WorldWideScience

Sample records for arctic aquatic ecosystem

  1. Changing seasonality of Arctic hydrology disrupts key biotic linkages in Arctic aquatic ecosystems.

    Science.gov (United States)

    Deegan, L.; MacKenzie, C.; Peterson, B. J.; Fishscape Project

    2011-12-01

    Arctic grayling (Thymallus arcticus) is an important circumpolar species that provide a model system for understanding the impacts of changing seasonality on arctic ecosystem function. Grayling serve as food for other biota, including lake trout, birds and humans, and act as top-down controls in stream ecosystems. In Arctic tundra streams, grayling spend their summers in streams but are obligated to move back into deep overwintering lakes in the fall. Climatic change that affects the seasonality of river hydrology could have a significant impact on grayling populations: grayling may leave overwintering lakes sooner in the spring and return later in the fall due to a longer open water season, but the migration could be disrupted by drought due to increased variability in discharge. In turn, a shorter overwintering season may impact lake trout dynamics in the lakes, which may rely on the seasonal inputs of stream nutrients in the form of migrating grayling into these oligotrophic lakes. To assess how shifting seasonality of Arctic river hydrology may disrupt key trophic linkages within and between lake and stream components of watersheds on the North Slope of the Brooks Mountain Range, Alaska, we have undertaken new work on grayling and lake trout population and food web dynamics. We use Passive Integrated Transponder (PIT) tags coupled with stream-width antenna units to monitor grayling movement across Arctic tundra watersheds during the summer, and into overwintering habitat in the fall. Results indicate that day length may prime grayling migration readiness, but that flooding events are likely the cue grayling use to initiate migration in to overwintering lakes. Many fish used high discharge events in the stream as an opportunity to move into lakes. Stream and lake derived stable isotopes also indicate that lake trout rely on these seasonally transported inputs of stream nutrients for growth. Thus, changes in the seasonality of river hydrology may have broader

  2. Reviews and syntheses: Effects of permafrost thaw on Arctic aquatic ecosystems

    Science.gov (United States)

    Vonk, J.E.; Tank, S.E.; Bowden, W.B.; Laurion, I.; Vincent, W.F.; Alekseychik, P.; Amyot, Y.; Billet, M.F.; Canario, J.; Cory, R.M.; Deshpande, B.N.; Helbig, M.; Jammet, M.; Karlsson, J.; Larouche, J.; MacMillan, G.; Rautio, Milla; Walter Anthony, K.M.; Wickland, Kimberly P.

    2015-01-01

    of dissolved vs. particulate organic matter, coupled with the composition of that organic matter and the morphology and stratification characteristics of recipient systems will play an important role in determining the balance between the release of organic matter as greenhouse gases (CO2 and CH4), its burial in sediments, and its loss downstream. The magnitude of thaw impacts on northern aquatic ecosystems is increasing, as is the prevalence of thaw-impacted lakes and streams. There is therefore an urgent need to quantify how permafrost thaw is affecting aquatic ecosystems across diverse Arctic landscapes, and the implications of this change for further climate warming.

  3. Chemical pollution in the Arctic and Sub-Arctic marine ecosystems: an overview of current knowledge

    Energy Technology Data Exchange (ETDEWEB)

    Savinova, T N; Gabrielsen, G W; Falk-Petersen, S

    1995-02-01

    This report is part of a research project in the framework of the Norwegian-Russian Environmental Cooperation, which was initiated in 1991 to elucidate the present status of environmental contaminants in the highly sensitive Arctic aquatic ecosystem, with special focus on sea birds. Although these ecosystems are the least polluted areas in the world, they are contaminated. The main pathways of contamination into Arctic and sub-Arctic marine ecosystems are atmospheric transport, ocean currents and rivers and in some areas, dumping and ship accidents. A literature survey reveals: (1) there is a lack of data from several trophic levels, (2) previous data are difficult to compare with recent data because of increased quality requirement, (3) not much has been done to investigate the effects of contaminants on the cellular level, at individual or population levels. 389 refs., 7 figs., 32 tabs.

  4. The fate of mercury in Arctic terrestrial and aquatic ecosystems, a review

    DEFF Research Database (Denmark)

    Douglas, Thomas A.; Loseto, Lisa L.; MacDonald, Robie W.

    2012-01-01

    the fate of Hg in most ecosystems, and the role of trophic processes in controlling Hg in higher order animals are also included. Case studies on Eastern Beaufort Sea beluga (Delphinapterus leucas) and landlocked Arctic char (Salvelinus alpinus) are presented as examples of the relationship between...... into non-biological archives is also addressed. The review concludes by identifying major knowledge gaps in our understanding, including: (1) the rates of Hg entry into marine and terrestrial ecosystems and the rates of inorganic and MeHg uptake by Arctic microbial and algal communities; (2...

  5. Reviews and syntheses : Effects of permafrost thaw on Arctic aquatic ecosystems

    NARCIS (Netherlands)

    Vonk, J. E.; Tank, S. E.; Bowden, W.B.; Laurion, I.; Vincent, W. F.; Alekseychik, P.; Amyot, M.; Billet, M. F.; Canário, J.; Cory, R. M.; Deshpande, B. N.; Helbig, M.; Jammet, M.; Karlsson, J.; Larouche, J.; Macmillan, G.; Rautio, M.; Walter Anthony, K. M.; Wickland, K.P.

    2015-01-01

    The Arctic is a water-rich region, with freshwater systems covering about 16 % of the northern permafrost landscape. Permafrost thaw creates new freshwater ecosystems, while at the same time modifying the existing lakes, streams, and rivers that are impacted by thaw. Here, we describe the current

  6. Microplastics in aquatic environments: Implications for Canadian ecosystems.

    Science.gov (United States)

    Anderson, Julie C; Park, Bradley J; Palace, Vince P

    2016-11-01

    Microplastics have been increasingly detected and quantified in marine and freshwater environments, and there are growing concerns about potential effects in biota. A literature review was conducted to summarize the current state of knowledge of microplastics in Canadian aquatic environments; specifically, the sources, environmental fate, behaviour, abundance, and toxicological effects in aquatic organisms. While we found that research and publications on these topics have increased dramatically since 2010, relatively few studies have assessed the presence, fate, and effects of microplastics in Canadian water bodies. We suggest that efforts to determine aquatic receptors at greatest risk of detrimental effects due to microplastic exposure, and their associated contaminants, are particularly warranted. There is also a need to address the gaps identified, with a particular focus on the species and conditions found in Canadian aquatic systems. These gaps include characterization of the presence of microplastics in Canadian freshwater ecosystems, identifying key sources of microplastics to these systems, and evaluating the presence of microplastics in Arctic waters and biota. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  7. Ecosystem-atmosphere interactions in the Arctic

    DEFF Research Database (Denmark)

    López-Blanco, Efrén

    The terrestrial CO2 exchange in the Arctic plays an important role in the global carbon (C) cycle. The Arctic ecosystems, containing a large amount of organic carbon (C), are experiencing on-going warming in recent decades, which is affecting the C cycling and the feedback interactions between its...... of measurement sites, particularly covering full annual cycles, but also the frequent gaps in data affected by extreme conditions and remoteness. Combining ecosystem models and field observations we are able to study the underlying processes of Arctic CO2 exchange in changing environments. The overall aim...... of the research is to use data-model approaches to analyse the patterns of C exchange and their links to biological processes in Arctic ecosystems, studied in detail both from a measurement and a modelling perspective, but also from a local to a pan-arctic scale. In Paper I we found a compensatory response...

  8. Interaction webs in arctic ecosystems

    DEFF Research Database (Denmark)

    Schmidt, Niels Martin; Hardwick, Bess; Gilg, Olivier

    2017-01-01

    How species interact modulate their dynamics, their response to environmental change, and ultimately the functioning and stability of entire communities. Work conducted at Zackenberg, Northeast Greenland, has changed our view on how networks of arctic biotic interactions are structured, how they ...... that the combination of long-term, ecosystem-based monitoring, and targeted research projects offers the most fruitful basis for understanding and predicting the future of arctic ecosystems....

  9. Tipping elements in the Arctic marine ecosystem.

    Science.gov (United States)

    Duarte, Carlos M; Agustí, Susana; Wassmann, Paul; Arrieta, Jesús M; Alcaraz, Miquel; Coello, Alexandra; Marbà, Núria; Hendriks, Iris E; Holding, Johnna; García-Zarandona, Iñigo; Kritzberg, Emma; Vaqué, Dolors

    2012-02-01

    The Arctic marine ecosystem contains multiple elements that present alternative states. The most obvious of which is an Arctic Ocean largely covered by an ice sheet in summer versus one largely devoid of such cover. Ecosystems under pressure typically shift between such alternative states in an abrupt, rather than smooth manner, with the level of forcing required for shifting this status termed threshold or tipping point. Loss of Arctic ice due to anthropogenic climate change is accelerating, with the extent of Arctic sea ice displaying increased variance at present, a leading indicator of the proximity of a possible tipping point. Reduced ice extent is expected, in turn, to trigger a number of additional tipping elements, physical, chemical, and biological, in motion, with potentially large impacts on the Arctic marine ecosystem.

  10. Interaction webs in arctic ecosystems

    DEFF Research Database (Denmark)

    Schmidt, Niels M.; Hardwick, Bess; Gilg, Olivier

    2017-01-01

    How species interact modulate their dynamics, their response to environmental change, and ultimately the functioning and stability of entire communities. Work conducted at Zackenberg, Northeast Greenland, has changed our view on how networks of arctic biotic interactions are structured, how...... they vary in time, and how they are changing with current environmental change: firstly, the high arctic interaction webs are much more complex than previously envisaged, and with a structure mainly dictated by its arthropod component. Secondly, the dynamics of species within these webs reflect changes...... that the combination of long-term, ecosystem-based monitoring, and targeted research projects offers the most fruitful basis for understanding and predicting the future of arctic ecosystems....

  11. A community-based framework for aquatic ecosystem models

    DEFF Research Database (Denmark)

    Trolle, Didde; Hamilton, D. P.; Hipsey, M. R.

    2012-01-01

    Here, we communicate a point of departure in the development of aquatic ecosystem models, namely a new community-based framework, which supports an enhanced and transparent union between the collective expertise that exists in the communities of traditional ecologists and model developers. Through...... a literature survey, we document the growing importance of numerical aquatic ecosystem models while also noting the difficulties, up until now, of the aquatic scientific community to make significant advances in these models during the past two decades. Through a common forum for aquatic ecosystem modellers we...... aim to (i) advance collaboration within the aquatic ecosystem modelling community, (ii) enable increased use of models for research, policy and ecosystem-based management, (iii) facilitate a collective framework using common (standardised) code to ensure that model development is incremental, (iv...

  12. Biodiversity of Arctic marine ecosystems and responses to climate change

    DEFF Research Database (Denmark)

    Michel, C.; Bluhm, B.; Gallucci, V.

    2012-01-01

    The Arctic Ocean is undergoing major changes in many of its fundamental physical constituents, from a shift from multi- to first-year ice, shorter ice-covered periods, increasing freshwater runoff and surface stratification, to warming and alteration in the distribution of water masses....... These changes have important impacts on the chemical and biological processes that are at the root of marine food webs, influencing their structure, function and biodiversity. Here we summarise current knowledge on the biodiversity of Arctic marine ecosystems and provide an overview of fundamental factors...... that structure ecosystem biodiversity in the Arctic Ocean. We also discuss climateassociated effects on the biodiversity of Arctic marine ecosystems and discuss implications for the functioning of Arctic marine food webs. Based on the complexity and regional character of Arctic ecosystem reponses...

  13. Plants in aquatic ecosystems: current trends and future directions

    NARCIS (Netherlands)

    O’Hare, Matthew T.; Aguiar, Francisca C.; Asaeda, Takashi; Bakker, Elisabeth S.; Chambers, Patricia A.; Clayton, John S.; Elger, Arnaud; Ferreira, Teresa M.; Gross, Elisabeth M.; Gunn, Iain D.M.; Gurnell, Angela M.; Hellsten, Seppo; Hofstra, Deborah E.; Li, Wei; Mohr, Silvia; Puijalon, Sara; Szoszkiewicz, Krzysztof; Willby, Nigel J.; Wood, Kevin A.

    2018-01-01

    Aquatic plants fulfil a wide range of ecological roles, and make a substantial contribution to the structure, function and service provision of aquatic ecosystems. Given their well-documented importance in aquatic ecosystems, research into aquatic plants continues to blossom. The 14th International

  14. Aquatic biodiversity in forests: A weak link in ecosystem services resilience

    Science.gov (United States)

    Penaluna, Brooke E.; Olson, Deanna H.; Flitcroft, Rebecca L; Weber, Matthew A.; Bellmore, J. Ryan; Wondzell, Steven M.; Dunham, Jason B.; Johnson, Sherri L.; Reeves, Gordon H.

    2017-01-01

    The diversity of aquatic ecosystems is being quickly reduced on many continents, warranting a closer examination of the consequences for ecological integrity and ecosystem services. Here we describe intermediate and final ecosystem services derived from aquatic biodiversity in forests. We include a summary of the factors framing the assembly of aquatic biodiversity in forests in natural systems and how they change with a variety of natural disturbances and human-derived stressors. We consider forested aquatic ecosystems as a multi-state portfolio, with diverse assemblages and life-history strategies occurring at local scales as a consequence of a mosaic of habitat conditions and past disturbances and stressors. Maintaining this multi-state portfolio of assemblages requires a broad perspective of ecosystem structure, various functions, services, and management implications relative to contemporary stressors. Because aquatic biodiversity provides multiple ecosystem services to forests, activities that compromise aquatic ecosystems and biodiversity could be an issue for maintaining forest ecosystem integrity. We illustrate these concepts with examples of aquatic biodiversity and ecosystem services in forests of northwestern North America, also known as Northeast Pacific Rim. Encouraging management planning at broad as well as local spatial scales to recognize multi-state ecosystem management goals has promise for maintaining valuable ecosystem services. Ultimately, integration of information from socio-ecological ecosystems will be needed to maintain ecosystem services derived directly and indirectly from forest aquatic biota.

  15. Economic valuation of aquatic ecosystem services in developing countries

    DEFF Research Database (Denmark)

    Korsgaard, Louise; Schou, Jesper S.

    2010-01-01

    -the silent water user. A promising way of placing aquatic ecosystems on the water agenda is by economic valuation of services sustained by ecosystems. In developing countries, the livelihoods of rural people often depend directly on the provision of aquatic ecosystem services. In such situations, economic......An important challenge of integrated water resources management (IWRM) is to balance water allocation between different users. While economically and/or politically powerful users have well developed methods for quantifying and justifying their water needs, this is not the case for ecosystems...... valuation of ecosystem services becomes particularly challenging. This paper reviews recent literature on economic valuation of aquatic ecosystem services in developing countries. "Market price" is the most widespread method used for valuating marketed ecosystem services in developing countries. "Cost based...

  16. Arctic ecosystem responses to a warming climate

    DEFF Research Database (Denmark)

    Mortensen, Lars O.

    sheet, loss of multiannual sea-ice and significant advances in snowmelt days. The biotic components of the arctic ecosystem have also been affected by the rapid changes in climate, for instance resulting in the collapse of the collared lemming cycle, advances in spring flowering and changes in the intra...... biotic interactions. Hence, through the use of up-to-date multivariate statistical tools, this Ph.D. study has been concerned with analyzing how the observed rapid climate changes are affecting the arctic ecosystems. The primary tool has been the implementation of structural equation modeling (SEM) which....... Additionally, the study demonstrated that climate effects had distinct direct and indirect effects on different trophic levels, indicating cascading effects of climate through the trophic system. Results suggest that the Arctic is being significantly affected by the observed climate changes and depending...

  17. Exploring, exploiting and evolving diversity of aquatic ecosystem models

    DEFF Research Database (Denmark)

    Janssen, Annette B G; Arhonditsis, George B.; Beusen, Arthur

    2015-01-01

    Here, we present a community perspective on how to explore, exploit and evolve the diversity in aquatic ecosystem models. These models play an important role in understanding the functioning of aquatic ecosystems, filling in observation gaps and developing effective strategies for water quality...... management. In this spirit, numerous models have been developed since the 1970s. We set off to explore model diversity by making an inventory among 42 aquatic ecosystem modellers, by categorizing the resulting set of models and by analysing them for diversity. We then focus on how to exploit model diversity...... available through open-source policies, to standardize documentation and technical implementation of models, and to compare models through ensemble modelling and interdisciplinary approaches. We end with our perspective on how the field of aquatic ecosystem modelling might develop in the next 5–10 years...

  18. DNA barcodes for assessment of the biological integrity of aquatic ecosystems

    Science.gov (United States)

    Water quality regulations and aquatic ecosystem monitoring increasingly rely on direct assessments of biological integrity. Because these aquatic “bioassessments” evaluate the incidence and abundance of sensitive aquatic species, they are able to measure cumulative ecosystem eff...

  19. Measurement of undisturbed di-nitrogen emissions from aquatic ecosystems

    Science.gov (United States)

    Qin, Shuping, Clough, Timothy, Lou, Jiafa; Hu, Chunsheng; Oenema, Oene; Wrage-Mönnig, Nicole; Zhang, Yuming

    2016-04-01

    Increased production of reactive nitrogen (Nr) from atmospheric di-nitrogen (N2) during the last century has greatly contributed to increased food production1-4. However, enriching the biosphere with Nr through N fertilizer production, combustion, and biological N2 fixation has also caused a series of negative effects on global ecosystems 5,6, especially aquatic ecosystems7. The main pathway converting Nr back into the atmospheric N2 pool is the last step of the denitrification process, i.e., the reduction of nitrous oxide (N2O) into N2 by micro-organisms7,8. Despite several attempts9,10, there is not yet an accurate, fast and direct method for measuring undisturbed N2 fluxes from denitrification in aquatic sediments at the field scale11-14. Such a method is essential to study the feedback of aquatic ecosystems to Nr inputs1,2,7. Here we show that the measurement of both N2O emission and its isotope signature can be used to infer the undisturbed N2 fluxes from aquatic ecosystems. The microbial reduction of N2O increases the natural abundance of 15N-N2O relative to 14N-N2O (δ15N-N2O). We observed linear relationships between δ15N-N2O and the logarithmic transformed N2O/(N2+N2O) emission ratios. Through independent measurements, we verified that the undisturbed N2 flux from aquatic ecosystems can be inferred from measurements of N2O emissions and the δ15N-N2O signature. Our method allows the determination of field-scale N2 fluxes from undisturbed aquatic ecosystems, and thereby allows model predictions of denitrification rates to be tested. The undisturbed N2 fluxes observed are almost one order of magnitude higher than those estimated by the traditional method, where perturbation of the system occurs, indicating that the ability of aquatic ecosystems to remove Nr may have been severely underestimated.

  20. DOC removal paradigms in highly humic aquatic ecosystems.

    Science.gov (United States)

    Farjalla, Vinicius F; Amado, André M; Suhett, Albert L; Meirelles-Pereira, Frederico

    2009-07-01

    Dissolved humic substances (HS) usually comprise 50-80% of the dissolved organic carbon (DOC) in aquatic ecosystems. From a trophic and biogeochemical perspective, HS has been considered to be highly refractory and is supposed to accumulate in the water. The upsurge of the microbial loop paradigm and the studies on HS photo-degradation into labile DOC gave rise to the belief that microbial processing of DOC should sustain aquatic food webs in humic waters. However, this has not been extensively supported by the literature, since most HS and their photo-products are often oxidized by microbes through respiration in most nutrient-poor humic waters. Here, we review basic concepts, classical studies, and recent data on bacterial and photo-degradation of DOC, comparing the rates of these processes in highly humic ecosystems and other aquatic ecosystems. We based our review on classical and recent findings from the fields of biogeochemistry and microbial ecology, highlighting some odd results from highly humic Brazilian tropical lagoons, which can reach up to 160 mg C L(-1). Highly humic tropical lagoons showed proportionally lower bacterial production rates and higher bacterial respiration rates (i.e., lower bacterial growth efficiency) than other lakes. Zooplankton showed similar delta(13)C to microalgae but not to humic DOC in these highly humic lagoons. Thus, the data reviewed here do not support the microbial loop as an efficient matter transfer pathway in highly humic ecosystems, where it is supposed to play its major role. In addition, we found that some tropical humic ecosystems presented the highest potential DOC photo-chemical mineralization (PM) rates reported in the literature, exceeding up to threefold the rates reported for temperate humic ecosystems. We propose that these atypically high PM rates are the result of a joint effect of the seasonal dynamics of allochthonous humic DOC input to these ecosystems and the high sunlight incidence throughout the year

  1. Deer Island Aquatic Ecosystem Restoration Project

    Science.gov (United States)

    2015-07-01

    across the U.S. Army Corps of Engineers (USACE) requires that a broad base of EWN understanding and support be built . The Deer Island Aquatic...USACE) requires that a broad base of EWN understanding and support be built . The Deer Island Aquatic Ecosystem Restoration Project (Deer Island AERP...Mississippi Wetlands Restoration Projects). The project received additional funding through several public laws in response to hurricane damages

  2. Foreword to the thematic cluster: the Arctic in Rapid Transition—marine ecosystems

    Directory of Open Access Journals (Sweden)

    Monika Kędra

    2015-12-01

    Full Text Available The Arctic is warming and losing sea ice. Happening at a much faster rate than previously expected, these changes are causing multiple ecosystem feedbacks in the Arctic Ocean. The Arctic in Rapid Transition (ART initiative was developed by early-career scientists as an integrative, international, multidisciplinary, long-term pan-Arctic network to study changes and feedbacks among the physical and biogeochemical components of the Arctic Ocean and their ultimate impacts on biological productivity on different timescales. In 2012, ART jointly organized with the Association of Polar Early Career Scientists their second science workshop—Overcoming Challenges of Observation to Model Integration in Marine Ecosystem Response to Sea Ice Transitions—at the Institute of Oceanology, Polish Academy of Sciences, in Sopot. This workshop aimed to identify linkages and feedbacks between atmosphere–ice–ocean forcing and biogeochemical processes, which are critical for ecosystem function, land–ocean interactions and productive capacity of the Arctic Ocean. This special thematic cluster of Polar Research brings together seven papers that grew out of workgroup discussions. Papers examine the climate change impacts on various ecosystem elements, providing important insights on the marine ecological and biogeochemical processes on various timescales. They also highlight priority areas for future research.

  3. Effects of ship-induced waves on aquatic ecosystems.

    Science.gov (United States)

    Gabel, Friederike; Lorenz, Stefan; Stoll, Stefan

    2017-12-01

    Most larger water bodies worldwide are used for navigation, and the intensity of commercial and recreational navigation is expected to further increase. Navigation profoundly affects aquatic ecosystems. To facilitate navigation, rivers are trained and developed, and the direct effects of navigation include chemical and biological impacts (e.g., inputs of toxic substances and dispersal of non-native species, respectively). Furthermore, propagating ships create hydrodynamic alterations, often simply summarized as waves. Although ship-induced waves are recognized as influential stressors, knowledge on their effects is poorly synthesized. We present here a review on the effects of ship-induced waves on the structure, function and services of aquatic ecosystems based on more than 200 peer reviewed publications and technical reports. Ship-induced waves act at multiple organizational levels and different spatial and temporal scales. All the abiotic and biotic components of aquatic ecosystems are affected, from the sediment and nutrient budget to the planktonic, benthic and fish communities. We highlight how the effects of ship-induced waves cascade through ecosystems and how different effects interact and feed back into the ecosystem finally leading to altered ecosystem services and human health effects. Based on this synthesis of wave effects, we discuss strategies for mitigation. This may help to develop scientifically based and target-oriented management plans for navigational waters that optimize abiotic and biotic integrity and their ecosystem services and uses. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Brominated flame retardants in aquatic organisms from the North Sea in comparison with biota from the high Arctic marine environment.

    Science.gov (United States)

    Sørmo, Eugen G; Jenssen, Bjørn M; Lie, Elisabeth; Skaare, Janneche U

    2009-10-01

    The extent of trophic transfer of brominated flame retardants (BFRs), including hexabromocyclododecane (HBCD) and seven polybrominated diphenyl ethers (PBDEs), were examined in pelagic and benthic aquatic animals (invertebrates and fish) in a near-shore estuary environment of the southeastern North Sea (Norway; 59 degrees N). Whole-body burdens of HBCD and several of the most abundant PBDEs biomagnified with increasing trophic position in the food web. Biomagnification of HBCD was particularly strong, resulting in whole-body burdens of this compound comparable to those of total PBDEs in the higher-trophic-level species. Body burdens of PBDEs were higher in pelagic than in benthic aquatic organisms. This was particularly evident for the lesser-brominated and volatile PBDE congeners. Atmospheric gas-water-phytoplankton exchange of these volatile compounds over the water surface may account for this observation. The PBDE burdens in pelagic zooplankton from the North Sea were more than 60-fold greater than those in corresponding pelagic zooplankton from the colder high Arctic latitudes (>78 degrees N) of Norway (Svalbard). This great difference may relate to reduced chemical gas-water exchange over open waters at the colder Arctic latitudes. However, previously measured whole-body burdens of BFRs in other aquatic marine organisms from the high Arctic were comparable or even exceeded those in the North Sea samples of the present study. These include sympagic (sea ice-associated) invertebrates and fish accumulating high burdens of particle-associated BFRs. The present study provides new insight regarding the distribution of BFRs in ecologically different compartments of marine ecosystems, essential information for understanding the food-web transfer and geographical dispersal of these compounds.

  5. Economic Valuation of Ecosystem Goods and Services in a Melting Arctic

    Science.gov (United States)

    O'Garra, T.

    2014-12-01

    The Arctic region is composed of unique ecosystems that provide a range of goods and services to local and global populations. However, Arctic sea-ice is melting at an unprecedented rate, threatening many of these ecosystems and the services they provide. Yet as the ice melts and certain goods and services are lost, other resources such as oil and minerals will become accessible. The question is: how do the losses compare with the opportunities? And how are the losses and potential gains likely to be distributed? To address these questions, this study provides a preliminary assessment of the quantity, distribution and economic value of the ecosystem services (ES) provided by Arctic ecosystems, both now and in the future given a scenario of sure climate change. Using biophysical and economic data from existing studies (and some primary data), preliminary estimates indicate that the Arctic currently provides 357m/yr (in 2014 US) in subsistence hunting value to local communities, of which reindeer/caribou comprise 83%. Reindeer herding provides 110m/yr to Arctic communities. Interestingly, 'non-use (existence/cultural) values' associated with Arctic species are very high at 11bn/yr to members of Arctic states. The Arctic also provides ES that accrue to the global community: oil resources (North Slope; 5bn profits in 2013), commercial fisheries ( 515mn/yr) and most importantly, climate regulation services. Recent models (Whiteman; Euskirchen) estimate that the loss of climate regulation services provided by Arctic ice will cost 200 - 500bn/yr, a value which dwarfs all others. Assuming no change in atmospheric temperature compared to 2014, the net present value of the Arctic by 2050 (1.4% discount rate) comes to over $9 trillion. However, given Wang and Overland (2009) predictions of ice-free summers by 2037, we expect many of these benefits will be lost. For example, it is fairly well-established that endemic species, such as polar bears, will decline with sea-ice melt

  6. Mercury bioaccumulation and biomagnification in a small Arctic polynya ecosystem

    Energy Technology Data Exchange (ETDEWEB)

    Clayden, Meredith G., E-mail: meredith.clayden@gmail.com [Canadian Rivers Institute and Biology Department, University of New Brunswick, Saint John, NB E2L 4L5 (Canada); Arsenault, Lilianne M. [Canadian Rivers Institute and Biology Department, University of New Brunswick, Saint John, NB E2L 4L5 (Canada); Department of Earth and Environmental Science, Acadia University, Wolfville, NS B4P 2R6 (Canada); Department of Biology, Acadia University, Wolfville, NS B4P 2R6 (Canada); Kidd, Karen A. [Canadian Rivers Institute and Biology Department, University of New Brunswick, Saint John, NB E2L 4L5 (Canada); O' Driscoll, Nelson J. [Department of Earth and Environmental Science, Acadia University, Wolfville, NS B4P 2R6 (Canada); Mallory, Mark L. [Department of Biology, Acadia University, Wolfville, NS B4P 2R6 (Canada)

    2015-03-15

    Recurring polynyas are important areas of biological productivity and feeding grounds for seabirds and mammals in the Arctic marine environment. In this study, we examined food web structure (using carbon and nitrogen isotopes, δ{sup 13}C and δ{sup 15}N) and mercury (Hg) bioaccumulation and biomagnification in a small recurring polynya ecosystem near Nasaruvaalik Island (Nunavut, Canada). Methyl Hg (MeHg) concentrations increased by more than 50-fold from copepods (Calanus hyperboreus) to Arctic terns (Sterna paradisaea), the abundant predators at this site. The biomagnification of MeHg through members of the food web – using the slope of log MeHg versus δ{sup 15}N – was 0.157 from copepods (C. hyperboreus) to fish. This slope was higher (0.267) when seabird chicks were included in the analyses. Collectively, our results indicate that MeHg biomagnification is occurring in this small polynya and that its trophic transfer is at the lower end of the range of estimates from other Arctic marine ecosystems. In addition, we measured Hg concentrations in some poorly studied members of Arctic marine food webs [e.g. Arctic alligatorfish (Ulcina olrikii) and jellyfish, Medusozoa], and found that MeHg concentrations in jellyfish were lower than expected given their trophic position. Overall, these findings provide fundamental information about food web structure and mercury contamination in a small Arctic polynya, which will inform future research in such ecosystems and provide a baseline against which to assess changes over time resulting from environmental disturbance. - Highlights: • Polynyas are recurring sites of open water in polar marine areas • Mercury (Hg) biomagnification was studied in a small polynya near Nasaruvaalik Island, NU, Canada • Hg biomagnification estimates for invertebrates to fish were low compared to other Arctic systems • Factors underlying this result are unknown but may relate to primary productivity in small polynyas.

  7. Mercury bioaccumulation and biomagnification in a small Arctic polynya ecosystem

    International Nuclear Information System (INIS)

    Clayden, Meredith G.; Arsenault, Lilianne M.; Kidd, Karen A.; O'Driscoll, Nelson J.; Mallory, Mark L.

    2015-01-01

    Recurring polynyas are important areas of biological productivity and feeding grounds for seabirds and mammals in the Arctic marine environment. In this study, we examined food web structure (using carbon and nitrogen isotopes, δ 13 C and δ 15 N) and mercury (Hg) bioaccumulation and biomagnification in a small recurring polynya ecosystem near Nasaruvaalik Island (Nunavut, Canada). Methyl Hg (MeHg) concentrations increased by more than 50-fold from copepods (Calanus hyperboreus) to Arctic terns (Sterna paradisaea), the abundant predators at this site. The biomagnification of MeHg through members of the food web – using the slope of log MeHg versus δ 15 N – was 0.157 from copepods (C. hyperboreus) to fish. This slope was higher (0.267) when seabird chicks were included in the analyses. Collectively, our results indicate that MeHg biomagnification is occurring in this small polynya and that its trophic transfer is at the lower end of the range of estimates from other Arctic marine ecosystems. In addition, we measured Hg concentrations in some poorly studied members of Arctic marine food webs [e.g. Arctic alligatorfish (Ulcina olrikii) and jellyfish, Medusozoa], and found that MeHg concentrations in jellyfish were lower than expected given their trophic position. Overall, these findings provide fundamental information about food web structure and mercury contamination in a small Arctic polynya, which will inform future research in such ecosystems and provide a baseline against which to assess changes over time resulting from environmental disturbance. - Highlights: • Polynyas are recurring sites of open water in polar marine areas • Mercury (Hg) biomagnification was studied in a small polynya near Nasaruvaalik Island, NU, Canada • Hg biomagnification estimates for invertebrates to fish were low compared to other Arctic systems • Factors underlying this result are unknown but may relate to primary productivity in small polynyas

  8. The impacts of past climate change on terrestrial and aquatic ecosystems

    International Nuclear Information System (INIS)

    Bradshaw, R.H.W.; Anderson, N.J.

    2001-01-01

    The last two million years of global history have been dominated by the impacts of rapid climate change. This influence is not immediately obvious to most biologists whose observations rarely extend beyond a period of a few years, but becomes apparent when interpreting long-term data sets whether they be population studies or palaeoecological data. It is appropriate therefore to consider how terrestrial and aquatic ecosystems have responded to climate change during the Quaternary when speculating about response to future climatic developments. In this chapter we discuss and illustrate the complex interactions between climate and anthropogenic influence on terrestrial and aquatic ecosystems during the Holocene. Climate influences ecosystems both directly (e.g. physiological responses or lake thermal stratification) and indirectly (e.g. via fire frequency or catchment hydrology). Lake sediments can be used to study both past climatic change directly and the effects of past climatic variability. In this chapter we present summary examples of the influence of past climate change on terrestrial and aquatic ecosystems as well showing how lake sediment records can provide proxy records of past climate change. The geological record from the last 18 000 years documents large changes in terrestrial and aquatic ecosystems that are primarily driven by climatic change, but are modified by internal ecosystem processes. These changes are comparable in magnitude and rapidity to those predicted for the near future. Species at their distributional limits are particularly sensitive to climate change and contractions of range can be sudden in response to extreme climatic events such as the storm of December 1999 that damaged Picea trees far more than tree species that lay within their natural range limits. Palaeoecological records provide compelling evidence for direct climate forcing of aquatic and terrestrial ecosystems but importantly also permit comparative analyses of impacts

  9. Recent changes in aquatic biota in subarctic Fennoscandia - the role of global and local environmental variables

    Science.gov (United States)

    Weckström, Jan; Leppänen, Jaakko; Sorvari, Sanna; Kaukolehto, Marjut; Weckström, Kaarina; Korhola, Atte

    2013-04-01

    The Arctic, representing a fifth of the earth's surface, is highly sensitive to the predicted future warming and it has indeed been warming up faster than most other regions. This makes the region critically important and highlights the need to investigate the earliest signals of global warming and its impacts on the arctic and subarctic aquatic ecosystems and their biota. It has been demonstrated that many Arctic freshwater ecosystems have already experienced dramatic and unpreceded regime shifts during the last ca. 150 years, primarily driven by climate warming. However, despite the indisputable impact of climate-related variables on freshwater ecosystems other, especially local-scale catchment related variables (e.g. geology, vegetation, human activities) may override the climate signal and become the primary factor in shaping the structure of aquatic ecosystems. Although many studies have contributed to an improved understanding of limnological and hydrobiological features of Artic and subarctic lakes, much information is still needed especially on the interaction between the biotic and abiotic components, i.e. on factors controlling the food web dynamics in these sensitive aquatic ecosystems. This is of special importance as these lakes are of great value in water storage, flood prevention, and maintenance of biodiversity, in addition to which they are vital resources for settlement patterns, food production, recreation, and tourism. In this study we compare the pre-industrial sediment assemblages of primary producers (diatoms and Pediastrum) and primary consumers (cladoceran and chironomids) with their modern assemblages (a top-bottom approach) from 50 subarctic Fennoscandian lakes. We will evaluate the recent regional pattern of changes in aquatic assemblages, and assess how coherent the lakes' responses are across the subarctic area. Moreover, the impact of global (e.g. climate, precipitation) and local (e.g. lake and its catchment characteristics) scale

  10. 76 FR 10892 - Aquatic Ecosystems, Water Quality, and Global Change: Challenges of Conducting Multi-Stressor...

    Science.gov (United States)

    2011-02-28

    ...: EPA is announcing the release of the draft report titled, ``Aquatic Ecosystems, Water Quality, and... relative vulnerability of water quality and aquatic ecosystems, across the United States, to the potential... mailing address, and the document title, ``Aquatic Ecosystems, Water Quality, and Global Change...

  11. 76 FR 55060 - Aquatic Ecosystems, Water Quality, and Global Change: Challenges of Conducting Multi-Stressor...

    Science.gov (United States)

    2011-09-06

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9459-7] Aquatic Ecosystems, Water Quality, and Global Change... entitled, Aquatic Ecosystems, Water Quality, and Global Change: Challenges of Conducting Multi- stressor... vulnerability of water quality and aquatic ecosystems across the United States to the potential impacts of...

  12. Ecological processes in the cycling of radionuclides within arctic ecosystems

    International Nuclear Information System (INIS)

    Hanson, W.C.

    1986-01-01

    Worldwide fallout radionuclides in arctic ecosystems was investigated ecologically by circumpolar nations during 1959-80. Several of the radionuclides are isotopes of elements which currently contribute to arctic haze; they thus serve as effective tracers of biogeochemical processes. Investigations demonstrated the effective concentration of several radionuclides, particularly strontium-90 (an alkaline earth metal) and cesium-137 (a light alkali metal) which are chemical analogs of calcium and potassium, two very important stable elements in biotic systems. Transfer of 137 Cs through the lichen-cariboureindeer-man food chain characteristic of circumpolar nations, resulted in body burdens in Inuit that were 20 to 200 times greater than those in human populations of temperature latitudes. Radiation exposures from 90 Sr, 137 Cs and other natural and worldwide fallout radionuclides, were two to three times greater than for most other world populations. These results demonstrate the concentration capabilities of arctic ecosystems for several groups of chemical elements that have counterparts in arctic haze. These elements, therefore, provide the basis for considering the ecological implications of current situations

  13. Exploring, exploiting and evolving diversity of aquatic ecosystem models: a community perspective

    NARCIS (Netherlands)

    Janssen, A.B.G.; Gerla, D.J.

    2015-01-01

    Here, we present a community perspective on how to explore, exploit and evolve the diversity in aquatic ecosystem models. These models play an important role in understanding the functioning of aquatic ecosystems, filling in observation gaps and developing effective strategies for water quality

  14. Effects on the function of Arctic ecosystems in the short- and long-term perspectives.

    Science.gov (United States)

    Callaghan, Terry V; Björn, Lars Olof; Chernov, Yuri; Chapin, Terry; Christensen, Torben R; Huntley, Brian; Ims, Rolf A; Johansson, Margareta; Jolly, Dyanna; Jonasson, Sven; Matveyeva, Nadya; Panikov, Nicolai; Oechel, Walter; Shaver, Gus

    2004-11-01

    Historically, the function of Arctic ecosystems in terms of cycles of nutrients and carbon has led to low levels of primary production and exchanges of energy, water and greenhouse gases have led to low local and regional cooling. Sequestration of carbon from atmospheric CO2, in extensive, cold organic soils and the high albedo from low, snow-covered vegetation have had impacts on regional climate. However, many aspects of the functioning of Arctic ecosystems are sensitive to changes in climate and its impacts on biodiversity. The current Arctic climate results in slow rates of organic matter decomposition. Arctic ecosystems therefore tend to accumulate organic matter and elements despite low inputs. As a result, soil-available elements like nitrogen and phosphorus are key limitations to increases in carbon fixation and further biomass and organic matter accumulation. Climate warming is expected to increase carbon and element turnover, particularly in soils, which may lead to initial losses of elements but eventual, slow recovery. Individual species and species diversity have clear impacts on element inputs and retention in Arctic ecosystems. Effects of increased CO2 and UV-B on whole ecosystems, on the other hand, are likely to be small although effects on plant tissue chemisty, decomposition and nitrogen fixation may become important in the long-term. Cycling of carbon in trace gas form is mainly as CO2 and CH4. Most carbon loss is in the form of CO2, produced by both plants and soil biota. Carbon emissions as methane from wet and moist tundra ecosystems are about 5% of emissions as CO2 and are responsive to warming in the absence of any other changes. Winter processes and vegetation type also affect CH4 emissions as well as exchanges of energy between biosphere and atmosphere. Arctic ecosystems exhibit the largest seasonal changes in energy exchange of any terrestrial ecosystem because of the large changes in albedo from late winter, when snow reflects most

  15. Contamination of the Aquatic Environment with Neonicotinoids and its Implication for Ecosystems

    Directory of Open Access Journals (Sweden)

    Francisco Sánchez-Bayo

    2016-11-01

    Full Text Available The widespread use of systemic neonicotinoid insecticides in agriculture results first in contamination of the soil of the treated crops, and secondly in the transfer of residues to the aquatic environment. The high toxicity of these insecticides to aquatic insects and other arthropods has been recognized, but there is little awareness of the impacts these chemicals have on aquatic environments and the ecosystem at large. Recent monitoring studies in several countries, however, have revealed a world-wide contamination of creeks, rivers and lakes with these insecticides, with residue levels in the low μg/L (ppb range. The current extent of aquatic contamination by neonicotinoids is reviewed first, and the findings contrasted with the known acute and chronic toxicity of neonicotinoids to various aquatic organisms. Impacts on populations and aquatic communities, mostly using mesocosms, are reviewed next to identify the communities most at risk from those that undergo little or no impact. Finally, the ecological links between aquatic and terrestrial organisms are considered. The consequences for terrestrial vertebrate species that depend mainly on this food source are discussed together with impacts on ecosystem function. Gaps in knowledge stem from difficulties in obtaining long-term experimental data that relates the effects on individual organisms to impacts on populations and ecosystems. The paper concludes with a summary of findings and the implications they have for the larger ecosystem.

  16. Past Changes in Arctic Terrestrial Ecosystems, Climate and UV Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Callaghan, Terry V. [Abisko Scientific Research Station, Abisko (Sweden); Bjoern, Lars Olof [Lund Univ. (Sweden). Dept. of Cell and Organism Biology; Chernov, Yuri [Russian Academy of Sciences, Moscow (Russian Federation). A.N. Severtsov Inst. of Evolutionary Morphology and Animal Ecology] (and others)

    2004-11-01

    At the last glacial maximum, vast ice sheets covered many continental areas. The beds of some shallow seas were exposed thereby connecting previously separated landmasses. Although some areas were ice-free and supported a flora and fauna, mean annual temperatures were 10-13 deg C colder than during the Holocene. Within a few millennia of the glacial maximum, deglaciation started, characterized by a series of climatic fluctuations between about 18,000 and 11,400 years ago. Following the general thermal maximum in the Holocene, there has been a modest overall cooling trend, superimposed upon which have been a series of millennial and centennial fluctuations in climate such as the 'Little Ice Age' spanning approximately the late 13th to early 19th centuries. Throughout the climatic fluctuations of the last 150,000 years, Arctic ecosystems and biota have been close to their minimum extent within the most recent 10,000 years. They suffered loss of diversity as a result of extinctions during the most recent large-magnitude rapid global warming at the end of the last glacial stage. Consequently, Arctic ecosystems and biota such as large vertebrates are already under pressure and are particularly vulnerable to current and projected future global warming. Evidence from the past indicates that the treeline will very probably advance, perhaps rapidly, into tundra areas, as it did during the early Holocene, reducing the extent of tundra and increasing the risk of species extinction. Species will very probably extend their ranges northwards, displacing Arctic species as in the past. However, unlike the early Holocene, when lower relative sea level allowed a belt of tundra to persist around at least some parts of the Arctic basin when treelines advanced to the present coast, sea level is very likely to rise in future, further restricting the area of tundra and other treeless Arctic ecosystems. The negative response of current Arctic ecosystems to global climatic

  17. Radioactive contamination of aquatic ecosystems following the Chernobyl accident

    International Nuclear Information System (INIS)

    Kryshev, I.I.

    1995-01-01

    The dynamics of radioactive contamination of aquatic ecosystems (1986-1990) is considered on the basis of observational data in the near and distant zones of the Chernobyl fallout (the Chernobyl Nuclear Power Plant (CNPP) cooling pond, the Pripyat River, the Dnieper reservoirs, and the Kopor inlet of the Gulf of Finland). Radionuclide accumulation in aquatic biota is analyzed. The results obtained indicate that the radioecological conditions in the water bodies under investigation were in a state of non-equilibrium over a long period of time following the Chernobyl accident. Reduction in the 137 Cs concentration proceeded slowly in most of the aquatic ecosystems. The effect of trophic levels which consisted of increased accumulation of radiocaesium by predatory fish was observed in various parts of the contaminated area. (author)

  18. Measurement-based upscaling of pan Arctic net ecosystem exchange: the PANEEx project

    DEFF Research Database (Denmark)

    Mbufong, Herbert Njuabe; Kusbach, Antonin; Lund, Magnus

    2015-01-01

    The high variability in Arctic tundra net ecosystem exchange (NEE) of carbon (C) can be attributed to the high spatial heterogeneity of Arctic tundra due to the complex topography. Current models of C exchange handle the Arctic as either a single or few ecosystems, responding to environmental...... change in the same manner. In this study, we developed and tested a simple NEE model using the Misterlich light response curve (LRC) function with photosynthetic photon flux density (PPFD) as the main driving variable. Model calibration was carried out with eddy covariance carbon dioxide data from 12...... Arctic tundra sites. The model input parameters (fcsat, Rd and α) were estimated as a function of air temperature (AirT) and leaf area index (LAI) and represent specific characteristics of the NEE-PPFD relationship, including the saturation flux, dark respiration and initial light use efficiency...

  19. Herbivores Enforce Sharp Boundaries Between Terrestrial and Aquatic Ecosystems

    NARCIS (Netherlands)

    Sarneel, Judith M.; Huig, N.; Veen, G. F.; Rip, W.; Bakker, E. S.

    2014-01-01

    The transitions between ecosystems (ecotones) are often biodiversity hotspots, but we know little about the forces that shape them. Today, often sharp boundaries with low diversity are found between terrestrial and aquatic ecosystems. This has been attributed to environmental factors that hamper

  20. Prehistoric Human-environment Interactions and Their Impact on Aquatic Ecosystems

    Science.gov (United States)

    Mackay, H.; Henderson, A. C. G.; van Hardenbroek, M.; Cavers, G.; Crone, A.; Davies, K. L.; Fonville, T. R.; Head, K.; Langdon, P. G.; Matton, R.; McCormick, F.; Murray, E.; Whitehouse, N. J.; Brown, A. G.

    2017-12-01

    One of the first widespread human-environment interactions in Scotland and Ireland occurred 3000 years ago when communities first inhabited wetlands, building artificial islands in lakes called crannogs. The reason behind the development and intermittent occupation of crannogs is unclear. We don't know if they were a response to changes in environment or if they were driven by societal influences. Furthermore, the impact of the construction, settlement and human activities on lake ecosystems is unknown, but is a key example of early anthropogenic signatures on the environment. Our research characterises the prehistoric human-environment interactions associated with crannogs by analysing geochemical and biological signals preserved within the crannog and wetland sediments. Records of anthropogenic activities and environmental change have been produced using lipid biomarkers of faecal matter, sedimentary DNA, and the remains of beetles, aquatic invertebrates (chironomids), siliceous algae (diatoms) and pollen. Results of these analyses reveal settlement occupations occurred in phases from the Iron Age to the Medieval Period. The main effects of occupation on the wetland ecosystems are nutrient-driven increases in productivity and shifts in aquatic species from clear water taxa to those associated with more eutrophic conditions. Crannog abandonment reduces nutrient inputs and therefore levels of aquatic productivity, as evidenced by decreases in the abundance of siliceous algae. Despite returns to pre-settlement nutrient and productivity levels, the lake ecosystems do not recover to their previous ecological state: dominant aquatic invertebrate and siliceous algae taxa shift in response to elevated levels of macrophytes within the lakes. Whilst these phase changes in lake ecosystems highlight their adaptive capacity to environmental change, the temporary human interactions associated with crannogs had persisting environmental impacts that shaped the long

  1. Movement and fate of mercury in an aquatic ecosystem

    International Nuclear Information System (INIS)

    Baez, A.P.; Nulman, R.

    1975-01-01

    Studies have been initiated of the behaviour and distribution of industrial mercury residues in the aquatic ecosystem represented by the Coatzacoalcos river estuary of Mexico. Mercury concentrations were determined in samples of water, river sediments, aquatic animals, aquatic and river-bank vegetation, local food products and in the hair of local inhabitants. Determinations were made by flameless atomic absorption spectrophotometry and concentrations greater than 50 ppm were found in some samples of bottom muds. (author)

  2. Changing Arctic ecosystems: resilience of caribou to climatic shifts in the Arctic

    Science.gov (United States)

    Gustine, David D.; Adams, Layne G.; Whalen, Mary E.; Pearce, John M.

    2014-01-01

    The U.S. Geological Survey (USGS) Changing Arctic Ecosystems (CAE) initiative strives to inform key resource management decisions for Arctic Alaska by providing scientific information and forecasts for current and future ecosystem response to a warming climate. Over the past 5 years, a focal area for the USGS CAE initiative has been the North Slope of Alaska. This region has experienced a warming trend over the past 60 years, yet the rate of change has been varied across the North Slope, leading scientists to question the future response and resilience of wildlife populations, such as caribou (Rangifer tarandus), that rely on tundra habitats for forage. Future changes in temperature and precipitation to coastal wet sedge and upland low shrub tundra are expected, with unknown consequences for caribou that rely on these plant communities for food. Understanding how future environmental change may affect caribou migration, nutrition, and reproduction is a focal question being addressed by the USGS CAE research. Results will inform management agencies in Alaska and people that rely on caribou for food.

  3. Modeling dynamics of biological and chemical components of aquatic ecosystems

    International Nuclear Information System (INIS)

    Lassiter, R.R.

    1975-05-01

    To provide capability to model aquatic ecosystems or their subsystems as needed for particular research goals, a modeling strategy was developed. Submodels of several processes common to aquatic ecosystems were developed or adapted from previously existing ones. Included are submodels for photosynthesis as a function of light and depth, biological growth rates as a function of temperature, dynamic chemical equilibrium, feeding and growth, and various types of losses to biological populations. These submodels may be used as modules in the construction of models of subsystems or ecosystems. A preliminary model for the nitrogen cycle subsystem was developed using the modeling strategy and applicable submodels. (U.S.)

  4. Changes in Arctic and Boreal ecosystems of North America: Integrating Recent Results from the Field, Remote Sensing and Ecosystem Models

    Science.gov (United States)

    Goetz, S. J.; Rogers, B. M.; Mack, M. C.; Goulden, M.; Pastick, N. J.; Berner, L. T.; Fisher, J.

    2017-12-01

    The Arctic and boreal forest biomes have global significance in terms of climate feedbacks associated with land surface interactions with the atmosphere. Changes in Arctic tundra and boreal forest ecosystem productivity and fire disturbance feedbacks have been well documented in recent years, but findings are often only locally relevant and are sometimes inconsistent among research teams. Part of these inconsistencies lie in utilization of different data sets and time periods considered. Integrated approaches are thus needed to adequately address changes in these ecosystems in order to assess consistency and variability of change, as well as ecosystem vulnerability and resiliency across spatial and temporal scales. Ultimately this can best be accomplished via multiple lines of evidence including remote sensing, field measurements and various types of data-constrained models. We will discuss some recent results integrating multiple lines of evidence for directional ecosystem change in the Arctic and boreal forest biomes of North America. There is increasing evidence for widespread spatial and temporal variability in Arctic and boreal ecosystem productivity changes that are strongly influenced by cycles of changing fire disturbance severity and its longer-term implications (i.e legacy effects). Integrated, multi-approach research, like that currently underway as part of the NASA-led Arctic Boreal Vulnerability Experiment (above.nasa.gov), is an effective way to capture the complex mechanisms that drive patterns and directionality of ecosystem structure and function, and ultimately determine feedbacks to environmental change, particularly in the context of global climate change. Additional ongoing ABoVE research will improve our understanding of the consequences of environmental changes underway, as well as increase our confidence in making projections of the ecosystem responses, vulnerability and resilience to change. ABoVE will also build a lasting legacy of

  5. Biota connect aquatic habitats throughout freshwater ecosystem mosaics

    Science.gov (United States)

    Schofield, Kate A.; Alexander, Laurie C.; Ridley, Caroline E.; Vanderhoof, Melanie; Fritz, Ken M.; Autrey, Bradley; DeMeester, Julie; Kepner, William G.; Lane, Charles R.; Leibowitz, Scott; Pollard, Amina I.

    2018-01-01

    Freshwater ecosystems are linked at various spatial and temporal scales by movements of biota adapted to life in water. We review the literature on movements of aquatic organisms that connect different types of freshwater habitats, focusing on linkages from streams and wetlands to downstream waters. Here, streams, wetlands, rivers, lakes, ponds, and other freshwater habitats are viewed as dynamic freshwater ecosystem mosaics (FEMs) that collectively provide the resources needed to sustain aquatic life. Based on existing evidence, it is clear that biotic linkages throughout FEMs have important consequences for biological integrity and biodiversity. All aquatic organisms move within and among FEM components, but differ in the mode, frequency, distance, and timing of their movements. These movements allow biota to recolonize habitats, avoid inbreeding, escape stressors, locate mates, and acquire resources. Cumulatively, these individual movements connect populations within and among FEMs and contribute to local and regional diversity, resilience to disturbance, and persistence of aquatic species in the face of environmental change. Thus, the biological connections established by movement of biota among streams, wetlands, and downstream waters are critical to the ecological integrity of these systems. Future research will help advance our understanding of the movements that link FEMs and their cumulative effects on downstream waters.

  6. Cyanotoxins in arctic lakes of southwestern Greenland and the potential for toxin transfer within-lake and across the aquatic-terrestrial boundary

    Science.gov (United States)

    Trout-Haney, J. V.; Cottingham, K. L.

    2015-12-01

    Arctic lakes are often characterized as low-resource environments in which the autotrophic community is limited by factors such as nutrients, temperature, and light. Studies of cyanotoxins have traditionally focused on nutrient-rich lakes with conspicuous blooms, however toxigenic cyanobacteria are confined to neither high nutrient environments nor planktonic taxa. We quantified the occurrence of cyanotoxins across 19 arctic lakes of varying size and depth in the Kangerlussuaq region of southwestern Greenland. Whole lake water microcystins (MC) were detected in all lakes and ranged from low (100 ng/L) concentrations. Benthic colonial cyanobacteria of the genus Nostoc are a prominent feature of certain lakes in this region, with estimated densities ranging between 500 and >500,000 colonies per lake. MC were present in the tissue of Nostoc colonies (95% CI, 1638.9 - 3237.6 pg MC (g wet weight)-1) and were actively released by colonies into surrounding water in laboratory trials. These results highlight the potential importance of toxic benthic cyanobacteria in lake ecosystems. Further, we investigated the transfer of these cyanotoxins to other organisms in the lake as well as several mechanisms (i.e., emerging insects, aerosols) that may influence the movement of toxins into the terrestrial ecosystem. The presence and movement of cyanotoxins in the coupled terrestrial-aquatic ecosystem demonstrate that high-latitude lakes can support toxigenic cyanobacteria, and that we may be underestimating the potential for these systems to develop high levels of toxicity in the future.

  7. Stimulation of microbial nitrogen cycling in aquatic ecosystems by benthic macrofauna: mechanisms and environmental implications

    OpenAIRE

    P. Stief

    2013-01-01

    Invertebrate animals that live at the bottom of aquatic ecosystems (i.e., benthic macrofauna) are important mediators between nutrients in the water column and microbes in the benthos. The presence of benthic macrofauna stimulates microbial nutrient dynamics through different types of animal–microbe interactions, which potentially affect the trophic status of aquatic ecosystems. This review contrasts three types of animal–microbe interactions in the benthos of aquatic ecosystems: (i) e...

  8. Direct and terrestrial vegetation-mediated effects of environmental change on aquatic ecosystem processes

    Science.gov (United States)

    Becky A. Ball; John S. Kominoski; Heather E. Adams; Stuart E. Jones; Evan S. Kane; Terrance D. Loecke; Wendy M. Mahaney; Jason P. Martina; Chelse M. Prather; Todd M.P. Robinson; Christopher T. Solomon

    2010-01-01

    Global environmental changes have direct effects on aquatic ecosystems, as well as indirect effects through alterations of adjacent terrestrial ecosystem structure and functioning. For example, shifts in terrestrial vegetation communities resulting from global changes can affect the quantity and quality of water, organic matter, and nutrient inputs to aquatic...

  9. An automated platform for phytoplankton ecology and aquatic ecosystem monitoring

    NARCIS (Netherlands)

    Pomati, F.; Jokela, J.; Simona, M.; Veronesi, M.; Ibelings, B.W.

    2011-01-01

    High quality monitoring data are vital for tracking and understanding the causes of ecosystem change. We present a potentially powerful approach for phytoplankton and aquatic ecosystem monitoring, based on integration of scanning flow-cytometry for the characterization and counting of algal cells

  10. Heavy metal pollution characteristics of surface sediments in different aquatic ecosystems in eastern China: a comprehensive understanding.

    Directory of Open Access Journals (Sweden)

    Wenzhong Tang

    Full Text Available Aquatic ecosystems in eastern China are suffering threats from heavy metal pollution because of rapid economic development and urbanization. Heavy metals in surface sediments were determined in five different aquatic ecosystems (river, reservoir, estuary, lake, and wetland ecosystems. The average Cd, Cr, Cu, Ni, Pb, and Zn concentrations were 0.716, 118, 37.3, 32.7, 56.6, and 204 mg/kg, respectively, and the higher concentrations were mainly found in sediment samples from river ecosystems. Cd was the most anthropogenically enriched pollutant, followed by Zn and Pb, indicated by enrichment factors >1.5. According to consensus-based sediment quality guidelines, potential ecological risk indices, and risk assessment codes, all five types of aquatic ecosystems were found to be polluted with heavy metals, and the most polluted ecosystems were mainly rivers. Cd was the most serious pollutant in all five aquatic ecosystems, and it was mainly found in the exchangeable fraction (about 30% of the total Cd concentration, on average. The results indicate that heavy metal contamination, especially of Cd, in aquatic ecosystems in eastern China should be taken into account in the development of management strategies for protecting the aquatic environment.

  11. Transitions in Arctic ecosystems: Ecological implications of a changing hydrological regime

    Science.gov (United States)

    Wrona, Frederick J.; Johansson, Margareta; Culp, Joseph M.; Jenkins, Alan; Mârd, Johanna; Myers-Smith, Isla H.; Prowse, Terry D.; Vincent, Warwick F.; Wookey, Philip A.

    2016-03-01

    Numerous international scientific assessments and related articles have, during the last decade, described the observed and potential impacts of climate change as well as other related environmental stressors on Arctic ecosystems. There is increasing recognition that observed and projected changes in freshwater sources, fluxes, and storage will have profound implications for the physical, biogeochemical, biological, and ecological processes and properties of Arctic terrestrial and freshwater ecosystems. However, a significant level of uncertainty remains in relation to forecasting the impacts of an intensified hydrological regime and related cryospheric change on ecosystem structure and function. As the terrestrial and freshwater ecology component of the Arctic Freshwater Synthesis, we review these uncertainties and recommend enhanced coordinated circumpolar research and monitoring efforts to improve quantification and prediction of how an altered hydrological regime influences local, regional, and circumpolar-level responses in terrestrial and freshwater systems. Specifically, we evaluate (i) changes in ecosystem productivity; (ii) alterations in ecosystem-level biogeochemical cycling and chemical transport; (iii) altered landscapes, successional trajectories, and creation of new habitats; (iv) altered seasonality and phenological mismatches; and (v) gains or losses of species and associated trophic interactions. We emphasize the need for developing a process-based understanding of interecosystem interactions, along with improved predictive models. We recommend enhanced use of the catchment scale as an integrated unit of study, thereby more explicitly considering the physical, chemical, and ecological processes and fluxes across a full freshwater continuum in a geographic region and spatial range of hydroecological units (e.g., stream-pond-lake-river-near shore marine environments).

  12. Stimulation of microbial nitrogen cycling in aquatic ecosystems by benthic macrofauna: mechanisms and environmental implications

    Science.gov (United States)

    Stief, P.

    2013-12-01

    Invertebrate animals that live at the bottom of aquatic ecosystems (i.e., benthic macrofauna) are important mediators between nutrients in the water column and microbes in the benthos. The presence of benthic macrofauna stimulates microbial nutrient dynamics through different types of animal-microbe interactions, which potentially affect the trophic status of aquatic ecosystems. This review contrasts three types of animal-microbe interactions in the benthos of aquatic ecosystems: (i) ecosystem engineering, (ii) grazing, and (iii) symbiosis. Their specific contributions to the turnover of fixed nitrogen (mainly nitrate and ammonium) and the emission of the greenhouse gas nitrous oxide are evaluated. Published data indicate that ecosystem engineering by sediment-burrowing macrofauna stimulates benthic nitrification and denitrification, which together allows fixed nitrogen removal. However, the release of ammonium from sediments is enhanced more strongly than the sedimentary uptake of nitrate. Ecosystem engineering by reef-building macrofauna increases nitrogen retention and ammonium concentrations in shallow aquatic ecosystems, but allows organic nitrogen removal through harvesting. Grazing by macrofauna on benthic microbes apparently has small or neutral effects on nitrogen cycling. Animal-microbe symbioses provide abundant and distinct benthic compartments for a multitude of nitrogen-cycle pathways. Recent studies reveal that ecosystem engineering, grazing, and symbioses of benthic macrofauna significantly enhance nitrous oxide emission from shallow aquatic ecosystems. The beneficial effect of benthic macrofauna on fixed nitrogen removal through coupled nitrification-denitrification can thus be offset by the concurrent release of (i) ammonium that stimulates aquatic primary production and (ii) nitrous oxide that contributes to global warming. Overall, benthic macrofauna intensifies the coupling between benthos, pelagial, and atmosphere through enhanced turnover and

  13. Riparian spiders as sentinels of PCB contamination across heterogeneous aquatic ecosystems

    Science.gov (United States)

    Riparian spiders are being used increasingly to track spatial patterns of contaminants in and fluxing from aquatic ecosystems. However, our understanding of the circumstances under which spiders are effective sentinels of aquatic pollution is limited. The present study tests the ...

  14. Biological indication in aquatic ecosystems. Biological indication in limnic and coastal ecosystems - fundamentals, techniques, methodology

    International Nuclear Information System (INIS)

    Gunkel, G.

    1994-01-01

    Biological methods of water quality evaluation today form an integral part of environmental monitoring and permit to continuously monitor the condition of aquatic ecosystems. They indicate both improvements in water quality following redevelopment measures, and the sometimes insidious deterioration of water quality. This book on biological indication in aquatic ecosystems is a compendium of measurement and evaluation techniques for limnic systems by means of biological parameters. At present, however, an intense discussion of biological evaluation techniques is going on, for one thing as a consequence of the German reunification and the need to unify evaluation techniques, and for another because of harmonizations within the European Community. (orig./EF) [de

  15. Aquatic ecosystem characterisation strategy at a repository site

    Energy Technology Data Exchange (ETDEWEB)

    Kangasniemi, Ville; Ikonen, Ari T.K. [Environmental Research and Assessment EnviroCase, Ltd., Hallituskatu 1 D 4, 28100 Pori (Finland); Lahdenperae, Anne-Maj [Saanio and Riekkola Oy, Laulukuja 4, 00420 Helsinki (Finland); Kirkkala, Teija [Pyhaejaervi Institute, Sepaentie 7, 27500 Kauttua (Finland); Koivunen, Sari [Water and Environment Research of South-West Finland, Telekatu 16, 20360 Turku (Finland)

    2014-07-01

    Olkiluoto Island on the western coast of Finland has been selected as a repository site for spent nuclear fuel disposal. According to regulatory requirements, the safety assessment for the repository should have an assessment timeframe of several millennia. Due to the post-glacial land uplift, the relatively shallow sea areas around Olkiluoto Island will change gradually to lakes, rivers and terrestrial areas. As there are no limnic systems at present Olkiluoto site, the reference area was delineated and reference lakes and rivers were selected as an analogue. For the modelling of the transport and accumulation of possible radionuclide releases in the surface environment, aquatic ecosystems were identified and divided into biotopes. Despite the number of available templates, the division of aquatic environment for the biosphere assessment of the Olkiluoto spent fuel repository was necessary to made separately. In this contribution, the processes behind the identification of aquatic ecosystems (e.g. legislation, physical and chemical properties) together with the biotope selection methodology (e.g. light and bottom conditions) and the challenges related to the amount of variable input parameters for each biotope in the modelling are presented. (authors)

  16. Risk Assessment Considerations for Veterinary Medicines in Aquatic Ecosystems

    Science.gov (United States)

    This chapter provides a critical evaluation of prospective and retrospective risk assessment approaches for veterinary medicines in aquatic ecosystems and provides recommendations for possible alternative approaches for hazard characterization.

  17. Exploratory Hydrocarbon Drilling Impacts to Arctic Lake Ecosystems

    Science.gov (United States)

    Thienpont, Joshua R.; Kokelj, Steven V.; Korosi, Jennifer B.; Cheng, Elisa S.; Desjardins, Cyndy; Kimpe, Linda E.; Blais, Jules M.; Pisaric, Michael FJ.; Smol, John P.

    2013-01-01

    Recent attention regarding the impacts of oil and gas development and exploitation has focused on the unintentional release of hydrocarbons into the environment, whilst the potential negative effects of other possible avenues of environmental contamination are less well documented. In the hydrocarbon-rich and ecologically sensitive Mackenzie Delta region (NT, Canada), saline wastes associated with hydrocarbon exploration have typically been disposed of in drilling sumps (i.e., large pits excavated into the permafrost) that were believed to be a permanent containment solution. However, failure of permafrost as a waste containment medium may cause impacts to lakes in this sensitive environment. Here, we examine the effects of degrading drilling sumps on water quality by combining paleolimnological approaches with the analysis of an extensive present-day water chemistry dataset. This dataset includes lakes believed to have been impacted by saline drilling fluids leaching from drilling sumps, lakes with no visible disturbances, and lakes impacted by significant, naturally occurring permafrost thaw in the form of retrogressive thaw slumps. We show that lakes impacted by compromised drilling sumps have significantly elevated lakewater conductivity levels compared to control sites. Chloride levels are particularly elevated in sump-impacted lakes relative to all other lakes included in the survey. Paleolimnological analyses showed that invertebrate assemblages appear to have responded to the leaching of drilling wastes by a discernible increase in a taxon known to be tolerant of elevated conductivity coincident with the timing of sump construction. This suggests construction and abandonment techniques at, or soon after, sump establishment may result in impacts to downstream aquatic ecosystems. With hydrocarbon development in the north predicted to expand in the coming decades, the use of sumps must be examined in light of the threat of accelerated permafrost thaw, and the

  18. Pulses, linkages, and boundaries of coupled aquatic-terrestrial ecosystems

    Science.gov (United States)

    Tockner, K.

    2009-04-01

    Riverine floodplains are linked ecosystems where terrestrial and aquatic habitats overlap, creating a zone where they interact, the aquatic-terrestrial interface. The interface or boundary between aquatic and terrestrial habitats is an area of transition, contact or separation; and connectivity between these habitats may be defined as the ease with which organisms, matter or energy traverse these boundaries. Coupling of aquatic and terrestrial systems generates intertwining food webs, and we may predict that coupled systems are more productive than separated ones. For example, riparian consumers (aquatic and terrestrial) have alternative prey items external to their respective habitats. Such subsidized assemblages occupy a significant higher trophic position than assemblages in unsubsidized areas. Further, cross-habitat linkages are often pulsed; and even small pulses of a driver (e.g. short-term increases in flow) can cause major resource pulses (i.e. emerging aquatic insects) that control the recipient community. For example, short-term additions of resources, simulating pulsed inputs of aquatic food to terrestrial systems, suggest that due to resource partitioning and temporal separation among riparian arthropod taxa the resource flux from the river to the riparian zone increases with increasing riparian consumer diversity. I will discuss the multiple transfer and transformation processes of matter and organisms across aquatic-terrestrial habitats. Key landscape elements along river corridors are vegetated islands that function as instream riparian areas. Results from Central European rivers demonstrate that islands are in general more natural than fringing riparian areas, contribute substantially to total ecotone length, and create diverse habitats in the aquatic and terrestrial realm. In braided rivers, vegetated islands are highly productive landscape elements compared to the adjacent aquatic area. However, aquatic habitats exhibit a much higher decomposition

  19. Light-stress avoidance mechanisms in a Sphagnum-dominated wet coastal Arctic tundra ecosystem in Alaska.

    Science.gov (United States)

    Zona, D; Oechel, Walter C; Richards, James H; Hastings, Steven; Kopetz, Irene; Ikawa, Hiroki; Oberbauer, Steven

    2011-03-01

    The Arctic experiences a high-radiation environment in the summer with 24-hour daylight for more than two months. Damage to plants and ecosystem metabolism can be muted by overcast conditions common in much of the Arctic. However, with climate change, extreme dry years and clearer skies could lead to the risk of increased photoxidation and photoinhibition in Arctic primary producers. Mosses, which often exceed the NPP of vascular plants in Arctic areas, are often understudied. As a result, the effect of specific environmental factors, including light, on these growth forms is poorly understood. Here, we investigated net ecosystem exchange (NEE) at the ecosystem scale, net Sphagnum CO2 exchange (NSE), and photoinhibition to better understand the impact of light on carbon exchange from a moss-dominated coastal tundra ecosystem during the summer season 2006. Sphagnum photosynthesis showed photoinhibition early in the season coupled with low ecosystem NEE. However, later in the season, Sphagnum maintained a significant CO2 uptake, probably for the development of subsurface moss layers protected from strong radiation. We suggest that the compact canopy structure of Sphagnum reduces light penetration to the subsurface layers of the moss mat and thereby protects the active photosynthetic tissues from damage. This stress avoidance mechanism allowed Sphagnum to constitute a significant percentage (up to 60%) of the ecosystem net daytime CO2 uptake at the end of the growing season despite the high levels of radiation experienced.

