WorldWideScience

Sample records for arctic populations affects

  1. Is climate change affecting wolf populations in the high Arctic?

    Science.gov (United States)

    Mech, L.D.

    2004-01-01

    Gobal climate change may affect wolves in Canada's High Arctic (80?? N) acting through three trophic levels (vegetation, herbivores, and wolves). A wolf pack dependent on muskoxen and arctic hares in the Eureka area of Ellesmere Island denned and produced pups most years from at least 1986 through 1997. However, when summer snow covered vegetation in 1997 and 2000 for the first time since records were kept, halving the herbivore nutrition-replenishment period, muskox and hare numbers dropped drastically, and the area stopped supporting denning wolves through 2003. The unusual weather triggering these events was consistent with global-climate-change phenomena. ?? 2004 Kluwer Academic Publishers.

  2. Dynamics of a recovering Arctic bird population: the importance of climate, density dependence, and site quality

    Science.gov (United States)

    Bruggeman, Jason E.; Swem, Ted; Andersen, David E.; Kennedy, Patricia L.; Nigro, Debora A.

    2015-01-01

    Intrinsic and extrinsic factors affect vital rates and population-level processes, and understanding these factors is paramount to devising successful management plans for wildlife species. For example, birds time migration in response, in part, to local and broadscale climate fluctuations to initiate breeding upon arrival to nesting territories, and prolonged inclement weather early in the breeding season can inhibit egg-laying and reduce productivity. Also, density-dependent regulation occurs in raptor populations, as territory size is related to resource availability. Arctic Peregrine Falcons (Falco peregrinus tundrius; hereafter Arctic peregrine) have a limited and northern breeding distribution, including the Colville River Special Area (CRSA) in the National Petroleum Reserve–Alaska, USA. We quantified influences of climate, topography, nest productivity, prey habitat, density dependence, and interspecific competition affecting Arctic peregrines in the CRSA by applying the Dail-Madsen model to estimate abundance and vital rates of adults on nesting cliffs from 1981 through 2002. Arctic peregrine abundance increased throughout the 1980s, which spanned the population's recovery from DDT-induced reproductive failure, until exhibiting a stationary trend in the 1990s. Apparent survival rate (i.e., emigration; death) was negatively correlated with the number of adult Arctic peregrines on the cliff the previous year, suggesting effects of density-dependent population regulation. Apparent survival and arrival rates (i.e., immigration; recruitment) were higher during years with earlier snowmelt and milder winters, and apparent survival was positively correlated with nesting season maximum daily temperature. Arrival rate was positively correlated with average Arctic peregrine productivity along a cliff segment from the previous year and initial abundance was positively correlated with cliff height. Higher cliffs with documented higher productivity (presumably

  3. Fine-scale population genetic structure of arctic foxes (Vulpes lagopus) in the High Arctic.

    Science.gov (United States)

    Lai, Sandra; Quiles, Adrien; Lambourdière, Josie; Berteaux, Dominique; Lalis, Aude

    2017-12-01

    The arctic fox (Vulpes lagopus) is a circumpolar species inhabiting all accessible Arctic tundra habitats. The species forms a panmictic population over areas connected by sea ice, but recently, kin clustering and population differentiation were detected even in regions where sea ice was present. The purpose of this study was to examine the genetic structure of a population in the High Arctic using a robust panel of highly polymorphic microsatellites. We analyzed the genotypes of 210 individuals from Bylot Island, Nunavut, Canada, using 15 microsatellite loci. No pattern of isolation-by-distance was detected, but a spatial principal component analysis (sPCA) revealed the presence of genetic subdivisions. Overall, the sPCA revealed two spatially distinct genetic clusters corresponding to the northern and southern parts of the study area, plus another subdivision within each of these two clusters. The north-south genetic differentiation partly matched the distribution of a snow goose colony, which could reflect a preference for settling into familiar ecological environments. Secondary clusters may result from higher-order social structures (neighbourhoods) that use landscape features to delimit their borders. The cryptic genetic subdivisions found in our population may highlight ecological processes deserving further investigations in arctic foxes at larger, regional spatial scales.

  4. Perinatal exposure to a mixture of persistent pollutants based on blood profiles of Arctic populations affects bone parameters in 35 days old rats

    Energy Technology Data Exchange (ETDEWEB)

    Stern, N.; Trossvik, C.; Hakansson, H. [Inst. of Environmental Medicine, Karolinska Inst., Stockholm (Sweden); Bowers, W.; Nakai, J.S.; Chu, I. [Environmental and Occupational Toxicology Div., Environmental Health Sciences Bureau, Health Canada, Ottawa (Canada)

    2004-09-15

    Environmental pollution of Arctic regions is a public concern. Arctic inhabitants are a high-risk group regarding health effects of environmental toxicants because of their high consumption of contaminated fish and wildlife. Developing fetuses and newborn infants may be particularly vulnerable to the effects of exposure to persistent organic pollutants (POPs) and toxic metals. Developmental exposure to environmental pollutants affects a wide range of clinical and biochemical parameters. Disturbance in skeletal growth, an integral component of somatic development, is a novel area in the toxicity of POPs. Low-dose prenatal exposure to TCDD caused a variety of harmful effects in rat long bones. In adult rats, TCDD exposure caused inhibited bone growth and lowered biomechanical properties of tibia and exposure to the dioxin-like PCBcongener 3,3,4,4,5-pentachlorobiphenyl has been associated with a decreased strength and collagen concentration of humerus. The aim of this study was to investigate effects of perinatal exposure to a mixture of PCBs, organochlorines and methyl mercury based on blood levels of Canadian Arctic populations on skeletal development in rat pups.

  5. Population viability of Arctic grayling in the Gibbon River, Yellowstone National Park

    Science.gov (United States)

    Steed, Amber C.; Zale, Alexander V.; Koel, Todd M.; Kalinowski, Steven T.

    2010-01-01

    The fluvial Arctic grayling Thymallus arcticus is restricted to less than 5% of its native range in the contiguous United States and was relisted as a category 3 candidate species under the U.S. Endangered Species Act in 2010. Although fluvial Arctic grayling of the lower Gibbon River, Yellowstone National Park, Wyoming, were considered to have been extirpated by 1935, anglers and biologists have continued to report catching low numbers of Arctic grayling in the river. Our goal was to determine whether a viable population of fluvial Arctic grayling persisted in the Gibbon River or whether the fish caught in the river were downstream emigrants from lacustrine populations in headwater lakes. We addressed this goal by determining relative abundances, sources, and evidence for successful spawning of Arctic grayling in the Gibbon River. During 2005 and 2006, Arctic grayling comprised between 0% and 3% of the salmonid catch in riverwide electrofishing (mean Back-calculated lengths at most ages were similar among all fish, and successful spawning within the Gibbon River below the headwater lakes was not documented. Few Arctic grayling adults and no fry were detected in the Gibbon River, implying that a reproducing fluvial population does not exist there. These findings have implications for future Endangered Species Act considerations and management of fluvial Arctic grayling within and outside of Yellowstone National Park. Our comprehensive approach is broadly applicable to the management of sparsely detected aquatic species worldwide.

  6. Climate change and environmental impacts on maternal and newborn health with focus on Arctic populations

    Directory of Open Access Journals (Sweden)

    Torkjel M. Sandanger

    2011-11-01

    Full Text Available In 2007, the Intergovernmental Panel on Climate Change (IPCC presented a report on global warming and the impact of human activities on global warming. Later the Lancet commission identified six ways human health could be affected. Among these were not environmental factors which are also believed to be important for human health. In this paper we therefore focus on environmental factors, climate change and the predicted effects on maternal and newborn health. Arctic issues are discussed specifically considering their exposure and sensitivity to long range transported contaminants.Considering that the different parts of pregnancy are particularly sensitive time periods for the effects of environmental exposure, this review focuses on the impacts on maternal and newborn health. Environmental stressors known to affects human health and how these will change with the predicted climate change are addressed. Air pollution and food security are crucial issues for the pregnant population in a changing climate, especially indoor climate and food security in Arctic areas.The total number of environmental factors is today responsible for a large number of the global deaths, especially in young children. Climate change will most likely lead to an increase in this number. Exposure to the different environmental stressors especially air pollution will in most parts of the world increase with climate change, even though some areas might face lower exposure. Populations at risk today are believed to be most heavily affected. As for the persistent organic pollutants a warming climate leads to a remobilisation and a possible increase in food chain exposure in the Arctic and thus increased risk for Arctic populations. This is especially the case for mercury. The perspective for the next generations will be closely connected to the expected temperature changes; changes in housing conditions; changes in exposure patterns; predicted increased exposure to Mercury

  7. Population dynamics in the high Arctic: Climate variations in time and space

    DEFF Research Database (Denmark)

    Hendrichsen, Ditte Katrine

    Climatic factors profoundly influence the population dynamics, species interactions and demography of Arctic species. Analyses of the spatio-temporal dynamics within and across species are therefore necessary to understand and predict the responses of Arctic ecosystems to climatic variability...

  8. Winter temperature affects the prevalence of ticks in an Arctic seabird.

    Directory of Open Access Journals (Sweden)

    Sébastien Descamps

    Full Text Available The Arctic is rapidly warming and host-parasite relationships may be modified by such environmental changes. Here, I showed that the average winter temperature in Svalbard, Arctic Norway, explained almost 90% of the average prevalence of ticks in an Arctic seabird, the Brünnich's guillemot Uria lomvia. An increase of 1°C in the average winter temperature at the nesting colony site was associated with a 5% increase in the number of birds infected by these ectoparasites in the subsequent breeding season. Guillemots were generally infested by only a few ticks (≤5 and I found no direct effect of tick presence on their body condition and breeding success. However, the strong effect of average winter temperature described here clearly indicates that tick-seabird relationships in the Arctic may be strongly affected by ongoing climate warming.

  9. The marine side of a terrestrial carnivore: intra-population variation in use of allochthonous resources by arctic foxes.

    Directory of Open Access Journals (Sweden)

    Arnaud Tarroux

    Full Text Available Inter-individual variation in diet within generalist animal populations is thought to be a widespread phenomenon but its potential causes are poorly known. Inter-individual variation can be amplified by the availability and use of allochthonous resources, i.e., resources coming from spatially distinct ecosystems. Using a wild population of arctic fox as a study model, we tested hypotheses that could explain variation in both population and individual isotopic niches, used here as proxy for the trophic niche. The arctic fox is an opportunistic forager, dwelling in terrestrial and marine environments characterized by strong spatial (arctic-nesting birds and temporal (cyclic lemmings fluctuations in resource abundance. First, we tested the hypothesis that generalist foraging habits, in association with temporal variation in prey accessibility, should induce temporal changes in isotopic niche width and diet. Second, we investigated whether within-population variation in the isotopic niche could be explained by individual characteristics (sex and breeding status and environmental factors (spatiotemporal variation in prey availability. We addressed these questions using isotopic analysis and bayesian mixing models in conjunction with linear mixed-effects models. We found that: i arctic fox populations can simultaneously undergo short-term (i.e., within a few months reduction in both isotopic niche width and inter-individual variability in isotopic ratios, ii individual isotopic ratios were higher and more representative of a marine-based diet for non-breeding than breeding foxes early in spring, and iii lemming population cycles did not appear to directly influence the diet of individual foxes after taking their breeding status into account. However, lemming abundance was correlated to proportion of breeding foxes, and could thus indirectly affect the diet at the population scale.

  10. Pulses of movement across the sea ice: population connectivity and temporal genetic structure in the arctic fox.

    Science.gov (United States)

    Norén, Karin; Carmichael, Lindsey; Fuglei, Eva; Eide, Nina E; Hersteinsson, Pall; Angerbjörn, Anders

    2011-08-01

    Lemmings are involved in several important functions in the Arctic ecosystem. The Arctic fox (Vulpes lagopus) can be divided into two discrete ecotypes: "lemming foxes" and "coastal foxes". Crashes in lemming abundance can result in pulses of "lemming fox" movement across the Arctic sea ice and immigration into coastal habitats in search for food. These pulses can influence the genetic structure of the receiving population. We have tested the impact of immigration on the genetic structure of the "coastal fox" population in Svalbard by recording microsatellite variation in seven loci for 162 Arctic foxes sampled during the summer and winter over a 5-year period. Genetic heterogeneity and temporal genetic shifts, as inferred by STRUCTURE simulations and deviations from Hardy-Weinberg proportions, respectively, were recorded. Maximum likelihood estimates of movement as well as STRUCTURE simulations suggested that both immigration and genetic mixture are higher in Svalbard than in the neighbouring "lemming fox" populations. The STRUCTURE simulations and AMOVA revealed there are differences in genetic composition of the population between summer and winter seasons, indicating that immigrants are not present in the reproductive portion of the Svalbard population. Based on these results, we conclude that Arctic fox population structure varies with time and is influenced by immigration from neighbouring populations. The lemming cycle is likely an important factor shaping Arctic fox movement across sea ice and the subsequent population genetic structure, but is also likely to influence local adaptation to the coastal habitat and the prevalence of diseases.

  11. Blood pressure among the Inuit (Eskimo) populations in the Arctic

    DEFF Research Database (Denmark)

    Bjerregaard, Peter; Dewailly, Eric; Young, T Kue

    2003-01-01

    Studies of blood pressure among various Inuit (Eskimo) populations in the Arctic have given inconsistent results. Most studies reported lower blood pressure among the Inuit as compared with the predominantly white national populations. This has been attributed to traditional subsistence practices...... and lifestyle. This study compared the blood pressure among the major Inuit population groups with other populations and examined the associations with factors like age, gender, obesity and smoking....

  12. Acculturation and self-rated health among Arctic indigenous peoples: a population-based cross-sectional study.

    Science.gov (United States)

    Eliassen, Bent-Martin; Braaten, Tonje; Melhus, Marita; Hansen, Ketil Lenert; Broderstad, Ann Ragnhild

    2012-11-05

    Acculturation is for indigenous peoples related to the process of colonisation over centuries as well as the on-going social transition experienced in the Arctic today. Changing living conditions and lifestyle affect health in numerous ways in Arctic indigenous populations. Self-rated health (SRH) is a relevant variable in primary health care and in general public health assessments and monitoring. Exploring the relationship between acculturation and SRH in indigenous populations having experienced great societal and cultural change is thus of great importance. The principal method in the Survey of Living Conditions in the Arctic (SLiCA) was standardised face-to-face interviews using a questionnaire. Very high overall participation rates of 83% were obtained in Greenland and Alaska, whilst a more conventional rate of 57% was achieved in Norway. Acculturation was conceptualised as certain traditional subsistence activities being of lesser importance for people's ethnic identity, and poorer spoken indigenous language ability (SILA). Acculturation was included in six separate gender- and country-specific ordinal logistic regressions to assess qualitative effects on SRH. Multivariable analyses showed that acculturation significantly predicted poorer SRH in Greenland. An increased subsistence score gave an OR of 2.32 (Pcultural differences in the conceptualisation of SRH, and confounding effects of health care use, SES and discrimination, make it difficult to appropriately assess how strong this effect is though.

  13. Citizen scientists reveal: Marine litter pollutes Arctic beaches and affects wild life.

    Science.gov (United States)

    Bergmann, Melanie; Lutz, Birgit; Tekman, Mine B; Gutow, Lars

    2017-12-15

    Recent data indicate accumulation areas of marine litter in Arctic waters and significant increases over time. Beaches on remote Arctic islands may be sinks for marine litter and reflect pollution levels of the surrounding waters particularly well. We provide the first quantitative data from surveys carried out by citizen scientists on six beaches of Svalbard. Litter quantities recorded by cruise tourists varied from 9-524gm -2 and were similar to those from densely populated areas. Plastics accounted for >80% of the overall litter, most of which originated from fisheries. Photographs provided by citizens show deleterious effects of beach litter on Arctic wildlife, which is already under strong pressure from global climate change. Our study highlights the potential of citizen scientists to provide scientifically valuable data on the pollution of sensitive remote ecosystems. The results stress once more that current legislative frameworks are insufficient to tackle the pollution of Arctic ecosystems. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Dangerous climate change and the importance of adaptation for the Arctic's Inuit population

    International Nuclear Information System (INIS)

    Ford, James D

    2009-01-01

    The Arctic's climate is changing rapidly, to the extent that 'dangerous' climate change as defined by the United Nations Framework on Climate Change might already be occurring. These changes are having implications for the Arctic's Inuit population and are being exacerbated by the dependence of Inuit on biophysical resources for livelihoods and the low socio-economic-health status of many northern communities. Given the nature of current climate change and projections of a rapidly warming Arctic, climate policy assumes a particular importance for Inuit regions. This paper argues that efforts to stabilize and reduce greenhouse gas emissions are urgent if we are to avoid runaway climate change in the Arctic, but unlikely to prevent changes which will be dangerous for Inuit. In this context, a new policy discourse on climate change is required for Arctic regions-one that focuses on adaptation. The paper demonstrates that states with Inuit populations and the international community in general has obligations to assist Inuit to adapt to climate change through international human rights and climate change treaties. However, the adaptation deficit, in terms of what we know and what we need to know to facilitate successful adaptation, is particularly large in an Arctic context and limiting the ability to develop response options. Moreover, adaptation as an option of response to climate change is still marginal in policy negotiations and Inuit political actors have been slow to argue the need for adaptation assistance. A new focus on adaptation in both policy negotiations and scientific research is needed to enhance Inuit resilience and reduce vulnerability in a rapidly changing climate.

  15. Density and climate influence seasonal population dynamics in an Arctic ungulate

    DEFF Research Database (Denmark)

    Mortensen, Lars O.; Moshøj, Charlotte; Forchhammer, Mads C.

    2016-01-01

    The locally migratory behavior of the high arctic muskox (Ovibos muschatus) is a central component of the breeding and winter survival strategies applied to cope with the highly seasonal arctic climate. However, altered climate regimes affecting plant growth are likely to affect local migration...... cover), forage availability (length of growth season), and the number of adult females available per male (operational sex ratio) influence changes in the seasonal density dependence, abundance, and immigration rate of muskoxen into the valley. The results suggested summer temperature as the major...... controlling factor in the seasonal, local-scale migration of muskoxen at Zackenberg. Specifically, higher summer temperatures, defined as the cumulative average daily positive degrees in June, July, and August, resulted in decreased density dependence and, consequently, increase in the seasonal abundance...

  16. Regional cooperation and sustainable development: The Arctic

    International Nuclear Information System (INIS)

    Vartanov, R.V.

    1993-01-01

    The Arctic is one of the regions most alienated from sustainable development, due to consequences of nuclear testing, long-range pollution transport, large-scale industrial accidents, irrational use of natural resources, and environmentally ignorant socio-economic policies. Revelations of the state of the USSR Arctic shows that air quality in northern cities is below standard, fish harvests are declining, pollution is not being controlled, and native populations are being affected seriously. The presence of immense resources in the Arctic including exploitable offshore oil reserves of 100-200 billion bbl and the prospect of wider utilization of northern sea routes should stimulate establishment of a new international regime of use, research, and protection of Arctic resources in favor of sustainable development in the region. The Arctic marine areas are the key component of the Arctic ecosystem and so should receive special attention. A broad legal framework has already been provided for such cooperation. Included in such cooperation would be native peoples and non-Arctic countries. Specifics of the cooperation would involve exchanging of scientific and technical information, promotion of ecologically sound technologies, equipping Arctic regions with means to control environmental quality, harmonizing environmental protection legislation, and monitoring Arctic environmental quality

  17. Contrasting effects of summer and winter warming on body mass explain population dynamics in a food-limited Arctic herbivore.

    Science.gov (United States)

    Albon, Steve D; Irvine, R Justin; Halvorsen, Odd; Langvatn, Rolf; Loe, Leif E; Ropstad, Erik; Veiberg, Vebjørn; van der Wal, René; Bjørkvoll, Eirin M; Duff, Elizabeth I; Hansen, Brage B; Lee, Aline M; Tveraa, Torkild; Stien, Audun

    2017-04-01

    The cumulative effects of climate warming on herbivore vital rates and population dynamics are hard to predict, given that the expected effects differ between seasons. In the Arctic, warmer summers enhance plant growth which should lead to heavier and more fertile individuals in the autumn. Conversely, warm spells in winter with rainfall (rain-on-snow) can cause 'icing', restricting access to forage, resulting in starvation, lower survival and fecundity. As body condition is a 'barometer' of energy demands relative to energy intake, we explored the causes and consequences of variation in body mass of wild female Svalbard reindeer (Rangifer tarandus platyrhynchus) from 1994 to 2015, a period of marked climate warming. Late winter (April) body mass explained 88% of the between-year variation in population growth rate, because it strongly influenced reproductive loss, and hence subsequent fecundity (92%), as well as survival (94%) and recruitment (93%). Autumn (October) body mass affected ovulation rates but did not affect fecundity. April body mass showed no long-term trend (coefficient of variation, CV = 8.8%) and was higher following warm autumn (October) weather, reflecting delays in winter onset, but most strongly, and negatively, related to 'rain-on-snow' events. October body mass (CV = 2.5%) increased over the study due to higher plant productivity in the increasingly warm summers. Density-dependent mass change suggested competition for resources in both winter and summer but was less pronounced in recent years, despite an increasing population size. While continued climate warming is expected to increase the carrying capacity of the high Arctic tundra, it is also likely to cause more frequent icing events. Our analyses suggest that these contrasting effects may cause larger seasonal fluctuations in body mass and vital rates. Overall our findings provide an important 'missing' mechanistic link in the current understanding of the population biology of a

  18. Acculturation and self-rated health among Arctic indigenous peoples: a population-based cross-sectional study

    Directory of Open Access Journals (Sweden)

    Eliassen Bent-Martin

    2012-11-01

    Full Text Available Abstract Background Acculturation is for indigenous peoples related to the process of colonisation over centuries as well as the on-going social transition experienced in the Arctic today. Changing living conditions and lifestyle affect health in numerous ways in Arctic indigenous populations. Self-rated health (SRH is a relevant variable in primary health care and in general public health assessments and monitoring. Exploring the relationship between acculturation and SRH in indigenous populations having experienced great societal and cultural change is thus of great importance. Methods The principal method in the Survey of Living Conditions in the Arctic (SLiCA was standardised face-to-face interviews using a questionnaire. Very high overall participation rates of 83% were obtained in Greenland and Alaska, whilst a more conventional rate of 57% was achieved in Norway. Acculturation was conceptualised as certain traditional subsistence activities being of lesser importance for people’s ethnic identity, and poorer spoken indigenous language ability (SILA. Acculturation was included in six separate gender- and country-specific ordinal logistic regressions to assess qualitative effects on SRH. Results Multivariable analyses showed that acculturation significantly predicted poorer SRH in Greenland. An increased subsistence score gave an OR of 2.32 (P Conclusions This study shows that aggregate acculturation is a strong risk factor for poorer SRH among the Kalaallit of Greenland and female Iñupiat of Alaska, but our cross-sectional study design does not allow any conclusion with regard to causality. Limitations with regard to wording, categorisations, assumed cultural differences in the conceptualisation of SRH, and confounding effects of health care use, SES and discrimination, make it difficult to appropriately assess how strong this effect is though.

  19. Trace metals and variations of antioxidant enzymes in arctic bivalve populations

    NARCIS (Netherlands)

    Regoli, F.; Hummel, H.; Amiard-Triquet, C.; Larroux, C.; Sukhotin, A.A.

    1998-01-01

    In the framework of an INTAS project, arctic populations of the clam Macoma balthica were collected from seven stations (Mezen, Khaypudyr, Pechora 3, Pechora 5, Dvina, Keret 1, and Keret 2) in the White Sea and Pechora Sea. The main objectives of this research were to define baseline concentrations

  20. Local anthropogenic contamination affects the fecundity and reproductive success of an Arctic amphipod

    NARCIS (Netherlands)

    Bach, L.; Fischer, A.; Strand, J.

    2010-01-01

    This study investigates whether adaptation to life in contaminated Arctic areas carries a cost for the populations in terms of reduced fecundity and reproductive success. The benthic amphipod, Orchomenella pinguis occurs in huge densities in both clean and contaminated sites. O. pinguis was

  1. Persistent organic pollutants in maternal blood plasma and breast milk from Russian arctic populations.

    Science.gov (United States)

    Klopov, V; Odland, J O; Burkow, I C

    1998-10-01

    Under the auspices of Arctic Monitoring and Assessment Programme (AMAP), a Russian-Norwegian co-operation project was established to assess the exposure of delivering women to persistent organic pollutants (POPs) in Arctic areas of Russia. In the period 1993-95 blood and breast milk samples were collected from 94 delivering women in Yamal and Tajmyr Autonomous Regions of Siberia. Concentrations of chlorinated pesticides and polychlorinated biphenyls (PCBs) were determined by high resolution gas chromatography with electron capture detection. The POP levels in maternal plasma among the non-indigenous women were higher than the native population, especially in total PCB, HCHs (hexachlorocyclohexanes) and the DDT-group. The dietary questionnaires showed that the non-indigenous populations consumed considerably less local food items like reindeer meat and fresh water fish. There was no correlation between local food consumption and elevated levels of pollutants. Even if the indigenous groups had lower concentrations of the most important pollutants than the non-indigenous population, they were still higher than the levels measured in the Scandinavian countries of the AMAP-study and up to levels of medical concern. The most important sources of organic pollutants for the Russian Arctic populations of Yamal and Tajmyr seems to be imported food from other areas of Russia and local use of pesticides. It must be a high priority concern to further elucidate these trends and initiate prophylactic measures for the exposed population groups.

  2. Dangerous climate change and the importance of adaptation for the Arctic's Inuit population

    Energy Technology Data Exchange (ETDEWEB)

    Ford, James D [Department of Geography, McGill University, 805 Sherbrooke Street West, Montreal, QC, H3A 2K6 (Canada)], E-mail: james.ford@mcgill.ca

    2009-04-15

    The Arctic's climate is changing rapidly, to the extent that 'dangerous' climate change as defined by the United Nations Framework on Climate Change might already be occurring. These changes are having implications for the Arctic's Inuit population and are being exacerbated by the dependence of Inuit on biophysical resources for livelihoods and the low socio-economic-health status of many northern communities. Given the nature of current climate change and projections of a rapidly warming Arctic, climate policy assumes a particular importance for Inuit regions. This paper argues that efforts to stabilize and reduce greenhouse gas emissions are urgent if we are to avoid runaway climate change in the Arctic, but unlikely to prevent changes which will be dangerous for Inuit. In this context, a new policy discourse on climate change is required for Arctic regions-one that focuses on adaptation. The paper demonstrates that states with Inuit populations and the international community in general has obligations to assist Inuit to adapt to climate change through international human rights and climate change treaties. However, the adaptation deficit, in terms of what we know and what we need to know to facilitate successful adaptation, is particularly large in an Arctic context and limiting the ability to develop response options. Moreover, adaptation as an option of response to climate change is still marginal in policy negotiations and Inuit political actors have been slow to argue the need for adaptation assistance. A new focus on adaptation in both policy negotiations and scientific research is needed to enhance Inuit resilience and reduce vulnerability in a rapidly changing climate.

  3. Changing seasonality of Arctic hydrology disrupts key biotic linkages in Arctic aquatic ecosystems.

    Science.gov (United States)

    Deegan, L.; MacKenzie, C.; Peterson, B. J.; Fishscape Project

    2011-12-01

    Arctic grayling (Thymallus arcticus) is an important circumpolar species that provide a model system for understanding the impacts of changing seasonality on arctic ecosystem function. Grayling serve as food for other biota, including lake trout, birds and humans, and act as top-down controls in stream ecosystems. In Arctic tundra streams, grayling spend their summers in streams but are obligated to move back into deep overwintering lakes in the fall. Climatic change that affects the seasonality of river hydrology could have a significant impact on grayling populations: grayling may leave overwintering lakes sooner in the spring and return later in the fall due to a longer open water season, but the migration could be disrupted by drought due to increased variability in discharge. In turn, a shorter overwintering season may impact lake trout dynamics in the lakes, which may rely on the seasonal inputs of stream nutrients in the form of migrating grayling into these oligotrophic lakes. To assess how shifting seasonality of Arctic river hydrology may disrupt key trophic linkages within and between lake and stream components of watersheds on the North Slope of the Brooks Mountain Range, Alaska, we have undertaken new work on grayling and lake trout population and food web dynamics. We use Passive Integrated Transponder (PIT) tags coupled with stream-width antenna units to monitor grayling movement across Arctic tundra watersheds during the summer, and into overwintering habitat in the fall. Results indicate that day length may prime grayling migration readiness, but that flooding events are likely the cue grayling use to initiate migration in to overwintering lakes. Many fish used high discharge events in the stream as an opportunity to move into lakes. Stream and lake derived stable isotopes also indicate that lake trout rely on these seasonally transported inputs of stream nutrients for growth. Thus, changes in the seasonality of river hydrology may have broader

  4. Marine Corps Equities in the Arctic

    Science.gov (United States)

    2013-04-18

    reduces the shipping time from Yokohama, Japan, to Hamburg , Germany, by 11 days as compared to the Suez Canal. Ships average approximately a 20...areas within the Arctic Circle. 10 Warming ocean water is causing fisheries to shift north as well. Fish populations usually found in the...people live in the Arctic region. Commercial fishing fleets are following these populations. 29 Russia holds the majority of the Arctic population

  5. Possible Effects of Climate Warming on Selected Populations of Polar Bears (Ursus maritimus) in the Canadian Arctic

    Science.gov (United States)

    Parkinson, Claire L.; Stirling Ian

    2006-01-01

    Polar bears are dependent on sea ice for survival. Climate warming in the Arctic has caused significant declines in coverage and thickness of sea ice in the polar basin and progressively earlier breakup in some areas. In four populations of polar bears in the eastern Canadian Arctic (including Western Hudson Bay), Inuit hunters report more bears near settlements during the open water period in recent years. These observations have been interpreted as evidence of increasing population size, resulting in increases in hunting quotas. However, long-term data on the population size and condition of polar bears in Western Hudson Bay, and population and harvest data from Baffin Bay, make it clear that those two populations at least are declining, not increasing. While the details vary in different arctic regions, analysis of passive-microwave satellite imagery, beginning in the late 1970s, indicates that the sea ice is breaking up at progressively earlier dates, so that bears must fast for longer periods during the open water season. Thus, at least part of the explanation for the appearance of more bears in coastal communities is likely that they are searching for alternative food sources because their stored body fat depots are being exhausted. We hypothesize that, if the climate continues to warm as projected by the IPCC, then polar bears in all five populations discussed in this paper will be stressed and are likely to decline in numbers, probably significantly so. As these populations decline, there will likely also be continuing, possibly increasing, numbers of problem interactions between bears and humans as the bears seek alternate food sources. Taken together, the data reported in this paper suggest that a precautionary approach be taken to the harvesting of polar bears and that the potential effects of climate warming be incorporated into planning for the management and conservation of this species throughout the Arctic.

  6. Genomics of Arctic cod

    Science.gov (United States)

    Wilson, Robert E.; Sage, George K.; Sonsthagen, Sarah A.; Gravley, Megan C.; Menning, Damian; Talbot, Sandra L.

    2017-01-01

    The Arctic cod (Boreogadus saida) is an abundant marine fish that plays a vital role in the marine food web. To better understand the population genetic structure and the role of natural selection acting on the maternally-inherited mitochondrial genome (mitogenome), a molecule often associated with adaptations to temperature, we analyzed genetic data collected from 11 biparentally-inherited nuclear microsatellite DNA loci and nucleotide sequence data from from the mitochondrial DNA (mtDNA) cytochrome b (cytb) gene and, for a subset of individuals, the entire mitogenome. In addition, due to potential of species misidentification with morphologically similar Polar cod (Arctogadus glacialis), we used ddRAD-Seq data to determine the level of divergence between species and identify species-specific markers. Based on the findings presented here, Arctic cod across the Pacific Arctic (Bering, Chukchi, and Beaufort Seas) comprise a single panmictic population with high genetic diversity compared to other gadids. High genetic diversity was indicated across all 13 protein-coding genes in the mitogenome. In addition, we found moderate levels of genetic diversity in the nuclear microsatellite loci, with highest diversity found in the Chukchi Sea. Our analyses of markers from both marker classes (nuclear microsatellite fragment data and mtDNA cytb sequence data) failed to uncover a signal of microgeographic genetic structure within Arctic cod across the three regions, within the Alaskan Beaufort Sea, or between near-shore or offshore habitats. Further, data from a subset of mitogenomes revealed no genetic differentiation between Bering, Chukchi, and Beaufort seas populations for Arctic cod, Saffron cod (Eleginus gracilis), or Walleye pollock (Gadus chalcogrammus). However, we uncovered significant differences in the distribution of microsatellite alleles between the southern Chukchi and central and eastern Beaufort Sea samples of Arctic cod. Finally, using ddRAD-Seq data, we

  7. Factors affecting biotic mercury concentrations and biomagnification through lake food webs in the Canadian high Arctic

    Energy Technology Data Exchange (ETDEWEB)

    Lescord, Gretchen L., E-mail: glescord@gmail.com [University of New Brunswick/Canadian Rivers Institute, 100 Tucker Park Rd, Saint John, NB E2L 4A6 (Canada); Kidd, Karen A. [University of New Brunswick/Canadian Rivers Institute, 100 Tucker Park Rd, Saint John, NB E2L 4A6 (Canada); Kirk, Jane L. [Environment Canada, Aquatic Contaminants Research Division, 867 Lakeshore Rd, Burlington, ON L7S 1A1 (Canada); O' Driscoll, Nelson J. [Acadia University, 15 University Ave, Wolfville, NS B4P 2R6 (Canada); Wang, Xiaowa; Muir, Derek C.G. [Environment Canada, Aquatic Contaminants Research Division, 867 Lakeshore Rd, Burlington, ON L7S 1A1 (Canada)

    2015-03-15

    In temperate regions of Canada, mercury (Hg) concentrations in biota and the magnitude of Hg biomagnification through food webs vary between neighboring lakes and are related to water chemistry variables and physical lake features. However, few studies have examined factors affecting the variable Hg concentrations in landlocked Arctic char (Salvelinus alpinus) or the biomagnification of Hg through their food webs. We estimated the food web structure of six high Arctic lakes near Resolute Bay, Nunavut, Canada, using stable carbon (δ{sup 13}C) and nitrogen (δ{sup 15}N) isotopes and measured Hg (total Hg (THg) in char, the only fish species, and methylmercury (MeHg) in chironomids and zooplankton) concentrations in biota collected in 2010 and 2011. Across lakes, δ{sup 13}C showed that benthic carbon (chironomids) was the dominant food source for char. Regression models of log Hg versus δ{sup 15}N (of char and benthic invertebrates) showed positive and significant slopes, indicting Hg biomagnification in all lakes, and higher slopes in some lakes than others. However, no principal components (PC) generated using all water chemistry data and physical characteristics of the lakes predicted the different slopes. The PC dominated by aqueous ions was a negative predictor of MeHg concentrations in chironomids, suggesting that water chemistry affects Hg bioavailability and MeHg concentrations in these lower-trophic-level organisms. Furthermore, regression intercepts were predicted by the PCs dominated by catchment area, aqueous ions, and MeHg. Weaker relationships were also found between THg in small char or MeHg in pelagic invertebrates and the PCs dominated by catchment area, and aqueous nitrate and MeHg. Results from these high Arctic lakes suggest that Hg biomagnification differs between systems and that their physical and chemical characteristics affect Hg concentrations in lower-trophic-level biota. - Highlights: • Mercury (Hg) in Arctic char and invertebrates

  8. The Arctic: Glacial Refugium or Area of Secondary Contact? Inference from the Population Genetic Structure of the Thick-Billed Murre (Uria lomvia), with Implications for Management.

    Science.gov (United States)

    Tigano, Anna; Damus, Martin; Birt, Tim P; Morris-Pocock, Jamie A; Artukhin, Yuri B; Friesen, Vicki L

    2015-01-01

    Quaternary glaciations affected the distribution of many species. Here, we investigate whether the Arctic represented a glacial refugium during the Last Glacial Maximum or an area of secondary contact following the ice retreat, by analyzing the genetic population structure of the thick-billed murre (Uria lomvia), a seabird that breeds throughout the North Atlantic, North Pacific and Arctic Oceans. The thick-billed murre is a species of socio-economic importance and faces numerous threats including hunting, oil pollution, gill netting, and climate change. We compared variation in the mitochondrial DNA (mtDNA) control region (n = 424), supplemented by 4 microsatellite loci (n = 445), among thick-billed murres sampled throughout their range. MtDNA data indicated that colonies comprise 4 genetically differentiated groups (Φst = 0.11-0.81): 1) Atlantic Ocean plus New Siberian Islands region, 2) Cape Parry, 3) Chukchi Sea, and 4) Pacific Ocean. Microsatellite variation differed between Atlantic and Pacific populations. Otherwise, little substructure was found within either ocean. Atlantic and Pacific populations appear to have been genetically isolated since the last interglacial period and should be considered separate evolutionary significant units for management. The Chukchi Sea and Cape Parry appear to represent areas of secondary contact, rather than arctic refugial populations. © The American Genetic Association 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. A Selective Sweep on a Deleterious Mutation in CPT1A in Arctic Populations

    DEFF Research Database (Denmark)

    Clemente, Florian J.; Cardona, Alexia; Inchley, Charlotte E.

    2014-01-01

    Arctic populations live in an environment characterized by extreme cold and the absence of plant foods for much of the year and are likely to have undergone genetic adaptations to these environmental conditions in the time they have been living there. Genome-wide selection scans based on genotype......, using whole-genome high-coverage sequence data, we identified the most likely causative variant as a nonsynonymous G>A transition (rs80356779; c.1436C>T [p.Pro479Leu] on the reverse strand) in CPT1A, a key regulator of mitochondrial long-chain fatty-acid oxidation. Remarkably, the derived allele...... this variant to high frequency in circum-Arctic populations within the last 6–23 ka despite associated deleterious consequences, possibly as a result of the selective advantage it originally provided to either a high-fat diet or a cold environment....

  10. Levels and trends of contaminants in humans of the Arctic.

    Science.gov (United States)

    Gibson, Jennifer; Adlard, Bryan; Olafsdottir, Kristin; Sandanger, Torkjel Manning; Odland, Jon Øyvind

    2016-01-01

    The Arctic Monitoring and Assessment Programme (AMAP) is one of the six working groups established under the Arctic Council. AMAP is tasked with monitoring the levels of contaminants present in the Arctic environment and people as well as assessing their effects on a continuous basis, and reporting these results regularly. Most of the presented data have been collected over the last 20 years and are from all eight Arctic countries. Levels of contaminants appear to be declining in some of the monitored Arctic populations, but it is not consistent across the Arctic. Most Arctic populations continue to experience elevated levels of these contaminants compared to other populations monitored globally. There are certain contaminants, such as perfluorinated compounds and polybrominated diphenyl ethers, which are still increasing in Arctic populations. These contaminants require more investigation to find out the predominant and important sources of exposure, and whether they are being transported to the Arctic through long-range transport in the environment.

  11. Arctic alpine ecosystems and people in a changing environment

    National Research Council Canada - National Science Library

    Ørbæk, Jon Børre

    2007-01-01

    ... for the population structures and the interaction between species. These changes may also have socio-economic effects if the changes affect the bio-production, which form the basis for the marine and terrestrial food chains. The book is uniquely multidisciplinary and provides examples of various aspects of contemporary environmental change in arctic and ...

  12. Wildfires in northern Eurasia affect the budget of black carbon in the Arctic - a 12-year retrospective synopsis (2002-2013)

    Science.gov (United States)

    N. Evangeliou; Y. Balkanski; WeiMin Hao; A. Petkov; R. P. Silverstein; R. Corley; B. L. Nordgren; Shawn Urbanski; S. Eckhardt; A. Stohl; P. Tunved; S. Crepinsek; A. Jefferson; S. Sharma; J. K. Nojgaard; H. Skov

    2016-01-01

    In recent decades much attention has been given to the Arctic environment, where climate change is happening rapidly. Black carbon (BC) has been shown to be a major component of Arctic pollution that also affects the radiative balance. In the present study, we focused on how vegetation fires that occurred in northern Eurasia during the period of 2002–2013 influenced...

  13. 2nd International Arctic Ungulate Conference

    Directory of Open Access Journals (Sweden)

    A. Anonymous

    1996-01-01

    Full Text Available The 2nd International Arctic Ungulate Conference was held 13-17 August 1995 on the University of Alaska Fairbanks campus. The Institute of Arctic Biology and the Alaska Cooperative Fish and Wildlife Research Unit were responsible for organizing the conference with assistance from biologists with state and federal agencies and commercial organizations. David R. Klein was chair of the conference organizing committee. Over 200 people attended the conference, coming from 10 different countries. The United States, Canada, and Norway had the largest representation. The conference included invited lectures; panel discussions, and about 125 contributed papers. There were five technical sessions on Physiology and Body Condition; Habitat Relationships; Population Dynamics and Management; Behavior, Genetics and Evolution; and Reindeer and Muskox Husbandry. Three panel sessions discussed Comparative caribou management strategies; Management of introduced, reestablished, and expanding muskox populations; and Health risks in translocation of arctic ungulates. Invited lectures focused on the physiology and population dynamics of arctic ungulates; contaminants in food chains of arctic ungulates and lessons learned from the Chernobyl accident; and ecosystem level relationships of the Porcupine Caribou Herd.

  14. Correlated declines in Pacific arctic snow and sea ice cover

    Science.gov (United States)

    Stone, Robert P.; Douglas, David C.; Belchansky, Gennady I.; Drobot, Sheldon

    2005-01-01

    Simulations of future climate suggest that global warming will reduce Arctic snow and ice cover, resulting in decreased surface albedo (reflectivity). Lowering of the surface albedo leads to further warming by increasing solar absorption at the surface. This phenomenon is referred to as “temperature–albedo feedback.” Anticipation of such a feedback is one reason why scientists look to the Arctic for early indications of global warming. Much of the Arctic has warmed significantly. Northern Hemisphere snow cover has decreased, and sea ice has diminished in area and thickness. As reported in the Arctic Climate Impact Assessment in 2004, the trends are considered to be outside the range of natural variability, implicating global warming as an underlying cause. Changing climatic conditions in the high northern latitudes have influenced biogeochemical cycles on a broad scale. Warming has already affected the sea ice, the tundra, the plants, the animals, and the indigenous populations that depend on them. Changing annual cycles of snow and sea ice also affect sources and sinks of important greenhouse gases (such as carbon dioxide and methane), further complicating feedbacks involving the global budgets of these important constituents. For instance, thawing permafrost increases the extent of tundra wetlands and lakes, releasing greater amounts of methane into the atmosphere. Variable sea ice cover may affect the hemispheric carbon budget by altering the ocean–atmosphere exchange of carbon dioxide. There is growing concern that amplification of global warming in the Arctic will have far-reaching effects on lower latitude climate through these feedback mechanisms. Despite the diverse and convincing observational evidence that the Arctic environment is changing, it remains unclear whether these changes are anthropogenically forced or result from natural variations of the climate system. A better understanding of what controls the seasonal distributions of snow and ice

  15. How Rapid Change Affects Deltas in the Arctic Region

    Science.gov (United States)

    Overeem, I.; Bendixen, M.

    2017-12-01

    Deltas form where the river drains into the ocean. Consequently, delta depositional processes are impacted by either changes in the respective river drainage basin or by changes in the regional marine environment. In a warming Arctic region rapid change has occurred over the last few decades in both the terrestrial domain as well as in the marine domain. Important terrestrial controls include 1) change in permafrost possibly destabilizing river banks, 2) strong seasonality of river discharge due to a short melting season, 3) high sediment supply if basins are extensively glaciated, 4) lake outbursts and ice jams favoring river flooding. Whereas in the Arctic marine domain sea ice loss promotes wave and storm surge impact, and increased longshore transport. We here ask which of these factors dominate any morphological change in Arctic deltas. First, we analyze hydrological data to assess change in Arctic-wide river discharge characteristics and timing, and sea ice concentration data to map changes in sea ice regime. Based on this observational analysis we set up a number of scenarios of change. We then model hypothetical small-scale delta formation considering change in these primary controls by setting up a numerical delta model, and combining it dynamically with a permafrost model. We find that for typical Greenlandic deltas changes in river forcing due to ice sheet melt dominate the morphological change, which is corroborated by mapping of delta progradation from aerial photos and satellite imagery. Whereas in other areas, along the North Slope and the Canadian Arctic small deltas are more stable or experienced retreat. Our preliminary coupled model allows us to further disentangle the impact of major forcing factors on delta evolution in high-latitude systems.

  16. U.S. Arctic research in a technological age

    International Nuclear Information System (INIS)

    Johnson, P.L.

    1993-01-01

    The United States Arctic Research Commission was established in 1984 primarily as an advisory agency. An Interagency Arctic Research Policy Committee is one of the main recipients of the Commission's recommendations. The Committee formulated an Arctic research policy calling for research focused on national security concerns, regional development with minimal environmental or adverse social impact, and scientific research on Arctic phenomena and processes. In basic science, emphasis is placed on the need to understand Arctic processes as part of the global earth system. These processes include those that affect and are affected by climatic change. A new research program in Arctic systems science has three components: paleoenvironmental studies on ice core from Greenland; ocean-atmosphere interactions; and land-atmosphere interactions. The Commission also recognizes a need to focus on issues relevant to the Arctic as an integral component of the world economic system, since the Arctic is a significant source of petroleum and minerals. The Commission recommended that the Committee develop an Arctic engineering research plan with emphasis on such topics as oil spill prevention, waste disposal, small-scale power generation, and Arctic construction techniques. The USA is also cooperating in international Arctic research through the International Arctic Science Committee, the Arctic Environmental Protection Strategy, and the North Pacific Marine Science Organization

  17. Ecosystem-atmosphere interactions in the Arctic

    DEFF Research Database (Denmark)

    López-Blanco, Efrén

    The terrestrial CO2 exchange in the Arctic plays an important role in the global carbon (C) cycle. The Arctic ecosystems, containing a large amount of organic carbon (C), are experiencing on-going warming in recent decades, which is affecting the C cycling and the feedback interactions between its...... of measurement sites, particularly covering full annual cycles, but also the frequent gaps in data affected by extreme conditions and remoteness. Combining ecosystem models and field observations we are able to study the underlying processes of Arctic CO2 exchange in changing environments. The overall aim...... of the research is to use data-model approaches to analyse the patterns of C exchange and their links to biological processes in Arctic ecosystems, studied in detail both from a measurement and a modelling perspective, but also from a local to a pan-arctic scale. In Paper I we found a compensatory response...

  18. A global audit of the status and trends of Arctic and Northern Hemisphere goose populations

    Science.gov (United States)

    Schmutz, Joel A.; Fox, Anthony D.; Leafloor, James O.

    2018-01-01

    This report attempts to review the abundance, status and distribution of natural wild goose populations in the northern hemisphere. The report comprises three parts that 1) summarise key findings from the study and the methodology and analysis applied; 2) contain the individual accounts for each of the 68 populations included in this report; and 3) provide the datasets compiled for this study which will be made accessible on the Arctic Biodiversity Data Service.

  19. Changing Arctic ecosystems: resilience of caribou to climatic shifts in the Arctic

    Science.gov (United States)

    Gustine, David D.; Adams, Layne G.; Whalen, Mary E.; Pearce, John M.

    2014-01-01

    The U.S. Geological Survey (USGS) Changing Arctic Ecosystems (CAE) initiative strives to inform key resource management decisions for Arctic Alaska by providing scientific information and forecasts for current and future ecosystem response to a warming climate. Over the past 5 years, a focal area for the USGS CAE initiative has been the North Slope of Alaska. This region has experienced a warming trend over the past 60 years, yet the rate of change has been varied across the North Slope, leading scientists to question the future response and resilience of wildlife populations, such as caribou (Rangifer tarandus), that rely on tundra habitats for forage. Future changes in temperature and precipitation to coastal wet sedge and upland low shrub tundra are expected, with unknown consequences for caribou that rely on these plant communities for food. Understanding how future environmental change may affect caribou migration, nutrition, and reproduction is a focal question being addressed by the USGS CAE research. Results will inform management agencies in Alaska and people that rely on caribou for food.

  20. Squaring the Arctic Circle: connecting Arctic knowledge with societal needs

    Science.gov (United States)

    Wilkinson, J.

    2017-12-01

    Over the coming years the landscape of the Arctic will change substantially- environmentally, politically, and economically. Furthermore, Arctic change has the potential to significantly impact Arctic and non-Arctic countries alike. Thus, our science is in-demand by local communities, politicians, industry leaders and the public. During these times of transition it is essential that the links between science and society be strengthened further. Strong links between science and society is exactly what is needed for the development of better decision-making tools to support sustainable development, enable adaptation to climate change, provide the information necessary for improved management of assets and operations in the Arctic region, and and to inform scientific, economic, environmental and societal policies. By doing so tangible benefits will flow to Arctic societies, as well as for non-Arctic countries that will be significantly affected by climate change. Past experience has shown that the engagement with a broad range of stakeholders is not always an easy process. Consequently, we need to improve collaborative opportunities between scientists, indigenous/local communities, private sector, policy makers, NGOs, and other relevant stakeholders. The development of best practices in this area must build on the collective experiences of successful cross-sectorial programmes. Within this session we present some of the outreach work we have performed within the EU programme ICE-ARC, from community meetings in NW Greenland through to sessions at the United Nations Framework Convention on Climate Change COP Conferences, industry round tables, and an Arctic side event at the World Economic Forum in Davos.

  1. Cardiovascular Disease Susceptibility and Resistance in Circumpolar Inuit Populations.

    Science.gov (United States)

    Tvermosegaard, Maria; Dahl-Petersen, Inger K; Nielsen, Nina Odgaard; Bjerregaard, Peter; Jørgensen, Marit Eika

    2015-09-01

    Cardiovascular disease (CVD) is a major public health issue in indigenous populations in the Arctic. These diseases have emerged concomitantly with profound social changes over the past 60 years. The aim of this study was to summarize the literature on CVD risk among Arctic Inuit. Literature on prevalence, incidence, and time trends for CVD and its risk factors in Arctic Inuit populations was reviewed. Most evidence supports a similar incidence of coronary heart disease and a higher incidence of cerebrovascular disease among Arctic Inuit than seen in western populations. Factors that may increase CVD risk include aging of the population, genetic susceptibility, and a rapid increase in obesity, diabetes, and hypertension in parallel with decreasing physical activity and deterioration of the lipid profile. In contrast, and of great importance, there has been a decrease in smoking and alcohol intake (at least documented in Greenland), and contaminant levels are declining. Although there have been marked socioeconomic and dietary changes, it remains unsolved and to some extent controversial how this may have influenced cardiovascular risk among Arctic Inuit. The increase in life expectancy, in combination with improved prognosis for patients with manifest CVD, will inevitably lead to a large increase in absolute numbers of individuals affected by CVD in Arctic Inuit populations, exacerbated by the rise in most CVD risk factors over the past decades. For preventive purposes and for health care planning, it is crucial to carefully monitor disease incidence and trends in risk factors in these vulnerable Arctic populations. Copyright © 2015 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.

  2. Population-level body condition correlates with productivity in an arctic wader, the dunlin Calidris alpina, during post-breeding migration.

    Directory of Open Access Journals (Sweden)

    Grzegorz Neubauer

    Full Text Available Weather and predation constitute the two main factors affecting the breeding success of those Arctic waders whose productivity is highly variable over the years. We tested whether reproductive success is associated with the post-breeding condition of adults, in which in 'good' years (with warm weather, plentiful food and low predation pressure the condition of breeders and their productivity is high. To verify this hypothesis, we used a 10-year dataset comprising 20,792 dunlins Calidris alpina, trapped during migration at a stopover site on the southern Baltic Sea shore. Males were consistently in a slightly worse condition than females, likely due to male-biased parental investment in brood rearing. Annual productivity indices were positively correlated with the respective condition indices of breeders from the Eurasian Arctic, indicating that in 'good' years, despite great effort spent on reproduction, breeders leave the breeding grounds in better condition. The pattern did not hold for 1992: productivity was low, but the average condition of adults during migration was the highest noted over the decade. We suggest that the delayed effect of the Mount Pinatubo eruption in the Philippines in 1991, could be responsible for the unexpected high condition of Arctic breeders in 1992. High population-level average condition, coupled with the low productivity could stem from severe weather caused by the volcano eruption a year before and strong predation pressure, which in turn lead to a reduced investment in reproduction. The importance of large-scale episodic phenomena, like this volcano eruption, may blur the statistical associations of wildlife with local environmental drivers.

  3. Population-level body condition correlates with productivity in an arctic wader, the dunlin Calidris alpina, during post-breeding migration.

    Science.gov (United States)

    Neubauer, Grzegorz; Pilacka, Lucyna; Zieliński, Piotr; Gromadzka, Jadwiga

    2017-01-01

    Weather and predation constitute the two main factors affecting the breeding success of those Arctic waders whose productivity is highly variable over the years. We tested whether reproductive success is associated with the post-breeding condition of adults, in which in 'good' years (with warm weather, plentiful food and low predation pressure) the condition of breeders and their productivity is high. To verify this hypothesis, we used a 10-year dataset comprising 20,792 dunlins Calidris alpina, trapped during migration at a stopover site on the southern Baltic Sea shore. Males were consistently in a slightly worse condition than females, likely due to male-biased parental investment in brood rearing. Annual productivity indices were positively correlated with the respective condition indices of breeders from the Eurasian Arctic, indicating that in 'good' years, despite great effort spent on reproduction, breeders leave the breeding grounds in better condition. The pattern did not hold for 1992: productivity was low, but the average condition of adults during migration was the highest noted over the decade. We suggest that the delayed effect of the Mount Pinatubo eruption in the Philippines in 1991, could be responsible for the unexpected high condition of Arctic breeders in 1992. High population-level average condition, coupled with the low productivity could stem from severe weather caused by the volcano eruption a year before and strong predation pressure, which in turn lead to a reduced investment in reproduction. The importance of large-scale episodic phenomena, like this volcano eruption, may blur the statistical associations of wildlife with local environmental drivers.

  4. Transport Regimes of Air Masses Affecting the Tropospheric Composition of the Canadian and European Arctic During RACEPAC 2014 and NETCARE 2014/2015

    Science.gov (United States)

    Bozem, H.; Hoor, P. M.; Koellner, F.; Kunkel, D.; Schneider, J.; Schulz, C.; Herber, A. B.; Borrmann, S.; Wendisch, M.; Ehrlich, A.; Leaitch, W. R.; Willis, M. D.; Burkart, J.; Thomas, J. L.; Abbatt, J.

    2015-12-01

    The Arctic is warming much faster than any other place in the world and undergoes a rapid change dominated by a changing climate in this region. The impact of polluted air masses traveling to the Arctic from various remote sources significantly contributes to the observed climate change, in contrast there are additional local emission sources contributing to the level of pollutants (trace gases and aerosol). Processes affecting the emission and transport of these pollutants are not well understood and need to be further investigated. We present aircraft based trace gas measurements in the Arctic during RACEPAC (2014) and NETCARE (2014 and 2015) with the Polar 6 aircraft of Alfred Wegener Institute (AWI) covering an area from 134°W to 17°W and 68°N to 83°N. We focus on cloud, aerosol and general transport processes of polluted air masses into the high Arctic. Based on CO and CO2 measurements and kinematic 10-day back trajectories we analyze the transport regimes prevalent during spring (RACEPAC 2014 and NETCARE 2015) and summer (NETCARE 2014) in the observed region. Whereas the eastern part of the Canadian Arctic is affected by air masses with their origin in Asia, in the central and western parts of the Canadian and European Arctic air masses from North America are predominant at the time of the measurement. In general the more northern parts of the Arctic were relatively unaffected by pollution from mid-latitudes since air masses mostly travel within the polar dome, being quite isolated. Associated mixing ratios of CO and CO2 fit into the seasonal cycle observed at NOAA ground stations throughout the Arctic, but show a more mid-latitudinal characteristic at higher altitudes. The transition is remarkably sharp and allows for a chemical definition of the polar dome. At low altitudes, synoptic disturbances transport polluted air masses from mid-latitudes into regions of the polar dome. These air masses contribute to the Arctic pollution background, but also

  5. Using satellite telemetry to define spatial population structure in polar bears in the Norwegian and western Russian Arctic

    Science.gov (United States)

    Mauritzen, Mette; Derocher, Andrew E.; Wiig, Øystein; Belikov, Stanislav; Boltunov, Andrei N.; Garner, Gerald W.

    2002-01-01

    1. Animal populations, defined by geographical areas within a species’ distribution where population dynamics are largely regulated by births and deaths rather than by migration from surrounding areas, may be the correct unit for wildlife management. However, in heterogeneous landscapes varying habitat quality may yield subpopulations with distinct patterns in resource use and demography significant to the dynamics of populations.2. To define the spatial population structure of polar bears Ursus maritimus in the Norwegian and western Russian Arctic, and to assess the existence of a shared population between the two countries, we analysed satellite telemetry data obtained from 105 female polar bears over 12 years.3. Using both cluster analyses and home-range estimation methods, we identified five population units inhabiting areas with different sea-ice characteristics and prey availability.4. The continuous distribution of polar bear positions indicated that the different subpopulations formed one continuous polar bear population in the Norwegian and western Russian Arctic. Hence, Norway and Russia have a shared management responsibility.5. The spatial population structure identified will provide a guide for evaluating geographical patterns in polar bear ecology, the dynamics of polar bear–seal relationships and the effects of habitat alteration due to climate change. The work illustrates the importance of defining population borders and subpopulation structure in understanding the dynamics and management of larger animals.

  6. Pearsonema (syn Capillaria plica associated cystitis in a Fennoscandian arctic fox (Vulpes lagopus: a case report

    Directory of Open Access Journals (Sweden)

    Osterman-Lind Eva

    2010-06-01

    Full Text Available Abstract The bladderworm Pearsonema (syn Capillaria plica affects domestic dogs and wild carnivores worldwide. A high prevalence in red foxes (Vulpes vulpes has been reported in many European countries. P. plica inhabits the lower urinary tract and is considered to be of low pathogenic significance in dogs mostly causing asymptomatic infections. However, a higher level of pathogenicity has been reported in foxes. A severe cystitis associated with numerous bladderworms was found in a captive arctic fox (Vulpes lagopus originating from the endangered Fennoscandian arctic fox population. To our knowledge this is the first description of P. plica infection in an arctic fox.

  7. Intercontinental gene flow among western arctic populations of Lesser Snow Geese

    Science.gov (United States)

    Shorey, Rainy I.; Scribner, Kim T.; Kanefsky, Jeannette; Samuel, Michael D.; Libants, Scot V.

    2011-01-01

    Quantifying the spatial genetic structure of highly vagile species of birds is important in predicting their degree of population demographic and genetic independence during changing environmental conditions, and in assessing their abundance and distribution. In the western Arctic, Lesser Snow Geese (Chen caerulescens caerulescens) provide an example useful for evaluating spatial population genetic structure and the relative contribution of male and female philopatry to breeding and wintering locales. We analyzed biparentally inherited microsatellite loci and maternally inherited mtDNA sequences from geese breeding at Wrangel Island (Russia) and Banks Island (Canada) to estimate gene flow among populations whose geographic overlap during breeding and winter differ. Significant differences in the frequencies of mtDNA haplotypes contrast with the homogeneity of allele frequencies for microsatellite loci. Coalescence simulations revealed high variability and asymmetry between males and females in rates and direction of gene flow between populations. Our results highlight the importance of wintering areas to demographic independence and spatial genetic structure of these populations. Male-mediated gene flow among the populations on northern Wrangel Island, southern Wrangel Island, and Banks Island has been substantial. A high rate of female-mediated gene flow from southern Wrangel Island to Banks Island suggests that population exchange can be achieved when populations winter in a common area. Conversely, when birds from different breeding populations do not share a common wintering area, the probability of population exchange is likely to be dramatically reduced.

  8. Genetic stock assessment of spawning arctic cisco (Coregonus autumnalis) populations by flow cytometric determination of DNA content.

    Science.gov (United States)

    Lockwood, S F; Bickham, J W

    1991-01-01

    Intraspecific variation in cellular DNA content was measured in five Coregonus autumnalis spawning populations from the Mackenzie River drainage, Canada, using flow cytometry. The rivers assayed were the Peel, Arctic Red, Mountain, Carcajou, and Liard rivers. DNA content was determined from whole blood preparations of fish from all rivers except the Carcajou, for which kidney tissue was used. DNA content measurements of kidney and blood preparations of the same fish from the Mountain River revealed statistically indistinguishable results. Mosaicism was found in blood preparations from the Peel, Arctic Red, Mountain, and Liard rivers, but was not observed in kidney tissue preparations from the Mountain or Carcajou rivers. The Liard River sample had significantly elevated mean DNA content relative to the other four samples; all other samples were statistically indistinguishable. Significant differences in mean DNA content among spawning stocks of a single species reinforces the need for adequate sample sizes of both individuals and populations when reporting "C" values for a particular species.

  9. Contrasting physiological responses to future ocean acidification among Arctic copepod populations

    DEFF Research Database (Denmark)

    Thor, Peter; Bailey, Allison; Dupont, Sam

    2018-01-01

    Widespread ocean acidification (OA) is modifying the chemistry of the global ocean, and the Arctic is recognised as the region where the changes will progress at the fastest rate. Moreover, Arctic species show lower capacity for cellular homeostasis and acid-base regulation rendering them...

  10. Pacific Northwest Laboratory Alaska (ARCTIC) research program

    International Nuclear Information System (INIS)

    Hanson, W.C.; Eberhardt, L.E.

    1980-03-01

    The current program continues studies of arctic ecosystems begun in 1959 as part of the Cape Thompson Program. Specific ecosystem aspects include studies of the ecology of arctic and red foxes, small mammel and bird population studies, lichen studies, and radiation ecology studies

  11. Exploitation dynamics of small fish stocks like Arctic cisco

    Science.gov (United States)

    Nielsen, Jennifer L.

    2004-01-01

    Potential impacts to the Arctic cisco population fall into both demographic and behavioral categories. Possible demographic impacts include stock recruitment effects, limited escapement into marine habitats, and variable age-class reproductive success. Potential behavioral impacts involve migratory patterns, variable life histories, and strategies for seasonal feeding. Arctic cisco stocks are highly susceptible to over-exploitation due to our limited basic knowledge of the highly variable Arctic environment and the role they play in this dynamic ecosystem.Our knowledge of potential demographic changes is very limited, and it is necessary to determine the abundance and recruitment of the hypothesized Mackenzie River source population, the extent of the coastal migratory corridor, growth patterns, and coastal upwelling and mixing effects on population dynamics for this species. Information needed to answer some of the demographic questions includes basic evolutionary history and molecular genetics of Arctic cisco (for instance, are there contributions to the Arctic cisco stock from the Yukon?), what is the effective population size (i.e., breeding population size), and potential links to changes in climate. The basic behavioral questions include migratory and variable life history questions. For instance, the extent of movement back and forth between freshwater and the sea, age-specific differences in food web dynamics, and nearshore brackish and high salinity habitats are topics that should be studied. Life history data should be gathered to understand the variation in age at reproduction, salinity tolerance, scale and duration of the freshwater stage, survival, and adult migration. Both molecular and ecological tools should be integrated to manage the Arctic cisco stock(s), such as understanding global climate changes on patterns of harvest and recruitment, and the genetics of population structure and colonization. Perhaps other populations are contributing to the

  12. International Disputes and Cultural Ideas in the Canadian Arctic

    DEFF Research Database (Denmark)

    Burke, Danita Catherine

    of the Canadian-Arctic relationship. Using Canada as the focus for the analysis, the purpose of this project is to contribute to the existing Arctic studies and international relations literature by examining how interests and disputes in the Canadian Arctic region have been affected by domestic cultural...

  13. Effects of Arctic Alaska oil development on Brant and snow geese

    Energy Technology Data Exchange (ETDEWEB)

    Truett, J. C. [Truett Research, Glenwood, NM (United States); Miller, M. E. [Colorado Univ., Boulder, CO (United States). Dept. of Geography; Kertell, K. [SWCA Inc., Tucson, AZ (United States)

    1997-06-01

    The potential impact of Arctic Alaskan oil development on black brant and lesser snow geese were investigated. Release of contaminants, alteration of tundra surfaces, creation of impoundments and human activities were considered as most likely to affect geese directly (e.g. through oil spills), or indirectly (e.g. by altering food supplies or predator populations). To date, no evidence of changes in the distribution, abundance or reproduction of these geese have been found that could be clearly attributed to development; indeed, the number and recruitment of geese in the oilfields responded, as elsewhere, to weather and predation. It is suggested, however, that three known predators -arctic foxes, glaucous gulls, and grizzly bears- may have increased in abundance as a result of development. The common raven has been observed to have recently established a small nesting population, apparently because of development, and birds from this population have preyed on goose eggs. Other than the action of these predators, the environmental impacts of development in Alaska oil fields are currently unknown. 55 refs., 2 figs.

  14. Arctic ecosystem responses to a warming climate

    DEFF Research Database (Denmark)

    Mortensen, Lars O.

    sheet, loss of multiannual sea-ice and significant advances in snowmelt days. The biotic components of the arctic ecosystem have also been affected by the rapid changes in climate, for instance resulting in the collapse of the collared lemming cycle, advances in spring flowering and changes in the intra...... biotic interactions. Hence, through the use of up-to-date multivariate statistical tools, this Ph.D. study has been concerned with analyzing how the observed rapid climate changes are affecting the arctic ecosystems. The primary tool has been the implementation of structural equation modeling (SEM) which....... Additionally, the study demonstrated that climate effects had distinct direct and indirect effects on different trophic levels, indicating cascading effects of climate through the trophic system. Results suggest that the Arctic is being significantly affected by the observed climate changes and depending...

  15. Challenges of climate change: an Arctic perspective.

    Science.gov (United States)

    Corell, Robert W

    2006-06-01

    Climate change is being experienced particularly intensely in the Arctic. Arctic average temperature has risen at almost twice the rate as that of the rest of the world in the past few decades. Widespread melting of glaciers and sea ice and rising permafrost temperatures present additional evidence of strong Arctic warming. These changes in the Arctic provide an early indication of the environmental and societal significance of global consequences. The Arctic also provides important natural resources to the rest of the world (such as oil, gas, and fish) that will be affected by climate change, and the melting of Arctic glaciers is one of the factors contributing to sea level rise around the globe. An acceleration of these climatic trends is projected to occur during this century, due to ongoing increases in concentrations of greenhouse gases in the Earth's atmosphere. These Arctic changes will, in turn, impact the planet as a whole.

  16. Climate change and the ecology and evolution of Arctic vertebrates

    DEFF Research Database (Denmark)

    Gilg, Olivier; Kovacs, Kit M.; Aars, J.

    2012-01-01

    Climate change is taking place more rapidly and severely in the Arctic than anywhere on the globe, exposing Arctic vertebrates to a host of impacts. Changes in the cryosphere dominate the physical changes that already affect these animals, but increasing air temperatures, changes in precipitation......, and ocean acidification will also affect Arctic ecosystems in the future. Adaptation via natural selection is problematic in such a rapidly changing environment. Adjustment via phenotypic plasticity is therefore likely to dominate Arctic vertebrate responses in the short term, and many such adjustments have...... already been documented. Changes in phenology and range will occur for most species but will only partly mitigate climate change impacts, which are particularly difficult to forecast due to the many interactions within and between trophic levels. Even though Arctic species richness is increasing via...

  17. Multinational Experiment 7. Maritime Security Region: The Arctic

    Science.gov (United States)

    2013-07-08

    increasingly affect human communities , natural systems, and infrastructure. Resources and Trade Routes in the Arctic Climate change in the Far...capelin, herring, navaga, and wolffishes. Some areas of the Arctic and sub-Arctic suffer from high levels of illegal fishing and overfishing , and...maneuvering, joint air defense drills, communications and search and rescue operations. The exercise is normally held every second year. 8 In

  18. Greenland and the international politics of a changing arctic

    DEFF Research Database (Denmark)

    Greenland and the International Politics of a Changing Arctic examines the international politics of semi-independent Greenland in a changing and increasingly globalised Arctic. Without sovereign statehood, but with increased geopolitical importance, independent foreign policy ambitions......, and a solidified self-image as a trailblazer for Arctic indigenous peoples’ rights, Greenland is making its mark on the Arctic and is in turn affected – and empowered – by Arctic developments. The chapters in this collection analyse how a distinct Greenlandic foreign policy identity shapes political ends and means...... for regional change in the Arctic. This is the first comprehensive and interdisciplinary examination of Greenland’s international relations and how they are connected to wider Arctic politics. It will be essential reading for students and scholars interested in Arctic governance and security, international...

  19. Adaptive strategies and life history characteristics in a warming climate: salmon in the Arctic?

    Science.gov (United States)

    Nielsen, Jennifer L.; Ruggerone, Gregory T.; Zimmerman, Christian E.

    2013-01-01

    In the warming Arctic, aquatic habitats are in flux and salmon are exploring their options. Adult Pacific salmon, including sockeye (Oncorhynchus nerka), coho (O. kisutch), Chinook (O. tshawytscha), pink (O. gorbuscha) and chum (O. keta) have been captured throughout the Arctic. Pink and chum salmon are the most common species found in the Arctic today. These species are less dependent on freshwater habitats as juveniles and grow quickly in marine habitats. Putative spawning populations are rare in the North American Arctic and limited to pink salmon in drainages north of Point Hope, Alaska, chum salmon spawning rivers draining to the northwestern Beaufort Sea, and small populations of chum and pink salmon in Canada’s Mackenzie River. Pacific salmon have colonized several large river basins draining to the Kara, Laptev and East Siberian seas in the Russian Arctic. These populations probably developed from hatchery supplementation efforts in the 1960’s. Hundreds of populations of Arctic Atlantic salmon (Salmo salar) are found in Russia, Norway and Finland. Atlantic salmon have extended their range eastward as far as the Kara Sea in central Russian. A small native population of Atlantic salmon is found in Canada’s Ungava Bay. The northern tip of Quebec seems to be an Atlantic salmon migration barrier for other North American stocks. Compatibility between life history requirements and ecological conditions are prerequisite for salmon colonizing Arctic habitats. Broad-scale predictive models of climate change in the Arctic give little information about feedback processes contributing to local conditions, especially in freshwater systems. This paper reviews the recent history of salmon in the Arctic and explores various patterns of climate change that may influence range expansions and future sustainability of salmon in Arctic habitats. A summary of the research needs that will allow informed expectation of further Arctic colonization by salmon is given.

  20. Debating the Arctic during the Ukraine Crisis – Comparing Arctic State Identities and Media Discourses in Canada and Norway

    DEFF Research Database (Denmark)

    Burke, Danita Catherine; Rahbek-Clemmensen, Jon

    2017-01-01

    identities and foreign policy by showing that these identifications affected domestic media discourses about the Arctic in Canada and Norway during the first years (2014-16) of the Crisis. Canada’s territorial identification made it difficult for the newly elected Trudeau government to push for a less...... identities shape media debates, but that the identifications themselves can change. In general, the article advocates for a comparative approach towards the analysis of Arctic state identities.......Previous studies have argued that domestic factors, including each state’s Arctic state identities, may explain why some Western states (e.g. Canada) have been more critical of Russia in the Arctic than others (e.g. Norway). The present study analyses part of the link between Arctic state...

  1. Monitoring the welfare of polar bear populations in a rapidly changing Arctic

    Science.gov (United States)

    Atwood, Todd C.; Duncan, Colleen G.; Patyk, Kelly A.; Sonsthagen, Sarah A.

    2017-01-01

    Most programs for monitoring the welfare of wildlife populations support efforts aimed at reaching discrete management objectives, like mitigating conflict with humans. While such programs can be effective, their limited scope may preclude systemic evaluations needed for large-scale conservation initiatives, like the recovery of at-risk species. We discuss select categories of metrics that can be used to monitor how polar bears (Ursus maritimus) are responding to the primary threat to their long-term persistence—loss of sea ice habitat due to the unabated rise in atmospheric greenhouse gas (GHG; e.g., CO2) concentrations—that can also provide information on ecosystem function and health. Monitoring key aspects of polar bear population dynamics, spatial behavior, health and resiliency can provide valuable insight into ecosystem state and function, and could be a powerful tool for achieving Arctic conservation objectives, particularly those that have transnational policy implications.

  2. Radioactive contamination in the Arctic--sources, dose assessment and potential risks

    International Nuclear Information System (INIS)

    Strand, P.; Howard, B.J.; Aarkrog, A.; Balonov, M.; Tsaturov, Y.; Bewers, J.M.; Salo, A.; Sickel, M.; Bergman, R.; Rissanen, K.

    2002-01-01

    Arctic residents, whose diets comprise a large proportion of traditional terrestrial and freshwater foodstuffs, have received the highest radiation exposures to artificial radionuclides in the Arctic. Doses to members of both the average population and selected indigenous population groups in the Arctic depend on the rates of consumption of locally-derived terrestrial and freshwater foodstuffs, including reindeer/caribou meat, freshwater fish, goat cheese, berries, mushrooms and lamb. The vulnerability of arctic populations, especially indigenous peoples, to radiocaesium deposition is much greater than for temperate populations due to the importance of terrestrial, semi-natural exposure pathways where there is high radiocaesium transfer and a long ecological half-life for this radionuclide. In contrast, arctic residents with diets largely comprising marine foodstuffs have received comparatively low radiation exposures because of the lower levels of contamination of marine organisms. Using arctic-specific information, the predicted collective dose is five times higher than that estimated by UNSCEAR for temperate areas. The greatest threats to human health and the environment posed by human and industrial activities in the Arctic are associated with the potential for accidents in the civilian and military nuclear sectors. Of most concern are the consequences of potential accidents in nuclear power plant reactors, during the handling and storage of nuclear weapons, in the decommissioning of nuclear submarines and in the disposal of spent nuclear fuel from vessels. It is important to foster a close association between risk assessment and practical programmes for the purposes of improving monitoring, formulating response strategies and implementing action plans

  3. A selective sweep on a deleterious mutation in CPT1A in Arctic populations

    KAUST Repository

    Clemente, Florian J.

    2014-11-01

    Arctic populations live in an environment characterized by extreme cold and the absence of plant foods for much of the year and are likely to have undergone genetic adaptations to these environmental conditions in the time they have been living there. Genome-wide selection scans based on genotype data from native Siberians have previously highlighted a 3 Mb chromosome 11 region containing 79 protein-coding genes as the strongest candidates for positive selection in Northeast Siberians. However, it was not possible to determine which of the genes might be driving the selection signal. Here, using whole-genome high-coverage sequence data, we identified the most likely causative variant as a nonsynonymous G>A transition (rs80356779; c.1436C>T [p.Pro479Leu] on the reverse strand) in CPT1A, a key regulator of mitochondrial long-chain fatty-acid oxidation. Remarkably, the derived allele is associated with hypoketotic hypoglycemia and high infant mortality yet occurs at high frequency in Canadian and Greenland Inuits and was also found at 68% frequency in our Northeast Siberian sample. We provide evidence of one of the strongest selective sweeps reported in humans; this sweep has driven this variant to high frequency in circum-Arctic populations within the last 6-23 ka despite associated deleterious consequences, possibly as a result of the selective advantage it originally provided to either a high-fat diet or a cold environment.

  4. A selective sweep on a deleterious mutation in CPT1A in Arctic populations

    KAUST Repository

    Clemente, Florian J.; Cardona, Alexia; Inchley, Charlotte E.; Peter, Benjamin M.; Jacobs, Guy; Pagani, Luca; Lawson, Daniel John; Antã o, Tiago; Vicente, Má rio; Mitt, Mario; Degiorgio, Michael; Faltyskova, Zuzana; Xue, Yali; Ayub, Qasim; Szpak, Michal; Mä gi, Reedik; Eriksson, Anders; Manica, Andrea; Raghavan, Maanasa; Rasmussen, Morten Arendt Rendt; Rasmussen, Simon B.; Willerslev, Eske; Vidal-Puig, Antonio J.; Tyler-Smith, Chris; Villems, Richard; Nielsen, Rasmus Wedel; Metspalu, Mait; Malyarchuk, Boris A.; Derenko, Miroslava V.; Kivisild, Toomas

    2014-01-01

    Arctic populations live in an environment characterized by extreme cold and the absence of plant foods for much of the year and are likely to have undergone genetic adaptations to these environmental conditions in the time they have been living there. Genome-wide selection scans based on genotype data from native Siberians have previously highlighted a 3 Mb chromosome 11 region containing 79 protein-coding genes as the strongest candidates for positive selection in Northeast Siberians. However, it was not possible to determine which of the genes might be driving the selection signal. Here, using whole-genome high-coverage sequence data, we identified the most likely causative variant as a nonsynonymous G>A transition (rs80356779; c.1436C>T [p.Pro479Leu] on the reverse strand) in CPT1A, a key regulator of mitochondrial long-chain fatty-acid oxidation. Remarkably, the derived allele is associated with hypoketotic hypoglycemia and high infant mortality yet occurs at high frequency in Canadian and Greenland Inuits and was also found at 68% frequency in our Northeast Siberian sample. We provide evidence of one of the strongest selective sweeps reported in humans; this sweep has driven this variant to high frequency in circum-Arctic populations within the last 6-23 ka despite associated deleterious consequences, possibly as a result of the selective advantage it originally provided to either a high-fat diet or a cold environment.

  5. High-Arctic Plant-Herbivore Interactions under Climate Influence

    DEFF Research Database (Denmark)

    Berg, Thomas B.; Schmidt, Niels M.; Høye, Toke Thomas

    production upon which the herbivores depend, and snow may be the most important climatic factor affecting the different trophic levels and the interactions between them. Hence, the spatio-temporal distribution of snow, as well as thawing events during winter, may have considerable effects on the herbivores...... by both the timing of onset and the duration of winter snow-cover. Musk oxen significantly reduced the productivity of arctic willow, while high densities of collared lemmings during winter reduced the production of mountain averts flowers in the following summer. Under a deep snow-layer scenario, climate...... and the previous year's density of musk oxen had a negative effect on the present year's production of arctic willow. Previous year's primary production of arctic willow, in turn, significantly affected the present year's density of musk oxen positively. Climatic factors that affect primary production of plants...

  6. The genetic prehistory of the New World Arctic

    DEFF Research Database (Denmark)

    Raghavan, Maanasa; DeGiorgio, Michael; Albrechtsen, Anders

    2014-01-01

    The New World Arctic, the last region of the Americas to be populated by humans, has a relatively well-researched archaeology, but an understanding of its genetic history is lacking. We present genome-wide sequence data from ancient and present-day humans from Greenland, Arctic Canada, Alaska, Al...

  7. Arctic cloud-climate feedbacks: On relationships between Arctic clouds, sea ice, and lower tropospheric stability

    Science.gov (United States)

    Taylor, P. C.; Boeke, R.; Hegyi, B.

