m min−1) and operated for 5 months ensuring a meaningful energy return factor (ERF > 1) followed by fast de-installation (>200 m min−1) and end-of-life management. Focus was on recovery...... of silver that is an essential component of the two electrodes. We employed life cycle analysis as a tool to evaluate the most efficient silver extraction method as well as the impact on the overall life cycle of the solar cells. Silver from the electrodes could be recovered as silver chloride in 95% yield...

  15. Printed metal back electrodes for R2R fabricated polymer solar cells studied using the LBIC technique

    DEFF Research Database (Denmark)

    Krebs, Frederik C; Søndergaard, Roar; Jørgensen, Mikkel

    2011-01-01

    The performance of printable metal back electrodes for polymer solar cells were investigated using light beam induced current (LBIC) mapping of the final solar cell device after preparation to identify the causes of poor performance. Three different types of silver based printable metal inks were...

  16. Prospects of solar energy in the coastal areas of Nigeria

    Energy Technology Data Exchange (ETDEWEB)

    Emetere, Moses E., E-mail: moses.emetere@covenantuniversity.edu.ng; Akinyemi, Marvel L., E-mail: samuel.sanni@covenantuniversity.edu.ng [Department of Physics, Covenant University Canaan land, P.M.B 1023, Ota (Nigeria)

    2016-02-01

    The climatic factors in the coastal areas are cogent in planning a stable and functional solar farm. The experiment performed in this study entails a day-to-day solar radiation pattern in coastal areas. The results show that the solar radiation pattern in coastal region portends danger to the performance of solar photovoltaic (PV) module and its lifecycle. The efficiency of the PV module was tested in the harmattan where dust is a major hindrance. The results were related to meteorological parameters which influences the solar radiation over an area. The solar radiation pattern in coastal areas was traced to the solar sectional shading theory which was summarized and explained.

  17. Solution processable organic polymers and small molecules for bulk-heterojunction solar cells: A review

    International Nuclear Information System (INIS)

    Sharma, G. D.

    2011-01-01

    Solution processed bulk heterojunction (BHJ) organic solar cells (OSCs) have gained wide interest in past few years and are established as one of the leading next generation photovoltaic technologies for low cost power production. Power conversion efficiencies up to 6% and 6.5% have been reported in the literature for single layer and tandem solar cells, respectively using conjugated polymers. A recent record efficiency about 8.13% with active area of 1.13 cm 2 has been reported. However Solution processable small molecules have been widely applied for photovoltaic (PV) devices in recent years because they show strong absorption properties, and they can be easily purified and deposited onto flexible substrates at low cost. Introducing different donor and acceptor groups to construct donor--acceptor (D--A) structure small molecules has proved to be an efficient way to improve the properties of organic solar cells (OSCs). The power conversion efficiency about 4.4 % has been reported for OSCs based on the small molecules. This review deals with the recent progress of solution processable D--A structure small molecules and discusses the key factors affecting the properties of OSCs based on D--A structure small molecules: sunlight absorption, charge transport and the energy level of the molecules.

  18. Thermotropic and Thermochromic Polymer Based Materials for Adaptive Solar Control

    Directory of Open Access Journals (Sweden)

    Olaf Mühling

    2010-12-01

    Full Text Available The aim of this review is to present the actual status of development in adaptive solar control by use of thermotropic and organic thermochromic materials. Such materials are suitable for application in smart windows. In detail polymer blends, hydrogels, resins, and thermoplastic films with a reversible temperature-dependent switching behavior are described. A comparative evaluation of the concepts for these energy efficient materials is given as well. Furthermore, the change of strategy from ordinary shadow systems to intrinsic solar energy reflection materials based on phase transition components and a first remark about their realization is reported. Own current results concerning extruded films and high thermally stable casting resins with thermotropic properties make a significant contribution to this field.

  19. Thermal Annealing Reduces Geminate Recombination in TQ1:N2200 All-Polymer Solar Cells

    KAUST Repository

    Karuthedath, Safakath; Melianas, Armantas; Kan, Zhipeng; Pranculis, Vytenis; Wohlfahrt, Markus; Khan, Jafar Iqbal; Gorenflot, Julien; Xia, Yuxin; Inganä s, Olle; Gulbinas, Vidmantas; Kemerink, Martijn; Laquai, Fré dé ric

    2018-01-01

    -geminate recombination competing with charge extraction, causing low FFs, our results demonstrate that the donor/acceptor interface in all-polymer solar cells can be favourably altered to enhance charge separation, without compromising charge transport and extraction.

  20. Asymmetric Alkyl Side-Chain Engineering of Naphthalene Diimide-Based n-Type Polymers for Efficient All-Polymer Solar Cells.

    Science.gov (United States)

    Jia, Tao; Li, Zhenye; Ying, Lei; Jia, Jianchao; Fan, Baobing; Zhong, Wenkai; Pan, Feilong; He, Penghui; Chen, Junwu; Huang, Fei; Cao, Yong

    2018-02-13

    The design and synthesis of three n-type conjugated polymers based on a naphthalene diimide-thiophene skeleton are presented. The control polymer, PNDI-2HD, has two identical 2-hexyldecyl side chains, and the other polymers have different alkyl side chains; PNDI-EHDT has a 2-ethylhexyl and a 2-decyltetradecyl side chain, and PNDI-BOOD has a 2-butyloctyl and a 2-octyldodecyl side chain. These copolymers with different alkyl side chains exhibit higher melting and crystallization temperatures, and stronger aggregation in solution, than the control copolymer PNDI-2HD that has the same side chain. Polymer solar cells based on the electron-donating copolymer PTB7-Th and these novel copolymers exhibit nearly the same open-circuit voltage of 0.77 V. Devices based on the copolymer PNDI-BOOD with different side chains have a power-conversion efficiency of up to 6.89%, which is much higher than the 4.30% obtained with the symmetric PNDI-2HD. This improvement can be attributed to the improved charge-carrier mobility and the formation of favorable film morphology. These observations suggest that the molecular design strategy of incorporating different side chains can provide a new and promising approach to developing n-type conjugated polymers. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. A facile route to inverted polymer solar cells using a precursor based zinc oxide electron transport layer

    NARCIS (Netherlands)

    Bruyn, P. de; Moet, D.J.D.; Blom, P.W.M.

    2010-01-01

    Inverted polymer:fullerene solar cells with ZnO and MoO3 transport layers are demonstrated. ZnO films are prepared through spin casting of a zinc acetylacetonate hydrate solution, followed by low temperature annealing under ambient conditions. The performance of solar cells with an inverted

  2. A facile route to inverted polymer solar cells using a precursor based zinc oxide electron transport layer

    NARCIS (Netherlands)

    de Bruyn, P.; Moet, D. J. D.; Blom, P. W. M.

    Inverted polymer: fullerene solar cells with ZnO and MoO(3) transport layers are demonstrated. ZnO films are prepared through spin casting of a zinc acetylacetonate hydrate solution, followed by low temperature annealing under ambient conditions. The performance of solar cells with an inverted

  3. Structure–property relationships of oligothiophene–isoindigo polymers for efficient bulk-heterojunction solar cells

    DEFF Research Database (Denmark)

    Ma, Zaifei; Sun, Wenjun; Himmelberger, Scott

    2014-01-01

    interfacial energy level offset ensures efficient exciton separation and charge generation. The structure–property relationship demonstrated in this work would be a valuable guideline for the design of high performance polymers with small energy losses during the charge generation process, allowing......) in the repeating unit alters both polymer crystallinity and polymer–fullerene interfacial energetics, which results in a decreasing open-circuit voltage (Voc) of the solar cells with increasing n. The short-circuit current density (Jsc) of P1TI:PCBM devices is limited by the absence of a significant driving force...

  4. Computational approach to the study of morphological properties of polymer/fullerene blends in photovoltaics

    Science.gov (United States)

    Gaitho, Francis M.; Mola, Genene T.; Pellicane, Giuseppe

    2018-02-01

    Organic solar cells have the ability to transform solar energy efficiently and have a promising energy balance. Producing these cells is economical and makes use of methods of printing using inks built on solvents that are well-matched with a variety of cheap materials like flexible plastic or paper. The primary materials used to manufacture organic solar cells include carbon-based semiconductors, which are good light absorbers and efficient charge generators. In this article, we review previous research of interest based on morphology of polymer blends used in bulk heterojunction (BHJ) solar cells and introduce their basic principles. We further review computational models used in the analysis of surface behavior of polymer blends in BHJ as well as the trends in the field of polymer surface science as applied to BHJ photovoltaics. We also give in brief, the opportunities and challenges in the area of polymer blends on BHJ organic solar cells.

  5. Manufacture, integration and demonstration of polymer solar cells in a lamp for the Lighting Africa initiative

    DEFF Research Database (Denmark)

    Krebs, Frederik C; Damgaard Nielsen, Torben; Fyenbo, Jan

    2010-01-01

    Semitransparent flexible polymer solar cells were manufactured in a full roll-to-roll process under ambient conditions. After encapsulation a silver based circuit was printed onto the back side of the polymer solar cell module followed by sheeting and application of discrete components and vias...... two adjacent corners are joined via button contacts whereby the device can stand on a horizontal surface and the circuit is closed such that the battery discharges through the LEDs that illuminate the surface in front of the lamp. Several different lamps were prepared using the same solar cell...... mm. A hole with a ring was punched in one corner to enable mechanical fixation or tying. The lamp has two states. In the charging state it has a completely flat outline and will charge the battery when illuminated from either side while the front side illumination is preferable. When used as a lamp...

  6. Comparative study of polymer and liquid electrolytes in quantum dot sensitized solar cells

    Science.gov (United States)

    Poudyal, Uma; Wang, Wenyong

    We present the study of CdS/CdSe quantum dot sensitized solar cells (QDSSCs) in which Zn2SnO4\\ nanowires on the conductive glass are used as photoanode. The CdS/CdSe quantum dots (QDs) are deposited in the Zn2SnO4 photoanode by the Successive Ionic Layer Adsorption and Reaction (SILAR) method. CdS is first deposited on the nanowires after which it is further coated with 5 cycles of CdSe QDs. Finally, ZnS is coated on the QDs as a passivation layer. The QD sensitized photoanode are then used to assemble a solar device with the polymer and liquid electrolytes. The Incident Photon to Current Efficiency (IPCE) spectra are obtained for the CdS/CdSe coated nanowires. Further, a stability test of these devices is performed, using the polymer and liquid electrolytes, which provides insight to determine the better working electrolyte in the CdS/CdSe QDSSCs. Department of Energy.

  7. Stability and Degradation of Polymer Solar cells

    DEFF Research Database (Denmark)

    Norrman, Kion

    The current state-of-the-art allows for roll-to-roll manufacture of polymer solar cells in high volume with stability and efficiency sufficient to grant success in low-energy applications. However, further improvement is needed for the successful application of the devices in real life applications....... This is obtained by detailed knowledge of the degradation mechanisms. Methods to compare and standardize device stability are urgently needed. Methodologies to study failure mechanism that are based on physical processes (e.g. morphological changes) are well-established. However, methodologies to study chemical...... degradation mechanisms are currently scarce. An overview of known degradation mechanisms will be presented and discussed in relation to state-of-the-art methodologies to study failure mechanisms with focus on chemical degradation....

  8. Improved light trapping in polymer solar cells by light diffusion ink

    International Nuclear Information System (INIS)

    Chao, Yu-Chiang; Lin, Yun-Hsuan; Lin, Ching-Yi; Li, Husan-De; Zhan, Fu-Min; Huang, Yu-Zhang

    2014-01-01

    Light trapping is an important issue for solar cells to increase optical path length and optical absorption. In this work, a light trapping structure was realized for polymer solar cells by utilizing light diffusion ink which is conventionally used in display backlighting. The light scattering particles in the ink cause the deflection of light, and the number of these particles coated on a glass substrate determines the light transmission and scattering characteristics. It was observed that the short-circuit current density did not decrease with decreasing transmittance, but it increased to a highest value at an optimized transmittance. This behaviour is attributed to the trapping of scattered light in the photoactive layer. (paper)

  9. Efficient polymer solar cells on opaque substrates with a Laminated PEDOT : PSS top electrode

    NARCIS (Netherlands)

    Gupta, D.; Wienk, M.M.; Janssen, R.A.J.

    2013-01-01

    Solution processed polymer:fullerene solar cells on opaque substrates have been fabricated in conventional and inverted device configurations. Opaque substrates, such as insulated steel and metal covered glass, require a transparent conducting top electrode. We demonstrate that a high conducting

  10. From Morphology to Interfaces to Tandem Geometries: Enhancing the Performance of Perovskite/Polymer Solar Cells

    Science.gov (United States)

    Russell, Thomas

    We have taken a new approach to develop mesoporous lead iodide scaffolds, using the nucleation and growth of lead iodide crystallites in a wet film. A simple time-dependent growth control enabled the manipulation of the mesoporous lead iodide layer quality in a continuous manner. The morphology of lead iodide is shown to influence the subsequent crystallization of methyamoniumleadiodide film by using angle-dependent grazing incidence x-ray scattering. The morphology of lead iodide film can be fine-tuned, and thus the methyamoniumleadiodide film quality can be effectively controlled, leading to an optimization of the perovskite active layer. Using this strategy, perovskite solar cells with inverted PHJ structure showed a PCE of 15.7 per cent with little hysteresis. Interface engineering is critical for achieving efficient solar cells, yet a comprehensive understanding of the interface between metal electrode and electron transport layer (ETL) is lacking. A significant power conversion efficiency (PCE) improvement of fullerene/perovskite planar heterojunction solar cells was achieved by inserting a fulleropyrrolidine interlayer between the silver electrode and electron transport layer. The interlayer was found to enhance recombination resistance, increases electron extraction rate and prolongs free carrier lifetime. We also uncovered a facile solution-based fabrication of high performance tandem perovskite/polymer solar cells where the front sub-cell consists of perovskite and the back sub-cell is a polymer-based layer. A record maximum PCE of 15.96 per cent was achieved, demonstrating the synergy between the perovskite and semiconducting polymers. This design balances the absorption of the perovskite and the polymer, eliminates the adverse impact of thermal annealing during perovskite fabrication, and affords devices with no hysteresis. This work was performed in collaboration with Y. Liu, Z. Page, D. Venkataraman and T. Emrick (UMASS), F. Liu (LBNL) and Q. Hu and R

  11. A novel self-assembly with zinc porphyrin coordination polymer for enhanced photocurrent conversion in supramolecular solar cells

    International Nuclear Information System (INIS)

    Cao, Jing; Liu, Jia-Cheng; Deng, Wen-Ting; Li, Ren-Zhi; Jin, Neng-Zhi

    2013-01-01

    Graphical abstract: An innovative type of self-assembly based on acetohydrazide zinc porphyrin coordination polymer has been prepared in supramolecular solar cells. - Highlights: • A novel assembly with acetohydrazide porphyrin coordination polymer. • The assembly based on porphyrin is prepared as parallel sample. • Coordination polymer-based assembly shows enhanced photoelectronic behavior. • A series of different organic acid ligands as anchoring groups are prepared. - Abstract: In this work, a novel acetohydrazide zinc porphyrin-based coordination polymer (CP)-isonicotinic acid self-assembly by metal-ligand axial coordination to modify the nano-structured TiO 2 electrode surface has been investigated in photoelectrochemical device. Compared to the assembly based on corresponding zinc porphyrin combined with isonicotinic acid by metal-ligand axial coordination, CP-isonicotinic acid assembly exhibits a significantly enhanced photoelectronic behavior. In addition, a series of different organic acid ligands were prepared to probe the impact of their structures on the photoelectronic performances of their corresponding assemblies-sensitized cells. This study affords a novel type of self-assembly to functionalize the nanostructured TiO 2 electrode surface in supramolecular solar cells

  12. Hybrid thin-film solar cells comprising mesoporous titanium dioxide and conjugated polymers; Hybride Duennschicht-Solarzellen aus mesoporoesem Titandioxid und konjugierten Polymeren

    Energy Technology Data Exchange (ETDEWEB)

    Schattauer, Sylvia

    2010-12-01

    The main objective of this thesis is to study the active components and their interactions in so called organic hybrid solar cells. These consist of a thin inorganic titanium dioxide layer, combined with a polymer layer. In general, the efficiency of these hybrid solar cells is determined by the light absorption in the donor polymer, the dissociation of excitons at the heterojunction between TiO{sub 2} and polymer, as well as the generation and extraction of free charge carriers. To optimize the solar cells, the physical interactions between the materials are modified and the influences of various preparation parameters are systematically investigated. Among others, important findings regarding the optimal use of materials and preparation conditions as well as detailed investigations of fundamental factors such as film morphology and polymer infiltration are presented in more detail. First, a variety of titanium dioxide layer were produced, from which a selection for use in hybrid solar cells was made. The obtained films show differences in surface structure, film morphology and crystallinity, depending on the way how the TiO{sub 2} layer has been prepared. All these properties of the TiO{sub 2} films may strongly affect the performance of the hybrid solar cells, by influencing e.g. the exciton diffusion length, the efficiency of exciton dissociation at the hybrid interface, and the carrier transport properties. Detailed investigations were made for mesoporous TiO{sub 2} layer following a new nanoparticle synthesis route, which allows to produce crystalline particles during the synthesis. As donor component, conjugated polymers, either derivatives of cyclohexylamino-poly(p-phenylene vinylene) (PPV) or a thiophene are used. The preparation routine also includes a thermal treatment of the TiO{sub 2} layers, revealing a temperature-dependent change in morphology, but not of the crystal structure. The effects on the solar cell properties have been documented and

  13. Regulating Molecular Aggregations of Polymers via Ternary Copolymerization Strategy for Efficient Solar Cells.

    Science.gov (United States)

    Wang, Qian; Wang, Yingying; Zheng, Wei; Shahid, Bilal; Qiu, Meng; Wang, Di; Zhu, Dangqiang; Yang, Renqiang

    2017-09-20

    For many high-performance photovoltaic materials in polymer solar cells (PSCs), the active layers usually need to be spin-coated at high temperature due to the strong intermolecular aggregation of donor polymers, which is unfavorable in device repeatability and large-scale PSC printing. In this work, we adopted a ternary copolymerization strategy to regulate polymer solubility and molecular aggregation. A series of D-A 1 -D-A 2 random polymers based on different acceptors, strong electron-withdrawing unit ester substituted thieno[3,4-b]thiophene (TT-E), and highly planar dithiazole linked TT-E (DTzTT) were constructed to realize the regulation of molecular aggregation and simplification of device fabrication. The results showed that as the relative proportion of TT-E segment in the backbone increased, the absorption evidently red-shifted with a gradually decreased aggregation in solution, eventually leading to the active layers that can be fabricated at low temperature. Furthermore, due to the excellent phase separation and low recombination, the optimized solar cells based on the terpolymer P1 containing 30% of TT-E segment exhibit high power conversion efficiency (PCE) of 9.09% with a significantly enhanced fill factor up to 72.86%. Encouragingly, the photovoltaic performance is insensitive to the fabrication temperature of the active layer, and it still could maintain high PCE of 8.82%, even at room temperature. This work not only develops the highly efficient photovoltaic materials for low temperature processed PSCs through ternary copolymerization strategy but also preliminarily constructs the relationship between aggregation and photovoltaic performance.

  14. A round robin study of polymer solar cells and small modules across China

    DEFF Research Database (Denmark)

    Larsen-Olsen, Thue Trofod; Gevorgyan, Suren; Søndergaard, Roar R.

    2013-01-01

    not employ indium or vacuum and were prepared using only printing and coating techniques on flexible substrates. The devices were studied in their flexible form and thus approach the vision of what the polymer solar cell is. The main purpose of the work was to establish and chart geographic and cultural...

  15. Bis(thienothiophenyl) diketopyrrolopyrrole-based conjugated polymers with various branched alkyl side chains and their applications in thin-film transistors and polymer solar cells.

    Science.gov (United States)

    Shin, Jicheol; Park, Gi Eun; Lee, Dae Hee; Um, Hyun Ah; Lee, Tae Wan; Cho, Min Ju; Choi, Dong Hoon

    2015-02-11

    New thienothiophene-flanked diketopyrrolopyrrole and thiophene-containing π-extended conjugated polymers with various branched alkyl side-chains were successfully synthesized. 2-Octyldodecyl, 2-decyltetradecyl, 2-tetradecylhexadecyl, 2-hexadecyloctadecyl, and 2-octadecyldocosyl groups were selected as the side-chain moieties and were anchored to the N-positions of the thienothiophene-flanked diketopyrrolopyrrole unit. All five polymers were found to be soluble owing to the bulkiness of the side chains. The thin-film transistor based on the 2-tetradecylhexadecyl-substituted polymer showed the highest hole mobility of 1.92 cm2 V(-1) s(-1) due to it having the smallest π-π stacking distance between the polymer chains, which was determined by grazing incidence X-ray diffraction. Bulk heterojunction polymer solar cells incorporating [6,6]-phenyl-C71-butyric acid methyl ester as the n-type molecule and the additive 1,8-diiodooctane (1 vol %) were also constructed from the synthesized polymers without thermal annealing; the device containing the 2-octyldodecyl-substituted polymer exhibited the highest power conversion efficiency of 5.8%. Although all the polymers showed similar physical properties, their device performance was clearly influenced by the sizes of the branched alkyl side-chain groups.

  16. Hybrid tandem solar cells with depleted-heterojunction quantum dot and polymer bulk heterojunction subcells

    KAUST Repository

    Kim, Taesoo

    2015-10-01

    We investigate hybrid tandem solar cells that rely on the combination of solution-processed depleted-heterojunction colloidal quantum dot (CQD) and bulk heterojunction polymer:fullerene subcells. The hybrid tandem solar cell is monolithically integrated and electrically connected in series with a suitable p-n recombination layer that includes metal oxides and a conjugated polyelectrolyte. We discuss the monolithic integration of the subcells, taking into account solvent interactions with underlayers and associated constraints on the tandem architecture, and show that an adequate device configuration consists of a low bandgap CQD bottom cell and a high bandgap polymer:fullerene top cell. Once we optimize the recombination layer and individual subcells, the hybrid tandem device reaches a VOC of 1.3V, approaching the sum of the individual subcell voltages. An impressive fill factor of 70% is achieved, further confirming that the subcells are efficiently connected via an appropriate recombination layer. © 2015.

  17. An inter-laboratory stability study of roll-to-roll coated flexible polymer solar modules

    DEFF Research Database (Denmark)

    Gevorgyan, Suren; Medford, Andrew James; Bundgaard, Eva

    2011-01-01

    A large number of flexible polymer solar modules comprising 16 serially connected individual cells was prepared at the experimental workshop at Risø DTU. The photoactive layer was prepared from several varieties of P3HT (Merck, Plextronics, BASF and Risø DTU) and two varieties of ZnO (nanoparticu......A large number of flexible polymer solar modules comprising 16 serially connected individual cells was prepared at the experimental workshop at Risø DTU. The photoactive layer was prepared from several varieties of P3HT (Merck, Plextronics, BASF and Risø DTU) and two varieties of Zn......O (nanoparticulate, thin film) were employed as electron transport layers. The devices were all tested at Risø DTU and the functional devices were subjected to an inter-laboratory study involving the performance and the stability of modules over time in the dark, under light soaking and outdoor conditions. 24...

  18. All-Solution-Processed, Ambient Method for ITO-Free, Roll-Coated Tandem Polymer Solar Cells using Solution- Processed Metal Films

    DEFF Research Database (Denmark)

    Angmo, Dechan; Dam, Henrik Friis; Andersen, Thomas Rieks

    2014-01-01

    A solution-processed silver film is employed in the processing of top-illuminated indium-tin-oxide (ITO)-free polymer solar cells in single- and double-junction (tandem) structures. The nontransparent silver film fully covers the substrate and serves as the bottom electrode whereas a PEDOT...... in terms of surface morphological and topographical properties and to ITO in terms of flexibility. The slot–die coated Ag film demonstrates extremely low roughness (a root-meansquare roughness of 3 nm was measured over 240_320 mm2 area), is highly conductive (

  19. Difluorobenzothiadiazole based two-dimensional conjugated polymers with triphenylamine substituted moieties as pendants for bulk heterojunction solar cells

    Directory of Open Access Journals (Sweden)

    W. H. Lee

    2017-11-01

    Full Text Available Three donor/acceptor (D/A-type two-dimensional polythiophenes (PTs; PBTFA13, PBTFA12, PBTFA11 featuring difluorobenzothiadiazole (DFBT derivatives as the conjugated (acceptor units in the polymer backbone and tertbutyl–substituted triphenylamine (tTPA-containing moieties as (donor pendants have been synthesized and characterized. These PTs exhibited good thermal stabilities, broad absorption spectra, and narrow optical band gaps. The cutoff wavelength of the UV–Vis absorption band was red-shifted upon increasing the content of the DFBT units in the PTs. Bulk heterojunction solar cells having an active layer comprising blends of the PTs and fullerene derivatives [6,6] phenyl-C61/71-butyric acid methyl ester (PC61BM/PC71BM were fabricated; their photovoltaic performance was strongly dependent on the content of the DFBT derivative in the PT. Incorporating a suitable content of the DFBT derivative in the polymer backbone enhanced the solar absorption ability and conjugation length of the PTs. The photovoltaic properties of the PBTFA13-based solar cells were superior to those of the PBTFA11- and PBTFA12-based solar cells.

  20. Thermocleavable pi-Conjugated polymers. Synthesis and photovoltaic applications

    Energy Technology Data Exchange (ETDEWEB)

    Helgesen, M

    2009-10-15

    Polymer solar cells (plastic solar cells) have seen remarkable improvements in recent years where power conversion efficiencies of up to 6% have been reported for small area devices. However in terms of stability polymer solar cells degrade during illumination and in the dark leading to operational lifetimes that are generally very poor. There has been a recent interest in the operational stability of devices and more importantly on the understanding of why devices and materials break down. This has lead to the discovery of a new class of materials that enable exceptionally long device lifetimes (>20000 hours). This Ph.D. thesis describes the synthesis, characterization and photovoltaic applications of these novel polymer materials. A key feature of these materials is that solubilizing thermocleavable alkyl ester side chains are introduced on the polymer backbone. The side chains make the polymer soluble in organic solvents and allow film formation via solution processing. Subsequently they can be removed by heating in a post-processing step forming a harder insoluble material with enhanced stability. These new thermocleavable materials can potentially offer higher chromophore density, higher level processing and improved stability in a solar cell device. Methods are developed for the incorporation of alkoxy chains and thermocleavable ester groups on the benzothiadiazole and the thiophene units in an attempt to evolve the PDTBT system to a more advanced level. The synthesis and photovoltaic applications of the PDTTP and PDTBT systems is described. (author)

  1. A UV-prepared linear polymer electrolyte membrane for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Imperiyka, M., E-mail: imperiyka@gmail.com [Faculty of Arts and Sciences, Kufra Campus, University of Benghazi, Al Kufrah (Libya); Ahmad, A.; Hanifah, S.A. [School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Polymer Research Center, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Bella, F. [Center for Space Human Robotics @Polito, Istituto Italiano di Tecnologia, Corso Trento 21, 10129 Torino (Italy); Department of Applied Science and Technology – DISAT, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy)

    2014-10-01

    The effects of LiClO{sub 4} and LiFS{sub 3}SO{sub 3} on poly(glycidyl methacrylate)-based solid polymer electrolyte and its photoelectrochemical performance in a dye sensitized solar cell consisting of FTO/TiO{sub 2}–dye/P(GMA)–LiClO{sub 4}–EC/Pt were investigated. The electrochemical stability of films was studied by cyclic voltammetry (CV). The highest ionic conductivities obtained were 4.2×10{sup −5} and 3.7×10{sup −6} S cm{sup −1} for the film containing 30 wt% LiClO{sub 4} and 25 wt% LiCF{sub 3}SO{sub 3}, respectively. The polymer electrolytes showed electrochemical stability windows up to 3 V and 2.8 V for LiClO{sub 4} and LiCF{sub 3}SO{sub 3}, respectively. The assembled dye-sensitized solar cell showed a sunlight conversion efficiency of 0.679% (J{sub sc}=3 mA cm{sup −2}, V{sub oc}=0.48 V and FF=0.47), under light intensity of 100 mW cm{sup −2}.

  2. The effect of anneal, solar irradiation and humidity on the adhesion/cohesion properties of P3HT:PCBM based inverted polymer solar cells

    KAUST Repository

    Dupont, Stephanie R.; Voroshazi, Eszter; Heremans, Paul; Dauskardt, Reinhold H.

    2012-01-01

    We use a thin-film adhesion technique that enables us to precisely measure the energy required to separate adjacent layers in OPV cells. We demonstrate the presence of weak interfaces in prototypical inverted polymer solar cells, either prepared

  3. Analysis of diverse direct arylation polymerization (DArP) conditions toward the efficient synthesis of polymers converging with stille polymers in organic solar cells

    DEFF Research Database (Denmark)

    Livi, Francesco; Gobalasingham, Nemal S.; Thompson, Barry C.

    2016-01-01

    Despite the emergence of direct arylation polymerization (DArP) as an alternative method to traditional cross-coupling routes like Stille polymerization, the exploration of DArP polymers in practical applications like polymer solar cells (PSCs) is limited. DArP polymers tend to have a reputation...... for being marginally inferior to Stille counterparts due to the increased presence of defects that result from unwanted side reactions in direct arylation, such as unselective C-H bond activation and homocoupling. We report ten DArP protocols across the three major classes of DArP to generate poly[(2,5-bis...... was synthesized in superheated THF with Cs2CO3, neodecanoic acid, and P(o-anisyl)3, it generated polymers of exceptional quality that performed comparably to Stille counterparts in both roll coated ITO-free and spin-coated ITO devices....

  4. High-throughput roll-to-roll X-ray characterization of polymer solar cell active layers

    DEFF Research Database (Denmark)

    Böttiger, Arvid P.L.; Jørgensen, Mikkel; Menzel, Andreas

    2012-01-01

    Synchrotron-based X-rays were used to probe active materials for polymer solar cells on flexible polyester foil. The active material was coated onto a flexible 130 micron thick polyester foil using roll-to-roll differentially pumped slot-die coating and presented variation in composition, thickness...

  5. An isoindigo containing donor-acceptor polymer: synthesis and photovoltaic properties of all-solution-processed ITO- and vacuum-free large area roll-coated single junction and tandem solar cells

    DEFF Research Database (Denmark)

    Brandt, Rasmus Guldbæk; Yue, Wei; Andersen, Thomas Rieks

    2015-01-01

    In this work, the design, synthesis, and characterization of a donor-acceptor polymer from dithieno[3,2-b:2',3'-d]pyrrole and isoindigo (i-ID) are presented. The synthesized polymer has been applied in large area ITO-free organic photovoltaics, both as spin coated and roll coated devices; the lat......In this work, the design, synthesis, and characterization of a donor-acceptor polymer from dithieno[3,2-b:2',3'-d]pyrrole and isoindigo (i-ID) are presented. The synthesized polymer has been applied in large area ITO-free organic photovoltaics, both as spin coated and roll coated devices...

  6. Fullerene derivative-doped zinc oxide nanofilm as the cathode of inverted polymer solar cells with low-bandgap polymer (PTB7-Th) for high performance.

    Science.gov (United States)

    Liao, Sih-Hao; Jhuo, Hong-Jyun; Cheng, Yu-Shan; Chen, Show-An

    2013-09-14

    Modification of a ZnO cathode by doping it with a hydroxyl-containing derivative - giving a ZnO-C60 cathode - provides a fullerene-derivative-rich surface and enhanced electron conduction. Inverted polymer solar cells with the ZnO-C60 cathode display markedly improved power conversion efficiency compared to those with a pristine ZnO cathode, especially when the active layer includes the low-bandgap polymer PTB7-Th. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Evaluating polymer degradation with complex mixtures using a simplified surface area method.

    Science.gov (United States)

    Steele, Kandace M; Pelham, Todd; Phalen, Robert N

    2017-09-01

    Chemical-resistant gloves, designed to protect workers from chemical hazards, are made from a variety of polymer materials such as plastic, rubber, and synthetic rubber. One material does not provide protection against all chemicals, thus proper polymer selection is critical. Standardized testing, such as chemical degradation tests, are used to aid in the selection process. The current methods of degradation ratings based on changes in weight or tensile properties can be expensive and data often do not exist for complex chemical mixtures. There are hundreds of thousands of chemical products on the market that do not have chemical resistance data for polymer selection. The method described in this study provides an inexpensive alternative to gravimetric analysis. This method uses surface area change to evaluate degradation of a polymer material. Degradation tests for 5 polymer types against 50 complex mixtures were conducted using both gravimetric and surface area methods. The percent change data were compared between the two methods. The resulting regression line was y = 0.48x + 0.019, in units of percent, and the Pearson correlation coefficient was r = 0.9537 (p ≤ 0.05), which indicated a strong correlation between percent weight change and percent surface area change. On average, the percent change for surface area was about half that of the weight change. Using this information, an equivalent rating system was developed for determining the chemical degradation of polymer gloves using surface area.

  8. Polymer electronics a flexible technology

    CERN Document Server

    Technology, Rapra

    2009-01-01

    The worldwide market for polymer electronic products has been estimated to be worth up to £15 billion by 2015 and the opportunity for new markets could be as high as £125 billion by 2025.'The rapid development of polymer electronics has revealed the possibility for transforming the electronics market by offering lighter, flexible and more cost effective alternatives to conventional materials and products. With applications ranging from printed, flexible conductors and novel semiconductor components to intelligent labels and large area displays and solar panels, products that were previously un

  9. Influence of electron transport on the efficiency of polymer-based solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Kuxhaus, Viktor; Jaiser, Frank; Neher, Dieter [Institute of Physics and Astronomy, University Potsdam (Germany); Voges, Frank [Merck KGaA, Darmstadt (Germany)

    2010-07-01

    Recently, we showed that the mobility of electrons in polymer-based solar cells has a large influence on the overall performance of such devices. Here, we investigate the correlation between electron mobility and charge generation efficiency in organic bilayer solar cells for a series of electron transporting materials (ETMs) with comparable HOMO and LUMO levels. The electron mobility was measured by transient electroluminescence. Here, a thin M3EH-PPV was used as a sensing layer. The interface between M3EH-PPV and ETM acted as a recombination zone of electrons transported through the ETM layer and holes that are blocked at the interface. Therefore, the electron mobility can easily be determined from the onset of M3EH-PPV emission which is spectrally well separated from the ETM emission. To determine the charge generation efficiency, the different ETMs were combined in bilayer solar cell with PFB as donator.

  10. Realization of large area flexible fullerene - conjugated polymer photocells: a route to plastic solar cells

    NARCIS (Netherlands)

    Brabec, C.J.; Padinger, F.; Hummelen, J.C.; Janssen, R.A.J.; Sariciftci, N.S.

    1999-01-01

    Bulk donor — acceptor heterojunctions between conjugated polymers and fullerenes have been utilized for photovoltaic devices with quantum efficiencies of around 1%. These devices are based on the photoinduced, ultrafast electron transfer between non degenerate ground state conjugated polymers and

  11. Chalcogenophene comonomer comparison in small band gap diketopyrrolopyrrole-based conjugated polymers for high-performing field-effect transistors and organic solar cells

    KAUST Repository

    Ashraf, Raja Shahid

    2015-01-28

    The design, synthesis, and characterization of a series of diketopyrrolopyrrole-based copolymers with different chalcogenophene comonomers (thiophene, selenophene, and tellurophene) for use in field-effect transistors and organic photovoltaic devices are reported. The effect of the heteroatom substitution on the optical, electrochemical, and photovoltaic properties and charge carrier mobilities of these polymers is discussed. The results indicate that by increasing the size of the chalcogen atom (S < Se < Te), polymer band gaps are narrowed mainly due to LUMO energy level stabilization. In addition, the larger heteroatomic size also increases intermolecular heteroatom-heteroatom interactions facilitating the formation of polymer aggregates leading to enhanced field-effect mobilities of 1.6 cm2/(V s). Bulk heterojunction solar cells based on the chalcogenophene polymer series blended with fullerene derivatives show good photovoltaic properties, with power conversion efficiencies ranging from 7.1-8.8%. A high photoresponse in the near-infrared (NIR) region with excellent photocurrents above 20 mA cm-2 was achieved for all polymers, making these highly efficient low band gap polymers promising candidates for use in tandem solar cells. (Graph Presented).

  12. Response of Solar Irradiance to Sunspot-area Variations

    Science.gov (United States)

    Dudok de Wit, T.; Kopp, G.; Shapiro, A.; Witzke, V.; Kretzschmar, M.