  20. Benthic algae compensate for phytoplankton losses in large aquatic ecosystems.

    Science.gov (United States)

    Brothers, Soren; Vadeboncoeur, Yvonne; Sibley, Paul

    2016-12-01

    Anthropogenic activities can induce major trophic shifts in aquatic systems, yet we have an incomplete understanding of the implication of such shifts on ecosystem function and on primary production (PP) in particular. In recent decades, phytoplankton biomass and production in the Laurentian Great Lakes have declined in response to reduced nutrient concentrations and invasive mussels. However, the increases in water clarity associated with declines in phytoplankton may have positive effects on benthic PP at the ecosystem scale. Have these lakes experienced oligotrophication (a reduction of algal production), or simply a shift in autotrophic structure with no net decline in PP? Benthic contributions to ecosystem PP are rarely measured in large aquatic systems, but our calculations based on productivity rates from the Great Lakes indicate that a significant proportion (up to one half, in Lake Huron) of their whole-lake production may be benthic. The large declines (5-45%) in phytoplankton production in the Great Lakes from the 1970s to 2000s may be substantially compensated by benthic PP, which increased by up to 190%. Thus, the autotrophic productive capacity of large aquatic ecosystems may be relatively resilient to shifts in trophic status, due to a redirection of production to the near-shore benthic zone, and large lakes may exhibit shifts in autotrophic structure analogous to the regime shifts seen in shallow lakes. © 2016 John Wiley & Sons Ltd.

  1. Effects of ionizing radiation on aquatic organisms and ecosystems

    International Nuclear Information System (INIS)

    1976-01-01

    A panel of experts in November 1971 specifically considered the effects of ionizing radiation on aquatic organisms and ecosystems and formulated detailed suggestions for research in the area. A further panel meeting took place in April 1974. The results of the work are presented in this report which is divided into 3 chapters in the first chapter the concentrations of natural and artificial radionuclides in aquatic environments and the radiation dose rates received by aquatic organisms are discussed. In particular, simple dosimetry models for phytoplankton, zooplankton, mollusca, crustacea and fish are presented which permit the estimation of the dose rates from incorporated radionuclides and from radionuclides in the external environment. In the second chapter the somatic and genetic effects of ionizing radiation on aquatic organisms are reviewed. Somatic effects are discussed separately as effects due to short-term (acute) exposure to near-lethal doses of radiation. Great attention is paid to the effects due to long-term (chronic) exposure at lower doses rates. Consideration is given to behaviour, repair mechanisms and metabolic stimulation after exposure, and also the influence of environmental factors on radiation effects. In the third chapter the potential effects of low-level irradiation on aquatic populations are considered. First, the possible consequences of somatic effects on egg and larval mortality, stock-recruitment, fecundity and ecosystem stability are discussed. Subsequently, the assessment of genetic effects as they relate to population genetics and increased mutation rates are considered

  2. Development phase of corrosion program in aquatic ecosystems

    International Nuclear Information System (INIS)

    Moreira, P.A.

    1983-01-01

    Providences adopted to implantation of corrosion program in aquatic ecosystems, developed by CDTN, NUCLEN and FURNAS are presented. The area, the atmospheric exposition station of Angra dos Reis, the marine floating, the material to test specimen and its preparation are described. (C.M.) [pt

  3. A community-based framework for aquatic ecosystem models

    NARCIS (Netherlands)

    Trolle, D.; Hamilton, D.P.; Hipsey, M.R.; Bolding, K.; Bruggeman, J.; Mooij, W.M.; Janse, J.H.; Nielsen, A.; Jeppesen, E.; Elliott, J.A.; Makler-Pick, V.; Petzoldt, T.; Rinke, K.; Flindt, M.R.; Arhonditsis, G.B.; Gal, G.; Bjerring, R.; Tominaga, K.; Hoen, 't J.; Downing, A.S.; Marques, D.M.; Fragoso, C.R.; Sondergaard, M.; Hanson, P.C.

    2012-01-01

    Here, we communicate a point of departure in the development of aquatic ecosystem models, namely a new community-based framework, which supports an enhanced and transparent union between the collective expertise that exists in the communities of traditional ecologists and model developers. Through a

  4. Mercury bioaccumulation along food webs in temperate aquatic ecosystems colonized by aquatic macrophytes in south western France.

    Science.gov (United States)

    Gentès, Sophie; Maury-Brachet, Régine; Guyoneaud, Rémy; Monperrus, Mathilde; André, Jean-Marc; Davail, Stéphane; Legeay, Alexia

    2013-05-01

    Mercury (Hg) is considered as an important pollutant for aquatic systems as its organic form, methylmercury (MeHg), is easily bioaccumulated and bioamplified along food webs. In various ecosystems, aquatic periphyton associated with macrophyte was identified as an important place for Hg storage and methylation by microorganisms. Our study concerns temperate aquatic ecosystems (South Western France) colonized by invasive macrophytes and characterized by high mercury methylation potentials. This work establishes original data concerning Hg bioaccumulation in organisms (plants, crustaceans, molluscs and fish) from five contrasting ecosystems. For low trophic level species, total Hg (THg) concentrations were low (from 27±2ngTHgg(-1)dw in asiatic clam Corbicula fluminea to 418±114ngTHgg(-1)dw in crayfish Procambarus clarkii). THg concentrations in some carnivorous fish (high trophic level) were close to or exceeded the International Marketing Level (IML) with values ranging from 1049±220ngTHgg(-1)dw in pike perch muscle (Sander lucioperca) to 3910±1307ngTHgg(-1)dw in eel muscle (Anguilla Anguilla). Trophic levels for the individuals were also evaluated through stable isotope analysis, and linked to Hg concentrations of organisms. A significant Hg biomagnification (r(2)= 0.9) was observed in the Aureilhan lake, despite the absence of top predator fish. For this site, Ludwigia sp. periphyton, as an entry point of Hg into food webs, is a serious hypothesis which remains to be confirmed. This study provides a first investigation of Hg transfer in the ecosystems of south western France and allows the assessment of the risk associated with the presence of Hg in aquatic food webs. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Riparian spiders as sentinels of polychlorinated biphenyl contamination across heterogeneous aquatic ecosystems

    Science.gov (United States)

    Kraus, Johanna M.; Gibson, Polly P.; Walters, David M.; Mills, Marc A.

    2017-01-01

    Riparian spiders are being used increasingly to track spatial patterns of contaminants in and fluxing from aquatic ecosystems.However, our understanding of the circumstances under which spiders are effective sentinels of aquatic pollution is limited. The present study tests the hypothesis that riparian spiders may be effectively used to track spatial patterns of sediment pollution by polychlorinated biphenyls (PCBs) in aquatic ecosystems with high habitat heterogeneity. The spatial pattern of ΣPCB concentrations in 2 common families of riparian spiders sampled in 2011 to 2013 generally tracked spatial variation in sediment ΣPCBs across all sites within the Manistique River Great Lakes Area of Concern (AOC), a rivermouth ecosystem located on the south shore of the Upper Peninsula, Manistique (MI,USA) that includes harbor, river, backwater, and lake habitats. Sediment ΣPCB concentrations normalized for total organic carbon explained 41% of the variation in lipid-normalized spider ΣPCB concentrations across 11 sites. Furthermore, 2 common riparian spider taxa (Araneidae and Tetragnathidae) were highly correlated (r2> 0.78) and had similar mean ΣPCB concentrations when averaged acrossall years. The results indicate that riparian spiders may be useful sentinels of relative PCB availability to aquatic and riparian food webs in heterogeneous aquatic ecosystems like rivermouths where habitat and contaminant variability may make the use of aquatic taxa lesseffective. Furthermore, the present approach appears robust to heterogeneity in shoreline development and riparian vegetation that support different families of large web-building spiders. Environ Toxicol Chem 2016;9999:1–9. Published 2016 Wiley Periodicals, Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America.

  6. Regionalizing Aquatic Ecosystems Based on the River Subbasin Taxonomy Concept and Spatial Clustering Techniques

    Directory of Open Access Journals (Sweden)

    Jiahu Zhao

    2011-11-01

    Full Text Available Aquatic ecoregions were increasingly used as spatial units for aquatic ecosystem management at the watershed scale. In this paper, the principle of including land area, comprehensiveness and dominance, conjugation and hierarchy were selected as regionalizing principles. Elevation and drainage density were selected as the regionalizing indicators for the delineation of level I aquatic ecoregions, and percent of construction land area, percent of cultivated land area, soil type and slope for the level II. Under the support of GIS technology, the spatial distribution maps of the two indicators for level I and the four indicators for level II aquatic ecoregion delineation were generated from the raster data based on the 1,107 subwatersheds. River subbasin taxonomy concept, two-step spatial clustering analysis approach and manual-assisted method were used to regionalize aquatic ecosystems in the Taihu Lake watershed. Then the Taihu Lake watershed was divided into two level I aquatic ecoregions, including Ecoregion I1 and Ecoregion I2, and five level II aquatic subecoregions, including Subecoregion II11, Subecoregion II12, Subecoregion II21, Subecoregion II22 and Subecoregion II23. Moreover, the characteristics of the two level I aquatic ecoregions and five level II aquatic subecoregions in the Taihu Lake watershed were summarized, showing that there were significant differences in topography, socio-economic development, water quality and aquatic ecology, etc. The results of quantitative comparison of aquatic life also indicated that the dominant species of fish, benthic density, biomass, dominant species, Shannon-Wiener diversity index, Margalef species richness index, Pielou evenness index and ecological dominance showed great spatial variability between the two level I aquatic ecoregions and five level II aquatic subecoregions. It reflected the spatial heterogeneities and the uneven natures of aquatic ecosystems in the Taihu Lake watershed.

  7. Trophic pathways supporting Arctic grayling in a small stream on the Arctic Coastal Plain, Alaska

    Science.gov (United States)

    McFarland, Jason J.; Wipfli, Mark S.; Whitman, Matthew S.

    2018-01-01

    Beaded streams are prominent across the Arctic Coastal Plain (ACP) of Alaska, yet prey flow and food web dynamics supporting fish inhabiting these streams are poorly understood. Arctic grayling (Thymallus arcticus) are a widely distributed upper-level consumer on the ACP and migrate into beaded streams to forage during the short 3-month open-water season. We investigated energy pathways and key prey resources that support grayling in a representative beaded stream, Crea Creek. We measured terrestrial invertebrates entering the stream from predominant riparian vegetation types, prey types supporting a range of fish size classes, and how riparian plants and fish size influenced foraging habits. We found that riparian plants influenced the quantity of terrestrial invertebrates entering Crea Creek; however, these differences were not reflected in fish diets. Prey type and size ingested varied with grayling size and season. Small grayling (15 cm FL) foraged most heavily on ninespine stickleback (Pungitius pungitius) throughout the summer, indicating that grayling can be insectivorous and piscivorous, depending on size. These findings underscore the potential importance of small streams in Arctic ecosystems as key summer foraging habitats for fish. Understanding trophic pathways supporting stream fishes in these systems will help interpret whether and how petroleum development and climate change may affect energy flow and stream productivity, terrestrial–aquatic linkages and fishes in Arctic ecosystems.

  8. Stimulation of microbial nitrogen cycling in aquatic ecosystems by benthic macrofauna: mechanisms and environmental implications

    DEFF Research Database (Denmark)

    Stief, P.

    2013-01-01

    (mainly nitrate and ammonium) and the emission of the greenhouse gas nitrous oxide are evaluated. Published data indicate that ecosystem engineering by sediment-burrowing macrofauna stimulates benthic nitrification and denitrification, which together allows fixed nitrogen removal. However, the release...... enhance nitrous oxide emission from shallow aquatic ecosystems. The beneficial effect of benthic macrofauna on fixed nitrogen removal through coupled nitrification-denitrification can thus be offset by the concurrent release of (i) ammonium that stimulates aquatic primary production and (ii) nitrous oxide...... of ammonium from sediments is enhanced more strongly than the sedimentary uptake of nitrate. Ecosystem engineering by reef-building macrofauna increases nitrogen retention and ammonium concentrations in shallow aquatic ecosystems, but allows organic nitrogen removal through harvesting. Grazing by macrofauna...

  9. Flux of aquatic insect productivity to land: comparison of lentic and lotic ecosystems.

    Science.gov (United States)

    Gratton, Claudio; Vander Zanden, M Jake

    2009-10-01

    Recently, food web studies have started exploring how resources from one habitat or ecosystem influence trophic interactions in a recipient ecosystem. Benthic production in lakes and streams can be exported to terrestrial habitats via emerging aquatic insects and can therefore link aquatic and terrestrial ecosystems. In this study, we develop a general conceptual model that highlights zoobenthic production, insect emergence, and ecosystem geometry (driven principally by area-to-edge ratio) as important factors modulating the flux of aquatic production across the ecosystem boundary. Emerging insect flux, defined as total insect production emerging per meter of shoreline (g C x m(-1) x yr(-1)) is then distributed inland using decay functions and is used to estimate insect deposition rate to terrestrial habitats (g C x m(-2) x yr(-1)). Using empirical data from the literature, we simulate insect fluxes across the water-land ecosystem boundary to estimate the distribution of fluxes and insect deposition inland for lakes and streams. In general, zoobenthos in streams are more productive than in lakes (6.67 vs. 1.46 g C x m(-2) x yr(-1)) but have lower insect emergence to aquatic production ratios (0.19 vs. 0.30). However, as stream width is on average smaller than lake radius, this results in flux (F) estimates 2 1/2 times greater for lakes than for streams. Ultimately, insect deposition onto land (within 100 m of shore) adjacent to average-sized lakes (10-ha lakes, 0.021 g C x m(-2) x yr(-1)) is greater than for average-sized streams (4 m width, 0.002 g C x m(-2) x yr(-1)) used in our comparisons. For the average lake (both in size and productivity), insect deposition rate approaches estimates of terrestrial secondary production in low-productivity ecosystems (e.g., deserts and tundra, approximately 0.07 g C x m(-2) x yr(-1)). However, larger lakes (1300 ha) and streams (16 m) can have average insect deposition rates (approximately 0.01-2.4 g C x m(-2) x yr(-1

  10. Impacts of fire on nitrogen cycling in aquatic and terrestrial ecosystems in the Yukon-Kuskokwim River Delta, AK

    Science.gov (United States)

    Schade, J. D.; Jardine, L. E.; Bristol, E. M.; Navarro-Perez, E.; Melton, S.; Jimmie, J. A.; Natali, S.; Mann, P. J.; Holmes, R. M.

    2017-12-01

    Global climate change is having a disproportionate impact on northern high latitudes, including rapid increases in temperature, changes in precipitation, and increasing fire frequency and severity. Wildfires have been shown to strongly influence ecosystem processes through acceleration of permafrost thaw and increased nitrogen (N) availability, the effects of which may increase gaseous loss of carbon (C) to the atmosphere, increase primary production by alleviating N limitation, or both. The extent of these fire impacts has not been well-documented in the Arctic, particularly in areas of discontinuous permafrost. In 2015, the Yukon-Kuskokwim River Delta (YK Delta) in southwestern Alaska experienced the largest fire season in recorded history, providing an opportunity to study wildfire impacts on an area particularly vulnerable to permafrost thaw. Our objectives were to study the impacts of these fires on nitrogen availability in a range of land cover classes, including peat plateaus, channel fens, and aquatic ecosystems distributed across the landscapes. We sampled soils from several vegetation patches on burned and unburned peat plateaus, and soil and surface waters from fens, small ponds, and streams downslope of these sites. All water samples were filtered through GFF filters in the field. Soils were transported frozen to the Woods Hole Research Center and extracted in KCl. All water samples and extracts were analyzed for NH4 and NO3 concentrations. We found substantially higher concentrations of extractable NH4 in burned soils, but very little extractable NO3 in either burned or unburned soils. Water samples also showed higher NH4 in aquatic ecosystems in burned watersheds, but, in contrast to soils, showed relatively high NO3 concentrations, particularly in waters from lower landscape positions. Overall, aquatic ecosystems exhibited higher NO3: NH4 ratios than soil extractions, and increasing NO3: NH4 downslope. These results suggest significant export of

  11. Fuzzy model for risk assessment of persistent organic pollutants in aquatic ecosystems

    International Nuclear Information System (INIS)

    Seguí, X.; Pujolasus, E.; Betrò, S.; Àgueda, A.; Casal, J.; Ocampo-Duque, W.; Rudolph, I.; Barra, R.; Páez, M.; Barón, E.; Eljarrat, E.; Barceló, D.; Darbra, R.M.

    2013-01-01

    We developed a model for evaluating the environmental risk of persistent organic pollutants (POPs) to aquatic organisms. The model is based on fuzzy theory and uses information provided by international experts through a questionnaire. It has been tested in two case studies for a particular type of POPs: brominated flame retardants (BFRs). The first case study is related to the EU-funded AQUATERRA project, with sampling campaigns carried out in two Ebro tributaries in Spain (the Cinca and Vero Rivers). The second one, named the BROMACUA project, assessed different aquatic ecosystems in Chile (San Vicente Bay) and Colombia (Santa Marta Marsh). In both projects, the BFRs under study were polybrominated diphenyl ethers (PBDEs) and hexabromocyclododecane (HBCD). However, the model can be extrapolated to other POPs and to different aquatic ecosystems to provide useful results for decision-makers. -- The risk of POPs for aquatic organisms was assessed at several sites around the world, using a fuzzy-based model to provide useful results for decision-makers

  12. Riparian spiders as sentinels of polychlorinated biphenyl contamination across heterogeneous aquatic ecosystems.

    Science.gov (United States)

    Kraus, Johanna M; Gibson, Polly P; Walters, David M; Mills, Marc A

    2017-05-01

    Riparian spiders are being used increasingly to track spatial patterns of contaminants in and fluxing from aquatic ecosystems. However, our understanding of the circumstances under which spiders are effective sentinels of aquatic pollution is limited. The present study tests the hypothesis that riparian spiders may be effectively used to track spatial patterns of sediment pollution by polychlorinated biphenyls (PCBs) in aquatic ecosystems with high habitat heterogeneity. The spatial pattern of ΣPCB concentrations in 2 common families of riparian spiders sampled in 2011 to 2013 generally tracked spatial variation in sediment ΣPCBs across all sites within the Manistique River Great Lakes Area of Concern (AOC), a rivermouth ecosystem located on the south shore of the Upper Peninsula, Manistique (MI, USA) that includes harbor, river, backwater, and lake habitats. Sediment ΣPCB concentrations normalized for total organic carbon explained 41% of the variation in lipid-normalized spider ΣPCB concentrations across 11 sites. Furthermore, 2 common riparian spider taxa (Araneidae and Tetragnathidae) were highly correlated (r 2  > 0.78) and had similar mean ΣPCB concentrations when averaged across all years. The results indicate that riparian spiders may be useful sentinels of relative PCB availability to aquatic and riparian food webs in heterogeneous aquatic ecosystems like rivermouths where habitat and contaminant variability may make the use of aquatic taxa less effective. Furthermore, the present approach appears robust to heterogeneity in shoreline development and riparian vegetation that support different families of large web-building spiders. Environ Toxicol Chem 2017;36:1278-1286. Published 2016 Wiley Periodicals, Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America. Published 2016 Wiley Periodicals, Inc. on behalf of SETAC. This article is a US government work and, as such, is in

  13. Rough-legged buzzards, Arctic foxes and red foxes in a tundra ecosystem without rodents.

    Directory of Open Access Journals (Sweden)

    Ivan Pokrovsky

    Full Text Available Small rodents with multi-annual population cycles strongly influence the dynamics of food webs, and in particular predator-prey interactions, across most of the tundra biome. Rodents are however absent from some arctic islands, and studies on performance of arctic predators under such circumstances may be very instructive since rodent cycles have been predicted to collapse in a warming Arctic. Here we document for the first time how three normally rodent-dependent predator species-rough-legged buzzard, arctic fox and red fox - perform in a low-arctic ecosystem with no rodents. During six years (in 2006-2008 and 2011-2013 we studied diet and breeding performance of these predators in the rodent-free Kolguev Island in Arctic Russia. The rough-legged buzzards, previously known to be a small rodent specialist, have only during the last two decades become established on Kolguev Island. The buzzards successfully breed on the island at stable low density, but with high productivity based on goslings and willow ptarmigan as their main prey - altogether representing a novel ecological situation for this species. Breeding density of arctic fox varied from year to year, but with stable productivity based on mainly geese as prey. The density dynamic of the arctic fox appeared to be correlated with the date of spring arrival of the geese. Red foxes breed regularly on the island but in very low numbers that appear to have been unchanged over a long period - a situation that resemble what has been recently documented from Arctic America. Our study suggests that the three predators found breeding on Kolguev Island possess capacities for shifting to changing circumstances in low-arctic ecosystem as long as other small - medium sized terrestrial herbivores are present in good numbers.

  14. A Worldwide Web-portal for Aquatic Mesocosm Facilities: WWW.MESOCOSM.EU

    Science.gov (United States)

    Berger, S. A.; Nejstgaard, J. C.

    2016-02-01

    Experimental mesocosms are valuable tools to fill the gap between highly controlled/replicated lab experiments and uncontrolled/non-replicated natural environments such as rivers, lakes and oceans. WWW.MESOCOSM.EU is an open web-portal for leading aquatic mesocosm facilities around the world. It was created within the FP7 EU-project MESOAQUA (A network of leading MESOcosm facilities to advance the studies of future AQUAtic ecosystems from the Arctic to the Mediterranean). The goal of the portal is to increase international knowledge about existing mesocosm facilities, including information on locations, environment, equipment, contacts, research opportunities and mesocosm-based publications. MESOCOSM.EU specifically aims to be a tool to enhance the quality of research by facilitating international cooperative network building, announcement of new research initiatives, transfer of best practice, and dissemination of knowledge, public information and press releases. As an open platform for all aquatic ecosystem scale science (marine and freshwater), MESOCOSM.EU aims to fill the lack of a centralized, coordinating virtual infrastructure for international aquatic mesocosm research, from the mountains to the ocean and from polar to tropical regions.

  15. Review on Periphyton as Mediator of Nutrient Transfer in Aquatic Ecosystems

    Directory of Open Access Journals (Sweden)

    Surjya K. Saikia

    2011-12-01

    Full Text Available In the studies of aquatic ecology, periphyton has been uncared for despite its vital role in nutrient uptake and transfer to the upper trophic organisms. Being the component of food chain as attached organism it takes part in nutrient cycling in the ecosystem like that of suspended planktonic counterparts. The present review, with an aim to understand the role of periphyton in nutrient transfer from benthic environment to upper trophic level, focuses many aspects of periphyton-nutrient relationship based on available literatures. It also attempts to redefine periphyton, as a part of biofilm, harboring nutrient components like protein, fat and carbohydrate preferably in its extracellular polymeric substance (EPS, cyanobacteria, diatom and other algal communities. In addition to physical processes, nutrient uptake by periphyton is catalyzed by enzymes like Nitrogen Reductase and Alkaline Phosphatase from the environment. This uptake and transfer is further regulated by periphytic C: nutrient (N or P stoichiometry, colonization time, distribution of periphyton cover on sediments and macrophytes, macronutrient concentration, grazing, sloughing, temperature, and advective transport. The Carbon (C sources of periphyton are mainly dissolve organic matter and photosynthetic C that enters into higher trophic levels through predation and transfers as C-rich nutrient components. Despite of emerging interests on utilizing periphyton as nutrient transfer tool in aquatic ecosystem, the major challenges ahead for modern aquatic biologists lies on determining nutrient uptake and transfer rate of periphyton, periphytic growth and simulating nutrient models of periphyton to figure a complete energy cycle in aquatic ecosystem.

  16. Rare earth elements in freshwater, marine, and terrestrial ecosystems in the eastern Canadian Arctic.

    Science.gov (United States)

    MacMillan, Gwyneth Anne; Chételat, John; Heath, Joel P; Mickpegak, Raymond; Amyot, Marc

    2017-10-18

    Few ecotoxicological studies exist for rare earth elements (REEs), particularly field-based studies on their bioaccumulation and food web dynamics. REE mining has led to significant environmental impacts in several countries (China, Brazil, U.S.), yet little is known about the fate and transport of these contaminants of emerging concern. Northern ecosystems are potentially vulnerable to REE enrichment from prospective mining projects at high latitudes. To understand how REEs behave in remote northern food webs, we measured REE concentrations and carbon and nitrogen stable isotope ratios (∂ 15 N, ∂ 13 C) in biota from marine, freshwater, and terrestrial ecosystems of the eastern Canadian Arctic (N = 339). Wildlife harvesting and tissue sampling was partly conducted by local hunters through a community-based monitoring project. Results show that REEs generally follow a coherent bioaccumulation pattern for sample tissues, with some anomalies for redox-sensitive elements (Ce, Eu). Highest REE concentrations were found at low trophic levels, especially in vegetation and aquatic invertebrates. Terrestrial herbivores, ringed seal, and fish had low total REE levels in muscle tissue (∑REE for 15 elements <0.1 nmol g -1 ), yet accumulation was an order of magnitude higher in liver tissues. Age- and length-dependent REE accumulation also suggest that REE uptake is faster than elimination for some species. Overall, REE bioaccumulation patterns appear to be species- and tissue-specific, with limited potential for biomagnification. This study provides novel data on the behaviour of REEs in ecosystems and will be useful for environmental impact assessment of REE enrichment in northern regions.

  17. Controlled Environments Enable Adaptive Management in Aquatic Ecosystems Under Altered Environments

    Science.gov (United States)

    Bubenheim, David L.

    2016-01-01

    Ecosystems worldwide are impacted by altered environment conditions resulting from climate, drought, and land use changes. Gaps in the science knowledge base regarding plant community response to these novel and rapid changes limit both science understanding and management of ecosystems. We describe how CE Technologies have enabled the rapid supply of gap-filling science, development of ecosystem simulation models, and remote sensing assessment tools to provide science-informed, adaptive management methods in the impacted aquatic ecosystem of the California Sacramento-San Joaquin River Delta. The Delta is the hub for California's water, supplying Southern California agriculture and urban communities as well as the San Francisco Bay area. The changes in environmental conditions including temperature, light, and water quality and associated expansion of invasive aquatic plants negatively impact water distribution and ecology of the San Francisco Bay/Delta complex. CE technologies define changes in resource use efficiencies, photosynthetic productivity, evapotranspiration, phenology, reproductive strategies, and spectral reflectance modifications in native and invasive species in response to altered conditions. We will discuss how the CE technologies play an enabling role in filling knowledge gaps regarding plant response to altered environments, parameterization and validation of ecosystem models, development of satellite-based, remote sensing tools, and operational management strategies.

  18. Delayed responses of an Arctic ecosystem to an extremely dry summer: impacts on net ecosystem exchange and vegetation functioning

    Science.gov (United States)

    Zona, D.; Lipson, D. A.; Richards, J. H.; Phoenix, G. K.; Liljedahl, A. K.; Ueyama, M.; Sturtevant, C. S.; Oechel, W. C.

    2013-12-01

    The importance and mode of action of extreme events on the global carbon budget are inadequately understood. This includes the differential impact of extreme events on various ecosystem components, lag effects, recovery times, and compensatory processes. Summer 2007 in Barrow, Arctic Alaska, experienced unusually high air temperatures (fifth warmest over a 65 yr period) and record low precipitation (lowest over a 65 yr period). These abnormal conditions resulted in strongly reduced net Sphagnum CO2 uptake, but no effect neither on vascular plant development nor on net ecosystem exchange (NEE) from this arctic tundra ecosystem. Gross primary production (GPP) and ecosystem respiration (Reco) were both generally greater during most of this extreme summer. Cumulative ecosystem C uptake in 2007 was similar to the previous summers, showing the capacity of the ecosystem to compensate in its net ecosystem exchange (NEE) despite the impact on other functions and structure such as substantial necrosis of the Sphagnum layer. Surprisingly, the lowest ecosystem C uptake (2005-2009) was observed during the 2008 summer, i.e the year directly following the extremely summer. In 2008, cumulative C uptake was ∼70% lower than prior years. This reduction cannot solely be attributed to mosses, which typically contribute with ∼40% - of the entire ecosystem C uptake. The minimum summer cumulative C uptake in 2008 suggests that the entire ecosystem experienced difficulty readjusting to more typical weather after experiencing exceptionally warm and dry conditions. Importantly, the return to a substantial cumulative C uptake occurred two summers after the extreme event, which suggest a high resilience of this tundra ecosystem. Overall, these results show a highly complex response of the C uptake and its sub-components to atypically dry conditions. The impact of multiple extreme events still awaits further investigation.

  19. Comparison of contaminants from different trophic levels and ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Dietz, R.; Riget, F. [Department of Arctic Environment, Ministry of Environment and Energy, National Environmental Research Institute, Tagensvej 135, 4 floor, DK-2200 Copenhagen (Denmark); Cleemann, M. [Department of Environmental Chemistry, Ministry of Environment and Energy, National Environmental Research Institute, Frederiksborgvej 399, DK-4000 Roskilde (Denmark); Aarkrog, A. [Risoe National Laboratory, Frederiksborgvej 399, DK-4000 Roskilde (Denmark); Johansen, P. [Department of Arctic Environment, Ministry of Environment and Energy, National Environmental Research Institute, Tagensvej 135, 4 floor, DK-2200 Copenhagen (Denmark); Hansen, J.C. [Risoe National Laboratory, Frederiksborgvej 399, DK-4000 Roskilde (Denmark)

    2000-01-17

    The present paper provides an overview of the priority contaminants and media from the Greenland part of the Arctic Monitoring and Assessment Program. Levels and accumulation patterns of heavy metals, POPs and a radionuclide (137Cs) are compared from the terrestrial, freshwater and marine ecosystems. Of the nine compounds presented, seven (Cd, Hg, Se, {sigma}PCB, {sigma}DDT, {sigma}HCH, HCB) increased in concentration towards higher trophic levels. For these contaminants the concentrations in soil and aquatic sediment were in the same order of magnitude, whereas the concentrations in marine biota were higher than found in the freshwater and terrestrial ecosystems probably due to the presence of longer food chains. Pb and 137Cs showed the reverse pattern compared with the other compounds. The concentrations in soil and aquatic sediments decreased in the order terrestrial, freshwater and marine ecosystems, which was reflected in the biota as well. Reindeer had similar or lower levels of Pb and 137Cs than lichens. Levels of Pb and 137Cs in marine biota did not show the same clear increase towards higher trophic as found for the other analysed compounds. Greenland Inuit contains considerably less mercury but higher levels of {sigma}PCB, {sigma}DDT and HCB than other Arctic marine top consumers.

  20. Increased ectomycorrhizal fungal abundance after long-term fertilization and warming of two arctic tundra ecosystems

    DEFF Research Database (Denmark)

    Clemmensen, Karina Engelbrecht; Michelsen, Anders; Jonasson, Sven Evert

    2006-01-01

    . This was caused partly by increased dominance of EM plants and partly by stimulation of EM mycelial growth. •  We conclude that cycling of carbon and nitrogen through EM fungi will increase when strongly nutrient-limited arctic ecosystems are exposed to a warmer and more nutrient-rich environment. This has...... the response in EM fungal abundance to long-term warming and fertilization in two arctic ecosystems with contrasting responses of the EM shrub Betula nana. •  Ergosterol was used as a biomarker for living fungal biomass in roots and organic soil and ingrowth bags were used to estimate EM mycelial production...

  1. Examining Ecological and Ecosystem Level Impacts of Aquatic Invasive Species in Lake Michigan Using An Ecosystem Productivity Model, LM-Eco

    Science.gov (United States)

    Ecological and ecosystem-level impacts of aquatic invasive species in Lake Michigan were examined using the Lake Michigan Ecosystem Model (LM-Eco). The LM-Eco model includes a detailed description of trophic levels and their interactions within the lower food web of Lake Michiga...

  2. Millennial-scale variability in Holocene aquatic productivity from Burial Lake, Arctic Alaska

    Science.gov (United States)

    Finkenbinder, Matthew S.; Abbott, Mark B.; Stoner, Joseph S.; Ortiz, Joseph D.; Finney, Bruce P.; Dorfman, Jason M.; Stansell, Nathan D.

    2018-05-01

    Ocean proxy records and numerous other marine and terrestrial paleorecords. Comparison of diatom productivity against a sea-ice inferred reconstruction of the Arctic Oscillation (AO) from the Beaufort Sea (Darby et al., 2012) shows that periods of reduced productivity at Burial Lake coincide with inferred positive phases of the AO (AO+). Combined with modern observations of sea ice extent and meteorological data, we hypothesize that AO + conditions and a strengthened polar jet correspond with a shortened ice-free growing season, a decrease in the availability of limiting nutrients, and lower levels of diatom production at Burial Lake. Comparison of the spectral properties between opal and the AO reconstruction reveal similar millennial scale variations with ∼1500-yr variability during the middle Holocene that transition to ∼1000-yr variability during the late Holocene. In light of these findings, we suggest the possibility that millennial variations in diatom productivity observed in the Burial Lake record are related to millennial variability in high-latitude atmospheric circulation similar to the AO. These results shed light on the sensitivity of aquatic ecosystems in northern Alaska to changes in the duration of the ice-free growing season, the availability of limiting nutrients for phytoplankton growth, and Arctic-wide atmospheric circulation dynamics over the Holocene on millennial timescales.

  3. Arctic water tracks retain phosphorus and transport ammonium

    Science.gov (United States)

    Harms, T.; Cook, C. L.; Wlostowski, A. N.; Godsey, S.; Gooseff, M. N.

    2017-12-01

    Hydrologic flowpaths propagate biogeochemical signals among adjacent ecosystems, but reactions may attenuate signals by retaining, removing, or transforming dissolved and suspended materials. The theory of nutrient spiraling describes these simultaneous reaction and transport processes, but its application has been limited to stream channels. We applied nutrient spiraling theory to water tracks, zero-order channels draining Arctic hillslopes that contain perennially saturated soils and flow at the surface either perennially or in response to precipitation. In the Arctic, experimental warming results in increased availability of nitrogen, the limiting nutrient for hillslope vegetation at the study site, which may be delivered to aquatic ecosystems by water tracks. Increased intensity of rain events, deeper snowpack, earlier snowmelt, and increasing thaw depth resulting from climate change might support increased transport of nutrients, but the reactive capacity of hillslope flowpaths, including sorption and uptake by plants and microbes, could counter transport to regulate solute flux. Characteristics of flowpaths might influence the opportunity for reaction, where slower flowpaths increase the contact time between solutes and soils or roots. We measured nitrogen and phosphorus uptake and transient storage of water tracks through the growing season and found that water tracks retain inorganic phosphorus, but transport ammonium. Nutrient uptake was unrelated to transient storage, suggesting high capacity for nutrient retention by shallow organic soils and vegetation. These observations indicate that increased availability of ammonium, the biogeochemical signal of warming tundra, is propagated by hillslope flowpaths, whereas water tracks attenuate delivery of phosphorus to aquatic ecosystems, where its availability typically limits production.

  4. Water reservoirs - aquatic ecosystems subject to eutrophication processes

    International Nuclear Information System (INIS)

    Ionita, Veronica

    1997-01-01

    The paper presents some aspects relating to eutrophication of Batca Doamnei and Reconstructia hydropower lakes situated near Piatra Neamt town. The presence of phosphorus salts in the two water reservoirs (ten times the admissible content) is responsible for excessive growth of plants. In Reconstructia lake the diversity of species is also explained by the existence of large amounts of nitrogen salts. The general characteristic of aquatic macrophyte is the resistance to large variations of environmental factors (water level, currents, temperature, turbidity, organic material content), adaptation to water pollution conditions and development of adverse condition resistant forms. Besides Cladophora, a harmful species in fishing waters when growing excessively, others species are favorable to aquatic life and help to the consolidation of complex lake biocenoses, providing support, food and habitation for many small animal species which also favor other species economically valuable. The aquatic macrophytes are true biological filters which maintain the natural auto-purging potential of the waters. Taking into consideration these facts, the direct and indirect effects of plant destruction on the whole ecosystem should be carefully analyzed

  5. Interfaces in aquatic ecosystems: Implications for transport and impact of anthropogenic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Knulst, J.

    1996-11-01

    Mechanisms that govern transport, accumulation and toxicity of persistent pollutants at interfaces in aquatic ecosystems were the foci of this thesis. Specific attention was paid to humic substances, their occurrence, composition, and role in exchange processes across interfaces. It was concluded that: The composition of humic substances in aquatic surface microlayers is different from that of the subsurface water and terrestrial humic matter. Levels of dissolved organic carbon (DOC) in the aquatic surface microlayer reflect the DOC levels in the subsurface water. While the levels and enrichment of DOC in the microlayer generally show small variations, the levels and enrichment of particulate organic carbon (POC) vary to a great extent. Similarities exist between aquatic surface films, artificial semi-permeable and biological membranes regarding their structure and functioning. Acidification and liming of freshwater ecosystems affect DOC:POC ratio and humic composition of the surface film, thus influencing the partitioning of pollutants across aquatic interfaces. Properties of lake catchment areas extensively govern DOC:POC ratio both in the surface film and subsurface water. Increased UV-B irradiation changes the DOC:POC ratio in the surface film and thus affect transfer of matter across the interface. Transport of lipophilic, persistent organic pollutants across semi-permeable membranes is influenced by the solutes organic composition. 106 refs, 11 figs, 1 tab

  6. Bioavailability and distribution and of ceria nanoparticles in simulated aquatic ecosystems, quantification with a radiotracer technique

    International Nuclear Information System (INIS)

    Zhang Zhiyong; Zhang Peng; He Xiao; Ma Yuhui; Lu Kai; Zhao Yuliang

    2014-01-01

    Although the presence of manufactured nanoparticles in the aquatic environment is still largely undocumented, their release could certainly occur in the future, particularly via municipal treatment plant effluents of cities supporting nano-industries. To get an initial estimate of the environmental behavior of nanomaterials, we investigated the distribution and accumulation of ceria nanoparticles in simulated aquatic ecosystems which included aquatic plant, shellfish, fish, water, and sediment using a radiotracer technique. Radioactive ceria ( 141 CeO 2 ) nanoparticles with a diameter of ca. 7 nm were synthesized by a precipitation method and added to the simulated aquatic ecosystems. The results indicate that the concentration of ceria nanoparticles in water decreased to a steady-state value after 3 days; meanwhile, the concentrations of ceria nanoparticles in the aquatic plant and sediment increased to their highest values. The distribution and accumulation characteristics of ceria nanoparticles in various aquatic organisms were different. Ceratophyllum demersum showed a high ability of accumulation of ceria nanoparticles from water. (authors)

  7. Determining the Effectiveness of Aquatic Ecosystem Restoration, Conservation, and Management Practices.

    Science.gov (United States)

    The science of aquatic ecosystem restoration and management is still in its infancy, largely because most projects are inadequately tracked and monitored for assessing their success. Historically, evaluating the effectiveness of best management practices (BMPs) has relied heavily...

  8. The Arctic

    International Nuclear Information System (INIS)

    Petersen, H.; Meltofte, H.; Rysgaard, S.; Rasch, M.; Jonasson, S.; Christensen, T.R.; Friborg, T.; Soegaard, H.; Pedersen, S.A.

    2001-01-01

    Global climate change in the Arctic is a growing concern. Research has already documented pronounced changes, and models predict that increases in temperature from anthropogenic influences could be considerably higher than the global average. The impacts of climate change on Arctic ecosystems are complex and difficult to predict because of the many interactions within ecosystem, and between many concurrently changing environmental variables. Despite the global consequences of change in the Arctic climate the monitoring of basic abiotic as well as biotic parameters are not adequate to assess the impact of global climate change. The uneven geographical location of present monitoring stations in the Arctic limits the ability to understand the climate system. The impact of previous variations and potential future changes to ecosystems is not well understood and need to be addressed. At this point, there is no consensus of scientific opinion on how much of the current changes that are due to anthropogenic influences or to natural variation. Regardless of the cause, there is a need to investigate and assess current observations and their effects to the Arctic. In this chapter examples from both terrestrial and marine ecosystems from ongoing monitoring and research projects are given. (LN)

  9. Fire effects on aquatic ecosystems: an assessment of the current state of the science

    Science.gov (United States)

    Rebecca J. Bixby,; Scott D. Cooper,; Gresswell, Bob; Lee E. Brown,; Clifford N. Dahm,; Kathleen A. Dwire,

    2015-01-01

    Fire is a prevalent feature of many landscapes and has numerous and complex effects on geological, hydrological, ecological, and economic systems. In some regions, the frequency and intensity of wildfire have increased in recent years and are projected to escalate with predicted climatic and landuse changes. In addition, prescribed burns continue to be used in many parts of the world to clear vegetation for development projects, encourage desired vegetation, and reduce fuel loads. Given the prevalence of fire on the landscape, authors of papers in this special series examine the complexities of fire as a disturbance shaping freshwater ecosystems and highlight the state of the science. These papers cover key aspects of fire effects that range from vegetation loss and recovery in watersheds to effects on hydrology and water quality with consequences for communities (from algae to fish), food webs, and ecosystem processes (e.g., organic matter subsidies, nutrient cycling) across a range of scales. The results presented in this special series of articles expand our knowledge of fire effects in different biomes, water bodies, and geographic regions, encompassing aquatic population, community, and ecosystem responses. In this overview, we summarize each paper and emphasize its contributions to knowledge on fire ecology and freshwater ecosystems. This overview concludes with a list of 7 research foci that are needed to further our knowledge of fire effects on aquatic ecosystems, including research on: 1) additional biomes and geographic regions; 2) additional habitats, including wetlands and lacustrine ecosystems; 3) different fire severities, sizes, and spatial configurations; and 4) additional response variables (e.g., ecosystem processes) 5) over long (>5 y) time scales 6) with more rigorous study designs and data analyses, and 7) consideration of the effects of fire management practices and policies on aquatic ecosystems.

  10. Aquatic noise pollution: implications for individuals, populations, and ecosystems.

    Science.gov (United States)

    Kunc, Hansjoerg P; McLaughlin, Kirsty Elizabeth; Schmidt, Rouven

    2016-08-17

    Anthropogenically driven environmental changes affect our planet at an unprecedented scale and are considered to be a key threat to biodiversity. According to the World Health Organization, anthropogenic noise is one of the most hazardous forms of anthropogenically driven environmental change and is recognized as a major global pollutant. However, crucial advances in the rapidly emerging research on noise pollution focus exclusively on single aspects of noise pollution, e.g. on behaviour, physiology, terrestrial ecosystems, or on certain taxa. Given that more than two-thirds of our planet is covered with water, there is a pressing need to get a holistic understanding of the effects of anthropogenic noise in aquatic ecosystems. We found experimental evidence for negative effects of anthropogenic noise on an individual's development, physiology, and/or behaviour in both invertebrates and vertebrates. We also found that species differ in their response to noise, and highlight the potential underlying mechanisms for these differences. Finally, we point out challenges in the study of aquatic noise pollution and provide directions for future research, which will enhance our understanding of this globally present pollutant. © 2016 The Author(s).

  11. Freshwater ecosystems and aquatic insects: a paradox in biological invasions.

    Science.gov (United States)

    Fenoglio, Stefano; Bonada, Núria; Guareschi, Simone; López-Rodríguez, Manuel J; Millán, Andrés; Tierno de Figueroa, J Manuel

    2016-04-01

    Biological invasions have increased significantly in response to global change and constitute one of the major causes of biodiversity loss. Insects make up a large fraction of invasive species, in general, and freshwaters are among the most invaded ecosystems on our planet. However, even though aquatic insects dominate most inland waters, have unparalleled taxonomic diversity and occupy nearly all trophic niches, there are almost no invasive insects in freshwaters. We present some hypotheses regarding why aquatic insects are not common among aquatic invasive organisms, suggesting that it may be the result of a suite of biological, ecological and anthropogenic factors. Such specific knowledge introduces a paradox in the current scientific discussion on invasive species; therefore, a more in-depth understanding could be an invaluable aid to disentangling how and why biological invasions occur. © 2016 The Author(s).

  12. Impacts of aquatic nonindigenous invasive species on the Lake Erie ecosystem

    Science.gov (United States)

    Austen, Madeline J.W.; Ciborowski, Jan J.H.; Corkum, Lynda D.; Johnson, Tim B.; MacIsaac, Hugh J.; Metcalfe-Smith, Janice L.; Schloesser, Donald W.; George, Sandra E.

    2002-01-01

    Lake Erie is particularly vulnerable to the introduction and establishment of aquatic nonindigenous invasive species (NIS) populations. A minimum of 144 aquatic NIS have been recorded in the Lake Erie basin including several species [e.g., Eurasian watermilfoil (Myriophyllum spicatum); zebra mussel (Dreissena polymorpha); quagga mussel (Dreissena bugensis); an amphipod (Echinogammarus ischnus); round goby (Neogobius melanostomus); and sea lamprey (Petromyzon marinus)] that have had discernible impacts on the lake's ecology. NIS pose threats to the Lake Erie ecosystem for a variety of reasons including their ability to proliferate quickly, compete with native species, and transfer contaminants (e.g., PCBs) and disease through the food web. Six of the 14 beneficial use impairments listed in Annex 2 of the Great Lakes Water Quality Agreement are impaired in Lake Erie, in part as a result of the introduction of NIS. The Lake Erie Lakewide Management Plan (LaMP) has adopted an ecosystem approach to restore beneficial use impairments in the lake. Furthermore, a research consortium, known as the Lake Erie Millennium Network, is working alongside the LaMP, to address research problems regarding NIS, the loss of habitat, and the role of contaminants in the Lake Erie ecosystem.

  13. Modeling techniques for predicting long-term consequences of the effects of radiation on natural aquatic populations and ecosystems

    International Nuclear Information System (INIS)

    Van Winkle, W.

    1977-01-01

    Appropriate modeling techniques already exist for investigating some long-term consequences of the effects of radiation on natural aquatic populations and ecosystems, even if to date these techniques have not been used for this purpose. At the low levels of irradiation estimated to occur in natural aquatic systems, effects are difficult to detect at even the individual level much less the population or ecosystem level where the subtle effects of radiation are likely to be completely overshadowed by the effects of other environmental factors and stresses and the natural variability of the system. The claim that population and ecosystem models can be accurate and reliable predictive tools in assessing any stress has been oversold. Nonetheless, the use of these tools can be useful for learning more about the effects of radioactive releases on aquatic populations and ecosystems

  14. Potential effects of climate change on aquatic ecosystems of the Great Plains of North America

    Science.gov (United States)

    Covich, A.P.; Fritz, S.C.; Lamb, P.J.; Marzolf, R.D.; Matthews, W.J.; Poiani, K.A.; Prepas, E.E.; Richman, M.B.; Winter, T.C.

    1997-01-01

    The Great Plains landscape is less topographically complex than most other regions within North America, but diverse aquatic ecosystems, such as playas, pothole lakes, ox-bow lakes, springs, groundwater aquifers, intermittent and ephemeral streams, as well as large rivers and wetlands, are highly dynamic and responsive to extreme climatic fluctuations. We review the evidence for climatic change that demonstrates the historical importance of extremes in north-south differences in summer temperatures and east-west differences in aridity across four large subregions. These physical driving forces alter density stratification, deoxygenation, decomposition and salinity. Biotic community composition and associated ecosystem processes of productivity and nutrient cycling respond rapidly to these climatically driven dynamics. Ecosystem processes also respond to cultural effects such as dams and diversions of water for irrigation, waste dilution and urban demands for drinking water and industrial uses. Distinguishing climatic from cultural effects in future models of aquatic ecosystem functioning will require more refinement in both climatic and economic forecasting. There is a need, for example, to predict how long-term climatic forecasts (based on both ENSO and global warming simulations) relate to the permanence and productivity of shallow water ecosystems. Aquatic ecologists, hydrologists, climatologists and geographers have much to discuss regarding the synthesis of available data and the design of future interdisciplinary research. ?? 1997 by John Wiley & Sons, Ltd.

  15. Carbon dioxide exchange in the High Arctic - examples from terrestrial ecosystems

    DEFF Research Database (Denmark)

    Grøndahl, L.

    of the growing season, which in combination with high temperatures increased uptake rates. The dry heath ecosystem in general gained carbon during the summer season in the order of magnitude -1.4 gCm-2 up to 32 gCm-2. This result is filling out a gap of knowledge on the response of high Arctic ecosystems...... the measurements conducted in the valley to a regional level. Including information on temporal and spatial variability in air temperature and radiation, together with NDVI and a vegetation map a regional estimate of the CO2 exchange during the summer was provided, elaborating the NDVI based estimate on net carbon...

  16. Occurrence, fate and effects of azoxystrobin in aquatic ecosystems

    OpenAIRE

    Rodrigues, Elsa Teresa Santos

    2016-01-01

    Tese de doutoramento em Biociências, na especialidade de Toxicologia, apresentada ao Departamento de Ciências da Vida da Faculdade de Ciências e Tecnologia da Universidade de Coimbra After a literature review to find relevant research on the occurrence, fate and effects of azoxystrobin, the world’s leading agricultural fungicide, in aquatic ecosystems, strengths and gaps were identified in the database. Data revealed that validated analytical methods for complex matrices are very limited a...

  17. Responses in Arctic marine carbon cycle processes: conceptual scenarios and implications for ecosystem function

    Directory of Open Access Journals (Sweden)

    Helen S. Findlay

    2015-04-01

    Full Text Available The Arctic Ocean is one of the fastest changing oceans, plays an important role in global carbon cycling and yet is a particularly challenging ocean to study. Hence, observations tend to be relatively sparse in both space and time. How the Arctic functions, geophysically, but also ecologically, can have significant consequences for the internal cycling of carbon, and subsequently influence carbon export, atmospheric CO2 uptake and food chain productivity. Here we assess the major carbon pools and associated processes, specifically summarizing the current knowledge of each of these processes in terms of data availability and ranges of rates and values for four geophysical Arctic Ocean domains originally described by Carmack & Wassmann (2006: inflow shelves, which are Pacific-influenced and Atlantic-influenced; interior, river-influenced shelves; and central basins. We attempt to bring together knowledge of the carbon cycle with the ecosystem within each of these different geophysical settings, in order to provide specialist information in a holistic context. We assess the current state of models and how they can be improved and/or used to provide assessments of the current and future functioning when observational data are limited or sparse. In doing so, we highlight potential links in the physical oceanographic regime, primary production and the flow of carbon within the ecosystem that will change in the future. Finally, we are able to highlight priority areas for research, taking a holistic pan-Arctic approach.

  18. Hematology of southern Beaufort Sea polar bears (2005-2007): biomarker for an Arctic ecosystem health sentinel.

    Science.gov (United States)

    Kirk, Cassandra M; Amstrup, Steven; Swor, Rhonda; Holcomb, Darce; O'Hara, Todd M

    2010-09-01

    Declines in sea-ice habitats have resulted in declining stature, productivity, and survival of polar bears in some regions. With continuing sea-ice declines, negative population effects are projected to expand throughout the polar bear's range. Precise causes of diminished polar bear life history performance are unknown, however, climate and sea-ice condition change are expected to adversely impact polar bear (Ursus maritimus) health and population dynamics. As apex predators in the Arctic, polar bears integrate the status of lower trophic levels and are therefore sentinels of ecosystem health. Arctic residents feed at the apex of the ecosystem, thus polar bears can serve as indicators of human health in the Arctic. Despite their value as indicators of ecosystem welfare, population-level health data for U.S. polar bears are lacking. We present hematological reference ranges for southern Beaufort Sea polar bears. Hematological parameters in southern Beaufort Sea polar bears varied by age, geographic location, and reproductive status. Total leukocytes, lymphocytes, monocytes, eosinophils, and serum immunoglobulin G were significantly greater in males than females. These measures were greater in nonlactating females ages ≥5, than lactating adult females ages ≥5, suggesting that females encumbered by young may be less resilient to new immune system challenges that may accompany ongoing climate change. Hematological values established here provide a necessary baseline for anticipated changes in health as arctic temperatures warm and sea-ice declines accelerate. Data suggest that females with dependent young may be most vulnerable to these changes and should therefore be a targeted cohort for monitoring in this sentinel.

  19. Effects of snails, submerged plants and their coexistence on eutrophication in aquatic ecosystems

    OpenAIRE

    Mo Shuqing; Zhang Xiufeng; Tang Yali; Liu Zhengwen; Kettridge Nicholas

    2017-01-01

    Eutrophication resulting from nutrient loading to freshwater habitats is a severe problem, leading to degradation of ecosystems, including deterioration of water quality, water clarity and loss of biodiversity. Measures enacted to restore degraded freshwater ecosystems often involve the reintroduction of submerged plants and aquatic animals with beneficial ecological functions. In a mesocosm experiment, three treatments (planting with Vallisneria natans, introduction of the snail Bellamya aer...

  20. The effects of a pesticide mixture on aquatic ecosystems differing in trophic status: responses of the macrophyte Myriophyllum spicatum and the periphytic algal community

    NARCIS (Netherlands)

    Wendt-Rasch, L.; Brink, van den P.J.; Crum, S.J.H.; Woin, P.

    2004-01-01

    The effects of a pesticide mixture (asulam, fluazinam, lambda-cyhalothrin, and metamitron) on aquatic ecosystems were investigated in 20 outdoor aquatic microcosms. Ten of the microcosms simulated mesotrophic aquatic ecosystems dominated by submerged macrophytes (Elodea). The others simulated

  1. Fundamental study on magnetic separation of aquatic organisms for preservation of marine ecosystem

    International Nuclear Information System (INIS)

    Sakaguchi, F.; Akiyama, Y.; Izumi, Y.; Nishijima, S.

    2009-01-01

    Recently, destruction and disturbance of marine ecosystem have been caused by changes in global environment and transplants of farmed fishes and shellfishes. To solve the problems, water treatment techniques to kill or to remove aquatic organisms are necessary. In this study, application of magnetic separation for removal of the aquatic organisms was examined in order to establish the process with high-speed, compact device and low environmental load. Techniques of magnetic seeding and magnetic separation using superconducting magnet are important for high-speed processing of aquatic organisms. Magnetic seeding is to adhere separating object to the surface of ferromagnetic particles, and magnetic separation is to remove aquatic organisms with magnetic force. First, we confirmed the possibility of magnetic seeding of aquatic organisms, and then interaction between aquatic organisms and ferromagnetic particles was examined. Next, for practical application of magnetic separation system using superconducting magnet for removal of aquatic organisms, particle trajectories were simulated and magnetic separation experiment using superconducting magnet was performed in order to design magnetic separation system to achieve high separation efficiency.

  2. Historical and contemporary imagery to assess ecosystem change on the Arctic coastal plain of northern Alaska

    Science.gov (United States)

    Tape, Ken D.; Pearce, John M.; Walworth, Dennis; Meixell, Brandt W.; Fondell, Tom F.; Gustine, David D.; Flint, Paul L.; Hupp, Jerry W.; Schmutz, Joel A.; Ward, David H.

    2014-01-01

    The Arctic Coastal Plain of northern Alaska is a complex landscape of lakes, streams, and wetlands scattered across low-relief tundra that is underlain by permafrost. This region of the Arctic has experienced a warming trend over the past three decades leading to thawing of on-shore permafrost and the disappearance of sea ice at unprecedented rates. The U.S. Geological Survey’s (USGS) Changing Arctic Ecosystems (CAE) research initiative was developed to investigate and forecast these rapid changes in the physical environment of the Arctic, and the associated changes to wildlife populations, in order to inform key management decisions by the U.S. Department of the Interior and other agencies. Forecasting future wildlife responses to changes in the Arctic can benefit greatly from historical records that inform what changes have already occurred. Several Arctic wildlife and plant species have already responded to climatic and physical changes to the Arctic Coastal Plain of northern Alaska. Thus, we located historical aerial imagery to improve our understanding of recent habitat changes and the associated response to such changes by wildlife populations.

  3. Responses of CO2 Fluxes to Arctic Browning Events in a Range of High Latitude, Shrub-Dominated Ecosystems

    Science.gov (United States)

    Phoenix, G. K.; Treharne, R.; Emberson, L.; Tømmervik, H. A.; Bjerke, J. W.

    2017-12-01

    Climatic and biotic extreme events can result in considerable damage to arctic vegetation, often at landscape and larger scale. These acute events therefore contribute to the browning observed in some arctic regions. It is of considerable concern, therefore, that such extreme events are increasing in frequency as part of climate change. However, despite the increasing importance of browning events, and the considerable impact they can have on ecosystems, to date there is little understanding of their impacts on ecosystem carbon fluxes. To address this, the impacts of a number of different, commonly occurring, extreme events and their subsequent browning (vegetation damage) on key ecosystem CO2 fluxes were assessed during the growing season at a range of event damaged sites of shrub dominated vegetation. Sites were located from the boreal to High Arctic (64˚N-79˚N) and had been previously been damaged by events of frost-drought, extreme winter warming, ground icing and caterpillar (Epirrita autumnata) outbreaks. Plot-level CO2 fluxes of Ecosystem Exchange (NEE), Gross Primary Productivity (GPP) and Ecosystem Respiration (Reco) were assessed using vegetation chambers. At a sub-set of sites, NDVI (greenness) in flux plots was also assessed by hand-held proximal sensor, allowing the relationship between NDVI of damage plots to CO2 flux to be calculated. Despite the contrasting sites and drivers, damage had consistent, major impacts on all fluxes. All sites showed reductions in GPP and NEE with increasing damage, despite efflux from Reco also declining with damage. When scaled to site-level, reductions of up to 81% of NEE, 51% of GPP and 37% of Reco were observed. In the plot-level NDVI-flux relationship, NDVI was shown to explain up to 91% of variation in GPP, and therefore supports the use of NDVI for estimating changes in ecosystem CO2 flux at larger scales in regions where browning has been driven by extreme events. This work is the first attempt to quantify the

  4. The influence of the physical environment on simulations of complex aquatic ecosystem dynamics

    DEFF Research Database (Denmark)

    Hu, Fenjuan

    hydrodynamics. To test the hypothesis that the physical environment may induce strong influence on ecosystem processes, we applied and compared PCLake applications, with the same standard ecosystem model parameterization, for three different physical environment representations of the same volume of water body......The field of aquatic ecosystem modelling has been active since the late 1970s, and in recent decades the models have grown in complexity in terms of ecosystem components and included processes. However, the complexity in ecosystem conceptualizations generally comes at the expense of simple...... or no hydrodynamic representation, in particular for ecosystem models where higher trophic levels, such as fish, are included. On the other hand, physically resolved hydrodynamic models often include none or only simple representations of ecosystem dynamics. To overcome this discrepancy in complexity between...

  5. Bottom-up nutrient and top-down fish impacts on insect-mediated mercury flux from aquatic ecosystems.

    Science.gov (United States)

    Jones, Taylor A; Chumchal, Matthew M; Drenner, Ray W; Timmins, Gabrielle N; Nowlin, Weston H

    2013-03-01

    Methyl mercury (MeHg) is one of the most hazardous contaminants in the environment, adversely affecting the health of wildlife and humans. Recent studies have demonstrated that aquatic insects biotransport MeHg and other contaminants to terrestrial consumers, but the factors that regulate the flux of MeHg out of aquatic ecosystems via emergent insects have not been studied. The authors used experimental mesocosms to test the hypothesis that insect emergence and the associated flux of MeHg from aquatic to terrestrial ecosystems is affected by both bottom-up nutrient effects and top-down fish consumer effects. In the present study, nutrient addition led to an increase in MeHg flux primarily by enhancing the biomass of emerging insects whose tissues were contaminated with MeHg, whereas fish decreased MeHg flux primarily by reducing the biomass of emerging insects. Furthermore, the authors found that these factors are interdependent such that the effects of nutrients are more pronounced when fish are absent, and the effects of fish are more pronounced when nutrient concentrations are high. The present study is the first to demonstrate that the flux of MeHg from aquatic to terrestrial ecosystems is strongly enhanced by bottom-up nutrient effects and diminished by top-down consumer effects. Copyright © 2012 SETAC.

  6. AMAP Assessment 2013: Arctic Ocean acidification

    Science.gov (United States)

    2013-01-01

    This assessment report presents the results of the 2013 AMAP Assessment of Arctic Ocean Acidification (AOA). This is the first such assessment dealing with AOA from an Arctic-wide perspective, and complements several assessments that AMAP has delivered over the past ten years concerning the effects of climate change on Arctic ecosystems and people. The Arctic Monitoring and Assessment Programme (AMAP) is a group working under the Arctic Council. The Arctic Council Ministers have requested AMAP to: - produce integrated assessment reports on the status and trends of the conditions of the Arctic ecosystems;

  7. Shallow freshwater ecosystems of the circumpolar Arctic

    DEFF Research Database (Denmark)

    Rautio, Milla; Dufresne, France; Laurion, Isabelle

    2011-01-01

    to large annual temperature fluctuations, a short growing season, and freeze-up and desiccation stress in winter, these ecosystems are strongly regulated by the supply of organic matter and its optical and biogeochemical properties. Dissolved organic carbon affects bacterial diversity and production......This review provides a synthesis of limnological data and conclusions from studies on ponds and small lakes at our research sites in Subarctic and Arctic Canada, Alaska, northern Scandinavia, and Greenland. Many of these water bodies contain large standing stocks of benthic microbial mats that grow...... in relatively nutrient-rich conditions, while the overlying water column is nutrient-poor and supports only low concentrations of phytoplankton. Zooplankton biomass can, however, be substantial and is supported by grazing on the microbial mats as well as detrital inputs, algae, and other plankton. In addition...

  8. The behavior of 89Sr and tritium water (HTO) in a model terrestrial-aquatic ecosystem

    International Nuclear Information System (INIS)

    Zhang Yongxi; Wang Shouxiang; Chen Chuangqun; Sun Zhiming; Huang Dan; Hu Bingmin

    1993-08-01

    The effect of land polluted by 89 Sr on water body and the immigration of HTO from water body to land were studied in a modelling terrestrial-aquatic ecosystem. The results are as follows: (1) The 89 Sr in soil quickly migrated to common bean plants and its concentration in common bean plants was increasing with the time, but the concentration of 89 Sr in soil was exponentially declining with the depth. About 5% of 89 Sr was migrated to water body by rainfall then distributed to other components, and it can be concentrated by aquatics in a certain degree. (2) when HTO entered into the water body, it would migrate to other components of the ecosystem. and the HTO in the pool was linearly decreasing with the time. However, the concentration of HTO in the sediments and aquatics would firstly increase then reached the peak and went down. The tritium of HTO was existed in two forms in the sediments and aquatics, free water (HTO) and bound tritium. HTO was also migrated to the adjacent land soil and absorbed by land crop plants, within one and half months the land system contained 24% of the total tritium in the aquatic system

  9. Agrochemical residue-biota interactions in soil and aquatic ecosystems

    International Nuclear Information System (INIS)

    1980-01-01

    Two FAO/IAEA coordinated research programmes are concerned with isotopic tracer-aided studies of agrochemical residue-biota interactions in soils and aquatic ecosystems. They currently involve 18 studies in 14 countries: Brazil, Canada, Egypt, F.R. Germany, Hungary, India, Indonesia, Iraq, Israel, Malaysia, Thailand, Turkey, USA and USSR. The aim was to develop, standardize and apply labelled substrate techniques for comparative assays of primary autotrophic and microheterotrophic production and decay, and complementary tracer techniques to determine the fate, persistence and bioconcentration of trace contaminants. Comparable data were studied concerning the current status of water bodies and likely changes due to contaminants. Soil capacity to decompose undesirable contaminants and residues, and to promote desirable transformations were studied. The techniques were also applied as a diagnostic and prognostic tool, with priority given to rice ecosystems

  10. Hematology of southern Beaufort Sea polar bears (2005-2007): Biomarker for an arctic ecosystem health sentinel

    Science.gov (United States)

    Kirk, Cassandra M.; Amstrup, Steven C.; Swor, Rhonda; Holcomb, Darce; O'Hara, T. M.

    2010-01-01

    Declines in sea-ice habitats have resulted in declining stature, productivity, and survival of polar bears in some regions. With continuing sea-ice declines, negative population effects are projected to expand throughout the polar bear's range. Precise causes of diminished polar bear life history performance are unknown, however, climate and sea-ice condition change are expected to adversely impact polar bear (Ursus maritimus) health and population dynamics. As apex predators in the Arctic, polar bears integrate the status of lower trophic levels and are therefore sentinels of ecosystem health. Arctic residents feed at the apex of the ecosystem, thus polar bears can serve as indicators of human health in the Arctic. Despite their value as indicators of ecosystem welfare, population-level health data for U.S. polar bears are lacking. We present hematological reference ranges for southern Beaufort Sea polar bears. Hematological parameters in southern Beaufort Sea polar bears varied by age, geographic location, and reproductive status. Total leukocytes, lymphocytes, monocytes, eosinophils, and serum immunoglobulin G were significantly greater in males than females. These measures were greater in nonlactating females ages ???5, than lactating adult females ages ???5, suggesting that females encumbered by young may be less resilient to new immune system challenges that may accompany ongoing climate change. Hematological values established here provide a necessary baseline for anticipated changes in health as arctic temperatures warm and sea-ice declines accelerate. Data suggest that females with dependent young may be most vulnerable to these changes and should therefore be a targeted cohort for monitoring in this sentinel. ?? 2010 International Association for Ecology and Health.

  11. Toxic potential of the emerging contaminant nicotine to the aquatic ecosystem.

    Science.gov (United States)

    Oropesa, Ana Lourdes; Floro, António Miguel; Palma, Patrícia

    2017-07-01

    Nicotine is a "life-style compound" widely consumed by human populations and, consequently, often found in surface waters. This fact presents a concern for possible effects in the aquatic ecosystems. The objective of this study was to assess the potential lethal and sublethal toxicity of nicotine in aquatic organisms from different trophic levels (Vibrio fischeri, Pseudokirchneriella subcapitata, Thamnocephalus platyurus, and Daphnia magna). The bioassays were performed by exposing the organisms to concentrations of nicotine in a range of 0.5-1000 μg/L. Results showed that nicotine, at tested concentration, was not acutely toxic to V. fischeri and T. platyurus. On the contrary, this substance exhibited toxicity to P. subcapitata and Daphnia magna. Thus, concentrations of nicotine of 100 and 200 μg/L promoted an inhibition in the growth of P. subcapitata. In addition, a concentration of 100 μg/L nicotine acted on the reproduction of the crustacean D. magna, by decreasing the number of juveniles produced by female. On the other hand, the results showed that concentrations equal to or greater than 10 μg/L induced the production of daphnids male offspring, which may indicate that nicotine is a weak juvenoid compound of the D. magna endocrine system. Furthermore, the result showed that concentrations tested of this chemical have the capacity to revert the effect of fenoxycarb, a strong juvenoid chemical insecticide. The results of the study revealed that nicotine can induce several changes in some of the most important key groups of the aquatic compartment, which can compromise, in a short time, the balance of aquatic ecosystem. Finally, a preliminary environmental risk assessment of this stimulant was performed from the highest measured concentration in surface water and the no observable effect concentration value in the most sensitive species, i.e., D. magna. This process revealed that nicotine can produce an important risk to aquatic organisms.

  12. Climate change on arctic environment, ecosystem services and society (CLICHE)

    Science.gov (United States)

    Weckström, J.; Korhola, A.; Väliranta, M.; Seppä, H.; Luoto, M.; Tuittila, E.-S.; Leppäranta, M.; Kahilainen, K.; Saarinen, J.; Heikkinen, H.