    2017-12-01

    Arctic low clouds strongly affect the Arctic surface energy budget. Through this impact Arctic low clouds influence other important aspects of the Arctic climate system, namely surface and atmospheric temperature, sea ice extent and thickness, and atmospheric circulation. Arctic clouds are in turn influenced by these Arctic climate system elements creating the potential for Arctic cloud-climate feedbacks. To further our understanding of the potential for Arctic cloud-climate feedbacks, we quantify the influence of atmospheric state on the surface cloud radiative effect (CRE). In addition, we quantify the covariability between surface CRE and sea ice concentration (SIC). This paper builds on previous research using instantaneous, active remote sensing satellite footprint data from the NASA A-Train. First, the results indicate significant differences in the surface CRE when stratified by atmospheric state. Second, a statistically insignificant covariability is found between CRE and SIC for most atmospheric conditions. Third, we find a statistically significant increase in the average surface longwave CRE at lower SIC values in fall. Specifically, a +3-5 W m-2 larger longwave CRE is found over footprints with 0% versus 100% SIC. Because systematic changes on the order of 1 W m-2 are sufficient to explain the observed long-term reductions in sea ice extent, our results indicate a potentially significant amplifying sea ice-cloud feedback that could delay the fall freeze-up and influence the variability in sea ice extent and volume, under certain meteorological conditions. Our results also suggest that a small change in the frequency of occurrence of atmosphere states may yield a larger Arctic cloud feedback than any cloud response to sea ice.

  8. Biological responses to current UV-B radiation in Arctic regions

    DEFF Research Database (Denmark)

    Albert, Kristian Rost; Mikkelsen, Teis Nørgaard; Ro-Poulsen, H.

    2008-01-01

    on high-arctic vegetation. They supplement previous investigations from the Arctic focussing on other variables like growth etc., which have reported no or minor plant responses to UV-B, and clearly indicates that UV-B radiation is an important factor affecting plant life at high-arctic Zackenberg......Depletion of the ozone layer and the consequent increase in solar ultraviolet-B radiation (UV-B) may impact living conditions for arctic plants significantly. In order to evaluate how the prevailing UV-B fluxes affect the heath ecosystem at Zackenberg (74°30'N, 20°30'W) and other high......-arctic regions, manipulation experiments with various set-ups have been performed. Activation of plant defence mechanisms by production of UV-B absorbing compounds was significant in ambient UV-B in comparison to a filter treatment reducing the UV-B radiation. Despite the UV-B screening response, ambient UV...

  9. Towards Arctic Resource Governance of Marine Invasive Species

    DEFF Research Database (Denmark)

    Kourantidou, Melina; Kaiser, Brooks; Fernandez, Linda

    2015-01-01

    Scientific and policy-oriented publications highlighting the magnitude of uncertainty in the changing Arctic and the possibilities for effective regional governance are proliferating, yet it remains a challenging task to examine Arctic marine biodiversity. Limited scientific data are currently...... available. Through analysis of marine invasions in the Arctic, we work to identify and assess patterns in the knowledge gaps regarding invasive species in the Arctic that affect the ability to generate improved governance outcomes. These patterns are expected to depend on multiple aspects of scientific...... research into invasive species threats in the Arctic, including the ways in which known marine invasions are related to different stakeholder groups and existing disparate national and international experiences with invasive species. Stakeholdergroups include dominant industries (fishing, shipping, tourism...

  10. Arctic Riverine CDOM and its effects on the Polar Marine Light Field

    Energy Technology Data Exchange (ETDEWEB)

    Orandle, Zoe Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Weijer, Wilbert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Elliott, Scott M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wang, Shanlin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-28

    It is well-known that CDOM (Chromophoric Dissolved Organic Matter) can have a significant effect on biological activity in the photic zones of aquatic ecosystems. However, the extent of CDOM’s interference with biological activity is not well-known. We examined this issue in great detail in the mixed surface layer of the Arctic Ocean. We studied the impacts of CDOM’s light attenuation on Arctic phytoplankton populations to discover if riverine CDOM’s presence in the Arctic ocean could inhibit and possibly prevent local phytoplankton populations from performing photosynthesis. We incorporated biogeochemistry concepts and data with oceanographic models and calculations to approach the problem. The results showed that riverine CDOM can indeed significantly impact the productivity of phytoplankton populations during the spring and summer months near the major Arctic river mouths we chose to examine. Although our study was detailed and inclusive of many variables, the issue of CDOM’s light attenuation and its effects on phytoplankton populations must be explored on a global scale to help understand if riverine CDOM could prove disastrous for phytoplankton populations.

  11. Social-psychological well-being of rural population in the White Sea coastal area as a risk factor for the Russian Arctic policy

    Directory of Open Access Journals (Sweden)

    Andrey O. Podoplekin

    2016-10-01

    Full Text Available The article represents a generalized data from sociological survey of social-psychological well-being of the rural population of the coastal areas in Arkhangelsk region (included into the Russian Arctic zone held in 2015. The data shows a critical level of social pessimism, assurance of residents in continuation of negative social-economic dynamics, deficiency of motivation and readiness for active participation and inclusion into the development of territories. Such a status is based on a deep degradation of local industries, infrastructures and social sphere, which has been confirmed by statistic data. The revealed indicators explain high migration preparedness, especially in groups of working ages, proceeding, in the middle-term prospective, to the risk of depopulation and disintegration of social carcass in the coastal areas which, in their turn, possess a significant resource potential. At that, residential population on these areas considered as strategic factor from the perspective of Russian geopolitical interests in the Arctic. A positive trend may be provided through implementation of spatial approach to the social-economic development, which has been already applied in activities held by the Russian State Commission on the Arctic Development. With that there is obvious relevance of correction of the Russian legislation toward transformation of residential population into the beneficiary party of the macro-regional development, which may be provided by establishing of special regimes and preferences in spheres of natural resource use, tax assessment, entrepreneurship and crediting for all groups indigenous (resident population, including aboriginal people of the North.

  12. Arctic sea ice melt leads to atmospheric new particle formation.

    Science.gov (United States)

    Dall Osto, M; Beddows, D C S; Tunved, P; Krejci, R; Ström, J; Hansson, H-C; Yoon, Y J; Park, Ki-Tae; Becagli, S; Udisti, R; Onasch, T; O Dowd, C D; Simó, R; Harrison, Roy M

    2017-06-12

    Atmospheric new particle formation (NPF) and growth significantly influences climate by supplying new seeds for cloud condensation and brightness. Currently, there is a lack of understanding of whether and how marine biota emissions affect aerosol-cloud-climate interactions in the Arctic. Here, the aerosol population was categorised via cluster analysis of aerosol size distributions taken at Mt Zeppelin (Svalbard) during a 11 year record. The daily temporal occurrence of NPF events likely caused by nucleation in the polar marine boundary layer was quantified annually as 18%, with a peak of 51% during summer months. Air mass trajectory analysis and atmospheric nitrogen and sulphur tracers link these frequent nucleation events to biogenic precursors released by open water and melting sea ice regions. The occurrence of such events across a full decade was anti-correlated with sea ice extent. New particles originating from open water and open pack ice increased the cloud condensation nuclei concentration background by at least ca. 20%, supporting a marine biosphere-climate link through sea ice melt and low altitude clouds that may have contributed to accelerate Arctic warming. Our results prompt a better representation of biogenic aerosol sources in Arctic climate models.

  13. Progress report for project modeling Arctic barrier island-lagoon system response to projected Arctic warming

    Science.gov (United States)

    Erikson, Li H.; Gibbs, Ann E.; Richmond, Bruce M.; Storlazzi, Curt; B.M. Jones,

    2012-01-01

    Changes in Arctic coastal ecosystems in response to global warming may be some of the most severe on the planet. A better understanding and analysis of the rates at which these changes are expected to occur over the coming decades is crucial in order to delineate high-priority areas that are likely to be affected by climate changes. In this study we investigate the likelihood of changes to habitat-supporting barrier island – lagoon systems in response to projected changes in atmospheric and oceanographic forcing associated with Arctic warming. To better understand the relative importance of processes responsible for the current and future coastal landscape, key parameters related to increasing arctic temperatures are investigated and used to establish boundary conditions for models that simulate barrier island migration and inundation of deltaic deposits and low-lying tundra. The modeling effort investigates the dominance and relative importance of physical processes shaping the modern Arctic coastline as well as decadal responses due to projected conditions out to the year 2100.

  14. Wildfires in northern Eurasia affect the budget of black carbon in the Arctic - a 12-year retrospective synopsis (2002-2013)

    Science.gov (United States)

    Evangeliou, N.; Balkanski, Y.; Hao, W. M.; Petkov, A.; Silverstein, R. P.; Corley, R.; Nordgren, B. L.; Urbanski, S. P.; Eckhardt, S.; Stohl, A.; Tunved, P.; Crepinsek, S.; Jefferson, A.; Sharma, S.; Nøjgaard, J. K.; Skov, H.

    2016-06-01

    In recent decades much attention has been given to the Arctic environment, where climate change is happening rapidly. Black carbon (BC) has been shown to be a major component of Arctic pollution that also affects the radiative balance. In the present study, we focused on how vegetation fires that occurred in northern Eurasia during the period of 2002-2013 influenced the budget of BC in the Arctic. For simulating the transport of fire emissions from northern Eurasia to the Arctic, we adopted BC fire emission estimates developed independently by GFED3 (Global Fire Emissions Database) and FEI-NE (Fire Emission Inventory - northern Eurasia). Both datasets were based on fire locations and burned areas detected by MODIS (Moderate resolution Imaging Spectroradiometer) instruments on NASA's (National Aeronautics and Space Administration) Terra and Aqua satellites. Anthropogenic sources of BC were adopted from the MACCity (Monitoring Atmospheric Composition and Climate and megacity Zoom for the Environment) emission inventory.During the 12-year period, an average area of 250 000 km2 yr-1 was burned in northern Eurasia (FEI-NE) and the global emissions of BC ranged between 8.0 and 9.5 Tg yr-1 (FEI-NE+MACCity). For the BC emitted in the Northern Hemisphere (based on FEI-NE+MACCity), about 70 % originated from anthropogenic sources and the rest from biomass burning (BB). Using the FEI-NE+MACCity inventory, we found that 102 ± 29 kt yr-1 BC was deposited in the Arctic (defined here as the area north of 67° N) during the 12 years simulated, which was twice as much as when using the MACCity inventory (56 ± 8 kt yr-1). The annual mass of BC deposited in the Arctic from all sources (FEI-NE in northern Eurasia, MACCity elsewhere) is significantly higher by about 37 % in 2009 (78 vs. 57 kt yr-1) to 181 % in 2012 (153 vs. 54 kt yr-1), compared to the BC deposited using just the MACCity emission inventory. Deposition of BC in the Arctic from BB sources in the Northern Hemisphere

  15. Migration and breeding biology of arctic terns in Greenland

    DEFF Research Database (Denmark)

    Egevang, Carsten

    (Sandøen) in high-Arctic Northeast Greenland. The level of knowledge of the Arctic tern in Greenland before 2002 was to a large extent poor, with aspects of its biology being completely unknown in the Greenland population. This thesis presents novel findings for the Arctic tern, both on an international...... scale and on a national scale. The study on Arctic tern migration (Manus I) – the longest annual migration ever recorded in any animal – is a study with an international appeal. The study documented how Greenland and Iceland breeding terns conduct the roundtrip migration to the Weddell Sea in Antarctica...

  16. Climate-derived tensions in Arctic security.

    Energy Technology Data Exchange (ETDEWEB)

    Backus, George A.; Strickland, James Hassler

    2008-09-01

    Globally, there is no lack of security threats. Many of them demand priority engagement and there can never be adequate resources to address all threats. In this context, climate is just another aspect of global security and the Arctic just another region. In light of physical and budgetary constraints, new security needs must be integrated and prioritized with existing ones. This discussion approaches the security impacts of climate from that perspective, starting with the broad security picture and establishing how climate may affect it. This method provides a different view from one that starts with climate and projects it, in isolation, as the source of a hypothetical security burden. That said, the Arctic does appear to present high-priority security challenges. Uncertainty in the timing of an ice-free Arctic affects how quickly it will become a security priority. Uncertainty in the emergent extreme and variable weather conditions will determine the difficulty (cost) of maintaining adequate security (order) in the area. The resolution of sovereignty boundaries affects the ability to enforce security measures, and the U.S. will most probably need a military presence to back-up negotiated sovereignty agreements. Without additional global warming, technology already allows the Arctic to become a strategic link in the global supply chain, possibly with northern Russia as its main hub. Additionally, the multinational corporations reaping the economic bounty may affect security tensions more than nation-states themselves. Countries will depend ever more heavily on the global supply chains. China has particular needs to protect its trade flows. In matters of security, nation-state and multinational-corporate interests will become heavily intertwined.

  17. A veterinary perspective on One Health in the Arctic

    DEFF Research Database (Denmark)

    Sonne, Christian; Letcher, Robert James; Jenssen, Bjørn Munro

    2017-01-01

    Exposure to long-range transported industrial chemicals, climate change and diseases is posing a risk to the overall health and populations of Arctic wildlife. Since local communities are relying on the same marine food web as marine mammals in the Arctic, it requires a One Health approach...

  18. Arctic security and Norway

    Energy Technology Data Exchange (ETDEWEB)

    Tamnes, Rolf

    2013-03-01

    Global warming is one of the most serious threats facing mankind. Many regions and countries will be affected, and there will be many losers. The earliest and most intense climatic changes are being experienced in the Arctic region. Arctic average temperature has risen at twice the rate of the global average in the past half century. These changes provide an early indication for the world of the environmental and societal significance of global warming. For that reason, the Arctic presents itself as an important scientific laboratory for improving our understanding of the causes and patterns of climate changes. The rapidly rising temperature threatens the Arctic ecosystem, but the human consequences seem to be far less dramatic there than in many other places in the world. According to the U.S. National Intelligence Council, Russia has the potential to gain the most from increasingly temperate weather, because its petroleum reserves become more accessible and because the opening of an Arctic waterway could provide economic and commercial advantages. Norway might also be fortunate. Some years ago, the Financial Times asked: #Left Double Quotation Mark#What should Norway do about the fact that global warming will make their climate more hospitable and enhance their financial situation, even as it inflicts damage on other parts of the world?#Right Double Quotation Mark#(Author)

  19. Arctic-COLORS (Coastal Land Ocean Interactions in the Arctic) - a NASA field campaign scoping study to examine land-ocean interactions in the Arctic

    Science.gov (United States)

    Hernes, P.; Tzortziou, M.; Salisbury, J.; Mannino, A.; Matrai, P.; Friedrichs, M. A.; Del Castillo, C. E.

    2014-12-01

    The Arctic region is warming faster than anywhere else on the planet, triggering rapid social and economic changes and impacting both terrestrial and marine ecosystems. Yet our understanding of critical processes and interactions along the Arctic land-ocean interface is limited. Arctic-COLORS is a Field Campaign Scoping Study funded by NASA's Ocean Biology and Biogeochemistry Program that aims to improve understanding and prediction of land-ocean interactions in a rapidly changing Arctic coastal zone, and assess vulnerability, response, feedbacks and resilience of coastal ecosystems, communities and natural resources to current and future pressures. Specific science objectives include: - Quantify lateral fluxes to the arctic inner shelf from (i) rivers and (ii) the outer shelf/basin that affect biology, biodiversity, biogeochemistry (i.e. organic matter, nutrients, suspended sediment), and the processing rates of these constituents in coastal waters. - Evaluate the impact of the thawing of Arctic permafrost within the river basins on coastal biology, biodiversity and biogeochemistry, including various rates of community production and the role these may play in the health of regional economies. - Assess the impact of changing Arctic landfast ice and coastal sea ice dynamics. - Establish a baseline for comparison to future change, and use state-of-the-art models to assess impacts of environmental change on coastal biology, biodiversity and biogeochemistry. A key component of Arctic-COLORS will be the integration of satellite and field observations with coupled physical-biogeochemical models for predicting impacts of future pressures on Arctic, coastal ocean, biological processes and biogeochemical cycles. Through interagency and international collaborations, and through the organization of dedicated workshops, town hall meetings and presentations at international conferences, the scoping study engages the broader scientific community and invites participation of

  20. Mental health in war-affected populations

    NARCIS (Netherlands)

    Scholte, W.F.

    2013-01-01

    This book addresses mental health problems in populations in nonwestern war-affected regions, and methods to mitigate these problems through interventions focusing on social reintegration. It describes a number of studies among war-affected populations in widely different areas: refugees from the

  1. Organochlorine contaminant and stable isotope profiles in Arctic fox (Alopex lagopus) from the Alaskan and Canadian Arctic

    Energy Technology Data Exchange (ETDEWEB)

    Hoekstra, P.F.; Braune, B.M.; O' Hara, T.M.; Elkin, B.; Solomon, K.R.; Muir, D.C.G

    2003-04-01

    PCBs in Arctic fox are lower than reported in other Arctic populations and unlikely to cause significant impairment of reproductive success. - Arctic fox (Alopex lagopus) is a circumpolar species distributed across northern Canada and Alaska. Arctic fox muscle and liver were collected at Barrow, AK, USA (n=18), Holman, NT, Canada (n=20), and Arviat, NU, Canada (n=20) to elucidate the feeding ecology of this species and relate these findings to body residue patterns of organochlorine contaminants (OCs). Stable carbon ({delta}{sup 13}C) and nitrogen ({delta}{sup 15}N) isotope analyses of Arctic fox muscle indicated that trophic position (estimated by {delta}{sup 15}N) is positively correlated with increasing {delta}{sup 13}C values, suggesting that Arctic fox with a predominately marine-based foraging strategy occupy a higher trophic level than individuals mostly feeding from a terrestrial-based carbon source. At all sites, the rank order for OC groups in muscle was polychlorinated biphenyls ({sigma}PCB) > chlordane-related compounds ({sigma}CHLOR) > hexachlorocyclohexane ({sigma}HCH) > total toxaphene (TOX) {>=}chlorobenzenes ({sigma}ClBz) > DDT-related isomers ({sigma}DDT). In liver, {sigma}CHLOR was the most abundant OC group, followed by {sigma}PCB > TOX > {sigma}HCH > {sigma}ClBz > {sigma}DDT. The most abundant OC analytes detected from Arctic fox muscle and liver were oxychlordane, PCB-153, and PCB-180. The comparison of {delta}{sup 15}N with OC concentrations indicated that relative trophic position might not accurately predict OC bioaccumulation in Arctic fox. The bioaccumulation pattern of OCs in the Arctic fox is similar to the polar bear. While {sigma}PCB concentrations were highly variable, concentrations in the Arctic fox were generally below those associated with the toxicological endpoints for adverse effects on mammalian reproduction. Further research is required to properly elucidate the potential health impacts to this species from exposure to OCs.

  2. Organochlorine contaminant and stable isotope profiles in Arctic fox (Alopex lagopus) from the Alaskan and Canadian Arctic

    International Nuclear Information System (INIS)

    Hoekstra, P.F.; Braune, B.M.; O'Hara, T.M.; Elkin, B.; Solomon, K.R.; Muir, D.C.G.

    2003-01-01

    PCBs in Arctic fox are lower than reported in other Arctic populations and unlikely to cause significant impairment of reproductive success. - Arctic fox (Alopex lagopus) is a circumpolar species distributed across northern Canada and Alaska. Arctic fox muscle and liver were collected at Barrow, AK, USA (n=18), Holman, NT, Canada (n=20), and Arviat, NU, Canada (n=20) to elucidate the feeding ecology of this species and relate these findings to body residue patterns of organochlorine contaminants (OCs). Stable carbon (δ 13 C) and nitrogen (δ 15 N) isotope analyses of Arctic fox muscle indicated that trophic position (estimated by δ 15 N) is positively correlated with increasing δ 13 C values, suggesting that Arctic fox with a predominately marine-based foraging strategy occupy a higher trophic level than individuals mostly feeding from a terrestrial-based carbon source. At all sites, the rank order for OC groups in muscle was polychlorinated biphenyls (ΣPCB) > chlordane-related compounds (ΣCHLOR) > hexachlorocyclohexane (ΣHCH) > total toxaphene (TOX) ≥chlorobenzenes (ΣClBz) > DDT-related isomers (ΣDDT). In liver, ΣCHLOR was the most abundant OC group, followed by ΣPCB > TOX > ΣHCH > ΣClBz > ΣDDT. The most abundant OC analytes detected from Arctic fox muscle and liver were oxychlordane, PCB-153, and PCB-180. The comparison of δ 15 N with OC concentrations indicated that relative trophic position might not accurately predict OC bioaccumulation in Arctic fox. The bioaccumulation pattern of OCs in the Arctic fox is similar to the polar bear. While ΣPCB concentrations were highly variable, concentrations in the Arctic fox were generally below those associated with the toxicological endpoints for adverse effects on mammalian reproduction. Further research is required to properly elucidate the potential health impacts to this species from exposure to OCs

  3. Arctic Cisco, Coregonus autumnalis, distribution, migration and spawning in the Mackenzie River

    International Nuclear Information System (INIS)

    Dillinger, R.E. Jr.; Birt, T.P.; Green, J.M.

    1992-01-01

    Oil exploration along the Beaufort Sea coast of North America has raised interest in populations of Arctic Cisco. A synopsis is presented of research on Arctic Cisco distributions and spawning activities in the Mackenzie River system. The distribution, migration, and spawning activities of Arctic Cisco in the tributaries of the Mackenzie River system were found to be more extensive than previously reported. The Peel River population had the earliest migration time, mid-July; however, a small movement of mature males upriver also occurred there in mid-September. Major movements of mature males and females took place in both late July and early to mid-Spetember in the Arctic Red River. Migrations in the other river systems occurred in late August and early September. Arctic Ciscoes in the only river south of Great Bear Lake that has been found to contain this species, the Liard River, may show a mixed life history strategy. The apparently long distance the fish must swim, the lack of any known populations in any of the rivers between the Liard and the Great Bear rivers, and the lack of evidence of migrations past Fort Simpson suggest that this population may contain non-anadromous forms. No actual spawning was seen in any of the populations, but possible areas were noted, one in the Peel River and one in the Liard River. 18 refs., 3 figs., 2 tabs

  4. Local air pollution in the Arctic: knowledge gaps, challenges and future directions

    Science.gov (United States)

    Law, K.; Schmale, J.; Anenberg, S.; Arnold, S.; Simpson, W. R.; Mao, J.; Starkweather, S.

    2017-12-01

    It is estimated that about 30 % of the world's undiscovered gas and 13 % of undiscovered oil resources are located in the Arctic. Sea ice loss with climate change is progressing rapidly and by 2050 the Arctic could be nearly sea ice free in summer. This will allow for Arctic industrialization, commercial shipping, fishing and tourism to increase. Given that the world population is projected to grow beyond 9 billion by mid-century needing more resources, partly to be found in the Arctic, it can be expected that the current urbanization trend in the region will accelerate in the future. Against this background, it is likely that new local emission sources emerge which may lead to increased burdens of air pollutants such as particulate matter (PM), reactive nitrogen, and ozone. Typical Arctic emission sources include road transport, domestic fuel burning, diesel emissions, as well as industrial sources such as oil and gas extraction, metallurgical smelting, power generation as well as shipping in coastal areas. These emissions and their impacts remain poorly quantified in the Arctic. Boreal wildfires can already affect summertime air quality and may increase in frequency and size in a warmer climate. Locally produced air pollution, in combination with cold, stagnant weather conditions and inversion layers in winter, can also lead to significant localized pollutant concentrations, often in exceedance of air quality standards. Despite these concerns, very few process studies on local air pollution in or near inhabited areas in the Arctic have been conducted, which significantly limits our understanding of atmospheric chemical reactions involving air pollutants under Arctic conditions (e.g., extremely cold and dry air with little solar radiation in winter) and their impacts on human health and ecosystems. We will provide an overview of our current understanding of local air pollution and its impacts in Arctic urban environments and highlight key gaps. We will discuss a

  5. A veterinary perspective on One Health in the Arctic

    DEFF Research Database (Denmark)

    Sonne, Christian; Letcher, Robert James; Jenssen, Bjorn Munro

    2017-01-01

    Exposure to long-range transported industrial chemicals, climate change and diseases is posing a risk to the overall health and populations of Arctic wildlife. Since local communities are relying on the same marine food web as marine mammals in the Arctic, it requires a One Health approach to und...

  6. Arctic Climate Change: A Tale of Two Cod Species

    Science.gov (United States)

    Arctic cod play an important role in the Arctic trophic hierarchy as the consumer of primary productivity and a food source for many marine fish and mammals. Shifts in their distribution and abundance could have cascading affects in the marine environment. This paper investigates...

  7. Spatial and temporal patterns of greenness on the Yamal Peninsula, Russia: interactions of ecological and social factors affecting the Arctic normalized difference vegetation index

    International Nuclear Information System (INIS)

    Walker, D A; Bhatt, U S; Raynolds, M K; Romanovsky, V E; Leibman, M O; Gubarkov, A A; Khomutov, A V; Moskalenko, N G; Orekhov, P; Ukraientseva, N G; Epstein, H E; Yu, Q; Forbes, B C; Kaarlejaervi, E; Comiso, J C; Jia, G J; Kaplan, J O; Kumpula, T; Kuss, P; Matyshak, G

    2009-01-01

    The causes of a greening trend detected in the Arctic using the normalized difference vegetation index (NDVI) are still poorly understood. Changes in NDVI are a result of multiple ecological and social factors that affect tundra net primary productivity. Here we use a 25 year time series of AVHRR-derived NDVI data (AVHRR: advanced very high resolution radiometer), climate analysis, a global geographic information database and ground-based studies to examine the spatial and temporal patterns of vegetation greenness on the Yamal Peninsula, Russia. We assess the effects of climate change, gas-field development, reindeer grazing and permafrost degradation. In contrast to the case for Arctic North America, there has not been a significant trend in summer temperature or NDVI, and much of the pattern of NDVI in this region is due to disturbances. There has been a 37% change in early-summer coastal sea-ice concentration, a 4% increase in summer land temperatures and a 7% change in the average time-integrated NDVI over the length of the satellite observations. Gas-field infrastructure is not currently extensive enough to affect regional NDVI patterns. The effect of reindeer is difficult to quantitatively assess because of the lack of control areas where reindeer are excluded. Many of the greenest landscapes on the Yamal are associated with landslides and drainage networks that have resulted from ongoing rapid permafrost degradation. A warming climate and enhanced winter snow are likely to exacerbate positive feedbacks between climate and permafrost thawing. We present a diagram that summarizes the social and ecological factors that influence Arctic NDVI. The NDVI should be viewed as a powerful monitoring tool that integrates the cumulative effect of a multitude of factors affecting Arctic land-cover change.

  8. Spatial and temporal patterns of greenness on the Yamal Peninsula, Russia: interactions of ecological and social factors affecting the Arctic normalized difference vegetation index

    Energy Technology Data Exchange (ETDEWEB)

    Walker, D A; Bhatt, U S; Raynolds, M K; Romanovsky, V E [University of Alaska Fairbanks, Fairbanks, AK (United States); Leibman, M O; Gubarkov, A A; Khomutov, A V; Moskalenko, N G; Orekhov, P; Ukraientseva, N G [Earth Cryosphere Institute, Russian Academy of Science, Siberian Branch, Tyumen (Russian Federation); Epstein, H E; Yu, Q [University of Virginia, Charlottesville, VA (United States); Forbes, B C; Kaarlejaervi, E [Arctic Center, University of Lapland, Rovaniemi (Finland); Comiso, J C [NASA Goddard Space Flight Center, MD (United States); Jia, G J [Chinese Academy of Sciences, Institute for Atmospheric Physics, Beijing (China); Kaplan, J O [Swiss Federal Institute for Forest Snow and Landscape Research, Birmensdorf (Switzerland); Kumpula, T [University of Joensuu, Joensuu (Finland); Kuss, P [University of Berne, Berne (Switzerland); Matyshak, G [Moscow State University, Moscow (Russian Federation)

    2009-10-15

    The causes of a greening trend detected in the Arctic using the normalized difference vegetation index (NDVI) are still poorly understood. Changes in NDVI are a result of multiple ecological and social factors that affect tundra net primary productivity. Here we use a 25 year time series of AVHRR-derived NDVI data (AVHRR: advanced very high resolution radiometer), climate analysis, a global geographic information database and ground-based studies to examine the spatial and temporal patterns of vegetation greenness on the Yamal Peninsula, Russia. We assess the effects of climate change, gas-field development, reindeer grazing and permafrost degradation. In contrast to the case for Arctic North America, there has not been a significant trend in summer temperature or NDVI, and much of the pattern of NDVI in this region is due to disturbances. There has been a 37% change in early-summer coastal sea-ice concentration, a 4% increase in summer land temperatures and a 7% change in the average time-integrated NDVI over the length of the satellite observations. Gas-field infrastructure is not currently extensive enough to affect regional NDVI patterns. The effect of reindeer is difficult to quantitatively assess because of the lack of control areas where reindeer are excluded. Many of the greenest landscapes on the Yamal are associated with landslides and drainage networks that have resulted from ongoing rapid permafrost degradation. A warming climate and enhanced winter snow are likely to exacerbate positive feedbacks between climate and permafrost thawing. We present a diagram that summarizes the social and ecological factors that influence Arctic NDVI. The NDVI should be viewed as a powerful monitoring tool that integrates the cumulative effect of a multitude of factors affecting Arctic land-cover change.

  9. Chemical pollution in the Arctic and Sub-Arctic marine ecosystems: an overview of current knowledge

    Energy Technology Data Exchange (ETDEWEB)

    Savinova, T N; Gabrielsen, G W; Falk-Petersen, S

    1995-02-01

    This report is part of a research project in the framework of the Norwegian-Russian Environmental Cooperation, which was initiated in 1991 to elucidate the present status of environmental contaminants in the highly sensitive Arctic aquatic ecosystem, with special focus on sea birds. Although these ecosystems are the least polluted areas in the world, they are contaminated. The main pathways of contamination into Arctic and sub-Arctic marine ecosystems are atmospheric transport, ocean currents and rivers and in some areas, dumping and ship accidents. A literature survey reveals: (1) there is a lack of data from several trophic levels, (2) previous data are difficult to compare with recent data because of increased quality requirement, (3) not much has been done to investigate the effects of contaminants on the cellular level, at individual or population levels. 389 refs., 7 figs., 32 tabs.

  10. Weather variability affects the Peregrine Falcon (F. p. tundrius) breeding success in South Greenland

    DEFF Research Database (Denmark)

    Carlzon, Linnéa; Karlsson, Amanda; Falk, Knud

    Global warming is affecting the Arctic at a much higher rate than the rest of the globe, causing a rapidly changing environment for Arctic biota. Climate change is already causing increased variability and extremes in precipitation. Although the peregrine falcon is a well-studied top predator...... in the Arctic only a few studies have identified how the changing weather patterns affect the breeding populations. Therefore, in order to understand the effects of climate change on the peregrine’s future prospects, we investigated the relationship between weather variability (“extreme weather”) and breeding......’ and total days with ‘extreme weather’ during the pre-laying and incubation period also had significant negative correlation with breeding success. Contrary to expectations (and other studies), we found no significant effect of precipitation during the nesting period. Results also indicate that other factors...

  11. Advancing NOAA NWS Arctic Program Development

    Science.gov (United States)

    Timofeyeva-Livezey, M. M.; Horsfall, F. M. C.; Meyers, J. C.; Churma, M.; Thoman, R.

    2016-12-01

    Environmental changes in the Arctic require changes in the way the National Oceanic and Atmospheric Administration (NOAA) delivers hydrological and meteorological information to prepare the region's societies and indigenous population for emerging challenges. These challenges include changing weather patterns, changes in the timing and extent of sea ice, accelerated soil erosion due to permafrost decline, increasing coastal vulnerably, and changes in the traditional food supply. The decline in Arctic sea ice is opening new opportunities for exploitation of natural resources, commerce, tourism, and military interest. These societal challenges and economic opportunities call for a NOAA integrated approach for delivery of environmental information including climate, water, and weather data, forecasts, and warnings. Presently the NOAA Arctic Task Force provides leadership in programmatic coordination across NOAA line offices. National Weather Service (NWS) Alaska Region and the National Centers for Environmental Prediction (NCEP) provide the foundational operational hydro-meteorological products and services in the Arctic. Starting in 2016, NOAA's NWS will work toward improving its role in programmatic coordination and development through assembling an NWS Arctic Task Team. The team will foster ties in the Arctic between the 11 NWS national service programs in climate, water, and weather information, as well as between Arctic programs in NWS and other NOAA line offices and external partners. One of the team outcomes is improving decision support tools for the Arctic. The Local Climate Analysis Tool (LCAT) currently has more than 1100 registered users, including NOAA staff and technical partners. The tool has been available online since 2013 (http://nws.weather.gov/lcat/ ). The tool links trusted, recommended NOAA data and analytical capabilities to assess impacts of climate variability and climate change at local levels. A new capability currently being developed will

  12. The genetic prehistory of the New World Arctic.

    Science.gov (United States)

    Raghavan, Maanasa; DeGiorgio, Michael; Albrechtsen, Anders; Moltke, Ida; Skoglund, Pontus; Korneliussen, Thorfinn S; Grønnow, Bjarne; Appelt, Martin; Gulløv, Hans Christian; Friesen, T Max; Fitzhugh, William; Malmström, Helena; Rasmussen, Simon; Olsen, Jesper; Melchior, Linea; Fuller, Benjamin T; Fahrni, Simon M; Stafford, Thomas; Grimes, Vaughan; Renouf, M A Priscilla; Cybulski, Jerome; Lynnerup, Niels; Lahr, Marta Mirazon; Britton, Kate; Knecht, Rick; Arneborg, Jette; Metspalu, Mait; Cornejo, Omar E; Malaspinas, Anna-Sapfo; Wang, Yong; Rasmussen, Morten; Raghavan, Vibha; Hansen, Thomas V O; Khusnutdinova, Elza; Pierre, Tracey; Dneprovsky, Kirill; Andreasen, Claus; Lange, Hans; Hayes, M Geoffrey; Coltrain, Joan; Spitsyn, Victor A; Götherström, Anders; Orlando, Ludovic; Kivisild, Toomas; Villems, Richard; Crawford, Michael H; Nielsen, Finn C; Dissing, Jørgen; Heinemeier, Jan; Meldgaard, Morten; Bustamante, Carlos; O'Rourke, Dennis H; Jakobsson, Mattias; Gilbert, M Thomas P; Nielsen, Rasmus; Willerslev, Eske

    2014-08-29

    The New World Arctic, the last region of the Americas to be populated by humans, has a relatively well-researched archaeology, but an understanding of its genetic history is lacking. We present genome-wide sequence data from ancient and present-day humans from Greenland, Arctic Canada, Alaska, Aleutian Islands, and Siberia. We show that Paleo-Eskimos (~3000 BCE to 1300 CE) represent a migration pulse into the Americas independent of both Native American and Inuit expansions. Furthermore, the genetic continuity characterizing the Paleo-Eskimo period was interrupted by the arrival of a new population, representing the ancestors of present-day Inuit, with evidence of past gene flow between these lineages. Despite periodic abandonment of major Arctic regions, a single Paleo-Eskimo metapopulation likely survived in near-isolation for more than 4000 years, only to vanish around 700 years ago. Copyright © 2014, American Association for the Advancement of Science.

  13. Evaluation of radionuclide levels and radiological dose in three populations of marine mammals in the eastern Canadian Arctic

    International Nuclear Information System (INIS)

    Macdonald, C.R.; Ewing, L.L.; Wiewel, A.M.; Harris, D.A.; Stewart, R.E.A.

    1993-01-01

    Radionuclide levels were measured in beluga, walrus and ringed seal populations collected in 1992 to assess radiation dose and changes in dose with age and sex. The authors hypothesized that Arctic marine food chains accumulate high levels of naturally-occurring radionuclides such as polonium-210 and that radiation may pose a stress to animals which also accumulate metals such as cadmium. Liver, kidney, muscle and jawbone were analyzed by gamma spectrometry for cesium-137, cesium-134, lead-210, potassium-40 and radium-226 and fission-derived nuclides. Polonium-210 was analyzed by alpha spec after autodeposition onto a silver disk. Cesium-137 concentrations in muscle in all three populations were low, and ranged from below detection limits to 10 Bq/kg ww. There was no evidence of fission-derived radionuclides such as zinc-65 or cobalt-60. Lead-210 levels ranged from below detection limits in muscle of ringed seal and walrus to a mean of 82.3 Bq/kg ww in walrus bone. Polonium-210 in the three population ranged from 10 to 30 Bq/kg ww in bone and kidney. The major contributor to dose in the animals was polonium-210 because it is an alpha emitter and accumulates to moderate levels in liver and kidney. Radiological dose is approximately 20--30 times higher than background in humans, and is considerably lower than the dose observed in terrestrial food chains in the Arctic

  14. Modelling micro- and macrophysical contributors to the dissipation of an Arctic mixed-phase cloud during the Arctic Summer Cloud Ocean Study (ASCOS

    Directory of Open Access Journals (Sweden)

    K. Loewe

    2017-06-01

    Full Text Available The Arctic climate is changing; temperature changes in the Arctic are greater than at midlatitudes, and changing atmospheric conditions influence Arctic mixed-phase clouds, which are important for the Arctic surface energy budget. These low-level clouds are frequently observed across the Arctic. They impact the turbulent and radiative heating of the open water, snow, and sea-ice-covered surfaces and influence the boundary layer structure. Therefore the processes that affect mixed-phase cloud life cycles are extremely important, yet relatively poorly understood. In this study, we present sensitivity studies using semi-idealized large eddy simulations (LESs to identify processes contributing to the dissipation of Arctic mixed-phase clouds. We found that one potential main contributor to the dissipation of an observed Arctic mixed-phase cloud, during the Arctic Summer Cloud Ocean Study (ASCOS field campaign, was a low cloud droplet number concentration (CDNC of about 2 cm−3. Introducing a high ice crystal concentration of 10 L−1 also resulted in cloud dissipation, but such high ice crystal concentrations were deemed unlikely for the present case. Sensitivity studies simulating the advection of dry air above the boundary layer inversion, as well as a modest increase in ice crystal concentration of 1 L−1, did not lead to cloud dissipation. As a requirement for small droplet numbers, pristine aerosol conditions in the Arctic environment are therefore considered an important factor determining the lifetime of Arctic mixed-phase clouds.

  15. Correlates between feeding ecology and mercury levels in historical and modern arctic foxes (Vulpes lagopus.

    Directory of Open Access Journals (Sweden)

    Natalia Bocharova

    Full Text Available Changes in concentration of pollutants and pathogen distribution can vary among ecotypes (e.g. marine versus terrestrial food resources. This may have important implications for the animals that reside within them. We examined 1 canid pathogen presence in an endangered arctic fox (Vulpes lagopus population and 2 relative total mercury (THg level as a function of ecotype ('coastal' or 'inland' for arctic foxes to test whether the presence of pathogens or heavy metal concentration correlate with population health. The Bering Sea populations on Bering and Mednyi Islands were compared to Icelandic arctic fox populations with respect to inland and coastal ecotypes. Serological and DNA based pathogen screening techniques were used to examine arctic foxes for pathogens. THg was measured by atomic absorption spectrometry from hair samples of historical and modern collected arctic foxes and samples from their prey species (hair and internal organs. Presence of pathogens did not correlate with population decline from Mednyi Island. However, THg concentration correlated strongly with ecotype and was reflected in the THg concentrations detected in available food sources in each ecotype. The highest concentration of THg was found in ecotypes where foxes depended on marine vertebrates for food. Exclusively inland ecotypes had low THg concentrations. The results suggest that absolute exposure to heavy metals may be less important than the feeding ecology and feeding opportunities of top predators such as arctic foxes which may in turn influence population health and stability. A higher risk to wildlife of heavy metal exposure correlates with feeding strategies that rely primarily on a marine based diet.

  16. Correlates between feeding ecology and mercury levels in historical and modern arctic foxes (Vulpes lagopus).

    Science.gov (United States)

    Bocharova, Natalia; Treu, Gabriele; Czirják, Gábor Árpád; Krone, Oliver; Stefanski, Volker; Wibbelt, Gudrun; Unnsteinsdóttir, Ester Rut; Hersteinsson, Páll; Schares, Gereon; Doronina, Lilia; Goltsman, Mikhail; Greenwood, Alex D

    2013-01-01

    Changes in concentration of pollutants and pathogen distribution can vary among ecotypes (e.g. marine versus terrestrial food resources). This may have important implications for the animals that reside within them. We examined 1) canid pathogen presence in an endangered arctic fox (Vulpes lagopus) population and 2) relative total mercury (THg) level as a function of ecotype ('coastal' or 'inland') for arctic foxes to test whether the presence of pathogens or heavy metal concentration correlate with population health. The Bering Sea populations on Bering and Mednyi Islands were compared to Icelandic arctic fox populations with respect to inland and coastal ecotypes. Serological and DNA based pathogen screening techniques were used to examine arctic foxes for pathogens. THg was measured by atomic absorption spectrometry from hair samples of historical and modern collected arctic foxes and samples from their prey species (hair and internal organs). Presence of pathogens did not correlate with population decline from Mednyi Island. However, THg concentration correlated strongly with ecotype and was reflected in the THg concentrations detected in available food sources in each ecotype. The highest concentration of THg was found in ecotypes where foxes depended on marine vertebrates for food. Exclusively inland ecotypes had low THg concentrations. The results suggest that absolute exposure to heavy metals may be less important than the feeding ecology and feeding opportunities of top predators such as arctic foxes which may in turn influence population health and stability. A higher risk to wildlife of heavy metal exposure correlates with feeding strategies that rely primarily on a marine based diet.

  17. Arctic Submarine Slope Stability

    Science.gov (United States)

    Winkelmann, D.; Geissler, W.

    2010-12-01

    Submarine landsliding represents aside submarine earthquakes major natural hazard to coastal and sea-floor infrastructure as well as to coastal communities due to their ability to generate large-scale tsunamis with their socio-economic consequences. The investigation of submarine landslides, their conditions and trigger mechanisms, recurrence rates and potential impact remains an important task for the evaluation of risks in coastal management and offshore industrial activities. In the light of a changing globe with warming oceans and rising sea-level accompanied by increasing human population along coasts and enhanced near- and offshore activities, slope stability issues gain more importance than ever before. The Arctic exhibits the most rapid and drastic changes and is predicted to change even faster. Aside rising air temperatures, enhanced inflow of less cooled Atlantic water into the Arctic Ocean reduces sea-ice cover and warms the surroundings. Slope stability is challenged considering large areas of permafrost and hydrates. The Hinlopen/Yermak Megaslide (HYM) north of Svalbard is the first and so far only reported large-scale submarine landslide in the Arctic Ocean. The HYM exhibits the highest headwalls that have been found on siliciclastic margins. With more than 10.000 square kilometer areal extent and app. 2.400 cubic kilometer of involved sedimentary material, it is one of the largest exposed submarine slides worldwide. Geometry and age put this slide in a special position in discussing submarine slope stability on glaciated continental margins. The HYM occurred 30 ka ago, when the global sea-level dropped by app. 50 m within less than one millennium due to rapid onset of global glaciation. It probably caused a tsunami with circum-Arctic impact and wave heights exceeding 130 meters. The HYM affected the slope stability field in its neighbourhood by removal of support. Post-megaslide slope instability as expressed in creeping and smaller-scaled slides are

  18. The role of DOM in nitrogen processing in streams across arctic regions affected by fire

    Science.gov (United States)

    Rodriguez-Cardona, B.; Schade, J. D.; Holmes, R. M.; Natali, S.; Mann, P. J.; Wymore, A.; Coble, A. A.; Prokishkin, A. S.; Zito, P.; Podgorski, D. C.; Spencer, R. G.; McDowell, W. H.

    2017-12-01

    In stream ecosystems, inputs of dissolved organic carbon (DOC) have a strong influence on nitrogen (N) processing. Previous studies have demonstrated that increases in DOC concentrations can promote greater N removal in many stream ecosystems. Most of what we know about C and N coupling comes from studies of temperate streams; less is known about this relationship in the Arctic. Streams in Arctic ecosystems are facing rapid changes in climate and disturbance regimes, in particular increasing fire frequencies that are likely to alter biogeochemical cycles. Although fires can lead to increases in NO3 concentrations in streams, the effects of fire on DOC (concentration and composition) have been difficult to generalize. We studied the relationships between DOC and N in two locations; the Central Siberian Plateau, Russia and the Yukon-Kuskokwim (YK) River Delta, Alaska. Streams in both regions show increases in NO3 concentrations after fire, while DOC concentrations decrease in Siberia but increase in streams within the YK-Delta. These patterns in DOC and NO3 create a gradient in DOC and nutrient concentrations, allowing us to study this coupling in a wider Pan-Arctic scope. In order to assess the role of DOC in Arctic N processing, we conducted NO3 and NH4 additions to stream microcosms at the Alaskan site as well as whole-stream additions in Siberia. We hypothesized that nutrient uptake would be high in older burn sites of Siberia and recently burned sites in the YK-Delta, due to greater DOC concentrations and availability. Our results suggest that nitrogen dynamics in the Alaskan sites is strongly responsive to C availability, but is less so in Siberian sites. The potential impacts of permafrost thawing and fires on DOM and nutrient dynamics thus appear to not be consistent across the Arctic suggesting that different regions of the Arctic have unique biogeochemical controls.

  19. Immune function in arctic mammals

    DEFF Research Database (Denmark)

    Desforges, Jean-Pierre; Jasperse, Lindsay; Jensen, Trine Hammer

    2018-01-01

    Natural killer (NK) cells are a vital part of the rapid and non-specific immune defense against invading pathogens and tumor cells. This study evaluated NK cell-like activity by flow cytometry for the first time in three ecologically and culturally important Arctic mammal species: polar bear (Ursus...... the effector:target cell ratio increased. Comparing NK activity between fresh and cryopreserved mouse lymphocytes revealed little to no difference in function, highlighting the applicability of cryopreserving cells in field studies. The evaluation of this important innate immune function in Arctic mammals can...... contribute to future population health assessments, especially as pollution-induced suppression of immune function may increase infectious disease susceptibility....

  20. The Far East taiga forest: unrecognized inhospitable terrain for migrating Arctic-nesting waterbirds?

    Directory of Open Access Journals (Sweden)

    Xin Wang

    2018-02-01

    Full Text Available The degree of inhospitable terrain encountered by migrating birds can dramatically affect migration strategies and their evolution as well as influence the way we develop our contemporary flyway conservation responses to protect them. We used telemetry data from 44 tagged individuals of four large-bodied, Arctic breeding waterbird species (two geese, a swan and one crane species to show for the first time that these birds fly non-stop over the Far East taiga forest, despite their differing ecologies and migration routes. This implies a lack of suitable taiga refuelling habitats for these long-distance migrants. These results underline the extreme importance of northeast China spring staging habitats and of Arctic areas prior to departure in autumn to enable birds to clear this inhospitable biome, confirming the need for adequate site safeguard to protect these populations throughout their annual cycle.

  1. Tsunami in the Arctic

    Science.gov (United States)

    Kulikov, Evgueni; Medvedev, Igor; Ivaschenko, Alexey

    2017-04-01

    The severity of the climate and sparsely populated coastal regions are the reason why the Russian part of the Arctic Ocean belongs to the least studied areas of the World Ocean. In the same time intensive economic development of the Arctic region, specifically oil and gas industry, require studies of potential thread natural disasters that can cause environmental and technical damage of the coastal and maritime infrastructure of energy industry complex (FEC). Despite the fact that the seismic activity in the Arctic can be attributed to a moderate level, we cannot exclude the occurrence of destructive tsunami waves, directly threatening the FEC. According to the IAEA requirements, in the construction of nuclear power plants it is necessary to take into account the impact of all natural disasters with frequency more than 10-5 per year. Planned accommodation in the polar regions of the Russian floating nuclear power plants certainly requires an adequate risk assessment of the tsunami hazard in the areas of their location. Develop the concept of tsunami hazard assessment would be based on the numerical simulation of different scenarios in which reproduced the hypothetical seismic sources and generated tsunamis. The analysis of available geological, geophysical and seismological data for the period of instrumental observations (1918-2015) shows that the highest earthquake potential within the Arctic region is associated with the underwater Mid-Arctic zone of ocean bottom spreading (interplate boundary between Eurasia and North American plates) as well as with some areas of continental slope within the marginal seas. For the Arctic coast of Russia and the adjacent shelf area, the greatest tsunami danger of seismotectonic origin comes from the earthquakes occurring in the underwater Gakkel Ridge zone, the north-eastern part of the Mid-Arctic zone. In this area, one may expect earthquakes of magnitude Mw ˜ 6.5-7.0 at a rate of 10-2 per year and of magnitude Mw ˜ 7.5 at a

  2. An Arctic perspective on dating Mid-Late Pleistocene environmental history

    DEFF Research Database (Denmark)

    Alexanderson, Helena; Backman, Jan; Cronin, Thomas M.

    2014-01-01

    we discuss, from an Arctic perspective, methods and correlation tools that are commonly used to date Arctic Pleistocene marine and terrestrial events. We review the state of the art of Arctic geochronology, with focus on factors that affect the possibility and quality of dating, and support...... this overview by examples of application of modern dating methods to Arctic terrestrial and marine sequences. Event stratigraphy and numerical ages are important tools used in the Arctic to correlate fragmented terrestrial records and to establish regional stratigraphic schemes. Age control is commonly provided...... of these proxies reveal cyclical patterns that provide a basis for astronomical tuning. Recent advances in dating technology, calibration and age modelling allow for measuring smaller quantities of material and to more precisely date previously undatable material (i.e. foraminifera for 14C, and single...

  3. Ecological processes in the cycling of radionuclides within arctic ecosystems

    International Nuclear Information System (INIS)

    Hanson, W.C.

    1986-01-01

    Worldwide fallout radionuclides in arctic ecosystems was investigated ecologically by circumpolar nations during 1959-80. Several of the radionuclides are isotopes of elements which currently contribute to arctic haze; they thus serve as effective tracers of biogeochemical processes. Investigations demonstrated the effective concentration of several radionuclides, particularly strontium-90 (an alkaline earth metal) and cesium-137 (a light alkali metal) which are chemical analogs of calcium and potassium, two very important stable elements in biotic systems. Transfer of 137 Cs through the lichen-cariboureindeer-man food chain characteristic of circumpolar nations, resulted in body burdens in Inuit that were 20 to 200 times greater than those in human populations of temperature latitudes. Radiation exposures from 90 Sr, 137 Cs and other natural and worldwide fallout radionuclides, were two to three times greater than for most other world populations. These results demonstrate the concentration capabilities of arctic ecosystems for several groups of chemical elements that have counterparts in arctic haze. These elements, therefore, provide the basis for considering the ecological implications of current situations

  4. Long-range transport of persistent pollutants into Arctic regions; Schadstoff-Ferntransport in die Arktis

    Energy Technology Data Exchange (ETDEWEB)

    Kallenborn, R.; Herzke, D. [Norwegian Inst. for Air Research, The Polar Environmental Centre, Tromso (Norway)

    2001-07-01

    transported must not be underestimated. The consumption of traditionally hunted marine mammals (seals, whales) was identified as one of the main reasons for high contamination burdens in the Canadian and Greenland Inuit populations. Consequences and counter measures against high contamination loads in the Arctic human populations and ecosystems are curenland Inuit populations. Consequences and counter measures against high contamination loads in the Arctic human populations and ecosystems are currently under discussion. However, no comprehensive measures concerning restrictions of hunting traditions are taken by the respective governments to date due to the primary social consequences which are to be expected. The advising experts argue that such a restriction would destroy the original social structures of the Inuit populations. Therefore, the drawbacks of such a hunting restriction would weigh heavier than the expected positive effects of the reduction of contaminant burdens 'Arctic dilemma'. (orig.)

  5. Future increases in Arctic precipitation linked to local evaporation and sea-ice retreat.

    Science.gov (United States)

    Bintanja, R; Selten, F M

    2014-05-22

    Precipitation changes projected for the end of the twenty-first century show an increase of more than 50 per cent in the Arctic regions. This marked increase, which is among the highest globally, has previously been attributed primarily to enhanced poleward moisture transport from lower latitudes. Here we use state-of-the-art global climate models to show that the projected increases in Arctic precipitation over the twenty-first century, which peak in late autumn and winter, are instead due mainly to strongly intensified local surface evaporation (maximum in winter), and only to a lesser degree due to enhanced moisture inflow from lower latitudes (maximum in late summer and autumn). Moreover, we show that the enhanced surface evaporation results mainly from retreating winter sea ice, signalling an amplified Arctic hydrological cycle. This demonstrates that increases in Arctic precipitation are firmly linked to Arctic warming and sea-ice decline. As a result, the Arctic mean precipitation sensitivity (4.5 per cent increase per degree of temperature warming) is much larger than the global value (1.6 to 1.9 per cent per kelvin). The associated seasonally varying increase in Arctic precipitation is likely to increase river discharge and snowfall over ice sheets (thereby affecting global sea level), and could even affect global climate through freshening of the Arctic Ocean and subsequent modulations of the Atlantic meridional overturning circulation.

  6. Plant functional type affects nitrogen use efficiency in high-Arctic tundra

    Czech Academy of Sciences Publication Activity Database

    Oulehle, F.; Rowe, E. C.; Myška, Oldřich; Chuman, T.; Evans, C.D.

    2016-01-01

    Roč. 94, mar (2016), s. 19-28 ISSN 0038-0717 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0073 Institutional support: RVO:67179843 Keywords : Arctic * Nitrogen * Isotope * Mineralization * Nitrification * Tundra Subject RIV: EH - Ecology, Behaviour Impact factor: 4.857, year: 2016

  7. Historical and contemporary imagery to assess ecosystem change on the Arctic coastal plain of northern Alaska

    Science.gov (United States)

    Tape, Ken D.; Pearce, John M.; Walworth, Dennis; Meixell, Brandt W.; Fondell, Tom F.; Gustine, David D.; Flint, Paul L.; Hupp, Jerry W.; Schmutz, Joel A.; Ward, David H.

    2014-01-01

    The Arctic Coastal Plain of northern Alaska is a complex landscape of lakes, streams, and wetlands scattered across low-relief tundra that is underlain by permafrost. This region of the Arctic has experienced a warming trend over the past three decades leading to thawing of on-shore permafrost and the disappearance of sea ice at unprecedented rates. The U.S. Geological Survey’s (USGS) Changing Arctic Ecosystems (CAE) research initiative was developed to investigate and forecast these rapid changes in the physical environment of the Arctic, and the associated changes to wildlife populations, in order to inform key management decisions by the U.S. Department of the Interior and other agencies. Forecasting future wildlife responses to changes in the Arctic can benefit greatly from historical records that inform what changes have already occurred. Several Arctic wildlife and plant species have already responded to climatic and physical changes to the Arctic Coastal Plain of northern Alaska. Thus, we located historical aerial imagery to improve our understanding of recent habitat changes and the associated response to such changes by wildlife populations.

  8. Population dynamics and life history strategies of the dominant copepods in a sub-arctic Greenlandic fjord

    DEFF Research Database (Denmark)

    Kjellerup, Sanne; Nielsen, Torkel Gissel

    Investigations of the Arctic and Sub-Arctic pelagic food web have previously focused on the copepod genus Calanus, as they often dominate the mesozooplankton community and serve as a lipid rich food source for higher trophic levels. However, if night samples are considered a different food web...... might emerges with the omnivorous copepod Metridia spp. in a major role. Biology of Metridia is practically unknown but deviates from Calanus e.g. Metridia does not hibernate but stays active yearlong benefiting from being omnivore. In the present study abundance, depth distribution, and egg and pellet...... hibernating Calanus. M. longa might thereby also have a central role in the lipid rich food chain which is a distinct feature for Arctic and Sub-Arctic ecosystems...

  9. Status of endangered and threatened caribou on Canada's arctic islands

    Directory of Open Access Journals (Sweden)

    Anne Gunn

    2000-04-01

    Full Text Available Caribou (Rangifer tarandus on the Canadian Arctic Islands occur as several populations which are nationally classified as either endangered or threatened. On the western High Arctic (Queen Elizabeth Islands, Peary caribou (R. t. pearyi declined to an estimated 1100 caribou in 1997. This is the lowest recorded abundance since the first aerial survey in 1961 when a high of ca. 24 363 caribou was estimated on those islands. Peary caribou abundance on the eastern Queen Elizabeth Islands is almost unknown. On the southern Arctic Islands, three caribou populations declined by 95-98% between 1973 and 1994 but our information is unclear about the numerical trends for the two other populations. Diagnosis of factors driving the declines is complicated by incomplete information but also because the agents driving the declines vary among the Arctic's different climatic regions. The available evidence indicates that severe winters caused Peary caribou die-offs on the western Queen Elizabeth Islands. On Banks Island, harvesting together with unfavourable snow/ice conditions in some years accelerated the decline. On northwestern Victoria Island, harvesting apparently explains the decline. The role of wolf predation is unknown on Banks and notthwest Victoria islands, although wolf sightings increased during the catibou declines. Reasons for the virtual disappearance of arctic-island caribou on Prince of Wales and Somerset islands are uncertain. Recovery actions have started with Inuit and Inuvialuit reducing their harvesting but it is too soon to evaluate the effect of those changes. Recovery of Peary caribou on the western Queen Elizabeth Islands is uncertain if the current trends toward warmer temperatures and higher snowfall persist.

  10. Biodiversity, Distributions and Adaptations of Arctic Species in the Context of Environmental Change

    Energy Technology Data Exchange (ETDEWEB)

    Callaghan, Terry V. [Abisko Scientific Research Station, Abisko (Sweden); Bjoern, Lars Olof [Lund Univ. (Sweden). Dept. of Cell and Organism Biology; Chernov, Yuri [Russian Academy of Sciences, Moscow (Russian Federation). A.N. Severtsov Inst. of Evolutionary Morphology and Animal Ecology] (and others)

    2004-11-01

    The individual of a species is the basic unit which responds to climate and UV-B changes, and it responds over a wide range of time scales. The diversity of animal, plant and microbial species appears to be low in the Arctic, and decreases from the boreal forests to the polar deserts of the extreme North but primitive species are particularly abundant. This latitudinal decline is associated with an increase in superdominant species that occupy a wide range of habitats. Climate warming is expected to reduce the abundance and restrict the ranges of such species and to affect species at their northern range boundaries more than in the South: some Arctic animal and plant specialists could face extinction. Species most likely to expand into tundra are boreal species that currently exist as outlier populations in the Arctic. Many plant species have characteristics that allow them to survive short snow-free growing seasons, low solar angles, permafrost and low soil temperatures, low nutrient availability and physical disturbance. Many of these characteristics are likely to limit species' responses to climate warming, but mainly because of poor competitive ability compared with potential immigrant species. Terrestrial Arctic animals possess many adaptations that enable them to persist under a wide range of temperatures in the Arctic. Many escape unfavorable weather and resource shortage by winter dormancy or by migration. The biotic environment of Arctic animal species is relatively simple with few enemies, competitors, diseases, parasites and available food resources. Terrestrial Arctic animals are likely to be most vulnerable to warmer and drier summers, climatic changes that interfere with migration routes and staging areas, altered snow conditions and freeze-thaw cycles in winter, climate-induced disruption of the seasonal timing of reproduction and development, and influx of new competitors, predators, parasites and diseases. Arctic microorganisms are also well

  11. Environmental and ecological conditions at Arctic breeding sites have limited effects on true survival rates of adult shorebirds

    Science.gov (United States)

    Weiser, Emily L.; Lanctot, Richard B.; Brown, Stephen C.; Gates, H. River; Bentzen, Rebecca L.; Bêty, Joël; Boldenow, Megan L.; English, Willow B.; Franks, Samantha E.; Koloski, Laura; Kwon, Eunbi; Lamarre, Jean-Francois; Lank, David B.; Liebezeit, Joseph R.; McKinnon, Laura; Nol, Erica; Rausch, Jennie; Saalfeld, Sarah T.; Senner, Nathan R.; Ward, David H.; Woodard, Paul F.; Sandercock, Brett K.

    2018-01-01

    Many Arctic shorebird populations are declining, and quantifying adult survival and the effects of anthropogenic factors is a crucial step toward a better understanding of population dynamics. We used a recently developed, spatially explicit Cormack–Jolly–Seber model in a Bayesian framework to obtain broad-scale estimates of true annual survival rates for 6 species of shorebirds at 9 breeding sites across the North American Arctic in 2010–2014. We tested for effects of environmental and ecological variables, study site, nest fate, and sex on annual survival rates of each species in the spatially explicit framework, which allowed us to distinguish between effects of variables on site fidelity versus true survival. Our spatially explicit analysis produced estimates of true survival rates that were substantially higher than previously published estimates of apparent survival for most species, ranging from S = 0.72 to 0.98 across 5 species. However, survival was lower for the arcticolasubspecies of Dunlin (Calidris alpina arcticola; S = 0.54), our only study taxon that migrates through the East Asian–Australasian Flyway. Like other species that use that flyway, arcticola Dunlin could be experiencing unsustainably low survival rates as a result of loss of migratory stopover habitat. Survival rates of our study species were not affected by timing of snowmelt or summer temperature, and only 2 species showed minor variation among study sites. Furthermore, although previous reproductive success, predator abundance, and the availability of alternative prey each affected survival of one species, no factors broadly affected survival across species. Overall, our findings of few effects of environmental or ecological variables suggest that annual survival rates of adult shorebirds are generally robust to conditions at Arctic breeding sites. Instead, conditions at migratory stopovers or overwintering sites might be driving adult survival rates and should be the

  12. Cloud-Scale Numerical Modeling of the Arctic Boundary Layer

    Science.gov (United States)

    Krueger, Steven K.

    1998-01-01

    The interactions between sea ice, open ocean, atmospheric radiation, and clouds over the Arctic Ocean exert a strong influence on global climate. Uncertainties in the formulation of interactive air-sea-ice processes in global climate models (GCMs) result in large differences between the Arctic, and global, climates simulated by different models. Arctic stratus clouds are not well-simulated by GCMs, yet exert a strong influence on the surface energy budget of the Arctic. Leads (channels of open water in sea ice) have significant impacts on the large-scale budgets during the Arctic winter, when they contribute about 50 percent of the surface fluxes over the Arctic Ocean, but cover only 1 to 2 percent of its area. Convective plumes generated by wide leads may penetrate the surface inversion and produce condensate that spreads up to 250 km downwind of the lead, and may significantly affect the longwave radiative fluxes at the surface and thereby the sea ice thickness. The effects of leads and boundary layer clouds must be accurately represented in climate models to allow possible feedbacks between them and the sea ice thickness. The FIRE III Arctic boundary layer clouds field program, in conjunction with the SHEBA ice camp and the ARM North Slope of Alaska and Adjacent Arctic Ocean site, will offer an unprecedented opportunity to greatly improve our ability to parameterize the important effects of leads and boundary layer clouds in GCMs.

  13. The Arctic Observing Viewer (AOV): Visualization, Data Discovery, Strategic Assessment, and Decision Support for Arctic Observing

    Science.gov (United States)

    Kassin, A.; Cody, R. P.; Barba, M.; Escarzaga, S. M.; Villarreal, S.; Manley, W. F.; Gaylord, A. G.; Habermann, T.; Kozimor, J.; Score, R.; Tweedie, C. E.

    2017-12-01

    To better assess progress in Arctic Observing made by U.S. SEARCH, NSF AON, SAON, and related initiatives, an updated version of the Arctic Observing Viewer (AOV; http://ArcticObservingViewer.org) has been released. This web mapping application and information system conveys the who, what, where, and when of "data collection sites" - the precise locations of monitoring assets, observing platforms, and wherever repeat marine or terrestrial measurements have been taken. Over 13,000 sites across the circumarctic are documented including a range of boreholes, ship tracks, buoys, towers, sampling stations, sensor networks, vegetation plots, stream gauges, ice cores, observatories, and more. Contributing partners are the U.S. NSF, NOAA, the NSF Arctic Data Center, ADIwg, AOOS, a2dc, CAFF, GINA, IASOA, INTERACT, NASA ABoVE, and USGS, among others. Users can visualize, navigate, select, search, draw, print, view details, and follow links to obtain a comprehensive perspective of environmental monitoring efforts. We continue to develop, populate, and enhance AOV. Recent updates include: a vastly improved Search tool with free text queries, autocomplete, and filters; faster performance; a new clustering visualization; heat maps to highlight concentrated research; and 3-D represented data to more easily identify trends. AOV is founded on principles of interoperability, such that agencies and organizations can use the AOV Viewer and web services for their own purposes. In this way, AOV complements other distributed yet interoperable cyber resources and helps science planners, funding agencies, investigators, data specialists, and others to: assess status, identify overlap, fill gaps, optimize sampling design, refine network performance, clarify directions, access data, coordinate logistics, and collaborate to meet Arctic Observing goals. AOV is a companion application to the Arctic Research Mapping Application (armap.org), which is focused on general project information at a

  14. Exposure and effects assessment of persistent organohalogen contaminants in arctic wildlife and fish.

    Science.gov (United States)

    Letcher, Robert J; Bustnes, Jan Ove; Dietz, Rune; Jenssen, Bjørn M; Jørgensen, Even H; Sonne, Christian; Verreault, Jonathan; Vijayan, Mathilakath M; Gabrielsen, Geir W

    2010-07-01

    Persistent organic pollutants (POPs) encompass an array of anthropogenic organic and elemental substances and their degradation and metabolic byproducts that have been found in the tissues of exposed animals, especially POPs categorized as organohalogen contaminants (OHCs). OHCs have been of concern in the circumpolar arctic for decades. For example, as a consequence of bioaccumulation and in some cases biomagnification of legacy (e.g., chlorinated PCBs, DDTs and CHLs) and emerging (e.g., brominated flame retardants (BFRs) and in particular polybrominated diphenyl ethers (PBDEs) and perfluorinated compounds (PFCs) including perfluorooctane sulfonate (PFOS) and perfluorooctanic acid (PFOA) found in Arctic biota and humans. Of high concern are the potential biological effects of these contaminants in exposed Arctic wildlife and fish. As concluded in the last review in 2004 for the Arctic Monitoring and Assessment Program (AMAP) on the effects of POPs in Arctic wildlife, prior to 1997, biological effects data were minimal and insufficient at any level of biological organization. The present review summarizes recent studies on biological effects in relation to OHC exposure, and attempts to assess known tissue/body compartment concentration data in the context of possible threshold levels of effects to evaluate the risks. This review concentrates mainly on post-2002, new OHC effects data in Arctic wildlife and fish, and is largely based on recently available effects data for populations of several top trophic level species, including seabirds (e.g., glaucous gull (Larus hyperboreus)), polar bears (Ursus maritimus), polar (Arctic) fox (Vulpes lagopus), and Arctic charr (Salvelinus alpinus), as well as semi-captive studies on sled dogs (Canis familiaris). Regardless, there remains a dearth of data on true contaminant exposure, cause-effect relationships with respect to these contaminant exposures in Arctic wildlife and fish. Indications of exposure effects are largely

  15. Phagotrophy by the picoeukaryotic green alga Micromonas: implications for Arctic Oceans.

    Science.gov (United States)

    McKie-Krisberg, Zaid M; Sanders, Robert W

    2014-10-01

    Photosynthetic picoeukaryotes (PPE) are recognized as major primary producers and contributors to phytoplankton biomass in oceanic and coastal environments. Molecular surveys indicate a large phylogenetic diversity in the picoeukaryotes, with members of the Prymnesiophyceae and Chrysophyseae tending to be more common in open ocean waters and Prasinophyceae dominating coastal and Arctic waters. In addition to their role as primary producers, PPE have been identified in several studies as mixotrophic and major predators of prokaryotes. Mixotrophy, the combination of photosynthesis and phagotrophy in a single organism, is well established for most photosynthetic lineages. However, green algae, including prasinophytes, were widely considered as a purely photosynthetic group. The prasinophyte Micromonas is perhaps the most common picoeukaryote in coastal and Arctic waters and is one of the relatively few cultured representatives of the picoeukaryotes available for physiological investigations. In this study, we demonstrate phagotrophy by a strain of Micromonas (CCMP2099) isolated from Arctic waters and show that environmental factors (light and nutrient concentration) affect ingestion rates in this mixotroph. In addition, we show size-selective feeding with a preference for smaller particles, and determine P vs I (photosynthesis vs irradiance) responses in different nutrient conditions. If other strains have mixotrophic abilities similar to Micromonas CCMP2099, the widespread distribution and frequently high abundances of Micromonas suggest that these green algae may have significant impact on prokaryote populations in several oceanic regimes.

  16. Advanced Life Systems for Extreme Environments: An Arctic Application

    Science.gov (United States)

    Lewis, Carol E.; Stanford, Kerry L.; Bubenheim, David L.; Covington, Alan (Technical Monitor)

    1995-01-01

    The problems of obtaining adequate pure drinking water and disposing of liquid and solid waste in the U.S. Arctic, a region where virtually all water is frozen solid for much of the year, has led to unsanitary solutions (U.S. Arctic Research Commission). These solutions are also damaging to the environment. Sanitation and a safe water supply are particularly problems in rural villages. About one-fourth of Alaska's 86.000 Native residents live in these communities. They are without running water and use plastic buckets for toilets. The outbreak of diseases is believed to be partially attributable to exposure to human waste. Villages with the most frequent outbreaks of disease are those in which running water is difficult to obtain (Office of Technology Assessment, 1994). Waste is emptied into open lagoons, rivers, or onto the sea coast. It does not degrade rapidly and in addition to affecting human health, can be harmful to the fragile ecology of the Arctic and the indigenous wildlife and fish populations. Advanced Life Systems for Extreme Environments (ALSEE) provides a solution to sanitation and safe water problems. The system uses an advanced integrated technology developed for Antarctic and space applications. ALSEE uses the systems approach to address more than waste and water problems. By incorporating hydroponic horticulture and aquaculture into the waste treatment system, ALSEE addresses the quality and quantity of fresh foods available to Arctic residents. A temperate climate is required for year-round plant growth. ALSEE facilities can be designed to include a climate controlled area within the structure. This type of environment is a change from the long periods of darkness and cold found in the Arctic and can help alleviate stress so often associated with these extremes. While the overall concept of ALSEE projects is advanced, system facilities can be operated by village residents with appropriate training. ALSEE provides continuing training and

  17. White Arctic vs. Blue Arctic: Making Choices

    Science.gov (United States)

    Pfirman, S. L.; Newton, R.; Schlosser, P.; Pomerance, R.; Tremblay, B.; Murray, M. S.; Gerrard, M.

    2015-12-01

    As the Arctic warms and shifts from icy white to watery blue and resource-rich, tension is arising between the desire to restore and sustain an ice-covered Arctic and stakeholder communities that hope to benefit from an open Arctic Ocean. If emissions of greenhouse gases to the atmosphere continue on their present trend, most of the summer sea ice cover is projected to be gone by mid-century, i.e., by the time that few if any interventions could be in place to restore it. There are many local as well as global reasons for ice restoration, including for example, preserving the Arctic's reflectivity, sustaining critical habitat, and maintaining cultural traditions. However, due to challenges in implementing interventions, it may take decades before summer sea ice would begin to return. This means that future generations would be faced with bringing sea ice back into regions where they have not experienced it before. While there is likely to be interest in taking action to restore ice for the local, regional, and global services it provides, there is also interest in the economic advancement that open access brings. Dealing with these emerging issues and new combinations of stakeholders needs new approaches - yet environmental change in the Arctic is proceeding quickly and will force the issues sooner rather than later. In this contribution we examine challenges, opportunities, and responsibilities related to exploring options for restoring Arctic sea ice and potential pathways for their implementation. Negotiating responses involves international strategic considerations including security and governance, meaning that along with local communities, state decision-makers, and commercial interests, national governments will have to play central roles. While these issues are currently playing out in the Arctic, similar tensions are also emerging in other regions.

  18. Arctic circulation regimes.

    Science.gov (United States)

    Proshutinsky, Andrey; Dukhovskoy, Dmitry; Timmermans, Mary-Louise; Krishfield, Richard; Bamber, Jonathan L

    2015-10-13

    Between 1948 and 1996, mean annual environmental parameters in the Arctic experienced a well-pronounced decadal variability with two basic circulation patterns: cyclonic and anticyclonic alternating at 5 to 7 year intervals. During cyclonic regimes, low sea-level atmospheric pressure (SLP) dominated over the Arctic Ocean driving sea ice and the upper ocean counterclockwise; the Arctic atmosphere was relatively warm and humid, and freshwater flux from the Arctic Ocean towards the subarctic seas was intensified. By contrast, during anticylonic circulation regimes, high SLP dominated driving sea ice and the upper ocean clockwise. Meanwhile, the atmosphere was cold and dry and the freshwater flux from the Arctic to the subarctic seas was reduced. Since 1997, however, the Arctic system has been under the influence of an anticyclonic circulation regime (17 years) with a set of environmental parameters that are atypical for this regime. We discuss a hypothesis explaining the causes and mechanisms regulating the intensity and duration of Arctic circulation regimes, and speculate how changes in freshwater fluxes from the Arctic Ocean and Greenland impact environmental conditions and interrupt their decadal variability. © 2015 The Authors.

  19. AROME-Arctic: New operational NWP model for the Arctic region

    Science.gov (United States)

    Süld, Jakob; Dale, Knut S.; Myrland, Espen; Batrak, Yurii; Homleid, Mariken; Valkonen, Teresa; Seierstad, Ivar A.; Randriamampianina, Roger

    2016-04-01

    In the frame of the EU-funded project ACCESS (Arctic Climate Change, Economy and Society), MET Norway aimed 1) to describe the present monitoring and forecasting capabilities in the Arctic; and 2) to identify the key factors limiting the forecasting capabilities and to give recommendations on key areas to improve the forecasting capabilities in the Arctic. We have observed that the NWP forecast quality is lower in the Arctic than in the regions further south. Earlier research indicated that one of the factors behind this is the composition of the observing system in the Arctic, in particular the scarceness of conventional observations. To further assess possible strategies for alleviating the situation and propose scenarios for a future Arctic observing system, we have performed a set of experiments to gain a more detailed insight in the contribution of the components of the present observing system in a regional state-of-the-art non-hydrostatic NWP model using the AROME physics (Seity et al, 2011) at 2.5 km horizontal resolution - AROME-Arctic. Our observing system experiment studies showed that conventional observations (Synop, Buoys) can play an important role in correcting the surface state of the model, but prove that the present upper-air conventional (Radiosondes, Aircraft) observations in the area are too scarce to have a significant effect on forecasts. We demonstrate that satellite sounding data play an important role in improving forecast quality. This is the case with satellite temperature sounding data (AMSU-A, IASI), as well as with the satellite moisture sounding data (AMSU-B/MHS, IASI). With these sets of observations, the AROME-Arctic clearly performs better in forecasting extreme events, like for example polar lows. For more details see presentation by Randriamampianina et al. in this session. The encouraging performance of AROME-Arctic lead us to implement it with more observations and improved settings into daily runs with the objective to

  20. Arctic Newcomers

    DEFF Research Database (Denmark)

    Tonami, Aki

    2013-01-01

    Interest in the Arctic region and its economic potential in Japan, South Korea and Singapore was slow to develop but is now rapidly growing. All three countries have in recent years accelerated their engagement with Arctic states, laying the institutional frameworks needed to better understand...... and influence policies relating to the Arctic. But each country’s approach is quite different, writes Aki Tonami....

  1. Technological and economic factors in the future development and utilization of Arctic natural gas

    International Nuclear Information System (INIS)

    Jumppanen, P.; Sackinger, W.M.

    1993-01-01

    Development of Arctic gas reserves will be accelerated during the next two decades in response to higher oil prices, environmental and safety advantages of gas, and the potentially low costs of tapping giant reservoirs. Total Arctic gas reserves are estimated at over 63 trillion m 3 . Due to low population and industrial activity in the Arctic, only limited markets for Arctic gas exist in the Arctic itself. The main part of Arctic gas must therefore be transported over long distances. Giant Arctic gas fields will provide a basis for different production alternatives including both pipeline gas, liquefied gas, and converted gas products. Transportation systems are the most critical part of Arctic natural gas development and the sector requiring the greatest investment. Major investment decisions will depend on accurate estimates of gas transport technology and economics, as well as on perceived energy market share growth and geopolitical stability. 27 refs., 4 figs., 3 tabs

  2. How spatial variation in areal extent and configuration of labile vegetation states affect the riparian bird community in Arctic tundra.

    Directory of Open Access Journals (Sweden)

    John-André Henden

    Full Text Available The Arctic tundra is currently experiencing an unprecedented combination of climate change, change in grazing pressure by large herbivores and growing human activity. Thickets of tall shrubs represent a conspicuous vegetation state in northern and temperate ecosystems, where it serves important ecological functions, including habitat for wildlife. Thickets are however labile, as tall shrubs respond rapidly to both abiotic and biotic environmental drivers. Our aim was to assess how large-scale spatial variation in willow thicket areal extent, configuration and habitat structure affected bird abundance, occupancy rates and species richness so as to provide an empirical basis for predicting the outcome of environmental change for riparian tundra bird communities. Based on a 4-year count data series, obtained through a large-scale study design in low arctic tundra in northern Norway, statistical hierarchical community models were deployed to assess relations between habitat configuration and bird species occupancy and community richness. We found that species abundance, occupancy and richness were greatly affected by willow areal extent and configuration, habitat features likely to be affected by intense ungulate browsing as well as climate warming. In sum, total species richness was maximized in large and tall willow patches of small to intermediate degree of fragmentation. These community effects were mainly driven by responses in the occupancy rates of species depending on tall willows for foraging and breeding, while species favouring other vegetation states were not affected. In light of the predicted climate driven willow shrub encroachment in riparian tundra habitats, our study predicts that many bird species would increase in abundance, and that the bird community as a whole could become enriched. Conversely, in tundra regions where overabundance of large herbivores leads to decreased areal extent, reduced height and increased fragmentation

  3. Trophic pathways supporting Arctic grayling in a small stream on the Arctic Coastal Plain, Alaska

    Science.gov (United States)

    McFarland, Jason J.; Wipfli, Mark S.; Whitman, Matthew S.

    2018-01-01

    Beaded streams are prominent across the Arctic Coastal Plain (ACP) of Alaska, yet prey flow and food web dynamics supporting fish inhabiting these streams are poorly understood. Arctic grayling (Thymallus arcticus) are a widely distributed upper-level consumer on the ACP and migrate into beaded streams to forage during the short 3-month open-water season. We investigated energy pathways and key prey resources that support grayling in a representative beaded stream, Crea Creek. We measured terrestrial invertebrates entering the stream from predominant riparian vegetation types, prey types supporting a range of fish size classes, and how riparian plants and fish size influenced foraging habits. We found that riparian plants influenced the quantity of terrestrial invertebrates entering Crea Creek; however, these differences were not reflected in fish diets. Prey type and size ingested varied with grayling size and season. Small grayling (15 cm FL) foraged most heavily on ninespine stickleback (Pungitius pungitius) throughout the summer, indicating that grayling can be insectivorous and piscivorous, depending on size. These findings underscore the potential importance of small streams in Arctic ecosystems as key summer foraging habitats for fish. Understanding trophic pathways supporting stream fishes in these systems will help interpret whether and how petroleum development and climate change may affect energy flow and stream productivity, terrestrial–aquatic linkages and fishes in Arctic ecosystems.

  4. Controls on Arctic sea ice from first-year and multi-year survival rates

    Energy Technology Data Exchange (ETDEWEB)

    Hunke, Jes [Los Alamos National Laboratory

    2009-01-01

    The recent decrease in Arctic sea ice cover has transpired with a significant loss of multi year ice. The transition to an Arctic that is populated by thinner first year sea ice has important implications for future trends in area and volume. Here we develop a reduced model for Arctic sea ice with which we investigate how the survivability of first year and multi year ice control the mean state, variability, and trends in ice area and volume.