    2018-02-01

    One of the important open questions in solar irradiance studies is whether long-term variability (i.e., on timescales of years and beyond) can be reconstructed by means of models that describe short-term variability (i.e., days) using solar proxies as inputs. Preminger & Walton showed that the relationship between spectral solar irradiance and proxies of magnetic-flux emergence, such as the daily sunspot area, can be described in the framework of linear system theory by means of the impulse response. We significantly refine that empirical model by removing spurious solar-rotational effects and by including an additional term that captures long-term variations. Our results show that long-term variability cannot be reconstructed from the short-term response of the spectral irradiance, which questions the extension of solar proxy models to these timescales. In addition, we find that the solar response is nonlinear in a way that cannot be corrected simply by applying a rescaling to a sunspot area.

  13. A new strategy to engineer polymer bulk heterojunction solar cells with thick active layers via self-assembly of the tertiary columnar phase.

    Science.gov (United States)

    Li, Hongfei; Yang, Zhenhua; Pan, Cheng; Jiang, Naisheng; Satija, Sushil K; Xu, Di; Gersappe, Dilip; Nam, Chang-Yong; Rafailovich, Miriam H

    2017-08-17

    We report that the addition of a non-photoactive tertiary polymer phase in the binary bulk heterojunction (BHJ) polymer solar cell leads to a self-assembled columnar nanostructure, enhancing the charge mobilities and photovoltaic efficiency with surprisingly increased optimal active blend thicknesses over 300 nm, 3-4 times larger than that of the binary counterpart. Using the prototypical poly(3-hexylthiophene) (P3HT):fullerene blend as a model BHJ system, we discover that the inert poly(methyl methacrylate) (PMMA) added in the binary BHJ blend self-assembles into vertical columns, which not only template the phase segregation of electron acceptor fullerenes but also induce the out-of-plane rotation of the edge-on-orientated crystalline P3HT phase. Using complementary interrogation methods including neutron reflectivity, X-ray scattering, atomic force microscopy, transmission electron microscopy, and molecular dynamics simulations, we show that the enhanced charge transport originates from the more randomized molecular stacking of the P3HT phase and the spontaneous segregation of fullerenes at the P3HT/PMMA interface, driven by the high surface tension between the two polymeric components. The results demonstrate a potential method for increasing the thicknesses of high-performance polymer BHJ solar cells with improved photovoltaic efficiency, alleviating the burden of stringently controlling the ultrathin blend thickness during the roll-to-roll-type large-area manufacturing environment.

  14. Conducting polymers based counter electrodes for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Veerender, P., E-mail: veeru1009@gmail.com, E-mail: veeru1009@gmail.com; Saxena, Vibha, E-mail: veeru1009@gmail.com, E-mail: veeru1009@gmail.com; Gusain, Abhay, E-mail: veeru1009@gmail.com, E-mail: veeru1009@gmail.com; Jha, P., E-mail: veeru1009@gmail.com, E-mail: veeru1009@gmail.com; Koiry, S. P., E-mail: veeru1009@gmail.com, E-mail: veeru1009@gmail.com; Chauhan, A. K., E-mail: veeru1009@gmail.com, E-mail: veeru1009@gmail.com; Aswal, D. K., E-mail: veeru1009@gmail.com, E-mail: veeru1009@gmail.com; Gupta, S. K., E-mail: veeru1009@gmail.com, E-mail: veeru1009@gmail.com [Technical Physics Division, Bhabha Atomic Research Centre, Mumbai - 400085 (India)

    2014-04-24

    Conducting polymer films were synthesized and employed as an alternative to expensive platinum counter electrodes for dye-sensitized solar cells. poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) thin films were spin-coated and polypyrrole films were electrochemically deposited via cyclic voltammetry method on ITO substrates. The morphology of the films were imaged by SEM and AFM. These films show good catalytic activity towards triiodide reduction as compared to Pt/FTO electrodes. Finally the photovoltaic performance of DSSC fabricated using N3 dye were compared with PT/FTO, PEDOT/ITO, and e-PPy counter electrodes.

  15. The Influence of Conjugated Polymer Side Chain Manipulation on the Efficiency and Stability of Polymer Solar Cells

    DEFF Research Database (Denmark)

    Heckler, Ilona Maria; Kesters, Jurgen; Defour, Maxime

    2016-01-01

    ]thiazole (TzTz) acceptor units, were selected toward effective device scalability by roll-coating. The influence of the partial exchange (5% or 10%) of the solubilizing 2-hexyldecyloxy by alternative 2-phenylethoxy groups on efficiency and stability was investigated. With an increasing 2-phenylethoxy ratio...... studies under constant sun irradiance showed a diminishing initial degradation rate for the BT-based devices upon including the alternative side chains, whereas the (more stable) TzTz-based devices degraded at a faster rate from the start of the experiment upon partly exchanging the side chains. No clear......The stability of polymer solar cells (PSCs) can be influenced by the introduction of particular moieties on the conjugated polymer side chains. In this study, two series of donor-acceptor copolymers, based on bis(thienyl)dialkoxybenzene donor and benzo[c][1,2,5]thiadiazole (BT) or thiazolo[5,4-d...

  16. Non-Fullerene Polymer Solar Cells Based on Alkylthio and Fluorine Substituted 2D-Conjugated Polymers Reach 9.5% Efficiency.

    Science.gov (United States)

    Bin, Haijun; Zhang, Zhi-Guo; Gao, Liang; Chen, Shanshan; Zhong, Lian; Xue, Lingwei; Yang, Changduk; Li, Yongfang

    2016-04-06

    Non-fullerene polymer solar cells (PSCs) with solution-processable n-type organic semiconductor (n-OS) as acceptor have seen rapid progress recently owing to the synthesis of new low bandgap n-OS, such as ITIC. To further increase power conversion efficiency (PCE) of the devices, it is of a great challenge to develop suitable polymer donor material that matches well with the low bandgap n-OS acceptors thus providing complementary absorption and nanoscaled blend morphology, as well as suppressed recombination and minimized energy loss. To address this challenge, we synthesized three medium bandgap 2D-conjugated bithienyl-benzodithiophene-alt-fluorobenzotriazole copolymers J52, J60, and J61 for the application as donor in the PSCs with low bandgap n-OS ITIC as acceptor. The three polymers were designed with branched alkyl (J52), branched alkylthio (J60), and linear alkylthio (J61) substituent on the thiophene conjugated side chain of the benzodithiophene (BDT) units for studying effect of the substituents on the photovoltaic performance of the polymers. The alkylthio side chain, red-shifted absorption down-shifted the highest occupied molecular orbital (HOMO) level and improved crystallinity of the 2D conjugated polymers. With linear alkylthio side chain, the tailored polymer J61 exhibits an enhanced JSC of 17.43 mA/cm(2), a high VOC of 0.89 V, and a PCE of 9.53% in the best non-fullerene PSCs with the polymer as donor and ITIC as acceptor. To the best of our knowledge, the PCE of 9.53% is one of the highest values reported in literature to date for the non-fullerene PSCs. The results indicate that J61 is a promising medium bandgap polymer donor in non-fullerene PSCs.

  17. Ambient Layer-by-Layer ZnO Assembly for Highly Efficient Polymer Bulk Heterojunction Solar Cells

    KAUST Repository

    Eita, Mohamed Samir; El Labban, Abdulrahman; Cruciani, Federico; Usman, Anwar; Beaujuge, Pierre; Mohammed, Omar F.

    2015-01-01

    The use of metal oxide interlayers in polymer solar cells has great potential because metal oxides are abundant, thermally stable, and can be used in fl exible devices. Here, a layer-by-layer (LbL) protocol is reported as a facile, room

  18. Solar Cels With Reduced Contact Areas

    Science.gov (United States)

    Daud, T.; Crotty, G. T.; Kachare, A. H.; Lewis, J. T.

    1987-01-01

    Efficiency of silicon solar cells increased about 20 percent using smaller metal-contact area on silicon at front and back of each cell. Reduction in contact area reduces surface recombination velocity under contact and thus reduces reverse saturation current and increases opencircuit voltage..

  19. The use of poly(vinylpyridine-co-acrylonitrile) in polymer electrolytes for quasi-solid dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Li, Minyu; Feng, Shujing; Fang, Shibi; Xiao, Xurui; Li, Xueping; Zhou, Xiaowen; Lin, Yuan

    2007-01-01

    Poly(vinylpyridine-co-acrylonitrile) (P(VP-co-AN)) was used to form polymer electrolytes for dye-sensitized solar cells (DSSCs). The effects of P(VP-co-AN) on the photovoltaic performances of DSSCs have been investigated with nonaqueous electrolytes containing alkali-iodide and iodine. It was found that the effect of P(VP-co-AN) on V oc closely related to its amount in the electrolyte. Lower amount of P(VP-co-AN) was benefit for the construction of a solar cell containing P(VP-co-AN) with higher energy conversion efficiency. Chemically crosslinking solidification with backbone polymer P(VP-co-AN) amount of 3% fabricated quasi-solid DSSCs with 10% increased conversion efficiencies with relative to that of the initial liquid DSSCs

  20. Electron Barrier Formation at the Organic-Back Contact Interface is the First Step in Thermal Degradation of Polymer Solar Cells

    KAUST Repository

    Sachs-Quintana, I. T.; Heumü ller, Thomas; Mateker, William R.; Orozco, Darian E.; Cheacharoen, Rongrong; Sweetnam, Sean; Brabec, Christoph J.; McGehee, Michael D.

    2014-01-01

    Long-term stability of polymer solar cells is determined by many factors, one of which is thermal stability. Although many thermal stability studies occur far beyond the operating temperature of a solar cell which is almost always less than 65 °C

  1. Morphology and interdiffusion control to improve adhesion and cohesion properties in inverted polymer solar cells

    KAUST Repository

    Dupont, Stephanie R.; Voroshazi, Eszter; Nordlund, Dennis; Dauskardt, Reinhold H.

    2015-01-01

    © 2014 Elsevier B.V. All rights reserved. The role of pre-electrode deposition annealing on the morphology and the fracture properties of polymer solar cells is discussed. We found an increase in adhesion at the weak P3HT:PCBM/PEDOT:PSS interface

  2. The Role of Electron Affinity in Determining Whether Fullerenes Catalyze or Inhibit Photooxidation of Polymers for Solar Cells

    KAUST Repository

    Hoke, Eric T.

    2012-05-21

    Understanding the stability and degradation mechanisms of organic solar materials is critically important to achieving long device lifetimes. Here, an investigation of the photodegradation of polymer:fullerene blend fi lms exposed to ambient conditions for a variety of polymer and fullerene derivative combinations is presented. Despite the wide range in polymer stabilities to photodegradation, the rate of irreversible polymer photobleaching in blend fi lms is found to consistently and dramatically increase with decreasing electron affi nity of the fullerene derivative. Furthermore, blends containing fullerenes with the smallest electron affi nities photobleached at a faster rate than fi lms of the pure polymer. These observations can be explained by a mechanism where both the polymer and fullerene donate photogenerated electrons to diatomic oxygen to form the superoxide radical anion which degrades the polymer. © 2012 WILEY-VCH Verlag GmbH & Co.

  3. Recombination in polymer:Fullerene solar cells with open-circuit voltages approaching and exceeding 1.0 V

    KAUST Repository

    Hoke, Eric T.

    2012-09-14

    Polymer:fullerene solar cells are demonstrated with power conversion efficiencies over 7% with blends of PBDTTPD and PC 61 BM. These devices achieve open-circuit voltages ( V oc ) of 0.945 V and internal quantum efficiencies of 88%, making them an ideal candidate for the large bandgap junction in tandem solar cells. V oc \\'s above 1.0 V are obtained when the polymer is blended with multiadduct fullerenes; however, the photocurrent and fill factor are greatly reduced. In PBDTTPD blends with multiadduct fullerene ICBA, fullerene emission is observed in the photoluminescence and electroluminescence spectra, indicating that excitons are recombining on ICBA. Voltage-dependent, steady state and time-resolved photoluminescence measurements indicate that energy transfer occurs from PBDTTPD to ICBA and that back hole transfer from ICBA to PBDTTPD is inefficient. By analyzing the absorption and emission spectra from fullerene and charge transfer excitons, we estimate a driving free energy of -0.14 ± 0.06 eV is required for efficient hole transfer. These results suggest that the driving force for hole transfer may be too small for efficient current generation in polymer:fullerene solar cells with V oc values above 1.0 V and that non-fullerene acceptor materials with large optical gaps ( > 1.7 eV) may be required to achieve both near unity internal quantum efficiencies and values of V oc exceeding 1.0 V. © 2013 WILEY-VCH Verlag GmbH and Co.

  4. Recombination in polymer:Fullerene solar cells with open-circuit voltages approaching and exceeding 1.0 V

    KAUST Repository

    Hoke, Eric T.; Vandewal, Koen; Bartelt, Jonathan A.; Mateker, William R.; Douglas, Jessica D.; Noriega, Rodrigo; Graham, Kenneth; Frechet, Jean; Salleo, Alberto; McGehee, Michael D.

    2012-01-01

    Polymer:fullerene solar cells are demonstrated with power conversion efficiencies over 7% with blends of PBDTTPD and PC 61 BM. These devices achieve open-circuit voltages ( V oc ) of 0.945 V and internal quantum efficiencies of 88%, making them an ideal candidate for the large bandgap junction in tandem solar cells. V oc 's above 1.0 V are obtained when the polymer is blended with multiadduct fullerenes; however, the photocurrent and fill factor are greatly reduced. In PBDTTPD blends with multiadduct fullerene ICBA, fullerene emission is observed in the photoluminescence and electroluminescence spectra, indicating that excitons are recombining on ICBA. Voltage-dependent, steady state and time-resolved photoluminescence measurements indicate that energy transfer occurs from PBDTTPD to ICBA and that back hole transfer from ICBA to PBDTTPD is inefficient. By analyzing the absorption and emission spectra from fullerene and charge transfer excitons, we estimate a driving free energy of -0.14 ± 0.06 eV is required for efficient hole transfer. These results suggest that the driving force for hole transfer may be too small for efficient current generation in polymer:fullerene solar cells with V oc values above 1.0 V and that non-fullerene acceptor materials with large optical gaps ( > 1.7 eV) may be required to achieve both near unity internal quantum efficiencies and values of V oc exceeding 1.0 V. © 2013 WILEY-VCH Verlag GmbH and Co.

  5. PECASE: Multi-Spectral Photon Detection in Polymer/Nanoparticle Composites-Toward IR Photodectors and Solar Cells Applicable to Unmanned Vehicles

    Science.gov (United States)

    2016-03-31

    on Organic Solar Cells The maximum amount of surfactant that can be included in the AIR-MAPLE target and still yield photovoltaic function was...in Polymer/Nanoparticle Composites-Toward IR Photodectors and Solar Cells Applicable to Sb. GRANT NUMBER Unmanned Vehicles N00014-1 0-1-0481 Sc...photodetectors and solar cells deposited by RIR-MAPLE, and developing a simulation tool for optoelectronic device performance that accounts for RIR

  6. International PolyScene-workshop on polymer electronics. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    Topics of this proceedings are: RFID: tagging the opportunities and threats for polymer electronics; polymeric semiconductor development for thin film transistors; hole and electron transport in semiconducting polymers for organic electronics; a circuit based strategy for the development of polymer TFTS; towards a technology for all-polymer electronics; electrically doped organic semiconductors: physics and device applications; organic solar cells and photodetectors; organic solar cells: trends, challenges and positioning in the field of thin-film solar cell technologies; technical production of plastic solar cells: an overview; optical and ESR studies on polymer/fullerene composites for solar cells; targets for OTFT development for active matrix displays; reflective electroactive display (READ) technology and opportunities in printed devices; OFETs, OLEDs, OLDs: organic devices for future polytronic systems; design of active polymer materials and their application in electronic devices; blue emitting ALQ3 for full color organic displays; technologies for the reel-to-reel production of flexible polytronic systems; new developments in polyester films for flexible electronics; printed conductive polymer structures; non-lithographic patterning of polymer transistors; laser structuring- a method for polymer and metal patterning; direct printing of polymer transistor circuits; molecular design of interphases - the key for the development of reliable polymer based products; wafer level packaging - encapsulation of micro structures.

  7. Bulk Heterojunction Solar Cells Based on Blends of Conjugated Polymers with II–VI and IV–VI Inorganic Semiconductor Quantum Dots

    Directory of Open Access Journals (Sweden)

    Ryan Kisslinger

    2017-01-01

    Full Text Available Bulk heterojunction solar cells based on blends of quantum dots and conjugated polymers are a promising configuration for obtaining high-efficiency, cheaply fabricated solution-processed photovoltaic devices. Such devices are of significant interest as they have the potential to leverage the advantages of both types of materials, such as the high mobility, band gap tunability and possibility of multiple exciton generation in quantum dots together with the high mechanical flexibility and large molar extinction coefficient of conjugated polymers. Despite these advantages, the power conversion efficiency (PCE of these hybrid devices has remained relatively low at around 6%, well behind that of all-organic or all-inorganic solar cells. This is attributed to major challenges that still need to be overcome before conjugated polymer–quantum dot blends can be considered viable for commercial application, such as controlling the film morphology and interfacial structure to ensure efficient charge transfer and charge transport. In this work, we present our findings with respect to the recent development of bulk heterojunctions made from conjugated polymer–quantum dot blends, list the ongoing strategies being attempted to improve performance, and highlight the key areas of research that need to be pursued to further develop this technology.

  8. Bulk Heterojunction Solar Cell Devices Prepared with Composites of Conjugated Polymer and Zinc Oxide Nanorods

    Directory of Open Access Journals (Sweden)

    Nguyen Tam Nguyen Truong

    2017-01-01

    Full Text Available ZnO nanorods (Nrods with ~20–50 nm lengths were synthesized using an aqueous solution of zinc acetate and glacial acetic acid. Bulk heterojunction solar cells were fabricated with the structure of indium tin oxide (ITO/polyethylenedioxythiophene doped with polystyrene-sulfonic acid (PEDOT:PSS/ZnO-Nrods + polymer/electron transport layer (ETL/Al. Current density-voltage characterization of the resulting cells showed that, by adding an ETL and using polymers with a low band gap energy, the photoactive layer surface morphology and the device performance can be dramatically improved.

  9. Matrix Organization and Merit Factor Evaluation as a Method to Address the Challenge of Finding a Polymer Material for Roll Coated Polymer Solar Cells

    DEFF Research Database (Denmark)

    Bundgaard, Eva; Livi, Francesco; Hagemann, Ole

    2015-01-01

    The results presented demonstrate how the screening of 104 light-absorbing low band gap polymers for suitability in roll coated polymer solar cells can be accomplished through rational synthesis according to a matrix where 8 donor and 13 acceptor units are organized in rows and columns. Synthesis...... silver comb back electrode structure. The matrix organization enables fast identification of active layer materials according to a weighted merit factor that includes more than simply the power conversion efficiency and is used as a method to identify the lead candidates. Based on several characteristics...

  10. Comparison of additive amount used in spin-coated and roll-coated organic solar cells

    DEFF Research Database (Denmark)

    Cheng, Pei; Lin, Yuze; Zawacka, Natalia Klaudia

    2014-01-01

    All-polymer and polymer/fullerene inverted solar cells were fabricated by spin-coating and roll-coating processes. The spin-coated small-area (0.04 cm(2)) devices were fabricated on indium tin oxide (ITO) coated glass substrates in nitrogen. The roll-coated large-area (1.0 cm(2)) devices were...

  11. Nanostructured Solar Irradiation Control Materials for Solar Energy Conversion

    Science.gov (United States)

    Kang, Jinho; Marshall, I. A.; Torrico, M. N.; Taylor, C. R.; Ely, Jeffry; Henderson, Angel Z.; Kim, J.-W.; Sauti, G.; Gibbons, L. J.; Park, C.; hide

    2012-01-01

    Tailoring the solar absorptivity (alpha(sub s)) and thermal emissivity (epsilon(sub T)) of materials constitutes an innovative approach to solar energy control and energy conversion. Numerous ceramic and metallic materials are currently available for solar absorbance/thermal emittance control. However, conventional metal oxides and dielectric/metal/dielectric multi-coatings have limited utility due to residual shear stresses resulting from the different coefficient of thermal expansion of the layered materials. This research presents an alternate approach based on nanoparticle-filled polymers to afford mechanically durable solar-absorptive and thermally-emissive polymer nanocomposites. The alpha(sub s) and epsilon(sub T) were measured with various nano inclusions, such as carbon nanophase particles (CNPs), at different concentrations. Research has shown that adding only 5 wt% CNPs increased the alpha(sub s) and epsilon(sub T) by a factor of about 47 and 2, respectively, compared to the pristine polymer. The effect of solar irradiation control of the nanocomposite on solar energy conversion was studied. The solar irradiation control coatings increased the power generation of solar thermoelectric cells by more than 380% compared to that of a control power cell without solar irradiation control coatings.

  12. Hybrid polymer-CdS solar cell active layers formed by in situ growth of CdS nanoparticles

    International Nuclear Information System (INIS)

    Masala, S.; Del Gobbo, S.; Borriello, C.; Bizzarro, V.; La Ferrara, V.; Re, M.; Pesce, E.; Minarini, C.; De Crescenzi, M.; Di Luccio, T.

    2011-01-01

    The integration of semiconductor nanoparticles (NPs) into a polymeric matrix has the potential to enhance the performance of polymer-based solar cells taking advantage of the physical properties of NPs and polymers. We synthesize a new class of CdS-NPs-based active layer employing a low-cost and low temperature route compatible with large-scale device manufacturing. Our approach is based on the controlled in situ thermal decomposition of a cadmium thiolate precursor in poly(3-hexylthiophene) (P3HT). The casted P3HT:precursor solid foils were heated up from 200 to 300 °C to allow the precursor decomposition and the CdS-NP formation within the polymer matrix. The CdS-NP growth was controlled by varying the annealing temperature. The polymer:precursor weight ratio was also varied to investigate the effects of increasing the NP volume fraction on the solar cell performances. The optical properties were studied by using UV–Vis absorption and photoluminescence (PL) spectroscopy at room temperature. To investigate the photocurrent response of P3HT:CdS nanocomposites, ITO/P3HT:CdS/Al solar cell devices were realized. We measured the external quantum efficiency (EQE) as a function of the wavelength. The photovoltaic response of the devices containing CdS-NPs showed a variation compared with the devices with P3HT only. By changing the annealing temperature the EQE is enhanced in the 400–600 nm spectral region. By increasing the NPs volume fraction remarkable changes in the EQE spectra were observed. The data are discussed also in relation to morphological features of the interfaces studied by Focused Ion Beam technique.

  13. A universal route to fabricate n-i-p multi-junction polymer solar cells via solution processing

    NARCIS (Netherlands)

    Rasi, Dario Di Carlo; Hendriks, Koen H.; Heintges, Gael H. L.; Simone, Giulio; Gelinck, Gerwin H.; Gevaerts, Veronique S.; Andriessen, Ronn; Pirotte, Geert; Maes, Wouter; Li, Weiwei; Wienk, Martijn M.; Janssen, Rene A. J.

    The interconnection layer (ICL) that connects adjacent subcells electrically and optically in solution‐processed multi‐junction polymer solar cells must meet functional requirements in terms of work functions, conductivity, and transparency, but also be compatible with the multiple layer stack in

  14. Role of Molecular Weight on the Mechanical Device Properties of Organic Polymer Solar Cells

    KAUST Repository

    Bruner, Christopher

    2014-02-11

    For semiconducting polymers, such as regioregular poly(3-hexylthiophene-2, 5-diyl) (rr-P3HT), the molecular weight has been correlated to charge carrier field-effect mobilities, surface morphology, and gelation rates in solution and therefore has important implications for long-Term reliability, manufacturing, and future applications of electronic organic thin films. In this work, we show that the molecular weight rr-P3HT in organic solar cells can also significantly change the internal cohesion of the photoactive layer using micromechanical testing techniques. Cohesive values ranged from ∼0.5 to ∼17 J m -2, following the general trend of greater cohesion with increasing molecular weight. Using nanodynamic mechanical analysis, we attribute the increase in cohesion to increased plasticity which helps dissipate the applied energy. Finally, we correlate photovoltaic efficiency with cohesion to assess the device physics pertinent to optimizing device reliability. This research elucidates the fundamental parameters which affect both the mechanical stability and efficiency of polymer solar cells. © 2014 American Chemical Society.

  15. A Triphenylamine-Based Conjugated Polymer with Donor-π-Acceptor Architecture as Organic Sensitizer for Dye-Sensitized Solar Cells.

    Science.gov (United States)

    Zhang, Wei; Fang, Zhen; Su, Mingjuan; Saeys, Mark; Liu, Bin

    2009-09-17

    A conjugated polymer containing an electron donating backbone (triphenylamine) and an electron accepting side chain (cyanoacetic acid) with conjugated thiophene units as the linkers has been synthesized. Dye-sensitized solar cells (DSSCs) are fabricated utilizing this material as the dye sensitizer, resulting a typical power conversion efficiency of 3.39% under AM 1.5 G illumination, which represents the highest efficiency for polymer dye-sensitized DSSCs reported so far. The results show the good promise of conjugated polymers as sensitizers for DSSC applications. Copyright © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Development of air stable polymer solar cells using an inverted gold on top anode structure

    International Nuclear Information System (INIS)

    Sahin, Yuecel; Alem, Salima; Bettignies, Remi de; Nunzi, Jean-Michel

    2005-01-01

    We developed indium-tin-oxide/perylene diimide (or bathocuproine (BCP))/poly(2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylenevinylene (MEH-PPV) and [6,6]-phenyl C 60 butyric acid methyl ester (PCBM) blend/copper phthalocyanine (CuPc)/Au interpenetrated network polymer solar cells in order to improve air stability. The stability properties of the cells were characterized by current-voltage measurements under the influence of light and air. We achieved long lifetime solar cells which work at least 2 weeks under ambient air conditions without encapsulation. Solar energy conversion efficiency of the cells decrease 30% of the first day value at the end of 2 weeks. Photocurrent absorption properties of the devices were also investigated

  17. Indium Tin Oxide-Free Polymer Solar Cells: Toward Commercial Reality

    DEFF Research Database (Denmark)

    Angmo, Dechan; Espinosa Martinez, Nieves; Krebs, Frederik C

    2014-01-01

    Polymer solar cell (PSC) is the latest of all photovoltaic technologies which currently lies at the brink of commercialization. The impetus for its rapid progress in the last decade has come from low-cost high throughput production possibility which in turn relies on the use of low-cost materials...... and vacuum-free manufacture. Indium tin oxide (ITO), the commonly used transparent conductor, imposes the majority of the cost of production of PSCs, limits flexibility, and is feared to create bottleneck in the dawning industry due to indium scarcity and the resulting large price fluctuations. As such...

  18. The Mechanism of Burn-in Loss in a High Efficiency Polymer Solar Cell

    KAUST Repository

    Peters, Craig H.

    2011-10-11

    Degradation in a high efficiency polymer solar cell is caused by the formation of states in the bandgap. These states increase the energetic disorder in the system. The power conversion efficiency loss does not occur when current is run through the device in the dark but occurs when the active layer is photo-excited. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Perovskite/polymer solar cells prepared using solution process

    International Nuclear Information System (INIS)

    Rosa, E. S.; Shobih; Nursam, N. M.; Saputri, D. G.

    2016-01-01

    We report a simple solution-based process to fabricate a perovskite/polymer tandem solar cell using inorganic CH 3 NH 3 PM 3 as an absorber and organic PCBM (6,6 phenyl C61- butyric acid methyl ester) as an electron transport layer. The absorber solution was prepared by mixing the CH 3 NH 3 I (methyl ammonium iodide) with PbI 2 (lead iodide) in DMF (N,N- dimethyl formamide) solvent. The absorber and electron transport layer were deposited by spin coating method. The electrical characteristics generated from the cell under 50 mW/cm 2 at 25 °C comprised of an open circuit voltage of 0. 3 1 V, a short circuit current density of 2.53 mA/cm 2 , and a power conversion efficiency of 0.42%. (paper)

  20. Scaling Up ITO-free solar cells

    DEFF Research Database (Denmark)

    Galagan, Yulia; Coenen, Erica W. C.; Zimmermann, Birger

    2014-01-01

    Indium-tin-oxide-free (ITO-free) polymer solar cells with composite electrodes containing current-collecting grids and a semitransparent poly(3,4-ethylenedioxythiophene):polystyrenesulfonate) (PEDOT:PSS) conductor are demonstrated. The up-scaling of the length of the solar cell from 1 to 6 cm...... resistances. The performance of ITO-free organic solar cells with different dimensions and different electrode resistances are evaluated for different light intensities. The current generation and electric potential distribution are found to not be uniformly distributed in large-area devices at simulated 1...

  1. Interface engineering of perovskite solar cells with multifunctional polymer interlayer toward improved performance and stability

    Science.gov (United States)

    Huang, Li-Bo; Su, Pei-Yang; Liu, Jun-Min; Huang, Jian-Feng; Chen, Yi-Fan; Qin, Su; Guo, Jing; Xu, Yao-Wei; Su, Cheng-Yong

    2018-02-01

    This work proposes a new perovskite solar cell structure by inserting a polymer interlayer between perovskite and hole transporting material (HTM) to minimize the interface losses via interface engineering. The multifunctional interlayers improve the photovoltaic efficiency and device stability by shielding perovskite from moisture, suppressing charge combination, and promoting hole transport. The five different polymer layers are utilized to investigate the relationships of polymer structure, layer morphology and cell performance systematically. It is found that a reliable power conversion efficiency exceeding 19.0% is realized based on P3HT/spiro-OMeTAD composite structure, surpassing that of pure spiro-OMeTAD (15.0%). Moreover, the device with P3HT interlayer shows more brilliant long-term stability than that without interlayer when exposed into moisture. The enhanced device performance based on P3HT interlayer compared with the other polymers can be ascribed to the long hydrophobic alkyl chains and the small molecule monomers of P3HT, which contribute to self-assembly of the polymers into insulating layers and formation of the efficient π-π stacking in polymer/spiro-OMeTAD interface simultaneously. This study provides a practical route for the integration of a new class of easily-accessible, solution-processed interfacial polymer materials for high-performance and long-time stable PSC.

  2. Large-area photovoltaics based on low band gap copolymers of thiophene and benzothiadiazole or benzo-bis(thiadiazole)

    DEFF Research Database (Denmark)

    Bundgaard, Eva; Krebs, Frederik C

    2007-01-01

    to give poor devices when employed in bulk heterojunctions with PCBM. This was linked to a poor alignment of the energy levels in 2 with that of the electrodes and PCBM, showing that the requirement for a control of the positions of the energy levels becomes increasingly important as the band gap......Large-area solar cells (active area = 3 and 10cm(2)) were prepared with low band gap polymers based on thiophene and benzothiadiazole (1) or thiophene and benzo-bis(thiadiazole) (2). The band gaps of the polymers were 1.65 and 0.67 eV, respectively. The best photovoltaic performance was obtained...... for the device ITO/PEDOT/1:PCBM (1:2)/Al with an active area of 3 cm(2). The efficiency of the device was 0.62%. This is a high efficiency for a low band gap polymer in a large-area organic solar cell and thus polymer I is a very promising material for organic solar cells. The devices based on 2 were found...

  3. Performance limitations in thieno[3,4-c]pyrrole-4,6-dione-based polymer:ITIC solar cells

    KAUST Repository

    Yang, Fan

    2017-08-15

    We report a systematic study of the efficiency limitations of non-fullerene organic solar cells that exhibit a small energy loss (Eloss) between the polymer donor and the non-fullerene acceptor. To clarify the impact of Eloss on the performance of the solar cells, three thieno[3,4-c]pyrrole-4,6-dione-based conjugated polymers (PTPD3T, PTPD2T, and PTPDBDT) are employed as the electron donor, which all have complementary absorption spectra compared with the ITIC acceptor. The corresponding photovoltaic devices show that low Eloss (0.54 eV) in PTPDBDT:ITIC leads to a high open-circuit voltage (Voc) of 1.05 V, but also to a small quantum efficiency, and in turn photocurrent. The high Voc or small energy loss in the PTPDBDT-based solar cells is a consequence of less non-radiative recombination, whereas the low quantum efficiency is attributed to the unfavorable micro-phase separation, as confirmed by the steady-state and time-resolved photoluminescence experiments, grazing-incidence wide-angle X-ray scattering, and resonant soft X-ray scattering (R-SoXS) measurements. We conclude that to achieve high performance non-fullerene solar cells, it is essential to realize a large Voc with small Eloss while simultaneously maintaining a high quantum efficiency by manipulating the molecular interaction in the bulk-heterojunction.

  4. Performance limitations in thieno[3,4-c]pyrrole-4,6-dione-based polymer:ITIC solar cells

    KAUST Repository

    Yang, Fan; Qian, Deping; Balawi, Ahmed Hesham; Wu, Yang; Ma, Wei; Laquai, Fré dé ric; Tang, Zheng; Zhang, Fengling; Li, Weiwei

    2017-01-01

    We report a systematic study of the efficiency limitations of non-fullerene organic solar cells that exhibit a small energy loss (Eloss) between the polymer donor and the non-fullerene acceptor. To clarify the impact of Eloss on the performance of the solar cells, three thieno[3,4-c]pyrrole-4,6-dione-based conjugated polymers (PTPD3T, PTPD2T, and PTPDBDT) are employed as the electron donor, which all have complementary absorption spectra compared with the ITIC acceptor. The corresponding photovoltaic devices show that low Eloss (0.54 eV) in PTPDBDT:ITIC leads to a high open-circuit voltage (Voc) of 1.05 V, but also to a small quantum efficiency, and in turn photocurrent. The high Voc or small energy loss in the PTPDBDT-based solar cells is a consequence of less non-radiative recombination, whereas the low quantum efficiency is attributed to the unfavorable micro-phase separation, as confirmed by the steady-state and time-resolved photoluminescence experiments, grazing-incidence wide-angle X-ray scattering, and resonant soft X-ray scattering (R-SoXS) measurements. We conclude that to achieve high performance non-fullerene solar cells, it is essential to realize a large Voc with small Eloss while simultaneously maintaining a high quantum efficiency by manipulating the molecular interaction in the bulk-heterojunction.

  5. Improving the long-term stability of PBDTTPD polymer solar cells through material purification aimed at removing organic impurities

    KAUST Repository

    Mateker, William R.; Douglas, Jessica D.; Cabanetos, Clement; Sachs-Quintana, I. T.; Bartelt, Jonathan A.; Hoke, Eric T.; El Labban, Abdulrahman; Beaujuge, Pierre; Frechet, Jean; McGehee, Michael D.

    2013-01-01

    While bulk heterojunction (BHJ) solar cells fabricated from high M n PBDTTPD achieve power conversion efficiencies (PCE) as high as 7.3%, the short-circuit current density (JSC) of these devices can drop by 20% after seven days of storage in the dark and under inert conditions. This degradation is characterized by the appearance of S-shape features in the reverse bias region of current-voltage (J-V) curves that increase in amplitude over time. Conversely, BHJ solar cells fabricated from low Mn PBDTTPD do not develop S-shaped J-V curves. However, S-shapes identical to those observed in high Mn PBDTTPD solar cells can be induced in low M n devices through intentional contamination with the TPD monomer. Furthermore, when high Mn PBDTTPD is purified via size exclusion chromatography (SEC) to reduce the content of low molecular weight species, the JSC of polymer devices is significantly more stable over time. After 111 days of storage in the dark under inert conditions, the J-V curves do not develop S-shapes and the JSC degrades by only 6%. The S-shape degradation feature, symptomatic of low device lifetimes, appears to be linked to the presence of low molecular weight contaminants, which may be trapped within samples of high Mn polymer that have not been purified by SEC. Although these impurities do not affect initial device PCE, they significantly reduce device lifetime, and solar cell stability is improved by increasing the purity of the polymer materials. © 2013 The Royal Society of Chemistry.