    2012-04-01

    The predicted climate warming has raised many questions and concerns about its impacts on the environment and society. As a respond to the need of holistic studies comprising both of these areas, The Academy of Finland launched The Finnish Research Programme on Climate Change (FICCA 2011-2014) in spring 2010 with the main aim to focus on the interaction between the environment and society. Ultimately 11 national consortium projects were funded (total budget 12 million EUR). Here we shortly present the main objectives of the largest consortium project "Climate change on arctic environment, ecosystem services and society" (CLICHE). The CLICHE consortium comprises eight interrelated work packages (treeline, diversity, peatlands, snow, lakes, fish, tourism, and traditional livelihoods), each led by a prominent research group and a team leader. The research consortium has three main overall objectives: 1) Investigate, map and model the past, present and future climate change-induced changes in central ecosystems of the European Arctic with unprecedented precision 2) Deepen our understanding of the basic principles of ecosystem and social resilience and dynamics; identify key taxa, structures or processes that clearly indicate impending or realised global change through their loss, occurrence or behaviour, using analogues from the past (e.g. Holocene Thermal Maximum, Medieval Warm Period), experiments, observations and models 3) Develop adaptation and mitigation strategies to minimize the adverse effects of climate change on local communities, traditional livelihoods, fisheries, and tourism industry, and promote sustainable development of local community structures and enhance the quality of life of local human populations. As the project has started only recently no final results are available yet. However, the fieldwork as well as the co-operation between the research teams has thus far been very successful. Thus, the expectations for the final outcome of the project

  13. Aquatic ecosystem response to timber harvesting for the purpose of restoring aspen.

    Directory of Open Access Journals (Sweden)

    Bobette E Jones

    Full Text Available The removal of conifers through commercial timber harvesting has been successful in restoring aspen, however many aspen stands are located near streams, and there are concerns about potential aquatic ecosystem impairment. We examined the effects of management-scale conifer removal from aspen stands located adjacent to streams on water quality, solar radiation, canopy cover, temperature, aquatic macroinvertebrates, and soil moisture. This 8-year study (2003-2010 involved two projects located in Lassen National Forest. The Pine-Bogard Project consisted of three treatments adjacent to Pine and Bogard Creeks: (i Phase 1 in January 2004, (ii Phase 2 in August 2005, and (iii Phase 3 in January 2008. The Bailey Project consisted of one treatment adjacent to Bailey Creek in September 2006. Treatments involved whole tree removal using track-laying harvesters and rubber tire skidders. More than 80% of all samples analyzed for NO₃-N, NH₄-N, and PO₄-P at Pine, Bogard, and Bailey Creeks were below the detection limit, with the exception of naturally elevated PO₄-P in Bogard Creek. All nutrient concentrations (NO₃-N, NH₄-N, PO₄-P, K, and SO₄-S showed little variation within streams and across years. Turbidity and TSS exhibited annual variation, but there was no significant increase in the difference between upstream and downstream turbidity and TSS levels. There was a significant decrease in stream canopy cover and increase in the potential fraction of solar radiation reaching the streams in response to the Pine-Bogard Phase 3 and Bailey treatments; however, there was no corresponding increase in stream temperatures. Macroinvertebrate metrics indicated healthy aquatic ecosystem conditions throughout the course of the study. Lastly, the removal of vegetation significantly increased soil moisture in treated stands relative to untreated stands. These results indicate that, with careful planning and implementation of site-specific best management

  14. Dose assessment and radioecological consequences to aquatic organisms in the areas of Russia exposed to radioactive contamination

    International Nuclear Information System (INIS)

    Kryshev, I.I.; Sazykina, T.G.

    1996-01-01

    A comparative analysis of the radioecological state of aquatic ecosystems in the territory of Russia was performed. The following water bodies were considered: lakes and rivers in the Ural and Chernobyl contaminated areas, the Yenisei River, cooling ponds of nuclear power plants, and the Arctic Seas. It was demonstrated that in all cases under consideration, doses to aquatic organisms were markedly higher than those to humans. Especially high exposure levels to fish and molluscs much in excess of the natural background were observed in a number of water bodies in the Ural and Chernobyl contaminated areas

  15. Coordinating for Arctic Conservation: Implementing Integrated Arctic Biodiversity Monitoring, Data Management and Reporting

    Science.gov (United States)

    Gill, M.; Svoboda, M.

    2012-12-01

    Arctic ecosystems and the biodiversity they support are experiencing growing pressure from various stressors (e.g. development, climate change, contaminants, etc.) while established research and monitoring programs remain largely uncoordinated, lacking the ability to effectively monitor, understand and report on biodiversity trends at the circumpolar scale. The maintenance of healthy arctic ecosystems is a global imperative as the Arctic plays a critical role in the Earth's physical, chemical and biological balance. A coordinated and comprehensive effort for monitoring arctic ecosystems is needed to facilitate effective and timely conservation and adaptation actions. The Arctic's size and complexity represents a significant challenge towards detecting and attributing important biodiversity trends. This demands a scaled, pan-arctic, ecosystem-based approach that not only identifies trends in biodiversity, but also identifies underlying causes. It is critical that this information be made available to generate effective strategies for adapting to changes now taking place in the Arctic—a process that ultimately depends on rigorous, integrated, and efficient monitoring programs that have the power to detect change within a "management" time frame. To meet these challenges and in response to the Arctic Climate Impact Assessment's recommendation to expand and enhance arctic biodiversity monitoring, the Conservation of Arctic Flora and Fauna (CAFF) Working Group of the Arctic Council launched the Circumpolar Biodiversity Monitoring Program (CBMP). The CBMP is led by Environment Canada on behalf of Canada and the Arctic Council. The CBMP is working with over 60 global partners to expand, integrate and enhance existing arctic biodiversity research and monitoring efforts to facilitate more rapid detection, communication and response to significant trends and pressures. Towards this end, the CBMP has established three Expert Monitoring Groups representing major Arctic

  16. Enhancing a Socio-technical Data Ecosystem for Societally Relevant, Sustained Arctic Observing

    Science.gov (United States)

    Pulsifer, P. L.

    2017-12-01

    In recent years, much has been learned about the state of data and related systems for the Arctic region, however work remains to be done to achieve an envisioned integrated and well-defined pan-Arctic observing and data network. The envisioned comprehensive network will enables access to high quality data, expertise and information in support of scientific understanding, stakeholder needs, and agency operations. In this paper we argue that priorities for establishing such a network are in the areas of better understanding the current system, machine-enhanced data discovery and mediation, and the human aspects of community building. The author has engaged extensively in international, Canadian and U.S.-based data coordination and system design efforts. This includes a series of meetings, workshops, systems design activities, and publications. The results of these efforts have been analyzed and a synthesis of these analyses are presented here. Analysis reveals that there are a large number of polar data resources interacting in a complex network that functions as a data ecosystem. Understanding this ecosystem is critical and required to guide design. Given the size and complexity of the network, achieving broad data discovery and access and meaningful data integration will require advanced techniques including machine learning, semantic mediation, and the use of highly connected virtual research environments. To achieve the aforementioned goal will require a community of engaged researchers, technologists, and stakeholders to establish requirements and the social and organizational context needed for effective approaches. The results imply that: i) an effective governance mechanism must be established that includes "bottom up" and "top down" control; ii) the established governance mechanism must include effective networking of actors in the system; iii) funders must adopt a long-term, sustainable infrastructure approach to systems development; iv) best practices

  17. Arctic Riverine CDOM and its effects on the Polar Marine Light Field

    Energy Technology Data Exchange (ETDEWEB)

    Orandle, Zoe Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Weijer, Wilbert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Elliott, Scott M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wang, Shanlin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-28

    It is well-known that CDOM (Chromophoric Dissolved Organic Matter) can have a significant effect on biological activity in the photic zones of aquatic ecosystems. However, the extent of CDOM’s interference with biological activity is not well-known. We examined this issue in great detail in the mixed surface layer of the Arctic Ocean. We studied the impacts of CDOM’s light attenuation on Arctic phytoplankton populations to discover if riverine CDOM’s presence in the Arctic ocean could inhibit and possibly prevent local phytoplankton populations from performing photosynthesis. We incorporated biogeochemistry concepts and data with oceanographic models and calculations to approach the problem. The results showed that riverine CDOM can indeed significantly impact the productivity of phytoplankton populations during the spring and summer months near the major Arctic river mouths we chose to examine. Although our study was detailed and inclusive of many variables, the issue of CDOM’s light attenuation and its effects on phytoplankton populations must be explored on a global scale to help understand if riverine CDOM could prove disastrous for phytoplankton populations.

  18. Environmental bacteriophages : viruses of microbes in aquatic ecosystems

    Directory of Open Access Journals (Sweden)

    Télesphore eSIME - NGANDO

    2014-07-01

    Full Text Available Since the discovery 2-3 decades ago that viruses of microbes are abundant in marine ecosystems, viral ecology has grown increasingly to reach the status of a full scientific discipline in environmental sciences. A dedicated ISVM society, the International Society for Viruses of Microorganisms (http://www.isvm.org/, was recently launched. Increasing studies in viral ecology are sources of novel knowledge related to the biodiversity of living things, the functioning of ecosystems, and the evolution of the cellular world. This is because viruses are perhaps the most diverse, abundant, and ubiquitous biological entities in the biosphere, although local environmental conditions enrich for certain viral types through selective pressure. They exhibit various lifestyles that intimately depend on the deep-cellular mechanisms, and are ultimately replicated by members of all three domains of cellular life (Bacteria, Eukarya, Archaea, as well as by giant viruses of some eukaryotic cells. This establishes viral parasites as microbial killers but also as cell partners or metabolic manipulators in microbial ecology. The present chapter sought to review the literature on the diversity and functional roles of viruses of microbes in environmental microbiology, focusing primarily on prokaryotic viruses (i.e. phages in aquatic ecosystems, which form the bulk of our knowledge in modern environmental viral ecology.

  19. Effects of snails, submerged plants and their coexistence on eutrophication in aquatic ecosystems

    Directory of Open Access Journals (Sweden)

    Mo Shuqing

    2017-01-01

    Full Text Available Eutrophication resulting from nutrient loading to freshwater habitats is a severe problem, leading to degradation of ecosystems, including deterioration of water quality, water clarity and loss of biodiversity. Measures enacted to restore degraded freshwater ecosystems often involve the reintroduction of submerged plants and aquatic animals with beneficial ecological functions. In a mesocosm experiment, three treatments (planting with Vallisneria natans, introduction of the snail Bellamya aeruginosa and a combined treatment with both plants and snails were compared with controls to evaluate their effects on trophic state. The total nitrogen (TN, total phosphorus (TP and chlorophyll a (Chl a concentrations of planktonic and benthic algal samples were determined every two weeks, along with light intensity at the sediment surface. The plant-only treatment significantly reduced the TN levels and planktonic and benthic algal biomass and increased the light intensity at the sediment surface. The snail-only treatment reduced the concentrations of TN and reduced planktonic and benthic algal biomass. The combined treatment decreased the concentrations of TN and TP, reduced planktonic algal biomass and increased the light intensity on the sediment surface. The results indicate that while submerged plants and snails can both improve water quality, the most pronounced effect in aquatic ecosystems is achieved by their presence in combination. A combined reintroduction approach may provide enhanced benefits in restoring the eutrophic ecosystems, following the reduction of external nutrient loading.

  20. Toxicity of methanol to fish, crustacean, oligochaete worm, and aquatic ecosystem.

    Science.gov (United States)

    Kaviraj, A; Bhunia, F; Saha, N C

    2004-01-01

    Static renewal bioassays were conducted in the laboratory and in outdoor artificial enclosures to evaluate toxic effects of methanol to one teleost fish and two aquatic invertebrates and to limnological variables of aquatic ecosystem. Ninety-six-hour acute toxicity tests revealed cladoceran crustacea Moina micrura as the most sensitive to methanol (LC50, 4.82 g/L), followed by freshwater teleost Oreochromis mossambicus (LC50, 15.32 g/L) and oligochaete worm Branchiura sowerbyi (LC50, 54.89 g/L). The fish, when exposed to lethal concentrations of methanol, showed difficulties in respiration and swimming. The oligochaete body wrinkled and fragmented under lethal exposure of methanol. Effects of five sublethal concentrations of methanol (0, 23.75, 47.49, 736.10, and 1527.60 mg/L) on the feeding rate of the fish and on its growth and reproduction were evaluated by separate bioassays. Ninety-six-hour bioassays in the laboratory showed significant reduction in the appetite of fish when exposed to 736.10 mg/L or higher concentrations of methanol. Chronic toxicity bioassays (90 days) in outdoor enclosures showed a reduction in growth, maturity index and fecundity of fish at 47.49 mg/L or higher concentrations of methanol. Primary productivity, phytoplankton population, and alkalinity of water were also reduced at these concentrations. Chronic exposure to 1527.60 mg/L methanol resulted in damages of the epithelium of primary and secondary gill lamellae of the fish. The results revealed 23.75 mg/L as the no-observed-effect concentration (NOEC) of methanol to freshwater aquatic ecosystem.

  1. A primer on potential impacts, management priorities, and future directions for Elodea spp. in high latitude systems: learning from the Alaskan experience

    Science.gov (United States)

    Carey, Michael P.; Sethi, Suresh A; Larsen, Sabrina J; Rich, Cecil F

    2016-01-01

    Invasive species introductions in Arctic and Subarctic ecosystems are growing as climate change manifests and human activity increases in high latitudes. The aquatic plants of the genus Elodea are potential invaders to Arctic and Subarctic ecosystems circumpolar and at least one species is already established in Alaska, USA. To illustrate the problems of preventing, eradicating, containing, and mitigating aquatic, invasive plants in Arctic and Subarctic ecosystems, we review the invasion dynamics of Elodea and provide recommendations for research and management efforts in Alaska. Foremost, we conclude the remoteness of Arctic and Subarctic systems such as Alaska is no longer a protective attribute against invasions, as transportation pathways now reach throughout these regions. Rather, high costs of operating in remote Arctic and Subarctic systems hinders detection of infestations and limits eradication or mitigation, emphasizing management priorities of prevention and containment of aquatic plant invaders in Alaska and other Arctic and Subarctic systems.

  2. Benthic primary production and mineralization in a High Arctic Fjord

    DEFF Research Database (Denmark)

    Attard, Karl M.; Hancke, Kasper; Sejr, Mikael K.

    2016-01-01

    Coastal and shelf systems likely exert major influence on Arctic Ocean functioning, yet key ecosystem processes remain poorly quantified. We employed the aquatic eddy covariance (AEC) oxygen (O2) flux method to estimate benthic primary production and mineralization in a High Arctic Greenland fjord....... Seabed gross primary production (GPP) within the 40 m deep photic zone was highest at 10 m (29 mmol O2 m−2 d−1) and decreased to 5 mmol O2 m−2 d−1 at 40 m, while nighttime community respiration (CR) ranged from 11 to 25 mmol O2m−2 d−1. CR decreased to ~2.5 mmol O2m−2 d−1 at 80 m and remained constant...... with further depth. Fauna activity accounted for ~50% of the CR at depths ≤60 m but was primary production...

  3. Studies on transfer, bioaccumulation and disappearance of glyphosate in the aquatic ecosystem by utilizing 14C tracer technique

    International Nuclear Information System (INIS)

    Zhu Guonian; Guo Jiangfeng; Sun Jinhe

    2002-01-01

    Studies on transfer, bioaccumulation and disappearance of glyphosate in the aquatic environment were conducted with methods of model tests and outdoor trials in the aquatic ecosystem. The result showed that glyphosate transferred rapidly into sediment and hormwort (Ceratopyllum demersum L.) after applied; and then, it was taken up faster and accumulated more by topmouth gudgeon (Psudorasobora parva) 5-10 days after application. The partitioning coefficient (sediment-water) and bioconcentration factors of glyphosate were 8.59, 27.96 and 45.79, respectively, in day 20. The concentration of glyphosate residue in the aquatic ecosystem followed the order of topmouth gudgeon > hormwort > sediment > water. And it was also indicated that glyphosate transferred and disappeared extremely fast in both pond and river after application

  4. Biodegradability of dissolved organic carbon in permafrost soils and aquatic systems: a meta-analysis

    Science.gov (United States)

    Vonk, J. E.; Tank, S. E.; Mann, P. J.; Spencer, R. G. M.; Treat, C. C.; Striegl, R. G.; Abbott, B. W.; Wickland, K. P.

    2015-12-01

    As Arctic regions warm and frozen soils thaw, the large organic carbon pool stored in permafrost becomes increasingly vulnerable to decomposition or transport. The transfer of newly mobilized carbon to the atmosphere and its potential influence upon climate change will largely depend on the degradability of carbon delivered to aquatic ecosystems. Dissolved organic carbon (DOC) is a key regulator of aquatic metabolism, yet knowledge of the mechanistic controls on DOC biodegradability is currently poor due to a scarcity of long-term data sets, limited spatial coverage of available data, and methodological diversity. Here, we performed parallel biodegradable DOC (BDOC) experiments at six Arctic sites (16 experiments) using a standardized incubation protocol to examine the effect of methodological differences commonly used in the literature. We also synthesized results from 14 aquatic and soil leachate BDOC studies from across the circum-arctic permafrost region to examine pan-arctic trends in BDOC. An increasing extent of permafrost across the landscape resulted in higher DOC losses in both soil and aquatic systems. We hypothesize that the unique composition of (yedoma) permafrost-derived DOC combined with limited prior microbial processing due to low soil temperature and relatively short flow path lengths and transport times, contributed to a higher overall terrestrial and freshwater DOC loss. Additionally, we found that the fraction of BDOC decreased moving down the fluvial network in continuous permafrost regions, i.e. from streams to large rivers, suggesting that highly biodegradable DOC is lost in headwater streams. We also observed a seasonal (January-December) decrease in BDOC in large streams and rivers, but saw no apparent change in smaller streams or soil leachates. We attribute this seasonal change to a combination of factors including shifts in carbon source, changing DOC residence time related to increasing thaw-depth, increasing water temperatures later

  5. Exploring the Use of Participatory Information to Improve Monitoring, Mapping and Assessment of Aquatic Ecosystem Services at Landascape Scales

    Science.gov (United States)

    Traditionally, the EPA has monitored aquatic ecosystems using statistically rigorous sample designs and intensive field efforts which provide high quality datasets. But by their nature they leave many aquatic systems unsampled, follow a top down approach, have a long lag between ...

  6. The effect of the global warming on marine ecosystems in the Arctic

    International Nuclear Information System (INIS)

    Wassmann, Paul

    2007-01-01

    The article discusses various results from studies of development in the ecosystems in the Arctic region and the effect the global warming may have. The warming in these areas is larger than in the central Europe and influence the economic and social development of the region. The focus is on the fisheries, exploitation of oil and gas, transport, diversity in species, acidification of the oceans, meteorological phenomena etc.. Some environmental and energy related aspects are mentioned. (tk)

  7. The resilience and functional role of moss in boreal and arctic ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Turetsky, Merritt; Bond-Lamberty, Benjamin; Euskirchen, Eugenie S.; Talbot, Julie; Frolking, Steve; McGuire, A. David; Tuittila, Eeva-Stiina

    2012-08-24

    Mosses in boreal and arctic ecosystems are ubiquitous components of plant communities, represent an important component of plant diversity, and strongly influence the cycling of water, nutrients, energy and carbon. Here we use a literature review and synthesis as well as model simulations to explore the role of moss in ecological stability and resilience. Our literature review of moss community responses to disturbance showed all possible responses (increases, decreases, no change) within most disturbance categories in boreal and arctic regions. Our modeling simulations suggest that loss of moss within northern plant communities will reduce soil carbon accumulation primarily by influencing decomposition rates and soil nitrogen availability. While two models (HPM and STM-TEM) showed a significant effect of moss removal, results from the Biome-BGC and DVM-TEM models suggest that northern, moss-rich ecosystems would need to experience extreme perturbation before mosses were eliminated. We highlight a number of issues that have not been adequately explored in moss communities, such as functional redundancy and singularity, relationships between response and effect traits, phenotypical plasticity in traits, and whether the effects of moss on ecosystem processes scale with local abundance. We also suggest that as more models explore issues related to ecological resilience, issues related to both parameter and conceptual uncertainty should be addressed: are the models more limited by uncertainty in the parameterization of the processes included or by what is not represented in the model at all? It seems clear from our review that mosses need to be incorporated into models as one or more plant functional types, but more empirical work is needed to determine how to best aggregate species.

  8. Beaver-mediated lateral hydrologic connectivity, fluvial carbon and nutrient flux, and aquatic ecosystem metabolism

    Science.gov (United States)

    Wegener, Pam; Covino, Tim; Wohl, Ellen

    2017-06-01

    River networks that drain mountain landscapes alternate between narrow and wide valley segments. Within the wide segments, beaver activity can facilitate the development and maintenance of complex, multithread planform. Because the narrow segments have limited ability to retain water, carbon, and nutrients, the wide, multithread segments are likely important locations of retention. We evaluated hydrologic dynamics, nutrient flux, and aquatic ecosystem metabolism along two adjacent segments of a river network in the Rocky Mountains, Colorado: (1) a wide, multithread segment with beaver activity; and, (2) an adjacent (directly upstream) narrow, single-thread segment without beaver activity. We used a mass balance approach to determine the water, carbon, and nutrient source-sink behavior of each river segment across a range of flows. While the single-thread segment was consistently a source of water, carbon, and nitrogen, the beaver impacted multithread segment exhibited variable source-sink dynamics as a function of flow. Specifically, the multithread segment was a sink for water, carbon, and nutrients during high flows, and subsequently became a source as flows decreased. Shifts in river-floodplain hydrologic connectivity across flows related to higher and more variable aquatic ecosystem metabolism rates along the multithread relative to the single-thread segment. Our data suggest that beaver activity in wide valleys can create a physically complex hydrologic environment that can enhance hydrologic and biogeochemical buffering, and promote high rates of aquatic ecosystem metabolism. Given the widespread removal of beaver, determining the cumulative effects of these changes is a critical next step in restoring function in altered river networks.

  9. Urgent and Compelling Need for Coastal and Inland Aquatic Ecosystem Research Using Space-Based Sensors

    Science.gov (United States)

    Otis, D. B.; Muller-Karger, F. E.; Hestir, E.; Turpie, K. R.; Roberts, D. A.; Frouin, R.; Goodman, J.; Schaeffer, B. A.; Franz, B. A.; Humm, D. C.

    2016-12-01

    Coastal and inland waters and associated aquatic habitats, including wetlands, mangroves, submerged grasses, and coral reefs, are some of the most productive and diverse ecosystems on the planet. They provide services critical to human health, safety, and prosperity. Yet, they are highly vulnerable to changes in climate and other anthropogenic pressures. With a global population of over seven billion people and climbing, and a warming atmosphere driven by carbon dioxide now in excess of 400 ppb, these services are at risk of rapidly diminishing globally. We know little about how these ecosystems function. We need to characterize short-term changes in the functional biodiversity and biogeochemical cycles of these coastal and wetland ecosystems, from canopy to benthos, and trace these changes to their underlying environmental influences. This requires an observation-based approach that covers coastal and inland aquatic ecosystems in a repeated, synoptic manner. Space-borne sensing systems can provide this capability, supported by coordinated in situ calibration and product validation activities. The design requires high temporal resolution (weekly or better), medium spatial resolution (30 m pixels at nadir to complement Landsat-class sensors), and highly sensitive, ocean-color radiometric quality, high resolution spectroscopy with Visible and Short-Wave IR bands (order of 10 nm or better) to assess both atmospheric correction parameters and land vegetation composition. The strategy needs to include sunglint avoidance schemes, and methods to maximize signal to noise ratios and temporal coverage of aquatic areas. We describe such a system, and urge the U.S. to implement such an observing strategy in the short-term and sustain it for the benefit of humankind.

  10. Bioassay for aquatic ecosystems review and classification; Rassegna dei principali test di ecotossicologia acquatica

    Energy Technology Data Exchange (ETDEWEB)

    Sanci, Antonella; Rosa, Silvia [ENEA, Centro Ricerche Casaccia, Rome (Italy). Dipt. Ambiente

    1997-09-01

    Bioassay play a crucial role in assessing the actual or potential impacts of anthropogenic agents on the natural environment. In this technical report, literature on bioassays for aquatic ecosystems has been reviewed and classified. Problems associated with the choice and application of bioassays are discussed.

  11. Shifting the Arctic Carbon Balance: Effects of a Long-Term Fertilization Experiment and Anomalously Warm Temperatures on Net Ecosystem Exchange in the Alaskan Tundra

    Science.gov (United States)

    Ludwig, S.; Natali, S.; Rastetter, E. B.; Shaver, G. R.; Graham, L. M.; Jastrow, J. D.

    2017-12-01

    The arctic is warming at an accelerated rate relative to the globe. Among the predicted consequences of warming temperatures in the arctic are increased gross primary productivity (GPP), ecosystem respiration (ER), and nutrient availability. The net effect of these changes on the carbon (C) cycle and resulting C balance and feedback to climate change remain unclear. Historically the Arctic has been a C sink, but evidence from recent years suggests some regions in the Arctic are becoming C sources. To predict the role of the Arctic in global C cycling, the mechanisms affecting arctic C balances need to be better resolved. We measured net ecosystem exchange (NEE) in a long-term, multi-level, fertilization experiment at Toolik Lake, AK during an anomalously warm summer. We modeled NEE, ER, and GPP using a Bayesian network model. The best-fit model included Q10 temperature functions and linear fertilization functions for both ER and GPP. ER was more strongly affected by temperature and GPP was driven more by fertilization level. As a result, fertilization increased the C sink capacity, but only at moderate and low temperatures. At high temperatures (>28 °C) the NEE modeled for the highest level of fertilization was not significantly different from zero. In contrast, at ambient nutrient levels modeled NEE was significantly below zero (net uptake) until 35 °C, when it becomes neutral. Regardless of the level of fertilization, NEE never decreased with warming. Temperature in low ranges (5-15°C) had no net effect on NEE, whereas NEE began to increase exponentially with temperature after a threshold of 15°C until becoming a net source to the atmosphere at 37°C. Our results indicate that the C sink strength of tundra ecosystems can be increased with small increases in nutrient availability, but that large increase in nutrient availability can switch tundra ecosystems into C sources under warm conditions. Warming temperatures in tundra ecosystems will only decrease C

  12. Marcellus and mercury: Assessing potential impacts of unconventional natural gas extraction on aquatic ecosystems in northwestern Pennsylvania.

    Science.gov (United States)

    Grant, Christopher J; Weimer, Alexander B; Marks, Nicole K; Perow, Elliott S; Oster, Jacob M; Brubaker, Kristen M; Trexler, Ryan V; Solomon, Caroline M; Lamendella, Regina

    2015-01-01

    Mercury (Hg) is a persistent element in the environment that has the ability to bioaccumulate and biomagnify up the food chain with potentially harmful effects on ecosystems and human health. Twenty-four streams remotely located in forested watersheds in northwestern PA containing naturally reproducing Salvelinus fontinalis (brook trout), were targeted to gain a better understanding of how Marcellus shale natural gas exploration may be impacting water quality, aquatic biodiversity, and Hg bioaccumulation in aquatic ecosystems. During the summer of 2012, stream water, stream bed sediments, aquatic mosses, macroinvertebrates, crayfish, brook trout, and microbial samples were collected. All streams either had experienced hydraulic fracturing (fracked, n = 14) or not yet experienced hydraulic fracturing (non-fracked, n = 10) within their watersheds at the time of sampling. Analysis of watershed characteristics (GIS) for fracked vs non-fracked sites showed no significant differences (P > 0.05), justifying comparisons between groups. Results showed significantly higher dissolved total mercury (FTHg) in stream water (P = 0.007), lower pH (P = 0.033), and higher dissolved organic matter (P = 0.001) at fracked sites. Total mercury (THg) concentrations in crayfish (P = 0.01), macroinvertebrates (P = 0.089), and predatory macroinvertebrates (P = 0.039) were observed to be higher for fracked sites. A number of positive correlations between amount of well pads within a watershed and THg in crayfish (r = 0.76, P shale natural gas exploration is having an effect on aquatic ecosystems.

  13. Arctic Messages: Arctic Research in the Vocabulary of Poets and Artists

    Science.gov (United States)

    Samsel, F.

    2017-12-01

    Arctic Messages is a series of prints created by a multidisciplinary team designed to build understanding and encourage dialogue about the changing Arctic ecosystems and the impacts on global weather patterns. Our team comprised of Arctic researchers, a poet, a visual artist, photographers and visualization experts set out to blend the vocabularies of our disciplines in order to provide entry into the content for diverse audiences. Arctic Messages is one facet of our broader efforts experimenting with mediums of communication able to provide entry to those of us outside scientific of fields. We believe that the scientific understanding of change presented through the languages art will speak to our humanity as well as our intellect. The prints combine poetry, painting, visualization, and photographs, drawn from the Arctic field studies of the Next Generation Ecosystem Experiments research team at Los Alamos National Laboratory. The artistic team interviewed the scientists, read their papers and poured over their field blogs. The content and concepts are designed to portray the wonder of nature, the complexity of the science and the dedication of the researchers. Smith brings to life the intertwined connection between the research efforts, the ecosystems and the scientist's experience. Breathtaking photography of the research site is accompanied by Samsel's drawings and paintings of the ecosystem relationships and geological formations. Together they provide entry to the variety and wonder of life on the Arctic tundra and that resting quietly in the permafrost below. Our team has experimented with many means of presentation from complex interactive systems to quiet individual works. Here we are presenting a series of prints, each one based on a single thread of the research or the scientist's experience but containing intertwined relationships similar to the ecosystems they represent. Earlier interactive systems, while engaging, were not tuned to those seeking

  14. Comparison of contaminants from different trophic levels and ecosystems

    DEFF Research Database (Denmark)

    Dietz, R.; Riget, F.; Cleemann, M.

    2000-01-01

    The present paper provides an overview of the priority contaminants and media from the Greenland part of the Arctic Monitoring and Assessment Program. Levels and accumulation patterns of heavy metals, POPs and a radionuclide (Cs-137) are compared from the terrestrial, freshwater and marine...... ecosystems. Of the nine compounds presented, seven (Cd, Hg, Se, Sigma PCB, Sigma DDT, Sigma HCH, HCB) increased in concentration towards higher trophic levels. For these contaminants the concentrations in soil and aquatic sediment were in the same order of magnitude, whereas the concentrations in marine...

  15. Conflicting hydropower development and aquatic ecosystem conservation in Bhutan

    Science.gov (United States)

    Wi, S.; Yang, Y. C. E.

    2017-12-01

    Hydropower is one of the clean energy sources that many Himalayan countries are eager to develop to solve their domestic energy deficit issue such as India, Nepal and Pakistan. Like other Himalayan countries, Bhutan also has a great potential for hydropower development. However, Bhutan is one of few countries that has a domestic energy surplus and export its hydropower generation to neighboring countries (mainly to India). Exporting hydropower is one of the major economic sources in Bhutan. However, constructions of dams and reservoirs for hydropower development inevitably involve habitat fragmentation, causing a conflict of interest with the pursuit of value in aquatic ecosystem conservation. The objectives of this study is to 1) develop a distributed hydrologic model with snow and glacier module to simulate the hydrologic regimes of seven major watersheds in Bhutan; 2) apply the hydrologic model to compute hydropower generation for all existing and potential dams; 3) evaluate cascade impacts of each individual dam on downstream regions by employing three hydro-ecological indicators: the River Connectivity Index (RCI), Dendritic Connectivity Index (DCI), total affected river stretch (ARS), and 4) analyze the tradeoffs between hydropower generation and river connectivity at the national scale by means of a multiple objective genetic algorithm. Modeling results of three Pareto Fronts between ecological indicators and hydropower generation accompany with future energy export targets from the government can inform dam selections that maximizing hydropower generation while minimizing the impact on the aquatic ecosystem (Figure 1a). The impacts of climate change on these Pareto front are also explored to identify robust dam selection under changing temperature and precipitation (Figure 1b).

  16. Winter carbon dioxide effluxes from Arctic ecosystems: An overview and comparison of methodologies

    DEFF Research Database (Denmark)

    Björkman, M.P.; Morgner, E.; Cooper, E.J.

    2010-01-01

    removal, (3) diffusion measurements, F2-point, within the snowpack, and (4) a trace gas technique, FSF6, with multiple gas sampling within the snowpack. According to measurements collected from shallow and deep snow cover in High Arctic Svalbard and subarctic Sweden during the winter of 2007......The winter CO2 efflux from subnivean environments is an important component of annual C budgets in Arctic ecosystems and consequently makes prediction and estimations of winter processes as well as incorporations of these processes into existing models important. Several methods have been used......, Fsoil is assumed to measure soil production, whereas FSF6, Fsnow, and F2-point are considered better approaches for quantifying exchange processes between the soil, snow, and the atmosphere. This study indicates that estimates of winter CO2 emissions may vary more as a result of the method used than...

  17. Stochastic models for predicting environmental impact in aquatic ecosystems

    International Nuclear Information System (INIS)

    Stewart-Oaten, A.

    1986-01-01

    The purpose of stochastic predictions are discussed in relation to the environmental impacts of nuclear power plants on aquatic ecosystems. One purpose is to aid in making rational decisions about whether a power plant should be built, where, and how it should be designed. The other purpose is to check on the models themselves in the light of what eventually happens. The author discusses the role or statistical decision theory in the decision-making problem. Various types of stochastic models and their problems are presented. In addition some suggestions are made for generating usable stochastic models, and checking and improving on them. 12 references

  18. Nitrogen accumulation and partitioning in a High Arctic tundra ecosystem from extreme atmospheric N deposition events

    International Nuclear Information System (INIS)

    Choudhary, Sonal; Blaud, Aimeric; Osborn, A. Mark; Press, Malcolm C.; Phoenix, Gareth K.

    2016-01-01

    Arctic ecosystems are threatened by pollution from recently detected extreme atmospheric nitrogen (N) deposition events in which up to 90% of the annual N deposition can occur in just a few days. We undertook the first assessment of the fate of N from extreme deposition in High Arctic tundra and are presenting the results from the whole ecosystem "1"5N labelling experiment. In 2010, we simulated N depositions at rates of 0, 0.04, 0.4 and 1.2 g N m"−"2 yr"−"1, applied as "1"5NH_4"1"5NO_3 in Svalbard (79"°N), during the summer. Separate applications of "1"5NO_3"− and "1"5NH_4"+ were also made to determine the importance of N form in their retention. More than 95% of the total "1"5N applied was recovered after one growing season (~ 90% after two), demonstrating a considerable capacity of Arctic tundra to retain N from these deposition events. Important sinks for the deposited N, regardless of its application rate or form, were non-vascular plants > vascular plants > organic soil > litter > mineral soil, suggesting that non-vascular plants could be the primary component of this ecosystem to undergo measurable changes due to N enrichment from extreme deposition events. Substantial retention of N by soil microbial biomass (70% and 39% of "1"5N in organic and mineral horizon, respectively) during the initial partitioning demonstrated their capacity to act as effective buffers for N leaching. Between the two N forms, vascular plants (Salix polaris) in particular showed difference in their N recovery, incorporating four times greater "1"5NO_3"− than "1"5NH_4"+, suggesting deposition rich in nitrate will impact them more. Overall, these findings show that despite the deposition rates being extreme in statistical terms, biologically they do not exceed the capacity of tundra to sequester pollutant N during the growing season. Therefore, current and future extreme events may represent a major source of eutrophication. - Highlights: • High Arctic tundra demonstrated a

  19. [Nitrogen bio-cycle in the alpine tundra ecosystem of Changbai Mountain and its comparison with arctic tundra].

    Science.gov (United States)

    Wei, Jing; Zhao, Jing-zhu; Deng, Hong-bing; Wu, Gang; Hao, Ying-jie; Shang, Wen-yan

    2005-03-01

    The nitrogen bio-cycle was discussed in the alpine tundra ecosystem of Changbai Mountain through compartment model. The alpine tundra of Changbai Mountain was compared with Arctic tundra by the common ratio of genus and species in this paper. It was found that the 89.3% of genus and 58.6% of species was the common between Changbai alpine tundra and Arctic tundra while 95.5% of lichen genus and 58.7% lichen species, 82.1% of moss genus and 76.3% of moss species, 93.1% of vascular bundle genus and 40.5% of vascular bundle species were the common, respectively, which made vegetation type or community to be similar between Changbai alpine tundra and Arctic tundra. The total storage of nitrogen was 65220.6 t in the vegetation-plant system of Changbai Mountain, of which soil pool amounted to 99.3%. The nitrogen storage of each compartment was as follows: the vegetation pool, litterfall pool and soil pool were 237.4 t, 145.3 t and 64837.9 t respectively. The transferable amounts of nitrogen were 131.7 t x a(-1), 58 t/a and 73.7 t x a(-1) in the aboveground plant, belowground root system and litterfall of alpine tundra ecosystem of Changbai Mountain.

  20. Pacific Northwest Laboratory Alaska (ARCTIC) research program

    International Nuclear Information System (INIS)

    Hanson, W.C.; Eberhardt, L.E.

    1980-03-01

    The current program continues studies of arctic ecosystems begun in 1959 as part of the Cape Thompson Program. Specific ecosystem aspects include studies of the ecology of arctic and red foxes, small mammel and bird population studies, lichen studies, and radiation ecology studies

  1. Solar energy development and aquatic ecosystems in the southwestern United States: potential impacts, mitigation, and research needs.

    Science.gov (United States)

    Grippo, Mark; Hayse, John W; O'Connor, Ben L

    2015-01-01

    The cumulative impacts of utility-scale solar energy facilities on aquatic ecosystems in the Southwestern United States are of concern, considering the many existing regional anthropogenic stressors. We review the potential impacts of solar energy development on aquatic habitat and biota. The greatest potential for impacts is related to the loss, fragmentation, or prolonged drying of ephemeral water bodies and drainage networks resulting from the loss of desert washes within the construction footprint of the facility. Groundwater-dependent aquatic habitat may also be affected by operational groundwater withdrawal in the case of water-intensive solar technologies. Solar panels have also been found to attract aquatic insects and waterbirds, potentially resulting in mortality. Avoiding construction activity near perennial and intermittent surface waters is the primary means of reducing impacts on aquatic habitats, followed by measures to minimize erosion, sedimentation, and contaminant inputs into waterways. Currently, significant data gaps make solar facility impact assessment and mitigation more difficult. Examples include the need for more regional and site-specific studies of surface-groundwater connectivity, more detailed maps of regional stream networks and riparian vegetation corridors, as well as surveys of the aquatic communities inhabiting ephemeral streams. In addition, because they often lack regulatory protection, there is also a need to develop valuation criteria for ephemeral waters based on their ecological and hydrologic function within the landscape. By addressing these research needs, we can achieve the goal of greater reliance on solar energy, while at the same time minimizing impacts on desert ecosystems.

  2. Aquatic ecosystem protection and restoration: Advances in methods for assessment and evaluation

    Science.gov (United States)

    Bain, M.B.; Harig, A.L.; Loucks, D.P.; Goforth, R.R.; Mills, K.E.

    2000-01-01

    Many methods and criteria are available to assess aquatic ecosystems, and this review focuses on a set that demonstrates advancements from community analyses to methods spanning large spatial and temporal scales. Basic methods have been extended by incorporating taxa sensitivity to different forms of stress, adding measures linked to system function, synthesizing multiple faunal groups, integrating biological and physical attributes, spanning large spatial scales, and enabling simulations through time. These tools can be customized to meet the needs of a particular assessment and ecosystem. Two case studies are presented to show how new methods were applied at the ecosystem scale for achieving practical management goals. One case used an assessment of biotic structure to demonstrate how enhanced river flows can improve habitat conditions and restore a diverse fish fauna reflective of a healthy riverine ecosystem. In the second case, multitaxonomic integrity indicators were successful in distinguishing lake ecosystems that were disturbed, healthy, and in the process of restoration. Most methods strive to address the concept of biological integrity and assessment effectiveness often can be impeded by the lack of more specific ecosystem management objectives. Scientific and policy explorations are needed to define new ways for designating a healthy system so as to allow specification of precise quality criteria that will promote further development of ecosystem analysis tools.

  3. The use of biomarkers to assess the health of aquatic ecosystems in Brazil: a review

    Directory of Open Access Journals (Sweden)

    Thaís Dalzochio

    2016-11-01

    Full Text Available Abstract Organisms in polluted environments are typically exposed to a complex mixture of chemical contaminants. The great concern about the health of aquatic ecosystems has led to the increased use of biomarkers over the past years. The aim of this work was to review the papers published from 2000 to 2015, which used biomarkers to assess the health of aquatic ecosystems in Brazil. A research resulted in 99 eligible papers. More than 80% of studies were conducted in the states of São Paulo and Rio Grande do Sul. Approximately 63% of studies used fish as bioindicator, whereas the micronucleus test and biochemical analyses were the most used biomarkers. A multibiomarker approach was used by 60.6% of studies, while 39.4% used one single biomarker. Furthermore, 68% were field studies and more than 75% of these used control animals sampled at reference sites. A relationship between the biomarker responses and pollution was reported by 87% of studies; however, 43.4% of studies analyzed only one sampling period, limiting comparisons and comprehension about possible seasonal variations. This review evidenced some weak points in studies using biomarkers in Brazil, especially related to the lack of studies in two important biomes (the Pantanal and the Amazon Rainforest and experimental designs (small sample size, sampling in one single period, use of one single biomarker. Thus, future studies should consider mainly the use of multiple biomarkers, greater sample size, seasonal sampling and water physicochemical parameters to better diagnose the health of aquatic ecosystems.

  4. Assessing Sources of Stress to Aquatic Ecosystems: Using Biomarkers and Bioindicators to Characterize Exodure-Response Profiles of Anthropogenic Activities

    Energy Technology Data Exchange (ETDEWEB)

    Adams, S.M.

    1999-03-29

    Establishing causal relationships between sources of environmental stressors and aquatic ecosystem health if difficult because of the many biotic and abiotic factors which can influence or modify responses of biological systems to stress, the orders of magnitude involved in extrapolation over both spatial and temporal scales, and compensatory mechanisms such as density-dependent responses that operate in populations. To address the problem of establishing causality between stressors and effects on aquatic systems, a diagnostic approach, based on exposure-response profiles for various anthropogenic activities, was developed to help identify sources of stress responsible for effects on aquatic systems at ecological significant levels of biological organization (individual, population, community). To generate these exposure-effects profiles, biomarkers of exposure were plotted against bioindicators of corresponding effects for several major anthropogenic activities including petrochemical , pulp and paper, domestic sewage, mining operations, land-development activities, and agricultural activities. Biomarkers of exposure to environmental stressors varied depending on the type of anthropogenic activity involved. Bioindicator effects, however, including histopathological lesions, bioenergetic status, individual growth, reproductive impairment, and community-level responses were similar among many of the major anthropogenic activities. This approach is valuable to help identify and diagnose sources of stressors in environments impacted by multiple stressors. By identifying the types and sources of environmental stressors, aquatic ecosystems can be more effectively protected and managed to maintain acceptable levels of environmental quality and ecosystem fitness.

  5. Arctic species resilience

    DEFF Research Database (Denmark)

    Mortensen, Lars O.; Forchhammer, Mads C.; Jeppesen, Erik

    The peak of biological activities in Arctic ecosystems is characterized by a relative short and intense period between the start of snowmelt until the onset of frost. Recent climate changes have induced larger seasonal variation in both timing of snowmelt as well as changes mean temperatures......, an extensive monitoring program has been conducted in the North Eastern Greenland National Park, the Zackenberg Basic. The objective of the program is to provide long time series of data on the natural innate oscillations and plasticity of a High Arctic ecosystem. With offset in the data provided through...

  6. Application of Terrestrial Ecosystem Monitoring under the CAFF Circumpolar Biodiversity Monitoring Program: Designing and Implementing Terrestrial Monitoring to Establish the Canadian High Arctic Research Station as a Flagship Arctic Environmental Monitoring Site

    Science.gov (United States)

    McLennan, D.; Kehler, D.

    2016-12-01

    The Canadian High Arctic Research Station (CHARS) is scheduled for completion in July 2017 and is the northern science component of Polar Knowledge Canada (POLAR). A mandated goal for POLAR is to establish the adjacent Experimental and Reference Area (ERA) as an Arctic Flagship monitoring site that will track change in Arctic terrestrial, freshwater and marine ecosystems. Situated in the community of Cambridge Bay, CHARS provides the opportunity to draw on the Indigenous Knowledge of local residents to help design and conduct the monitoring, and to operate 12 months a year. Monitoring at CHARS will be linked to networks nationally and internationally, and is being designed so that change in key indicators can be understood in terms of drivers and processes, modeled and scaled up regionally, and used to predict important changes in critical indicators. As a partner in the Circumpolar Biodiversity Monitoring Program (CBMP), the monitoring design for terrestrial ecosystems follows approaches outlined by the CBMP Terrestrial Expert Monitoring Group, who have listed key monitoring questions and identified a list of important Focal Ecosystem Components (FECs). To link drivers to FECs we are proposing a multi-scaled approach: 1) an Intensive Monitoring Area to establish replicated monitoring plots that track change in snow depth and condition, active layer depth, soil temperature, soil moisture, and soil solution chemistry that are spatially and temporally linked to changes in microbiological activity, CO2/CH4 net ecosystem flux, vegetation relative frequency, species composition, growth and foliar nutrient concentration, arthropod abundance, lemming abundance and health, and shorebird/songbird abundance and productivity. 2) These intensive observations are supported by watershed scale measures that will monitor, during the growing season, lemming winter nest abundance, songbird, shorebird and waterfowl staging and nesting, and other observations; in the winter we will

  7. A REVIEW OF SINGLE SPECIES TOXICITY TESTS: ARE THE TESTS RELIABLE PREDICTORS OF AQUATIC ECOSYSTEM COMMUNITY RESPONSES?

    Science.gov (United States)

    This document provides a comprehensive review to evaluate the reliability of indicator species toxicity test results in predicting aquatic ecosystem impacts, also called the ecological relevance of laboratory single species toxicity tests.

  8. Ecosystem and human health assessment to define environmental management strategies: The case of long-term human impacts on an Arctic lake.

    Science.gov (United States)

    Moiseenko, T I; Voinov, A A; Megorsky, V V; Gashkina, N A; Kudriavtseva, L P; Vandish, O I; Sharov, A N; Sharova, Yu; Koroleva, I N

    2006-10-01

    There are rich deposits of mineral and fossil natural resources in the Arctic, which make this region very attractive for extracting industries. Their operations have immediate and vast consequences for ecological systems, which are particularly vulnerable in this region. We are developing a management strategy for Arctic watersheds impacted by industrial production. The case study is Lake Imandra watershed (Murmansk oblast, Russia) that has exceptionally high levels of economic development and large numbers of people living there. We track the impacts of toxic pollution on ecosystem health and then--human health. Three periods are identified: (a) natural, pre-industrial state; (b) disturbed, under rapid economic development; and (c) partial recovery, during recent economic meltdown. The ecosystem is shown to transform into a qualitatively new state, which is still different from the original natural state, even after toxic loadings have substantially decreased. Fish disease where analyzed to produce and integral evaluation of ecosystem health. Accumulation of heavy metals in fish is correlated with etiology of many diseases. Dose-effect relationships are between integral water quality indices and ecosystem health indicators clearly demonstrates that existing water quality standards adopted in Russia are inadequate for Arctic regions. Health was also poor for people drinking water from the Lake. Transport of heavy metals from drinking water, into human organs, and their effect on liver and kidney diseases shows the close connection between ecosystem and human health. A management system is outlined that is based on feedback from indices of ecosystem and human health and control over economic production and/or the amount of toxic loading produced. We argue that prospects for implementation of such a system are quite bleak at this time, and that more likely we will see a continued depopulation of these Northern regions.

  9. Pharmaceuticals and personal care products (PPCPs) in Arctic environments: indicator contaminants for assessing local and remote anthropogenic sources in a pristine ecosystem in change.

    Science.gov (United States)

    Kallenborn, Roland; Brorström-Lundén, Eva; Reiersen, Lars-Otto; Wilson, Simon

    2017-07-31

    A first review on occurrence and distribution of pharmaceuticals and personal care products (PPCPs) is presented. The literature survey conducted here was initiated by the current Assessment of the Arctic Monitoring and Assessment Programme (AMAP). This first review on the occurrence and environmental profile of PPCPs in the Arctic identified the presence of 110 related substances in the Arctic environment based on the reports from scientific publications, national and regional assessments and surveys, as well as academic research studies (i.e., PhD theses). PPCP residues were reported in virtually all environmental compartments from coastal seawater to high trophic level biota. For Arctic environments, domestic and municipal wastes as well as sewage are identified as primary release sources. However, the absence of modern waste water treatment plants (WWTPs), even in larger settlements in the Arctic, is resulting in relatively high release rates for selected PPCPs into the receiving Arctic (mainly) aquatic environment. Pharmaceuticals are designed with specific biochemical functions as a part of an integrated therapeutically procedure. This biochemical effect may cause unwanted environmental toxicological effects on non-target organisms when the compound is released into the environment. In the Arctic environments, pharmaceutical residues are released into low to very low ambient temperatures mainly into aqueous environments. Low biodegradability and, thus, prolonged residence time must be expected for the majority of the pharmaceuticals entering the aquatic system. The environmental toxicological consequence of the continuous PPCP release is, thus, expected to be different in the Arctic compared to the temperate regions of the globe. Exposure risks for Arctic human populations due to consumption of contaminated local fish and invertebrates or through exposure to resistant microbial communities cannot be excluded. However, the scientific results reported and

  10. Parasites as drivers of key processes in aquatic ecosystems: Facts and future directions.

    Science.gov (United States)

    Sures, B; Nachev, M; Pahl, M; Grabner, D; Selbach, C

    2017-09-01

    Despite the advances in our understanding of the ecological importance of parasites that we have made in recent years, we are still far away from having a complete picture of the ecological implications connected to parasitism. In the present paper we highlight key issues that illustrate (1) important contributions of parasites to biodiversity, (2) their integral role in ecosystems, (3) as well as their ecological effects as keystone species (4) and in biological invasion processes. By using selected examples from aquatic ecosystems we want to provide an insight and generate interest into the topic, and want to show directions for future research in the field of ecological parasitology. This may help to convince more parasitologists and ecologists contributing and advancing our understanding of the complex and fascinating interplay of parasites, hosts and ecosystems. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Seasonal dynamics of bacterial biomass and production in a coastal arctic ecosystem: Franklin Bay, western Canadian Arctic

    Science.gov (United States)

    Garneau, Marie-Ã. Ve; Roy, SéBastien; Lovejoy, Connie; Gratton, Yves; Vincent, Warwick F.

    2008-07-01

    The Canadian Arctic Shelf Exchange Study (CASES) included the overwintering deployment of a research platform in Franklin Bay (70°N, 126°W) and provided a unique seasonal record of bacterial dynamics in a coastal region of the Arctic Ocean. Our objectives were (1) to relate seasonal bacterial abundance (BA) and production (BP) to physico-chemical characteristics and (2) to quantify the annual bacterial carbon flux. BA was estimated by epifluorescence microscopy and BP was estimated from 3H-leucine and 3H-thymidine assays. Mean BA values for the water column ranged from 1.0 (December) to 6.8 × 105 cells mL-1 (July). Integral BP varied from 1 (February) to 80 mg C m-2 d-1 (July). During winter-spring, BP was uncorrelated with chlorophyll a (Chl a), but these variables were significantly correlated during summer-autumn (rs = 0.68, p winter, late winter-late spring, and summer. A baseline level of BB and BP was maintained throughout late winter-late spring despite the persistent cold and darkness, with irregular fluctuations that may be related to hydrodynamic events. During this period, BP rates were correlated with colored dissolved organic matter (CDOM) but not Chl a (rs BP.CDOM∣Chl a = 0.20, p < 0.05, N = 176). Annual BP was estimated as 6 g C m-2 a-1, implying a total BP of 4.8 × 1010 g C a-1 for the Franklin Bay region. These results show that bacterial processes continue throughout all seasons and make a large contribution to the total biological carbon flux in this coastal arctic ecosystem.

  12. Arctic tipping points in an Earth system perspective.

    Science.gov (United States)

    Wassmann, Paul; Lenton, Timothy M

    2012-02-01

    We provide an introduction to the volume The Arctic in the Earth System perspective: the role of tipping points. The terms tipping point and tipping element are described and their role in current science, general debates, and the Arctic are elucidated. From a wider perspective, the volume focuses upon the role of humans in the Arctic component of the Earth system and in particular the envelope for human existence, the Arctic ecosystems. The Arctic climate tipping elements, the tipping elements in Arctic ecosystems and societies, and the challenges of governance and anticipation are illuminated through short summaries of eight publications that derive from the Arctic Frontiers conference in 2011 and the EU FP7 project Arctic Tipping Points. Then some ideas based upon resilience thinking are developed to show how wise system management could ease pressures on Arctic systems in order to keep them away from tipping points.

  13. Nitrogen accumulation and partitioning in a High Arctic tundra ecosystem from extreme atmospheric N deposition events

    Energy Technology Data Exchange (ETDEWEB)

    Choudhary, Sonal, E-mail: S.Choudhary@sheffield.ac.uk [Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN (United Kingdom); Management School, University of Sheffield, Conduit Road, Sheffield S10 1FL (United Kingdom); Blaud, Aimeric [Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN (United Kingdom); Osborn, A. Mark [Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN (United Kingdom); School of Applied Sciences, RMIT University, PO Box 71, Bundoora, VIC 3083 (Australia); Press, Malcolm C. [School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Manchester Metropolitan University, Manchester, M15 6BH (United Kingdom); Phoenix, Gareth K. [Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN (United Kingdom)

    2016-06-01

    Arctic ecosystems are threatened by pollution from recently detected extreme atmospheric nitrogen (N) deposition events in which up to 90% of the annual N deposition can occur in just a few days. We undertook the first assessment of the fate of N from extreme deposition in High Arctic tundra and are presenting the results from the whole ecosystem {sup 15}N labelling experiment. In 2010, we simulated N depositions at rates of 0, 0.04, 0.4 and 1.2 g N m{sup −2} yr{sup −1}, applied as {sup 15}NH{sub 4}{sup 15}NO{sub 3} in Svalbard (79{sup °}N), during the summer. Separate applications of {sup 15}NO{sub 3}{sup −} and {sup 15}NH{sub 4}{sup +} were also made to determine the importance of N form in their retention. More than 95% of the total {sup 15}N applied was recovered after one growing season (~ 90% after two), demonstrating a considerable capacity of Arctic tundra to retain N from these deposition events. Important sinks for the deposited N, regardless of its application rate or form, were non-vascular plants > vascular plants > organic soil > litter > mineral soil, suggesting that non-vascular plants could be the primary component of this ecosystem to undergo measurable changes due to N enrichment from extreme deposition events. Substantial retention of N by soil microbial biomass (70% and 39% of {sup 15}N in organic and mineral horizon, respectively) during the initial partitioning demonstrated their capacity to act as effective buffers for N leaching. Between the two N forms, vascular plants (Salix polaris) in particular showed difference in their N recovery, incorporating four times greater {sup 15}NO{sub 3}{sup −} than {sup 15}NH{sub 4}{sup +}, suggesting deposition rich in nitrate will impact them more. Overall, these findings show that despite the deposition rates being extreme in statistical terms, biologically they do not exceed the capacity of tundra to sequester pollutant N during the growing season. Therefore, current and future extreme events

  14. Reconstruction and prediction of radioactive contamination of the ecosystems of the Arctic Seas

    International Nuclear Information System (INIS)

    Kryshev, I.I.

    1995-01-01

    An analysis of the radionuclide content in components of the marine ecosystem was performed on the basis of observational data. The site-specific factors of radionuclide accumulation in marine biota and sediments were calculated for 90 Sr and 137 Cs. The following can be concluded from the comparison of site-specific accumulation factors with the world averaged data (IAEA Publication : 247): 1) 90 Sr concentration factors in algae and zooplankton in the Arctic Sea are roughly the same as world-averaged values. However, for fish they are much higher then average values and are mostly as high as the upper estimates of 90 Sr concentration factors presented in the IAEA Publication. 2) 137 Cs concentration factors in algae and zooplankton in the Arctic Sea are practically equal to the generalized world data. However, they are twice as high as world-averaged values for fish, but not going beyond the range of uncertainty for world-averaged data. 8 refs., 2 tabs

  15. Abundant Pre-Industrial Carbon Emitted by Arctic Inland Waters

    Science.gov (United States)

    Dean, J.; Van der Velde, Y.; Billett, M. F.; Dinsmore, K. J.; Garnett, M.; Meisel, O.; Dolman, A. J.

    2017-12-01

    Mobilization of carbon (C) derived from soil/sediment organic matter into inland freshwaters constitutes a substantial, but poorly-constrained, component of the global C cycle. Radiocarbon (14C) analysis has proven a valuable tool in tracing the sources and fate of mobilized C, but aquatic 14C studies in permafrost regions rarely detect 'old' C (assimilated from the atmosphere into plants and soil prior to AD1950). This is partly due to a focus on dissolved organic C (DOC) in many Arctic inland water 14C studies to date, now known to be an insensitive method for detecting old C. Crucially, the emission of greenhouse gases (GHGs) derived from old permafrost C by aquatic systems contributes to a positive climate feedback loop: the 'Permafrost Climate Feedback' (PCF). Here, we measure directly the 14C content and quantify fluxes of aquatic CO2 and CH4, alongside DOC and particulate-OC, in freshwater systems of the Canadian and Siberian Arctic tundra - the first such concurrent 14C measurements from freshwater systems. Aquatic C increased in age significantly over the snow-free season as the active layer deepened (Figure 1). However, 'modern' C (assimilated since AD1950) still dominated aquatic CO2 and CH4 emissions, except where deep ancient (6,000 to 50,000 yBP) C was exposed. Age distribution modeling of these bulk 14C samples indicated that 'pre-industrial' C (assimilated prior to AD1750) comprised 15-30% of aquatic GHGs (Figure 1). Further, we estimate that 15-20% of total CO2 and CH4 emissions were derived from old C previously locked up in permafrost soils and thus contributed to the PCF. These results demonstrate the previously unknown presence of aged C within Arctic headwater GHG emissions that could be equivalent to 7.5-28.2 Tg C yr-1 across the pan-Arctic.

  16. Assessment of variables controlling nitrate dynamics in groundwater: is it a threat to surface aquatic ecosystems?

    Science.gov (United States)

    Rasiah, V; Armour, J D; Cogle, A L

    2005-01-01

    The impact of fertilised cropping on nitrate-N dynamics in groundwater (GW) was assessed in a catchment from piezometers installed: (i) to different depths, (ii) in different soil types, (iii) on different positions on landscape, and (iv) compared with the Australian and New Zealand Environmental and Conservation Council guideline values provided for different aquatic ecosystems. The GW and NO(3)-N concentration dynamics were monitored in 39 piezometer wells, installed to 5-90 m depth, under fertilized sugarcane (Saccharum officinarum-S) in the Johnstone River Catchment, Australia, from 1999 January through September 2002. The median nitrate-N concentration ranged from 14 to 1511 microg L(-1), and the 80th percentile from 0 to 1341 microg L(-1). In 34 out of the 39 piezometer wells the 80th percentile or 80% of the nitrate-N values were higher than 30 microg L(-1), which is the maximum trigger value provided in the ANZECC table for sustainable health of different aquatic ecosystems. Nitrate-N concentration decreased with increasing well depth, increasing depth of water in wells, and with decreasing relief on landscape. Nitrate-N was higher in alluvial soil profiles than on those formed in-situ. Nitrate-N increased with increasing rainfall at the beginning of the rainy season, fluctuated during the peak rainy period, and then decreased when the rain ceased. The rapid decrease in GW after the rains ceased suggested potential existed for nitrate-N to be discharged as lateral-flow into streams. This may contribute towards the deterioration in the health of down-stream aquatic ecosystems.

  17. Effect of Freeze-Thaw Cycles on Soil Nitrogen Reactive Transport in a Polygonal Arctic Tundra Ecosystem at Barrow AK Using 3-D Coupled ALM-PFLOTRAN

    Science.gov (United States)

    Yuan, F.; Wang, G.; Painter, S. L.; Tang, G.; Xu, X.; Kumar, J.; Bisht, G.; Hammond, G. E.; Mills, R. T.; Thornton, P. E.; Wullschleger, S. D.

    2017-12-01

    In Arctic tundra ecosystem soil freezing-thawing is one of dominant physical processes through which biogeochemical (e.g., carbon and nitrogen) cycles are tightly coupled. Besides hydraulic transport, freezing-thawing can cause pore water movement and aqueous species gradients, which are additional mechanisms for soil nitrogen (N) reactive-transport in Tundra ecosystem. In this study, we have fully coupled an in-development ESM(i.e., Advanced Climate Model for Energy, ACME)'s Land Model (ALM) aboveground processes with a state-of-the-art massively parallel 3-D subsurface thermal-hydrology and reactive transport code, PFLOTRAN. The resulting coupled ALM-PFLOTRAN model is a Land Surface Model (LSM) capable of resolving 3-D soil thermal-hydrological-biogeochemical cycles. This specific version of PFLOTRAN has incorporated CLM-CN Converging Trophic Cascade (CTC) model and a full and simple but robust soil N cycle. It includes absorption-desorption for soil NH4+ and gas dissolving-degasing process as well. It also implements thermal-hydrology mode codes with three newly-modified freezing-thawing algorithms which can greatly improve computing performance in regarding to numerical stiffness at freezing-point. Here we tested the model in fully 3-D coupled mode at the Next Generation Ecosystem Experiment-Arctic (NGEE-Arctic) field intensive study site at the Barrow Environmental Observatory (BEO), AK. The simulations show that: (1) synchronous coupling of soil thermal-hydrology and biogeochemistry in 3-D can greatly impact ecosystem dynamics across polygonal tundra landscape; and (2) freezing-thawing cycles can add more complexity to the system, resulting in greater mobility of soil N vertically and laterally, depending upon local micro-topography. As a preliminary experiment, the model is also implemented for Pan-Arctic region in 1-D column mode (i.e. no lateral connection), showing significant differences compared to stand-alone ALM. The developed ALM-PFLOTRAN coupling

  18. Greenhouse Gas Exchange in Small Arctic Thaw Ponds

    Science.gov (United States)

    Laurion, I.; Bégin, P. N.; Bouchard, F.; Preskienis, V.

    2014-12-01

    Arctic lakes and ponds can represent up to one quarter of the land surface in permafrost landscapes, particularly in lowland tundra landscapes characterized by ice wedge organic polygons. Thaw ponds can be defined as the aquatic ecosystems associated to thawing of organic soils, either resulting from active layer processes and located above low-center peat polygons (hereafter low-center polygonal or LCP ponds), or resulting from thermokarst slumping above melting ice wedges linked to the accelerated degradation of permafrost (hereafter ice-wedge trough or IWT ponds). These ponds can merge together forming larger water bodies, but with relatively stable shores (hereafter merged polygonal or MPG ponds), and with limnological characteristics similar to LCP ponds. These aquatic systems are very small and shallow, and present a different physical structure than the larger thermokarst lakes, generated after years of development and land subsidence. In a glacier valley on Bylot Island, Nunavut, Canada, thermokarst and kettle lakes together represent 29% of the aquatic area, with a thermal profile resembling those of more standard arctic lakes (mixed epilimnion). The IWT ponds (44% of the area) are stratified for a large fraction of the summer despite their shallowness, while LCP and MPG ponds (27% of the area) show a more homogeneous water column. This will affect gas exchange in these diverse aquatic systems, in addition to their unique microbiota and organic carbon lability that control the production and consumption rates of greenhouse gases. The stratification in IWT ponds generates hypoxic conditions at the bottom, and together with the larger availability of organic carbon, stimulates methanogenesis and limits the mitigating action of methanotrophs. Overall, thaw ponds are largely supersaturated in methane, with IWT ponds dominating the emissions in this landscape (92% of total aquatic emissions estimated for the same valley), and they present large variations in

  19. Assimilation of old carbon by stream food webs in arctic Alaska

    Science.gov (United States)

    O'Donnell, J. A.; Carey, M.; Xu, X.; Koch, J. C.; Walker, J. C.; Zimmerman, C. E.

    2017-12-01

    Permafrost thaw in arctic and sub-arctic region is mobilizing old carbon (C) from perennially frozen soils, driving the release of old C to the atmosphere and to aquatic ecosystems. Much research has focused on the transport and lability of old dissolved organic C (DOC) as a possible feedback to the climate system following thaw. However, little is known about the role of old C as a source to aquatic food webs in watersheds underlain by thawing permafrost. To quantify the contributions of old C to Arctic stream food-webs, we measured the radiocarbon (Δ14C) and stable isotope (δ13C, δ15N) contents of periphyton, macroinvertebrates, and resident fish species (Arctic Grayling (Thymallus arcticus) and Dolly Varden (Salvelinus malma)). We also characterized the isotopic composition of possible C sources, including DOC, dissolved inorganic carbon (DIC), and soil organic matter. Samples were collected across 10 streams in Arctic Alaska, draining watersheds underlain by varying parent material and ground-ice content, from ice-poor bedrock to ice-rich loess (i.e. Yedoma). Fraction modern (FM) values for Arctic Grayling and Dolly Varden ranged from 0.6720 to 1.0101 (3195 years BP to modern) across all streams, and closely tracked spatial variation in Δ14C content of periphyton. Parent material and ground-ice content appear to govern the age and form of dissolved C sources to stream biota. For instance, in watersheds underlain by ice-poor bedrock, old DIC (< 5000 years BP) was the dominant C source to stream biota, reflecting contributions from carbonate weathering and soil respiration. In streams draining ice-rich Yedoma, high concentrations of younger DOC were the primary C source to stream biota, reflecting leaching of DOC from saturated, peaty soils of the active layer. These findings highlight the importance of permafrost characteristics as a control on subsurface hydrology and the delivery of aged C to surface waters. Given the large stores Pleistocene-aged organic

  20. Heavy metal pollution in aquatic ecosystems and its phytoremediation using wetland plants: An ecosustainable approach

    Energy Technology Data Exchange (ETDEWEB)

    Rai, P.K. [Mizoram Central University, Tanhril (India). School for Earth Science & Natural Resource Management

    2008-07-01

    This review addresses the global problem of heavy metal pollution originating from increased industrialization and urbanization and its amelioration by using wetland plants both in a microcosm as well as natural/field condition. This review mentions salient features of wetland ecosystems, their vegetation component, and the pros and cons involved in heavy metal removal. Wetland plants are preferred over other bio-agents due to their low cost, frequent abundance in aquatic ecosystems, and easy handling. Constructed wetlands proved to be effective for the abatement of heavy metal pollution from acid mine drainage; landfill leachate; thermal power; and municipal, agricultural, refinery, and chlor-alkali effluent. the physicochemical properties of wetlands provide many positive attributes for remediating heavy metals. Typha, Phragmites, Eichhornia, Azolla, Lemna, and other aquatic macrophytes are some of the potent wetland plants for heavy metal removal. Biomass disposal problem and seasonal growth of aquatic macrophytes are some limitations in the transfer of phytoremediation technology from the laboratory to the field. However, the disposed biomass of macrophytes may be used for various fruitful applications. An ecosustainable model has been developed through the author's various works, which may ameliorate some of the limitations. The creation of more areas for phytoremediation may also aid in wetlands conservation. Genetic engineering and biodiversity prospecting of endangered wetland plants are important future prospects in this regard.

  1. A Synthesis of the Effects of Pesticides on Microbial Persistence in Aquatic Ecosystems

    Science.gov (United States)

    Staley, Zachery R.; Harwood, Valerie J.; Rohr, Jason R.

    2016-01-01

    Pesticides are a pervasive presence in aquatic ecosystems throughout the world. While pesticides are intended to control fungi, insects, and other pests, their mechanisms of action are often not specific enough to prevent unintended effects, such as on non-target microbial populations. Microorganisms, including algae and cyanobacteria, protozoa, aquatic fungi, and bacteria, form the basis of many food webs and are responsible for crucial aspects of biogeochemical cycling; therefore, the potential for pesticides to alter microbial community structures must be understood to preserve ecosystem services. This review examines studies that focused on direct population-level effects and indirect community-level effects of pesticides on microorganisms. Generally, insecticides, herbicides, and fungicides were found to have adverse direct effects on algal and fungal species. Insecticides and fungicides also had deleterious direct effects in the majority of studies examining protozoa species, although herbicides were found to have inconsistent direct effects on protozoans. Our synthesis revealed mixed or no direct effects on bacterial species among all pesticide categories, with results highly dependent on the target species, chemical, and concentration used in the study. Examination of community-level, indirect effects revealed that all pesticide categories had a tendency to reduce higher trophic levels, thereby diminishing top-down pressures and favoring lower trophic levels. Often, indirect effects exerted greater influence than direct effects. However, few studies have been conducted to specifically address community-level effects of pesticides on microorganisms and further research is necessary to better understand and predict the net effects of pesticides on ecosystem health. PMID:26565685

  2. Ecosystem differences in the trophic enrichment of 13C in aquatic food webs

    International Nuclear Information System (INIS)

    France, R.L.; Peters, R.H.