  5. Changing Arctic Ocean freshwater pathways.

    Science.gov (United States)

    Morison, James; Kwok, Ron; Peralta-Ferriz, Cecilia; Alkire, Matt; Rigor, Ignatius; Andersen, Roger; Steele, Mike

    2012-01-04

    Freshening in the Canada basin of the Arctic Ocean began in the 1990s and continued to at least the end of 2008. By then, the Arctic Ocean might have gained four times as much fresh water as comprised the Great Salinity Anomaly of the 1970s, raising the spectre of slowing global ocean circulation. Freshening has been attributed to increased sea ice melting and contributions from runoff, but a leading explanation has been a strengthening of the Beaufort High--a characteristic peak in sea level atmospheric pressure--which tends to accelerate an anticyclonic (clockwise) wind pattern causing convergence of fresh surface water. Limited observations have made this explanation difficult to verify, and observations of increasing freshwater content under a weakened Beaufort High suggest that other factors must be affecting freshwater content. Here we use observations to show that during a time of record reductions in ice extent from 2005 to 2008, the dominant freshwater content changes were an increase in the Canada basin balanced by a decrease in the Eurasian basin. Observations are drawn from satellite data (sea surface height and ocean-bottom pressure) and in situ data. The freshwater changes were due to a cyclonic (anticlockwise) shift in the ocean pathway of Eurasian runoff forced by strengthening of the west-to-east Northern Hemisphere atmospheric circulation characterized by an increased Arctic Oscillation index. Our results confirm that runoff is an important influence on the Arctic Ocean and establish that the spatial and temporal manifestations of the runoff pathways are modulated by the Arctic Oscillation, rather than the strength of the wind-driven Beaufort Gyre circulation.

  6. Detection, prevalence, and transmission of avian hematozoa in waterfowl at the Arctic/sub-Arctic interface: co-infections, viral interactions, and sources of variation.

    Science.gov (United States)

    Meixell, Brandt; Arnold, Todd W.; Lindberg, Mark S.; Smith, Matthew M.; Runstadler, Jonathan A.; Ramey, Andy M.

    2016-01-01

    Background: The epidemiology of avian hematozoa at high latitudes is still not well understood, particularly in sub-Arctic and Arctic habitats, where information is limited regarding seasonality and range of transmission, co-infection dynamics with parasitic and viral agents, and possible fitness consequences of infection. Such information is important as climate warming may lead to northward expansion of hematozoa with unknown consequences to northern-breeding avian taxa, particularly populations that may be previously unexposed to blood parasites.

  7. Development of a pan-Arctic monitoring plan for polar bears: Background paper

    Science.gov (United States)

    Vongraven, Dag; Peacock, Lily

    2011-01-01

    bears, with particular emphasis on how climate warming may differentially affect populations and habitats. Current knowledge is inadequate for a comprehensive understanding of the present and future impact of climate warming and its interaction with other stressors. The cumulative effects are unknown (Laidre et al. 2008). An integrated pan-Arctic research and monitoring plan will improve the ability to detect future trends, identify the most vulnerable subpopulations and guide effective conservation. There is a need to direct attention and resources where data are deficient to understand the mechanisms that drive trends, and to facilitate more effective and timely conservation response.

  8. The influence of human activity in the Arctic on climate and climate impacts

    Energy Technology Data Exchange (ETDEWEB)

    Huntington, H.P. [23834 The Clearing Dr., Eagle River, AK 99577 (United States); Boyle, M. [Institute for Resources, Environment and Sustainability, University of British Columbia, 2202 Main Mall, Vancouver, BC, V6S 1K4 (Canada); Flowers, G.E. [Department of Earth Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6 (Canada); Weatherly, J.W. [Snow and Ice Division, Cold Regions Research and Engineering Laboratory, 72 Lyme Road, Hanover, NH 03755 (United States); Hamilton, L.C. [Department of Sociology, University of New Hampshire, 20 College Road, Durham, NH 03824 (United States); Hinzman, L. [Water and Environment Research Center, University of Alaska Fairbanks, P.O. Box 755860, Fairbanks, AK 99775 (United States); Gerlach, C. [Department of Anthropology, University of Alaska Fairbanks, P.O. Box 757720, Fairbanks, AK 99775 (United States); Zulueta, R. [Department of Biology, Global Change Research Group, San Diego State University, 5500 Campanile Drive, PS-240, San Diego, CA 92182 (United States); Nicolson, C. [Department of Natural Resources Conservation, University of Massachusetts, 160 Holdsworth Way, Amherst, MA , 01003 (United States); Overpeck, J. [Institute for the Study of Planet Earth, University of Arizona, 715 North Park Avenue, 2nd Floor, Tucson, AZ, 85721 (United States)

    2007-05-15

    Human activities in the Arctic are often mentioned as recipients of climate-change impacts. In this paper we consider the more complicated but more likely possibility that human activities themselves can interact with climate or environmental change in ways that either mitigate or exacerbate the human impacts. Although human activities in the Arctic are generally assumed to be modest, our analysis suggests that those activities may have larger influences on the arctic system than previously thought. Moreover, human influences could increase substantially in the near future. First, we illustrate how past human activities in the Arctic have combined with climatic variations to alter biophysical systems upon which fisheries and livestock depend. Second, we describe how current and future human activities could precipitate or affect the timing of major transitions in the arctic system. Past and future analyses both point to ways in which human activities in the Arctic can substantially influence the trajectory of arctic system change.

  9. Arctic Haze Analysis

    Science.gov (United States)

    Mei, Linlu; Xue, Yong

    2013-04-01

    The Arctic atmosphere is perturbed by nature/anthropogenic aerosol sources known as the Arctic haze, was firstly observed in 1956 by J. Murray Mitchell in Alaska (Mitchell, 1956). Pacyna and Shaw (1992) summarized that Arctic haze is a mixture of anthropogenic and natural pollutants from a variety of sources in different geographical areas at altitudes from 2 to 4 or 5 km while the source for layers of polluted air at altitudes below 2.5 km mainly comes from episodic transportation of anthropogenic sources situated closer to the Arctic. Arctic haze of low troposphere was found to be of a very strong seasonal variation characterized by a summer minimum and a winter maximum in Alaskan (Barrie, 1986; Shaw, 1995) and other Arctic region (Xie and Hopke, 1999). An anthropogenic factor dominated by together with metallic species like Pb, Zn, V, As, Sb, In, etc. and nature source such as sea salt factor consisting mainly of Cl, Na, and K (Xie and Hopke, 1999), dust containing Fe, Al and so on (Rahn et al.,1977). Black carbon and soot can also be included during summer time because of the mix of smoke from wildfires. The Arctic air mass is a unique meteorological feature of the troposphere characterized by sub-zero temperatures, little precipitation, stable stratification that prevents strong vertical mixing and low levels of solar radiations (Barrie, 1986), causing less pollutants was scavenged, the major revival pathway for particulates from the atmosphere in Arctic (Shaw, 1981, 1995; Heintzenberg and Larssen, 1983). Due to the special meteorological condition mentioned above, we can conclude that Eurasian is the main contributor of the Arctic pollutants and the strong transport into the Arctic from Eurasia during winter caused by the high pressure of the climatologically persistent Siberian high pressure region (Barrie, 1986). The paper intends to address the atmospheric characteristics of Arctic haze by comparing the clear day and haze day using different dataset

  10. Isolation and characterization of microsatellite loci from the Arctic cisco (Coregonus autumnalis)

    Science.gov (United States)

    Ramey, A.; Graziano, S.L.; Nielsen, J.L.

    2008-01-01

    Eight polymorphic microsatellite loci were isolated and characterized for the Arctic cisco, Coregonus autumnalis. Loci were evaluated in 21 samples from the Colville River subsistence fishery. The number of alleles per locus ranged from two to 18. Observed heterozygosity of loci varied from 0.10 to 1.00, and expected heterozygosity ranged from 0.09 to 0.92. All eight microsatellite markers were in Hardy-Weinberg equilibrium. The loci presented here will be useful in describing population structure and exploring populations of origin for Arctic cisco. ?? 2007 Blackwell Publishing Ltd.

  11. Zooplankton in the Arctic outflow

    Science.gov (United States)

    Soloviev, K. A.; Dritz, A. V.; Nikishina, A. B.

    2009-04-01

    Climate changes in the Arctic cause the changes in the current system that may have cascading effect on the structure of plankton community and consequently on the interlinked and delicately balanced food web. Zooplankton species are by definition incapable to perform horizontal moving. Their transport is connected with flowing water. There are zooplankton species specific for the definite water masses and they can be used as markers for the different currents. That allows us to consider zooplankton community composition as a result of water mixing in the studied area. Little is known however about the mechanisms by which spatial and temporal variability in advection affect dynamics of local populations. Ice conditions are also very important in the function of pelagic communities. Melting time is the trigger to all "plankton blooming" processes, and the duration of ice-free conditions determines the food web development in the future. Fram Strait is one of the key regions for the Arctic: the cold water outflow comes through it with the East Greenland Current and meets warm Atlantic water, the West Spitsbergen Current, producing complicated hydrological situation. During 2007 and 2008 we investigated the structure functional characteristics of zooplankton community in the Fram Strait region onboard KV "Svalbard" (April 2007, April and May 2008) and RV "Jan Mayen" (May 2007, August 2008). This study was conducted in frame of iAOOS Norway project "Closing the loop", which, in turn, was a part of IPY. During this cruises multidisciplinary investigations were performed, including sea-ice observations, CTD and ADCP profiling, carbon flux, nutrients and primary production measurements, phytoplankton sampling. Zooplankton was collected with the Hydro-Bios WP2 net and MultiNet Zooplankton Sampler, (mouth area 0.25 m2, mesh size 180 um).Samples were taken from the depth strata of 2000-1500, 1500-1000, 1000-500,500-200, 200-100, 100-60, 60-30, 30-0 m. Gut fluorescence

  12. Human-induced Arctic moistening.

    Science.gov (United States)

    Min, Seung-Ki; Zhang, Xuebin; Zwiers, Francis

    2008-04-25

    The Arctic and northern subpolar regions are critical for climate change. Ice-albedo feedback amplifies warming in the Arctic, and fluctuations of regional fresh water inflow to the Arctic Ocean modulate the deep ocean circulation and thus exert a strong global influence. By comparing observations to simulations from 22 coupled climate models, we find influence from anthropogenic greenhouse gases and sulfate aerosols in the space-time pattern of precipitation change over high-latitude land areas north of 55 degrees N during the second half of the 20th century. The human-induced Arctic moistening is consistent with observed increases in Arctic river discharge and freshening of Arctic water masses. This result provides new evidence that human activity has contributed to Arctic hydrological change.

  13. The Arctic Turn

    DEFF Research Database (Denmark)

    Rahbek-Clemmensen, Jon

    2018-01-01

    In October 2006, representatives of the Arctic governments met in Salekhard in northern Siberia for the biennial Arctic Council ministerial meeting to discuss how the council could combat regional climate change, among other issues. While most capitals were represented by their foreign minister......, a few states – Canada, Denmark, and the United States – sent other representatives. There was nothing unusual about the absence of Per Stig Møller, the Danish foreign minister – a Danish foreign minister had only once attended an Arctic Council ministerial meeting (Arctic Council 2016). Møller......’s nonappearance did, however, betray the low status that Arctic affairs had in the halls of government in Copenhagen. Since the end of the Cold War, where Greenland had helped tie Denmark and the US closer together due to its geostrategically important position between North America and the Soviet Union, Arctic...

  14. Landscape heterogeneity drives intra-population niche variation and reproduction in an arctic top predator.

    Science.gov (United States)

    L'hérault, Vincent; Franke, Alastair; Lecomte, Nicolas; Alogut, Adam; Bêty, Joël

    2013-09-01

    While intra-population variability in resource use is ubiquitous, little is known of how this measure of niche diversity varies in space and its role in population dynamics. Here we examined how heterogeneous breeding environments can structure intra-population niche variation in both resource use and reproductive output. We investigated intra-population niche variation in the Arctic tundra ecosystem, studying peregrine falcon (Falco peregrinus tundrius, White) breeding within a terrestrial-marine gradient near Rankin Inlet, Nunavut, Canada. Using stable isotope analysis, we found that intra-population niches varied at the individual level; we examined within-nest and among-nest variation, though only the latter varied along the terrestrial-marine gradient (i.e., increased among-nest variability among birds nesting within the marine environment, indicating higher degree of specialization). Terrestrial prey species (small herbivores and insectivores) were consumed by virtually all falcons. Falcons nesting within the marine environment made use of marine prey (sea birds), but depended heavily on terrestrial prey (up to 90% of the diet). Using 28-years of peregrine falcon nesting data, we found a positive relationship between the proportion of terrestrial habitat surrounding nest sites and annual nestling production, but no relationship with the likelihood of successfully rearing at least one nestling reaching 25 days old. Annually, successful inland breeders raised 0.47 more young on average compared to offshore breeders, which yields potential fitness consequences for this long-living species. The analyses of niche and reproductive success suggest a potential breeding cost for accessing distant terrestrial prey, perhaps due to additional traveling costs, for those individuals with marine nest site locations. Our study indicates how landscape heterogeneity can generate proximate (niche variation) and ultimate (reproduction) consequences on a population of generalist

  15. Avian Cholera emergence in Arctic-nesting northern Common Eiders: using community-based, participatory surveillance to delineate disease outbreak patterns and predict transmission risk

    Directory of Open Access Journals (Sweden)

    Samuel A. Iverson

    2016-12-01

    Full Text Available Emerging infectious diseases are a growing concern in wildlife conservation. Documenting outbreak patterns and determining the ecological drivers of transmission risk are fundamental to predicting disease spread and assessing potential impacts on population viability. However, evaluating disease in wildlife populations requires expansive surveillance networks that often do not exist in remote and developing areas. Here, we describe the results of a community-based research initiative conducted in collaboration with indigenous harvesters, the Inuit, in response to a new series of Avian Cholera outbreaks affecting Common Eiders (Somateria mollissima and other comingling species in the Canadian Arctic. Avian Cholera is a virulent disease of birds caused by the bacterium Pasteurella multocida. Common Eiders are a valuable subsistence resource for Inuit, who hunt the birds for meat and visit breeding colonies during the summer to collect eggs and feather down for use in clothing and blankets. We compiled the observations of harvesters about the growing epidemic and with their assistance undertook field investigation of 131 colonies distributed over >1200 km of coastline in the affected region. Thirteen locations were identified where Avian Cholera outbreaks have occurred since 2004. Mortality rates ranged from 1% to 43% of the local breeding population at these locations. Using a species-habitat model (Maxent, we determined that the distribution of outbreak events has not been random within the study area and that colony size, vegetation cover, and a measure of host crowding in shared wetlands were significantly correlated to outbreak risk. In addition, outbreak locations have been spatially structured with respect to hypothesized introduction foci and clustered along the migration corridor linking Arctic breeding areas with wintering areas in Atlantic Canada. At present, Avian Cholera remains a localized threat to Common Eider populations in the

  16. Arctic Ice Melting: National Security Implications

    Science.gov (United States)

    2011-02-01

    be a curse rather than a good, and under no conditions can it either lead into freedom or constitute a proof for its existence. - Hannah ... Arendt 39 How will the domestic or foreign economic policies of the United States be affected by Arctic ice melting? Increased access to the

  17. Tourism and Arctic Observation Systems: exploring the relationships

    Directory of Open Access Journals (Sweden)

    Suzanne de la Barre

    2016-03-01

    Full Text Available The Arctic is affected by global environmental change and also by diverse interests from many economic sectors and industries. Over the last decade, various actors have attempted to explore the options for setting up integrated and comprehensive trans-boundary systems for monitoring and observing these impacts. These Arctic Observation Systems (AOS contribute to the planning, implementation, monitoring and evaluation of environmental change and responsible social and economic development in the Arctic. The aim of this article is to identify the two-way relationship between AOS and tourism. On the one hand, tourism activities account for diverse changes across a broad spectrum of impact fields. On the other hand, due to its multiple and diverse agents and far-reaching activities, tourism is also well-positioned to collect observational data and participate as an actor in monitoring activities. To accomplish our goals, we provide an inventory of tourism-embedded issues and concerns of interest to AOS from a range of destinations in the circumpolar Arctic region, including Alaska, Arctic Canada, Iceland, Svalbard, the mainland European Arctic and Russia. The article also draws comparisons with the situation in Antarctica. On the basis of a collective analysis provided by members of the International Polar Tourism Research Network from across the polar regions, we conclude that the potential role for tourism in the development and implementation of AOS is significant and has been overlooked.

  18. Late Cenozoic Paleoceanography of the Central Arctic Ocean

    International Nuclear Information System (INIS)

    O'Regan, Matt

    2011-01-01

    The Arctic Ocean is the smallest and perhaps least accessible of the worlds oceans. It occupies only 26% of the global ocean area, and less than 10% of its volume. However, it exerts a disproportionately large influence on the global climate system through a complex set of positive and negative feedback mechanisms directly or indirectly related to terrestrial ice and snow cover and sea ice. Increasingly, the northern high latitude cryosphere is seen as an exceptionally fragile part of the global climate system, a fact exemplified by observed reductions in sea ice extent during the past decades [2]. The paleoceanographic evolution of the Arctic Ocean can provide important insights into the physical forcing mechanisms that affect the form, intensity and permanence of ice in the high Arctic, and its sensitivity to these mechanisms in vastly different climate states of the past. However, marine records capturing the late Cenozoic paleoceanography of the Arctic are limited - most notably because only a single deep borehole exists from the central parts of this Ocean. This paper reviews the principal late Cenozoic (Neogene/Quaternary) results from the Arctic Coring Expedition to the Lomonosov Ridge and in light of recent data and observations on modern sea ice, outlines emerging questions related to three main themes: 1) the establishment of the 'modern' Arctic Ocean and the opening of the Fram Strait 2) the inception of perennial sea ice 3) The Quaternary intensification of Northern Hemisphere glaciations.

  19. On the Role of Ammonia in Arctic Aerosol Nucleation and Cloud Formation

    Science.gov (United States)

    Browse, J.; Dall'Osto, M.; Geels, C.; Skov, H.; Massling, A.; Boertmann, D.; Beddows, D.; Gordon, H.; Pringle, K.

    2017-12-01

    This study investigates the importance of ammonia in Arctic aerosol nucleation and the formation of cloud condensation nuclei (CCN) at high-latitudes. The importance of atmospheric nucleation processes to summertime Arctic aerosol concentration has been frequently noted at ground-stations, during campaigns and within models (which typically predict that the majority of aerosol in the Arctic summertime boundary layer derives from nucleation). However, as nucleation mechanisms in global models have increased in complexity (improving model skill globally) our skill in the Arctic has generally decreased. This decrease in model skill is likely due to a lack of organic compounds (monterpenes etc.) in the modelled high Arctic which have been identified as a key component in atmospheric nucleation in the mid-latitudes and thus incorporated into many global nucleation parametrisations. Recently it has been suggested that ammonia (also identified as a potentially important component in atmospheric nucleation) may control nucleation processes in the Arctic. However, the source (or sources) of Arctic ammonia remain unclear. Here, we use modelling, long-term aerosol in-situ observations, high resolution sea-ice satellite observations and new emission inventories to investigate the link between ammonia sources (including bird colonies, sea-ice melt and open ocean in the marginal ice zones) and nucleation events in the mid-to-high Arctic, and thus quantify the importance of individual ammonia sources to Arctic-wide CCN and cloud droplet populations.

  20. Arctic potential - Could more structured view improve the understanding of Arctic business opportunities?

    Science.gov (United States)

    Hintsala, Henna; Niemelä, Sami; Tervonen, Pekka

    2016-09-01

    The increasing interest towards the Arctic has been witnessed during the past decades. However, the commonly shared definitions of the Arctic key concepts have not yet penetrated national and international arenas for political and economic decision making. The lack of jointly defined framework has made different analyses related to the Arctic quite limited considering the magnitude of economic potential embedded in Arctic. This paper is built on the key findings of two separate, yet connected projects carried out in the Oulu region, Finland. In this paper's approach, the Arctic context has been defined as a composition of three overlapping layers. The first layer is the phenomenological approach to define the Arctic region. The second layer is the strategy-level analysis to define different Arctic paths as well as a national level description of a roadmap to Arctic specialization. The third layer is the operationalization of the first two layers to define the Arctic business context and business opportunities. The studied case from Oulu region indicates that alternative futures for the Arctic competences and business activities are in resemblance with only two of the four identified strategic pathways. Introduction of other pathways to regional level actors as credible and attractive options would require additional, systematic efforts.

  1. Conflict Resolution Practices of Arctic Aboriginal Peoples

    NARCIS (Netherlands)

    Gendron, R.; Hille, C.

    2013-01-01

    This article presents an overview of the conflict resolution practices of indigenous populations in the Arctic. Among the aboriginal groups discussed are the Inuit, the Aleut, and the Saami. Having presented the conflict resolution methods, the authors discuss the types of conflicts that are

  2. Dietary contaminant exposure affects plasma testosterone, but not thyroid hormones, vitamin A, and vitamin E, in male juvenile arctic foxes (Vulpes lagopus).

    Science.gov (United States)

    Hallanger, Ingeborg G; Jørgensen, Even H; Fuglei, Eva; Ahlstrøm, Øystein; Muir, Derek C G; Jenssen, Bjørn Munro

    2012-01-01

    Levels of persistent organic pollutants (POP), such as polychlorinated biphenyls (PCB), are high in many Arctic top predators, including the Arctic fox (Vulpes lagopus). The aim of this study was to examine possible endocrine-disruptive effects of dietary POP exposure in male juvenile Arctic foxes in a controlled exposure experiment. The study was conducted using domesticated farmed blue foxes (Vulpes lagopus) as a model species. Two groups of newly weaned male foxes received a diet supplemented with either minke whale (Baleneoptera acutorostrata) blubber that was naturally contaminated with POP (exposed group, n = 5 or 21), or pork (Sus scrofa) fat (control group, n = 5 or 21). When the foxes were 6 mo old and had received the 2 diets for approximately 4 mo (147 d), effects of the dietary exposure to POP on plasma concentrations of testosterone (T), thyroid hormones (TH), thyroid-stimulating hormone (TSH), retinol (vitamin A), and tocopherol (viramin E) were examined. At sampling, the total body concentrations of 104 PCB congeners were 0.1 ± 0.03 μg/g lipid weight (l.w.; n = 5 [mean ± standard deviation]) and 1.5 ± 0.17 μg/g l.w. (n = 5) in the control and exposed groups, respectively. Plasma testosterone concentrations in the exposed male foxes were significantly lower than in the control males, being approximately 25% of that in the exposed foxes. There were no between-treatment differences for TH, TSH, retinol, or tocopherol. The results suggest that the high POP levels experienced by costal populations of Arctic foxes, such as in Svalbard and Iceland, may result in delayed masculine maturation during adolescence. Sex hormone disruption during puberty may thus have lifetime consequences on all aspects of reproductive function in adult male foxes.

  3. The future of Arctic benthos: Expansion, invasion, and biodiversity

    Science.gov (United States)

    Renaud, Paul E.; Sejr, Mikael K.; Bluhm, Bodil A.; Sirenko, Boris; Ellingsen, Ingrid H.

    2015-12-01

    One of the logical predictions for a future Arctic characterized by warmer waters and reduced sea-ice is that new taxa will expand or invade Arctic seafloor habitats. Specific predictions regarding where this will occur and which taxa are most likely to become established or excluded are lacking, however. We synthesize recent studies and conduct new analyses in the context of climate forecasts and a paleontological perspective to make concrete predictions as to relevant mechanisms, regions, and functional traits contributing to future biodiversity changes. Historically, a warmer Arctic is more readily invaded or transited by boreal taxa than it is during cold periods. Oceanography of an ice-free Arctic Ocean, combined with life-history traits of invading taxa and availability of suitable habitat, determine expansion success. It is difficult to generalize as to which taxonomic groups or locations are likely to experience expansion, however, since species-specific, and perhaps population-specific autecologies, will determine success or failure. Several examples of expansion into the Arctic have been noted, and along with the results from the relatively few Arctic biological time-series suggest inflow shelves (Barents and Chukchi Seas), as well as West Greenland and the western Kara Sea, are most likely locations for expansion. Apparent temperature thresholds were identified for characteristic Arctic and boreal benthic fauna suggesting strong potential for range constrictions of Arctic, and expansions of boreal, fauna in the near future. Increasing human activities in the region could speed introductions of boreal fauna and reduce the value of a planktonic dispersal stage. Finally, shelf regions are likely to experience a greater impact, and also one with greater potential consequences, than the deep Arctic basin. Future research strategies should focus on monitoring as well as compiling basic physiological and life-history information of Arctic and boreal taxa, and

  4. Population dynamical responses to climate change

    DEFF Research Database (Denmark)

    Forchhammer, Mads; Schmidt, Niels Martin; Høye, Toke Thomas

    2008-01-01

    approaches, we analyse concurrently the influence of climatic variability and trophic interactions on the temporal population dynamics of species in the terrestrial vertebrate community at Zackenberg. We describe and contrast the population dynamics of three predator species (arctic fox Alopex lagopus, stoat...... of arctic fox were not significantly related to changes in lemming abundance, both the stoat and the breeding of long-tailed skua were mainly related to lemming dynamics. The predator-prey system at Zackenberg differentiates from previously described systems in high-arctic Greenland, which, we suggest...

  5. Mercury in freshwater ecosystems of the Canadian Arctic: recent advances on its cycling and fate.

    Science.gov (United States)

    Chételat, John; Amyot, Marc; Arp, Paul; Blais, Jules M; Depew, David; Emmerton, Craig A; Evans, Marlene; Gamberg, Mary; Gantner, Nikolaus; Girard, Catherine; Graydon, Jennifer; Kirk, Jane; Lean, David; Lehnherr, Igor; Muir, Derek; Nasr, Mina; Poulain, Alexandre J; Power, Michael; Roach, Pat; Stern, Gary; Swanson, Heidi; van der Velden, Shannon

    2015-03-15

    The Canadian Arctic has vast freshwater resources, and fish are important in the diet of many Northerners. Mercury is a contaminant of concern because of its potential toxicity and elevated bioaccumulation in some fish populations. Over the last decade, significant advances have been made in characterizing the cycling and fate of mercury in these freshwater environments. Large amounts of new data on concentrations, speciation and fluxes of Hg are provided and summarized for water and sediment, which were virtually absent for the Canadian Arctic a decade ago. The biogeochemical processes that control the speciation of mercury remain poorly resolved, including the sites and controls of methylmercury production. Food web studies have examined the roles of Hg uptake, trophic transfer, and diet for Hg bioaccumulation in fish, and, in particular, advances have been made in identifying determinants of mercury levels in lake-dwelling and sea-run forms of Arctic char. In a comparison of common freshwater fish species that were sampled across the Canadian Arctic between 2002 and 2009, no geographic patterns or regional hotspots were evident. Over the last two to four decades, Hg concentrations have increased in some monitored populations of fish in the Mackenzie River Basin while other populations from the Yukon and Nunavut showed no change or a slight decline. The different Hg trends indicate that the drivers of temporal change may be regional or habitat-specific. The Canadian Arctic is undergoing profound environmental change, and preliminary evidence suggests that it may be impacting the cycling and bioaccumulation of mercury. Further research is needed to investigate climate change impacts on the Hg cycle as well as biogeochemical controls of methylmercury production and the processes leading to increasing Hg levels in some fish populations in the Canadian Arctic. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  6. Sensitivity of the carbon cycle in the Arctic to climate change

    Science.gov (United States)

    A.D. McGuire; L.G. Anderson; T.R. Christensen; S. Dallimore; L. Guo; D.J. Hayes; M. Heimann; T.D. Lorenson; R.W. Macdonald; N. Roulet

    2009-01-01

    The recent warming in the Arctic is affecting a broad spectrum of physical, ecological, and human/cultural systems that may be irreversible on century time scales and have the potential to cause rapid changes in the earth system. The response of the carbon cycle of the Arctic to changes in climate is a major issue of global concern, yet there has not been a...

  7. Cardiovascular Disease Susceptibility and Resistance in Circumpolar Inuit Populations

    DEFF Research Database (Denmark)

    Tvermosegaard, Maria; Dahl-Petersen, Inger K; Nielsen, Nina Odgaard

    2015-01-01

    Cardiovascular disease (CVD) is a major public health issue in indigenous populations in the Arctic. These diseases have emerged concomitantly with profound social changes over the past 60 years. The aim of this study was to summarize the literature on CVD risk among Arctic Inuit. Literature...... on prevalence, incidence, and time trends for CVD and its risk factors in Arctic Inuit populations was reviewed. Most evidence supports a similar incidence of coronary heart disease and a higher incidence of cerebrovascular disease among Arctic Inuit than seen in western populations. Factors that may increase...... intake (at least documented in Greenland), and contaminant levels are declining. Although there have been marked socioeconomic and dietary changes, it remains unsolved and to some extent controversial how this may have influenced cardiovascular risk among Arctic Inuit. The increase in life expectancy...

  8. Understanding how lake populations of arctic char are structured and function with special consideration of the potential effects of climate change: a multi-faceted approach.

    Science.gov (United States)

    Budy, Phaedra; Luecke, Chris

    2014-09-01

    Size dimorphism in fish populations, both its causes and consequences, has been an area of considerable focus; however, uncertainty remains whether size dimorphism is dynamic or stabilizing and about the role of exogenous factors. Here, we explored patterns among empirical vital rates, population structure, abundance and trend, and predicted the effects of climate change on populations of arctic char (Salvelinus alpinus) in two lakes. Both populations cycle dramatically between dominance by small (≤300 mm) and large (>300 mm) char. Apparent survival (Φ) and specific growth rates (SGR) were relatively high (40-96%; SGR range 0.03-1.5%) and comparable to those of conspecifics at lower latitudes. Climate change scenarios mimicked observed patterns of warming and resulted in temperatures closer to optimal for char growth (15.15 °C) and a longer growing season. An increase in consumption rates (28-34%) under climate change scenarios led to much greater growth rates (23-34%). Higher growth rates predicted under climate change resulted in an even greater predicted amplitude of cycles in population structure as well as an increase in reproductive output (Ro) and decrease in generation time (Go). Collectively, these results indicate arctic char populations (not just individuals) are extremely sensitive to small changes in the number of ice-free days. We hypothesize years with a longer growing season, predicted to occur more often under climate change, produce elevated growth rates of small char and act in a manner similar to a "resource pulse," allowing a sub-set of small char to "break through," thus setting the cycle in population structure.

  9. Coordinating for Arctic Conservation: Implementing Integrated Arctic Biodiversity Monitoring, Data Management and Reporting

    Science.gov (United States)

    Gill, M.; Svoboda, M.

    2012-12-01

    Arctic ecosystems and the biodiversity they support are experiencing growing pressure from various stressors (e.g. development, climate change, contaminants, etc.) while established research and monitoring programs remain largely uncoordinated, lacking the ability to effectively monitor, understand and report on biodiversity trends at the circumpolar scale. The maintenance of healthy arctic ecosystems is a global imperative as the Arctic plays a critical role in the Earth's physical, chemical and biological balance. A coordinated and comprehensive effort for monitoring arctic ecosystems is needed to facilitate effective and timely conservation and adaptation actions. The Arctic's size and complexity represents a significant challenge towards detecting and attributing important biodiversity trends. This demands a scaled, pan-arctic, ecosystem-based approach that not only identifies trends in biodiversity, but also identifies underlying causes. It is critical that this information be made available to generate effective strategies for adapting to changes now taking place in the Arctic—a process that ultimately depends on rigorous, integrated, and efficient monitoring programs that have the power to detect change within a "management" time frame. To meet these challenges and in response to the Arctic Climate Impact Assessment's recommendation to expand and enhance arctic biodiversity monitoring, the Conservation of Arctic Flora and Fauna (CAFF) Working Group of the Arctic Council launched the Circumpolar Biodiversity Monitoring Program (CBMP). The CBMP is led by Environment Canada on behalf of Canada and the Arctic Council. The CBMP is working with over 60 global partners to expand, integrate and enhance existing arctic biodiversity research and monitoring efforts to facilitate more rapid detection, communication and response to significant trends and pressures. Towards this end, the CBMP has established three Expert Monitoring Groups representing major Arctic

  10. Benzothiadiazole affects the leaf proteome in arctic bramble (Rubus arcticus).

    Science.gov (United States)

    Hukkanen, Anne; Kokko, Harri; Buchala, Antony; Häyrinen, Jukka; Kärenlampi, Sirpa

    2008-11-01

    Benzothiadiazole (BTH) induces resistance to the downy mildew pathogen, Peronospora sparsa, in arctic bramble, but the basis for the BTH-induced resistance is unknown. Arctic bramble cv. Mespi was treated with BTH to study the changes in leaf proteome and to identify proteins with a putative role in disease resistance. First, BTH induced strong expression of one PR-1 protein isoform, which was also induced by salicylic acid (SA). The PR-1 was responsive to BTH and exogenous SA despite a high endogenous SA content (20-25 microg/g fresh weight), which increased to an even higher level after treatment with BTH. Secondly, a total of 792 protein spots were detected in two-dimensional gel electrophoresis, eight proteins being detected solely in the BTH-treated plants. BTH caused up- or down-regulation of 72 and 31 proteins, respectively, of which 18 were tentatively identified by mass spectrometry. The up-regulation of flavanone-3-hydroxylase, alanine aminotransferase, 1-aminocyclopropane-1-carboxylate oxidase, PR-1 and PR-10 proteins may partly explain the BTH-induced resistance against P. sparsa. Other proteins with changes in intensity appear to be involved in, for example, energy metabolism and protein processing. The decline in ATP synthase, triosephosphate isomerase, fructose bisphosphate aldolase and glutamine synthetase suggests that BTH causes significant changes in primary metabolism, which provides one possible explanation for the decreased vegetative growth of foliage and rhizome observed in BTH-treated plants.

  11. Approaching a Postcolonial Arctic

    DEFF Research Database (Denmark)

    Jensen, Lars

    2016-01-01

    This article explores different postcolonially configured approaches to the Arctic. It begins by considering the Arctic as a region, an entity, and how the customary political science informed approaches are delimited by their focus on understanding the Arctic as a region at the service...... of the contemporary neoliberal order. It moves on to explore how different parts of the Arctic are inscribed in a number of sub-Arctic nation-state binds, focusing mainly on Canada and Denmark. The article argues that the postcolonial can be understood as a prism or a methodology that asks pivotal questions to all...... approaches to the Arctic. Yet the postcolonial itself is characterised by limitations, not least in this context its lack of interest in the Arctic, and its bias towards conventional forms of representation in art. The article points to the need to develop a more integrated critique of colonial and neo...

  12. Optimizing Communications Between Arctic Residents and IPY Scientific Researchers

    Science.gov (United States)

    Stapleton, M.; Carpenter, L.

    2007-12-01

    BACKGROUND International Polar Year, which was launched in March 2007, is an international program of coordinated, interdisciplinary scientific research on Earth's polar regions. The northern regions of the eight Arctic States (Canada, Alaska (USA), Russia, Sweden, Norway, Finland. Iceland and Greenland (Denmark) have significant indigenous populations. The circumpolar Arctic is one of the least technologically connected regions in the world, although Canada and others have been pioneers in developing and suing Information and Communication Technology (ICT) in remote areas. The people living in this vast geographic area have been moving toward taking their rightful place in the global information society, but are dependent on the outreach and cooperation of larger mainstream societies. The dominant medium of communication is radio, which is flexible in accommodating multiple cultures, languages, and factors of time and distance. The addition of newer technologies such as streaming on the Internet can increase access and content for all communities of interest, north and south. The Arctic Circle of Indigenous Communicators (ACIC) is an independent association of professional Northern indigenous media workers in the print, radio, television, film and Internet industries. ACIC advocates the development of all forms of communication in circumpolar North areas. It is international in scope. Members are literate in English, French, Russian and many indigenous languages. ACIC has proposed the establishment of a headquarters for monitoring IPY projects are in each area, and the use of community radio broadcasters to collect and disseminate information about IPY. The cooperation of Team IPY at the University of Colorado, Arctic Net at Laval University, and others, is being developed. ACIC is committed to making scientific knowledge gained in IPY accessible to those most affected - residents of the Arctic. ABSTRACT The meeting of the American Geophysical Union will be held

  13. The Arctic

    International Nuclear Information System (INIS)

    Petersen, H.; Meltofte, H.; Rysgaard, S.; Rasch, M.; Jonasson, S.; Christensen, T.R.; Friborg, T.; Soegaard, H.; Pedersen, S.A.

    2001-01-01

    Global climate change in the Arctic is a growing concern. Research has already documented pronounced changes, and models predict that increases in temperature from anthropogenic influences could be considerably higher than the global average. The impacts of climate change on Arctic ecosystems are complex and difficult to predict because of the many interactions within ecosystem, and between many concurrently changing environmental variables. Despite the global consequences of change in the Arctic climate the monitoring of basic abiotic as well as biotic parameters are not adequate to assess the impact of global climate change. The uneven geographical location of present monitoring stations in the Arctic limits the ability to understand the climate system. The impact of previous variations and potential future changes to ecosystems is not well understood and need to be addressed. At this point, there is no consensus of scientific opinion on how much of the current changes that are due to anthropogenic influences or to natural variation. Regardless of the cause, there is a need to investigate and assess current observations and their effects to the Arctic. In this chapter examples from both terrestrial and marine ecosystems from ongoing monitoring and research projects are given. (LN)

  14. Local anthropogenic contamination affects the fecundity and reproductive success of an Arctic amphipod

    DEFF Research Database (Denmark)

    Bach, Lis; Fischer, Astrid; Strand, Jakob

    2010-01-01

    to clean site individuals. These results indicated a cost of living in highly contaminated environments in terms of reduced reproductive success. This study confirms the potential of the benthic amphipod O. pinguis as a bioindicator for assessments of reproductive effects of contaminants in the Arctic...

  15. Arctic whaling : proceedings of the International Symposium Arctic Whaling February 1983

    NARCIS (Netherlands)

    Jacob, H.K. s'; Snoeijing, K

    1984-01-01

    Contents: D.M. Hopkins and Louie Marincovich Jr. Whale Biogeography and the history of the Arctic Basin P.M. Kellt, J.H.W. Karas and L.D. Williams Arctic Climate: Past, Present and Future Torgny E. Vinje On the present state and the future fate of the Arctic sea ice cover P.J.H. van Bree On the

  16. Live from the Arctic

    Science.gov (United States)

    Warnick, W. K.; Haines-Stiles, G.; Warburton, J.; Sunwood, K.

    2003-12-01

    For reasons of geography and geophysics, the poles of our planet, the Arctic and Antarctica, are places where climate change appears first: they are global canaries in the mine shaft. But while Antarctica (its penguins and ozone hole, for example) has been relatively well-documented in recent books, TV programs and journalism, the far North has received somewhat less attention. This project builds on and advances what has been done to date to share the people, places, and stories of the North with all Americans through multiple media, over several years. In a collaborative project between the Arctic Research Consortium of the United States (ARCUS) and PASSPORT TO KNOWLEDGE, Live from the Arctic will bring the Arctic environment to the public through a series of primetime broadcasts, live and taped programming, interactive virtual field trips, and webcasts. The five-year project will culminate during the 2007-2008 International Polar Year (IPY). Live from the Arctic will: A. Promote global understanding about the value and world -wide significance of the Arctic, B. Bring cutting-edge research to both non-formal and formal education communities, C. Provide opportunities for collaboration between arctic scientists, arctic communities, and the general public. Content will focus on the following four themes. 1. Pan-Arctic Changes and Impacts on Land (i.e. snow cover; permafrost; glaciers; hydrology; species composition, distribution, and abundance; subsistence harvesting) 2. Pan-Arctic Changes and Impacts in the Sea (i.e. salinity, temperature, currents, nutrients, sea ice, marine ecosystems (including people, marine mammals and fisheries) 3. Pan-Arctic Changes and Impacts in the Atmosphere (i.e. precipitation and evaporation; effects on humans and their communities) 4. Global Perspectives (i.e. effects on humans and communities, impacts to rest of the world) In The Earth is Faster Now, a recent collection of comments by members of indigenous arctic peoples, arctic

  17. Factors affecting projected Arctic surface shortwave heating and albedo change in coupled climate models.

    Science.gov (United States)

    Holland, Marika M; Landrum, Laura

    2015-07-13

    We use a large ensemble of simulations from the Community Earth System Model to quantify simulated changes in the twentieth and twenty-first century Arctic surface shortwave heating associated with changing incoming solar radiation and changing ice conditions. For increases in shortwave absorption associated with albedo reductions, the relative influence of changing sea ice surface properties and changing sea ice areal coverage is assessed. Changes in the surface sea ice properties are associated with an earlier melt season onset, a longer snow-free season and enhanced surface ponding. Because many of these changes occur during peak solar insolation, they have a considerable influence on Arctic surface shortwave heating that is comparable to the influence of ice area loss in the early twenty-first century. As ice area loss continues through the twenty-first century, it overwhelms the influence of changes in the sea ice surface state, and is responsible for a majority of the net shortwave increases by the mid-twenty-first century. A comparison with the Arctic surface albedo and shortwave heating in CMIP5 models indicates a large spread in projected twenty-first century change. This is in part related to different ice loss rates among the models and different representations of the late twentieth century ice albedo and associated sea ice surface state. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  18. Biological and life-history factors affecting total mercury concentrations in Arctic charr from Heintzelman Lake, Ellesmere Island, Nunavut

    International Nuclear Information System (INIS)

    Velden, Shannon van der; Reist, James D.; Babaluk, John A.; Power, Michael

    2012-01-01

    A snapshot sample of Arctic charr (Salvelinus alpinus) from Heintzelman Lake (81°42′N, 66°56′W), Ellesmere Island, Canada was used to elucidate the biological and life-history factors potentially influencing individual total mercury (THg) concentrations. Migratory history was significant, with anadromous fish having a lower mean THg concentration (64 μg/kg ww) than the non-anadromous Arctic charr (117 μg/kg ww). The increase in individual THg concentration with age was shown to be independent of length-at-age when large and small individuals within the same age groups were compared. Similarly, the diets of individual Arctic charr were comparable regardless of size, and there was no apparent ontogenetic shift in diet that could explain differences in length-at-age or THg concentration among fast- and slow-growing groups of fish (i.e., fish of the same age but differing sizes). Maturity state was also not related to THg concentration, but appears to be related to differences in length-at-age, with slow-growing fish allocating more energy to reproduction than fast-growing conspecifics. The differences in THg concentration among individual Arctic charr were best explained by fish age. We suggest that the increase in mercury concentration with age can be altered by a shift in diet (e.g., to piscivory) or habitat (e.g., anadromy), but is otherwise unaffected by changes in size or length-at-age. -- Highlights: ► Total mercury concentrations ([THg]) were measured in Arctic charr from a single lake in the Canadian high Arctic. ► Anadromous Arctic charr had a significantly lower mean [THg] (64 μg/kg ww) than the non-anadromous fish (117 μg/kg ww). ► Length-at-age (i.e., average somatic growth rate) was not related to mean [THg] when same-age groups were compared. ► Prey resource use, determined by δ 13 C and δ 15 N isotopes and gut contents, was similar among fast- and slow-growing fish. ► Maturity state was not related to [THg], but the slow

  19. Comparative analysis of total mercury concentrations in anadromous and non-anadromous Arctic charr (Salvelinus alpinus) from eastern Canada

    International Nuclear Information System (INIS)

    Velden, S. van der; Evans, M.S.; Dempson, J.B.; Muir, D.C.G.; Power, M.

    2013-01-01

    Previous research has documented that total mercury concentrations ([THg]) are lower in anadromous Arctic charr than in non-anadromous conspecifics, but the two life-history forms have rarely been studied together. Here, data from nine pairs of closely-located anadromous and non-anadromous Arctic charr populations were used to explore the impact of biological and life-history factors on individual [THg] across a range of latitudes (49–81° N) in eastern Canada. Unadjusted mean [THg] ranged from 20 to 114 ng/g wet weight (ww) in anadromous populations, and was significantly higher in non-anadromous populations, ranging from 111 to 227 ng/g ww. Within-population variations in [THg] were best explained by fish age, and were often positively related to fork-length and δ 15 N-inferred trophic level. Differences in [THg] were not related to differences in length-at-age (i.e., average somatic growth rate) among populations of either life-history type. Mercury concentrations were not related to site latitude in either the anadromous or non-anadromous fish. We conclude that the difference in Arctic charr [THg] with life-history type could not be explained by differences in fish age, fork-length, trophic position, or length-at-age, and discuss possible factors contributing to low mercury concentrations in anadromous, relative to freshwater, fish. - Highlights: ► Total mercury concentrations ([THg]) were measured in 9 co-located anadromous and non-anadromous Arctic charr populations. ► Mean [THg] in non-anadromous populations exceeded mean [THg] in spatially paired anadromous populations. ► Among-individual variation in [THg] was best explained by fish age. ► The lower [THg] in anadromous fish could not be explained by differences in age, fork-length, trophic level, or growth rate. ► Variations in Arctic charr [THg] were independent of latitude (49–81° N) in eastern Canada

  20. 1 Mixing state and absorbing properties of black carbon during Arctic haze

    Science.gov (United States)

    Zanatta, Marco; Gysel, Martin; Eleftheriadis, Kosas; Laj, Paolo; Hans-Werner, Jacobi

    2016-04-01

    The Arctic atmosphere is periodically affected by the Arctic haze occurring in spring. One of its particulate components is the black carbon (BC), which is considered to be an important contributor to climate change in the Arctic region. Beside BC-cloud interaction and albedo reduction of snow, BC may influence Arctic climate interacting directly with the solar radiation, warming the corresponding aerosol layer (Flanner, 2013). Such warming depends on BC atmospheric burden and also on the efficiency of BC to absorb light, in fact the light absorption is enhanced by mixing of BC with other atmospheric non-absorbing materials (lensing effect) (Bond et al., 2013). The BC reaching the Arctic is evilly processed, due to long range transport. Aging promote internal mixing and thus absorption enhancement. Such modification of mixing and is quantification after long range transport have been observed in the Atlantic ocean (China et al., 2015) but never investigated in the Arctic. During field experiments conducted at the Zeppelin research site in Svalbard during the 2012 Arctic spring, we investigated the relative precision of different BC measuring techniques; a single particle soot photometer was then used to assess the coating of Arctic black carbon. This allowed quantifying the absorption enhancement induced by internal mixing via optical modelling; the optical assessment of aged black carbon in the arctic will be of major interest for future radiative forcing assessment.Optical characterization of the total aerosol indicated that in 2012 no extreme smoke events took place and that the aerosol population was dominated by fine and non-absorbing particles. Low mean concentration of rBC was found (30 ng m-3), with a mean mass equivalent diameter above 200 nm. rBC concentration detected with the continuous soot monitoring system and the single particle soot photometer was agreeing within 15%. Combining absorption coefficient observed with an aethalometer and rBC mass

  1. Arctic wind energy

    Energy Technology Data Exchange (ETDEWEB)

    Peltola, E. [Kemijoki Oy (Finland); Holttinen, H.; Marjaniemi, M. [VTT Energy, Espoo (Finland); Tammelin, B. [Finnish Meteorological Institute, Helsinki (Finland)

    1998-12-31

    Arctic wind energy research was aimed at adapting existing wind technologies to suit the arctic climatic conditions in Lapland. Project research work included meteorological measurements, instrument development, development of a blade heating system for wind turbines, load measurements and modelling of ice induced loads on wind turbines, together with the development of operation and maintenance practices in arctic conditions. As a result the basis now exists for technically feasible and economically viable wind energy production in Lapland. New and marketable products, such as blade heating systems for wind turbines and meteorological sensors for arctic conditions, with substantial export potential, have also been developed. (orig.)

  2. Arctic wind energy

    International Nuclear Information System (INIS)

    Peltola, E.; Holttinen, H.; Marjaniemi, M.; Tammelin, B.

    1998-01-01

    Arctic wind energy research was aimed at adapting existing wind technologies to suit the arctic climatic conditions in Lapland. Project research work included meteorological measurements, instrument development, development of a blade heating system for wind turbines, load measurements and modelling of ice induced loads on wind turbines, together with the development of operation and maintenance practices in arctic conditions. As a result the basis now exists for technically feasible and economically viable wind energy production in Lapland. New and marketable products, such as blade heating systems for wind turbines and meteorological sensors for arctic conditions, with substantial export potential, have also been developed. (orig.)

  3. Understanding how lake populations of arctic char are structured and function with special consideration of the potential effects of climate change: A multi-faceted approach.

    Science.gov (United States)

    Budy, Phaedra; Luecke, Chris

    2014-01-01

    Size dimorphism in fish populations, both its causes and consequences, has been an area of considerable focus; however, uncertainty remains whether size dimorphism is dynamic or stabilizing and about the role of exogenous factors. Here, we explored patterns among empirical vital rates, population structure, abundance and trend, and predicted the effects of climate change on populations of arctic char (Salvelinus alpinus) in two lakes. Both populations cycle dramatically between dominance by small (≤300 mm) and large (>300 mm) char. Apparent survival (Φ) and specific growth rates (SGR) were relatively high (40–96 %; SGR range 0.03–1.5 %) and comparable to those of conspecifics at lower latitudes. Climate change scenarios mimicked observed patterns of warming and resulted in temperatures closer to optimal for char growth (15.15 °C) and a longer growing season. An increase in consumption rates (28–34 %) under climate change scenarios led to much greater growth rates (23–34 %). Higher growth rates predicted under climate change resulted in an even greater predicted amplitude of cycles in population structure as well as an increase in reproductive output (Ro) and decrease in generation time (Go). Collectively, these results indicate arctic char populations (not just individuals) are extremely sensitive to small changes in the number of ice-free days. We hypothesize years with a longer growing season, predicted to occur more often under climate change, produce elevated growth rates of small char and act in a manner similar to a “resource pulse,” allowing a sub-set of small char to “break through,” thus setting the cycle in population structure.

  4. Collaboration across the Arctic

    DEFF Research Database (Denmark)

    Huppert, Verena Gisela; Chuffart, Romain François R.

    2017-01-01

    The Arctic is witnessing the rise of a new paradigm caused by an increase in pan-Arctic collaborations which co-exist with the region’s traditional linkages with the South. Using an analysis of concrete examples of regional collaborations in the Arctic today in the fields of education, health...... and infrastructure, this paper questions whether pan-Arctic collaborations in the Arctic are more viable than North-South collaborations, and explores the reasons behind and the foreseeable consequences of such collaborations. It shows that the newly emerging East-West paradigm operates at the same time...... as the traditional North-South paradigm, with no signs of the East-West paradigm being more viable in the foreseeable future. However, pan-Arctic collaboration, both due to pragmatic reasons and an increased awareness of similarities, is likely to increase in the future. The increased regionalization process...

  5. Arctic Rabies – A Review

    Directory of Open Access Journals (Sweden)

    Prestrud Pål

    2004-03-01

    Full Text Available Rabies seems to persist throughout most arctic regions, and the northern parts of Norway, Sweden and Finland, is the only part of the Arctic where rabies has not been diagnosed in recent time. The arctic fox is the main host, and the same arctic virus variant seems to infect the arctic fox throughout the range of this species. The epidemiology of rabies seems to have certain common characteristics in arctic regions, but main questions such as the maintenance and spread of the disease remains largely unknown. The virus has spread and initiated new epidemics also in other species such as the red fox and the racoon dog. Large land areas and cold climate complicate the control of the disease, but experimental oral vaccination of arctic foxes has been successful. This article summarises the current knowledge and the typical characteristics of arctic rabies including its distribution and epidemiology.

  6. Arctic Terrestrial Biodiversity Monitoring Plan

    DEFF Research Database (Denmark)

    Christensen, Tom; Payne, J.; Doyle, M.

    The Conservation of Arctic Flora and Fauna (CAFF), the biodiversity working group of the Arctic Council, established the Circumpolar Biodiversity Monitoring Program (CBMP) to address the need for coordinated and standardized monitoring of Arctic environments. The CBMP includes an international...... on developing and implementing long-term plans for monitoring the integrity of Arctic biomes: terrestrial, marine, freshwater, and coastal (under development) environments. The CBMP Terrestrial Expert Monitoring Group (CBMP-TEMG) has developed the Arctic Terrestrial Biodiversity Monitoring Plan (CBMP......-Terrestrial Plan/the Plan) as the framework for coordinated, long-term Arctic terrestrial biodiversity monitoring. The goal of the CBMP-Terrestrial Plan is to improve the collective ability of Arctic traditional knowledge (TK) holders, northern communities, and scientists to detect, understand and report on long...

  7. Contribution of Arctic seabird-colony ammonia to atmospheric particles and cloud-albedo radiative effect

    Science.gov (United States)

    Croft, B.; Wentworth, G. R.; Martin, R. V.; Leaitch, W. R.; Murphy, J. G.; Murphy, B. N.; Kodros, J. K.; Abbatt, J. P. D.; Pierce, J. R.

    2016-01-01

    The Arctic region is vulnerable to climate change and able to affect global climate. The summertime Arctic atmosphere is pristine and strongly influenced by natural regional emissions, which have poorly understood climate impacts related to atmospheric particles and clouds. Here we show that ammonia from seabird-colony guano is a key factor contributing to bursts of newly formed particles, which are observed every summer in the near-surface atmosphere at Alert, Nunavut, Canada. Our chemical-transport model simulations indicate that the pan-Arctic seabird-influenced particles can grow by sulfuric acid and organic vapour condensation to diameters sufficiently large to promote pan-Arctic cloud-droplet formation in the clean Arctic summertime. We calculate that the resultant cooling tendencies could be large (about −0.5 W m−2 pan-Arctic-mean cooling), exceeding −1 W m−2 near the largest seabird colonies due to the effects of seabird-influenced particles on cloud albedo. These coupled ecological–chemical processes may be susceptible to Arctic warming and industrialization. PMID:27845764

  8. Arctic Security

    DEFF Research Database (Denmark)

    Wang, Nils

    2013-01-01

    The inclusion of China, India, Japan, Singapore and Italy as permanent observers in the Arctic Council has increased the international status of this forum significantly. This chapter aims to explain the background for the increased international interest in the Arctic region through an analysis...

  9. Seasonal patterns in Arctic prasinophytes and inferred ecology of Bathycoccus unveiled in an Arctic winter metagenome.

    Science.gov (United States)

    Joli, Nathalie; Monier, Adam; Logares, Ramiro; Lovejoy, Connie

    2017-06-01

    Prasinophytes occur in all oceans but rarely dominate phytoplankton populations. In contrast, a single ecotype of the prasinophyte Micromonas is frequently the most abundant photosynthetic taxon reported in the Arctic from summer through autumn. However, seasonal dynamics of prasinophytes outside of this period are little known. To address this, we analyzed high-throughput V4 18S rRNA amplicon data collected from November to July in the Amundsen Gulf Region, Beaufort Sea, Arctic. Surprisingly during polar sunset in November and December, we found a high proportion of reads from both DNA and RNA belonging to another prasinophyte, Bathycoccus. We then analyzed a metagenome from a December sample and the resulting Bathycoccus metagenome assembled genome (MAG) covered ~90% of the Bathycoccus Ban7 reference genome. In contrast, only ~20% of a reference Micromonas genome was found in the metagenome. Our phylogenetic analysis of marker genes placed the Arctic Bathycoccus in the B1 coastal clade. In addition, substitution rates of 129 coding DNA sequences were ~1.6% divergent between the Arctic MAG and coastal Chilean upwelling MAGs and 17.3% between it and a South East Atlantic open ocean MAG in the B2 Clade. The metagenomic analysis also revealed a winter viral community highly skewed toward viruses targeting Micromonas, with a much lower diversity of viruses targeting Bathycoccus. Overall a combination of Micromonas being relatively less able to maintain activity under dark winter conditions and viral suppression of Micromonas may have contributed to the success of Bathycoccus in the Amundsen Gulf during winter.

  10. Does a Relationship Between Arctic Low Clouds and Sea Ice Matter?

    Science.gov (United States)

    Taylor, Patrick C.

    2016-01-01

    Arctic low clouds strongly affect the Arctic surface energy budget. Through this impact Arctic low clouds influence important aspects of the Arctic climate system, namely surface and atmospheric temperature, sea ice extent and thickness, and atmospheric circulation. Arctic clouds are in turn influenced by these elements of the Arctic climate system, and these interactions create the potential for Arctic cloud-climate feedbacks. To further our understanding of potential Arctic cloudclimate feedbacks, the goal of this paper is to quantify the influence of atmospheric state on the surface cloud radiative effect (CRE) and its covariation with sea ice concentration (SIC). We build on previous research using instantaneous, active remote sensing satellite footprint data from the NASA A-Train. First, the results indicate significant differences in the surface CRE when stratified by atmospheric state. Second, there is a weak covariation between CRE and SIC for most atmospheric conditions. Third, the results show statistically significant differences in the average surface CRE under different SIC values in fall indicating a 3-5 W m(exp -2) larger LW CRE in 0% versus 100% SIC footprints. Because systematic changes on the order of 1 W m(exp -2) are sufficient to explain the observed long-term reductions in sea ice extent, our results indicate a potentially significant amplifying sea ice-cloud feedback, under certain meteorological conditions, that could delay the fall freeze-up and influence the variability in sea ice extent and volume. Lastly, a small change in the frequency of occurrence of atmosphere states may yield a larger Arctic cloud feedback than any cloud response to sea ice.

  11. The crustal structure of Ellesmere Island, Arctic Canada—teleseismic mapping across a remote intraplate orogenic belt

    DEFF Research Database (Denmark)

    Schiffer, Christian; Stephenson, Randell Alexander; Oakey, Gordon

    2016-01-01

    Ellesmere Island in Arctic Canada displays a complex geological evolution. The region was affected by two distinct orogenies, the Palaeozoic Ellesmerian orogeny (the Caledonian equivalent in Arctic Canada and Northern Greenland) and the Palaeogene Eurekan orogeny, related to the opening of Baffin...

  12. SEARCH: Study of Environmental Arctic Change—A System-scale, Cross-disciplinary Arctic Research Program

    Science.gov (United States)

    Wiggins, H. V.; Eicken, H.; Fox, S. E.

    2012-12-01

    SEARCH is an interdisciplinary and interagency program that works with academic and government agency scientists to plan, conduct, and synthesize studies of arctic change. The vision of SEARCH is to provide scientific understanding of arctic environmental change to help society understand and respond to a rapidly changing Arctic. Towards this end, SEARCH: 1. Generates and synthesizes research findings and promotes arctic science and scientific discovery across disciplines and among agencies. 2. Identifies emerging issues in arctic environmental change. 3. Provides information resources to arctic stakeholders, policy-makers, and the public to help them respond to arctic environmental change. 4. Coordinates with national arctic science programs integral to SEARCH goals. 5. Facilitates research activities across local-to-global scales with stakeholder concerns incorporated from the start of the planning process. 6. Represents the U.S. arctic environmental change science community in international and global change research initiatives. Specific current activities include: Arctic Observing Network (AON) - coordinating a system of atmospheric, land- and ocean-based environmental monitoring capabilities that will significantly advance our observations of arctic environmental conditions. Arctic Sea Ice Outlook ¬- an international effort that provides monthly summer reports synthesizing community estimates of the expected sea ice minimum. Sea Ice for Walrus Outlook - a resource for Alaska Native subsistence hunters, coastal communities, and others that provides weekly reports with information on sea ice conditions relevant to walrus in Alaska waters. In April, the SEARCH Science Steering Committee (SSC) released a set of draft 5-year goals and objectives for review by the broader arctic science community. The goals and objectives will direct the SEARCH program in the next five years. The draft SEARCH goals focus on four areas: ice-diminished Arctic Ocean, warming

  13. Factors Controlling Black Carbon Deposition in Snow in the Arctic

    Science.gov (United States)

    Qi, L.; Li, Q.; He, C.; Li, Y.

    2015-12-01

    This study evaluates the sensitivity of black carbon (BC) concentration in snow in the Arctic to BC emissions, dry deposition and wet scavenging efficiency using a 3D global chemical transport model GEOS-Chem driven by meteorological field GEOS-5. With all improvements, simulated median BC concentration in snow agrees with observation (19.2 ng g-1) within 10%, down from -40% in the default GEOS-Chem. When the previously missed gas flaring emissions (mainly located in Russia) are included, the total BC emission in the Arctic increases by 70%. The simulated BC in snow increases by 1-7 ng g-1, with the largest improvement in Russia. The discrepancy of median BC in snow in the whole Arctic reduces from -40% to -20%. In addition, recent measurements of BC dry deposition velocity suggest that the constant deposition velocity of 0.03 cm s-1 over snow and ice used in the GEOS-Chem is too low. So we apply resistance-in-series method to calculate the dry deposition velocity over snow and ice and the resulted dry deposition velocity ranges from 0.03 to 0.24 cm s-1. However, the simulated total BC deposition flux in the Arctic and BC in snow does not change, because the increased dry deposition flux has been compensated by decreased wet deposition flux. However, the fraction of dry deposition to total deposition increases from 16% to 25%. This may affect the mixing of BC and snow particles and further affect the radative forcing of BC deposited in snow. Finally, we reduced the scavenging efficiency of BC in mixed-phase clouds to account for the effect of Wegener-Bergeron-Findeisen (WBF) process based on recent observations. The simulated BC concentration in snow increases by 10-100%, with the largest increase in Greenland (100%), Tromsø (50%), Alaska (40%), and Canadian Arctic (30%). Annual BC loading in the Arctic increases from 0.25 to 0.43 mg m-2 and the lifetime of BC increases from 9.2 to 16.3 days. This indicates that BC simulation in the Arctic is really sensitive to

  14. Analysis of the Warmest Arctic Winter, 2015-2016

    Science.gov (United States)

    Cullather, Richard I.; Lim, Young-Kwon; Boisvert, Linette N.; Brucker, Ludovic; Lee, Jae N.; Nowicki, Sophie M. J.

    2016-01-01

    December through February 2015-2016 defines the warmest winter season over the Arctic in the observational record. Positive 2m temperature anomalies were focused over regions of reduced sea ice cover in the Kara and Barents Seas and southwestern Alaska. A third region is found over the ice-covered central Arctic Ocean. The period is marked by a strong synoptic pattern which produced melting temperatures in close proximity to the North Pole in late December and anomalous high pressure near the Taymyr Peninsula. Atmospheric teleconnections from the Atlantic contributed to warming over Eurasian high-latitude land surfaces, and El Niño-related teleconnections explain warming over southwestern Alaska and British Columbia, while warm anomalies over the central Arctic are associated with physical processes including the presence of enhanced atmospheric water vapor and an increased downwelling longwave radiative flux. Preconditioning of sea ice conditions by warm temperatures affected the ensuing spring extent.

  15. Arctic Climate Systems Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ivey, Mark D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Robinson, David G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Boslough, Mark B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Backus, George A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Peterson, Kara J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); van Bloemen Waanders, Bart G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Swiler, Laura Painton [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Desilets, Darin Maurice [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Reinert, Rhonda Karen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-03-01

    This study began with a challenge from program area managers at Sandia National Laboratories to technical staff in the energy, climate, and infrastructure security areas: apply a systems-level perspective to existing science and technology program areas in order to determine technology gaps, identify new technical capabilities at Sandia that could be applied to these areas, and identify opportunities for innovation. The Arctic was selected as one of these areas for systems level analyses, and this report documents the results. In this study, an emphasis was placed on the arctic atmosphere since Sandia has been active in atmospheric research in the Arctic since 1997. This study begins with a discussion of the challenges and benefits of analyzing the Arctic as a system. It goes on to discuss current and future needs of the defense, scientific, energy, and intelligence communities for more comprehensive data products related to the Arctic; assess the current state of atmospheric measurement resources available for the Arctic; and explain how the capabilities at Sandia National Laboratories can be used to address the identified technological, data, and modeling needs of the defense, scientific, energy, and intelligence communities for Arctic support.

  16. Transitions of social-ecological subsistence systems in the Arctic

    Directory of Open Access Journals (Sweden)

    Per Fauchald

    2017-04-01

    Full Text Available Transitions of social-ecological systems (SES expose governance systems to new challenges. This is particularly so in the Arctic where resource systems are increasingly subjected to global warming, industrial development and globalization which subsequently alter the local SES dynamics. Based on common-pool resource theory, we developed a dynamic conceptual model explaining how exogenous drivers might alter a traditional subsistence system from a provisioning to an appropriation actions situation. In a provisioning action situation the resource users do not control the resource level but adapt to the fluctuating availability of resources, and the collective challenge revolve around securing the subsistence in the community. An increased harvest pressure enabled by exogenous drivers could transform the SES to an appropriation action situation where the collective challenge has changed to avoid overuse of a common-pool resource. The model was used as a focal lens to investigate the premises for broad-scale transitions of subsistence-oriented SESs in Arctic Alaska, Canada and Greenland. We synthesized data from documents, official statistics and grey and scientific literature to explore the different components of our model. Our synthesis suggests that the traditional Arctic subsistence SESs mostly comply with a provisioning action situation. Despite population growth and available technology; urbanization, increased wage labor and importation of food have reduced the resource demand, and we find no evidence for a broad-scale transition to an appropriation action situation throughout the Western Arctic. However, appropriation ­challenges have emerged in some cases either as a consequence of commercialization of the resource or by severely reduced resource stocks due to various exogenous drivers. Future transitions of SESs could be triggered by the emergence of commercial local food markets and Arctic warming. In particular, Arctic warming is an

  17. Connecting Arctic Research Across Boundaries through the Arctic Research Consortium of the United States (ARCUS)

    Science.gov (United States)

    Rich, R. H.; Myers, B.; Wiggins, H. V.; Zolkos, J.

    2017-12-01

    The complexities inherent in Arctic research demand a unique focus on making connections across the boundaries of discipline, institution, sector, geography, knowledge system, and culture. Since 1988, ARCUS has been working to bridge these gaps through communication, coordination, and collaboration. Recently, we have worked with partners to create a synthesis of the Arctic system, to explore the connectivity across the Arctic research community and how to strengthen it, to enable the community to have an effective voice in research funding policy, to implement a system for Arctic research community knowledge management, to bridge between global Sea Ice Prediction Network researchers and the science needs of coastal Alaska communities through the Sea Ice for Walrus Outlook, to strengthen ties between Polar researchers and educators, and to provide essential intangible infrastructure that enables cost-effective and productive research across boundaries. Employing expertise in managing for collaboration and interdisciplinarity, ARCUS complements and enables the work of its members, who constitute the Arctic research community and its key stakeholders. As a member-driven organization, everything that ARCUS does is achieved through partnership, with strong volunteer leadership of each activity. Key organizational partners in the United States include the U.S. Arctic Research Commission, Interagency Arctic Research Policy Committee, National Academy of Sciences Polar Research Board, and the North Slope Science Initiative. Internationally, ARCUS maintains strong bilateral connections with similarly focused groups in each Arctic country (and those interested in the Arctic), as well as with multinational organizations including the International Arctic Science Committee, the Association of Polar Early Career Educators, the University of the Arctic, and the Arctic Institute of North America. Currently, ARCUS is applying the best practices of the science of team science

  18. Implications of fractured Arctic perennial ice cover on thermodynamic and dynamic sea ice processes

    Science.gov (United States)

    Asplin, Matthew G.; Scharien, Randall; Else, Brent; Howell, Stephen; Barber, David G.; Papakyriakou, Tim; Prinsenberg, Simon

    2014-04-01

    Decline of the Arctic summer minimum sea ice extent is characterized by large expanses of open water in the Siberian, Laptev, Chukchi, and Beaufort Seas, and introduces large fetch distances in the Arctic Ocean. Long waves can propagate deep into the pack ice, thereby causing flexural swell and failure of the sea ice. This process shifts the floe size diameter distribution smaller, increases floe surface area, and thereby affects sea ice dynamic and thermodynamic processes. The results of Radarsat-2 imagery analysis show that a flexural fracture event which occurred in the Beaufort Sea region on 6 September 2009 affected ˜40,000 km2. Open water fractional area in the area affected initially decreased from 3.7% to 2.7%, but later increased to ˜20% following wind-forced divergence of the ice pack. Energy available for lateral melting was assessed by estimating the change in energy entrainment from longwave and shortwave radiation in the mixed-layer of the ocean following flexural fracture. 11.54 MJ m-2 of additional energy for lateral melting of ice floes was identified in affected areas. The impact of this process in future Arctic sea ice melt seasons was assessed using estimations of earlier occurrences of fracture during the melt season, and is discussed in context with ocean heat fluxes, atmospheric mixing of the ocean mixed layer, and declining sea ice cover. We conclude that this process is an important positive feedback to Arctic sea ice loss, and timing of initiation is critical in how it affects sea ice thermodynamic and dynamic processes.

  19. AMAP Assessment 2013: Arctic Ocean acidification

    Science.gov (United States)

    2013-01-01

    This assessment report presents the results of the 2013 AMAP Assessment of Arctic Ocean Acidification (AOA). This is the first such assessment dealing with AOA from an Arctic-wide perspective, and complements several assessments that AMAP has delivered over the past ten years concerning the effects of climate change on Arctic ecosystems and people. The Arctic Monitoring and Assessment Programme (AMAP) is a group working under the Arctic Council. The Arctic Council Ministers have requested AMAP to: - produce integrated assessment reports on the status and trends of the conditions of the Arctic ecosystems;

  20. Environmental problems associated with Arctic development especially in Alaska

    Energy Technology Data Exchange (ETDEWEB)

    West, G. C.

    1976-10-01

    Exploration and extraction of mineral and petroleum resources in the arctic tundra and subarctic taiga regions of the world has potential impacts on the environment, wildlife, and human health and safety. Transportation, especially over low wet-tundra in summer, causes long-term changes in vegetation by reducing insulation to the underlying permafrost. Gravel laid directly on the tundra mat, makes the most suitable permanent road-bed. However this causes problems such as spreading of dust, impoundment of water, behavioral barricading of animals, alteration of river channels, and siltation of streams. Anadromous fishes are a major food alteration of stream channels or siltation of rivers can affect their movement and reproduction. Oil-spills in aquatic systems are harder to control and clean up than terrestrial ones, and recovery of ponds takes several years. The oil-rich outer-continental shelves in the Beaufort, Chukchi, and Bering Seas, now under exploration for oil, are especially sensitive. They contain unique populations of marine mammals and birds. Human habitation of the Arctic requires transport of food, fuel, and construction materials, and disposal of refuse and wastes which, due to the permafrost-underlain vegetative mat, is difficult. Heating by fossil fuels results in ice-fogs in winter and accumulation of atmospheric pollutants at ground-level during thermal inversions at all seasons. Perhaps the greatest impact is the increased intervention of the human population. Where native people were previously only sparsely settled or nomadic in the tundra, and on coasts where they congregated, now the economic need for resources has resulted in increased pressure overall which will result in fewer habitats for wildlife, destruction of wilderness, and increased access to humans for further exploration and recreation.

  1. Carbon dioxide in Arctic and subarctic regions

    Energy Technology Data Exchange (ETDEWEB)

    Gosink, T. A.; Kelley, J. J.

    1981-03-01

    A three year research project was presented that would define the role of the Arctic ocean, sea ice, tundra, taiga, high latitude ponds and lakes and polar anthropogenic activity on the carbon dioxide content of the atmosphere. Due to the large physical and geographical differences between the two polar regions, a comparison of CO/sub 2/ source and sink strengths of the two areas was proposed. Research opportunities during the first year, particularly those aboard the Swedish icebreaker, YMER, provided additional confirmatory data about the natural source and sink strengths for carbon dioxide in the Arctic regions. As a result, the hypothesis that these natural sources and sinks are strong enough to significantly affect global atmospheric carbon dioxide levels is considerably strengthened. Based on the available data we calculate that the whole Arctic region is a net annual sink for about 1.1 x 10/sup 15/ g of CO/sub 2/, or the equivalent of about 5% of the annual anthropogenic input into the atmosphere. For the second year of this research effort, research on the seasonal sources and sinks of CO/sub 2/ in the Arctic will be continued. Particular attention will be paid to the seasonal sea ice zones during the freeze and thaw periods, and the tundra-taiga regions, also during the freeze and thaw periods.

  2. Pollution of the Marine Environment by Dumping: Legal Framework Applicable to Dumped Chemical Weapons and Nuclear Waste in the Arctic Ocean

    OpenAIRE

    Lott, Alexander

    2016-01-01

    The Arctic seas are the world’s biggest dumping ground for sea-disposed nuclear waste and have served among the primary disposal sites for chemical warfare agents. Despite of scientific uncertainty, the Arctic Council has noted that this hazardous waste still affects adversely the Arctic marine environment and may have implications to the health of the Arctic people. The purpose of this manuscript is to establish the rights and obligations of the Arctic States in c...

  3. An environmental DNA assay for detecting Arctic grayling in the upper Missouri River basin, North America

    Science.gov (United States)

    K. J. Carim; J. C. S. Dysthe; Michael Young; Kevin McKelvey; Michael Schwartz

    2016-01-01

    The upper Missouri River basin in the northwestern US contains disjunct Arctic grayling (Thymallus arcticus) populations of conservation concern. To assist efforts aimed at understanding Artic grayling distribution, we developed a quantitative PCR assay to detect the presence of Arctic grayling DNA in environmental samples. The assay amplified low...

  4. Tourism and Arctic Observation Systems: exploring the relationships

    NARCIS (Netherlands)

    Barre, de la Suzanne; Maher, Patrick; Dawson, Jackie; Hillmer-Pegram, Kevin; Huijbens, Edward; Lamers, M.A.J.; Liggett, D.; Müller, D.; Pashkevich, A.; Stewart, Emma

    2016-01-01

    The Arctic is affected by global environmental change and also by diverse interests from many economic sectors and industries. Over the last decade, various actors have attempted to explore the options for setting up integrated and comprehensive trans-boundary systems for monitoring and observing

  5. Pan-Arctic observations in GRENE Arctic Climate Change Research Project and its successor

    Science.gov (United States)

    Yamanouchi, Takashi

    2016-04-01

    We started a Japanese initiative - "Arctic Climate Change Research Project" - within the framework of the Green Network of Excellence (GRENE) Program, funded by the Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT), in 2011. This Project targeted understanding and forecasting "Rapid Change of the Arctic Climate System and its Global Influences." Four strategic research targets are set by the Ministry: 1. Understanding the mechanism of warming amplification in the Arctic; 2. Understanding the Arctic climate system for global climate and future change; 3. Evaluation of the impacts of Arctic change on the weather and climate in Japan, marine ecosystems and fisheries; 4. Projection of sea ice distribution and Arctic sea routes. Through a network of universities and institutions in Japan, this 5-year Project involves more than 300 scientists from 39 institutions and universities. The National Institute of Polar Research (NIPR) works as the core institute and The Japan Agency for Marine- Earth Science and Technology (JAMSTEC) joins as the supporting institute. There are 7 bottom up research themes approved: the atmosphere, terrestrial ecosystems, cryosphere, greenhouse gases, marine ecology and fisheries, sea ice and Arctic sea routes and climate modeling, among 22 applications. The Project will realize multi-disciplinal study of the Arctic region and connect to the projection of future Arctic and global climatic change by modeling. The project has been running since the beginning of 2011 and in those 5 years pan-Arctic observations have been carried out in many locations, such as Svalbard, Russian Siberia, Alaska, Canada, Greenland and the Arctic Ocean. In particular, 95 GHz cloud profiling radar in high precision was established at Ny-Ålesund, Svalbard, and intensive atmospheric observations were carried out in 2014 and 2015. In addition, the Arctic Ocean cruises by R/V "Mirai" (belonging to JAMSTEC) and other icebreakers belonging to other

  6. Sensitivity Analysis of Arctic Sea Ice Extent Trends and Statistical Projections Using Satellite Data

    Directory of Open Access Journals (Sweden)

    Ge Peng

    2018-02-01

    Full Text Available An ice-free Arctic summer would have pronounced impacts on global climate, coastal habitats, national security, and the shipping industry. Rapid and accelerated Arctic sea ice loss has placed the reality of an ice-free Arctic summer even closer to the present day. Accurate projection of the first Arctic ice-free summer year is extremely important for business planning and climate change mitigation, but the projection can be affected by many factors. Using an inter-calibrated satellite sea ice product, this article examines the sensitivity of decadal trends of Arctic sea ice extent and statistical projections of the first occurrence of an ice-free Arctic summer. The projection based on the linear trend of the last 20 years of data places the first Arctic ice-free summer year at 2036, 12 years earlier compared to that of the trend over the last 30 years. The results from a sensitivity analysis of six commonly used curve-fitting models show that the projected timings of the first Arctic ice-free summer year tend to be earlier for exponential, Gompertz, quadratic, and linear with lag fittings, and later for linear and log fittings. Projections of the first Arctic ice-free summer year by all six statistical models appear to converge to the 2037 ± 6 timeframe, with a spread of 17 years, and the earliest first ice-free Arctic summer year at 2031.

  7. Local variability in growth and reproduction of Salix arctica in the High Arctic

    Directory of Open Access Journals (Sweden)

    Noémie Boulanger-Lapointe

    2016-06-01

    Full Text Available Arctic terrestrial ecosystems are heterogeneous because of the strong influences of microtopography, soil moisture and snow accumulation on vegetation distribution. The interaction between local biotic and abiotic factors and global climate patterns will influence species responses to climate change. Salix arctica (Arctic willow is a structuring species, ubiquitous and widespread, and as such is one of the most important shrub species in the High Arctic. In this study, we measured S. arctica reproductive effort, early establishment, survival and growth in the Zackenberg valley, north-east Greenland. We sampled four plant communities that varied with respect to snow conditions, soil moisture, nutrient content and plant composition. We found large variability in reproductive effort and success with total catkin density ranging from 0.6 to 66 catkins/m2 and seedling density from <1 to 101 seedlings/m2. There were also major differences in crown area increment (4–23 cm2/year and stem radial growth (40–74 µm/year. The snowbed community, which experienced a recent reduction in snow cover, supported young populations with high reproductive effort, establishment and growth. Soil nutrient content and herbivore activity apparently did not strongly constrain plant reproduction and growth, but competition by Cassiope tetragona and low soil moisture may inhibit performance. Our results show that local environmental factors, such as snow accumulation, have a significant impact on tundra plant response to climate change and will affect the understanding of regional vegetation response to climate change.

  8. Contemporary Arctic Sea Level

    Science.gov (United States)

    Cazenave, A. A.