  6. Nanostructured Conjugated Polymers for Energy-Related Applications beyond Solar Cells.

    Science.gov (United States)

    Xie, Jian; Zhao, Cui-E; Lin, Zong-Qiong; Gu, Pei-Yang; Zhang, Qichun

    2016-05-20

    To meet the ever-increasing requirements for the next generation of sustainable and versatile energy-related devices, conjugated polymers, which have potential advantages over small molecules and inorganic materials, are among the most promising types of green candidates. The properties of conjugated polymers can be tuned through modification of the structure and incorporation of different functional moieties. In addition, superior performances can be achieved as a result of the advantages of nanostructures, such as their large surface areas and the shortened pathways for charge transfer. Therefore, nanostructured conjugated polymers with different properties can be obtained to be applied in different energy-related organic devices. This review focuses on the application and performance of the recently reported nanostructured conjugated polymers for high-performance devices, including rechargeable lithium batteries, microbial fuel cells (MFCs), thermoelectric generators, and photocatalytic systems. The design strategies, reaction mechanisms, advantages, and limitations of nanostructured conjugated polymers are further discussed in each section. Finally, possible routes to improve the performances of the current systems are also included in the conclusion. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Photovoltaic properties of conjugated polymer/fullerene composites ...

    African Journals Online (AJOL)

    The innovation involves the substrate, which is a polymer foil instead of glass. These devices are based on ultrafast, reversible, metastable photoinduced electron transfer and charge separation. We also present the efficiency and stability studies on large area (6 cm x 6 cm) flexible plastic solar cells with monochromatic ...

  8. Product integration of compact roll-to-roll processed polymer solar cell modules: methods and manufacture using flexographic printing, slot-die coating and rotary screen printing

    DEFF Research Database (Denmark)

    Krebs, Frederik C; Fyenbo, Jan; Jørgensen, Mikkel

    2010-01-01

    The improvement of the performance of roll-to-roll processed polymer solar cell modules through miniaturization of the device outline is described. The devices were prepared using full roll-to-roll processing comprising flexographic printing, slot-die coating and rotary screen printing to create ......HT:[70]PCBM. The solar cell modules were used to demonstrate the complete manufacture of a small lamp entirely using techniques of flexible electronics. The solar cell module was used to charge a polymer lithium ion battery through a blocking diode. The entire process was fully automated...

  9. Enabling Flexible Polymer Tandem Solar Cells by 3D Ptychographic Imaging

    DEFF Research Database (Denmark)

    Dam, Henrik Friis; Andersen, Thomas Rieks; Pedersen, Emil Bøje Lind

    2015-01-01

    one after the other by wet processing leaves plenty of room for error and the process development calls for an analytical technique that enables 3D reconstruction of the layer stack with the possibility to probe thickness, density, and chemistry of the individual layers in the stack. The use......The realization of a complete tandem polymer solar cell under ambient conditions using only printing and coating methods on a flexible substrate results in a fully scalable process but also requires accurate control during layer formation to succeed. The serial process where the layers are added...

  10. N-type polymers as electron extraction layers in hybrid perovskite solar cells with improved ambient stability

    NARCIS (Netherlands)

    Shao, S.; Chen, Z.; Fang, H. -H.; ten Brink, G. H.; Bartesaghi, D.; Adjokatse, S.; Koster, L. J. A.; Kooi, B. J.; Facchetti, A.; Loi, M. A.

    2016-01-01

    We studied three n-type polymers of the naphthalenediimide-bithiophene family as electron extraction layers (EELs) in hybrid perovskite solar cells. The recombination mechanism in these devices is found to be heavily influenced by the EEL transport properties. The maximum efficiency of the devices

  11. Interfacial charge trapping in the polymer solar cells and its elimination by solvent annealing

    Directory of Open Access Journals (Sweden)

    A. K. Chauhan

    2016-09-01

    Full Text Available The PCDTBT:PCBM solar cells were fabricated adopting a tandem layer approach to investigate the critical issues of charge trapping, radiation absorption, and efficiency in polymer solar cells. This layered structure was found to be a source of charge trapping which was identified and confirmed by impedance spectroscopy. The low efficiency in multilayered structures was related to trapping of photo-generated carriers and low carrier mobility, and thus an increased recombination. Solvent annealing of the structures in tetrahydrofuran vapors was found beneficial in homogenizing the active layer, dissolving additional interfaces, and elimination of charge traps which improved the carrier mobilities and eventually the device efficiencies.

  12. Fabrication and processing of polymer solar cells: A review of printing and coating techniques

    DEFF Research Database (Denmark)

    Krebs, Frederik C

    2009-01-01

    Polymer solar cells are reviewed in the context of the processing techniques leading to complete devices. A distinction is made between the film-forming techniques that are used currently such as spincoating, doctor blading and casting and the, from a processing point of view, more desirable film...... are described with focus on the particular advantages and disadvantages associated with each case....

  13. The Role of Electron Affinity in Determining Whether Fullerenes Catalyze or Inhibit Photooxidation of Polymers for Solar Cells

    KAUST Repository

    Hoke, Eric T.; Sachs-Quintana, I. T.; Lloyd, Matthew T.; Kauvar, Isaac; Mateker, William R.; Nardes, Alexandre M.; Peters, Craig H.; Kopidakis, Nikos; McGehee, Michael D.

    2012-01-01

    Understanding the stability and degradation mechanisms of organic solar materials is critically important to achieving long device lifetimes. Here, an investigation of the photodegradation of polymer:fullerene blend fi lms exposed to ambient

  14. Dip-coating of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) anodes for efficient polymer solar cells

    International Nuclear Information System (INIS)

    Huang, Like; Hu, Ziyang; Zhang, Ke; Chen, Peipei; Zhu, Yuejin

    2015-01-01

    The fabrication of anodes and active layers by dip-coating in indium tin oxide (ITO)-free polymer solar cells (PSCs) is investigated. A highly conductive poly(3, 4-ethylenedioxythiophene):poly(styrenesulfonate)(PEDOT:PSS) layer was used as an anode while a blend film of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61 butyric acid methyl ester (PCBM) was employed as an active layer. The transmittance and sheet resistance of dip-coated PEDOT:PSS layers prepared with different thickness were studied. These layers were integrated into PSCs. The PSCs with the dip-coated PEDOT:PSS and P3HT:PCBM films exhibited power conversion efficiencies of 3.21% and 3.03% on glass and polyethylene terephthalate substrates, respectively, comparable to those of conventional ITO-based cells. Our research results suggest the feasibility of fabricating PSCs without a traditional spin-coating process and the possibility to substitute the ITO electrodes for conducting polymer films using the facile dip-coating method. - Highlights: • ITO-free polymer solar cells (PSCs) were fabricated by dip coating method. • Highly conductive PEDOT:PSS films used as anode were prepared. • The ITO-free PSCs performance was comparable with that of the spin coated devices. • Our results suggest the possibility of replacing ITO with dip coated PEDOT:PSS

  15. Dip-coating of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) anodes for efficient polymer solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Like; Hu, Ziyang, E-mail: huziyang@nbu.edu.cn; Zhang, Ke; Chen, Peipei; Zhu, Yuejin, E-mail: zhuyuejin@nbu.edu.cn

    2015-03-02

    The fabrication of anodes and active layers by dip-coating in indium tin oxide (ITO)-free polymer solar cells (PSCs) is investigated. A highly conductive poly(3, 4-ethylenedioxythiophene):poly(styrenesulfonate)(PEDOT:PSS) layer was used as an anode while a blend film of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61 butyric acid methyl ester (PCBM) was employed as an active layer. The transmittance and sheet resistance of dip-coated PEDOT:PSS layers prepared with different thickness were studied. These layers were integrated into PSCs. The PSCs with the dip-coated PEDOT:PSS and P3HT:PCBM films exhibited power conversion efficiencies of 3.21% and 3.03% on glass and polyethylene terephthalate substrates, respectively, comparable to those of conventional ITO-based cells. Our research results suggest the feasibility of fabricating PSCs without a traditional spin-coating process and the possibility to substitute the ITO electrodes for conducting polymer films using the facile dip-coating method. - Highlights: • ITO-free polymer solar cells (PSCs) were fabricated by dip coating method. • Highly conductive PEDOT:PSS films used as anode were prepared. • The ITO-free PSCs performance was comparable with that of the spin coated devices. • Our results suggest the possibility of replacing ITO with dip coated PEDOT:PSS.

  16. The short circuit current improvement in P3HT:PCBM based polymer solar cell by introducing PSBTBT as additional electron donor.

    Science.gov (United States)

    Sun, Lu; Shen, Liang; Mengd, Fanxu; Xu, Peng; Guo, Wenbin; Ruan, Shengping

    2014-05-01

    Here we demonstrate the influence of electron-donating polymer addition on the performance of poly(3-hexylthiophene) (P3HT):1 -(3-methoxycarbonyl)-propyl-1-phenyl-(6,6) C61 (PCBM) solar cells. Poly[(4,42-bis(2-ethylhexyl) dithieno [3,2-b:22,32-d] silole)-2,6-diylalt-(2,1,3-benzothiadiazole)-4,7-diyl] (PSBTBT) was chosen as the electron-donating polymer to improve the short circuit current (J(sc)) due to its distinct absorption in the near-IR range and similar HOMO level with that of P3HT. In the study, we found that J(sc) was improved for ternary blend (P3HT:PSBTBT:PCBM) solar cells. The dependence of device performance was investigated. J(sc) got decreased with increasing the ratio of PSBTBT. Result showed that J(sc) of ternary blend solar cells was improved greatly after thermal annealing at 150 degrees C, close to that of the binary blend (PSBTBT:PCBM) solar cells.

  17. Understanding charge transport and recombination losses in high performance polymer solar cells with non-fullerene acceptors

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xuning [HEEGER Beijing Research & Development Center; School of Chemistry; Beihang University; Beijing 100191; China; Zuo, Xiaobing [X-ray Science Division; Argonne National Laboratory; Argonne; USA; Xie, Shenkun [HEEGER Beijing Research & Development Center; School of Chemistry; Beihang University; Beijing 100191; China; Yuan, Jianyu [Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices; Institute of Functional Nano & Soft Materials (FUNSOM); Soochow University; Suzhou; P. R. China; Zhou, Huiqiong [CAS Key Laboratory of Nanosystem and Hierarchical Fabrication; CAS Center for Excellence in Nanoscience; National Center for Nanoscience and Technology; Beijing 100190; China; Zhang, Yuan [HEEGER Beijing Research & Development Center; School of Chemistry; Beihang University; Beijing 100191; China

    2017-01-01

    Photovoltaic characteristics, recombination and charge transport properties are investigated. The determined recombination reduction factor can reconcile the supreme device performance in organic solar cells using non-fullerene ITIC acceptor and severe carrier losses in all-polymer devices with P(NDI2OD-T2).

  18. Fabrication of Polymer Solar Cells Using Aqueous Processing for All Layers Including the Metal Back Electrode

    DEFF Research Database (Denmark)

    Søndergaard, Roar; Helgesen, Martin; Jørgensen, Mikkel

    2011-01-01

    The challenges of printing all layers in polymer solar cells from aqueous solution are met by design of inks for the electron-, hole-, active-, and metallic back electrode-layers. The conversion of each layer to an insoluble state after printing enables multilayer formation from the same solvent...

  19. The Influence of Solvent Additive on Polymer Solar Cells Employing Fullerene and Non-Fullerene Acceptors

    KAUST Repository

    Song, Xin

    2017-11-27

    Small-molecule-based non-fullerene acceptors (NFAs) are emerging as a new field in organic photovoltaics, due to their structural versatility, the tunability of their energy levels, and their ease of synthesis. High-efficiency polymer donors have been tested with these non-fullerene acceptors in order to further boost the efficiency of organic solar cells. Most of the polymer:fullerene systems are optimized with solvent additives for high efficiency, while little attention has been paid to NFA-based solar cells so far. In this report, the effect of the most common additive, 1,8-diiodooctane (DIO), on PTB7-Th:PC71BM solar cells is investigated and it is compared with non-fullerene acceptor 3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone))-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3-d:2′,3′-d′]-s-indaceno-[1,2-b:5,6b′]di-thiophene (ITIC) devices. It is interesting that the high boiling solvent additive does have a negative impact on the power conversion efficiency when PTB7-Th is blended with ITIC acceptor. The solar cell devices are studied in terms of their optical, photophysical, and morphological properties and find out that PTB7-Th:ITIC devices with DIO results in coarser domains, reduced absorption strength, and slightly lower mobility, while DIO improves the absorption strength of the PTB7-Th:PC71BM blend film and increase the aggregation of PC71BM in the blend, resulting in higher fill factor and Jsc.

  20. The Influence of Solvent Additive on Polymer Solar Cells Employing Fullerene and Non-Fullerene Acceptors

    KAUST Repository

    Song, Xin; Gasparini, Nicola; Baran, Derya

    2017-01-01

    Small-molecule-based non-fullerene acceptors (NFAs) are emerging as a new field in organic photovoltaics, due to their structural versatility, the tunability of their energy levels, and their ease of synthesis. High-efficiency polymer donors have been tested with these non-fullerene acceptors in order to further boost the efficiency of organic solar cells. Most of the polymer:fullerene systems are optimized with solvent additives for high efficiency, while little attention has been paid to NFA-based solar cells so far. In this report, the effect of the most common additive, 1,8-diiodooctane (DIO), on PTB7-Th:PC71BM solar cells is investigated and it is compared with non-fullerene acceptor 3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone))-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3-d:2′,3′-d′]-s-indaceno-[1,2-b:5,6b′]di-thiophene (ITIC) devices. It is interesting that the high boiling solvent additive does have a negative impact on the power conversion efficiency when PTB7-Th is blended with ITIC acceptor. The solar cell devices are studied in terms of their optical, photophysical, and morphological properties and find out that PTB7-Th:ITIC devices with DIO results in coarser domains, reduced absorption strength, and slightly lower mobility, while DIO improves the absorption strength of the PTB7-Th:PC71BM blend film and increase the aggregation of PC71BM in the blend, resulting in higher fill factor and Jsc.

  1. Statistics of the largest sunspot and facular areas per solar cycle

    International Nuclear Information System (INIS)

    Willis, D.M.; Kabasakal Tulunay, Y.

    1979-01-01

    The statistics of extreme values is used to investigate the statistical properties of the largest areas sunspots and photospheric faculae per solar cycle. The largest values of the synodic-solar-rotation mean areas of umbrae, whole spots and faculae, which have been recorded for nine solar cycles, are each shown to comply with the general form of the extreme value probability function. Empirical expressions are derived for the three extreme value populations from which the characteristic statistical parameters, namely the mode, median, mean and standard deviation, can be calculated for each population. These three extreme value populations are also used to find the expected ranges of the extreme areas in a group of solar cycles as a function of the number of cycles in the group. The extreme areas of umbrae and whole spots have a dispersion comparable to that found by Siscoe for the extreme values of sunspot number, whereas the extreme areas of faculae have a smaller dispersion which is comparable to that found by Siscoe for the largest geomagnetic storm per solar cycle. The expected range of the largest sunspot area per solar cycle for a group of one hundred cycles appears to be inconsistent with the existence of the prolonged periods of sunspot minima that have been inferred from the historical information on solar variability. This inconsistency supports the contention that there are temporal changes of solar-cycle statistics during protracted periods of sunspot minima (or maxima). Indeed, without such temporal changes, photospheric faculae should have been continually observable throughout the lifetime of the Sun. (orig.)

  2. Emulsion-Based RIR-MAPLE Deposition of Conjugated Polymers: Primary Solvent Effect and Its Implications on Organic Solar Cell Performance.

    Science.gov (United States)

    Ge, Wangyao; Li, Nan K; McCormick, Ryan D; Lichtenberg, Eli; Yingling, Yaroslava G; Stiff-Roberts, Adrienne D

    2016-08-03

    Emulsion-based, resonant infrared matrix-assisted pulsed laser evaporation (RIR-MAPLE) has been demonstrated as an alternative technique to deposit conjugated polymer films for photovoltaic applications; yet, a fundamental understanding of how the emulsion target characteristics translate into film properties and solar cell performance is unclear. Such understanding is crucial to enable the rational improvement of organic solar cell (OSC) efficiency and to realize the expected advantages of emulsion-based RIR-MAPLE for OSC fabrication. In this paper, the effect of the primary solvent used in the emulsion target is studied, both experimentally and theoretically, and it is found to determine the conjugated polymer cluster size in the emulsion as well as surface roughness and internal morphology of resulting polymer films. By using a primary solvent with low solubility-in-water and low vapor pressure, the surface roughness of deposited P3HT and PCPDTBT polymer films was reduced to 10 nm, and the efficiency of P3HT:PC61BM OSCs was increased to 3.2% (∼100 times higher compared to the first MAPLE OSC demonstration [ Caricato , A. P. ; Appl. Phys. Lett. 2012 , 100 , 073306 ]). This work unveils the mechanism of polymer film formation using emulsion-based RIR-MAPLE and provides insight and direction to determine the best ways to take advantage of the emulsion target approach to control film properties for different applications.

  3. Nature of the Binding Interactions between Conjugated Polymer Chains and Fullerenes in Bulk Heterojunction Organic Solar Cells

    KAUST Repository

    Ravva, Mahesh Kumar

    2016-10-24

    Blends of π-conjugated polymers and fullerene derivatives are ubiquitous as the active layers of organic solar cells. However, a detailed understanding of the weak noncovalent interactions at the molecular level between the polymer chains and fullerenes is still lacking and could help in the design of more efficient photoactive layers. Here, using a combination of long-range corrected density functional theory calculations and molecular dynamic simulations, we report a thorough characterization of the nature of binding between fullerenes (C60 and PC61BM) and poly(benzo[1,2-b:4,5-b′]dithiophene–thieno[3,4-c]pyrrole-4,6-dione) (PBDTTPD) chains. We illustrate the variations in binding strength when the fullerenes dock on the electron-rich vs electron-poor units of the polymer as well as the importance of the role played by the polymer and fullerene side chains and the orientations of the PC61BM molecules with respect to the polymer backbones.

  4. Multifunctional microstructured polymer films for boosting solar power generation of silicon-based photovoltaic modules.

    Science.gov (United States)

    Leem, Jung Woo; Choi, Minkyu; Yu, Jae Su

    2015-02-04

    We propose two-dimensional periodic conical micrograting structured (MGS) polymer films as a multifunctional layer (i.e., light harvesting and self-cleaning) at the surface of outer polyethylene terephthalate (PET) cover-substrates for boosting the solar power generation in silicon (Si)-based photovoltaic (PV) modules. The surface of ultraviolet-curable NOA63 MGS polymer films fabricated by the soft imprint lithography exhibits a hydrophobic property with water contact angle of ∼121° at no inclination and dynamic advancing/receding water contact angles of ∼132°/111° at the inclination angle of 40°, respectively, which can remove dust particles or contaminants on the surface of PV modules in real outdoor environments (i.e., self-cleaning). The NOA63 MGS film coated on the bare PET leads to the reduction of reflection as well as the enhancement of both the total and diffuse transmissions at wavelengths of 300-1100 nm, indicating lower solar weighted reflectance (RSW) of ∼8.2%, higher solar weighted transmittance (TSW) of ∼93.1%, and considerably improved average haze ratio (HAvg) of ∼88.3% as compared to the bare PET (i.e., RSW ≈ 13.5%, TSW ≈ 86.9%, and HAvg ≈ 9.1%), respectively. Additionally, it shows a relatively good durability at temperatures of ≤160 °C. The resulting Si PV module with the NOA63 MGS/PET has an enhanced power conversion efficiency (PCE) of 13.26% (cf., PCE = 12.55% for the reference PV module with the bare PET) due to the mainly improved short circuit current from 49.35 to 52.01 mA, exhibiting the PCE increment percentage of ∼5.7%. For light incident angle-dependent PV module current-voltage characteristics, superior solar energy conversion properties are also obtained in a broad angle range of 10-80°.

  5. Effects of solar collecting area and water flow rate on the performance of a sand bed solar collector

    International Nuclear Information System (INIS)

    Maganhar, A.L.; Memon, A.H.; Panhwar, M.I.

    2005-01-01

    The often discussed renewable sources of energy have been great interest to energy researchers and planners for quite some time. The primary of renewing all sources of energy is the sun. There have been two main problems not yet fully resolved. One is the large scale production of energy and other is the cost factor. In the present study, the cost factor is under consideration. In this regard a non-conventional solar collector using indigenous material (pit sand) as solar absorber is designed and manufactured. This paper presents the results of an investigation of the effect of solar collecting area and water flow rate on the performance of a pit sand bed solar collector especially in terms of rise in water temperature. Three pit sand solar collectors of area 1m/sup 2/ each were connected in series to enhance the collecting area and the system was tested for different flow rates. Experimental results proved that there was increase in water temperature with increase in solar collecting area an decreases in water temperature with increase in flow rate. (author)

  6. Influence of solvent on the poly (acrylic acid)-oligo-(ethylene glycol) polymer gel electrolyte and the performance of quasi-solid-state dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Wu, Jihuai; Lan, Zhang; Lin, Jianming; Huang, Miaoliang; Hao, Shancun; Fang, Leqing

    2007-01-01

    The influence of solvents on the property of poly (acrylic acid)-oligo-(ethylene glycol) polymer gel electrolyte and photovoltaic performance of quasi-solid-state dye-sensitized solar cells (DSSCs) were investigated. Solvents or mixed solvents with large donor number enhance the liquid electrolyte absorbency, which further influences the ionic conductivity of polymer gel electrolyte. A polymer gel electrolyte with ionic conductivity of 4.45 mS cm -1 was obtained by using poly (acrylic acid)-oligo-(ethylene glycol) as polymer matrix, and absorbing 30 vol.% N-methyl pyrrolidone and 70 vol.% γ-butyrolactone with 0.5 M NaI and 0.05 M I 2 . By using this polymer gel electrolyte coupling with 0.4 M pyridine additive, a quasi-solid-state dye-sensitized solar cell with conversion efficiency of 4.74% was obtained under irradiation of 100 mW cm -2 (AM 1.5)

  7. Efficient inverted bulk-heterojunction polymer solar cells with self-assembled monolayer modified zinc oxide.

    Science.gov (United States)

    Kim, Wook Hyun; Lyu, Hong-Kun; Han, Yoon Soo; Woo, Sungho

    2013-10-01

    The performance of poly(3-hexylthiophen) (P3HT) and [6, 6]phenyl C61 butyric acid methyl ester ([60]PCBM)-based inverted bulk-heterojunction (BHJ) polymer solar cells (PSCs) is enhanced by the modification of zinc oxide (ZnO)/BHJ interface with carboxylic-acid-functionalized self-assembled monolayers (SAMs). Under simulated solar illumination of AM 1.5 (100 mW/cm2), the inverted devices fabricated with SAM-modified ZnO achieved an enhanced power conversion efficiency (PCE) of 3.34% due to the increased fill factor and photocurrent density as compared to unmodified cells with PCE of 2.60%. This result provides an efficient method for interface engineering in inverted BHJ PSCs.

  8. Preparation of conjugated polymer-based composite thin film for application in solar cell

    International Nuclear Information System (INIS)

    Yu, Yang-Yen; Chien, Wen-Chen; Ko, Yu-Hsin; Chen, Chih-Ping; Chang, Chao-Ching

    2015-01-01

    This paper reports on the enhanced cell efficiency of structures and properties of regioregular poly(3-hexylthiophene) (P3HT)/multiwalled carbon nanotube (MWNT) hybrid materials. The prepared hybrid materials were characterized using ultraviolet–visible absorption spectroscopy, photoluminescence spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. Different concentrations of these MWNTs were suspended in polymer solutions and spin-cast onto indium tin oxide (ITO) glass. Solar cells with a device structure of ITO/poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) /P3HT:MWNTs/aluminum were then produced using evaporated aluminum as the back contact. The results showed that the ratio of P3HT to MWNTs considerably influenced the performance of the fabricated solar cells. The efficiency of the solar cells increased with the ratio of carbon nanotubes. Monochromatic incident photon-to-electron conversion efficiency analysis was performed and the results indicated that at the optimal P3HT/MWNTs ratio (= 1/1), the solar cells demonstrated a high-quality conversion of 2.16% with a fill factor of 42.22%, an open circuit voltage of 0.56 V, and a short circuit current of 9.12 mA/cm 2 . - Highlights: • Solar cells ITO/PEDOT:PSS(DMSO)/P3HT:MWNT/Al were fabricated. • Optimal ratio of P3HT to MWNT was investigated. • Solar cell with 2.16% efficiency was obtained

  9. Preparation of conjugated polymer-based composite thin film for application in solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Yang-Yen, E-mail: yyyu@mail.mcut.edu.tw [Department of Materials Engineering, Ming Chi University of Technology, 84 Gunjuan Road, Taishan, New Taipei City 243, Taiwan (China); Battery Research Center of Green Energy, Ming Chi University of Technology, 84 Gunjuan Road, Taishan, New Taipei City 243, Taiwan (China); Center for Thin Film Technologies and Applications, Ming Chi University of Technology, 84 Gunjuan Road, Taishan, New Taipei City 243, Taiwan (China); Chien, Wen-Chen [Department of Chemical Engineering, Ming Chi University of Technology, 84 Gunjuan Road, Taishan, New Taipei City 243, Taiwan (China); Battery Research Center of Green Energy, Ming Chi University of Technology, 84 Gunjuan Road, Taishan, New Taipei City 243, Taiwan (China); Ko, Yu-Hsin [Department of Materials Engineering, Ming Chi University of Technology, 84 Gunjuan Road, Taishan, New Taipei City 243, Taiwan (China); Chen, Chih-Ping [Department of Materials Engineering, Ming Chi University of Technology, 84 Gunjuan Road, Taishan, New Taipei City 243, Taiwan (China); Battery Research Center of Green Energy, Ming Chi University of Technology, 84 Gunjuan Road, Taishan, New Taipei City 243, Taiwan (China); Chang, Chao-Ching [Department of Chemical and Materials Engineering, Tamkang University, 151, Yingzhuan Rd., Tamsui Dist., New Taipei City 25137, Taiwan (China)

    2015-06-01

    This paper reports on the enhanced cell efficiency of structures and properties of regioregular poly(3-hexylthiophene) (P3HT)/multiwalled carbon nanotube (MWNT) hybrid materials. The prepared hybrid materials were characterized using ultraviolet–visible absorption spectroscopy, photoluminescence spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. Different concentrations of these MWNTs were suspended in polymer solutions and spin-cast onto indium tin oxide (ITO) glass. Solar cells with a device structure of ITO/poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) /P3HT:MWNTs/aluminum were then produced using evaporated aluminum as the back contact. The results showed that the ratio of P3HT to MWNTs considerably influenced the performance of the fabricated solar cells. The efficiency of the solar cells increased with the ratio of carbon nanotubes. Monochromatic incident photon-to-electron conversion efficiency analysis was performed and the results indicated that at the optimal P3HT/MWNTs ratio (= 1/1), the solar cells demonstrated a high-quality conversion of 2.16% with a fill factor of 42.22%, an open circuit voltage of 0.56 V, and a short circuit current of 9.12 mA/cm{sup 2}. - Highlights: • Solar cells ITO/PEDOT:PSS(DMSO)/P3HT:MWNT/Al were fabricated. • Optimal ratio of P3HT to MWNT was investigated. • Solar cell with 2.16% efficiency was obtained.

  10. Polymer Industrial Floors - The Possibility of Using Secondary Raw Materials from Solar Panels

    OpenAIRE

    J. Kosikova; B. Vacenovska; M. Vyhnankova

    2014-01-01

    The paper reports on the subject of recycling and further use of secondary raw materials obtained from solar panels, which is becoming a very up to date topic in recent years. Recycling these panels is very difficult and complex, and the use of resulting secondary raw materials is still not fully resolved. Within the research carried out at the Brno University of Technology, new polymer materials used for industrial floors are being developed. Secondary raw materials are ...

  11. Linear side chains in benzo[1,2-b:4,5-b′]dithiophene-thieno[3,4-c] pyrrole-4,6-dione polymers direct self-assembly and solar cell performance

    KAUST Repository

    Cabanetos, Clement

    2013-03-27

    While varying the size and branching of solubilizing side chains in π-conjugated polymers impacts their self-assembling properties in thin-film devices, these structural changes remain difficult to anticipate. This report emphasizes the determining role that linear side-chain substituents play in poly(benzo[1,2-b:4,5-b′]dithiophene-thieno[3,4-c]pyrrole-4,6-dione) (PBDTTPD) polymers for bulk heterojunction (BHJ) solar cell applications. We show that replacing branched side chains by linear ones in the BDT motifs induces a critical change in polymer self-assembly and backbone orientation in thin films that correlates with a dramatic drop in solar cell efficiency. In contrast, we show that for polymers with branched alkyl-substituted BDT motifs, controlling the number of aliphatic carbons in the linear N-alkyl-substituted TPD motifs is a major contributor to improved material performance. With this approach, PBDTTPD polymers were found to reach power conversion efficiencies of 8.5% and open-circuit voltages of 0.97 V in BHJ devices with PC71BM, making PBDTTPD one of the best polymer donors for use in the high-band-gap cell of tandem solar cells. © 2013 American Chemical Society.

  12. Polymer tandem solar cells

    NARCIS (Netherlands)

    Gilot, J.

    2010-01-01

    Solar cells convert solar energy directly into electricity and are attractive contribute to the increasing energy demand of modern society. Commercial mono-crystalline silicon based devices are infiltrating the energy market but their expensive, time and energy consuming production process

  13. A Thieno[3,2-b][1]benzothiophene Isoindigo Building Block for Additive- and Annealing-Free High-Performance Polymer Solar Cells

    KAUST Repository

    Yue, Wan; Ashraf, Raja Shahid; Nielsen, Christian B.; Collado-Fregoso, Elisa; Niazi, Muhammad Rizwan; Yousaf, Syeda Amber; Kirkus, Mindaugas; Chen, Hung-Yang; Amassian, Aram; Durrant, James R.; McCulloch, Iain

    2015-01-01

    A novel photoactive polymer with two different molecular weights is reported, based on a new building block: thieno[3,2-b][1]benzothiophene isoindigo. Due to the improved crystallinity, optimal blend morphology, and higher charge mobility, solar-cell devices of the high-molecular-weight polymer exhibit a superior performance, affording efficiencies of 9.1% without the need for additives, annealing, or additional extraction layers during device fabrication.

  14. A Thieno[3,2-b][1]benzothiophene Isoindigo Building Block for Additive- and Annealing-Free High-Performance Polymer Solar Cells

    KAUST Repository

    Yue, Wan

    2015-08-20

    A novel photoactive polymer with two different molecular weights is reported, based on a new building block: thieno[3,2-b][1]benzothiophene isoindigo. Due to the improved crystallinity, optimal blend morphology, and higher charge mobility, solar-cell devices of the high-molecular-weight polymer exhibit a superior performance, affording efficiencies of 9.1% without the need for additives, annealing, or additional extraction layers during device fabrication.

  15. The effect of sunny area ratios on the thermal performance of solar ponds

    International Nuclear Information System (INIS)

    Bozkurt, Ismail; Karakilcik, Mehmet

    2015-01-01

    Highlights: • The effect of sunny area ratio on model solar ponds in different geometries. • The sunny area ratio was calculated for 8 different cases. • The efficiency of the model solar pond was determined for 8 different cases. • The energy efficiencies of the solar pond are affected by the sizes of the solar pond, strongly. • The results help to select the sizes of the solar pond before construction. - Abstract: In this study, we investigated the effect of the sunny area ratios on thermal efficiency of model solar pond for different cases in Adiyaman, Turkey. For this purpose, we modeled the solar ponds to compute theoretical sunny area ratios of the zones and temperature distributions in order to find the performance of the model solar ponds. Incorporating the finite difference approach, one and two dimensional heat balances were written for inner zones and insulation side walls. Through, careful determination of the dimensions, insulation parameter and incoming solar radiation reaching the storage zone increased the efficiency of the solar pond. The efficiencies of the model solar pond were determined for case1a–2a–3a–4a to be maximum 14.93%, 20.42%, 23.51% and 27.84%, and for case1b–2b–3b–4b to be maximum 12.65%, 16.76%, 21.37% and 23.30% in August, respectively. With the increase of the sunny area ratio, the performance of the solar pond significantly increased. However, with the increasing rate of the surface area, performance increase rate decreased gradually. The results provide a strong perspective to determine the dimensions of the solar pond before starting the project of a solar pond

  16. ITO-free inverted polymer/fullerene solar cells: Interface effects and comparison of different semi-transparent front contacts

    NARCIS (Netherlands)

    Wilken, Sebastian; Hoffmann, Thomas; von Hauff, Elizabeth; Borchert, Holger; Parisi, Juergen

    Polymer/fullerene solar cells with an inverted layer sequence and free from indium tin oxide (ITO) are presented in this study. We concentrate on critical interface effects in inverted devices and compare different semi-transparent front contacts, such as ultra-thin Au films and Au grid structures.

  17. Degadation of semiconducting polymers by concentrated sunlight

    DEFF Research Database (Denmark)

    Tromholt, Thomas; Manceau, Matthieu; Petersen, Martin Helgesen

    2011-01-01

    infra-red spectra of MEH-PPV degraded at 1 sun intensity and at high solar concentration only showed minor deviations in degradation mechanisms. The acceleration factor was found to vary linearly with the solar concentration. Finally, a comparison of the degradation rates at 1 sun and 100 suns...... was carried out in a materials study employing five different conjugated polymers relevant to polymer solar cells for which acceleration factors in the range 19–55 were obtained.......A lens based sunlight concentration setup was used to accelerate the degradation of semiconducting polymers. Sunlight was collected outdoor and focused into an optical fiber bundle allowing for indoor experimental work. Photo-degradation of several polymers was studied by UV–vis absorbance...

  18. Novel Terthiophene-Substituted Fullerene Derivatives as Easily Accessible Acceptor Molecules for Bulk-Heterojunction Polymer Solar Cells

    Directory of Open Access Journals (Sweden)

    Filippo Nisic

    2014-01-01

    Full Text Available Five fulleropyrrolidines and methanofullerenes, bearing one or two terthiophene moieties, have been prepared in a convenient way and well characterized. These novel fullerene derivatives are characterized by good solubility and by better harvesting of the solar radiation with respect to traditional PCBM. In addition, they have a relatively high LUMO level and a low band gap that can be easily tuned by an adequate design of the link between the fullerene and the terthiophene. Preliminary results show that they are potential acceptors for the creation of efficient bulk-heterojunction solar cells based on donor polymers containing thiophene units.

  19. Graphene: Polymer composites as moisture barrier and charge transport layer toward solar cell applications

    Science.gov (United States)

    Sakorikar, Tushar; Kavitha, M. K.; Tong, Shi Wun; Vayalamkuzhi, Pramitha; Loh, Kian Ping; Jaiswal, Manu

    2018-05-01

    Graphene: polymer composite based electrically conducting films are realized by a facile solution processable method. Ultraviolet Photoelectron Spectroscopy (UPS) measurements on the composite films, reveal a low work function of reduced graphene oxide (rGO) obtained from hydrazine hydrate reduction of graphene oxide (GO). We suggest that the low work function could potentially make rGO: PMMA composite suitable for electron conducting layer in perovskite solar cells in place of traditionally used expensive PCBM ([6,6]-phenyl-C61-butyric acid methyl ester) layer. Further, we demonstrate from the gravimetric experiments conducted on rGO: PMMA films, that the same coating is also resistant to moisture permeation. This latter property can be used to realize a protective coating layer for perovskite films, which are prone to moisture induced degradation. Thus, dual functionality of rGO-PMMA films is demonstrated towards integration with perovskite solar cells. Architecture of perovskite solar cell based on these concepts is proposed.