    1997-01-01

    Data from 35 published studies were collated to examine patterns in the trophic enrichment of 13 C of consumers. Because both δ 13 C and δ 14 N vary systematically across ecosystems, it was necessary to standardize for such differences before combining data from numerous sources. Relationships of these measures of ecosystem-standardized δ 13 C to ecosystem-standardized trophic position (Δδ 15 N) for freshwater, estuarine, coastal, and open-ocean and for all aquatic ecosystems yielded regression equations of low predictive capability (average of 20% explained variance in δ 13 C). However, differences were observed in the slopes between δ 13 C and standardized trophic position when data were examined study-specifically: the average trophic fractionation of 13 C was found to increase from +0.2micron for freshwater to +0.5micron for estuarine to +0.8micron for coastal, and to +1.1micron for open-ocean food webs. This ecosystem-specific gradient in 13 C enrichment for consumers supports previous findings of a similar continuum existing for zooplankton - particulate organic matter differences in δ 13 C. Possible mechanisms to explain these ecosystem-specific patterns in 13 C enrichment may be related to the relative importance of detritus, heterotrophic respiration, partial reliance on alternative food sources, and lipid influences in the different ecosystems. (author)

  3. Responses of aquatic ecosystems to environmental changes in Finland and China

    Directory of Open Access Journals (Sweden)

    Jan eWeckström

    2015-11-01

    Full Text Available The concern for the state of global freshwater reservoirs has increased due to deterioration of the water quality during the last decades. This has prompted monitoring and restoration efforts such as the European Water Framework Directive and the national-scale 2nd-investigation and monitoring of the water quality, water volume and biota resources in China. The challenge so far has been the determination of the natural state (reference conditions of freshwater ecosystems. We used the sediment archives of five lakes and one brackish water embayment in Finland and China to assess the impact of selected variables of climatology, hydrology, nutrients, and changes in human population on these ecosystems during the last few centuries. The study sites represent catchment areas with varying land use. Despite the long distance between the sites and their different land-use characteristics, the direction and timing of changes during the last few centuries are well comparable between the high latitudes of Finland and the mid-low latitudes of China. This study reinforces the sensitivity of aquatic ecosystems to environmental change and underlines the usefulness of the palaeolimnological approach as a tool for determining reference conditions.

  4. Critical Loads of Atmospheric Nitrogen Deposition for Aquatic Ecosystems in Yosemite and Sequoia and Kings Canyon National Parks

    Science.gov (United States)

    Nanus, L.; Clow, D. W.; Sickman, J. O.

    2016-12-01

    High-elevation aquatic ecosystems in Yosemite (YOSE) and Sequoia and Kings Canyon (SEKI) National Parks are impacted by atmospheric nitrogen (N) deposition associated with local and regional air pollution. Documented effects include elevated surface water nitrate concentrations, increased algal productivity, and changes in diatom species assemblages. Annual wet inorganic N deposition maps, developed at 1-km resolution for YOSE and SEKI to quantify N deposition to sensitive high-elevation ecosystems, range from 1.0 to over 5.0 kg N ha-1 yr-1. Critical loads of N deposition for nutrient enrichment of aquatic ecosystems were quantified and mapped using a geostatistical approach, with N deposition, topography, vegetation, geology, and climate as potential explanatory variables. Multiple predictive models were created using various combinations of explanatory variables; this approach allowed us to better quantify uncertainty and more accurately identify the areas most sensitive to atmospherically deposited N. The lowest critical loads estimates and highest exceedances identified within YOSE and SEKI occurred in high-elevation basins with steep slopes, sparse vegetation, and areas of neoglacial till and talus. These results are consistent with previous analyses in the Rocky Mountains, and highlight the sensitivity of alpine ecosystems to atmospheric N deposition.

  5. Impacts to ecosystem services from aquatic acidification: using FEGS-CS to understand the impacts of air pollution

    Science.gov (United States)

    Increases in anthropogenic emissions of sulfur (S) and nitrogen (N) have resulted in increases in the associated atmospheric deposition of acidic compounds. In sensitive watersheds, this deposition has initiated a cascade of negative environmental effects on aquatic ecosystems, ...

  6. The Arctic Marine Pulses Model: Linking Contiguous Domains in the Pacific Arctic Region

    Science.gov (United States)

    Moore, S. E.; Stabeno, P. J.

    2016-02-01

    The Pacific Arctic marine ecosystem extends from the northern Bering Sea, across the Chukchi and into the East Siberian and Beaufort seas. Food webs in this domain are short, a simplicity that belies the biophysical complexity underlying trophic linkages from primary production to humans. Existing biophysical models, such as pelagic-benthic coupling and advective processes, provide frameworks for connecting certain aspects of the marine food web, but do not offer a full accounting of events that occur seasonally across the Pacific Arctic. In the course of the Synthesis of Arctic Research (SOAR) project, a holistic Arctic Marine Pulses (AMP) model was developed that depicts seasonal biophysical `pulses' across a latitudinal gradient, and linking four previously-described contiguous domains, including the: (i) Pacific-Arctic domain = the focal region; (ii) seasonal ice zone domain; (iii) Pacific marginal domain; and (iv) riverine coastal domain. The AMP model provides a spatial-temporal framework to guide research on dynamic ecosystem processes during this period of rapid biophysical changes in the Pacific Arctic. Some of the processes included in the model, such as pelagic-benthic coupling in the Northern Bering and Chukchi seas, and advection and upwelling along the Beaufort shelf, are already the focus of sampling via the Distributed Biological Observatory (DBO) and other research programs. Other aspects such as biological processes associated with the seasonal ice zone and trophic responses to riverine outflow have received less attention. The AMP model could be enhanced by the application of visualization tools to provide a means to watch a season unfold in space and time. The capability to track sea ice dynamics and water masses and to move nutrients, prey and upper-trophic predators in space and time would provide a strong foundation for the development of predictive human-inclusive ecosystem models for the Pacific Arctic.

  7. Microbial community composition and endolith colonization at an Arctic thermal spring are driven by calcite precipitation

    Science.gov (United States)

    Starke, Verena; Kirshtein, Julie; Fogel, Marilyn L.; Steele, Andrew

    2013-01-01

    Environmental conditions shape community composition. Arctic thermal springs provide an opportunity to study how environmental gradients can impose strong selective pressures on microbial communities and provide a continuum of niche opportunities. We use microscopic and molecular methods to conduct a survey of microbial community composition at Troll Springs on Svalbard, Norway, in the high Arctic. Microorganisms there exist under a wide range of environmental conditions: in warm water as periphyton, in moist granular materials, and in cold, dry rock as endoliths. Troll Springs has two distinct ecosystems, aquatic and terrestrial, together in close proximity, with different underlying environmental factors shaping each microbial community. Periphyton are entrapped during precipitation of calcium carbonate from the spring's waters, providing microbial populations that serve as precursors for the development of endolithic communities. This process differs from most endolith colonization, in which the rock predates the communities that colonize it. Community composition is modulated as environmental conditions change within the springs. At Troll, the aquatic environments show a small number of dominant operational taxonomic units (OTUs) that are specific to each sample. The terrestrial environments show a more even distribution of OTUs common to multiple samples.

  8. Effects of Conversion from Boreal Forest to Arctic Steppe on Soil Communities and Ecosystem Carbon Pools

    Science.gov (United States)

    Han, P. D.; Natali, S.; Schade, J. D.; Zimov, N.; Zimov, S. A.

    2014-12-01

    The end of the Pleistocene marked the extinction of a great variety of arctic megafauna, which, in part, led to the conversion of arctic grasslands to modern Siberian larch forest. This shift may have increased the vulnerability of permafrost to thawing because of changes driven by the vegetation shift; the higher albedo of grassland and low insulation of snow trampled by animals may have decreased soil temperatures and reduced ground thaw in the grassland ecosystem, resulting in protection of organic carbon in thawed soil and permafrost. To test these hypothesized impacts of arctic megafauna, we examined an experimental reintroduction of large mammals in northeast Siberia, initiated in 1988. Pleistocene Park now contains 23 horses, three musk ox, one bison, and several moose in addition to the native fauna. The park is 16 square km with a smaller enclosure (animals spend most of their time and our study was focused. We measured carbon-pools in forested sites (where scat surveys showed low animal use), and grassy sites (which showed higher use), within the park boundaries. We also measured thaw depth and documented the soil invertebrate communities in each ecosystem. There was a substantial difference in number of invertebrates per kg of organic soil between the forest (600 ± 250) and grassland (300 ± 250), though these differences were not statistically significant they suggest faster nutrient turnover in the forest or a greater proportion of decomposition by invertebrates than other decomposers. While thaw depth was deeper in the grassland (60 ± 4 cm) than in the forest (40 ± 6 cm), we did not detect differences in organic layer depth or percent organic matter between grassland and forest. However, soil in the grassland had higher bulk density, and higher carbon stocks in the organic and mineral soil layers. Although deeper thaw depth in the grassland suggests that more carbon is available to microbial decomposers, ongoing temperature monitoring will help

  9. A dynamic ecosystem process model for understanding interactions between permafrost thawing and vegetation responses in the arctic

    Science.gov (United States)

    Xu, C.; Travis, B. J.; Fisher, R. A.; Wilson, C. J.; McDowell, N.

    2010-12-01

    The arctic is expected to play an important role in the Earth’s future climate due to the large carbon stocks that are stored in permafrost and peatlands, a substantial proportion of which may be released to the atmosphere due to permafrost thawing. There may be positive feedbacks of permafrost thawing on plant growth by releasing stored nitrogen and increasing rooting depth; however, vegetation response to other changing variables such as CO2 and temperature can also modify soil hydrology and energy fluxes, leading to either positive or negative feedbacks on permafrost thawing. Disentangling the interactions between permafrost thawing and vegetation growth is critical for assessing the potential role of arctic regions on current and future global carbon cycling. We have developed a mechanistic, regional, and spatially explicit dynamic ecosystem process model through the integration of a 3-D soil hydrology and biogeochemistry model (Arctic Hydrology, ARCHY) and a dynamic vegetation model (Ecosystem Demography, ED), to quantify the importance of plant-permafrost interactions to soil and plant carbon storage. This model integrates important processes including photosynthesis, transpiration, respiration, 3-D competition for light, 3-D soil hydrology, energy fluxes (ice melting in the soil and solar radiation interception by canopy), nitrogen cycles (microbial decomposition, nitrogen transportation in soil, passive and active nitrogen uptake by plants), species migration, and drought-related mortality. A sensitivity analysis has been implemented to assess the importance of the hydrological cycle, the nitrogen cycle and energy fluxes in regulating the above and below-ground carbon cycles in arctic regions. Our model can fill an important gap between field and global land surface models for assessing plot and regional level hypotheses in the context of global climate.

  10. Temporary streams in temperate zones: recognizing, monitoring and restoring transitional aquatic-terrestrial ecosystems

    OpenAIRE

    Stubbington, Rachel; England, Judy; Wood, Paul J.; Sefton, Catherine E.M.

    2017-01-01

    Temporary streams are defined by periodic flow cessation, and may experience partial or complete loss of surface water. The ecology and hydrology of these transitional aquatic-terrestrial ecosystems have received unprecedented attention in recent years. Research has focussed on the arid, semi-arid, and Mediterranean regions in which temporary systems are the dominant stream type, and those in cooler, wetter temperate regions with an oceanic climate influence are also receiving increasing atte...

  11. Experimental study and modelization of radium transfer in a simplified aquatic ecosystem

    International Nuclear Information System (INIS)

    Bruno, V.

    1990-11-01

    Radium transfer has been studied in an experimental aquatic ecosystem composed by four trophic levels. Water and sediment are the two abiotic units from which the other compartments could be contamined. Scenedesmus obliquus represents the primary producer. Daphnia magna, Gammarus pulex and Chironomus sp., the first order consumers; Cyprinius carpio, the second order consumer and Salmo gairdneri, the third order one. Each transfer is described by a mathematical equation, based on a theoretical analysis, which represents concentration evolution of each compartment as a function of time. From the experimental data, we suggest a mathematical model in order to simulate radium contamination of the ecosystem. This model takes into account the following parameters: the contamination mode (chronic or acute pollution), the type of ecosystem concerned by the contamination (pond or river), and the season during which the pollution occurred. Results obtained with the model agree with most of field data on contamination level of fish living in the mining complex environment; particularly, they put the emphasize on the trophic way for the fish radiocontamination [fr

  12. Water-sensitivity assessment of regional spatial plan based on the relation between watershed imperviousness and aquatic ecosystem health

    Science.gov (United States)

    Sutjiningsih, D.; Soeryantono, H.; Anggraheni, E.

    2018-04-01

    Upper Ciliwung watershed in the JABODETABEKPUNJUR area experiencing rapid population growth, which in turn promotes the pace of infrastructure development especially increasing impervious land cover. This will trigger various stressors to the abiotic and biotic elements in the aquatic ecosystem. This study aims to examine whether the relationship between imperviousness in the subwatersheds in Upper Ciliwung and abiotic/biotic elements of its aquatic ecosystems can be used to assess the degree of water-sensitivity of the related regional spatial plan. Two scenarios of impervious cover changes have been assessed, scenario 1 using constant growth of 7.56% per annum, while scenario 2 refers to regional spatial plan of Bogor Regency. Although there are inconsistencies in four (out of 13) subwatersheds, the tests proved that the procedure is succesful to be applied in Upper Ciliwung.

  13. Climate regulates alpine lake ice cover phenology and aquatic ecosystem structure

    Science.gov (United States)

    Preston, Daniel L.; Caine, Nel; McKnight, Diane M.; Williams, Mark W.; Hell, Katherina; Miller, Matthew P.; Hart, Sarah J.; Johnson, Pieter T.J.

    2016-01-01

    High-elevation aquatic ecosystems are highly vulnerable to climate change, yet relatively few records are available to characterize shifts in ecosystem structure or their underlying mechanisms. Using a long-term dataset on seven alpine lakes (3126 to 3620 m) in Colorado, USA, we show that ice-off dates have shifted seven days earlier over the past 33 years and that spring weather conditions – especially snowfall – drive yearly variation in ice-off timing. In the most well-studied lake, earlier ice-off associated with increases in water residence times, thermal stratification, ion concentrations, dissolved nitrogen, pH, and chlorophyll-a. Mechanistically, low spring snowfall and warm temperatures reduce summer stream flow (increasing lake residence times) but enhance melting of glacial and permafrost ice (increasing lake solute inputs). The observed links among hydrological, chemical, and biological responses to climate factors highlight the potential for major shifts in the functioning of alpine lakes due to forecasted climate change.

  14. Benefits of riparian forest for the aquatic ecosystem assessed at a large geographic scale

    Directory of Open Access Journals (Sweden)

    Van Looy K.

    2013-04-01

    Full Text Available Claimed benefits of riparian forest cover for the aquatic ecosystem include purification, thermal control, organic matter input and habitat provision, which may improve physicochemical and biotic quality. However, these beneficial effects might be flawed by multiple stressor conditions of intensive agriculture and urbanization in upstream catchments. We examined the relationship between riparian forest cover and physicochemical quality and biotic integrity indices in extensive large scale datasets. Measurements of hydromorphological conditions and riparian forest cover across different buffer widths for 59 × 103 river stretches covering 230 × 103 km of the French river network were coupled with data for physicochemical and biotic variables taken from the national monitoring network. General linear and quantile regression techniques were used to determine responses of physicochemical variables and biological integrity indices for macroinvertebrates and fish to riparian forest cover in selections of intermediate stress for 2nd to 4th order streams. Significant responses to forest cover were found for the nutrient variables and biological indices. According to these responses a 60% riparian forest cover in the 10 m buffer corresponds to good status boundaries for physicochemical and biotic elements. For the 30 m buffer, the observed response suggests that riparian forest coverage of at least 45% corresponds with good ecological status in the aquatic ecosystem. The observed consistent responses indicate significant potential for improving the quality of the aquatic environment by restoring riparian forest. The effects are more substantial in single-stressor environments but remain significant in multi-stressor environments.

  15. Climate change and Arctic ecosystems: 2. Modeling, paleodata-model comparisons, and future projections

    Science.gov (United States)

    Kaplan, J.O.; Bigelow, N.H.; Prentice, I.C.; Harrison, S.P.; Bartlein, P.J.; Christensen, T.R.; Cramer, W.; Matveyeva, N.V.; McGuire, A.D.; Murray, D.F.; Razzhivin, V.Y.; Smith, B.; Walker, D.A.; Anderson, P.M.; Andreev, A.A.; Brubaker, L.B.; Edwards, M.E.; Lozhkin, A.V.

    2003-01-01

    Large variations in the composition, structure, and function of Arctic ecosystems are determined by climatic gradients, especially of growing-season warmth, soil moisture, and snow cover. A unified circumpolar classification recognizing five types of tundra was developed. The geographic distributions of vegetation types north of 55??N, including the position of the forest limit and the distributions of the tundra types, could be predicted from climatology using a small set of plant functional types embedded in the biogeochemistry-biogeography model BIOME4. Several palaeoclimate simulations for the last glacial maximum (LGM) and mid-Holocene were used to explore the possibility of simulating past vegetation patterns, which are independently known based on pollen data. The broad outlines of observed changes in vegetation were captured. LGM simulations showed the major reduction of forest, the great extension of graminoid and forb tundra, and the restriction of low- and high-shrub tundra (although not all models produced sufficiently dry conditions to mimic the full observed change). Mid-Holocene simulations reproduced the contrast between northward forest extension in western and central Siberia and stability of the forest limit in Beringia. Projection of the effect of a continued exponential increase in atmospheric CO2 concentration, based on a transient ocean-atmosphere simulation including sulfate aerosol effects, suggests a potential for larger changes in Arctic ecosystems during the 21st century than have occurred between mid-Holocene and present. Simulated physiological effects of the CO2 increase (to > 700 ppm) at high latitudes were slight compared with the effects of the change in climate.

  16. Simulating carbon and water fluxes at Arctic and boreal ecosystems in Alaska by optimizing the modified BIOME-BGC with eddy covariance data

    Science.gov (United States)

    Ueyama, M.; Kondo, M.; Ichii, K.; Iwata, H.; Euskirchen, E. S.; Zona, D.; Rocha, A. V.; Harazono, Y.; Nakai, T.; Oechel, W. C.

    2013-12-01

    To better predict carbon and water cycles in Arctic ecosystems, we modified a process-based ecosystem model, BIOME-BGC, by introducing new processes: change in active layer depth on permafrost and phenology of tundra vegetation. The modified BIOME-BGC was optimized using an optimization method. The model was constrained using gross primary productivity (GPP) and net ecosystem exchange (NEE) at 23 eddy covariance sites in Alaska, and vegetation/soil carbon from a literature survey. The model was used to simulate regional carbon and water fluxes of Alaska from 1900 to 2011. Simulated regional fluxes were validated with upscaled GPP, ecosystem respiration (RE), and NEE based on two methods: (1) a machine learning technique and (2) a top-down model. Our initial simulation suggests that the original BIOME-BGC with default ecophysiological parameters substantially underestimated GPP and RE for tundra and overestimated those fluxes for boreal forests. We will discuss how optimization using the eddy covariance data impacts the historical simulation by comparing the new version of the model with simulated results from the original BIOME-BGC with default ecophysiological parameters. This suggests that the incorporation of the active layer depth and plant phenology processes is important to include when simulating carbon and water fluxes in Arctic ecosystems.

  17. A carbon budget for the aquatic ecosystem above SFR in Oeregrundsgrepen

    Energy Technology Data Exchange (ETDEWEB)

    Kumblad, L [Stockholm Univ. (Sweden). Dept. of Systems Ecology

    1999-07-01

    The potential hazards of radionuclide release to humans and the environment is regularly evaluated in safety assessments of SFR, the final repository for radioactive operational waste. SFR handles, since 1988, low and intermediate level nuclear waste from Swedish nuclear power plants, medical care attendance, industries and research laboratories and is located in the bedrock 50 meters under the seabed of Oeregrundsgrepen in the southern Bothnian Sea. This report presents a description of the aquatic ecosystem and a carbon budget for the area above SFR with the aim to include ecosystem dynamics in the present safety assessment of the repository (SAFE). The carbon budget will support SAFE by facilitating evaluations of transport and fate of radionuclides, primarily {sup 14}C, in case of a release from the repository and describe the ecosystem structure and function. Furthermore, {sup 14}C is the dose-dominant radionuclide in the repository which most likely will follow the general carbon flow in the ecosystem if there should be a release. The carbon budget was based on biomass and flow of carbon between thirteen functional groups (including POC and DOC) in the ecosystem above SFR and the results indicates that the organisms are self-sufficient on carbon and that the area exports carbon corresponding to approximately 50% of the annual primary production. The largest organic carbon pool is DOC (one and a half time larger than the total biomass) and the major functional organism groups are the macrophytes (37% of the total biomass), benthic macrofauna (36%), and the microphytes (11%). The soft bottom and phytobenthic communities seem to have important roles in the ecosystem since these communities comprise the main part of the living carbon in the studied area.

  18. A carbon budget for the aquatic ecosystem above SFR in Oeregrundsgrepen

    International Nuclear Information System (INIS)

    Kumblad, L

    1999-07-01

    The potential hazards of radionuclide release to humans and the environment is regularly evaluated in safety assessments of SFR, the final repository for radioactive operational waste. SFR handles, since 1988, low and intermediate level nuclear waste from Swedish nuclear power plants, medical care attendance, industries and research laboratories and is located in the bedrock 50 meters under the seabed of Oeregrundsgrepen in the southern Bothnian Sea. This report presents a description of the aquatic ecosystem and a carbon budget for the area above SFR with the aim to include ecosystem dynamics in the present safety assessment of the repository (SAFE). The carbon budget will support SAFE by facilitating evaluations of transport and fate of radionuclides, primarily 14 C, in case of a release from the repository and describe the ecosystem structure and function. Furthermore, 14 C is the dose-dominant radionuclide in the repository which most likely will follow the general carbon flow in the ecosystem if there should be a release. The carbon budget was based on biomass and flow of carbon between thirteen functional groups (including POC and DOC) in the ecosystem above SFR and the results indicates that the organisms are self-sufficient on carbon and that the area exports carbon corresponding to approximately 50% of the annual primary production. The largest organic carbon pool is DOC (one and a half time larger than the total biomass) and the major functional organism groups are the macrophytes (37% of the total biomass), benthic macrofauna (36%), and the microphytes (11%). The soft bottom and phytobenthic communities seem to have important roles in the ecosystem since these communities comprise the main part of the living carbon in the studied area

  19. Ecological effects assessment of anionic surfactant on aquatic ecosystem using microcosm system; Microcosm wo mochiita in ion kaimen kasseizai no suiken seitaikei ni oyobosu eikyo hyoka

    Energy Technology Data Exchange (ETDEWEB)

    Takamatsu, Y. [University of Tsukuba, Tsukuba (Japan); Inamori, Y. [National Institute for Environmental Studies, Tsukuba (Japan); Sudo, R. [Tohoku University, Sendai (Japan). Faculty of Engineering; Kurihara, Y. [Ou Univ., Fukushima (Japan). Faculty of Engineering; Matsumura, M. [University of Tsukuba, Tsukuba (Japan). Institute of Applied Biochemical

    1997-11-10

    Microcosm system was applied to assess effect of anionic surfactant (LAS) on aquatic ecosystem. Anionic surfactant such as LAS was added to an flask microcosm consisting of four species of bacteria as decomposer, one species of ciliate protozoa (Cyclidium glaucoma), two rotifers (Philodina sp. and Lepadella sp.) and one aquatic oligochaete (Aeolosoma hemprichi) as predator, and a green alga (Chlorella sp.) and a filamentous blue-green alga (Tolypothrix sp.) as producer, comparing with that of an natural lake model ecosystem derived from natural lake water. In the flask microcosm system and the natural lake model ecosystem, biodegradation rates of LAS were almost same and NOECs (no observed effect concentration) of LAS were also below 1.5 mg{center_dot} l{sup -1}. It was found that flask microcosm test could provide precise ecological effect assessment of LAS on number of microorganisms because the system showed higher reproducibility and stability than natural take model ecosystem. It was suggested that flask microcosm test was useful ecological effect assessment method which can reflect natural aquatic ecosystem. 10 refs., 4 figs., 2 tabs.

  20. A review of ecological effects and environmental fate of illicit drugs in aquatic ecosystems.

    Science.gov (United States)

    Rosi-Marshall, E J; Snow, D; Bartelt-Hunt, S L; Paspalof, A; Tank, J L

    2015-01-23

    Although illicit drugs are detected in surface waters throughout the world, their environmental fate and ecological effects are not well understood. Many illicit drugs and their breakdown products have been detected in surface waters and temporal and spatial variability in use translates into "hot spots and hot moments" of occurrence. Illicit drug occurrence in regions of production and use and areas with insufficient wastewater treatment are not well studied and should be targeted for further study. Evidence suggests that illicit drugs may not be persistent, as their half-lives are relatively short, but may exhibit "pseudo-persistence" wherein continual use results in persistent occurrence. We reviewed the literature on the ecological effects of these compounds on aquatic organisms and although research is limited, a wide array of aquatic organisms, including bacteria, algae, invertebrates, and fishes, have receptors that make them potentially sensitive to these compounds. In summary, illicit drugs occur in surface waters and aquatic organisms may be affected by these compounds; research is needed that focuses on concentrations of illicit drugs in areas of production and high use, environmental fate of these compounds, and effects of these compounds on aquatic ecosystems at the concentrations that typically occur in the environment. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Experiences in multiyear combined state-parameter estimation with an ecosystem model of the North Atlantic and Arctic Oceans using the Ensemble Kalman Filter

    Science.gov (United States)

    Simon, Ehouarn; Samuelsen, Annette; Bertino, Laurent; Mouysset, Sandrine

    2015-12-01

    A sequence of one-year combined state-parameter estimation experiments has been conducted in a North Atlantic and Arctic Ocean configuration of the coupled physical-biogeochemical model HYCOM-NORWECOM over the period 2007-2010. The aim is to evaluate the ability of an ensemble-based data assimilation method to calibrate ecosystem model parameters in a pre-operational setting, namely the production of the MyOcean pilot reanalysis of the Arctic biology. For that purpose, four biological parameters (two phyto- and two zooplankton mortality rates) are estimated by assimilating weekly data such as, satellite-derived Sea Surface Temperature, along-track Sea Level Anomalies, ice concentrations and chlorophyll-a concentrations with an Ensemble Kalman Filter. The set of optimized parameters locally exhibits seasonal variations suggesting that time-dependent parameters should be used in ocean ecosystem models. A clustering analysis of the optimized parameters is performed in order to identify consistent ecosystem regions. In the north part of the domain, where the ecosystem model is the most reliable, most of them can be associated with Longhurst provinces and new provinces emerge in the Arctic Ocean. However, the clusters do not coincide anymore with the Longhurst provinces in the Tropics due to large model errors. Regarding the ecosystem state variables, the assimilation of satellite-derived chlorophyll concentration leads to significant reduction of the RMS errors in the observed variables during the first year, i.e. 2008, compared to a free run simulation. However, local filter divergences of the parameter component occur in 2009 and result in an increase in the RMS error at the time of the spring bloom.

  2. Review of 130 years of research on cyanobacteria in aquatic ecosystems in Serbia presented in a Serbian Cyanobacterial Database

    Directory of Open Access Journals (Sweden)

    Zorica Svirčev

    2017-05-01

    Full Text Available The presence of toxic cyanobacteria in aquatic ecosystems in the territory of the Republic of Serbia was surveyed over a period of several decades. Increasing attention is being paid to some negative consequences that may be caused by these microorganisms. Information from available literary sources regarding the distribution and frequency of cyanobacteria and their toxins over a period of 130 years, together with the effects on humans and wildlife in aquatic ecosystems, were gathered and incorporated into a Serbian Cyanobacterial Database created for the CYANOCOST Action. This database encompasses information on 65 aquatic ecosystems, including rivers, lakes, ponds, canals, irrigation reservoirs, reservoirs used for drinking water supply and reservoirs used for other purposes. Cyanobacterial blooms were found in almost 80% of the investigated aquatic ecosystems. The analysis of the research showed the presence of more than 70 species, including blooms of 24 species from 13 genera. Five species of cyanobacteria: Microcystis aeruginosa, Aphanizomenon flos-aquae, Planktothrix agardhii, Microcystis flos-aquae and Planktothrix rubescens frequently formed blooms in the investigated waterbodies and cyanotoxins were also detected in some of them, which had certain negative effects. Here, we present an overview of data contained in the Serbian Cyanobacterial Database, concerning cyanobacterial distribution, cyanotoxin production and associated biological effects in different types of water bodies from the Republic of Serbia. Also, recent important and major cases of cyanobacterial blooming in reservoirs used for drinking water supply: at Vrutci and Ćelije, the Aleksandrovac irrigation reservoir, the Ponjavica River and Lake Palić, including systematic research on the Lake Ludoš and few fishponds are further described. It can be concluded that cyanobacteria and cyanotoxins are omnipresent in different water bodies throughout the Republic of Serbia

  3. Coupled cryoconite ecosystem structure-function relationships are revealed by comparing bacterial communities in alpine and Arctic glaciers

    DEFF Research Database (Denmark)

    Edwards, Arwyn; Mur, Luis A. J.; Girdwood, Susan E.

    2014-01-01

    Cryoconite holes are known as foci of microbial diversity and activity on polar glacier surfaces, but are virtually unexplored microbial habitats in alpine regions. In addition, whether cryoconite community structure reflects ecosystem functionality is poorly understood. Terminal restriction...... revealed Proteobacteria were particularly abundant, with Cyanobacteria likely acting as ecosystem engineers in both alpine and Arctic cryoconite communities. However, despite these generalities, significant differences in bacterial community structures, compositions and metabolomes are found between alpine...... fragment length polymorphism and Fourier transform infrared metabolite fingerprinting of cryoconite from glaciers in Austria, Greenland and Svalbard demonstrated cryoconite bacterial communities are closely correlated with cognate metabolite fingerprints. The influence of bacterial-associated fatty acids...

  4. Aquatic bird disease and mortality as an indicator of changing ecosystem health

    Science.gov (United States)

    Newman, Scott H.; Chmura, Aleksei; Converse, Kathy; Kilpatrick, A. Marm; Patel, Nikkita; Lammers, Emily; Daszak, Peter

    2007-01-01

    We analyzed data from pathologic investigations in the United States, collected by the USGS National Wildlife Health Center between 1971 and 2005, into aquatic bird mortality events. A total of 3619 mortality events was documented for aquatic birds, involving at least 633 708 dead birds from 158 species belonging to 23 families. Environmental causes accounted for the largest proportion of mortality events (1737 or 48%) and dead birds (437 258 or 69%); these numbers increased between 1971 and 2000, with biotoxin mortalities due to botulinum intoxication (Types C and E) being the leading cause of death. Infectious diseases were the second leading cause of mortality events (20%) and dead birds (20%), with both viral diseases, including duck plague (Herpes virus), paramyxovirus of cormorants (Paramyxovirus PMV1) and West Nile virus (Flavivirus), and bacterial diseases, including avian cholera (Pasteurella multocida), chlamydiosis (Chalmydia psittici), and salmonellosis (Salmonella sp.), contributing. Pelagic, coastal marine birds and species that use marine and freshwater habitats were impacted most frequently by environmental causes of death, with biotoxin exposure, primarily botulinum toxin, resulting in mortalities of both coastal and freshwater species. Pelagic birds were impacted most severely by emaciation and starvation, which may reflect increased anthropogenic pressure on the marine habitat from over-fishing, pollution, and other factors. Our study provides important information on broad trends in aquatic bird mortality and highlights how long-term wildlife disease studies can be used to identify anthropogenic threats to wildlife conservation and ecosystem health. In particular, mortality data for the past 30 yr suggest that biotoxins, viral, and bacterial diseases could have impacted >5 million aquatic birds.

  5. The western arctic linkage experiment (WALE): overview and synthesis

    Science.gov (United States)

    A.D. McGuire; J. Walsh; J.S. Kimball; J.S. Clein; S.E. Euskirdhen; S. Drobot; U.C. Herzfeld; J. Maslanik; R.B. Lammers; M.A. Rawlins; C.J. Vorosmarty; T.S. Rupp; W. Wu; M. Calef

    2008-01-01

    The primary goal of the Western Arctic Linkage Experiment (WALE) was to better understand uncertainties of simulated hydrologic and ecosystem dynamics of the western Arctic in the context of 1) uncertainties in the data available to drive the models and 2) different approaches to simulating regional hydrology and ecosystem dynamics. Analyses of datasets on climate...

  6. Presence of the Neurotoxin BMAA in Aquatic Ecosystems: What Do We Really Know?

    Science.gov (United States)

    Faassen, Elisabeth J.

    2014-01-01

    The neurotoxin β-N-methylamino-l-alanine (BMAA) is suspected to play a role in the neurological diseases amyotrophic lateral sclerosis, Alzheimer’s disease, and Parkinson’s disease. BMAA production by cyanobacteria has been reported and contact with cyanobacteria infested waters or consumption of aquatic organisms are possible pathways to human exposure. However, there is little consensus regarding whether BMAA is present in cyanobacteria or not, and if so, at what concentrations. The aim of this review is to indicate the current state of knowledge on the presence of BMAA in aquatic ecosystems. Some studies have convincingly shown that BMAA can be present in aquatic samples at the µg/g dry weight level, which is around the detection limit of some equally credible studies in which no BMAA was detected. However, for the majority of the reviewed articles, it was unclear whether BMAA was correctly identified, either because inadequate analytical methods were used, or because poor reporting of analyses made it impossible to verify the results. Poor analysis, reporting and prolific errors have shaken the foundations of BMAA research. First steps towards estimation of human BMAA exposure are to develop and use selective, inter-laboratory validated methods and to correctly report the analytical work. PMID:24662480

  7. Bioindication in natural-like aquatic ecosystems: endocrine disruptors in outdoor microcosms. Status-report

    Energy Technology Data Exchange (ETDEWEB)

    Schramm, K.W.; Severin, G.F.

    2002-07-01

    Over the past few decades scientists have shown that the hormone system of a wide range of organisms can be affected by numerous environmental chemicals. Society strongly demands studies about the fate and effects of such endocrine disruptors on the aquatic environment. It has been scientifically accepted that risk assessment studies done in aquatic microcosms can be used to extrapolate the potential impact of the tested compound on natural ecosystems. Realistic exposure situations were simulated and screening methods as well as analytical methods with high accuracy were applied on water and sediment. For the comprehensive risk assessment as many trophic levels as possible have to be investigated. Changes in the population dynamics and the community structure serve as ecotoxicological endpoints. Modelling the concentrations of the chemicals in the different aquatic compartments complements and confirms the analytical diagnostics. A directed design of the analytical procedures according to amount of sample and limits of determination becomes possible. Bridging acute and chronic time scales in effect diagnostics the 'area under the curve' - approach has been followed in combination with multivariate statistics. Haber's rule have been applied to the results about complex effect- and exposure-conditions. In some cases the interpretation of results becomes more easy and clear by this approach. (orig.)

  8. Chamber and Diffusive Based Carbon Flux Measurements in an Alaskan Arctic Ecosystem

    Science.gov (United States)

    Wilkman, E.; Oechel, W. C.; Zona, D.

    2013-12-01

    Eric Wilkman, Walter Oechel, Donatella Zona Comprising an area of more than 7 x 106 km2 and containing over 11% of the world's organic matter pool, Arctic terrestrial ecosystems are vitally important components of the global carbon cycle, yet their structure and functioning are sensitive to subtle changes in climate and many of these functional changes can have large effects on the atmosphere and future climate regimes (Callaghan & Maxwell 1995, Chapin et al. 2002). Historically these northern ecosystems have acted as strong C sinks, sequestering large stores of atmospheric C due to photosynthetic dominance in the short summer season and low rates of decomposition throughout the rest of the year as a consequence of cold, nutrient poor, and generally water-logged conditions. Currently, much of this previously stored carbon is at risk of loss to the atmosphere due to accelerated soil organic matter decomposition in warmer future climates (Grogan & Chapin 2000). Although there have been numerous studies on Arctic carbon dynamics, much of the previous soil flux work has been done at limited time intervals, due to both the harshness of the environment and labor and time constraints. Therefore, in June of 2013 an Ultraportable Greenhouse Gas Analyzer (UGGA - Los Gatos Research Inc.) was deployed in concert with the LI-8100A Automated Soil Flux System (LI-COR Biosciences) in Barrow, AK to gather high temporal frequency soil CO2 and CH4 fluxes from a wet sedge tundra ecosystem. An additional UGGA in combination with diffusive probes, installed in the same location, provides year-round soil and snow CO2 and CH4 concentrations. When used in combination with the recently purchased AlphaGUARD portable radon monitor (Saphymo GmbH), continuous soil and snow diffusivities and fluxes of CO2 and CH4 can be calculated (Lehmann & Lehmann 2000). Of particular note, measuring soil gas concentration over a diffusive gradient in this way allows one to separate both net production and

  9. Recent dynamics of arctic and sub-arctic vegetation

    International Nuclear Information System (INIS)

    Epstein, Howard E; Myers-Smith, Isla; Walker, Donald A

    2013-01-01

    We present a focus issue of Environmental Research Letters on the ‘Recent dynamics of arctic and sub-arctic vegetation’. The focus issue includes three perspective articles (Verbyla 2011 Environ. Res. Lett. 6 041003, Williams et al 2011 Environ. Res. Lett. 6 041004, Loranty and Goetz 2012 Environ. Res. Lett. 7 011005) and 22 research articles. The focus issue arose as a result of heightened interest in the response of high-latitude vegetation to natural and anthropogenic changes in climate and disturbance regimes, and the consequences that these vegetation changes might have for northern ecosystems. A special session at the December 2010 American Geophysical Union Meeting on the ‘Greening of the Arctic’ spurred the call for papers. Many of the resulting articles stem from intensive research efforts stimulated by International Polar Year projects and the growing acknowledgment of ongoing climate change impacts in northern terrestrial ecosystems. (synthesis and review)

  10. The feasibility of automated online flow cytometry for in-situ monitoring of microbial dynamics in aquatic ecosystems

    Science.gov (United States)

    Besmer, Michael D.; Weissbrodt, David G.; Kratochvil, Bradley E.; Sigrist, Jürg A.; Weyland, Mathias S.; Hammes, Frederik

    2014-01-01

    Fluorescent staining coupled with flow cytometry (FCM) is often used for the monitoring, quantification and characterization of bacteria in engineered and environmental aquatic ecosystems including seawater, freshwater, drinking water, wastewater, and industrial bioreactors. However, infrequent grab sampling hampers accurate characterization and subsequent understanding of microbial dynamics in all of these ecosystems. A logic technological progression is high throughput and full automation of the sampling, staining, measurement, and data analysis steps. Here we assess the feasibility and applicability of automated FCM by means of actual data sets produced with prototype instrumentation. As proof-of-concept we demonstrate examples of microbial dynamics in (i) flowing tap water from a municipal drinking water supply network and (ii) river water from a small creek subject to two rainfall events. In both cases, automated measurements were done at 15-min intervals during 12–14 consecutive days, yielding more than 1000 individual data points for each ecosystem. The extensive data sets derived from the automated measurements allowed for the establishment of baseline data for each ecosystem, as well as for the recognition of daily variations and specific events that would most likely be missed (or miss-characterized) by infrequent sampling. In addition, the online FCM data from the river water was combined and correlated with online measurements of abiotic parameters, showing considerable potential for a better understanding of cause-and-effect relationships in aquatic ecosystems. Although several challenges remain, the successful operation of an automated online FCM system and the basic interpretation of the resulting data sets represent a breakthrough toward the eventual establishment of fully automated online microbiological monitoring technologies. PMID:24917858

  11. Drivers of seasonality in Arctic carbon dioxide fluxes

    DEFF Research Database (Denmark)

    Mbufong, Herbert Njuabe

    , while there were no discernable drivers of CO2 fluxes in Stordalen, growing season length showed significant controls on net ecosystem exchange (NEE) in Zackenberg and with gross primary production (GPP) and ecosystem respiration (Re) in Daring Lake. This is important considering the recent observations...... compensates for the shorter growing season due to increase snow cover and duration. Other drivers of growing season CO2 fluxes were mainly air temperature, growing degree days and photosynthetic active radiation in a high and a low Arctic tundra ecosystem. Upscaling Arctic tundra NEE based on an acquired...... understanding of the drivers of NEE during this research venture, shows an estimation of reasonable fluxes at three independent sites in low Arctic Alaska. However, this later project is still ongoing and its findings are only preliminary....

  12. Development of criteria for an ecotoxicological examination procedure by differentially high integrated parts of aquatic model ecosystems and mathematical models. Final report

    International Nuclear Information System (INIS)

    Huber, W.; Zieris, F.J.; Lay, J.P.; Weiss, K.; Brueggemann, R.; Benz, J.

    1994-01-01

    It is difficult to assess the risks of environmental toxicants, especially when they have to be extrapolated from laboratory datas. Therefore efforts are made to determine the potential hazards of chemicals with the help of artificial ecosystems or parts of them. These kinds of test systems are similar to the structure and function of natural ecosystems and therefore allow to make representative extrapolations to real nature. As a disadvantage they are expensive and not yet standardized. To be accepted for the risk assessment of chemicals it was attempted to standardize artificial aquatic ecosystems in this project. It was tried to minimize the costs of the testing procedures by using a mathematical model simulating artificial littoral ecosystems. With increasing complexity of the system a better description of expected effects caused by a substance in environment can be given. With the help of outdoor ecosystems the threshold concentration of a chemical could be determined that is not likely to affect an aquatic ecosystem. Further we succeeded in providing a prototype modeling the effects in the microcosms used in our experiments. This model is able to approximately describe the behavior of macrophytes, algae, and secondary consumers in uncontaminated and contaminated systems (with the test chemical atrazine). (orig.) [de

  13. Methane emissions from a high arctic valley: findings and challenges

    DEFF Research Database (Denmark)

    Mastepanov, Mikhail; Sigsgaard, Charlotte; Ström, Lena

    2008-01-01

    Wet tundra ecosystems are well-known to be a significant source of atmospheric methane. With the predicted stronger effect of global climate change on arctic terrestrial ecosystems compared to lower-latitudes, there is a special obligation to study the natural diversity and the range of possible...... feedback effects on global climate that could arise from Arctic tundra ecosystems. One of the prime candidates for such a feedback mechanism is a potential change in the emissions of methane. Long-term datasets on methane emissions from high arctic sites are almost non-existing but badly needed...... for analyses of controls on interannual and seasonal variations in emissions. To help fill this gap we initiated a measurement program in a productive high arctic fen in the Zackenberg valley, NE Greenland. Methane flux measurements have been carried out at the same location since 1997. Compared...

  14. Effects of solar UV-B radiation on aquatic ecosystems

    Science.gov (United States)

    Häder, D.-P.

    Solar UV degrades dissolved organic carbon photolytically so that they can readily be taken up by bacterioplankton. On the other hand solar UV radiation inhibits bacterioplankton activity. Bacterioplankton productivity is far greater than previously thought and is comparable to phytoplankton primary productivity. According to the "microbial loop hypothesis," bacterioplankton is seen in the center of a food web, having a similar function to phytoplankton and protists. The penetration of UV and PAR into the water column can be measured. Marine waters show large temporal and regional differences in their concentrations of dissolved and particulate absorbing substances. A network of dosimeters (ELDONET) has been installed in Europe ranging from Abisko in Northern Sweden to Gran Canaria. Cyanobacteria are capable of fixing atmospheric nitrogen which is then made available to higher plants. The agricultural potential of cyanobacteria has been recognized as a biological fertilizer for wet soils such as in rice paddies. UV-B is known to impair processes such as growth, survival, pigmentation, motility, as well as the enzymes of nitrogen metabolism and CO 2 fixation. The marine phytoplankton represents the single most important ecosystem on our planet and produces about the same biomass as all terrestrial ecosystems taken together. It is the base of the aquatic food chain and any changes in the size and composition of phytoplankton communities will directly affect food production for humans from marine sources. Another important role of marine phytoplankton is to serve as a sink for atmospheric carbon dioxide. Recent investigations have shown a large sensitivity of most phytoplankton organisms toward solar short-wavelength ultraviolet radiation (UV-B); even at ambient levels of UV-B radiation many organisms seem to be under UV stress. Because of their requirement for solar energy, the phytoplankton dwell in the top layers of the water column. In this near-surface position

  15. The effects of a pesticide mixture on aquatic ecosystems differing in trophic status: responses of the macrophyte Myriophyllum spicatum and the periphytic algal community.

    Science.gov (United States)

    Wendt-Rasch, L; Van den Brink, P J; Crum, S J H; Woin, P

    2004-03-01

    The effects of a pesticide mixture (asulam, fluazinam, lambda-cyhalothrin, and metamitron) on aquatic ecosystems were investigated in 20 outdoor aquatic microcosms. Ten of the microcosms simulated mesotrophic aquatic ecosystems dominated by submerged macrophytes (Elodea). The others simulated eutrophic ecosystems with a high Lemna surface coverage (Lemna). This paper describes the fate of the chemicals as well as their effects on the growth of Myriophyllum spicatum and the periphytic algal community. In the Elodea-dominated microcosms significant increase in the biomass and alterations of species composition of the periphytic algae were observed, but no effect on M. spicatum growth could be recorded in response to the treatment. The opposite was found in the Lemna-dominated microcosms, in which decreased growth of M. spicatum was observed but no alterations could be found in the periphytic community. In the Elodea-dominated microcosms the species composition of the periphytic algae diverged from that of the control following treatment with 0.5% spray drift emission of the label-recommended rate (5% for lambda-cyhalothrin), while reduced growth of M. spicatum in the Lemna-dominated microcosms was recorded at 2% drift (20% for lambda-cyhalothrin). This study shows that the structure of the ecosystem influences the final effect of pesticide exposure.

  16. A case study of high Arctic anthropogenic disturbance to polar desert permafrost and ecosystems

    Science.gov (United States)

    Becker, M. S.; Pollard, W. H.

    2013-12-01

    One of the indirect impacts of climate change on Arctic ecosystems is the expected increase of industrial development in high latitudes. The scale of terrestrial impacts cannot be known ahead of time, particularly due to a lack of long-term impact studies in this region. With one of the slowest community recovery rates of any ecosystem, the high Artic biome will be under a considerable threat that is exacerbated by a high susceptibility to change in the permafrost thermal balance. One such area that provides a suitable location for study is an old airstrip near Eureka, Ellesmere Island, Nunavut (80.0175°N, 85.7340°W). While primarily used as an ice-runway for winter transport, the airstrip endured a yearly summer removal of vegetation that continued from 1947 until its abandonment in 1951. Since then, significant vegetative and geomorphic differences between disturbed and undisturbed areas have been noted in the literature throughout the decades (Bruggemann, 1953; Beschel, 1963; Couture and Pollard, 2007), but no system wide assessment of both the ecosystem and near-surface permafrost has been conducted. Key to our study is that the greatest apparent geomorphic and vegetative changes have occurred and persisted in areas where underlying ice-wedges have been disturbed. This suggests that the colonizing communities rapidly filled new available thermokarst niches and have produced an alternative ice-wedge stable state than the surrounding polar desert. We hypothesize that disturbed areas will currently have greater depths of thaw (deeper active layers) and degraded ice-wedges, with decreased vegetation diversity but higher abundance due to a changed hydrological balance. To test this a comprehensive set of near-surface active layer and ecosystem measurements were conducted. Permafrost dynamics were characterized using probing and high-frequency Ground Penetrating Radar (500 MHz) to map the near-surface details of ice-wedges and active layer. Vegetation was measured

  17. Arctic pollution: How much is too much

    Energy Technology Data Exchange (ETDEWEB)

    An overview is presented of the problems of pollution in the Arctic. Pollution from lower latitudes is carried into the Arctic by atmospheric circulation and ocean currents. Contamination of snow, waters and organisms with imported pollutants has appeared in the past few decades and appears to be increasing. Arctic ecosystems show indications of being much more susceptible to biological damage at low levels of pollutants than higher-energy ecosystems in temperate latitudes, and many Arctic organisms become accumulators and concentrators of organic pollutants and toxic metals. Arctic haze is 20 to 40 times as high in winter as in summer and has been found to consist of particles of largely industrial origin, mostly soot, hydrocarbons and sulphates. Dramatic declines in stratospheric ozone have been apparent over Antarctica, and a similar but less intense depletion is appearing over the Arctic. Toxic compounds, particularly organochlorines and some heavy metals, have been found in worrying amounts in snow, water and organisms in Arctic North America, Greenland and Svalbard. Radioactive contamination was widespread during atmospheric testing of nuclear weapons during the 1960s and 1970s, and the comparatively small amount of radiation released by the Chernobyl accident had greatest effect in northern Scandinavia. 4 figs.

  18. Increased Arctic Deposition of Persistent Compounds as a Result of the Montreal Protocol

    Science.gov (United States)

    Young, C.; Pickard, H. M.; De Silva, A. O.; Spencer, C.; Criscitiello, A. S.; Muir, D.; Sharp, M. J.

    2017-12-01

    Perfluorocarboxylic acids (PFCAs) are among the diverse groups of compounds characterized as persistent organic pollutants. They are toxic, resistant to environmental degradation, and adversely impact human and environmental health. PFCAs with four or fewer carbons, short-chain PFCAs (scPFCAs), are of particular interest because of their increasing levels in the environment, toxicity to plants, and potential for accumulation in some aquatic ecosystems, making them an emerging environmental concern. A minor source of scPFCAs to the Arctic has been shown to be atmospheric transformation of fluoropolymer precursors, followed by deposition. Additional potential sources of scPFCAs to the Arctic are chlorofluorocarbon (CFC)-replacement compounds. Through analysis of an ice core from the Canadian High Arctic, we show that Montreal Protocol-mandated introduction of CFC-replacement compounds for the heat-transfer industry has led to increasing inputs of these scPFCAs to the remote environment. Flux measurements for scPFCAs as a class of contaminants have only been reported in a couple studies to date. Here, we provide the first multi-decadal temporal record of scPFCA deposition, demonstrating a dramatic increase in deposition resulting from emission of CFC-replacements. These results bring to the forefront a need for a holistic approach to environmental risk assessment that considers impacts of replacement substances and degradation products.

  19. Advanced Ecosystem Mapping Techniques for Large Arctic Study Domains Using Calibrated High-Resolution Imagery

    Science.gov (United States)

    Macander, M. J.; Frost, G. V., Jr.

    2015-12-01

    Regional-scale mapping of vegetation and other ecosystem properties has traditionally relied on medium-resolution remote sensing such as Landsat (30 m) and MODIS (250 m). Yet, the burgeoning availability of high-resolution (environments has not been previously evaluated. Image segmentation, or object-based image analysis, automatically partitions high-resolution imagery into homogeneous image regions that can then be analyzed based on spectral, textural, and contextual information. We applied eCognition software to delineate waterbodies and vegetation classes, in combination with other techniques. Texture metrics were evaluated to determine the feasibility of using high-resolution imagery to algorithmically characterize periglacial surface forms (e.g., ice-wedge polygons), which are an important physical characteristic of permafrost-dominated regions but which cannot be distinguished by medium-resolution remote sensing. These advanced mapping techniques provide products which can provide essential information supporting a broad range of ecosystem science and land-use planning applications in northern Alaska and elsewhere in the circumpolar Arctic.

  20. Characterizing the oxygen isotopic composition of phosphate sources to aquatic ecosystems

    Science.gov (United States)

    Young, M.B.; McLaughlin, K.; Kendall, C.; Stringfellow, W.; Rollog, M.; Elsbury, K.; Donald, E.; Paytan, A.

    2009-01-01

    The oxygen isotopic composition of dissolved inorganic phosphate (δ18Op) in many aquatic ecosystems is not in isotopic equilibrium with ambient water and, therefore, may reflect the source δ18Op. Identification of phosphate sources to water bodies is critical for designing best management practices for phosphate load reduction to control eutrophication. In order for δ18O p to be a useful tool for source tracking, the δ18Op of phosphate sources must be distinguishable from one another; however, the δ18Op of potential sources has not been well characterized. We measured the δ18O p of a variety of known phosphate sources, including fertilizers, semiprocessed phosphorite ore, particulate aerosols, detergents, leachates of vegetation, soil, animal feces, and wastewater treatment plant effluent. We found a considerable range of δ18Op values (from +8.4 to +24.9‰) for the various sources, and statistically significant differences were found between several of the source types. δ18Op measured in three different fresh water systems was generally not in equilibrium with ambient water. Although there is overlap in δ18Op values among the groups of samples, our results indicate that some sources are isotopically distinct and δ18Op can be used for identifying phosphate sources to aquatic systems.

  1. Ecotoxic heavy metals transformation by bacteria and fungi in aquatic ecosystem.

    Science.gov (United States)

    Chaturvedi, Amiy Dutt; Pal, Dharm; Penta, Santhosh; Kumar, Awanish

    2015-10-01

    Water is the most important and vital molecule of our planet and covers 75% of earth surface. But it is getting polluted due to high industrial growth. The heavy metals produced by industrial activities are recurrently added to it and considered as dangerous pollutants. Increasing concentration of toxic heavy metals (Pb(2+), Cd(2+), Hg(2+), Ni(2+)) in water is a severe threat for human. Heavy metal contaminated water is highly carcinogenic and poisonous at even relatively low concentrations. When they discharged in water bodies, they dissolve in the water and are distributed in the food chain. Bacteria and fungi are efficient microbes that frequently transform heavy metals and remove toxicity. The application of bacteria and fungi may offer cost benefit in water treatment plants for heavy metal transformation and directly related to public health and environmental safety issues. The heavy metals transformation rate in water is also dependent on the enzymatic capability of microorganisms. By transforming toxic heavy metals microbes sustain aquatic and terrestrial life. Therefore the application of microbiological biomass for heavy metal transformation and removal from aquatic ecosystem is highly significant and striking. This paper reviews the microbial transformation of heavy metal, microbe metal interaction and different approaches for microbial heavy metal remediation from water bodies.

  2. Amplified Arctic warming by phytoplankton under greenhouse warming.

    Science.gov (United States)

    Park, Jong-Yeon; Kug, Jong-Seong; Bader, Jürgen; Rolph, Rebecca; Kwon, Minho

    2015-05-12

    Phytoplankton have attracted increasing attention in climate science due to their impacts on climate systems. A new generation of climate models can now provide estimates of future climate change, considering the biological feedbacks through the development of the coupled physical-ecosystem model. Here we present the geophysical impact of phytoplankton, which is often overlooked in future climate projections. A suite of future warming experiments using a fully coupled ocean-atmosphere model that interacts with a marine ecosystem model reveals that the future phytoplankton change influenced by greenhouse warming can amplify Arctic surface warming considerably. The warming-induced sea ice melting and the corresponding increase in shortwave radiation penetrating into the ocean both result in a longer phytoplankton growing season in the Arctic. In turn, the increase in Arctic phytoplankton warms the ocean surface layer through direct biological heating, triggering additional positive feedbacks in the Arctic, and consequently intensifying the Arctic warming further. Our results establish the presence of marine phytoplankton as an important potential driver of the future Arctic climate changes.

  3. Modeling the influence of snow cover on low Arctic net ecosystem exchange

    International Nuclear Information System (INIS)

    Luus, K A; Kelly, R E J; Lin, J C; Humphreys, E R; Lafleur, P M; Oechel, W C

    2013-01-01

    The Arctic net ecosystem exchange (NEE) of CO 2 between the land surface and the atmosphere is influenced by the timing of snow onset and melt. The objective of this study was to examine whether uncertainty in model estimates of NEE could be reduced by representing the influence of snow on NEE using remote sensing observations of snow cover area (SCA). Observations of NEE and time-lapse images of SCA were collected over four locations at a low Arctic site (Daring Lake, NWT) in May–June 2010. Analysis of these observations indicated that SCA influences NEE, and that good agreement exists between SCA derived from time-lapse images, Landsat and MODIS. MODIS SCA was therefore incorporated into the vegetation photosynthesis respiration model (VPRM). VPRM was calibrated using observations collected in 2005 at Daring Lake. Estimates of NEE were then generated over Daring Lake and Ivotuk, Alaska (2004–2007) using VPRM formulations with and without explicit representations of the influence of SCA on respiration and/or photosynthesis. Model performance was assessed by comparing VPRM output against unfilled eddy covariance observations from Daring Lake and Ivotuk (2004–2007). The uncertainty in VPRM estimates of NEE was reduced when respiration was estimated as a function of air temperature when SCA ≤ 50% and as a function of soil temperature when SCA > 50%. (letter)

  4. Unifying concepts linking dissolved organic matter composition to persistence in aquatic ecosystems

    Science.gov (United States)

    Kellerman, Anne M.; Guillemette, François; Podgorski, David C.; Aiken, George R.; Butler, Kenna D.; Spencer, Robert G. M.

    2018-01-01

    The link between composition and reactivity of dissolved organic matter (DOM) is central to understanding the role aquatic systems play in the global carbon cycle; yet, unifying concepts driving molecular composition have yet to be established. We characterized 37 DOM isolates from diverse aquatic ecosystems, including their stable and radiocarbon isotopes (δ13C-dissolved organic carbon (DOC) and Δ14C-DOC), optical properties (absorbance and fluorescence), and molecular composition (ultrahigh resolution mass spectrometry). Isolates encompassed end-members of allochthonous and autochthonous DOM from sites across the United States, the Pacific Ocean, and Antarctic lakes. Modern Δ14C-DOC and optical properties reflecting increased aromaticity, such as carbon specific UV absorbance at 254 nm (SUVA254), were directly related to polyphenolic and polycyclic aromatic compounds, whereas enriched δ13C-DOC and optical properties reflecting autochthonous end-members were positively correlated to more aliphatic compounds. Furthermore, the two sets of autochthonous end-members (Pacific Ocean and Antarctic lakes) exhibited distinct molecular composition due to differences in extent of degradation. Across all sites and end-members studied, we find a consistent shift in composition with aging, highlighting the persistence of certain biomolecules concurrent with degradation time.

  5. Behaviour of 134Cs in the aquatic ecosystems

    International Nuclear Information System (INIS)

    Xu Yinliang; Chen Chuanqun

    1992-07-01

    The diminution of 134 Cs in the aquatic phases and the absorption of 134 Cs by aquatic lives observe the exponential expression. i.e. Y Ae be . The relationships between the enrichment factor of 134 Cs(K) and the time(t) in the aquatic lives can be represented by a linear equation, K A + Bt. The value of K in the Alternanthera philoxeroides was about 560. That can be used for monitoring and purifying the water phase contaminated by 134 Cs. Fish can absorb 134 Cs from water phase and store it in liver and kidney. The specific activity of 134 Cs in fish flesh was low but the percentage of radioactivity was high that was about 30% of total radioactivity in the fish. River mud can strongly absorb 134 Cs and reduce the absorption by aquatic lives. It is a good adsorbent and purifying agent with low cost for treatment of 134 Cs. The K + can prevent aquatic lives from absorbing Cs + because of antagonistic function

  6. Mycobacterium ulcerans ecological dynamics and its association with freshwater ecosystems and aquatic communities : results from a 12-month environmental survey in Cameroon

    OpenAIRE

    Garchitorena, Andres; Roche, Benjamin; Kamgang, R.; Ossomba, J.; Babonneau, J.; Landier, J.; Fontanet, A.; Flahault, A.; Eyangoh, S.; Guégan, Jean-François; Marsollier, L.

    2014-01-01

    International audience; Background: Mycobacterium ulcerans (MU) is the agent responsible for Buruli Ulcer (BU), an emerging skin disease with dramatic socioeconomic and health outcomes, especially in rural settings. BU emergence and distribution is linked to aquatic ecosystems in tropical and subtropical countries, especially to swampy and flooded areas. Aquatic animal organisms are likely to play a role either as host reservoirs or vectors of the bacilli. However, information on MU ecologica...

  7. Evaluation of zebra mussels (Dreissena polymorpha) as biomonitors of mercury contamination in aquatic ecosystems.

    Science.gov (United States)

    Blackwell, Bradley D; Driscoll, Charles T; Spada, Michael E; Todorova, Svetoslava G; Montesdeoca, Mario R

    2013-03-01

    Zebra mussels have invaded many lakes in the United States and could be a useful tool for monitoring responses of aquatic biota to changes in mercury loading. The goal of the present study was to evaluate zebra mussels for use as a biomonitor of mercury contamination by comparing zebra mussel mercury concentrations between a lake with only indirect atmospheric mercury contamination (Otisco Lake, NY, USA) and a lake that was directly contaminated by mercury discharges (Onondaga Lake, NY, USA). Zebra mussels were sampled in both the spring and fall of 2004 and 2005. Total mercury (THg) concentrations in zebra mussels were approximately seven times greater in Onondaga Lake than in Otisco Lake, and water column mercury concentrations differed by an order of magnitude between the two lakes. Seasonal differences resulted in significantly higher zebra mussel THg concentrations during the fall for both lakes. There was also significant variation among different sampling sites in Onondaga Lake. Mussel methylmercury concentrations averaged 53% of THg concentrations but were highly variable. Strong relationships between water column THg and zebra mussel THg suggest that zebra mussels are a good indicator of aquatic mercury concentrations and could be used as an effective biomonitor of mercury contamination in aquatic ecosystems. Copyright © 2013 SETAC.

  8. Effects of acidic deposition on forest and aquatic ecosystems in New York State

    Energy Technology Data Exchange (ETDEWEB)

    Driscoll, Charles T.; Driscoll, Kimberley M.; Mitchell, Myron J.; Raynal, Dudley J

    2003-06-01

    Elevated inputs of acidic deposition have deleterious effects on forest and aquatic ecosystems in New York. - Acidic deposition is comprised of sulfuric and nitric acids and ammonium derived from atmospheric emissions of sulfur dioxide, nitrogen oxides, and ammonia, respectively. Acidic deposition has altered soil through depletion of labile pools of nutrient cations (i.e. calcium, magnesium), accumulation of sulfur and nitrogen, and the mobilization of elevated concentrations of inorganic monomeric aluminum to soil solutions in acid-sensitive areas. Acidic deposition leaches essential calcium from needles of red spruce, making this species more susceptible to freezing injury. Mortality among sugar maples appears to result from deficiencies of nutrient cations, coupled with other stresses such as insect defoliation or drought. Acidic deposition has impaired surface water quality in the Adirondack and Catskill regions of New York by lowering pH levels, decreasing acid-neutralizing capacity, and increasing aluminum concentrations. Acidification has reduced the diversity and abundance of aquatic species in lakes and streams. There are also linkages between acidic deposition and fish mercury contamination and eutrophication of estuaries.

  9. Organic N cycling in Arctic ecosystems: Quantifying root uptake kinetics and temporal variability of soil amino acids.

    Science.gov (United States)

    Homyak, P. M.; Iverson, S. L.; Slessarev, E.; Marchus, K.; Schimel, J.

    2017-12-01

    Arctic ecosystems are undergoing shifts in plant community composition with increased warming. How these changes may alter ecosystem function is not well constrained, owing in part to uncertainties on how plant-soil feedbacks influence nutrient cycling. For nitrogen (N), in particular, understanding how these feedbacks may alter cycling rates is challenging because i) Arctic plants take up organic N (i.e., amino acids; AA) when inorganic N is limiting, yet ii) it has never been quantified, for any plant species growing in the wild, how much of its N demand is actually met by taking up AA. To advance fundamental understanding of plant-soil feedbacks as the Arctic warms, we are integrating field measurements of AA availability in N-limited tussock tundra (E. vaginatum) and a comparably less N-limited birch shrub tundra (Betula nana and Salix spp.) with a root uptake model. We used soil microdialysis to determine available AA concentrations in the soil solution and potential rates of AA diffusion and mass flow to roots at the Toolik Field Station in Alaska. These measurements are being combined with AA root uptake kinetic experiments using E. vaginatum to establish actual AA root uptake rates. We found that in the early growing season (June), total AA concentrations in the soil solution averaged 104 µg N L-1 and were similar to NH4+ across sites. In the late growing season (August), AA were the dominant form of N averaging 75 µg N L-1 while NH4+ decreased to 13 µg N L-1. In the early growing season AA diffusion rates in the soil averaged 200 ng N cm-2 s-1 and declined to 150 ng N cm-2 s-1 in the late growing season. Lysine, serine, and arginine were the most abundant AA and differences in the N status of sites did not affect total AA concentrations. Amino acids made up at least half of the N diffusing through the soil solution, suggesting they can subsidize the N demand of arctic plants. Ongoing field experiments at Toolik will be used to constrain actual AA root

  10. Plastic ingestion by juvenile polar cod (Boreogadus saida) in the Arctic Ocean

    NARCIS (Netherlands)

    Kühn, Susanne; Schaafsma, Fokje L.; Werven, van Bernike; Flores, Hauke; Bergmann, Melanie; Egelkraut-Holtus, Marion; Tekman, Mine B.; Franeker, van Jan A.

    2018-01-01

    One of the recently recognised stressors in Arctic ecosystems concerns plastic litter. In this study, juvenile polar cod (Boreogadus saida) were investigated for the presence of plastics in their stomachs. Polar cod is considered a key species in the Arctic ecosystem. The fish were collected both

  11. Arctic-COLORS (Coastal Land Ocean Interactions in the Arctic) - a NASA field campaign scoping study to examine land-ocean interactions in the Arctic

    Science.gov (United States)

    Hernes, P.; Tzortziou, M.; Salisbury, J.; Mannino, A.; Matrai, P.; Friedrichs, M. A.; Del Castillo, C. E.

    2014-12-01

    The Arctic region is warming faster than anywhere else on the planet, triggering rapid social and economic changes and impacting both terrestrial and marine ecosystems. Yet our understanding of critical processes and interactions along the Arctic land-ocean interface is limited. Arctic-COLORS is a Field Campaign Scoping Study funded by NASA's Ocean Biology and Biogeochemistry Program that aims to improve understanding and prediction of land-ocean interactions in a rapidly changing Arctic coastal zone, and assess vulnerability, response, feedbacks and resilience of coastal ecosystems, communities and natural resources to current and future pressures. Specific science objectives include: - Quantify lateral fluxes to the arctic inner shelf from (i) rivers and (ii) the outer shelf/basin that affect biology, biodiversity, biogeochemistry (i.e. organic matter, nutrients, suspended sediment), and the processing rates of these constituents in coastal waters. - Evaluate the impact of the thawing of Arctic permafrost within the river basins on coastal biology, biodiversity and biogeochemistry, including various rates of community production and the role these may play in the health of regional economies. - Assess the impact of changing Arctic landfast ice and coastal sea ice dynamics. - Establish a baseline for comparison to future change, and use state-of-the-art models to assess impacts of environmental change on coastal biology, biodiversity and biogeochemistry. A key component of Arctic-COLORS will be the integration of satellite and field observations with coupled physical-biogeochemical models for predicting impacts of future pressures on Arctic, coastal ocean, biological processes and biogeochemical cycles. Through interagency and international collaborations, and through the organization of dedicated workshops, town hall meetings and presentations at international conferences, the scoping study engages the broader scientific community and invites participation of

  12. Biogeochemistry and nitrogen cycling in an Arctic, volcanic ecosystem

    Science.gov (United States)

    Fogel, M. L.; Benning, L.; Conrad, P. G.; Eigenbrode, J.; Starke, V.