    2017-12-01

    During recent decades, the Arctic region has warmed at a rate about twice the rest of the globe. Sea ice melting is increasing and the Greenland ice sheet is losing mass at an accelerated rate. Arctic warming, decrease in the sea ice cover and fresh water input to the Arctic ocean may eventually impact the Arctic sea level. In this presentation, we review our current knowledge of contemporary Arctic sea level changes. Until the beginning of the 1990s, Arctic sea level variations were essentially deduced from tide gauges located along the Russian and Norwegian coastlines. Since then, high inclination satellite altimetry missions have allowed measuring sea level over a large portion of the Arctic Ocean (up to 80 degree north). Measuring sea level in the Arctic by satellite altimetry is challenging because the presence of sea ice cover limits the full capacity of this technique. However adapted processing of raw altimetric measurements significantly increases the number of valid data, hence the data coverage, from which regional sea level variations can be extracted. Over the altimetry era, positive trend patterns are observed over the Beaufort Gyre and along the east coast of Greenland, while negative trends are reported along the Siberian shelf. On average over the Arctic region covered by satellite altimetry, the rate of sea level rise since 1992 is slightly less than the global mea sea level rate (of about 3 mm per year). On the other hand, the interannual variability is quite significant. Space gravimetry data from the GRACE mission and ocean reanalyses provide information on the mass and steric contributions to sea level, hence on the sea level budget. Budget studies show that regional sea level trends over the Beaufort Gyre and along the eastern coast of Greenland, are essentially due to salinity changes. However, in terms of regional average, the net steric component contributes little to the observed sea level trend. The sea level budget in the Arctic

  9. Redefining U.S. Arctic Strategy

    Science.gov (United States)

    2015-05-15

    responsibility shifts 21 Barno, David and Nora Bensahel. The Anti-Access Challenge you’re not thinking...International Affairs 85, no. 6 (2009). 38 Barno, David and Nora Bensahel. THE ANTI-ACCESS CHALLENGE YOU’RE NOT THINKING ABOUT, 05 May 2015...and Rescue in the Arctic, 22 June 2011. Arctic Council Secretariat. About the Arctic Council, Arctic Council, 2011. Barno, David and Nora

  10. Demographic potential of the Russia’s northern regions as a factor and condition of economic development of the Arctic

    Directory of Open Access Journals (Sweden)

    Victor Vilgelmovich Fauzer

    2014-12-01

    Full Text Available Nowadays, the research relevance of all aspects of development of the Arctic zone of the Russian Federation consists the fact that in spite of limited stocks in the old rendered habitable regions of the country, Arctic is considered as a source of resources for socio-economic development of Russia. Based on the recognition that the territory is like a separate object of state observation, it is noted that the best resources for labor of the economy of Arctic may become demographic potential of adjacent northern regions. The different points of view and approaches to the definition of the demographic potential and a set of indicators by its assessment are given. On the basis of the statistical analysis of population dynamics and a level of birth rate and mortality, it is shown that quantitative demographic potential of the northern regions since 1990s significantly decreased. It was affected by the migratory outflow. It is revealed that in northern regions, there are still positive differences in age and sexual structure. Regional governments can use the results while drawing up Strategic plans of socio-economic development of territories. The article concludes with recommendations

  11. Patterns and processes influencing helminth parasites of Arctic coastal communities during climate change.

    Science.gov (United States)

    Galaktionov, K V

    2017-07-01

    This review analyses the scarce available data on biodiversity and transmission of helminths in Arctic coastal ecosystems and the potential impact of climate changes on them. The focus is on the helminths of seabirds, dominant parasites in coastal ecosystems. Their fauna in the Arctic is depauperate because of the lack of suitable intermediate hosts and unfavourable conditions for species with free-living larvae. An increasing proportion of crustaceans in the diet of Arctic seabirds would result in a higher infection intensity of cestodes and acanthocephalans, and may also promote the infection of seabirds with non-specific helminths. In this way, the latter may find favourable conditions for colonization of new hosts. Climate changes may alter the composition of the helminth fauna, their infection levels in hosts and ways of transmission in coastal communities. Immigration of boreal invertebrates and fish into Arctic seas may allow the circulation of helminths using them as intermediate hosts. Changing migratory routes of animals would alter the distribution of their parasites, facilitating, in particular, their trans-Arctic transfer. Prolongation of the seasonal 'transmission window' may increase the parasitic load on host populations. Changes in Arctic marine food webs would have an overriding influence on the helminths' circulation. This process may be influenced by the predicted decreased of salinity in Arctic seas, increased storm activity, coastal erosion, ocean acidification, decline of Arctic ice, etc. Greater parasitological research efforts are needed to assess the influence of factors related to Arctic climate change on the transmission of helminths.

  12. Brominated flame retardants in the Arctic environment--trends and new candidates.

    Science.gov (United States)

    de Wit, Cynthia A; Herzke, Dorte; Vorkamp, Katrin

    2010-07-01

    Polybrominated diphenyl ethers (PBDEs) containing two to 10 bromines are ubiquitous in the Arctic, in both abiotic and biotic samples. Hexabromocyclododecane (HBCD) is also ubiquitous in the Arctic, with the gamma-HBCD isomer predominating in air, the alpha-HBCD isomer predominating in biota and similar concentrations of alpha-, beta- and gamma-HBCD found in marine sediments. Other brominated flame retardants (BFRs) found in some Arctic samples are polybrominated biphenyls (PBBs), tetrabromobisphenol A (TBBPA), 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE), hexabromobenzene (HxBBz), pentabromoethylbenzene (PBEB), pentabromotoluene (PBT), and 1,2-dibromo-4-(1,2-dibromoethyl)cyclohexane (TBECH). Temporal trends of tetra- to heptaBDEs and HBCD show increasing concentrations or a tendency to levelling off depending on the matrix (air, sediment, biota) and location, but no uniform picture for the Arctic emerges. BDE-209 concentrations are increasing in air. PBDEs and HBCD spatial trends in seabirds and marine mammals are similar to those seen previously for polychlorinated biphenyls (PCBs), with highest concentrations found in organisms from East Greenland and Svalbard. These trends indicate western Europe and eastern North America as important source regions of these compounds via long range atmospheric transport and ocean currents. Latitudinal trends showed lower concentrations and fluxes of PBDEs at higher latitudes. The tetra-hexaBDEs and alpha-HBCD biomagnify in Arctic food webs. Results for BDE-209 are more conflicting, showing either only low or no biomagnification potential. PBDE and HBCD concentrations are lower in terrestrial organisms and higher in marine top predators such as some killer whale populations in Alaska and glaucous gulls from the Barents Sea area. Higher concentrations are seen near populated areas indicating local sources. Findings of BTBPE, HxBBz, PBEB, PBT and TBECH in seabirds and/or marine mammals indicate that these compounds reach the

  13. Arctic transitions in the Land - Atmosphere System (ATLAS): Background, objectives, results, and future directions

    Science.gov (United States)

    McGuire, A.D.; Sturm, M.; Chapin, F. S.

    2003-01-01

    This paper briefly reviews the background, objectives, and results of the Arctic Transitions in the Land-Atmosphere System (ATLAS) Project to date and provides thoughts on future directions. The key goal of the ATLAS Project is to improve understanding of controls over spatial and temporal variability of terrestrial processes in the Arctic that have potential consequences for the climate system, i.e., processes that affect the exchange of water and energy with the atmosphere, the exchange of radiatively active gases with the atmosphere, and the delivery of freshwater to the Arctic Ocean. Three important conclusions have emerged from research associated with the ATLAS Project. First, associated with the observation that the Alaskan Arctic has warmed significantly in the last 30 years, permafrost is warming, shrubs are expanding, and there has been a temporary release of carbon dioxide from tundra soils. Second, the winter is a more important period of biological activity than previously appreciated. Biotic processes, including shrub expansion and decomposition, affect snow structure and accumulation and affect the annual carbon budget of tundra ecosystems. Third, observed vegetation changes can have a significant positive feedback to regional warming. These vegetation effects are, however, less strong than those exerted by land-ocean heating contrasts and the topographic constraints on air mass movements. The papers of this special section provide additional insights related to these conclusions and to the overall goal of ATLAS.

  14. Research with Arctic peoples

    DEFF Research Database (Denmark)

    Smith, H Sally; Bjerregaard, Peter; Chan, Hing Man

    2006-01-01

    Arctic peoples are spread over eight countries and comprise 3.74 million residents, of whom 9% are indigenous. The Arctic countries include Canada, Finland, Greenland (Denmark), Iceland, Norway, Russia, Sweden and the United States. Although Arctic peoples are very diverse, there are a variety...... of environmental and health issues that are unique to the Arctic regions, and research exploring these issues offers significant opportunities, as well as challenges. On July 28-29, 2004, the National Heart, Lung, and Blood Institute and the Canadian Institutes of Health Research co-sponsored a working group...... entitled "Research with Arctic Peoples: Unique Research Opportunities in Heart, Lung, Blood and Sleep Disorders". The meeting was international in scope with investigators from Greenland, Iceland and Russia, as well as Canada and the United States. Multiple health agencies from Canada and the United States...

  15. Can antibrowsing defense regulate the spread of woody vegetation in arctic tundra?

    Science.gov (United States)

    Bryant, John P.; Joly, Kyle; Chapin, F. Stuart; DeAngelis, Donald L.; Kielland, Knut

    2014-01-01

    Global climate warming is projected to promote the increase of woody plants, especially shrubs, in arctic tundra. Many factors may affect the extent of this increase, including browsing by mammals. We hypothesize that across the Arctic the effect of browsing will vary because of regional variation in antibrowsing chemical defense. Using birch (Betula) as a case study, we propose that browsing is unlikely to retard birch expansion in the region extending eastward from the Lena River in central Siberia across Beringia and the continental tundra of central and eastern Canada where the more effectively defended resin birches predominate. Browsing is more likely to retard birch expansion in tundra west of the Lena to Fennoscandia, Iceland, Greenland and South Baffin Island where the less effectively defended non-resin birches predominate. Evidence from the literature supports this hypothesis. We further suggest that the effect of warming on the supply of plant-available nitrogen will not significantly change either this pan-Arctic pattern of variation in antibrowsing defense or the resultant effect that browsing has on birch expansion in tundra. However, within central and east Beringia warming-caused increases in plant-available nitrogen combined with wildfire could initiate amplifying feedback loops that could accelerate shrubification of tundra by the more effectively defended resin birches. This accelerated shrubification of tundra by resin birch, if extensive, could reduce the food supply of caribou causing population declines. We conclude with a brief discussion of modeling methods that show promise in projecting invasion of tundra by woody plants.

  16. Biological Environmental Arctic Project (BEAP) Preliminary Data (Arctic West Summer 1986 Cruise).

    Science.gov (United States)

    1986-11-01

    predictive model of bioluminescence in near-surface arctic waters . Data were collected during Arctic West Summer 1986 from USCG POLAR STAR (WAGB 10). . %. J...2 20ODISTRIBUTION AVAILABILIT "Y OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION C]UNCLASSIFIED UNLIMITED SAME AS RPT C] DTIC USERS UNCLASSIFIED David...correlates for a predictive model of bioluminescence in near-surface arctic waters . - In previous years, these measurements were conducted from the USCG

  17. Disabilities among refugees and conflict-affected populations

    Directory of Open Access Journals (Sweden)

    Rachael Reilly

    2010-07-01

    Full Text Available In 2007 the Women’s Refugee Commission launched a major research project to assess the situation for those living with disabilities among displaced and conflict-affected populations.

  18. Gastrointestinal Parasites of Two Populations of Arctic Foxes (Vulpes lagopus) from Northeast Greenland

    DEFF Research Database (Denmark)

    Andreassen, P.N.S.; Schmidt, Niels Martin; Kapel, Christian M. O.

    2017-01-01

    Parasitological examination of 275 faecal samples from Arctic foxes (Vulpes lagopus) collected at Zackenberg Valley and Karupelv Valley in north-east Greenland from 2006 to 2008 was conducted using sieving and microscopy. Overall, 125 (45.5%) samples contained parasite eggs of Taenia crassiceps...

  19. Polar bear and walrus response to the rapid decline in Arctic sea ice

    Science.gov (United States)

    Oakley, K.; Whalen, M.; Douglas, David C.; Udevitz, Mark S.; Atwood, Todd C.; Jay, C.

    2012-01-01

    The Arctic is warming faster than other regions of the world due to positive climate feedbacks associated with loss of snow and ice. One highly visible consequence has been a rapid decline in Arctic sea ice over the past 3 decades - a decline projected to continue and result in ice-free summers likely as soon as 2030. The polar bear (Ursus maritimus) and the Pacific walrus (Odobenus rosmarus divergens) are dependent on sea ice over the continental shelves of the Arctic Ocean's marginal seas. The continental shelves are shallow regions with high biological productivity, supporting abundant marine life within the water column and on the sea floor. Polar bears use sea ice as a platform for hunting ice seals; walruses use sea ice as a resting platform between dives to forage for clams and other bottom-dwelling invertebrates. How have sea ice changes affected polar bears and walruses? How will anticipated changes affect them in the future?

  20. An assessment of the toxicological significance of anthropogenic contaminants in Canadian arctic wildlife

    International Nuclear Information System (INIS)

    Fisk, Aaron T.; Wit, Cynthia A. de; Wayland, Mark; Kuzyk, Zou Zou; Burgess, Neil; Letcher, Robert; Braune, Birgit; Norstrom, Ross; Blum, Susan Polischuk; Sandau, Courtney; Lie, Elisabeth; Larsen, Hans Jorgen S.; Skaare, Janneche Utne; Muir, Derek C.G.

    2005-01-01

    Anthropogenic contaminants have been a concern in the Canadian arctic for over 30 years due to relatively high concentrations of bioaccumulating and biomagnifying organochlorine contaminants (OCs) and toxic metals found in some arctic biota and humans. However, few studies have addressed the potential effects of these contaminants in Canadian arctic wildlife. Prior to 1997, biological effects data were minimal and insufficient at any level of biological organization. The present review summarizes recent studies on biological effects related to contaminant exposure, and compares new tissue concentration data to threshold effects levels. Weak relationships between cadmium, mercury and selenium burdens and health biomarkers in common eider ducks (Somateria mollissima borealis) in Nunavut were found but it was concluded that metals were not influencing the health of these birds. Black guillemots (Cepphus grylle) examined near PCB-contaminated Saglek Bay, Labrador, had enlarged livers, elevated EROD and liver lipid levels and reduced retinol (vitamin A) and retinyl palmitate levels, which correlated to PCB levels in the birds. Circulating levels of thyroid hormones in polar bears (Ursus maritimus) were correlated to PCB and HO-PCB plasma concentrations, but the impact at the population level is unknown. High PCB and organochlorine pesticide concentrations were found to be strongly associated with impaired humoral and cell-mediated immune responses in polar bears, implying an increased infection risk that could impact the population. In beluga whale (Delphinapterus leucas), cytochromes P450 (phase I) and conjugating (phase II) enzymes have been extensively profiled (immunochemically and catalytically) in liver, demonstrating the importance of contaminants in relation to enzyme induction, metabolism and potential contaminant bioactivation and fate. Concentrations of OCs and metals in arctic terrestrial wildlife, fish and seabirds are generally below effects thresholds

  1. An assessment of the toxicological significance of anthropogenic contaminants in Canadian arctic wildlife

    Energy Technology Data Exchange (ETDEWEB)

    Fisk, Aaron T. [Warnell School of Forest Resources, University of Georgia, Athens, GA 30602-2152 (United States)]. E-mail: afisk@forestry.uga.edu; Wit, Cynthia A. de [Department of Applied Environmental Science, Stockholm University, Stockholm (Sweden); Wayland, Mark [Prairie and Northern Wildlife Research Centre, Environment Canada, 115 Perimeter Rd., Saskatoon, SK, S7N 0X4 (Canada); Kuzyk, Zou Zou [Environmental Sciences Group, Royal Military College of Canada, Kingston, ON, K7K 7B4 (Canada); Burgess, Neil [Canadian Wildlife Service, Environment Canada, 6 Bruce St. Mt. Pearl, NL, A1N4T3 (Canada); Letcher, Robert [National Wildlife Research Centre, Environment Canada, Ottawa, ON, K1A 0H3 (Canada); Braune, Birgit [National Wildlife Research Centre, Environment Canada, Ottawa, ON, Canada K1A 0H3 (Canada); Norstrom, Ross [National Wildlife Research Centre, Environment Canada, Ottawa, ON, K1A 0H3 (Canada); Blum, Susan Polischuk [Office of Research Services, University of Saskatchewan, Saskatoon, SK, S7N 4J8 (Canada); Sandau, Courtney [Jacques Whitford Limited, Calgary, AB, T2R 0E4 (Canada); Lie, Elisabeth [National Veterinary Institute, P.O. Box 8156, Dep 0033, Oslo (Norway); Larsen, Hans Jorgen S. [Norwegian School of Veterinary Science, P.O. Box 8146, Dep 0033, Oslo (Norway); Skaare, Janneche Utne [National Veterinary Institute, P.O. Box 8156, Dep 0033, Oslo (Norway); Norwegian School of Veterinary Science, P.O. Box 8146, Dep 0033, Oslo (Norway); Muir, Derek C.G. [National Water Research Institute, Environment Canada, Burlington, ON, L7R 4A6 (Canada)

    2005-12-01

    Anthropogenic contaminants have been a concern in the Canadian arctic for over 30 years due to relatively high concentrations of bioaccumulating and biomagnifying organochlorine contaminants (OCs) and toxic metals found in some arctic biota and humans. However, few studies have addressed the potential effects of these contaminants in Canadian arctic wildlife. Prior to 1997, biological effects data were minimal and insufficient at any level of biological organization. The present review summarizes recent studies on biological effects related to contaminant exposure, and compares new tissue concentration data to threshold effects levels. Weak relationships between cadmium, mercury and selenium burdens and health biomarkers in common eider ducks (Somateria mollissima borealis) in Nunavut were found but it was concluded that metals were not influencing the health of these birds. Black guillemots (Cepphus grylle) examined near PCB-contaminated Saglek Bay, Labrador, had enlarged livers, elevated EROD and liver lipid levels and reduced retinol (vitamin A) and retinyl palmitate levels, which correlated to PCB levels in the birds. Circulating levels of thyroid hormones in polar bears (Ursus maritimus) were correlated to PCB and HO-PCB plasma concentrations, but the impact at the population level is unknown. High PCB and organochlorine pesticide concentrations were found to be strongly associated with impaired humoral and cell-mediated immune responses in polar bears, implying an increased infection risk that could impact the population. In beluga whale (Delphinapterus leucas), cytochromes P450 (phase I) and conjugating (phase II) enzymes have been extensively profiled (immunochemically and catalytically) in liver, demonstrating the importance of contaminants in relation to enzyme induction, metabolism and potential contaminant bioactivation and fate. Concentrations of OCs and metals in arctic terrestrial wildlife, fish and seabirds are generally below effects thresholds

  2. Changes in Arctic sea ice result in increasing light transmittance and absorption

    OpenAIRE

    Nicolaus, Marcel; Katlein, Christian; Maslanik, J.; Hendricks, Stefan

    2012-01-01

    Arctic sea ice has declined and become thinner and younger (more seasonal) during the last decade. One consequence of this is that the surface energy budget of the Arctic Ocean is changing. While the role of surface albedo has been studied intensively, it is still widely unknown how much light penetrates through sea ice into the upper ocean, affecting seaice mass balance, ecosystems, and geochemical processes. Here we present the first large-scale under-ice light measurem...

  3. Investigating the effects of arctic dietary intake on lung health

    DEFF Research Database (Denmark)

    Baines, K J; Backer, V; Gibson, P G

    2015-01-01

    BACKGROUND/OBJECTIVE: Preservation of lung health requires understanding the modifiable risk factors of airflow limitation. This study investigates the association between diet and lung function in a population of Greenland Inuit residing in the Arctic (Greenland) or Western Europe (Denmark). SUB...

  4. Sensitivity of the carbon cycle in the Arctic to climate change

    Science.gov (United States)

    McGuire, A. David; Anderson, Leif G.; Christensen, Torben R.; Dallimore, Scott; Guo, Laodong; Hayes, Daniel J.; Heimann, Martin; Lorenson, T.D.; Macdonald, Robie W.; Roulet, Nigel

    2009-01-01

    The recent warming in the Arctic is affecting a broad spectrum of physical, ecological, and human/cultural systems that may be irreversible on century time scales and have the potential to cause rapid changes in the earth system. The response of the carbon cycle of the Arctic to changes in climate is a major issue of global concern, yet there has not been a comprehensive review of the status of the contemporary carbon cycle of the Arctic and its response to climate change. This review is designed to clarify key uncertainties and vulnerabilities in the response of the carbon cycle of the Arctic to ongoing climatic change. While it is clear that there are substantial stocks of carbon in the Arctic, there are also significant uncertainties associated with the magnitude of organic matter stocks contained in permafrost and the storage of methane hydrates beneath both subterranean and submerged permafrost of the Arctic. In the context of the global carbon cycle, this review demonstrates that the Arctic plays an important role in the global dynamics of both CO2 and CH4. Studies suggest that the Arctic has been a sink for atmospheric CO2 of between 0 and 0.8 Pg C/yr in recent decades, which is between 0% and 25% of the global net land/ocean flux during the 1990s. The Arctic is a substantial source of CH4 to the atmosphere (between 32 and 112 Tg CH4/yr), primarily because of the large area of wetlands throughout the region. Analyses to date indicate that the sensitivity of the carbon cycle of the Arctic during the remainder of the 21st century is highly uncertain. To improve the capability to assess the sensitivity of the carbon cycle of the Arctic to projected climate change, we recommend that (1) integrated regional studies be conducted to link observations of carbon dynamics to the processes that are likely to influence those dynamics, and (2) the understanding gained from these integrated studies be incorporated into both uncoupled and fully coupled carbon

  5. Arctic Sea Level Reconstruction

    DEFF Research Database (Denmark)

    Svendsen, Peter Limkilde

    Reconstruction of historical Arctic sea level is very difficult due to the limited coverage and quality of tide gauge and altimetry data in the area. This thesis addresses many of these issues, and discusses strategies to help achieve a stable and plausible reconstruction of Arctic sea level from...... 1950 to today.The primary record of historical sea level, on the order of several decades to a few centuries, is tide gauges. Tide gauge records from around the world are collected in the Permanent Service for Mean Sea Level (PSMSL) database, and includes data along the Arctic coasts. A reasonable...... amount of data is available along the Norwegian and Russian coasts since 1950, and most published research on Arctic sea level extends cautiously from these areas. Very little tide gauge data is available elsewhere in the Arctic, and records of a length of several decades,as generally recommended for sea...

  6. Does warming affect growth rate and biomass production of shrubs in the High Arctic?

    DEFF Research Database (Denmark)

    Campioli, Matteo; Schmidt, Niels Martin; Albert, Kristian Rost

    2013-01-01

    Few studies have assessed directly the impact of warming on plant growth and biomass production in the High Arctic. Here, we aimed to investigate the impact of 7 years of warming (open greenhouses) on the aboveground relative growth rate (RGR) of Cassiope tetragona and Salix arctica in North-East...

  7. The regional species richness and genetic diversity of Arctic vegetation reflect both past glaciations and current climate

    DEFF Research Database (Denmark)

    Stewart, L.; Alsos, Inger G.; Bay, Christian

    2016-01-01

    Aim The Arctic has experienced marked climatic differences between glacial and interglacial periods and is now subject to a rapidly warming climate. Knowledge of the effects of historical processes on current patterns of diversity may aid predictions of the responses of vegetation to future climate...... species richness of the vascular plant flora of 21 floristic provinces and examined local species richness in 6215 vegetation plots distributed across the Arctic. We assessed levels of genetic diversity inferred from amplified fragment length polymorphism variation across populations of 23 common Arctic...... size compared to the models of bryophyte and lichen richness. Main conclusion Our study suggests that imprints of past glaciations in Arctic vegetation diversity patterns at the regional scale are still detectable today. Since Arctic vegetation is still limited by post-glacial migration lag...

  8. Arctic Research Plan: FY2017-2021

    Science.gov (United States)

    Starkweather, Sandy; Jeffries, Martin O; Stephenson, Simon; Anderson, Rebecca D.; Jones, Benjamin M.; Loehman, Rachel A.; von Biela, Vanessa R.

    2016-01-01

    The United States is an Arctic nation—Americans depend on the Arctic for biodiversity and climate regulation and for natural resources. America’s Arctic—Alaska—is at the forefront of rapid climate, environmental, and socio-economic changes that are testing the resilience and sustainability of communities and ecosystems. Research to increase fundamental understanding of these changes is needed to inform sound, science-based decision- and policy-making and to develop appropriate solutions for Alaska and the Arctic region as a whole. Created by an Act of Congress in 1984, and since 2010 a subcommittee of the National Science and Technology Council (NSTC) in the Executive Office of the President, the Interagency Arctic Research Policy Committee (IARPC) plays a critical role in advancing scientific knowledge and understanding of the changing Arctic and its impacts far beyond the boundaries of the Arctic. Comprising 14 Federal agencies, offices, and departments, IARPC is responsible for the implementation of a 5-year Arctic Research Plan in consultation with the U.S. Arctic Research Commission, the Governor of the State of Alaska, residents of the Arctic, the private sector, and public interest groups.

  9. Bromine measurements in ozone depleted air over the Arctic Ocean

    Directory of Open Access Journals (Sweden)

    J. A. Neuman

    2010-07-01

    Full Text Available In situ measurements of ozone, photochemically active bromine compounds, and other trace gases over the Arctic Ocean in April 2008 are used to examine the chemistry and geographical extent of ozone depletion in the arctic marine boundary layer (MBL. Data were obtained from the NOAA WP-3D aircraft during the Aerosol, Radiation, and Cloud Processes affecting Arctic Climate (ARCPAC study and the NASA DC-8 aircraft during the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS study. Fast (1 s and sensitive (detection limits at the low pptv level measurements of BrCl and BrO were obtained from three different chemical ionization mass spectrometer (CIMS instruments, and soluble bromide was measured with a mist chamber. The CIMS instruments also detected Br2. Subsequent laboratory studies showed that HOBr rapidly converts to Br2 on the Teflon instrument inlets. This detected Br2 is identified as active bromine and represents a lower limit of the sum HOBr + Br2. The measured active bromine is shown to likely be HOBr during daytime flights in the arctic. In the MBL over the Arctic Ocean, soluble bromide and active bromine were consistently elevated and ozone was depleted. Ozone depletion and active bromine enhancement were confined to the MBL that was capped by a temperature inversion at 200–500 m altitude. In ozone-depleted air, BrO rarely exceeded 10 pptv and was always substantially lower than soluble bromide that was as high as 40 pptv. BrCl was rarely enhanced above the 2 pptv detection limit, either in the MBL, over Alaska, or in the arctic free troposphere.

  10. PERMANENT GENETIC RESOURCES: Isolation and characterization of microsatellite loci from the Arctic cisco (Coregonus autumnalis).

    Science.gov (United States)

    Ramey, A; Graziano, S L; Nielsen, J L

    2008-03-01

    Eight polymorphic microsatellite loci were isolated and characterized for the Arctic cisco, Coregonus autumnalis. Loci were evaluated in 21 samples from the Colville River subsistence fishery. The number of alleles per locus ranged from two to 18. Observed heterozygosity of loci varied from 0.10 to 1.00, and expected heterozygosity ranged from 0.09 to 0.92. All eight microsatellite markers were in Hardy-Weinberg equilibrium. The loci presented here will be useful in describing population structure and exploring populations of origin for Arctic cisco. © 2007 Blackwell Publishing Ltd No claim to original US government works.

  11. Canada’s 2009 Northern Strategy: Cold War Policy in a Warming Arctic

    Science.gov (United States)

    2011-05-19

    more harm than benefit to Northern peoples like the Inuit , the people most directly affected by Arctic activities. They argue there is no immediate...waterways of the Arctic Archipelago, the Canadian government re-settled eight native Inuit families from northern Quebec to Resolute Bay and Grise Ford...76 Initially the re-location was claimed to be a humanitarian effort intended to save the lives of starving Inuit by providing them with new

  12. The Climate Science Special Report: Arctic Changes and their Effect on Alaska and the Rest of the United States

    Science.gov (United States)

    Taylor, P. C.

    2017-12-01

    Rapid and visible climate change is happening across the Arctic, outpacing global change. Annual average near-surface air temperatures across the Arctic are increasing at more than twice the rate of global average surface temperature. In addition to surface temperature, all components of the Arctic climate system are responding in kind, including sea ice, mountain glaciers and the Greenland Ice sheet, snow cover, and permafrost. Many of these changes with a discernable anthropogenic imprint. While Arctic climate change may seem physically remote to those living in other regions of the planet, Arctic climate change can affect the global climate influencing sea level, the carbon cycle, and potentially atmospheric and oceanic circulation patterns. As an Arctic nation, United States' adaptation, mitigation, and policy decisions depend on projections of future Alaskan and Arctic climate. This chapter of the Climate Science Special Report documents significant scientific progress and knowledge about how the Alaskan and Arctic climate has changed and will continue to change.

  13. Forecasting wildlife response to rapid warming in the Alaskan Arctic

    Science.gov (United States)

    Van Hemert, Caroline R.; Flint, Paul L.; Udevitz, Mark S.; Koch, Joshua C.; Atwood, Todd C.; Oakley, Karen L.; Pearce, John M.

    2015-01-01

    Arctic wildlife species face a dynamic and increasingly novel environment because of climate warming and the associated increase in human activity. Both marine and terrestrial environments are undergoing rapid environmental shifts, including loss of sea ice, permafrost degradation, and altered biogeochemical fluxes. Forecasting wildlife responses to climate change can facilitate proactive decisions that balance stewardship with resource development. In this article, we discuss the primary and secondary responses to physical climate-related drivers in the Arctic, associated wildlife responses, and additional sources of complexity in forecasting wildlife population outcomes. Although the effects of warming on wildlife populations are becoming increasingly well documented in the scientific literature, clear mechanistic links are often difficult to establish. An integrated science approach and robust modeling tools are necessary to make predictions and determine resiliency to change. We provide a conceptual framework and introduce examples relevant for developing wildlife forecasts useful to management decisions.

  14. “An Arctic Great Power”? Recent Developments in Danish Arctic Policy

    DEFF Research Database (Denmark)

    Rahbek-Clemmensen, Jon

    2016-01-01

    Denmark has been a firm advocate for Arctic cooperation in the recent decade, most importantly as the initiator of the 2008 Ilulissat meeting. Two new strategic publications – a foreign policy report (Danish Diplomacy and Defence in a Time of Change) and a defense report (The Ministry of Defence......’s Future Activities in the Arctic), which were published in May and June 2016 –highlight the Kingdom of Denmark’s status as “an Arctic great power” and the importance of pursuing Danish interests, which could indicate a shift away from a cooperation-oriented policy. This article investigates whether...... the documents represent a break in Danish Arctic policy. It argues that the two documents represent continuation, rather than change. They show that the High North continues to become steadily more important on the Danish foreign policy agenda, although the region remains just one of several regional priorities...

  15. Economic Valuation of Ecosystem Goods and Services in a Melting Arctic

    Science.gov (United States)

    O'Garra, T.

    2014-12-01

    The Arctic region is composed of unique ecosystems that provide a range of goods and services to local and global populations. However, Arctic sea-ice is melting at an unprecedented rate, threatening many of these ecosystems and the services they provide. Yet as the ice melts and certain goods and services are lost, other resources such as oil and minerals will become accessible. The question is: how do the losses compare with the opportunities? And how are the losses and potential gains likely to be distributed? To address these questions, this study provides a preliminary assessment of the quantity, distribution and economic value of the ecosystem services (ES) provided by Arctic ecosystems, both now and in the future given a scenario of sure climate change. Using biophysical and economic data from existing studies (and some primary data), preliminary estimates indicate that the Arctic currently provides 357m/yr (in 2014 US) in subsistence hunting value to local communities, of which reindeer/caribou comprise 83%. Reindeer herding provides 110m/yr to Arctic communities. Interestingly, 'non-use (existence/cultural) values' associated with Arctic species are very high at 11bn/yr to members of Arctic states. The Arctic also provides ES that accrue to the global community: oil resources (North Slope; 5bn profits in 2013), commercial fisheries ( 515mn/yr) and most importantly, climate regulation services. Recent models (Whiteman; Euskirchen) estimate that the loss of climate regulation services provided by Arctic ice will cost 200 - 500bn/yr, a value which dwarfs all others. Assuming no change in atmospheric temperature compared to 2014, the net present value of the Arctic by 2050 (1.4% discount rate) comes to over $9 trillion. However, given Wang and Overland (2009) predictions of ice-free summers by 2037, we expect many of these benefits will be lost. For example, it is fairly well-established that endemic species, such as polar bears, will decline with sea-ice melt

  16. Arctic adaptation and climate change

    International Nuclear Information System (INIS)

    Agnew, T.A.; Headley, A.

    1994-01-01

    The amplification of climatic warming in the Arctic and the sensitivity of physical, biological, and human systems to changes in climate make the Arctic particularly vulnerable to climate changes. Large areas of the Arctic permafrost and sea ice are expected to disappear under climate warming and these changes will have considerable impacts on the natural and built environment of the north. A review is presented of some recent studies on what these impacts could be for the permafrost and sea ice environment and to identify linkages with socioeconomic activities. Terrestrial adaptation to climate change will include increases in ground temperature; melting of permafrost with consequences such as frost heave, mudslides, and substantial settlement; rotting of peat contained in permafrost areas, with subsequent emission of CO 2 ; increased risk of forest fire; and flooding of low-lying areas. With regard to the manmade environment, structures that will be affected include buildings, pipelines, highways, airports, mines, and railways. In marine areas, climate change will increase the ice-free period for marine transport operations and thus provide some benefit to the offshore petroleum industry. This benefit will be offset by increased wave height and period, and increased coastal erosion. The offshore industry needs to be particularly concerned with these impacts since the expected design life of industry facilities (30-60 y) is of the same order as the time frame for possible climatic changes. 18 refs., 5 figs

  17. Arctic carbon cycling

    NARCIS (Netherlands)

    Christensen, Torben R; Rysgaard, SØREN; Bendtsen, JØRGEN; Else, Brent; Glud, Ronnie N; van Huissteden, J.; Parmentier, F.J.W.; Sachs, Torsten; Vonk, J.E.

    2017-01-01

    The marine Arctic is considered a net carbon sink, with large regional differences in uptake rates. More regional modelling and observational studies are required to reduce the uncertainty among current estimates. Robust projections for how the Arctic Ocean carbon sink may evolve in the future are

  18. Social-Ecological Soundscapes: Examining Aircraft-Harvester-Caribou Conflict in Arctic Alaska

    Science.gov (United States)

    Stinchcomb, Taylor R.

    As human development expands across the Arctic, it is crucial to carefully assess the impacts to remote natural ecosystems and to indigenous communities that rely on wild resources for nutritional and cultural wellbeing. Because indigenous communities and wildlife populations are interdependent, assessing how human activities impact traditional harvest practices can advance our understanding of the human dimensions of wildlife management. Indigenous communities across Arctic Alaska have expressed concern over the last four decades that low-flying aircraft interfere with their traditional harvest practices. For example, communities often have testified that aircraft disturb caribou (Rangifer tarandus) and thereby reduce harvest opportunities. Despite this longstanding concern, little research exists on the extent of aircraft activity in Arctic Alaska and on how aircraft affect the behavior and perceptions of harvesters. Therefore, the overarching goal of my research was to highlight the importance of aircraft-harvester conflict in Arctic Alaska and begin to address the issue using a scientific and community-driven approach. In Chapter 1, I demonstrated that conflict between aircraft and indigenous harvesters in Arctic Alaska is a widespread, understudied, and complex issue. By conducting a meta-analysis of the available literature, I quantified the deficiency of scientific knowledge about the impacts of aircraft on rural communities and traditional harvest practices in the Arctic. My results indicated that no peer-reviewed literature has addressed the conflict between low-flying aircraft and traditional harvesters in Arctic Alaska. I speculated that the scale over which aircraft, rural communities, and wildlife interact limits scientists' ability to determine causal relationships and therefore detracts from their interest in researching the human dimension of this social-ecological system. Innovative research approaches like soundscape ecology could begin to

  19. Late winter biogeochemical conditions under sea ice in the Canadian High Arctic

    Directory of Open Access Journals (Sweden)

    Helen S. Findlay

    2015-12-01

    Full Text Available With the Arctic summer sea-ice extent in decline, questions are arising as to how changes in sea-ice dynamics might affect biogeochemical cycling and phenomena such as carbon dioxide (CO2 uptake and ocean acidification. Recent field research in these areas has concentrated on biogeochemical and CO2 measurements during spring, summer or autumn, but there are few data for the winter or winter–spring transition, particularly in the High Arctic. Here, we present carbon and nutrient data within and under sea ice measured during the Catlin Arctic Survey, over 40 days in March and April 2010, off Ellef Ringnes Island (78° 43.11′ N, 104° 47.44′ W in the Canadian High Arctic. Results show relatively low surface water (1–10 m nitrate (<1.3 µM and total inorganic carbon concentrations (mean±SD=2015±5.83 µmol kg−1, total alkalinity (mean±SD=2134±11.09 µmol kg−1 and under-ice pCO2sw (mean±SD=286±17 µatm. These surprisingly low wintertime carbon and nutrient conditions suggest that the outer Canadian Arctic Archipelago region is nitrate-limited on account of sluggish mixing among the multi-year ice regions of the High Arctic, which could temper the potential of widespread under-ice and open-water phytoplankton blooms later in the season.

  20. Potential for an Arctic-breeding migratory bird to adjust spring migration phenology to Arctic amplification

    NARCIS (Netherlands)

    Lameris, T.K.; Scholten, Ilse; Bauer, S.; Cobben, M.M.P.; Ens, B.J.; Nolet, B.A.

    2017-01-01

    Arctic amplification, the accelerated climate warming in the polar regions, is causing a more rapid advancement of the onset of spring in the Arctic than in temperate regions. Consequently, the arrival of many migratory birds in the Arctic is thought to become increasingly mismatched with the onset

  1. Canada : oil, gas, and the new Arctic

    Energy Technology Data Exchange (ETDEWEB)

    Huebert, R. [Calgary Univ., AB (Canada). Dept. of Political Science; Calgary Univ., AB (Canada). Centre for Military and Strategic Studies

    2010-07-01

    This presentation provided a broad overview of the geopolitical issues affecting the massive transformation of the Arctic resulting from resource development, globalization, and climate change. Two Arctics are emerging, notably one European and one North American. Oil and gas companies are investing heavily in the North, and there is continued debate over pipelines and projects, but the viability of projects can shift abruptly from technological and political change. Recent examples include the emergence of shale gas, the possibility of the United States becoming a gas exporter, and the Deepwater Horizon disaster. In terms of Maritime jurisdictions and boundaries, a comparison was presented regarding the Canadian and Russian claims to the continental shelf. International cooperation and a commitment to peaceful means can be seen in the Ilulissat Declaration, the acceptance of the United Nations Convention of the Law of the Sea as rules, the scientific cooperation of Canada, the United States, and Denmark, and the recent boundary agreement between Russia and Norway. The positions of the main players in the new geopolitics of the North were outlined, particularly with respect to Russia, the United States, Norway, Denmark, and Canada. Their recent policy statements and developing arctic force capabilities were summarized. Canada's more assertive Arctic policy was outlined in more detail along with the country's base locations and recent security actions in the North. The main issues facing nations with interests in the North will be maritime and aerospace; understanding the new players on the scene; and new technological developments. 10 figs., 5 refs.

  2. Abnormal Winter Melting of the Arctic Sea Ice Cap Observed by the Spaceborne Passive Microwave Sensors

    Directory of Open Access Journals (Sweden)

    Seongsuk Lee

    2016-12-01

    Full Text Available The spatial size and variation of Arctic sea ice play an important role in Earth’s climate system. These are affected by conditions in the polar atmosphere and Arctic sea temperatures. The Arctic sea ice concentration is calculated from brightness temperature data derived from the Defense Meteorological Satellite program (DMSP F13 Special Sensor Microwave/Imagers (SSMI and the DMSP F17 Special Sensor Microwave Imager/Sounder (SSMIS sensors. Many previous studies point to significant reductions in sea ice and their causes. We investigated the variability of Arctic sea ice using the daily and monthly sea ice concentration data from passive microwave observations to identify the sea ice melting regions near the Arctic polar ice cap. We discovered the abnormal melting of the Arctic sea ice near the North Pole even during the summer and the winter. This phenomenon is hard to explain only surface air temperature or solar heating as suggested by recent studies. We propose a hypothesis explaining this phenomenon. The heat from the deep sea in Arctic Ocean ridges and/or the hydrothermal vents might be contributing to the melting of Arctic sea ice. This hypothesis could be verified by the observation of warm water column structure below the melting or thinning arctic sea ice through the project such as Coriolis dataset for reanalysis (CORA.

  3. Rough-legged buzzards, Arctic foxes and red foxes in a tundra ecosystem without rodents.

    Directory of Open Access Journals (Sweden)

    Ivan Pokrovsky

    Full Text Available Small rodents with multi-annual population cycles strongly influence the dynamics of food webs, and in particular predator-prey interactions, across most of the tundra biome. Rodents are however absent from some arctic islands, and studies on performance of arctic predators under such circumstances may be very instructive since rodent cycles have been predicted to collapse in a warming Arctic. Here we document for the first time how three normally rodent-dependent predator species-rough-legged buzzard, arctic fox and red fox - perform in a low-arctic ecosystem with no rodents. During six years (in 2006-2008 and 2011-2013 we studied diet and breeding performance of these predators in the rodent-free Kolguev Island in Arctic Russia. The rough-legged buzzards, previously known to be a small rodent specialist, have only during the last two decades become established on Kolguev Island. The buzzards successfully breed on the island at stable low density, but with high productivity based on goslings and willow ptarmigan as their main prey - altogether representing a novel ecological situation for this species. Breeding density of arctic fox varied from year to year, but with stable productivity based on mainly geese as prey. The density dynamic of the arctic fox appeared to be correlated with the date of spring arrival of the geese. Red foxes breed regularly on the island but in very low numbers that appear to have been unchanged over a long period - a situation that resemble what has been recently documented from Arctic America. Our study suggests that the three predators found breeding on Kolguev Island possess capacities for shifting to changing circumstances in low-arctic ecosystem as long as other small - medium sized terrestrial herbivores are present in good numbers.

  4. Seasonality of global and Arctic black carbon processes in the Arctic Monitoring and Assessment Programme models: Global and Arctic Black Carbon Processes

    Energy Technology Data Exchange (ETDEWEB)

    Mahmood, Rashed [School of Earth and Ocean Sciences, University of Victoria, Victoria British Columbia Canada; Department of Meteorology, COMSATS Institute of Information Technology, Islamabad Pakistan; von Salzen, Knut [School of Earth and Ocean Sciences, University of Victoria, Victoria British Columbia Canada; Canadian Center for Climate Modelling and Analysis, Environment and Climate Change Canada, University of Victoria, Victoria British Columbia Canada; Flanner, Mark [Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor Michigan USA; Sand, Maria [Center for International Climate and Environmental Research-Oslo, Oslo Norway; Langner, Joakim [Swedish Meteorological and Hydrological Institute, Norrköping Sweden; Wang, Hailong [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland Washington USA; Huang, Lin [Climate Chemistry Measurements and Research, Environment and Climate Change Canada, Toronto Ontario Canada

    2016-06-22

    This study quantifies black carbon (BC) processes in three global climate models and one chemistry transport model, with focus on the seasonality of BC transport, emissions, wet and dry deposition in the Arctic. In the models, transport of BC to the Arctic from lower latitudes is the major BC source for this region while Arctic emissions are very small. All models simulated a similar annual cycle of BC transport from lower latitudes to the Arctic, with maximum transport occurring in July. Substantial differences were found in simulated BC burdens and vertical distributions, with CanAM (NorESM) producing the strongest (weakest) seasonal cycle. CanAM also has the shortest annual mean residence time for BC in the Arctic followed by SMHI-MATCH, CESM and NorESM. The relative contribution of wet and dry deposition rates in removing BC varies seasonally and is one of the major factors causing seasonal variations in BC burdens in the Arctic. Overall, considerable differences in wet deposition efficiencies in the models exist and are a leading cause of differences in simulated BC burdens. Results from model sensitivity experiments indicate that scavenging of BC in convective clouds acts to substantially increase the overall efficiency of BC wet deposition in the Arctic, which leads to low BC burdens and a more pronounced seasonal cycle compared to simulations without convective BC scavenging. In contrast, the simulated seasonality of BC concentrations in the upper troposphere is only weakly influenced by wet deposition in stratiform (layer) clouds whereas lower tropospheric concentrations are highly sensitive.

  5. Climate sensitivity to Arctic seaway restriction during the early Paleogene

    Science.gov (United States)

    Roberts, Christopher D.; LeGrande, Allegra N.; Tripati, Aradhna K.

    2009-09-01

    The opening and closing of ocean gateways affects the global distribution of heat, salt, and moisture, potentially driving climatic change on regional to global scales. Between 65 and 45 million years ago (Ma), during the early Paleogene, exchange between the Arctic and global oceans occurred through two narrow and shallow seaways, the Greenland-Norway seaway and the Turgai Strait. Sediments from the Arctic Ocean suggest that, during this interval, the surface ocean was warm, brackish, and episodically enabled the freshwater fern Azolla to bloom. The precise mechanisms responsible for the development of these conditions in the Paleogene Arctic remain uncertain. Here we show results from an isotope-enabled, atmosphere-ocean general circulation model, which indicate that Northern Hemisphere climate would have been very sensitive to the degree of oceanic exchange through the Arctic seaways. We also present modelled estimates of seawater and calcite δ18O for the Paleogene. By restricting these seaways, we simulate freshening of the surface Arctic Ocean to ~ 6 psu and warming of sea-surface temperatures by 2 °C in the North Atlantic and 5-10 °C in the Labrador Sea. Our results may help explain the occurrence of low-salinity tolerant taxa in the Arctic Ocean during the Eocene and provide a mechanism for enhanced warmth in the north western Atlantic. We propose that the formation of a volcanic land-bridge between Greenland and Europe could have caused increased ocean convection and warming of intermediate waters in the Atlantic. If true, this result is consistent with the theory that bathymetry changes may have caused thermal destabilisation of methane clathrates and supports a tectonic trigger hypothesis for the Paleocene Eocene Thermal Maximum (PETM).

  6. Boundary layer stability and Arctic climate change: a feedback study using EC-Earth

    Energy Technology Data Exchange (ETDEWEB)

    Bintanja, R.; Linden, E.C. van der; Hazeleger, W. [Royal Netherlands Meteorological Institute (KNMI), De Bilt (Netherlands)

    2012-12-15

    Amplified Arctic warming is one of the key features of climate change. It is evident in observations as well as in climate model simulations. Usually referred to as Arctic amplification, it is generally recognized that the surface albedo feedback governs the response. However, a number of feedback mechanisms play a role in AA, of which those related to the prevalent near-surface inversion have received relatively little attention. Here we investigate the role of the near-surface thermal inversion, which is caused by radiative surface cooling in autumn and winter, on Arctic warming. We employ idealized climate change experiments using the climate model EC-Earth together with ERA-Interim reanalysis data to show that boundary-layer mixing governs the efficiency by which the surface warming signal is 'diluted' to higher levels. Reduced vertical mixing, as in the stably stratified inversion layer in Arctic winter, thus amplifies surface warming. Modelling results suggest that both shortwave - through the (seasonal) interaction with the sea ice feedback - and longwave feedbacks are affected by boundary-layer mixing, both in the Arctic and globally, with the effect on the shortwave feedback dominating. The amplifying effect will decrease, however, with climate warming because the surface inversion becomes progressively weaker. We estimate that the reduced Arctic inversion has slowed down global warming by about 5% over the past 2 decades, and we anticipate that it will continue to do so with ongoing Arctic warming. (orig.)

  7. A Sensitivity Study on Modeling Black Carbon in Snow and its Radiative Forcing over the Arctic and Northern China

    Energy Technology Data Exchange (ETDEWEB)

    Qian, Yun; Wang, Hailong; Zhang, Rudong; Flanner, M. G.; Rasch, Philip J.

    2014-06-02

    Black carbon in snow (BCS) simulated in the Community Atmosphere Model (CAM5) is evaluated against measurements over Northern China and the Arctic, and its sensitivity to atmospheric deposition and two parameters that affect post-depositional enrichment is explored. The BCS concentration is overestimated (underestimated) by a factor of two in Northern China (Arctic) in the default model, but agreement with observations is good over both regions in the simulation with improvements in BC transport and deposition. Sensitivity studies indicate that uncertainty in the melt-water scavenging efficiency (MSE) parameter substantially affects BCS and its radiative forcing (by a factor of 2-7) in the Arctic through post-depositional enrichment. The MSE parameter has a relatively small effect on the magnitude of BCS seasonal cycle but can alter its phase in Northern China. The impact of the snow aging scaling factor (SAF) on BCS, partly through the post-depositional enrichment effect, shows more complex latitudinal and seasonal dependence. Similar to MSE, SAF affects more significantly the magnitude (phase) of BCS season cycle over the Arctic (Northern China). While uncertainty associated with the representation of BC transport and deposition processes in CAM5 is more important than that associated with the two snow model parameters in Northern China, the two uncertainties have comparable effect in the Arctic.

  8. CONCEPTUAL DIFFERENCES BETWEEN THE PACIFIC, ATLANTIC AND ARCTIC TSUNAMI WARNING SYSTEMS FOR CANADA

    Directory of Open Access Journals (Sweden)

    T.S. Murty

    2005-01-01

    Full Text Available Canada has coastlines on three of the four oceans on the globe, namely, the Pacific, Atlantic and Arctic oceans. The Pacific and Atlantic oceans are connected to the Arctic Ocean in the north, but still they are three distinct oceans, and need three individual tsunami warning systems. Tsunamis in the Arctic Ocean are not as well documented as in the Pacific and Atlantic oceans. From what is known, tsunamis in the Arctic Ocean are rare and probably are small in amplitude. Because of very low population density, around the Canadian Arctic, at present, there is no priority for a tsunami warning system for Arctic Canada. For the Pacific Ocean, a tsunami warning system is in existence since 1948. In at least one sense, the warning aspects of the tsunami warning system for the Pacific coast of Canada, is relatively simple and straight forward, because it involves only the federal government (PSEPC and the provincial government of British Columbia (PEP. For the Atlantic Ocean, A tsunami warning system is now being established. The warning aspects will be some what more complex for eastern Canada, since it not only involves the federal government, but also five provinces, namely, Newfoundland and Labrador, Nova Scotia, New Brunswick, Prince Edward Island and Quebec. The Alaska tsunami warning center (ATWC in Palmer, Alaska, provides tsunami warnings for both Pacific and Atlantic Canada.

  9. [Dynamics of parasite communities in an age series of Arctic Cisco Coregonus migratorius (Georgi, 1775)].

    Science.gov (United States)

    Dugarov, Zh N; Pronin, N M

    2013-01-01

    Parasite communities of Arctic cisco from Chivyrkui Bay of Lake Baikal have been analyzed at levels of a host individual (infracommunity), a individual age group of a host-(assemblages of infracommunities), and a host population (component community). Significant positive correlations of parameters of species richness (number of parasite species, Margalef and Menhinick indices) with the age of Arctic cisco were recorded only at the level of parasite inffacommunities. The absence of linear positive correlations between the parameters of species richness and the age of Arctic cisco at the level of assemblages of parasite infracommunities were revealed for the first time for fish of Lake Baikal. The peculiarity of the dynamics of parasite communities of. Arctic cisco is determined by specific features of the host physiology and ecology, primarily by the age dynamics of the feeding spectrum.

  10. Molecular epidemiological study of Arctic rabies virus isolates from Greenland and comparison with isolates from throughout the Arctic and Baltic regions

    DEFF Research Database (Denmark)

    Mansfield, K.L.; Racloz, V.; McElhinney, L.M.

    2006-01-01

    We report a Molecular epidemiological study of rabies in Arctic Countries by comparing a panel of novel Greenland isolates to a larger cohort of viral sequences from both Arctic and Baltic regions. Rabies Virus isolates originating from wildlife (Arctic/red foxes, raccoon-dogs and reindeer), from...... sequences from the Arctic and Arctic-like viruses, which were distinct from rabies isolates originating ill the Baltic region of Europe, the Steppes in Russia and from North America. The Arctic-like group consist of isolates from India, Pakistan, southeast Siberia and Japan. The Arctic group...... in northeast Siberia and Alaska. Arctic 2b isolates represent a biotype, which is dispersed throughout the Arctic region. The broad distribution of rabies in the Arctic regions including Greenland, Canada and Alaska provides evidence for the movement of rabies across borders....

  11. Demographic and economic disparities among Arctic regions

    OpenAIRE

    Schmidt, Jennifer Irene; Aanesen, Margrethe; Klokov, Konstantin; Kruschov, Sergei; Hausner, Vera Helene

    2015-01-01

    Accepted manuscript version. Published version at http://doi.org/10.1080/1088937X.2015.1065926. We use demographic and economic indicators to analyze spatial differences and temporal trends across 18 regions surrounding the Arctic Ocean. Multifactor and cluster analysis were used on 10 indicators reflecting income, employment and demography from 1995 to 2008. The main difference is between regions with high population densities, low natural growth rate, and low unemployment (Ru...

  12. Climate-driven effects of fire on winter habitat for caribou in the Alaskan-Yukon Arctic

    Science.gov (United States)

    Gustine, David D.; Brinkman, Todd J.; Lindgren, Michael A.; Schmidt, Jennifer I.; Rupp, T. Scott; Adams, Layne G.

    2014-01-01

    Climatic warming has direct implications for fire-dominated disturbance patterns in northern ecosystems. A transforming wildfire regime is altering plant composition and successional patterns, thus affecting the distribution and potentially the abundance of large herbivores. Caribou (Rangifer tarandus) are an important subsistence resource for communities throughout the north and a species that depends on terrestrial lichen in late-successional forests and tundra systems. Projected increases in area burned and reductions in stand ages may reduce lichen availability within caribou winter ranges. Sufficient reductions in lichen abundance could alter the capacity of these areas to support caribou populations. To assess the potential role of a changing fire regime on winter habitat for caribou, we used a simulation modeling platform, two global circulation models (GCMs), and a moderate emissions scenario to project annual fire characteristics and the resulting abundance of lichen-producing vegetation types (i.e., spruce forests and tundra >60 years old) across a modeling domain that encompassed the winter ranges of the Central Arctic and Porcupine caribou herds in the Alaskan-Yukon Arctic. Fires were less numerous and smaller in tundra compared to spruce habitats throughout the 90-year projection for both GCMs. Given the more likely climate trajectory, we projected that the Porcupine caribou herd, which winters primarily in the boreal forest, could be expected to experience a greater reduction in lichen-producing winter habitats (−21%) than the Central Arctic herd that wintered primarily in the arctic tundra (−11%). Our results suggest that caribou herds wintering in boreal forest will undergo fire-driven reductions in lichen-producing habitats that will, at a minimum, alter their distribution. Range shifts of caribou resulting from fire-driven changes to winter habitat may diminish access to caribou for rural communities that reside in fire-prone areas.

  13. Climate-driven effects of fire on winter habitat for caribou in the Alaskan-Yukon Arctic.

    Directory of Open Access Journals (Sweden)

    David D Gustine

    Full Text Available Climatic warming has direct implications for fire-dominated disturbance patterns in northern ecosystems. A transforming wildfire regime is altering plant composition and successional patterns, thus affecting the distribution and potentially the abundance of large herbivores. Caribou (Rangifer tarandus are an important subsistence resource for communities throughout the north and a species that depends on terrestrial lichen in late-successional forests and tundra systems. Projected increases in area burned and reductions in stand ages may reduce lichen availability within caribou winter ranges. Sufficient reductions in lichen abundance could alter the capacity of these areas to support caribou populations. To assess the potential role of a changing fire regime on winter habitat for caribou, we used a simulation modeling platform, two global circulation models (GCMs, and a moderate emissions scenario to project annual fire characteristics and the resulting abundance of lichen-producing vegetation types (i.e., spruce forests and tundra >60 years old across a modeling domain that encompassed the winter ranges of the Central Arctic and Porcupine caribou herds in the Alaskan-Yukon Arctic. Fires were less numerous and smaller in tundra compared to spruce habitats throughout the 90-year projection for both GCMs. Given the more likely climate trajectory, we projected that the Porcupine caribou herd, which winters primarily in the boreal forest, could be expected to experience a greater reduction in lichen-producing winter habitats (-21% than the Central Arctic herd that wintered primarily in the arctic tundra (-11%. Our results suggest that caribou herds wintering in boreal forest will undergo fire-driven reductions in lichen-producing habitats that will, at a minimum, alter their distribution. Range shifts of caribou resulting from fire-driven changes to winter habitat may diminish access to caribou for rural communities that reside in fire-prone areas.

  14. Climate-driven effects of fire on winter habitat for caribou in the Alaskan-Yukon Arctic.

    Science.gov (United States)

    Gustine, David D; Brinkman, Todd J; Lindgren, Michael A; Schmidt, Jennifer I; Rupp, T Scott; Adams, Layne G

    2014-01-01

    Climatic warming has direct implications for fire-dominated disturbance patterns in northern ecosystems. A transforming wildfire regime is altering plant composition and successional patterns, thus affecting the distribution and potentially the abundance of large herbivores. Caribou (Rangifer tarandus) are an important subsistence resource for communities throughout the north and a species that depends on terrestrial lichen in late-successional forests and tundra systems. Projected increases in area burned and reductions in stand ages may reduce lichen availability within caribou winter ranges. Sufficient reductions in lichen abundance could alter the capacity of these areas to support caribou populations. To assess the potential role of a changing fire regime on winter habitat for caribou, we used a simulation modeling platform, two global circulation models (GCMs), and a moderate emissions scenario to project annual fire characteristics and the resulting abundance of lichen-producing vegetation types (i.e., spruce forests and tundra >60 years old) across a modeling domain that encompassed the winter ranges of the Central Arctic and Porcupine caribou herds in the Alaskan-Yukon Arctic. Fires were less numerous and smaller in tundra compared to spruce habitats throughout the 90-year projection for both GCMs. Given the more likely climate trajectory, we projected that the Porcupine caribou herd, which winters primarily in the boreal forest, could be expected to experience a greater reduction in lichen-producing winter habitats (-21%) than the Central Arctic herd that wintered primarily in the arctic tundra (-11%). Our results suggest that caribou herds wintering in boreal forest will undergo fire-driven reductions in lichen-producing habitats that will, at a minimum, alter their distribution. Range shifts of caribou resulting from fire-driven changes to winter habitat may diminish access to caribou for rural communities that reside in fire-prone areas.

  15. Emergent Behavior of Arctic Precipitation in Response to Enhanced Arctic Warming

    Science.gov (United States)

    Anderson, Bruce T.; Feldl, Nicole; Lintner, Benjamin R.

    2018-03-01

    Amplified warming of the high latitudes in response to human-induced emissions of greenhouse gases has already been observed in the historical record and is a robust feature evident across a hierarchy of model systems, including the models of the Coupled Model Intercomparison Project Phase 5 (CMIP5). The main aims of this analysis are to quantify intermodel differences in the Arctic amplification (AA) of the global warming signal in CMIP5 RCP8.5 (Representative Concentration Pathway 8.5) simulations and to diagnose these differences in the context of the energy and water cycles of the region. This diagnosis reveals an emergent behavior between the energetic and hydrometeorological responses of the Arctic to warming: in particular, enhanced AA and its associated reduction in dry static energy convergence is balanced to first order by latent heating via enhanced precipitation. This balance necessitates increasing Arctic precipitation with increasing AA while at the same time constraining the magnitude of that precipitation increase. The sensitivity of the increase, 1.25 (W/m2)/K ( 240 (km3/yr)/K), is evident across a broad range of historical and projected AA values. Accounting for the energetic constraint on Arctic precipitation, as a function of AA, in turn informs understanding of both the sign and magnitude of hydrologic cycle changes that the Arctic may experience.

  16. Arctic Aerosols and Sources

    DEFF Research Database (Denmark)

    Nielsen, Ingeborg Elbæk

    2017-01-01

    Since the Industrial Revolution, the anthropogenic emission of greenhouse gases has been increasing, leading to a rise in the global temperature. Particularly in the Arctic, climate change is having serious impact where the average temperature has increased almost twice as much as the global during......, ammonium, black carbon, and trace metals. This PhD dissertation studies Arctic aerosols and their sources, with special focus on black carbon, attempting to increase the knowledge about aerosols’ effect on the climate in an Arctic content. The first part of the dissertation examines the diversity...... of aerosol emissions from an important anthropogenic aerosol source: residential wood combustion. The second part, characterizes the chemical and physical composition of aerosols while investigating sources of aerosols in the Arctic. The main instrument used in this research has been the state...

  17. Arctic bioremediation

    International Nuclear Information System (INIS)

    Lidell, B.V.; Smallbeck, D.R.; Ramert, P.C.

    1991-01-01

    Cleanup of oil and diesel spills on gravel pads in the Arctic has typically been accomplished by utilizing a water flushing technique to remove the gross contamination or excavating the spill area and placing the material into a lined pit, or a combination of both. Enhancing the biological degradation of hydrocarbon (bioremediation) by adding nutrients to the spill area has been demonstrated to be an effective cleanup tool in more temperate locations. However, this technique has never been considered for restoration in the Arctic because the process of microbial degradation of hydrocarbon in this area is very slow. The short growing season and apparent lack of nutrients in the gravel pads were thought to be detrimental to using bioremediation to cleanup Arctic oil spills. This paper discusses the potential to utilize bioremediation as an effective method to clean up hydrocarbon spills in the northern latitudes

  18. Arctic Nuclear Waste Assessment Program

    International Nuclear Information System (INIS)

    Edson, R.

    1995-01-01

    The Arctic Nuclear Waste Assessment Program (ANWAP) was initiated in 1993 as a result of US congressional concern over the disposal of nuclear materials by the former Soviet Union into the Arctic marine environment. The program is comprised of appr. 70 different projects. To date appr. ten percent of the funds has gone to Russian institutions for research and logistical support. The collaboration also include the IAEA International Arctic Seas Assessment Program. The major conclusion from the research to date is that the largest signals for region-wide radionuclide contamination in the Arctic marine environment appear to arise from the following: 1) atmospheric testing of nuclear weapons, a practice that has been discontinued; 2) nuclear fuel reprocessing wastes carried in the Arctic from reprocessing facilities in Western Europe, and 3) accidents such as Chernobyl and the 1957 explosion at Chelyabinsk-65

  19. On Uncertain Ice: The Future of Arctic Shipping and the Northwest Passage

    Directory of Open Access Journals (Sweden)

    Whitney Lackenbauer

    2014-12-01

    Full Text Available The Arctic sea-ice is in a state of rapid decline. Barriers to navigation that once doomed the likes of Sir John Franklin and closed the shortcut to the Orient now seem to be melting away. The prospect of shorter, transpolar transportation routes linking Asian and Western markets has inspired excitement and fear, and particularly the latter when it comes to Canadian sovereignty. This paper confirms recent studies suggesting that, in spite of the general trend towards reduced ice cover in the Arctic Basin, environmental variability, scarce infrastructure and other navigational aids, and uncertain economics make it unlikely that the Northwest Passage will emerge as a viable trans-shipping route in the foreseeable future. Instead, the region is likely to witness a steady increase in resource, resupply, and tourist destinational shipping. Accordingly, concerns that this increased activity will adversely affect Canadian sovereignty are misplaced. Rather than calling into question Canadian control, foreign vessels engaged in local activities are likely to reinforce Canada’s legal position by demonstrating an international acceptance of Canadian laws and regulations. Rather than worrying about the “sovereignty” ramifications of Arctic shipping, the Canadian government should focus its short – and medium – term energies on the practical requirements of developing and maintaining safe shipping routes. At the heart of this requirement is ensuring that such activity is beneficial to Inuit, whose traditional “highways” will double as transits routes for resource carriers and cruise liners. If developed with an eye to those most directly affected, Canada’s Arctic waters can become a well-managed route to an increasingly attractive region, making our Arctic a destination rather than mere space through which to pass.

  20. Globalising the Arctic Climate:

    DEFF Research Database (Denmark)

    Corry, Olaf

    2017-01-01

    This chapter uses an object-oriented approach to explore how the Arctic is being constituted as an object of global governance within an emerging ‘global polity’, partly through geoengineering plans and political visions ('imaginaries'). It suggests that governance objects—the socially constructed...... on world politics. The emergence of the Arctic climate as a potential target of governance provides a case in point. The Arctic climate is becoming globalised, pushing it up the political agenda but drawing it away from its local and regional context....

  1. High mountain origin, phylogenetics, evolution, and niche conservatism of arctic lineages in the hemiparasitic genus Pedicularis (Orobanchaceae).

    Science.gov (United States)

    Tkach, Natalia; Ree, Richard H; Kuss, Patrick; Röser, Martin; Hoffmann, Matthias H

    2014-07-01

    The origin of the arctic flora covering the northernmost treeless areas is still poorly understood. Arctic plants may have evolved in situ or immigrated from the adjacent ecosystems. Frequently arctic species have disjunctive distributions between the Arctic and high mountain systems of the temperate zone. This pattern may result from long distance dispersal or from glacial plant migrations and extinctions of intermediate populations. The hemiparasitic genus Pedicularis is represented in the Arctic by c. 28 taxa and ranks among the six most species-rich vascular plant genera of this region. In this study, we test the hypothesis that these lineages evolved from predecessors occurring in northern temperate mountain ranges, many of which are current centers of diversity for the genus. We generated a nuclear ribosomal and chloroplast DNA phylogeny including almost all of the arctic taxa and nearly half of the genus as a whole. The arctic taxa of Pedicularis evolved 12-14 times independently and are mostly nested in lineages that otherwise occur in the high mountains of Eurasia and North America. It appears that only three arctic lineages arose from the present-day center of diversity of the genus, in the Hengduan Mountains and Himalayas. Two lineages are probably of lowland origin. Arctic taxa of Pedicularis show considerable niche conservatism with respect to soil moisture and grow predominantly in moist to wet soils. The studied characteristics of ecology, morphology, and chromosome numbers of arctic Pedicularis show a heterogeneous pattern of evolution. The directions of morphological changes among the arctic lineages show opposing trends. Arctic taxa are chiefly diploid, the few tetraploid chromosome numbers of the genus were recorded only for arctic taxa. Five arctic Pedicularis are annuals or biennials, life forms otherwise rare in the Arctic. Other genera of the Orobanchaceae consist also of an elevated number of short-lived species, thus hemiparasitism may

  2. High-Arctic Plant-Herbivore Interactions under Climate Influence

    DEFF Research Database (Denmark)

    Berg, Thomas B.; Schmidt, Niels M.; Høye, Toke Thomas

    This chapter focuses on a 10-year data series from Zackenberg on the trophic interactions between two characteristic arctic plant species, arctic willow Salix arctica and mountain avens Dryas octopetala, and three herbivore species covering the very scale of size present at Zackenberg, namely......, the moth Sympistis zetterstedtii, the collared lemming Dicrostonyx groenlandicus and the musk ox Ovibos moschatus. Data from Zackenberg show that timing of snowmelt, the length of the growing season and summer temperature are the basic variables that determine the phenology of flowering and primary...... production upon which the herbivores depend, and snow may be the most important climatic factor affecting the different trophic levels and the interactions between them. Hence, the spatio-temporal distribution of snow, as well as thawing events during winter, may have considerable effects on the herbivores...

  3. The Evolving Arctic: Current State of U.S. Arctic Policy

    Science.gov (United States)

    2013-09-01

    to advance national interests. The U.S. has not yet acceded to UNCLOS, and trails its Arctic neighbors in regards to national policy and direction...maritime transportation, and maritime tourism are expanding exponentially. As commercial opportunities increase in the region, the U.S. needs an...UNCLOS without having ratified it, it trails behind the remainder of the Arctic states on its policy and in asserting its

  4. The 11-year solar cycle affects the intensity and annularity of the Arctic Oscillation

    Czech Academy of Sciences Publication Activity Database

    Huth, Radan; Bochníček, Josef; Hejda, Pavel

    2007-01-01

    Roč. 69, č. 9 (2007), s. 1095-1109 ISSN 1364-6826 R&D Projects: GA AV ČR IAA3042401 Institutional research plan: CEZ:AV0Z30420517; CEZ:AV0Z30120515 Keywords : Arctic Oscillation * Solar cycle * 10.7 cm radio flux * Sea level pressure * Principal component analysis Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 1.566, year: 2007

  5. The Arctic-Subarctic Sea Ice System is Entering a Seasonal Regime: Implications for Future Arctic Amplication

    Science.gov (United States)

    Haine, T. W. N.; Martin, T.

    2017-12-01

    The loss of Arctic sea ice is a conspicuous example of climate change. Climate models project ice-free conditions during summer this century under realistic emission scenarios, reflecting the increase in seasonality in ice cover. To quantify the increased seasonality in the Arctic-Subarctic sea ice system, we define a non-dimensional seasonality number for sea ice extent, area, and volume from satellite data and realistic coupled climate models. We show that the Arctic-Subarctic, i.e. the northern hemisphere, sea ice now exhibits similar levels of seasonality to the Antarctic, which is in a seasonal regime without significant change since satellite observations began in 1979. Realistic climate models suggest that this transition to the seasonal regime is being accompanied by a maximum in Arctic amplification, which is the faster warming of Arctic latitudes compared to the global mean, in the 2010s. The strong link points to a peak in sea-ice-related feedbacks that occurs long before the Arctic becomes ice-free in summer.

  6. The Arctic zone: possibilities and risks of development

    Science.gov (United States)

    Sentsov, A.; Bolsunovskaya, Y.; Melnikovich, E.

    2016-09-01

    The authors analyze the Arctic region innovative possibilities from the perspective of political ideology and strategy. The Arctic region with its natural resources and high economic potential attracts many companies and it has become an important area of transnational development. At present, the Arctic region development is of great importance in terms of natural resource management and political system development. However, the most important development issue in the Arctic is a great risk of different countries’ competing interests in economic, political, and legal context. These are challenges for international partnership creating in the Arctic zone, Russian future model developing for the Arctic, and recognition of the Arctic as an important resource for the Russians. The Russian economic, military, and political expansion in the Arctic region has the potential to strengthen the national positions. The authors present interesting options for minimizing and eliminating political risks during the Arctic territories development and define an effective future planning model for the Russian Arctic.

  7. Short-cut transport path for Asian dust directly to the Arctic: a case study

    International Nuclear Information System (INIS)

    Huang, Zhongwei; Huang, Jianping; Wang, Shanshan; Zhou, Tian; Jin, Hongchun; Hayasaka, Tadahiro

    2015-01-01

    Asian dust can be transported long distances from the Taklimakan or Gobi desert to North America across the Pacific Ocean, and it has been found to have a significant impact on ecosystems, climate, and human health. Although it is well known that Asian dust is transported all over the globe, there are limited observations reporting Asian dust transported to the Arctic. We report a case study of a large-scale heavy dust storm over East Asia on 19 March 2010, as shown by ground-based and space-borne multi-sensor observations, as well as NCEP/NCAR reanalysis data and HYSPLIT trajectories. Our analysis suggests that Asian dust aerosols were transported from northwest China to the Arctic within 5 days, crossing eastern China, Japan and Siberia before reaching the Arctic. The results indicate that Asian dust can be transported for long distances along a previously unreported transport path. Evidence from other dust events over the past decade (2001–2010) also supports our results, indicating that dust from 25.2% of Asian dust events has potentially been transported directly to the Arctic. The transport of Asian dust to the Arctic is due to cyclones and the enhanced East Asia Trough (EAT), which are very common synoptic systems over East Asia. This suggests that many other large dust events would have generated long-range transport of dust to the Arctic along this path in the past. Thus, Asian dust potentially affects the Arctic climate and ecosystem, making climate change in the Arctic much more complex to be fully understood. (letter)

  8. The Arctic Coastal Erosion Problem

    Energy Technology Data Exchange (ETDEWEB)

    Frederick, Jennifer M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Thomas, Matthew Anthony [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bull, Diana L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jones, Craig A. [Integral Consulting Inc., San Francisco, CA (United States); Roberts, Jesse D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-09-01

    Permafrost-dominated coastlines in the Arctic are rapidly disappearing. Arctic coastal erosion rates in the United States have doubled since the middle of the twentieth century and appear to be accelerating. Positive erosion trends have been observed for highly-variable geomorphic conditions across the entire Arctic, suggesting a major (human-timescale) shift in coastal landscape evolution. Unfortunately, irreversible coastal land loss in this region poses a threat to native, industrial, scientific, and military communities. The Arctic coastline is vast, spanning more than 100,000 km across eight nations, ten percent of which is overseen by the United States. Much of area is inaccessible by all-season roads. People and infrastructure, therefore, are commonly located near the coast. The impact of the Arctic coastal erosion problem is widespread. Homes are being lost. Residents are being dispersed and their villages relocated. Shoreline fuel storage and delivery systems are at greater risk. The U.S. Department of Energy (DOE) and Sandia National Laboratories (SNL) operate research facilities along some of the most rapidly eroding sections of coast in the world. The U.S. Department of Defense (DOD) is struggling to fortify coastal radar sites, operated to ensure national sovereignty in the air, against the erosion problem. Rapid alterations to the Arctic coastline are facilitated by oceanographic and geomorphic perturbations associated with climate change. Sea ice extent is declining, sea level is rising, sea water temperature is increasing, and permafrost state is changing. The polar orientation of the Arctic exacerbates the magnitude and rate of the environmental forcings that facilitate coastal land area loss. The fundamental mechanics of these processes are understood; their non-linear combination poses an extreme hazard. Tools to accurately predict Arctic coastal erosion do not exist. To obtain an accurate predictive model, a coupling of the influences of

  9. Revising the archaeological record of the Upper Pleistocene Arctic Siberia: Human dispersal and adaptations in MIS 3 and 2

    Science.gov (United States)

    Pitulko, Vladimir; Pavlova, Elena; Nikolskiy, Pavel

    2017-06-01

    As the main external driver, environmental changes largely predetermine human population distribution, especially in the Arctic, where environmental conditions were often too extreme for human survival. Not that long ago the only evidence of human presence here was the Berelekh site in the lower reaches of the Indighirka River. This landmark dates to 13,000-12,000 years ago but it was widely accepted as documentation of the earliest stage of human dispersal in the Arctic. New research discussed here, shows that humans began colonizing the Siberian Arctic at least by the end of the early stage of MIS 3 at around 45,000 years ago. For now, this earliest known stage of human occupation in the arctic regions is documented by the evidence of human hunting. The archaeological record of continued human occupation is fragmentary; nevertheless, evidence exists for each significant phase including the Last Glacial Maximum (LGM). Siberian Arctic human populations were likely supported by the local mammoth population, which provided humans with food and raw material in the form of mammoth tusks. Processing of mammoth ivory is recognized widely as one of the most important peculiarities of the material culture of ancient humans. In fact, ivory tool manufacturing is one of the most important innovations of the Upper Palaeolithic in northern Eurasia. Technology that allowed manufacturing of long ivory shafts - long points and full-size spears - was critical in the tree-less open landscapes of Eurasian mammoth steppe belt. These technological skills reach their greatest extent and development shortly before the Last Glacial Maximum but are recognizable until the Pleistocene-Holocene boundary across Northern Eurasia in all areas populated by mammoths and humans. Loss of this stable source of raw material due to the late Pleistocene mammoth extinction may have provoked a shift in post-LGM Siberia to the Beringian microblade tradition. This paper reviews the most important

  10. Allegations of Environmental Contamination and Hazards Affecting the Inupiat Community of the Arctic Slope, Alaska. Evaluation Report

    National Research Council Canada - National Science Library

    1998-01-01

    .... The Inupiat community of the Arctic Slope, Alaska alleged that the past activities of the Department of Defense and other Federal agencies exposed the Inupiat community to environmental contamination...

  11. The Arctic Marine Pulses Model: Linking Contiguous Domains in the Pacific Arctic Region

    Science.gov (United States)

    Moore, S. E.; Stabeno, P. J.

    2016-02-01

    The Pacific Arctic marine ecosystem extends from the northern Bering Sea, across the Chukchi and into the East Siberian and Beaufort seas. Food webs in this domain are short, a simplicity that belies the biophysical complexity underlying trophic linkages from primary production to humans. Existing biophysical models, such as pelagic-benthic coupling and advective processes, provide frameworks for connecting certain aspects of the marine food web, but do not offer a full accounting of events that occur seasonally across the Pacific Arctic. In the course of the Synthesis of Arctic Research (SOAR) project, a holistic Arctic Marine Pulses (AMP) model was developed that depicts seasonal biophysical `pulses' across a latitudinal gradient, and linking four previously-described contiguous domains, including the: (i) Pacific-Arctic domain = the focal region; (ii) seasonal ice zone domain; (iii) Pacific marginal domain; and (iv) riverine coastal domain. The AMP model provides a spatial-temporal framework to guide research on dynamic ecosystem processes during this period of rapid biophysical changes in the Pacific Arctic. Some of the processes included in the model, such as pelagic-benthic coupling in the Northern Bering and Chukchi seas, and advection and upwelling along the Beaufort shelf, are already the focus of sampling via the Distributed Biological Observatory (DBO) and other research programs. Other aspects such as biological processes associated with the seasonal ice zone and trophic responses to riverine outflow have received less attention. The AMP model could be enhanced by the application of visualization tools to provide a means to watch a season unfold in space and time. The capability to track sea ice dynamics and water masses and to move nutrients, prey and upper-trophic predators in space and time would provide a strong foundation for the development of predictive human-inclusive ecosystem models for the Pacific Arctic.

  12. State of the Arctic Environment

    International Nuclear Information System (INIS)

    1990-01-01

    The Arctic environment, covering about 21 million km 2 , is in this connection regarded as the area north of the Arctic Circle. General biological and physical features of the terrestrial and freshwater environments of the Arctic are briefly described, but most effort is put into a description of the marine part which constitutes about two-thirds of the total Arctic environment. General oceanography and morphological characteristics are included; e.g. that the continental shelf surrounding the Arctic deep water basins covers approximately 36% of the surface areas of Arctic waters, but contains only 2% of the total water masses. Blowout accident may release thousands of tons of oil per day and last for months. They occur statistically very seldom, but the magnitude underlines the necessity of an efficient oil spill contingency as well as sound safety and quality assurance procedures. Contingency plans should be coordinated and regularly evaluated through simulated and practical tests of performance. Arctic conditions demand alternative measures compared to those otherwise used for oil spill prevention and clean-up. New concepts or optimization of existing mechanical equipment is necessary. Chemical and thermal methods should be evaluated for efficiency and possible environmental effects. Both due to regular discharges of oil contaminated drilled cuttings and the possibility of a blowout or other spills, drilling operations in biological sensitive areas may be regulated to take place only during the less sensitive parts of the year. 122 refs., 8 figs., 8 tabs

  13. Arctic bioremediation

    International Nuclear Information System (INIS)

    Liddell, B.V.; Smallbeck, D.R.; Ramert, P.C.

    1991-01-01

    Cleanup of oil and diesel spills on gravel pads in the Arctic has typically been accomplished by utilizing a water flushing technique to remove the gross contamination or excavating the spill area and placing the material into a lined pit, or a combination of both. This paper discusses the potential to utilize bioremediation as an effective method to clean up hydrocarbon spills in the northern latitudes. Discussed are the results of a laboratory bioremediation study which simulated microbial degradation of hydrocarbon under arctic conditions

  14. Arctic tipping points in an Earth system perspective.

    Science.gov (United States)

    Wassmann, Paul; Lenton, Timothy M

    2012-02-01

    We provide an introduction to the volume The Arctic in the Earth System perspective: the role of tipping points. The terms tipping point and tipping element are described and their role in current science, general debates, and the Arctic are elucidated. From a wider perspective, the volume focuses upon the role of humans in the Arctic component of the Earth system and in particular the envelope for human existence, the Arctic ecosystems. The Arctic climate tipping elements, the tipping elements in Arctic ecosystems and societies, and the challenges of governance and anticipation are illuminated through short summaries of eight publications that derive from the Arctic Frontiers conference in 2011 and the EU FP7 project Arctic Tipping Points. Then some ideas based upon resilience thinking are developed to show how wise system management could ease pressures on Arctic systems in order to keep them away from tipping points.