  20. Concentrator bifacial crystalline silicon solar cells with multi-wire metallization attached to TCO layers using transparent conductive polymers

    Science.gov (United States)

    Untila, Gennady; Chebotareva, Alla; Kost, Tatiana; Salazkin, Sergei; Shaposhnikova, Vera; Shvarts, Maxim

    2017-09-01

    Replacing expensive silver with inexpensive copper for the metallization of silicon wafer solar cells can lead to substantial reductions in material costs associated with cell production. A promising approach is the use of multi-wire design. This technology uses many wires in the place of busbars, and the copper wires are "soldered" during the low-temperature lamination process to the fingers (printed or plated) or to the transparent conductive oxide (TCO) layer, e.g. in the case of the α-Si/c-Si heterojunction cells. Here we describe a solar cell design in which wires are attached to TCO layers using transparent conductive polymer (TCP) films. To this end, we have synthesized a number of thermoplastics, poly(arylene ether ketone) copolymers (co-PAEKs), containing phthalide in their main chain. The fraction of phthalide-containing units in the copolymers was p = 3, 5, 15, and 50 mol %. With increasing p, the peak strain temperature of the co-PAEKs rises from 205 to 290 °C and their optical band gap and refractive index increase from 3.12 to 3.15 eV and from 1.6 to 1.614, respectively. The copolymers have a negligible absorption coefficient in the wavelength range 400- 1100 nm. When exposed to an excess pressure of 1 atm or above, co-PAEK films less than 30 µm in thickness undergo a transition from a dielectric to a conductive state. The resistivity (ρC) of wire/TCP/TCO (ITO = In2O3:Sn and IFO = In2O3:F) contacts ranges from 0.37 to 1.43 mΩ cm2. The polymer with the highest phthalide content (p = 50 mol %) has the lowest ρC. The average work of adhesion per unit area determined by pulling off the wires from the polymer surface depends on both the phthalide content of the co-PAEKs and their reduced viscosity, ranging from 14.3 to 43.5 N/cm. The highest value was obtained for the co-PAEK with p = 50 mol %. We have fabricated low-concentration bifacial IFO/(n+pp+)Cz-Si/ITO solar cells with a wire contact grid attached to IFO and ITO using a co-PAEK film. The

  1. Factors Governing Intercalation of Fullerenes and Other Small Molecules Between the Side Chains of Semiconducting Polymers Used in Solar Cells

    KAUST Repository

    Miller, Nichole Cates

    2012-08-22

    While recent reports have established signifi cant miscibility in polymer:fullerene blends used in organic solar cells, little is actually known about why polymers and fullerenes mix and how their mixing can be controlled. Here, X-ray diffraction (XRD), differential scanning calorimetry (DSC), and molecular simulations are used to study mixing in a variety of polymer:molecule blends by systematically varying the polymer and smallmolecule properties. It is found that a variety of polymer:fullerene blends mix by forming bimolecular crystals provided there is suffi cient space between the polymer side chains to accommodate a fullerene. Polymer:tetrafl uoro-tetracyanoquinodimethane (F4-TCNQ) bimolecular crystals were also observed, although bimolecular crystals did not form in the other studied polymer:nonfullerene blends, including those with both conjugated and non-conjugated small molecules. DSC and molecular simulations demonstrate that strong polymer-fullerene interactions can exist, and the calculations point to van der Waals interactions as a signifi cant driving force for molecular mixing. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Probing individal subcells of fully printed and coated polymer tandem solar cells using multichromatic opto-electronic characterization methods

    DEFF Research Database (Denmark)

    Larsen-Olsen, Thue Trofod; Andersen, Thomas Rieks; Dam, Henrik Friis

    2015-01-01

    In this study, a method to opto-electronically probe the individual junctions and carrier transport across interfaces in fully printed and coated tandem polymer solar cells is described, enabling the identification of efficiency limiting printing/coating defects. The methods used are light beam...

  3. Recent Advances in Wide-Bandgap Photovoltaic Polymers.

    Science.gov (United States)

    Cai, Yunhao; Huo, Lijun; Sun, Yanming

    2017-06-01

    The past decade has witnessed significant advances in the field of organic solar cells (OSCs). Ongoing improvements in the power conversion efficiency of OSCs have been achieved, which were mainly attributed to the design and synthesis of novel conjugated polymers with different architectures and functional moieties. Among various conjugated polymers, the development of wide-bandgap (WBG) polymers has received less attention than that of low-bandgap and medium-bandgap polymers. Here, we briefly summarize recent advances in WBG polymers and their applications in organic photovoltaic (PV) devices, such as tandem, ternary, and non-fullerene solar cells. Addtionally, we also dissuss the application of high open-circuit voltage tandem solar cells in PV-driven electrochemical water dissociation. We mainly focus on the molecular design strategies, the structure-property correlations, and the photovoltaic performance of these WBG polymers. Finally, we extract empirical regularities and provide invigorating perspectives on the future development of WBG photovoltaic materials. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Electron-deficient N-alkyloyl derivatives of thieno[3,4-c]pyrrole-4,6-dione yield efficient polymer solar cells with open-circuit voltages > 1 v

    KAUST Repository

    Warnan, Julien

    2014-05-13

    Poly(benzo[1,2-b:4,5-b′]dithiophene-thieno[3,4-c]pyrrole-4,6-dione) (PBDTTPD) polymer donors yield some of the highest open-circuit voltages (V OC, ca. 0.9 V) and fill factors (FF, ca. 70%) in conventional bulk-heterojunction (BHJ) solar cells with PCBM acceptors. Recent work has shown that the incorporation of ring substituents into the side chains of the BDT motifs in PBDTTPD can induce subtle variations in material properties, resulting in an increase of the BHJ device VOC to ∼1 V. In this contribution, we report on the synthesis of N-alkyloyl-substituted TPD motifs (TPD(CO)) and show that the electron-deficient motifs can further lower both the polymer LUMO and HOMO levels, yielding device VOC > 1 V (up to ca. 1.1 V) in BHJ solar cells with PCBM. Despite the high VOC achieved (i.e., low polymer HOMO), BHJ devices cast from TPD(CO)-based polymer donors can reach power conversion efficiencies (PCEs) of up to 6.7%, making these promising systems for use in the high-band-gap cell of tandem solar cells. © 2014 American Chemical Society.

  5. Polymer and Concentrator Photovoltaic Technologies - Energy Return Factors and Area Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Loefgren, Birger; Gustaf Zettergren

    2006-12-20

    Market diffusion of flat plate crystalline silicon photovoltaic (PV) technology has been induced by economical support schemes and has lead to reduced cost per produced kWh electricity. For further market penetration of the PV technology, a continued reduction of production cost is required. Two alternative approaches to achieve this are using less expensive materials or changing the active materials. The technologies of concentrator PV (CPV) systems and polymer PV (PPV) devices represent these two strategies. The potential energy performance of these technologies is studied in terms of the process primary energy requirements for manufacturing, how many times this energy is paid back during its lifetime and as the required land area for electricity generation. The study is an energy analysis incorporating the inherent uncertainties in technology development. Uncertainties are identified in data acquisition, in design choices, as induced by development and improvement, in performance and by different application scenarios. The future technology alternatives are defined in different ways for CPV and PPV. CPV parameters are derived from existing products and ideas for improvements and PPV parameters from the directions of research. This study shows that the invested energy in future CPV and PPV is potentially paid back up to about 90 and 170 times, respectively, under Arizona (CPV) and average European (PPV) solar irradiation conditions. However the result is highly dependent on configuration, inventory data and device performance. Thus, for certain design alternatives, data and performance, PPV production energy is far from paid back during its lifetime. For CPV the energy return factor is decreased to about 13 in the least beneficial case. Area efficiency is studied as the land area requirements for producing a net output electricity of 1 MWh during 25 years. With device efficiencies from 1 to 5 per cent and lifetimes from 1 to 5 years a PPV device requires from 2

  6. Luminescent GdVO_4:Sm"3"+ quantum dots enhance power conversion efficiency of bulk heterojunction polymer solar cells by Förster resonance energy transfer

    International Nuclear Information System (INIS)

    Bishnoi, Swati; Gupta, Vinay; Sharma, Gauri D.; Chand, Suresh; Sharma, Chhavi; Kumar, Mahesh; Haranath, D.; Naqvi, Sheerin

    2016-01-01

    In this work, we report enhanced power conversion efficiency (PCE) of bulk heterojunction polymer solar cells by Förster resonance energy transfer (FRET) from samarium-doped luminescent gadolinium orthovanadate (GdVO_4:Sm"3"+) quantum dots (QDs) to polythieno[3,4-b]-thiophene-co-benzodithiophene (PTB7) polymer. The photoluminescence emission spectrum of GdVO_4:Sm"3"+ QDs overlaps with the absorption spectrum of PTB7, leading to FRET from GdVO_4:Sm"3"+ to PTB7, and significant enhancements in the charge-carrier density of excited and polaronic states of PTB7 are observed. This was confirmed by means of femtosecond transient absorption spectroscopy. The FRET from GdVO_4:Sm"3"+ QDs to PTB7 led to a remarkable increase in the power conversion efficiency (PCE) of PTB7:GdVO_4:Sm"3"+:PC_7_1BM ([6,6]-phenyl-C_7_1-butyric acid methyl ester) polymer solar cells. The PCE in optimized ternary blend PTB7:GdVO_4:Sm"3"+:PC_7_1BM (1:0.1:1.5) is increased to 8.8% from 7.2% in PTB7:PC_7_1BM. This work demonstrates the potential of rare-earth based luminescent QDs in enhancing the PCE of polymer solar cells.

  7. Flexible organic/inorganic hybrid solar cells based on conjugated polymer and ZnO nanorod array

    International Nuclear Information System (INIS)

    Tong, Fei; Kim, Kyusang; Martinez, Daniel; Thapa, Resham; Ahyi, Ayayi; Williams, John; Park, Minseo; Kim, Dong-Joo; Lee, Sungkoo; Lim, Eunhee; Lee, Kyeong K

    2012-01-01

    We report on the photovoltaic characteristics of organic/inorganic hybrid solar cells fabricated on ‘flexible’ transparent substrates. The solar cell device is composed of ZnO nanorod array and the bulk heterojunction structured organic layer which is the blend of poly(3-hexylthiophene) (P3HT) and (6,6)-phenyl C61 butyric acid methyl ester (PCBM). The ZnO nanorod array was grown on indium tin oxide (ITO)-coated polyethylene terephthalate (PET) substrates via a low-temperature (85 °C) aqueous solution process. The blend solution consisting of conjugated polymer P3HT and fullerene PCBM was spin coated at a low spinning rate of 400 rpm on top of the ZnO nanorod array structure and then the photoactive layer was slow dried at room temperature in air to promote its infiltration into the nanorod network. As a top electrode, silver was sputtered on top of the photoactive layer. The flexible solar cell with the structure of PET/ITO/ZnO thin film/ZnO nanorods/P3HT:PCBM/Ag exhibited a photovoltaic performance with an open circuit voltage (V OC ) of 0.52 V, a short circuit current density (J SC ) of 9.82 mA cm −2 , a fill factor (FF) of 35% and a power conversion efficiency (η) of 1.78%. All the measurements were performed under 100 mW cm −2 of illumination with an air mass 1.5 G filter. To the best of our knowledge, this is the first presentation of investigation into the fabrication and characterization of organic/inorganic hybrid solar cells based on bulk heterojunction structured conjugated polymer/fullerene photoactive layer and ZnO nanorod array constructed on flexible transparent substrates. (paper)

  8. A roll-to-roll process to flexible polymer solar cells: model studies, manufacture and operational stability studies

    DEFF Research Database (Denmark)

    Krebs, Frederik C; Gevorgyan, Suren; Alstrup, Jan

    2009-01-01

    An inverted polymer solar cell geometry comprising a total of five layers was optimized using laboratory scale cells and the operational stability was studied under model atmospheres. The device geometry was substrate-ITO-ZnO-(active layer)-PEDOT:PSS-silver with P3HT-PCBM as the active layer. The...

  9. Fine-tuning blend morphology via alkylthio side chain engineering towards high performance non-fullerene polymer solar cells

    Science.gov (United States)

    Li, Ling; Feng, Liuliu; Yuan, Jun; Peng, Hongjian; Zou, Yingping; Li, Yongfang

    2018-03-01

    Two medium bandgap polymers (ffQx-TS1, ffQx-TS2) were designed and synthesized to investigate the influence of different alkylthio side chain on the morphology and photovoltaic performance of non-fullerene polymer solar cells (PSCs). Both polymers exhibit similar molecular weights and comparable the highest occupied molecular orbital (HOMO) energy level. However, the polymer with straight alkylthio chain delivers a root-mean-square (RMS) of 0.86 nm, which is slightly lower than that with branched chain (1.40 nm). The lower RMS benefits the ohmic contact between the active lay and interface layer, thus enhanced short circuit current (Jsc) (from 13.54 mA cm-1 to 15.25 mA cm-1) could be obtained. Due to the enhancement of Jsc, better power conversion efficiency (PCE) of 7.69% for ffQx-TS2 could be realized. These results indicated that alkylthio side chain engineering is a promising method to improve photovoltaic performance.

  10. Interplay Between Side Chain Pattern, Polymer Aggregation, and Charge Carrier Dynamics in PBDTTPD:PCBM Bulk-Heterojunction Solar Cells

    KAUST Repository

    Dyer-Smith, Clare; Howard, Ian A.; Cabanetos, Clement; El Labban, Abdulrahman; Beaujuge, Pierre; Laquai, Fré dé ric

    2015-01-01

    Poly(benzo[1,2-b:4,5-b′]dithiophene–alt–thieno[3,4-c]pyrrole-4,6-dione) (PBDTTPD) polymer donors with linear side-chains yield bulk-heterojunction (BHJ) solar cell power conversion efficiencies (PCEs) of about 4% with phenyl-C71-butyric acid methyl

  11. The Application Study in Solar Energy Technology for Highway Service Area: A Case Study of West Lushan Highway Low-Carbon Service Area in China

    Directory of Open Access Journals (Sweden)

    Xiaochun Qin

    2015-01-01

    Full Text Available A lot of research works have been made concerning highway service area or solar technology and acquired great achievements. However, unfortunately, few works have been made combining the two topics together of highway service areas and solar energy saving to make a systemic research on solar technology application for highway service area. In this paper, taking West Lushan highway low-carbon service area in Jiangxi Province of China as the case study, the advantages, technical principles, and application methods of solar energy technology for highway service area including solar photoelectric technology and solar water heating technology were discussed based on the analysis of characteristics of highway low-carbon service area; the system types, operation mode, and installing tilt angle of the two kinds of solar systems suitable for highway service areas were confirmed. It was proved that the reduction of the cost by electricity savings of solar system was huge. Taking the investment of the solar systems into account, the payback period of solar photoelectric systems and solar water heating systems was calculated. The economic effect of the solar systems in West Lushan highway service area during the effective operation periods was also calculated and proved very considerable.

  12. Silicon Nanowire/Polymer Hybrid Solar Cell-Supercapacitor: A Self-Charging Power Unit with a Total Efficiency of 10.5.

    Science.gov (United States)

    Liu, Ruiyuan; Wang, Jie; Sun, Teng; Wang, Mingjun; Wu, Changsheng; Zou, Haiyang; Song, Tao; Zhang, Xiaohong; Lee, Shuit-Tong; Wang, Zhong Lin; Sun, Baoquan

    2017-07-12

    An integrated self-charging power unit, combining a hybrid silicon nanowire/polymer heterojunction solar cell with a polypyrrole-based supercapacitor, has been demonstrated to simultaneously harvest solar energy and store it. By efficiency enhancement of the hybrid nanowire solar cells and a dual-functional titanium film serving as conjunct electrode of the solar cell and supercapacitor, the integrated system is able to yield a total photoelectric conversion to storage efficiency of 10.5%, which is the record value in all the integrated solar energy conversion and storage system. This system may not only serve as a buffer that diminishes the solar power fluctuations from light intensity, but also pave its way toward cost-effective high efficiency self-charging power unit. Finally, an integrated device based on ultrathin Si substrate is demonstrated to expand its feasibility and potential application in flexible energy conversion and storage devices.

  13. Development of large area, high efficiency amorphous silicon solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, K.S.; Kim, S.; Kim, D.W. [Yu Kong Taedok Institute of Technology (Korea, Republic of)

    1996-02-01

    The objective of the research is to develop the mass-production technologies of high efficiency amorphous silicon solar cells in order to reduce the costs of solar cells and dissemination of solar cells. Amorphous silicon solar cell is the most promising option of thin film solar cells which are relatively easy to reduce the costs. The final goal of the research is to develop amorphous silicon solar cells having the efficiency of 10%, the ratio of light-induced degradation 15% in the area of 1200 cm{sup 2} and test the cells in the form of 2 Kw grid-connected photovoltaic system. (author) 35 refs., 8 tabs., 67 figs.

  14. Colloidal gold nanoparticles. Synthesis, characterization and effect in polymer/fullerene solar cells; Kolloidale Goldnanopartikel. Synthese, Charakterisierung und Wirkung in Polymer/Fulleren-Solarzellen

    Energy Technology Data Exchange (ETDEWEB)

    Topp, Katja

    2011-06-08

    It has been reported in the literature that the efficiency of polymer/fullerene solar cells has been improved by the incorporation of Au nanoparticles. The improvement was attributed to an enhanced electrical conductivity of the active layer and to an enhanced light absorption due to the plasmon resonance of the Au nanoparticles. In this work colloidal Au nanoparticles coated with different stabilizing ligands were synthesized and characterized. Then the impact of their incorporation into P3HT/PCBM solar cells was studied. On the one hand the Au nanoparticles were incorporated into the bulk heterojunction active layer, otherwise they were deposited as an interlayer in the device set-up. No improvement of the solar cell efficiency could be observed neither for the incorporation of Au nanoparticles with isolating ligand shell nor for those with direct contact to the photoactive molecules. The efficiency even dropped, the more the higher the concentration of the Au nanoparticles was. Possible reasons are pointed out on the basis of detailed photophysical and structural investigations.

  15. Polymer Solar Cells with Efficiency >10% Enabled via a Facile Solution-Processed Al-Doped ZnO Electron Transporting Layer

    KAUST Repository

    Jagadamma, Lethy Krishnan

    2015-04-22

    A facile and low-temperature (125 °C) solution-processed Al-doped ZnO (AZO) buffer layer functioning very effectively as electron accepting/hole blocking layer for a wide range of polymer:fullerene bulk heterojunction systems, yielding power conversion efficiency in excess of 10% (8%) on glass (plastic) substrates is described. The ammonia-treatment of the aqueous AZO nanoparticle solution produces compact, crystalline, and smooth thin films, which retain the aluminum doping, and eliminates/reduces the native defects by nitrogen incorporation, making them good electron transporters and energetically matched with the fullerene acceptor. It is demonstrated that highly efficient solar cells can be achieved without the need for additional surface chemical modifications of the buffer layer, which is a common requirement for many metal oxide buffer layers to yield efficient solar cells. Also highly efficient solar cells are achieved with thick AZO films (>50 nm), highlighting the suitability of this material for roll-to-roll coating. Preliminary results on the applicability of AZO as electron injection layer in F8BT-based polymer light emitting diode are also presented. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Enhanced dissociation of charge-transfer states in narrow band gap polymer:fullerene solar cells processed with 1,8-octanedithiol

    NARCIS (Netherlands)

    Moet, D.J.D.; Lenes, M.; Morana, M.; Azimi, H.; Brabec, C.J.; Blom, P.W.M.

    2010-01-01

    The improved photovoltaic performance of narrow band gap polymer:fullerene solar cells processed from solutions containing small amounts of 1,8-octanedithiol is analyzed by modeling of the experimental photocurrent. In contrast to devices that are spin coated from pristine chlorobenzene, these cells

  17. Enhanced dissociation of charge-transfer states in narrow band gap polymer : fullerene solar cells processed with 1,8-octanedithiol

    NARCIS (Netherlands)

    Moet, D. J. D.; Lenes, M.; Morana, M.; Azimi, H.; Brabec, C. J.; Blom, P. W. M.

    2010-01-01

    The improved photovoltaic performance of narrow band gap polymer:fullerene solar cells processed from solutions containing small amounts of 1,8-octanedithiol is analyzed by modeling of the experimental photocurrent. In contrast to devices that are spin coated from pristine chlorobenzene, these cells

  18. Solution-processed parallel tandem polymer solar cells using silver nanowires as intermediate electrode.

    Science.gov (United States)

    Guo, Fei; Kubis, Peter; Li, Ning; Przybilla, Thomas; Matt, Gebhard; Stubhan, Tobias; Ameri, Tayebeh; Butz, Benjamin; Spiecker, Erdmann; Forberich, Karen; Brabec, Christoph J

    2014-12-23

    Tandem architecture is the most relevant concept to overcome the efficiency limit of single-junction photovoltaic solar cells. Series-connected tandem polymer solar cells (PSCs) have advanced rapidly during the past decade. In contrast, the development of parallel-connected tandem cells is lagging far behind due to the big challenge in establishing an efficient interlayer with high transparency and high in-plane conductivity. Here, we report all-solution fabrication of parallel tandem PSCs using silver nanowires as intermediate charge collecting electrode. Through a rational interface design, a robust interlayer is established, enabling the efficient extraction and transport of electrons from subcells. The resulting parallel tandem cells exhibit high fill factors of ∼60% and enhanced current densities which are identical to the sum of the current densities of the subcells. These results suggest that solution-processed parallel tandem configuration provides an alternative avenue toward high performance photovoltaic devices.

  19. Comparison of UV-Curing, Hotmelt, and Pressure Sensitive Adhesive as Roll-to-Roll Encapsulation Methods for Polymer Solar Cells

    DEFF Research Database (Denmark)

    Hösel, Markus; Søndergaard, Roar R.; Jørgensen, Mikkel

    2013-01-01

    The most distinct advantage of the polymer solar cell is the possibility for roll-to-roll (R2R) fabrication compatibility based on printing and coating processes. The R2R encapsulation is the last crucial process step in the manufacturing workflow and is evaluated in this study. Polymer solar cell...... modules are directly printed on barrier foil and encapsulated with the same barrier foil either on the backside or on both sides of the device. The three lamination methods comprise of UV-curable epoxy resin, hotmelt, and pressure sensitive adhesive (PSA). It is shown that a single sided encapsulation...... of the PSA method is the fastest method (in this study) it generates a considerable amount of waste (paper liner) and two lamination steps are required to achieve a sufficient lifetime. We conclude that UV-curing presents the largest advantages of all methods with a good upscaling potential and low embodied...

  20. Thermal Annealing Reduces Geminate Recombination in TQ1:N2200 All-Polymer Solar Cells

    KAUST Repository

    Karuthedath, Safakath

    2018-03-27

    A combination of steady-state and time-resolved spectroscopic measurements is used to investigate the photophysics of the all-polymer bulk heterojunction system TQ1:N2200. Upon thermal annealing a doubling of the external quantum efficiency and an improved fill factor (FF) is observed, resulting in an increase in the power conversion efficiency. Carrier extraction is similar for both blends, as demonstrated by time-resolved electric-field-induced second harmonic generation experiments in conjunction with transient photocurrent studies, spanning the ps-µs time range. Complementary transient absorption spectroscopy measurements reveal that the different quantum efficiencies originate from differences in charge carrier separation and recombination at the polymer-polymer interface: in as-spun samples ~35 % of the charges are bound in interfacial charge-transfer states and recombine geminately, while this pool is reduced to ~7 % in thermally-annealed sample, resulting in higher short-circuit currents. Time-delayed collection field experiments demonstrate a field-dependent charge generation process in as-spun samples, which reduces the FF. In contrast, field-dependence of charge generation is weak in annealed films. While both devices exhibit significant non-geminate recombination competing with charge extraction, causing low FFs, our results demonstrate that the donor/acceptor interface in all-polymer solar cells can be favourably altered to enhance charge separation, without compromising charge transport and extraction.

  1. Research progress on large-area perovskite thin films and solar modules

    Directory of Open Access Journals (Sweden)

    Zhichun Yang

    2017-12-01

    Full Text Available Organometal halide perovskites have exhibited a bright future as photovoltaic semiconductor in next generation solar cells due to their unique and promising physicochemical properties. Over the past few years, we have witnessed a tremendous progress of efficiency record evolution of perovskite solar cells (PSCs. Up to now, the highest efficiency record of PSCs has reached 22.1%; however, it was achieved at a very small device area of <0.1 cm2. With the device area increasing to mini-module scale, the efficiency record dropped dramatically. The inherent causes are mainly ascribed to inadequate quality control of large-area perovskite thin films and insufficient optimization of solar module design. In current stage of PSCs research and development, to overcome these two obstacles is in urgent need before this new technology could realize scale-up industrialization. Herein, we present an overview of recently developed strategies for preparing large-area perovskite thin films and perovskite solar modules (PSMs. At last, cost analysis and future application directions of PSMs have also been discussed.

  2. Morphology-Dependent Trap Formation in High Performance Polymer Bulk Heterojunction Solar Cells

    KAUST Repository

    Beiley, Zach M.

    2011-06-28

    Bulk heterojunction solar cells (BHJs) based on poly[N-9″-hepta- decanyl-2,7-carbazole- alt -5,5-(4′,7′-di-2-thienyl-2′, 1′,3′-benzothiadiazole)] (PCDTBT) can have internal quantum efficiencies approaching 100% but require active layers that are too thin to absorb more than ∼70% of the above band gap light. When the active layer thickness is increased so that the cell absorbs more light, the fi ll factor and open circuit voltage decrease rapidly, so that the overall power conversion efficiency decreases. We fi nd that hole-traps in the polymer, which we characterize using space-charge limited current measurements, play an important role in the performance of PCDTBT-based BHJs and may limit the active layer thickness. Recombination due to carrier trapping is not often considered in BHJs because it is not believed to be a dominant loss mechanism in the "fruit-fl y" P3HT system. Furthermore, we show that in contrast to P3HT, PCDTBT has only weak short-range molecular order, and that annealing at temperatures above the glass transition decreases the order in the π-π stacking. The decrease in structural order is matched by the movement of hole-traps deeper into the band gap, so that thermal annealing worsens hole transport in the polymer and reduces the efficiency of PCDTBTbased BHJs. These fi ndings suggest that P3HT is not prototypical of the new class of high efficiency polymers, and that further improvement of BHJ efficiencies will necessitate the study of high efficiency polymers with low structural order. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Morphology-Dependent Trap Formation in High Performance Polymer Bulk Heterojunction Solar Cells

    KAUST Repository

    Beiley, Zach M.; Hoke, Eric T.; Noriega, Rodrigo; Dacuñ a, Javier; Burkhard, George F.; Bartelt, Jonathan A.; Salleo, Alberto; Toney, Michael F.; McGehee, Michael D.

    2011-01-01

    Bulk heterojunction solar cells (BHJs) based on poly[N-9″-hepta- decanyl-2,7-carbazole- alt -5,5-(4′,7′-di-2-thienyl-2′, 1′,3′-benzothiadiazole)] (PCDTBT) can have internal quantum efficiencies approaching 100% but require active layers that are too thin to absorb more than ∼70% of the above band gap light. When the active layer thickness is increased so that the cell absorbs more light, the fi ll factor and open circuit voltage decrease rapidly, so that the overall power conversion efficiency decreases. We fi nd that hole-traps in the polymer, which we characterize using space-charge limited current measurements, play an important role in the performance of PCDTBT-based BHJs and may limit the active layer thickness. Recombination due to carrier trapping is not often considered in BHJs because it is not believed to be a dominant loss mechanism in the "fruit-fl y" P3HT system. Furthermore, we show that in contrast to P3HT, PCDTBT has only weak short-range molecular order, and that annealing at temperatures above the glass transition decreases the order in the π-π stacking. The decrease in structural order is matched by the movement of hole-traps deeper into the band gap, so that thermal annealing worsens hole transport in the polymer and reduces the efficiency of PCDTBTbased BHJs. These fi ndings suggest that P3HT is not prototypical of the new class of high efficiency polymers, and that further improvement of BHJ efficiencies will necessitate the study of high efficiency polymers with low structural order. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Estimating Roof Solar Energy Potential in the Downtown Area Using a GPU-Accelerated Solar Radiation Model and Airborne LiDAR Data

    Directory of Open Access Journals (Sweden)

    Yan Huang

    2015-12-01

    Full Text Available Solar energy, as a clean and renewable resource is becoming increasingly important in the global context of climate change and energy crisis. Utilization of solar energy in urban areas is of great importance in urban energy planning, environmental conservation, and sustainable development. However, available spaces for solar panel installation in cities are quite limited except for building roofs. Furthermore, complex urban 3D morphology greatly affects sunlit patterns on building roofs, especially in downtown areas, which makes the determination of roof solar energy potential a challenging task. The object of this study is to estimate the solar radiation on building roofs in an urban area in Shanghai, China, and select suitable spaces for installing solar panels that can effectively utilize solar energy. A Graphic Processing Unit (GPU-based solar radiation model named SHORTWAVE-C simulating direct and non-direct solar radiation intensity was developed by adding the capability of considering cloud influence into the previous SHORTWAVE model. Airborne Light Detection and Ranging (LiDAR data was used as the input of the SHORTWAVE-C model and to investigate the morphological characteristics of the study area. The results show that the SHORTWAVE-C model can accurately estimate the solar radiation intensity in a complex urban environment under cloudy conditions, and the GPU acceleration method can reduce the computation time by up to 46%. Two sites with different building densities and rooftop structures were selected to illustrate the influence of urban morphology on the solar radiation and solar illumination duration. Based on the findings, an object-based method was implemented to identify suitable places for rooftop solar panel installation that can fully utilize the solar energy potential. Our study provides useful strategic guidelines for the selection and assessment of roof solar energy potential for urban energy planning.

  5. Optimizing the conjugated side chains of quinoxaline based polymers for nonfullerene solar cells with 10.5% efficiency

    Czech Academy of Sciences Publication Activity Database

    Xu, S.; Wang, X.; Feng, L.; He, Z.; Peng, H.; Cimrová, Věra; Yuan, J.; Zhang, Z.-G.; Li, Y.; Zou, Y.

    2018-01-01

    Roč. 6, č. 7 (2018), s. 3074-3083 ISSN 2050-7488 R&D Projects: GA ČR(CZ) GA13-26542S Institutional support: RVO:61389013 Keywords : fluoroquinoxaline * polymer solar cells * high efficiency Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 8.867, year: 2016

  6. The effect of anneal, solar irradiation and humidity on the adhesion/cohesion properties of P3HT:PCBM based inverted polymer solar cells

    KAUST Repository

    Dupont, Stephanie R.

    2012-06-01

    We use a thin-film adhesion technique that enables us to precisely measure the energy required to separate adjacent layers in OPV cells. We demonstrate the presence of weak interfaces in prototypical inverted polymer solar cells, either prepared by spin, spray or slot-die coating, including flexible and non flexible solar cells. In all cases, we observed adhesive failure at P3HT:PCBM/PEDOT:PSS interface, indicating the intrinsic material dependence of this mechanism. The impact of temperature, solar irradiation and humidity on the adhesion and cohesion properties of this particular interface is discussed. First, we have found that post-deposition annealing increases the adhesion significantly. Annealing changes the morphology in the photoactive layer and consequently alters the chemical properties at the interface. Second, solar irradiation on fully encapsulated solar cells has no damaging but in contrast an enhancing effect on the adhesion properties, due to the heat generated from IR radiation. Finally, the synergetic effect of stress and an environmental species like moisture greatly accelerates the decohesion rate in the weak hygroscopic PEDOT:PSS layer. This results in a loss of mechanical integrity and device performance. The insight into the mechanisms of delamination and decohesion yields general guidelines for the design of more reliable organic electronic devices. © 2012 IEEE.

  7. A facile alternative technique for large-area graphene transfer via sacrificial polymer

    Directory of Open Access Journals (Sweden)

    Eric Auchter

    2017-12-01

    Full Text Available A novel method of transferring large-area graphene sheets onto a variety of substrates using Formvar (polyvinyl formal is presented. Due to the ease at which formvar can be dissolved in chloroform this method allows for a consistent, a clean, and a more rapid transfer than other techniques including the PMMA assisted one. This novel transfer method is demonstrated by transferring large-area graphene onto a range of substrates including commercial TEM grids, silicon dioxide and glass. Raman spectroscopy was used to confirm the presence of graphene and characterize the morphological properties of the large-area sheets. SEM and AFM analyses demonstrated the effectiveness of our rapid transfer technique for clean crystalline large-area graphene sheets. The removal of the sacrificial polymer was found to be one to two orders of magnitude faster than PMMA methods. Ultimately this facile transfer technique offers new opportunities for a wide range of applications for large-area graphene through the utilization of a new sacrificial polymer.

  8. Molecular and Nanoscale Engineering of High Efficiency Excitonic Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Jenekhe, Samson A. [Univ. of Washington, Seattle, WA (United States); Ginger, David S. [Univ. of Washington, Seattle, WA (United States); Cao, Guozhong [Univ. of Washington, Seattle, WA (United States)

    2016-01-15

    We combined the synthesis of new polymers and organic-inorganic hybrid materials with new experimental characterization tools to investigate bulk heterojunction (BHJ) polymer solar cells and hybrid organic-inorganic solar cells during the 2007-2010 period (phase I) of this project. We showed that the bulk morphology of polymer/fullerene blend solar cells could be controlled by using either self-assembled polymer semiconductor nanowires or diblock poly(3-alkylthiophenes) as the light-absorbing and hole transport component. We developed new characterization tools in-house, including photoinduced absorption (PIA) spectroscopy, time-resolved electrostatic force microscopy (TR-EFM) and conductive and photoconductive atomic force microscopy (c-AFM and pc-AFM), and used them to investigate charge transfer and recombination dynamics in polymer/fullerene BHJ solar cells, hybrid polymer-nanocrystal (PbSe) devices, and dye-sensitized solar cells (DSSCs); we thus showed in detail how the bulk photovoltaic properties are connected to the nanoscale structure of the BHJ polymer solar cells. We created various oxide semiconductor (ZnO, TiO2) nanostructures by solution processing routes, including hierarchical aggregates and nanorods/nanotubes, and showed that the nanostructured photoanodes resulted in substantially enhanced light-harvesting and charge transport, leading to enhanced power conversion efficiency of dye-sensitized solar cells.

  9. Application of Nanostructured Materials and Multi-junction Structure in Polymer Solar Cells

    KAUST Repository

    Gao, Yangqin

    2015-12-09

    With power conversion efficiency surpassing the 10% milestone for commercialization, photovoltaic technology based on solution-processable polymer solar cells (PSCs) provides a promising route towards a cost-efficient strategy to address the ever-increasing worldwide energy demands. However, to make PSCs successful, challenges such as insufficient light absorption, high maintenance costs, and relatively high production costs must be addressed. As solutions to some of these problems, the unique properties of nanostructured materials and complimentary light absorption in multi-junction device structure could prove to be highly beneficial. As a starting point, integrating nanostructure-based transparent self-cleaning surfaces in PSCs was investigated first. By controlling the length of the hydrothermally grown ZnO nanorods and covering their surface with a thin layer of chemical vapor-deposited SiO2, a highly transparent and UV-resistant superhydrophobic surface was constructed. Integrating the transparent superhydrophobic surface in a PSC shows minimal impact on the figure of merit of the PSC. To address the low mechanical durability of the transparent superhydrophobic surface based on SiO2-coated ZnO nanorods, a novel method inspired by the water condensation process was developed. This method involved directly growing hollow silica half-nanospheres on the substrate through the condensation of water in the presence of a silica precursor. Benefit from the decreased back scattering efficiency and increased light transport mean free path arise from the hollow nature, a transparent superhydrophobic surface was realized using submicrometer sized silica half-nanospheres. The decent mechanical property of silica and the “direct-grown” protocol are expected to impart improved mechanical durability to the transparent superhydrophobic surface. Regarding the application of multi-junction device structure in PSCs, homo multi-junction PSCs were constructed from an identical

  10. Outdoor Operational Stability of Indium-Free Flexible Polymer Solar Modules Over 1 Year Studied in India, Holland, and Denmark

    DEFF Research Database (Denmark)

    Angmo, Dechan; Sommeling, Paul M.; Gupta, Ritu

    2014-01-01

    We present an outdoor interlaboratory stability study of fully printed and coated indium-tin-oxide (ITO)-free polymer solar cell modules in JNCASR Bangalore (India), ECN (Holland), and DTU (Denmark) carried over more than 1 year. The modules comprising a fully printed and coated stack (Ag grid...

  11. Spatial modeling of the 3D morphology of hybrid polymer-ZnO solar cells, based on electron tomography data

    NARCIS (Netherlands)

    Stenzel, O.; Hassfeld, H.; Thiedmann, R.; Koster, L. J. A.; Oosterhout, S. D.; van Bavel, S. S.; Wienk, M. M.; Loos, J.; Janssen, R. A. J.; Schmidt, V.

    A spatial stochastic model is developed which describes the 3D nanomorphology of composite materials, being blends of two different (organic and inorganic) solid phases. Such materials are used, for example, in photoactive layers of hybrid polymer zinc oxide solar cells. The model is based on ideas

  12. A Wide Band Gap Polymer with a Deep Highest Occupied Molecular Orbital Level Enables 14.2% Efficiency in Polymer Solar Cells.