    2007-12-01

    As part of a study on Mars Analogue environments, the biogeochemistry of Sverrefjellet Volcano, Bocfjorden, Svalbard, was conducted and compared to surrounding glacial, thermal spring, and sedimentary environments. An understanding of how nitrogen might be distributed in a landscape that had extinct or very cold adapted, slow- growing extant organisms should be useful for detecting unknown life forms. From high elevations (900 m) to the base of the volcano (sea level), soil and rock ammonium concentrations were uniformly low, typically less than 1- 3 micrograms per gm of rock or soil. In weathered volcanic soils, reduced nitrogen concentrations were higher, and oxidized nitrogen concentrations lower. The opposite was found in a weathered Devonian sedimentary soil. Plants and lichens growing on volcanic soils have an unusually wide range in N isotopic compositions from -5 to +12‰, a range rarely measured in temperate ecosystems. Nitrogen contents and isotopic compositions of volcanic soils and rocks were strongly influenced by the presence or absence of terrestrial herbivores or marine avifauna with higher concentrations of N and elevated N isotopic compositions occurring as patches in areas immediately influenced by reindeer, Arctic fox ( Alopex lagopus), and marine birds. Because of the extreme conditions in this area, ephemeral deposition of herbivore feces results in a direct and immediate N pulses into the ecosystem. The lateral extent and distribution of marine- derived nitrogen was measured on a landscape scale surrounding an active fox den. Nitrogen was tracked from the bones of marine birds to soil to vegetation. Because of extreme cold, slow biological rates and nitrogen cycling, a mosaic of N patterns develops on the landscape scale.

  13. Multiscale Framework for Assessing Critical Loads of Atmospheric Nitrogen Deposition for Aquatic Ecosystems in Wilderness Areas of the Western United States

    Science.gov (United States)

    Nanus, Leora; Clow, David; Saros, Jasmine; McMurray, Jill; Blett, Tamara; Sickman, James

    2017-04-01

    High-elevation aquatic ecosystems in Wilderness areas of the western United States are impacted by current and historic atmospheric nitrogen (N) deposition associated with local and regional air pollution. Documented effects include elevated surface water nitrate concentrations, increased algal productivity, and changes in diatom species assemblages. A predictive framework was developed for sensitive high-elevation basins across the western United States at multiple spatial scales including the Rocky Mountain Region (Rockies), the Greater Yellowstone Area (GYA), and Yosemite (YOSE) and Sequoia & Kings Canyon (SEKI) National Parks. Spatial trends in critical loads of N deposition for nutrient enrichment of aquatic ecosystems were quantified and mapped using a geostatistical approach, with modeled N deposition, topography, vegetation, geology, and climate as potential explanatory variables. Multiple predictive models were created using various combinations of explanatory variables; this approach allowed for better quantification of uncertainty and identification of areas most sensitive to high atmospheric N deposition (> 3 kg N ha-1 yr-1). For multiple spatial scales, the lowest critical loads estimates (1.5 + 1 kg N ha-1 yr-1) correspond with areas of high N deposition and vary spatially ranging from less than 20% to over 40% of the study area for the Rockies, GYA, YOSE, and SEKI. These predictive models and maps identify sensitive aquatic ecosystems that may be impacted by excess atmospheric N deposition and can be used to help protect against future anthropogenic disturbance. The approach presented here may be transferable to other remote and protected high-elevation ecosystems at multiple spatial scales that are sensitive to adverse effects of pollutant loading in the US and around the world.

  14. Multivariate benthic ecosystem functioning in the Arctic – benthic fluxes explained by environmental parameters in the southeastern Beaufort Sea

    Directory of Open Access Journals (Sweden)

    H. Link

    2013-09-01

    Full Text Available The effects of climate change on Arctic marine ecosystems and their biogeochemical cycles are difficult to predict given the complex physical, biological and chemical interactions among the ecosystem components. We studied benthic biogeochemical fluxes in the Arctic and the influence of short-term (seasonal to annual, long-term (annual to decadal and other environmental variability on their spatial distribution to provide a baseline for estimates of the impact of future changes. In summer 2009, we measured fluxes of dissolved oxygen, nitrate, nitrite, ammonia, soluble reactive phosphate and silicic acid at the sediment–water interface at eight sites in the southeastern Beaufort Sea at water depths from 45 to 580 m. The spatial pattern of the measured benthic boundary fluxes was heterogeneous. Multivariate analysis of flux data showed that no single or reduced combination of fluxes could explain the majority of spatial variation, indicating that oxygen flux is not representative of other nutrient sink–source dynamics. We tested the influence of eight environmental parameters on single benthic fluxes. Short-term environmental parameters (sinking flux of particulate organic carbon above the bottom, sediment surface Chl a were most important for explaining oxygen, ammonium and nitrate fluxes. Long-term parameters (porosity, surface manganese and iron concentration, bottom water oxygen concentrations together with δ13Corg signature explained most of the spatial variation in phosphate, nitrate and nitrite fluxes. Variation in pigments at the sediment surface was most important to explain variation in fluxes of silicic acid. In a model including all fluxes synchronously, the overall spatial distribution could be best explained (57% by the combination of sediment Chl a, phaeopigments, δ13Corg, surficial manganese and bottom water oxygen concentration. We conclude that it is necessary to consider long-term environmental variability along with

  15. The Identification, Types, Taxonomic Orders, Biodiversity and Importance of Aquatic Insects

    OpenAIRE

    J.F.N. Abowei; B.R. Ukoroije

    2012-01-01

    The identification, types, taxonomic orders, biodiversity and importance of aquatic insects was reviewed to facilitate sustainable culture fisheries management and practice. Aquatic insects contribute significantly to fresh water ecosystems, one of many groups of organisms that, together, must be considered in the study of aquatic ecology. As such their study may be a significant part of understanding the ecological state of a given ecosystem and in gauging how that ecosystem will respond to ...

  16. Improving the Characterization of Arctic Coastline Ecosystem Change near Utqiagvik, Alaska Utilizing Multiyear Terrestrial Laser Scanning

    Science.gov (United States)

    Escarzaga, S. M.; Cody, R. P.; Vargas, S. A., Jr.; Fuson, T.; Hodge, B. E.; Tweedie, C. E.

    2017-12-01

    The Arctic Ocean comprises the largest coastline on Earth and is undergoing environmental change on a level disproportionate to those in lower-latitudes. In the US Arctic, coastal erosion rates along the North Slope of Alaska show that they are among highest in the nation at an average rate of 1.4 meters per year. Despite their importance to biogeochemical cycling, Native village infrastructure and providing pristine species habitat, Arctic coastlines and near shore environments are relatively understudied due to logistical challenges of conducting fieldwork in these locations. This study expands on past efforts which showed dGPS foot surveys work well at describing planar erosion on less complex permafrost bluff types like those seen on the higher-energy coasts east of Utqiagvik, Alaska along the Beaufort Sea where the main mechanism of erosion happens by block failure caused by wave action. However, coastal bluffs along the Chukchi Sea to the west are more complex and variable in terms of form and mechanisms of erosion. Here, where wide beaches tend to buffer wave action, thermal erosion and permafrost slumping produce slower erosion rates. Terrestrial Laser Scanning (TLS) has been applied across a multitude of terrain types, including coastlines spanning various ecosystems. Additionally, this approach allows 3D modeling of fine scale geomorphological features which can facilitate modeling of erosion rates in these areas. This study utilizes a six year time series of TLS on a section of coastal permafrost bluff along the Chukchi Sea south of Utqiagvik. The aim of the work presented is to better understand spatio-temporal trends of coastal bluff face erosion, bluff top subsidence and how these landscape microtopographic changes are coupled to ecosystem changes and land cover types. Preliminary analysis suggests a high rate of stability of the bluff face over the TLS record with most of the detectable permafrost subsidence happening closer to the coastal bluff edge.

  17. Soil Carbon Inputs and Ecosystem Respiration: a Field Priming Experiment in Arctic Coastal Tundra

    Science.gov (United States)

    Vaughn, L. S.; Zhu, B.; Bimueller, C.; Curtis, J. B.; Chafe, O.; Bill, M.; Abramoff, R. Z.; Torn, M. S.

    2016-12-01

    In Arctic ecosystems, climate change is expected to influence soil carbon stocks through changes in both plant carbon inputs and organic matter decomposition. This study addresses the potential for a priming effect, an interaction between these changes in which root-derived carbon inputs alter SOM decomposition rates via microbial biomass increases, co-metabolism of substrates, induced nitrogen limitation, or other possible mechanisms. The priming effect has been observed in numerous laboratory and greenhouse experiments, and is increasingly included in ecosystem models. Few studies, however, have evaluated the priming effect with in situ field manipulations. In a two-year field experiment in Barrow, Alaska, we tested for a priming effect under natural environmental variability. In September 2014 and August 2015, we added 6.1g of 13C-labeled glucose to 25cm diameter mesocosms, 15cm below the soil surface in the mineral soil layer. Over the following month, we quantified effects on the rate and temperature sensitivity of native (non-glucose) ecosystem respiration and GPP. Following the 2014 treatment, soil samples were collected at 1 and 3 weeks for microbial biomass carbon and 13C/12C analysis, and ion exchange membranes were buried for one week to assess nitrate and ammonium availability. In contrast with many laboratory incubation studies using soils from a broad range of ecosystems, we observed no significant priming effect. In spite of a clear signal of 13C-glucose decomposition in respired CO2 and microbial biomass, we detected no treatment effect on background ecosystem respiration or total microbial biomass carbon. Our findings suggest that glucose taken up by microbes was not used for production of additional SOM-decomposing enzymes, possibly due to stoichiometric limitations on enzyme production. To best inform models representing complex and dynamic ecosystems, this study calls for further research relating theory, laboratory findings, and field

  18. Divergent apparent temperature sensitivity of terrestrial ecosystem respiration

    Science.gov (United States)

    Bing Song; Shuli Niu; Ruise Luo; Yiqi Luo; Jiquan Chen; Guirui Yu; Janusz Olejnik; Georg Wohlfahrt; Gerard Kiely; Ako Noormets; Leonardo Montagnani; Alessandro Cescatti; Vincenzo Magliulo; Beverly Elizabeth Law; Magnus Lund; Andrej Varlagin; Antonio Raschi; Matthias Peichl; Mats B. Nilsson; Lutz Merbold

    2014-01-01

    Recent studies revealed convergent temperature sensitivity of ecosystem respiration (Re) within aquatic ecosystems and between terrestrial and aquatic ecosystems. We do not know yet whether various terrestrial ecosystems have consistent or divergent temperature sensitivity. Here, we synthesized 163 eddy covariance flux sites across the world and...

  19. Ecological effects of the Hayman Fire - Part 3: Soil properties, erosion, and implications for rehabilitation and aquatic ecosystems

    Science.gov (United States)

    Jan E. Cipra; Eugene F. Kelly; Lee MacDonald; John Norman

    2003-01-01

    This team was asked to address three questions regarding soil properties, erosion and sedimentation, and how aquatic and terrestrial ecosystems have responded or could respond to various land management options. We have used soil survey maps, burn severity maps, and digital elevation model (DEM) maps as primary map data. We used our own field measurements and...

  20. The development of a classification system for inland aquatic ...

    African Journals Online (AJOL)

    A classification system is described that was developed for inland aquatic ecosystems in South Africa, including wetlands. The six-tiered classification system is based on a top-down, hierarchical classification of aquatic ecosystems, following the functionally-oriented hydrogeomorphic (HGM) approach to classification but ...

  1. Aquatic ecosystems within the Chernobyl NPP exclusion zone: radioactive contamination, doses and effects

    International Nuclear Information System (INIS)

    Gudkov, D.I.; Kuzmenko, M.I.; Krot, Y.G.; Kipnis, L.S.; Mardarevich, M.G.; Ponomaryov, A.V.; Derevets, V.V.; Nazarov, A.B.

    2003-01-01

    For past 17 years after accident the character of radioactive contamination of water objects within the Chernobyl NPP exclusion zone has undergone essential changes. First of all it connected with realisation on a wide area of deactivation works, and also with transformation of radioactive substances in water-soil systems. Besides, during 1991-95 the complex of hydraulic engineering structures as protection dams, interfering washing away of radioactive substances from soils of the left-bank catchment basin and changed a hydrological regime of these territories during a high water, was constructed. The levels of radionuclide contamination of water objects within the Chernobyl NPP exclusion zone was rather stabilised. Due to high water change rate the river bottom sediments have undergone decontamination processes (especially during floods and periods of high water) and over the years have ceased to play the essential role as a secondary source of water contamination. On the other hand, the closed reservoirs have considerably higher levels of radioactive contamination caused by limited water change and by relatively high concentration of radionuclides deposited in the bottom sediments. Therefore, for the majority of standing reservoirs the level of radionuclide content is determined mainly by the rates of mobile radionuclide forms exchange between bottom sediment and water, as well as by the external washout from the catchment basin. In this paper will be considered: (1) the latest data on radionuclide content (Sr-90, Cs-137, Pu-238, Pu-239+240 and Am-241) and dynamics in water, seston, bottom sediments and hydrobionts of different trophic levels and ecological groups; (2) the peculiarities of formation of vegetative communities from lakes within embankment territory of Pripyat River flood-lands and its impact on radionuclide redistribution in aquatic ecosystems; (3) the major hydrochemical factors, which determine the behaviour of radionuclides in the aquatic

  2. From a microcosm to the catchment scale: studying the fate of organic runoff pollutants in aquatic ecosystems

    Science.gov (United States)

    Böttcher, T.; Schroll, R.

    2009-04-01

    Spray-drift, drainage, erosion and runoff events are the major causes responsible for deportation of agrochemicals as micropollutants to aquatic non-target sites. These processes can lead to the contamination of nearby freshwater ecosystems with considerably high concentrations of xenobiotics. Thus, it is important to unravel the fate of these pollutants and to evaluate their ecological effects. A novel approach to address this goal was established by the development of a microcosm with multiple sampling abilities enabling quantitative assessment of organic volatilisation, mineralization, metabolization and distribution within the aquatic ecosystem. This microcosm system was designed to support modelling approaches of the catchment scale and gain insights into the fate of pesticides simulating a large scale water body. The potential of this microcosm was exemplified for Isoproturon (IPU), a phenylurea derived systemic herbicide, which is frequently found as contaminant in water samples and with the free-floating macrophyte Lemna minor as non-target species, that is common to occur in rural water bodies. During 21 days exposure time, only a small amount of 14C labeled IPU was removed from the aquatic medium. The major portion (about 5%) was accumulated by Lemna minor resulting in a BCF of 15.8. IPU-volatilisation was very low with 0.13% of the initially applied herbicide. Only a minor amount of IPU was completely metabolized, presumably by rhizosphere microorganisms and released as 14CO2. The novel experimental system allowed to quantitatively investigate the fate of IPU and showed a high reproducibility with a mean average 14C-recovery rate of 97.1

  3. The Economic Value of the Greater Montreal Blue Network (Quebec, Canada: A Contingent Choice Study Using Real Projects to Estimate Non-Market Aquatic Ecosystem Services Benefits.

    Directory of Open Access Journals (Sweden)

    Thomas G Poder

    Full Text Available This study used a contingent choice method to determine the economic value of improving various ecosystem services (ESs of the Blue Network of Greater Montreal (Quebec, Canada. Three real projects were used and the evaluation focused on six ESs that are related to freshwater aquatic ecosystems: biodiversity, water quality, carbon sequestration, recreational activities, landscape aesthetics and education services. We also estimated the value associated with the superficies of restored sites. We calculated the monetary value that a household would be willing to pay for each additional qualitative or quantitative unit of different ESs, and these marginal values range from $0.11 to $15.39 per household per unit. Thus, under certain assumptions, we determined the monetary values that all Quebec households would allocate to improve each ES in Greater Montreal by one unit. The most valued ES was water quality ($13.5 million, followed by education services ($10.7 million, recreational activities ($8.9 million, landscape aesthetics ($4.1 million, biodiversity ($1.2 million, and carbon sequestration ($0.1 million. Our results ascribe monetary values to improved (or degraded aquatic ecosystems in the Blue Network of Greater Montreal, but can also enhance economic analyses of various aquatic ecosystem restoration and management projects.

  4. The Economic Value of the Greater Montreal Blue Network (Quebec, Canada): A Contingent Choice Study Using Real Projects to Estimate Non-Market Aquatic Ecosystem Services Benefits.

    Science.gov (United States)

    Poder, Thomas G; Dupras, Jérôme; Fetue Ndefo, Franck; He, Jie

    2016-01-01

    This study used a contingent choice method to determine the economic value of improving various ecosystem services (ESs) of the Blue Network of Greater Montreal (Quebec, Canada). Three real projects were used and the evaluation focused on six ESs that are related to freshwater aquatic ecosystems: biodiversity, water quality, carbon sequestration, recreational activities, landscape aesthetics and education services. We also estimated the value associated with the superficies of restored sites. We calculated the monetary value that a household would be willing to pay for each additional qualitative or quantitative unit of different ESs, and these marginal values range from $0.11 to $15.39 per household per unit. Thus, under certain assumptions, we determined the monetary values that all Quebec households would allocate to improve each ES in Greater Montreal by one unit. The most valued ES was water quality ($13.5 million), followed by education services ($10.7 million), recreational activities ($8.9 million), landscape aesthetics ($4.1 million), biodiversity ($1.2 million), and carbon sequestration ($0.1 million). Our results ascribe monetary values to improved (or degraded) aquatic ecosystems in the Blue Network of Greater Montreal, but can also enhance economic analyses of various aquatic ecosystem restoration and management projects.

  5. Mammalian herbivores confer resilience of Arctic shrub-dominated ecosystems to changing climate.

    Science.gov (United States)

    Kaarlejärvi, Elina; Hoset, Katrine S; Olofsson, Johan

    2015-09-01

    Climate change is resulting in a rapid expansion of shrubs in the Arctic. This expansion has been shown to be reinforced by positive feedbacks, and it could thus set the ecosystem on a trajectory toward an alternate, more productive regime. Herbivores, on the other hand, are known to counteract the effects of simultaneous climate warming on shrub biomass. However, little is known about the impact of herbivores on resilience of these ecosystems, that is, the capacity of a system to absorb disturbance and still remain in the same regime, retaining the same function, structure, and feedbacks. Here, we investigated how herbivores affect resilience of shrub-dominated systems to warming by studying the change of shrub biomass after a cessation of long-term experimental warming in a forest-tundra ecotone. As predicted, warming increased the biomass of shrubs, and in the absence of herbivores, shrub biomass in tundra continued to increase 4 years after cessation of the artificial warming, indicating that positive effects of warming on plant growth may persist even over a subsequent colder period. Herbivores contributed to the resilience of these systems by returning them back to the original low-biomass regime in both forest and tundra habitats. These results support the prediction that higher shrub biomass triggers positive feedbacks on soil processes and microclimate, which enable maintaining the rapid shrub growth even in colder climates. Furthermore, the results show that in our system, herbivores facilitate the resilience of shrub-dominated ecosystems to climate warming. © 2015 John Wiley & Sons Ltd.

  6. Ecology in Small Aquatic Ecosystems

    DEFF Research Database (Denmark)

    Andersen, Mikkel René

    Small ecosystems are many-fold more abundant than their larger counterparts. Both on regional and global scale small lakes outnumber medium and large lakes and account for a much larger surface area. Small streams are also far more common than rivers. Despite their abundance small ecosystems are ...

  7. Investigation of the factors influencing radiocesium concentrations of fish inhabiting natural aquatic ecosystems

    International Nuclear Information System (INIS)

    Jinks, S.M.

    1975-01-01

    Distributions of radioactive and stable cesium were determined in water, sediment, and biota from eight different aquatic ecosystems between 1971 and 1973. The ecosystems included four lakes, fresh and brackish water regions of the Hudson River estuary, and two coastal marine sites. In the Hudson River estuary, the distribution of radiocesium between suspended and dissolved phases in water was found to be a function of salinity. Mean rates of deposition of suspended radiocesium into bottom sediment are calculated from the temporal changes in concentrations of the media, and observed depth distributions in sediment are semi-quantitatively described. Desorption by salt water is identified as the major mechanism for transport of radiocesium from bottom sediment in the lower estuary, and half-times for removal by this mechanism are estimated to be 1.5 to 2.0 years. Suspended-dissolved distributions of radiocesium in water, and depth distributions in sediment are also presented for lake and marine systems. Accumulation of radiocesium by fish is examined in relation to radiocesium distributions in water, sediment, and other biota, and to the chemical characteristics of each ecosystem. Radiocesium dissolved in water was the primary source to the fish in all ecosystems. Sediment inventories of 137 Cs constituted a secondary source which provided as much as 50 percent of the radiocesium in benthic feeding fish in the Hudson River. Dietary intake of 137 Cs is shown to be inversely related to the potassium concentration in the ambient water, and results in an inverse proportionality between the concentration factor in fish and the potassium concentrations in the different freshwater and estuarine ecosystems

  8. Spatial and temporal effects of olive mill wastewaters to stream macroinvertebrates and aquatic ecosystems status.

    Science.gov (United States)

    Karaouzas, Ioannis; Skoulikidis, Nikolaos T; Giannakou, Urania; Albanis, Triantafyllos A

    2011-12-01

    Olive mill wastewater (OMW) is one of the major and most challenging organic pollutants in olive oil production countries. However, the knowledge about the in-situ effects of olive mill wastewaters to lotic ecosystems and their benthic organisms is very limited. To resolve this, eight sampling sites were selected upstream and downstream the outflow of several olive mills to assess the spatial and temporal effects of OMW to stream macroinvertebrates and to ecological status of stream ecosystems. Biotic (macroinvertebrates) and abiotic (physicochemical, hydromorphological) data were monitored for two years thus following the biennial cycle of olive growth and production and hydrological variation (drought-wet years). The results of this study revealed the spatial and temporal structural deterioration of the aquatic community due to OMW pollution with consequent reduction of the river capacity for reducing the effects of polluting substances through internal mechanisms of self-purification. OMW, even highly diluted, had dramatic impacts on the aquatic fauna and to the ecological status of the receiving stream ecosystems. The organic load of the wastewater expressed as BOD(5), COD and TSS, substrate contamination (sewage bacteria) and distance from the mill outlet, were the most important factors affecting macroinvertebrate assemblages while the typology (i.e. slope, altitude) and hydrology of the stream site (i.e. mountainous-lowland) and the intensity and volume of the wastewater were the most important determinants of self-purification processes. As OMW are usually being discharged in small size streams that are not considered in the Water Framework Directive 2000/60/EC, there is a need for including such systems into monitoring and assessment schemes as they may significantly contribute to the pollution load of the river basin. Furthermore, guidelines to manage these wastes through technologies that minimise their environmental impact and lead to a sustainable use

  9. Design and Development of a Spectral Library for Different Vegetation and Landcover Types for Arctic, Antarctic and Chihuahua Desert Ecosystem

    Science.gov (United States)

    Matharasi, K.; Goswami, S.; Gamon, J.; Vargas, S.; Marin, R.; Lin, D.; Tweedie, C. E.

    2008-12-01

    All objects on the Earth's surface absorb and reflect portions of the electromagnetic spectrum. Depending on the composition of the material, every material has its characteristic spectral profile. The characteristic spectral profile for vegetation is often used to study how vegetation patterns at large spatial scales affect ecosystem structure and function. Analysis of spectroscopic data from the laboratory, and from various other platforms like aircraft or spacecraft, requires a knowledge base that consists of different characteristic spectral profiles for known different materials. This study reports on establishment of an online and searchable spectral library for a range of plant species and landcover types in the Arctic, Anatarctic and Chihuahuan desert ecosystems. Field data were collected from Arctic Alaska, the Antarctic Peninsula and the Chihuahuan desert in the visible to near infrared (IR) range using a handheld portable spectrometer. The data have been archived in a database created using postgre sql with have been made publicly available on a plone web-interface. This poster describes the data collected in more detail and offers instruction to users who wish to make use of this free online resource.

  10. Project AProWa: a national view on managing trade-offs between agricultural production and conservation of aquatic ecosystems

    Science.gov (United States)

    Dietzel, Anne; Rahn, Eric; Stamm, Christian

    2014-05-01

    Swiss agriculture is legally committed to fulfill several, partially conflicting goals such as agricultural production on the one hand and the conservation of natural resources on the other hand. In the context of the research project AProWa ("Agricultural Production and Water"), the relationships between the production aspect and the conservation of aquatic ecosystems is analyzed with a holistic approach. Agricultural production and the protection of water resources have high potential for conflicts: Farmers use ground and surface water to irrigate their fields. On the other hand, drainage systems enable the production on otherwise unfavorably wet soils. These in turn often affect ground water recharge and divert precipitation directly into surface waters, which changes their hydrological regime. Typically, drainage systems also elevate the input of nutrients and pesticides into the water bodies. In general, applied fertilizers, plant protection products, veterinary drugs and phytohormones of cultivated plants are introduced into the ground and surface waters through different processes such as drift, leaching, runoff, preferential flow or erosion. They influence the nutrient cycles and ecological health of aquatic systems. The nutrient and pesticide loss processes themselves can be altered by tillage operations and other agricultural practices. Furthermore, the competition for space can lead to additional conflicts between agriculture and the protection of aquatic ecosystems. For example, channelized or otherwise morphologically changed rivers do not have a natural discharge pattern and are often not suitable for the local flora and fauna; but naturally meandering rivers need space that cannot be used for agriculture. In a highly industrialized and densely populated country like Switzerland, all these potential conflicts are of importance. Although it is typically seen as a water-rich country, local and seasonal overexploitation of rivers through water extraction

  11. Unusually Warm Spring Temperatures Magnify Annual CH4 Losses From Arctic Ecosystems

    Science.gov (United States)

    Goodrich, J. P.; Oechel, W. C.; Gioli, B.; Murphy, P.; Zona, D.

    2015-12-01

    The relatively fast pace of Northern high latitude warming puts the very large permafrost soil C pool at a higher risk of being lost to the atmosphere as CH4. Estimates for the Arctic tundra's contribution to the global wetland CH4 emissions range from 15-27 TgCH4 y-1 (8-14% of total). However, these estimates are largely based on data from the growing season, or from boreal systems underlain by discontinuous permafrost with different physical, hydrological, and biogeochemical dynamics than continuous permafrost zones. Recent data from a transect of eddy covariance flux towers across the North Slope of Alaska revealed the importance of cold season emissions to the annual CH4 budget, which may not correlate with summer flux patterns. However, understanding of the controls and inter-annual variability in fluxes at these different sites is lacking. Here, we present data from ~3 years at 5 tundra ecosystems along this Arctic transect to show the influence of earlier and deeper spring active layer thaw on timing and magnitude of CH4 fluxes. This year's warm spring led to significantly greater thaw depths and lower water tables than the previous year. Substantial CH4 emissions in 2015 were recorded at the wettest sites >20 days earlier than in the more meteorologically normal previous year. Since the soil remained saturated despite a lowered water table, total spring CH4 emissions more than doubled at these wet sites. At the drier sites, soil moisture declined with water table during the warmer spring, resulting in similar emissions to the previous year. However, deeper thaw depths prolonged fall and early winter emissions during the 'zero-curtain' soil temperature freezing phase, particularly at the drier site. In general, warmer spring temperatures in the Arctic may result in large increases in early season CH4 losses at wet sites and prolonged steady losses at the upland sites, enhancing the feedback between changing climate and tundra CH4 emissions at all sites.

  12. Net Ecosystem Exchange of CO2 with Rapidly Changing High Arctic Landscapes

    Science.gov (United States)

    Emmerton, C. A.

    2015-12-01

    High Arctic landscapes are expansive and changing rapidly. However our understanding of their functional responses and potential to mitigate or enhance anthropogenic climate change is limited by few measurements. We collected eddy covariance measurements to quantify the net ecosystem exchange (NEE) of CO2 with polar semidesert and meadow wetland landscapes at the highest-latitude location measured to date (82°N). We coupled these rare data with ground and satellite vegetation production measurements (Normalized Difference Vegetation Index; NDVI) to evaluate the effectiveness of upscaling local to regional NEE. During the growing season, the dry polar semidesert landscape was a near zero sink of atmospheric CO2 (NEE: -0.3±13.5 g C m-2). A nearby meadow wetland accumulated over two magnitudes more carbon (NEE: -79.3±20.0 g C m-2) than the polar semidesert landscape, and was similar to meadow wetland NEE at much more southern latitudes. Polar semidesert NEE was most influenced by moisture, with wetter surface soils resulting in greater soil respiration and CO2 emissions. At the meadow wetland, soil heating enhanced plant growth, which in turn increased CO2 uptake. Our upscaling assessment found that polar semidesert NDVI measured on site was low (mean: 0.120-0.157) and similar to satellite measurements (mean: 0.155-0.163). However, weak plant growth resulted in poor satellite NDVI-NEE relationships and created challenges for remotely-detecting changes in the cycling of carbon on the polar semidesert landscape. The meadow wetland appeared more suitable to assess plant production and NEE via remote-sensing, however high Arctic wetland extent is constrained by topography to small areas that may be difficult to resolve with large satellite pixels. We predict that until summer precipitation and humidity increases substantially, climate-related changes of dry high Arctic landscapes may be restricted by poor soil moisture retention, and therefore have some inertia against

  13. Collaborative Proposal: Improving Decadal Prediction of Arctic Climate Variability and Change Using a Regional Arctic System Model (RASM)

    Energy Technology Data Exchange (ETDEWEB)

    Maslowski, Wieslaw [Naval Postgraduate School, Monterey, CA (United States)

    2016-10-17

    This project aims to develop, apply and evaluate a regional Arctic System model (RASM) for enhanced decadal predictions. Its overarching goal is to advance understanding of the past and present states of arctic climate and to facilitate improvements in seasonal to decadal predictions. In particular, it will focus on variability and long-term change of energy and freshwater flows through the arctic climate system. The project will also address modes of natural climate variability as well as extreme and rapid climate change in a region of the Earth that is: (i) a key indicator of the state of global climate through polar amplification and (ii) which is undergoing environmental transitions not seen in instrumental records. RASM will readily allow the addition of other earth system components, such as ecosystem or biochemistry models, thus allowing it to facilitate studies of climate impacts (e.g., droughts and fires) and of ecosystem adaptations to these impacts. As such, RASM is expected to become a foundation for more complete Arctic System models and part of a model hierarchy important for improving climate modeling and predictions.

  14. Reed beds may facilitate transfer of tributyltin from aquatic to terrestrial ecosystems through insect vectors in the Archipelago Sea, SW Finland.

    Science.gov (United States)

    Lilley, Thomas M; Meierjohann, Axel; Ruokolainen, Lasse; Peltonen, Jani; Vesterinen, Eero; Kronberg, Leif; Nikinmaa, Mikko

    2012-08-01

    Due to their adsorptive behavior, organotin compounds (OTCs), such as tributyltin (TBT), are accumulated in aquatic sediments. They resist biodegradation and, despite a ban in 2008, are a potential source for future exposure. Sediment OTCs have mostly been measured from sites of known high concentrations such as ports, shipping lanes, and marine dredging waste sites. The possible flow of OTCs from marine to terrestrial ecosystems, however, has not been studied. In the present study, the authors assessed whether sediments in common reed beds (Phragmites australis) accumulate TBT and whether chironomid (Diptera: Chironomidae) communities developing in reed-bed sediments act as vectors in the transfer of TBT from aquatic to terrestrial ecosystems in the Airisto channel, Archipelago Sea. The authors also investigated whether distance from the only known source and depth and TBT concentration of the adjacent shipping lane affect reed-bed concentrations. Thirty-six sites along the Airisto channel were sampled at 2-km intervals with triplicate samples from reed beds and the adjacent shipping lane for sediment and seven reed-bed sites for chironomids, and these were analyzed with an solid phase extraction liquid chromatography tamdem mass spectrometry method. The closer to the source the sample site was, the higher the measured TBT concentrations were; and the deeper the shipping lane, the lower the concentration of TBT in reed-bed sediments. The chironomid TBT concentrations correlated with reed-bed sediment TBT concentrations and showed evidence of accumulation. Therefore, TBT may be transferred, through the food web, from aquatic to terrestrial ecosystems relatively close to a source through ecosystem boundaries, such as common reed beds, which are areas of high insect biomass production in the Archipelago Sea. Copyright © 2012 SETAC.

  15. PCB Food Web Dynamics Quantify Nutrient and Energy Flow in Aquatic Ecosystems.

    Science.gov (United States)

    McLeod, Anne M; Paterson, Gordon; Drouillard, Ken G; Haffner, G Douglas

    2015-11-03

    Measuring in situ nutrient and energy flows in spatially and temporally complex aquatic ecosystems represents a major ecological challenge. Food web structure, energy and nutrient budgets are difficult to measure, and it is becoming more important to quantify both energy and nutrient flow to determine how food web processes and structure are being modified by multiple stressors. We propose that polychlorinated biphenyl (PCB) congeners represent an ideal tracer to quantify in situ energy and nutrient flow between trophic levels. Here, we demonstrate how an understanding of PCB congener bioaccumulation dynamics provides multiple direct measurements of energy and nutrient flow in aquatic food webs. To demonstrate this novel approach, we quantified nitrogen (N), phosphorus (P) and caloric turnover rates for Lake Huron lake trout, and reveal how these processes are regulated by both growth rate and fish life history. Although minimal nutrient recycling was observed in young growing fish, slow growing, older lake trout (>5 yr) recycled an average of 482 Tonnes·yr(-1) of N, 45 Tonnes·yr(-1) of P and assimilated 22 TJ yr(-1) of energy. Compared to total P loading rates of 590 Tonnes·yr(-1), the recycling of primarily bioavailable nutrients by fish plays an important role regulating the nutrient states of oligotrophic lakes.

  16. Life around the North Water ecosystem

    DEFF Research Database (Denmark)

    Hastrup, Kirsten Blinkenberg; Andersen, Astrid Oberborbeck; Grønnow, Bjarne

    2018-01-01

    The formation of the North Water in Smith Sound about 4500 years ago, as evidenced by the establishment of bird colonies and human presence, also initiated a long-term anthropogenic agent as part of this High Arctic ecosystem. Different epochs have influenced the human occupation in the area: imm...... ramifications that extend beyond the High Arctic, and include human activity. The challenge is to determine what is internal and what is external to an ecosystem....

  17. Radioecology of the aquatic environment

    International Nuclear Information System (INIS)

    Amiard-Triquet, C.; Amiard, J.C.

    1980-01-01

    This book is divided into nine parts as follows: origin of radionuclides in the aquatic environment; assessment of radioactive contamination of the aquatic environment; evolution of radionuclides in waters; behaviour of radionuclides in sediments; quantitative data on accumulation, distribution and biological release of radioactive pollutants; mechanisms of the biological accumulation; influence of ecological factors on radioactive contamination of ecosystems; effects of irradiation on aquatic organisms. The last part is devoted to general conclusions on sanitary and ecological consequences of radioactive pollution of the aquatic environment [fr

  18. Pan-Arctic observations in GRENE Arctic Climate Change Research Project and its successor

    Science.gov (United States)

    Yamanouchi, Takashi

    2016-04-01

    We started a Japanese initiative - "Arctic Climate Change Research Project" - within the framework of the Green Network of Excellence (GRENE) Program, funded by the Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT), in 2011. This Project targeted understanding and forecasting "Rapid Change of the Arctic Climate System and its Global Influences." Four strategic research targets are set by the Ministry: 1. Understanding the mechanism of warming amplification in the Arctic; 2. Understanding the Arctic climate system for global climate and future change; 3. Evaluation of the impacts of Arctic change on the weather and climate in Japan, marine ecosystems and fisheries; 4. Projection of sea ice distribution and Arctic sea routes. Through a network of universities and institutions in Japan, this 5-year Project involves more than 300 scientists from 39 institutions and universities. The National Institute of Polar Research (NIPR) works as the core institute and The Japan Agency for Marine- Earth Science and Technology (JAMSTEC) joins as the supporting institute. There are 7 bottom up research themes approved: the atmosphere, terrestrial ecosystems, cryosphere, greenhouse gases, marine ecology and fisheries, sea ice and Arctic sea routes and climate modeling, among 22 applications. The Project will realize multi-disciplinal study of the Arctic region and connect to the projection of future Arctic and global climatic change by modeling. The project has been running since the beginning of 2011 and in those 5 years pan-Arctic observations have been carried out in many locations, such as Svalbard, Russian Siberia, Alaska, Canada, Greenland and the Arctic Ocean. In particular, 95 GHz cloud profiling radar in high precision was established at Ny-Ålesund, Svalbard, and intensive atmospheric observations were carried out in 2014 and 2015. In addition, the Arctic Ocean cruises by R/V "Mirai" (belonging to JAMSTEC) and other icebreakers belonging to other

  19. The interactive effects of excess reactive nitrogen and climate change on aquatic ecosystems and water resources of the United States

    Science.gov (United States)

    Baron, Jill S.; Hall, E.K.; Nolan, B.T.; Finlay, J.C.; Bernhardt, E.S.; Harrison, J.A.; Chan, F.; Boyer, E.W.

    2012-01-01

    Nearly all freshwaters and coastal zones of the US are degraded from inputs of excess reactive nitrogen (Nr), sources of which are runoff, atmospheric N deposition, and imported food and feed. Some major adverse effects include harmful algal blooms, hypoxia of fresh and coastal waters, ocean acidification, long-term harm to human health, and increased emissions of greenhouse gases. Nitrogen fluxes to coastal areas and emissions of nitrous oxide from waters have increased in response to N inputs. Denitrification and sedimentation of organic N to sediments are important processes that divert N from downstream transport. Aquatic ecosystems are particularly important denitrification hotspots. Carbon storage in sediments is enhanced by Nr, but whether carbon is permanently buried is unknown. The effect of climate change on N transport and processing in fresh and coastal waters will be felt most strongly through changes to the hydrologic cycle, whereas N loading is mostly climate-independent. Alterations in precipitation amount and dynamics will alter runoff, thereby influencing both rates of Nr inputs to aquatic ecosystems and groundwater and the water residence times that affect Nr removal within aquatic systems. Both infrastructure and climate change alter the landscape connectivity and hydrologic residence time that are essential to denitrification. While Nr inputs to and removal rates from aquatic systems are influenced by climate and management, reduction of N inputs from their source will be the most effective means to prevent or to minimize environmental and economic impacts of excess Nr to the nation’s water resources.

  20. Models for transport and fate of carbon, nutrients and point source released radionuclides to an aquatic ecosystem

    Energy Technology Data Exchange (ETDEWEB)

    Kumblad, Linda [Stockholm Univ. (Sweden). Dept. of Systems Ecology; Kautsky, Ulrik [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)

    2004-09-01

    In this report three ecosystem models are described in terms of structure, initial data, and results. All models are dynamic, mass-balanced and describe the transport and fate of elements in an open aquatic ecosystem. The models are based on ecologically sound principles, provide model results with high resolution and transparency, and are constrained by the nutrient dynamics of the ecosystem itself. The processes driving the transport in all the models are both the biological processes such as primary production, consumption, respiration and excretion, and abiotic e.g. water exchange and air-sea exchange. The first model, the CNP-model, describes the distribution and fluxes of carbon and nutrients for the coastal ecosystem off Forsmark. The second model, the C-14 model, is an extension of the CNP-model and describes the transport and distribution of hypothetically released C-14 from the underground repository SFR-1 to the ecosystem above. The third model, the RN-model, is a generic radionuclide flow model that models the transport and distribution of radionuclides other than C-14 hypothetically discharged to the ecosystem. The model also analyses the importance of some radionuclide specific mechanisms for the radionuclide flow. The generic radionuclide model is also based on the CNP-model, but has radionuclide specific mechanisms connected to each compartment.

  1. Models for transport and fate of carbon, nutrients and point source released radionuclides to an aquatic ecosystem

    International Nuclear Information System (INIS)

    Kumblad, Linda

    2004-09-01

    In this report three ecosystem models are described in terms of structure, initial data, and results. All models are dynamic, mass-balanced and describe the transport and fate of elements in an open aquatic ecosystem. The models are based on ecologically sound principles, provide model results with high resolution and transparency, and are constrained by the nutrient dynamics of the ecosystem itself. The processes driving the transport in all the models are both the biological processes such as primary production, consumption, respiration and excretion, and abiotic e.g. water exchange and air-sea exchange. The first model, the CNP-model, describes the distribution and fluxes of carbon and nutrients for the coastal ecosystem off Forsmark. The second model, the C-14 model, is an extension of the CNP-model and describes the transport and distribution of hypothetically released C-14 from the underground repository SFR-1 to the ecosystem above. The third model, the RN-model, is a generic radionuclide flow model that models the transport and distribution of radionuclides other than C-14 hypothetically discharged to the ecosystem. The model also analyses the importance of some radionuclide specific mechanisms for the radionuclide flow. The generic radionuclide model is also based on the CNP-model, but has radionuclide specific mechanisms connected to each compartment

  2. Toxicological effects of pyrethroids on non-target aquatic insects.

    Science.gov (United States)

    Antwi, Frank B; Reddy, Gadi V P

    2015-11-01

    The toxicological effects of pyrethroids on non-target aquatic insects are mediated by several modes of entry of pyrethroids into aquatic ecosystems, as well as the toxicological characteristics of particular pyrethroids under field conditions. Toxicokinetics, movement across the integument of aquatic insects, and the toxicodynamics of pyrethroids are discussed, and their physiological, symptomatic and ecological effects evaluated. The relationship between pyrethroid toxicity and insecticide uptake is not fully defined. Based on laboratory and field data, it is likely that the susceptibility of aquatic insects (vector and non-vector) is related to biochemical and physiological constraints associated with life in aquatic ecosystems. Understanding factors that influence aquatic insects susceptibility to pyrethroids is critical for the effective and safe use of these compounds in areas adjacent to aquatic environments. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  3. FABM-PCLake – linking aquatic ecology with hydrodynamics

    DEFF Research Database (Denmark)

    Hu, Fenjuan; Bolding, Karsten; Bruggeman, Jorn

    2016-01-01

    This study presents FABM-PCLake, a redesigned structure of the PCLake aquatic ecosystem model, which we implemented in the Framework for Aquatic Biogeochemical Models (FABM). In contrast to the original model, which was designed for temperate, fully mixed freshwater lakes, the new FABM......-PCLake represents an integrated aquatic ecosystem model that can be linked with different hydrodynamic models and allows simulations of hydrodynamic and biogeochemical processes for zero-dimensional, one-dimensional as well as three-dimensional environments. FABM-PCLake describes interactions between multiple......, including water currents, light and temperature influence a wide range of biogeochemical processes. The model enables studies on ecosystem dynamics in physically heterogeneous environments (e.g., stratifying water bodies, and water bodies with horizontal gradients in physical and biogeochemical properties...

  4. Comparing the Influence of Wildfire and Prescribed Burns on Watershed Nitrogen Biogeochemistry Using 15N Natural Abundance in Terrestrial and Aquatic Ecosystem Components

    Science.gov (United States)

    Stephan, Kirsten; Kavanagh, Kathleen L.; Koyama, Akihiro

    2015-01-01

    We evaluated differences in the effects of three low-severity spring prescribed burns and four wildfires on nitrogen (N) biogeochemistry in Rocky Mountain headwater watersheds. We compared paired (burned/unburned) watersheds of four wildfires and three spring prescribed burns for three growing seasons post-fire. To better understand fire effects on the entire watershed ecosystem, we measured N concentrations and δ15N in both the terrestrial and aquatic ecosystems components, i.e., soil, understory plants in upland and riparian areas, streamwater, and in-stream moss. In addition, we measured nitrate reductase activity in foliage of Spiraea betulifolia, a dominant understory species. We found increases of δ15N and N concentrations in both terrestrial and aquatic ecosystem N pools after wildfire, but responses were limited to terrestrial N pools after prescribed burns indicating that N transfer from terrestrial to aquatic ecosystem components did not occur in low-severity prescribed burns. Foliar δ15N differed between wildfire and prescribed burn sites; the δ15N of foliage of upland plants was enriched by 2.9 ‰ (difference between burned and unburned watersheds) in the first two years after wildfire, but only 1.3 ‰ after prescribed burns. In-stream moss δ15N in wildfire-burned watersheds was enriched by 1.3 ‰, but there was no response by moss in prescription-burned watersheds, mirroring patterns of streamwater nitrate concentrations. S. betulifolia showed significantly higher nitrate reductase activity two years after wildfires relative to corresponding unburned watersheds, but no such difference was found after prescribed burns. These responses are consistent with less altered N biogeochemistry after prescribed burns relative to wildfire. We concluded that δ15N values in terrestrial and aquatic plants and streamwater nitrate concentrations after fire can be useful indicators of the magnitude and duration of fire effects and the fate of post

  5. Characteristics of terrestrial and aquatic ecosystems of two locations in Deaf Smith and Swisher Counties, Texas

    International Nuclear Information System (INIS)

    1984-11-01

    According to the Civilian Radioactive Waste Management Program and the Nuclear Waste Policy Act of 1982 (P.L. 97-425), a potential nuclear waste repository site must be chosen with consideration of potential impacts on terrestrial and aquatic ecosystems. This report is a preliminary environmental characterization of two locations in the Texas Panhandle, one in Deaf Smith County and the other in Swisher County, that have been recommended for further study. A description of important natural areas is offered as a basis for comparative studies of the two locations and for the identification and screening of potential repository sites. Information on current land uses, potential habitats, and expected plant and wildlife species is provided to assist field investigators in the collection of baseline data in support of further siting activities. The results of limited field surveys are also included. The report is in two parts. Part I contains a characterization of terrestrial ecological resources based upon limited field surveys aimed at verifying the presence of plant communities and wildlife habitats. It also presents inventories of species with special status, species with recreational and economic importance, and species of ecological value to important or special-status species. Part II presents information on aquatic ecosystems and resources derived primarily from a review of the literature, interviews, and limited field surveys. 21 figures, 18 tables

  6. Additive impacts of experimental climate change increase risk to an ectotherm at the Arctic's edge

    Science.gov (United States)

    Davenport, Jon M.; Hossack, Blake R.; Fishback, LeeAnn

    2017-01-01

    Globally, Arctic and Subarctic regions have experienced the greatest temperature increases during the last 30 years. These extreme changes have amplified threats to the freshwater ecosystems that dominate the landscape in many areas by altering water budgets. Several studies in temperate environments have examined the adaptive capacity of organisms to enhance our understanding of the potential repercussions of warming and associated accelerated drying for freshwater ecosystems. However, few experiments have examined these impacts in Arctic or Subarctic freshwater ecosystems, where the climate is changing most rapidly. To evaluate the capacity of a widespread ectotherm to anticipated environmental changes, we conducted a mesocosm experiment with wood frogs (Rana sylvatica) in the Canadian Subarctic. Three warming treatments were fully crossed with three drying treatments to simulate a range of predicted changes in wetland environments. We predicted wetland warming and drying would act synergistically, with water temperature partially compensating for some of the negative effects of accelerated drying. Across all drying regimes, a 1 °C increase in water temperature increased the odds of survival by 1.79, and tadpoles in 52-day and 64-day hydroperiod mesocosms were 4.1–4.3 times more likely to survive to metamorphosis than tadpoles in 45-day mesocosms. For individuals who survived to metamorphosis, there was only a weak negative effect of temperature on size. As expected, increased temperatures accelerated tadpole growth through day 30 of the experiment. Our results reveal that one of the dominant herbivores in Subarctic wetlands, wood frog tadpoles, are capable of increasing their developmental rates in response to increased temperature and accelerated drying, but only in an additive manner. The strong negative effects of drying on survival, combined with lack of compensation between these two environmental drivers, suggest changes in the aquatic environment

  7. The Arctic in the Twenty-First Century: Changing Biogeochemical Linkages across a Paraglacial Landscape of Greenland

    Science.gov (United States)

    Anderson, N. John; Saros, Jasmine E.; Bullard, Joanna E.; Cahoon, Sean M. P.; McGowan, Suzanne; Bagshaw, Elizabeth A.; Barry, Christopher D.; Bindler, Richard; Burpee, Benjamin T.; Carrivick, Jonathan L.; Fowler, Rachel A.; Fox, Anthony D.; Fritz, Sherilyn C.; Giles, Madeleine E.; Hamerlik, Ladislav; Ingeman-Nielsen, Thomas; Law, Antonia C.; Mernild, Sebastian H.; Northington, Robert M.; Osburn, Christopher L.; Pla-Rabès, Sergi; Post, Eric; Telling, Jon; Stroud, David A.; Whiteford, Erika J.; Yallop, Marian L.; Yde, Jacob C.

    2017-01-01

    Abstract The Kangerlussuaq area of southwest Greenland encompasses diverse ecological, geomorphic, and climate gradients that function over a range of spatial and temporal scales. Ecosystems range from the microbial communities on the ice sheet and moisture-stressed terrestrial vegetation (and their associated herbivores) to freshwater and oligosaline lakes. These ecosystems are linked by a dynamic glacio-fluvial-aeolian geomorphic system that transports water, geological material, organic carbon and nutrients from the glacier surface to adjacent terrestrial and aquatic systems. This paraglacial system is now subject to substantial change because of rapid regional warming since 2000. Here, we describe changes in the eco- and geomorphic systems at a range of timescales and explore rapid future change in the links that integrate these systems. We highlight the importance of cross-system subsidies at the landscape scale and, importantly, how these might change in the near future as the Arctic is expected to continue to warm. PMID:28596614

  8. Permafrost collapse after shrub removal shifts tundra ecosystem into methane source

    NARCIS (Netherlands)

    Nauta, A.L.; Heijmans, M.M.P.D.; Blok, D.; Limpens, J.; Elberling, B.; Gallagher, A.; Li, B.; Petrov, R.E.; Maximov, T.C.; van Huissteden, J.; Berendse, F.

    2015-01-01

    Arctic tundra ecosystems are warming almost twice as fast as the global average. Permafrost thaw and the resulting release of greenhouse gases from decomposing soil organic carbon have the potential to accelerate climate warming. In recent decades, Arctic tundra ecosystems have changed rapidly,

  9. Arctic Research Plan: FY2017-2021

    Science.gov (United States)

    Starkweather, Sandy; Jeffries, Martin O; Stephenson, Simon; Anderson, Rebecca D.; Jones, Benjamin M.; Loehman, Rachel A.; von Biela, Vanessa R.

    2016-01-01

    The United States is an Arctic nation—Americans depend on the Arctic for biodiversity and climate regulation and for natural resources. America’s Arctic—Alaska—is at the forefront of rapid climate, environmental, and socio-economic changes that are testing the resilience and sustainability of communities and ecosystems. Research to increase fundamental understanding of these changes is needed to inform sound, science-based decision- and policy-making and to develop appropriate solutions for Alaska and the Arctic region as a whole. Created by an Act of Congress in 1984, and since 2010 a subcommittee of the National Science and Technology Council (NSTC) in the Executive Office of the President, the Interagency Arctic Research Policy Committee (IARPC) plays a critical role in advancing scientific knowledge and understanding of the changing Arctic and its impacts far beyond the boundaries of the Arctic. Comprising 14 Federal agencies, offices, and departments, IARPC is responsible for the implementation of a 5-year Arctic Research Plan in consultation with the U.S. Arctic Research Commission, the Governor of the State of Alaska, residents of the Arctic, the private sector, and public interest groups.

  10. Aquatic animal telemetry: A panoramic window into the underwater world

    DEFF Research Database (Denmark)

    Hussey, Nigel E.; Kessel, Steven T.; Aarestrup, Kim

    2015-01-01

    The distribution and interactions of aquatic organisms across space and time structure our marine, freshwater, and estuarine ecosystems. Over the past decade, technological advances in telemetry have transformed our ability to observe aquatic animal behavior and movement. These advances are now p...... individuals, populations, and entire ecosystems. The next advance in aquatic telemetry will be the development of a global collaborative effort to facilitate infrastructure and data sharing and management over scales not previously possible....

  11. Characterization factors for thermal pollution in freshwater aquatic environments.

    Science.gov (United States)

    Verones, Francesca; Hanafiah, Marlia Mohd; Pfister, Stephan; Huijbregts, Mark A J; Pelletier, Gregory J; Koehler, Annette

    2010-12-15

    To date the impact of thermal emissions has not been addressed in life cycle assessment despite the narrow thermal tolerance of most aquatic species. A method to derive characterization factors for the impact of cooling water discharges on aquatic ecosystems was developed which uses space and time explicit integration of fate and effects of water temperature changes. The fate factor is calculated with a 1-dimensional steady-state model and reflects the residence time of heat emissions in the river. The effect factor specifies the loss of species diversity per unit of temperature increase and is based on a species sensitivity distribution of temperature tolerance intervals for various aquatic species. As an example, time explicit characterization factors were calculated for the cooling water discharge of a nuclear power plant in Switzerland, quantifying the impact on aquatic ecosystems of the rivers Aare and Rhine. The relative importance of the impact of these cooling water discharges was compared with other impacts in life cycle assessment. We found that thermal emissions are relevant for aquatic ecosystems compared to other stressors, such as chemicals and nutrients. For the case of nuclear electricity investigated, thermal emissions contribute between 3% and over 90% to Ecosystem Quality damage.

  12. Molecular analyses reveal high species diversity of trematodes in a sub-Arctic lake

    Science.gov (United States)

    Soldánová, Miroslava; Georgieva, Simona; Roháčováa, Jana; Knudsen, Rune; Kuhn, Jesper A.; Henriksen, Eirik H.; Siwertsson, Anna; Shaw, Jenny C.; Kuris, Armand M.; Amundsen, Per-Arne; Scholz, Tomáš; Lafferty, Kevin D.; Kostadinova, Aneta

    2017-01-01

    To identify trematode diversity and life-cycles in the sub-Arctic Lake Takvatn, Norway, we characterised 120 trematode isolates from mollusc first intermediate hosts, metacercariae from second intermediate host fishes and invertebrates, and adults from fish and invertebrate definitive hosts, using molecular techniques. Phylogenies based on nuclear and/or mtDNA revealed high species richness (24 species or species-level genetic lineages), and uncovered trematode diversity (16 putative new species) from five families typical in lake ecosystems (Allocreadiidae, Diplostomidae, Plagiorchiidae, Schistosomatidae and Strigeidae). Sampling potential invertebrate hosts allowed matching of sequence data for different stages, thus achieving molecular elucidation of trematode life-cycles and exploration of host-parasite interactions. Phylogenetic analyses also helped identify three major mollusc intermediate hosts (Radix balthica, Pisidium casertanum and Sphaerium sp.) in the lake. Our findings increase the known trematode diversity at the sub-Arctic Lake Takvatn, showing that digenean diversity is high in this otherwise depauperate sub-Arctic freshwater ecosystem, and indicating that sub-Arctic and Arctic ecosystems may be characterised by unique trematode assemblages.

  13. Aquatic Macrophyte Risk Assessment for Pesticides

    NARCIS (Netherlands)

    Maltby, L.; Arnold, D.; Arts, G.H.P.; Davies, J.; Heimbach, F.; Pickl, C.; Poulsen, V.

    2009-01-01

    Given the essential role that primary producers play in aquatic ecosystems, it is imperative that the potential risk of pesticides to the structure and functioning of aquatic plants is adequately assessed. This book discusses the assessment of the risk of pesticides with herbicidal activity to

  14. Anthropogenic impacts on habitat structure and species richness in the west Siberian Arctic

    Science.gov (United States)

    Olga Khitun; Olga Rebristaya

    2002-01-01

    Intensive technogenous invasion in the West Siberian Arctic during the last two decades in connection with gas and oil exploration, along with the constant growth of domestic reindeer herds, has caused dramatic changes in arctic ecosystems. Loss of biodiversity on the species level has not yet been documented in the region on a whole, but changes in ecosystems in...

  15. In situ and laboratory bioassays to evaluate the impact of effluent discharges on receiving aquatic ecosystems

    International Nuclear Information System (INIS)

    Smolders, R.; Bervoets, L.; Blust, R.

    2004-01-01

    Effluents are a main source of direct and often continuous input of pollutants into aquatic ecosystems with long-term implications on ecosystem functioning. Therefore, the study of the effects of effluent exposure on organisms, populations or communities within the framework of impact assessment has a high ecological relevance. The aim of this study was to assess the toxicological impact of two effluents, one household wastewater treatment effluent (Effluent 1) and one industrial effluent (Effluent 2), on the receiving aquatic ecosystem using two test species under both in situ and laboratory conditions. Zebra mussel (Dreissena polymorpha) and common carp (Cyprinus carpio) were exposed under laboratory conditions in an online monitoring flow-through system (receiving different concentrations of Effluent 2) and under in situ conditions along the pollution gradient established by these two effluent discharges. Bioassays focussed on growth and condition related endpoints (i.e. condition, growth, lipid budget), since these are key functional processes within organisms and populations. Under laboratory conditions, increasing concentrations of the industrial effluent (Effluent 2) had a negative effect on both zebra mussel and carp energy reserves and condition. Under in situ conditions, the same negative impact of Effluent 2 was observed for zebra mussels, while Effluent 1 had no apparent effect on exposed zebra mussels. Carp growth and condition, on the other hand, were significantly increased at the discharge sites of both effluents when compared to the reference site, probably due to differences in food availability. The results indicate that a combination of in situ and laboratory exposures can illustrate how ecological processes influence bioassay studies. The incorporation of indirect, ecological effects, like changes in food availability, provides considerable benefit in understanding and predicting effects of effluents on selected species under realistic exposure

  16. In situ and laboratory bioassays to evaluate the impact of effluent discharges on receiving aquatic ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Smolders, R. [Laboratory for Ecophysiology, Biochemistry and Toxicology, University of Antwerp (RUCA), Groenenborgerlaan 171, B-2020 Antwerp (Belgium)]. E-mail: roel.smolders@ua.ac.be; Bervoets, L. [Laboratory for Ecophysiology, Biochemistry and Toxicology, University of Antwerp (RUCA), Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Blust, R. [Laboratory for Ecophysiology, Biochemistry and Toxicology, University of Antwerp (RUCA), Groenenborgerlaan 171, B-2020 Antwerp (Belgium)

    2004-11-01

    Effluents are a main source of direct and often continuous input of pollutants into aquatic ecosystems with long-term implications on ecosystem functioning. Therefore, the study of the effects of effluent exposure on organisms, populations or communities within the framework of impact assessment has a high ecological relevance. The aim of this study was to assess the toxicological impact of two effluents, one household wastewater treatment effluent (Effluent 1) and one industrial effluent (Effluent 2), on the receiving aquatic ecosystem using two test species under both in situ and laboratory conditions. Zebra mussel (Dreissena polymorpha) and common carp (Cyprinus carpio) were exposed under laboratory conditions in an online monitoring flow-through system (receiving different concentrations of Effluent 2) and under in situ conditions along the pollution gradient established by these two effluent discharges. Bioassays focussed on growth and condition related endpoints (i.e. condition, growth, lipid budget), since these are key functional processes within organisms and populations. Under laboratory conditions, increasing concentrations of the industrial effluent (Effluent 2) had a negative effect on both zebra mussel and carp energy reserves and condition. Under in situ conditions, the same negative impact of Effluent 2 was observed for zebra mussels, while Effluent 1 had no apparent effect on exposed zebra mussels. Carp growth and condition, on the other hand, were significantly increased at the discharge sites of both effluents when compared to the reference site, probably due to differences in food availability. The results indicate that a combination of in situ and laboratory exposures can illustrate how ecological processes influence bioassay studies. The incorporation of indirect, ecological effects, like changes in food availability, provides considerable benefit in understanding and predicting effects of effluents on selected species under realistic exposure

  17. Aquatic productivity: isotopic tracer aided studies of chemical-biological interactions

    International Nuclear Information System (INIS)

    1975-01-01

    Inland waters subject to the accumulation and effects of trace contaminants are discussed and a review of international research projects on this subject is given. The following aspects are specially discussed: aquatic nitrogen and agriculture; aquatic ecosystems in arid zones of developing countries; micronutrients in aquatic ecosystems; microbiological activity (''primary production''); enzymic methods in water quality determinations. Recommendations of the Joint FAO/IAEA Advisory Group for measures to be taken in order to protect water quality are also given

  18. A New Perspective on Changing Arctic Marine Ecosystems: Panarchy Adaptive Cycles in Pan-Arctic Spatial and Temporal Scales

    Science.gov (United States)

    Wiese, F. K.; Huntington, H. P.; Carmack, E.; Wassmann, P. F. J.; Leu, E. S.; Gradinger, R.

    2016-02-01

    Changes in the physical/biological interactions in the Arctic are occurring across a variety of spatial and temporal scales and may be mitigated or strengthened based on varying rates of evolutionary adaptation. A novel way to view these interactions and their social relevance is through the systems theory perspective of "Panarchy" proposed by Gunderson and Holling. Panarchy is an interdisciplinary approach in which structures, scales and linkages of complex-adaptive systems, including those of nature (e.g. ocean), humans (e.g. economics), and combined social-ecological systems (e.g. institutions that govern natural resource use), are mapped across multiple space and time scales in continual and interactive adaptive cycles of growth, accumulation, restructuring and renewal. In complex-adaptive systems the dynamics at a given scale are generally dominated by a small number of key internal variables that are forced by one or more external variables. The stability of such a system is characterized by its resilience, i.e. its capacity to absorb disturbance and re-organize while undergoing change, so as to retain essentially similar function, structure, identity and feedbacks. It is in the capacity of a system to cope with pressures and adversities such as exploitation, warming, governance restrictions, competition, etc. that resilience embraces human and natural systems as complex entities continually adapting through cycles of change. In this paper we explore processes at four linked spatial domains in the Arctic Ocean and link it to ecosystem resilience and re-organization characteristics. From this we derive a series of hypotheses concerning the biological responses to future physical changes and suggest ways how Panarchy theory can be applied to observational strategies to help detect early signs of environmental shifts affecting marine system services and functions. We close by discussing possible implications of the Panarchy framework for policy and governance.

  19. The nature of spatial transitions in the Arctic.

    Science.gov (United States)

    H. E. Epstein; J. Beringer; W. A. Gould; A. H. Lloyd; C. D. Thompson; F. S. Chapin III; G. J. Michaelson; C. L. Ping; T. S. Rupp; D. A. Walker

    2004-01-01

    Aim Describe the spatial and temporal properties of transitions in the Arctic and develop a conceptual understanding of the nature of these spatial transitions in the face of directional environmental change. Location Arctic tundra ecosystems of the North Slope of Alaska and the tundraforest region of the Seward Peninsula, Alaska. Methods We synthesize information from...

  20. Nitrous oxide emission by aquatic macrofauna

    Science.gov (United States)

    Stief, Peter; Poulsen, Morten; Nielsen, Lars Peter; Brix, Hans; Schramm, Andreas

    2009-01-01

    A large variety of aquatic animals was found to emit the potent greenhouse gas nitrous oxide when nitrate was present in the environment. The emission was ascribed to denitrification by ingested bacteria in the anoxic animal gut, and the exceptionally high N2O-to-N2 production ratio suggested delayed induction of the last step of denitrification. Filter- and deposit-feeding animal species showed the highest rates of nitrous oxide emission and predators the lowest, probably reflecting the different amounts of denitrifying bacteria in the diet. We estimate that nitrous oxide emission by aquatic animals is quantitatively important in nitrate-rich aquatic environments like freshwater, coastal marine, and deep-sea ecosystems. The contribution of this source to overall nitrous oxide emission from aquatic environments might further increase because of the projected increase of nitrate availability in tropical regions and the numeric dominance of filter- and deposit-feeders in eutrophic ecosystems. PMID:19255427

  1. Habitat mosaics and path analysis can improve biological conservation of aquatic biodiversity in ecosystems with low-head dams.

    Science.gov (United States)

    Hitchman, Sean M; Mather, Martha E; Smith, Joseph M; Fencl, Jane S

    2018-04-01

    Conserving native biodiversity depends on restoring functional habitats in the face of human-induced disturbances. Low-head dams are a ubiquitous human impact that degrades aquatic ecosystems worldwide. To improve our understanding of how low-head dams impact habitat and associated biodiversity, our research examined complex interactions among three spheres of the total environment. i.e., how low-head dams (anthroposphere) affect aquatic habitat (hydrosphere), and native biodiversity (biosphere) in streams and rivers. Creation of lake-like habitats upstream of low-head dams is a well-documented major impact of dams. Alterations downstream of low head dams also have important consequences, but these downstream dam effects are more challenging to detect. In a multidisciplinary field study at five dammed and five undammed sites within the Neosho River basin, KS, we tested hypotheses about two types of habitat sampling (transect and mosaic) and two types of statistical analyses (analysis of covariance and path analysis). We used fish as our example of biodiversity alteration. Our research provided three insights that can aid environmental professionals who seek to conserve and restore fish biodiversity in aquatic ecosystems threatened by human modifications. First, a mosaic approach identified habitat alterations below low-head dams (e.g. increased proportion of riffles) that were not detected using the more commonly-used transect sampling approach. Second, the habitat mosaic approach illustrated how low-head dams reduced natural variation in stream habitat. Third, path analysis, a statistical approach that tests indirect effects, showed how dams, habitat, and fish biodiversity interact. Specifically, path analysis revealed that low-head dams increased the proportion of riffle habitat below dams, and, as a result, indirectly increased fish species richness. Furthermore, the pool habitat that was created above low-head dams dramatically decreased fish species richness

  2. Habitat mosaics and path analysis can improve biological conservation of aquatic biodiversity in ecosystems with low-head dams

    Science.gov (United States)

    Hitchman, Sean M.; Mather, Martha E.; Smith, Joseph M.; Fencl, Jane S.

    2018-01-01

    Conserving native biodiversity depends on restoring functional habitats in the face of human-induced disturbances. Low-head dams are a ubiquitous human impact that degrades aquatic ecosystems worldwide. To improve our understanding of how low-head dams impact habitat and associated biodiversity, our research examined complex interactions among three spheres of the total environment. i.e., how low-head dams (anthroposphere) affect aquatic habitat (hydrosphere), and native biodiversity (biosphere) in streams and rivers. Creation of lake-like habitats upstream of low-head dams is a well-documented major impact of dams. Alterations downstream of low head dams also have important consequences, but these downstream dam effects are more challenging to detect. In a multidisciplinary field study at five dammed and five undammed sites within the Neosho River basin, KS, we tested hypotheses about two types of habitat sampling (transect and mosaic) and two types of statistical analyses (analysis of covariance and path analysis). We used fish as our example of biodiversity alteration. Our research provided three insights that can aid environmental professionals who seek to conserve and restore fish biodiversity in aquatic ecosystems threatened by human modifications. First, a mosaic approach identified habitat alterations below low-head dams (e.g. increased proportion of riffles) that were not detected using the more commonly-used transect sampling approach. Second, the habitat mosaic approach illustrated how low-head dams reduced natural variation in stream habitat. Third, path analysis, a statistical approach that tests indirect effects, showed how dams, habitat, and fish biodiversity interact. Specifically, path analysis revealed that low-head dams increased the proportion of riffle habitat below dams, and, as a result, indirectly increased fish species richness. Furthermore, the pool habitat that was created above low-head dams dramatically decreased fish species

  3. ARCTOX: a pan-Arctic sampling network to track mercury contamination across Arctic marine food webs

    DEFF Research Database (Denmark)

    Fort, Jerome; Helgason, Halfdan; Amelineau, Francoise

    and is still a source of major environmental concerns. In that context, providing a large-scale and comprehensive understanding of the Arctic marine food-web contamination is essential to better apprehend impacts of anthropogenic activities and climate change on the exposure of Arctic species and humans to Hg....... In 2015, an international sampling network (ARCTOX) has been established, allowing the collection seabird samples all around the Arctic. Seabirds are indeed good indicators of Hg contamination of marine food webs at large spatial scale. Gathering researchers from 10 countries, ARCTOX allowed......Arctic marine ecosystems are threatened by new risks of Hg contamination under the combined effects of climate change and human activities. Rapid change of the cryosphere might for instance release large amounts of Hg trapped in sea-ice, permafrost and terrestrial glaciers over the last decades...

  4. The use of Salvinia auriculata as a bioindicator in aquatic ecosystems: biomass and structure dependent on the cadmium concentration.

    Science.gov (United States)

    Wolff, G; Pereira, G C; Castro, E M; Louzada, J; Coelho, F F

    2012-02-01

    This study shows, in a multiple-level approach, the responses of Salvinia auriculata to Cd pollution in aquatic ecosystems. S. auriculata ramets were cultivated in nutrient solution and subjected to five treatments with Cd for ten days. At the end of the experiment, the number of new ramets and the dry biomass were determined. For ultrastructural observations, the leaves of S. auriculata were analyzed using a scanning electron microscope and transmission electron microscope. At the end of the experiment, the plants exposed to Cd showed damage in the leaves including necrosis and chlorosis, stomate deformations and damaged trichomes. We observed a decrease in the number of new ramets and dry biomass of S. auriculata following the increase in Cd concentration in the solution. At the ultrastructural level, leaves exposed to Cd presented chloroplast deformations and deterioration in the cell wall. All the symptoms of toxicity were directly proportionate to the concentration of Cd in the solution. The results suggests that S. auriculata shows good potential for use as a bioindicator and it can be used in the biomonitoring of aquatic ecosystems contaminated by Cd.