  15. The Arctic Report Card: Communicating the State of the Rapidly Changing Arctic to a Diverse Audience via the Worldwide Web

    Science.gov (United States)

    Jeffries, M. O.; Richter-Menge, J.; Overland, J. E.; Soreide, N. N.

    2013-12-01

    Rapid change is occurring throughout the Arctic environmental system. The goal of the Arctic Report Card is to communicate the nature of the many changes to a diverse audience via the Worldwide Web. First published in 2006, the Arctic Report Card is a peer-reviewed publication containing clear, reliable and concise scientific information on the current state of the Arctic environment relative to observational records. Available only online, it is intended to be an authoritative source for scientists, teachers, students, decision-makers, policy-makers and the general public interested in the Arctic environment and science. The Arctic Report Card is organized into five sections: Atmosphere; Sea Ice & Ocean; Marine Ecosystem; Terrestrial Ecosystem; Terrestrial Cryosphere. Arctic Report Card 2012, the sixth annual update, comprised 20 essays on physical and biological topics prepared by an international team of 141 scientists from 15 different countries. For those who want a quick summary, the Arctic Report Card home page provides highlights of key events and findings, and a short video that is also available on YouTube. The release of the Report Card each autumn is preceded by a NOAA press release followed by a press conference, when the Web site is made public. The release of Arctic Report Card 2012 at an AGU Fall Meeting press conference on 5 December 2012 was subsequently reported by leading media organizations. The NOAA Arctic Web site, of which the Report Card is a part, is consistently at the top of Google search results for the keyword 'arctic', and the Arctic Report Card Web site tops search results for keyword "arctic report" - pragmatic indications of a Web site's importance and popularity. As another indication of the Web site's impact, in December 2012, the month when the 2012 update was released, the Arctic Report Card Web site was accessed by 19,851 unique sites in 105 countries, and 4765 Web site URLs referred to the Arctic Report Card. The 2012 Arctic

  16. THE ARCTIC: A DIALOGUE FOR DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Yury Mazurov

    2010-01-01

    Full Text Available In September 2010, Moscow hosted the International Arctic Forum “The Arctic—Territory of Dialogue.” The Arctic Forum focused its attention on elements of sustainable development in the Arctic region, i.e., ecology, economics, infrastructure, social services, security, and geopolitics. Many Russian experts and many well-known politicians and experts from leading research centers of the Arctic countries (Canada, Denmark, Finland, Iceland, Norway, Sweden, and USA, as well as by participants from France, Germany, Netherlands, and other countries attended the forum. Scholars and public figures from the European countries, representatives of the NATO, the Organization for Security and Cooperation in Europe and other institutions were also present at the conference. In his key-note speech the Chairman of the Board of Trustees of the Russian Geographical Society (RGS, Prime Minister of the Russian Federation, Vladimir V. Putin formulated the principles of Russian national policy in the Arctic. Russian and foreign participants supported the idea of continuing dialogue on the Arctic under the RGS’s aegis and the transformation of the Arctic Forum into a permanent platform for discussions on the most urgent issues of the region.

  17. Influence of sea ice on Arctic coasts

    Science.gov (United States)

    Barnhart, K. R.; Kay, J. E.; Overeem, I.; Anderson, R. S.

    2017-12-01

    Coasts form the dynamic interface between the terrestrial and oceanic systems. In the Arctic, and in much of the world, the coast is a focal point for population, infrastructure, biodiversity, and ecosystem services. A key difference between Arctic and temperate coasts is the presence of sea ice. Changes in sea ice cover can influence the coast because (1) the length of the sea ice-free season controls the time over which nearshore water can interact with the land, and (2) the location of the sea ice edge controls the fetch over which storm winds can interact with open ocean water, which in turn governs nearshore water level and wave field. We first focus on the interaction of sea ice and ice-rich coasts. We combine satellite records of sea ice with a model for wind-driven storm surge and waves to estimate how changes in the sea ice-free season have impacted the nearshore hydrodynamic environment along Alaska's Beaufort Sea Coast for the period 1979-2012. This region has experienced some of the greatest changes in both sea ice cover and coastal erosion rates in the Arctic: the median length of the open-water season has expanded by 90 percent, while coastal erosion rates have more than doubled from 8.7 to 19 m yr-1. At Drew Point, NW winds increase shoreline water levels that control the incision of a submarine notch, the rate-limiting step of coastal retreat. The maximum water-level setup at Drew Point has increased consistently with increasing fetch. We extend our analysis to the entire Arctic using both satellite-based observations and global coupled climate model output from the Community Earth System Model Large Ensemble (CESM-LE) project. This 30-member ensemble employs a 1-degree version of the CESM-CAM5 historical forcing for the period 1920-2005, and RCP 8.5 forcing from 2005-2100. A control model run with constant pre-industrial (1850) forcing characterizes internal variability in a constant climate. Finally, we compare observations and model results to

  18. Detecting and Understanding Changing Arctic Carbon Emissions

    Science.gov (United States)

    Bruhwiler, L.

    2017-12-01

    Warming in the Arctic has proceeded faster than anyplace on Earth. Our current understanding of biogeochemistry suggests that we can expect feedbacks between climate and carbon in the Arctic. Changes in terrestrial fluxes of carbon can be expected as the Arctic warms, and the vast stores of organic carbon frozen in Arctic soils could be mobilized to the atmosphere, with possible significant impacts on global climate. Quantifying trends in Arctic carbon exchanges is important for policymaking because greater reductions in anthropogenic emissions may be required to meet climate goals. Observations of greenhouse gases in the Arctic and globally have been collected for several decades. Analysis of this data does not currently support significantly changed Arctic emissions of CH4, however it is difficult to detect changes in Arctic emissions because of transport from lower latitudes and large inter-annual variability. Unfortunately, current space-based remote sensing systems have limitations at Arctic latitudes. Modeling systems can help untangle the Arctic budget of greenhouse gases, but they are dependent on underlying prior fluxes, wetland distributions and global anthropogenic emissions. Also, atmospheric transport models may have significant biases and errors. For example, unrealistic near-surface stability can lead to underestimation of emissions in atmospheric inversions. We discuss our current understanding of the Arctic carbon budget from both top-down and bottom-up approaches. We show that current atmospheric inversions agree well on the CH4 budget. On the other hand, bottom-up models vary widely in their predictions of natural emissions, with some models predicting emissions too large to be accommodated by the budget implied by global observations. Large emissions from the shallow Arctic ocean are also inconsistent with atmospheric observations. We also discuss the sensitivity of the current atmospheric network to what is likely small, gradual increases in

  19. Arctic Islands LNG

    Energy Technology Data Exchange (ETDEWEB)

    Hindle, W.

    1977-01-01

    Trans-Canada Pipe Lines Ltd. made a feasibility study of transporting LNG from the High Arctic Islands to a St. Lawrence River Terminal by means of a specially designed and built 125,000 cu m or 165,000 cu m icebreaking LNG tanker. Studies were made of the climatology and of ice conditions, using available statistical data as well as direct surveys in 1974, 1975, and 1976. For on-schedule and unimpeded (unescorted) passage of the LNG carriers at all times of the year, special navigation and communications systems can be made available. Available icebreaking experience, charting for the proposed tanker routes, and tide tables for the Canadian Arctic were surveyed. Preliminary design of a proposed Arctic LNG icebreaker tanker, including containment system, reliquefaction of boiloff, speed, power, number of trips for 345 day/yr operation, and liquefaction and regasification facilities are discussed. The use of a minimum of three Arctic Class 10 ships would enable delivery of volumes of natural gas averaging 11.3 million cu m/day over a period of a year to Canadian markets. The concept appears to be technically feasible with existing basic technology.

  20. History of sea ice in the Arctic

    DEFF Research Database (Denmark)

    Polyak, Leonid; Alley, Richard B.; Andrews, John T.

    2010-01-01

    Arctic sea-ice extent and volume are declining rapidly. Several studies project that the Arctic Ocean may become seasonally ice-free by the year 2040 or even earlier. Putting this into perspective requires information on the history of Arctic sea-ice conditions through the geologic past. This inf......Arctic sea-ice extent and volume are declining rapidly. Several studies project that the Arctic Ocean may become seasonally ice-free by the year 2040 or even earlier. Putting this into perspective requires information on the history of Arctic sea-ice conditions through the geologic past...... Optimum, and consistently covered at least part of the Arctic Ocean for no less than the last 13–14 million years. Ice was apparently most widespread during the last 2–3 million years, in accordance with Earth’s overall cooler climate. Nevertheless, episodes of considerably reduced sea ice or even...

  1. Arctic hydroclimate variability during the last 2000 years: current understanding and research challenges

    Science.gov (United States)

    Linderholm, Hans W.; Nicolle, Marie; Francus, Pierre; Gajewski, Konrad; Helama, Samuli; Korhola, Atte; Solomina, Olga; Yu, Zicheng; Zhang, Peng; D'Andrea, William J.; Debret, Maxime; Divine, Dmitry V.; Gunnarson, Björn E.; Loader, Neil J.; Massei, Nicolas; Seftigen, Kristina; Thomas, Elizabeth K.; Werner, Johannes; Andersson, Sofia; Berntsson, Annika; Luoto, Tomi P.; Nevalainen, Liisa; Saarni, Saija; Väliranta, Minna

    2018-04-01

    Reanalysis data show an increasing trend in Arctic precipitation over the 20th century, but changes are not homogenous across seasons or space. The observed hydroclimate changes are expected to continue and possibly accelerate in the coming century, not only affecting pan-Arctic natural ecosystems and human activities, but also lower latitudes through the atmospheric and ocean circulations. However, a lack of spatiotemporal observational data makes reliable quantification of Arctic hydroclimate change difficult, especially in a long-term context. To understand Arctic hydroclimate and its variability prior to the instrumental record, climate proxy records are needed. The purpose of this review is to summarise the current understanding of Arctic hydroclimate during the past 2000 years. First, the paper reviews the main natural archives and proxies used to infer past hydroclimate variations in this remote region and outlines the difficulty of disentangling the moisture from the temperature signal in these records. Second, a comparison of two sets of hydroclimate records covering the Common Era from two data-rich regions, North America and Fennoscandia, reveals inter- and intra-regional differences. Third, building on earlier work, this paper shows the potential for providing a high-resolution hydroclimate reconstruction for the Arctic and a comparison with last-millennium simulations from fully coupled climate models. In general, hydroclimate proxies and simulations indicate that the Medieval Climate Anomaly tends to have been wetter than the Little Ice Age (LIA), but there are large regional differences. However, the regional coverage of the proxy data is inadequate, with distinct data gaps in most of Eurasia and parts of North America, making robust assessments for the whole Arctic impossible at present. To fully assess pan-Arctic hydroclimate variability for the last 2 millennia, additional proxy records are required.

  2. Behavioral interactions of penned red and arctic foxes

    Science.gov (United States)

    Rudzinski, D.R.; Graves, H.B.; Sargeant, A.B.; Storm, G.L.

    1982-01-01

    Expansion of the geographical distribution of red foxes (Vulpes vulpes) into the far north tundra region may lead to competition between arctic (Alopex lagopus) and red foxes for space and resources. Behavioral interactions between red and arctic foxes were evaluated during 9 trials conducted in a 4.05-ha enclosure near Woodworth, North Dakota. Each trial consisted of introducing a male-female pair of arctic foxes into the enclosure and allowing them to acclimate for approximately a week before releasing a female red fox into the enclosure, followed by her mate a few days later. In 8 of 9 trials, red foxes were dominant over arctic foxes during encounters. Activity of the arctic foxes decreased upon addition of red foxes. Arctic foxes tried unsuccessfully to defend preferred den, resting, and feeding areas. Even though the outcome of competition between red and arctic foxes in the Arctic is uncertain, the more aggressive red fox can dominate arctic foxes in direct competition for den sites and other limited resources.

  3. Ozone variability and halogen oxidation within the Arctic and sub-Arctic springtime boundary layer

    Directory of Open Access Journals (Sweden)

    J. B. Gilman

    2010-11-01

    Full Text Available The influence of halogen oxidation on the variabilities of ozone (O3 and volatile organic compounds (VOCs within the Arctic and sub-Arctic atmospheric boundary layer was investigated using field measurements from multiple campaigns conducted in March and April 2008 as part of the POLARCAT project. For the ship-based measurements, a high degree of correlation (r = 0.98 for 544 data points collected north of 68° N was observed between the acetylene to benzene ratio, used as a marker for chlorine and bromine oxidation, and O3 signifying the vast influence of halogen oxidation throughout the ice-free regions of the North Atlantic. Concurrent airborne and ground-based measurements in the Alaskan Arctic substantiated this correlation and were used to demonstrate that halogen oxidation influenced O3 variability throughout the Arctic boundary layer during these springtime studies. Measurements aboard the R/V Knorr in the North Atlantic and Arctic Oceans provided a unique view of the transport of O3-poor air masses from the Arctic Basin to latitudes as far south as 52° N. FLEXPART, a Lagrangian transport model, was used to quantitatively determine the exposure of air masses encountered by the ship to first-year ice (FYI, multi-year ice (MYI, and total ICE (FYI+MYI. O3 anti-correlated with the modeled total ICE tracer (r = −0.86 indicating that up to 73% of the O3 variability measured in the Arctic marine boundary layer could be related to sea ice exposure.

  4. Spatio-temporal Analysis of the Genetic Diversity of Arctic Rabies Viruses and Their Reservoir Hosts in Greenland.

    Directory of Open Access Journals (Sweden)

    Dennis Hanke

    2016-07-01

    Full Text Available There has been limited knowledge on spatio-temporal epidemiology of zoonotic arctic fox rabies among countries bordering the Arctic, in particular Greenland. Previous molecular epidemiological studies have suggested the occurrence of one particular arctic rabies virus (RABV lineage (arctic-3, but have been limited by a low number of available samples preventing in-depth high resolution phylogenetic analysis of RABVs at that time. However, an improved knowledge of the evolution, at a molecular level, of the circulating RABVs and a better understanding of the historical perspective of the disease in Greenland is necessary for better direct control measures on the island. These issues have been addressed by investigating the spatio-temporal genetic diversity of arctic RABVs and their reservoir host, the arctic fox, in Greenland using both full and partial genome sequences. Using a unique set of 79 arctic RABV full genome sequences from Greenland, Canada, USA (Alaska and Russia obtained between 1977 and 2014, a description of the historic context in relation to the genetic diversity of currently circulating RABV in Greenland and neighboring Canadian Northern territories has been provided. The phylogenetic analysis confirmed delineation into four major arctic RABV lineages (arctic 1-4 with viruses from Greenland exclusively grouping into the circumpolar arctic-3 lineage. High resolution analysis enabled distinction of seven geographically distinct subclades (3.I - 3.VII with two subclades containing viruses from both Greenland and Canada. By combining analysis of full length RABV genome sequences and host derived sequences encoding mitochondrial proteins obtained simultaneously from brain tissues of 49 arctic foxes, the interaction of viruses and their hosts was explored in detail. Such an approach can serve as a blueprint for analysis of infectious disease dynamics and virus-host interdependencies. The results showed a fine-scale spatial population

  5. Arctic Synthesis Collaboratory: A Virtual Organization for Transformative Research and Education on a Changing Arctic

    Science.gov (United States)

    Warnick, W. K.; Wiggins, H. V.; Hinzman, L.; Holland, M.; Murray, M. S.; Vörösmarty, C.; Loring, A. J.

    2008-12-01

    About the Arctic Synthesis Collaboratory The Arctic Synthesis Collaboratory concept, developed through a series of NSF-funded workshops and town hall meetings, is envisioned as a cyber-enabled, technical, organizational, and social-synthesis framework to foster: • Interactions among interdisciplinary experts and stakeholders • Integrated data analysis and modeling activities • Training and development of the arctic science community • Delivery of outreach, education, and policy-relevant resources Scientific Rationale The rapid rate of arctic change and our incomplete understanding of the arctic system present the arctic community with a grand scientific challenge and three related issues. First, a wealth of observations now exists as disconnected data holdings, which must be coordinated and synthesized to fully detect and assess arctic change. Second, despite great strides in the development of arctic system simulations, we still have incomplete capabilities for modeling and predicting the behavior of the system as a whole. Third, policy-makers, stakeholders, and the public are increasingly making demands of the science community for forecasts and guidance in mitigation and adaptation strategies. Collaboratory Components The Arctic Synthesis Collaboratory is organized around four integrated functions that will be established virtually as a distributed set of activities, but also with the advantage of existing facilities that could sponsor some of the identified activities. Community Network "Meeting Grounds:" The Collaboratory will link distributed individuals, organizations, and activities to enable collaboration and foster new research initiatives. Specific activities could include: an expert directory, social networking services, and virtual and face-to-face meetings. Data Integration, Synthesis, and Modeling Activities: The Collaboratory will utilize appropriate tools to enable the combination of data and models. Specific activities could include: a web

  6. Pan-Arctic Distribution of Bioavailable Dissolved Organic Matter and Linkages With Productivity in Ocean Margins

    Science.gov (United States)

    Shen, Yuan; Benner, Ronald; Kaiser, Karl; Fichot, Cédric G.; Whitledge, Terry E.

    2018-02-01

    Rapid environmental changes in the Arctic Ocean affect plankton productivity and the bioavailability of dissolved organic matter (DOM) that supports microbial food webs. We report concentrations of dissolved organic carbon (DOC) and yields of amino acids (indicators of labile DOM) in surface waters across major Arctic margins. Concentrations of DOC and bioavailability of DOM showed large pan-Arctic variability that corresponded to varying hydrological conditions and ecosystem productivity, respectively. Widespread hot spots of labile DOM were observed over productive inflow shelves (Chukchi and Barents Seas), in contrast to oligotrophic interior margins (Kara, Laptev, East Siberian, and Beaufort Seas). Amino acid yields in outflow gateways (Canadian Archipelago and Baffin Bay) indicated the prevalence of semilabile DOM in sea ice covered regions and sporadic production of labile DOM in ice-free waters. Comparing these observations with surface circulation patterns indicated varying shelf subsidies of bioavailable DOM to Arctic deep basins.

  7. Evidence for middle Eocene Arctic sea ice from diatoms and ice-rafted debris.

    Science.gov (United States)

    Stickley, Catherine E; St John, Kristen; Koç, Nalân; Jordan, Richard W; Passchier, Sandra; Pearce, Richard B; Kearns, Lance E

    2009-07-16

    Oceanic sediments from long cores drilled on the Lomonosov ridge, in the central Arctic, contain ice-rafted debris (IRD) back to the middle Eocene epoch, prompting recent suggestions that ice appeared in the Arctic about 46 million years (Myr) ago. However, because IRD can be transported by icebergs (derived from land-based ice) and also by sea ice, IRD records are restricted to providing a history of general ice-rafting only. It is critical to differentiate sea ice from glacial (land-based) ice as climate feedback mechanisms vary and global impacts differ between these systems: sea ice directly affects ocean-atmosphere exchanges, whereas land-based ice affects sea level and consequently ocean acidity. An earlier report assumed that sea ice was prevalent in the middle Eocene Arctic on the basis of IRD, and although somewhat preliminary supportive evidence exists, these data are neither comprehensive nor quantified. Here we show the presence of middle Eocene Arctic sea ice from an extraordinary abundance of a group of sea-ice-dependent fossil diatoms (Synedropsis spp.). Analysis of quartz grain textural characteristics further supports sea ice as the dominant transporter of IRD at this time. Together with new information on cosmopolitan diatoms and existing IRD records, our data strongly suggest a two-phase establishment of sea ice: initial episodic formation in marginal shelf areas approximately 47.5 Myr ago, followed approximately 0.5 Myr later by the onset of seasonally paced sea-ice formation in offshore areas of the central Arctic. Our data establish a 2-Myr record of sea ice, documenting the transition from a warm, ice-free environment to one dominated by winter sea ice at the start of the middle Eocene climatic cooling phase.

  8. The impact of temperature regimes on development, dormancy breaking and germination of dwarf shrub seeds from arctic, alpine and boreal sites

    DEFF Research Database (Denmark)

    Graae, Bente Jessen; Alsos, Inger Greve; Ejrnæs, Rasmus

    2008-01-01

    It has been suggested that the infrequent sexual reproduction of arctic dwarf shrubs might be related to the harsh environmental conditions in which they live. If this is the case, then increases in temperature resulting from global climate change might drastically affect regeneration of arctic...

  9. Consistency and discrepancy in the atmospheric response to Arctic sea-ice loss across climate models

    Science.gov (United States)

    Screen, James A.; Deser, Clara; Smith, Doug M.; Zhang, Xiangdong; Blackport, Russell; Kushner, Paul J.; Oudar, Thomas; McCusker, Kelly E.; Sun, Lantao

    2018-03-01

    The decline of Arctic sea ice is an integral part of anthropogenic climate change. Sea-ice loss is already having a significant impact on Arctic communities and ecosystems. Its role as a cause of climate changes outside of the Arctic has also attracted much scientific interest. Evidence is mounting that Arctic sea-ice loss can affect weather and climate throughout the Northern Hemisphere. The remote impacts of Arctic sea-ice loss can only be properly represented using models that simulate interactions among the ocean, sea ice, land and atmosphere. A synthesis of six such experiments with different models shows consistent hemispheric-wide atmospheric warming, strongest in the mid-to-high-latitude lower troposphere; an intensification of the wintertime Aleutian Low and, in most cases, the Siberian High; a weakening of the Icelandic Low; and a reduction in strength and southward shift of the mid-latitude westerly winds in winter. The atmospheric circulation response seems to be sensitive to the magnitude and geographic pattern of sea-ice loss and, in some cases, to the background climate state. However, it is unclear whether current-generation climate models respond too weakly to sea-ice change. We advocate for coordinated experiments that use different models and observational constraints to quantify the climate response to Arctic sea-ice loss.

  10. Arctic climatechange and its impacts on the ecology of the North Atlantic.

    Science.gov (United States)

    Greene, Charles H; Pershing, Andrew J; Cronin, Thomas M; Ceci, Nicole

    2008-11-01

    Arctic climate change from the Paleocene epoch to the present is reconstructed with the objective of assessing its recent and future impacts on the ecology of the North Atlantic. A recurring theme in Earth's paleoclimate record is the importance of the Arctic atmosphere, ocean, and cryosphere in regulating global climate on a variety of spatial and temporal scales. A second recurring theme in this record is the importance of freshwater export from the Arctic in regulating global- to basin-scale ocean circulation patterns and climate. Since the 1970s, historically unprecedented changes have been observed in the Arctic as climate warming has increased precipitation, river discharge, and glacial as well as sea-ice melting. In addition, modal shifts in the atmosphere have altered Arctic Ocean circulation patterns and the export of freshwater into the North Atlantic. The combination of these processes has resulted in variable patterns of freshwater export from the Arctic Ocean and the emergence of salinity anomalies that have periodically freshened waters in the North Atlantic. Since the early 1990s, changes in Arctic Ocean circulation patterns and freshwater export have been associated with two types of ecological responses in the North Atlantic. The first of these responses has been an ongoing series of biogeographic range expansions by boreal plankton, including renewal of the trans-Arctic exchanges of Pacific species with the Atlantic. The second response was a dramatic regime shift in the shelf ecosystems of the Northwest Atlantic that occurred during the early 1990s. This regime shift resulted from freshening and stratification of the shelf waters, which in turn could be linked to changes in the abundances and seasonal cycles of phytoplankton, zooplankton, and higher trophic-level consumer populations. It is predicted that the recently observed ecological responses to Arctic climate change in the North Atlantic will continue into the near future if current trends

  11. Estimation of Melt Ponds over Arctic Sea Ice using MODIS Surface Reflectance Data

    Science.gov (United States)

    Ding, Y.; Cheng, X.; Liu, J.

    2017-12-01

    Melt ponds over Arctic sea ice is one of the main factors affecting variability of surface albedo, increasing absorption of solar radiation and further melting of snow and ice. In recent years, a large number of melt ponds have been observed during the melt season in Arctic. Moreover, some studies have suggested that late spring to mid summer melt ponds information promises to improve the prediction skill of seasonal Arctic sea ice minimum. In the study, we extract the melt pond fraction over Arctic sea ice since 2000 using three bands MODIS weekly surface reflectance data by considering the difference of spectral reflectance in ponds, ice and open water. The preliminary comparison shows our derived Arctic-wide melt ponds are in good agreement with that derived by the University of Hamburg, especially at the pond distribution. We analyze seasonal evolution, interannual variability and trend of the melt ponds, as well as the changes of onset and re-freezing. The melt pond fraction shows an asymmetrical growth and decay pattern. The observed melt ponds fraction is almost within 25% in early May and increases rapidly in June and July with a high fraction of more than 40% in the east of Greenland and Beaufort Sea. A significant increasing trend in the melt pond fraction is observed for the period of 2000-2017. The relationship between melt pond fraction and sea ice extent will be also discussed. Key Words: melt ponds, sea ice, Arctic

  12. An AeroCom Assessment of Black Carbon in Arctic Snow and Sea Ice

    Science.gov (United States)

    Jiao, C.; Flanner, M. G.; Balkanski, Y.; Bauer, S. E.; Bellouin, N.; Bernsten, T. K.; Bian, H.; Carslaw, K. S.; Chin, M.; DeLuca, N.; hide

    2014-01-01

    Though many global aerosols models prognose surface deposition, only a few models have been used to directly simulate the radiative effect from black carbon (BC) deposition to snow and sea ice. Here, we apply aerosol deposition fields from 25 models contributing to two phases of the Aerosol Comparisons between Observations and Models (AeroCom) project to simulate and evaluate within-snow BC concentrations and radiative effect in the Arctic. We accomplish this by driving the offline land and sea ice components of the Community Earth System Model with different deposition fields and meteorological conditions from 2004 to 2009, during which an extensive field campaign of BC measurements in Arctic snow occurred. We find that models generally underestimate BC concentrations in snow in northern Russia and Norway, while overestimating BC amounts elsewhere in the Arctic. Although simulated BC distributions in snow are poorly correlated with measurements, mean values are reasonable. The multi-model mean (range) bias in BC concentrations, sampled over the same grid cells, snow depths, and months of measurements, are -4.4 (-13.2 to +10.7) ng/g for an earlier phase of AeroCom models (phase I), and +4.1 (-13.0 to +21.4) ng/g for a more recent phase of AeroCom models (phase II), compared to the observational mean of 19.2 ng/g. Factors determining model BC concentrations in Arctic snow include Arctic BC emissions, transport of extra-Arctic aerosols, precipitation, deposition efficiency of aerosols within the Arctic, and meltwater removal of particles in snow. Sensitivity studies show that the model-measurement evaluation is only weakly affected by meltwater scavenging efficiency because most measurements were conducted in non-melting snow. The Arctic (60-90degN) atmospheric residence time for BC in phase II models ranges from 3.7 to 23.2 days, implying large inter-model variation in local BC deposition efficiency. Combined with the fact that most Arctic BC deposition originates

  13. National Atlas of Arctic: structure and creation approaches

    Directory of Open Access Journals (Sweden)

    N. S. Kasimov

    2015-01-01

    Full Text Available On the instructions of President and Government of the Russian Federation, works for development of National Atlas of Arctic are started in the country. In this article the authors present their ideas from viewpoint of geographers who are well experienced in the field of cartographic works. A structure of future Atlas and lines of approaches to its development are proposed. The totality of experiences of preparation of other geographical atlases in both, the USSR and Russia, as well as the latest achievements of cartography, aerospace sources and GIS-technologies are recommended to be used. The National Atlas of Arctic is understood as a collection of knowledge of spatial-temporal information about geographical, ecological, economic, historical-ethnographic, cultural and social features of the Arctic. This cartographic model of the territory is designed for using in a wide range of scientific, managing, economic, defensive and social activities. A hard copy of the atlas is intended to be used as scientific-reference publication while its electronic version will make it possible to renovate its content and to improve it by means of actualization according to various directions of its practical use 16 sections proposed in a draft of the Atlas content are as follows: introductory, geological structure, relief, mineral resources, environment evolution, climate, land waters, seas, seashores, snow cover, glaciers, permafrost, soils, flora and fauna, state of the environment and the Nature protection, population, economics, and prospects for future. The popular-scientific edition of the Atlas is intended for use by wide circle of readers and also as a textbook for all levels of education. Presentation of material in the Atlas should combine a high scientific level and accessible language. In a popular form it will clarify traditions of careful treatment to the Nature and the nature-protective ethics of religious confessions of local people

  14. Arctic Messages: Arctic Research in the Vocabulary of Poets and Artists

    Science.gov (United States)

    Samsel, F.

    2017-12-01

    Arctic Messages is a series of prints created by a multidisciplinary team designed to build understanding and encourage dialogue about the changing Arctic ecosystems and the impacts on global weather patterns. Our team comprised of Arctic researchers, a poet, a visual artist, photographers and visualization experts set out to blend the vocabularies of our disciplines in order to provide entry into the content for diverse audiences. Arctic Messages is one facet of our broader efforts experimenting with mediums of communication able to provide entry to those of us outside scientific of fields. We believe that the scientific understanding of change presented through the languages art will speak to our humanity as well as our intellect. The prints combine poetry, painting, visualization, and photographs, drawn from the Arctic field studies of the Next Generation Ecosystem Experiments research team at Los Alamos National Laboratory. The artistic team interviewed the scientists, read their papers and poured over their field blogs. The content and concepts are designed to portray the wonder of nature, the complexity of the science and the dedication of the researchers. Smith brings to life the intertwined connection between the research efforts, the ecosystems and the scientist's experience. Breathtaking photography of the research site is accompanied by Samsel's drawings and paintings of the ecosystem relationships and geological formations. Together they provide entry to the variety and wonder of life on the Arctic tundra and that resting quietly in the permafrost below. Our team has experimented with many means of presentation from complex interactive systems to quiet individual works. Here we are presenting a series of prints, each one based on a single thread of the research or the scientist's experience but containing intertwined relationships similar to the ecosystems they represent. Earlier interactive systems, while engaging, were not tuned to those seeking

  15. Collaborative Research: Improving Decadal Prediction of Arctic Climate Variability and Change Using a Regional Arctic

    Energy Technology Data Exchange (ETDEWEB)

    Gutowski, William J. [Iowa State Univ., Ames, IA (United States)

    2017-12-28

    This project developed and applied a regional Arctic System model for enhanced decadal predictions. It built on successful research by four of the current PIs with support from the DOE Climate Change Prediction Program, which has resulted in the development of a fully coupled Regional Arctic Climate Model (RACM) consisting of atmosphere, land-hydrology, ocean and sea ice components. An expanded RACM, a Regional Arctic System Model (RASM), has been set up to include ice sheets, ice caps, mountain glaciers, and dynamic vegetation to allow investigation of coupled physical processes responsible for decadal-scale climate change and variability in the Arctic. RASM can have high spatial resolution (~4-20 times higher than currently practical in global models) to advance modeling of critical processes and determine the need for their explicit representation in Global Earth System Models (GESMs). The pan-Arctic region is a key indicator of the state of global climate through polar amplification. However, a system-level understanding of critical arctic processes and feedbacks needs further development. Rapid climate change has occurred in a number of Arctic System components during the past few decades, including retreat of the perennial sea ice cover, increased surface melting of the Greenland ice sheet, acceleration and thinning of outlet glaciers, reduced snow cover, thawing permafrost, and shifts in vegetation. Such changes could have significant ramifications for global sea level, the ocean thermohaline circulation and heat budget, ecosystems, native communities, natural resource exploration, and commercial transportation. The overarching goal of the RASM project has been to advance understanding of past and present states of arctic climate and to improve seasonal to decadal predictions. To do this the project has focused on variability and long-term change of energy and freshwater flows through the arctic climate system. The three foci of this research are: - Changes

  16. Arctic summer school onboard an icebreaker

    Science.gov (United States)

    Alexeev, Vladimir A.; Repina, Irina A.

    2014-05-01

    The International Arctic Research Center (IARC) of the University of Alaska Fairbanks conducted a summer school for PhD students, post-docs and early career scientists in August-September 2013, jointly with an arctic expedition as a part of NABOS project (Nansen and Amundsen Basin Observational System) onboard the Russian research vessel "Akademik Fedorov". Both the summer school and NABOS expedition were funded by the National Science Foundation. The one-month long summer school brought together graduate students and young scientists with specialists in arctic oceanography and climate to convey to a new generation of scientists the opportunities and challenges of arctic climate observations and modeling. Young scientists gained hands-on experience during the field campaign and learned about key issues in arctic climate from observational, diagnostic, and modeling perspectives. The summer school consisted of background lectures, participation in fieldwork and mini-projects. The mini-projects were performed in collaboration with summer school instructors and members of the expedition. Key topics covered in the lectures included: - arctic climate: key characteristics and processes; - physical processes in the Arctic Ocean; - sea ice and the Arctic Ocean; - trace gases, aerosols, and chemistry: importance for climate changes; - feedbacks in the arctic system (e.g., surface albedo, clouds, water vapor, circulation); - arctic climate variations: past, ongoing, and projected; - global climate models: an overview. An outreach specialist from the Miami Science Museum was writing a blog from the icebreaker with some very impressive statistics (results as of January 1, 2014): Total number of blog posts: 176 Blog posts written/contributed by scientists: 42 Blog views: 22,684 Comments: 1,215 Number of countries who viewed the blog: 89 (on 6 continents) The 33-day long NABOS expedition started on August 22, 2013 from Kirkenes, Norway. The vessel ("Akademik Fedorov") returned to

  17. The expedition ARCTIC `96 of RV `Polarstern` (ARK XII) with the Arctic Climate System Study (ACSYS). Cruise report; Die Expedition ARCTIC `96 des FS `Polarstern` (ARK XII) mit der Arctic Climate System Study (ACSYS). Fahrtbericht

    Energy Technology Data Exchange (ETDEWEB)

    Augstein, E.

    1997-11-01

    The multinational expedition ARCTIC `96 was carried out jointly by two ships, the German RV POLARSTERN and the Swedish RV ODEN. The research programme was developed by scientists from British, Canadian, Finish, German, Irish, Norwegian, Russian, Swedish and US American research institutions and universities. The physical programme on POLARSTERN was primarily designed to foster the Arctic Climte System Study (ACSYS) in the framework of the World Climate Research Programme (WCRP). Investigations during the recent years have provided substantial evidence that the Arctic Ocean and the adjacent shelf seas play a significant role in the thermohaline oceanic circulation and may therefore have a distinct influence on global climate. Consequently the main ACSYS goals are concerned with studies of the governing oceanic, atmospheric and hydrological processes in the entire Arctic region. (orig.) [Deutsch] Die Expedition ARCTIC `96 wurde von zwei Forschungsschiffen, der deutschen POLARSTERN und der schwedischen ODEN unter Beteiligung von Wissenschaftlern und Technikern aus Deutschland, Finnland, Grossbritannien, Irland, Kanada, Norwegen, Russland, Schweden und den Vereinigten Staaten von Amerika durchgefuehrt. Die physikalischen Projekte auf der POLARSTERN dienten ueberwiegend der Unterstuetzung der Arctic Climate System Study (ACSYS) des Weltklimaforschungsprogramms, die auf die Erforschung der vorherrschenden ozeanischen, atmosphaerischen, kryosphaerischen und hydrologischen Prozesse der Arktisregion ausgerichtet ist. (orig.)

  18. Arctic oil and gas 2007

    Energy Technology Data Exchange (ETDEWEB)

    Huntington, Henry P

    2007-07-01

    The Arctic Council's assessment of oil and gas activities in the Antic is prepared in response to a request from Ministers of the eight Arctic countries. The Ministers called for engagement of all Arctic Council Working Groups in this process, and requested that the Arctic Monitoring and Assessment programme (AMAP) take responsibility for coordinating the work. This Executive Summary is in three parts. Part A presents the main findings of the assessment and related recommendations. Part B is structured in the same manner as Part A and provides additional information for those interested in examining the basis for the conclusions and recommendations that are presented in Part A. Part C presents information on 'gaps in knowledge' and recommendations aimed at filling these gaps. (AG)

  19. Hematology of southern Beaufort Sea polar bears (2005-2007): biomarker for an Arctic ecosystem health sentinel.

    Science.gov (United States)

    Kirk, Cassandra M; Amstrup, Steven; Swor, Rhonda; Holcomb, Darce; O'Hara, Todd M

    2010-09-01

    Declines in sea-ice habitats have resulted in declining stature, productivity, and survival of polar bears in some regions. With continuing sea-ice declines, negative population effects are projected to expand throughout the polar bear's range. Precise causes of diminished polar bear life history performance are unknown, however, climate and sea-ice condition change are expected to adversely impact polar bear (Ursus maritimus) health and population dynamics. As apex predators in the Arctic, polar bears integrate the status of lower trophic levels and are therefore sentinels of ecosystem health. Arctic residents feed at the apex of the ecosystem, thus polar bears can serve as indicators of human health in the Arctic. Despite their value as indicators of ecosystem welfare, population-level health data for U.S. polar bears are lacking. We present hematological reference ranges for southern Beaufort Sea polar bears. Hematological parameters in southern Beaufort Sea polar bears varied by age, geographic location, and reproductive status. Total leukocytes, lymphocytes, monocytes, eosinophils, and serum immunoglobulin G were significantly greater in males than females. These measures were greater in nonlactating females ages ≥5, than lactating adult females ages ≥5, suggesting that females encumbered by young may be less resilient to new immune system challenges that may accompany ongoing climate change. Hematological values established here provide a necessary baseline for anticipated changes in health as arctic temperatures warm and sea-ice declines accelerate. Data suggest that females with dependent young may be most vulnerable to these changes and should therefore be a targeted cohort for monitoring in this sentinel.

  20. The Arctic policy of China and Japan

    DEFF Research Database (Denmark)

    Tonami, Aki

    2014-01-01

    At the May 2013 Arctic Council Ministerial Meeting, five Asian states, namely China, Japan, India, Singapore and South Korea, were accepted to become new Permanent Observers at the Arctic Council. Nonetheless, little attention has been paid to the Asian states and their interest in the Arctic. Most...... discussions have focused on China and the assessment of China’s interest in the Arctic is divided. This paper attempts to fill this gap by presenting and comparing the various components of the Arctic policies of China and Japan. Referring to Putnam’s model of the “two-level game” and Young’s categorization...

  1. Climate change alters the structure of arctic marine food webs due to poleward shifts of boreal generalists.

    Science.gov (United States)

    Kortsch, Susanne; Primicerio, Raul; Fossheim, Maria; Dolgov, Andrey V; Aschan, Michaela

    2015-09-07

    Climate-driven poleward shifts, leading to changes in species composition and relative abundances, have been recently documented in the Arctic. Among the fastest moving species are boreal generalist fish which are expected to affect arctic marine food web structure and ecosystem functioning substantially. Here, we address structural changes at the food web level induced by poleward shifts via topological network analysis of highly resolved boreal and arctic food webs of the Barents Sea. We detected considerable differences in structural properties and link configuration between the boreal and the arctic food webs, the latter being more modular and less connected. We found that a main characteristic of the boreal fish moving poleward into the arctic region of the Barents Sea is high generalism, a property that increases connectance and reduces modularity in the arctic marine food web. Our results reveal that habitats form natural boundaries for food web modules, and that generalists play an important functional role in coupling pelagic and benthic modules. We posit that these habitat couplers have the potential to promote the transfer of energy and matter between habitats, but also the spread of pertubations, thereby changing arctic marine food web structure considerably with implications for ecosystem dynamics and functioning. © 2015 The Authors.

  2. Gastrointestinal Parasites of Two Populations of Arctic Foxes (Vulpes lagopus) from Northeast Greenland

    DEFF Research Database (Denmark)

    Andreassen, P.N.S.; Schmidt, Niels Martin; Kapel, Christian M. O.

    2017-01-01

    Parasitological examination of 275 faecal samples from Arctic foxes (Vulpes lagopus) collected at Zackenberg Valley and Karupelv Valley in north-east Greenland from 2006 to 2008 was conducted using sieving and microscopy. Overall, 125 (45.5%) samples contained parasite eggs of Taenia crassiceps...

  3. The palaeobiology of high latitude birds from the early Eocene greenhouse of Ellesmere Island, Arctic Canada.

    Science.gov (United States)

    Stidham, Thomas A; Eberle, Jaelyn J

    2016-02-12

    Fossils attributable to the extinct waterfowl clade Presbyornithidae and the large flightless Gastornithidae from the early Eocene (~52-53 Ma) of Ellesmere Island, in northernmost Canada are the oldest Cenozoic avian fossils from the Arctic. Except for its slightly larger size, the Arctic presbyornithid humerus is not distinguishable from fossils of Presbyornis pervetus from the western United States, and the Gastornis phalanx is within the known size range of mid-latitude individuals. The occurrence of Presbyornis above the Arctic Circle in the Eocene could be the result of annual migration like that of its living duck and geese relatives, or it may have been a year-round resident similar to some Eocene mammals on Ellesmere and some extant species of sea ducks. Gastornis, along with some of the mammalian and reptilian members of the Eocene Arctic fauna, likely over-wintered in the Arctic. Despite the milder (above freezing) Eocene climate on Ellesmere Island, prolonged periods of darkness occurred during the winter. Presence of these extinct birds at both mid and high latitudes on the northern continents provides evidence that future increases in climatic warming (closer to Eocene levels) could lead to the establishment of new migratory or resident populations within the Arctic Circle.

  4. Marine Mammals and Climate Change in the Pacific Arctic: Impacts & Resilience

    Science.gov (United States)

    Moore, S. E.

    2014-12-01

    Extreme reductions in Arctic sea ice extent and thickness have become a hallmark of climate change, but impacts to the marine ecosystem are poorly understood. As top predators, marine mammals must adapt to biological responses to physical forcing and thereby become sentinels to ecosystem variability and reorganization. Recent sea ice retreats have influenced the ecology of marine mammals in the Pacific Arctic sector. Walruses now often haul out by the thousands along the NW Alaska coast in late summer, and reports of harbor porpoise, humpback, fin and minke whales in the Chukchi Sea demonstrate that these temperate species routinely occur there. In 2010, satellite tagged bowhead whales from Atlantic and Pacific populations met in the Northwest Passage, an overlap thought precluded by sea ice since the Holocene. To forage effectively, baleen whales must target dense patches of zooplankton and small fishes. In the Pacific Arctic, bowhead and gray whales appear to be responding to enhanced prey availability delivered both by new production and advection pathways. Two programs, the Distributed Biological Observatory (DBO) and the Synthesis of Arctic Research (SOAR), include tracking of marine mammal and prey species' responses to ecosystem shifts associated with sea ice loss. Both programs provide an integrated-ecosystem baseline in support of the development of a web-based Marine Mammal Health Map, envisioned as a component of the U.S. Integrated Ocean Observing System (IOOS). An overarching goal is to identify ecological patterns for marine mammals in the 'new' Arctic, as a foundation for integrative research, local response and adaptive management.

  5. Sediments in Arctic sea ice: Implications for entrainment, transport and release

    Science.gov (United States)

    Nurnberg, D.; Wollenburg, I.; Dethleff, D.; Eicken, H.; Kassens, H.; Letzig, T.; Reimnitz, E.; Thiede, Jorn

    1994-01-01

    Despite the Arctic sea ice cover's recognized sensitivity to environmental change, the role of sediment inclusions in lowering ice albedo and affecting ice ablation is poorly understood. Sea ice sediment inclusions were studied in the central Arctic Ocean during the Arctic 91 expedition and in the Laptev Sea (East Siberian Arctic Region Expedition 1992). Results from these investigations are here combined with previous studies performed in major areas of ice ablation and the southern central Arctic Ocean. This study documents the regional distribution and composition of particle-laden ice, investigates and evaluates processes by which sediment is incorporated into the ice cover, and identifies transport paths and probable depositional centers for the released sediment. In April 1992, sea ice in the Laptev Sea was relatively clean. The sediment occasionally observed was distributed diffusely over the entire ice column, forming turbid ice. Observations indicate that frazil and anchor ice formation occurring in a large coastal polynya provide a main mechanism for sediment entrainment. In the central Arctic Ocean sediments are concentrated in layers within or at the surface of ice floes due to melting and refreezing processes. The surface sediment accumulation in central Arctic multi-year sea ice exceeds by far the amounts observed in first-year ice from the Laptev Sea in April 1992. Sea ice sediments are generally fine grained, although coarse sediments and stones up to 5 cm in diameter are observed. Component analysis indicates that quartz and clay minerals are the main terrigenous sediment particles. The biogenous components, namely shells of pelecypods and benthic foraminiferal tests, point to a shallow, benthic, marine source area. Apparently, sediment inclusions were resuspended from shelf areas before and incorporated into the sea ice by suspension freezing. Clay mineralogy of ice-rafted sediments provides information on potential source areas. A smectite

  6. Hybridization among Arctic white-headed gulls (Larus spp.) obscures the genetic legacy of the Pleistocene

    Science.gov (United States)

    Sonsthagen, Sarah A.; Chesser, R. Terry; Bell, Douglas A.; Dove, Carla J.

    2012-01-01

    We studied the influence of glacial oscillations on the genetic structure of seven species of white-headed gull that breed at high latitudes (Larus argentatus, L. canus, L. glaucescens, L. glaucoides, L. hyperboreus, L. schistisagus, and L. thayeri). We evaluated localities hypothesized as ice-free areas or glacial refugia in other Arctic vertebrates using molecular data from 11 microsatellite loci, mitochondrial DNA (mtDNA) control region, and six nuclear introns for 32 populations across the Holarctic. Moderate levels of genetic structure were observed for microsatellites (FST= 0.129), introns (ΦST= 0.185), and mtDNA control region (ΦST= 0.461), with among-group variation maximized when populations were grouped based on subspecific classification. Two haplotype and at least two allele groups were observed across all loci. However, no haplotype/allele group was composed solely of individuals of a single species, a pattern consistent with recent divergence. Furthermore, northernmost populations were not well differentiated and among-group variation was maximized when L. argentatus and L. hyberboreus populations were grouped by locality rather than species, indicating recent hybridization. Four populations are located in putative Pleistocene glacial refugia and had larger t estimates than the other 28 populations. However, we were unable to substantiate these putative refugia using coalescent theory, as all populations had genetic signatures of stability based on mtDNA. The extent of haplotype and allele sharing among Arctic white-headed gull species is noteworthy. Studies of other Arctic taxa have generally revealed species-specific clusters as well as genetic structure within species, usually correlated with geography. Aspects of white-headed gull behavioral biology, such as colonization ability and propensity to hybridize, as well as their recent evolutionary history, have likely played a large role in the limited genetic structure observed.

  7. Public Perceptions of Arctic Change

    Science.gov (United States)

    Hamilton, L.

    2014-12-01

    What does the general US public know, or think they know, about Arctic change? Two broad nationwide surveys in 2006 and 2010 addressed this topic in general terms, before and after the International Polar Year (IPY). Since then a series of representative national or statewide surveys have carried this research farther. The new surveys employ specific questions that assess public knowledge of basic Arctic facts, along with perceptions about the possible consequences of future Arctic change. Majorities know that late-summer Arctic sea ice area has declined compared with 30 years ago, although substantial minorities -- lately increasing -- believe instead that it has now recovered to historical levels. Majorities also believe that, if the Arctic warms in the future, this will have major effects on the weather where they live. Their expectation of local impacts from far-away changes suggests a degree of global thinking. On the other hand, most respondents do poorly when asked whether melting Arctic sea ice, melting Greenland/Antarctic land ice, or melting Himalayan glaciers could have more effect on sea level. Only 30% knew or guessed the right answer to this question. Similarly, only 33% answered correctly on a simple geography quiz: whether the North Pole could best be described as ice a few feet or yards thick floating over a deep ocean, ice more than a mile thick over land, or a rocky, mountainous landscape. Close analysis of response patterns suggests that people often construct Arctic "knowledge" on items such as sea ice increase/decrease from their more general ideology or worldview, such as their belief (or doubt) that anthropogenic climate change is real. When ideology or worldviews provide no guidance, as on the North Pole or sealevel questions, the proportion of accurate answers is no better than chance. These results show at least casual public awareness and interest in Arctic change, unfortunately not well grounded in knowledge. Knowledge problems seen on

  8. Planktonic foraminifera in the Arctic: potentials and issues regarding modern and quaternary populations

    International Nuclear Information System (INIS)

    Eynaud, Frederique

    2011-01-01

    Calcareous microfossils are widely used by paleoceanographers to investigate past sea-surface hydrology. Among these microfossils, planktonic foraminifera are probably the most extensively used tool (e.g. [1] for a review), as they are easy to extract from the sediment and can also be used for coupled geochemical (e.g; δ 18 O, δ 13 C, Mg/Ca) and paleo-ecological investigations. Planktonic foraminifera are marine protists, which build a calcareous shell made of several chambers which reflect in their chemistry the properties of the ambient water-masses. Planktonic foraminifera are known to thrive in various habitats, distributed not only along a latitudinal gradient, but also along different water-depth intervals within surface waters (0-1000 m). Regarding their biogeographical distribution, planktonic foraminifera assemblages therefore mirror different water-masses properties, such as temperature, salinity and nutrient content of the surface water in which they live. The investigation of the specific composition of a fossil assemblage (relative abundances) is therefore a way to empirically obtain (paleo)information on past variations of sea-surface hydrological parameters. This paper focuses on the planktonic foraminifera record from the Arctic domain. This polar region records peculiar sea-surface conditions, with the influence of nearly perennial sea-ice cover development. This has strong impact on living foraminifera populations and on the preservation of their shells in the underlying sediments.

  9. Planktonic foraminifera in the Arctic: potentials and issues regarding modern and quaternary populations

    Energy Technology Data Exchange (ETDEWEB)

    Eynaud, Frederique, E-mail: f.eynaud@epoc.u-bordeaux1.fr [Universite Bordeaux I, Laboratoire EPOC (Environnements et Paleoenvironnements OCeaniques), UMR CNRS 5805, Avenue des facultes, 33405 Talence cedex - France (France)

    2011-05-15

    Calcareous microfossils are widely used by paleoceanographers to investigate past sea-surface hydrology. Among these microfossils, planktonic foraminifera are probably the most extensively used tool (e.g. [1] for a review), as they are easy to extract from the sediment and can also be used for coupled geochemical (e.g; {delta}{sup 18}O, {delta}{sup 13}C, Mg/Ca) and paleo-ecological investigations. Planktonic foraminifera are marine protists, which build a calcareous shell made of several chambers which reflect in their chemistry the properties of the ambient water-masses. Planktonic foraminifera are known to thrive in various habitats, distributed not only along a latitudinal gradient, but also along different water-depth intervals within surface waters (0-1000 m). Regarding their biogeographical distribution, planktonic foraminifera assemblages therefore mirror different water-masses properties, such as temperature, salinity and nutrient content of the surface water in which they live. The investigation of the specific composition of a fossil assemblage (relative abundances) is therefore a way to empirically obtain (paleo)information on past variations of sea-surface hydrological parameters. This paper focuses on the planktonic foraminifera record from the Arctic domain. This polar region records peculiar sea-surface conditions, with the influence of nearly perennial sea-ice cover development. This has strong impact on living foraminifera populations and on the preservation of their shells in the underlying sediments.

  10. Beyond Thin Ice: Co-Communicating the Many Arctics

    Science.gov (United States)

    Druckenmiller, M. L.; Francis, J. A.; Huntington, H.

    2015-12-01

    Science communication, typically defined as informing non-expert communities of societally relevant science, is persuaded by the magnitude and pace of scientific discoveries, as well as the urgency of societal issues wherein science may inform decisions. Perhaps nowhere is the connection between these facets stronger than in the marine and coastal Arctic where environmental change is driving advancements in our understanding of natural and socio-ecological systems while paving the way for a new assortment of arctic stakeholders, who generally lack adequate operational knowledge. As such, the Arctic provides opportunity to advance the role of science communication into a collaborative process of engagement and co-communication. To date, the communication of arctic change falls within four primary genres, each with particular audiences in mind. The New Arctic communicates an arctic of new stakeholders scampering to take advantage of unprecedented access. The Global Arctic conveys the Arctic's importance to the rest of the world, primarily as a regulator of lower-latitude climate and weather. The Intra-connected Arctic emphasizes the increasing awareness of the interplay between system components, such as between sea ice loss and marine food webs. The Transforming Arctic communicates the region's trajectory relative to the historical Arctic, acknowledging the impacts on indigenous peoples. The broad societal consensus on climate change in the Arctic as compared to other regions in the world underscores the opportunity for co-communication. Seizing this opportunity requires the science community's engagement with stakeholders and indigenous peoples to construct environmental change narratives that are meaningful to climate responses relative to non-ecological priorities (e.g., infrastructure, food availability, employment, or language). Co-communication fosters opportunities for new methods of and audiences for communication, the co-production of new interdisciplinary

  11. Demographic change, economic conditions, and subsistence salmon harvests in Alaska’s Arctic-Yukon-Kuskokwim region

    OpenAIRE

    Howe, E. Lance; Martin, Stephanie

    2009-01-01

    This paper addresses broad demographic and economic characteristics of the Arctic-Yukon-Kuskokwim region (AYK) of Alaska. AYK human population growth has generally been moderate over time. Because out-migration regularly exceeds in-migration, especially in the villages, population growth is mainly a product of natality. We anticipate future population growth patterns will be similar. In terms of regional characteristics, the linguistically and geographically distinct populations of the AYK re...

  12. Ice nucleating particles in the high Arctic at the beginning of the melt season

    Science.gov (United States)

    Hartmann, M.; Gong, X.; Van Pinxteren, M.; Welti, A.; Zeppenfeld, S.; Herrmann, H.; Stratmann, F.

    2017-12-01

    Ice nucleating particles (INPs) initiate the ice crystal formation in persistent Arctic mixed-phase clouds and are important for the formation of precipitation, which affects the radiative properties of the Arctic pack ice as well as the radiative properties of clouds. Sources of Arctic INP have been suggested to be local emissions from the marine boundary and long-range transport. To what extent local marine sources contribute to the INP population or if the majority of INPs originate from long-range transport is not yet known. Ship-based INP measurements in the PASCAL framework are reported. The field campaign took place from May 24 to July 20 2017 around and north of Svalbard (up to 84°N, between 0° and 35°E) onboard the RV Polarstern. INP concentrations were determined applying in-situ measurements (DMT Spectrometer for Ice Nuclei, SPIN) and offline filter techniques (filter sampling on both quartz fiber and polycarbonate filters with subsequent analysis of filter pieces and water suspension from particles collected on filters by means of immersion freezing experiments on cold stage setups). Additionally the compartments sea-surface micro layer (SML), bulk sea water, snow, sea ice and fog water were sampled and their ice nucleation potential quantified, also utilizing cold stages. The measurements yield comprehensive picture of the spatial and temporal distribution of INPs around Svalbard for the different compartments. The dependence of the INP concentration on meteorological conditions (e.g. wind speed) and the geographical situation (sea ice cover, distance to the ice edge) are investigated. Potential sources of INP are identified by the comparison of INP concentrations in the compartments and by back trajectory analysis.

  13. Distribution of Po-210 and Pb-210 in Arctic Char (Salvelinus alpinus) from an Arctic freshwater lake

    Energy Technology Data Exchange (ETDEWEB)

    Gwynn, J.P.; Rudolfsen, G. [Norwegian Radiation Protection Authority, The Fram Centre, Tromsoe (Norway)

    2014-07-01

    There is little information available with regard to the accumulation of Po-210 and Pb-210 by freshwater fish in natural freshwater systems despite the potential for relevant ingestion doses to man. This is maybe of particular pertinence for certain population groups where freshwater fish are an important dietary food item. Equally, it is important to understand the body distributions of these naturally occurring radionuclides to quantify the resulting doses to different tissues and organs of freshwater fish. With regard to the latter, it is important to consider not only the doses arising from bio-accumulated Po-210 and Pb-210 in various body compartments but additionally the internal dose from unabsorbed Po-210 and Pb-210 in the digestive tract. In this study, activity concentrations of Po-210 and Pb-210 were determined in muscle and various internal organs of Arctic Charr (Salvelinus alpinus) sampled from a lake in the Norwegian Arctic (69 deg. 4' N, 19 deg. 20' E). Observed activity concentrations of Po-210 and Pb-210 in different tissues will be discussed in relation to physiological parameters and ambient lake water activity concentrations. Results from this study will be compared to two similar studies conducted in freshwater systems where elevated activity concentrations of these radionuclides have been observed. Ingestion dose rates to man and effective absorbed dose rates to different tissues and organs of Arctic Charr from Po-210 and Pb-210 will be derived and compared to those from observed activity concentrations of the anthropogenic radionuclide Cs-137. (authors)

  14. Arctic oil and gas 2007

    Energy Technology Data Exchange (ETDEWEB)

    Huntington, Henry P.

    2007-07-01

    The Arctic Council's assessment of oil and gas activities in the Antic is prepared in response to a request from Ministers of the eight Arctic countries. The Ministers called for engagement of all Arctic Council Working Groups in this process, and requested that the Arctic Monitoring and Assessment programme (AMAP) take responsibility for coordinating the work. This Executive Summary is in three parts. Part A presents the main findings of the assessment and related recommendations. Part B is structured in the same manner as Part A and provides additional information for those interested in examining the basis for the conclusions and recommendations that are presented in Part A. Part C presents information on 'gaps in knowledge' and recommendations aimed at filling these gaps. (AG)

  15. Pan-Arctic distributions of continental runoff in the Arctic Ocean.

    Science.gov (United States)

    Fichot, Cédric G; Kaiser, Karl; Hooker, Stanford B; Amon, Rainer M W; Babin, Marcel; Bélanger, Simon; Walker, Sally A; Benner, Ronald

    2013-01-01

    Continental runoff is a major source of freshwater, nutrients and terrigenous material to the Arctic Ocean. As such, it influences water column stratification, light attenuation, surface heating, gas exchange, biological productivity and carbon sequestration. Increasing river discharge and thawing permafrost suggest that the impacts of continental runoff on these processes are changing. Here, a new optical proxy was developed and implemented with remote sensing to determine the first pan-Arctic distribution of terrigenous dissolved organic matter (tDOM) and continental runoff in the surface Arctic Ocean. Retrospective analyses revealed connections between the routing of North American runoff and the recent freshening of the Canada Basin, and indicated a correspondence between climate-driven changes in river discharge and tDOM inventories in the Kara Sea. By facilitating the real-time, synoptic monitoring of tDOM and freshwater runoff in surface polar waters, this novel approach will help understand the manifestations of climate change in this remote region.

  16. ArcticDEM Validation and Accuracy Assessment

    Science.gov (United States)

    Candela, S. G.; Howat, I.; Noh, M. J.; Porter, C. C.; Morin, P. J.

    2017-12-01

    ArcticDEM comprises a growing inventory Digital Elevation Models (DEMs) covering all land above 60°N. As of August, 2017, ArcticDEM had openly released 2-m resolution, individual DEM covering over 51 million km2, which includes areas of repeat coverage for change detection, as well as over 15 million km2 of 5-m resolution seamless mosaics. By the end of the project, over 80 million km2 of 2-m DEMs will be produced, averaging four repeats of the 20 million km2 Arctic landmass. ArcticDEM is produced from sub-meter resolution, stereoscopic imagery using open source software (SETSM) on the NCSA Blue Waters supercomputer. These DEMs have known biases of several meters due to errors in the sensor models generated from satellite positioning. These systematic errors are removed through three-dimensional registration to high-precision Lidar or other control datasets. ArcticDEM is registered to seasonally-subsetted ICESat elevations due its global coverage and high report accuracy ( 10 cm). The vertical accuracy of ArcticDEM is then obtained from the statistics of the fit to the ICESat point cloud, which averages -0.01 m ± 0.07 m. ICESat, however, has a relatively coarse measurement footprint ( 70 m) which may impact the precision of the registration. Further, the ICESat data predates the ArcticDEM imagery by a decade, so that temporal changes in the surface may also impact the registration. Finally, biases may exist between different the different sensors in the ArcticDEM constellation. Here we assess the accuracy of ArcticDEM and the ICESat registration through comparison to multiple high-resolution airborne lidar datasets that were acquired within one year of the imagery used in ArcticDEM. We find the ICESat dataset is performing as anticipated, introducing no systematic bias during the coregistration process, and reducing vertical errors to within the uncertainty of the airborne Lidars. Preliminary sensor comparisons show no significant difference post coregistration

  17. Arctic security in an age of climate change

    Energy Technology Data Exchange (ETDEWEB)

    Kraska, James (ed.)

    2013-03-01

    Publisher review: This book examines Arctic defense policy and military security from the perspective of all eight Arctic states. In light of climate change and melting ice in the Arctic Ocean, Canada, Russia, Denmark (Greenland), Norway and the United States, as well as Iceland, Sweden and Finland, are grappling with an emerging Arctic security paradigm. This volume brings together the world's most seasoned Arctic political-military experts from Europe and North America to analyze how Arctic nations are adapting their security postures to accommodate increased shipping, expanding naval presence, and energy and mineral development in the polar region. The book analyzes the ascent of Russia as the first 'Arctic superpower', the growing importance of polar security for NATO and the Nordic states, and the increasing role of Canada and the United States in the region.(Author)

  18. An AeroCom assessment of black carbon in Arctic snow and sea ice

    Energy Technology Data Exchange (ETDEWEB)

    Jiao, C.; Flanner, M. G.; Balkanski, Y.; Bauer, S. E.; Bellouin, N.; Berntsen, T. K.; Bian, H.; Carslaw, K. S.; Chin, M.; De Luca, N.; Diehl, T.; Ghan, S. J.; Iversen, T.; Kirkevåg, A.; Koch, D.; Liu, X.; Mann, G. W.; Penner, J. E.; Pitari, G.; Schulz, M.; Seland, Ø.; Skeie, R. B.; Steenrod, S. D.; Stier, P.; Takemura, T.; Tsigaridis, K.; van Noije, T.; Yun, Y.; Zhang, K.

    2014-01-01

    Though many global aerosols models prognose surface deposition, only a few models have been used to directly simulate the radiative effect from black carbon (BC) deposition to snow and sea ice. In this paper, we apply aerosol deposition fields from 25 models contributing to two phases of the Aerosol Comparisons between Observations and Models (AeroCom) project to simulate and evaluate within-snow BC concentrations and radiative effect in the Arctic. We accomplish this by driving the offline land and sea ice components of the Community Earth System Model with different deposition fields and meteorological conditions from 2004 to 2009, during which an extensive field campaign of BC measurements in Arctic snow occurred. We find that models generally underestimate BC concentrations in snow in northern Russia and Norway, while overestimating BC amounts elsewhere in the Arctic. Although simulated BC distributions in snow are poorly correlated with measurements, mean values are reasonable. The multi-model mean (range) bias in BC concentrations, sampled over the same grid cells, snow depths, and months of measurements, are -4.4 (-13.2 to +10.7) ng g-1 for an earlier phase of AeroCom models (phase I), and +4.1 (-13.0 to +21.4) ng g-1 for a more recent phase of AeroCom models (phase II), compared to the observational mean of 19.2 ng g-1. Factors determining model BC concentrations in Arctic snow include Arctic BC emissions, transport of extra-Arctic aerosols, precipitation, deposition efficiency of aerosols within the Arctic, and meltwater removal of particles in snow. Sensitivity studies show that the model–measurement evaluation is only weakly affected by meltwater scavenging efficiency because most measurements were conducted in non-melting snow. The Arctic (60–90° N) atmospheric residence time for BC in phase II models ranges from 3.7 to 23.2 days, implying large inter-model variation in local BC deposition efficiency. Combined with

  19. Goose-mediated nutrient enrichment and planktonic grazer control in arctic freshwater ponds

    NARCIS (Netherlands)

    Van Geest, G. J.; Hessen, D. O.; Spierenburg, P.; Dahl-Hansen, G. A. P.; Christensen, G.; Faerovig, P. J.; Brehm, M.; Loonen, M. J. J. E.; Van Donk, E.

    A dramatic increase in the breeding population of geese has occurred over the past few decades at Svalbard. This may strongly impact the fragile ecosystems of the Arctic tundra because many of the ultra-oligotrophic freshwater systems experience enrichment from goose feces. We surveyed 21 shallow

  20. Wind power in Arctic regions

    International Nuclear Information System (INIS)

    Lundsager, P.; Ahm, P.; Madsen, B.; Krogsgaard, P.

    1993-07-01

    Arctic or semi-arctic regions are often endowed with wind resources adequate for a viable production of electricity from the wind. Only limited efforts have so far been spent to introduce and to demonstrate the obvious synergy of combining wind power technology with the problems and needs of electricity generation in Arctic regions. Several factors have created a gap preventing the wind power technology carrying its full role in this context, including a certain lack of familiarity with the technology on the part of the end-users, the local utilities and communities, and a lack of commonly agreed techniques to adapt the same technology for Arctic applications on the part of the manufacturers. This report is part of a project that intends to contribute to bridging this gap. The preliminary results of a survey conducted by the project are included in this report, which is a working document for an international seminar held on June 3-4, 1993, at Risoe National Laboratory, Denmark. Following the seminar a final report will be published. It is intended that the final report will serve as a basis for a sustained, international effort to develop the wind power potential of the Arctic and semi-arctic regions. The project is carried out by a project group formed by Risoe, PA Energy and BTM Consult. The project is sponsored by the Danish Energy Agency of the Danish Ministry of Energy through grant no. ENS-51171/93-0008. (au)

  1. Environmental marine geology of the Arctic Ocean

    International Nuclear Information System (INIS)

    Mudie, P.J.

    1991-01-01

    The Arctic Ocean and its ice cover are major regulators of Northern Hemisphere climate, ocean circulation and marine productivity. The Arctic is also very sensitive to changes in the global environment because sea ice magnifies small changes in temperature, and because polar regions are sinks for air pollutants. Marine geology studies are being carried out to determine the nature and rate of these environmental changes by study of modem ice and sea-bed environments, and by interpretation of geological records imprinted in the sea-floor sediments. Sea ice camps, an ice island, and polar icebreakers have been used to study both western and eastern Arctic Ocean basins. Possible early warning signals of environmental changes in the Canadian Arctic are die-back in Arctic sponge reefs, outbreaks of toxic dinoflagellates, and pesticides in the marine food chain. Eastern Arctic ice and surface waters are contaminated by freon and radioactive fallout from Chernobyl. At present, different sedimentary processes operate in the pack ice-covered Canadian polar margin than in summer open waters off Alaska and Eurasia. The geological records, however, suggest that a temperature increase of 1-4 degree C would result in summer open water throughout the Arctic, with major changes in ocean circulation and productivity of waters off Eastern North America, and more widespread transport of pollutants from eastern to western Arctic basins. More studies of longer sediment cores are needed to confirm these interpretations, but is is now clear that the Arctic Ocean has been the pacemaker of climate change during the past 1 million years

  2. Arctic lineage-canine distemper virus as a cause of death in Apennine wolves (Canis lupus in Italy.

    Directory of Open Access Journals (Sweden)

    Daria Di Sabatino

    Full Text Available Canine distemper virus (CDV infection is a primary threat affecting a wide number of carnivore species, including wild animals. In January 2013, two carcasses of Apennine wolves (Canis lupus were collected in Ortona dei Marsi (L'Aquila province, Italy by the local Veterinary Services. CDV was immediately identified either by RT-PCR or immunohistochemistry in lung and central nervous tissue samples. At the same time, severe clinical signs consistent with CDV infection were identified and taped (Videos S1-S3 from three wolves rescued in the areas surrounding the National Parks of the Abruzzi region by the Veterinary Services. The samples collected from these symptomatic animals also turned out CDV positive by RT-PCR. So far, 30 carcasses of wolves were screened and CDV was detected in 20 of them. The sequencing of the haemagglutinin gene and subsequent phylogenetic analysis demonstrated that the identified virus belonged to the CDV Arctic lineage. Strains belonging to this lineage are known to circulate in Italy and in Eastern Europe amongst domestic dogs. To the best of our knowledge this is the first report of CDV Arctic lineage epidemics in the wild population in Europe.

  3. Evidence and implications of recent climate change in Northern Alaska and other Arctic regions

    Science.gov (United States)

    Hinzman, L.D.; Bettez, N.D.; Bolton, W.R.; Chapin, F.S.; Dyurgerov, M.B.; Fastie, C.L.; Griffith, B.; Hollister, R.D.; Hope, A.; Huntington, H.P.; Jensen, A.M.; Jia, G.J.; Jorgenson, T.; Kane, D.L.; Klein, D.R.; Kofinas, G.; Lynch, A.H.; Lloyd, A.H.; McGuire, A.D.; Nelson, Frederick E.; Oechel, W.C.; Osterkamp, T.E.; Racine, C.H.; Romanovsky, V.E.; Stone, R.S.; Stow, D.A.; Sturm, M.; Tweedie, C.E.; Vourlitis, G.L.; Walker, M.D.; Walker, D.A.; Webber, P.J.; Welker, J.M.; Winker, K.S.; Yoshikawa, K.

    2005-01-01

    The Arctic climate is changing. Permafrost is warming, hydrological processes are changing and biological and social systems are also evolving in response to these changing conditions. Knowing how the structure and function of arctic terrestrial ecosystems are responding to recent and persistent climate change is paramount to understanding the future state of the Earth system and how humans will need to adapt. Our holistic review presents a broad array of evidence that illustrates convincingly; the Arctic is undergoing a system-wide response to an altered climatic state. New extreme and seasonal surface climatic conditions are being experienced, a range of biophysical states and processes influenced by the threshold and phase change of freezing point are being altered, hydrological and biogeochemical cycles are shifting, and more regularly human sub-systems are being affected. Importantly, the patterns, magnitude and mechanisms of change have sometimes been unpredictable or difficult to isolate due to compounding factors. In almost every discipline represented, we show how the biocomplexity of the Arctic system has highlighted and challenged a paucity of integrated scientific knowledge, the lack of sustained observational and experimental time series, and the technical and logistic constraints of researching the Arctic environment. This study supports ongoing efforts to strengthen the interdisciplinarity of arctic system science and improve the coupling of large scale experimental manipulation with sustained time series observations by incorporating and integrating novel technologies, remote sensing and modeling. ?? Springer 2005.

  4. Arctic Glass: Innovative Consumer Technology in Support of Arctic Research

    Science.gov (United States)

    Ruthkoski, T.

    2015-12-01

    The advancement of cyberinfrastructure on the North Slope of Alaska is drastically limited by location-specific conditions, including: unique geophysical features, remoteness of location, and harsh climate. The associated cost of maintaining this unique cyberinfrastructure also becomes a limiting factor. As a result, field experiments conducted in this region have historically been at a technological disadvantage. The Arctic Glass project explored a variety of scenarios where innovative consumer-grade technology was leveraged as a lightweight, rapidly deployable, sustainable, alternatives to traditional large-scale Arctic cyberinfrastructure installations. Google Glass, cloud computing services, Internet of Things (IoT) microcontrollers, miniature LIDAR, co2 sensors designed for HVAC systems, and portable network kits are several of the components field-tested at the Toolik Field Station as part of this project. Region-specific software was also developed, including a multi featured, voice controlled Google Glass application named "Arctic Glass". Additionally, real-time sensor monitoring and remote control capability was evaluated through the deployment of a small cluster of microcontroller devices. Network robustness was analyzed as the devices delivered streams of abiotic data to a web-based dashboard monitoring service in near real time. The same data was also uploaded synchronously by the devices to Amazon Web Services. A detailed overview of solutions deployed during the 2015 field season, results from experiments utilizing consumer sensors, and potential roles consumer technology could play in support of Arctic science will be discussed.

  5. Development of pan-Arctic database for river chemistry

    Science.gov (United States)

    McClelland, J.W.; Holmes, R.M.; Peterson, B.J.; Amon, R.; Brabets, T.; Cooper, L.; Gibson, J.; Gordeev, V.V.; Guay, C.; Milburn, D.; Staples, R.; Raymond, P.A.; Shiklomanov, I.; Striegl, Robert G.; Zhulidov, A.; Gurtovaya, T.; Zimov, S.

    2008-01-01

    More than 10% of all continental runoff flows into the Arctic Ocean. This runoff is a dominant feature of the Arctic Ocean with respect to water column structure and circulation. Yet understanding of the chemical characteristics of runoff from the pan-Arctic watershed is surprisingly limited. The Pan- Arctic River Transport of Nutrients, Organic Matter, and Suspended Sediments ( PARTNERS) project was initiated in 2002 to help remedy this deficit, and an extraordinary data set has emerged over the past few years as a result of the effort. This data set is publicly available through the Cooperative Arctic Data and Information Service (CADIS) of the Arctic Observing Network (AON). Details about data access are provided below.

  6. Decadal shifts in autumn migration timing by Pacific Arctic beluga whales are related to delayed annual sea ice formation.

    Science.gov (United States)

    Hauser, Donna D W; Laidre, Kristin L; Stafford, Kathleen M; Stern, Harry L; Suydam, Robert S; Richard, Pierre R

    2017-06-01

    Migrations are often influenced by seasonal environmental gradients that are increasingly being altered by climate change. The consequences of rapid changes in Arctic sea ice have the potential to affect migrations of a number of marine species whose timing is temporally matched to seasonal sea ice cover. This topic has not been investigated for Pacific Arctic beluga whales (Delphinapterus leucas) that follow matrilineally maintained autumn migrations in the waters around Alaska and Russia. For the sympatric Eastern Chukchi Sea ('Chukchi') and Eastern Beaufort Sea ('Beaufort') beluga populations, we examined changes in autumn migration timing as related to delayed regional sea ice freeze-up since the 1990s, using two independent data sources (satellite telemetry data and passive acoustics) for both populations. We compared dates of migration between 'early' (1993-2002) and 'late' (2004-2012) tagging periods. During the late tagging period, Chukchi belugas had significantly delayed migrations (by 2 to >4 weeks, depending on location) from the Beaufort and Chukchi seas. Spatial analyses also revealed that departure from Beaufort Sea foraging regions by Chukchi whales was postponed in the late period. Chukchi beluga autumn migration timing occurred significantly later as regional sea ice freeze-up timing became later in the Beaufort, Chukchi, and Bering seas. In contrast, Beaufort belugas did not shift migration timing between periods, nor was migration timing related to freeze-up timing, other than for southward migration at the Bering Strait. Passive acoustic data from 2008 to 2014 provided independent and supplementary support for delayed migration from the Beaufort Sea (4 day yr -1 ) by Chukchi belugas. Here, we report the first phenological study examining beluga whale migrations within the context of their rapidly transforming Pacific Arctic ecosystem, suggesting flexible responses that may enable their persistence yet also complicate predictions of how

  7. Poles apart: the "bipolar" pteropod species Limacina helicina is genetically distinct between the Arctic and Antarctic oceans.

    Science.gov (United States)

    Hunt, Brian; Strugnell, Jan; Bednarsek, Nina; Linse, Katrin; Nelson, R John; Pakhomov, Evgeny; Seibel, Brad; Steinke, Dirk; Würzberg, Laura

    2010-03-23

    The shelled pteropod (sea butterfly) Limacina helicina is currently recognised as a species complex comprising two sub-species and at least five "forma". However, at the species level it is considered to be bipolar, occurring in both the Arctic and Antarctic oceans. Due to its aragonite shell and polar distribution L. helicina is particularly vulnerable to ocean acidification. As a key indicator of the acidification process, and a major component of polar ecosystems, L. helicina has become a focus for acidification research. New observations that taxonomic groups may respond quite differently to acidification prompted us to reassess the taxonomic status of this important species. We found a 33.56% (+/-0.09) difference in cytochrome c oxidase subunit I (COI) gene sequences between L. helicina collected from the Arctic and Antarctic oceans. This degree of separation is sufficient for ordinal level taxonomic separation in other organisms and provides strong evidence for the Arctic and Antarctic populations of L. helicina differing at least at the species level. Recent research has highlighted substantial physiological differences between the poles for another supposedly bipolar pteropod species, Clione limacina. Given the large genetic divergence between Arctic and Antarctic L. helicina populations shown here, similarly large physiological differences may exist between the poles for the L. helicina species group. Therefore, in addition to indicating that L. helicina is in fact not bipolar, our study demonstrates the need for acidification research to take into account the possibility that the L. helicina species group may not respond in the same way to ocean acidification in Arctic and Antarctic ecosystems.

  8. A Flexible Socioeconomic Scenarios Framework for the Study of Plausible Arctic Futures

    Science.gov (United States)

    Reissell, A. K.; Peters, G. P.; Riahi, K.; Kroglund, M.; Lovecraft, A. L.; Nilsson, A. E.; Preston, B. L.; van Ruijven, B. J.

    2016-12-01

    Future developments of the Arctic region are associated with different drivers of change - climate, environmental, and socio-economic - and their interactions, and are highly uncertain. The uncertainty poses challenges for decision-making, calling for development of new analytical frameworks. Scenarios - coherent narratives describing potential futures, pathways to futures, and drivers of change along the way - can be used to explore the consequences of the key uncertainties, particularly in the long-term. In a participatory scenarios workshop, we used both top-down and bottom-up approaches for the development of a flexible socioeconomic scenarios framework. The top-down approach was linked to the global Integrated Assessment Modeling framework and its Shared Socio-Economic Pathways (SSPs), developing an Arctic extension of the set of five storylines on the main socioeconomic uncertainties in global climate change research. The bottom-up approach included participatory development of narratives originating from within the Arctic region. For extension of global SSPs to the regional level, we compared the key elements in the global SSPs (Population, Human Development, Economy & Lifestyle, Policies & Institutions, Technology, and Environment & Natural Resources) and key elements in the Arctic. Additional key elements for the Arctic scenarios include, for example, seasonal migration, the large role of traditional knowledge and culture, mixed economy, nested governance structure, human and environmental security, quality of infrastructure. The bottom-up derived results suggested that the scenarios developed independent of the SSPs could be mapped back to the SSPs to demonstrate consistency with respect to representing similar boundary conditions. The two approaches are complimentary, as the top-down approach can be used to set the global socio-economic and climate boundary conditions, and the bottom-up approach providing the regional context. One key uncertainty and

  9. The changing seasonal climate in the Arctic.

    Science.gov (United States)

    Bintanja, R; van der Linden, E C

    2013-01-01

    Ongoing and projected greenhouse warming clearly manifests itself in the Arctic regions, which warm faster than any other part of the world. One of the key features of amplified Arctic warming concerns Arctic winter warming (AWW), which exceeds summer warming by at least a factor of 4. Here we use observation-driven reanalyses and state-of-the-art climate models in a variety of standardised climate change simulations to show that AWW is strongly linked to winter sea ice retreat through the associated release of surplus ocean heat gained in summer through the ice-albedo feedback (~25%), and to infrared radiation feedbacks (~75%). Arctic summer warming is surprisingly modest, even after summer sea ice has completely disappeared. Quantifying the seasonally varying changes in Arctic temperature and sea ice and the associated feedbacks helps to more accurately quantify the likelihood of Arctic's climate changes, and to assess their impact on local ecosystems and socio-economic activities.