    Science.gov (United States)

    Li, Sunsun; Ye, Long; Zhao, Wenchao; Yan, Hongping; Yang, Bei; Liu, Delong; Li, Wanning; Ade, Harald; Hou, Jianhui

    2018-05-21

    To simultaneously achieve low photon energy loss ( E loss ) and broad spectral response, the molecular design of the wide band gap (WBG) donor polymer with a deep HOMO level is of critical importance in fullerene-free polymer solar cells (PSCs). Herein, we developed a new benzodithiophene unit, i.e., DTBDT-EF, and conducted systematic investigations on a WBG DTBDT-EF-based donor polymer, namely, PDTB-EF-T. Due to the synergistic electron-withdrawing effect of the fluorine atom and ester group, PDTB-EF-T exhibits a higher oxidation potential, i.e., a deeper HOMO level (ca. -5.5 eV) than most well-known donor polymers. Hence, a high open-circuit voltage of 0.90 V was obtained when paired with a fluorinated small molecule acceptor (IT-4F), corresponding to a low E loss of 0.62 eV. Furthermore, side-chain engineering demonstrated that subtle side-chain modulation of the ester greatly influences the aggregation effects and molecular packing of polymer PDTB-EF-T. With the benefits of the stronger interchain π-π interaction, the improved ordering structure, and thus the highest hole mobility, the most symmetric charge transport and reduced recombination are achieved for the linear decyl-substituted PDTB-EF-T (P2)-based PSCs, leading to the highest short-circuit current density and fill factor (FF). Due to the high Flory-Huggins interaction parameter (χ), surface-directed phase separation occurs in the P2:IT-4F blend, which is supported by X-ray photoemission spectroscopy results and cross-sectional transmission electron microscope images. By taking advantage of the vertical phase distribution of the P2:IT-4F blend, a high power conversion efficiency (PCE) of 14.2% with an outstanding FF of 0.76 was recorded for inverted devices. These results demonstrate the great potential of the DTBDT-EF unit for future organic photovoltaic applications.

  13. Controlling the Electronic Interface Properties in Polymer-Fullerene Bulk-Heterojunction Solar Cells

    OpenAIRE

    Stubhan, Tobias

    2014-01-01

    The world consumes several tens of terawatts (TW) of electricity. If solar energy should have a notable share in the energy generation of the future, the fabrication of solar modules has to be changed from nowadays batch-to-batch processes that operate in the gigawatt regime to a reliable production that allows TW`s. Large area roll-to-roll (R2R) printing enables solar cell manufacturing to proceed to TW production. Organic photovoltaics (OPV) are one of the very promising technologies for...

  14. Roll-to-Roll Processing of Inverted Polymer Solar Cells using Hydrated Vanadium(V)Oxide as a PEDOT:PSS Replacement

    DEFF Research Database (Denmark)

    Martinez, Nieves Espinosa; Dam, Henrik Friis; Tanenbaum, David M.

    2011-01-01

    roll-to-roll (R2R) processing of all layers. The devices were prepared on flexible polyethyleneterphthalate (PET) and had the structure PET/ITO/ZnO/P3HT:PCBM/V2O5·(H2O)n/Ag. The ITO and silver electrodes were processed and patterned by use of screen printing. The zinc oxide, P3HT:PCBM and vanadium(V)oxide......The use of hydrated vanadium(V)oxide as a replacement of the commonly employed hole transporting material PEDOT:PSS was explored in this work. Polymer solar cells were prepared by spin coating on glass. Polymer solar cells and modules comprising 16 serially connected cells were prepared using full...... layers were processed by slot-die coating. The hydrated vanadium(V)oxide layer was slot-die coated using an isopropanol solution of vanadyl-triisopropoxide (VTIP). Coating experiments were carried out to establish the critical thickness of the hydrated vanadium(V)oxide layer by varying the concentration...

  15. Flexible inverted polymer solar cells with an indium-free tri-layer cathode

    International Nuclear Information System (INIS)

    El Hajj, Ahmad; Lucas, Bruno; Schirr-Bonnans, Martin; Ratier, Bernard; Kraft, Thomas M.; Torchio, Philippe

    2014-01-01

    Indium tin oxide (ITO)-free inverted polymer solar cells (PSCs) have been fabricated without the need of an additional electron transport layer. The indium-free transparent electrode consists of a tri-layer stack ZnO (30 nm)/Ag (14 nm)/ZnO (30 nm) deposited on glass and plastic substrates via ion-beam sputtering. The tri-layer electrodes exhibit similar physical properties to its ITO counterpart, specifically yielding high transmittance and low resistivity (76.5% T at 550 nm, R sq of 8 Ω/◻) on plastic substrates. The novel tri-layer electrode allows for the fabrication of inverted PSCs without the additional ZnO interfacial layer commonly deposited between ITO and the photoactive layer. This allows for the preparation of thinner plastic solar cells using less material than conventional architectures. Initial studies involving the newly realized architecture (tri-layer electrode/P3HT:PCBM/PEDOT:PSS/Ag) have shown great promise for the transition from ITO to other viable electrodes in organic electronics

  16. Identifying Potential Area and Financial Prospects of Rooftop Solar Photovoltaics (PV

    Directory of Open Access Journals (Sweden)

    Sarawut Ninsawat

    2016-10-01

    Full Text Available In an urban area, the roof is the only available surface that can be utilized for installing solar photovoltaics (PV, and the active surface area depends on the type of roof. Shadows on a solar panel can be caused by nearby tall buildings, construction materials such as water tanks, or the roof configuration itself. The azimuth angle of the sun varies, based on the season and the time of day. Therefore, the simulation of shadow for one or two days or using the rule of thumb may not be sufficient to evaluate shadow effects on solar panels throughout the year. In this paper, a methodology for estimating the solar potential of solar PV on rooftops is presented, which is particularly applicable to urban areas. The objective of this method is to assess how roof type and shadow play a role in potentiality and financial benefit. The method starts with roof type extraction from high-resolution satellite imagery, using Object Base Image Analysis (OBIA, the generation of a 3D structure from height data and roof type, the simulation of shadow throughout the year, and the identification of potential and financial prospects. Based on the results obtained, the system seems to be adequate for calculating the financial benefits of solar PV to a very fine scale. The payback period varied from 7–13 years depending on the roof type, direction, and shadow impact. Based on the potentiality, a homeowner can make a profit of up to 200%. This method could help homeowners to identify potential roof area and economic interest.

  17. The polymer gel electrolyte based on poly(methyl methacrylate) and its application in quasi-solid-state dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Yang Hongxun; Huang Miaoliang; Wu Jihuai; Lan Zhang; Hao Sancun; Lin Jianming

    2008-01-01

    Using poly(methyl methacrylate) as polymer host, ethylene carbonate, 1,2-propanediol carbonate and dimethyl carbonate as organic mixture solvents, sodium iodide and iodine as source of I - /I 3 - , a polymer gel electrolyte PMMA-EC/PC/DMC-NaI/I 2 with ionic conductivity of 6.89 mS cm -1 was prepared. Based on the polymer gel electrolyte, a quasi-solid-state dye-sensitized solar cell (DSSC) was fabricated. The quasi-solid-state DSSC possessed a good long-term stability and a light-to-electrical energy conversion efficiency of 4.78% under irradiation of 100 mW cm -2 simulated sunlight, which is almost equal to that of DSSC with a liquid electrolyte

  18. Efficiency increase in flexible bulk heterojunction solar cells with a nano-patterned indium zinc oxide anode

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dong Hwan; Seifter, Jason; Heeger, Alan J. [Center for Polymers and Organic Solids, University of California at Santa Barbara, Santa Barbara, California 93106-5090 (United States); Park, Jong Hyeok [School of Chemical Engineering and SAINT, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Choi, Dae-Geun [Nano-Mechanical Systems Research Division, Korea Institute of Machinery and Materials (KIMM), 171 Jang-dong, Yuseong-gu, Daejeon, 305-343 (Korea, Republic of)

    2012-11-15

    Efficient flexible bulk-heterojunction polymer solar cells based on PCDTBT/PC{sub 70}BM were successfully fabricated by a simple nano-imprint technique. The flexible nano-patterned IZO anode with ordered periodic dot structures led to improved light absorption and increased interfacial contact area between the anode and polymer as well as between the polymer and cathode. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Low-temperature, solution-processed aluminum-doped zinc oxide as electron transport layer for stable efficient polymer solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Qianqian [College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101 (China); Bao, Xichang, E-mail: baoxc@qibebt.ac.cn [Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101 (China); Yu, Jianhua [College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Zhu, Dangqiang [Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101 (China); Zhang, Qian [College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Gu, Chuantao [Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101 (China); Dong, Hongzhou [College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Yang, Renqiang [Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101 (China); Dong, Lifeng, E-mail: DongLifeng@qust.edu.cn [College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Department of Physics, Hamline University, St. Paul, MN 55104 (United States)

    2016-04-30

    A simple low-temperature solution-processed zinc oxide (ZnO) and aluminum-doped ZnO (AZO) were synthesized and investigated as an electron transport layer (ETL) for inverted polymer solar cells. A solar cell with a blend of poly(4,8-bis-alkyloxy-benzo[1,2-b:4,5-b′] dithiophene-alt-alkylcarbonyl-thieno [3,4-b] thiophene) and (6,6)-phenyl-C71-butyric acid methyl ester as an active layer and AZO as ETL demonstrates a high power conversion efficiency (PCE) of 7.36% under the illumination of AM 1.5G, 100 mW/cm{sup 2}. Compared to the cells with ZnO ETL (PCE of 6.85%), the PCE is improved by 7.45% with the introduction of an AZO layer. The improved PCE is ascribed to the enhanced short circuit current density, which results from the electron transport property of the AZO layer. Moreover, AZO is a more stable interfacial layer than ZnO. The PCE of the solar cells with AZO as ETL retain 85% of their original value after storage for 120 days, superior to the 39% of cells with ZnO ETL. The results above indicate that a simple low-temperature solution-processed AZO film is an efficient and economical ETL for high-performance inverted polymer solar cells. Due to its environmental friendliness, good electrical properties, and simple preparation approach, AZO has the potential to be applied in high-performance, large-scale industrialization of solar cells and other electronic devices. - Highlights: • ZnO and AZO were synthesized by a simple low-temperature solution-processed method. • AZO films show high transmittance and conductivity. • The photovoltaic performance can be improved with AZO as ETL. • AZO-based devices demonstrate excellent stability, with 85% retained after 120 days.

  20. Interplay Between Side Chain Pattern, Polymer Aggregation, and Charge Carrier Dynamics in PBDTTPD:PCBM Bulk-Heterojunction Solar Cells

    KAUST Repository

    Dyer-Smith, Clare

    2015-05-01

    Poly(benzo[1,2-b:4,5-b′]dithiophene–alt–thieno[3,4-c]pyrrole-4,6-dione) (PBDTTPD) polymer donors with linear side-chains yield bulk-heterojunction (BHJ) solar cell power conversion efficiencies (PCEs) of about 4% with phenyl-C71-butyric acid methyl ester (PC71BM) as the acceptor, while a PBDTTPD polymer with a combination of branched and linear substituents yields a doubling of the PCE to 8%. Using transient optical spectroscopy it is shown that while the exciton dissociation and ultrafast charge generation steps are not strongly affected by the side chain modifications, the polymer with branched side chains exhibits a decreased rate of nongeminate recombination and a lower fraction of sub-nanosecond geminate recombination. In turn the yield of long-lived charge carriers increases, resulting in a 33% increase in short circuit current (J sc). In parallel, the two polymers show distinct grazing incidence X-ray scattering spectra indicative of the presence of stacks with different orientation patterns in optimized thin-film BHJ devices. Independent of the packing pattern the spectroscopic data also reveals the existence of polymer aggregates in the pristine polymer films as well as in both blends which trap excitons and hinder their dissociation.

  1. Human projected area factors for detailed direct and diffuse solar radiation analysis

    DEFF Research Database (Denmark)

    Kubaha, K.; Fiala, D.; Toftum, Jørn

    2004-01-01

    Projected area factors for individual segments of the standing and sedentary human body were modelled for both direct and diffuse solar radiation using detailed 3D geometry and radiation models. The local projected area factors with respect to direct short-wave radiation are a function of the solar...

  2. Simulation of a solar collector array consisting of two types of solar collectors, with and without convection barrier

    DEFF Research Database (Denmark)

    Bava, Federico; Furbo, Simon; Perers, Bengt

    2015-01-01

    The installed area of solar collectors in solar heating fields is rapidly increasing in Denmark. In this scenario even relatively small performance improvements may lead to a large increase in the overall energy production. Both collectors with and without polymer foil, functioning as convection...... barrier, can be found on the Danish market. Depending on the temperature level at which the two types of collectors operate, one can perform better than the other. This project aimed to study the behavior of a 14 solar collector row made of these two different kinds of collectors, in order to optimize...... the composition of the row. Actual solar collectors available on the Danish market (models HT-SA and HT-A 35-10 manufactured by ARCON Solar A/S) were used for this analysis. To perform the study, a simulation model in TRNSYS was developed based on the Danish solar collector field in Braedstrup. A parametric...

  3. Decohesion Kinetics in Polymer Organic Solar Cells

    KAUST Repository

    Bruner, Christopher; Novoa, Fernando; Dupont, Stephanie; Dauskardt, Reinhold

    2014-01-01

    © 2014 American Chemical Society. We investigate the role of molecular weight (MW) of the photoactive polymer poly(3-hexylthiophene) (P3HT) on the temperature-dependent decohesion kinetics of bulk heterojunction (BHJ) organic solar cells (OSCs). The MW of P3HT has been directly correlated to its carrier field effect mobilities and the ambient temperature also affects OSC in-service performance and P3HT arrangement within the BHJ layer. Under inert conditions, time-dependent decohesion readily occurs within the BHJ layer at loads well below its fracture resistance. We observe that by increasing the MW of P3HT, greater resistance to decohesion is achieved. However, failure consistently occurs within the BHJ layer representing the weakest layer within the device stack. Additionally, it was found that at temperatures below the glass transition temperature (∼41-45 °C), decohesion was characterized by brittle failure via molecular bond rupture. Above the glass transition temperature, decohesion growth occurred by a viscoelastic process in the BHJ layer, leading to a significant degree of viscoelastic deformation. We develop a viscoelastic model based on molecular relaxation to describe the resulting behavior. The study has implications for OSC long-term reliability and device performance, which are important for OSC production and implementation.

  4. Decohesion Kinetics in Polymer Organic Solar Cells

    KAUST Repository

    Bruner, Christopher

    2014-12-10

    © 2014 American Chemical Society. We investigate the role of molecular weight (MW) of the photoactive polymer poly(3-hexylthiophene) (P3HT) on the temperature-dependent decohesion kinetics of bulk heterojunction (BHJ) organic solar cells (OSCs). The MW of P3HT has been directly correlated to its carrier field effect mobilities and the ambient temperature also affects OSC in-service performance and P3HT arrangement within the BHJ layer. Under inert conditions, time-dependent decohesion readily occurs within the BHJ layer at loads well below its fracture resistance. We observe that by increasing the MW of P3HT, greater resistance to decohesion is achieved. However, failure consistently occurs within the BHJ layer representing the weakest layer within the device stack. Additionally, it was found that at temperatures below the glass transition temperature (∼41-45 °C), decohesion was characterized by brittle failure via molecular bond rupture. Above the glass transition temperature, decohesion growth occurred by a viscoelastic process in the BHJ layer, leading to a significant degree of viscoelastic deformation. We develop a viscoelastic model based on molecular relaxation to describe the resulting behavior. The study has implications for OSC long-term reliability and device performance, which are important for OSC production and implementation.

  5. Decohesion kinetics in polymer organic solar cells.

    Science.gov (United States)

    Bruner, Christopher; Novoa, Fernando; Dupont, Stephanie; Dauskardt, Reinhold

    2014-12-10

    We investigate the role of molecular weight (MW) of the photoactive polymer poly(3-hexylthiophene) (P3HT) on the temperature-dependent decohesion kinetics of bulk heterojunction (BHJ) organic solar cells (OSCs). The MW of P3HT has been directly correlated to its carrier field effect mobilities and the ambient temperature also affects OSC in-service performance and P3HT arrangement within the BHJ layer. Under inert conditions, time-dependent decohesion readily occurs within the BHJ layer at loads well below its fracture resistance. We observe that by increasing the MW of P3HT, greater resistance to decohesion is achieved. However, failure consistently occurs within the BHJ layer representing the weakest layer within the device stack. Additionally, it was found that at temperatures below the glass transition temperature (∼41-45 °C), decohesion was characterized by brittle failure via molecular bond rupture. Above the glass transition temperature, decohesion growth occurred by a viscoelastic process in the BHJ layer, leading to a significant degree of viscoelastic deformation. We develop a viscoelastic model based on molecular relaxation to describe the resulting behavior. The study has implications for OSC long-term reliability and device performance, which are important for OSC production and implementation.

  6. Roll-to-Roll Processing of Inverted Polymer Solar Cells using Hydrated Vanadium(VOxide as a PEDOT:PSS Replacement

    Directory of Open Access Journals (Sweden)

    Frederik C. Krebs

    2011-01-01

    Full Text Available The use of hydrated vanadium(Voxide as a replacement of the commonly employed hole transporting material PEDOT:PSS was explored in this work. Polymer solar cells were prepared by spin coating on glass. Polymer solar cells and modules comprising 16 serially connected cells were prepared using full roll-to-roll (R2R processing of all layers. The devices were prepared on flexible polyethyleneterphthalate (PET and had the structure PET/ITO/ZnO/P3HT:PCBM/V2O5·(H2On/Ag. The ITO and silver electrodes were processed and patterned by use of screen printing. The zinc oxide, P3HT:PCBM and vanadium(Voxide layers were processed by slot-die coating. The hydrated vanadium(Voxide layer was slot-die coated using an isopropanol solution of vanadyl-triisopropoxide (VTIP. Coating experiments were carried out to establish the critical thickness of the hydrated vanadium(Voxide layer by varying the concentration of the VTIP precursor over two orders of magnitude. Hydrated vanadium(Voxide layers were characterized by profilometry, scanning electron microscopy, energy dispersive X-ray spectroscopy, and grazing incidence wide angle X-ray scattering. The power conversion efficiency (PCE for completed modules was up to 0.18%, in contrast to single cells where efficiencies of 0.4% were achieved. Stability tests under indoor and outdoor conditions were accomplished over three weeks on a solar tracker.

  7. Molecular design of novel fullerene-based acceptors for enhancing the open circuit voltage in polymer solar cells

    Science.gov (United States)

    Tajbakhsh, Mahmood; Kariminasab, Mohaddeseh; Ganji, Masoud Darvish; Alinezhad, Heshmatollah

    2017-12-01

    Organic solar cells, especially bulk hetero-junction polymer solar cells (PSCs), are the most successful structures for applications in renewable energy. The dramatic improvement in the performance of PSCs has increased demand for new conjugated polymer donors and fullerene derivative acceptors. In the present study, quantum chemical calculations were performed for several representative fullerene derivatives in order to determine their frontier orbital energy levels and electronic structures, thereby helping to enhance their performance in PSC devices. We found correlations between the theoretical lowest unoccupied molecular orbital levels and electrophilicity index of various fullerenes with the experimental open circuit voltage of photovoltaic devices according to the poly(3-hexylthiophene) (P3HT):fullerene blend. The correlations between the structure and descriptors may facilitate screening of the best fullerene acceptor for the P3HT donor. Thus, we considered fullerenes with new functional groups and we predicted the output factors for the corresponding P3HT:fullerene blend devices. The results showed that fullerene derivatives based on thieno-o-quinodimethane-C60 with a methoxy group will have enhanced photovoltaic properties. Our results may facilitate the design of new fullerenes and the development of favorable acceptors for use in photovoltaic applications.

  8. Transparent conductive ZnO layers on polymer substrates: Thin film deposition and application in organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Dosmailov, M. [Institute of Applied Physics, Johannes Kepler University Linz, A-4040 Linz (Austria); Leonat, L.N. [Linz Institute for Organic Solar Cells (LIOS)/Institute of Physical Chemistry, Johannes Kepler University Linz, A-4040 Linz (Austria); Patek, J. [Institute of Applied Physics, Johannes Kepler University Linz, A-4040 Linz (Austria); Roth, D.; Bauer, P. [Institute of Experimental Physics, Johannes Kepler University Linz, A-4040 Linz (Austria); Scharber, M.C.; Sariciftci, N.S. [Linz Institute for Organic Solar Cells (LIOS)/Institute of Physical Chemistry, Johannes Kepler University Linz, A-4040 Linz (Austria); Pedarnig, J.D., E-mail: johannes.pedarnig@jku.at [Institute of Applied Physics, Johannes Kepler University Linz, A-4040 Linz (Austria)

    2015-09-30

    Aluminum doped ZnO (AZO) and pure ZnO thin films are grown on polymer substrates by pulsed-laser deposition and the optical, electrical, and structural film properties are investigated. Laser fluence, substrate temperature, and oxygen pressure are varied to obtain transparent, conductive, and stoichiometric AZO layers on polyethylene terephthalate (PET) that are free of cracks. At low fluence (1 J/cm{sup 2}) and low pressure (10{sup −3} mbar), AZO/PET samples of high optical transmission in the visible range, low electrical sheet resistance, and high figure of merit (FOM) are produced. AZO films on fluorinated ethylene propylene have low FOM. The AZO films on PET substrates are used as electron transport layer in inverted organic solar cell devices employing P3HT:PCBM as photovoltaic polymer-fullerene bulk heterojunction. - Highlights: • Aluminum doped and pure ZnO thin films are grown on polyethylene terephthalate. • Growth parameters laser fluence, temperature, and gas pressure are optimized. • AZO films on PET have high optical transmission and electrical conductance (FOM). • Organic solar cells on PET using AZO as electron transport layer are made. • Power conversion efficiency of these OSC devices is measured.

  9. Hybrid polymer-inorganic photovoltaic cells

    NARCIS (Netherlands)

    Beek, W.J.E.; Janssen, R.A.J.; Merhari, L.

    2009-01-01

    Composite materials made from organic conjugated polymers and inorganic semiconductors such as metal oxides attract considerable interest for photovoltaic applications. Hybrid polymer-inorganic solar cells offer the opportunity to combine the beneficial properties of the two materials in charge

  10. Highly efficient inverted polymer solar cells based on a cross-linkable water-/alcohol-soluble conjugated polymer interlayer.

    Science.gov (United States)

    Zhang, Kai; Zhong, Chengmei; Liu, Shengjian; Mu, Cheng; Li, Zhengke; Yan, He; Huang, Fei; Cao, Yong

    2014-07-09

    A cross-linkable water/alcohol soluble conjugated polymer (WSCP) material poly[9,9-bis(6'-(N,N-diethylamino)propyl)-fluorene-alt-9,9-bis(3-ethyl(oxetane-3-ethyloxy)-hexyl) fluorene] (PFN-OX) was designed. The cross-linkable nature of PFN-OX is good for fabricating inverted polymer solar cells (PSCs) with well-defined interface and investigating the detailed working mechanism of high-efficiency inverted PSCs based on poly[4,8-bis(2-ethylhexyloxyl)benzo[1,2-b:4,5-b']dithio-phene-2,6-diyl-alt-ethylhexyl-3-fluorothithieno[3,4-b]thiophene-2-carboxylate-4,6-diyl] (PTB7) and (6,6)-phenyl-C71-butyric acid methyl ester (PC71BM) blend active layer. The detailed working mechanism of WSCP materials in high-efficiency PSCs were studied and can be summarized into the following three effects: a) PFN-OX tunes cathode work function to enhance open-circuit voltage (Voc); b) PFN-OX dopes PC71BM at interface to facilitate electron extraction; and c) PFN-OX extracts electrons and blocks holes to enhance fill factor (FF). On the basis of this understanding, the hole-blocking function of the PFN-OX interlayer was further improved with addition of a ZnO layer between ITO and PFN-OX, which led to inverted PSCs with a power conversion efficiency of 9.28% and fill factor high up to 74.4%.

  11. Polymeric materials for solar thermal applications

    CERN Document Server

    Köhl, Michael; Papillon, Philippe; Wallner, Gernot M; Saile, Sandrin

    2012-01-01

    Bridging the gap between basic science and technological applications, this is the first book devoted to polymers for solar thermal applications.Clearly divided into three major parts, the contributions are written by experts on solar thermal applications and polymer scientists alike. The first part explains the fundamentals of solar thermal energy especially for representatives of the plastics industry and researchers. Part two then goes on to provide introductory information on polymeric materials and processing for solar thermal experts. The third part combines both of these fields, dis

  12. Charge separation dynamics in a narrow band gap polymer-PbS nanocrystal blend for efficient hybrid solar cells

    NARCIS (Netherlands)

    Piliego, Claudia; Manca, Marianna; Kroon, Renee; Yarema, Maksym; Szendrei, Krisztina; Andersson, Mats R.; Heiss, Wolfgang; Loi, Maria A.

    2012-01-01

    We have demonstrated efficient hybrid solar cells based on lead sulfide (PbS) nanocrystals and a narrow band gap polymer, poly[{2,5-bis(2-hexyldecyl)-2,3,5,6-tetrahydro-3,6-dioxopyrrolo[3,4-c]pyrrole-1,4-diyl}-alt-{[2,2'-(1,4-phenylene)bis-thiophene]-5,5'-diyl}], (PDPPTPT). An opportune mixing of

  13. Dye sensitized photovoltaic cells: Attaching conjugated polymers to zwitterionic ruthenium dyes

    DEFF Research Database (Denmark)

    Krebs, Frederik C; Biancardo, M.

    2006-01-01

    The synthesis of a zwitterionic ruthenium dye that binds to anatase surfaces and has a built-in functionality that allows for the attachment of a conjugated polymer chain is presented. The system was found to adsorb on the surface of anatase anchored by the ruthenium dye. Two types of devices were...... prepared: standard photoelectrochemical (PEC) solar cells and polymer solar cells. The PEC solar cells employed a sandwich geometry between TiO2 nanoporous photoanodes and Pt counter electrodes using LiI/I-2 in CH3CN as an electrolyte. The polymer solar cells employed planar anatase electrodes...

  14. Photon-induced formation of CdS nanocrystals in selected areas of polymer matrices

    International Nuclear Information System (INIS)

    Athanassiou, Athanassia; Cingolani, Roberto; Tsiranidou, Elsa; Fotakis, Costas; Laera, Anna Maria; Piscopiello, Emanuela; Tapfer, Leander

    2007-01-01

    We demonstrate light-induced formation of semiconductor quantum dots in TOPAS registered polymer matrix with very high control of their size and their spatial localization. Irradiation with UV laser pulses of polymer films embedding Cd thiolate precursors results in the formation of cadmium sulfide nanocrystals well confined in the irradiation area, through a macroscopically nondestructive procedure for the host matrix. With increasing number of laser pulses, we accomplish the formation of nanoparticles with gradually increasing dimensions, resulting in the dynamic change of the spectra emitted by the formed nanocomposite areas. The findings are supported by x-ray diffraction and transmission electron microscopy measurements

  15. Trifluoromethyl-Substituted Large Band-Gap Polytriphenylamines for Polymer Solar Cells with High Open-Circuit Voltages

    Directory of Open Access Journals (Sweden)

    Shuwang Yi

    2018-01-01

    Full Text Available Two large band-gap polymers (PTPACF and PTPA2CF based on polytriphenylamine derivatives with the introduction of electron-withdrawing trifluoromethyl groups were designed and prepared by Suzuki polycondensation reaction. The chemical structures, thermal, optical and electrochemical properties were characterized in detail. From the UV-visible absorption spectra, the PTPACF and PTPA2CF showed the optical band gaps of 2.01 and 2.07 eV, respectively. The cyclic voltammetry (CV measurement displayed the deep highest occupied molecular orbital (HOMO energy levels of −5.33 and −5.38 eV for PTPACF and PTPA2CF, respectively. The hole mobilities, determined by field-effect transistor characterization, were 2.5 × 10−3 and 1.1 × 10−3 cm2 V−1 S−1 for PTPACF and PTPA2CF, respectively. The polymer solar cells (PSCs were tested under the conventional device structure of ITO/PEDOT:PSS/polymer:PC71BM/PFN/Al. All of the PSCs showed the high open circuit voltages (Vocs with the values approaching 1 V. The PTPACF and PTPA2CF based PSCs gave the power conversion efficiencies (PCEs of 3.24% and 2.40%, respectively. Hence, it is a reliable methodology to develop high-performance large band-gap polymer donors with high Vocs through the feasible side-chain modification.

  16. Small-bandgap polymer solar cells with unprecedented short-circuit current density and high fill factor.

    Science.gov (United States)

    Choi, Hyosung; Ko, Seo-Jin; Kim, Taehyo; Morin, Pierre-Olivier; Walker, Bright; Lee, Byoung Hoon; Leclerc, Mario; Kim, Jin Young; Heeger, Alan J

    2015-06-03

    Small-bandgap polymer solar cells (PSCs) with a thick bulk heterojunction film of 340 nm exhibit high power conversion efficiencies of 9.40% resulting from high short-circuit current density (JSC ) of 20.07 mA cm(-2) and fill factor of 0.70. This remarkable efficiency is attributed to maximized light absorption by the thick active layer and minimized recombination by the optimized lateral and vertical morphology through the processing additive. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. High-photovoltage all-polymer solar cells based on a diketopyrrolopyrrole-isoindigo acceptor polymer

    NARCIS (Netherlands)

    Li, Z.; Xu, X.; Zhang, W.; Genene, Z.; Mammo, W.; Yartsev, A.; Andersson, M.R.; Janssen, R.A.J.; Wang, E.

    2017-01-01

    In this work, we synthesized and characterized two new n-type polymers PTDPP-PyDPP and PIID-PyDPP. The former polymer is composed of pyridine-flanked diketopyrrolopyrrole (PyDPP) and thiophene-flanked diketopyrrolopyrrole (TDPP). The latter polymer consists of PyDPP and isoindigo (IID). PIID-PyDPP

  18. Solar for Your Present Home. San Francisco Bay Area Edition.

    Science.gov (United States)

    Barnaby, Charles S.; And Others

    This publication provides information about present uses of solar energy for space, water, and swimming pool heating that are practical for the San Francisco Bay area. It attempts to provide interested persons with the information needed to make decisions regarding installations of solar heating systems. The point of view taken is that any…

  19. Estimation of solar collector area for water heating in buildings of Malaysia

    Science.gov (United States)

    Manoj Kumar, Nallapaneni; Sudhakar, K.; Samykano, M.

    2018-04-01

    Solar thermal energy (STE) utilization for water heating at various sectorial levels became popular and still growing especially for buildings in the residential area. This paper aims to study and identify the solar collector area needed based on the user requirements in an efficient manner. A step by step mathematical approach is followed to estimate the area in Sq. m. Four different cases each having different hot water temperatures (45°, 50°C, 55°C, and 60°C) delivered by the solar water heating system (SWHS) for typical residential application at Kuala Lumpur City, Malaysia is analysed for the share of hot and cold water mix. As the hot water temperature levels increased the share of cold water mix is increased to satisfy the user requirement temperature, i.e. 40°C. It is also observed that as the share of hot water mix is reduced, the collector area can also be reduced. Following this methodology at the installation stage would help both the user and installers in the effective use of the solar resource.

  20. Luminescent GdVO{sub 4}:Sm{sup 3+} quantum dots enhance power conversion efficiency of bulk heterojunction polymer solar cells by Förster resonance energy transfer

    Energy Technology Data Exchange (ETDEWEB)

    Bishnoi, Swati [CSIR-Network of Institutes for Solar Energy, New Delhi 110001 (India); Luminescent Materials and Devices Group, CSIR-National Physical Laboratory, New Delhi 110012 (India); Academy of Scientific and Innovative Research (AcSIR), CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012 (India); Gupta, Vinay, E-mail: drvinaygupta@netscape.net; Sharma, Gauri D.; Chand, Suresh [CSIR-Network of Institutes for Solar Energy, New Delhi 110001 (India); Organic and Hybrid Solar Cells Group, Physics of Energy Harvesting Division, CSIR-National Physical Laboratory, New Delhi 110012 (India); Sharma, Chhavi; Kumar, Mahesh [Ultrafast Optoelectronics and Terahertz Photonics Lab, Physics of Energy Harvesting Division, CSIR-National Physical Laboratory, New Delhi 110012 (India); Haranath, D. [CSIR-Network of Institutes for Solar Energy, New Delhi 110001 (India); Luminescent Materials and Devices Group, CSIR-National Physical Laboratory, New Delhi 110012 (India); Naqvi, Sheerin [Luminescent Materials and Devices Group, CSIR-National Physical Laboratory, New Delhi 110012 (India)

    2016-07-11

    In this work, we report enhanced power conversion efficiency (PCE) of bulk heterojunction polymer solar cells by Förster resonance energy transfer (FRET) from samarium-doped luminescent gadolinium orthovanadate (GdVO{sub 4}:Sm{sup 3+}) quantum dots (QDs) to polythieno[3,4-b]-thiophene-co-benzodithiophene (PTB7) polymer. The photoluminescence emission spectrum of GdVO{sub 4}:Sm{sup 3+} QDs overlaps with the absorption spectrum of PTB7, leading to FRET from GdVO{sub 4}:Sm{sup 3+} to PTB7, and significant enhancements in the charge-carrier density of excited and polaronic states of PTB7 are observed. This was confirmed by means of femtosecond transient absorption spectroscopy. The FRET from GdVO{sub 4}:Sm{sup 3+} QDs to PTB7 led to a remarkable increase in the power conversion efficiency (PCE) of PTB7:GdVO{sub 4}:Sm{sup 3+}:PC{sub 71}BM ([6,6]-phenyl-C{sub 71}-butyric acid methyl ester) polymer solar cells. The PCE in optimized ternary blend PTB7:GdVO{sub 4}:Sm{sup 3+}:PC{sub 71}BM (1:0.1:1.5) is increased to 8.8% from 7.2% in PTB7:PC{sub 71}BM. This work demonstrates the potential of rare-earth based luminescent QDs in enhancing the PCE of polymer solar cells.

  1. Large-area Fabry-Perot modulator based on electro-optic polymers

    DEFF Research Database (Denmark)

    Benter, Nils; Bertram, Ralph Peter; Soergel, Elisabeth

    2006-01-01

    We present a large-area electro-optic Fabry-Perot modulator utilizing a photoaddressable bis-azo polymer placed between two dielectric mirrors with an open aperture of 2 cm. A modulation efficientcy of 1% at an effective modulation voltage of 20 V for a wavelength of 1.55 mymeter is demonstrated...

  2. Optimal heliocentric trajectories for solar sail with minimum area

    Science.gov (United States)

    Petukhov, Vyacheslav G.

    2018-05-01

    The fixed-time heliocentric trajectory optimization problem is considered for planar solar sail with minimum area. Necessary optimality conditions are derived, a numerical method for solving the problem is developed, and numerical examples of optimal trajectories to Mars, Venus and Mercury are presented. The dependences of the minimum area of the solar sail from the date of departure from the Earth, the time of flight and the departing hyperbolic excess of velocity are analyzed. In particular, for the rendezvous problem (approaching a target planet with zero relative velocity) with zero departing hyperbolic excess of velocity for a flight duration of 1200 days it was found that the minimum area-to-mass ratio should be about 12 m2/kg for trajectory to Venus, 23.5 m2/kg for the trajectory to Mercury and 25 m2/kg for trajectory to Mars.

  3. Roll-to-Roll Inkjet Printing and Photonic Sintering of Electrodes for ITO Free Polymer Solar Cell Modules and Facile Product Integration

    DEFF Research Database (Denmark)

    Angmo, Dechan; Larsen-Olsen, Thue Trofod; Jørgensen, Mikkel

    2013-01-01

    Small polymer solar cell modules that are manufactured without indium-tin-oxide using only roll-to-roll printing and coating techniques under ambient conditions enable facile integration into a simple demonstrator (for example a laser pointer). Semitransparent front electrode grid structures prep...

  4. Morphologically controlled ZnO nanostructures as electron transport materials in polymer-based organic solar cells

    International Nuclear Information System (INIS)

    Choi, Kyu-Chae; Lee, Eun-Jin; Baek, Youn-Kyoung; Lim, Dong-Chan; Kang, Yong-Cheol; Kim, Yang-Do; Kim, Ki Hyun; Kim, Jae Pil; Kim, Young-Kuk

    2015-01-01

    Highlights: • Enhanced efficiency of solar cells using ZnO nanocrystals for charge transport. • Morphology of the charge transport layer is controlled. • Mixture of nanoparticles and nanorods are advantageous for cell efficiency. - ABSTRACT: The morphology of ZnO electron transport layers based on ZnO nanoparticles were modified with incorporation of ZnO nanorods via their co-deposition from mixed colloidal solution of nanoparticles and nanorods. In particular, the short circuit current density and the fill factor of the constructed photovoltaic device were simultaneously improved by applying mixture of ZnO nanoparticles and nanorods. As a result, a large improvement of power conversion efficiency up to 9% for the inverted organic solar cells having a blend of low band gap polymers and fullerene derivative as an active layer was demonstrated with the morphologically controlled ZnO electron transport layer.