  5. The use of Salvinia auriculata as a bioindicator in aquatic ecosystems: biomass and structure dependent on the cadmium concentration

    Directory of Open Access Journals (Sweden)

    G. Wolff

    Full Text Available This study shows, in a multiple-level approach, the responses of Salvinia auriculata to Cd pollution in aquatic ecosystems. S. auriculata ramets were cultivated in nutrient solution and subjected to five treatments with Cd for ten days. At the end of the experiment, the number of new ramets and the dry biomass were determined. For ultrastructural observations, the leaves of S. auriculata were analyzed using a scanning electron microscope and transmission electron microscope. At the end of the experiment, the plants exposed to Cd showed damage in the leaves including necrosis and chlorosis, stomate deformations and damaged trichomes. We observed a decrease in the number of new ramets and dry biomass of S. auriculata following the increase in Cd concentration in the solution. At the ultrastructural level, leaves exposed to Cd presented chloroplast deformations and deterioration in the cell wall. All the symptoms of toxicity were directly proportionate to the concentration of Cd in the solution. The results suggests that S. auriculata shows good potential for use as a bioindicator and it can be used in the biomonitoring of aquatic ecosystems contaminated by Cd.

  6. Deposition of chromium in aquatic ecosystem from effluents of handloom textile industries in Ranaghat–Fulia region of West Bengal, India

    Directory of Open Access Journals (Sweden)

    Tanmay Sanyal

    2015-11-01

    Full Text Available Accumulation of chromium (Cr was determined in water, sediment, aquatic plants, invertebrates and fish in aquatic ecosystems receiving effluents from handloom textile industries in Ranaghat–Fulia region of West Bengal in India. Cr was determined in the samples by atomic absorption spectrophotometer and data were analyzed functionally by Genetic Algorithm to determine trend of depositions of Cr in the sediment and water. Area plot curve was used to represent accumulation of Cr in biota. The results indicate that the aquatic ecosystems receiving the effluents from handloom textile factories are heavily contaminated by Cr. The contamination is hardly reflected in the concentration of Cr in water, but sediment exhibits seasonal fluctuation in deposition of Cr, concentration reaching to as high as 451.0 μg g−1 during the peak production period. There is a clear trend of gradual increase in the deposition of Cr in the sediment. Aquatic weed, insect and mollusk specimens collected from both closed water bodies (S1 & S2 and riverine resources (S3 & S4 showed high rate of accumulation of Cr. Maximum concentration of Cr was detected in roots of aquatic weeds (877.5 μg g−1. Fish specimens collected from the polluted sites (S3 & S4 of river Churni showed moderate to high concentration of Cr in different tissues. Maximum concentration was detected in the liver of Glossogobius giuris (679.7 μg g−1 during monsoon followed by gill of Mystus bleekeri (190.0 μg g−1 and gut of G. giuris (123.7 μg g−1 during summer. Eutropiichthys vacha showed moderately high concentration of Cr in different tissues (65–99 μg g−1 while Puntius sarana showed relatively low concentration of Cr (below detection limit to 18.0 μg g−1 in different tissues except in gill (64.4 μg g−1.

  7. Predicting wading bird and aquatic faunal responses to ecosystem restoration scenarios

    Science.gov (United States)

    Beerens, James M.; Trexler, Joel C.; Catano, Christopher P.

    2017-01-01

    In large-scale conservation decisions, scenario planning identifies key uncertainties of ecosystem function linked to ecological drivers affected by management, incorporates ecological feedbacks, and scales up to answer questions robust to alternative futures. Wetland restoration planning requires an understanding of how proposed changes in surface hydrology, water storage, and landscape connectivity affect aquatic animal composition, productivity, and food-web function. In the Florida Everglades, reintroduction of historical hydrologic patterns is expected to increase productivity of all trophic levels. Highly mobile indicator species such as wading birds integrate secondary productivity from aquatic prey (small fishes and crayfish) over the landscape. To evaluate how fish, crayfish, and wading birds may respond to alternative hydrologic restoration plans, we compared predicted small fish density, crayfish density and biomass, and wading bird occurrence for existing conditions to four restoration scenarios that varied water storage and removal of levees and canals (i.e. decompartmentalization). Densities of small fish and occurrence of wading birds are predicted to increase throughout most of the Everglades under all restoration options because of increased flows and connectivity. Full decompartmentalization goes furthest toward recreating hypothesized historical patterns of fish density by draining excess water ponded by levees and hydrating areas that are currently drier than in the past. In contrast, crayfish density declined and species composition shifted under all restoration options because of lengthened hydroperiods (i.e. time of inundation). Under full decompartmentalization, the distribution of increased prey available for wading birds shifted south, closer to historical locations of nesting activity in Everglades National Park.

  8. Collaborative Research: Improving Decadal Prediction of Arctic Climate Variability and Change Using a Regional Arctic

    Energy Technology Data Exchange (ETDEWEB)

    Gutowski, William J. [Iowa State Univ., Ames, IA (United States)

    2017-12-28

    This project developed and applied a regional Arctic System model for enhanced decadal predictions. It built on successful research by four of the current PIs with support from the DOE Climate Change Prediction Program, which has resulted in the development of a fully coupled Regional Arctic Climate Model (RACM) consisting of atmosphere, land-hydrology, ocean and sea ice components. An expanded RACM, a Regional Arctic System Model (RASM), has been set up to include ice sheets, ice caps, mountain glaciers, and dynamic vegetation to allow investigation of coupled physical processes responsible for decadal-scale climate change and variability in the Arctic. RASM can have high spatial resolution (~4-20 times higher than currently practical in global models) to advance modeling of critical processes and determine the need for their explicit representation in Global Earth System Models (GESMs). The pan-Arctic region is a key indicator of the state of global climate through polar amplification. However, a system-level understanding of critical arctic processes and feedbacks needs further development. Rapid climate change has occurred in a number of Arctic System components during the past few decades, including retreat of the perennial sea ice cover, increased surface melting of the Greenland ice sheet, acceleration and thinning of outlet glaciers, reduced snow cover, thawing permafrost, and shifts in vegetation. Such changes could have significant ramifications for global sea level, the ocean thermohaline circulation and heat budget, ecosystems, native communities, natural resource exploration, and commercial transportation. The overarching goal of the RASM project has been to advance understanding of past and present states of arctic climate and to improve seasonal to decadal predictions. To do this the project has focused on variability and long-term change of energy and freshwater flows through the arctic climate system. The three foci of this research are: - Changes

  9. Proceedings of the meeting on computational and experimental studies for modeling of radionuclide migration in complex aquatic ecosystems

    International Nuclear Information System (INIS)

    Matsunaga, Takeshi; Hakanson, Lars

    2010-09-01

    The Research Group for Environmental Science of JAEA held a meeting on computational and experimental studies for modeling of radionuclide migration in complex aquatic ecosystems during November 16-20 of 2009. The aim was to discuss the relevance of various computational and experimental approaches to that modeling. The meeting was attended by a Swedish researcher, Prof. Dr. Lars Hakanson of Uppsala University. It included a joint talk at the Institute for Environmental Sciences, in addition to a field and facility survey of the JNFL commercial reprocessing plant located in Rokkasho, Aomori. The meeting demonstrated that it is crucial 1) to make a model structure be strictly relevant to the target objectives of a study and 2) to account for inherent fluctuations in target values in nature in a manner of qualitative parameterization. Moreover, it was confirmed that there can be multiple different approaches of modeling (e.g. detailed or simplified) with relevance for the objectives of a study. These discussions should be considered in model integration for complex aquatic ecosystems consisting catchments, rivers, lakes and coastal oceans which can interact with the atmosphere. This report compiles research subjects and lectures presented at the meeting with associated discussions. The 10 of the presented papers indexed individually. (J.P.N.)

  10. Terrestrial Steering Group. 2014. Arctic Terrestrial Biodiversity Monitoring Plan

    DEFF Research Database (Denmark)

    Aastrup, Peter; Aronsson, Mora; Barry, Tom

    capacity and information may be currently available and (b) to outline near-term required steps to begin implementing the plan and reporting on an initial set of Arctic terrestrial biodiversity focal ecosystem component attributes. The specific objectives of the workshop were to: Identify key products...... for TSG for the next two years. Identify key components of a pan-Arctic status report for priority focal ecosystem components (FEC) attributes for policy and decision makers. Develop a prioritized set of activities to meet reporting objectives. Identify key milestones and timelines for the successful...... implementation of the Arctic Terrestrial Biodiversity Monitoring Plan for the next two years. Identify expert networks required for successful implementation of the plan. Identify key gaps and opportunities for the TSG related to plan implementation and identify near-term next steps to address gaps....

  11. Permafrost collapse after shrub removal shifts tundra ecosystem to a methane source

    NARCIS (Netherlands)

    Nauta, A.L.; Heijmans, M.M.P.D.; Blok, D.; Limpens, J.; Elberling, B.; Gallagher, A.; Li, B.; Petrov, R.E.; Maximov, T.C.; Huissteden, van J.; Berendse, F.

    2015-01-01

    Arctic tundra ecosystems are warming almost twice as fast as the global average1. Permafrost thaw and the resulting release of greenhouse gases from decomposing soil organic carbon have the potential to accelerate climate warming2, 3. In recent decades, Arctic tundra ecosystems have changed

  12. Radioactivity in the Canadian aquatic environment

    International Nuclear Information System (INIS)

    1983-01-01

    Sources of radionuclides arising from natural anthropogenic processes as well as technologically enhanced natural radiation are discussed. Transport, distribution and behaviour of these radionuclides in aquatic systems are influenced by physical, chemical, biological and geological processes and conditions in freshwater and marine environments. Dosimetry of aquatic organisms, as well as various methods of measuring dose rate are presented. Effects of ionizing radiation (acute and chronic exposure) on aquatic organisms, populations and ecosystems are reviewed. This review covers the entire spectrum of the aquatic environment. Results of many studies are summarized. 300+ refs

  13. Depletion of stratospheric ozone over the Antarctic and Arctic: Responses of plants of polar terrestrial ecosystems to enhanced UV-B, an overview

    International Nuclear Information System (INIS)

    Rozema, Jelte; Boelen, Peter; Blokker, Peter

    2005-01-01

    Depletion of stratospheric ozone over the Antarctic has been re-occurring yearly since 1974, leading to enhanced UV-B radiation. Arctic ozone depletion has been observed since 1990. Ozone recovery has been predicted by 2050, but no signs of recovery occur. Here we review responses of polar plants to experimentally varied UV-B through supplementation or exclusion. In supplementation studies comparing ambient and above ambient UV-B, no effect on growth occurred. UV-B-induced DNA damage, as measured in polar bryophytes, is repaired overnight by photoreactivation. With UV exclusion, growth at near ambient may be less than at below ambient UV-B levels, which relates to the UV response curve of polar plants. UV-B screening foils also alter PAR, humidity, and temperature and interactions of UV with environmental factors may occur. Plant phenolics induced by solar UV-B, as in pollen, spores and lignin, may serve as a climate proxy for past UV. Since the Antarctic and Arctic terrestrial ecosystems differ essentially (e.g. higher species diversity and more trophic interactions in the Arctic), generalization of polar plant responses to UV-B needs caution. - Polar plant responses to UV-B may be different in the Arctic than Antarctic regions

  14. Two prototype tools for assessing good environmental/ecological status (GES) in aquatic ecosystems – DEVOTES and WATERS

    DEFF Research Database (Denmark)

    Murray, Ciarán; Carstensen, Jacob; Andersen, Jesper

    2015-01-01

    -based tools, which classify ecological/environmental status in two classes (good or not good) and five classes (High, Good, Moderate, Poor or Bad) by comparing observed indicator values with specified status classification boundaries. Assessments are made for geographical entities (“sectors” in DEVOTES......We present two prototype tools for assessment of GES (good ecological status and good environmental status) in aquatic ecosystems: the DEVOTES biodiversity assessment tool (for the MSFD) and the WATERS ecological status assessment tool (for the WFD). Both tools are multi-metric indicator...... for sub-division of sectors and habitat types into hierarchical structures. The DEVOTES tool weights indicator results from different sectors according to their geographical extent and/or assigned quantitative value scores. The DEVOTES tool allows the assessment to be targeted to a particular ecosystem...

  15. The Arctic Report Card: Communicating the State of the Rapidly Changing Arctic to a Diverse Audience via the Worldwide Web

    Science.gov (United States)

    Jeffries, M. O.; Richter-Menge, J.; Overland, J. E.; Soreide, N. N.

    2013-12-01

    Rapid change is occurring throughout the Arctic environmental system. The goal of the Arctic Report Card is to communicate the nature of the many changes to a diverse audience via the Worldwide Web. First published in 2006, the Arctic Report Card is a peer-reviewed publication containing clear, reliable and concise scientific information on the current state of the Arctic environment relative to observational records. Available only online, it is intended to be an authoritative source for scientists, teachers, students, decision-makers, policy-makers and the general public interested in the Arctic environment and science. The Arctic Report Card is organized into five sections: Atmosphere; Sea Ice & Ocean; Marine Ecosystem; Terrestrial Ecosystem; Terrestrial Cryosphere. Arctic Report Card 2012, the sixth annual update, comprised 20 essays on physical and biological topics prepared by an international team of 141 scientists from 15 different countries. For those who want a quick summary, the Arctic Report Card home page provides highlights of key events and findings, and a short video that is also available on YouTube. The release of the Report Card each autumn is preceded by a NOAA press release followed by a press conference, when the Web site is made public. The release of Arctic Report Card 2012 at an AGU Fall Meeting press conference on 5 December 2012 was subsequently reported by leading media organizations. The NOAA Arctic Web site, of which the Report Card is a part, is consistently at the top of Google search results for the keyword 'arctic', and the Arctic Report Card Web site tops search results for keyword "arctic report" - pragmatic indications of a Web site's importance and popularity. As another indication of the Web site's impact, in December 2012, the month when the 2012 update was released, the Arctic Report Card Web site was accessed by 19,851 unique sites in 105 countries, and 4765 Web site URLs referred to the Arctic Report Card. The 2012 Arctic

  16. Marine Mammals and Climate Change in the Pacific Arctic: Impacts & Resilience

    Science.gov (United States)

    Moore, S. E.

    2014-12-01

    Extreme reductions in Arctic sea ice extent and thickness have become a hallmark of climate change, but impacts to the marine ecosystem are poorly understood. As top predators, marine mammals must adapt to biological responses to physical forcing and thereby become sentinels to ecosystem variability and reorganization. Recent sea ice retreats have influenced the ecology of marine mammals in the Pacific Arctic sector. Walruses now often haul out by the thousands along the NW Alaska coast in late summer, and reports of harbor porpoise, humpback, fin and minke whales in the Chukchi Sea demonstrate that these temperate species routinely occur there. In 2010, satellite tagged bowhead whales from Atlantic and Pacific populations met in the Northwest Passage, an overlap thought precluded by sea ice since the Holocene. To forage effectively, baleen whales must target dense patches of zooplankton and small fishes. In the Pacific Arctic, bowhead and gray whales appear to be responding to enhanced prey availability delivered both by new production and advection pathways. Two programs, the Distributed Biological Observatory (DBO) and the Synthesis of Arctic Research (SOAR), include tracking of marine mammal and prey species' responses to ecosystem shifts associated with sea ice loss. Both programs provide an integrated-ecosystem baseline in support of the development of a web-based Marine Mammal Health Map, envisioned as a component of the U.S. Integrated Ocean Observing System (IOOS). An overarching goal is to identify ecological patterns for marine mammals in the 'new' Arctic, as a foundation for integrative research, local response and adaptive management.

  17. Tracking Biological and Ecosystem Responses to Changing Environmental Conditions in the Pacific Arctic

    Science.gov (United States)

    Grebmeier, J. M.; Cooper, L. W.; Frey, K. E.; Moore, S. E.

    2014-12-01

    Changing seasonal sea ice conditions and seawater temperatures strongly influence biological processes and marine ecosystems at high latitudes. In the Pacific Arctic, persistent regions termed "hotspots", are localized areas with high benthic macroinfaunal biomass that have been documented over four decades (see Figure). These regions are now being more formally tracked to relate physical forcing and ecosystem response as an Arctic Distributed Biological Observatory (DBO) supported by the US National Ocean Policy Implementation Plan and international partners. These hotspots are important foraging areas for upper trophic level benthic feeders, such as marine mammals and seabirds. South of St. Lawrence Island (SLI) in the northern Bering Sea, benthic feeding spectacled eiders, bearded seals and walruses are important winter consumers of infauna, such as bivalves and polychaetes. Gray whales have historically been a major summer consumer of benthic amphipods in the Chirikov Basin to the north of SLI, although summertime sightings of gray whales declined in the Chirikov from the 1980s up until at least 2002. The SE Chukchi Sea hotspot, as are the other hotspots, is maintained by export of high chlorophyll a that is produced locally as well as advected by water masses transiting northward through the system. Both walrus and gray whales are known to forage in this hotspot seasonally on high biomass levels of benthic prey. Notably the center of the highest benthic biomass regions has shifted northward in three of the DBO hotspots in recent years. This has coincided with changing sediment grain size, an indicator of current speed, and is also likely a response to changes in primary production in the region. Studies of these broad biological responses to changing physical drivers have been facilitated through development of the DBO cooperative effort by both US and international scientists. The DBO includes a series of coordinated, multi-trophic level observations that

  18. Regional cooperation and sustainable development: The Arctic

    International Nuclear Information System (INIS)

    Vartanov, R.V.

    1993-01-01

    The Arctic is one of the regions most alienated from sustainable development, due to consequences of nuclear testing, long-range pollution transport, large-scale industrial accidents, irrational use of natural resources, and environmentally ignorant socio-economic policies. Revelations of the state of the USSR Arctic shows that air quality in northern cities is below standard, fish harvests are declining, pollution is not being controlled, and native populations are being affected seriously. The presence of immense resources in the Arctic including exploitable offshore oil reserves of 100-200 billion bbl and the prospect of wider utilization of northern sea routes should stimulate establishment of a new international regime of use, research, and protection of Arctic resources in favor of sustainable development in the region. The Arctic marine areas are the key component of the Arctic ecosystem and so should receive special attention. A broad legal framework has already been provided for such cooperation. Included in such cooperation would be native peoples and non-Arctic countries. Specifics of the cooperation would involve exchanging of scientific and technical information, promotion of ecologically sound technologies, equipping Arctic regions with means to control environmental quality, harmonizing environmental protection legislation, and monitoring Arctic environmental quality

  19. Current levels and trends of radioactive contamination of aquatic ecosystem components in the Chernobyl exclusion zone

    Energy Technology Data Exchange (ETDEWEB)

    Gudkov, Dmitri I.; Kaglyan, Alexander Ye.; Ganzha, Kristina D.; Klenus, Vasiliy G. [Institute of Hydrobiology, Geroyev Stalingrada Ave. 12, UA-04210 Kiev (Ukraine); Kireev, Sergey I.; Nazarov, Alexander B. [Chernobyl Specialized Enterprise, Radyanska Str. 70, UA-07270 Chernobyl (Ukraine)

    2014-07-01

    The current radiation level and its composition in aquatic ecosystems within the Chernobyl exclusion zone (ChEZ) are conditioned, above all things, by the amount of radioactive matters released as aerosols on a water surface and adjacent territories during the period of the active phase of the accident from destroyed of the Chernobyl NPP in 1986, and also by intensity and duration of the second processes of radionuclides washout from the catchment areas and hydrodynamic processes of their transport outside of water bodies. During last 10-15 years in the soils of the ChEZ the tendency of increase of yield of the mobile bioavailable forms of radionuclides, which released into hydrological systems with surface and ground waters or localized in the closed water systems, where quickly involving in the biotic cycle is marked. On the example of lakes of the Krasnensky flood plain of the Pripyat River, which is one of the most contaminated by radionuclides territory of the ChEZ, was determined that the basic amount of radionuclides in lake ecosystem is deposited in the bottom sediments: {sup 90}Sr - 89-95%, {sup 137}Cs - 99%, transuranium elements (TUE) {sup 238}Pu, {sup 239+240}Pu and {sup 241}Am - almost 100% of the total radionuclide amount in ecosystem. The increased migration activity of {sup 90}Sr determines its more high quantity in water (4-10%) on comparison with {sup 137}Cs (0.5-0.6%) and TUE (0.03-0.04%) and, opposite, less - in seston (0.15-0.16%) on comparison with {sup 137}Cs (0.25-0.30%). The value of {sup 90}Sr in biotic component amounts 0.25-0.61%, {sup 137}Cs - 0.14-0.47% and TUE - 0.07-0.16% of the total quantity in ecosystem. The gradual decline of radionuclide specific activity is a dominant tendency in the dynamics of {sup 137}Cs and {sup 90}Sr in water and aquatic biota of the majority of reservoirs and water flow in the ChEZ. The exception is water bodies, located on the dammed territories of the Krasnensky flood plain, where at the proceeding

  20. Sustainable exploitation and management of aquatic resources

    DEFF Research Database (Denmark)

    Neuenfeldt, Stefan; Köster, Fritz

    2014-01-01

    DTU Aqua conducts research, provides advice,educates at university level and contributes toinnovation in sustainable exploitation andmanagement of aquatic resources. The vision of DTUAqua is to enable ecologically and economicallysustainable exploitation of aquatic resourcesapplying an integrated...... management. Marineecosystems aims at understanding the mechanisms that govern the interaction between individuals,species and populations in an ecosystem enabling us to determine the stability and flexibility of theecosystem.Marine living resources looks at the sustainable utilization of fish and shellfish...... stocks.Ecosystem effects expands from the ecosystem approach to fisheries management to an integratedapproach where other human activities are taken into consideration. Fisheries management developsmethods, models and tools for predicting and evaluating the effects of management measures andregulations...

  1. Non-use Economic Values for Little-Known Aquatic Species at Risk: Comparing Choice Experiment Results from Surveys Focused on Species, Guilds, and Ecosystems

    Science.gov (United States)

    Rudd, Murray A.; Andres, Sheri; Kilfoil, Mary

    2016-09-01

    Accounting for non-market economic values of biological diversity is important to fully assess the benefits of environmental policies and regulations. This study used three choice experiments (species-, guild-, and ecosystem-based surveys) in parallel to quantify non-use values for little-known aquatic species at risk in southern Ontario. Mean willingness-to-pay (WTP) ranged from 9.45 to 21.41 per listing status increment under Canada's Species at Risk Act for both named and unnamed little-known species. Given the broad range of valuable ecosystem services likely to accrue to residents from substantial increases in water quality and the rehabilitation of coastal wetlands, the difference in WTP between species- and ecosystem-based surveys seemed implausibly small. It appeared that naming species—the `iconization' of species in two of the three surveys—had an important effect on WTP. The results suggest that reasonable annual household-level WTP values for little-known aquatic species may be 10 to 25 per species or 10 to 20 per listing status increment. The results highlighted the utility of using parallel surveys to triangulate on non-use economic values for little-known species at risk.

  2. The changing seasonal climate in the Arctic.

    Science.gov (United States)

    Bintanja, R; van der Linden, E C

    2013-01-01

    Ongoing and projected greenhouse warming clearly manifests itself in the Arctic regions, which warm faster than any other part of the world. One of the key features of amplified Arctic warming concerns Arctic winter warming (AWW), which exceeds summer warming by at least a factor of 4. Here we use observation-driven reanalyses and state-of-the-art climate models in a variety of standardised climate change simulations to show that AWW is strongly linked to winter sea ice retreat through the associated release of surplus ocean heat gained in summer through the ice-albedo feedback (~25%), and to infrared radiation feedbacks (~75%). Arctic summer warming is surprisingly modest, even after summer sea ice has completely disappeared. Quantifying the seasonally varying changes in Arctic temperature and sea ice and the associated feedbacks helps to more accurately quantify the likelihood of Arctic's climate changes, and to assess their impact on local ecosystems and socio-economic activities.

  3. Response of Tundra Ecosystems to Elevated Atmospheric CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Oechel, Walter C.

    1990-09-05

    OAK B188 Response of Tundra Ecosystems to Elevated Atmospheric CO{sub 2}. Atmospheric CO{sub 2} is expected to double by the end of the next century. Global mean increases in surface air temperature of 1.5-4.5 C are anticipated with larger increases towards the poles predicted. Changes in CO{sub 2} levels and temperature could have major impacts on ecosystem functioning, including primary productivity, species composition, plant-animal interactions, and carbon storage. Until recently, there has been little direct information on the impact of changes in CO{sub 2} and temperature on native ecosystems. The study described here was undertaken to evaluate the effects of a 50 and 100% increase in atmospheric CO{sub 2}, and a 100% increase in atmospheric CO{sub 2} coupled with a 4 C summer air temperature rise on the structure and function of an arctic tussock tundra ecosystem. The arctic contains large stores of carbon as soil organic matter, much frozen in permafrost and currently not reactive or available for oxidation and release into the atmosphere. About 10-27% of the world's terrestrial carbon occurs in arctic and boreal regions, and carbon is accumulating in these regions at the rate of 0.19 GT y{sup -1}. Mean temperature increases of 11 C and summer temperature increases of 4 C have been suggested. Mean July temperatures on the arctic coastal plain and arctic foothills regions are 4-12 C, and mean annual temperatures are -7 to -13 C (Haugen, 1982). The projected temperature increases represent a substantial elevation above current temperatures which will have major impacts on physical processes such as permafrost development and development of the active layer, and on biological and ecosystem processes such as primary productivity, carbon storage, and species composition. Extreme nutrient and temperature limitation of this ecosystem raised questions of the responsiveness of arctic systems to elevated CO{sub 2}. Complex ecosystem interactions with the effects

  4. Biochemical and toxicological impacts of persistent organochlorines on aquatic ecosystem. With particular attention to dioxins and their related compounds; Zanryusei yuki enso kagobutsu no suiken seitaikei eno eikyo. Toku ni dioxin rui ni chakumokushite

    Energy Technology Data Exchange (ETDEWEB)

    Iwata, H. [Hokkaido University, Sapporo (Japan)

    1998-07-10

    PCDDs, PCDFs and coplanar PCBs are organochlorine compounds which induce toxicological impacts on test animals, such as reduced weight, thymic gland dwarf, hepatotoxicity, immunotoxicity, developmental toxicity, carcinogenecity, teratogenicity and endocrine disturbance. They are generally referred to as dioxins. They are difficult to be decomposed in vivo, and tend to be more concentrated in higher organisms, placed at higher positions in the food chain. In aquatic ecosystems, they are observed to accumulate at high concentrations in fishes, fish-eating birds, claspers and whales. Therefore, there are growing concerns over their possible adverse effects on wild animals in aquatic ecosystems. This paper describes the effects of persistent organochlorine compounds on fishes, birds and aquatic mammals; and induction of cytochrome P450 of each organic species, caused by exposure to dioxins, and the induction examples in aquatic ecosystems. It also discusses whether or not the cytochrome P450 induction capacity of each organism species can be used as an index which explains difference between organism species in toxicological impacts of dioxins. 33 refs., 1 fig., 1 tab.

  5. Cyanobacterial effects in Lake Ludoš, Serbia - Is preservation of a degraded aquatic ecosystem justified?

    Science.gov (United States)

    Tokodi, Nada; Drobac, Damjana; Meriluoto, Jussi; Lujić, Jelena; Marinović, Zoran; Važić, Tamara; Nybom, Sonja; Simeunović, Jelica; Dulić, Tamara; Lazić, Gospava; Petrović, Tamaš; Vuković-Gačić, Branka; Sunjog, Karolina; Kolarević, Stoimir; Kračun-Kolarević, Margareta; Subakov-Simić, Gordana; Miljanović, Branko; Codd, Geoffrey A; Svirčev, Zorica

    2018-04-20

    Cyanobacteria are present in many aquatic ecosystems in Serbia. Lake Ludoš, a wetland area of international significance and an important habitat for waterbirds, has become the subject of intense research interest because of practically continuous blooming of cyanobacteria. Analyses of water samples indicated a deterioration of ecological condition and water quality, and the presence of toxin-producing cyanobacteria (the most abundant Limnothrix redekei, Pseudanabaena limnetica, Planktothrix agardhii and Microcystis spp.). Furthermore, microcystins were detected in plants and animals from the lake: in macrophyte rhizomes (Phragmites communis, Typha latifolia and Nymphaea elegans), and in the muscle, intestines, kidneys, gonads and gills of fish (Carassius gibelio). Moreover, histopathological deleterious effects (liver, kidney, gills and intestines) and DNA damage (liver and gills) were observed in fish. A potential treatment for the reduction of cyanobacterial populations employing hydrogen peroxide was tested during this study. The treatment was not effective in laboratory tests although further in-lake trials are needed to make final conclusions about the applicability of the method. Based on our observations of the cyanobacterial populations and cyanotoxins in the water, as well as other aquatic organisms and, a survey of historical data on Lake Ludoš, it can be concluded that the lake is continuously in a poor ecological state. Conservation of the lake in order to protect the waterbirds (without urgent control of eutrophication) actually endangers them and the rest of the biota in this wetland habitat, and possibly other ecosystems. Thus, urgent measures for restoration are required, so that the preservation of this Ramsar site would be meaningful. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Is an ecosystem services-based approach developed for setting specific protection goals for plant protection products applicable to other chemicals?

    Science.gov (United States)

    Maltby, Lorraine; Jackson, Mathew; Whale, Graham; Brown, A Ross; Hamer, Mick; Solga, Andreas; Kabouw, Patrick; Woods, Richard; Marshall, Stuart

    2017-02-15

    Clearly defined protection goals specifying what to protect, where and when, are required for designing scientifically sound risk assessments and effective risk management of chemicals. Environmental protection goals specified in EU legislation are defined in general terms, resulting in uncertainty in how to achieve them. In 2010, the European Food Safety Authority (EFSA) published a framework to identify more specific protection goals based on ecosystem services potentially affected by plant protection products. But how applicable is this framework to chemicals with different emission scenarios and receptor ecosystems? Four case studies used to address this question were: (i) oil refinery waste water exposure in estuarine environments; (ii) oil dispersant exposure in aquatic environments; (iii) down the drain chemicals exposure in a wide range of ecosystems (terrestrial and aquatic); (iv) persistent organic pollutant exposure in remote (pristine) Arctic environments. A four-step process was followed to identify ecosystems and services potentially impacted by chemical emissions and to define specific protection goals. Case studies demonstrated that, in principle, the ecosystem services concept and the EFSA framework can be applied to derive specific protection goals for a broad range of chemical exposure scenarios. By identifying key habitats and ecosystem services of concern, the approach offers the potential for greater spatial and temporal resolution, together with increased environmental relevance, in chemical risk assessments. With modifications including improved clarity on terminology/definitions and further development/refinement of the key concepts, we believe the principles of the EFSA framework could provide a methodical approach to the identification and prioritization of ecosystems, ecosystem services and the service providing units that are most at risk from chemical exposure. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights

  7. Impacts of lawn-care pesticides on aquatic ecosystems in relation to property value

    International Nuclear Information System (INIS)

    Overmyer, Jay P.; Noblet, Raymond; Armbrust, Kevin L.

    2005-01-01

    To determine the potential impacts of lawn-care pesticides on aquatic ecosystems, the macroinvertebrate communities of six streams were assessed using a multimetric approach. Four streams flowed through residential neighborhoods of Peachtree City, GA, USA, with differing mean property values and two reference streams were outside the city limits. A series of correlation analyses were conducted comparing stream rank from water quality and physical stream parameters, habitat assessments, benthic macroinvertebrate metric, pesticide toxicity and metal toxicity data to determine relationships among these parameters. Significant correlations were detected between individual analyses of stream rank for pesticide toxicity, specific conductance, turbidity, temperature and dissolved oxygen with benthic macroinvertebrate metrics. - The macroinvertebrate communities of suburban streams may be influenced by the toxicity of the pesticides present in the water and sediment as well as select water quality parameters

  8. Aquatic Ecosystem Enhancement at Mountaintop Mining Sites Symposium

    Energy Technology Data Exchange (ETDEWEB)

    Black, D. Courtney; Lawson, Peter; Morgan, John; Maggard, Randy; Schor, Horst; Powell, Rocky; Kirk, Ed. J.

    2000-01-12

    Welcome to this symposium which is part of the ongoing effort to prepare an Environmental Impact Statement (EIS) regarding mountaintop mining and valley fills. The EIS is being prepared by the U.S. Environmental Protection Agency, U.S. Army Corps of Engineers, U.S. Office of Surface Mining, and U.S. Fish and Wildlife Service, in cooperation with the State of West Virginia. Aquatic Ecosystem Enhancement (AEE) at mountaintop mining sites is one of fourteen technical areas identified for study by the EIS Interagency Steering Committee. Three goals were identified in the AEE Work Plan: 1. Assess mining and reclamation practices to show how mining operations might be carried out in a way that minimizes adverse impacts to streams and other environmental resources and to local communities. Clarify economic and technical constraints and benefits. 2. Help citizens clarify choices by showing whether there are affordable ways to enhance existing mining, reclamation, mitigation processes and/or procedures. 3. Ide identify data needed to improve environmental evaluation and design of mining projects to protect the environment. Today’s symposium was proposed in the AEE Team Work Plans but coordinated planning for the event began September 15, 1999 when representatives from coal industry, environmental groups and government regulators met in Morgantown. The meeting participants worked with a facilitator from the Canaan Valley Institute to outline plans for the symposium. Several teams were formed to carry out the plans we outlined in the meeting.

  9. Population dynamics in the high Arctic: Climate variations in time and space

    DEFF Research Database (Denmark)

    Hendrichsen, Ditte Katrine

    Climatic factors profoundly influence the population dynamics, species interactions and demography of Arctic species. Analyses of the spatio-temporal dynamics within and across species are therefore necessary to understand and predict the responses of Arctic ecosystems to climatic variability...

  10. Total mercury and mercury species in birds and fish in an aquatic ecosystem in the Czech Republic

    International Nuclear Information System (INIS)

    Houserova, Pavlina; Kuban, Vlastimil; Kracmar, Stanislav; Sitko, Jilji

    2007-01-01

    Total mercury and mercury species (methylmercury-MeHg, inorganic mercury - Hg 2+ ) were determined in the aquatic ecosystem Zahlinice (Czech Republic). Four tissues (muscle, intestines, liver and kidney) of three bird species - cormorant, great crested grebe and Eurasian buzzard, muscle tissues of common carp, grass carp, northern pike, goldfish, common tench, perch and rudd, aquatic plants (reed mace and common reed), sediments and water were analysed. Relative contents of MeHg (of total Hg) were in the range from 71% to 94% and from 15% up to 62% in the muscle and intestines and in liver, respectively, for all birds. Statistically significant differences were found between contents of MeHg in liver tissues of young and adult cormorant populations (F 4.6 = 56.71, P -5 ). Relative contents of MeHg in muscle tissues of fishes were in the range from 65.1% to 87.9% of total Hg. - The distribution of the mercury species among the organs of the individual birds is discussed

  11. Geospatial Analysis of Climate-Related Changes in North American Arctic Ecosystems and Implications for Terrestrial Flora and Fauna

    Science.gov (United States)

    Amirazodi, S.; Griffin, R.

    2016-12-01

    Climate change induces range shifts among many terrestrial species in Arctic regions. At best, warming often forces poleward migration if a stable environment is to be maintained. At worst, marginal ecosystems may disappear entirely without a contiguous shift allowing migratory escape to similar environs. These changing migration patterns and poleward range expansion push species into higher latitudes where ecosystems are less stable and more sensitive to change. This project focuses on ecosystem geography and interspecies relationships and interactions by analyzing seasonality and changes over time in variables including the following: temperature, precipitation, vegetation, physical boundaries, population demographics, permafrost, sea ice, and food and water availability. Publicly available data from remote sensing platforms are used throughout, and processed with both commercially available and open sourced GIS tools. This analysis describes observed range changes for selected North American species, and attempts to provide insight into the causes and effects of these phenomena. As the responses to climate change are complex and varied, the goal is to produce the aforementioned results in an easily understood set of geospatial representations to better support decision making regarding conservation prioritization and enable adaptive responses and mitigation strategies.

  12. Progress report for project modeling Arctic barrier island-lagoon system response to projected Arctic warming

    Science.gov (United States)

    Erikson, Li H.; Gibbs, Ann E.; Richmond, Bruce M.; Storlazzi, Curt; B.M. Jones,

    2012-01-01

    Changes in Arctic coastal ecosystems in response to global warming may be some of the most severe on the planet. A better understanding and analysis of the rates at which these changes are expected to occur over the coming decades is crucial in order to delineate high-priority areas that are likely to be affected by climate changes. In this study we investigate the likelihood of changes to habitat-supporting barrier island – lagoon systems in response to projected changes in atmospheric and oceanographic forcing associated with Arctic warming. To better understand the relative importance of processes responsible for the current and future coastal landscape, key parameters related to increasing arctic temperatures are investigated and used to establish boundary conditions for models that simulate barrier island migration and inundation of deltaic deposits and low-lying tundra. The modeling effort investigates the dominance and relative importance of physical processes shaping the modern Arctic coastline as well as decadal responses due to projected conditions out to the year 2100.

  13. Challenges in Modeling Disturbance Regimes and Their Impacts in Arctic and Boreal Ecosystems (Invited)

    Science.gov (United States)

    McGuire, A. D.; Rupp, T. S.; Kurz, W.

    2013-12-01

    Disturbances in arctic and boreal terrestrial ecosystems influence services provided by these ecosystems to society. In particular, changes in disturbance regimes in northern latitudes have uncertain consequences for the climate system. A major challenge for the scientific community is to develop the capability to predict how the frequency, severity and resultant impacts of disturbance regimes will change in response to future changes in climate projected for northern high latitudes. Here we compare what is known about drivers and impacts of wildfire, phytophagous insect pests, and thermokarst disturbance to illustrate the complexities in predicting future changes in disturbance regimes and their impacts in arctic and boreal regions. Much of the research on predicting fire has relied on the use of drivers related to fire weather. However, changes in vegetation, such as increases in broadleaf species, associated with intensified fire regimes have the potential to influence future fire regimes through negative feedbacks associated with reduced flammability. Phytophagous insect outbreaks have affected substantial portions of the boreal region in the past, but frequently the range of the tree host is larger than the range of the insect. There is evidence that a number of insect species are expanding their range in response to climate change. Major challenges to predicting outbreaks of phytophagous insects include modeling the effects of climate change on insect growth and maturation, winter mortality, plant host health, the synchrony of insect life stages and plant host phenology, and changes in the ranges of insect pests. Moreover, Earth System Models often simplify the representation of vegetation characteristics, e.g. the use of plant functional types, providing insufficient detail to link to insect population models. Thermokarst disturbance occurs when the thawing of ice-rich permafrost results in substantial ground subsidence. In the boreal forest, thermokarst can

  14. Isotope Investigations of Nitrogen Compounds in Different Aquatic Ecosystems in Cyprus, Russia and Ukraine

    Energy Technology Data Exchange (ETDEWEB)

    Voropaev, A.; Voerkelius, S.; Eichinger, L. [Hydroisotop GmbH, Schweitenkirchen (Germany); Grinenko, V. [Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, Moscow (Russian Federation)

    2013-07-15

    The isotope analyses of nitrogen compounds is a powerful tool for the investigation of anrthropogenic influence on the nitrogen cycle in terrestrial and aquatic ecosystems. The isotopic composition of nitrogen and oxygen in nitrates from different groundwater aquifers in Cyprus reflects anthropogenic inputs of nitrogen mainly from industrial fertilizer application in agriculture. Significant denitrification as identified at many sampling sites is an important process, which reduces nitrate concentrations in groundwater. In surface water ecosystems anthropogenic influences and natural environmental changes are detected by the isotopic composition of nitrogen in suspended organic material and in bottom sediments. In the oligotrophic fresh water of Lake Galich in Russia the waste water outflow is a reason for the local increase of {delta}{sup 15}N values in bottom sediments, where the nitrogen and carbon isotopic compositions of unpolluted sediments are very homogeneous. In the Neva estuary in russia the lateral destribution of {delta}{sup 15}N values in upper layers of bottom sediments reflects changes in the mixing pattern of marine and continental organic matter caused by a flood protection dam building in the Dneprovsko-Bugsky estuary in Ukraine - probably the increasing influence of anthropogenic {sup 15}N enriched nutrient load. (author)

  15. Predicting Changes in Arctic Tundra Vegetation: Towards an Understanding of Plant Trait Uncertainty

    Science.gov (United States)

    Euskirchen, E. S.; Serbin, S.; Carman, T.; Iversen, C. M.; Salmon, V.; Helene, G.; McGuire, A. D.

    2017-12-01

    Arctic tundra plant communities are currently undergoing unprecedented changes in both composition and distribution under a warming climate. Predicting how these dynamics may play out in the future is important since these vegetation shifts impact both biogeochemical and biogeophysical processes. More precise estimates of these future vegetation shifts is a key challenge due to both a scarcity of data with which to parameterize vegetation models, particularly in the Arctic, as well as a limited understanding of the importance of each of the model parameters and how they may vary over space and time. Here, we incorporate newly available field data from arctic Alaska into a dynamic vegetation model specifically developed to take into account a particularly wide array of plant species as well as the permafrost soils of the arctic tundra (the Terrestrial Ecosystem Model with Dynamic Vegetation and Dynamic Organic Soil, Terrestrial Ecosystem Model; DVM-DOS-TEM). We integrate the model within the Predicative Ecosystem Analyzer (PEcAn), an open-source integrated ecological bioinformatics toolbox that facilitates the flows of information into and out of process models and model-data integration. We use PEcAn to evaluate the plant functional traits that contribute most to model variability based on a sensitivity analysis. We perform this analysis for the dominant types of tundra in arctic Alaska, including heath, shrub, tussock and wet sedge tundra. The results from this analysis will help inform future data collection in arctic tundra and reduce model uncertainty, thereby improving our ability to simulate Arctic vegetation structure and function in response to global change.

  16. Contrasting response to nutrient manipulation in Arctic mesocosms are reproduced by a minimum microbial food web model.

    Science.gov (United States)

    Larsen, Aud; Egge, Jorun K; Nejstgaard, Jens C; Di Capua, Iole; Thyrhaug, Runar; Bratbak, Gunnar; Thingstad, T Frede

    2015-03-01

    A minimum mathematical model of the marine pelagic microbial food web has previously shown to be able to reproduce central aspects of observed system response to different bottom-up manipulations in a mesocosm experiment Microbial Ecosystem Dynamics (MEDEA) in Danish waters. In this study, we apply this model to two mesocosm experiments (Polar Aquatic Microbial Ecology (PAME)-I and PAME-II) conducted at the Arctic location Kongsfjorden, Svalbard. The different responses of the microbial community to similar nutrient manipulation in the three mesocosm experiments may be described as diatom-dominated (MEDEA), bacteria-dominated (PAME-I), and flagellated-dominated (PAME-II). When allowing ciliates to be able to feed on small diatoms, the model describing the diatom-dominated MEDEA experiment give a bacteria-dominated response as observed in PAME I in which the diatom community comprised almost exclusively small-sized cells. Introducing a high initial mesozooplankton stock as observed in PAME-II, the model gives a flagellate-dominated response in accordance with the observed response also of this experiment. The ability of the model originally developed for temperate waters to reproduce population dynamics in a 10°C colder Arctic fjord, does not support the existence of important shifts in population balances over this temperature range. Rather, it suggests a quite resilient microbial food web when adapted to in situ temperature. The sensitivity of the model response to its mesozooplankton component suggests, however, that the seasonal vertical migration of Arctic copepods may be a strong forcing factor on Arctic microbial food webs.

  17. Using Remotely Sensed Data and Hydrologic Models to Evaluate the Effects of Climate Change on Shallow Aquatic Ecosystems in the Mobile Bay, AL Estuary

    Science.gov (United States)

    Estes, M. G.; Al-Hamdan, M. Z.; Thom, R.; Judd, C.; Ellis, J.; Woodruff, D.; Quattrochi, D.; Rose, K.; Swann, R.

    2012-12-01

    Coastal systems in the northern Gulf of Mexico, including the Mobile Bay, AL estuary, are subject to increasing pressure from a variety of activities including climate change. Climate changes have a direct effect on the discharge of rivers that drain into Mobile Bay and adjacent coastal water bodies. The outflows change water quality (temperature, salinity, and sediment concentrations) in the shallow aquatic areas and affect ecosystem functioning. Mobile Bay is a vital ecosystem that provides habitat for many species of fauna and flora. Historically, submerged aquatic vegetation (SAV) and seagrasses were found in this area of the northern Gulf of Mexico; however the extent of vegetation has significantly decreased over the last 60 years. The objectives of this research are to determine: how climate changes affect runoff and water quality in the estuary and how these changes will affect habitat suitability for SAV and seagrasses. Our approach is to use watershed and hydrodynamic modeling to evaluate the impact of climate change on shallow water aquatic ecosystems in Mobile Bay and adjacent coastal areas. Remotely sensed Landsat data were used for current land cover land use (LCLU) model input and the data provided by Intergovernmental Panel on Climate Change (IPCC) of the future changes in temperature, precipitation, and sea level rise were used to create the climate scenarios for the 2025 and 2050 model simulations. Project results are being shared with Gulf coast stakeholders through the Gulf of Mexico Data Atlas to benefit coastal policy and climate change adaptation strategies.

  18. Using Remotely Sensed Data and Hydrologic Models to Evaluate the Effects of Climate Change on Shallow Aquatic Ecosystems in the Mobile Bay, AL Estuary

    Science.gov (United States)

    Estes, M. G.; Al-Hamdan, M. Z.; Thom, R.; Judd, C.; Woodruff, D.; Ellis, J. T.; Quattrochi, D.; Swann, R.

    2012-01-01

    Coastal systems in the northern Gulf of Mexico, including the Mobile Bay, AL estuary, are subject to increasing pressure from a variety of activities including climate change. Climate changes have a direct effect on the discharge of rivers that drain into Mobile Bay and adjacent coastal water bodies. The outflows change water quality (temperature, salinity, and sediment concentrations) in the shallow aquatic areas and affect ecosystem functioning. Mobile Bay is a vital ecosystem that provides habitat for many species of fauna and flora. Historically, submerged aquatic vegetation (SAV) and seagrasses were found in this area of the northern Gulf of Mexico; however the extent of vegetation has significantly decreased over the last 60 years. The objectives of this research are to determine: how climate changes affect runoff and water quality in the estuary and how these changes will affect habitat suitability for SAV and seagrasses. Our approach is to use watershed and hydrodynamic modeling to evaluate the impact of climate change on shallow water aquatic ecosystems in Mobile Bay and adjacent coastal areas. Remotely sensed Landsat data were used for current land cover land use (LCLU) model input and the data provided by Intergovernmental Panel on Climate Change (IPCC) of the future changes in temperature, precipitation, and sea level rise were used to create the climate scenarios for the 2025 and 2050 model simulations. Project results are being shared with Gulf coast stakeholders through the Gulf of Mexico Data Atlas to benefit coastal policy and climate change adaptation strategies.

  19. Expert evaluation and prediction of the radioecological state of the environment in the area of the radiation plume from the Chernobyl' nuclear power station (aquatic ecosystems)

    International Nuclear Information System (INIS)

    1986-01-01

    On the basis of experimental data on radionuclide distribution in the components of the aquatic ecosystems within and outside the 30 km zone around the Chernobyl power plant after the reactor accident the exposure doses for aquatic organisms in the area of the radiation plume have been estimated. In the Kiev reservoir the predicted exposure doses for most aquatic organisms do not exceed 0.1-1.0 mrad/h, in the river Pripyat' the exposure doses for fish are about 50 mrad/h and in the cooling pond of the Chernobyl power station the highest exposure doses, up to 5 rad/h in a number of locations were registered

  20. A universal method to assess the potential of phosphorus loss from soil to aquatic ecosystems.

    Science.gov (United States)

    Pöthig, Rosemarie; Behrendt, Horst; Opitz, Dieter; Furrer, Gerhard

    2010-02-01

    Phosphorus loss from terrestrial to the aquatic ecosystems contributes to eutrophication of surface waters. To maintain the world's vital freshwater ecosystems, the reduction of eutrophication is crucial. This needs the prevention of overfertilization of agricultural soils with phosphorus. However, the methods of risk assessment for the P loss potential from soils lack uniformity and are difficult for routine analysis. Therefore, the efficient detection of areas with a high risk of P loss requires a simple and universal soil test method that is cost effective and applicable in both industrialized and developing countries. Soils from areas which varied highly in land use and soil type were investigated regarding the degree of P saturation (DPS) as well as the equilibrium P concentration (EPC(0)) and water-soluble P (WSP) as indicators for the potential of P loss. The parameters DPS and EPC(0) were determined from P sorption isotherms. Our investigation of more than 400 soil samples revealed coherent relationships between DPS and EPC(0) as well as WSP. The complex parameter DPS, characterizing the actual P status of soil, is accessible from a simple standard measurement of WSP based on the equation [Formula: see text]. The parameter WSP in this equation is a function of remaining phosphorous sorption capacity/total accumulated phosphorous (SP/TP). This quotient is independent of soil type due to the mutual compensation of the factors SP and TP. Thus, the relationship between DPS and WSP is also independent of soil type. The degree of P saturation, which reflects the actual state of P fertilization of soil, can be calculated from the easily accessible parameter WSP. Due to the independence from soil type and land use, the relation is valid for all soils. Values of WSP, which exceed 5 mg P/kg soil, signalize a P saturation between 70% and 80% and thus a high risk of P loss from soil. These results reveal a new approach of risk assessment for P loss from soils to

  1. Functional feeding groups of aquatic insect families in Latin America: a critical analysis and review of existing literature

    OpenAIRE

    Alonso Ramírez; Pablo E Gutiérrez-Fonseca

    2014-01-01

    Aquatic macroinvertebrates are involved in numerous processes within aquatic ecosystems. They often have important effects on ecosystem processes such as primary production (via grazing), detritus breakdown, and nutrient mineralization and downstream spiraling. The functional feeding groups (FFG) classification was developed as a tool to facilitate the incorporation of macroinvertebrates in studies of aquatic ecosystems. This classification has the advantage of combining morphological charact...

  2. Additive impacts of experimental climate change increase risk to an ectotherm at the Arctic's edge.

    Science.gov (United States)

    Davenport, Jon M; Hossack, Blake R; Fishback, LeeAnn

    2017-06-01

    Globally, Arctic and Subarctic regions have experienced the greatest temperature increases during the last 30 years. These extreme changes have amplified threats to the freshwater ecosystems that dominate the landscape in many areas by altering water budgets. Several studies in temperate environments have examined the adaptive capacity of organisms to enhance our understanding of the potential repercussions of warming and associated accelerated drying for freshwater ecosystems. However, few experiments have examined these impacts in Arctic or Subarctic freshwater ecosystems, where the climate is changing most rapidly. To evaluate the capacity of a widespread ectotherm to anticipated environmental changes, we conducted a mesocosm experiment with wood frogs (Rana sylvatica) in the Canadian Subarctic. Three warming treatments were fully crossed with three drying treatments to simulate a range of predicted changes in wetland environments. We predicted wetland warming and drying would act synergistically, with water temperature partially compensating for some of the negative effects of accelerated drying. Across all drying regimes, a 1 °C increase in water temperature increased the odds of survival by 1.79, and tadpoles in 52-day and 64-day hydroperiod mesocosms were 4.1-4.3 times more likely to survive to metamorphosis than tadpoles in 45-day mesocosms. For individuals who survived to metamorphosis, there was only a weak negative effect of temperature on size. As expected, increased temperatures accelerated tadpole growth through day 30 of the experiment. Our results reveal that one of the dominant herbivores in Subarctic wetlands, wood frog tadpoles, are capable of increasing their developmental rates in response to increased temperature and accelerated drying, but only in an additive manner. The strong negative effects of drying on survival, combined with lack of compensation between these two environmental drivers, suggest changes in the aquatic environment that

  3. Public Lakes, Private Lakeshore: Modeling Protection of Native Aquatic Plants

    Science.gov (United States)

    Schroeder, Susan A.; Fulton, David C.

    2013-07-01

    Protection of native aquatic plants is an important proenvironmental behavior, because plant loss coupled with nutrient loading can produce changes in lake ecosystems. Removal of aquatic plants by lakeshore property owners is a diffuse behavior that may lead to cumulative impacts on lake ecosystems. This class of behavior is challenging to manage because collective impacts are not obvious to the actors. This paper distinguishes positive and negative beliefs about aquatic plants, in models derived from norm activation theory (Schwartz, Adv Exp Soc Psychol 10:221-279, 1977) and the theory of reasoned action (Fishbein and Ajzen, Belief, attitude, intention, and behavior: an introduction to theory and research, Addison-Wesley, Boston 1975), to examine protection of native aquatic plants by Minnesota lakeshore property owners. We clarify how positive and negative evaluations of native aquatic plants affect protection or removal of these plants. Results are based on a mail survey ( n = 3,115). Results suggest that positive evaluations of aquatic plants (i.e., as valuable to lake ecology) may not connect with the global attitudes and behavioral intentions that direct plant protection or removal. Lakeshore property owners' behavior related to aquatic plants may be driven more by tangible personal benefits derived from accessible, carefully managed lakeshore than intentional action taken to sustain lake ecosystems. The limited connection of positive evaluations of aquatic plants to global attitudes and behavioral intentions may reflect either lack of knowledge of what actions are needed to protect lake health and/or unwillingness to lose perceived benefits derived from lakeshore property.

  4. Public lakes, private lakeshore: Modeling protection of native aquatic plants

    Science.gov (United States)

    Schroeder, Susan A.; Fulton, David C.

    2013-01-01

    Protection of native aquatic plants is an important proenvironmental behavior, because plant loss coupled with nutrient loading can produce changes in lake ecosystems. Removal of aquatic plants by lakeshore property owners is a diffuse behavior that may lead to cumulative impacts on lake ecosystems. This class of behavior is challenging to manage because collective impacts are not obvious to the actors. This paper distinguishes positive and negative beliefs about aquatic plants, in models derived from norm activation theory (Schwartz, Adv Exp Soc Psychol 10:221–279, 1977) and the theory of reasoned action (Fishbein and Ajzen, Belief, attitude, intention, and behavior: an introduction to theory and research, Addison-Wesley, Boston 1975), to examine protection of native aquatic plants by Minnesota lakeshore property owners. We clarify how positive and negative evaluations of native aquatic plants affect protection or removal of these plants. Results are based on a mail survey (n = 3,115). Results suggest that positive evaluations of aquatic plants (i.e., as valuable to lake ecology) may not connect with the global attitudes and behavioral intentions that direct plant protection or removal. Lakeshore property owners’ behavior related to aquatic plants may be driven more by tangible personal benefits derived from accessible, carefully managed lakeshore than intentional action taken to sustain lake ecosystems. The limited connection of positive evaluations of aquatic plants to global attitudes and behavioral intentions may reflect either lack of knowledge of what actions are needed to protect lake health and/or unwillingness to lose perceived benefits derived from lakeshore property.

  5. Eutrophication in aquatic ecosystems: a scientometric study

    Directory of Open Access Journals (Sweden)

    Jéssica Alves da Costa

    2018-03-01

    Full Text Available Abstract Aim: Reveal the direction for future studies about eutrophication, or even reveal the preoccupation among the scientific community about this environmental problem. With a systematic synthesis of eutrophication studies, scientists may be able to understand the state of the literature on aquatic ecosystems around the world. This study intends to identify the main factors used to control algal blooms and the eutrophication process, the countries and environments which have more research about this theme or even identify the articles’ subjects in different periods (e.g.: Experimental, theoretic, monitoring, conservation. Methods We analyzed all studies published in the Thomson ISI Web of Science on both eutrophication and phytoplankton between 2001 and 2016. Results During the period analyzed, we observed an increase in concern about this subject. Authors from institutions in the USA and China wrote most of the studies. The most important geographic and socioeconomic aspects to determine the publication number were total area and HDI respectively. However, the main determinant for the publication about this subject was international collaboration. Some of the most actual themes in ecology and conservation (e.g.: functional groups, climate change, experiment, perdition models, regional scales, invasive species were addressed in the studies analysed. Invasive species such as Tilapia and Cylindrospermopsis raciborskii were the most cited species on these keywords. Conclusion Despite the current issues addressed in the studies on phytoplankton and eutrophication, some subjects, such as climate change or spatial pattern, were only common in years more recent. Even though studies focusing in functional diversity are highly relevant for conservation, they were not common in any year studied. The major determinant factor related to the increasing in eutrophication knowledge was the international collaboration

  6. CHARACTERISTICS OF HYDROCARBON EXPLOITATION IN ARCTIC CIRCLE

    Directory of Open Access Journals (Sweden)

    Vanja Lež

    2013-12-01

    Full Text Available The existence of large quantities of hydrocarbons is supposed within the Arctic Circle. Assumed quantities are 25% of the total undiscovered hydrocarbon reserves on Earth, mostly natural gas. Over 500 major and minor gas accumulations within the Arctic Circle were discovered so far, but apart from Snøhvit gas field, there is no commercial exploitation of natural gas from these fields. Arctic gas projects are complicated, technically hard to accomplish, and pose a great threat to the return of investment, safety of people and equipment and for the ecosystem. Russia is a country that is closest to the realization of the Arctic gas projects that are based on the giant gas fields. The most extreme weather conditions in the seas around Greenland are the reason why this Arctic region is the least explored and furthest from the realization of any gas project (the paper is published in Croatian .

  7. 2nd International Arctic Ungulate Conference

    Directory of Open Access Journals (Sweden)

    A. Anonymous

    1996-01-01

    Full Text Available The 2nd International Arctic Ungulate Conference was held 13-17 August 1995 on the University of Alaska Fairbanks campus. The Institute of Arctic Biology and the Alaska Cooperative Fish and Wildlife Research Unit were responsible for organizing the conference with assistance from biologists with state and federal agencies and commercial organizations. David R. Klein was chair of the conference organizing committee. Over 200 people attended the conference, coming from 10 different countries. The United States, Canada, and Norway had the largest representation. The conference included invited lectures; panel discussions, and about 125 contributed papers. There were five technical sessions on Physiology and Body Condition; Habitat Relationships; Population Dynamics and Management; Behavior, Genetics and Evolution; and Reindeer and Muskox Husbandry. Three panel sessions discussed Comparative caribou management strategies; Management of introduced, reestablished, and expanding muskox populations; and Health risks in translocation of arctic ungulates. Invited lectures focused on the physiology and population dynamics of arctic ungulates; contaminants in food chains of arctic ungulates and lessons learned from the Chernobyl accident; and ecosystem level relationships of the Porcupine Caribou Herd.

  8. Adaptive Management Using Remote Sensing and Ecosystem Modeling in Response to Climate Variability and Invasive Aquatic Plants for the California Sacramento-San Joaquin Delta Water Resource

    Science.gov (United States)

    Bubenheim, David; Potter, Christopher; Zhang, Minghua; Madsen, John

    2017-01-01

    The California Sacramento-San Joaquin River Delta is the hub for California's water supply and supports important ecosystem services, agriculture, and communities in Northern to Southern California. Expansion of invasive aquatic plants in the Delta coupled with impacts of changing climate and long-term drought is detrimental to the San Francisco Bay/California Delta complex. NASA Ames Research Center and the USDA-ARS partnered with the State of California to develop science-based, adaptive-management strategies for invasive aquatic plant in the Sacramento-San Joaquin Delta. Specific mapping tools developed utilizing satellite and airborne platforms provide regular assessments of population dynamics on a landscape scale and support both strategic planning and operational decision making for resource managers. San Joaquin and Sacramento River watersheds water quality input to the Delta is modeled using the Soil-Water Assessment Tool (SWAT) and a modified SWAT tool has been customized to account for unique landscape and management of agricultural water supply and drainage within the Delta. Environmental response models for growth of invasive aquatic weeds are being parameterized and coupled with spatial distribution/biomass density mapping and water quality to study ecosystem response to climate and aquatic plant management practices. On the water validation and operational utilization of these tools by management agencies and how they are improving decision making, management effectiveness and efficiency will be discussed. The project combines science, operations, and economics related to integrated management scenarios for aquatic weeds to help land and water resource managers make science-informed decisions regarding management and outcomes.

  9. Adaptive Management Using Remote Sensing and Ecosystem Modeling in Response to Climate Variability and Invasive Aquatic Plants for the California Sacramento-San Joaquin Delta Water Resource

    Science.gov (United States)

    Bubenheim, D.; Potter, C. S.; Zhang, M.; Madsen, J.

    2017-12-01

    The California Sacramento-San Joaquin River Delta is the hub for California's water supply and supports important ecosystem services, agriculture, and communities in Northern and Southern California. Expansion of invasive aquatic plants in the Delta coupled with impacts of changing climate and long-term drought is detrimental to the San Francisco Bay/California Delta complex. NASA Ames Research Center and the USDA-ARS partnered with the State of California to develop science-based, adaptive-management strategies for invasive aquatic plant management in the California Sacramento-San Joaquin Delta. Specific mapping tools developed utilizing satellite and airborne platforms provide regular assessments of population dynamics on a landscape scale and support both strategic planning and operational decision making for resource managers. San Joaquin and Sacramento River watersheds water quality input to the Delta is modeled using the Soil-Water Assessment Tool (SWAT) and a modified SWAT tool has been customized to account for unique landscape and management of agricultural water supply and drainage within the Delta. Environmental response models for growth of invasive aquatic weeds are being parameterized and coupled with spatial distribution/biomass density mapping and water quality to study ecosystem response to climate and aquatic plant management practices. On the water validation and operational utilization of these tools by management agencies and how they improve decision making, management effectiveness and efficiency will be discussed. The project combines science, operations, and economics related to integrated management scenarios for aquatic weeds to help land and water resource managers make science-informed decisions regarding management and outcomes.

  10. Assessment of land use impact on water-related ecosystem services capturing the integrated terrestrial-aquatic system.

    Science.gov (United States)

    Maes, Wouter H; Heuvelmans, Griet; Muys, Bart

    2009-10-01

    Although the importance of green (evaporative) water flows in delivering ecosystem services has been recognized, most operational impact assessment methods still focus only on blue water flows. In this paper, we present a new model to evaluate the effect of land use occupation and transformation on water quantity. Conceptually based on the supply of ecosystem services by terrestrial and aquatic ecosystems, the model is developed for, but not limited to, land use impact assessment in life cycle assessment (LCA) and requires a minimum amount of input data. Impact is minimal when evapotranspiration is equal to that of the potential natural vegetation, and maximal when evapotranspiration is zero or when it exceeds a threshold value derived from the concept of environmental water requirement. Three refinements to the model, requiring more input data, are proposed. The first refinement considers a minimal impact over a certain range based on the boundary evapotranspiration of the potential natural vegetation. In the second refinement the effects of evaporation and transpiration are accounted for separately, and in the third refinement a more correct estimate of evaporation from a fully sealed surface is incorporated. The simplicity and user friendliness of the proposed impact assessment method are illustrated with two examples.

  11. The use of Salvinia auriculata as a bioindicator in aquatic ecosystems: biomass and structure dependent on the cadmium concentration

    OpenAIRE

    Wolff,G.; Pereira,GC; Castro,EM; Louzada,J; Coelho,FF

    2012-01-01

    This study shows, in a multiple-level approach, the responses of Salvinia auriculata to Cd pollution in aquatic ecosystems. S. auriculata ramets were cultivated in nutrient solution and subjected to five treatments with Cd for ten days. At the end of the experiment, the number of new ramets and the dry biomass were determined. For ultrastructural observations, the leaves of S. auriculata were analyzed using a scanning electron microscope and transmission electron microscope. At the end of the...

  12. Why Care About Aquatic Insects: Uses, Benefits, and Services

    Science.gov (United States)

    Mayflies and other aquatic insects are common subjects of ecological research, and environmental monitoring and assessment. However, their important role in protecting and restoring aquatic ecosystems is often challenged, because their benefits and services to humans are not obv...

  13. Reconstruction of past methane availability in an Arctic Alaska wetland indicates climate influenced methane release during the past ~12,000 years

    Science.gov (United States)

    Wooller, Matthew J.; Pohlman, John W.; Gaglioti, Benjamin V.; Langdon, Peter; Jones, Miriam; Anthony, Katey M. Walter; Becker, Kevin W.; Hinrichs, Kai-Uwe; Elvert, Marcus

    2012-01-01

    Atmospheric contributions of methane from Arctic wetlands during the Holocene are dynamic and linked to climate oscillations. However, long-term records linking climate variability to methane availability in Arctic wetlands are lacking. We present a multi-proxy ~12,000 year paleoecological reconstruction of intermittent methane availability from a radiocarbon-dated sediment core (LQ-West) taken from a shallow tundra lake (Qalluuraq Lake) in Arctic Alaska. Specifically, stable carbon isotopic values of photosynthetic biomarkers and methane are utilized to estimate the proportional contribution of methane-derived carbon to lake-sediment-preserved benthic (chironomids) and pelagic (cladocerans) components over the last ~12,000 years. These results were compared to temperature, hydrologic, and habitat reconstructions from the same site using chironomid assemblage data, oxygen isotopes of chironomid head capsules, and radiocarbon ages of plant macrofossils. Cladoceran ephippia from ~4,000 cal year BP sediments have δ13C values that range from ~−39 to −31‰, suggesting peak methane carbon assimilation at that time. These low δ13C values coincide with an apparent decrease in effective moisture and development of a wetland that included Sphagnum subsecundum. Incorporation of methane-derived carbon by chironomids and cladocerans decreased from ~2,500 to 1,500 cal year BP, coinciding with a temperature decrease. Live-collected chironomids with a radiocarbon age of 1,640 cal year BP, and fossil chironomids from 1,500 cal year BP in the core illustrate that ‘old’ carbon has also contributed to the development of the aquatic ecosystem since ~1,500 cal year BP. The relatively low δ13C values of aquatic invertebrates (as low as −40.5‰) provide evidence of methane incorporation by lake invertebrates, and suggest intermittent climate-linked methane release from the lake throughout the Holocene.

  14. Citizen scientists reveal: Marine litter pollutes Arctic beaches and affects wild life.

    Science.gov (United States)

    Bergmann, Melanie; Lutz, Birgit; Tekman, Mine B; Gutow, Lars

    2017-12-15

    Recent data indicate accumulation areas of marine litter in Arctic waters and significant increases over time. Beaches on remote Arctic islands may be sinks for marine litter and reflect pollution levels of the surrounding waters particularly well. We provide the first quantitative data from surveys carried out by citizen scientists on six beaches of Svalbard. Litter quantities recorded by cruise tourists varied from 9-524gm -2 and were similar to those from densely populated areas. Plastics accounted for >80% of the overall litter, most of which originated from fisheries. Photographs provided by citizens show deleterious effects of beach litter on Arctic wildlife, which is already under strong pressure from global climate change. Our study highlights the potential of citizen scientists to provide scientifically valuable data on the pollution of sensitive remote ecosystems. The results stress once more that current legislative frameworks are insufficient to tackle the pollution of Arctic ecosystems. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Biofilm as a bioindicator of Cr VI pollution in the Lotic Ecosystems

    Science.gov (United States)

    Kurniawan, A.; Sukandar; Satriya, C.; Guntur

    2018-04-01

    Biofilm is ubiquitous in aquatic ecosystems such as river. Biofilm have been reported to have high sorption capacities that promote the accumulation of nutrient ions inside biofilm matrix. The ion that can be accumulated inside the biofilm is not only nutrient ions but also other ions such as heavy metal ions. The pollution of heavy metal ions emerge as one of the biggest aquatic ecosystem problems. Thus, the effort to monitor the heavy metal pollution in the aquatic ecosystem in the aquatic ecosystems is needed. The difficulty to monitor the water pollution particularly in the lotic ecosystems is mainly related to the water flow. Therefore, the utilization of indicator of pollution in such ecosystem is fundamentally important. The present study investigated the accumulation of Cr VI inside biofilm matrices in the river ecosystems in order to develop biofilm as a bioindicator for pollution in the lotic ecosystems. The result indicates that biofilm can accumulate Cr VI from the surrounding water and reserve the ion. According to the result of this study, biofilm is a promising bioindicator to monitor the Cr VI pollution in the lotic ecosystems.