  10. Hematology of southern Beaufort Sea polar bears (2005-2007): Biomarker for an arctic ecosystem health sentinel

    Science.gov (United States)

    Kirk, Cassandra M.; Amstrup, Steven C.; Swor, Rhonda; Holcomb, Darce; O'Hara, T. M.

    2010-01-01

    Declines in sea-ice habitats have resulted in declining stature, productivity, and survival of polar bears in some regions. With continuing sea-ice declines, negative population effects are projected to expand throughout the polar bear's range. Precise causes of diminished polar bear life history performance are unknown, however, climate and sea-ice condition change are expected to adversely impact polar bear (Ursus maritimus) health and population dynamics. As apex predators in the Arctic, polar bears integrate the status of lower trophic levels and are therefore sentinels of ecosystem health. Arctic residents feed at the apex of the ecosystem, thus polar bears can serve as indicators of human health in the Arctic. Despite their value as indicators of ecosystem welfare, population-level health data for U.S. polar bears are lacking. We present hematological reference ranges for southern Beaufort Sea polar bears. Hematological parameters in southern Beaufort Sea polar bears varied by age, geographic location, and reproductive status. Total leukocytes, lymphocytes, monocytes, eosinophils, and serum immunoglobulin G were significantly greater in males than females. These measures were greater in nonlactating females ages ???5, than lactating adult females ages ???5, suggesting that females encumbered by young may be less resilient to new immune system challenges that may accompany ongoing climate change. Hematological values established here provide a necessary baseline for anticipated changes in health as arctic temperatures warm and sea-ice declines accelerate. Data suggest that females with dependent young may be most vulnerable to these changes and should therefore be a targeted cohort for monitoring in this sentinel. ?? 2010 International Association for Ecology and Health.

  11. Emission of Biogenic Volatile Organic Compounds in the Arctic

    DEFF Research Database (Denmark)

    Lindwall, Frida

    , emitted in order to communicate within and between trophic levels and as protection against biotic and abiotic stresses, or as byproducts. Some BVOCs are very reactive, and when entering the atmosphere they rapidly react with for example hydroxyl radicals and ozone, affecting the oxidative capacity......Emissions of biogenic volatile organic compounds (BVOCs) from arctic ecosystems are scarcely studied and the effect of climate change on BVOC emissions even less so. BVOCs are emitted from all living organisms and play a role for atmospheric chemistry. The major part of BVOCs derives from plants...... in the atmosphere. This may warm the climate due to a prolonged lifetime of the potent greenhouse gas methane in the atmosphere. However, oxidized BVOCs may participate in formation or growth of aerosols, which in turn may mitigate climate warming. Climate change in the Arctic, an area characterized by short...

  12. ARCTOX: a pan-Arctic sampling network to track mercury contamination across Arctic marine food webs

    DEFF Research Database (Denmark)

    Fort, Jerome; Helgason, Halfdan; Amelineau, Francoise

    and is still a source of major environmental concerns. In that context, providing a large-scale and comprehensive understanding of the Arctic marine food-web contamination is essential to better apprehend impacts of anthropogenic activities and climate change on the exposure of Arctic species and humans to Hg....... In 2015, an international sampling network (ARCTOX) has been established, allowing the collection seabird samples all around the Arctic. Seabirds are indeed good indicators of Hg contamination of marine food webs at large spatial scale. Gathering researchers from 10 countries, ARCTOX allowed......Arctic marine ecosystems are threatened by new risks of Hg contamination under the combined effects of climate change and human activities. Rapid change of the cryosphere might for instance release large amounts of Hg trapped in sea-ice, permafrost and terrestrial glaciers over the last decades...

  13. Arctic and Antarctic Sea Ice Changes and Impacts (Invited)

    Science.gov (United States)

    Nghiem, S. V.

    2013-12-01

    The extent of springtime Arctic perennial sea ice, important to preconditioning summer melt and to polar sunrise photochemistry, continues its precipitous reduction in the last decade marked by a record low in 2012, as the Bromine, Ozone, and Mercury Experiment (BROMEX) was conducted around Barrow, Alaska, to investigate impacts of sea ice reduction on photochemical processes, transport, and distribution in the polar environment. In spring 2013, there was further loss of perennial sea ice, as it was not observed in the ocean region adjacent to the Alaskan north coast, where there was a stretch of perennial sea ice in 2012 in the Beaufort Sea and Chukchi Sea. In contrast to the rapid and extensive loss of sea ice in the Arctic, Antarctic sea ice has a trend of a slight increase in the past three decades. Given the significant variability in time and in space together with uncertainties in satellite observations, the increasing trend of Antarctic sea ice may arguably be considered as having a low confidence level; however, there was no overall reduction of Antarctic sea ice extent anywhere close to the decreasing rate of Arctic sea ice. There exist publications presenting various factors driving changes in Arctic and Antarctic sea ice. After a short review of these published factors, new observations and atmospheric, oceanic, hydrological, and geological mechanisms contributed to different behaviors of sea ice changes in the Arctic and Antarctic are presented. The contribution from of hydrologic factors may provide a linkage to and enhance thermal impacts from lower latitudes. While geological factors may affect the sensitivity of sea ice response to climate change, these factors can serve as the long-term memory in the system that should be exploited to improve future projections or predictions of sea ice changes. Furthermore, similarities and differences in chemical impacts of Arctic and Antarctic sea ice changes are discussed. Understanding sea ice changes and

  14. Can coyotes affect deer populations in Southeastern North America?

    Energy Technology Data Exchange (ETDEWEB)

    Kilgo, J., C.; Ray, H., Scott; Ruth, Charles; Miller, Karl, V.

    2010-07-01

    ABSTRACT The coyote (Canis latrans) is a recent addition to the fauna of eastern North America, and in many areas coyote populations have been established for only a decade or two. Although coyotes are known predators of white-tailed deer (Odocoileus virginianus) in their historic range, effects this new predator may have on eastern deer populations have received little attention. We speculated that in the southeastern United States, coyotes may be affecting deer recruitment, and we present 5 lines of evidence that suggest this possibility. First, the statewide deer population in South Carolina has declined coincident with the establishment and increase in the coyote population. Second, data sets from the Savannah River Site (SRS) in South Carolina indicate a new mortality source affecting the deer population concurrent with the increase in coyotes. Third, an index of deer recruitment at SRS declined during the period of increase in coyotes. Fourth, food habits data from SRS indicate that fawns are an important food item for coyotes during summer. Finally, recent research from Alabama documented significant coyote predation on fawns there. Although this evidence does not establish cause and effect between coyotes and observed declines in deer recruitment, we argue that additional research should proactively address this topic in the region. We identified several important questions on the nature of the deer–coyote relationship in the East.

  15. A community-based, environmental chronic disease prevention intervention to improve healthy eating psychosocial factors and behaviors in indigenous populations in the Canadian Arctic.

    Science.gov (United States)

    Mead, Erin L; Gittelsohn, Joel; Roache, Cindy; Corriveau, André; Sharma, Sangita

    2013-10-01

    Diet-related chronic diseases are highly prevalent among indigenous populations in the Canadian Arctic. A community-based, multi-institutional nutritional and lifestyle intervention-Healthy Foods North-was implemented to improve food-related psychosocial factors and behaviors among Inuit and Inuvialuit in four intervention communities (with two comparison communities) in Nunavut and the Northwest Territories, Canada, in 2008. The 12-month program was developed from theory (social cognitive theory and social ecological models), formative research, and a community participatory process. It included an environmental component to increase healthy food availability in local stores and activities consisting of community-wide and point-of-purchase interactive educational taste tests and cooking demonstrations, media (e.g., radio ads, posters, shelf labels), and events held in multiple venues, including recreation centers and schools. The intervention was evaluated using pre- and postassessments with 246 adults from intervention and 133 from comparison communities (311 women, 68 men; mean age 42.4 years; 78.3% retention rate). Outcomes included psychosocial constructs (healthy eating knowledge, self-efficacy, and behavioral intentions), frequency of healthy and unhealthy food acquisition, healthiness of commonly used food preparation methods, and body mass index (kg/m(2)). After adjustment for demographic, socioeconomic status, and body mass index variables, respondents living in intervention communities showed significant improvements in food-related self-efficacy (β = 0.15, p = .003) and intentions (β = 0.16, p = .001) compared with comparison communities. More improvements from the intervention were seen in overweight, obese, and high socioeconomic status respondents. A community-based, multilevel intervention is an effective strategy to improve psychosocial factors for healthy nutritional behavior change to reduce chronic disease in indigenous Arctic populations.

  16. Physiological and ecological effects of increasing temperature on fish production in lakes of Arctic Alaska

    Science.gov (United States)

    Carey, Michael P.; Zimmerman, Christian E.

    2014-01-01

    Lake ecosystems in the Arctic are changing rapidly due to climate warming. Lakes are sensitive integrators of climate-induced changes and prominent features across the Arctic landscape, especially in lowland permafrost regions such as the Arctic Coastal Plain of Alaska. Despite many studies on the implications of climate warming, how fish populations will respond to lake changes is uncertain for Arctic ecosystems. Least Cisco (Coregonus sardinella) is a bellwether for Arctic lakes as an important consumer and prey resource. To explore the consequences of climate warming, we used a bioenergetics model to simulate changes in Least Cisco production under future climate scenarios for lakes on the Arctic Coastal Plain. First, we used current temperatures to fit Least Cisco consumption to observed annual growth. We then estimated growth, holding food availability, and then feeding rate constant, for future projections of temperature. Projected warmer water temperatures resulted in reduced Least Cisco production, especially for larger size classes, when food availability was held constant. While holding feeding rate constant, production of Least Cisco increased under all future scenarios with progressively more growth in warmer temperatures. Higher variability occurred with longer projections of time mirroring the expanding uncertainty in climate predictions further into the future. In addition to direct temperature effects on Least Cisco growth, we also considered changes in lake ice phenology and prey resources for Least Cisco. A shorter period of ice cover resulted in increased production, similar to warming temperatures. Altering prey quality had a larger effect on fish production in summer than winter and increased relative growth of younger rather than older age classes of Least Cisco. Overall, we predicted increased production of Least Cisco due to climate warming in lakes of Arctic Alaska. Understanding the implications of increased production of Least Cisco to

  17. The Need and Opportunity for an Integrated Research, Development and Testing Center in the Alaskan High Arctic

    Science.gov (United States)

    Hardesty, J. O.; Ivey, M.; Helsel, F.; Dexheimer, D.; Lucero, D. A.; Cahill, C. F.; Roesler, E. L.

    2017-12-01

    hangar for UAS. World-class Arctic research requires year-round access and facilities. The US currently conducts most Arctic research at stations outside the US. A US High Arctic Station network enables monitoring that is specific to the US Arctic, to predict and understand impacts that affect people, communities and the planet.

  18. Book Review: Marine Protected Areas in International Law: an Arctic Perspective

    Directory of Open Access Journals (Sweden)

    Davina Oktivana

    2017-10-01

    Full Text Available Marine biodiversity has always become an interesting topic in the development of the law of the sea subject. Despite of human dependence on marine resources, human intervention has been proven as the major threats to the sustainability of marine biodiversity and marine environment protection. Human activities, such an over-exploitation, shipping pollution, the use endangered fishing tools and above all, climate change, have changes the ecosystems extensively. One of the significant measures to prevent broaden the catastrophe is the establishment of Marine Protected Areas (MPAs, which has been accepted as a tool for protection and conservation of marine biodiversity. The book provides a comprehensive observation and analysis of the MPAs' concept and its implementation, specifically in the Arctic. This book is based on Ingvild Ulrikke Jakobsen's PhD thesis at the University of Tromsø, Norwegia. Her concerned particularly based on the development of human activities in the Arctic, that will definitely affect the fragile marine environment and there is an increasing need to ensure environmental protection and conservation of marine biodiversity and ecosystems in Arctic.

  19. Radioactive contamination in Arctic - present situation and future challenges

    International Nuclear Information System (INIS)

    Strand, Per

    2002-01-01

    There is currently a focus on radioactivity and the Arctic region. The reason for this is probably the high number of nuclear sources in parts of the Arctic and the vulnerability of Arctic systems to radioactive contamination. The Arctic environment is also perceived as a wilderness and the need for the protection of this wilderness against contamination is great. In the last decade information has also been released concerning the nuclear situation which has caused concern in many countries. Due to such concerns, the International Arctic Environmental Protection Strategy (IAEPS) was launched in 1991 and the Arctic Monitoring and Assessment Programme (AMAP) was established. AMAP is undertaking an assessment of the radioactive contamination of the Arctic and its radiological consequences. In 1996 IAEPS became part of the Arctic Council. AMAP presented one main report in 1997 and another in 1998. There are also several other national, bilateral and international programmes in existence which deal with this issue. This paper summarises some of current knowledge about sources of radioactive contamination, vulnerability, exposure of man, and potential sources for radioactive contamination within Arctic and some views on the future needs for work concerning radioactivity in Arctic. (au)

  20. The Arctic - A New Region for China's Foreign Policy

    Directory of Open Access Journals (Sweden)

    V S Yagiya

    2015-12-01

    Full Text Available Article is devoted to foreign policy of China in the Arctic. Main attention is paid to strategic view of the China concerning the Arctic, to bilateral and multilateral cooperation on the Arctic issues, also to opinion of Russian experts about discussing of Russian-China economic partnership. It was shown interests of the People's Republic of China in the Arctic: use Arctic transport system from the Pacific Rim to Europe; possibility of access to the Arctic resources; seeks of partners for the realized of Arctic projects and programs. It was pointed six directions of China cooperation in the Arctic: a scientific researches, b natural minerals, oil and gas issues, c tourism, d routes of the Arctic navigation, e use of high technologies in development of regional economy, e cooperation in the cultural and educational spheres. Authors are summarized that at the initial stage of the international cooperation in the Arctic polar scientific researches become as the tool of “he soft power”, and in the long term - the Northern Sea Route of the Russian Federation is included in the Strategy of China Economic belt and the Maritime Silk Route in the XXI century.

  1. Trichinella in arctic, subarctic and temperate regions

    DEFF Research Database (Denmark)

    Kapel, C. M O

    1997-01-01

    The transmission and occurrence of Trichinella spp according to the zoogeography of different climatic conditions, socioeconomy and human activity are discussed. Comparing arctic, subarctic and temperate regions, it appears that the species of Trichinella present, the composition of the fauna...... and the human activity are all very important interacting factors affecting epidemiology. In Greenland, where only sylvatic trichinellosis is present, the high prevalence in wildlife appears closely connected with polar bear hunting. In the Scandinavian countries, the prevalence of both sylvatic and domestic...

  2. Sea surface salinity of the Eocene Arctic Azolla event using innovative isotope modeling

    Science.gov (United States)

    Speelman, E. N.; Sewall, J. O.; Noone, D.; Huber, M.; Sinninghe Damste, J. S.; Reichart, G. J.

    2009-04-01

    With the realization that the Eocene Arctic Ocean was covered with enormous quantities of the free floating freshwater fern Azolla, new questions regarding Eocene conditions facilitating these blooms arose. Our present research focuses on constraining the actual salinity of, and water sources for, the Eocene Arctic basin through the application of stable water isotope tracers. Precipitation pathways potentially strongly affect the final isotopic composition of water entering the Arctic Basin. Therefore we use the Community Atmosphere Model (CAM3), developed by NCAR, combined with a recently developed integrated isotope tracer code to reconstruct the isotopic composition of global Eocene precipitation and run-off patterns. We further addressed the sensitivity of the modeled hydrological cycle to changes in boundary conditions, such as pCO2, sea surface temperatures (SSTs) and sea ice formation. In this way it is possible to assess the effect of uncertainties in proxy estimates of these parameters. Overall, results of all runs with Eocene boundary conditions, including Eocene topography, bathymetry, vegetation patterns, TEX86 derived SSTs and pCO2 estimates, show the presence of an intensified hydrological cycle with precipitation exceeding evaporation in the Arctic region. Enriched, precipitation weighted, isotopic values of around -120‰ are reported for the Arctic region. Combining new results obtained from compound specific isotope analyses (δD) on terrestrially derived n-alkanes extracted from Eocene sediments, and model outcomes make it possible to verify climate reconstructions for the middle Eocene Arctic. Furthermore, recently, characteristic long-chain mid-chain ω20 hydroxy wax constituents of Azolla were found in ACEX sediments. δD values of these C32 - C36 diols provide insight into the isotopic composition of the Eocene Arctic surface water. As the isotopic signature of the runoff entering the Arctic is modelled, and the final isotopic composition of

  3. Mechanisms Affecting Population Density in Fragmented Habitat

    Directory of Open Access Journals (Sweden)

    Lutz Tischendorf

    2005-06-01

    Full Text Available We conducted a factorial simulation experiment to analyze the relative importance of movement pattern, boundary-crossing probability, and mortality in habitat and matrix on population density, and its dependency on habitat fragmentation, as well as inter-patch distance. We also examined how the initial response of a species to a fragmentation event may affect our observations of population density in post-fragmentation experiments. We found that the boundary-crossing probability from habitat to matrix, which partly determines the emigration rate, is the most important determinant for population density within habitat patches. The probability of crossing a boundary from matrix to habitat had a weaker, but positive, effect on population density. Movement behavior in habitat had a stronger effect on population density than movement behavior in matrix. Habitat fragmentation and inter-patch distance may have a positive or negative effect on population density. The direction of both effects depends on two factors. First, when the boundary-crossing probability from habitat to matrix is high, population density may decline with increasing habitat fragmentation. Conversely, for species with a high matrix-to-habitat boundary-crossing probability, population density may increase with increasing habitat fragmentation. Second, the initial distribution of individuals across the landscape: we found that habitat fragmentation and inter-patch distance were positively correlated with population density when individuals were distributed across matrix and habitat at the beginning of our simulation experiments. The direction of these relationships changed to negative when individuals were initially distributed across habitat only. Our findings imply that the speed of the initial response of organisms to habitat fragmentation events may determine the direction of observed relationships between habitat fragmentation and population density. The time scale of post

  4. Russia's strategy in the Arctic

    DEFF Research Database (Denmark)

    Staun, Jørgen Meedom

    2017-01-01

    Russia's strategy in the Arctic is dominated by two overriding international relations (IR) discourses – or foreign policy directions. On the one hand, there is an IR-realism/geopolitical discourse that puts security first and often has a clear patriotic character, dealing with ‘exploring......’, ‘winning’ or ‘conquering’ the Arctic and putting power, including military power, behind Russia's national interests in the area. Opposed to this is an IR-liberalism, international law-inspired and modernisation-focused discourse, which puts cooperation first and emphasises ‘respect for international law......’, ‘negotiation’ and ‘cooperation’, and labels the Arctic as a ‘territory of dialogue’, arguing that the Arctic states all benefit the most if they cooperate peacefully. After a short but very visible media stunt in 2007 and subsequent public debate by proponents of the IR realism/geopolitical side, the IR...

  5. Long distance migratory songbirds respond to extremes in arctic seasonality

    Science.gov (United States)

    Boelman, N.; Asmus, A.; Chmura, H.; Krause, J.; Perez, J. H.; Sweet, S. K.; Gough, L.; Wingfield, J.

    2017-12-01

    Arctic regions are warming rapidly, with extreme weather events increasing in frequency, duration and intensity, as in other regions. Many studies have focused on how shifting seasonality in environmental conditions affect the phenology and productivity of vegetation, while far fewer have examined how arctic fauna responds. We studied two species of long-distance migratory songbirds, Lapland longspurs, Calcarius lapponicus, and White-crowned sparrows, Zonotrichia leucophrys gambelii, across seven consecutive breeding seasons in northern Alaskan tundra. We aimed to understand how spring environmental conditions affected breeding cycle phenology, food availability, body condition, stress physiology, and ultimately, reproductive success. Spring temperatures, precipitation, storm frequency, and snow-free dates differed significantly among years, with 2013 characterized by unusually late snow cover, and 2015 and 2016 characterized by unusually early snow-free dates and several late spring snowstorms. In response, we found that relative to other study years, there was a significant delay in breeding cycle phenology for both study species in 2013, while breeding cycle phenology was significantly earlier in 2015 only. For both species, we also found significant variation among years in: the seasonal patterns of arthropod availability during the nesting stage; body condition, and; stress physiology. Finally, we found significant variation in reproductive success of both species across years, and that daily survival rates were decreased by snow storm events. Our findings suggest that arctic-breeding passerine communities may be able to adjust phenology to unpredictable shifts in the timing of spring, but extreme conditions during the incubation and nestling stages are detrimental to reproductive success.

  6. The relation between Arctic Ocean circulation and the Arctic Oscillation as revealed by satellite altimetry and gravimetry

    Science.gov (United States)

    Morison, J.; Kwok, R.; Peralta Ferriz, C.; Dickinson, S.; Morison, D.; Andersen, R.; Dewey, S.

    2017-12-01

    Arctic Ocean circulation is commonly characterized by the persistent anticyclonic Beaufort Gyre in the Canada Basin and the Transpolar Drift. While these are clearly important features, their role in changing Arctic Ocean circulation is at times distorted by sampling biases inherent in drifting buoy and standard shipboard measurements of western nations. Hydrographic measurements from SCICEX submarine cruises for science in the early 1990s revealed an increasingly cyclonic circulation along the Russian side of the Arctic Ocean related to the low sea level pressure pattern in the same region associated with a high Arctic Oscillation (AO) index. More recently satellite altimetry (ICESat and CryoSat2) and gravimetry (GRACE) have provided the basin-wide observational coverage needed to see shifts to increased cyclonic circulation in 2004 to 2008 and decreased cyclonic circulation in 2008 to 2015. These shifts are related to changes in the AO and are important for their effect on the trajectories of sea ice and freshwater through the Arctic Ocean.

  7. Rain-on-snow and ice layer formation detection using passive microwave radiometry: An arctic perspective

    Science.gov (United States)

    Langlois, A.; Royer, A.; Montpetit, B.; Johnson, C. A.; Brucker, L.; Dolant, C.; Richards, A.; Roy, A.

    2015-12-01

    With the current changes observed in the Arctic, an increase in occurrence of rain-on-snow (ROS) events has been reported in the Arctic (land) over the past few decades. Several studies have established that strong linkages between surface temperatures and passive microwaves do exist, but the contribution of snow properties under winter extreme events such as rain-on-snow events (ROS) and associated ice layer formation need to be better understood that both have a significant impact on ecosystem processes. In particular, ice layer formation is known to affect the survival of ungulates by blocking their access to food. Given the current pronounced warming in northern regions, more frequent ROS can be expected. However, one of the main challenges in the study of ROS in northern regions is the lack of meteorological information and in-situ measurements. The retrieval of ROS occurrence in the Arctic using satellite remote sensing tools thus represents the most viable approach. Here, we present here results from 1) ROS occurrence formation in the Peary caribou habitat using an empirically developed ROS algorithm by our group based on the gradient ratio, 2) ice layer formation across the same area using a semi-empirical detection approach based on the polarization ratio spanning between 1978 and 2013. A detection threshold was adjusted given the platform used (SMMR, SSM/I and AMSR-E), and initial results suggest high-occurrence years as: 1981-1982, 1992-1993; 1994-1995; 1999-2000; 2001-2002; 2002-2003; 2003-2004; 2006-2007; 2007-2008. A trend in occurrence for Banks Island and NW Victoria Island and linkages to caribou population is presented.

  8. Circumpolar arctic tundra biomass and productivity dynamics in response to projected climate change and herbivory.

    Science.gov (United States)

    Yu, Qin; Epstein, Howard; Engstrom, Ryan; Walker, Donald

    2017-09-01

    Satellite remote sensing data have indicated a general 'greening' trend in the arctic tundra biome. However, the observed changes based on remote sensing are the result of multiple environmental drivers, and the effects of individual controls such as warming, herbivory, and other disturbances on changes in vegetation biomass, community structure, and ecosystem function remain unclear. We apply ArcVeg, an arctic tundra vegetation dynamics model, to estimate potential changes in vegetation biomass and net primary production (NPP) at the plant community and functional type levels. ArcVeg is driven by soil nitrogen output from the Terrestrial Ecosystem Model, existing densities of Rangifer populations, and projected summer temperature changes by the NCAR CCSM4.0 general circulation model across the Arctic. We quantified the changes in aboveground biomass and NPP resulting from (i) observed herbivory only; (ii) projected climate change only; and (iii) coupled effects of projected climate change and herbivory. We evaluated model outputs of the absolute and relative differences in biomass and NPP by country, bioclimate subzone, and floristic province. Estimated potential biomass increases resulting from temperature increase only are approximately 5% greater than the biomass modeled due to coupled warming and herbivory. Such potential increases are greater in areas currently occupied by large or dense Rangifer herds such as the Nenets-occupied regions in Russia (27% greater vegetation increase without herbivores). In addition, herbivory modulates shifts in plant community structure caused by warming. Plant functional types such as shrubs and mosses were affected to a greater degree than other functional types by either warming or herbivory or coupled effects of the two. © 2017 John Wiley & Sons Ltd.

  9. Recovery of Three Arctic Stream Reaches From Experimental Nutrient Enrichment.

    Science.gov (United States)

    Green, A. C.; Benstead, J. P.; Deegan, L. A.; Peterson, B. J.; Bowden, W. B.; Huryn, A. D.; Slavik, K.; Hershey, A. E.

    2005-05-01

    We examined multi-year patterns in community recovery from experimental low-concentration nutrient (N+P and P only) enrichment in three reaches of two Arctic tundra streams (Kuparuk River and Oksrukuyik Creek) on the North Slope of Alaska (USA). Rates of recovery varied among community components and depended on duration of enrichment (2 to 13 consecutive growing seasons). Biomass and C:P ratio of epilithic algae returned to reference levels rapidly (within 2 years), regardless of enrichment duration. Bryophyte cover, which increased greatly after long-term enrichment (>8 years), recovered to reference levels only after 7 years, when a storm scoured most remnant moss in the recovering reach. Persistence of bryophytes slowed recovery rates of insect taxa that had either been positively (e.g., Ephemerella, most chironomid taxa) or negatively (e.g., Orthocladius rivulorum) affected by this shift in dominant primary producer and its consequence for benthic habitat. Growth of Arctic grayling (adults and young-of-year), the top predator, returned to reference rates within two years. Recovery of these Arctic stream ecosystems from nutrient enrichment was consequently controlled largely by interactions between duration of enrichment and physical disturbance, mediated through physical habitat shifts caused by bryophytes.

  10. A Recommended Set of Key Arctic Indicators

    Science.gov (United States)

    Stanitski, D.; Druckenmiller, M.; Fetterer, F. M.; Gerst, M.; Intrieri, J. M.; Kenney, M. A.; Meier, W.; Overland, J. E.; Stroeve, J.; Trainor, S.

    2017-12-01

    The Arctic is an interconnected and environmentally sensitive system of ice, ocean, land, atmosphere, ecosystems, and people. From local to pan-Arctic scales, the area has already undergone major changes in physical and societal systems and will continue at a pace that is greater than twice the global average. Key Arctic indicators can quantify these changes. Indicators serve as the bridge between complex information and policy makers, stakeholders, and the general public, revealing trends and information people need to make important socioeconomic decisions. This presentation evaluates and compiles more than 70 physical, biological, societal and economic indicators into an approachable summary that defines the changing Arctic. We divided indicators into "existing," "in development," "possible," and "aspirational". In preparing a paper on Arctic Indicators for a special issue of the journal Climatic Change, our group established a set of selection criteria to identify indicators to specifically guide decision-makers in their responses to climate change. A goal of the analysis is to select a manageable composite list of recommended indicators based on sustained, reliable data sources with known user communities. The selected list is also based on the development of a conceptual model that identifies components and processes critical to our understanding of the Arctic region. This list of key indicators is designed to inform the plans and priorities of multiple groups such as the U.S. Global Change Research Program (USGCRP), Interagency Arctic Research Policy Committee (IARPC), and the Arctic Council.

  11. Microbial diversity in oiled and un-oiled shoreline sediments in the Norwegian Arctic

    International Nuclear Information System (INIS)

    Grossman, M.J.; Prince, R.C.; Garrett, R.M.; Garrett, K.K.; Bare, R.E.; O'Neil, K.R.; Sowlay, M.R.; Hinton, S.M.; Lee, K.; Sergy, G.A.; Guenette, C.C.

    2000-01-01

    Field trials were conducted at an oiled shoreline on the island of Spitsbergen to examine the effect of nutrient addition on the metabolic status, potential for aromatic hydrocarbon degradation, and the phylogenetic diversity of the microbial community in oiled Arctic shoreline sediments. IF-30 intermediate fuel grade oil was applied to the shoreline which was then divided into four plots. One was left untreated and two were tilled. Four applications of fertilizer were applied over a two-month period. Phospholipid fatty acid (PLFA), gene probe and 16S microbial community analysis suggested that bioremediation stimulated the metabolic activity, increased microbial biomass and genetic potential for aromatic hydrocarbon degradation, and increased the population of hydrocarbon degradation of an oiled Arctic shoreline microbial community. The results of this study are in agreement with the results from stimulation of oil biodegradation in temperate marine environments. It was concluded that biodegradation and fertilizer addition are feasible treatment methods for oil spills in Arctic regions. 31 refs., 3 tabs., 3 figs

  12. The Arctic Circle

    Science.gov (United States)

    McDonald, Siobhan

    2016-04-01

    My name is Siobhan McDonald. I am a visual artist living and working in Dublin. My studio is based in The School of Science at University College Dublin where I was Artist in Residence 2013-2015. A fascination with time and the changeable nature of landmass has led to ongoing conversations with scientists and research institutions across the interweaving disciplines of botany, biology and geology. I am developing a body of work following a recent research trip to the North Pole where I studied the disappearing landscape of the Arctic. Prompted by my experience of the Arctic shelf receding, this new work addresses issues of the instability of the earth's materiality. The work is grounded in an investigation of material processes, exploring the dynamic forces that transform matter and energy. This project combines art and science in a fascinating exploration of one of the Earth's last relatively untouched wilderness areas - the High Arctic to bring audiences on journeys to both real and artistically re-imagined Arctic spaces. CRYSTALLINE'S pivotal process is collaboration: with The European Space Agency; curator Helen Carey; palaeontologist Prof. Jenny McElwain, UCD; and with composer Irene Buckley. CRYSTALLINE explores our desire to make corporeal contact with geological phenomena in Polar Regions. From January 2016, in my collaboration with Jenny McElwain, I will focus on the study of plants and atmospheres from the Arctic regions as far back as 400 million years ago, to explore the essential 'nature' that, invisible to the eye, acts as imaginary portholes into other times. This work will be informed by my arctic tracings of sounds and images recorded in the glaciers of this disappearing frozen landscape. In doing so, the urgencies around the tipping of natural balances in this fragile region will be revealed. The final work will emerge from my forthcoming residency at the ESA in spring 2016. Here I will conduct a series of workshops in ESA Madrid to work with

  13. Biodiversity of arctic marine fishes

    DEFF Research Database (Denmark)

    Mecklenburg, Catherine W.; Møller, Peter Rask; Steinke, Dirk

    2011-01-01

    Taxonomic and distributional information on each fish species found in arctic marine waters is reviewed, and a list of families and species with commentary on distributional records is presented. The list incorporates results from examination of museum collections of arctic marine fishes dating b...

  14. The International Arctic Seas Assessment Project

    International Nuclear Information System (INIS)

    Linsley, G.S.; Sjoeblom, K.L.

    1994-01-01

    The International Arctic Seas Assessment Project (IASAP) was initiated in 1993 to address widespread concern over the possible health and environmental impacts associated with the radioactive waste dumped into the shallow waters of the Arctic Seas. This article discusses the project with these general topics: A brief history of dumping activities; the international control system; perspectives on arctic Seas dumping; the IASAP aims and implementation; the IASAP work plan and progress. 2 figs

  15. Arctic action against climatic changes

    International Nuclear Information System (INIS)

    Njaastad, Birgit

    2000-01-01

    The articles describes efforts to map the climatic changes in the Arctic regions through the Arctic Climate Impact Assessment Project which is a joint venture between eight Arctic countries: Denmark, Canada, the USA, Russia, Finland, Sweden and Norway. The project deals with the consequences of the changes such as the UV radiation due to diminishing ozone layers. The aims are: Evaluate and integrate existing knowledge in the field and evaluate and predict the consequences particularly on the environment both in the present and the future and produce reliable and useful information in order to aid the decision-making processes

  16. Participatory Methods in Arctic Research

    DEFF Research Database (Denmark)

    Faber, Louise

    2018-01-01

    collection, analysis and conclusions and / or knowledge dissemination. The book aims to collect and share experiences from researchers active in engaging research in the Arctic. The articles reflect on the inclusive methods used in the Arctic research, on the cause and purpose thereof, while the methods......This book is a collection of articles written by researchers at Aalborg University, affiliated with AAU Arctic. The articles are about how the researchers in their respective projects work with stakeholders and citizens in different ways, for example in connection with problem formulation, data...... are exemplified to serve as inspiration for other researchers....

  17. Arctic pollution: How much is too much

    Energy Technology Data Exchange (ETDEWEB)

    An overview is presented of the problems of pollution in the Arctic. Pollution from lower latitudes is carried into the Arctic by atmospheric circulation and ocean currents. Contamination of snow, waters and organisms with imported pollutants has appeared in the past few decades and appears to be increasing. Arctic ecosystems show indications of being much more susceptible to biological damage at low levels of pollutants than higher-energy ecosystems in temperate latitudes, and many Arctic organisms become accumulators and concentrators of organic pollutants and toxic metals. Arctic haze is 20 to 40 times as high in winter as in summer and has been found to consist of particles of largely industrial origin, mostly soot, hydrocarbons and sulphates. Dramatic declines in stratospheric ozone have been apparent over Antarctica, and a similar but less intense depletion is appearing over the Arctic. Toxic compounds, particularly organochlorines and some heavy metals, have been found in worrying amounts in snow, water and organisms in Arctic North America, Greenland and Svalbard. Radioactive contamination was widespread during atmospheric testing of nuclear weapons during the 1960s and 1970s, and the comparatively small amount of radiation released by the Chernobyl accident had greatest effect in northern Scandinavia. 4 figs.

  18. Arctic Energy Resources: Security and Environmental Implications

    Directory of Open Access Journals (Sweden)

    Peter Johnston

    2012-08-01

    Full Text Available n recent years, there has been considerable interest in the Arctic as a source for resources, as a potential zone for commercial shipping, and as a region that might experience conflict due to its strategic importance. With regards to energy resources, some studies suggest that the region contains upwards of 13 percent of global undiscovered oil, 30 percent of undiscovered gas, and multiples more of gas hydrates. The decreasing amount and duration of Arctic ice cover suggests that extraction of these resources will be increasingly commercially viable. Arctic and non-arctic states wish to benefit from the region's resources and the potential circum-polar navigation possibilities. This has led to concerns about the environmental risks of these operations as well as the fear that competition between states for resources might result in conflict. Unresolved offshore boundaries between the Arctic states exacerbate these fears. Yet, the risk of conflict seems overstated considering the bilateral and multilateral steps undertaken by the Arctic states to resolve contentious issues. This article will examine the potential impact of Arctic energy resources on global security as well as the regional environment and examine the actions of concerned states to promote their interests in the region.

  19. Radioactive contamination in the Arctic - Present situation and future challenges

    International Nuclear Information System (INIS)

    Strand, P.

    2002-01-01

    There is currently a focus on radioactivity and the Arctic region. The reason for this is the high number of nuclear sources in parts of the Arctic and the vulnerability of Arctic systems to radioactive contamination. The Arctic environment is also perceived as a wilderness and the need for the protection of this wilderness against contamination is great. In 1991, the International Arctic Environmental Protection Strategy (IAEPS) was launched and the Arctic Monitoring and Assessment Programme (AMAP) established. AMAP is undertaking an assessment of the radioactive contamination of the Arctic and its radiological consequences. This paper summarises some of current knowledge about sources of radioactive contamination, vulnerability, exposure of man, and potential sources for radioactive contamination within Arctic and some views on the future needs for work concerning radioactivity in Arctic. (author)

  20. Tipping elements in the Arctic marine ecosystem.

    Science.gov (United States)

    Duarte, Carlos M; Agustí, Susana; Wassmann, Paul; Arrieta, Jesús M; Alcaraz, Miquel; Coello, Alexandra; Marbà, Núria; Hendriks, Iris E; Holding, Johnna; García-Zarandona, Iñigo; Kritzberg, Emma; Vaqué, Dolors

    2012-02-01

    The Arctic marine ecosystem contains multiple elements that present alternative states. The most obvious of which is an Arctic Ocean largely covered by an ice sheet in summer versus one largely devoid of such cover. Ecosystems under pressure typically shift between such alternative states in an abrupt, rather than smooth manner, with the level of forcing required for shifting this status termed threshold or tipping point. Loss of Arctic ice due to anthropogenic climate change is accelerating, with the extent of Arctic sea ice displaying increased variance at present, a leading indicator of the proximity of a possible tipping point. Reduced ice extent is expected, in turn, to trigger a number of additional tipping elements, physical, chemical, and biological, in motion, with potentially large impacts on the Arctic marine ecosystem.

  1. Mining in the European Arctic

    NARCIS (Netherlands)

    van Dam, Kim; Scheepstra, Annette; Gille, Johan; Stępień, Adam; Koivurova, Timo

    The European Arctic is currently experiencing an upsurge in mining activities, but future developments will be highly sensitive to mineral price fluctuations. The EU is a major consumer and importer of Arctic raw materials. As the EU is concerned about the security of supply, it encourages domestic

  2. Arctic resources : a mechatronics opportunity

    Energy Technology Data Exchange (ETDEWEB)

    McKean, M.; Baiden, G. [Penguin Automated Systems Inc., Naughton, ON (Canada)

    2008-07-01

    This paper discussed the telerobotic mechatronics opportunities that exist to access mineral resources in the Arctic. The Mining Automation Project (MAP) determined that telerobotics could contribute to productivity gains while providing increased worker safety. The socio-economic benefits of advanced mechatronics for Arctic resource development are particularly attractive due to reduced infrastructure needs; operating costs; and environmental impacts. A preliminary analysis of mining transportation options by the authors revealed that there is a case for in-situ resource utilization (ISRU) for oil and gas processing to address resource development. The ISRU options build on concepts developed to support space exploration and were proposed to reduce or modify transportation loads to allow more sustainable and efficient Arctic resource development. Many benefits in terms of efficiency could be achieved by combining demonstrated mechatronics with ISRU because of the constrained transportation infrastructure in the Arctic. In the context of harsh environment operations, mechatronics may provide an opportunity for undersea resource facilities. 15 refs., 6 figs.

  3. The relationship between sea surface temperature and population change of Great Cormorants Phalacrocorax carbo breeding near Disko Bay, Greenland

    DEFF Research Database (Denmark)

    White, C.R.; Boertmann, David; Gremillet, D.

    2011-01-01

    waters. We show that rates of population change of Cormorant colonies around Disko Bay, Greenland, are positively correlated with sea surface temperature, suggesting that they may benefit from a warming Arctic. However, although Cormorant populations may increase in response to Arctic warming, the extent...... of expansion of their winter range may ultimately be limited by other factors, such as sensory constraints on foraging behaviour during long Arctic nights....

  4. Collaborative Proposal: Improving Decadal Prediction of Arctic Climate Variability and Change Using a Regional Arctic System Model (RASM)

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, William [Univ. of Texas, El Paso, TX (United States)

    2016-11-18

    RASM is a multi-disciplinary project, which brings together researchers from six state universities, one military postgraduate school, and one DoE laboratory to address the core modeling objectives of the arctic research community articulated in the Arctic System Modeling report by Roberts et al. (2010b). This report advocates the construction of a regional downscaling tool to generate probabilistic decadal projections of Greenland ice sheet retreat, evolution of arctic sea ice cover, changes in land surface vegetation, and regional processes leading to arctic amplification. Unified coupled models such as RASM are ideal for this purpose because they simulate fine-scale physics, essential for the realistic representation of intra-annual variability, in addition to processes fundamental to long term climatic shifts (Hurrell et al. 2009). By using RASM with boundary conditions from a global model, we can generate many-member ensembles essential for understanding uncertainty in regional climate projections (Hawkins and Sutton 2009). This probabilistic approach is computationally prohibitive for high-resolution global models in the foreseeable future, and also for regional models interactively nested within global simulations. Yet it is fundamental for quantifying uncertainty in decadal forecasts to make them useful for decision makers (Doherty et al. 2009). For this reason, we have targeted development of ensemble generation techniques as a core project task (Task 4.5). Environmental impact assessment specialists need high-fidelity regional ensemble projections to improve the accuracy of their work (Challinor et al. 2009; Moss et al. 2010). This is especially true of the Arctic, where economic, social and national interests are rapidly reshaping the high north in step with regional climate change. During the next decade, considerable oil and gas discoveries are expected across many parts of the marine and terrestrial Arctic (Gautier et al. 2009), the economics of the

  5. Changing geo-political realities in the Arctic region

    DEFF Research Database (Denmark)

    Sørensen, Camilla T. N.

    2014-01-01

    This article analyzes and discusses how Denmark seeks to manage the changing geopolitical realities in the Arctic region specifically focusing on how Denmark seeks to manage its relations with China in the Arctic region.......This article analyzes and discusses how Denmark seeks to manage the changing geopolitical realities in the Arctic region specifically focusing on how Denmark seeks to manage its relations with China in the Arctic region....

  6. Cyclone Activity in the Arctic From an Ensemble of Regional Climate Models (Arctic CORDEX)

    Science.gov (United States)

    Akperov, Mirseid; Rinke, Annette; Mokhov, Igor I.; Matthes, Heidrun; Semenov, Vladimir A.; Adakudlu, Muralidhar; Cassano, John; Christensen, Jens H.; Dembitskaya, Mariya A.; Dethloff, Klaus; Fettweis, Xavier; Glisan, Justin; Gutjahr, Oliver; Heinemann, Günther; Koenigk, Torben; Koldunov, Nikolay V.; Laprise, René; Mottram, Ruth; Nikiéma, Oumarou; Scinocca, John F.; Sein, Dmitry; Sobolowski, Stefan; Winger, Katja; Zhang, Wenxin

    2018-03-01

    The ability of state-of-the-art regional climate models to simulate cyclone activity in the Arctic is assessed based on an ensemble of 13 simulations from 11 models from the Arctic-CORDEX initiative. Some models employ large-scale spectral nudging techniques. Cyclone characteristics simulated by the ensemble are compared with the results forced by four reanalyses (ERA-Interim, National Centers for Environmental Prediction-Climate Forecast System Reanalysis, National Aeronautics and Space Administration-Modern-Era Retrospective analysis for Research and Applications Version 2, and Japan Meteorological Agency-Japanese 55-year reanalysis) in winter and summer for 1981-2010 period. In addition, we compare cyclone statistics between ERA-Interim and the Arctic System Reanalysis reanalyses for 2000-2010. Biases in cyclone frequency, intensity, and size over the Arctic are also quantified. Variations in cyclone frequency across the models are partly attributed to the differences in cyclone frequency over land. The variations across the models are largest for small and shallow cyclones for both seasons. A connection between biases in the zonal wind at 200 hPa and cyclone characteristics is found for both seasons. Most models underestimate zonal wind speed in both seasons, which likely leads to underestimation of cyclone mean depth and deep cyclone frequency in the Arctic. In general, the regional climate models are able to represent the spatial distribution of cyclone characteristics in the Arctic but models that employ large-scale spectral nudging show a better agreement with ERA-Interim reanalysis than the rest of the models. Trends also exhibit the benefits of nudging. Models with spectral nudging are able to reproduce the cyclone trends, whereas most of the nonnudged models fail to do so. However, the cyclone characteristics and trends are sensitive to the choice of nudged variables.

  7. Distant drivers or local signals: where do mercury trends in western Arctic belugas originate?

    Science.gov (United States)

    Loseto, L L; Stern, G A; Macdonald, R W

    2015-03-15

    Temporal trends of contaminants are monitored in Arctic higher trophic level species to inform us on the fate, transport and risk of contaminants as well as advise on global emissions. However, monitoring mercury (Hg) trends in species such as belugas challenge us, as their tissue concentrations reflect complex interactions among Hg deposition and methylation, whale physiology, dietary exposure and foraging patterns. The Beaufort Sea beluga population showed significant increases in Hg during the 1990 s; since that time an additional 10 years of data have been collected. During this time of data collection, changes in the Arctic have affected many processes that underlie the Hg cycle. Here, we examine Hg in beluga tissues and investigate factors that could contribute to the observed trends after removing the effect of age and size on Hg concentrations and dietary factors. Finally, we examine available indicators of climate variability (Arctic Oscillation (AO), the Pacific Decadal Oscillation (PDO) and sea-ice minimum (SIM) concentration) to evaluate their potential to explain beluga Hg trends. Results reveal a decline in Hg concentrations from 2002 to 2012 in the liver of older whales and the muscle of large whales. The temporal increases in Hg in the 1990 s followed by recent declines do not follow trends in Hg emission, and are not easily explained by diet markers highlighting the complexity of feeding, food web dynamics and Hg uptake. Among the regional-scale climate variables the PDO exhibited the most significant relationship with beluga Hg at an eight year lag time. This distant signal points us to consider beluga winter feeding areas. Given that changes in climate will impact ecosystems; it is plausible that these climate variables are important in explaining beluga Hg trends. Such relationships require further investigation of the multiple connections between climate variables and beluga Hg. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Arctic species resilience

    DEFF Research Database (Denmark)

    Mortensen, Lars O.; Forchhammer, Mads C.; Jeppesen, Erik

    The peak of biological activities in Arctic ecosystems is characterized by a relative short and intense period between the start of snowmelt until the onset of frost. Recent climate changes have induced larger seasonal variation in both timing of snowmelt as well as changes mean temperatures......, an extensive monitoring program has been conducted in the North Eastern Greenland National Park, the Zackenberg Basic. The objective of the program is to provide long time series of data on the natural innate oscillations and plasticity of a High Arctic ecosystem. With offset in the data provided through...

  9. The Need and Opportunity for an Integrated Research, Development and Testing Station in the Alaskan High Arctic

    Science.gov (United States)

    Hardesty, J. O.; Ivey, M.; Helsel, F.; Dexheimer, D.; Cahill, C. F.; Bendure, A.; Lucero, D. A.; Roesler, E. L.

    2016-12-01

    and hangar for UAS. World-class Arctic research requires year-round access and facilities. The US currently conducts most Arctic research at stations outside the US. A US Arctic Station network enables monitoring that is specific to the US Arctic, to predict and understand impacts that affect people, communities and the planet.

  10. The Contribution to Arctic Climate Change from Countries in the Arctic Council

    Science.gov (United States)

    Schultz, T.; MacCracken, M. C.

    2013-12-01

    The conventional accounting frameworks for greenhouse gas (GHG) emissions used today, established under the Kyoto Protocol 25 years ago, exclude short lived climate pollutants (SLCPs), and do not include regional effects on the climate. However, advances in climate science now suggest that mitigation of SLCPs can reduce up to 50% of global warming by 2050. It has also become apparent that regions such as the Arctic have experienced a much greater degree of anthropogenic warming than the globe as a whole, and that efforts to slow this warming could benefit the larger effort to slow climate change around the globe. A draft standard for life cycle assessment (LCA), LEO-SCS-002, being developed under the American National Standards Institute process, has integrated the most recent climate science into a unified framework to account for emissions of all radiatively significant GHGs and SLCPs. This framework recognizes four distinct impacts to the oceans and climate caused by GHGs and SLCPs: Global Climate Change; Arctic Climate Change; Ocean Acidification; and Ocean Warming. The accounting for Arctic Climate Change, the subject of this poster, is based upon the Absolute Regional Temperature Potential, which considers the incremental change to the Arctic surface temperature resulting from an emission of a GHG or SLCP. Results are evaluated using units of mass of carbon dioxide equivalent (CO2e), which can be used by a broad array of stakeholders, including scientists, consumers, policy makers, and NGOs. This poster considers the contribution to Arctic Climate Change from emissions of GHGs and SLCPs from the eight member countries of the Arctic Council; the United States, Canada, Russia, Denmark, Finland, Iceland, Norway, and Sweden. Of this group of countries, the United States was the largest contributor to Arctic Climate Change in 2011, emitting 9600 MMT CO2e. This includes a gross warming of 11200 MMT CO2e (caused by GHGs, black and brown carbon, and warming effects

  11. Climate Change Impacts on Environmental and Human Exposure to Mercury in the Arctic

    Science.gov (United States)

    Sundseth, Kyrre; Pacyna, Jozef M.; Banel, Anna; Pacyna, Elisabeth G.; Rautio, Arja

    2015-01-01

    This paper reviews information from the literature and the EU ArcRisk project to assess whether climate change results in an increase or decrease in exposure to mercury (Hg) in the Arctic, and if this in turn will impact the risks related to its harmful effects. It presents the state-of-the art of knowledge on atmospheric mercury emissions from anthropogenic sources worldwide, the long-range transport to the Arctic, and it discusses the likely environmental fate and exposure effects on population groups in the Arctic under climate change conditions. The paper also includes information about the likely synergy effects (co-benefits) current and new climate change polices and mitigation options might have on mercury emissions reductions in the future. The review concludes that reductions of mercury emission from anthropogenic sources worldwide would need to be introduced as soon as possible in order to assure lowering the adverse impact of climate change on human health. Scientific information currently available, however, is not in the position to clearly answer whether climate change will increase or decrease the risk of exposure to mercury in the Arctic. New research should therefore be undertaken to model the relationships between climate change and mercury exposure. PMID:25837201

  12. Climate change impacts on environmental and human exposure to mercury in the arctic.

    Science.gov (United States)

    Sundseth, Kyrre; Pacyna, Jozef M; Banel, Anna; Pacyna, Elisabeth G; Rautio, Arja

    2015-03-31

    This paper reviews information from the literature and the EU ArcRisk project to assess whether climate change results in an increase or decrease in exposure to mercury (Hg) in the Arctic, and if this in turn will impact the risks related to its harmful effects. It presents the state-of-the art of knowledge on atmospheric mercury emissions from anthropogenic sources worldwide, the long-range transport to the Arctic, and it discusses the likely environmental fate and exposure effects on population groups in the Arctic under climate change conditions. The paper also includes information about the likely synergy effects (co-benefits) current and new climate change polices and mitigation options might have on mercury emissions reductions in the future. The review concludes that reductions of mercury emission from anthropogenic sources worldwide would need to be introduced as soon as possible in order to assure lowering the adverse impact of climate change on human health. Scientific information currently available, however, is not in the position to clearly answer whether climate change will increase or decrease the risk of exposure to mercury in the Arctic. New research should therefore be undertaken to model the relationships between climate change and mercury exposure.

  13. Arctic research vessel design would expand science prospects

    Science.gov (United States)

    Elsner, Robert; Kristensen, Dirk

    The U.S. polar marine science community has long declared the need for an arctic research vessel dedicated to advancing the study of northern ice-dominated seas. Planning for such a vessel began 2 decades ago, but competition for funding has prevented construction. A new design program is underway, and it shows promise of opening up exciting possibilities for new research initiatives in arctic marine science.With its latest design, the Arctic Research Vessel (ARV) has grown to a size and capability that will make it the first U.S. academic research vessel able to provide access to the Arctic Ocean. This ship would open a vast arena for new studies in the least known of the world's seas. These studies promise to rank high in national priority because of the importance of the Arctic Ocean as a source of data relating to global climate change. Other issues that demand attention in the Arctic include its contributions to the world's heat budget, the climate history buried in its sediments, pollution monitoring, and the influence of arctic conditions on marine renewable resources.

  14. Games in the Arctic: applying game theory insights to Arctic challenges

    Directory of Open Access Journals (Sweden)

    Scott Cole

    2014-08-01

    Full Text Available We illustrate the benefits of game theoretic analysis for assisting decision-makers in resolving conflicts and other challenges in a rapidly evolving region. We review a series of salient Arctic issues with global implications—managing open-access fisheries, opening Arctic areas for resource extraction and ensuring effective environmental regulation for natural resource extraction—and provide insights to help reach socially preferred outcomes. We provide an overview of game theoretic analysis in layman's terms, explaining how game theory can help researchers and decision-makers to better understand conflicts, and how to identify the need for, and improve the design of, policy interventions. We believe that game theoretic tools are particularly useful in a region with a diverse set of players ranging from countries to firms to individuals. We argue that the Arctic Council should take a more active governing role in the region by, for example, dispersing information to “players” in order to alleviate conflicts regarding the management of common-pool resources such as open-access fisheries and natural resource extraction. We also identify side payments—that is, monetary or in-kind compensation from one party of a conflict to another—as a key mechanism for reaching a more biologically, culturally and economically sustainable Arctic future. By emphasizing the practical insights generated from an academic discipline, we present game theory as an influential tool in shaping the future of the Arctic—for individual researchers, for inter-disciplinary research and for policy-makers themselves.

  15. Variation in Population Synchrony in a Multi-Species Seabird Community: Response to Changes in Predator Abundance.

    Directory of Open Access Journals (Sweden)

    Gail S Robertson

    Full Text Available Ecologically similar sympatric species, subject to typical environmental conditions, may be expected to exhibit synchronous temporal fluctuations in demographic parameters, while populations of dissimilar species might be expected to show less synchrony. Previous studies have tested for synchrony in different populations of single species, and those including data from more than one species have compared fluctuations in only one demographic parameter. We tested for synchrony in inter-annual changes in breeding population abundance and productivity among four tern species on Coquet Island, northeast England. We also examined how manipulation of one independent environmental variable (predator abundance influenced temporal changes in ecologically similar and dissimilar tern species. Changes in breeding abundance and productivity of ecologically similar species (Arctic Sterna paradisaea, Common S. hirundo and Roseate Terns S. dougallii were synchronous with one another over time, but not with a species with different foraging and breeding behaviour (Sandwich Terns Thalasseus sandvicensis. With respect to changes in predator abundance, there was no clear pattern. Roseate Tern abundance was negatively correlated with that of large gulls breeding on the island from 1975 to 2013, while Common Tern abundance was positively correlated with number of large gulls, and no significant correlations were found between large gull and Arctic and Sandwich Tern populations. Large gull abundance was negatively correlated with productivity of Arctic and Common Terns two years later, possibly due to predation risk after fledging, while no correlation with Roseate Tern productivity was found. The varying effect of predator abundance is most likely due to specific differences in the behaviour and ecology of even these closely-related species. Examining synchrony in multi-species assemblages improves our understanding of how whole communities react to long-term changes

  16. Cancer among circumpolar populations

    DEFF Research Database (Denmark)

    Young, T Kue; Kelly, Janet J; Friborg, Jeppe

    2016-01-01

    OBJECTIVES: To determine and compare the incidence of cancer among the 8 Arctic States and their northern regions, with special focus on 3 cross-national indigenous groups--Inuit, Athabaskan Indians and Sami. METHODS: Data were extracted from national and regional statistical agencies and cancer...... registries, with direct age-standardization of rates to the world standard population. For comparison, the "world average" rates as reported in the GLOBOCAN database were used. FINDINGS: Age-standardized incidence rates by cancer sites were computed for the 8 Arctic States and 20 of their northern regions......, averaged over the decade 2000-2009. Cancer of the lung and colon/rectum in both sexes are the commonest in most populations. We combined the Inuit from Alaska, Northwest Territories, Nunavut and Greenland into a "Circumpolar Inuit" group and tracked cancer trends over four 5-year periods from 1989 to 2008...

  17. Management of Atlantic walrus (Odobenus rosmarus rosmarus in the arctic Atlantic

    Directory of Open Access Journals (Sweden)

    Øystein Wiig

    2014-12-01

    Full Text Available We review the management of Atlantic walruses (Odobenus rosmarus rosmarus past and present in the four range states—Canada, Greenland, Norway and Russia—which have permanent populations of Atlantic walruses. Populations in all four countries have been depleted, although the extent of depletion is not well known. Inuit in Arctic Canada and Greenland hunt Atlantic walruses for subsistence while they have been protected at Svalbard (Norway since 1952 and in the western Russian Arctic since 1956. Since the second half of the 20th Century Canada and Greenland have increased protection of their walrus. Generally the number of walruses landed in Canada is governed by the number of hunters and/or people in the settlement and not by stock-specific quotas. Although quotas have been set in few communities, it is not known if they are adequate to prevent overhunting. A quota system for walrus hunting in Greenland began in 2006. The current control system is largely effective in ensuring the quotas are applied and that reporting is correct. Greenland currently sets quotas based on recommendations from scientific assessments using recent population estimates to allow population growth from a depleted population.  A challenge with respect to managing walrus hunting remains the variable and sometimes high rates of lost animals. Since the 1960s changes in socio-economics in hunting areas of Arctic Canada and Greenland (and the use of snowmobiles instead of dog sleds in Canada have led to a general decrease in interest in hunting of walruses and reduced harvest on walrus stocks in these countries. Although there is an active ongoing cooperation between Canada and Greenland scientists regarding assessments of shared populations of walruses currently there is no formal agreement between the two range states on co-management of shared stocks. Protection of walrus from other anthropogenic impacts generally focusses on large-scale industrial activity. The level

  18. Isolation and culture of melanocytes from the arctic fox (Alopex lagopus

    Directory of Open Access Journals (Sweden)

    Jiarong Bao

    2015-09-01

    Full Text Available Coat colour is a phenotypic marker of fur animal species, which was determined by the pigment generated from melanocytes. In this study, we developed and validated a method for isolation, purification and passage culture of melanocytes from the arctic fox (Alopex lagopus. Skin biopsies were harvested from the dorsal region of adult foxes and enzyme digestion by Dispase II. The primary culture of melanocytes from arctic fox skin was obtained by using keratinocyte serum-free medium supplemented with epidermal growth factor and bovine pituitary extract with/without phorbol- 12-myristate-13-acetate, and by carrying out a medium change strategy. After serial passages, it yielded pure population of melanocytes, which become efficient tools for investigating the function of colour genes and unraveling the process of melanin synthesis.

  19. CEEPRA - Collaboration Network on EuroArctic Environmental Radiation Protection and Research

    Energy Technology Data Exchange (ETDEWEB)

    Solatie, D.; Leppaenen, A.P. [STUK-Radiation and Nuclear Safety Authority (Finland); Kasatkina, N. [Murmansk Marine Biological Institute (Russian Federation); Nalbandyan, A. [Norwegian Radiation Protection Authority (Norway); Paatero, J. [Finnish Meteorological Institute (Finland); Reinikainen, K.; Nissi, M. [Poeyry Finland Oy (Finland); Vaaramaa, K. [Radiation and Nuclear Safety Authority (Finland)

    2014-07-01

    CEEPRA (Collaboration Network on EuroArctic Environmental Radiation Protection and Research) is an EU-funded project acting under the Kolarctic ENPI CBC programme. The CEEPRA project's main aim is to develop a collaboration network between key radiation research institutions in the EuroArctic region, which will lead to improved emergency preparedness capabilities in the event of any nuclear accidents. The project is studying the current state of radioactive contamination in the terrestrial and marine ecosystems in the EuroArctic region by examining environmental samples collected from Lapland in Finland, Finnmark and Troms in Norway, the Kola Peninsula in Russia and in the Barents Sea. The results provide updated information on the present levels, occurrence and the fate of radioactive substances in the Arctic environments and food chains. Special attention is given to collection and analyses of natural products widely used by general public in Finland, Russia and Norway, such as berries, mushrooms, fish and reindeer meat. The region-specific risk assessments are carried out through modelling and studying of long-term effects of potential nuclear accidents in the EuroArctic region and possible impacts on the region's indigenous population, terrestrial and marine environments, reindeer husbandry, the natural product sector, tourism and industries. The project partners are Radiation and Nuclear Safety Authority (STUK) from Finland, the Murmansk Marine Biological Institute (MMBI) from Russia, the Norwegian Radiation Protection Authority (NRPA), Finnish Meteorological Institute and Poeyry Finland Oy. The Southern Scientific Centre of the Russian Academy of Sciences (SSC RAS) and Norwegian Meteorological Institute (MET) are taking part in the project as well. The main results of the project are presented in this study. Document available in abstract form only. (authors)

  20. Relating Radiative Fluxes on Arctic Sea Ice Area Using Arctic Observation and Reanalysis Integrated System (ArORIS)

    Science.gov (United States)

    Sledd, A.; L'Ecuyer, T. S.

    2017-12-01

    With Arctic sea ice declining rapidly and Arctic temperatures rising faster than the rest of the globe, a better understanding of the Arctic climate, and ice cover-radiation feedbacks in particular, is needed. Here we present the Arctic Observation and Reanalysis Integrated System (ArORIS), a dataset of integrated products to facilitate studying the Arctic using satellite, reanalysis, and in-situ datasets. The data include cloud properties, radiative fluxes, aerosols, meteorology, precipitation, and surface properties, to name just a few. Each dataset has uniform grid-spacing, time-averaging and naming conventions for ease of use between products. One intended use of ArORIS is to assess Arctic radiation and moisture budgets. Following that goal, we use observations from ArORIS - CERES-EBAF radiative fluxes and NSIDC sea ice fraction and area to quantify relationships between the Arctic energy balance and surface properties. We find a discernable difference between energy budgets for years with high and low September sea ice areas. Surface fluxes are especially responsive to the September sea ice minimum in months both leading up to September and the months following. In particular, longwave fluxes at the surface show increased sensitivity in the months preceding September. Using a single-layer model of solar radiation we also investigate the individual responses of surface and planetary albedos to changes in sea ice area. By partitioning the planetary albedo into surface and atmospheric contributions, we find that the atmospheric contribution to planetary albedo is less sensitive to changes in sea ice area than the surface contribution. Further comparisons between observations and reanalyses can be made using the available datasets in ArORIS.

  1. Hygroscopicity and composition of Alaskan Arctic CCN during April 2008

    Directory of Open Access Journals (Sweden)

    R. H. Moore

    2011-11-01

    Full Text Available We present a comprehensive characterization of cloud condensation nuclei (CCN sampled in the Alaskan Arctic during the 2008 Aerosol, Radiation, and Cloud Processes affecting Arctic Climate (ARCPAC project, a component of the POLARCAT and International Polar Year (IPY initiatives. Four distinct air mass types were sampled including a cleaner Arctic background and a relatively pristine sea ice boundary layer as well as biomass burning and anthropogenic pollution plumes. Despite differences in chemical composition, inferred aerosol hygroscopicities were fairly invariant and ranged from κ = 0.1–0.3 over the atmospherically-relevant range of water vapor supersaturations studied. Organic aerosols sampled were found to be well-oxygenated, consistent with long-range transport and aerosol aging processes. However, inferred hygroscopicities are less than would be predicted based on previous parameterizations of biogenic oxygenated organic aerosol, suggesting an upper limit on organic aerosol hygroscopicity above which κ is less sensitive to the O:C ratio. Most Arctic aerosols act as CCN above 0.1 % supersaturation, although the data suggest the presence of an externally-mixed, non-CCN-active mode comprising approximately 0–20% of the aerosol number. CCN closure was assessed using measured size distributions, bulk chemical composition, and assumed aerosol mixing states; CCN predictions tended toward overprediction, with the best agreement (±0–20 % obtained by assuming the aerosol to be externally-mixed with soluble organics. Closure also varied with CCN concentration, and the best agreement was found for CCN concentrations above 100 cm−3 with a 1.5- to 3-fold overprediction at lower concentrations.

  2. Sulfate Aerosol in the Arctic: Source Attribution and Radiative Forcing

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yang [Atmospheric Science and Global Change Division, Pacific Northwest National Laboratory, Richland WA USA; Wang, Hailong [Atmospheric Science and Global Change Division, Pacific Northwest National Laboratory, Richland WA USA; Smith, Steven J. [Joint Global Change Research Institute, Pacific Northwest National Laboratory, College Park MD USA; Easter, Richard C. [Atmospheric Science and Global Change Division, Pacific Northwest National Laboratory, Richland WA USA; Rasch, Philip J. [Atmospheric Science and Global Change Division, Pacific Northwest National Laboratory, Richland WA USA

    2018-02-08

    Source attributions of Arctic sulfate and its direct radiative effect for 2010–2014 are quantified in this study using the Community Earth System Model (CESM) equipped with an explicit sulfur source-tagging technique. Regions that have high emissions and/or are near/within the Arctic present relatively large contributions to Arctic sulfate burden, with the largest contribution from sources in East Asia (27%). East Asia and South Asia together have the largest contributions to Arctic sulfate concentrations at 9–12 km, whereas sources within or near the Arctic account largely below 2 km. For remote sources with strong emissions, their contributions to Arctic sulfate burden are primarily driven by meteorology, while contributions of sources within or near the Arctic are dominated by their emission strength. The sulfate direct radiative effect (DRE) is –0.080 W m-2 at the Arctic surface, offsetting the net warming effect from the combination of in-snow heating and DRE cooling from black carbon. East Asia, Arctic local and Russia/Belarus/Ukraine sources contribute –0.017, –0.016 and –0.014 W m-2, respectively, to Arctic sulfate DRE. A 20% reduction in anthropogenic SO2 emissions leads to a net increase of +0.013 W m-2 forcing at the Arctic surface. These results indicate that a joint reduction in BC emissions could prevent possible Arctic warming from future reductions in SO2 emissions. Sulfate DRE efficiency calculations suggest that short transport pathways together with meteorology favoring long sulfate lifetimes make certain sources more efficient in influencing the Arctic sulfate DRE.

  3. Military aspects of Russia's Arctic policy

    Energy Technology Data Exchange (ETDEWEB)

    Zysk, Katarzyna

    2013-03-01

    Russia's Arctic policies have a strong bearing on the regional strategic environment for a number of factors. One obvious reason is the geography and the fact that Russia's Arctic shoreline covers nearly half of the latitudinal circle, which gives the country a unique potential to influence future Arctic activities. Second, despite radical changes in the regional security environment after the end of the Cold War, the Arctic and the High North (the European Arctic), in particular has maintained its central role in Russian strategic thinking and defense policy. Russia still has a strong military presence in the region, with a variety of activities and interests, despite weaknesses and problems facing the Russian armed forces. Third, and finally, Russia has enormous petroleum and other natural riches in the Arctic, and the leadership is laying on ambitious plans for development of commercial activities in the region. Understanding Russia's approaches to security is thus clearly important to surrounding Arctic nations and other stakeholders. Russian military activity in the Arctic has tangibly increased in recent years, adding perhaps the most controversial topic in debates on the region's future security. Combined with political assertiveness and rhetorical hostility toward the West, which was a particular feature of Vladimir Putin's second presidential term (2004#En Dash#2008), the intensified presence of the Russian naval and air forces operating in the region has drawn much of the international attention and contributed to the image of Russia as the wild card in the Arctic strategic equation.(Author)

  4. Recent Changes in the Arctic Melt Season

    Science.gov (United States)

    Stroeve, Julienne; Markus, Thorsten; Meier, Walter N.; Miller, Jeff

    2007-01-01

    Melt-season duration, melt-onset and freeze-up dates are derived from satellite passive microwave data and analyzed from 1979 to 2005 over Arctic sea ice. Results indicate a shift towards a longer melt season, particularly north of Alaska and Siberia, corresponding to large retreats of sea ice observed in these regions. Although there is large interannual and regional variability in the length of the melt season, the Arctic is experiencing an overall lengthening of the melt season at a rate of about 2 weeks decade(sup -1). In fact, all regions in the Arctic (except for the central Arctic) have statistically significant (at the 99% level or higher) longer melt seasons by greater than 1 week decade(sup -1). The central Arctic shows a statistically significant trend (at the 98% level) of 5.4 days decade(sup -1). In 2005 the Arctic experienced its longest melt season, corresponding with the least amount of sea ice since 1979 and the warmest temperatures since the 1880s. Overall, the length of the melt season is inversely correlated with the lack of sea ice seen in September north of Alaska and Siberia, with a mean correlation of -0.8.

  5. Toxicological Properties of Persistent Organic Pollutants and Related Health Effects of Concern for the Arctic Populations

    DEFF Research Database (Denmark)

    Bonefeld-Jørgensen, Eva Cecilie; Ayotte, Pierre

    2003-01-01

    Summary:  Human exposure to environmental contaminants is ubiquitous and not only limited to individuals living close to the sources of contaminants. Everyone carries a burden of persistent organic pollutants (POPs) in their body. The burden of POPs in Arctic peoples has been monitored for some y...

  6. Arctic pipeline planning design, construction, and equipment

    CERN Document Server

    Singh, Ramesh

    2013-01-01

    Utilize the most recent developments to combat challenges such as ice mechanics. The perfect companion for engineers wishing to learn state-of-the-art methods or further develop their knowledge of best practice techniques, Arctic Pipeline Planning provides a working knowledge of the technology and techniques for laying pipelines in the coldest regions of the world. Arctic Pipeline Planning provides must-have elements that can be utilized through all phases of arctic pipeline planning and construction. This includes information on how to: Solve challenges in designing arctic pipelines Protect pipelines from everyday threats such as ice gouging and permafrost Maintain safety and communication for construction workers while supporting typical codes and standards Covers such issues as land survey, trenching or above ground, environmental impact of construction Provides on-site problem-solving techniques utilized through all phases of arctic pipeline planning and construction Is packed with easy-to-read and under...

  7. Arctic Ocean Paleoceanography and Future IODP Drilling

    Science.gov (United States)

    Stein, Ruediger

    2015-04-01

    Although the Arctic Ocean is a major player in the global climate/earth system, this region is one of the last major physiographic provinces on Earth where the short- and long-term geological history is still poorly known. This lack in knowledge is mainly due to the major technological/logistical problems in operating within the permanently ice-covered Arctic region which makes it difficult to retrieve long and undisturbed sediment cores. Prior to 2004, in the central Arctic Ocean piston and gravity coring was mainly restricted to obtaining near-surface sediments, i.e., only the upper 15 m could be sampled. Thus, all studies were restricted to the late Pliocene/Quaternary time interval, with a few exceptions. These include the four short cores obtained by gravity coring from drifting ice floes over the Alpha Ridge, where older pre-Neogene organic-carbon-rich muds and laminated biosiliceous oozes were sampled. Continuous central Arctic Ocean sedimentary records, allowing a development of chronologic sequences of climate and environmental change through Cenozoic times and a comparison with global climate records, however, were missing prior to the IODP Expedition 302 (Arctic Ocean Coring Expedition - ACEX), the first scientific drilling in the central Arctic Ocean. By studying the unique ACEX sequence, a large number of scientific discoveries that describe previously unknown Arctic paleoenvironments, were obtained during the last decade (for most recent review and references see Stein et al., 2014). While these results from ACEX were unprecedented, key questions related to the climate history of the Arctic Ocean remain unanswered, in part because of poor core recovery, and in part because of the possible presence of a major mid-Cenozoic hiatus or interval of starved sedimentation within the ACEX record. In order to fill this gap in knowledge, international, multidisciplinary expeditions and projects for scientific drilling/coring in the Arctic Ocean are needed. Key

  8. Bacterial genomics reveal the complex epidemiology of an emerging pathogen in arctic and boreal ungulates

    Science.gov (United States)

    Forde, Taya L.; Orsel, Karin; Zadoks, Ruth N.; Biek, Roman; Adams, Layne G.; Checkley, Sylvia L.; Davison, Tracy; De Buck, Jeroen; Dumond, Mathieu; Elkin, Brett T.; Finnegan, Laura; Macbeth, Bryan J.; Nelson, Cait; Niptanatiak, Amanda; Sather, Shane; Schwantje, Helen M.; van der Meer, Frank; Kutz, Susan J.

    2016-01-01

    Northern ecosystems are currently experiencing unprecedented ecological change, largely driven by a rapidly changing climate. Pathogen range expansion, and emergence and altered patterns of infectious disease, are increasingly reported in wildlife at high latitudes. Understanding the causes and consequences of shifting pathogen diversity and host-pathogen interactions in these ecosystems is important for wildlife conservation, and for indigenous populations that depend on wildlife. Among the key questions are whether disease events are associated with endemic or recently introduced pathogens, and whether emerging strains are spreading throughout the region. In this study, we used a phylogenomic approach to address these questions of pathogen endemicity and spread for Erysipelothrix rhusiopathiae, an opportunistic multi-host bacterial pathogen associated with recent mortalities in arctic and boreal ungulate populations in North America. We isolated E. rhusiopathiae from carcasses associated with large-scale die-offs of muskoxen in the Canadian Arctic Archipelago, and from contemporaneous mortality events and/or population declines among muskoxen in northwestern Alaska and caribou and moose in western Canada. Bacterial genomic diversity differed markedly among these locations; minimal divergence was present among isolates from muskoxen in the Canadian Arctic, while in caribou and moose populations, strains from highly divergent clades were isolated from the same location, or even from within a single carcass. These results indicate that mortalities among northern ungulates are not associated with a single emerging strain of E. rhusiopathiae, and that alternate hypotheses need to be explored. Our study illustrates the value and limitations of bacterial genomic data for discriminating between ecological hypotheses of disease emergence, and highlights the importance of studying emerging pathogens within the broader context of environmental and host factors.

  9. Amplified North Atlantic Warming in the Late Pliocene by Changes in Arctic Gateways

    Science.gov (United States)

    Otto-Bliesner, B. L.; Jahn, A.; Feng, R.; Brady, E. C.; Hu, A.; Lofverstrom, M.

    2017-12-01

    state of these Arctic gateways for past time periods is needed. The late Pliocene may be a better process than geologic analogue to study the ability of models to realize the full sensitivity to processes and feedbacks that may affect the Earth system sensitivity in the future.

  10. The Arctic : the great breakup

    International Nuclear Information System (INIS)

    Lemieux, R.

    2007-01-01

    The impact that climate change has had on the famous Northwest passage in Canada's Arctic was discussed. The water channel through the Arctic Islands is now navigable during the summer and it has been predicted that in 40 years, it may be navigable throughout the entire year. Although the Arctic is still covered with snow, the icebergs which navigators have feared no longer exist. Environment Canada has cautioned that Canada's extreme north would be most at risk from global warming, with temperatures increasing by 6 degrees, or 3 times higher than in moderate zones. The joint Canadian-United States program Surface Heat Budget of the Arctic has also confirmed that the waters of the Beaufort Sea are less salty and relatively warmer. Climatologists also project that the predicted increase in snowfall will act as an insulation blanket, thereby preventing the ice from thickening. Scientists stated that the gigantic polar cap, which has been frozen for the past 3.2 million years, will have fissures everywhere by 2080. The Northwest passage will become easily accessible in less than 10 years. This article raised questions regarding the role of the Northwest passage as an international maritime route. It presented the case of the first successful passage of a U.S. commercial oil tanker in 1969 which created controversy regarding Canada's territorial waters. Fourty years later, this issue is still not resolved. The article questioned whether there should be more cooperation on both the Canadian and American sides in light of the shared common interests such as commerce, science and security. It was noted that although Canada has sovereignty of the Arctic Islands, there are eight other countries who share the Arctic. 4 figs

  11. Spatial and temporal trends of contaminants in terrestrial biota from the Canadian Arctic

    Energy Technology Data Exchange (ETDEWEB)

    Gamberg, Mary [Gamberg Consulting, Box 10460, Whitehorse, YT, Y1A 7A1 (Canada)]. E-mail: mary.gamberg@northwestel.net; Braune, Birgit [Canadian Wildlife Service, Environment Canada, National Wildlife Research Centre, Carleton University, Raven Road, Ottawa, ON, K1A 0H3 (Canada); Davey, Eric [Athabasca Tribal Council, Environmental Affairs, 9206 McCormick Drive, Fort McMurray, AB, T9H 1C7 (Canada); Elkin, Brett [Northwest Territories Department of Resources, Wildlife and Economic Development, Yellowknife, NT X1A 3S8 (Canada); Hoekstra, Paul F. [Department of Environmental Biology, University of Guelph, Guelph, ON, N1G 2W1 (Canada); Kennedy, David [Northwest Territories Department of Resources, Wildlife and Economic Development, Yellowknife, NT X1A 3S8 (Canada); Macdonald, Colin [Northern Environmental Consulting, Pinawa, MB, R0E 1L0 (Canada); Muir, Derek [National Water Research Institute, Environment Canada, Burlington, ON, L7R 4A6 (Canada); Nirwal, Amar [Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Box 17000, Stn Forces, Kingston, ON, K7K 7B4 (Canada); Wayland, Mark [Canadian Wildlife Service, Environment Canada, Prairie and Northern Region, 115 Perimeter Road, Saskatoon, SK, S7N 0X4 (Canada); Zeeb, Barbara [Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Box 17000, Stn Forces, Kingston, ON, K7K 7B4 (Canada)

    2005-12-01

    Contaminants in the Canadian Arctic have been studied over the last twelve years under the guidance of the Northern Contaminants Program. This paper summarizes results from that program from 1998 to 2003 with respect to terrestrial animals in the Canadian Arctic. The arctic terrestrial environment has few significant contaminant issues, particularly when compared with freshwater and marine environments. Both current and historical industrial activities in the north may have a continuing effect on biota in the immediate area, but effects tend to be localized. An investigation of arctic ground squirrels at a site in the Northwest Territories that had historically received applications of DDT concluded that DDT in arctic ground squirrels livers was the result of contamination and that this is an indication of the continuing effect of a local point source of DDT. Arsenic concentrations were higher in berries collected from areas around gold mines in the Northwest Territories than from control sites, suggesting that gold mining may significantly affect arsenic levels in berries in the Yellowknives Dene traditional territory. Although moose and caribou from the Canadian Arctic generally carry relatively low contaminant burdens, Yukon moose had high renal selenium concentrations, and moose and some woodland caribou from the same area had high renal cadmium levels, which may put some animals at risk of toxicological effects. Low hepatic copper levels in some caribou herds may indicate a shortage of copper for metabolic demands, particularly for females. Similarities in patterns of temporal fluctuations in renal element concentrations for moose and caribou suggest that environmental factors may be a major cause of fluctuations in renal concentrations of some elements. Concentrations of persistent organochlorines and metals in beaver and muskrat from the Northwest Territories, and carnivores from across the Canadian Arctic were very low and considered normal for terrestrial

  12. Black Carbon in Arctic Snow: Preliminary Results from Recent Field Measurements

    Science.gov (United States)

    Warren, S. G.; Grenfell, T. C.; Radionov, V. F.; Clarke, A. D.

    2007-12-01

    Annual snowpacks act to amplify variations in regional solar heating of the surface due to positive feedback processes associated with areal melting and precipitation. Small amounts of black carbon (BC) in the snow can reduce the albedo and modulate shortwave absorption and transmission affecting the onset of melt and heating of the snow pack. The effect of black carbon on the albedo of snow in the Arctic is estimated to be up to a few percent. The only prior survey of arctic snow was that of Clarke and Noone in 1983-84. We have begun a wide- area survey of the BC content of arctic snow in order to update and expand the 1983/84 survey. Samples of snow have been collected in mid to late spring when the entire winter snowpack was accessible. The samples have been melted and filtered, and the filters analyzed for absorptive impurities. To date, sites in Alaska, Canada, Greenland, and in the Arctic Basin have been sampled. In March and April 2007 we also carried out a field program at four sites in northwestern Russia as part of the International Polar Year. Preliminary results based on visual comparison with the standard filters indicate that the snow cover in arctic North America and the Beaufort Sea have lower BC concentrations now than 20 years ago while levels in Greenland are about the same. Background levels of BC in Russia are approximately twice those in North America consistent with modeling predictions of Flanner et al., 2007. More accurate values of absorption will be obtained by measurement of spectral transmission of the filters, which will also allow the relative contributions of BC and soil dust to be determined.