  5. Dataset on the absorption of PCDTBT:PC70BM layers and the electro-optical characteristics of air-stable, large-area PCDTBT:PC70BM-based polymer solar cell modules, deposited with a custom built slot-die coater

    Directory of Open Access Journals (Sweden)

    Dimitar I. Kutsarov

    2017-04-01

    Full Text Available The data presented in this article is related to the research article entitled “Fabrication of air-stable, large-area, PCDTBT:PC70BM polymer solar cell modules using a custom built slot-die coater” (D.I. Kutsarov, E. New, F. Bausi, A. Zoladek-Lemanczyk, F.A. Castro, S.R.P. Silva, 2016 [1]. The repository name and reference number for the raw data from the abovementioned publication can be found under: https://doi.org/10.15126/surreydata.00813106. In this data in brief article, additional information about the absorption properties of PCDTBT:PC70BM layers deposited from a 12.5 mg/ml and 15 mg/ml photoactive layer dispersion are shown. Additionally, the best and average J-V curves of single cells, fabricated from the 10 and 15 mg/ml dispersions, are presented.

  6. Device operation of organic tandem solar cells

    NARCIS (Netherlands)

    Hadipour, A.; de Boer, B.; Blom, P. W. M.

    2008-01-01

    A generalized methodology is developed to obtain the current-voltage characteristic of polymer tandem solar cells by knowing the electrical performance of both sub cells. We demonstrate that the electrical characteristics of polymer tandem solar cells are correctly predicted for both the series and

  7. EFFICIENT POLYMER PHOTOVOLTAIC DEVICES BASED ON POLYMER D-A BLENDS

    Institute of Scientific and Technical Information of China (English)

    Xian-yu Deng; Li-ping Zheng; Yue-qi Mo; Gang Yu; Wei Yang; Wen-hua Weng; Yong Cao

    2001-01-01

    Recent work demonstrated that efficient solar-energy conversion could be achieved in polymer photovoltaic cells (PVCs) based on interpenetrating bi-continuous networks[1,2]. In this paper we present a comprehensive study on improving energy conversion efficiencies of PVCs based on composite films of MEHPPV and fullerene derivatives. Carrier collection efficiency of ca. 30% el/ph and energy conversion efficiency of 3.9% were achieved at 500 nm. At reverse bias of 15 V, the photosensitivity reached 0.8 A/W, corresponding to a quantum efficiency over 100% el/ph. These results suggest that high efficiency photoelectric conversion can be achieved in polymer devices with M-P-M structure. These devices are promising for practical applications such as plastic solar cells and plastic photodetectors.

  8. Roll-to-Roll Processing of Inverted Polymer Solar Cells using Hydrated Vanadium(V)Oxide as a PEDOT:PSS Replacement.

    Science.gov (United States)

    Espinosa, Nieves; Dam, Henrik Friis; Tanenbaum, David M; Andreasen, Jens W; Jørgensen, Mikkel; Krebs, Frederik C

    2011-01-11

    The use of hydrated vanadium(V)oxide as a replacement of the commonly employed hole transporting material PEDOT:PSS was explored in this work. Polymer solar cells were prepared by spin coating on glass. Polymer solar cells and modules comprising 16 serially connected cells were prepared using full roll-to-roll (R2R) processing of all layers. The devices were prepared on flexible polyethyleneterphthalate (PET) and had the structure PET/ITO/ZnO/P3HT:PCBM/V₂O₅·(H₂O) n /Ag. The ITO and silver electrodes were processed and patterned by use of screen printing. The zinc oxide, P3HT:PCBM and vanadium(V)oxide layers were processed by slot-die coating. The hydrated vanadium(V)oxide layer was slot-die coated using an isopropanol solution of vanadyl-triisopropoxide (VTIP). Coating experiments were carried out to establish the critical thickness of the hydrated vanadium(V)oxide layer by varying the concentration of the VTIP precursor over two orders of magnitude. Hydrated vanadium(V)oxide layers were characterized by profilometry, scanning electron microscopy, energy dispersive X-ray spectroscopy, and grazing incidence wide angle X-ray scattering. The power conversion efficiency (PCE) for completed modules was up to 0.18%, in contrast to single cells where efficiencies of 0.4% were achieved. Stability tests under indoor and outdoor conditions were accomplished over three weeks on a solar tracker.

  9. Impact of the Nature of the Side-Chains on the Polymer-Fullerene Packing in the Mixed Regions of Bulk Heterojunction Solar Cells

    KAUST Repository

    Wang, Tonghui; Ravva, Mahesh Kumar; Bredas, Jean-Luc

    2016-01-01

    Polymer-fullerene packing in mixed regions of a bulk heterojunction solar cell is expected to play a major role in exciton-dissociation, charge-separation, and charge-recombination processes. Here, molecular dynamics simulations are combined with density functional theory calculations to examine the impact of nature and location of polymer side-chains on the polymer-fullerene packing in mixed regions. The focus is on poly-benzo[1,2-b:4,5-b′]dithiophene-thieno[3,4-c]pyrrole-4,6-dione (PBDTTPD) as electron-donating material and [6,6]-phenyl-C61-butyric acid methyl ester (PC61BM) as electron-accepting material. Three polymer side-chain patterns are considered: i) linear side-chains on both benzodithiophene (BDT) and thienopyrroledione (TPD) moieties; ii) two linear side-chains on BDT and a branched side-chain on TPD; and iii) two branched side-chains on BDT and a linear side-chain on TPD. Increasing the number of branched side-chains is found to decrease the polymer packing density and thereby to enhance PBDTTPD–PC61 BM mixing. The nature and location of side-chains are found to play a determining role in the probability of finding PC61BM molecules close to either BDT or TPD. The electronic couplings relevant for the exciton-dissociation and charge-recombination processes are also evaluated. Overall, the findings are consistent with the experimental evolution of the PBDTTPD–PC61BM solar-cell performance as a function of side-chain patterns. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

  10. Impact of the Nature of the Side-Chains on the Polymer-Fullerene Packing in the Mixed Regions of Bulk Heterojunction Solar Cells

    KAUST Repository

    Wang, Tonghui

    2016-06-20

    Polymer-fullerene packing in mixed regions of a bulk heterojunction solar cell is expected to play a major role in exciton-dissociation, charge-separation, and charge-recombination processes. Here, molecular dynamics simulations are combined with density functional theory calculations to examine the impact of nature and location of polymer side-chains on the polymer-fullerene packing in mixed regions. The focus is on poly-benzo[1,2-b:4,5-b′]dithiophene-thieno[3,4-c]pyrrole-4,6-dione (PBDTTPD) as electron-donating material and [6,6]-phenyl-C61-butyric acid methyl ester (PC61BM) as electron-accepting material. Three polymer side-chain patterns are considered: i) linear side-chains on both benzodithiophene (BDT) and thienopyrroledione (TPD) moieties; ii) two linear side-chains on BDT and a branched side-chain on TPD; and iii) two branched side-chains on BDT and a linear side-chain on TPD. Increasing the number of branched side-chains is found to decrease the polymer packing density and thereby to enhance PBDTTPD–PC61 BM mixing. The nature and location of side-chains are found to play a determining role in the probability of finding PC61BM molecules close to either BDT or TPD. The electronic couplings relevant for the exciton-dissociation and charge-recombination processes are also evaluated. Overall, the findings are consistent with the experimental evolution of the PBDTTPD–PC61BM solar-cell performance as a function of side-chain patterns. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

  11. Pilot solar hybrid power station in rural area, Rompin, Pahang, Malaysia

    International Nuclear Information System (INIS)

    Iszuan Shah Syed Ismail; Azmi Omar; Hamdan Hassan

    2006-01-01

    Malaysia has considerable number of widely deployed small rural area. These hamlets are very much associated with Orang Asli residents. They get their source of energy by candle or kerosene light while some richer community can afford a generator set. The usual or normal system using solar as a source for electricity at rural area is standalone system for each house. As for this project, a pilot centralized solar power station will be the source of electricity to light up the fifteen houses at Kampung Denai, Rompin, Pahang, Malaysia. This system will be the first ever built for the orang asli settlement at Pahang. The objectives of this project are to design and install the solar power station at remote location and to develop standard design of stand-alone solar power station suitable for Malaysia. Orang Asli residents at Kampung Denai was chosen because there is a school for the Orang Asli children. Moreover, the remote communities are living in stratification, which makes electrical wiring easier. Furthermore, the remote area is far from the last transmission line and cumbersome to bring diesel through the rough and unpredictable land road. The main domestic energy is for residential purposes (e.g. small lighting unit, radio, television, video, etc). The generator capacity is 18.6 kW. The solar sizing was done both for the home and school appliances at Kampung Denai. The maximum demand measured was 4195.35 kW. The pilot centralized solar power station consists of 10 kW photovoltaic panels, 10 kW inverter, 150 kWh battery and other balance of system. A generator set with capacity of 12.5 kVA is installed for back up and during monsoon season. This paper will present status of the system, operational and maintenance issues, load profile of the solar power station and economics and system design of the whole system

  12. Time-dependent efficiency measurements of polymer solar cells with dye additives: unexpected initial increase of efficiency

    Science.gov (United States)

    Bandaccari, Kyle J.; Chesmore, Grace E.; Bugaj, Mitchel; Valverde, Parisa Tajalli-Tehrani; Barber, Richard P.; McNelis, Brian J.

    2018-04-01

    We report the effects of the addition of two azo-dye additives on the time-dependent efficiency of polymer solar cells. Although the maximum efficiencies of devices containing different amounts of dye do not vary greatly over the selected concentration range, the time dependence results reveal a surprising initial increase in efficiency in some samples. We observe this effect to be correlated with a leakage current, although a specific mechanism is not yet identified. We also present the measured lifetimes of these solar cells, and find that variations in dye concentrations produce a small effect at most. Characterization of the bulk heterojunction layer (active layer) morphology using atomic-force microscope (AFM) imaging reveals reordering patterns which suggest that the primary effects of the dyes arise via structural, not absorptive, characteristics.

  13. Effect of solution processed and thermally evaporated interlayers on the performance of backgrated polymer solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Jayawardena, K.D.G.I.; Amarasinghe, K.M.P.; Nismy, N.A. [Advanced Technology Institute, Department of Electronic Engineering, University of Surrey, Guildford GU2 7XH (United Kingdom); Mills, C.A. [Advanced Technology Institute, Department of Electronic Engineering, University of Surrey, Guildford GU2 7XH (United Kingdom); Advanced Coatings Group, Surface Engineering Department, Tata Steel Research Development and Technology, Swinden Technology Centre, Rotherham, S60 3AR (United Kingdom); Silva, S.R.P., E-mail: s.silva@surrey.ac.uk [Advanced Technology Institute, Department of Electronic Engineering, University of Surrey, Guildford GU2 7XH (United Kingdom)

    2015-09-30

    Polymer solar cells are fast gaining momentum as a potential solution towards low cost sustainable energy generation. However, the performance of architectures is known to be limited by the thin film nature of the active layer which, although required due to low charge carrier mobilities, limits the optical coupling to the active layer. The formation of periodic backgratings has been proposed as a solution to this problem. Here, we investigate the effect of solution processed and thermally evaporated interlayers on the performance of backgrated polymer solar cells. Analysis of device performance under standard conditions indicates higher power conversion efficiencies with the incorporation of the evaporated interlayer (5.7%) over a sol–gel processed interlayer (4.9%). This is driven by a more conformal coating as evidenced through two orders of magnitude higher electron mobilities (10{sup −5} versus 10{sup −7} cm{sup 2} V{sup −1} s{sup −1}) as well as the balanced electron and hole transport observed for the former architecture. It is believed that these results will catalyse further development of such device engineering concepts for improved optical coupling in thin film photovoltaics. - Highlights: • Effect of interlayers on backgrated photovoltaic devices is tested. • Evaporated interlayers lead to better device performance. • Better charge extraction is observed for evaporated interlayers.

  14. Molded polymer solar water heater

    Science.gov (United States)

    Bourne, Richard C.; Lee, Brian E.

    2004-11-09

    A solar water heater has a rotationally-molded water box and a glazing subassembly disposed over the water box that enhances solar gain and provides an insulating air space between the outside environment and the water box. When used with a pressurized water system, an internal heat exchanger is integrally molded within the water box. Mounting and connection hardware is included to provide a rapid and secure method of installation.

  15. Dynamics, Miscibility, and Morphology in Polymer-Molecule Blends: The Impact of Chemical Functionality

    KAUST Repository

    Do, Khanh

    2015-10-22

    In the quest to improve the performance of organic bulk-heterojunction solar cells, many recent efforts have focused on developing molecular and polymer alternatives to commonly used fullerene acceptors. Here, molecular dynamics simulations are used to investigate polymer-molecule blends comprised of the polymer donor poly(3-hexylthiophene) (P3HT) with a series of acceptors based on trialkylsilylethynyl-substituted pentacene. A matrix of nine pentacene derivatives, consisting of systematic chemical variation both in the nature of the alkyl groups and electron-withdrawing moieties appended to the acene, is used to draw connections between the chemical structure of the acene acceptor and the nanoscale properties of the polymer-molecule blend. These connections include polymer and molecular diffusivity, donor-acceptor packing and interfacial (contact) area, and miscibility. The results point to the very significant role that seemingly modest changes in chemical structure play during the formation of polymer-molecule blend morphologies.

  16. Dynamics, Miscibility, and Morphology in Polymer-Molecule Blends: The Impact of Chemical Functionality

    KAUST Repository

    Do, Khanh; Risko, Chad; Anthony, John E; Amassian, Aram; Bredas, Jean-Luc

    2015-01-01

    In the quest to improve the performance of organic bulk-heterojunction solar cells, many recent efforts have focused on developing molecular and polymer alternatives to commonly used fullerene acceptors. Here, molecular dynamics simulations are used to investigate polymer-molecule blends comprised of the polymer donor poly(3-hexylthiophene) (P3HT) with a series of acceptors based on trialkylsilylethynyl-substituted pentacene. A matrix of nine pentacene derivatives, consisting of systematic chemical variation both in the nature of the alkyl groups and electron-withdrawing moieties appended to the acene, is used to draw connections between the chemical structure of the acene acceptor and the nanoscale properties of the polymer-molecule blend. These connections include polymer and molecular diffusivity, donor-acceptor packing and interfacial (contact) area, and miscibility. The results point to the very significant role that seemingly modest changes in chemical structure play during the formation of polymer-molecule blend morphologies.

  17. Effects of acetone-soaking treatment on the performance of polymer solar cells based on P3HT/PCBM bulk heterojunction

    International Nuclear Information System (INIS)

    Liu Yu-Xuan; Lü Long-Feng; Ning Yu; Lu Yun-Zhang; Lu Qi-Peng; Zhang Chun-Mei; Fang Yi; Hu Yu-Feng; Lou Zhi-Dong; Teng Feng; Hou Yan-Bing; Tang Ai-Wei

    2014-01-01

    The improvement of the acetone-soaking treatment to the performance of polymer solar cells based on the P3HT/PCBM bulk heterojunction is reported. Undergoing acetone-soaking, the PCBM does not distribute uniformly in the vertical direction, a PCBM enrichment layer forms on the top of the active layer, which is beneficial to the collection of the carriers and blocking the inverting diffusion carriers. X-ray photoelectron spectroscopy (XPS) analysis reveals that the PCBM weight ratio on the top of the active layer increases by 20% after the acetone-soaking treatment. Due to the nonuniform distribution of PCBM, the short-circuit current density, the open-circuit voltage, and the fill factor are enhanced significantly. Finally, the power conversion efficiency of the acetone-soaking device increases by 31% compared with the control device. (interdisciplinary physics and related areas of science and technology)

  18. Polythiophenes Comprising Conjugated Pendants for Polymer Solar Cells: A Review

    Directory of Open Access Journals (Sweden)

    Hsing-Ju Wang

    2014-03-01

    Full Text Available Polythiophene (PT is one of the widely used donor materials for solution-processable polymer solar cells (PSCs. Much progress in PT-based PSCs can be attributed to the design of novel PTs exhibiting intense and broad visible absorption with high charge carrier mobility to increase short-circuit current density (Jsc, along with low-lying highest occupied molecular orbital (HOMO levels to achieve large open circuit voltage (Voc values. A promising strategy to tailor the photophysical properties and energy levels via covalently attaching electron donor and acceptor pendants on PTs backbone has attracted much attention recently. The geometry, electron-donating capacity, and composition of conjugated pendants are supposed to be the crucial factors in adjusting the conformation, energy levels, and photovoltaic performance of PTs. This review will go over the most recent approaches that enable researchers to obtain in-depth information in the development of PTs comprising conjugated pendants for PSCs.

  19. Molecular understanding of the open-circuit voltage of polymer: Fullerene solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Shunsuke; Orimo, Akiko; Benten, Hiroaki; Ito, Shinzaburo [Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo, Kyoto (Japan); Ohkita, Hideo [Japan Science and Technology Agency (JST), PRESTO, Saitama (Japan); Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo, Kyoto (Japan)

    2012-02-15

    The origin of open-circuit voltage (V{sub OC}) was studied for polymer solar cells based on a blend of poly(3-hexylthiophene) (P3HT) and seven fullerene derivatives with different LUMO energy levels and side chains. The temperature dependence of J-V characteristics was analyzed by an equivalent circuit model. As a result, V{sub OC} increased with the decrease in the saturation current density J{sub 0} of the device. Furthermore, J{sub 0} was dependent on the activation energy E{sub A} for J{sub 0}, which is related to the HOMO-LUMO energy gap between P3HT and fullerene. Interestingly, the pre-exponential term J{sub 00} for J{sub 0} was larger for pristine fullerenes than for substituted fullerene derivatives, suggesting that the electronic coupling between molecules also has substantial impact on V{sub OC}. This is probably because the recombination is non-diffusion-limited reaction depending on electron transfer at the P3HT/fullerene interface. In summary, the origin of V{sub OC} is ascribed not only to the relative HOMO-LUMO energy gap but also to the electronic couplings between fullerene/fullerene and polymer/fullerene. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Conjugated Polymer Solar Cells

    Science.gov (United States)

    2006-05-01

    thermal gravimetry analysis (TGA)............... 12 2.6 Photoluminescence (PL) spectroscopy... gravimetry analysis (TGA) Thermal analysis of polymer films has been accomplished by TGA and DSC methods with the aid of Perkin-Elmer Series 7 Analysers...The MEH-PPV/acceptor films were prepared by spin-casting of the resulting mixture (with or without precipitate ) on glass substrates of diameter 23 mm

  1. Hybrid nanocrystal/polymer solar cells based on tetrapod-shaped CdSexTe1-x nanocrystals

    International Nuclear Information System (INIS)

    Zhou Yi; Li Yunchao; Zhong Haizheng; Hou Jianhui; Ding Yuqin; Yang Chunhe; Li Yongfang

    2006-01-01

    A series of ternary tetrapodal nanocrystals of CdSe x Te 1-x with x = 0 (CdTe), 0.23, 0.53, 0.78, 1 (CdSe) were synthesized and used to fabricate hybrid nanocrystal/polymer solar cells. Herein, the nanocrystals acted as electron acceptors, and poly(2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylene vinylene) (MEH-PPV) was used as an electron donor. It was found that the open circuit voltage (V oc ), short-circuit current (J sc ) and power conversion efficiency (η) of the devices all increased with increasing Se content in the CdSe x Te 1-x nanocrystals under identical experimental conditions. The solar cell based on the blend of tetrapodal CdSe nanocrystals and MEH-PPV (9:1 w/w) showed the highest power conversion efficiency of 1.13% under AM 1.5, 80 mW cm -2 , and the maximum incident photon to converted current efficiency (IPCE) of the device reached 47% at 510 nm. The influence of nanocrystal composition on the photovoltaic properties of the hybrid solar cells was explained by the difference of the band level positions between MEH-PPV and the nanocrystals

  2. Tail state-assisted charge injection and recombination at the electron-collecting interface of P3HT:PCBM bulk-heterojunction polymer solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, He [Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544 (United States); Department of Electrical Engineering, Princeton University, Princeton, NJ 08544 (United States); Shah, Manas [Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Ganesan, Venkat [Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712 (United States); Chabinyc, Michael L. [Materials Department, University of California Santa Barbara, CA 93106 (United States); Loo, Yueh-Lin [Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544 (United States)

    2012-12-15

    The systematic insertion of thin films of P3HT and PCBM at the electron- and hole-collecting interfaces, respectively, in bulk-heterojunction polymer solar cells results in different extents of reduction in device characteristics, with the insertion of P3HT at the electron-collecting interface being less disruptive to the output currents compared to the insertion of PCBM at the hole-collecting interface. This asymmetry is attributed to differences in the tail state-assisted charge injection and recombination at the active layer-electrode interfaces. P3HT exhibits a higher density of tail states compared to PCBM; holes in these tail states can thus easily recombine with electrons at the electron-collection interface during device operation. This process is subsequently compensated by the injection of holes from the cathode into these tail states, which collectively enables net current flow through the polymer solar cell. The study presented herein thus provides a plausible explanation for why preferential segregation of P3HT to the cathode interface is inconsequential to device characteristics in P3HT:PCBM bulk-heterojunction solar cells. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Inverted polymer solar cells with Nafion® as the hole extraction layer: efficiency and lifetime studies

    Science.gov (United States)

    Manceau, Matthieu; Berson, Solenn

    2014-01-01

    The use of Nafion® as the hole extraction layer in polymer solar cells is demonstrated in this work. Inverted devices were built on plastic foil with the following architecture: PET/ITO/ZnO/P3HT:PCBM/Nafion®/Ag. The Nafion® was processed from a surfactant-free solution in alcoholic solvents on top of the active layer. Optimization of film thickness and annealing yielded fully functional devices with power conversion efficiency similar to others referenced, along with good operational stability.

  4. Electrical research on solar cells and photovoltaic materials

    Science.gov (United States)

    Orehotsky, J.

    1984-01-01

    The flat-plate solar cell array program which increases the service lifetime of the photovoltaic modules used for terrestrial energy applications is discussed. The current-voltage response characteristics of the solar cells encapsulated in the modules degrade with service time and this degradation places a limitation on the useful lifetime of the modules. The most desirable flat-plate array system involves solar cells consisting of highly polarizable materials with similar electrochemical potentials where the cells are encapsulated in polymers in which ionic concentrations and mobilities are negligibly small. Another possible mechanism limiting the service lifetime of the photovoltaic modules is the gradual loss of the electrical insulation characteristics of the polymer pottant due to water absorption or due to polymer degradation from light or heat effects. The mechanical properties of various polymer pottant materials and of electrochemical corrosion mechanisms in solar cell material are as follows: (1) electrical and ionic resistivity; (2) water absorption kinetics and water solubility limits; and (3) corrosion characterization of various metallization systems used in solar cell construction.

  5. Methodology for estimation of potential for solar water heating in a target area

    International Nuclear Information System (INIS)

    Pillai, Indu R.; Banerjee, Rangan

    2007-01-01

    Proper estimation of potential of any renewable energy technology is essential for planning and promotion of the technology. The methods reported in literature for estimation of potential of solar water heating in a target area are aggregate in nature. A methodology for potential estimation (technical, economic and market potential) of solar water heating in a target area is proposed in this paper. This methodology links the micro-level factors and macro-level market effects affecting the diffusion or adoption of solar water heating systems. Different sectors with end uses of low temperature hot water are considered for potential estimation. Potential is estimated at each end use point by simulation using TRNSYS taking micro-level factors. The methodology is illustrated for a synthetic area in India with an area of 2 sq. km and population of 10,000. The end use sectors considered are residential, hospitals, nursing homes and hotels. The estimated technical potential and market potential are 1700 m 2 and 350 m 2 of collector area, respectively. The annual energy savings for the technical potential in the area is estimated as 110 kW h/capita and 0.55 million-kW h/sq. km. area, with an annual average peak saving of 1 MW. The annual savings is 650-kW h per m 2 of collector area and accounts for approximately 3% of the total electricity consumption of the target area. Some of the salient features of the model are the factors considered for potential estimation; estimation of electrical usage pattern for typical day, amount of electricity savings and savings during the peak load. The framework is general and enables accurate estimation of potential of solar water heating for a city, block. Energy planners and policy makers can use this framework for tracking and promotion of diffusion of solar water heating systems. (author)

  6. Simultaneous Increase in Open-Circuit Voltage and Efficiency of Fullerene-Free Solar Cells through Chlorinated Thieno[3,4- b ]thiophene Polymer Donor

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Huan [Department; Chao, Pengjie [Department; Chen, Hui [Department; Mu, Zhao [Department; Chen, Wei [Materials; Institute; He, Feng [Department

    2017-08-09

    The chlorinated polymer, PBTCl, has been found to be an efficient donor in nonfullerene polymer solar cells (PSCs), which showed a blue-shifted absorbance compared to that of its fluorine analogue (PTB7-th) and resulted in more complementary light absorption with a nonfullerene acceptor, such as ITIC. Meanwhile, chlorine substitution lowered the HOMO level of PBTCl, which increased the open-circuit voltage of the corresponding polymer-based devices. The 2D GIWAXS analysis illustrated that the PBTCl/ITIC blend film exhibited a “face-on” orientation and scattering features of both PBTCl and ITIC, suggesting that the blend of PBTCl and ITIC was phase-separated and formed individual crystalline domains of the donor and acceptor, which promoted charge transfer in the bicontinuous film and eventually elevated the solar energy conversion efficiency. The PBTCl-based nonfullerene PSC exhibited a maximum PCE of 7.57% with a Voc of 0.91 V, which was an approximately 13% increasing in the PCE compared to that of the fluorine-analogue-based device.

  7. Efficient Polymer Solar Cells with Alcohol-Soluble Zirconium(IV Isopropoxide Cathode Buffer Layer

    Directory of Open Access Journals (Sweden)

    Zhen Luo

    2018-02-01

    Full Text Available Interfacial materials are essential to the performance and stability of polymer solar cells (PSCs. Herein, solution-processed zirconium(IV isopropoxide (Zr[OCH(CH32]4, ZrIPO has been employed as an efficient cathode buffer layer between the Al cathode and photoactive layer. The ZrIPO buffer layer is prepared simply via spin-coating its isopropanol solution on the photoactive layer at room temperature without any post-treatment. When using ZrIPO/Al instead of the traditionally used Ca/Al cathode in PSCs, the short-circuit current density (Jsc is significantly improved and the series resistance of the device is decreased. The power conversion efficiency (PCE of the P3HT:PCBM-based device with ZrIPO buffer layer reaches 4.47% under the illumination of AM1.5G, 100 mW/cm2. A better performance with PCE of 8.07% is achieved when a low bandgap polymer PBDTBDD is selected as donor material. The results indicate that ZrIPO is a promising electron collection material as a substitute of the traditional low-work-function cathode for high performance PSCs.

  8. The Application Study in Solar Energy Technology for Highway Service Area: A Case Study of West Lushan Highway Low-Carbon Service Area in China

    OpenAIRE

    Qin, Xiaochun; Shen, Yi; Shao, Shegang

    2015-01-01

    A lot of research works have been made concerning highway service area or solar technology and acquired great achievements. However, unfortunately, few works have been made combining the two topics together of highway service areas and solar energy saving to make a systemic research on solar technology application for highway service area. In this paper, taking West Lushan highway low-carbon service area in Jiangxi Province of China as the case study, the advantages, technical principles, and...

  9. Solar photovoltaic system design optimization by shading analysis to maximize energy generation from limited urban area

    International Nuclear Information System (INIS)

    Rachchh, Ravi; Kumar, Manoj; Tripathi, Brijesh

    2016-01-01

    Highlights: • Scheme to maximize total number of solar panels in a given area. • Enhanced energy output from a fixed area without compromising the efficiency. • Capacity and generated energy are enhanced by more than 25%. - Abstract: In the urban areas the demand of solar power is increasing due to better awareness about the emission of green house gases from conventional thermal power plants and significant decrease in the installation cost of residential solar power plants. But the land cost and the under utilization of available space is hindering its further growth. Under these circumstances, solar photovoltaic system installation needs to accommodate the maximum number of solar panels in either roof-top or land-mounted category. In this article a new approach is suggested to maximize the total number of solar panels in a given area with enhanced energy output without compromising the overall efficiency of the system. The number of solar panels can be maximized in a solar photovoltaic energy generation system by optimizing installation parameters such as tilt angle, pitch, gain factor, altitude angle and shading to improve the energy yield. In this paper mathematical analysis is done to show that the capacity and generated energy can be enhanced by more than 25% for a given land area by optimization various parameters.

  10. Solar lighting system delivery models for rural areas in developing countries

    Energy Technology Data Exchange (ETDEWEB)

    Koirala, Binod Prasad; Ortiz, Brisa [Freiburg Univ. (DE). Center for Renewable Energy (ZEE); Fraunhofer-Institut fuer Solare Energiesysteme (ISE), Freiburg im Breisgau (Germany); Modi, Anish [KTH Royal Inst. of Technology, Stockholm (Sweden); Mathur, Jyotirmay [Malaviya National Institute of Technology, Jaipur (India); Kafle, Nashib [Alternative Energy Promotion Center (AEPC), Kathmandu (Nepal)

    2011-07-01

    Many rural areas in developing countries will not have electricity access from the central grid for several years to come. Autonomous Solar Lighting Systems (SLS) are attractive and enviromentally friendly options for replacing kerosene lamps and providing basic lighting services to such areas. In order to highlight the benefits of these technologies, analysis of reduction in indoor air pollution due to replacement of kerosene lamp by SLS has been carried out. Use of SLS in place of kerosene lamps saves an equivalent of 1341 kg CO{sub 2} emissions per annum from each household. If a suitable mechanism is created, this amount of GHG emissions saving could alone be sufficient to finance solar lighting system for rural households. However, these technologies have not reached most of the poor population. In order to guarantee the access of solar lighting to the people at the Base of the Pyramid (BOP), strengths of different organizations working in the rural areas should be combined together to form successful business models. This paper will discuss business models to disseminate such services to needy people. A comparative study of SLS delivery models based on cash, credit, leasing, subsidy and service is performed. In addition, SWOT analysis for each model is employed. Further, Case studies of few projects to elaborate different models are also presented. If suitable business models for its delivery to rural people are considered, solar lighting systems are viable for providing basic lighting needs of rural areas in developing countries. (orig.)

  11. Synthesis and photovoltaic properties from inverted geometry cells and roll-to-roll coated large area cells from dithienopyrrole-based donor-acceptor polymers

    DEFF Research Database (Denmark)

    Yue, Wei; Larsen-Olsen, Thue Trofod; Hu, Xiaolian

    2013-01-01

    A series of donor-acceptor low band gap polymers composed of alternating dithienopyrrole or its derivative as donors and phthalimide or thieno[3,4-c]pyrrole-4,6-dione as acceptors (P1-P4) are synthesized by Stille coupling polymerization. All polymers show strong absorption in the visible region......, for P2 and P4 possessing thieno[3,4-c]pyrrole-4,6-dione as an acceptor, their film absorption covers the region of 500-800 nm and 500-750 nm respectively, which makes them attractive as low band gap polymer solar cell (PSC) materials. With the incorporation of thiophene bridges, P3 and P4 have 0...

  12. Fabrication and Optimization of Polymer Solar Cells Based on P3HT:PC70BM System

    Directory of Open Access Journals (Sweden)

    Huangzhong Yu

    2016-01-01

    Full Text Available Efficient bulk heterojunction (BHJ polymer solar cells (PSCs based on P3HT:PC70BM were fabricated by optimizing the processing parameters. The optimized thickness and annealing temperature have been found to be about 200 nm and 130°C. The effect of cathode interfacial layers on device performance is related to the formation of interfacial dipole. Furthermore, the effect of optimum ZnO interfacial thickness (~30 nm on device performance is attributed to good interfacial conductivity and its optical property. The metal electrode deposited in the slow rate has a better influence on device performance. Based on these optimal conditions, the best power conversion efficiency (PCE of 3.91% was obtained under AM 1.5G and 100 mW/cm2 illumination. This detailed investigation provides an important reference for the fabrication and optimization of polymer photovoltaic devices.

  13. Enhancement of Photovoltaic Performance by Utilizing Readily Accessible Hole Transporting Layer of Vanadium(V) Oxide Hydrate in a Polymer-Fullerene Blend Solar Cell.

    Science.gov (United States)

    Jiang, Youyu; Xiao, Shengqiang; Xu, Biao; Zhan, Chun; Mai, Liqiang; Lu, Xinhui; You, Wei

    2016-05-11

    Herein, a successful application of V2O5·nH2O film as hole transporting layer (HTL) instead of PSS in polymer solar cells is demonstrated. The V2O5·nH2O layer was spin-coated from V2O5·nH2O sol made from melting-quenching sol-gel method by directly using vanadium oxide powder, which is readily accessible and cost-effective. V2O5·nH2O (n ≈ 1) HTL is found to have comparable work function and smooth surface to that of PSS. For the solar cell containing V2O5·nH2O HTL and the active layer of the blend of a novel polymer donor (PBDSe-DT2PyT) and the acceptor of PC71BM, the PCE was significantly improved to 5.87% with a 30% increase over 4.55% attained with PSS HTL. Incorporation of V2O5·nH2O as HTL in the polymer solar cell was found to enhance the crystallinity of the active layer, electron-blocking at the anode and the light-harvest in the wavelength range of 400-550 nm in the cell. V2O5·nH2O HTL improves the charge generation and collection and suppress the charge recombination within the PBDSe-DT2PyT:PC71BM solar cell, leading to a simultaneous enhancement in Voc, Jsc, and FF. The V2O5·nH2O HTL proposed in this work is envisioned to be of great potential to fabricate highly efficient PSCs with low-cost and massive production.

  14. Design guideline for Si/organic hybrid solar cell with interdigitated back contact structure

    Science.gov (United States)

    Bimo Prakoso, Ari; Rusli; Li, Zeyu; Lu, Chenjin; Jiang, Changyun

    2018-03-01

    We study the design of Si/organic hybrid (SOH) solar cells with interdigitated back contact (IBC) structure. SOH solar cells formed between n-Si and poly(3,4-ethylenedioxythiophene): polystyrenesulphonate (PEDOT:PSS) is a promising concept that combines the excellent electronic properties of Si with the solution-based processing advantage of an organic polymer. The IBC cell structure is employed to minimize parasitic absorption losses in the organic polymer, eliminate grid shadowing losses, and allow excellent passivation of the front Si surface in one step over a large area. The influence of Si thickness, doping concentration and contact geometry are simulated in this study to optimize the performance of the SOH-IBC solar cell. We found that a high power conversion efficiency of >20% can be achieved for optimized SOH-IBC cell based on a thin c-Si substrate of 40 μm thickness.