  16. Arctic security and Norway

    Energy Technology Data Exchange (ETDEWEB)

    Tamnes, Rolf

    2013-03-01

    Global warming is one of the most serious threats facing mankind. Many regions and countries will be affected, and there will be many losers. The earliest and most intense climatic changes are being experienced in the Arctic region. Arctic average temperature has risen at twice the rate of the global average in the past half century. These changes provide an early indication for the world of the environmental and societal significance of global warming. For that reason, the Arctic presents itself as an important scientific laboratory for improving our understanding of the causes and patterns of climate changes. The rapidly rising temperature threatens the Arctic ecosystem, but the human consequences seem to be far less dramatic there than in many other places in the world. According to the U.S. National Intelligence Council, Russia has the potential to gain the most from increasingly temperate weather, because its petroleum reserves become more accessible and because the opening of an Arctic waterway could provide economic and commercial advantages. Norway might also be fortunate. Some years ago, the Financial Times asked: #Left Double Quotation Mark#What should Norway do about the fact that global warming will make their climate more hospitable and enhance their financial situation, even as it inflicts damage on other parts of the world?#Right Double Quotation Mark#(Author)

  17. Climate-driven changes in functional biogeography of Arctic marine fish communities.

    Science.gov (United States)

    Frainer, André; Primicerio, Raul; Kortsch, Susanne; Aune, Magnus; Dolgov, Andrey V; Fossheim, Maria; Aschan, Michaela M

    2017-11-14

    Climate change triggers poleward shifts in species distribution leading to changes in biogeography. In the marine environment, fish respond quickly to warming, causing community-wide reorganizations, which result in profound changes in ecosystem functioning. Functional biogeography provides a framework to address how ecosystem functioning may be affected by climate change over large spatial scales. However, there are few studies on functional biogeography in the marine environment, and none in the Arctic, where climate-driven changes are most rapid and extensive. We investigated the impact of climate warming on the functional biogeography of the Barents Sea, which is characterized by a sharp zoogeographic divide separating boreal from Arctic species. Our unique dataset covered 52 fish species, 15 functional traits, and 3,660 stations sampled during the recent warming period. We found that the functional traits characterizing Arctic fish communities, mainly composed of small-sized bottom-dwelling benthivores, are being rapidly replaced by traits of incoming boreal species, particularly the larger, longer lived, and more piscivorous species. The changes in functional traits detected in the Arctic can be predicted based on the characteristics of species expected to undergo quick poleward shifts in response to warming. These are the large, generalist, motile species, such as cod and haddock. We show how functional biogeography can provide important insights into the relationship between species composition, diversity, ecosystem functioning, and environmental drivers. This represents invaluable knowledge in a period when communities and ecosystems experience rapid climate-driven changes across biogeographical regions. Copyright © 2017 the Author(s). Published by PNAS.

  18. Promoting Transfer of Ecosystems Concepts

    Science.gov (United States)

    Yu, Yawen; Hmelo-Silver, Cindy E.; Jordan, Rebecca; Eberbach, Catherine; Sinha, Suparna

    2016-01-01

    This study examines to what extent students transferred their knowledge from a familiar aquatic ecosystem to an unfamiliar rainforest ecosystem after participating in a technology-rich inquiry curriculum. We coded students' drawings for components of important ecosystems concepts at pre- and posttest. Our analysis examined the extent to which each…

  19. VASCULAR PLANTS AS ENGINEERS OF OXYGEN IN AQUATIC SYSTEMS

    Science.gov (United States)

    The impact of organisms on oxygen is one of the most dramatic examples of ecosystem engineering on Earth. In aquatic systems, which have much lower oxygen concentrations than the atmosphere, vascular aquatic plants can affect oxygen concentrations significantly not only on long t...

  20. Carbon dioxide and methane fluxes from arctic mudboils

    International Nuclear Information System (INIS)

    Wilson, K.S.; Humphreys, E.R.

    2010-01-01

    Carbon-rich ecosystems in the Arctic have large stores of soil carbon. However, small changes in climate have the potential to change the carbon (C) balance. This study examined how changes in ecosystem structure relate to differences in the exchange of greenhouse gases, notably carbon dioxide (CO 2 ) and methane (CH 4 ), between the atmosphere and soil. In particular, it examined low-center mudboils to determine the influence that this distinct form of patterned ground in the Arctic may have on the overall C balance of Tundra ecosystems. The net ecosystem exchange of carbon dioxide (NEE) was measured along with methane efflux along a 35-m transect intersecting two mudboils in a wet sedge fen in Canada's Southern Arctic during the summer of 2008. Mudboil features revealed significant variations in vegetation, soil temperature and thaw depth, and soil organic matter content along this transect. Variations in NEE were attributed to changes in the amount of vascular vegetation, but CO 2 and CH 4 effluxes were similar among the two mudboil and the sedge fen sampling areas. The study showed that vegetation played a key role in limiting temporal variations in CH 4 effluxes through plant mediated transport in both mudboil and sedge fen sampling areas. The negligible vascular plant colonization in one of the mudboils was likely due to more active frost heave processes. Growth and decomposition of cryptogamic organisms along with inflow of dissolved organic C and warmer soil temperatures may have been the cause of the rather high CO 2 and CH 4 efflux in this mudboil area.

  1. Total mercury and mercury species in birds and fish in an aquatic ecosystem in the Czech Republic

    Energy Technology Data Exchange (ETDEWEB)

    Houserova, Pavlina [Department of Chemistry and Biochemistry, Mendel University of Agriculture and Forestry, Zemedelska 1, CZ-613 00 Brno (Czech Republic); Kuban, Vlastimil [Department of Chemistry and Biochemistry, Mendel University of Agriculture and Forestry, Zemedelska 1, CZ-613 00 Brno (Czech Republic)]. E-mail: kuban@mendelu.cz; Kracmar, Stanislav [Department of Animal Nutrition, Mendel University of Agriculture and Forestry, Zemedelska 1, CZ-613 00 Brno (Czech Republic); Sitko, Jilji [Commenius Museum, Moravian Ornithological Station, Horni nam. 1, Prerov CZ-751 52 (Czech Republic)

    2007-01-15

    Total mercury and mercury species (methylmercury-MeHg, inorganic mercury - Hg{sup 2+}) were determined in the aquatic ecosystem Zahlinice (Czech Republic). Four tissues (muscle, intestines, liver and kidney) of three bird species - cormorant, great crested grebe and Eurasian buzzard, muscle tissues of common carp, grass carp, northern pike, goldfish, common tench, perch and rudd, aquatic plants (reed mace and common reed), sediments and water were analysed. Relative contents of MeHg (of total Hg) were in the range from 71% to 94% and from 15% up to 62% in the muscle and intestines and in liver, respectively, for all birds. Statistically significant differences were found between contents of MeHg in liver tissues of young and adult cormorant populations (F {sub 4.6} = 56.71, P < 10{sup -5}). Relative contents of MeHg in muscle tissues of fishes were in the range from 65.1% to 87.9% of total Hg. - The distribution of the mercury species among the organs of the individual birds is discussed.

  2. Evaluation of the health status of a coastal ecosystem in southeast Mexico: Assessment of water quality, phytoplankton and submerged aquatic vegetation.

    Science.gov (United States)

    Herrera-Silveira, Jorge A; Morales-Ojeda, Sara M

    2009-01-01

    The coastal environment of the Yucatan Peninsula (SE, Mexico) includes a wide variety of ecosystems ranging from mangroves to coral reefs, resulting in a heterogeneous landscape. Specifically, the marine system is characterized by environmental differences which respond to regional and local forcing functions such as marine currents and groundwater discharges (GD). Such functional characteristics were used here to define four subregions across the Yucatan coast and diagnose the health status of this coastal marine ecosystem. To achieve this goal, we conducted an analysis and integration of water quality variables, an eutrophic assessment, evaluated changes in submerged aquatic vegetation (SAV), and analyzed the community structure and distribution of harmful phytoplankton. The first step was to determine the reference values for each subregion based on data previously collected from 2002 to 2006 along the coast of Yucatan, 200m offshore. The trophic index (TRIX) and Canadian index for aquatic life (CCMEWQI) were used to diagnose each subregion and then the ASSETS approach was conducted for Dzilam and Progreso, sampling localities on each end of the health status continuum (those with the best and worst conditions). Overall, results indicated that the marine coastal ecosystem of Yucatan is in good condition; however, differences were observed between subregions that can be attributed to local forcing functions and human impacts. Specifically, the central region (zone HZII, Progreso-Telchac) showed symptoms of initial eutrophication due to nutrient inputs from human activities. The eastern region (zone HZ III, Dzilam-Las Bocas) showed a meso-eutrophic condition linked to natural groundwater discharges, while the other two subregions western (zone HZI Celestun-Palmar) and caribbean (zone HZ IV Ria Lagartos-El Cuyo) exhibited symptoms of oligo-mesotrophic condition. These findings may be considered baseline information for coastal ecosystem monitoring programs in

  3. Biogenic volatile organic compound emissions along a high arctic soil moisture gradient.

    Science.gov (United States)

    Svendsen, Sarah Hagel; Lindwall, Frida; Michelsen, Anders; Rinnan, Riikka

    2016-12-15

    Emissions of biogenic volatile organic compounds (BVOCs) from terrestrial ecosystems are important for the atmospheric chemistry and the formation of secondary organic aerosols, and may therefore influence the climate. Global warming is predicted to change patterns in precipitation and plant species compositions, especially in arctic regions where the temperature increase will be most pronounced. These changes are potentially highly important for the BVOC emissions but studies investigating the effects are lacking. The aim of this study was to investigate the quality and quantity of BVOC emissions from a high arctic soil moisture gradient extending from dry tundra to a wet fen. Ecosystem BVOC emissions were sampled five times in the July-August period using a push-pull enclosure technique, and BVOCs trapped in absorbent cartridges were analyzed using gas chromatography-mass spectrometry. Plant species compositions were estimated using the point intercept method. In order to take into account important underlying ecosystem processes, gross ecosystem production, ecosystem respiration and net ecosystem production were measured in connection with chamber-based BVOC measurements. Highest emissions of BVOCs were found from vegetation communities dominated by Salix arctica and Cassiope tetragona, which had emission profiles dominated by isoprene and monoterpenes, respectively. These results show that emissions of BVOCs are highly dependent on the plant cover supported by the varying soil moisture, suggesting that high arctic BVOC emissions may affect the climate differently if soil water content and plant cover change. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Leaf and fine root carbon stocks and turnover are coupled across Arctic ecosystems.

    Science.gov (United States)

    Sloan, Victoria L; Fletcher, Benjamin J; Press, Malcolm C; Williams, Mathew; Phoenix, Gareth K

    2013-12-01

    Estimates of vegetation carbon pools and their turnover rates are central to understanding and modelling ecosystem responses to climate change and their feedbacks to climate. In the Arctic, a region containing globally important stores of soil carbon, and where the most rapid climate change is expected over the coming century, plant communities have on average sixfold more biomass below ground than above ground, but knowledge of the root carbon pool sizes and turnover rates is limited. Here, we show that across eight plant communities, there is a significant positive relationship between leaf and fine root turnover rates (r(2) = 0.68, P turnover rates of both leaf (r(2) = 0.63, P community scale. These ecological relationships not only demonstrate close links between above and below-ground plant carbon dynamics but also allow plant carbon pool sizes and their turnover rates to be predicted from the single readily quantifiable (and remotely sensed) parameter of LAI, including the possibility of estimating root data from satellites. © 2013 John Wiley & Sons Ltd.

  5. Artificial Warming of Arctic Meadow under Pollution Stress: Experimental design

    Science.gov (United States)

    Moni, Christophe; Silvennoinen, Hanna; Fjelldal, Erling; Brenden, Marius; Kimball, Bruce; Rasse, Daniel

    2014-05-01

    Boreal and arctic terrestrial ecosystems are central to the climate change debate, notably because future warming is expected to be disproportionate as compared to world averages. Likewise, greenhouse gas (GHG) release from terrestrial ecosystems exposed to climate warming is expected to be the largest in the arctic. Artic agriculture, in the form of cultivated grasslands, is a unique and economically relevant feature of Northern Norway (e.g. Finnmark Province). In Eastern Finnmark, these agro-ecosystems are under the additional stressor of heavy metal and sulfur pollution generated by metal smelters of NW Russia. Warming and its interaction with heavy metal dynamics will influence meadow productivity, species composition and GHG emissions, as mediated by responses of soil microbial communities. Adaptation and mitigation measurements will be needed. Biochar application, which immobilizes heavy metal, is a promising adaptation method to promote positive growth response in arctic meadows exposed to a warming climate. In the MeadoWarm project we conduct an ecosystem warming experiment combined to biochar adaptation treatments in the heavy-metal polluted meadows of Eastern Finnmark. In summary, the general objective of this study is twofold: 1) to determine the response of arctic agricultural ecosystems under environmental stress to increased temperatures, both in terms of plant growth, soil organisms and GHG emissions, and 2) to determine if biochar application can serve as a positive adaptation (plant growth) and mitigation (GHG emission) strategy for these ecosystems under warming conditions. Here, we present the experimental site and the designed open-field warming facility. The selected site is an arctic meadow located at the Svanhovd Research station less than 10km west from the Russian mining city of Nikel. A splitplot design with 5 replicates for each treatment is used to test the effect of biochar amendment and a 3oC warming on the Arctic meadow. Ten circular

  6. Aquatic pollution increases use of terrestrial prey subsidies by stream fish

    Science.gov (United States)

    Kraus, Johanna M.; Pomeranz, Justin F.; Todd, Andrew S.; Walters, David M.; Schmidt, Travis S.; Wanty, Richard B.

    2016-01-01

    Stream food webs are connected with their riparian zones through cross-ecosystem movements of energy and nutrients. The use and impact of terrestrial subsidies on aquatic consumers is determined in part by in situ biomass of aquatic prey. Thus, stressors such as aquatic pollutants that greatly reduce aquatic secondary production could increase the need for and reliance of stream consumers on terrestrial resource subsidies.

  7. Climate change and the ecology and evolution of Arctic vertebrates

    DEFF Research Database (Denmark)

    Gilg, Olivier; Kovacs, Kit M.; Aars, J.

    2012-01-01

    Climate change is taking place more rapidly and severely in the Arctic than anywhere on the globe, exposing Arctic vertebrates to a host of impacts. Changes in the cryosphere dominate the physical changes that already affect these animals, but increasing air temperatures, changes in precipitation......, and ocean acidification will also affect Arctic ecosystems in the future. Adaptation via natural selection is problematic in such a rapidly changing environment. Adjustment via phenotypic plasticity is therefore likely to dominate Arctic vertebrate responses in the short term, and many such adjustments have...... already been documented. Changes in phenology and range will occur for most species but will only partly mitigate climate change impacts, which are particularly difficult to forecast due to the many interactions within and between trophic levels. Even though Arctic species richness is increasing via...

  8. Effects of the global changes on the aquatic ecosystems in West Europe - role of the plankton communities

    International Nuclear Information System (INIS)

    Souissi, S.

    2007-01-01

    Examination of long-term records of aquatic ecosystems has provided useful information to find out their major driving forces. Understanding the impact of climate change on these ecosystems, the management of their resources and the extrapolation between sites are the main scopes of actual and emerging studies. Such goals can be achieved by inter-site and inter-ecosystem comparisons. This approach was undertaken during our project which has the originality to tackle with marine and freshwater ecosystems. It allowed us to compile and validate several multi-decadal time series of planktonic and other physical driving forces at local and regional scales. Then, the same methodology based on the analysis of the variability of climate indices and biological data across several spatial scales was used. The different ecosystems analyzed here showed clear response to the North Atlantic climate variability. Although the local differences abrupt changes in community composition occurred in all ecosystems in the middle of the years 80. During this period there was also a major shift in climatic conditions during winter and early spring, suggesting an impact of climatic factors. Phenological changes were also observed in plankton communities in all sites. The consequences of the modifications of plankton dynamics on higher trophic levels were also showed. Fluctuations in plankton have resulted in long-term changes in cod recruitment in the North Sea (bottom-up control). On the other hand, both climate change and the improvement of trophic status in Geneva Lake favored the outbreak of whitefish during the years 90. Lower larval mortality and better recruitment are supposed to be linked to faster growth associated with warmer temperatures and better food conditions induced by better temporal overlap between larvae hatching and zooplankton development. (author)

  9. Close Encounters with Deadly Dangers: Riveting Reads and Classroom Ideas.

    Science.gov (United States)

    Haven, Kendall

    This book presents 15 tales that bring the animal world into the classroom. The stories in this book are divided into two sections: stories from aquatic ecosystems (both fresh- and saltwater systems), and from terrestrial systems, including desert, meadow, woodland, mountain, Arctic tundra, savanna, pine forest, and jungle ecosystems. All predator…

  10. Radiation exposure of aquatic ecosystem compartments

    International Nuclear Information System (INIS)

    Colonna-Cesari-Florent, L.; Bontoux, J.

    1999-01-01

    In the frame of a normal operation, a nuclear site releases gaseous as well liquid effluents in environment. Limits are defined but if they are acceptable for man, do they allow to preserve species of ecosystem? Two points stand out of this study: the natural radioactivity is dominating in exposure but can one neglect an addition of artificial radioactivity? The species of Rhone river ecosystem are potentially submitted to a thermal and/or chemical stress, only a combined study, taking into account every situation of stress, could lead to a long term preservation of our environmental inheritance. (N.C.)

  11. A mathematical model of algae growth in a pelagic-benthic coupled shallow aquatic ecosystem.

    Science.gov (United States)

    Zhang, Jimin; Shi, Junping; Chang, Xiaoyuan

    2018-04-01

    A coupled system of ordinary differential equations and partial differential equations is proposed to describe the interaction of pelagic algae, benthic algae and one essential nutrient in an oligotrophic shallow aquatic ecosystem with ample supply of light. The existence and uniqueness of non-negative steady states are completely determined for all possible parameter range, and these results characterize sharp threshold conditions for the regime shift from extinction to coexistence of pelagic and benthic algae. The influence of environmental parameters on algal biomass density is also considered, which is an important indicator of algal blooms. Our studies suggest that the nutrient recycling from loss of algal biomass may be an important factor in the algal blooms process; and the presence of benthic algae may limit the pelagic algal biomass density as they consume common resources even if the sediment nutrient level is high.

  12. Continental-Scale Effects of Nutrient Pollution on Stream Ecosystem Functioning

    OpenAIRE

    Woodward , Guy; Gessner , Mark O.; Giller , Paul S.; Gulis , Vladislav; Hladyz , Sally; Lecerf , Antoine; Malmqvist , Björn; McKie , Brendan G.; Tiegs , Scott D.; Cariss , Helen; Dobson , Mike; Elosegi , Arturo; Ferreira , Veronica; Graça , Manuel A. S.; Fleituch , Tadeusz

    2012-01-01

    International audience; Excessive nutrient loading is a major threat to aquatic ecosystems worldwide that leads to profound changes in aquatic biodiversity and biogeochemical processes. Systematic quantitative assessment of functional ecosystem measures for river networks is, however, lacking, especially at continental scales. Here, we narrow this gap by means of a pan-European field experiment on a fundamental ecosystem process--leaf-litter breakdown--in 100 streams across a greater than 100...

  13. Patterns and processes influencing helminth parasites of Arctic coastal communities during climate change.

    Science.gov (United States)

    Galaktionov, K V

    2017-07-01

    This review analyses the scarce available data on biodiversity and transmission of helminths in Arctic coastal ecosystems and the potential impact of climate changes on them. The focus is on the helminths of seabirds, dominant parasites in coastal ecosystems. Their fauna in the Arctic is depauperate because of the lack of suitable intermediate hosts and unfavourable conditions for species with free-living larvae. An increasing proportion of crustaceans in the diet of Arctic seabirds would result in a higher infection intensity of cestodes and acanthocephalans, and may also promote the infection of seabirds with non-specific helminths. In this way, the latter may find favourable conditions for colonization of new hosts. Climate changes may alter the composition of the helminth fauna, their infection levels in hosts and ways of transmission in coastal communities. Immigration of boreal invertebrates and fish into Arctic seas may allow the circulation of helminths using them as intermediate hosts. Changing migratory routes of animals would alter the distribution of their parasites, facilitating, in particular, their trans-Arctic transfer. Prolongation of the seasonal 'transmission window' may increase the parasitic load on host populations. Changes in Arctic marine food webs would have an overriding influence on the helminths' circulation. This process may be influenced by the predicted decreased of salinity in Arctic seas, increased storm activity, coastal erosion, ocean acidification, decline of Arctic ice, etc. Greater parasitological research efforts are needed to assess the influence of factors related to Arctic climate change on the transmission of helminths.

  14. Understanding Litter Input Controls on Soil Organic Matter Turnover and Formation are Essential for Improving Carbon-Climate Feedback Predictions for Arctic, Tundra Ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Wallenstein, Matthew [Colorado State Univ., Fort Collins, CO (United States)

    2017-12-05

    The Arctic region stored vast amounts of carbon (C) in soils over thousands of years because decomposition has been limited by cold, wet conditions. Arctic soils now contain roughly as much C that is contained in all other soils across the globe combined. However, climate warming could unlock this oil C as decomposition accelerates and permafrost thaws. In addition to temperature-driven acceleration of decomposition, several additional processes could either counteract or augment warming-induced SOM losses. For example, increased plant growth under a warmer climate will increase organic matter inputs to soils, which could fuel further soil decomposition by microbes, but will also increase the production of new SOM. Whether Arctic ecosystems store or release carbon in the future depends in part on the balance between these two counteracting processes. By differentiating SOM decomposition and formation and understanding the drivers of these processes, we will better understand how these systems function. We did not find evidence of priming under current conditions, defined as an increase in the decomposition of native SOM stocks. This suggests that decomposition is unlikely to be further accelerated through this mechanism. We did find that decomposition of native SOM did occur when nitrogen was added to these soils, suggesting that nitrogen limits decomposition in these systems. Our results highlight the resilience and extraordinary C storage capacity of these soils, and suggest shrub expansion may partially mitigate C losses from decomposition of old SOM as Arctic soils warm.

  15. Replacement cost valuation of Northern Pintail (Anas acuta) subsistence harvest in Arctic and sub-Arctic North America

    Science.gov (United States)

    Goldstein, Joshua H.; Thogmartin, Wayne E.; Bagstad, Kenneth J.; Dubovsky, James A.; Mattsson, Brady J.; Semmens, Darius J.; López-Hoffman, Laura; Diffendorfer, James E.

    2014-01-01

    Migratory species provide economically beneficial ecosystem services to people throughout their range, yet often, information is lacking about the magnitude and spatial distribution of these benefits at regional scales. We conducted a case study for Northern Pintails (hereafter pintail) in which we quantified regional and sub-regional economic values of subsistence harvest to indigenous communities in Arctic and sub-Arctic North America. As a first step, we used the replacement cost method to quantify the cost of replacing pintail subsistence harvest with the most similar commercially available protein (chicken). For an estimated annual subsistence harvest of ˜15,000 pintail, our mean estimate of the total replacement cost was ˜$63,000 yr−1 ($2010 USD), with sub-regional values ranging from \\$263 yr−1 to \\$21,930 yr−1. Our results provide an order-of-magnitude, conservative estimate of one component of the regional ecosystem-service values of pintails, providing perspective on how spatially explicit values can inform migratory species conservation.

  16. Response of a tundra ecosystem to elevated atmospheric carbon dioxide and CO{sub 2}-induced climate change. Annual technical report

    Energy Technology Data Exchange (ETDEWEB)

    Oechel, W.C.

    1992-04-01

    Northern ecosystems contain up to 455 Gt of C in the soil active layer and upper permafrost. The soil carbon in these layers is equivalent to approximately 60% of the carbon currently in the atmosphere as CO{sub 2}. Much of this carbon is stored in the soil as dead organic matter. Its fate is subject to the net effects of global change on the plant and soil systems of northern ecosystems. The arctic alone contains about 60 Gt C, 90% of which is present in the soil active layer and upper permafrost. The arctic is assumed to have been a sink for CO{sub 2} during the historic and recent geologic past. The arctic has the potential to be a very large, long-term source or sink of CO{sub 2} with respect to the atmosphere. In situ experimental manipulations of atmospheric CO{sub 2}, indicated that there is little effect of elevated atmospheric CO{sub 2} on leaf level photosynthesis or whole-ecosystem CO{sub 2} flux over the course of weeks to years, respectively. However, there may be longer- term ecosystem responses to elevated CO{sub 2} that could ultimately affect ecosystem CO{sub 2} balance. In addition to atmospheric CO{sub 2}, climate may affect net ecosystem carbon balance. Recent results indicate that the arctic has become a source of CO{sub 2} to the atmosphere. This change coincides with recent climatic variation in the arctic, and suggests a positive feedback of arctic ecosystems on atmospheric CO{sub 2} and global change. The research proposed in this application has four principal aspects: (A) Long-term response of arctic plants and ecosystems to elevated atmospheric CO{sub 2}; (B) Circumpolar patterns of net ecosystem CO{sub 2} flux; (C) In situ controls by temperature and moisture on net ecosystem CO{sub 2} flux; (D) Scaling of CO{sub 2} flux from plot, to landscape, to regional scales (In conjunction with research proposed for NSF support).

  17. Live from the Arctic

    Science.gov (United States)

    Warnick, W. K.; Haines-Stiles, G.; Warburton, J.; Sunwood, K.

    2003-12-01

    For reasons of geography and geophysics, the poles of our planet, the Arctic and Antarctica, are places where climate change appears first: they are global canaries in the mine shaft. But while Antarctica (its penguins and ozone hole, for example) has been relatively well-documented in recent books, TV programs and journalism, the far North has received somewhat less attention. This project builds on and advances what has been done to date to share the people, places, and stories of the North with all Americans through multiple media, over several years. In a collaborative project between the Arctic Research Consortium of the United States (ARCUS) and PASSPORT TO KNOWLEDGE, Live from the Arctic will bring the Arctic environment to the public through a series of primetime broadcasts, live and taped programming, interactive virtual field trips, and webcasts. The five-year project will culminate during the 2007-2008 International Polar Year (IPY). Live from the Arctic will: A. Promote global understanding about the value and world -wide significance of the Arctic, B. Bring cutting-edge research to both non-formal and formal education communities, C. Provide opportunities for collaboration between arctic scientists, arctic communities, and the general public. Content will focus on the following four themes. 1. Pan-Arctic Changes and Impacts on Land (i.e. snow cover; permafrost; glaciers; hydrology; species composition, distribution, and abundance; subsistence harvesting) 2. Pan-Arctic Changes and Impacts in the Sea (i.e. salinity, temperature, currents, nutrients, sea ice, marine ecosystems (including people, marine mammals and fisheries) 3. Pan-Arctic Changes and Impacts in the Atmosphere (i.e. precipitation and evaporation; effects on humans and their communities) 4. Global Perspectives (i.e. effects on humans and communities, impacts to rest of the world) In The Earth is Faster Now, a recent collection of comments by members of indigenous arctic peoples, arctic

  18. Aging infrastructure creates opportunities for cost-efficient restoration of aquatic ecosystem connectivity.

    Science.gov (United States)

    Neeson, Thomas M; Moody, Allison T; O'Hanley, Jesse R; Diebel, Matthew; Doran, Patrick J; Ferris, Michael C; Colling, Timothy; McIntyre, Peter B

    2018-06-09

    A hallmark of industrialization is the construction of dams for water management and roads for transportation, leading to fragmentation of aquatic ecosystems. Many nations are striving to address both maintenance backlogs and mitigation of environmental impacts as their infrastructure ages. Here, we test whether accounting for road repair needs could offer opportunities to boost conservation efficiency by piggybacking connectivity restoration projects on infrastructure maintenance. Using optimization models to align fish passage restoration sites with likely road repair priorities, we find potential increases in conservation return-on-investment ranging from 17% to 25%. Importantly, these gains occur without compromising infrastructure or conservation priorities; simply communicating openly about objectives and candidate sites enables greater accomplishment at current funding levels. Society embraces both reliable roads and thriving fisheries, so overcoming this coordination challenge should be feasible. Given deferred maintenance crises for many types of infrastructure, there could be widespread opportunities to enhance the cost effectiveness of conservation investments by coordinating with infrastructure renewal efforts. © 2018 by the Ecological Society of America.

  19. Environmental study of some metals on several aquatic macrophytes

    African Journals Online (AJOL)

    Aquatic macrophytes can be used in the study of quality of water ecosystems and in monitoring of metals and other pollutants. This study was focused on assessment of metals accumulation in certain aquatic macrophytes (biomonitors), in comparison with water and sediment (abiotic monitors) of the lake. Concentrations of ...

  20. Shifting balance of thermokarst lake ice regimes across the Arctic Coastal Plain of northern Alaska

    Science.gov (United States)

    Arp, Christopher D.; Jones, Benjamin M.; Lu, Zong; Whitman, Matthew S.

    2012-01-01

    The balance of thermokarst lakes with bedfast- and floating-ice regimes across Arctic lowlands regulates heat storage, permafrost thaw, winter-water supply, and over-wintering aquatic habitat. Using a time-series of late-winter synthetic aperture radar (SAR) imagery to distinguish lake ice regimes in two regions of the Arctic Coastal Plain of northern Alaska from 2003–2011, we found that 18% of the lakes had intermittent ice regimes, varying between bedfast-ice and floating-ice conditions. Comparing this dataset with a radar-based lake classification from 1980 showed that 16% of the bedfast-ice lakes had shifted to floating-ice regimes. A simulated lake ice thinning trend of 1.5 cm/yr since 1978 is believed to be the primary factor driving this form of lake change. The most profound impacts of this regime shift in Arctic lakes may be an increase in the landscape-scale thermal offset created by additional lake heat storage and its role in talik development in otherwise continuous permafrost as well as increases in over-winter aquatic habitat and winter-water supply.

  1. Alien invasions in aquatic ecosystems: toward an understanding of brook trout invasions and potential impacts on inland cutthroat trout in western North America

    Science.gov (United States)

    Jason B. Dunham; Susan B. Adams; Robert E. Schroeter; Douglas C. Novinger

    2002-01-01

    Experience from case studies of biological invasions in aquatic ecosystems has motivated a set of proposed empirical “rules” for understanding patterns of invasion and impacts on native species. Further evidence is needed to better understand these patterns, and perhaps contribute to a useful predictive theory of invasions. We reviewed the case of brook trout (

  2. Working group 7: Ecosystems

    International Nuclear Information System (INIS)

    Verheyen, R.

    1976-01-01

    The purpose of this article is to evaluate the environmental impact of nuclear power plants. The effects of ionizing radiations, of the thermal and chemical pollution on aquatic ecosystems as well as on terrestrial ecosystems have been estimated. After a general survey of such effects and their interaction, practical conclusions in regard to determined areas such as Meuse-Escaut marine and the coast have been drawn. The contamination effects of food chains have been evaluted under deliberately pessimistic conditions with regard to the choice of the radionuclide as well as of concentration factors. Following the biodegradation conditions of the surface waters, criteria for the quality of the aquatic ecosystems have been established. Finally, attention has been paid on certain factors affecting the site selection especially within the frame of the nature conservation. The effects of cooling towers have been also considered. (G.C.)

  3. Physiological and ecological effects of increasing temperature on fish production in lakes of Arctic Alaska

    Science.gov (United States)

    Carey, Michael P.; Zimmerman, Christian E.

    2014-01-01

    Lake ecosystems in the Arctic are changing rapidly due to climate warming. Lakes are sensitive integrators of climate-induced changes and prominent features across the Arctic landscape, especially in lowland permafrost regions such as the Arctic Coastal Plain of Alaska. Despite many studies on the implications of climate warming, how fish populations will respond to lake changes is uncertain for Arctic ecosystems. Least Cisco (Coregonus sardinella) is a bellwether for Arctic lakes as an important consumer and prey resource. To explore the consequences of climate warming, we used a bioenergetics model to simulate changes in Least Cisco production under future climate scenarios for lakes on the Arctic Coastal Plain. First, we used current temperatures to fit Least Cisco consumption to observed annual growth. We then estimated growth, holding food availability, and then feeding rate constant, for future projections of temperature. Projected warmer water temperatures resulted in reduced Least Cisco production, especially for larger size classes, when food availability was held constant. While holding feeding rate constant, production of Least Cisco increased under all future scenarios with progressively more growth in warmer temperatures. Higher variability occurred with longer projections of time mirroring the expanding uncertainty in climate predictions further into the future. In addition to direct temperature effects on Least Cisco growth, we also considered changes in lake ice phenology and prey resources for Least Cisco. A shorter period of ice cover resulted in increased production, similar to warming temperatures. Altering prey quality had a larger effect on fish production in summer than winter and increased relative growth of younger rather than older age classes of Least Cisco. Overall, we predicted increased production of Least Cisco due to climate warming in lakes of Arctic Alaska. Understanding the implications of increased production of Least Cisco to

  4. Combining monitoring data and modelling identifies PAHs as emerging contaminants in the Arctic

    NARCIS (Netherlands)

    De Laender, F.; Hammer, J.; Hendriks, J.; Soetaert, K.E.R.; Jansen, C.

    2011-01-01

    Protecting Arctic ecosystems against potential adverse effects from anthropogenic activities is recognized as a top priority. In particular, understanding the accumulation and effects of persistent organic pollutants (POPs) in these otherwise pristine ecosystems remains a scientific challenge. Here,

  5. Global Mercury Pathways in the Arctic Ecosystem

    Science.gov (United States)

    Lahoutifard, N.; Lean, D.

    2003-12-01

    The sudden depletions of atmospheric mercury which occur during the Arctic spring are believed to involve oxidation of gaseous elemental mercury, Hg(0), rendering it less volatile and more soluble. The Hg(II) oxidation product(s) are more susceptible to deposition, consistent with the observation of dramatic increases in snow mercury levels during depletion events. Temporal correlations with ozone depletion events and the proliferation of BrO radicals support the hypothesis that oxidation of Hg(0) occurs in the gas phase and results in its conversion to RGM (Reactive Gaseous Mercury). The mechanisms of Hg(0) oxidation and particularly Hg(II) reduction are as yet unproven. In order to evaluate the feasibility of proposed chemical processes involving mercury in the Arctic atmosphere and its pathway after deposition on the snow from the air, we investigated mercury speciation in air and snow pack at Resolute, Nunavut, Canada (latitude 75° N) prior to and during snow melt during spring 2003. Quantitative, real-time information on emission, air transport and deposition were combined with experimental studies of the distribution and concentrations of different mercury species, methyl mercury, anions, total organic carbon and total inorganic carbon in snow samples. The effect of solar radiation and photoreductants on mercury in snow samples was also investigated. In this work, we quantify mercury removed from the air, and deposited on the snow and the transformation to inorganic and methyl mercury.

  6. A Recommended Set of Key Arctic Indicators

    Science.gov (United States)

    Stanitski, D.; Druckenmiller, M.; Fetterer, F. M.; Gerst, M.; Intrieri, J. M.; Kenney, M. A.; Meier, W.; Overland, J. E.; Stroeve, J.; Trainor, S.

    2017-12-01

    The Arctic is an interconnected and environmentally sensitive system of ice, ocean, land, atmosphere, ecosystems, and people. From local to pan-Arctic scales, the area has already undergone major changes in physical and societal systems and will continue at a pace that is greater than twice the global average. Key Arctic indicators can quantify these changes. Indicators serve as the bridge between complex information and policy makers, stakeholders, and the general public, revealing trends and information people need to make important socioeconomic decisions. This presentation evaluates and compiles more than 70 physical, biological, societal and economic indicators into an approachable summary that defines the changing Arctic. We divided indicators into "existing," "in development," "possible," and "aspirational". In preparing a paper on Arctic Indicators for a special issue of the journal Climatic Change, our group established a set of selection criteria to identify indicators to specifically guide decision-makers in their responses to climate change. A goal of the analysis is to select a manageable composite list of recommended indicators based on sustained, reliable data sources with known user communities. The selected list is also based on the development of a conceptual model that identifies components and processes critical to our understanding of the Arctic region. This list of key indicators is designed to inform the plans and priorities of multiple groups such as the U.S. Global Change Research Program (USGCRP), Interagency Arctic Research Policy Committee (IARPC), and the Arctic Council.

  7. The remote sensing of aquatic macrophytes Part 1: Color-infrared aerial photography as a tool for identification and mapping of littoral vegetation. Part 2: Aerial photography as a quantitative tool for the investigation of aquatic ecosystems. [Lake Wingra, Wisconsin

    Science.gov (United States)

    Gustafson, T. D.; Adams, M. S.

    1973-01-01

    Research was initiated to use aerial photography as an investigative tool in studies that are part of an intensive aquatic ecosystem research effort at Lake Wingra, Madison, Wisconsin. It is anticipated that photographic techniques would supply information about the growth and distribution of littoral macrophytes with efficiency and accuracy greater than conventional methods.

  8. Phytoremediation potential of aquatic macrophyte, Azolla.

    Science.gov (United States)

    Sood, Anjuli; Uniyal, Perm L; Prasanna, Radha; Ahluwalia, Amrik S

    2012-03-01

    Aquatic macrophytes play an important role in the structural and functional aspects of aquatic ecosystems by altering water movement regimes, providing shelter to fish and aquatic invertebrates, serving as a food source, and altering water quality by regulating oxygen balance, nutrient cycles, and accumulating heavy metals. The ability to hyperaccumulate heavy metals makes them interesting research candidates, especially for the treatment of industrial effluents and sewage waste water. The use of aquatic macrophytes, such as Azolla with hyper accumulating ability is known to be an environmentally friendly option to restore polluted aquatic resources. The present review highlights the phytoaccumulation potential of macrophytes with emphasis on utilization of Azolla as a promising candidate for phytoremediation. The impact of uptake of heavy metals on morphology and metabolic processes of Azolla has also been discussed for a better understanding and utilization of this symbiotic association in the field of phytoremediation.

  9. Structural and functional effects of herbicides on non-target organisms in aquatic ecosystems with an emphasis on atrazine

    Science.gov (United States)

    Fairchild, James; Kortekamp, Andreas

    2011-01-01

    for controlling nuisance aquatic vegetation. Although aquatic herbicide exposure has been widely documented, these exposures are not necessarily related to adverse non-target ecological effects on natural communities in aquatic environments. This chapter evaluates the potential for effects of herbicides on the structure and function of aquatic envrionments at the population, community, and ecosystem levels of biological organization. In this manuscript I examine several critical aspects of the subject matter area: primary herbicides in use and chemical modes of action; the regulatory process used for registration and risk assessment of herbicides; data regarding non-target risks and the relative sensitivity of aquatic plants, inveretebrates, and fish to herbicides; and emerging areas of science regarding the potential for endocrine-disrupting effects of herbicides on aquatic vertebrates. Much of the focus of this paper is on atrazine due to the extensive database which exists regarding its fate and effects. 

  10. A field guide to valuable underwater aquatic plants of the Great Lakes

    Science.gov (United States)

    Schloesser, Donald W.

    1986-01-01

    Underwater plants are a valuable part of the Great Lakes ecosystem, providing food and shelter for aquatic animals. Aquatic plants also help stabilize sediments, thereby reducing shoreline erosion. Annual fall die-offs of underwater plants provide food and shelter for overwintering small aquatic animals such as insects, snails, and freshwater shrimp.

  11. Trophic Transfer of Arsenic from an Aquatic Insect to Terrestrial Insect Predators

    OpenAIRE

    Mogren, Christina L.; Walton, William E.; Parker, David R.; Trumble, John T.

    2013-01-01

    The movement of energy and nutrients from aquatic to terrestrial ecosystems can be substantial, and emergent aquatic insects can serve as biovectors not only for nutrients, but also for contaminants present in the aquatic environment. The terrestrial predators Tenodera aridifolia sinensis (Mantodea: Mantidae) and Tidarren haemorrhoidale (Araneae: Theridiidae) and the aquatic predator Buenoa scimitra (Hemiptera: Notonectidae) were chosen to evaluate the efficacy of arsenic transfer between aqu...

  12. Propagation and Establishment of Native Plants for Vegetative Restoration of Aquatic Ecosystems

    Science.gov (United States)

    2013-06-01

    ERDC/EL TR-13-9 ii Abstract Aquatic plants are a vital, but often missing, component of shallow, freshwater systems. Manmade systems, such as... water quality problems; development of noxious algal blooms; and, often, susceptibility to invasion by harmful, non-native, aquatic weeds. If...emergent aquatic plants that we have successfully used in founder colony establishment in US water bodies. ............................................. 7

  13. Why cumulative impacts assessments of hydrocarbon activities in the Arctic fail to meet their purpose

    DEFF Research Database (Denmark)

    Kirkfeldt, Trine Skovgaard; Hansen, Anne Merrild; Olsen, Pernille

    2017-01-01

    The Arctic Region is characterised by vulnerable ecosystems and residing indigenous people, dependent on nature for fishing and hunting. The Arctic also contains a wealth of non-living natural resources such as minerals and hydrocarbons. Synergies between increased access and growing global deman...

  14. Procedure to select test organisms for environmental risk assessment of genetically modified crops in aquatic systems.

    Science.gov (United States)

    Hilbeck, Angelika; Bundschuh, Rebecca; Bundschuh, Mirco; Hofmann, Frieder; Oehen, Bernadette; Otto, Mathias; Schulz, Ralf; Trtikova, Miluse

    2017-11-01

    For a long time, the environmental risk assessment (ERA) of genetically modified (GM) crops focused mainly on terrestrial ecosystems. This changed when it was scientifically established that aquatic ecosystems are exposed to GM crop residues that may negatively affect aquatic species. To assist the risk assessment process, we present a tool to identify ecologically relevant species usable in tiered testing prior to authorization or for biological monitoring in the field. The tool is derived from a selection procedure for terrestrial ecosystems with substantial but necessary changes to adequately consider the differences in the type of ecosystems. By using available information from the Water Framework Directive (2000/60/EC), the procedure can draw upon existing biological data on aquatic systems. The proposed procedure for aquatic ecosystems was tested for the first time during an expert workshop in 2013, using the cultivation of Bacillus thuringiensis (Bt) maize as the GM crop and 1 stream type as the receiving environment in the model system. During this workshop, species executing important ecological functions in aquatic environments were identified in a stepwise procedure according to predefined ecological criteria. By doing so, we demonstrated that the procedure is practicable with regard to its goal: From the initial long list of 141 potentially exposed aquatic species, 7 species and 1 genus were identified as the most suitable candidates for nontarget testing programs. Integr Environ Assess Manag 2017;13:974-979. © 2017 SETAC. © 2017 SETAC.

  15. An outline of a model-based expert system to identify optimal remedial strategies for restoring contaminated aquatic ecosystems: the project MOIRA

    International Nuclear Information System (INIS)

    Appelgren, A.; Bergstrom, U.; Brittain, J.; Monte, L.

    1996-10-01

    The present report describes the fundamental principles of the research programme MOIRA (a model based computerized system for management support to Identify optimal remedial strategies for Restoring radionuclide contaminated Aquatic ecosystems and drainage areas) financed by the EC (European Community) (Contract N F14P-CT96-0036). The interventions to restore radionuclides contaminated aquatic systems may result in detrimental ecological, social and economical effects. Decision makers must carefully evaluate these impacts. The main aim of the MOIRA project is the development of an expert system based on validated models predicting the evolution of the radioactive contamination of fresh water systems following countermeasure applications and their relevant ecological, social and economical impacts. The expert system will help decision makers, that are not necessarily gifted with experience in environmental modeling, to identify optimal remedial strategies for restoring contaminated fresh water systems

  16. Initial Impacts of the Mount Polley Tailings Pond Breach on Adjacent Aquatic Ecosystems

    Science.gov (United States)

    Petticrew, Ellen; Gantner, Nikolaus; Albers, Sam; Owens, Philip

    2015-04-01

    On August 4th 2014, the Mount Polley Tailings pond breach near Likely, B.C., released approximately 24 million cubic metres of tailings material into Polley Lake, Hazeltine Creek and Quesnel Lake. The discharge scoured and eroded a swath of soil and sediment delivering an unknown amount of metals and sediment into this tributary ecosystem of the Fraser River. Subsequent efforts by the mine operator to remediate by pumping tailings water from Polley Lake into Hazeltine Creek, which flows into Quesnel Lake, resulted in additional and continuous release of unknown volumes of contaminated water and sediments into the watershed. Heavy metals (e.g., selenium, copper, or mercury) reported as stored in the tailings pond entered the downstream aquatic environment and have been monitored in the water column of Quesnel Lake since August. These contaminants are likely particle-bound and thus subject to transport over long distances without appreciable degradation, resulting in the potential for chronic exposures and associated toxicological effects in exposed biota. While significant dilution is expected during aquatic transport, and the resulting concentrations in the water will likely be low, concentrations in exposed biota may become of concern over time. Metals such as mercury and selenium undergo bioaccumulation and biomagnification, once incorporated into the food chain/web. Thus, even small concentrations of such contaminants in water can lead to greater concentrations (~100 fold) in top predators. Over time, our predictions are that food web transfer will lead to an increase in concentrations from water (1-2 years)->invertebrates (1-2 yrs) ->fishes (2-5 yrs). Pacific salmon travel great distances in this watershed and may be exposed to contaminated water during their migrations. Resident species will be exposed to the contaminated waters and sediments in the study lakes year round. Little or no background/baseline data for metals in biota from Quesnel Lake exists

  17. Macrophytes: Ecology of aquatic plants

    NARCIS (Netherlands)

    Bornette, G.; Puijalon, S.

    2009-01-01

    Aquatic plants contribute to maintaining key functions and related biodiversity in freshwater ecosystems, and to provide the needs of human societies. The way the ecological niches of macrophytes are determined by abiotic filters and biotic ones is considered. A simple, broadly applicable model of

  18. Ecosystem model of the entire Beaufort Sea marine ecosystem: a tool for assessing food-web structure and ecosystem changes from 1970 to 2014

    Science.gov (United States)

    Suprenand, P. M.; Hoover, C.

    2016-02-01

    The Beaufort Sea coastal-marine ecosystem is approximately a 476,000 km2 area in the Arctic Ocean, which extends from -112.5 to -158° longitude to 67.5 to 75° latitude. Within this Arctic Ocean area the United States (Alaskan) indigenous communities of Barrow, Kaktovik, and Nuiqsut, and the Canadian (Northwest Territories) indigenous communities of Aklavik, Inuvik, Tuktoyaktuk, Paulatuk, Ulukhaktok, and Sachs Harbour, subsist by harvesting marine mammals, fish, and invertebrates from the Beaufort Sea to provide the majority of their community foods annually. The ecosystem in which the indigenous communities harvest is considered a polar habitat that includes many specialized species, such as polar bears that rely on sea-ice for foraging activities and denning, or ice algae that are attached to the cryosphere. However, the polar habitat has been experiencing a diminishing sea-ice extent, age, and seasonal duration, with concomitant increases in sea surface temperatures (SSTs), since the 1970s. Changes in sea-ice and SST have consequences to the Beaufort Sea coastal-marine ecosystem, which includes animal habitat losses, alterations to trophodynamics, and impacts to subsistence community harvesting. The present study was aimed at capturing trophodynamic changes in the Beaufort Sea coastal-marine ecosystem from 1970 to 2014 using a fitted spatial-temporal model (Ecopath with Ecosim and Ecospace) that utilizes forcing and mediation functions to describe animal/trophodynamic relationships with sea-ice and sea surface temperature, as well as individual community harvesting efforts. Model outputs reveals similar trends in animals population changes (e.g., increasing bowhead whale stock), changes in apex predator diets (e.g., polar bears eating less ringed seal), and changes in animal distributions (e.g., polar bears remaining closer to land over time). The Beaufort Sea model is a dynamic tool for Arctic Ocean natural resource management in the years to come.

  19. Building upon cooperative prospects amongst stakeholders for fighting Arctic marine invasion challenges

    DEFF Research Database (Denmark)

    Kourantidou, Melina; Kaiser, Brooks; Fernandez, Linda

    Biological invasions in Arctic marine environments are expected to noticeably affect the way the ecosystem will look and function in coming years. Along with many other rapid changes taking place in these previously isolated ecosystems, invasions of which we are both aware and unaware may have ir...... in the decision making process to help articulate incentive-compatible ecosystem management strategies that are adaptive to new information garnered from sustained Arctic observations....... expect that game theoretic environmental economic tools can help illuminate aspects of invasive species management significant for sound decision-making processes. Building blocks of such a game theoretic approach include the different players (stakeholders) involved. In our case study, we take...... environmental quality outcomes: Norwegian and Russian fishermen, Live and frozen crab markets, and Society, representing all possible beneficiaries of a healthy and well-sustained marine ecosystem in the Barents Sea as well as those in areas to which the invasion may spread. These actors must make decisions...

  20. Subcatchment deltas and upland features influence multiscale aquatic ecosystem recovery in damaged landscapes.

    Science.gov (United States)

    Kielstra, Brian W; Arnott, Shelley E; Gunn, John M

    2017-12-01

    Assessing biological recovery in damaged aquatic environments requires the consideration of multiple spatial and temporal scales. Past research has focused on assessing lake recovery from atmospheric or catchment disturbance at regional or catchment levels. Studies have also rarely considered the influences of adjacent terrestrial characteristics on within-lake habitats, such as subcatchment delta confluences. We used Hyalella azteca, a ubiquitous freshwater amphipod, as a sensitive indicator to assess the importance of local subcatchment scale factors in the context of multiscale lake recovery within the metal mining region of Sudbury, Canada following a period of major reductions in atmospheric pollution. At the regional scale, data from repeated surveys of 40 lakes showed higher probabilities of H. azteca occurrence with higher lake water conductivity, alkalinity, and pH and lower metal concentrations. The importance of metals decreased through time and the importance of higher conductivity, alkalinity, and pH increased. At the subcatchment scale, a subset of six lakes sampled across a colonization gradient revealed higher H. azteca abundances at subcatchment delta sites than non-delta sites in early colonization stages, and that abundance at delta sites was correlated with both within-lake habitat and terrestrial subcatchment characteristics. For example, wetland cover reduced the strength of positive associations between H. azteca abundance and macrophyte density. A single lake from this subset also revealed higher abundances at delta sites associated with higher concentrations of terrestrial organic matter and larger subcatchments. Our results demonstrate that factors affecting recovery can change with the scale of study, and that managing terrestrial-aquatic linkages is important for facilitating recovery processes within damaged lake ecosystems. © 2017 by the Ecological Society of America.

  1. Identifying Differences in Carbon Exchange among Arctic Ecosystem Types

    NARCIS (Netherlands)

    Williams, M.; Street, L.E.; Wijk, van M.T.; Shaver, G.R.

    2006-01-01

    Our objective was to determine how varied is the response of C cycling to temperature and irradiance in tundra vegetation. We used a large chamber to measure C exchange at 23 locations within a small arctic catchment in Alaska during summer 2003 and 2004. At each location, we determined light

  2. Mercury in aquatic forage of large herbivores: impact of environmental conditions, assessment of health threats, and implications for transfer across ecosystem compartments.

    Science.gov (United States)

    Bergman, Brenda Gail; Bump, Joseph K

    2014-05-01

    Mercury (Hg) is a leading contaminant across U.S. water bodies, warranting concern for wildlife species that depend upon food from aquatic systems. The risk of Hg toxicity to large herbivores is little understood, even though some large herbivores consume aquatic vascular plants (macrophytes) that may hyper-accumulate Hg. We investigated whether total Hg and methylmercury (MeHg) in aquatic forage may be of concern to moose (Alces alces) and beaver (Castor canadensis) by measuring total Hg and MeHg concentrations, calculating sediment-water bioconcentration factors for macrophyte species these herbivores consume, and estimating herbivore daily Hg consumption. Abiotic factors impacting macrophyte Hg were assessed, as was the difference in Hg concentrations of macrophytes from glacial lakes and those created or expanded by beaver damming. The amount of aquatic-derived Hg that moose move from aquatic to terrestrial systems was calculated, in order to investigate the potential for movement of Hg across ecosystem compartments by large herbivores. Results indicate that the Hg exposure of generalist herbivores may be affected by macrophyte community composition more so than by many abiotic factors in the aquatic environment. Mercury concentrations varied greatly between macrophyte species, with relatively high concentrations in Utricularia vulgaris (>80 ng g(-1) in some sites), and negligible concentrations in Nuphar variegata (~6 ng g(-1)). Macrophyte total Hg concentration was correlated with water pH in predictable ways, but not with other variables generally associated with aquatic Hg concentrations, such as dissolved organic carbon. Moose estimated daily consumption of MeHg is equivalent to or below human reference levels, and far below wildlife reference levels. However, estimated beaver Hg consumption exceeds reference doses for humans, indicating the potential for sub-lethal nervous impairment. In regions of high moose density, moose may be ecologically important

  3. The fate of 13C15N labelled glycine in permafrost and surface soil at simulated thaw in mesocosms from high arctic and subarctic ecosystems

    DEFF Research Database (Denmark)

    Ravn, Nynne Marie Rand; Elberling, Bo; Michelsen, Anders

    2017-01-01

    Background and aim: Nutrient distribution and carbon fluxes upon spring thaw are compared in mesocosms from high arctic and subarctic ecosystems dominated by Cassiope tetragona or Salix hastata/Salix arctica, in order to evaluate the possibility of plant and microbial utilization of an organic...... compound in thawing permafrost and surface soil. Methods: Double labeled glycine (13C15N) was added to soil columns with vegetation and to permafrost. During thaw conditions ecosystem respiration 13C was measured and 13C and 15N distribution in the ecosystem pools was quantified one day and one month after...... glycine addition. Results: Near-surface soil microbes were more efficient in the uptake of intact glycine immediately upon thaw than plants. After one month plants had gained more 15N whereas microbes seemed to lose 15N originating from glycine. We observed a time lag in glycine degradation upon...

  4. Effects of water scarcity and chemical pollution in aquatic ecosystems: State of the art.

    Science.gov (United States)

    Arenas-Sánchez, Alba; Rico, Andreu; Vighi, Marco

    2016-12-01

    Water scarcity is an expanding climate and human related condition, which drives and interacts with other stressors in freshwater ecosystems such as chemical pollution. In this study we provide an overview of the existing knowledge regarding the chemical fate, biological dynamics and the ecological risks of chemicals under water scarcity conditions. We evaluated a total of 15 studies dealing with the combined effects of chemicals and water scarcity under laboratory conditions and in the field. The results of these studies have been elaborated in order to evaluate additive, synergistic or antagonistic responses of the studied endpoints. As a general rule, it can be concluded that, in situations of water scarcity, the impacts of extreme water fluctuations are much more relevant than those of an additional chemical stressor. Nevertheless, the presence of chemical pollution may result in exacerbated ecological risks in some particular cases. We conclude that further investigations on this topic would take advantage on the focus on some specific issues. Experimental (laboratory and model ecosystem) studies should be performed on different biota groups and life stages (diapausing eggs, immature stages), with particular attention to those including traits relevant for the adaptation to water scarcity. More knowledge on species adaptations and recovery capacity is essential to predict community responses to multiple stressors and to assess the community vulnerability. Field studies should be performed at different scales, particularly in lotic systems, in order to integrate different functional dynamics of the river ecosystem. Combining field monitoring and experimental studies would be the best option to reach more conclusive, causal relationships on the effects of co-occurring stressors. Contribution of these studies to develop ecological models and scenarios is also suggested as an improvement for the prospective aquatic risk assessment of chemicals in (semi-)arid areas

  5. Biological responses to current UV-B radiation in Arctic regions

    DEFF Research Database (Denmark)

    Albert, Kristian Rost; Mikkelsen, Teis Nørgaard; Ro-Poulsen, H.

    2008-01-01

    on high-arctic vegetation. They supplement previous investigations from the Arctic focussing on other variables like growth etc., which have reported no or minor plant responses to UV-B, and clearly indicates that UV-B radiation is an important factor affecting plant life at high-arctic Zackenberg......Depletion of the ozone layer and the consequent increase in solar ultraviolet-B radiation (UV-B) may impact living conditions for arctic plants significantly. In order to evaluate how the prevailing UV-B fluxes affect the heath ecosystem at Zackenberg (74°30'N, 20°30'W) and other high......-arctic regions, manipulation experiments with various set-ups have been performed. Activation of plant defence mechanisms by production of UV-B absorbing compounds was significant in ambient UV-B in comparison to a filter treatment reducing the UV-B radiation. Despite the UV-B screening response, ambient UV...

  6. Organization of vegetation cover of aquatic ecosystems at Borodinskiy opencast coal mine dumps (Kansk forest-steppe, Eastern Siberia

    Directory of Open Access Journals (Sweden)

    D. Yu. Efimov

    2016-04-01

    Full Text Available The paper present the results of study of the floristic composition and importance of species of aquatic ecosystems on different types of technogenic surfaces of the Borodino coal mine and assessment of the impact of local factors on the structure and the dynamics of vegetation. The list of plant taxa containing 91 species of higher plants and 3 cha-rophytes. The largest amount of macrophytes species are Elodea canadensis Michx., Eleocharis palustris (L. Roem. & Schult., Hydrocharis morsus-ranae L., Potamogeton alpinus Balb., P. perfoliatus L., Sparganium emersum Rehm., Spirodela polyrhiza (L. Schleid., Typha latifolia L., Warnstorfia fluitans (Hedw. Loeske, Chara contraria A. Braun ex Kutz., the basis (up to 67.6‒70.9 % of vegetation mosaic of aquatic systems and differentiate its structure post-technogenic landscape. Sorensen index (QS = 0.63‒0.71 and Spearman rank correlation coefficient (rs = 0.29‒0.62, p < 0.01 values showed the greatest similarity between the species composition of the aquatic complexes arising on mineral surfaces planned dumps. The low level of similarity (QS = 0.13‒0.45; rs = 0.25‒0.34, p < 0.05 in spe-cies composition is typical fir ponds and wetlands formed around the perimeter of the heaps along the erosion of slopes. Non-parametric analysis of variance showed a statistically significant (p < 0.001 differentiation of the species composition of the variables values of the analyzed environmental factors: the direction of reclamation, type and age of geomorphic surfaces dumps. Aquatic complexes significantly complement and enrich the mosaic of man-made landscape of the Borodino coal mine, the potential of their diversity should be taken into account when developing plans and strategies for reclamation of disturbed areas.

  7. AMEG: the new SETAC advisory group on aquatic macrophyte ecotoxicology.

    Science.gov (United States)

    Arts, Gertie; Davies, Jo; Dobbs, Michael; Ebke, Peter; Hanson, Mark; Hommen, Udo; Knauer, Katja; Loutseti, Stefania; Maltby, Lorraine; Mohr, Silvia; Poovey, Angela; Poulsen, Véronique

    2010-05-01

    Primary producers play critical structural and functional roles in aquatic ecosystems; therefore, it is imperative that the potential risks of toxicants to aquatic plants are adequately assessed in the risk assessment of chemicals. The standard required macrophyte test species is the floating (non-sediment-rooted) duckweed Lemna spp. This macrophyte species might not be representative of all floating, rooted, emergent, and submerged macrophyte species because of differences in the duration and mode of exposure; sensitivity to the specific toxic mode of action of the chemical; and species-specific traits (e.g., duckweed's very short generation time). These topics were addressed during the workshop entitled "Aquatic Macrophyte Risk Assessment for Pesticides" (AMRAP) where a risk assessment scheme for aquatic macrophytes was proposed. Four working groups evolved from this workshop and were charged with the task of developing Tier 1 and higher-tier aquatic macrophyte risk assessment procedures. Subsequently, a SETAC Advisory Group, the Macrophyte Ecotoxicology Group (AMEG) was formed as an umbrella organization for various macrophyte working groups. The purpose of AMEG is to provide scientifically based guidance in all aspects of aquatic macrophyte testing in the laboratory and field, including prospective as well as retrospective risk assessments for chemicals. As AMEG expands, it will begin to address new topics including bioremediation and sustainable management of aquatic macrophytes in the context of ecosystem services.

  8. Envisioning the Future of Aquatic Animal Tracking: Technology, Science, and Application

    Energy Technology Data Exchange (ETDEWEB)

    Lennox, Robert J.; Aarestrup, Kim; Cooke, Steven J.; Cowley, Paul D.; Deng, Zhiqun D.; Fisk, Aaron T.; Harcourt, Robert G.; Heupel, Michelle; Hinch, Scott G.; Holland, Kim N.; Hussey, Nigel E.; Iverson, Sara J.; Kessel, Steven T.; Kocik, John F.; Lucas, Martyn C.; Flemming, Joanna Mills; Nguyen, Vivian M.; Stokesbury, Michael J. W.; Vagle, Svein; VanderZwaag, David L.; Whoriskey, Frederick G.; Young, Nathan

    2017-09-13

    Electronic tags have proven to be extremely useful for broadening our understanding of aquatic animals by answering diverse questions about their behaviours, physiologies, and life histories fundamental to ecology. Simultaneously, many applied conservation and management efforts are informed by animals tagged with electronic tags. In spite of the many advances in tracking software and hardware, an uncertain future in the world’s aquatic ecosystems portends great challenges for science. Aquatic animal tracking with electronic tags represents both the present and future of integrative biology and ecology in aquatic ecosystems. Here we identify what we regard as the future of aquatic animal tracking in a horizon scanning exercise. We submit that the future of aquatic animal tracking will include opportunities for multi-platform tracking systems for simultaneously monitoring position, activity, physiology, and microhabitat of animals, improved data collection and accessibility with new infrastructure (e.g. tags, receivers) and cyberinfrastructure, and integrated tagging information with animal traits derived from biopsy during tagging. We discuss parallel needs and opportunities in areas related to the application of animal tracking in the future such as knowledge mobilization and governance.

  9. Arctic alpine ecosystems and people in a changing environment

    National Research Council Canada - National Science Library

    Ørbæk, Jon Børre

    2007-01-01

    ... for the population structures and the interaction between species. These changes may also have socio-economic effects if the changes affect the bio-production, which form the basis for the marine and terrestrial food chains. The book is uniquely multidisciplinary and provides examples of various aspects of contemporary environmental change in arctic and ...

  10. The behavior of radioactive cerium in agricultural ecosystem

    International Nuclear Information System (INIS)

    Zhong Weiliang; Wang Shouxiang; Chen Chuanqun; Zhang Yongxi; Sun Zhiming

    1995-12-01

    Studies on the transport, accumulation, and distribution of 141 Ce in simulated paddy and simulated aquatic ecosystem were done. The results are as follows: (1) The concentration of 141 Ce in water decreased sharply when 141 Ce was put into the paddy through water. The uptake of 141 Ce by rice was mainly via root, and redistribution in all parts of rice occurred consequently. 141 Ce which was rapidly and almost completely adsorbed by soil could not move readily through the soil, and over 93 percent of that was retained within 4 centimeter of the surface layer. The dynamic behavior of 141 Ce in the paddy could be described as a closed three-compartment model. (2) After 141 Ce was put into the aquatic ecosystem, the adsorption, condensation, complexation and deposit of 141 Ce were quickly generated by physical and chemical processes, and then most of that was adsorbed by silt, aquatic plants and animals. Silt had a great capability of adsorbing 141 Ce. The concentration capability of aquatic for 141 Ce have the order of: hoenwort>snail>fish. A closed five-compartment model was applied to describe the behavior of 141 Ce in the aquatic ecosystem. (9 refs., 2 figs., 7 tabs.)

  11. Morphology-dependent water budgets and nutrient fluxes in arctic thaw ponds

    Science.gov (United States)

    Koch, Joshua C.; Gurney, Kirsty; Wipfli, Mark S.

    2014-01-01

    Thaw ponds on the Arctic Coastal Plain of Alaska are productive ecosystems, providing habitat and food resources for many fish and bird species. Permafrost in this region creates unique pond morphologies: deep troughs, shallow low-centred polygons (LCPs) and larger coalescent ponds. By monitoring seasonal trends in pond volume and chemistry, we evaluated whether pond morphology and size affect water temperature and desiccation, and nitrogen (N) and phosphorus (P) fluxes. Evaporation was the largest early-summer water flux in all pond types. LCPs dried quickly and displayed high early-summer nutrient concentrations and losses. Troughs consistently received solute-rich subsurface inflows, which accounted for 12 to 42 per cent of their volume and may explain higher P in the troughs. N to P ratios increased and ammonium concentrations decreased with pond volume, suggesting that P and inorganic N availability may limit ecosystem productivity in older, larger ponds. Arctic summer temperatures will likely increase in the future, which may accelerate mid-summer desiccation. Given their morphology, troughs may remain wet, become warmer and derive greater nutrient loads from their thawing banks. Overall, seasonal- to decadal-scale warming may increase ecosystem productivity in troughs relative to other Arctic Coastal Plain ponds. 

  12. Marine Invasive Species Management: Adapting in the Arctic

    DEFF Research Database (Denmark)

    Kaiser, Brooks

    2014-01-01

    The rapid pace of climate change and increased human disturbance of ecosystems in the Arctic is bringing urgency to concern over non-native species introductions and their potential threats to the marine environment and its economic productivity, where before environmental conditions served...

  13. Nitrous oxide emission by aquatic macrofauna

    DEFF Research Database (Denmark)

    Stief, Peter; Poulsen, Morten; Nielsen, Lars Peter

    2009-01-01

      A large variety of aquatic animals was found to emit the potent greenhouse gas nitrous oxide when nitrate was present in the environment. The emission was ascribed to denitrification by ingested bacteria in the anoxic animal gut, and the exceptionally high N2O-to-N2 production ratio suggested...... delayed induction of the last step of denitrification. Filter- and deposit-feeding animal species showed the highest rates of nitrous oxide emission and predators the lowest, probably reflecting the different amounts of denitrifying bacteria in the diet. We estimate that nitrous oxide emission by aquatic...... animals is quantitatively important in nitraterich aquatic environments like freshwater, coastal marine, and deep-sea ecosystems. The contribution of this source to overall nitrous oxide emission from aquatic environments might further increase because of the projected increase of nitrate availability...

  14. Ecology of anuran populations inhabiting thermally stressed aquatic ecosystems, with emphasis on larval Rana pipiens and Bufo terrestris

    International Nuclear Information System (INIS)

    Nelson, D.H.

    1974-01-01

    Field and laboratory studies were conducted to determine the responses of anuran populations to thermally stressed aquatic ecosystems. Adult and larval amphibians were sampled in and around a cool arm of a 67 ha reservoir that receives high temperature effluent from a nuclear production reactor on the Savannah River Plant (SRP) in South Carolina. Patterns for some species were compared with data from nearby unheated areas and analyzed in terms of the thermal gradient (16-45 C) extending the length of the reservoir's cool arm. The adaptation to breeding during nocturnal rainfall fortuitously confers a double advantage especially to anurans breeding in thermally stressed waters. (U.S.)

  15. Multiproxy evidence for terrestrial and aquatic ecosystem responses during the 8.2 ka cold event as recorded at Højby Sø, Denmark

    DEFF Research Database (Denmark)

    Hede, Mikkel Ulfeldt; Rasmussen, Peter; Noe-Nygaard, Nanna

    2010-01-01

    ecosystems to the 8.2 ka cold event. A reduced pollen production by thermophilous deciduous tree taxa in the period c. 8250–8000 cal yr BP reveal that the forest ecosystem was affected by low temperatures during the summer and winter/early-spring seasons. This finding is consistent with the timing of the 8.......2 ka cold event as registered in the Greenland ice cores. At Højby Sø, the climate anomaly appears to have started 200–250 yr earlier than the 8.2 ka cold event as the lake proxy data provide strong evidence for a precipitation-induced distinct increase in catchment soil erosion beginning around 8500...... cal yr BP. Alteration of the terrestrial environment then resulted in a major aquatic ecosystem change with nutrient enrichment of the lake and enhanced productivity, which lasted until c. 7900 cal yr BP. Keywords: 8.2 ka cold event; Lake sediments; Palaeoclimate; Pollen; Macrofossils; Geochemistry...

  16. Science Partnerships for a Sustainable Arctic: the Marine Mammal Nexus (Invited)

    Science.gov (United States)

    Moore, S. E.