  13. Interaction webs in arctic ecosystems

    DEFF Research Database (Denmark)

    Schmidt, Niels M.; Hardwick, Bess; Gilg, Olivier

    2017-01-01

    How species interact modulate their dynamics, their response to environmental change, and ultimately the functioning and stability of entire communities. Work conducted at Zackenberg, Northeast Greenland, has changed our view on how networks of arctic biotic interactions are structured, how...... they vary in time, and how they are changing with current environmental change: firstly, the high arctic interaction webs are much more complex than previously envisaged, and with a structure mainly dictated by its arthropod component. Secondly, the dynamics of species within these webs reflect changes...... that the combination of long-term, ecosystem-based monitoring, and targeted research projects offers the most fruitful basis for understanding and predicting the future of arctic ecosystems....

  14. NATIONAL ATLAS OF THE ARCTIC

    Directory of Open Access Journals (Sweden)

    Nikolay S. Kasimov

    2018-01-01

    Full Text Available The National Atlas of the Arctic is a set of spatio-temporal information about the geographic, ecological, economic, historical-ethnographic, cultural, and social features of theArcticcompiled as a cartographic model of the territory. The Atlas is intended for use in a wide range of scientific, management, economic, defense, educational, and public activities. The state policy of theRussian Federationin the Arctic for the period until 2020 and beyond, states that the Arctic is of strategic importance forRussiain the 21st century. A detailed description of all sections of the Atlas is given. The Atlas can be used as an information-reference and educational resource or as a gift edition.

  15. Arctic-HYCOS: a Large Sample observing system for estimating freshwater fluxes in the drainage basin of the Arctic Ocean

    Science.gov (United States)

    Pietroniro, Al; Korhonen, Johanna; Looser, Ulrich; Hardardóttir, Jórunn; Johnsrud, Morten; Vuglinsky, Valery; Gustafsson, David; Lins, Harry F.; Conaway, Jeffrey S.; Lammers, Richard; Stewart, Bruce; Abrate, Tommaso; Pilon, Paul; Sighomnou, Daniel; Arheimer, Berit

    2015-04-01

    The Arctic region is an important regulating component of the global climate system, and is also experiencing a considerable change during recent decades. More than 10% of world's river-runoff flows to the Arctic Ocean and there is evidence of changes in its fresh-water balance. However, about 30% of the Arctic basin is still ungauged, with differing monitoring practices and data availability from the countries in the region. A consistent system for monitoring and sharing of hydrological information throughout the Arctic region is thus of highest interest for further studies and monitoring of the freshwater flux to the Arctic Ocean. The purpose of the Arctic-HYCOS project is to allow for collection and sharing of hydrological data. Preliminary 616 stations were identified with long-term daily discharge data available, and around 250 of these already provide online available data in near real time. This large sample will be used in the following scientific analysis: 1) to evaluate freshwater flux to the Arctic Ocean and Seas, 2) to monitor changes and enhance understanding of the hydrological regime and 3) to estimate flows in ungauged regions and develop models for enhanced hydrological prediction in the Arctic region. The project is intended as a component of the WMO (World Meteorological Organization) WHYCOS (World Hydrological Cycle Observing System) initiative, covering the area of the expansive transnational Arctic basin with participation from Canada, Denmark, Finland, Iceland, Norway, Russian Federation, Sweden and United States of America. The overall objective is to regularly collect, manage and share high quality data from a defined basic network of hydrological stations in the Arctic basin. The project focus on collecting data on discharge and possibly sediment transport and temperature. Data should be provisional in near-real time if available, whereas time-series of historical data should be provided once quality assurance has been completed. The

  16. The role of the Arctic in future global petroleum supply

    Energy Technology Data Exchange (ETDEWEB)

    Lindholt, Lars; Glomsroed, Solveig

    2011-07-01

    The Arctic has a substantial share of global petroleum resources, but at higher costs than in most other petroleum provinces. Arctic states and petroleum companies are carefully considering the potential for future extraction in the Arctic. This paper studies the oil and gas supply from 6 arctic regions during 2010-2050 along with global economic growth and different assumptions regarding petroleum prices and resource endowments. Supply is calculated based on a global model of oil and gas markets. The data on undiscovered resources for the Arctic is based on the estimates by USGS. Sensitivity studies are carried out for two alternative price scenarios and for a 50 per cent reduction of arctic undiscovered resources compared with the USGS 2008 resource estimate. Although a major part of the undiscovered arctic petroleum resources is natural gas, our results show that the relative importance of the Arctic as a world gas supplier will decline, while its importance as a global oil producer may be maintained. We also show that less than full access to undiscovered oil resources will have minor effect on total arctic oil production and a marginal effect on arctic gas extraction. The reason is that Arctic Russia is an important petroleum producer with a sufficiently large stock of already discovered resources to support their petroleum production before 2050. (Author)

  17. Climate Change, Globalization and Geopolitics in the New Maritime Arctic

    Science.gov (United States)

    Brigham, L. W.

    2011-12-01

    Early in the 21st century a confluence of climate change, globalization and geopolitics is shaping the future of the maritime Arctic. This nexus is also fostering greater linkage of the Arctic to the rest of the planet. Arctic sea ice is undergoing a historic transformation of thinning, extent reduction in all seasons, and reduction in the area of multiyear ice in the central Arctic Ocean. Global Climate Model simulations of Arctic sea ice indicate multiyear ice could disappear by 2030 for a short period of time each summer. These physical changes invite greater marine access, longer seasons of navigation, and potential, summer trans-Arctic voyages. As a result, enhanced marine safety, environmental protection, and maritime security measures are under development. Coupled with climate change as a key driver of regional change is the current and future integration of the Arctic's natural wealth with global markets (oil, gas and hard minerals). Abundant freshwater in the Arctic could also be a future commodity of value. Recent events such as drilling for hydrocarbons off Greenland's west coast and the summer marine transport of natural resources from the Russian Arctic to China across the top of Eurasia are indicators of greater global economic ties to the Arctic. Plausible Arctic futures indicate continued integration with global issues and increased complexity of a range of regional economic, security and environmental challenges.

  18. The polar bear in the room: diseases of poverty in the Arctic

    Directory of Open Access Journals (Sweden)

    Chris Nelson

    2013-08-01

    Full Text Available In the face of global warming, budgetary austerity and impoverished Arctic residents, the nations of the circumpolar region are presented with a number of difficult choices regarding the provision of health care to the far-flung and isolated regions of their northernmost provinces. Complicating that picture is the reality of neglected tropical diseases in areas far from their perceived normal equatorial range as well as endemic food-borne diseases, including protozoan and helminth parasites, respiratory and gastrointestinal diseases and vaccine-preventable illnesses. This paper discusses the problems of caring for the health and well-being of indigenous populations suffering from extreme poverty, isolation and discrimination in the circumpolar region. After presenting difficulties as supported by the extant literature, the paper continues by suggesting solutions that include novel telenursing applications, targeted distance-educational programs and local community-based health care assistant (HCA vocational training. These programs will provide cost-effective care that increases life-spans, improves quality of life and provides opportunities to distressed populations in isolated rural communities of the Far North. The toolkit presented in the paper is intended to spur discussion on community health programs that could be adopted to provide proper and humane care for marginalized Arctic populations in an extreme and rapidly changing environment.

  19. Future-Proofing Japan’s Interests in the Arctic

    DEFF Research Database (Denmark)

    Tonami, Aki

    2014-01-01

    credentials Japan has to be involved in the leading Arctic forum. However, a closer look at its engagement in the Arctic indicates that Japan has genuine interests in political, economic, and environmental developments there. This essay examines Japan’s interests in the Arctic, its new role as an observer...

  20. Breast cancer in the Arctic - changes over the past decades

    DEFF Research Database (Denmark)

    Fredslund, Stine Overvad; Bonefeld-Jørgensen, Eva Cecilie

    2012-01-01

    , the known established risk factors alone cannot account for the increasing trend observed. Studies suggest that environmental contaminants such as persistent organic pollutants (POPs) including perfluorinated compounds increase the risk of BC possibly in conjunction with certain genetic polymorphisms...... unfortunately increases the known risk factors of BC. Moreover, the population of the Arctic might show up to be especially vulnerable because of the contemporary high burden of POPs and genetic susceptibility....

  1. CHARACTERISTICS OF HYDROCARBON EXPLOITATION IN ARCTIC CIRCLE

    Directory of Open Access Journals (Sweden)

    Vanja Lež

    2013-12-01

    Full Text Available The existence of large quantities of hydrocarbons is supposed within the Arctic Circle. Assumed quantities are 25% of the total undiscovered hydrocarbon reserves on Earth, mostly natural gas. Over 500 major and minor gas accumulations within the Arctic Circle were discovered so far, but apart from Snøhvit gas field, there is no commercial exploitation of natural gas from these fields. Arctic gas projects are complicated, technically hard to accomplish, and pose a great threat to the return of investment, safety of people and equipment and for the ecosystem. Russia is a country that is closest to the realization of the Arctic gas projects that are based on the giant gas fields. The most extreme weather conditions in the seas around Greenland are the reason why this Arctic region is the least explored and furthest from the realization of any gas project (the paper is published in Croatian .

  2. Arctic-midlatitude weather linkages in North America

    Science.gov (United States)

    Overland, James E.; Wang, Muyin

    2018-06-01

    There is intense public interest in whether major Arctic changes can and will impact midlatitude weather such as cold air outbreaks on the central and east side of continents. Although there is progress in linkage research for eastern Asia, a clear gap is conformation for North America. We show two stationary temperature/geopotential height patterns where warmer Arctic temperatures have reinforced existing tropospheric jet stream wave amplitudes over North America: a Greenland/Baffin Block pattern during December 2010 and an Alaska Ridge pattern during December 2017. Even with continuing Arctic warming over the past decade, other recent eastern US winter months were less susceptible for an Arctic linkage: the jet stream was represented by either zonal flow, progressive weather systems, or unfavorable phasing of the long wave pattern. The present analysis lays the scientific controversy over the validity of linkages to the inherent intermittency of jet stream dynamics, which provides only an occasional bridge between Arctic thermodynamic forcing and extended midlatitude weather events.

  3. Coarse mode aerosols in the High Arctic

    Science.gov (United States)

    Baibakov, K.; O'Neill, N. T.; Chaubey, J. P.; Saha, A.; Duck, T. J.; Eloranta, E. W.

    2014-12-01

    Fine mode (submicron) aerosols in the Arctic have received a fair amount of scientific attention in terms of smoke intrusions during the polar summer and Arctic haze pollution during the polar winter. Relatively little is known about coarse mode (supermicron) aerosols, notably dust, volcanic ash and sea salt. Asian dust is a regular springtime event whose optical and radiative forcing effects have been fairly well documented at the lower latitudes over North America but rarely reported for the Arctic. Volcanic ash, whose socio-economic importance has grown dramatically since the fear of its effects on aircraft engines resulted in the virtual shutdown of European civil aviation in the spring of 2010 has rarely been reported in the Arctic in spite of the likely probability that ash from Iceland and the Aleutian Islands makes its way into the Arctic and possibly the high Arctic. Little is known about Arctic sea salt aerosols and we are not aware of any literature on the optical measurement of these aerosols. In this work we present preliminary results of the combined sunphotometry-lidar analysis at two High Arctic stations in North America: PEARL (80°N, 86°W) for 2007-2011 and Barrow (71°N,156°W) for 2011-2014. The multi-years datasets were analyzed to single out potential coarse mode incursions and study their optical characteristics. In particular, CIMEL sunphotometers provided coarse mode optical depths as well as information on particle size and refractive index. Lidar measurements from High Spectral Resolution lidars (AHSRL at PEARL and NSHSRL at Barrow) yielded vertically resolved aerosol profiles and gave an indication of particle shape and size from the depolarization ratio and color ratio profiles. Additionally, we employed supplementary analyses of HYSPLIT backtrajectories, OMI aerosol index, and NAAPS (Navy Aerosol Analysis and Prediction System) outputs to study the spatial context of given events.

  4. Poles Apart: The “Bipolar” Pteropod Species Limacina helicina Is Genetically Distinct Between the Arctic and Antarctic Oceans

    Science.gov (United States)

    Bednarsek, Nina; Linse, Katrin; Nelson, R. John; Pakhomov, Evgeny; Seibel, Brad; Steinke, Dirk; Würzberg, Laura

    2010-01-01

    The shelled pteropod (sea butterfly) Limacina helicina is currently recognised as a species complex comprising two sub-species and at least five “forma”. However, at the species level it is considered to be bipolar, occurring in both the Arctic and Antarctic oceans. Due to its aragonite shell and polar distribution L. helicina is particularly vulnerable to ocean acidification. As a key indicator of the acidification process, and a major component of polar ecosystems, L. helicina has become a focus for acidification research. New observations that taxonomic groups may respond quite differently to acidification prompted us to reassess the taxonomic status of this important species. We found a 33.56% (±0.09) difference in cytochrome c oxidase subunit I (COI) gene sequences between L. helicina collected from the Arctic and Antarctic oceans. This degree of separation is sufficient for ordinal level taxonomic separation in other organisms and provides strong evidence for the Arctic and Antarctic populations of L. helicina differing at least at the species level. Recent research has highlighted substantial physiological differences between the poles for another supposedly bipolar pteropod species, Clione limacina. Given the large genetic divergence between Arctic and Antarctic L. helicina populations shown here, similarly large physiological differences may exist between the poles for the L. helicina species group. Therefore, in addition to indicating that L. helicina is in fact not bipolar, our study demonstrates the need for acidification research to take into account the possibility that the L. helicina species group may not respond in the same way to ocean acidification in Arctic and Antarctic ecosystems. PMID:20360985

  5. A comparison of PCB bioaccumulation factors between an arctic and a temperate marine food web.

    Science.gov (United States)

    Sobek, Anna; McLachlan, Michael S; Borgå, Katrine; Asplund, Lillemor; Lundstedt-Enkel, Katrin; Polder, Anuschka; Gustafsson, Orjan

    2010-06-01

    To test how environmental conditions in the Arctic and the resulting ecological adaptations affect accumulation of persistent organic pollutants (POPs) in the marine food web, bioaccumulation of four polychlorinated biphenyls (PCBs) in an arctic (Barents Sea 77 degrees N-82 degrees N) and a temperate marine (Baltic Sea 54 degrees N-62 degrees N) food web were compared. Three different trophic levels were studied (zooplankton, fish, and seal), representing the span from first-level consumer to top predator. Previously published high-quality data on PCB water concentrations in the two areas were used for calculation of bioaccumulation factors (BAF). BAF was calculated as the ratio of the PCB concentration in the organism ([PCB](org); pg/kg lipid) to the dissolved water concentration (C(w); pg/L). The BAF(Arctic):BAF(Temperate) ratios were above 1 for all four PCB congeners in zooplankton (6.4-13.8) and planktivorous fish (2.9-5.0)), whereas the ratios were below 1 in seal. The mean ratio between arctic and temperate BAFs for all trophic levels and congeners (BAF(Arcti):BAF(Temperate)) was 4.8. When the data were corrected for the seawater temperature difference between the two ecosystems, the ratio was 2.0. We conclude that bioaccumulation differences caused by ecological or physiological adaptations of organisms between the two ecosystems were well within a water concentration variability of 50%. Further, our data support the hypothesis that lower seawater temperature lead to a thermodynamically favoured passive partitioning to organic matrices and thus elevated ambient BAFs in the Arctic compared to the Baltic Sea. This would imply that bioaccumulation in the Arctic may be described in the same way as bioaccumulation in temperate regions, e.g. by the use of mechanistic models parameterised for the Arctic. Copyright (c) 2010. Published by Elsevier B.V.

  6. A comparison of PCB bioaccumulation factors between an arctic and a temperate marine food web

    International Nuclear Information System (INIS)

    Sobek, Anna; McLachlan, Michael S.; Borga, Katrine; Asplund, Lillemor; Lundstedt-Enkel, Katrin; Polder, Anuschka; Gustafsson, Orjan

    2010-01-01

    To test how environmental conditions in the Arctic and the resulting ecological adaptations affect accumulation of persistent organic pollutants (POPs) in the marine food web, bioaccumulation of four polychlorinated biphenyls (PCBs) in an arctic (Barents Sea 77 o N-82 o N) and a temperate marine (Baltic Sea 54 o N-62 o N) food web were compared. Three different trophic levels were studied (zooplankton, fish, and seal), representing the span from first-level consumer to top predator. Previously published high-quality data on PCB water concentrations in the two areas were used for calculation of bioaccumulation factors (BAF). BAF was calculated as the ratio of the PCB concentration in the organism ([PCB] org ; pg/kg lipid) to the dissolved water concentration (C w ; pg/L). The BAF Arctic :BAF Temperate ratios were above 1 for all four PCB congeners in zooplankton (6.4-13.8) and planktivorous fish (2.9-5.0)), whereas the ratios were below 1 in seal. The mean ratio between arctic and temperate BAFs for all trophic levels and congeners (BAF Arcti :BAF Temperate ) was 4.8. When the data were corrected for the seawater temperature difference between the two ecosystems, the ratio was 2.0. We conclude that bioaccumulation differences caused by ecological or physiological adaptations of organisms between the two ecosystems were well within a water concentration variability of 50%. Further, our data support the hypothesis that lower seawater temperature lead to a thermodynamically favoured passive partitioning to organic matrices and thus elevated ambient BAFs in the Arctic compared to the Baltic Sea. This would imply that bioaccumulation in the Arctic may be described in the same way as bioaccumulation in temperate regions, e.g. by the use of mechanistic models parameterised for the Arctic.

  7. Climate Change: Science and Policy in the Arctic Climate Change: Science and Policy in the Arctic

    Science.gov (United States)

    Bigras, S. C.

    2009-12-01

    It is an accepted fact that the Earth’s climate is warming. Recent research has demonstrated the direct links between the Arctic regions and the rest of the planet. We have become more aware that these regions are feeling the effects of global climate change more intensely than anywhere else on Earth -- and that they are fast becoming the new frontiers for resources and political disputes. This paper examines some of the potential climate change impacts in the Arctic and how the science of climate change can be used to develop policies that will help mitigate some of these impacts. Despite the growing body of research we do not yet completely understand the potential consequences of climate change in the Arctic. Climate models predict significant changes and impacts on the northern physical environment and renewable resources, and on the communities and societies that depend on them. Policies developed and implemented as a result of the research findings will be designed to help mitigate some of the more serious consequences. Given the importance of cost in making policy decisions, the financial implications of different scenarios will need to be considered. The Arctic Ocean Basin is a complex and diverse environment shared by five Arctic states. Cooperation among the states surrounding the Arctic Ocean is often difficult, as each country has its own political and social agenda. Northerners and indigenous peoples should be engaged and able to influence the direction of northern adaptation policies. Along with climate change, the Arctic environment and Arctic residents face many other challenges, among them safe resource development. Resource development in the Arctic has always been a controversial issue, seen by some as a solution to high unemployment and by others as an unacceptably disruptive and destructive force. Its inherent risks need to be considered: there are needs for adaptation, for management frameworks, for addressing cumulative effects, and for

  8. The great challenges in Arctic Ocean paleoceanography

    International Nuclear Information System (INIS)

    Stein, Ruediger

    2011-01-01

    Despite the importance of the Arctic in the climate system, the data base we have from this area is still very weak, and large parts of the climate history have not been recovered at all in sedimentary sections. In order to fill this gap in knowledge, international, multidisciplinary expeditions and projects for scientific drilling/coring in the Arctic Ocean are needed. Key areas and approaches for drilling and recovering undisturbed and complete sedimentary sequences are depth transects across the major ocean ridge systems, i.e., the Lomonosov Ridge, the Alpha-Mendeleev Ridge, and the Chukchi Plateau/Northwind Ridge, the Beaufort, Kara and Laptev sea continental margins, as well as the major Arctic gateways towards the Atlantic and Pacific oceans. The new detailed climate records from the Arctic Ocean spanning time intervals from the Late Cretaceous/Paleogene Greenhouse world to the Neogene-Quaternary Icehouse world and representing short- and long-term climate variability on scales from 10 to 10 6 years, will give new insights into our understanding of the Arctic Ocean within the global climate system and provide an opportunity to test the performance of climate models used to predict future climate change. With this, studying the Arctic Ocean is certainly one of the major challenges in climate research for the coming decades.

  9. The effects of climate changes on soil methane oxidation in a dry Arctic tundra

    Science.gov (United States)

    D'Imperio, Ludovica

    2014-05-01

    The effects of climate changes on soil methane oxidation in a dry Arctic tundra. Ludovica D'Imperio1, Anders Michelsen1, Christian J. Jørgensen1, Bo Elberling1 1Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource Management, University of Copenhagen, Denmark At Northern latitudes climatic changes are predicted to be most pronounced resulting in increasing active layer depth and changes in growing season length, vegetation cover and nutrient cycling. As a consequence of increased temperature, large stocks of carbon stored in the permafrost-affected soils could become available for microbial transformations and under anoxic conditions result in increasing methane production affecting net methane (CH4) budget. Arctic tundra soils also serves as an important sink of atmospheric CH4 by microbial oxidation under aerobic conditions. While several process studies have documented the mechanisms behind both production and emissions of CH4 in arctic ecosystems, an important knowledge gap exists with respect to the in situ dynamics of microbial-driven uptake of CH4 in arctic dry lands which may be enhanced as a consequence of global warming and thereby counterbalancing CH4 emissions from Arctic wetlands. In-situ methane measurements were made in a dry Arctic tundra in Disko Island, Western Greenland, during the summer 2013 to assess the role of seasonal and inter-annual variations in temperatures and snow cover. The experimental set-up included snow fences installed in 2012, allowed investigations of the emissions of GHGs from soil under increased winter snow deposition and ambient field conditions. The soil fluxes of CH4 and CO2 were measured using closed chambers in manipulated plots with increased summer temperatures and shrub removal with or without increased winter precipitation. At the control plots, the averaged seasonal CH4 oxidation rates ranged between -0.05 mg CH4 m-2 hr-1 (end of August) and -0.32 mg CH4 m-2 hr-1 (end of June). In the

  10. Arctic Climate and Atmospheric Planetary Waves

    Science.gov (United States)

    Cavalieri, D. J.; Haekkinen, S.; Zukor, Dorothy J. (Technical Monitor)

    2001-01-01

    Analysis of a fifty-year record (1946-1995) of monthly-averaged sea level pressure data provides a link between the phases of planetary-scale sea level pressure waves and Arctic Ocean and ice variability. Results of this analysis show: (1) a breakdown of the dominant wave 1 pattern in the late 1960's, (2) shifts in the mean phase of waves 1 and 2 since this breakdown, (3) an eastward shift in the phases of both waves 1 and 2 during the years of simulated cyclonic Arctic Ocean circulation relative to their phases during the years of anticyclonic circulation, (4) a strong decadal variability of wave phase associated with simulated Arctic Ocean circulation changes. Finally, the Arctic atmospheric circulation patterns that emerge when waves 1 and 2 are in their extreme eastern and western positions suggest an alternative approach for determining significant forcing patterns of sea ice and high-latitude variability.

  11. Population genomics reveal recent speciation and rapid evolutionary adaptation in polar bears

    DEFF Research Database (Denmark)

    Liu, Shiping; Lorenzen, Eline; Fumagalli, Matteo

    2014-01-01

    Polar bears are uniquely adapted to life in the High Arctic and have undergone drastic physiological changes in response to Arctic climates and a hyperlipid diet of primarily marine mammal prey. We analyzed 89 complete genomes of polar bear and brown bear using population genomic modeling and sho...

  12. Comparative responses of phenology and reproductive development to simulated environmental change in sub-arctic and high arctic plants

    Energy Technology Data Exchange (ETDEWEB)

    Wookey, P A; Welker, J M; Callaghan, T V [Inst. of Terrestrial Ecology, Merlewood Research Station, Grange-over-Sands, Cumbria (United Kingdom); Parsons, A N; Potter, J A; Lee, J A; Press, M C [Dept. of Environmental Biology, Univ. of Manchester, Manchester (United Kingdom)

    1993-01-01

    The effects of temperature, precipitation and nutrient perturbations, and their interactions, are being assessed on two contrasting arctic ecosystems to simulate impacts of climate change. One, a high arctic polar semi-desert community, is characterized by a sparse, low and aggregated vegetation cover where plant proliferation is by seedlings, whereas the other, a sub-arctic dwarf shrub health, is characterized by a complete, vegetation cover of erect, clonal dwarf shrubs which spread vegetatively. The developmental processes of seed production were shown to be highly sensitive, even within one growing season to specific environmental perturbations which differed between sites. At the polar semi-desert site, there was a striking effect of the temperature enhancement treatments on phenology and seed-setting of Dryas octopetala ssp. octopetala, with almost no seed-setting occurring in plots experiencing ambient temperatures. By contrast, there were no significant effects of temperature enhancement alone on fruit production of Empetrum hermaphroditum at the sub-Arctic dwarf shrub heath site, although fruit production was significantly influenced by the application of nutrients and/or water. The response of dominant high arctic dwarf shrub to increased temperature suggests that any climate warming may stimulate seed-set. This could be particularly important in the high Arctic where colonization can proceed in areas dominated by bare ground and where genetic recombination may be needed to generate tolerance to predicted changes of great magnitude. In the sub-Arctic, however the closed vegetation is dominated by clonally-proliferating species. Plant fitness will increase here in response to any increased vegetative growth resulting from higher nutrient availability in warmer organic soils. (ua) (59 refs.)

  13. A quantitative assessment of Arctic shipping in 2010–2014

    KAUST Repository

    Eguíluz, Victor M.

    2016-08-01

    Rapid loss of sea ice is opening up the Arctic Ocean to shipping, a practice that is forecasted to increase rapidly by 2050 when many models predict that the Arctic Ocean will largely be free of ice toward the end of summer. These forecasts carry considerable uncertainty because Arctic shipping was previously considered too sparse to allow for adequate validation. Here, we provide quantitative evidence that the extent of Arctic shipping in the period 2011–2014 is already significant and that it is concentrated (i) in the Norwegian and Barents Seas, and (ii) predominantly accessed via the Northeast and Northwest Passages. Thick ice along the forecasted direct trans-Arctic route was still present in 2014, preventing transit. Although Arctic shipping remains constrained by the extent of ice coverage, during every September, this coverage is at a minimum, allowing the highest levels of shipping activity. Access to Arctic resources, particularly fisheries, is the most important driver of Arctic shipping thus far.

  14. Body size and condition influence migration timing of juvenile Arctic grayling

    Science.gov (United States)

    Heim, Kurt C.; Wipfli, Mark S.; Whitman, Matthew S.; Seitz, Andrew C.

    2016-01-01

    Freshwater fishes utilising seasonally available habitats within annual migratory circuits time movements out of such habitats with changing hydrology, although individual attributes of fish may also mediate the behavioural response to environmental conditions. We tagged juvenile Arctic grayling in a seasonally flowing stream on the Arctic Coastal Plain in Alaska and recorded migration timing towards overwintering habitat. We examined the relationship between individual migration date, and fork length (FL) and body condition index (BCI) for fish tagged in June, July and August in three separate models. Larger fish migrated earlier; however, only the August model suggested a significant relationship with BCI. In this model, 42% of variability in migration timing was explained by FL and BCI, and fish in better condition were predicted to migrate earlier than those in poor condition. Here, the majority (33%) of variability was captured by FL with an additional 9% attributable to BCI. We also noted strong seasonal trends in BCI reflecting overwinter mass loss and subsequent growth within the study area. These results are interpreted in the context of size and energetic state-specific risks of overwinter starvation and mortality (which can be very high in the Arctic), which may influence individuals at greater risk to extend summer foraging in a risky, yet prey rich, habitat. Our research provides further evidence that heterogeneity among individuals within a population can influence migratory behaviour and identifies potential risks to late season migrants in Arctic beaded stream habitats influenced by climate change and petroleum development.

  15. Science Partnerships for a Sustainable Arctic: the Marine Mammal Nexus (Invited)

    Science.gov (United States)

    Moore, S. E.

    2010-12-01

    Marine mammals are both icons of Arctic marine ecosystems and fundamental to Native subsistence nutrition and culture. Eight species are endemic to the Pacific Arctic, including the polar bear, walrus, ice seals (4 species), beluga and bowhead whales. Studies of walrus and bowheads have been conducted over the past 30 years, to estimate population size and elucidate patterns of movement and abundance. With regard to the three pillars of the SEARCH program, these long-term OBSERVATIONS provide a foundation for research seeking to UNDERSTAND and RESPOND to the effects of rapid climate change on the marine ecosystem. Specifically, research on the coastal ecosystem near Barrow, Alaska focuses on late-summer feeding habitat for bowheads in an area where whales are hunted in autumn. This work is a partnership among agency, academic and local scientists and the residents of Barrow, all of whom seek to better UNDERSTAND how recent dramatic changes in sea ice, winds and offshore industrial activities influence whale movements and behavior. In regard to RESPONDING to climate change, the nascent Sea Ice for Walrus Outlook (SIWO) is a science partnership that projects sea ice and wind conditions for five villages in the Bering Strait region. The objective of the SIWO is to provide information on physical conditions in the marine environment at spatial and temporal scales relevant to walrus hunters. Marine mammals are a strong and dynamic nexus for partnerships among scientists, Arctic residents, resource managers and the general public - as such, they are essential elements to any science plan for a sustainable Arctic.

  16. Life and extinction of megafauna in the ice-age Arctic.

    Science.gov (United States)

    Mann, Daniel H; Groves, Pamela; Reanier, Richard E; Gaglioti, Benjamin V; Kunz, Michael L; Shapiro, Beth

    2015-11-17

    Understanding the population dynamics of megafauna that inhabited the mammoth steppe provides insights into the causes of extinctions during both the terminal Pleistocene and today. Our study area is Alaska's North Slope, a place where humans were rare when these extinctions occurred. After developing a statistical approach to remove the age artifacts caused by radiocarbon calibration from a large series of dated megafaunal bones, we compare the temporal patterns of bone abundance with climate records. Megafaunal abundance tracked ice age climate, peaking during transitions from cold to warm periods. These results suggest that a defining characteristic of the mammoth steppe was its temporal instability and imply that regional extinctions followed by population reestablishment from distant refugia were characteristic features of ice-age biogeography at high latitudes. It follows that long-distance dispersal was crucial for the long-term persistence of megafaunal species living in the Arctic. Such dispersal was only possible when their rapidly shifting range lands were geographically interconnected. The end of the last ice age was fatally unique because the geographic ranges of arctic megafauna became permanently fragmented after stable, interglacial climate engendered the spread of peatlands at the same time that rising sea level severed former dispersal routes.

  17. Association of climatic factors with infectious diseases in the Arctic and subarctic region--a systematic review.

    Science.gov (United States)

    Hedlund, Christina; Blomstedt, Yulia; Schumann, Barbara

    2014-01-01

    The Arctic and subarctic area are likely to be highly affected by climate change, with possible impacts on human health due to effects on food security and infectious diseases. To investigate the evidence for an association between climatic factors and infectious diseases, and to identify the most climate-sensitive diseases and vulnerable populations in the Arctic and subarctic region. A systematic review was conducted. A search was made in PubMed, with the last update in May 2013. Inclusion criteria included human cases of infectious disease as outcome, climate or weather factor as exposure, and Arctic or subarctic areas as study origin. Narrative reviews, case reports, and projection studies were excluded. Abstracts and selected full texts were read and evaluated by two independent readers. A data collection sheet and an adjusted version of the SIGN methodology checklist were used to assess the quality grade of each article. In total, 1953 abstracts were initially found, of which finally 29 articles were included. Almost half of the studies were carried out in Canada (n=14), the rest from Sweden (n=6), Finland (n=4), Norway (n=2), Russia (n=2), and Alaska, US (n=1). Articles were analyzed by disease group: food- and waterborne diseases, vector-borne diseases, airborne viral- and airborne bacterial diseases. Strong evidence was found in our review for an association between climatic factors and food- and waterborne diseases. The scientific evidence for a link between climate and specific vector- and rodent-borne diseases was weak due to that only a few diseases being addressed in more than one publication, although several articles were of very high quality. Air temperature and humidity seem to be important climatic factors to investigate further for viral- and bacterial airborne diseases, but from our results no conclusion about a causal relationship could be drawn. More studies of high quality are needed to investigate the adverse health impacts of weather and

  18. Iceland as the largest source of natural air pollution in the Arctic

    Science.gov (United States)

    Dagsson Waldhauserova, Pavla; Meinander, Outi; Olafsson, Haraldur; Arnalds, Olafur

    2017-04-01

    Arctic aerosols are often attributed to the Arctic Haze and long-range transport tracers. There is, however, an important dust source in the Arctic/Sub-arctic region which should receive more attention. The largest desert in the Arctic as well as in the Europe is Iceland with > 40,000 km2 of desert areas. The mean dust suspension frequency was 135 dust days annually in 1949-2012 with decreasing numbers in 2013-2015. The annual dust deposition was calculated as 31-40 million tons yr-1 affecting the area of > 500,000 km2. Satelite MODIS pictures have revealed dust plumes traveling > 1000 km at times. The physical properties of Icelandic dust showed differences in mineralogy, geochemical compositions, shapes, sizes, and colour, compared to the crustal mineral dust. Icelandic dust is of volcanic origin, dark in colour with sharp-tipped shards and large bubbles. About 80% of the particulate matter is volcanic glass rich in heavy metals, such as iron and titanium. Suspended dust measured at the glacial dust source consisted of such high number of close-to-ultrafine particles as concentrations during active eruptions. Generally, about 50% of the suspended PM10 are submicron particles in Iceland. Contrarily, suspended grains > 2 mm were captured during severe dust storm after the 2010 Eyjafjallajokull eruption when the aeolian transport exceeded 11 t m-1 of materials and placed this storms among the most extreme wind erosion events recorded on Earth. Our reflectance measurements showed that Icelandic dust deposited on snow lowers the snow albedo and reduces the snow density as much as Black Carbon. Icelandic volcanic dust tends to act as a positive climate forcing agent, both directly and indirectly, which is different to what generally concluded for crustal dust in the 2013 IPCC report. The high frequency, severity and year-round activity of volcanic dust emissions suggest that Icelandic dust may contribute to Arctic warming.

  19. Amplified Arctic warming by phytoplankton under greenhouse warming.

    Science.gov (United States)

    Park, Jong-Yeon; Kug, Jong-Seong; Bader, Jürgen; Rolph, Rebecca; Kwon, Minho

    2015-05-12

    Phytoplankton have attracted increasing attention in climate science due to their impacts on climate systems. A new generation of climate models can now provide estimates of future climate change, considering the biological feedbacks through the development of the coupled physical-ecosystem model. Here we present the geophysical impact of phytoplankton, which is often overlooked in future climate projections. A suite of future warming experiments using a fully coupled ocean-atmosphere model that interacts with a marine ecosystem model reveals that the future phytoplankton change influenced by greenhouse warming can amplify Arctic surface warming considerably. The warming-induced sea ice melting and the corresponding increase in shortwave radiation penetrating into the ocean both result in a longer phytoplankton growing season in the Arctic. In turn, the increase in Arctic phytoplankton warms the ocean surface layer through direct biological heating, triggering additional positive feedbacks in the Arctic, and consequently intensifying the Arctic warming further. Our results establish the presence of marine phytoplankton as an important potential driver of the future Arctic climate changes.

  20. China in the Arctic: interests, actions and challenges

    Directory of Open Access Journals (Sweden)

    Njord Wegge

    2014-07-01

    Full Text Available This article gives an overview of China’s interest in and approach to the Arctic region. The following questions are raised: 1.Why is China getting involved in the Arctic, 2. How is China’s engagement in the Arctic playing out? 3, What are the most important issues that need to be solved in order for China to increase its relevance and importance as a political actor and partner in the Arctic. In applying a rationalist approach when answering the research questions, I identify how China in the last few years increasingly has been accepted as a legitimate stakeholder in the Arctic, with important stakes and activities in areas such as shipping, resource utilization and environmental science.  The article concludes with pointing out some issues that remain to be solved including Chinas role in issues of global politics, the role of observers in the Arctic Council as well as pointing out how China itself needs to decide important aspects of their future role in the region.

  1. Establishing Shared Knowledge about Globalization in Asia and the Arctic

    DEFF Research Database (Denmark)

    Bertelsen, Rasmus Gjedssø; Graczyk, Piotr

    2016-01-01

    We discuss the role of knowledge in relations between Arctic communities and Asia (the Arctic Council observer states: China, India, Japan, Singapore, South Korea). We argue that mutual and shared knowledge between Arctic communities and Asia is necessary for local benefits and comprehensively su...... sustainable development for Arctic communities under globalization....

  2. Biological responses to current UV-B radiation in Arctic regions

    DEFF Research Database (Denmark)

    Albert, Kristian Rost; Mikkelsen, Teis Nørgaard; Ro-Poulsen, H.

    2008-01-01

    Depletion of the ozone layer and the consequent increase in solar ultraviolet-B radiation (UV-B) may impact living conditions for arctic plants significantly. In order to evaluate how the prevailing UV-B fluxes affect the heath ecosystem at Zackenberg (74°30'N, 20°30'W) and other high......-arctic regions, manipulation experiments with various set-ups have been performed. Activation of plant defence mechanisms by production of UV-B absorbing compounds was significant in ambient UV-B in comparison to a filter treatment reducing the UV-B radiation. Despite the UV-B screening response, ambient UV...... (mycorrhiza) or in the biomass of microbes in the soil of the root zone. However, the composition of the soil microbial community was different in the soils under ambient and reduced UV radiation after three treatment years. These results provide new insight into the negative impact of current UV-B fluxes...

  3. Recent dynamics of arctic and sub-arctic vegetation

    International Nuclear Information System (INIS)

    Epstein, Howard E; Myers-Smith, Isla; Walker, Donald A

    2013-01-01

    We present a focus issue of Environmental Research Letters on the ‘Recent dynamics of arctic and sub-arctic vegetation’. The focus issue includes three perspective articles (Verbyla 2011 Environ. Res. Lett. 6 041003, Williams et al 2011 Environ. Res. Lett. 6 041004, Loranty and Goetz 2012 Environ. Res. Lett. 7 011005) and 22 research articles. The focus issue arose as a result of heightened interest in the response of high-latitude vegetation to natural and anthropogenic changes in climate and disturbance regimes, and the consequences that these vegetation changes might have for northern ecosystems. A special session at the December 2010 American Geophysical Union Meeting on the ‘Greening of the Arctic’ spurred the call for papers. Many of the resulting articles stem from intensive research efforts stimulated by International Polar Year projects and the growing acknowledgment of ongoing climate change impacts in northern terrestrial ecosystems. (synthesis and review)

  4. Climate change, future Arctic Sea ice, and the competitiveness of European Arctic offshore oil and gas production on world markets.

    Science.gov (United States)

    Petrick, Sebastian; Riemann-Campe, Kathrin; Hoog, Sven; Growitsch, Christian; Schwind, Hannah; Gerdes, Rüdiger; Rehdanz, Katrin

    2017-12-01

    A significant share of the world's undiscovered oil and natural gas resources are assumed to lie under the seabed of the Arctic Ocean. Up until now, the exploitation of the resources especially under the European Arctic has largely been prevented by the challenges posed by sea ice coverage, harsh weather conditions, darkness, remoteness of the fields, and lack of infrastructure. Gradual warming has, however, improved the accessibility of the Arctic Ocean. We show for the most resource-abundant European Arctic Seas whether and how a climate induced reduction in sea ice might impact future accessibility of offshore natural gas and crude oil resources. Based on this analysis we show for a number of illustrative but representative locations which technology options exist based on a cost-minimization assessment. We find that under current hydrocarbon prices, oil and gas from the European offshore Arctic is not competitive on world markets.

  5. Location of odor sources and the affected population in Imperial County, California

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, J.L.

    1981-08-01

    This report is divided into four sections. The first two sections contain general background information on Imperial County. The third section is a general discussion of odor sources in Imperial County, and the fourth maps the specific odor sources, the expected areas of perception, and the affected populations. this mapping is done for the Imperial Valley and each of the four Imperial County KGRA's (Known Geothermal Resource Areas) where odor from the development of the geothermal energy may affect population.

  6. Development of spinal deformities in Atlantic salmon and Arctic charr fed diets supplemented with oxytetracycline

    International Nuclear Information System (INIS)

    Toften, H.; Jobling, M.

    1996-01-01

    Some individuals within populations of Atlantic salmon Salmo salar and Arctic charr Salvelinus alpinus fed diets supplemented with oxytetracycline (OTC) developed spinal deformations. Possible differences in feed intake and growth of spinally deformed fish relative to fish without any deformities were investigated. Amongst Atlantic salmon, 17% of the fish fed OTC-supplemented feed developed spinal fractures, whereas none of the fish receiving the basic feed did so. Despite deformation of the spinal column, the injured fish continued to feed and grow, but at lower rates than unaffected individuals. In contrast to Atlantic salmon, Arctic charr showed no signs of spinal fractures at any time during the 65-day experiment

  7. Development of spinal deformities in Atlantic salmon and Arctic charr fed diets supplemented with oxytetracycline

    Energy Technology Data Exchange (ETDEWEB)

    Toften, H.; Jobling, M. [Norwegian Institute of Fisheries and Aquaculture, N-9005 Tromsoe (Norway)

    1996-07-01

    Some individuals within populations of Atlantic salmon Salmo salar and Arctic charr Salvelinus alpinus fed diets supplemented with oxytetracycline (OTC) developed spinal deformations. Possible differences in feed intake and growth of spinally deformed fish relative to fish without any deformities were investigated. Amongst Atlantic salmon, 17% of the fish fed OTC-supplemented feed developed spinal fractures, whereas none of the fish receiving the basic feed did so. Despite deformation of the spinal column, the injured fish continued to feed and grow, but at lower rates than unaffected individuals. In contrast to Atlantic salmon, Arctic charr showed no signs of spinal fractures at any time during the 65-day experiment.

  8. Temporal and spatial influences incur reconfiguration of Arctic heathland soil bacterial community structure.

    Science.gov (United States)

    Hill, Richard; Saetnan, Eli R; Scullion, John; Gwynn-Jones, Dylan; Ostle, Nick; Edwards, Arwyn

    2016-06-01

    Microbial responses to Arctic climate change could radically alter the stability of major stores of soil carbon. However, the sensitivity of plot-scale experiments simulating climate change effects on Arctic heathland soils to potential confounding effects of spatial and temporal changes in soil microbial communities is unknown. Here, the variation in heathland soil bacterial communities at two survey sites in Sweden between spring and summer 2013 and at scales between 0-1 m and, 1-100 m and between sites (> 100 m) were investigated in parallel using 16S rRNA gene T-RFLP and amplicon sequencing. T-RFLP did not reveal spatial structuring of communities at scales structuring effects may not confound comparison between plot-scale treatments, temporal change is a significant influence. Moreover, the prominence of two temporally exclusive keystone taxa suggests that the stability of Arctic heathland soil bacterial communities could be disproportionally influenced by seasonal perturbations affecting individual taxa. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  9. Arctic Region Space Weather Customers and SSA Services

    DEFF Research Database (Denmark)

    Høeg, Per; Kauristi, Kirsti; Wintoft, Peter

    Arctic inhabitants, authorities, and companies rely strongly on precise localization information and communication covering vast areas with low infrastructure and population density. Thus modern technology is crucial for establishing knowledge that can lead to growth in the region. At the same time...... and communication can be established without errors resulting from Space Weather effects. An ESA project have identified and clarified, how the products of the four ESA Space Weather Expert Service Centres (SWE) in the ESA Space Situational Awareness Programme (SSA), can contribute to the requirements of SSA...

  10. INTERNATIONAL EXPERIENCE AND TRENDS OF INNOVATIVE DEVELOPMENT OF ARCTIC TERRITORIES

    Directory of Open Access Journals (Sweden)

    M. Dudin

    2015-01-01

    Full Text Available In this article and summarized the regularities of formation of foreign experience and trends of development of Arctic territories. Set out the important points predetermine orientation and specificity of manifestations of national interests – potential participants of the subsoil in the Arctic zone. On the basis of the illuminated materials were obtained the following conclusions: Signifi cant interest in the Arctic show today, not only the fi ve countries (Russia, USA, Canada, Norway, Denmark, who own Arctic territories, but also polar state (Iceland, Sweden, Finland, the European Union and Asia. As a consequence of that, it is expected that in the XXI century the Arctic region will be the focus of attention as an official Arctic 45, and a number of states whose territory is quite removed from it; For Russia, given the current, acute political conditions (sanctions, confrontation with the West, Ukrainian crisis and war in the Middle East development of Arctic territories, some moved away, moved on tomorrow and the day after tomorrow on the agenda. This approach is fundamentally fl awed and fraught with a number of threats, because other countries do not decrease, but only increase their interest in this issue; Territorial opposition to all those involved in the topic of causing instability in the Arctic region, but does not represent a real threat for the emergence of large-scale conflict. Therefore, making the choice between the hard pressure of national interests and the interests of harmonization of the Arctic states, Russia must be based on international cooperationand mutual consideration of interests in the development of its Arctic strategy; Considering the cooperation of the countries of the Arctic Council and their cooperation in the framework of a global economic forum G8, there are prerequisites for the decision of the Arctic confl ict through negotiation and compromise. In this context it is very important to develop

  11. The Content of Fat and Polyenoic Acids in the Major Food Sources of the Arctic Diet

    DEFF Research Database (Denmark)

    Shukla, V. K. S.; Clausen, Jytte Lene; Egsgaard, Helge

    1980-01-01

    In relation to the apparently low incidence of coronary heart diseases in Arctic populations the fatty acid pattern of muscle and fat tissue of the Arctic seal, birds and mammals were compared with the fatty acid pattern of the corresponding tissues of domestic animals normally used as meat sources...... in western countries. The triglyceride content of muscle samples was also estimated. A gas chromatography-mass spectrometry system was used for localizing the position of double bonds in the unsaturated acids, by means of their pyrrolidides. The fat tissue from the seal was the main source of polyenoic acids......, tri- and pentaenoic acids in the diet of the Arctic hunter. Those acids were derived metabolically from linolenic acid. In contrast polyenoic acids, linoleic acid and its derivatives in the nonarctic diet, were mainly supplied from muscle of nonruminant animals and from sources of vegetable origin...

  12. A History of Coastal Research in the Arctic (Invited)

    Science.gov (United States)

    Walker, H. J.; McGraw, M.

    2009-12-01

    The arctic shoreline is, according to the CIA World Factbook, 45,389 km long. However, a more realistic length from the standpoint of detailed research is the 200,000 km proposed at the 1999 Arctic Coastal Dynamics Workshop. Highly varied in form and material it is dominated by a variety of processes, is relatively remote, is ice-bound much of the year, and has generally been neglected by the scientific community. Before the 20th century, most of the information about its geology, hydrology, geomorphology, and biology was recorded in ship's logs or in explorer's books and was for the most part incidental to the narrative being related. The paucity of specific research is indicated by the relatively few relevant papers included in the more than 100,000 annotated entries published in the 15 volumes of the Arctic Bibliography (1953-1971) and in the nearly as extensive 27 volume bibliography prepared by the Cold Regions Research and Engineering Laboratory (CRREL) between 1952 and 1973. Nonetheless, there were some distinctive research endeavors during the early part of the 20th century; e.g., Leffingwell's 1919 Alaskan Arctic Coast observations, Nansen's 1921 strandflat studies, and Zenkovich's 1937 Murmansk research. During that period some organizations devoted to polar research, especially the USSR's Arctic and Antarctic Research Institute and the Scott Polar Research Institute (both in 1920) were established, although the amount of their research that could be considered coastal and arctic was limited. Specific research of the arctic's shoreline was mainly academic until after World War II when military, economic, industrial, and archaeological interests began demanding reliable, contemporary data. At the time numerous organizations with a primary focus on the Arctic were formed. Included are the Arctic Institute of North America (1945), the Snow, Ice, and Permafrost Research Establishment (latter to become CRREL) and the Office of Naval Research's Arctic Research

  13. A COMPARATIVE ANALYSIS OF SOCIAL WELL-BEING OF THE POPULATION IN THE COMPANY TOWNS OF THE ARCTIC REGION (ACCORDING TO THE RESULTS OF SOCIOLOGICAL RESEARCH IN NOVODVINSK

    Directory of Open Access Journals (Sweden)

    Larisa Vladimirovna Kashkina

    2017-05-01

    Full Text Available The relevance of the article is theoretical understanding of contemporary social processes in the company towns of the Arctic zone, and their impact on social well-being of the population.The articlepresents a theoretical analysis of the concept of “social well-being” and “company towns”, as well as an overview of the situation in today’s single-industry towns. Single-industry town, characterized by the presence of the main enterprise and original social environment, creates a special social space, which has a particular impact on the social well-being of the population in comparison with the classical city. Object of research: social wellbeing of the population of single-industry town. Subject of study: the impact of the social space of single-industry city on the social well-being of the population. Objective: to present the influence of particular social space single-industry city in modern society on the social well-being of different social groups single-industry town, and to identify changes in the dynamics of social well-being of the population in Novodvinsk 35 years. The article analyzes the results of the sociological study of social well-being of the population in the company towns of the Arctic region as an example of Novodvinsk.The main methods used in the study have become historical, systemic, socio-psychological, stratification, allowing to reveal the specifics of social well-being of the population. The empirical study was carried out using a questionnaire, content analysis, mass of research, testing, analysis, focus groups. The empirical study was carried out using questionnaires, mass research, focus group analysis, print media content analysis, archival documents. A mass study related to quantitative methods is used to interview a large number of respondents. The focus group method is a qualitative method of collecting information in a group of respondents from 8 to 10 people. The essence of the method is that the

  14. Species interactions and response time to climate change: ice-cover and terrestrial run-off shaping Arctic char and brown trout competitive asymmetries

    Science.gov (United States)

    Finstad, A. G.; Palm Helland, I.; Jonsson, B.; Forseth, T.; Foldvik, A.; Hessen, D. O.; Hendrichsen, D. K.; Berg, O. K.; Ulvan, E.; Ugedal, O.

    2011-12-01

    There has been a growing recognition that single species responses to climate change often mainly are driven by interaction with other organisms and single species studies therefore not are sufficient to recognize and project ecological climate change impacts. Here, we study how performance, relative abundance and the distribution of two common Arctic and sub-Arctic freshwater fishes (brown trout and Arctic char) are driven by competitive interactions. The interactions are modified both by direct climatic effects on temperature and ice-cover, and indirectly through climate forcing of terrestrial vegetation pattern and associated carbon and nutrient run-off. We first use laboratory studies to show that Arctic char, which is the world's most northernmost distributed freshwater fish, outperform trout under low light levels and also have comparable higher growth efficiency. Corresponding to this, a combination of time series and time-for-space analyses show that ice-cover duration and carbon and nutrient load mediated by catchment vegetation properties strongly affected the outcome of the competition and likely drive the species distribution pattern through competitive exclusion. In brief, while shorter ice-cover period and decreased carbon load favored brown trout, increased ice-cover period and increased carbon load favored Arctic char. Length of ice-covered period and export of allochthonous material from catchments are major, but contrasting, climatic drivers of competitive interaction between these two freshwater lake top-predators. While projected climate change lead to decreased ice-cover, corresponding increase in forest and shrub cover amplify carbon and nutrient run-off. Although a likely outcome of future Arctic and sub-arctic climate scenarios are retractions of the Arctic char distribution area caused by competitive exclusion, the main drivers will act on different time scales. While ice-cover will change instantaneously with increasing temperature

  15. Dazzled by ice and snow: improving medium ocean color images in Arctic waters

    Science.gov (United States)

    Babin, M.; Goyens, C.; Belanger, S.

    2016-02-01

    The importance of phytoplankton blooms for the Arctic marine ecosystem is well recognized but studies disagree as the consequences of sea ice melt on the phytoplankton distribution and growth. This limited understanding in actual and future Arctic phytoplankton dynamics mostly results from a lack of accurate data at the receding ice-edges where phytoplankton blooms are known to occur. Ocean color sensors on-board satellites represent therefore a crucial tool providing a synoptic view of the ocean systems over broad spatio-temporal scales. However, today the use of ocean color data in Arctic environments remains strongly compromised due to, among others, sea ice contamination. Indeed, medium ocean color data along the receding ice edge are "dazzled" by nearby and/or sub-pixel highly reflective ice floes. Standard ocean color data methods ignore ice-contamination during data processing which deteriorates the quality of the radiometric data and subsequent satellite derived bio-geochemical products. Moreover, since Arctic phytoplankton spring blooms typically develop along the receding ice-edges, ignoring ice-contaminated pixels may lead to wrong interpretation of satellite data. The present study shows how adjacent and sub-pixel sea-ice floes affect the retrieved ocean color data. A correction approach is also suggested to improve the "dazzled" ocean color pixels along the receding ice edge in the aim to provide additional support to better understand current and future trends in phytoplankton dynamics.

  16. Climate-driven changes in functional biogeography of Arctic marine fish communities.

    Science.gov (United States)

    Frainer, André; Primicerio, Raul; Kortsch, Susanne; Aune, Magnus; Dolgov, Andrey V; Fossheim, Maria; Aschan, Michaela M

    2017-11-14

    Climate change triggers poleward shifts in species distribution leading to changes in biogeography. In the marine environment, fish respond quickly to warming, causing community-wide reorganizations, which result in profound changes in ecosystem functioning. Functional biogeography provides a framework to address how ecosystem functioning may be affected by climate change over large spatial scales. However, there are few studies on functional biogeography in the marine environment, and none in the Arctic, where climate-driven changes are most rapid and extensive. We investigated the impact of climate warming on the functional biogeography of the Barents Sea, which is characterized by a sharp zoogeographic divide separating boreal from Arctic species. Our unique dataset covered 52 fish species, 15 functional traits, and 3,660 stations sampled during the recent warming period. We found that the functional traits characterizing Arctic fish communities, mainly composed of small-sized bottom-dwelling benthivores, are being rapidly replaced by traits of incoming boreal species, particularly the larger, longer lived, and more piscivorous species. The changes in functional traits detected in the Arctic can be predicted based on the characteristics of species expected to undergo quick poleward shifts in response to warming. These are the large, generalist, motile species, such as cod and haddock. We show how functional biogeography can provide important insights into the relationship between species composition, diversity, ecosystem functioning, and environmental drivers. This represents invaluable knowledge in a period when communities and ecosystems experience rapid climate-driven changes across biogeographical regions. Copyright © 2017 the Author(s). Published by PNAS.

  17. North American Brant: Effects of changes in habitat and climate on population dynamics

    Science.gov (United States)

    Ward, David H.; Reed, Austin; Sedinger, James S.; Black, Jeffrey M.; Derksen, Dirk V.; Castelli, Paul M.

    2005-01-01

    We describe the importance of key habitats used by four nesting populations of nearctic brant (Branta bernicla) and discuss the potential relationship between changes in these habitats and population dynamics of brant. Nearctic brant, in contrast to most geese, rely on marine habitats and native intertidal plants during the non-breeding season, particularly the seagrass, Zostera, and the macroalgae, Ulva. Atlantic and Eastern High Arctic brant have experienced the greatest degradation of their winter habitats (northeastern United States and Ireland, respectively) and have also shown the most plasticity in feeding behavior. Black and Western High Arctic brant of the Pacific Flyway are the most dependent on Zostera, and are undergoing a shift in winter distribution that is likely related to climate change and its associated effects on Zostera dynamics. Variation in breeding propensity of Black Brant associated with winter location and climate strongly suggests that food abundance on the wintering grounds directly affects reproductive performance in these geese. In summer, salt marshes, especially those containing Carex and Puccinellia, are key habitats for raising young, while lake shorelines with fine freshwater grasses and sedges are important for molting birds. Availability and abundance of salt marshes has a direct effect on growth and recruitment of goslings and ultimately, plays an important role in regulating size of local brant populations. ?? 2005 Blackwell Publishing Ltd.

  18. Investigating the occurrence of persistent organic pollutants (POPs) in the arctic: their atmospheric behaviour and interaction with the seasonal snow pack

    International Nuclear Information System (INIS)

    Halsall, Crispin J.

    2004-01-01

    POPs in the Arctic are the focus of international concern due to their occurrence and accumulation in Arctic food webs. This paper presents an overview of the major pathways into the Arctic and details contemporary studies that have focused on the occurrence and transfer of POPs between the major Arctic compartments, highlighting areas where there is a lack of quantitative information. The behaviour of these chemicals in the Arctic atmosphere is scrutinised with respect to long-term trends and seasonal behaviour. Subtle differences between the PCBs and OC pesticides are demonstrated and related to sources outside of the Arctic as well as environmental processes within the Arctic. Unlike temperate regions, contaminant fate is strongly affected by the presence of snow and ice. A description of the high Arctic snow pack is given and the physical characteristics that determine chemical fate, namely the specific surface area of snow and wind driven ventilation, are discussed. Using a well-characterised fresh snow event observed at Alert (Canadian high Arctic) [Atmos. Environ. 36(2002) 2767] the flux of γ-HCH out of the snow is predicted following snow ageing. Under conditions of wind (10 m/s) it is estimated that ∼75% of the chemical may be re-emitted to the atmosphere within 24 h following snowfall, compared with just ∼5% under conditions of no wind. The implications of this are raised and areas of further research suggested. - The fluxes and fate of POPs in snowpacks are key to their behaviour in polar systems

  19. Arctic Forecasts Available from Polar Bear Exhibit as an Example of Formal/Informal Collaboration

    Science.gov (United States)

    Landis, C. E.; Cervenec, J.

    2012-12-01

    A subset of the general population enjoys and frequents informal education venues, offering an opportunity for lifelong learning that also enhances and supports formal education efforts. The Byrd Polar Research Center (BPRC) at The Ohio State University collaborated with the Columbus Zoo & Aquarium (CZA) in the development of their Polar Frontier exhibit, from its initial planning to the Grand Opening of the exhibit, through the present. Of course, the addition to the Zoo of polar bears and Arctic fox in the Polar Frontier has been very popular, with almost a 7% increase in visitors in 2010 when the exhibit opened. The CZA and BPRC are now investigating ways to increase the climate literacy impact of the exhibit, and to increase engagement with the topics through follow-on activities. For example, individuals or classes anywhere in the world can check forecasts from the Polar Weather and Research Forecasting model and compare them to observed conditions-- allowing deep investigation into changes in the Arctic. In addition, opportunities exist to adapt the Zoo School experience (affecting several Central Ohio school districts) and/or to enable regular participation through social media such as Facebook, Twitter, and other forms of digital communication. BPRC's sustained engagement with the CZA is an example of a trusted and meaningful partnership where open dialogue exists about providing the best learning experience for visitors. This presentation will share some of the lessons learned from this unique partnership, and strategies that are adopted to move it forward.

  20. The Arctic tourism in Russia

    Directory of Open Access Journals (Sweden)

    Yury F. Lukin

    2016-12-01

    Full Text Available In the new book "Arctic tourism in Russia" the basic concepts, resource potential, attractiveness (from Lat. Attrahere: to attract, opportunities and threats of environmental, cruise, international, and other types of tourism in the Arctic are system-based analyzed, for the first time in the literature. The sphere of tourism has becoming an integral sector of the economy, having a multiplicative effect for the development of infrastructure, social services, employment. Reference materials about the tourism products in the Russian Arctic and Far North regions are published, including the Arkhangelsk and Murmansk regions; Republic of Karelia, Komi, Sakha (Yakutia; Nenets, the Yamalo-Nenets, Khanty-Mansiysk, the Chukotka Autonomous Districts; Taimyr Dolgan-Nenets Municipal District, Turukhansk district, the city of Norilsk of the Krasnoyarsk region; Magadan region, Kamchatka region.

  1. Warmer and wetter winters: characteristics and implications of an extreme weather event in the High Arctic

    International Nuclear Information System (INIS)

    Hansen, Brage B; Isaksen, Ketil; Benestad, Rasmus E; Kohler, Jack; Pedersen, Åshild Ø; Loe, Leif E; Coulson, Stephen J; Larsen, Jan Otto; Varpe, Øystein

    2014-01-01

    One predicted consequence of global warming is an increased frequency of extreme weather events, such as heat waves, droughts, or heavy rainfalls. In parts of the Arctic, extreme warm spells and heavy rain-on-snow (ROS) events in winter are already more frequent. How these weather events impact snow-pack and permafrost characteristics is rarely documented empirically, and the implications for wildlife and society are hence far from understood. Here we characterize and document the effects of an extreme warm spell and ROS event that occurred in High Arctic Svalbard in January–February 2012, during the polar night. In this normally cold semi-desert environment, we recorded above-zero temperatures (up to 7 °C) across the entire archipelago and record-breaking precipitation, with up to 98 mm rainfall in one day (return period of >500 years prior to this event) and 272 mm over the two-week long warm spell. These precipitation amounts are equivalent to 25 and 70% respectively of the mean annual total precipitation. The extreme event caused significant increase in permafrost temperatures down to at least 5 m depth, induced slush avalanches with resultant damage to infrastructure, and left a significant ground-ice cover (∼5–20 cm thick basal ice). The ground-ice not only affected inhabitants by closing roads and airports as well as reducing mobility and thereby tourism income, but it also led to high starvation-induced mortality in all monitored populations of the wild reindeer by blocking access to the winter food source. Based on empirical-statistical downscaling of global climate models run under the moderate RCP4.5 emission scenario, we predict strong future warming with average mid-winter temperatures even approaching 0 °C, suggesting increased frequency of ROS. This will have far-reaching implications for Arctic ecosystems and societies through the changes in snow-pack and permafrost properties. (letter)

  2. Warmer and wetter winters: characteristics and implications of an extreme weather event in the High Arctic

    Science.gov (United States)

    Hansen, Brage B.; Isaksen, Ketil; Benestad, Rasmus E.; Kohler, Jack; Pedersen, Åshild Ø.; Loe, Leif E.; Coulson, Stephen J.; Larsen, Jan Otto; Varpe, Øystein

    2014-11-01

    One predicted consequence of global warming is an increased frequency of extreme weather events, such as heat waves, droughts, or heavy rainfalls. In parts of the Arctic, extreme warm spells and heavy rain-on-snow (ROS) events in winter are already more frequent. How these weather events impact snow-pack and permafrost characteristics is rarely documented empirically, and the implications for wildlife and society are hence far from understood. Here we characterize and document the effects of an extreme warm spell and ROS event that occurred in High Arctic Svalbard in January-February 2012, during the polar night. In this normally cold semi-desert environment, we recorded above-zero temperatures (up to 7 °C) across the entire archipelago and record-breaking precipitation, with up to 98 mm rainfall in one day (return period of >500 years prior to this event) and 272 mm over the two-week long warm spell. These precipitation amounts are equivalent to 25 and 70% respectively of the mean annual total precipitation. The extreme event caused significant increase in permafrost temperatures down to at least 5 m depth, induced slush avalanches with resultant damage to infrastructure, and left a significant ground-ice cover (˜5-20 cm thick basal ice). The ground-ice not only affected inhabitants by closing roads and airports as well as reducing mobility and thereby tourism income, but it also led to high starvation-induced mortality in all monitored populations of the wild reindeer by blocking access to the winter food source. Based on empirical-statistical downscaling of global climate models run under the moderate RCP4.5 emission scenario, we predict strong future warming with average mid-winter temperatures even approaching 0 °C, suggesting increased frequency of ROS. This will have far-reaching implications for Arctic ecosystems and societies through the changes in snow-pack and permafrost properties.

  3. Recent Arctic sea level variations from satellites

    OpenAIRE

    Ole Baltazar Andersen; Gaia ePiccioni

    2016-01-01

    Sea level monitoring in the Arctic region has always been an extreme challenge for remote sensing, and in particular for satellite altimetry. Despite more than two decades of observations, altimetry is still limited in the inner Arctic Ocean. We have developed an updated version of the Danish Technical University's (DTU) Arctic Ocean altimetric sea level timeseries starting in 1993 and now extended up to 2015 with CryoSat-2 data. The time-series covers a total of 23 years, which allows higher...

  4. Status and Impacts of Arctic Freshwater Export

    Science.gov (United States)

    Haine, T. W. N.

    2017-12-01

    Large freshwater anomalies clearly exist in the Arctic Ocean. For example, liquid freshwater has accumulated in the Beaufort Gyre in the decade of the 2000s compared to 1980-2000, with an extra ≈5000 km3—about 25%—being stored. The sources of freshwater to the Arctic from precipitation and runoff have increased between these periods (most of the evidence comes from models). Despite flux increases from 2001 to 2011, it is uncertain if the marine freshwater source through Bering Strait for the 2000s has changed, as observations in the 1980s and 1990s are incomplete. The marine freshwater fluxes draining the Arctic through Fram and Davis straits are also insignificantly different. In this way, the balance of sources and sinks of freshwater to the Arctic, Canadian Arctic Archipelago (CAA), and Baffin Bay shifted to about 1200±730 km3yr-1 freshening the region, on average, during the 2000s. The observed accumulation of liquid freshwater is consistent with this increased supply and the loss of freshwater from sea ice (Figure, right). Evidence exists that such discharges can impact the Atlantic meridional overturning circulation, and hence Atlantic sector climate. Nevertheless, it appears that the observed AMOC variability since 2004, when high quality measurements began, is not attributable to anthropogenic influence. This work is based on, and updated from, Haine et al. (2015), Carmack et al. (2016), and Haine (2016). Haine, T. W. N. Ocean science: Vagaries of Atlantic overturning. Nature Geoscience, 9, 479-480, 10.1038/ngeo2748, 2016. T. W. N. Haine et al., Arctic Freshwater Export: Status, Mechanisms, and Prospects, Global Planetary Change, 125, 13-35, 10.1016/j.glopacha.2014.11.013, 2015. E. Carmack et al., Fresh water and its role in the Arctic Marine System: sources, disposition, storage, export, and physical and biogeochemical consequences in the Arctic and global oceans. J. G. Res. Biogeosciences, 10.1002/2015JG003140, 2016.

  5. Glacier inputs influence organic matter composition and prokaryotic distribution in a high Arctic fjord (Kongsfjorden, Svalbard)

    KAUST Repository

    Bourgeois, Solveig; Kerhervé , Philippe; Calleja, Maria Ll; Many, Gaë l; Morata, Nathalie

    2016-01-01

    With climate change, the strong seasonality and tight pelagic-benthic coupling in the Arctic is expected to change in the next few decades. It is currently unclear how the benthos will be affected by changes of environmental conditions

  6. Variability of the Arctic Basin Oceanographic Fields

    National Research Council Canada - National Science Library

    Sabinin, K

    1996-01-01

    ...." Special attention was paid to Atlantic Water in the Arctic Ocean which seems to be the main source of information in acoustic monitoring of the ocean, in the framework of the Arctic-ATOC program...

  7. The Arctic Cooperative Data and Information System: Data Management Support for the NSF Arctic Research Program (Invited)

    Science.gov (United States)

    Moore, J.; Serreze, M. C.; Middleton, D.; Ramamurthy, M. K.; Yarmey, L.

    2013-12-01

    The NSF funds the Advanced Cooperative Arctic Data and Information System (ACADIS), url: (http://www.aoncadis.org/). It serves the growing and increasingly diverse data management needs of NSF's arctic research community. The ACADIS investigator team combines experienced data managers, curators and software engineers from the NSIDC, UCAR and NCAR. ACADIS fosters scientific synthesis and discovery by providing a secure long-term data archive to NSF investigators. The system provides discovery and access to arctic related data from this and other archives. This paper updates the technical components of ACADIS, the implementation of best practices, the value of ACADIS to the community and the major challenges facing this archive for the future in handling the diverse data coming from NSF Arctic investigators. ACADIS provides sustainable data management, data stewardship services and leadership for the NSF Arctic research community through open data sharing, adherence to best practices and standards, capitalizing on appropriate evolving technologies, community support and engagement. ACADIS leverages other pertinent projects, capitalizing on appropriate emerging technologies and participating in emerging cyberinfrastructure initiatives. The key elements of ACADIS user services to the NSF Arctic community include: data and metadata upload; support for datasets with special requirements; metadata and documentation generation; interoperability and initiatives with other archives; and science support to investigators and the community. Providing a self-service data publishing platform requiring minimal curation oversight while maintaining rich metadata for discovery, access and preservation is challenging. Implementing metadata standards are a first step towards consistent content. The ACADIS Gateway and ADE offer users choices for data discovery and access with the clear objective of increasing discovery and use of all Arctic data especially for analysis activities

  8. Consequences of future increased Arctic runoff on Arctic Ocean stratification, circulation, and sea ice cover

    OpenAIRE

    Nummelin, Aleksi; Ilicak, Mehmet; Li, Camille; Smedsrud, Lars Henrik

    2016-01-01

    The Arctic Ocean has important freshwater sources including river runoff, low evaporation, and exchange with the Pacific Ocean. In the future, we expect even larger freshwater input as the global hydrological cycle accelerates, increasing high-latitude precipitation, and river runoff. Previous modeling studies show some robust responses to high-latitude freshwater perturbations, including a strengthening of Arctic stratification and a weakening of the large-scale ocean circulation...

  9. Developing an Arctic Observing Network: Looking Beyond Scientific Research as a Driver to Broader Societal Benefits as Drivers

    Science.gov (United States)

    Jeffries, M. O.

    2017-12-01

    This presentation will address the first ever application of the Societal Benefit Areas approach to continuing efforts to develop an integrated pan-Arctic Observing Network. The scientific research community has been calling for an Arctic Observing Network since the early years of this century, at least. There is no question of the importance of research-driven observations at a time when rapid changes occurring throughout the Arctic environmental system are affecting people and communities in the Arctic and in regions far from the Arctic. Observations are need for continued environmental monitoring and change detection; improving understanding of how the system and its components function, and how they are connected to lower latitude regions; advancing numerical modeling capabilities for forecasting and projection; and developing value-added products and services for people and communities, and for decision- and policymaking. Scientific research is, without question, a benefit to society, but the benefits of Earth observations extend beyond scientific research. Societal Benefit Areas (SBAs) were first described by the international Group on Earth Observations (GEO) and have since been used by USGEO as the basis for its National Earth Observation Assessments. The most recent application of SBAs to Earth observing realized a framework of SBAs, SBA Sub-areas, and Key Objectives required for the completion of a full Earth observing assessment for the Arctic. This framework, described in a report released in June 2017, and a brief history of international efforts to develop an integrated pan-Arctic Observing Network, are the subjects of this presentation.

  10. Romantic notions about the arctic must include indigenous rights

    DEFF Research Database (Denmark)

    Burke, Danita Catherine

    2017-01-01

    The Arctic plays a big role in Canada's national identity. But as Canada's relationship with the region evolves, the interests of Indigenous peoples must be better represented. This article summarizes the research in my book 'International Disputes and Cultural Ideas in the Canadian Arctic: Arctic...

  11. The 2008 Circum-Arctic Resource Appraisal

    Science.gov (United States)

    Moore, Thomas E.; Gautier, Donald L.

    2017-11-15

    Professional Paper 1824 comprises 30 chapters by various U.S. Geological Survey authors, including introduction and methodology chapters, which together provide documentation of the geological basis and methodology of the 2008 Circum-Arctic Resource Appraisal, results of which were first released in August 2008.  Twenty-eight chapters summarize the petroleum geology and resource potential of individual, geologically defined provinces north of the Arctic Circle, including those of northern Alaska, northern Canada, east and west Greenland, and most of Arctic Russia, as well as certain offshore areas of the north Atlantic Basin and the Polar Sea. Appendixes tabulate the input and output information used during the assessment.

  12. Recommendations for the Use of ICT in Elderly Populations with Affective Disorders.

    Science.gov (United States)

    Gros, Auriane; Bensamoun, David; Manera, Valeria; Fabre, Roxane; Zacconi-Cauvin, Anne-Marie; Thummler, Susanne; Benoit, Michel; Robert, Philippe; David, Renaud

    2016-01-01

    Objective : Affective disorders are frequently encountered among elderly populations, and the use of information and communication technologies (ICT) could provide an added value for their recognition and assessment in addition to current clinical methods. The diversity and lack of consensus in the emerging field of ICTs is however a strong limitation for their global use in daily practice. The aim of the present article is to provide recommendations for the use of ICTs for the assessment and management of affective disorders among elderly populations with or without dementia. Methods : A Delphi panel was organized to gather recommendations from experts in the domain. A set of initial general questions for the use of ICT in affective disorders was used to guide the discussion of the expert panel and to analyze the Strengths, Weaknesses, Opportunities, and Threats (SWOT) of employing ICT in elderly populations with affective disorders. Based on the results collected from this first round, a web survey was sent to local general practitioners (GPs) and to all interns in psychiatry in France. Results : The results of the first round revealed that ICT may offer very useful tools for practitioners involved in the diagnosis and management of affective disorders. However, the results of the web survey showed the interest to explain better to current and upcoming practitioners the utility of ICT especially for people living with dementia.

  13. Recommendations for the Use of ICT in Elderly Populations with Affective Disorders

    Science.gov (United States)

    Gros, Auriane; Bensamoun, David; Manera, Valeria; Fabre, Roxane; Zacconi-Cauvin, Anne-Marie; Thummler, Susanne; Benoit, Michel; Robert, Philippe; David, Renaud

    2016-01-01

    Objective: Affective disorders are frequently encountered among elderly populations, and the use of information and communication technologies (ICT) could provide an added value for their recognition and assessment in addition to current clinical methods. The diversity and lack of consensus in the emerging field of ICTs is however a strong limitation for their global use in daily practice. The aim of the present article is to provide recommendations for the use of ICTs for the assessment and management of affective disorders among elderly populations with or without dementia. Methods: A Delphi panel was organized to gather recommendations from experts in the domain. A set of initial general questions for the use of ICT in affective disorders was used to guide the discussion of the expert panel and to analyze the Strengths, Weaknesses, Opportunities, and Threats (SWOT) of employing ICT in elderly populations with affective disorders. Based on the results collected from this first round, a web survey was sent to local general practitioners (GPs) and to all interns in psychiatry in France. Results: The results of the first round revealed that ICT may offer very useful tools for practitioners involved in the diagnosis and management of affective disorders. However, the results of the web survey showed the interest to explain better to current and upcoming practitioners the utility of ICT especially for people living with dementia. PMID:27877126

  14. Trajectory of the Arctic as an integrated system.

    Science.gov (United States)

    Hinzman, Larry D; Deal, Clara J; McGuire, A David; Mernild, Sebastian H; Polyakov, Igor V; Walsh, John E

    2013-12-01

    Although much remains to be learned about the Arctic and its component processes, many of the most urgent scientific, engineering, and social questions can only be approached through a broader system perspective. Here, we address interactions between components of the Arctic system and assess feedbacks and the extent to which feedbacks (1) are now underway in the Arctic and (2) will shape the future trajectory of the Arctic system. We examine interdependent connections among atmospheric processes, oceanic processes, sea-ice dynamics, marine and terrestrial ecosystems, land surface stocks of carbon and water, glaciers and ice caps, and the Greenland ice sheet. Our emphasis on the interactions between components, both historical and anticipated, is targeted on the feedbacks, pathways, and processes that link these different components of the Arctic system. We present evidence that the physical components of the Arctic climate system are currently in extreme states, and that there is no indication that the system will deviate from this anomalous trajectory in the foreseeable future. The feedback for which the evidence of ongoing changes is most compelling is the surface albedo-temperature feedback, which is amplifying temperature changes over land (primarily in spring) and ocean (primarily in autumn-winter). Other feedbacks likely to emerge are those in which key processes include surface fluxes of trace gases, changes in the distribution of vegetation, changes in surface soil moisture, changes in atmospheric water vapor arising from higher temperatures and greater areas of open ocean, impacts of Arctic freshwater fluxes on the meridional overturning circulation of the ocean, and changes in Arctic clouds resulting from changes in water vapor content.

  15. Arctic air pollution: New insights from POLARCAT-IPY

    International Nuclear Information System (INIS)

    Law, Katharine S.; Ancellet, Gerard; Pelon, Jacques; Thomas, Jennie L.; Stohl, Andreas; Quinn, Patricia K.; Brock, Charles A.; Burkhart, John F.

    2014-01-01

    Given the rapid nature of climate change occurring in the Arctic and the difficulty climate models have in quantitatively reproducing observed changes such as sea ice loss, it is important to improve understanding of the processes leading to climate change in this region, including the role of short-lived climate pollutants such as aerosols and ozone. It has long been known that pollution produced from emissions at mid latitudes can be transported to the Arctic, resulting in a winter/spring aerosol maximum known as Arctic haze. However, many uncertainties remain about the composition and origin of Arctic pollution throughout the troposphere; for example, many climate-chemistry models fail to reproduce the strong seasonality of aerosol abundance observed at Arctic surface sites, the origin and deposition mechanisms of black carbon (soot) particles that darken the snow and ice surface in the Arctic is poorly understood, and chemical processes controlling the abundance of tropospheric ozone are not well quantified. The International Polar Year (IPY) Polar Study using Aircraft, Remote Sensing, Surface Measurements and Models, Climate, Chemistry, Aerosols and Transport (POLARCAT) core project had the goal to improve understanding about the origins of pollutants transported to the Arctic; to detail the chemical composition, optical properties, and climate forcing potential of Arctic aerosols; to evaluate the processes governing tropospheric ozone; and to quantify the role of boreal forest fires. This article provides a review of the many results now available based on analysis of data collected during the POLARCAT aircraft-, ship-, and ground-based field campaigns in spring and summer 2008. Major findings are highlighted and areas requiring further investigation are discussed. (authors)

  16. Contrasting response to nutrient manipulation in Arctic mesocosms are reproduced by a minimum microbial food web model.

    Science.gov (United States)

    Larsen, Aud; Egge, Jorun K; Nejstgaard, Jens C; Di Capua, Iole; Thyrhaug, Runar; Bratbak, Gunnar; Thingstad, T Frede

    2015-03-01

    A minimum mathematical model of the marine pelagic microbial food web has previously shown to be able to reproduce central aspects of observed system response to different bottom-up manipulations in a mesocosm experiment Microbial Ecosystem Dynamics (MEDEA) in Danish waters. In this study, we apply this model to two mesocosm experiments (Polar Aquatic Microbial Ecology (PAME)-I and PAME-II) conducted at the Arctic location Kongsfjorden, Svalbard. The different responses of the microbial community to similar nutrient manipulation in the three mesocosm experiments may be described as diatom-dominated (MEDEA), bacteria-dominated (PAME-I), and flagellated-dominated (PAME-II). When allowing ciliates to be able to feed on small diatoms, the model describing the diatom-dominated MEDEA experiment give a bacteria-dominated response as observed in PAME I in which the diatom community comprised almost exclusively small-sized cells. Introducing a high initial mesozooplankton stock as observed in PAME-II, the model gives a flagellate-dominated response in accordance with the observed response also of this experiment. The ability of the model originally developed for temperate waters to reproduce population dynamics in a 10°C colder Arctic fjord, does not support the existence of important shifts in population balances over this temperature range. Rather, it suggests a quite resilient microbial food web when adapted to in situ temperature. The sensitivity of the model response to its mesozooplankton component suggests, however, that the seasonal vertical migration of Arctic copepods may be a strong forcing factor on Arctic microbial food webs.