  15. Anode engineering for photocurrent enhancement in a polymer solar cell and applied on plastic substrate

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Hsing-Wang; Li, Pei-Wen [Department of Electrical Engineering, National Central University, Chungli 32001 (China); Pei, Zingway; Cheng, Shor-Jeng; Hsieh, Wei-Shung [Graduate Institute of Optoelectronic Engineering, Department of Electrical Engineering, National Chung Hsing University, Taichung 40227 (China); Chen, Chun-Chao; Chan, Yi-Jen [Electronics and Optoelectronics Research Laboratories (EOL), Industrial Technology Research Institute (ITRI), Hsinchu 31040 (China)

    2011-02-15

    In this work, a multilayer structure, PEDOT:PSS/insulator/PEDOT:PSS (CIC), was designed and used as the anode in a polymer solar cell (PSC) to enhance the efficiency at low annealing temperature. The efficiency for PSC with CIC multilayers could increase around 22% as compared to the reference cell. The internal electrical field enhancement due to the effective work function increase by CIC multilayer was assumed and responded to efficiency enhancement. The work function of the multilayer anode structure was explored by an electrostatic force microscopy (EFM) analysis. The EFM result shows that the surface potential of PEDPT:PSS in CIC structure is around 0.6 V higher than PEDOT:PSS in reference structure, indicating a higher work function for PEDOT:PSS in multilayer structure. By the input photon-to-current conversion efficiency (IPCE) study, the major enhancement in photocurrent occurred at solar spectrum range of 400-650 nm. Further applied to plastic substrate, the PSC exhibits 9.2% enhancement in efficiency. (author)

  16. Conjugated polymer photovoltaic devices and materials

    International Nuclear Information System (INIS)

    Mozer, A.J.; Niyazi, Serdar Sariciftci

    2006-01-01

    The science and technology of conjugated polymer-based photovoltaic devices (bulk heterojunction solar cells) is highlighted focusing on three major issues, i.e. (i) nano-morphology optimization, (ii) improving charge carrier mobility, (iii) improving spectral sensitivity. Successful strategies towards improved photovoltaic performance are presented using various novel materials, including double-cable polymers, regioregular polymers and low bandgap polymers. The examples presented herein demonstrate that the bulk heterojunction concept is a viable approach towards developing photovoltaic systems by inexpensive solution-based fabrication technologies. (authors)

  17. Side-chain tunability of furan-containing low-band-gap polymers provides control of structural order in efficient solar cells

    KAUST Repository

    Yiu, Alan T.; Beaujuge, Pierre; Lee, Olivia P.; Woo, Claire; Toney, Michael F.; Frechet, Jean

    2012-01-01

    The solution-processability of conjugated polymers in organic solvents has classically been achieved by modulating the size and branching of alkyl substituents appended to the backbone. However, these substituents impact structural order and charge transport properties in thin-film devices. As a result, a trade-off must be found between material solubility and insulating alkyl content. It was recently shown that the substitution of furan for thiophene in the backbone of the polymer PDPP2FT significantly improves polymer solubility, allowing for the use of shorter branched side chains while maintaining high device efficiency. In this report, we use PDPP2FT to demonstrate that linear alkyl side chains can be used to promote thin-film nanostructural order. In particular, linear side chains are shown to shorten π-π stacking distances between backbones and increase the correlation lengths of both π-π stacking and lamellar spacing, leading to a substantial increase in the efficiency of bulk heterojunction solar cells. © 2011 American Chemical Society.

  18. Side-chain tunability of furan-containing low-band-gap polymers provides control of structural order in efficient solar cells

    KAUST Repository

    Yiu, Alan T.

    2012-02-01

    The solution-processability of conjugated polymers in organic solvents has classically been achieved by modulating the size and branching of alkyl substituents appended to the backbone. However, these substituents impact structural order and charge transport properties in thin-film devices. As a result, a trade-off must be found between material solubility and insulating alkyl content. It was recently shown that the substitution of furan for thiophene in the backbone of the polymer PDPP2FT significantly improves polymer solubility, allowing for the use of shorter branched side chains while maintaining high device efficiency. In this report, we use PDPP2FT to demonstrate that linear alkyl side chains can be used to promote thin-film nanostructural order. In particular, linear side chains are shown to shorten π-π stacking distances between backbones and increase the correlation lengths of both π-π stacking and lamellar spacing, leading to a substantial increase in the efficiency of bulk heterojunction solar cells. © 2011 American Chemical Society.

  19. Water-Induced Degradation of Polymer Solar Cells Studied by (H2O)-O-18 Labeling

    DEFF Research Database (Denmark)

    Norrman, Kion; Gevorgyan, Suren; Krebs, Frederik C

    2009-01-01

    Water-induced degradation of polymer photovoltaics based on the active materials poly(3-hexylthiophene) (P3HT) or poly[2-methoxy-5-(2′-ethylhexyloxy)-1,4-phenylenevinylene] (MEHPPV) was studied. The solar cell devices comprised a bulk heterojunction formed by the active material and [6,6]-phenyl......-C61-butyric acid methyl ester (PCBM) in a standard device geometry. The use of H218O in conjunction with time-of-flight secondary ion mass spectrometry enabled mapping of the parts of the device that were induced by water. A comparison was made between the two active materials and between devices...

  20. Improving polymer/nanocrystal hybrid solar cell performance via tuning ligand orientation at CdSe quantum dot surface.

    Science.gov (United States)

    Fu, Weifei; Wang, Ling; Zhang, Yanfang; Ma, Ruisong; Zuo, Lijian; Mai, Jiangquan; Lau, Tsz-Ki; Du, Shixuan; Lu, Xinhui; Shi, Minmin; Li, Hanying; Chen, Hongzheng

    2014-11-12

    Achieving superior solar cell performance based on the colloidal nanocrystals remains challenging due to their complex surface composition. Much attention has been devoted to the development of effective surface modification strategies to enhance electronic coupling between the nanocrystals to promote charge carrier transport. Herein, we aim to attach benzenedithiol ligands onto the surface of CdSe nanocrystals in the "face-on" geometry to minimize the nanocrystal-nanocrystal or polymer-nanocrystal distance. Furthermore, the "electroactive" π-orbitals of the benzenedithiol are expected to further enhance the electronic coupling, which facilitates charge carrier dissociation and transport. The electron mobility of CdSe QD films was improved 20 times by tuning the ligand orientation, and high performance poly[2,6-(4,4-bis(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b']-dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)] (PCPDTBT):CdSe nanocrystal hybrid solar cells were also achieved, showing a highest power conversion efficiency of 4.18%. This research could open up a new pathway to improve further the performance of colloidal nanocrystal based solar cells.

  1. Solar energy development impacts on land cover change and protected areas.

    Science.gov (United States)

    Hernandez, Rebecca R; Hoffacker, Madison K; Murphy-Mariscal, Michelle L; Wu, Grace C; Allen, Michael F

    2015-11-03

    Decisions determining the use of land for energy are of exigent concern as land scarcity, the need for ecosystem services, and demands for energy generation have concomitantly increased globally. Utility-scale solar energy (USSE) [i.e., ≥ 1 megawatt (MW)] development requires large quantities of space and land; however, studies quantifying the effect of USSE on land cover change and protected areas are limited. We assessed siting impacts of >160 USSE installations by technology type [photovoltaic (PV) vs. concentrating solar power (CSP)], area (in square kilometers), and capacity (in MW) within the global solar hot spot of the state of California (United States). Additionally, we used the Carnegie Energy and Environmental Compatibility model, a multiple criteria model, to quantify each installation according to environmental and technical compatibility. Last, we evaluated installations according to their proximity to protected areas, including inventoried roadless areas, endangered and threatened species habitat, and federally protected areas. We found the plurality of USSE (6,995 MW) in California is sited in shrublands and scrublands, comprising 375 km(2) of land cover change. Twenty-eight percent of USSE installations are located in croplands and pastures, comprising 155 km(2) of change. Less than 15% of USSE installations are sited in "Compatible" areas. The majority of "Incompatible" USSE power plants are sited far from existing transmission infrastructure, and all USSE installations average at most 7 and 5 km from protected areas, for PV and CSP, respectively. Where energy, food, and conservation goals intersect, environmental compatibility can be achieved when resource opportunities, constraints, and trade-offs are integrated into siting decisions.

  2. Soluble porphyrin polymers

    Science.gov (United States)

    Gust, Jr., John Devens; Liddell, Paul Anthony

    2015-07-07

    Porphyrin polymers of Structure 1, where n is an integer (e.g., 1, 2, 3, 4, 5, or greater) ##STR00001## are synthesized by the method shown in FIGS. 2A and 2B. The porphyrin polymers of Structure 1 are soluble in organic solvents such as 2-MeTHF and the like, and can be synthesized in bulk (i.e., in processes other than electropolymerization). These porphyrin polymers have long excited state lifetimes, making the material suitable as an organic semiconductor for organic electronic devices including transistors and memories, as well as solar cells, sensors, light-emitting devices, and other opto-electronic devices.

  3. Indium-Free PTB7/PC71BM Polymer Solar Cells with Solution-Processed Al:ZnO Electrodes on PET Substrates

    Directory of Open Access Journals (Sweden)

    P. Fuchs

    2016-01-01

    Full Text Available Inverted PTB7/PC71BM polymer solar cells are prepared on solution-processed Al:ZnO transparent contacts on PET substrates. Al:ZnO is deposited by a low temperature chemical bath deposition route (T < 100°C at any step to comply with the temperature sensitive substrate. A maximum conversion efficiency of 6.4% and 6.9% is achieved for the indium-free solar cells on PET and glass substrates, respectively. The devices are relatively stable in air whereby an initial efficiency loss in the order of 15% after storage for 15 days can be fully recovered by light soaking.

  4. Low band gap polymers for organic solar cells

    DEFF Research Database (Denmark)

    Bundgaard, Eva; Krebs, Frederik C

    2008-01-01

    The synthesis of copolymers based on thiophene, benzothiadiazole and benzo-bis-thiadiazole are described. The polymers were obtained by employing Stille cross coupling polymerization. The polymers were characterized by NMR, size exclusion chromatography, UV-vis and ultraviolet photoelectron...

  5. A Polymer Electrolyte for Dye-Sensitized Solar Cells Based on a Poly(Polyvinylidenefluoride-Co-Hexafluoropropylene)/Hydroxypropyl Methyl Cellulose Blend

    Science.gov (United States)

    Won, Lee Ji; Kim, Jae Hong; Thogiti, Suresh

    2018-03-01

    A novel polymer blend electrolyte for dye-sensitized solar cells (DSSCs) was synthesized by quasi-solidifying a liquid-based electrolyte containing an iodide/triiodide redox couple and supporting salts with a mixture of poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) and indigenous hydroxypropyl methyl cellulose (HPMC). A high ionic conductivity of 8.8 × 10-4 S cm-1 was achieved after introducing 5 wt% of HPMC with respect to the weight of PVDH-HFP. DSSCs were fabricated using gel polymer blend electrolytes, and the J-V characteristics of the fabricated devices were analyzed. Under optimal conditions, the photovoltaic conversion efficiency of cells with the novel HPMC-blended gel electrolyte (5.34%) was significantly greater than that of cells without HPMC (3.97%).

  6. Cheap type solar bioclimatic individual houses for residential areas

    Directory of Open Access Journals (Sweden)

    Mihailescu Teofil

    2016-01-01

    Full Text Available In the Romanian architectural practice for individual houses in residential areas, designing the architectural object in order to function together with the nature is neglected in the majority of the situations. This happens despite of a great variety of the solar bioclimatic solutions materialized in the traditional houses of all the Romanian geographical regions in a history of over 2000 years of traditional architecture. Unfortunately, in the local real estate realities, other choices are preferred in instead those of the solar bioclimatic architecture. The approach starts with a historical approach, analyzing several examples of traditional houses from all the regions of Romania, in order to identify the traditional bioclimatic solutions used to better adapt to the environment. This constitutes the source of inspiration for the modern cheap type solar bioclimatic houses presented. But a way of thinking should be changed for it, with the help of the Romanian state transformed in financial and legislative realities. These cheap type solar bioclimatic individual houses are destined for the middle class families and involve minimum costs for building and living, creating the best premises to efficiently use one or all of the complementary systems for producing, storage and/or transforming the energy from the environment (using solar, wind, water and/or earth energy.

  7. Final Closeout report for grant FG36-08GO18018, titled: Functional Multi-Layer Solution Processable Polymer Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Adam J. Moule

    2012-05-01

    The original objectives were: (1) Develop a method to deposit multiple conjugated polymer film layers and avoid the problem of dissolution from mutually solubility; (2) Use this deposition method to develop multi-layer polymer based solar cells with layers that are function specific; (3) characterize these layers and devices; (4) develop electrical and optical models that describe and predict the properties of the multi-layers; and (5) Ultimate efficiency goals are {approx}6.75% with J{sub sc} = 12 mA/cm{sup 2}, FF = 0.75, and V{sub oc} = 0.75. The question of whether photovoltaic (PV) cells will ever be able to replace fossil fuels as the main provider of electrical power is not just a question of device efficiency; it is a question of how much power can be provided for what price. It has been well documented that PV devices at 10% power efficiency can provide for all of the world's power needs without covering too much of the earth's surface. Assuming desert like cloud coverage, an area equivalent to the land area of Texas would have to be covered. However, it has also been shown that using the current state-of-the-art silicon devices, the price-per-Watt will never be low enough to be economically feasible for large-scale development. Solution-processable PV devices based on polymers are a very attractive alternative to traditional Silicon PV because this technology is much lower in materials cost and in environmentally toxic waste production. Solution-based polymers can be rapidly deposited using printing technologies and are compatible with light-weight flexible substrates that can increase the range of available PV applications. In the past ten years, the efficiency of polymer based PV devices has increased from {approx}1% to over 10%. The highest efficiency organic solar cells are based upon a single layer than consists of a mixture of donor and acceptor moieties. This one layer has multiple optical and electrical functions, so the design of a

  8. Novel Narrow Bandgap Photovoltaic Materials in Polymer Solar Cells%新型窄带隙聚合物太阳能电池光伏材料

    Institute of Scientific and Technical Information of China (English)

    辛铁军; 张秋禹; 陈少杰; 李伟; 刘梦娇; 周伦伟

    2012-01-01

    聚合物太阳能电池中给体材料的能级水平、带隙、光吸收系数、溶解性、成膜性及载流子迁移率是决定器件性能的关键因素.阐述了聚合物太阳能电池中给体材料的最新研究进展,着重介绍了含有苯并双噻吩的窄带隙D-A类型的共聚物,并对一些给体材料的能级水平优化结果做了简单的总结.最后指出了未来聚合物太阳能电池给体材料今后的发展方向.%The performance of devices is depend on the energy levels,bandgap, light absorption coeffcient, solubility, film forming ability and carrier mobility of the donor materials in polymer solar cells. The recent progress of the donor materials in polymer solar cells is reviewed, and the containing benzo bisthien of D-A copolymers is introduced. The energy levels optimization results of the donor materials are summarized. Furthermore, the future prospects of the domor materials in polymer solar cells are pointed out.

  9. Morphology of polymer-based films for organic photovoltaics

    OpenAIRE

    Ruderer, Matthias A.

    2012-01-01

    In this thesis, polymer-based films are examined for applications in organic photovoltaics. Polymer-fullerene, polymer-polymer and diblock copolymer systems are characterized as active layer materials. The focus is on experimental parameters influencing the morphology formation of the active layer in organic solar cells. Scattering and imaging techniques provide a complete understanding of the internal structure on different length scales which is compared to spectroscopic and photovoltaic pr...

  10. Molecular design of photovoltaic materials for polymer solar cells: toward suitable electronic energy levels and broad absorption.

    Science.gov (United States)

    Li, Yongfang

    2012-05-15

    Bulk heterojunction (BHJ) polymer solar cells (PSCs) sandwich a blend layer of conjugated polymer donor and fullerene derivative acceptor between a transparent ITO positive electrode and a low work function metal negative electrode. In comparison with traditional inorganic semiconductor solar cells, PSCs offer a simpler device structure, easier fabrication, lower cost, and lighter weight, and these structures can be fabricated into flexible devices. But currently the power conversion efficiency (PCE) of the PSCs is not sufficient for future commercialization. The polymer donors and fullerene derivative acceptors are the key photovoltaic materials that will need to be optimized for high-performance PSCs. In this Account, I discuss the basic requirements and scientific issues in the molecular design of high efficiency photovoltaic molecules. I also summarize recent progress in electronic energy level engineering and absorption spectral broadening of the donor and acceptor photovoltaic materials by my research group and others. For high-efficiency conjugated polymer donors, key requirements are a narrower energy bandgap (E(g)) and broad absorption, relatively lower-lying HOMO (the highest occupied molecular orbital) level, and higher hole mobility. There are three strategies to meet these requirements: D-A copolymerization for narrower E(g) and lower-lying HOMO, substitution with electron-withdrawing groups for lower-lying HOMO, and two-dimensional conjugation for broad absorption and higher hole mobility. Moreover, better main chain planarity and less side chain steric hindrance could strengthen π-π stacking and increase hole mobility. Furthermore, the molecular weight of the polymers also influences their photovoltaic performance. To produce high efficiency photovoltaic polymers, researchers should attempt to increase molecular weight while maintaining solubility. High-efficiency D-A copolymers have been obtained by using benzodithiophene (BDT), dithienosilole

  11. Biodegradable Polymers

    OpenAIRE

    Vroman, Isabelle; Tighzert, Lan

    2009-01-01

    Biodegradable materials are used in packaging, agriculture, medicine and other areas. In recent years there has been an increase in interest in biodegradable polymers. Two classes of biodegradable polymers can be distinguished: synthetic or natural polymers. There are polymers produced from feedstocks derived either from petroleum resources (non renewable resources) or from biological resources (renewable resources). In general natural polymers offer fewer advantages than synthetic polymers. ...

  12. 有机聚合物太阳能电池在建筑中的应用%Application of organic polymer solar cell in building

    Institute of Scientific and Technical Information of China (English)

    蔡家伟; 任海洋

    2016-01-01

    This paper describes the policies and regulations for solar photovoltaic technology in building as well as polymer materials used for preparing organic polymer solar sell. The semiconductor and the electric layer it forms and the structure of its element need to be modified to improve the efficiency of energy conversion, durability and stability of the solar cell. The exterior wall and side of window are supposed to be utilized effectively for solar energy in buildings. The organic polymer solar cell, featuring low cost and weight, can be prepared as flexible film commercially by ink-jet printing, screen print and slot die coating, which implies wide-ranging domestic, commercial and industrial applications in buildings.%介绍了太阳能光伏技术应用于建筑的相关政策法规及制造有机聚合物太阳能电池的高分子材料。为提高能源转化效率及太阳能电池的稳定性与耐久性,需要对半导体聚合物及形成的发电层和元件的构造进行改进。太阳能应用于建筑领域时,应有效利用外墙和窗户等侧面。有机聚合物太阳能电池具有成本低、质量轻的特点,可以通过狭缝型挤压式涂布、喷墨打印、丝网印刷等方法大规模制备,能制备成柔韧性薄膜。因此,太阳能在建筑领域有很大的应用前景。

  13. Impact of Nonfullerene Acceptor Core Structure on the Photophysics and Efficiency of Polymer Solar Cells

    KAUST Repository

    Alamoudi, Maha

    2018-03-02

    Small-molecule “nonfullerene” acceptors are promising alternatives to fullerene (PC61/71BM) derivatives often used in bulk heterojunction (BHJ) organic solar cells; yet, the efficiency-limiting processes and their dependence on the acceptor structure are not clearly understood. Here, we investigate the impact of the acceptor core structure (cyclopenta-[2,1-b:3,4-b′]dithiophene (CDT) versus indacenodithiophene (IDTT)) of malononitrile (BM)-terminated acceptors, namely CDTBM and IDTTBM, on the photophysical characteristics of BHJ solar cells. Using PCE10 as donor polymer, the IDTT-based acceptor achieves power conversion efficiencies (8.4%) that are higher than those of the CDT-based acceptor (5.6%) because of a concurrent increase in short-circuit current and open-circuit voltage. Using (ultra)fast transient spectroscopy we demonstrate that reduced geminate recombination in PCE10:IDTTBM blends is the reason for the difference in short-circuit currents. External quantum efficiency measurements indicate that the higher energy of interfacial charge-transfer states observed for the IDTT-based acceptor blends is the origin of the higher open-circuit voltage.

  14. Impact of Nonfullerene Acceptor Core Structure on the Photophysics and Efficiency of Polymer Solar Cells

    KAUST Repository

    Alamoudi, Maha; Khan, Jafar Iqbal; Firdaus, Yuliar; Wang, Kai; Andrienko, Denis; Beaujuge, Pierre; Laquai, Fré dé ric

    2018-01-01

    Small-molecule “nonfullerene” acceptors are promising alternatives to fullerene (PC61/71BM) derivatives often used in bulk heterojunction (BHJ) organic solar cells; yet, the efficiency-limiting processes and their dependence on the acceptor structure are not clearly understood. Here, we investigate the impact of the acceptor core structure (cyclopenta-[2,1-b:3,4-b′]dithiophene (CDT) versus indacenodithiophene (IDTT)) of malononitrile (BM)-terminated acceptors, namely CDTBM and IDTTBM, on the photophysical characteristics of BHJ solar cells. Using PCE10 as donor polymer, the IDTT-based acceptor achieves power conversion efficiencies (8.4%) that are higher than those of the CDT-based acceptor (5.6%) because of a concurrent increase in short-circuit current and open-circuit voltage. Using (ultra)fast transient spectroscopy we demonstrate that reduced geminate recombination in PCE10:IDTTBM blends is the reason for the difference in short-circuit currents. External quantum efficiency measurements indicate that the higher energy of interfacial charge-transfer states observed for the IDTT-based acceptor blends is the origin of the higher open-circuit voltage.

  15. MoO3 Thickness, Thermal Annealing and Solvent Annealing Effects on Inverted and Direct Polymer Photovoltaic Solar Cells

    Directory of Open Access Journals (Sweden)

    Guillaume Wantz

    2012-11-01

    Full Text Available Several parameters of the fabrication process of inverted polymer bulk heterojunction solar cells based on titanium oxide as an electron selective layer and molybdenum oxide as a hole selective layer were tested in order to achieve efficient organic photovoltaic solar cells. Thermal annealing treatment is a common process to achieve optimum morphology, but it proved to be damageable for the performance of this kind of inverted solar cells. We demonstrate using Auger analysis combined with argon etching that diffusion of species occurs from the MoO3/Ag top layers into the active layer upon thermal annealing. In order to achieve efficient devices, the morphology of the bulk heterojunction was then manipulated using the solvent annealing technique as an alternative to thermal annealing. The influence of the MoO3 thickness was studied on inverted, as well as direct, structure. It appeared that only 1 nm-thick MoO3 is enough to exhibit highly efficient devices (PCE = 3.8% and that increasing the thickness up to 15 nm does not change the device performance. 

  16. Improving charge transport property and energy transfer with carbon quantum dots in inverted polymer solar cells

    International Nuclear Information System (INIS)

    Liu, Chunyu; Chang, Kaiwen; Guo, Wenbin; Li, Hao; Shen, Liang; Chen, Weiyou; Yan, Dawei

    2014-01-01

    Carbon quantum dots (Cdots) are synthesized by a simple method and introduced into active layer of polymer solar cells (PSCs). The performance of doped devices was apparently improved, and the highest power conversion efficiency of 7.05% was obtained, corresponding to a 28.2% enhancement compared with that of the contrast device. The charge transport properties, resistance, impedance, and transient absorption spectrum are systematically investigated to explore how the Cdots affect on PSCs performance. This study reveals the importance of Cdots in enhancing the efficiency of PSCs and gives insight into the mechanism of charge transport improvement.

  17. Solar Lighting Technologies for Highway Green Rest Areas in China: Energy Saving Economic and Environmental Evaluation

    Directory of Open Access Journals (Sweden)

    Xiaochun Qin

    2015-01-01

    Full Text Available In this paper, taking Lushan West Sea highway green rest area in Jiangxi Province of China as the case study, the suitable types, applicability, advantages, and effective methods of solar lighting technologies for highway rest area were determined based on the analysis of characteristics of highway green rest area. It was proved that solar lighting technologies including the natural light guidance system, solar LED lighting, and maximizing natural light penetration were quite suitable for highway rest area in terms of lighting effects and energy and economic efficiency. The illuminance comparison of light guidance system with electrical lighting was made based on the on-site experiment. Also, the feasibility of natural light guidance system was well verified in terms of the lighting demand of the visitor centre in the rest area by the illuminance simulation analysis. The evaluation of the energy saving, economic benefits, and environmental effects of solar lighting technologies for highway rest area was, respectively, made in detail. It was proved that the application of solar technology for green lighting of highway rest facilities not only could have considerable energy saving capacity and achieve high economic benefits, but also make great contributions to the reduction of environment pollution.

  18. Achievement report for fiscal 1981 on Sunshine Program research and development. Research and development of amorphous solar cells (Research and development of amorphous solar cells on flexible film substrates); 1981 nendo amorphous taiyo denchi no kenkyu kaihatsu seika hokokusho. Kadosei film wo kiban to suru amorphous taiyo denchi no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1982-03-31

    Efforts will be made to reduce the cost, increase efficiency, and enlarge cell areas and, at the same time, to establish the foundation of a roll-up type solar cell manufacturing process which is required for the implementation of mass production. In an inverted pin/ITO (indium-tin oxide) hetero-face structure cell installed on a polymer film substrate, a conversion efficiency of 5.33% is achieved in the case of a solar cell whose n-layer is of the amorphous phase, and 6.36% in the case of a cell of the microcrystallized phase. A roll-up type glow discharge CVD (chemical vapor deposition) unit is designed and experimentally built, which is for the realization of large area cells. It is now duly expected that an undoped (i-type) a-Si:H film will be deposited to a thickness of approximately 5000A. As the result of a first-step screening conducted in search of amorphous solar cell sealing materials, some applicable plastic materials are selected. The future is bright of amorphous solar cells on polymer film substrates. (NEDO)

  19. Stable Inverted Low-Bandgap Polymer Solar Cells with Aqueous Solution Processed Low-Temperature ZnO Buffer Layers

    Directory of Open Access Journals (Sweden)

    Chunfu Zhang

    2016-01-01

    Full Text Available Efficient inverted low-bandgap polymer solar cells with an aqueous solution processed low-temperature ZnO buffer layer have been investigated. The low-bandgap material PTB-7 is employed so that more solar light can be efficiently harvested, and the aqueous solution processed ZnO electron transport buffer layer is prepared at 150°C so that it can be compatible with the roll-to-roll process. Power conversion efficiency (PCE of the inverted device reaches 7.12%, which is near the control conventional device. More importantly, the inverted device shows a better stability, keeping more than 90% of its original PCE after being stored for 625 hours, while PCE of the conventional device is only 75% of what it was. In addition, it is found that the ZnO thin film annealed in N2 can obviously increase PCE of the inverted device further to 7.26%.

  20. A study of ultraviolet solar radiation at Cairo urban area, Egypt

    Energy Technology Data Exchange (ETDEWEB)

    Robaa, S.M. [Cairo Univ., Giza (Egypt). Dept. of Astronomy and Meterology

    2004-07-01

    The monthly mean values of global, G, and ultraviolet, UV, solar radiation incident on a horizontal surface at Cairo urban area during the two different periods (1969-1973) and (1993-1997) are presented, analyzed and compared. The effect of urbanization processes on the solar radiation components is investigated and discussed. It was found that the total radiation of the two components, G and UV received at the urban area of Cairo during the period (1969-1973) highly exceeds the radiation received during the period (1993-1997) for all months of the year. The mean relative reduction of G and UV reached 17.4% and 27.4% respectively. A significant correlation between G and UV radiation has been established and the recommended correlation equation has been stated to estimate the values of UV radiation that are difficult to measure at any site in the zone of Lower Egypt. Also, a comparative study of the two radiation components, G and UV, at urban (Cairo) and rural (Bahtim) areas during the period (1993-1997) revealed that the urban area always has values of G and UV radiation distinctly lower than that found in rural area for all months of the year. Urban-rural mean reduction of G and UV reached 7.0% and 17.9% respectively. The ratio of the ultraviolet to global radiation (UV/G) are calculated and compared with other sites in the Arabian Peninsula. The effect of atmospheric dust on the measured solar radiation components is also investigated and discussed. (author)

  1. Toward High Performance Photovoltaic Cells based on Conjugated Polymers

    Science.gov (United States)

    2016-12-26

    polymer are complementary for enhancing the absorption of the solar spectrum while their energy bands are offset structure for facilitating charge ...display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ORGANIZATION. 1. REPORT DATE (DD-MM-YYYY)      28-12-2016 2...the small molecule and the polymer are complementary for enhancing the absorption of the solar spectrum while their energy bands are offset structure

  2. Ordering effects in benzo[1,2-b:4,5-b']difuran-thieno[3,4-c]pyrrole-4,6- dione polymers with >7% solar cell efficiency

    KAUST Repository

    Warnan, Julien; Cabanetos, Clement; El Labban, Abdulrahman; Hansen, Michael Ryan; Tassone, Christopher J.; Toney, Michael F.; Beaujuge, Pierre

    2014-01-01

    Benzo[1,2-b:4,5-b']difuran-thieno[3,4-c]pyrrole-4,6-dione (PBDFTPD) polymers prepared by microwave-assisted synthesis can achieve power conversion efficiencies (PCEs) >7% in bulk-heterojunction solar cells with phenyl-C61/71-butyric acid methyl

  3. Photoinduced charge separation at polymer-fullerene interfaces of BHJ solar cells (Conference Presentation)

    Science.gov (United States)

    Poluektov, Oleg G.; Niklas, Jens; Mardis, Kristy

    2016-09-01

    While photovoltaic cells are highly promising man-made devices for direct solar energy utilization, a number of fundamental questions about how the organic bulk heterojunction cell enables efficient long-lived and long-range charge separation remain unanswered. These questions were address by employing an advanced suite of EPR spectroscopy in combination with DFT calculations to study mechanism of charge separation at the polymer-fullerene interfaces of photo-active BHJ. Observed charge delocalization in BHJ upon photoinduced ET is analogous to that in organic donor-acceptor material. This is an efficient mechanism of charge stabilization in photosynthetic assemblies. Time-resolved EPR spectra show a strong polarization pattern for all polymer-fullerene blends under study, which is caused by non-Boltzmann population of the electron spin energy levels in the radical pairs. The first observation of this phenomenon was reported in natural and artificial photosynthetic assemblies, and comparison with these systems allows us to better understand charge separation processes in OPVs. The spectral analysis presented here, in combination with DFT calculations, shows that CS processes in OPV materials are similar to that in organic photosynthetic systems. This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences, under Contract DE-AC02-06CH11357 at Argonne National Laboratory.

  4. Ground water lifting in the remote and arid areas of Egypt using solar photovoltaic pumps

    International Nuclear Information System (INIS)

    Younes, M.A.

    2006-01-01

    An experimental study has been carried out at Mechanical and Electrical Research Institute, Qenater (300 N, 310 E), Egypt on a 2000 WP solar photovoltaic (PV) water pump. The main objective is to investigate the feasibility of utilizing solar energy in ground water lifting. A solar PV pumping system has been constructed as a prototype for a large-scale photovoltaic project in south of Egypt. Solar potential at the remote and arid areas of Egypt is discussed. Installation and operation factors as a function of environmental conditions are presented. Performance of the water pump has been evaluated. The water discharge and system efficiency has been estimated and presented. The changes in water discharge and system efficiency with change in solar radiation has been measured and presented. Preliminary results show that there is a huge potential and real-ability for solar PV submersible water pumping in the remote and arid areas of Egypt

  5. Slot-die Coating of a High Performance Copolymer in a Readily Scalable Roll Process for Polymer Solar Cells

    DEFF Research Database (Denmark)

    Helgesen, Martin; Carlé, Jon Eggert; Krebs, Frederik C

    2013-01-01

    reported compact coating/printing machine, which enables the preparation of PSCs that are directly scalable with full roll-to-roll processing. The positioning of the side-chains on the thiophene units proves to be very significant in terms of solubility of the polymers and consequently has a major impact...... on the device yield and process control. The most successful processing is accomplished with the polymer, PDTSTTz-4, that has the side-chains situated in the 4-position on the thiophene units. Inverted PSCs based on PDTSTTz-4 demonstrate high fill factors, up to 59%, even with active layer thicknesses well...... above 200 nm. Power conversion efficiencies of up to 3.5% can be reached with the roll-coated PDTSTTz-4:PCBM solar cells that, together with good process control and high device yield, designate PDTSTTz-4 as a convincing candidate for high-throughput roll-to-roll production of PSCs....

  6. Comparing the Device Physics and Morphology of Polymer Solar Cells Employing Fullerenes and Non-Fullerene Acceptors

    KAUST Repository

    Bloking, Jason T.

    2014-04-23

    There is a need to find electron acceptors for organic photovoltaics that are not based on fullerene derivatives since fullerenes have a small band gap that limits the open-circuit voltage (VOC), do not absorb strongly and are expensive. Here, a phenylimide-based acceptor molecule, 4,7-bis(4-(N-hexyl-phthalimide)vinyl)benzo[c]1,2,5-thiadiazole (HPI-BT), that can be used to make solar cells with VOC values up to 1.11 V and power conversion efficiencies up to 3.7% with two thiophene polymers is demonstrated. An internal quantum efficiency of 56%, compared to 75-90% for polymer-fullerene devices, results from less efficient separation of geminate charge pairs. While favorable energetic offsets in the polymer-fullerene devices due to the formation of a disordered mixed phase are thought to improve charge separation, the low miscibility (<5 wt%) of HPI-BT in polymers is hypothesized to prevent the mixed phase and energetic offsets from forming, thus reducing the driving force for charges to separate into the pure donor and acceptor phases where they can be collected. A small molecule electron acceptor, 4,7-bis(4-(N-hexyl-phthalimide)vinyl)benzo[c]1,2,5-thiadiazole (HPI-BT), achieves efficiencies of 3.7% and open-circuit voltage values of 1.11 V in bulk heterojunction (BHJ) devices with polythiophene donor materials. The lower internal quantum efficiency (56%) in these non-fullerene acceptor devices is attributed to an absence of the favorable energetic offsets resulting from nanoscale mixing of donor and acceptor found in comparable fullerene-based devices. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Inverted polymer solar cells with Nafion® as the hole extraction layer: efficiency and lifetime studies

    International Nuclear Information System (INIS)

    Manceau, Matthieu; Berson, Solenn

    2014-01-01

    The use of Nafion ®  as the hole extraction layer in polymer solar cells is demonstrated in this work. Inverted devices were built on plastic foil with the following architecture: PET/ITO/ZnO/P3HT:PCBM/Nafion ® /Ag. The Nafion ®  was processed from a surfactant-free solution in alcoholic solvents on top of the active layer. Optimization of film thickness and annealing yielded fully functional devices with power conversion efficiency similar to others referenced, along with good operational stability. (paper)

  8. Interplay of Interfacial Layers and Blend Composition To Reduce Thermal Degradation of Polymer Solar Cells at High Temperature.

    Science.gov (United States)

    Ben Dkhil, Sadok; Pfannmöller, Martin; Schröder, Rasmus R; Alkarsifi, Riva; Gaceur, Meriem; Köntges, Wolfgang; Heidari, Hamed; Bals, Sara; Margeat, Olivier; Ackermann, Jörg; Videlot-Ackermann, Christine

    2018-01-31

    The thermal stability of printed polymer solar cells at elevated temperatures needs to be improved to achieve high-throughput fabrication including annealing steps as well as long-term stability. During device processing, thermal annealing impacts both the organic photoactive layer, and the two interfacial layers make detailed studies of degradation mechanism delicate. A recently identified thermally stable poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl

  9. Donor-Acceptor Block Copolymers: Synthesis and Solar Cell Applications

    Directory of Open Access Journals (Sweden)

    Kazuhiro Nakabayashi

    2014-04-01

    Full Text Available Fullerene derivatives have been widely used for conventional acceptor materials in organic photovoltaics (OPVs because of their high electron mobility. However, there are also considerable drawbacks for use in OPVs, such as negligible light absorption in the visible-near-IR regions, less compatibility with donor polymeric materials and high cost for synthesis and purification. Therefore, the investigation of non-fullerene acceptor materials that can potentially replace fullerene derivatives in OPVs is increasingly necessary, which gives rise to the possibility of fabricating all-polymer (polymer/polymer solar cells that can deliver higher performance and that are potentially cheaper than fullerene-based OPVs. Recently, considerable attention has been paid to donor-acceptor (D-A block copolymers, because of their promising applications as fullerene alternative materials in all-polymer solar cells. However, the synthesis of D-A block copolymers is still a challenge, and therefore, the establishment of an efficient synthetic method is now essential. This review highlights the recent advances in D-A block copolymers synthesis and their applications in all-polymer solar cells.

  10. Effects of the Molybdenum Oxide/Metal Anode Interfaces on Inverted Polymer Solar Cells

    International Nuclear Information System (INIS)

    Wu Jiang; Guo Xiao-Yang; Xie Zhi-Yuan

    2012-01-01

    Inverted polymer solar cells with molybdenum oxide (MoO 3 ) as an anode buffer layer and different metals (Al or Ag) as anodes are studied. It is found that the inverted cell with a top Ag anode demonstrates enhanced charge collection and higher power conversion efficiency (PCE) compared to the cell with a top Al anode. An 18% increment of PCE is obtained by replacing Al with Ag as the top anode. Further studies show that an interfacial dipole pointing from MoO 3 to Al is formed at MoO 3 /Al interfaces due to electron transfer from Al to MoO 3 while this phenomenon cannot be observed at MoO 3 /Ag interfaces. It is speculated that the electric field at the MoO 3 /Al interface would hinder hole extraction, and hence reduce the short-circuit current

  11. Design, synthesis and photovoltaic properties of a series of new acceptor-pended conjugated polymers

    Institute of Scientific and Technical Information of China (English)

    Zhihong; Wu; Yongxiang; Zhu; Wei; Li; Yunping; Huang; Junwu; Chen; Chunhui; Duan; Fei; Huang; Yong; Cao

    2016-01-01

    A series of novel acceptor-pended conjugated polymers featuring a newly developed carbazole-derived unit are designed and synthesized. The relationships between chemical structure and optoelectronic properties of the polymers are systematically investigated.The control of UV-Vis absorption spectra and energy levels in resulting polymers are achieved by introducing suitable pended acceptor units. The photovoltaic properties of the resulting polymers are evaluated by blending the polymers with(6,6)-phenyl-C71-butyric acid methyl ester. The resulting solar cells exhibit moderate performances with high open-circuit voltage. Charge transport properties and morphology were investigated to understand the performance of corresponding solar cells.

  12. Solar Cycle Variations in Polar Cap Area Measured by the SuperDARN Radars

    Science.gov (United States)

    Imber, S. M.; Milan, S. E.; Lester, M.

    2013-12-01

    We present a long term study, from January 1996 - August 2012, of the latitude of the Heppner-Maynard Boundary (HMB) measured at midnight using the northern hemisphere SuperDARN radars. The HMB represents the equatorward extent of ionospheric convection, and is used in this study as a measure of the global magnetospheric dynamics and activity. We find that the yearly distribution of HMB latitudes is single-peaked at 64° magnetic latitude for the majority of the 17-year interval. During 2003 the envelope of the distribution shifts to lower latitudes and a second peak in the distribution is observed at 61°. The solar wind-magnetosphere coupling function derived by Milan et al. (2012) suggests that the solar wind driving during this year was significantly higher than during the rest of the 17-year interval. In contrast, during the period 2008-2011 HMB distribution shifts to higher latitudes, and a second peak in the distribution is again observed, this time at 68° magnetic latitude. This time interval corresponds to a period of extremely low solar wind driving during the recent extreme solar minimum. This is the first statistical study of the polar cap area over an entire solar cycle, and the results demonstrate that there is a close relationship between the phase of the solar cycle and the area of the polar cap on a large scale statistical basis.

  13. Ordering effects in benzo[1,2-b:4,5-b']difuran-thieno[3,4-c]pyrrole-4,6- dione polymers with >7% solar cell efficiency

    KAUST Repository

    Warnan, Julien

    2014-05-15

    Benzo[1,2-b:4,5-b\\']difuran-thieno[3,4-c]pyrrole-4,6-dione (PBDFTPD) polymers prepared by microwave-assisted synthesis can achieve power conversion efficiencies (PCEs) >7% in bulk-heterojunction solar cells with phenyl-C61/71-butyric acid methyl ester (PCBM). In "as-cast" PBDFTPD-based devices solution-processed without a small-molecule additive, high PCEs can be obtained in spite of the weak propensity of the polymers to self-assemble and form π-aggregates in thin films. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. ZnTe Semiconductor-Polymer Gel Composited Electrolyte for Conversion of Solar Energy

    Directory of Open Access Journals (Sweden)

    Wonchai Promnopas

    2014-01-01

    Full Text Available Nanostructured cubic p-type ZnTe for dye sensitized solar cells (DSSCs was synthesized from 1 : 1 molar ratio of Zn : Te by 600 W and 900 W microwave plasma for 30 min. In this research, their green emissions were detected at the same wavelengths of 563 nm, the energy gap (Eg at 2.24 eV, and three Raman shifts at 205, 410, and 620 cm−1. The nanocomposited electrolyte of quasisolid state ZnO-DSSCs was in correlation with the increase in the JSC, VOC, fill factor (ff, and efficiency (η by increasing the wt% of ZnTe-GPE (gel polymer electrolyte to an optimum value and decreased afterwards. The optimal ZnO-DSSC performance was achieved for 0.20 wt% ZnTe-GPE with the highest photoelectronic energy conversion efficiency at 174.7% with respect to that of the GPE without doping of p-type ZnTe.

  15. The effects of a solar eclipse on photo-oxidants in different areas of China

    Directory of Open Access Journals (Sweden)

    J.-B. Wu

    2011-08-01

    Full Text Available This study investigates the effects of the total solar eclipse of 22 July 2009 on surface ozone and other photo-oxidants over China. A box model was used to study the sensitivity of ozone to the limb darkening effect during an eclipse event, and to show that the impact on ozone is small (less than 0.5 %. In addition, the regional model WRF-Chem was applied to study the effects of the eclipse on meteorological and chemical parameters, focusing on different regions in China. Chemical and meteorological observations were used to validate the model and to show that it can capture the effects of the total solar eclipse well. Model calculations show distinct differences in the spatial distributions of meteorological and chemical parameters with and without the eclipse. The maximum impacts of the eclipse occur over the area of totality, where there is a decrease in surface temperature of 1.5 °C and decrease in wind speed of 1 m s−1. The maximum impacts on atmospheric pollutants occur over parts of north and east China where emissions are greater, with an increase of 5 ppbv in NO2 and 25 ppbv in CO and a decrease of 10 ppbv in O3 and 4 ppbv in NO. This study also demonstrates the effects of the solar eclipse on surface photo-oxidants in different parts of China. Although the sun was obscured to a smaller extent in polluted areas than in clean areas, the impacts of the eclipse in polluted areas are greater and last longer than they do in clean areas. In contrast, the change in radical concentrations (OH, HO2 and NO3 in clean areas is much larger than in polluted areas mainly because of the limited source of radicals in these areas. The change in radical concentrations during the eclipse reveals that nighttime chemistry dominates in both clean and polluted areas. As solar eclipses provide a natural opportunity to test more thoroughly our understanding of atmospheric chemistry, especially that

  16. Enhancement of short-circuit current density in polymer bulk heterojunction solar cells comprising plasmonic silver nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yuzhao; Lin, Xiaofeng; Ou, Jiemei; Chen, Xudong, E-mail: cescxd@mail.sysu.edu.cn, E-mail: stszx@mail.sysu.edu.cn, E-mail: chenyj69@mail.sysu.edu.cn [Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education of China, Sun Yat-sen University, Guangzhou 510275 (China); Qing, Jian; Zhong, Zhenfeng; Zhou, Xiang, E-mail: cescxd@mail.sysu.edu.cn, E-mail: stszx@mail.sysu.edu.cn, E-mail: chenyj69@mail.sysu.edu.cn; Chen, Yujie, E-mail: cescxd@mail.sysu.edu.cn, E-mail: stszx@mail.sysu.edu.cn, E-mail: chenyj69@mail.sysu.edu.cn [State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-sen University, Guangzhou 510275 (China); Hu, Chenglong [Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, Jianghan University, Wuhan 430056 (China)

    2014-03-24

    We demonstrate that the influence of plasmonic effects based on silver nanowires (Ag NWs) on the characteristics of polymer solar cells (PSCs). The solution-processed Ag NWs are situated at the interface of anode buffer layer and active layer, which could enhance the performance especially the photocurrent of PSCs by scattering, localized surface plasmon resonance, and surface plasmon polaritons. Plasmonic effects are confirmed by the enhancement of extinction spectra, external quantum efficiency, and steady state photoluminescence. Consequently, the short-circuit current density (J{sub sc}) and power conversion efficiency enhance about 24% and 18%, respectively, under AM1.5 illumination when Ag NWs plasmonic nanostructure incorporated into PSCs.

  17. Electron-deficient N-alkyloyl derivatives of thieno[3,4-c]pyrrole-4,6-dione yield efficient polymer solar cells with open-circuit voltages > 1 v

    KAUST Repository

    Warnan, Julien; Cabanetos, Clement; Bude, Romain; El Labban, Abdulrahman; LI, LIANG; Beaujuge, Pierre

    2014-01-01

    Poly(benzo[1,2-b:4,5-b′]dithiophene-thieno[3,4-c]pyrrole-4,6-dione) (PBDTTPD) polymer donors yield some of the highest open-circuit voltages (V OC, ca. 0.9 V) and fill factors (FF, ca. 70%) in conventional bulk-heterojunction (BHJ) solar cells

  18. Aggregation Strength Tuning in Difluorobenzoxadiazole-Based Polymeric Semiconductors for High-Performance Thick-Film Polymer Solar Cells.

    Science.gov (United States)

    Chen, Peng; Shi, Shengbin; Wang, Hang; Qiu, Fanglong; Wang, Yuxi; Tang, Yumin; Feng, Jian-Rui; Guo, Han; Cheng, Xing; Guo, Xugang

    2018-06-27

    High-performance polymer solar cells (PSCs) with thick active layers are essential for large-scale production. Polymer semiconductors exhibiting a temperature-dependent aggregation property offer great advantages toward this purpose. In this study, three difluorobenzoxadiazole (ffBX)-based donor polymers, PffBX-T, PffBX-TT, and PffBX-DTT, were synthesized, which contain thiophene (T), thieno[3,2- b]thiophene (TT), and dithieno[3,2- b:2',3'- d]thiophene (DTT) as the π-spacers, respectively. Temperature-dependent absorption spectra reveal that the aggregation strength increases in the order of PffBX-T, PffBX-TT, and PffBX-DTT as the π-spacer becomes larger. PffBX-TT with the intermediate aggregation strength enables well-controlled disorder-order transition in the casting process of blend film, thus leading to the best film morphology and the highest performance in PSCs. Thick-film PSCs with an average power conversion efficiency (PCE) of 8.91% and the maximum value of 9.10% are achieved using PffBX-TT:PC 71 BM active layer with a thickness of 250 nm. The neat film of PffBX-TT also shows a high hole mobility of 1.09 cm 2 V -1 s -1 in organic thin-film transistors. When PffBX-DTT and PffBX-T are incorporated into PSCs utilizing PC 71 BM acceptor, the average PCE decreases to 6.54 and 1.33%, respectively. The performance drop mainly comes from reduced short-circuit current, as a result of nonoptimal blend film morphology caused by a less well-controlled film formation process. A similar trend was also observed in nonfullerene type thick-film PSCs using IT-4F as the electron acceptor. These results show the significance of polymer aggregation strength tuning toward optimal bulk heterojunction film morphology using ffBX-based polymer model system. The study demonstrates that adjusting π-spacer is an effective method, in combination with other important approaches such as alkyl chain optimization, to generate high-performance thick-film PSCs which are critical for

  19. Solid State Large Area Pulsed Solar Simulator for 3-, 4- and 6-Junction Solar Cell Arrays, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The Phase I was successful in delivering a complete prototype of the proposed innovation, an LED-based, solid state, large area, pulsed, solar simulator (ssLAPSS)....

  20. Edge sealing for low cost stability enhancement of roll-to-roll processed flexible polymer solar cell modules

    DEFF Research Database (Denmark)

    Tanenbaum, David M.; Dam, Henrik Friis; Rösch, R.

    2012-01-01

    Fully roll-to-roll processed polymer solar cell modules were prepared, characterized, and laminated. Cell modules were cut from the roll and matched pairs were selected, one module with exposed cut edges, the other laminated again with the same materials and adhesive sealing fully around the cut...... edges. The edge sealing rim was 10 mm wide. Cell modules were characterized by periodic measurements of IV curves over extended periods in a variety of conditions, as well as by a variety of spatial imaging techniques. Data show significant stability benefits of the edge sealing process. The results...

  1. Charge separation dynamics in a narrow band gap polymer-PbS nanocrystal blend for efficient hybrid solar cells

    OpenAIRE

    Piliego, Claudia; Manca, Marianna; Kroon, Renee; Yarema, Maksym; Szendrei, Krisztina; Andersson, Mats R.; Heiss, Wolfgang; Loi, Maria A.

    2012-01-01

    We have demonstrated efficient hybrid solar cells based on lead sulfide (PbS) nanocrystals and a narrow band gap polymer, poly[{2,5-bis(2-hexyldecyl)-2,3,5,6-tetrahydro-3,6-dioxopyrrolo[3,4-c]pyrrole-1,4-diyl}-alt-{[2,2'-(1,4-phenylene)bis-thiophene]-5,5'-diyl}], (PDPPTPT). An opportune mixing of the two materials led to the formation of an energetically favorable bulk hetero-junction with a broad spectral response. Using a basic device structure, we reached a power conversion efficiency of s...

  2. Solar and Hydrogen

    International Nuclear Information System (INIS)

    Kadirgan, F.; Beyhan, S.; Oezenler, S.

    2006-01-01

    It has been widely accepted that the only sustainable and environmentally friendly energy is the solar energy and hydrogen energy, which can meet the increasing energy demand in the future. Solar Energy may be used either for solar thermal or for solar electricity conversion. Solar thermal collectors represent a wide-spread type of system for the conversion of solar energy. Radiation, convection and conduction are strongly coupled energy transport mechanisms in solar collector systems. The economic viability of lower temperature applications of solar energy may be improved by increasing the quantity of usable energy delivered per unit area of collector. This can be achieved by the use of selective black coatings which have a high degree of solar absorption, maintaining high energy input to the solar system while simultaneously suppressing the emission of thermal infrared radiation. Photovoltaic solar cells and modules are produced for: (1) large scale power generation, most commonly when modules are incorporated as part of a building (building integrated photovoltaic s) but also in centralised power stations, (2) supplying power to villages and towns in developing countries that are not connected to the supply grid, e.g. for lighting and water pumping systems, (3) supplying power in remote locations, e.g. for communications or weather monitoring equipment, (4) supplying power for satellites and space vehicles, (5) supplying power for consumer products, e.g. calculators, clocks, toys and night lights. In hydrogen energy systems, Proton exchange membrane (PEMFC) fuel cells are promising candidates for applications ranging from portable power sources (battery replacement applications) to power sources for future electric vehicles because of their safety, elimination of fuel processor system, thus, simple device fabrication and low cost. Although major steps forward have been achieved in terms of PEMFC design since the onset of research in this area, further

  3. Realization of highly efficient polymer solar cell based on PBDTTT-EFT and [71]PCBM

    Science.gov (United States)

    Bharti, Vishal; Chand, Suresh; Dutta, Viresh

    2018-04-01

    In this work, we have fabricated highly efficient polymer solar cells based on the blend of PBDTTT-EFT:PC71BM in the inverted device configuration. By using low temperature processed zinc oxide (ZnO) nanoparticles as an electron-transport layer (ETL) and 1,8-diiodooctane (DIO) as additive in chlorobenzene (CB) solvent we have achieved PCE of 9.43% with an excellent short-circuit current density (Jsc) of 17.6 mAcm-2, open circuit voltage (Voc) of 0.80 V and fill factor (FF) of 0.67. These results reveals that addition of 3% DIO additive in CB solvent improve the morphology (lower charge carrier recombination and better metal/organic semiconductor interface) and provide uniform interpenetrating networks in PBDTTT-EFT:PC71BM blend active layer.

  4. Improvement of N-phthaloylchitosan based gel polymer electrolyte in dye-sensitized solar cells using a binary salt system.

    Science.gov (United States)

    Yusuf, S N F; Azzahari, A D; Selvanathan, V; Yahya, R; Careem, M A; Arof, A K

    2017-02-10

    A binary salt system utilizing lithium iodide (LiI) as the auxiliary component has been introduced to the N-phthaloylchitosan (PhCh) based gel polymer electrolyte consisting of ethylene carbonate (EC), dimethylformamide (DMF), tetrapropylammonium iodide (TPAI), and iodine (I 2 ) in order to improve the performance of dye-sensitized solar cell (DSSC) with efficiency of 6.36%, photocurrent density, J SC of 17.29mAcm -2 , open circuit voltage, V OC of 0.59V and fill factor, FF of 0.62. This efficiency value is an improvement from the 5.00% performance obtained by the DSSC consisting of only TPAI single salt system. The presence of the LiI in addition to the TPAI improves the charge injection rates and increases the iodide contribution to the total conductivity and both factors contribute to the increase in efficiency of the DSSC. The interaction behavior between polymer-plasticizer-salt was thoroughly investigated using EIS, FTIR spectroscopy and XRD. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. High-efficiency and air-stable P3HT-based polymer solar cells with a new non-fullerene acceptor

    KAUST Repository

    Holliday, Sarah

    2016-06-09

    Solution-processed organic photovoltaics (OPV) offer the attractive prospect of low-cost, light-weight and environmentally benign solar energy production. The highest efficiency OPV at present use low-bandgap donor polymers, many of which suffer from problems with stability and synthetic scalability. They also rely on fullerene-based acceptors, which themselves have issues with cost, stability and limited spectral absorption. Here we present a new non-fullerene acceptor that has been specifically designed to give improved performance alongside the wide bandgap donor poly(3-hexylthiophene), a polymer with significantly better prospects for commercial OPV due to its relative scalability and stability. Thanks to the well-matched optoelectronic and morphological properties of these materials, efficiencies of 6.4% are achieved which is the highest reported for fullerene-free P3HT devices. In addition, dramatically improved air stability is demonstrated relative to other high-efficiency OPV, showing the excellent potential of this new material combination for future technological applications.

  6. High-efficiency and air-stable P3HT-based polymer solar cells with a new non-fullerene acceptor

    Science.gov (United States)

    Holliday, Sarah; Ashraf, Raja Shahid; Wadsworth, Andrew; Baran, Derya; Yousaf, Syeda Amber; Nielsen, Christian B.; Tan, Ching-Hong; Dimitrov, Stoichko D.; Shang, Zhengrong; Gasparini, Nicola; Alamoudi, Maha; Laquai, Frédéric; Brabec, Christoph J.; Salleo, Alberto; Durrant, James R.; McCulloch, Iain

    2016-01-01

    Solution-processed organic photovoltaics (OPV) offer the attractive prospect of low-cost, light-weight and environmentally benign solar energy production. The highest efficiency OPV at present use low-bandgap donor polymers, many of which suffer from problems with stability and synthetic scalability. They also rely on fullerene-based acceptors, which themselves have issues with cost, stability and limited spectral absorption. Here we present a new non-fullerene acceptor that has been specifically designed to give improved performance alongside the wide bandgap donor poly(3-hexylthiophene), a polymer with significantly better prospects for commercial OPV due to its relative scalability and stability. Thanks to the well-matched optoelectronic and morphological properties of these materials, efficiencies of 6.4% are achieved which is the highest reported for fullerene-free P3HT devices. In addition, dramatically improved air stability is demonstrated relative to other high-efficiency OPV, showing the excellent potential of this new material combination for future technological applications. PMID:27279376

  7. High-efficiency and air-stable P3HT-based polymer solar cells with a new non-fullerene acceptor

    KAUST Repository

    Holliday, Sarah; Ashraf, Raja Shahid; Wadsworth, Andrew; Baran, Derya; Yousaf, Syeda Amber; Nielsen, Christian B.; Tan, Ching-Hong; Dimitrov, Stoichko D.; Shang, Zhengrong; Gasparini, Nicola; Alamoudi, Maha; Laquai, Fré dé ric; Brabec, Christoph J.; Salleo, Alberto; Durrant, James R.; McCulloch, Iain

    2016-01-01

    Solution-processed organic photovoltaics (OPV) offer the attractive prospect of low-cost, light-weight and environmentally benign solar energy production. The highest efficiency OPV at present use low-bandgap donor polymers, many of which suffer from problems with stability and synthetic scalability. They also rely on fullerene-based acceptors, which themselves have issues with cost, stability and limited spectral absorption. Here we present a new non-fullerene acceptor that has been specifically designed to give improved performance alongside the wide bandgap donor poly(3-hexylthiophene), a polymer with significantly better prospects for commercial OPV due to its relative scalability and stability. Thanks to the well-matched optoelectronic and morphological properties of these materials, efficiencies of 6.4% are achieved which is the highest reported for fullerene-free P3HT devices. In addition, dramatically improved air stability is demonstrated relative to other high-efficiency OPV, showing the excellent potential of this new material combination for future technological applications.

  8. Alkoxybenzothiadiazole-Based Fullerene and Nonfullerene Polymer Solar Cells with High Shunt Resistance for Indoor Photovoltaic Applications.

    Science.gov (United States)

    Park, Song Yi; Li, Yuxiang; Kim, Jaewon; Lee, Tack Ho; Walker, Bright; Woo, Han Young; Kim, Jin Young

    2018-01-31

    We synthesized three semicrystalline polymers (PTTBT BO , PDTBT BO , and P2FDTBT BO ) by modulating the intra- and intermolecular noncovalent Coulombic interactions and investigated their photovoltaic characteristics under various light intensities. Low series (R s ) and high shunt (R sh ) resistances are essential prerequisites for good device properties under standard illumination (100 mW cm -2 ). Considering these factors, among three polymers, PDTBT BO polymer solar cells (PSCs) exhibited the most desirable characteristics, with peak power conversion efficiencies (PCE) of 7.52 and 9.60% by being blended with PC 71 BM under standard and dim light (2.5 mW cm -2 ), respectively. P2FDTBT BO PSCs exhibited a low PCE of 3.69% under standard light due to significant charge recombination with high R s (9.42 Ω cm 2 ). However, the PCE was remarkably improved by 2.3 times (8.33% PCE) under dim light, showing negligible decrease in open-circuit voltage and remarkable increase in fill factor, which is due to an exceptionally high R sh of over 1000 kΩ cm 2 . R s is less significant under dim light because the generated current is too small to cause noticeable R s -induced voltage losses. Instead, high R sh becomes more important to avoid leakage currents. This work provides important tips to further optimize PSCs for indoor applications with low-power electronic devices such as Internet of things sensors.

  9. Structural Variations to a Donor Polymer with Low Energy Losses

    KAUST Repository

    Bazan, Guillermo C

    2017-08-01

    Two regioregular narrow band gap conjugated polymers with a D’-A-D-A repeat unit architecture, namely PIFCF and PSFCF, were designed and synthesized. Both polymers contain strictly organized fluorobenzo[c][1,2,5]thiadiazole (FBT) orientations and different solubilizing side chains for solution processing. Compared to the previously reported asymmetric pyridyl-[2,1,3]thiadiazole (PT) based regioregular polymer, namely PIPCP, PIFCF and PSFCF exhibit wider band gaps, tighter π-π stacking, and improved hole mobilities. When incorporated into solar cells with fullerene acceptors, the Eloss = Eg - eVoc values of PIFCF and PSFCF devices are increased compared to solar cells based on PIPCP. Determination of Ect in these solar cells reveals that, relative to PIPCP, PIFCF solar cells lose more energy from Eg - Ect, and PSFCF solar cells lose more energy from both Eg - Ect and Ect - eVoc. The close structural relationship between PIPCP and PIFCF provides an excellent framework to establish molecular features that impact the relationship between Eg and Ect. Theoretical calculations predict that Eloss of PIFCF:PC61BM would be higher than in the case of PIPCP:PC61BM, due to greater Eg - Ect. These findings provide insight into the design of high performance, low voltage loss photovoltaic polymeric materials with desirable optoelectronic properties.

  10. Small Molecule Acceptor and Polymer Donor Crystallinity and Aggregation Effects on Microstructure Templating: Understanding Photovoltaic Response in Fullerene-Free Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Eastham, Nicholas D.; Dudnik, Alexander S.; Aldrich, Thomas J.; Manley, Eric F.; Fauvell, Thomas J.; Hartnett, Patrick E.; Wasielewski, Michael R.; Chen, Lin X.; Melkonyan, Ferdinand S.; Facchetti, Antonio; Chang, Robert P. H.; Marks, Tobin J.

    2017-05-10

    Perylenediimide (PDI) small molecule acceptor (SMA) crystallinity and donor polymer aggregation and crystallinity effects on bulk-heterojunction microstructure and polymer solar cell (PSC) performance are systematically investigated. Two highperformance polymers, semicrystalline poly[5-(2-hexyldodecyl)-4Hthieno[3,4-c]pyrrole-4,6(5H)-dione-1,3-yl-alt-4,4''dodecyl-2,2':5',2''- terthiophene-5,5''-diyl] (PTPD3T or D1) and amorphous poly{4,8- bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b']dithiophene- 2,6-diyl-alt-(4-(2-ethylhexyl)-3-fluorothieno[3,4-b]thiophene-2-carboxylate-2,6-diyl) (PBDTT-FTTE or D2), are paired with three PDI-based SMAs (A1-A3) of differing crystallinity (A1 is the most, A3 is the least crystalline). The resulting PSC performance trends are strikingly different from those of typical fullerene-based PSCs and are highly material-dependent. The present trends reflect synergistic aggregation propensities between the SMA and polymer components. Importantly, the active layer morphology is templated by the PDI in some blends and by the polymer in others, with the latter largely governed by the polymer aggregation. Thus, PTPD3T templating capacity increases as self-aggregation increases (greater Mn), optimizing PSC performance with A2, while A3-based cells exhibit an inverse relationship between polymer aggregation and performance, which is dramatically different from fullerene-based PSCs. For PBDTT-FTTE, A2-based cells again deliver the highest PCEs of ~5%, but here both A2 and PBDTT-FTTE (medium Mn) template the morphology. Overall, the present results underscore the importance of nonfullerene acceptor aggregation for optimizing PSC performance and offer guidelines for pairing SMAs with acceptable donor polymers.

  11. Relation between exciplex formation and photovoltaic properties of PPV polymer-based blends

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Chunhong; Neher, Dieter [Institute of Physics, University of Potsdam, Am Neuen Palais 10, 14469 Potsdam (Germany); Kietzke, Thomas [Institute of Physics, University of Potsdam, Am Neuen Palais 10, 14469 Potsdam (Germany); Institute of Materials Research and Engineering (IMRE), Research Link 3, 117602 Singapore (Singapore); Kumke, Michael [Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Street 24-25, 14476 Golm (Germany); Hoerhold, Hans-Heinrich [Institute of Organic Chemistry and Macromolecular Chemistry, University of Jena, Humboldtstr. 10, 07743 Jena (Germany)

    2007-03-06

    As a new record for pure polymer-blend solar cells, an energy conversion efficiency (ECE) of 1.7% was recently achieved for M3EH-PPV:CN-ether-PPV (Poly[oxa-1,4-phenylene-1,2-(1-cyano)-ethylene-2,5-dioctyloxy-1,4-phenylene-1,2- (2-cyano)-ethylene-1,4-phenylene]) based devices [T. Kietzke, H.-H. Hoerhold, D. Neher, Chem. Mater. 17 (2005) 6532]. Even though that photoluminescence experiments indicated that 95% of the photogenerated excitions were dissociated in the blend, the external quantum efficiency reached only 31%. Thus more than 2/3 of the dissociated excitons were lost for the energy conversion. In order to identify the processes which limit the photovoltaic efficiency of polymer-blend solar cells, studies on the steady state and time-resolved photoluminescence of the individual polymer and polymer blend were performed. In the polymer-blend layer, we observed a considerable long-wavelength emission due to exciplex formation. The exciplex emission can be reduced by thermal annealing. At the same time the IPCE of the blend-based device increased, indicating a more efficient generation of free-charge carriers. These findings lead to the conclusion that charge-carrier recombination via exciplex formation constitutes one of the loss channels which limits the efficiency of polymer solar cells. (author)

  12. Characterization of the polymer energy landscape in polymer:fullerene bulk heterojunctions with pure and mixed phases

    KAUST Repository

    Sweetnam, Sean

    2014-10-08

    Theoretical and experimental studies suggest that energetic offsets between the charge transport energy levels in different morphological phases of polymer:fullerene bulk heterojunctions may improve charge separation and reduce recombination in polymer solar cells (PSCs). In this work, we use cyclic voltammetry, UV-vis absorption, and ultraviolet photoelectron spectroscopy to characterize hole energy levels in the polymer phases of polymer:fullerene bulk heterojunctions. We observe an energetic offset of up to 150 meV between amorphous and crystalline polymer due to bandgap widening associated primarily with changes in polymer conjugation length. We also observe an energetic offset of up to 350 meV associated with polymer:fullerene intermolecular interactions. The first effect has been widely observed, but the second effect is not always considered despite being larger in magnitude for some systems. These energy level shifts may play a major role in PSC performance and must be thoroughly characterized for a complete understanding of PSC function.

  13. Ultrafast Electron Dynamics in Solar Energy Conversion.

    Science.gov (United States)

    Ponseca, Carlito S; Chábera, Pavel; Uhlig, Jens; Persson, Petter; Sundström, Villy

    2017-08-23

    Electrons are the workhorses of solar energy conversion. Conversion of the energy of light to electricity in photovoltaics, or to energy-rich molecules (solar fuel) through photocatalytic processes, invariably starts with photoinduced generation of energy-rich electrons. The harvesting of these electrons in practical devices rests on a series of electron transfer processes whose dynamics and efficiencies determine the function of materials and devices. To capture the energy of a photogenerated electron-hole pair in a solar cell material, charges of opposite sign have to be separated against electrostatic attractions, prevented from recombining and being transported through the active material to electrodes where they can be extracted. In photocatalytic solar fuel production, these electron processes are coupled to chemical reactions leading to storage of the energy of light in chemical bonds. With the focus on the ultrafast time scale, we here discuss the light-induced electron processes underlying the function of several molecular and hybrid materials currently under development for solar energy applications in dye or quantum dot-sensitized solar cells, polymer-fullerene polymer solar cells, organometal halide perovskite solar cells, and finally some photocatalytic systems.

  14. Limits for hydrogen production of a solar - hydrogen system in Cuernavaca, Mexico

    International Nuclear Information System (INIS)

    Arriaga, H.L.G.; Gutierrez, S.L.; Cano, U.

    2006-01-01

    In this work experimental data are used in order to estimate the production of hydrogen as a function of irradiance of a direct-interconnection of solar panel system with a SPE (Solid Polymer Electrolyte) electrolyzer (also Solar-Hydrogen system). The solar - hydrogen system, consists of a photovoltaic solar array of 36 panels (75 Watts each) of monocrystalline silicon interconnected with an electrolyzer stack of 25 cells (around 100 cm 2 of geometrical area) with a maximum hydrogen production of 1 Nm 3 /h. By the use of voltage, current density, energy consumption values of the whole solar-hydrogen system, an average efficiency up to 5% was estimated and an average of 3,800 NL of hydrogen per day can be expected. Also the maximum hydrogen production for the months of July and December (sunniest and least sunny months in the location) is predicted. (authors)

  15. Limits for hydrogen production of a solar - hydrogen system in Cuernavaca, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Arriaga, H.L.G.; Gutierrez, S.L.; Cano, U. [Instituto de Investigaciones Electricas Av. Reforma 113, col. Palmira c.p.62490 Cuernavaca Morelos (Mexico)

    2006-07-01

    In this work experimental data are used in order to estimate the production of hydrogen as a function of irradiance of a direct-interconnection of solar panel system with a SPE (Solid Polymer Electrolyte) electrolyzer (also Solar-Hydrogen system). The solar - hydrogen system, consists of a photovoltaic solar array of 36 panels (75 Watts each) of monocrystalline silicon interconnected with an electrolyzer stack of 25 cells (around 100 cm{sup 2} of geometrical area) with a maximum hydrogen production of 1 Nm{sup 3}/h. By the use of voltage, current density, energy consumption values of the whole solar-hydrogen system, an average efficiency up to 5% was estimated and an average of 3,800 NL of hydrogen per day can be expected. Also the maximum hydrogen production for the months of July and December (sunniest and least sunny months in the location) is predicted. (authors)

  16. Electrode Materials, Thermal Annealing Sequences, and Lateral/Vertical Phase Separation of Polymer Solar Cells from Multiscale Molecular Simulations

    KAUST Repository

    Lee, Cheng-Kuang

    2014-12-10

    © 2014 American Chemical Society. The nanomorphologies of the bulk heterojunction (BHJ) layer of polymer solar cells are extremely sensitive to the electrode materials and thermal annealing conditions. In this work, the correlations of electrode materials, thermal annealing sequences, and resultant BHJ nanomorphological details of P3HT:PCBM BHJ polymer solar cell are studied by a series of large-scale, coarse-grained (CG) molecular simulations of system comprised of PEDOT:PSS/P3HT:PCBM/Al layers. Simulations are performed for various configurations of electrode materials as well as processing temperature. The complex CG molecular data are characterized using a novel extension of our graph-based framework to quantify morphology and establish a link between morphology and processing conditions. Our analysis indicates that vertical phase segregation of P3HT:PCBM blend strongly depends on the electrode material and thermal annealing schedule. A thin P3HT-rich film is formed on the top, regardless of bottom electrode material, when the BHJ layer is exposed to the free surface during thermal annealing. In addition, preferential segregation of P3HT chains and PCBM molecules toward PEDOT:PSS and Al electrodes, respectively, is observed. Detailed morphology analysis indicated that, surprisingly, vertical phase segregation does not affect the connectivity of donor/acceptor domains with respective electrodes. However, the formation of P3HT/PCBM depletion zones next to the P3HT/PCBM-rich zones can be a potential bottleneck for electron/hole transport due to increase in transport pathway length. Analysis in terms of fraction of intra- and interchain charge transports revealed that processing schedule affects the average vertical orientation of polymer chains, which may be crucial for enhanced charge transport, nongeminate recombination, and charge collection. The present study establishes a more detailed link between processing and morphology by combining multiscale molecular

  17. An assessment of solar hot water heating in the Washington, D.C. area - Implications for local utilities

    Science.gov (United States)

    Stuart, M. W.

    1980-04-01

    A survey of residential solar hot water heating in the Washington, D.C. area is presented with estimates of the total solar energy contribution per year. These estimates are examined in relation to a local utility's peak-load curves to determine the impact of a substantial increase in solar domestic hot water use over the next 20 yr in the area of utility management. The results indicate that a 10% market penetration of solar water heaters would have no detrimental effect on the utility's peak-load profile and could save several million dollars in new plant construction costs.

  18. Morphology and interdiffusion control to improve adhesion and cohesion properties in inverted polymer solar cells

    KAUST Repository

    Dupont, Stephanie R.

    2015-01-01

    © 2014 Elsevier B.V. All rights reserved. The role of pre-electrode deposition annealing on the morphology and the fracture properties of polymer solar cells is discussed. We found an increase in adhesion at the weak P3HT:PCBM/PEDOT:PSS interface with annealing temperature, caused by increased interdiffusion between the organic layers. The formation of micrometer sized PCBM crystallites, which occurs with annealing above the crystallization temperature of PCBM, initially weakened the P3HT:PCBM layer itself. Further annealing improved the cohesion, due to a pull-out toughening mechanism of the growing PCBM clusters. Understanding how the morphology, tuned by annealing, affects the adhesive and cohesive properties in these organic films is essential for the mechanical integrity of OPV devices.

  19. Scaling up ITO-Free solar cells

    NARCIS (Netherlands)

    Galagan, Y.O.; Coenen, E.W.C.; Zimmermann, B.; Slooff, L.H.; Verhees, W.J.H.; Veenstra, S.C.; Kroon, J.M.; Jørgensen, M.; Krebs, F.C.; Andriessen, H.A.J.M.

    2014-01-01

    Indium-tin-oxide-free (ITO-free) polymer solar cells with composite electrodes containing current-collecting grids and a semitransparent poly(3,4-ethylenedioxythiophene):polystyrenesulfonate) (PEDOT:PSS) conductor are demonstrated. The up-scaling of the length of the solar cell from 1 to 6 cm and

  20. TITANIUM DIOXIDE TRIADS FOR IMPROVED CHARGE-SEPARATION USING CONDUCTIVE POLYMERS

    Energy Technology Data Exchange (ETDEWEB)

    Cochran, T.M.; Gaylor, T.N.; de la Garza, L.; Rajh, T.

    2009-01-01

    Dye-sensitized solar cells are potentially one of the best solutions to solar energy conversion because of the low cost of required materials and production processes. Titanium dioxide (TiO2) nanoparticulate fi lms are the basis for one of these types of cells, providing large surface area for dye-sensitizer adsorption. Because TiO2 nanoparticulate fi lms develop defects caused by oxygen defi ciency, deep reactive electron traps are formed. With the addition of an enediol ligand, these electron traps are deliberately removed, enhancing the conduction of electrons within the fi lm. In this project, TiO2 nanoparticulate fi lms made by a layer-by-layer dip coating method were modifi ed with 3,4-dihydroxyphenylacetic acid (DOPAC). DOPAC binds to the titanium atoms on the surface of the nanoparticles, restoring their octahedral geometry. This restructuring of the surface shifts the spectral properties of the TiO2 to the visible spectrum and improves the separation of charges which is observed using photoelectrochemistry. Furthermore, DOPAC enables the electronic attachment of other molecules to the surface of TiO2 fi lms, such as the conductive polymer polyaniline base. This conductive polymer provides an extended separation of charges which increases photocurrent production by forming a triad with the TiO2 semiconductor through the 3,4-dihydroxyphenylacetic acid linker. The photocurrent increases due to the donor properties of the conductive polymer thereby decreasing charge pair recombination.