  17. Using an Environmental Intelligence Framework to Evaluate the Impacts of Ocean Acidification in the Arctic

    Science.gov (United States)

    Mathis, J. T.; Baskin, M.; Cross, J.

    2016-12-01

    The highly productive coastal seas of the Arctic Ocean are located in areas that are projected to experience strong global change, including rapid transitions in temperature and ocean acidification-driven changes in pH and other chemical parameters. Many of the marine organisms that may be most intensely affected by ocean acidification (OA) and other environmental stressors contribute substantially to the commercial fisheries of the Bering Sea and traditional subsistence food supplies across the Arctic. This could represent a looming challenge in many communities as the average prevalence of household food insecurity and very low food security in Alaska are already 12 percent and 4.3 percent, respectively. Here, we evaluate the patterns of dependence on marine resources within Alaska's Arctic that could be negatively impacted by OA and current community characteristics to assess the potential risk to the fishery sector from OA. We used a risk assessment framework to analyze an earth-system global model of ocean chemistry, fisheries harvest data, and demographic information. The analysis showed that regions around Alaska vary in their vulnerability to OA, but that each one will have to deal with possible impacts. Therefore, OA merits consideration in policy planning, as it may represent another challenge to Alaskan communities, some of which are already under acute socio-economic strains. With this in mind, we will present a number of adaptation strategies for communities living throughout Alaska's Arctic that could be applicable to other Arctic regions.

  18. Rift systems of the Russian Eastern Arctic shelf and Arctic deep water basins: link between geological history and geodynamics

    Directory of Open Access Journals (Sweden)

    A. M. Nikishin

    2017-01-01

    Full Text Available In our study, we have developed a new tectonic scheme of the Arctic Ocean, which is based mainly on seismic profiles obtained in the Arctic-2011, Arctic-2012 and Arctic-2014 Projects implemented in Russia. Having interpreted many seismic profiles, we propose a new seismic stratigraphy of the Arctic Ocean. Our main conclusions are drawn from the interpretation of the seismic profiles and the analysis of the regional geological data. The results of our study show that rift systems within the Laptev, the East Siberian and the Chukchi Seas were formed not earlier than Aptian. The geological structure of the Eurasian, Podvodnikov, Toll and Makarov Basins is described in this paper. Having synthesized all the available data on the study area, we propose the following model of the geological history of the Arctic Ocean: 1. The Canada Basin formed till the Aptian (probably, during Hauterivian-Barremian time. 2. During the Aptian-Albian, large-scale tectonic and magmatic events took place, including plume magmatism in the area of the De Long Islands, Mendeleev Ridge and other regions. Continental rifting started after the completion of the Verkhoyansk-Chukotka orogenу, and rifting occurred on the shelf of the Laptev, East Siberian, North Chukchi and South Chukchi basins, and the Chukchi Plateau; simultaneously, continental rifting started in the Podvodnikov and Toll basins. 3. Perhaps the Late Cretaceous rifting continued in the Podvodnikov and Toll basins. 4. At the end of the Late Cretaceous and Paleocene, the Makarov basin was formed by rifting, although local spreading of oceanic crust during its formation cannot be excluded. 5. The Eurasian Basin started to open in the Early Eocene. We, of course, accept that our model of the geological history of the Arctic Ocean, being preliminary and debatable, may need further refining. In this paper, we have shown a link between the continental rift systems on the shelf and the formation history of the Arctic

  19. Can Canada Avoid Arctic Militarization?

    Science.gov (United States)

    2014-05-20

    global market and the evolution of new fracking technology for the extraction of shale hydrocarbons, the development of the Canadian Arctic might not...resources extraction . In hydrocarbons alone, the United States Geological Survey estimates that there are approximately 90 billion barrels of oil...1,669 trillion cubic feet of natural gas , and 44 billion barrels of natural gas liquids currently undiscovered in the Arctic, with 84 percent lying in

  20. Interaction webs in arctic ecosystems

    DEFF Research Database (Denmark)

    Schmidt, Niels Martin; Hardwick, Bess; Gilg, Olivier

    2017-01-01

    How species interact modulate their dynamics, their response to environmental change, and ultimately the functioning and stability of entire communities. Work conducted at Zackenberg, Northeast Greenland, has changed our view on how networks of arctic biotic interactions are structured, how they ...... that the combination of long-term, ecosystem-based monitoring, and targeted research projects offers the most fruitful basis for understanding and predicting the future of arctic ecosystems....

  1. The Arctic Observing Viewer: A Web-mapping Application for U.S. Arctic Observing Activities

    Science.gov (United States)

    Cody, R. P.; Manley, W. F.; Gaylord, A. G.; Kassin, A.; Villarreal, S.; Barba, M.; Dover, M.; Escarzaga, S. M.; Habermann, T.; Kozimor, J.; Score, R.; Tweedie, C. E.

    2015-12-01

    Although a great deal of progress has been made with various arctic observing efforts, it can be difficult to assess such progress when so many agencies, organizations, research groups and others are making such rapid progress over such a large expanse of the Arctic. To help meet the strategic needs of the U.S. SEARCH-AON program and facilitate the development of SAON and other related initiatives, the Arctic Observing Viewer (AOV; http://ArcticObservingViewer.org) has been developed. This web mapping application compiles detailed information pertaining to U.S. Arctic Observing efforts. Contributing partners include the U.S. NSF, USGS, ACADIS, ADIwg, AOOS, a2dc, AON, ARMAP, BAID, IASOA, INTERACT, and others. Over 7700 observation sites are currently in the AOV database and the application allows users to visualize, navigate, select, advance search, draw, print, and more. During 2015, the web mapping application has been enhanced by the addition of a query builder that allows users to create rich and complex queries. AOV is founded on principles of software and data interoperability and includes an emerging "Project" metadata standard, which uses ISO 19115-1 and compatible web services. Substantial efforts have focused on maintaining and centralizing all database information. In order to keep up with emerging technologies, the AOV data set has been structured and centralized within a relational database and the application front-end has been ported to HTML5 to enable mobile access. Other application enhancements include an embedded Apache Solr search platform which provides users with the capability to perform advance searches and an administration web based data management system that allows administrators to add, update, and delete information in real time. We encourage all collaborators to use AOV tools and services for their own purposes and to help us extend the impact of our efforts and ensure AOV complements other cyber-resources. Reinforcing dispersed but

  2. Morphology-dependent water budgets and nutrient fluxes in arctic thaw ponds

    Science.gov (United States)

    Koch, Joshua C.; Gurney, Kirsty; Wipfli, Mark S.

    2014-01-01

    Thaw ponds on the Arctic Coastal Plain of Alaska are productive ecosystems, providing habitat and food resources for many fish and bird species. Permafrost in this region creates unique pond morphologies: deep troughs, shallow low-centred polygons (LCPs) and larger coalescent ponds. By monitoring seasonal trends in pond volume and chemistry, we evaluated whether pond morphology and size affect water temperature and desiccation, and nitrogen (N) and phosphorus (P) fluxes. Evaporation was the largest early-summer water flux in all pond types. LCPs dried quickly and displayed high early-summer nutrient concentrations and losses. Troughs consistently received solute-rich subsurface inflows, which accounted for 12 to 42 per cent of their volume and may explain higher P in the troughs. N to P ratios increased and ammonium concentrations decreased with pond volume, suggesting that P and inorganic N availability may limit ecosystem productivity in older, larger ponds. Arctic summer temperatures will likely increase in the future, which may accelerate mid-summer desiccation. Given their morphology, troughs may remain wet, become warmer and derive greater nutrient loads from their thawing banks. Overall, seasonal- to decadal-scale warming may increase ecosystem productivity in troughs relative to other Arctic Coastal Plain ponds. 

  3. Politics of sustainability in the Arctic (POSUSA)

    DEFF Research Database (Denmark)

    Gad, Ulrik Pram; Jakobsen, Uffe; Strandsbjerg, Jeppe

    The concept of sustainability is of central importance in Arctic politics. However, for different actors (governments, indigenious peoples, NGOs) the concept implies different sets of precautions and opportunities. Sustainability, therefore, is much more a fundamental concept to be further...... elaborated than a definable term with a specific meaning. This is the core hypothesis in a collective research project, the POSUSA project (Politics of Sustainability in the Arctic) that aims to map and analyse the role of sustainability in various political and economic strategies in the Arctic....

  4. Arctic tides from GPS on sea ice

    OpenAIRE

    Kildegaard Rose, Stine; Skourup, Henriette; Forsberg, René

    2012-01-01

    The presence of sea-ice in the Arctic Ocean plays a significant role in the Arctic climate. Sea ice dampens the ocean tide amplitude with the result that global tidal models which use only astronomical data perform less accurately in the polar regions. This study presents a kinematic processing of Global Positioning System (GPS) buoys placed on sea-ice at five different sites north of Greenland for the study of sea level height and tidal analysis to improve tidal models in the Central Arctic....

  5. Seasonality of primary and secondary production in an Arctic river

    Science.gov (United States)

    Kendrick, M.; Huryn, A.; Deegan, L.

    2011-12-01

    Rivers and streams that freeze solid for 8-9 months each year provide excellent examples of the extreme seasonality of arctic habitats. The communities of organisms inhabiting these rivers must complete growth and development during summer, resulting in a rapid ramp-up and down of production over the short ice-free period. The effects of recent shifts in the timing of the spring thaw and autumn freeze-up on the duration and pattern of the period of active production are poorly understood. We are currently investigating: 1) the response of the biotic community of the Kuparuk River (Arctic Alaska) to shifts in the seasonality of the ice-free period, and 2) the community response to increases in phosphorous (P) supply anticipated as the volume of the permafrost active-layer increases in response to climate warming. Here algal production supports a 2-tier web of consumers. We tracked primary and secondary production from the spring thaw through mid-August in a reference reach and one receiving low-level P fertilization. Gross primary production/community respiration (GPP/R) ratios for both reaches were increasing through mid-July, with higher GPP/R in response to the P addition. Understanding the degree of synchrony between primary and secondary production in this Arctic river system will enhance further understanding of how shifts in seasonality affect trophic dynamics.

  6. Pristine Arctic: Background mapping of PAHs, PAH metabolites and inorganic trace elements in the North-Atlantic Arctic and sub-Arctic coastal environment

    Energy Technology Data Exchange (ETDEWEB)

    Jörundsdóttir, Hrönn Ólína, E-mail: hronn.o.jorundsdottir@matis.is [Matis Ltd., Icelandic Food and Biotech R and D, Vinlandsleid 12, 113 Reykjavik (Iceland); Jensen, Sophie [Matis Ltd., Icelandic Food and Biotech R and D, Vinlandsleid 12, 113 Reykjavik (Iceland); Hylland, Ketil; Holth, Tor Fredrik [Department of Biosciences, University of Oslo, P.O. Box 1066 Blindern, N-0316 Oslo (Norway); Gunnlaugsdóttir, Helga [Matis Ltd., Icelandic Food and Biotech R and D, Vinlandsleid 12, 113 Reykjavik (Iceland); Svavarsson, Jörundur [University of Iceland, Department of Life and Environmental Sciences, Askja - Natural Science Building, Sturlugata 7, 101 Reykjavík (Iceland); Ólafsdóttir, Ásdís [The University of Iceland´s Research Centre in Sudurnes, Gardvegi 1, 245 Sandgerdi (Iceland); El-Taliawy, Haitham [Matis Ltd., Icelandic Food and Biotech R and D, Vinlandsleid 12, 113 Reykjavik (Iceland); Rigét, Frank; Strand, Jakob [Department of Bioscience, Arctic Research Centre, Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde (Denmark); Nyberg, Elisabeth; Bignert, Anders [Swedish Museum of Natural History, P.O. Box 50007, 104 05 Stockholm (Sweden); Hoydal, Katrin S. [The Faroese Environment Agency, Traðagøta 38, P.O. Box 2048, FO-165 Argir, the Faroe Islands (Faroe Islands); Halldórsson, Halldór Pálmar [The University of Iceland´s Research Centre in Sudurnes, Gardvegi 1, 245 Sandgerdi (Iceland)

    2014-09-15

    As the ice cap of the Arctic diminishes due to global warming, the polar sailing route will be open larger parts of the year. These changes are likely to increase the pollution load on the pristine Arctic due to large vessel traffic from specific contaminant groups, such as polycyclic aromatic hydrocarbons (PAHs). A well-documented baseline for PAH concentrations in the biota in the remote regions of the Nordic Seas and the sub-Arctic is currently limited, but will be vital in order to assess future changes in PAH contamination in the region. Blue mussels (Mytilus edulis) were collected from remote sites in Greenland, Iceland, the Faroe Islands, Norway and Sweden as well as from urban sites in the same countries for comparison. Cod (Gadus morhua) was caught north of Iceland and along the Norwegian coast. Sixteen priority PAH congeners and the inorganic trace elements arsenic, cadmium, mercury and lead were analysed in the blue mussel samples as well as PAH metabolites in cod bile. Σ{sub 16}PAHs ranged from 28 ng/g dry weight (d.w.) (Álftafjörður, NW Iceland) to 480 ng/g d.w. (Ísafjörður, NW Iceland). Mussel samples from Mjóifjörður, East Iceland and Maarmorilik, West Greenland, contained elevated levels of Σ{sub 16}PAHs, 370 and 280 ng/g d.w., respectively. Levels of inorganic trace elements varied with highest levels of arsenic in mussels from Ísafjörður, Iceland (79 ng/g d.w.), cadmium in mussels from Mjóifjörður, Iceland (4.3 ng/g d.w.), mercury in mussels from Sørenfjorden, Norway (0.23 ng/g d.w.) and lead in mussels from Maarmorilik, Greenland (21 ng/g d.w.). 1-OH-pyrene was only found above limits of quantification (0.5 ng/mL) in samples from the Norwegian coast, ranging between 44 and 140 ng/ml bile. Generally, PAH levels were low in mussels from the remote sites investigated in the study, which indicates limited current effect on the environment. - Highlights: • Low levels of PAHs in blue mussels from remote areas of the Arctic. • Low

  7. The Sticking Point of the Arctic Dispute and China's Strategic Positioning

    Directory of Open Access Journals (Sweden)

    Shijun Li

    2014-12-01

    Full Text Available Global climate warming results in Arctic sea ice melting which increases the value of the Arctic. In recent years, the competition among Arctic coastal nations and nations outside the Arctic has become increasingly fierce for sovereignty over the Arctic Ocean, sea borders, resource extraction, channel control, and other marine interests. The crux of the Arctic dispute focuses on energy, control of the waterways, and geopolitics. To face up to the United States, Russia and Canada’s Arctic strategies, China should focus on energy security strategy. China should actively carry out multilateral cooperation with the Nordic countries, mainly on economic cooperation, and expand the scope of the demilitarized zone, thus becoming able to maximize the interests of the Chinese state.

  8. 50 CFR 216.108 - Requirements for monitoring and reporting under incidental harassment authorizations for Arctic...

    Science.gov (United States)

    2010-10-01

    ... location, and the time. (d) Where the proposed activity may affect the availability of a species or stock of marine mammal for taking for subsistence purposes, proposed monitoring plans or other research... an incidental harassment authorization for Arctic waters must submit reports to the Assistant...

  9. Trends in coastal Arctic fog and its influence on the surface energy balance of glaciers

    NARCIS (Netherlands)

    Jiskoot, H.; Gueye, S.Y.; van Boxel, J.H.

    2013-01-01

    Breakup of sea ice causes advection and steam fog, which can be persistent over oceans and coasts but diminishes inland. Arctic warming has increased summer sea ice decline and open water exposure, affecting heat and moisture fluxes and therefore cloud formation. Cloudiness has generally increased

  10. Computational problems in Arctic Research

    International Nuclear Information System (INIS)

    Petrov, I

    2016-01-01

    This article is to inform about main problems in the area of Arctic shelf seismic prospecting and exploitation of the Northern Sea Route: simulation of the interaction of different ice formations (icebergs, hummocks, and drifting ice floes) with fixed ice-resistant platforms; simulation of the interaction of icebreakers and ice- class vessels with ice formations; modeling of the impact of the ice formations on the underground pipelines; neutralization of damage for fixed and mobile offshore industrial structures from ice formations; calculation of the strength of the ground pipelines; transportation of hydrocarbons by pipeline; the problem of migration of large ice formations; modeling of the formation of ice hummocks on ice-resistant stationary platform; calculation the stability of fixed platforms; calculation dynamic processes in the water and air of the Arctic with the processing of data and its use to predict the dynamics of ice conditions; simulation of the formation of large icebergs, hummocks, large ice platforms; calculation of ridging in the dynamics of sea ice; direct and inverse problems of seismic prospecting in the Arctic; direct and inverse problems of electromagnetic prospecting of the Arctic. All these problems could be solved by up-to-date numerical methods, for example, using grid-characteristic method. (paper)

  11. Future Arctic climate changes: Adaptation and mitigation time scales

    Science.gov (United States)

    Overland, James E.; Wang, Muyin; Walsh, John E.; Stroeve, Julienne C.

    2014-02-01

    The climate in the Arctic is changing faster than in midlatitudes. This is shown by increased temperatures, loss of summer sea ice, earlier snow melt, impacts on ecosystems, and increased economic access. Arctic sea ice volume has decreased by 75% since the 1980s. Long-lasting global anthropogenic forcing from carbon dioxide has increased over the previous decades and is anticipated to increase over the next decades. Temperature increases in response to greenhouse gases are amplified in the Arctic through feedback processes associated with shifts in albedo, ocean and land heat storage, and near-surface longwave radiation fluxes. Thus, for the next few decades out to 2040, continuing environmental changes in the Arctic are very likely, and the appropriate response is to plan for adaptation to these changes. For example, it is very likely that the Arctic Ocean will become seasonally nearly sea ice free before 2050 and possibly within a decade or two, which in turn will further increase Arctic temperatures, economic access, and ecological shifts. Mitigation becomes an important option to reduce potential Arctic impacts in the second half of the 21st century. Using the most recent set of climate model projections (CMIP5), multimodel mean temperature projections show an Arctic-wide end of century increase of +13°C in late fall and +5°C in late spring for a business-as-usual emission scenario (RCP8.5) in contrast to +7°C in late fall and +3°C in late spring if civilization follows a mitigation scenario (RCP4.5). Such temperature increases demonstrate the heightened sensitivity of the Arctic to greenhouse gas forcing.

  12. Arctic Ocean Scientific Drilling: The Next Frontier

    Directory of Open Access Journals (Sweden)

    Ruediger Stein

    2010-04-01

    Full Text Available The modern Arctic Ocean appears to be changing faster than any other region on Earth. To understand the potential extent of high latitude climate change, it is necessary to sample the history stored in the sediments filling the basins and covering the ridges of the Arctic Ocean. These sediments have been imaged with seismic reflection data, but except for the superficial record, which has been piston cored, they have been sampled only on the Lomonosov Ridge in 2004 during the Arctic Coring Expedition (ACEX-IODP Leg 302; Backman et al., 2006 and in 1993 in the ice-free waters in the Fram Strait/Yermak Plateau area (ODP Leg 151; Thiede et al., 1996.Although major progress in Arctic Ocean research has been made during the last few decades, the short- and long-term paleoceanographic and paleoclimatic history as well as its plate-tectonic evolution are poorly known compared to the other oceans. Despite the importance of the Arctic in the climate system, the database we have from this area is still very weak. Large segments of geologic time have not been sampled in sedimentary sections. The question of regional variations cannot be addressed.

  13. Temperature-induced recruitment pulses of Arctic dwarf shrub communities

    Czech Academy of Sciences Publication Activity Database

    Büntgen, Ulf; Hellmann, L.; Tegel, W.; Normand, S.; Myers-Smith, I.; Kirdyanov, A. V.; Nievergelt, D.; Schweingruber, F. H.

    2015-01-01

    Roč. 103, č. 2 (2015), s. 489-501 ISSN 0022-0477 R&D Projects: GA MŠk(CZ) EE2.3.20.0248 Institutional support: RVO:67179843 Keywords : recent climate-change * tree-line * environmental-change * forest limit * northern siberia * pinus-sylvestris * kola-peninsula * carbon-cycle * picea-abies * polar urals * Arctic tundra * cambial activity * climate change * dendroecology * dwarf shrubs * East Greenland * plant longevity * plant population and community dynamics * vegetation dynamics * wood anatomy Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 6.180, year: 2015

  14. Climate of the Arctic marine environment.

    Science.gov (United States)

    Walsh, John E

    2008-03-01

    The climate of the Arctic marine environment is characterized by strong seasonality in the incoming solar radiation and by tremendous spatial variations arising from a variety of surface types, including open ocean, sea ice, large islands, and proximity to major landmasses. Interannual and decadal-scale variations are prominent features of Arctic climate, complicating the distinction between natural and anthropogenically driven variations. Nevertheless, climate models consistently indicate that the Arctic is the most climatically sensitive region of the Northern Hemisphere, especially near the sea ice margins. The Arctic marine environment has shown changes over the past several decades, and these changes are part of a broader global warming that exceeds the range of natural variability over the past 1000 years. Record minima of sea ice coverage during the past few summers and increased melt from Greenland have important implications for the hydrographic regime of the Arctic marine environment. The recent changes in the atmosphere (temperature, precipitation, pressure), sea ice, and ocean appear to be a coordinated response to systematic variations of the large-scale atmospheric circulation, superimposed on a general warming that is likely associated with increasing greenhouse gases. The changes have been sufficiently large in some sectors (e.g., the Bering/Chukchi Seas) that consequences for marine ecosystems appear to be underway. Global climate models indicate an additional warming of several degrees Celsius in much of the Arctic marine environment by 2050. However, the warming is seasonal (largest in autumn and winter), spatially variable, and closely associated with further retreat of sea ice. Additional changes predicted for 2050 are a general decrease of sea level pressure (largest in the Bering sector) and an increase of precipitation. While predictions of changes in storminess cannot be made with confidence, the predicted reduction of sea ice cover will

  15. Organic carbon transformations in high-Arctic peat soils: key functions and microorganisms.

    Science.gov (United States)

    Tveit, Alexander; Schwacke, Rainer; Svenning, Mette M; Urich, Tim

    2013-02-01

    A substantial part of the Earths' soil organic carbon (SOC) is stored in Arctic permafrost peatlands, which represent large potential sources for increased emissions of the greenhouse gases CH(4) and CO(2) in a warming climate. The microbial communities and their genetic repertoire involved in the breakdown and mineralisation of SOC in these soils are, however, poorly understood. In this study, we applied a combined metagenomic and metatranscriptomic approach on two Arctic peat soils to investigate the identity and the gene pool of the microbiota driving the SOC degradation in the seasonally thawed active layers. A large and diverse set of genes encoding plant polymer-degrading enzymes was found, comparable to microbiotas from temperate and subtropical soils. This indicates that the metabolic potential for SOC degradation in Arctic peat is not different from that of other climatic zones. The majority of these genes were assigned to three bacterial phyla, Actinobacteria, Verrucomicrobia and Bacteroidetes. Anaerobic metabolic pathways and the fraction of methanogenic archaea increased with peat depth, evident for a gradual transition from aerobic to anaerobic lifestyles. A population of CH(4)-oxidising bacteria closely related to Methylobacter tundripaludum was the dominating active group of methanotrophs. Based on the in-depth characterisation of the microbes and their genes, we conclude that these Arctic peat soils will turn into CO(2) sources owing to increased active layer depth and prolonged growing season. However, the extent of future CH(4) emissions will critically depend on the response of the methanotrophic bacteria.

  16. Atmospheric transport of pollution to the Arctic

    International Nuclear Information System (INIS)

    Iversen, T.

    1984-01-01

    If the atmospheric processes are assumed to be nearly adiabatic, the conclusion is that the possible source areas of Arctic air pollution detected at ground level have to be situated in areas with almost the same temperature as observed in the Arctic itself. Sources south of the polar front system can only contribute to high-altitude (or upper level) Arctic pollution. The amplitude and phase of long, planetary waves are important since they determine the position of the polar front, and provide conditions for meridional transport of air at certain longitudes

  17. Climate and man in the Arctic

    International Nuclear Information System (INIS)

    1997-01-01

    The ever-changing climate shapes the Arctic landscape, influences life conditions for plants and animals and alters the availability of the living resources that play such and important part in the economy of Arctic peoples. It is essential that we try to understand the nature of climatic change and its effects on man and his environment. Only this way can we hope to be able to predict future changes that may have great consequences for the well-being of northern residents. In recent years many research projects have been addressing the subject and important advances have been made. At the same time it has become increasingly evident that the complexity of the whole issue calls for an integration of scientific approaches and for interdisciplinary collaboration. The seminar 'Climate and Man in the Arctic' provided an opportunity both to highlight important areas of climate related research and to discuss more general aspects of arctic research. Eight papers presented at the seminar are published in this volume. (au) 22 refs

  18. Biodiversity of Arctic marine ecosystems and responses to climate change

    DEFF Research Database (Denmark)

    Michel, C.; Bluhm, B.; Gallucci, V.

    2012-01-01

    The Arctic Ocean is undergoing major changes in many of its fundamental physical constituents, from a shift from multi- to first-year ice, shorter ice-covered periods, increasing freshwater runoff and surface stratification, to warming and alteration in the distribution of water masses....... These changes have important impacts on the chemical and biological processes that are at the root of marine food webs, influencing their structure, function and biodiversity. Here we summarise current knowledge on the biodiversity of Arctic marine ecosystems and provide an overview of fundamental factors...... that structure ecosystem biodiversity in the Arctic Ocean. We also discuss climateassociated effects on the biodiversity of Arctic marine ecosystems and discuss implications for the functioning of Arctic marine food webs. Based on the complexity and regional character of Arctic ecosystem reponses...

  19. The nitrogen window for arctic herbivores: plant phenology and protein gain of migratory caribou (Rangifer tarandus)

    Science.gov (United States)

    Barboza, Perry S.; Van Someren, Lindsay L.; Gustine, David D.; Bret-Harte, M. Syndonia

    2018-01-01

    Terrestrial plants are often limited by nitrogen (N) in arctic systems, but constraints of N supply on herbivores are typically considered secondary to those of energy. We tested the hypothesis that forage N is more limiting than energy for arctic caribou by collecting key forages (three species of graminoids, three species of woody browse, and one genus of forb) over three summers in the migratory range of the Central Arctic Herd in Alaska from the Brooks Range to the Coastal Plain on the Arctic Ocean. We combined in vitro digestion and detergent extraction to measure fiber, digestible energy, and usable fractions of N in forages (n = 771). Digestible energy content fell below the minimum threshold value of 9 kJ/g for one single forage group: graminoids, and only beyond 64–75 d from parturition (6 June), whereas all forages fell below the minimum threshold value for digestible N (1% of dry matter) before female caribou would have weaned their calves at 100 d from parturition. The window for digestible N was shortest for browse, which fell below 1% at 30–41 d from parturition, whereas digestible N contents of graminoids were adequate until 46–57 d from parturition. The low quality of browse as a source of N was also apparent from concentrations of available N (i.e., the N not bound to fiber) that were <1% at 72–80 d from parturition. The Coastal Plain may be favored by female caribou because available and digestible concentrations of N are not only greater than those on the Brooks Range, the window of usable N on the Coastal Plain extends the period of protein gain for females and their calves by 17 d. Conversely, inland areas with greater biomass and densities of digestible N than the Coastal Plain may be more favorable for large male caribou that begin gaining protein from spring to breed in autumn. Our study provides evidence that phenological windows for protein gain in caribou are both spatially and temporally dynamic and likely to affect the

  20. Using fluorescent dissolved organic matter to trace and distinguish the origin of Arctic surface waters

    Science.gov (United States)

    Gonçalves-Araujo, Rafael; Granskog, Mats A.; Bracher, Astrid; Azetsu-Scott, Kumiko; Dodd, Paul A.; Stedmon, Colin A.

    2016-01-01

    Climate change affects the Arctic with regards to permafrost thaw, sea-ice melt, alterations to the freshwater budget and increased export of terrestrial material to the Arctic Ocean. The Fram and Davis Straits represent the major gateways connecting the Arctic and Atlantic. Oceanographic surveys were performed in the Fram and Davis Straits, and on the east Greenland Shelf (EGS), in late summer 2012/2013. Meteoric (fmw), sea-ice melt, Atlantic and Pacific water fractions were determined and the fluorescence properties of dissolved organic matter (FDOM) were characterized. In Fram Strait and EGS, a robust correlation between visible wavelength fluorescence and fmw was apparent, suggesting it as a reliable tracer of polar waters. However, a pattern was observed which linked the organic matter characteristics to the origin of polar waters. At depth in Davis Strait, visible wavelength FDOM was correlated to apparent oxygen utilization (AOU) and traced deep-water DOM turnover. In surface waters FDOM characteristics could distinguish between surface waters from eastern (Atlantic + modified polar waters) and western (Canada-basin polar waters) Arctic sectors. The findings highlight the potential of designing in situ multi-channel DOM fluorometers to trace the freshwater origins and decipher water mass mixing dynamics in the region without laborious samples analyses. PMID:27667721

  1. Impact of prescribed Arctic sea ice thickness in simulations of the present and future climate

    Energy Technology Data Exchange (ETDEWEB)

    Krinner, Gerhard [Alfred Wegener Institute for Polar and Marine Research, Potsdam (Germany); INSU-CNRS and UJF Grenoble, Laboratoire de Glaciologie et Geophysique de l' Environnement (LGGE), 54 rue Moliere, BP 96, Saint Martin d' Heres Cedex (France); Rinke, Annette; Dethloff, Klaus [Alfred Wegener Institute for Polar and Marine Research, Potsdam (Germany); Gorodetskaya, Irina V. [INSU-CNRS and UJF Grenoble, Laboratoire de Glaciologie et Geophysique de l' Environnement (LGGE), 54 rue Moliere, BP 96, Saint Martin d' Heres Cedex (France)

    2010-09-15

    This paper describes atmospheric general circulation model climate change experiments in which the Arctic sea-ice thickness is either fixed to 3 m or somewhat more realistically parameterized in order to take into account essentially the spatial variability of Arctic sea-ice thickness, which is, to a first approximation, a function of ice type (perennial or seasonal). It is shown that, both at present and at the end of the twenty-first century (under the SRES-A1B greenhouse gas scenario), the impact of a variable sea-ice thickness compared to a uniform value is essentially limited to the cold seasons and the lower troposphere. However, because first-year ice is scarce in the Central Arctic today, but not under SRES-A1B conditions at the end of the twenty-first century, and because the impact of a sea-ice thickness reduction can be masked by changes of the open water fraction, the spatial and temporal patterns of the effect of sea-ice thinning on the atmosphere differ between the two periods considered. As a consequence, not only the climate simulated at a given period, but also the simulated Arctic climate change over the twenty-first century is affected by the way sea-ice thickness is prescribed. (orig.)

  2. Late-Middle Quaternary lithostratigraphy and sedimentation patterns on the Alpha Ridge, central Arctic Ocean: Implications for Arctic climate variability on orbital time scales

    Science.gov (United States)

    Wang, Rujian; Polyak, Leonid; Xiao, Wenshen; Wu, Li; Zhang, Taoliang; Sun, Yechen; Xu, Xiaomei

    2018-02-01

    We use sediment cores collected by the Chinese National Arctic Research Expeditions from the Alpha Ridge to advance Quaternary stratigraphy and paleoceanographic reconstructions for the Arctic Ocean. Our cores show a good litho/biostratigraphic correlation to sedimentary records developed earlier for the central Arctic Ocean, suggesting a recovered stratigraphic range of ca. 0.6 Ma, suitable for paleoclimatic studies on orbital time scales. This stratigraphy was tested by correlating the stacked Alpha Ridge record of bulk XRF manganese, calcium and zirconium (Mn, Ca, Zr), to global stable-isotope (LR04-δ18O) and sea-level stacks and tuning to orbital parameters. Correlation results corroborate the applicability of presumed climate/sea-level controlled Mn variations in the Arctic Ocean for orbital tuning. This approach enables better understanding of the global and orbital controls on the Arctic climate. Orbital tuning experiments for our records indicate strong eccentricity (100-kyr) and precession (∼20-kyr) controls on the Arctic Ocean, probably implemented via glaciations and sea ice. Provenance proxies like Ca and Zr are shown to be unsuitable as orbital tuning tools, but useful as indicators of glacial/deglacial processes and circulation patterns in the Arctic Ocean. Their variations suggest an overall long-term persistence of the Beaufort Gyre circulation in the Alpha Ridge region. Some glacial intervals, e.g., MIS 6 and 4/3, are predominated by material presumably transported by the Transpolar Drift. These circulation shifts likely indicate major changes in the Arctic climatic regime, which yet need to be investigated. Overall, our results demonstrate applicability of XRF data to paleoclimatic studies of the Arctic Ocean.

  3. New aero-gravity results from the Arctic: Linking the latest Cretaceous-early Cenozoic plate kinematics of the North Atlantic and Arctic Ocean

    DEFF Research Database (Denmark)

    Døssing, Arne; Hopper, J.R.; Olesen, Arne Vestergaard

    2013-01-01

    The tectonic history of the Arctic Ocean remains poorly resolved and highly controversial. Details regarding break up of the Lomonosov Ridge from the Barents-Kara shelf margins and the establishment of seafloor spreading in the Cenozoic Eurasia Basin are unresolved. Significantly, the plate...... tectonic evolution of the Mesozoic Amerasia Basin is essentially unknown. The Arctic Ocean north of Greenland is at a critical juncture that formed at the locus of a Mesozoic three-plate setting between the Lomonosov Ridge, Greenland, and North America. In addition, the area is close to the European plate...... plateau against an important fault zone north of Greenland. Our results provide new constraints for Cretaceous-Cenozoic plate reconstructions of the Arctic. Key Points Presentation of the largest aero-gravity survey acquired over the Arctic Ocean Plate tectonic link between Atlantic and Arctic spreading...

  4. Persistent maritime traffic monitoring for the Canadian Arctic

    Science.gov (United States)

    Ulmke, M.; Battistello, G.; Biermann, J.; Mohrdieck, C.; Pelot, R.; Koch, W.

    2017-05-01

    This paper presents results of the Canadian-German research project PASSAGES (Protection and Advanced Surveillance System for the Arctic: Green, Efficient, Secure)1 on an advanced surveillance system for safety and security of maritime operations in Arctic areas. The motivation for a surveillance system of the Northwest Passage is the projected growth of maritime traffic along Arctic sea routes and the need for securing Canada's sovereignty by controlling its arctic waters as well as for protecting the safety of international shipping and the intactness of the arctic marine environment. To ensure border security and to detect and prevent illegal activities it is necessary to develop a system for surveillance and reconnaissance that brings together all related means, assets, organizations, processes and structures to build one homogeneous and integrated system. The harsh arctic conditions require a new surveillance concept that fuses heterogeneous sensor data, contextual information, and available pre-processed surveillance data and combines all components to efficiently extract and provide the maximum available amount of information. The fusion of all these heterogeneous data and information will provide improved and comprehensive situation awareness for risk assessment and decision support of different stakeholder groups as governmental authorities, commercial users and Northern communities.

  5. Anomalous Arctic surface wind patterns and their impacts on September sea ice minima and trend

    Directory of Open Access Journals (Sweden)

    Bingyi Wu

    2012-05-01

    Full Text Available We used monthly mean surface wind data from the National Centers for Environmental Prediction/National Centers for Atmospheric Research (NCEP/NCAR reanalysis dataset during the period 1979–2010 to describe the first two patterns of Arctic surface wind variability by means of the complex vector empirical orthogonal function (CVEOF analysis. The first two patterns respectively account for 31 and 16% of its total anomalous kinetic energy. The leading pattern consists of the two subpatterns: the northern Laptev Sea (NLS pattern and the Arctic dipole (AD pattern. The second pattern contains the northern Kara Sea (NKS pattern and the central Arctic (CA pattern. Over the past two decades, the combined dynamical forcing of the first two patterns has contributed to Arctic September sea ice extent (SIE minima and its declining trend. September SIE minima are mainly associated with the negative phase of the AD pattern and the positive phase of the CA pattern during the summer (July to September season, and both phases coherently show an anomalous anticyclone over the Arctic Ocean. Wind patterns affect September SIE through their frequency and intensity. The negative trend in September SIE over the past two decades is associated with increased frequency and enhanced intensity of the CA pattern during the melting season from April to September. Thus, it cannot be simply attributed to the AD anomaly characterised by the second empirical orthogonal function mode of sea level pressure north of 70°N. The CA pattern exhibited interdecadal variability in the late 1990s, and an anomalous cyclone prevailed before 1997 and was then replaced by an anomalous anticyclone over the Arctic Ocean that is consistent with the rapid decline trend in September SIE. This paper provides an alternative way to identify the dominant patterns of climate variability and investigate their associated Arctic sea ice variability from a dynamical perspective. Indeed, this study

  6. The measurement of I-129 in the Canadian Arctic basin and other Arctic waters

    International Nuclear Information System (INIS)

    Kilius, L.R.; Zhao, X.L.

    1995-01-01

    Since the first demonstration by accelerator mass spectrometry for the measurement of 129 I in oceanic systems, the use of 129 I as a long range tracer has become widespread because the constraint of large sample volumes has been removed. Following extensive measurements of 129 I in both the Barents and Kara Seas, seawater samples were collected within the Canadian Arctic Basin, and at a cruise from the Chuchi Sea, across the pole, to the Norwegian Sea. Only 450 ml samples were required for all AMS measurements of Arctic seawater. Enhanced concentrations of 129 I were observed. Based on 137 Cs measurements for the same samples, the 129 I/ 137 Cs ratios showed the signature of Sellafield reprocessing effluents as the primary source of this 129 I. Based on average estimates, 13% of the total Sellafield/La Hague 129 I emissions now resides within the Atlantic layer of the Arctic Ocean. 7 refs., 3 figs

  7. Forty years of change: a northern Alaskan seabird's response to a warming Arctic

    Science.gov (United States)

    Divoky, G.; Suydam, R.

    2012-12-01

    While recent decadal-scale decreases in the snow and ice habitats of the Arctic are well documented, there are few concurrent long-term biological data sets, especially for species dependent on the cryopelagic ecosystem associated with arctic sea ice. The Black Guillemot (Cepphus grylle mandti), a marine apex predator specializing on prey associated with arctic pack ice has been studied annually since 1975 at a colony on Cooper Island, 35 km east of Point Barrow, Alaska. Over the last four decades critical components of the species' life history have been found to be sensitive to a number of physical and biological effects associated with the region's increasing atmospheric temperatures. Black Guillemots first colonized northern Alaska in the late 1960s and early 1970s as the annual snow-free period increased sufficiently to allow access to nesting cavities for the 80 days required to successfully raise young. At the Cooper Island colony abundance increased during the 1970s and 1980s as summer length continued to increase and wooden nest cavities were provided to increase sample size for monitoring. During this time breeding success was high as summer sea ice remained in the 30-km foraging range of guillemot parents, providing Arctic Cod (Boreogadus saida), the principal forage fish associated with sea ice and the preferred prey of Black Guillemots. Decreasing summer sea ice extent in the 1990s that accelerated in the last decade reduced the guillemots' access to cryopelagic prey during the critical period when parents are provisioning nestlings. Distance from the colony to the pack ice on 15 August averaged 100 km from 2003-2011. This ice retreat had a major affect on Arctic Cod availability, causing parent guillemots to shift to lower quality benthic fish resulting in decreases in nestling quality and breeding success when sea ice had retreated and SST was > 4o C. Increasing loss of summer ice in the last decade also facilitated changes in the distribution of a

  8. The Immediacy of Arctic Change: New 2016-17 Extremes

    Science.gov (United States)

    Overland, J. E.; Kattsov, V.; Olsen, M. S.; Walsh, J. E.

    2017-12-01

    Additional recent observations add increased certainty to cryospheric Arctic changes, and trends are very likely to continue past mid-century. Observed and projected Arctic changes are large compared with those at mid-latitude, driven by greenhouse gas (GHG) increase and Arctic feedbacks. Sea ice has undergone a regime shift from mostly multi-year to first-year sea ice, and summer sea ice is likely to be esentially gone within the next few decades. Spring snow cover is decreasing, and Arctic greening is increasing, although somewhat variable. There are potential emerging impacts of Arctic change on mid-latitude weather and sea level rise. Model assessments under different future GHG concentration scenarios show that stabilizing global temperatures near 2° C compliant with Paris agreement could slow, but not halt further major changes in the Arctic before mid- 21st century; foreseeable Arctic temperature changes are 4-5° C for fall/winter by 2040-2050. Substantial and immediate mitigation reductions in GHG emissions (at least at the level of the RCP 4.5 emission scenario) should reduce the risk of further change for most cryospheric components after mid-century, and reduce the likelyhood of potential runaway loss of ice sheets and glaciers and their impact on sea level rise. Extreme winter 2016 Arctic temperatures and a large winter 2017 sea ice deficit demonstrate contemporary climate states outside the envelope of previous experience. While there is confidence in the sign of Arctic changes, recent observations increase uncertainty in projecting the rate for future real world scenarios. Do events return to mean conditions, represent irreversible changes, or contribute to accelerating trends beyond those provided by climate models? Such questions highlight the need for improved quantitative prediction of the cryosphere and its global impacts, crucial for adaptation actions and risk management at local to global scales.

  9. Arctic air pollution: Challenges and opportunities for the next decade

    Directory of Open Access Journals (Sweden)

    S.R. Arnold

    2016-05-01

    Full Text Available Abstract The Arctic is a sentinel of global change. This region is influenced by multiple physical and socio-economic drivers and feedbacks, impacting both the natural and human environment. Air pollution is one such driver that impacts Arctic climate change, ecosystems and health but significant uncertainties still surround quantification of these effects. Arctic air pollution includes harmful trace gases (e.g. tropospheric ozone and particles (e.g. black carbon, sulphate and toxic substances (e.g. polycyclic aromatic hydrocarbons that can be transported to the Arctic from emission sources located far outside the region, or emitted within the Arctic from activities including shipping, power production, and other industrial activities. This paper qualitatively summarizes the complex science issues motivating the creation of a new international initiative, PACES (air Pollution in the Arctic: Climate, Environment and Societies. Approaches for coordinated, international and interdisciplinary research on this topic are described with the goal to improve predictive capability via new understanding about sources, processes, feedbacks and impacts of Arctic air pollution. Overarching research actions are outlined, in which we describe our recommendations for 1 the development of trans-disciplinary approaches combining social and economic research with investigation of the chemical and physical aspects of Arctic air pollution; 2 increasing the quality and quantity of observations in the Arctic using long-term monitoring and intensive field studies, both at the surface and throughout the troposphere; and 3 developing improved predictive capability across a range of spatial and temporal scales.

  10. Cs-137 in Arctic foxes (Alopex lagopus) on Svalbard

    International Nuclear Information System (INIS)

    Gwynn, Justin P.; Fuglei, Eva; Dowdall, Mark

    2007-01-01

    This study presents 137 Cs muscle activity concentrations in Arctic foxes (Alopex lagopus) from Svalbard over a period of several years and discusses the transfer of 137 Cs to Arctic foxes through likely predator-prey relationships. Mean 137 Cs activity concentrations and 137 Cs T ag values (per trapping season) ranged from 0.51 ± 2.76 to 1.32 ± 2.89 Bq/kg (w.w.) and 5.1 x 10 -4 to 1.3 x 10 -3 m 2 /kg, respectively. Mean concentration ratios of 137 Cs in Arctic foxes compared to probable prey ranged from 1.0 to 7.9. On Svalbard, transfer of 137 Cs to Arctic foxes is likely to occur via both marine and terrestrial food chains. The relative contribution of marine and terrestrial food sources to the diet of Arctic foxes may vary by location and by season and may lead to either an increase or decrease in the trophic transfer of 137 Cs to Arctic foxes compared to transfer resulting from terrestrial only diets

  11. Arctic curves in path models from the tangent method

    Science.gov (United States)

    Di Francesco, Philippe; Lapa, Matthew F.

    2018-04-01

    Recently, Colomo and Sportiello introduced a powerful method, known as the tangent method, for computing the arctic curve in statistical models which have a (non- or weakly-) intersecting lattice path formulation. We apply the tangent method to compute arctic curves in various models: the domino tiling of the Aztec diamond for which we recover the celebrated arctic circle; a model of Dyck paths equivalent to the rhombus tiling of a half-hexagon for which we find an arctic half-ellipse; another rhombus tiling model with an arctic parabola; the vertically symmetric alternating sign matrices, where we find the same arctic curve as for unconstrained alternating sign matrices. The latter case involves lattice paths that are non-intersecting but that are allowed to have osculating contact points, for which the tangent method was argued to still apply. For each problem we estimate the large size asymptotics of a certain one-point function using LU decomposition of the corresponding Gessel–Viennot matrices, and a reformulation of the result amenable to asymptotic analysis.

  12. Loss of sea ice in the Arctic.

    Science.gov (United States)

    Perovich, Donald K; Richter-Menge, Jacqueline A

    2009-01-01

    The Arctic sea ice cover is in decline. The areal extent of the ice cover has been decreasing for the past few decades at an accelerating rate. Evidence also points to a decrease in sea ice thickness and a reduction in the amount of thicker perennial sea ice. A general global warming trend has made the ice cover more vulnerable to natural fluctuations in atmospheric and oceanic forcing. The observed reduction in Arctic sea ice is a consequence of both thermodynamic and dynamic processes, including such factors as preconditioning of the ice cover, overall warming trends, changes in cloud coverage, shifts in atmospheric circulation patterns, increased export of older ice out of the Arctic, advection of ocean heat from the Pacific and North Atlantic, enhanced solar heating of the ocean, and the ice-albedo feedback. The diminishing Arctic sea ice is creating social, political, economic, and ecological challenges.

  13. Dependence of Arctic climate on the latitudinal position of stationary waves and to high-latitudes surface warming

    Science.gov (United States)

    Shin, Yechul; Kang, Sarah M.; Watanabe, Masahiro

    2017-12-01

    Previous studies suggest large uncertainties in the stationary wave response under global warming. Here, we investigate how the Arctic climate responds to changes in the latitudinal position of stationary waves, and to high-latitudes surface warming that mimics the effect of Arctic sea ice loss under global warming. To generate stationary waves in an atmospheric model coupled to slab ocean, a series of experiments is performed where the thermal forcing with a zonal wavenumber-2 (with zero zonal-mean) is prescribed at the surface at different latitude bands in the Northern Hemisphere. When the stationary waves are generated in the subtropics, the cooling response dominates over the warming response in the lower troposphere due to cloud radiative effects. Then, the low-level baroclinicity is reduced in the subtropics, which gives rise to a poleward shift of the eddy driven jet, thereby inducing substantial cooling in the northern high latitudes. As the stationary waves are progressively generated at higher latitudes, the zonal-mean climate state gradually becomes more similar to the integration with no stationary waves. These differences in the mean climate affect the Arctic climate response to high-latitudes surface warming. Additional surface heating over the Arctic is imposed to the reference climates in which the stationary waves are located at different latitude bands. When the stationary waves are positioned at lower latitudes, the eddy driven jet is located at higher latitude, closer to the prescribed Arctic heating. As baroclinicity is more effectively perturbed, the jet shifts more equatorward that accompanies a larger reduction in the poleward eddy transport of heat and momentum. A stronger eddy-induced descending motion creates greater warming over the Arctic. Our study calls for a more accurate simulation of the present-day stationary wave pattern to enhance the predictability of the Arctic warming response in a changing climate.

  14. Spatial genetic structure of Long-tailed Ducks (Clangula hyemalis) among Alaskan, Canadian, and Russian breeding populations

    Science.gov (United States)

    Wilson, Robert E.; Gust, J R; Petersen, Margaret; Talbot, Sandra L.

    2016-01-01

    Arctic ecosystems are changing at an unprecedented rate. How Arctic species are able to respond to such environmental change is partially dependent on the connections between local and broadly distributed populations. For species like the Long-tailed Duck (Clangula hyemalis), we have limited telemetry and band-recovery information from which to infer population structure and migratory connectivity; however, genetic analyses can offer additional insights. To examine population structure in the Long-tailed Duck, we characterized variation at mtDNA control region and microsatellite loci among four breeding areas in Alaska, Canada, and Russia. We observed significant differences in the variance of mtDNA haplotype frequencies between the Yukon-Kuskokwim Delta (YKD) and the three Arctic locations (Arctic Coastal Plain in Alaska, eastern Siberia, and central Canadian Arctic). However, like most sea duck genetic assessments, our study found no evidence of population structure based on autosomal microsatellite loci. Long-tailed Ducks use multiple wintering areas where pair formation occurs with some populations using both the Pacific and Atlantic Oceans. This situation provides a greater opportunity for admixture across breeding locales, which would likely homogenize the nuclear genome even in the presence of female philopatry. The observed mtDNA differentiation was largely due to the presence of two divergent clades: (A) a clade showing signs of admixture among all breeding locales and (B) a clade primarily composed of YKD samples. We hypothesize that the pattern of mtDNA differentiation reflects some degree of philopatry to the YKD and isolation of two refugial populations with subsequent expansion and admixture. We recommend additional genetic assessments throughout the circumpolar range of Long-tailed Ducks to further quantify aspects of genetic diversity and migratory connectivity in this species.

  15. China and the Arctic: An Opportunity for the U.S.

    Science.gov (United States)

    2017-04-06

    of the lack of China’s sovereignty in the Arctic.15 Most academic writings focus on China’s need to voice an opinion concerning sea routes...effects that climate change in the Arctic will have on food production and extreme weather; (b) to ensure access at a reasonable cost to Arctic...21 Studying climate change and the Arctic will enable scholars to predict consequences to the environment, and potential effects on Chinese food

  16. Airborne contaminants in the Arctic: What we need to know

    International Nuclear Information System (INIS)

    Landers, D.H.; Bangay, G.; Sisula, H.; Colborn, T.; Liljelund, L.E.

    1994-01-01

    Arctic contaminant research is expensive and current international resources are restricted. It is incumbent upon current and future arctic research programs to focus efforts where the greatest and most relevant information can be gained. This paper is an attempt to help guide future work to focus on the most pressing information needs. Several summary points are related to environmental research in the Arctic; some may also relate to environmental research outside the Arctic

  17. Simulating Arctic clouds during Arctic Radiation- IceBridge Sea and Ice Experiment (ARISE)

    Science.gov (United States)

    Bromwich, D. H.; Hines, K. M.; Wang, S. H.

    2015-12-01

    The representation within global and regional models of the extensive low-level cloud cover over polar oceans remains a critical challenge for quantitative studies and forecasts of polar climate. In response, the polar-optimized version of the Weather Research and Forecasting model (Polar WRF) is used to simulate the meteorology, boundary layer, and Arctic clouds during the September-October 2014 Arctic Radiation- IceBridge Sea and Ice Experiment (ARISE) project. Polar WRF was developed with several adjustments to the sea ice thermodynamics in WRF. ARISE was based out of Eielson Air Force Base near Fairbanks, Alaska and included multiple instrumented C-130 aircraft flights over open water and sea ice of the Beaufort Sea. Arctic boundary layer clouds were frequently observed within cold northeasterly flow over the open ocean and ice. Preliminary results indicate these clouds were primarily liquid water, with characteristics differing between open water and sea ice surfaces. Simulated clouds are compared to ARISE observations. Furthermore, Polar WRF simulations are run for the August-September 2008 Arctic Summer Cloud Ocean Study (ASCOS) for comparison to the ARISE. Preliminary analysis shows that simulated low-level water clouds over the sea ice are too extensive during the the second half of the ASCOS field program. Alternatives and improvements to the Polar WRF cloud schemes are considered. The goal is to use the ARISE and ASCOS observations to achieve an improved polar supplement to the WRF code for open water and sea ice that can be provided to the Polar WRF community.

  18. Polychlorinated naphthalenes (PCNs) in sub-Arctic and Arctic marine mammals, 1986–2009

    International Nuclear Information System (INIS)

    Rotander, Anna; Bavel, Bert van; Rigét, Frank; Auðunsson, Guðjón Atli; Polder, Anuschka; Gabrielsen, Geir Wing; Víkingsson, Gísli; Mikkelsen, Bjarni; Dam, Maria

    2012-01-01

    A selection of PCN congeners was analyzed in pooled blubber samples of pilot whale (Globicephala melas), ringed seal (Phoca hispida), minke whale (Balaenoptera acutorostrata), fin whale (Balaenoptera physalus), harbour porpoise (Phocoena phocoena), hooded seal (Cystophora cristata) and Atlantic white-sided dolphin (Lagenorhynchus acutus), covering a time period of more than 20 years (1986–2009). A large geographical area of the North Atlantic and Arctic areas was covered. PCN congeners 48, 52, 53, 66 and 69 were found in the blubber samples between 0.03 and 5.9 ng/g lw. Also PCBs were analyzed in minke whales and fin whales from Iceland and the total PCN content accounted for 0.2% or less of the total non-planar PCB content. No statistically significant trend in contaminant levels could be established for the studied areas. However, in all species except minke whales caught off Norway the lowest ∑PCN concentrations were found in samples from the latest sampling period. - Highlights: ► PCN concentrations are described in a wide variety of marine mammal species. ► A large geographical area of the North Atlantic and Arctic areas is covered. ► Pooled blubber samples covering a time period of 23 years are evaluated. ► Species- and geographic-dependent PCN congener distribution is seen. ► A decrease in the PCN load is indicated in the studied areas in recent years. - Analysis of PCNs in seven marine mammal species sampled over a 23 year period indicates a decline in the PCN load in sub-Arctic and Arctic areas in recent years.

  19. Atmospheric Bromine in the Arctic

    International Nuclear Information System (INIS)

    Berg, W.W.; Sperry, P.D.; Rahn, K.A.; Gladney, E.S.

    1983-01-01

    We report the first measurements of both particulate and gas phase bromine in the Arctic troposphere. Data from continuous sampling of the Arctic aerosol over a period of 4 years (1976--1980) indicate that the bromine content in the aerosol averages 6 +- 4 ngBr/SCM (5 +- 3 pptm Br) for 9 months of every year. During the 3-month period between February 15 and May 15, however, we observed an annual sharp maximum in particulate bromine with levels exceeding 100 ngBr/SCM (82 pptm Br). The Arctic aerosol showed no bromine enrichment relative to seawater except for this 3 month peak period. During the bromine maximum, enrichment factors reached 40 with average values near 10. Calculations of the amount of excess bromine in the Arctic aerosol showed that over 90% of the peak bromine had an origin other than from direct bulk seawater injection. Total levels of gas phase bromine in the Arctic troposphere found during the peak aerosol period averaged 422 +- 48 ngBr/SCM (118 +- 14 pptv). Total bromine content during this period averaged 474 +- 49 ngBr/SCM with gas-to-particle ratios ranging from 7 to 18. A measurement under nonpeak conditions showed total bromine levels at <25 ngBr/SCM. The possibility that local contamination contributed to the seasonal development of the 3-month bromine peak was carefully considered and ruled out. Elevated particualte bromine levels, with peak values ranging from 22 to 30 ngBr/SCM, were also found at Ny-Alesund, Spitsbergen (Norway). The apparent seasonal nature of this bromine peak suggests that the large bromine maximum observed at Barrow is not an isolated or unique phenomenon characteristic of that sampling location

  20. Active molecular iodine photochemistry in the Arctic.

    Science.gov (United States)

    Raso, Angela R W; Custard, Kyle D; May, Nathaniel W; Tanner, David; Newburn, Matt K; Walker, Lawrence; Moore, Ronald J; Huey, L G; Alexander, Liz; Shepson, Paul B; Pratt, Kerri A

    2017-09-19

    During springtime, the Arctic atmospheric boundary layer undergoes frequent rapid depletions in ozone and gaseous elemental mercury due to reactions with halogen atoms, influencing atmospheric composition and pollutant fate. Although bromine chemistry has been shown to initiate ozone depletion events, and it has long been hypothesized that iodine chemistry may contribute, no previous measurements of molecular iodine (I 2 ) have been reported in the Arctic. Iodine chemistry also contributes to atmospheric new particle formation and therefore cloud properties and radiative forcing. Here we present Arctic atmospheric I 2 and snowpack iodide (I - ) measurements, which were conducted near Utqiaġvik, AK, in February 2014. Using chemical ionization mass spectrometry, I 2 was observed in the atmosphere at mole ratios of 0.3-1.0 ppt, and in the snowpack interstitial air at mole ratios up to 22 ppt under natural sunlit conditions and up to 35 ppt when the snowpack surface was artificially irradiated, suggesting a photochemical production mechanism. Further, snow meltwater I - measurements showed enrichments of up to ∼1,900 times above the seawater ratio of I - /Na + , consistent with iodine activation and recycling. Modeling shows that observed I 2 levels are able to significantly increase ozone depletion rates, while also producing iodine monoxide (IO) at levels recently observed in the Arctic. These results emphasize the significance of iodine chemistry and the role of snowpack photochemistry in Arctic atmospheric composition, and imply that I 2 is likely a dominant source of iodine atoms in the Arctic.

  1. Active molecular iodine photochemistry in the Arctic

    Energy Technology Data Exchange (ETDEWEB)

    Raso, Angela R.; Custard, Kyle D.; May, Nathaniel W.; Tanner, David; Newburn, Matthew K.; Walker, Lawrence R.; Moore, Ronald J.; Huey, L. G.; Alexander, Lizabeth; Shepson, Paul B.; Pratt, Kerri A.

    2017-09-05

    During springtime, the Arctic atmospheric boundary layer undergoes frequent rapid depletions in ozone and gaseous elemental mercury due to reactions with halogen atoms, influencing atmospheric composition and pollutant fate. Although bromine chemistry has been shown to initiate ozone depletion events, and it has long been hypothesized that iodine chemistry may contribute, no previous measurements of molecular iodine (I2) have been reported in the Arctic. Iodine chemistry also contributes to atmospheric new particle formation and therefore cloud properties and radiative forcing. Here we present Arctic atmospheric I2 and snowpack iodide (I-) measurements, which were conducted near Utqiagvik, AK, in February 2014. Using chemical ionization mass spectrometry, I2 was observed in the atmosphere at mole ratios of 0.3–1.0 ppt, and in the snowpack interstitial air at mole ratios up to 22 ppt under natural sunlit conditions and up to 35 ppt when the snowpack surface was artificially irradiated, suggesting a photochemical production mechanism. Further, snow meltwater I-measurements showed enrichments of up to ~1,900 times above the seawater ratio of I-/Na+, consistent with iodine activation and recycling. Modeling shows that observed I2 levels are able to significantly increase ozone depletion rates, while also producing iodine monoxide (IO) at levels recently observed in the Arctic. These results emphasize the significance of iodine chemistry and the role of snowpack photochemistry in Arctic atmospheric composition, and imply that I2 is likely a dominant source of iodine atoms in the Arctic.

  2. Gastrointestinal Parasites of Two Populations of Arctic Foxes (Vulpes lagopus) from Northeast Greenland

    DEFF Research Database (Denmark)

    Andreassen, P.N.S.; Schmidt, Niels Martin; Kapel, Christian M. O.

    2017-01-01

    Parasitological examination of 275 faecal samples from Arctic foxes (Vulpes lagopus) collected at Zackenberg Valley and Karupelv Valley in north-east Greenland from 2006 to 2008 was conducted using sieving and microscopy. Overall, 125 (45.5%) samples contained parasite eggs of Taenia crassiceps......, Taenia serialis, Toxascaris leonina, Eucoleus boehmi, Physalopteridae and Ancylostomatidae, and Strongyloides-like larvae. As long-term ecological studies are conducted at both sampling locations, the present findings constitute a baseline data set for further parasitological monitoring....

  3. Ten-year trends of atmospheric mercury in the high Arctic compared to Canadian sub-Arctic and mid-latitude sites

    Directory of Open Access Journals (Sweden)

    A. S. Cole

    2013-02-01

    Full Text Available Global emissions of mercury continue to change at the same time as the Arctic is experiencing ongoing climatic changes. Continuous monitoring of atmospheric mercury provides important information about long-term trends in the balance between transport, chemistry, and deposition of this pollutant in the Arctic atmosphere. Ten-year records of total gaseous mercury (TGM from 2000 to 2009 were analyzed from two high Arctic sites at Alert (Nunavut, Canada and Zeppelin Station (Svalbard, Norway; one sub-Arctic site at Kuujjuarapik (Nunavik, Québec, Canada; and three temperate Canadian sites at St. Anicet (Québec, Kejimkujik (Nova Scotia and Egbert (Ontario. Five of the six sites examined showed a decreasing trend over this time period. Overall trend estimates at high latitude sites were: −0.9% yr−1 (95% confidence limits: −1.4, 0 at Alert and no trend (−0.5, +0.7 at Zeppelin Station. Faster decreases were observed at the remainder of the sites: −2.1% yr−1 (−3.1, −1.1 at Kuujjuarapik, −1.9% yr−1 (−2.1, −1.8 at St. Anicet, −1.6% yr−1 (−2.4, −1.0 at Kejimkujik and −2.2% yr−1 (−2.8, −1.7 at Egbert. Trends at the sub-Arctic and mid-latitude sites agree with reported decreases in background TGM concentration since 1996 at Mace Head, Ireland, and Cape Point, South Africa, but conflict with estimates showing an increase in global anthropogenic emissions over a similar period. Trends in TGM at the two high Arctic sites were not only less negative (or neutral overall but much more variable by season. Possible reasons for differences in seasonal and overall trends at the Arctic sites compared to those at lower latitudes are discussed, as well as implications for the Arctic mercury cycle. The first calculations of multi-year trends in reactive gaseous mercury (RGM and total particulate mercury (TPM at Alert were also performed, indicating increases from 2002 to 2009

  4. Northern exposure : as the ice recedes, Arctic exploration, and technology development, heats up

    International Nuclear Information System (INIS)

    Smith, M.

    2008-01-01

    This article discussed the affect that climate change and global warming has had on the Arctic and what it foretells for the oil industry. For a few brief weeks during the summers of 2007 and 2008 ice caps receded to the point that ships could navigate the historically impassable Northwest Passage of the Arctic Ocean. The Arctic Institute of North America estimates that the North Pole will be ice-free in 10 to 15 years, much earlier than originally thought. In response to the possibilities that may open up over the next couple of decades, some oil companies are investing hundreds of millions in a new search, with new technologies at old prospect areas. Service provides are increasing research spending into new exploration, production and transportation solutions suited to harsh Arctic conditions. This article described some of the projects planned at locations off Norway and Russia in which advanced subsea production techniques will be applied, such as remotely operated vehicles and liquefied natural gas (LNG) transportation solutions. An unprecedented level of survey activity will resolve border disputes in prospective areas, resulting in seabed mapping that will provide a better understanding of the region. Petro-Canada's efforts to develop the Hecla and Drake Point gas fields was also discussed. The Canadian Energy Research Institute determined that ship-borne transportation from Melville Island in the Arctic is economically feasible. Vancouver-based Teekay Corporation is developing a floating liquefied natural gas (FLNG) technology capable of producing 1 to 2 million tonnes of LNG annually from fields containing 0.5 to 5 tcf. The unique concept was recently granted concept approval by the American Bureau of Shipping, confirming the design is robust and safe. The company is in discussions with potential producers and could be ready for production within 4 years. 6 figs

  5. Synthesizing International Understanding of Changes in the Arctic Hydrological System

    Science.gov (United States)

    Pundsack, J. W.; Vorosmarty, C. J.; Hinzman, L. D.

    2009-12-01

    There are several notable gaps in our current level of understanding of Arctic hydrological systems. At the same time, rapidly emerging data sets, technologies, and modeling resources provide us with an unprecedented opportunity to move substantially forward. The Arctic Community-Wide Hydrological Analysis and Monitoring Program (Arctic-CHAMP), funded by NSF/ARCSS, was established to initiate a major effort to improve our current monitoring of water cycle variables, and to foster collaboration with the many relevant U.S. and international arctic research initiatives. These projects, funded under ARCSS through the ‘Freshwater Integration (FWI) study’, links CHAMP, the Arctic/Subarctic Ocean Fluxes (ASOF) Programme, and SEARCH. As part of the overall synthesis and integration efforts of the NSF-ARCSS Freshwater Integration (FWI) study, the program carried-out a major International Synthesis Capstone Workshop in Fall 2009 as an International Polar Year (IPY) affiliated meeting. The workshop, "Synthesizing International Understanding of Changes in the Arctic Hydrological System,” was held 30 September to 4 October 2009 in Stockholm at the Beijer Auditorium of the Royal Swedish Academy. The workshop was sponsored by the NSF-ARCSS Arctic-CHAMP Science Management Office (City College of New York / Univ. of New Hampshire), the International Study of Arctic Change (ISAC), and the International Arctic Research Center (IARC; Univ. of Alaska Fairbanks). The overarching goals of the meeting were to stage a post-IPY lessons-learned workshop with co-equal numbers of FWI, IPY, and ICARP-II researchers, using insights from recent scientific findings, data, and strategies to afford synthesis. The workshop aimed to: (1) take stock of recent advances in our understanding of changes in the Arctic hydrological system; (2) identify key remaining research gaps / unanswered questions; and (3) gather insight on where to focus future research efforts/initiatives (nationally and

  6. Why the Arctic isn’t a ‘global commons’

    DEFF Research Database (Denmark)

    Burke, Danita Catherine

    2018-01-01

    — in the politics of the region due to their jurisdictional claims there. But some have argued against that supremacy. They see the Arctic as what’s known as a global commons. Additionally, they see the abundant resources and economic opportunities there as common goods. This broadly means that the Arctic is seen...... an international, borderless area and the resources there, such as fish stocks, are available for any state to access. This point of view raises the question: If the Arctic region is a global commons, why should the Arctic states be leading discussions about it?...

  7. Fate of mercury in the Arctic (FOMA)

    DEFF Research Database (Denmark)

    Skov, H.; Christensen, J.; Asmund, G.

    This report is the final reporting of the project FONA, funded by the Danish Environmental Protection Agency with means from the MIKA/DANCEA funds for Environmental Support to the Arctic Region. The aim of the project is to study the intercompartment mercury transport chain in the arctic area. From...... in the Arctic. The report focus on the surface exchange of mercury, the uptake of abiotic mercury into the biological system, and the bioaccumulation in the first steps of the food web, and the resulting distribution and time trend of mercury in selected animals feeding on various trophic levels...

  8. Arctic shipping emissions inventories and future scenarios

    Directory of Open Access Journals (Sweden)

    J. J. Corbett

    2010-10-01

    Full Text Available This paper presents 5 km×5 km Arctic emissions inventories of important greenhouse gases, black carbon and other pollutants under existing and future (2050 scenarios that account for growth of shipping in the region, potential diversion traffic through emerging routes, and possible emissions control measures. These high-resolution, geospatial emissions inventories for shipping can be used to evaluate Arctic climate sensitivity to black carbon (a short-lived climate forcing pollutant especially effective in accelerating the melting of ice and snow, aerosols, and gaseous emissions including carbon dioxide. We quantify ship emissions scenarios which are expected to increase as declining sea ice coverage due to climate change allows for increased shipping activity in the Arctic. A first-order calculation of global warming potential due to 2030 emissions in the high-growth scenario suggests that short-lived forcing of ~4.5 gigagrams of black carbon from Arctic shipping may increase global warming potential due to Arctic ships' CO2 emissions (~42 000 gigagrams by some 17% to 78%. The paper also presents maximum feasible reduction scenarios for black carbon in particular. These emissions reduction scenarios will enable scientists and policymakers to evaluate the efficacy and benefits of technological controls for black carbon, and other pollutants from ships.

  9. Arctic Observing Experiment (AOX) Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Rigor, Ignatius [Applied Physics Lab, University of Washington; Johnson, Jim [Applied Physics Lab, University of Washington; Motz, Emily [National Ice Center; Bisic, Aaron [National Ice Center

    2017-06-30

    Our ability to understand and predict weather and climate requires an accurate observing network. One of the pillars of this network is the observation of the fundamental meteorological parameters: temperature, air pressure, and wind. We plan to assess our ability to measure these parameters for the polar regions during the Arctic Observing Experiment (AOX, Figure 1) to support the International Arctic Buoy Programme (IABP), Arctic Observing Network (AON), International Program for Antarctic Buoys (IPAB), and Southern Ocean Observing System (SOOS). Accurate temperature measurements are also necessary to validate and improve satellite measurements of surface temperature across the Arctic. Support for research associated with the campaign is provided by the National Science Foundation, and by other US agencies contributing to the US Interagency Arctic Buoy Program. In addition to the support provided by the U.S Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility’s North Slope of Alaska (NSA) site at Barrow and the National Science Foundation (NSF), the U.S. IABP is supported by the U.S. Coast Guard (USCG), the National Aeronautics and Space Administration (NASA), the National Ice Center (NIC), the National Oceanic and Atmospheric Administration (NOAA), and the Office of Naval Research (ONR).

  10. Projected polar bear sea ice habitat in the Canadian Arctic Archipelago.

    Science.gov (United States)

    Hamilton, Stephen G; Castro de la Guardia, Laura; Derocher, Andrew E; Sahanatien, Vicki; Tremblay, Bruno; Huard, David

    2014-01-01

    Sea ice across the Arctic is declining and altering physical characteristics of marine ecosystems. Polar bears (Ursus maritimus) have been identified as vulnerable to changes in sea ice conditions. We use sea ice projections for the Canadian Arctic Archipelago from 2006 - 2100 to gain insight into the conservation challenges for polar bears with respect to habitat loss using metrics developed from polar bear energetics modeling. Shifts away from multiyear ice to annual ice cover throughout the region, as well as lengthening ice-free periods, may become critical for polar bears before the end of the 21st century with projected warming. Each polar bear population in the Archipelago may undergo 2-5 months of ice-free conditions, where no such conditions exist presently. We identify spatially and temporally explicit ice-free periods that extend beyond what polar bears require for nutritional and reproductive demands. Under business-as-usual climate projections, polar bears may face starvation and reproductive failure across the entire Archipelago by the year 2100.

  11. NATO’s Future Role in the Arctic

    Science.gov (United States)

    2016-05-01

    www.arctic-council.org/index.php/en/about-us 4 Kuross, “An Ambiguous Role: NATO in the Arctic.” 5 Derek Reveron & Kathleen Mahoney- Norris , Human...The RAND Corporation, April 1989, http://www.rand.org/pubs/papers/P7558.html, 12-3. 22 Reveron & Mahoney- Norris , Human Security in a Borderless...trying-to-start-a- war-in-the-arctic-its-just-keeping-out-the-riffraff Reveron, Derek & Mahoney- Norris , Kathleen. Human Security in a Borderless

  12. Nudging the Arctic Ocean to quantify Arctic sea ice feedbacks

    Science.gov (United States)

    Dekker, Evelien; Severijns, Camiel; Bintanja, Richard

    2017-04-01

    It is well-established that the Arctic is warming 2 to 3 time faster than rest of the planet. One of the great uncertainties in climate research is related to what extent sea ice feedbacks amplify this (seasonally varying) Arctic warming. Earlier studies have analyzed existing climate model output using correlations and energy budget considerations in order to quantify sea ice feedbacks through indirect methods. From these analyses it is regularly inferred that sea ice likely plays an important role, but details remain obscure. Here we will take a different and a more direct approach: we will keep the sea ice constant in a sensitivity simulation, using a state-of -the-art climate model (EC-Earth), applying a technique that has never been attempted before. This experimental technique involves nudging the temperature and salinity of the ocean surface (and possibly some layers below to maintain the vertical structure and mixing) to a predefined prescribed state. When strongly nudged to existing (seasonally-varying) sea surface temperatures, ocean salinity and temperature, we force the sea ice to remain in regions/seasons where it is located in the prescribed state, despite the changing climate. Once we obtain fixed' sea ice, we will run a future scenario, for instance 2 x CO2 with and without prescribed sea ice, with the difference between these runs providing a measure as to what extent sea ice contributes to Arctic warming, including the seasonal and geographical imprint of the effects.

  13. The role of the Arctic in future global petroleum supply

    OpenAIRE

    Lars Lindholt; Solveig Glomsrød

    2011-01-01

    The Arctic has a substantial share of global petroleum resources, but at higher costs than in most other petroleum provinces. Arctic states and petroleum companies are carefully considering the potential for future extraction in the Arctic. This paper studies the oil and gas supply from 6 arctic regions during 2010-2050 along with global economic growth and different assumptions regarding petroleum prices and resource endowments. Supply is calculated based on a global model of oil and gas mar...

  14. Characterization of ice nucleating particles during continuous springtime measurements in Prudhoe Bay: an Arctic oilfield location

    Science.gov (United States)

    Creamean, J.; Spada, N. J.; Kirpes, R.; Pratt, K.

    2017-12-01

    Aerosols that serve as ice nucleating particles (INPs) have the potential to modulate cloud microphysical properties. INPs can thus subsequently impact cloud radiative forcing in addition to modification of precipitation formation processes. In regions such as the Arctic, aerosol-cloud interactions are severely understudied yet have significant implications for surface radiation reaching the sea ice and snow surfaces. Further, uncertainties in model representations of heterogeneous ice nucleation are a significant hindrance to simulating Arctic mixed-phase cloud processes. Characterizing a combination of aerosol chemical, physical, and ice nucleating properties is pertinent to evaluating of the role of aerosols in altering Arctic cloud microphysics. We present preliminary results from an aerosol sampling campaign called INPOP (Ice Nucleating Particles at Oliktok Point), which took place at a U.S. Department of Energy's Atmospheric Radiation Measurement (DOE ARM) facility on the North Slope of Alaska. Three time- and size-resolved aerosol samplers were deployed from 1 Mar to 31 May 2017 and were co-located with routine measurements of aerosol number, size, chemical, and radiative property measurements conducted by DOE ARM at their Aerosol Observing System (AOS). Offline analysis of samples collected at a daily time resolution included composition and morphology via single-particle analysis and drop freezing measurements for INP concentrations, while analysis of 12-hourly samples included mass, optical, and elemental composition. We deliberate the possible influences on the aerosol and INP population from the Prudhoe Bay oilfield resource extraction and daily operations in addition to what may be local background or long-range transported aerosol. To our knowledge our results represent some of the first INP characterization measurements in an Arctic oilfield location and can be used as a benchmark for future INP characterization studies in Arctic locations impacted

  15. International Regulation of Central Arctic Ocean Fisheries

    NARCIS (Netherlands)

    Molenaar, E.J.

    Due in particular to the impacts of climate change, the adequacy of the international regulation of Central Arctic Ocean fisheries has come under increasing scrutiny in recent years. As shown in this article, however, international regulation of Central Arctic Ocean fisheries is by no means entirely

  16. Life Cycle Impact Assessment in the Arctic: Challenges and Research Needs

    Directory of Open Access Journals (Sweden)

    Johan Berg Pettersen

    2017-09-01

    Full Text Available Life cycle assessment (LCA is increasingly used for environmental assessment of products and production processes to support environmental decision-making both worldwide and in the Arctic. However, there are several weaknesses in the impact assessment methodology in LCA, e.g., related to uncertainties of impact assessment results, absence of spatial differentiation in characterization modeling, and gaps in the coverage of impact pathways of different “archetypal” environments. Searching for a new resource base and areas for operation, marine and marine-based industries are continuously moving north, which underlines the need for better life cycle impact assessment in the Arctic, particularly to aid in industrial environmental management systems and stakeholder communications. This paper aims to investigate gaps and challenges in the application of the currently available impact assessment methods in the Arctic context. A simplified Arctic mining LCA case study was carried out to demonstrate the relevance of Arctic emissions at the midpoint and endpoint levels, as well as possible influences of the Arctic context on the impact assessment results. Results of this study showed that significant research gaps remain in Arctic-dependent life cycle impact assessment, particularly on: (i the possible influences of the Arctic-specific features on characterization factors for impact assessment (such as seasonality, cold climate, precipitation, and marine dependence; and (ii the coverage of impact pathways, especially on the under-addressed marine impacts and marine/near-shore dispersion processes. Addressing those identified research gaps and demand for future Arctic life cycle impact assessment could increase the credibility of LCA as an environmental decision-making support tool for Arctic industries and better support sustainable Arctic development.

  17. Introduction to the 2008 Circum-Arctic Resource Appraisal (CARA) professional paper

    Science.gov (United States)

    Gautier, Donald L.; Moore, Thomas E.; Moore, Thomas E.; Gautier, D.L.

    2017-11-15

    The amount of yet-to-find oil and gas in the high northern latitudes is one of the great uncertainties of future energy supply. The possibility of extensive new petroleum developments in the Arctic Ocean is of interest to the Arctic nations, to petroleum companies, and to those concerned with the delicate and changing Arctic environment. The U.S. Geological Survey (USGS) 2008 Circum-Arctic Resource Appraisal (CARA) had the express purpose of conducting a geologically based assessment of undiscovered petroleum north of the Arctic Circle, thereby providing an initial evaluation of resource potential. 

  18. Recent Arctic Sea Level Variations from Satellites

    DEFF Research Database (Denmark)

    Andersen, Ole Baltazar; Piccioni, Gaia

    2016-01-01

    Sea level monitoring in the Arctic region has always been an extreme challenge for remote sensing, and in particular for satellite altimetry. Despite more than two decades of observations, altimetry is still limited in the inner Arctic Ocean. We have developed an updated version of the Danish...... Technical University's (DTU) Arctic Ocean altimetric sea level timeseries starting in 1993 and now extended up to 2015 with CryoSat-2 data. The time-series covers a total of 23 years, which allows higher accuracy in sea level trend determination. The record shows a sea level trend of 2.2 ± 1.1 mm....../y for the region between 66°N and 82°N. In particular, a local increase of 15 mm/y is found in correspondence to the Beaufort Gyre. An early estimate of the mean sea level trend budget closure in the Arctic for the period 2005–2015 was derived by using the Equivalent Water Heights obtained from GRACE Tellus...

  19. Estimating River Surface Elevation From ArcticDEM

    Science.gov (United States)

    Dai, Chunli; Durand, Michael; Howat, Ian M.; Altenau, Elizabeth H.; Pavelsky, Tamlin M.

    2018-04-01

    ArcticDEM is a collection of 2-m resolution, repeat digital surface models created from stereoscopic satellite imagery. To demonstrate the potential of ArcticDEM for measuring river stages and discharges, we estimate river surface heights along a reach of Tanana River near Fairbanks, Alaska, by the precise detection of river shorelines and mapping of shorelines to land surface elevation. The river height profiles over a 15-km reach agree with in situ measurements to a standard deviation less than 30 cm. The time series of ArcticDEM-derived river heights agree with the U.S. Geological Survey gage measurements with a standard deviation of 32 cm. Using the rating curve for that gage, we obtain discharges with a validation accuracy (root-mean-square error) of 234 m3/s (23% of the mean discharge). Our results demonstrate that ArcticDEM can accurately measure spatial and temporal variations of river surfaces, providing a new and powerful data set for hydrologic analysis.

  20. Shifts of community composition and population density substantially affect ecosystem function despite invariant richness

    NARCIS (Netherlands)

    Spaak, Jurg W.; Baert, Jan M.; Baird, Donald J.; Eisenhauer, Nico; Maltby, Lorraine; Pomati, Francesco; Radchuk, Viktoriia; Rohr, Jason R.; Brink, van den Paul J.; Laender, De Frederik

    2017-01-01

    There has been considerable focus on the impacts of environmental change on ecosystem function arising from changes in species richness. However, environmental change may affect ecosystem function without affecting richness, most notably by affecting population densities and community