    2010-12-01

    Marine mammals are both icons of Arctic marine ecosystems and fundamental to Native subsistence nutrition and culture. Eight species are endemic to the Pacific Arctic, including the polar bear, walrus, ice seals (4 species), beluga and bowhead whales. Studies of walrus and bowheads have been conducted over the past 30 years, to estimate population size and elucidate patterns of movement and abundance. With regard to the three pillars of the SEARCH program, these long-term OBSERVATIONS provide a foundation for research seeking to UNDERSTAND and RESPOND to the effects of rapid climate change on the marine ecosystem. Specifically, research on the coastal ecosystem near Barrow, Alaska focuses on late-summer feeding habitat for bowheads in an area where whales are hunted in autumn. This work is a partnership among agency, academic and local scientists and the residents of Barrow, all of whom seek to better UNDERSTAND how recent dramatic changes in sea ice, winds and offshore industrial activities influence whale movements and behavior. In regard to RESPONDING to climate change, the nascent Sea Ice for Walrus Outlook (SIWO) is a science partnership that projects sea ice and wind conditions for five villages in the Bering Strait region. The objective of the SIWO is to provide information on physical conditions in the marine environment at spatial and temporal scales relevant to walrus hunters. Marine mammals are a strong and dynamic nexus for partnerships among scientists, Arctic residents, resource managers and the general public - as such, they are essential elements to any science plan for a sustainable Arctic.

  17. Seasonal PCB bioaccumulation in an arctic marine ecosystem: a model analysis incorporating lipid dynamics, food-web productivity and migration.

    Science.gov (United States)

    Laender, Frederik De; Oevelen, Dick Van; Frantzen, Sylvia; Middelburg, Jack J; Soetaert, Karline

    2010-01-01

    Primary production and species' lipid contents in Arctic ecosystems are notoriously seasonal. Additionally, seasonal migration patterns of fish may alter prey availability and thus diet. Taking the southern Barents Sea as a study region and PCBs as model contaminants, we examined to what extent each of these factors cause bioaccumulation in fish to change throughout the year. Data on physiology and standing stocks of multiple trophic levels were used to estimated season-specific carbon budgets and by inference also corresponding values for food ingestion and production of cod, capelin, and herring. When combining these values with Arctic lipid dynamics for bioaccumulation model parameter setting, we predicted bioaccumulation factors (BAFs) that were in good agreement with BAFs for cod and capelin observed between 1998 and 2008. BAFs in all fish were 10 times lower in summer than in spring and fall/winter and were mainly driven by lipid dynamics. Trophic magnification factors (TMFs: increase in BAF per unit increase in trophic level as derived from our carbon budgets) were highest for PCB 153 during spring (2.3-2.4) and lowest for PCB 52 in summer and fall/winter (1.5-1.6) and were driven by seasonal shifts in trophic level and lipid dynamics.

  18. Genetic Diversity of Eukaryotic Picoplankton in the Arctic Ocean (Fram Strait)

    OpenAIRE

    Kilias, Estelle; Nöthig, Eva-Maria; Peeken, Ilka; Wolf, Christian; Metfies, Katja

    2011-01-01

    Climate change is expected to be particularly intense in the Arctic Ocean having as well extensive consequences on Arctic pelagic ecosystems. Thus, evaluations of the impact on the base of the food web, on local phytoplankton communities, are required. Prerequisite of such an evaluation is comprehensive information about the present phytoplankton diversity and distribution. Recent investigations indicate that rising temperatures as well as freshening of surface waters in the marine environmen...

  19. Modeling plankton ecosystem functioning and nitrogen fluxes in the oligotrophic waters of the Beaufort Sea, Arctic Ocean: a focus on light-driven processes

    Directory of Open Access Journals (Sweden)

    V. Le Fouest

    2013-07-01

    Full Text Available The Arctic Ocean (AO undergoes profound changes of its physical and biotic environments due to climate change. In some areas of the Beaufort Sea, the stronger haline stratification observed in summer alters the plankton ecosystem structure, functioning and productivity, promoting oligotrophy. A one-dimension (1-D physical–biological coupled model based on the large multiparametric database of the Malina project in the Beaufort Sea was used (i to infer the plankton ecosystem functioning and related nitrogen fluxes and (ii to assess the model sensitivity to key light-driven processes involved in nutrient recycling and phytoplankton growth. The coupled model suggested that ammonium photochemically produced from photosensitive dissolved organic nitrogen (i.e., photoammonification process was a necessary nitrogen source to achieve the observed levels of microbial biomass and production. Photoammonification directly and indirectly (by stimulating the microbial food web activity contributed to 70% and 18.5% of the 0–10 m and whole water column, respectively, simulated primary production (respectively 66% and 16% for the bacterial production. The model also suggested that variable carbon to chlorophyll ratios were required to simulate the observed herbivorous versus microbial food web competition and realistic nitrogen fluxes in the Beaufort Sea oligotrophic waters. In face of accelerating Arctic warming, more attention should be paid in the future to the mechanistic processes involved in food webs and functional group competition, nutrient recycling and primary production in poorly productive waters of the AO, as they are expected to expand rapidly.

  20. Net exchanges of CO2, CH4 and N2O between the terrestrial ecosystems and the atmosphere in boreal and arctic region: Towards a full greenhouse gas budget

    Science.gov (United States)

    Zhang, B.; Tian, H.; Lu, C.; Yang, J.; Kamaljit, K.; Pan, S.

    2014-12-01

    Boreal and arctic terrestrial ecosystem is a unique ecological region due to large portion of wetland and permafrost distribution. Increasing disturbances, like permafrost-thaw, fire event, climate extreme, would greatly change the patterns and variations of greenhouse gas emission and further affect the feedback between terrestrial ecosystem and climate change. Carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) accounted for more than 85% of the radioactive forcing (RF) due to long-lived greenhouse gases. However, few studies have considered the full budget of three gases together in this region. In this study, we used a process-based model (Dynamic Land Ecosystem Model), driven by multiple global change factors, to quantify the magnitude, spatial and temporal variation of CO2, CH4 and N2O across the boreal and arctic regions. Simulated results have been evaluated against field observations, inventory-based and atmospheric inversion estimates. By implementing a set of factorial simulations, we further quantify the relative contribution of climate, atmospheric composition, fire to the CO2, CH4 and N2O fluxes. Continued warming climate potentially could shift the inter-annual and intra-annual variation of greenhouse gases fluxes. The understanding of full budget in this region could provide insights for reasonable future projection, which is also crucial for developing effective mitigation strategies.

  1. Identifying the principal driving factors of water ecosystem dependence and the corresponding indicator species in a pilot City, China

    Science.gov (United States)

    Zhao, C. S.; Shao, N. F.; Yang, S. T.; Xiang, H.; Lou, H. Z.; Sun, Y.; Yang, Z. Y.; Zhang, Y.; Yu, X. Y.; Zhang, C. B.; Yu, Q.

    2018-01-01

    The world's aquatic ecosystems yield numerous vital services, which are essential to human existence but have deteriorated seriously in recent years. By studying the mechanisms of interaction between ecosystems and habitat processes, the constraining factors can be identified, and this knowledge can be used to improve the success rate of ecological restoration initiatives. At present, there is insufficient data on the link between hydrological, water quality factors and the changes in the structure of aquatic communities to allow any meaningful study of driving factors of aquatic ecosystems. In this study, the typical monitoring stations were selected by fuzzy clustering analysis based on the spatial and temporal distribution characteristics of water ecology in Jinan City, the first pilot city for the construction of civilized aquatic ecosystems in China. The dominant species identification model was used to identify the dominant species of the aquatic community. The driving effect of hydrological and water quality factors on dominant species was analyzed by Canonical Correspondence Analysis. Then, the principal factors of aquatic ecosystem dependence were selected. The results showed that there were 10 typical monitoring stations out of 59 monitoring sites, which were representative of aquatic ecosystems, 9 dominant fish species, and 20 dominant invertebrate species. The selection of factors for aquatic ecosystem dependence in Jinan were highly influenced by its regional conditions. Chemical environmental parameters influence the temporal and spatial variation of invertebrate much more than that of fish in Jinan City. However, the methodologies coupling typical monitoring stations selection, dominant species determination and driving factors identification were certified to be a cost-effective way, which can provide in-deep theoretical and technical directions for the restoration of aquatic ecosystems elsewhere.

  2. Short-cut transport path for Asian dust directly to the Arctic: a case study

    International Nuclear Information System (INIS)

    Huang, Zhongwei; Huang, Jianping; Wang, Shanshan; Zhou, Tian; Jin, Hongchun; Hayasaka, Tadahiro

    2015-01-01

    Asian dust can be transported long distances from the Taklimakan or Gobi desert to North America across the Pacific Ocean, and it has been found to have a significant impact on ecosystems, climate, and human health. Although it is well known that Asian dust is transported all over the globe, there are limited observations reporting Asian dust transported to the Arctic. We report a case study of a large-scale heavy dust storm over East Asia on 19 March 2010, as shown by ground-based and space-borne multi-sensor observations, as well as NCEP/NCAR reanalysis data and HYSPLIT trajectories. Our analysis suggests that Asian dust aerosols were transported from northwest China to the Arctic within 5 days, crossing eastern China, Japan and Siberia before reaching the Arctic. The results indicate that Asian dust can be transported for long distances along a previously unreported transport path. Evidence from other dust events over the past decade (2001–2010) also supports our results, indicating that dust from 25.2% of Asian dust events has potentially been transported directly to the Arctic. The transport of Asian dust to the Arctic is due to cyclones and the enhanced East Asia Trough (EAT), which are very common synoptic systems over East Asia. This suggests that many other large dust events would have generated long-range transport of dust to the Arctic along this path in the past. Thus, Asian dust potentially affects the Arctic climate and ecosystem, making climate change in the Arctic much more complex to be fully understood. (letter)

  3. Mapping critical loads of nitrogen deposition for aquatic ecosystems in the Rocky Mountains, USA

    Science.gov (United States)

    Nanus, Leora; Clow, David W.; Saros, Jasmine E.; Stephens, Verlin C.; Campbell, Donald H.

    2012-01-01

    Spatially explicit estimates of critical loads of nitrogen (N) deposition (CLNdep) for nutrient enrichment in aquatic ecosystems were developed for the Rocky Mountains, USA, using a geostatistical approach. The lowest CLNdep estimates (-1 yr-1) occurred in high-elevation basins with steep slopes, sparse vegetation, and abundance of exposed bedrock and talus. These areas often correspond with areas of high N deposition (>3 kg N ha-1 yr-1), resulting in CLNdep exceedances ≥1.5 ± 1 kg N ha-1 yr-1. CLNdep and CLNdep exceedances exhibit substantial spatial variability related to basin characteristics and are highly sensitive to the NO3- threshold at which ecological effects are thought to occur. Based on an NO3- threshold of 0.5 μmol L-1, N deposition exceeds CLNdep in 21 ± 8% of the study area; thus, broad areas of the Rocky Mountains may be impacted by excess N deposition, with greatest impacts at high elevations.

  4. Ways forward for aquatic conservation: Applications of environmental psychology to support management objectives.

    Science.gov (United States)

    Walker-Springett, Kate; Jefferson, Rebecca; Böck, Kerstin; Breckwoldt, Annette; Comby, Emeline; Cottet, Marylise; Hübner, Gundula; Le Lay, Yves-François; Shaw, Sylvie; Wyles, Kayleigh

    2016-01-15

    The success or failure of environmental management goals can be partially attributed to the support for such goals from the public. Despite this, environmental management is still dominated by a natural science approach with little input from disciplines that are concerned with the relationship between humans and the natural environment such as environmental psychology. Within the marine and freshwater environments, this is particularly concerning given the cultural and aesthetic significance of these environments to the public, coupled with the services delivered by freshwater and marine ecosystems, and the vulnerability of aquatic ecosystems to human-driven environmental perturbations. This paper documents nine case studies which use environmental psychology methods to support a range of aquatic management goals. Examples include understanding the drivers of public attitudes towards ecologically important but uncharismatic river species, impacts of marine litter on human well-being, efficacy of small-scale governance of tropical marine fisheries and the role of media in shaping attitudes towards. These case studies illustrate how environmental psychology and natural sciences can be used together to apply an interdisciplinary approach to the management of aquatic environments. Such an approach that actively takes into account the range of issues surrounding aquatic environment management is more likely to result in successful outcomes, from both human and environmental perspectives. Furthermore, the results illustrate that better understanding the societal importance of aquatic ecosystems can reduce conflict between social needs and ecological objectives, and help improve the governance of aquatic ecosystems. Thus, this paper concludes that an effective relationship between academics and practitioners requires fully utilising the skills, knowledge and experience from both sectors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Characteristics of summer-time energy exchange in a high Arctic tundra heath 2000–2010

    Directory of Open Access Journals (Sweden)

    Magnus Lund

    2014-07-01

    Full Text Available Global warming will bring about changes in surface energy balance of Arctic ecosystems, which will have implications for ecosystem structure and functioning, as well as for climate system feedback mechanisms. In this study, we present a unique, long-term (2000–2010 record of summer-time energy balance components (net radiation, R n; sensible heat flux, H; latent heat flux, LE; and soil heat flux, G from a high Arctic tundra heath in Zackenberg, Northeast Greenland. This area has been subjected to strong summer-time warming with increasing active layer depths (ALD during the last decades. We observe high energy partitioning into H, low partitioning into LE and high Bowen ratio (β=H/LE compared with other Arctic sites, associated with local climatic conditions dominated by onshore winds, slender vegetation with low transpiration activity and relatively dry soils. Surface saturation vapour pressure deficit (D s was found to be an important variable controlling within-year surface energy partitioning. Throughout the study period, we observe increasing H/R n and LE/R n and decreasing G/R n and β, related to increasing ALD and decreasing soil wetness. Thus, changes in summer-time surface energy balance partitioning in Arctic ecosystems may be of importance for the climate system.

  6. Uptake of uranium by aquatic plants growing in fresh water ecosystem around uranium mill tailings pond at Jaduguda, India.

    Science.gov (United States)

    Jha, V N; Tripathi, R M; Sethy, N K; Sahoo, S K

    2016-01-01

    Concentration of uranium was determined in aquatic plants and substrate (sediment or water) of fresh water ecosystem on and around uranium mill tailings pond at Jaduguda, India. Aquatic plant/substrate concentration ratios (CRs) of uranium were estimated for different sites on and around the uranium mill tailings disposal area. These sites include upstream and downstream side of surface water sources carrying the treated tailings effluent, a small pond inside tailings disposal area and residual water of this area. Three types of plant groups were investigated namely algae (filamentous and non-filamentous), other free floating & water submerged and sediment rooted plants. Wide variability in concentration ratio was observed for different groups of plants studied. The filamentous algae uranium concentration was significantly correlated with that of water (r=0.86, puranium concentration in plant and the substrate (r=0.88, puranium concentration was significantly correlated with Mn, Fe, and Ni concentration of plants (puranium accumulation and concentration ratio can be useful for prospecting phytoremediation of stream carrying treated or untreated uranium mill tailings effluent. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Risk and markets for ecosystem services.

    Science.gov (United States)

    Bendor, Todd K; Riggsbee, J Adam; Doyle, Martin

    2011-12-15

    Market-based environmental regulations (e.g., cap and trade, "payments for ecosystem services") are increasingly common. However, few detailed studies of operating ecosystem markets have lent understanding to how such policies affect incentive structures for improving environmental quality. The largest U.S. market stems from the Clean Water Act provisions requiring ecosystem restoration to offset aquatic ecosystems damaged during development. We describe and test how variations in the rules governing this ecosystem market shift risk between regulators and entrepreneurs to promote ecological restoration. We analyze extensive national scale data to assess how two critical aspects of market structure - (a) the geographic scale of markets and (b) policies dictating the release of credits - affect the willingness of entrepreneurs to enter specific markets and produce credits. We find no discernible relationship between policies attempting to ease market entry and either the number of individual producers or total credits produced. Rather, market entry is primarily related to regional geography (the prevalence of aquatic ecosystems) and regional economic growth. Any improvements to policies governing ecosystem markets require explicit evaluation of the interplay between policy and risk elements affecting both regulators and entrepreneurial credit providers. Our findings extend to emerging, regulated ecosystem markets, including proposed carbon offset mechanisms, biodiversity banking, and water quality trading programs.

  8. Using Remotely Sensed Data and Watershed and Hydrodynamic Models to Evaluate the Effects of Land Cover Land Use Change on Aquatic Ecosystems in Mobile Bay, AL

    Science.gov (United States)

    Al-Hamdan, Mohammad Z.; Estes, Maurice G., Jr.; Judd, Chaeli; Thom, Ron; Woodruff, Dana; Ellis, Jean T.; Quattrochi, Dale; Watson, Brian; Rodriquez, Hugo; Johnson, Hoyt

    2012-01-01

    Alabama coastal systems have been subjected to increasing pressure from a variety of activities including urban and rural development, shoreline modifications, industrial activities, and dredging of shipping and navigation channels. The impacts on coastal ecosystems are often observed through the use of indicator species. One such indicator species for aquatic ecosystem health is submerged aquatic vegetation (SAV). Watershed and hydrodynamic modeling has been performed to evaluate the impact of land cover land use (LCLU) change in the two counties surrounding Mobile Bay (Mobile and Baldwin) on SAV stressors and controlling factors (temperature, salinity, and sediment) in the Mobile Bay estuary. Watershed modeling using the Loading Simulation Package in C++ (LSPC) was performed for all watersheds contiguous to Mobile Bay for LCLU scenarios in 1948, 1992, 2001, and 2030. Remotely sensed Landsat-derived National Land Cover Data (NLCD) were used in the 1992 and 2001 simulations after having been reclassified to a common classification scheme. The Prescott Spatial Growth Model was used to project the 2030 LCLU scenario based on current trends. The LSPC model simulations provided output on changes in flow, temperature, and sediment for 22 discharge points into the estuary. These results were inputted in the Environmental Fluid Dynamics Computer Code (EFDC) hydrodynamic model to generate data on changes in temperature, salinity, and sediment on a grid throughout Mobile Bay and adjacent estuaries. The changes in the aquatic ecosystem were used to perform an ecological analysis to evaluate the impact on SAV habitat suitability. This is the key product benefiting the Mobile Bay coastal environmental managers that integrates the influences of temperature, salinity, and sediment due to LCLU driven flow changes with the restoration potential of SAVs. Data products and results are being integrated into NOAA s EcoWatch and Gulf of Mexico Data Atlas online systems for

  9. DNAqua-Net: Developing new genetic tools for bioassessment and monitoring of aquatic ecosystems in Europe

    Directory of Open Access Journals (Sweden)

    Florian Leese

    2016-11-01

    Full Text Available The protection, preservation and restoration of aquatic ecosystems and their functions are of global importance. For European states it became legally binding mainly through the EU-Water Framework Directive (WFD. In order to assess the ecological status of a given water body, aquatic biodiversity data are obtained and compared to a reference water body. The quantified mismatch obtained determines the extent of potential management actions. The current approach to biodiversity assessment is based on morpho-taxonomy. This approach has many drawbacks such as being time consuming, limited in temporal and spatial resolution, and error-prone due to the varying individual taxonomic expertise of the analysts. Novel genomic tools can overcome many of the aforementioned problems and could complement or even replace traditional bioassessment. Yet, a plethora of approaches are independently developed in different institutions, thereby hampering any concerted routine application. The goal of this Action is to nucleate a group of researchers across disciplines with the task to identify gold-standard genomic tools and novel eco-genomic indices for routine application in biodiversity assessments of European fresh- and marine water bodies. Furthermore, DNAqua-Net will provide a platform for training of the next generation of European researchers preparing them for the new technologies. Jointly with water managers, politicians, and other stakeholders, the group will develop a conceptual framework for the standard application of eco-genomic tools as part of legally binding assessments.

  10. Methane and Root Dynamics in Arctic Soil

    DEFF Research Database (Denmark)

    D'Imperio, Ludovica

    on the global climate. We investigated two aspects of arctic ecosystem dynamics which are not well represented in climatic models: i) soil methane (CH4) oxidation in dry heath tundra and barren soils and ii) root dynamics in wetlands. Field measurements were carried out during the growing season in Disko Island...

  11. [Measuring water ecological carrying capacity with the ecosystem-service-based ecological footprint (ESEF) method: Theory, models and application].

    Science.gov (United States)

    Jiao, Wen-jun; Min, Qing-wen; Li, Wen-hua; Fuller, Anthony M

    2015-04-01

    Integrated watershed management based on aquatic ecosystems has been increasingly acknowledged. Such a change in the philosophy of water environment management requires recognizing the carrying capacity of aquatic ecosystems for human society from a more general perspective. The concept of the water ecological carrying capacity is therefore put forward, which considers both water resources and water environment, connects socio-economic development to aquatic ecosystems and provides strong support for integrated watershed management. In this paper, the authors proposed an ESEF-based measure of water ecological carrying capacity and constructed ESEF-based models of water ecological footprint and capacity, aiming to evaluate water ecological carrying capacity with footprint methods. A regional model of Taihu Lake Basin was constructed and applied to evaluate the water ecological carrying capacity in Changzhou City which located in the upper reaches of the basin. Results showed that human demand for water ecosystem services in this city had exceeded the supply capacity of local aquatic ecosystems and the significant gap between demand and supply had jeopardized the sustainability of local aquatic ecosystems. Considering aqua-product provision, water supply and pollutant absorption in an integrated way, the scale of population and economy aquatic ecosystems in Changzhou could bear only 54% of the current status.

  12. Life around the North Water ecosystem: Natural and social drivers of change over a millennium.

    Science.gov (United States)

    Hastrup, Kirsten; Andersen, Astrid Oberborbeck; Grønnow, Bjarne; Heide-Jørgensen, Mads Peter

    2018-04-01

    The formation of the North Water in Smith Sound about 4500 years ago, as evidenced by the establishment of bird colonies and human presence, also initiated a long-term anthropogenic agent as part of this High Arctic ecosystem. Different epochs have influenced the human occupation in the area: immigration pulses from Canada and Alaska, trade with meteorite iron throughout the Arctic, introduction of new technologies by whalers and explorers, exploitation of resources by foreigners, political sequestration, export of fox and seal skins and later narwhal products, and recently fishing. Physical drivers in terms of weather and climate affecting the northern hemisphere also impact accessibility and productivity of the ecosystem, with cascading effects on social drivers, again acting back on the natural ecologies. Despite its apparent isolation, the ecosystem had and still has wide ranging spatial ramifications that extend beyond the High Arctic, and include human activity. The challenge is to determine what is internal and what is external to an ecosystem.

  13. Climate change alters the structure of arctic marine food webs due to poleward shifts of boreal generalists.

    Science.gov (United States)

    Kortsch, Susanne; Primicerio, Raul; Fossheim, Maria; Dolgov, Andrey V; Aschan, Michaela

    2015-09-07

    Climate-driven poleward shifts, leading to changes in species composition and relative abundances, have been recently documented in the Arctic. Among the fastest moving species are boreal generalist fish which are expected to affect arctic marine food web structure and ecosystem functioning substantially. Here, we address structural changes at the food web level induced by poleward shifts via topological network analysis of highly resolved boreal and arctic food webs of the Barents Sea. We detected considerable differences in structural properties and link configuration between the boreal and the arctic food webs, the latter being more modular and less connected. We found that a main characteristic of the boreal fish moving poleward into the arctic region of the Barents Sea is high generalism, a property that increases connectance and reduces modularity in the arctic marine food web. Our results reveal that habitats form natural boundaries for food web modules, and that generalists play an important functional role in coupling pelagic and benthic modules. We posit that these habitat couplers have the potential to promote the transfer of energy and matter between habitats, but also the spread of pertubations, thereby changing arctic marine food web structure considerably with implications for ecosystem dynamics and functioning. © 2015 The Authors.

  14. Unraveling the intricate dynamics of planktonic Arctic marine food webs. A sensitivity analysis of a well-documented food web model

    Science.gov (United States)

    Saint-Béat, Blanche; Maps, Frédéric; Babin, Marcel

    2018-01-01

    The extreme and variable environment shapes the functioning of Arctic ecosystems and the life cycles of its species. This delicate balance is now threatened by the unprecedented pace and magnitude of global climate change and anthropogenic pressure. Understanding the long-term consequences of these changes remains an elusive, yet pressing, goal. Our work was specifically aimed at identifying which biological processes impact Arctic planktonic ecosystem functioning, and how. Ecological Network Analysis (ENA) indices reveal emergent ecosystem properties that are not accessible through simple in situ observation. These indices are based on the architecture of carbon flows within food webs. But, despite the recent increase in in situ measurements from Arctic seas, many flow values remain unknown. Linear inverse modeling (LIM) allows missing flow values to be estimated from existing flow observations and, subsequent reconstruction of ecosystem food webs. Through a sensitivity analysis on a LIM model of the Amundsen Gulf in the Canadian Arctic, we were able to determine which processes affected the emergent properties of the planktonic ecosystem. The analysis highlighted the importance of an accurate knowledge of the various processes controlling bacterial production (e.g. bacterial growth efficiency and viral lysis). More importantly, a change in the fate of the microzooplankton within the food web can be monitored through the trophic level of mesozooplankton. It can be used as a "canary in the coal mine" signal, a forewarner of larger ecosystem change.

  15. Sustainable Aquatic Resource Management Initiative | CRDI ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Increasing numbers of stakeholders are recognizing the need for changes in the way aquatic ecosystems are governed. ... for Resource Management and Environmental Studies (CERMES), University of the West Indies, on the application of new thinking (resilience, Complex Adaptive Systems theory) to coastal practices.

  16. Response of a tundra ecosystem to elevated atmospheric carbon dioxide and CO{sub 2}-induced climate change. Annual technical report

    Energy Technology Data Exchange (ETDEWEB)

    Oechel, W.C.

    1993-02-01

    Northern ecosystems contain up to 455 Gt of C in the soil active layer and upper permafrost, which is equivalent to approximately 60% of the carbon currently in the atmosphere as CO{sub 2}. Much of this carbon is stored in the soil as dead organic matter. Its fate is subject to the net effects of global change on the plant and soil systems of northern ecosystems. The arctic alone contains about 60 Gt C, 90% of which is present in the soil active layer and upper permafrost, and is assumed to have been a sink for CO{sub 2} during the historic and recent geologic past. Depending on the nature, rate, and magnitude of global environmental change, the arctic may have a positive or negative feedback on global change. Results from the DOE- funded research efforts of 1990 and 1991 indicate that the arctic has become a source of CO{sub 2} to the atmosphere. Measurements made in the Barrow, Alaska region during 1992 support these results. This change coincides with recent climatic variation in the arctic, and suggests a positive feedback of arctic ecosystems on atmospheric CO{sub 2} and global change. There are obvious potential errors in scaling plot level measurements to landscape, mesoscale, and global spatial scales. In light of the results from the recent DOE-funded research, and the remaining uncertainties regarding the change in arctic ecosystem function due to high latitude warming, a revised set of research goals is proposed for the 1993--94 year. The research proposed in this application has four principal aspects: (A) Long- term response of arctic plants and ecosystems to elevated atmospheric CO{sub 2}. (B) Circumpolar patterns of net ecosystem CO{sub 2} flux. (C) In situ controls by temperature and moisture on net ecosystem CO{sub 2} flux. (D) Scaling of CO{sub 2} flux from plot, to landscape, to regional scales.

  17. Tundra biome research in Alaska: the structure and function of cold-dominated ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Brown, J.; West, G.C.

    1970-11-01

    The objective of the Tundra Biome Program is to acquire a basic understanding of tundra, both alpine and arctic, and taiga. Collectively these are referred to as the cold-dominated ecosystems. The program's broad objectives are threefold: To develop a predictive understanding of how the wet arctic tundra ecosystem operates, particularly as exemplified in the Barrow, Alaska, area; to obtain the necessary data base from the variety of cold-dominated ecosystem types represented in the United States, so that their behavior can be modeled and simulated, and the results compared with similar studies underway in other circumpolar countries; to bring basic environmental knowledge to bear on problems of degradation, maintenance, and restoration of the temperature-sensitive and cold-dominated tundra/taiga ecosystems. (GRA)

  18. Arctic Vegetation under Climate Change – Biogenic Volatile Organic Compound Emissions and Leaf Anatomy

    DEFF Research Database (Denmark)

    Schollert, Michelle

    common arctic plant species, illustrating the great importance of vegetation composition for determining ecosystem BVOC emissions. Additionally, this thesis assesses the BVOC emission responses in common arctic plant species to effects of climate change: warming, shading and snow addition. Against...... treatment effects on BVOC emissions. Furthermore, the anatomy of arctic plants seems to respond differently to warming than species at lower latitudes. The results in this thesis demonstrate the complexity of the effects of climate change on BVOC emissions and leaf anatomy of arctic plant species...... emissions from the arctic region are assumed to be low, but data from the region is lacking. BVOC emissions are furthermore expected to change drastically due to the rapidly proceeding climate change in the Arctic, which can provide a feedback to climate warming of unknown direction and magnitude. BVOC...

  19. Ecotoxicological Assessment of Aquatic Genotoxicity Using the Comet Assay

    Directory of Open Access Journals (Sweden)

    KHUSNUL YAQIN

    2006-09-01

    Full Text Available Comet assay is a novel biological analysis, which is a sensitive, flexible, simple, rapid, and inexpensive method to assess aquatic genotoxicant. Since Singh and co-workers developed the method in 1988, its use has increased exponentially in various fields. This review discourses on the application of this assay in aquatic ecosystems. Various types of cells from various aquatic organisms have been tested by various genotoxicant both direct- and indirect-acting using the comet assay. The applications of this assay suggest that it is a useful assay to assess aquatic genotoxicants. However, there are some factors, which should be taken into account when using this assay as aquatic ecotoxicological assessment device such as inter-animal and cell variability.

  20. Nejayote produced at household level by Mayan women in Guatemala : is it a threat to aquatic ecosystems or a resource for food security?

    OpenAIRE

    Cifuentes de Gramajo, Luisa

    2011-01-01

    The aim of this study was to find out if nejayote produced at household level in Guatemala represents a threat to aquatic ecosystems and, if so, propose sustainable processing, reuse and disposal methods. First, all aspects related to nejayote production were explored. This study presents combined results from literature study on corn consumption and Guatemalan demography, a survey to Guatemalan women of all ethnical groups, nixtamalization replica and solids removal experiments and laborator...

  1. Cyanobacterial toxins: modes of actions, fate in aquatic and soil ecosystems, phytotoxicity and bioaccumulation in agricultural crops.

    Science.gov (United States)

    Corbel, Sylvain; Mougin, Christian; Bouaïcha, Noureddine

    2014-02-01

    The occurrence of harmful cyanobacterial blooms in surface waters is often accompanied by the production of a variety of cyanotoxins. These toxins are designed to target in humans and animals specific organs on which they act: hepatotoxins (liver), neurotoxins (nervous system), cytotoxic alkaloids, and dermatotoxins (skin), but they often have important side effects too. When introduced into the soil ecosystem by spray irrigation of crops they may affect the same molecular pathways in plants having identical or similar target organs, tissues, cells or biomolecules. There are also several indications that terrestrial plants, including food crop plants, can bioaccumulate cyanotoxins and present, therefore, potential health hazards for human and animals. The number of publications concerned with phytotoxic effects of cyanotoxins on agricultural plants has increased recently. In this review, we first examine different cyanotoxins and their modes of actions in humans and mammals and occurrence of target biomolecules in vegetable organisms. Then we present environmental concentrations of cyanotoxins in freshwaters and their fate in aquatic and soil ecosystems. Finally, we highlight bioaccumulation of cyanotoxins in plants used for feed and food and its consequences on animals and human health. Overall, our review shows that the information on the effects of cyanotoxins on non-target organisms in the terrestrial environment is particularly scarce, and that there are still serious gaps in the knowledge about the fate in the soil ecosystems and phytotoxicity of these toxins. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Population viability of Arctic grayling in the Gibbon River, Yellowstone National Park

    Science.gov (United States)

    Steed, Amber C.; Zale, Alexander V.; Koel, Todd M.; Kalinowski, Steven T.

    2010-01-01

    The fluvial Arctic grayling Thymallus arcticus is restricted to less than 5% of its native range in the contiguous United States and was relisted as a category 3 candidate species under the U.S. Endangered Species Act in 2010. Although fluvial Arctic grayling of the lower Gibbon River, Yellowstone National Park, Wyoming, were considered to have been extirpated by 1935, anglers and biologists have continued to report catching low numbers of Arctic grayling in the river. Our goal was to determine whether a viable population of fluvial Arctic grayling persisted in the Gibbon River or whether the fish caught in the river were downstream emigrants from lacustrine populations in headwater lakes. We addressed this goal by determining relative abundances, sources, and evidence for successful spawning of Arctic grayling in the Gibbon River. During 2005 and 2006, Arctic grayling comprised between 0% and 3% of the salmonid catch in riverwide electrofishing (mean Back-calculated lengths at most ages were similar among all fish, and successful spawning within the Gibbon River below the headwater lakes was not documented. Few Arctic grayling adults and no fry were detected in the Gibbon River, implying that a reproducing fluvial population does not exist there. These findings have implications for future Endangered Species Act considerations and management of fluvial Arctic grayling within and outside of Yellowstone National Park. Our comprehensive approach is broadly applicable to the management of sparsely detected aquatic species worldwide.

  3. Book Review: Marine Protected Areas in International Law: an Arctic Perspective

    Directory of Open Access Journals (Sweden)

    Davina Oktivana

    2017-10-01

    Full Text Available Marine biodiversity has always become an interesting topic in the development of the law of the sea subject. Despite of human dependence on marine resources, human intervention has been proven as the major threats to the sustainability of marine biodiversity and marine environment protection. Human activities, such an over-exploitation, shipping pollution, the use endangered fishing tools and above all, climate change, have changes the ecosystems extensively. One of the significant measures to prevent broaden the catastrophe is the establishment of Marine Protected Areas (MPAs, which has been accepted as a tool for protection and conservation of marine biodiversity. The book provides a comprehensive observation and analysis of the MPAs' concept and its implementation, specifically in the Arctic. This book is based on Ingvild Ulrikke Jakobsen's PhD thesis at the University of Tromsø, Norwegia. Her concerned particularly based on the development of human activities in the Arctic, that will definitely affect the fragile marine environment and there is an increasing need to ensure environmental protection and conservation of marine biodiversity and ecosystems in Arctic.

  4. CARVE Measurements of Atmospheric Methane Concentrations and Emissions in Arctic and Boreal Alaska

    Science.gov (United States)

    Miller, C. E.; Miller, J. B.; Chang, R. Y.; Sweeney, C.; Karion, A.; Wofsy, S. C.; Henderson, J.; Eluszkiewicz, J.; Mountain, M.; Oechel, W. C.

    2013-12-01

    The Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) is a NASA Earth Ventures (EV-1) investigation designed to quantify correlations between atmospheric and surface state variables for the Alaskan terrestrial ecosystems through intensive seasonal aircraft campaigns, ground-based observations, and analysis sustained over a 5-year mission. CARVE bridges critical gaps in our knowledge and understanding of Arctic ecosystems, linkages between the Arctic hydrologic and terrestrial carbon cycles, and the feedbacks from fires and thawing permafrost. We present CARVE airborne measurements of spatial and temporal patterns in atmospheric CH4 concentrations and estimated surface-atmosphere emissions for Arctic and Boreal Alaska. Continuous in situ CH4, CO2 and CO data are supplemented by periodic whole air flask samples from which 13CH4 and non-methane hydrocarbons are used to assess the relative contributions of wetlands, fossil fuel combustion, and oil and gas production to the observed CH4 signals. The CARVE project has also initiated monthly 14CH4 sampling at Barrow, AK (BRW) and the CARVE Tower in Fox, AK (CRV) to evaluate seasonal changes in the fraction of old carbon being mobilized via methanogenesis.

  5. Arctic microbial community dynamics influenced by elevated CO

    NARCIS (Netherlands)

    Brussaard, C.P.D.; Noordeloos, A.A.M.; Witte, H.; Collenteur, M.C.J; Schulz, K.G.; Ludwig, A.; Riebesell, U.

    2013-01-01

    The Arctic Ocean ecosystem is particularly vulnerable to ocean acidification (OA) related alterations due to the relatively high CO2 solubility and low carbonate saturation states of its cold surface waters. Thus far, however, there is only little known about the consequences of OA on the base of

  6. Abundant pre-industrial carbon detected in Canadian Arctic headwaters: implications for the permafrost carbon feedback

    Science.gov (United States)

    Dean, J. F.; van der Velde, Y.; Garnett, M. H.; Dinsmore, K. J.; Baxter, R.; Lessels, J. S.; Smith, P.; Street, L. E.; Subke, J.-A.; Tetzlaff, D.; Washbourne, I.; Wookey, P. A.; Billett, M. F.

    2018-03-01

    Mobilization of soil/sediment organic carbon into inland waters constitutes a substantial, but poorly-constrained, component of the global carbon cycle. Radiocarbon (14C) analysis has proven a valuable tool in tracing the sources and fate of mobilized carbon, but aquatic 14C studies in permafrost regions rarely detect ‘old’ carbon (assimilated from the atmosphere into plants and soil prior to AD1950). The emission of greenhouse gases derived from old carbon by aquatic systems may indicate that carbon sequestered prior to AD1950 is being destabilized, thus contributing to the ‘permafrost carbon feedback’ (PCF). Here, we measure directly the 14C content of aquatic CO2, alongside dissolved organic carbon, in headwater systems of the western Canadian Arctic—the first such concurrent measurements in the Arctic. Age distribution analysis indicates that the age of mobilized aquatic carbon increased significantly during the 2014 snow-free season as the active layer deepened. This increase in age was more pronounced in DOC, rising from 101-228 years before sampling date (a 120%-125% increase) compared to CO2, which rose from 92-151 years before sampling date (a 59%-63% increase). ‘Pre-industrial’ aged carbon (assimilated prior to ~AD1750) comprised 15%-40% of the total aquatic carbon fluxes, demonstrating the prevalence of old carbon to Arctic headwaters. Although the presence of this old carbon is not necessarily indicative of a net positive PCF, we provide an approach and baseline data which can be used for future assessment of the PCF.

  7. Managing aquatic ecosystems and water resources under multiple stress--an introduction to the MARS project.

    Science.gov (United States)

    Hering, Daniel; Carvalho, Laurence; Argillier, Christine; Beklioglu, Meryem; Borja, Angel; Cardoso, Ana Cristina; Duel, Harm; Ferreira, Teresa; Globevnik, Lidija; Hanganu, Jenica; Hellsten, Seppo; Jeppesen, Erik; Kodeš, Vit; Solheim, Anne Lyche; Nõges, Tiina; Ormerod, Steve; Panagopoulos, Yiannis; Schmutz, Stefan; Venohr, Markus; Birk, Sebastian

    2015-01-15

    Water resources globally are affected by a complex mixture of stressors resulting from a range of drivers, including urban and agricultural land use, hydropower generation and climate change. Understanding how stressors interfere and impact upon ecological status and ecosystem services is essential for developing effective River Basin Management Plans and shaping future environmental policy. This paper details the nature of these problems for Europe's water resources and the need to find solutions at a range of spatial scales. In terms of the latter, we describe the aims and approaches of the EU-funded project MARS (Managing Aquatic ecosystems and water Resources under multiple Stress) and the conceptual and analytical framework that it is adopting to provide this knowledge, understanding and tools needed to address multiple stressors. MARS is operating at three scales: At the water body scale, the mechanistic understanding of stressor interactions and their impact upon water resources, ecological status and ecosystem services will be examined through multi-factorial experiments and the analysis of long time-series. At the river basin scale, modelling and empirical approaches will be adopted to characterise relationships between multiple stressors and ecological responses, functions, services and water resources. The effects of future land use and mitigation scenarios in 16 European river basins will be assessed. At the European scale, large-scale spatial analysis will be carried out to identify the relationships amongst stress intensity, ecological status and service provision, with a special focus on large transboundary rivers, lakes and fish. The project will support managers and policy makers in the practical implementation of the Water Framework Directive (WFD), of related legislation and of the Blueprint to Safeguard Europe's Water Resources by advising the 3rd River Basin Management Planning cycle, the revision of the WFD and by developing new tools for

  8. The role of DOM in nitrogen processing in streams across arctic regions affected by fire

    Science.gov (United States)

    Rodriguez-Cardona, B.; Schade, J. D.; Holmes, R. M.; Natali, S.; Mann, P. J.; Wymore, A.; Coble, A. A.; Prokishkin, A. S.; Zito, P.; Podgorski, D. C.; Spencer, R. G.; McDowell, W. H.

    2017-12-01

    In stream ecosystems, inputs of dissolved organic carbon (DOC) have a strong influence on nitrogen (N) processing. Previous studies have demonstrated that increases in DOC concentrations can promote greater N removal in many stream ecosystems. Most of what we know about C and N coupling comes from studies of temperate streams; less is known about this relationship in the Arctic. Streams in Arctic ecosystems are facing rapid changes in climate and disturbance regimes, in particular increasing fire frequencies that are likely to alter biogeochemical cycles. Although fires can lead to increases in NO3 concentrations in streams, the effects of fire on DOC (concentration and composition) have been difficult to generalize. We studied the relationships between DOC and N in two locations; the Central Siberian Plateau, Russia and the Yukon-Kuskokwim (YK) River Delta, Alaska. Streams in both regions show increases in NO3 concentrations after fire, while DOC concentrations decrease in Siberia but increase in streams within the YK-Delta. These patterns in DOC and NO3 create a gradient in DOC and nutrient concentrations, allowing us to study this coupling in a wider Pan-Arctic scope. In order to assess the role of DOC in Arctic N processing, we conducted NO3 and NH4 additions to stream microcosms at the Alaskan site as well as whole-stream additions in Siberia. We hypothesized that nutrient uptake would be high in older burn sites of Siberia and recently burned sites in the YK-Delta, due to greater DOC concentrations and availability. Our results suggest that nitrogen dynamics in the Alaskan sites is strongly responsive to C availability, but is less so in Siberian sites. The potential impacts of permafrost thawing and fires on DOM and nutrient dynamics thus appear to not be consistent across the Arctic suggesting that different regions of the Arctic have unique biogeochemical controls.

  9. Migratory Waterfowl Habitat Selection in Relation to Aquatic Vegetation

    National Research Council Canada - National Science Library

    Dick, Gary

    2004-01-01

    This technical note describes studies of environmental conditions and habitat quality of replicated pond ecosystems dominated by populations of exotic plants or mixed communities of native aquatic plants...

  10. Comparative responses of phenology and reproductive development to simulated environmental change in sub-arctic and high arctic plants

    Energy Technology Data Exchange (ETDEWEB)

    Wookey, P A; Welker, J M; Callaghan, T V [Inst. of Terrestrial Ecology, Merlewood Research Station, Grange-over-Sands, Cumbria (United Kingdom); Parsons, A N; Potter, J A; Lee, J A; Press, M C [Dept. of Environmental Biology, Univ. of Manchester, Manchester (United Kingdom)

    1993-01-01

    The effects of temperature, precipitation and nutrient perturbations, and their interactions, are being assessed on two contrasting arctic ecosystems to simulate impacts of climate change. One, a high arctic polar semi-desert community, is characterized by a sparse, low and aggregated vegetation cover where plant proliferation is by seedlings, whereas the other, a sub-arctic dwarf shrub health, is characterized by a complete, vegetation cover of erect, clonal dwarf shrubs which spread vegetatively. The developmental processes of seed production were shown to be highly sensitive, even within one growing season to specific environmental perturbations which differed between sites. At the polar semi-desert site, there was a striking effect of the temperature enhancement treatments on phenology and seed-setting of Dryas octopetala ssp. octopetala, with almost no seed-setting occurring in plots experiencing ambient temperatures. By contrast, there were no significant effects of temperature enhancement alone on fruit production of Empetrum hermaphroditum at the sub-Arctic dwarf shrub heath site, although fruit production was significantly influenced by the application of nutrients and/or water. The response of dominant high arctic dwarf shrub to increased temperature suggests that any climate warming may stimulate seed-set. This could be particularly important in the high Arctic where colonization can proceed in areas dominated by bare ground and where genetic recombination may be needed to generate tolerance to predicted changes of great magnitude. In the sub-Arctic, however the closed vegetation is dominated by clonally-proliferating species. Plant fitness will increase here in response to any increased vegetative growth resulting from higher nutrient availability in warmer organic soils. (ua) (59 refs.)

  11. Quantifying aquatic insect deposition from lake to land.

    Science.gov (United States)

    Dreyer, Jamin; Townsend, Philip A; Hook, James C; Hoekman, David; Vander Zanden, M Jake; Gratton, Claudio

    2015-02-01

    Adjacent ecosystems are influenced by organisms that move across boundaries, such as insects with aquatic larval stages and terrestrial adult stages, which transport energy and nutrients from water to land. However, the ecosystem-level effect of aquatic insects on land has generally been ignored, perhaps because the organisms themselves are individually small. At the naturally productive Lake Mývatn, Iceland, we used two readily measured quantities: total insect emergence from water and relative insect density on land, to demonstrate an approach for estimating aquatic insect deposition (e.g., kg N x m(-2) x yr(-1)) to shore. Estimates from emergence traps between 2008 and 20.11 indicated a range of 0.15-3.7 g x m(-2) x yr(-1), or a whole-lake emergence of 3.1-76 Mg/yr; all masses are given as dry mass. Using aerial infall trap measurements of midge relative abundance over land, we developed a local-maximum decay function model to predict proportional midge deposition with distance from the lake. The dispersal model predicted midge abundance with R2 = 0.89, a pattern consistent among years, with peak midge deposition occurring 20-25 m inland and 70% of midges deposited within 100 m of shore. During a high-midge year (2008), we estimate midge deposition within the first 50 m of shoreline to be 100 kg xha(-1) x yr(-1), corresponding to inputs of 10 kg N x ha(-1) x yr(-1) and 1 kg P x ha(-1) x yr(-1), or about three to five times above background terrestrial N deposition rates. Consistent with elevated N input where midges are most dense, we observed that soil available nitrate in resin bags decreases with increasing distance from the lake. Our approach, generalizable to other systems, shows that aquatic insects can be a major source of nutrients to terrestrial ecosystems and have the capacity to significantly affect ecosystem processes.

  12. Arctic sea-ice syntheses: Charting across scope, scale, and knowledge systems

    Science.gov (United States)

    Druckenmiller, M. L.; Perovich, D. K.; Francis, J. A.

    2017-12-01

    Arctic sea ice supports and intersects a multitude of societal benefit areas, including regulating regional and global climates, structuring marine food webs, providing for traditional food provisioning by indigenous peoples, and constraining marine shipping and access. At the same time, sea ice is one of the most rapidly changing elements of the Arctic environment and serves as a source of key physical indicators for monitoring Arctic change. Before the present scientific interest in Arctic sea ice for climate research, it has long been, and remains, a focus of applied research for industry and national security. For generations, the icy coastal seas of the North have also provided a basis for the sharing of local and indigenous knowledge between Arctic residents and researchers, including anthropologists, biologists, and geoscientists. This presentation will summarize an ongoing review of existing synthesis studies of Arctic sea ice. We will chart efforts to achieve system-level understanding across geography, temporal scales, and the ecosystem services that Arctic sea ice supports. In doing so, we aim to illuminate the role of interdisciplinary science, together with local and indigenous experts, in advancing knowledge of the roles of sea ice in the Arctic system and beyond, reveal the historical and scientific evolution of sea-ice research, and assess current gaps in system-scale understanding.

  13. Increase in acidifying water in the western Arctic Ocean

    Science.gov (United States)

    Qi, Di; Chen, Liqi; Chen, Baoshan; Gao, Zhongyong; Zhong, Wenli; Feely, Richard A.; Anderson, Leif G.; Sun, Heng; Chen, Jianfang; Chen, Min; Zhan, Liyang; Zhang, Yuanhui; Cai, Wei-Jun

    2017-02-01

    The uptake of anthropogenic CO2 by the ocean decreases seawater pH and carbonate mineral aragonite saturation state (Ωarag), a process known as Ocean Acidification (OA). This can be detrimental to marine organisms and ecosystems. The Arctic Ocean is particularly sensitive to climate change and aragonite is expected to become undersaturated (Ωarag Pacific Winter Water transport, driven by an anomalous circulation pattern and sea-ice retreat, is primarily responsible for the expansion, although local carbon recycling and anthropogenic CO2 uptake have also contributed. These results indicate more rapid acidification is occurring in the Arctic Ocean than the Pacific and Atlantic oceans, with the western Arctic Ocean the first open-ocean region with large-scale expansion of `acidified’ water directly observed in the upper water column.

  14. Insect herbivory on native and exotic aquatic plants: phosphorus and nitrogen drive insect growth and nutrient release

    NARCIS (Netherlands)

    Grutters, B.M.C.; Gross, E.M.; Bakker, E.S.

    2016-01-01

    Eutrophication and globalisation facilitate the dominance of exotic plants in aquatic ecosystems worldwide. Aquatic omnivores can provide biotic resistance to plant invasions, but little is known about whether obligate aquatic herbivores can do the same. Herbivores such as insects can decimate

  15. Arctic air pollution: Challenges and opportunities for the next decade

    Directory of Open Access Journals (Sweden)

    S.R. Arnold

    2016-05-01

    Full Text Available Abstract The Arctic is a sentinel of global change. This region is influenced by multiple physical and socio-economic drivers and feedbacks, impacting both the natural and human environment. Air pollution is one such driver that impacts Arctic climate change, ecosystems and health but significant uncertainties still surround quantification of these effects. Arctic air pollution includes harmful trace gases (e.g. tropospheric ozone and particles (e.g. black carbon, sulphate and toxic substances (e.g. polycyclic aromatic hydrocarbons that can be transported to the Arctic from emission sources located far outside the region, or emitted within the Arctic from activities including shipping, power production, and other industrial activities. This paper qualitatively summarizes the complex science issues motivating the creation of a new international initiative, PACES (air Pollution in the Arctic: Climate, Environment and Societies. Approaches for coordinated, international and interdisciplinary research on this topic are described with the goal to improve predictive capability via new understanding about sources, processes, feedbacks and impacts of Arctic air pollution. Overarching research actions are outlined, in which we describe our recommendations for 1 the development of trans-disciplinary approaches combining social and economic research with investigation of the chemical and physical aspects of Arctic air pollution; 2 increasing the quality and quantity of observations in the Arctic using long-term monitoring and intensive field studies, both at the surface and throughout the troposphere; and 3 developing improved predictive capability across a range of spatial and temporal scales.

  16. Marine distribution of arctic seabirds over six decades: changes and conservation applications

    DEFF Research Database (Denmark)

    Wong, SNP; Johansen, Kasper Lambert; Lieske, DJ

    Climate change is causing rapid changes in Arctic marine ecosystems and understanding its impacts on wildlife is critical for conservation management, especially as the decline in sea ice leads to increased development and vessel traffic. The Arctic supports hundreds of millions of seabirds, which...... collected from 1988 to 2015 and covering a combined 185,000 linear km, we examined the marine distribution of seabirds in sub-arctic and Arctic waters between Canada and Greenland, an area covering over 5,000,000 km2. We developed a predictive model to investigate how ice cover and ocean processes influence...... the distribution of arctic seabirds in summer and autumn and identified existing areas of high density. Comparing these results to at-sea surveys conducted in the same waters from 1966 - 1987, we examined how seabird distribution has changed over the last six decades. Understanding how changes in the marine...

  17. Thermal effects on aquatic organisms: annotated bibliography of the 1974 literature

    International Nuclear Information System (INIS)

    Coutant, C.C.; Talmage, S.S.; Carrier, R.F.; Collier, B.N.

    1975-06-01

    The annotated bibliography covers the 1974 literature concerning thermal effects on aquatic organisms. Emphasis is placed on the effects of the release of thermal effluents on aquatic ecosystems. Indexes are provided for: author, keywords, subject category, geographic location, taxon, and title (alphabetical listing of keyword-in-context of the nontrivial words in the title). (CH)

  18. Aquatic pathway 2

    International Nuclear Information System (INIS)

    1977-01-01

    This third part of the investigation discusses the preliminary results of sub-investigations concerning problems of the release of radioactive substances into the environment via the water pathway. On the basis of papers on the emission into the draining ditch and the exchange processes there, investigations of a possible incorporation via different exposure pathways are reported. Special regard is paid to drinking water supply aquatic foodstuffs, the river sediment, the utilisation of the agricultural surfaces and the draining ditch including its pre-pollution. The dynamics of contamination processes is reported on with regard to the problem of accidents. The colloquium will give an outline of the progress made so far and admit participants' suggestions for further work on the sub-investigations. The following colloquia will report further findings, in particular effects on aquatic ecosystems. (orig.) [de

  19. Genetically modified crops and aquatic ecosystems: considerations for environmental risk assessment and non-target organism testing.

    Science.gov (United States)

    Carstens, Keri; Anderson, Jennifer; Bachman, Pamela; De Schrijver, Adinda; Dively, Galen; Federici, Brian; Hamer, Mick; Gielkens, Marco; Jensen, Peter; Lamp, William; Rauschen, Stefan; Ridley, Geoff; Romeis, Jörg; Waggoner, Annabel

    2012-08-01

    Environmental risk assessments (ERA) support regulatory decisions for the commercial cultivation of genetically modified (GM) crops. The ERA for terrestrial agroecosystems is well-developed, whereas guidance for ERA of GM crops in aquatic ecosystems is not as well-defined. The purpose of this document is to demonstrate how comprehensive problem formulation can be used to develop a conceptual model and to identify potential exposure pathways, using Bacillus thuringiensis (Bt) maize as a case study. Within problem formulation, the insecticidal trait, the crop, the receiving environment, and protection goals were characterized, and a conceptual model was developed to identify routes through which aquatic organisms may be exposed to insecticidal proteins in maize tissue. Following a tiered approach for exposure assessment, worst-case exposures were estimated using standardized models, and factors mitigating exposure were described. Based on exposure estimates, shredders were identified as the functional group most likely to be exposed to insecticidal proteins. However, even using worst-case assumptions, the exposure of shredders to Bt maize was low and studies supporting the current risk assessments were deemed adequate. Determining if early tier toxicity studies are necessary to inform the risk assessment for a specific GM crop should be done on a case by case basis, and should be guided by thorough problem formulation and exposure assessment. The processes used to develop the Bt maize case study are intended to serve as a model for performing risk assessments on future traits and crops.

  20. Intercalibrating classifications of ecological status: Europe's quest for common management objectives for aquatic ecosystems.

    Science.gov (United States)

    Birk, S; Willby, N J; Kelly, M G; Bonne, W; Borja, A; Poikane, S; van de Bund, W

    2013-06-01

    Halting and reversing the deterioration of aquatic ecosystems requires concerted action across state boundaries and administrative barriers. However, the achievement of common management objectives is jeopardised by different national quality targets and ambitions. The European Water Framework Directive requires that quality classifications are harmonised via an intercalibration exercise, ensuring a consistent level of ambition in the protection and restoration of surface water bodies across the Member States of the European Union. We outline the key principles of the intercalibration methodology, review the achievements of intercalibration and discuss its benefits and drawbacks. Less than half of the required intercalibration has been completed, mostly due to a lack of national assessment methods. The process has fostered a scientific debate on ecological classification with important implications for environmental management. Despite a significant level of statistical abstraction, intercalibration yielded a fundamental and unified vision of what constitutes good ecology across Europe, in principle ensuring greater parity in the funds invested to achieve good ecological status. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Process-based principles for restoring river ecosystems

    Science.gov (United States)

    Timothy J. Beechie; David A. Sear; Julian D. Olden; George R. Pess; John M. Buffington; Hamish Moir; Philip Roni; Michael M. Pollock

    2010-01-01

    Process-based restoration aims to reestablish normative rates and magnitudes of physical, chemical, and biological processes that sustain river and floodplain ecosystems. Ecosystem conditions at any site are governed by hierarchical regional, watershed, and reach-scale processes controlling hydrologic and sediment regimes; floodplain and aquatic habitat...

  2. Trajectory of the Arctic as an integrated system.

    Science.gov (United States)

    Hinzman, Larry D; Deal, Clara J; McGuire, A David; Mernild, Sebastian H; Polyakov, Igor V; Walsh, John E

    2013-12-01

    Although much remains to be learned about the Arctic and its component processes, many of the most urgent scientific, engineering, and social questions can only be approached through a broader system perspective. Here, we address interactions between components of the Arctic system and assess feedbacks and the extent to which feedbacks (1) are now underway in the Arctic and (2) will shape the future trajectory of the Arctic system. We examine interdependent connections among atmospheric processes, oceanic processes, sea-ice dynamics, marine and terrestrial ecosystems, land surface stocks of carbon and water, glaciers and ice caps, and the Greenland ice sheet. Our emphasis on the interactions between components, both historical and anticipated, is targeted on the feedbacks, pathways, and processes that link these different components of the Arctic system. We present evidence that the physical components of the Arctic climate system are currently in extreme states, and that there is no indication that the system will deviate from this anomalous trajectory in the foreseeable future. The feedback for which the evidence of ongoing changes is most compelling is the surface albedo-temperature feedback, which is amplifying temperature changes over land (primarily in spring) and ocean (primarily in autumn-winter). Other feedbacks likely to emerge are those in which key processes include surface fluxes of trace gases, changes in the distribution of vegetation, changes in surface soil moisture, changes in atmospheric water vapor arising from higher temperatures and greater areas of open ocean, impacts of Arctic freshwater fluxes on the meridional overturning circulation of the ocean, and changes in Arctic clouds resulting from changes in water vapor content.

  3. Bioavailability of radionuclides and dose rate in aquatic ecosystems within the Chernobyl accident exclusion zone

    International Nuclear Information System (INIS)

    Gudkov, Dmitri; Nazarov, Alexandr

    2008-01-01

    Full text: Our studies were carried out during 1997-2007 within Krasnensky flood-lands on the left bank of the Pripyat River, which is the most contaminated region of the Ukrainian part of the Chernobyl accident exclusion zone. During 1991-1993 the complex of hydraulic engineering structures as flood protection dams was constructed within the Krasnensky flood-lands, which preventing washing away of radioactive substances from soils and changing a hydrological mode of flood plain flows during a high water. In its turn it was by the reason of strengthening of over-moistening and swamping processes within embankment territories. As a result - on a background of the common tendencies of increase of the mobile forms of 90 Sr in soils of catchment territories and bottom sediments of the exclusion zone, there is an increase of humic acids concentrations in waterlogged soils of Krasnensky flood-lands. It is also raises the content of the water-soluble forms of 90 Sr forming with acids the soluble complexes. Thus the increase of concentrations of the mobile radionuclide forms and their inclusion into biotic circulation of aquatic ecosystems is observed. It confirms also an increase of 90 Sr specific activity in water of lakes within Krasnensky flood-lands, against a background of stabilisation of this parameter for 137 Cs last years. Such dynamics of 90 Sr and 137 Cs contents is significantly reflected on dose rate for hydrobionts due to incorporated radionuclides. However if in running water bodies the decrease of radionuclide contents defines, accordingly, and the decrease of dose rates, in lakes of the left-bank flood-lands of the Pripyat River the situation has an absolutely other character. At rather stable internal absorbed dose rate, caused by 137 Cs during 1993-2007, the dose, caused by the 90 Sr content, has grown more than in 20 times for some species of higher aquatic plants and fish in comparison with the beginning of 1990-s. As a result the total internal dose

  4. Parameterization of aquatic ecosystem functioning and its natural variation: Hierarchical Bayesian modelling of plankton food web dynamics

    Science.gov (United States)

    Norros, Veera; Laine, Marko; Lignell, Risto; Thingstad, Frede

    2017-10-01

    Methods for extracting empirically and theoretically sound parameter values are urgently needed in aquatic ecosystem modelling to describe key flows and their variation in the system. Here, we compare three Bayesian formulations for mechanistic model parameterization that differ in their assumptions about the variation in parameter values between various datasets: 1) global analysis - no variation, 2) separate analysis - independent variation and 3) hierarchical analysis - variation arising from a shared distribution defined by hyperparameters. We tested these methods, using computer-generated and empirical data, coupled with simplified and reasonably realistic plankton food web models, respectively. While all methods were adequate, the simulated example demonstrated that a well-designed hierarchical analysis can result in the most accurate and precise parameter estimates and predictions, due to its ability to combine information across datasets. However, our results also highlighted sensitivity to hyperparameter prior distributions as an important caveat of hierarchical analysis. In the more complex empirical example, hierarchical analysis was able to combine precise identification of parameter values with reasonably good predictive performance, although the ranking of the methods was less straightforward. We conclude that hierarchical Bayesian analysis is a promising tool for identifying key ecosystem-functioning parameters and their variation from empirical datasets.

  5. Arctic Tundra Flux Study in the Kuparuk River Basin (Alaska), 1994-1996

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: CO2 and water vapor fluxes and ecosystem characteristics were measured at 24 sites along a 317-km transect from the Arctic coast to the latitudinal...

  6. Data Basin Aquatic Center: expanding access to aquatic conservation data, analysis tools, people and practical answers

    Science.gov (United States)

    Osborne-Gowey, J.; Strittholt, J.; Bergquist, J.; Ward, B. C.; Sheehan, T.; Comendant, T.; Bachelet, D. M.

    2009-12-01

    The world’s aquatic resources are experiencing anthropogenic pressures on an unprecedented scale and aquatic organisms are experiencing widespread population changes and ecosystem-scale habitat alterations. Climate change is likely to exacerbate these threats, in some cases reducing the range of native North American fishes by 20-100% (depending on the location of the population and the model assumptions). Scientists around the globe are generating large volumes of data that vary in quality, format, supporting documentation, and accessibility. Moreover, diverse models are being run at various temporal and spatial scales as scientists attempt to understand previous (and project future) human impacts to aquatic species and their habitats. Conservation scientists often struggle to synthesize this wealth of information for developing practical on-the-ground management strategies. As a result, the best available science is often not utilized in the decision-making and adaptive management processes. As aquatic conservation problems around the globe become more serious and the demand to solve them grows more urgent, scientists and land-use managers need a new way to bring strategic, science-based, and action-oriented approaches to aquatic conservation. The Conservation Biology Institute (CBI), with partners such as ESRI, is developing an Aquatic Center as part of a dynamic, web-based resource (Data Basin; http: databasin.org) that centralizes usable aquatic datasets and provides analytical tools to visualize, analyze, and communicate findings for practical applications. To illustrate its utility, we present example datasets of varying spatial scales and synthesize multiple studies to arrive at novel solutions to aquatic threats.

  7. Changes in Arctic sea ice result in increasing light transmittance and absorption

    OpenAIRE

    Nicolaus, Marcel; Katlein, Christian; Maslanik, J.; Hendricks, Stefan

    2012-01-01

    Arctic sea ice has declined and become thinner and younger (more seasonal) during the last decade. One consequence of this is that the surface energy budget of the Arctic Ocean is changing. While the role of surface albedo has been studied intensively, it is still widely unknown how much light penetrates through sea ice into the upper ocean, affecting seaice mass balance, ecosystems, and geochemical processes. Here we present the first large-scale under-ice light measurem...

  8. Temporal changes in the distribution, methylation, and bioaccumulation of newly deposited mercury in an aquatic ecosystem

    Energy Technology Data Exchange (ETDEWEB)

    Orihel, Diane M. [Clayton H. Riddell Faculty of Environment, Earth, and Resources, University of Manitoba, Winnipeg, Manitoba, R3T 2N2 (Canada); Freshwater Institute, Fisheries and Oceans Canada, 501 University Crescent, Winnipeg, Manitoba, R3T 2N6 (Canada)], E-mail: orihel@ualberta.ca; Paterson, Michael J.; Blanchfield, Paul J.; Bodaly, R.A. [Freshwater Institute, Fisheries and Oceans Canada, 501 University Crescent, Winnipeg, Manitoba, R3T 2N6 (Canada); Gilmour, Cynthia C. [Smithsonian Environmental Research Center, 647 Contees Wharf Road, Edgewater, MD 21037 (United States); Hintelmann, Holger [Department of Chemistry, Trent University, 1600 West Bank Drive, Peterborough, Ontario, K9J 7B8 (Canada)

    2008-07-15

    Our objective was to examine how the behavior of atmospheric mercury (Hg) deposited to boreal lake mesocosms changed over time. We added inorganic Hg enriched in a different stable isotope in each of two years, which allowed us to differentiate between Hg added in the first and second year. Although inorganic Hg and methylmercury (MeHg) continued to accumulate in sediments throughout the experiment, the availability of MeHg to the food web declined within one year. This decrease was detected in periphyton, zooplankton, and water mites, but not in gomphid larvae, amphipods, or fish. We suggest that reductions in atmospheric Hg deposition should lead to decreases in MeHg concentrations in biota, but that changes will be more easily detected in short-lived pelagic species than long-lived species associated with benthic food webs. - Mercury deposited to aquatic ecosystems becomes less available for uptake by biota over time.

  9. Elementary analyses in behalf of the project: Orientating investigation to Polonium-210 and other radionuclides in Dutch aquatic ecosystems

    International Nuclear Information System (INIS)

    Hart, M.J. 't; Breugem, P.M.; Koester, H.W.

    1989-11-01

    In this report, results of the determinations of total, organic and inorganic carbon analysis are reported for the project 'Orientating investigations of Polonium-210 and other natural radionuclides in Dutch aquatic ecosystems', projectnumber 248476. The method used is a modification of the method described by Froelich and is based on elemental analysis. Sediment samples from several locations of sea and river water show a large variation of the carbon content. The organic carbon concentration varies from 2.78 to 22.42 percent; the inorganic carbon varies from 1.25 to 5.66 percent. The analyses were run in duplicate with a mean standard deviation of 0.1 percent. (author). 4 refs.; 5 figs.; 7 tabs

  10. Environmental and vegetation controls on the spatial variability of CH4 emission from wet-sedge and tussock tundra ecosystems in the Arctic.

    Science.gov (United States)

    McEwing, Katherine Rose; Fisher, James Paul; Zona, Donatella

    Despite multiple studies investigating the environmental controls on CH 4 fluxes from arctic tundra ecosystems, the high spatial variability of CH 4 emissions is not fully understood. This makes the upscaling of CH 4 fluxes from plot to regional scale, particularly challenging. The goal of this study is to refine our knowledge of the spatial variability and controls on CH 4 emission from tundra ecosystems. CH 4 fluxes were measured in four sites across a variety of wet-sedge and tussock tundra ecosystems in Alaska using chambers and a Los Gatos CO 2 and CH 4 gas analyser. All sites were found to be sources of CH 4 , with northern sites (in Barrow) showing similar CH 4 emission rates to the southernmost site (ca. 300 km south, Ivotuk). Gross primary productivity (GPP), water level and soil temperature were the most important environmental controls on CH 4 emission. Greater vascular plant cover was linked with higher CH 4 emission, but this increased emission with increased vascular plant cover was much higher (86 %) in the drier sites, than the wettest sites (30 %), suggesting that transport and/or substrate availability were crucial limiting factors for CH 4 emission in these tundra ecosystems. Overall, this study provides an increased understanding of the fine scale spatial controls on CH 4 flux, in particular the key role that plant cover and GPP play in enhancing CH 4 emissions from tundra soils.

  11. Future Arctic climate changes: Adaptation and mitigation time scales

    Science.gov (United States)

    Overland, James E.; Wang, Muyin; Walsh, John E.; Stroeve, Julienne C.

    2014-02-01

    The climate in the Arctic is changing faster than in midlatitudes. This is shown by increased temperatures, loss of summer sea ice, earlier snow melt, impacts on ecosystems, and increased economic access. Arctic sea ice volume has decreased by 75% since the 1980s. Long-lasting global anthropogenic forcing from carbon dioxide has increased over the previous decades and is anticipated to increase over the next decades. Temperature increases in response to greenhouse gases are amplified in the Arctic through feedback processes associated with shifts in albedo, ocean and land heat storage, and near-surface longwave radiation fluxes. Thus, for the next few decades out to 2040, continuing environmental changes in the Arctic are very likely, and the appropriate response is to plan for adaptation to these changes. For example, it is very likely that the Arctic Ocean will become seasonally nearly sea ice free before 2050 and possibly within a decade or two, which in turn will further increase Arctic temperatures, economic access, and ecological shifts. Mitigation becomes an important option to reduce potential Arctic impacts in the second half of the 21st century. Using the most recent set of climate model projections (CMIP5), multimodel mean temperature projections show an Arctic-wide end of century increase of +13°C in late fall and +5°C in late spring for a business-as-usual emission scenario (RCP8.5) in contrast to +7°C in late fall and +3°C in late spring if civilization follows a mitigation scenario (RCP4.5). Such temperature increases demonstrate the heightened sensitivity of the Arctic to greenhouse gas forcing.

  12. Aquatic carbon cycling in the conterminous United States and implications for terrestrial carbon accounting.

    Science.gov (United States)

    Butman, David; Stackpoole, Sarah; Stets, Edward; McDonald, Cory P; Clow, David W; Striegl, Robert G

    2016-01-05

    Inland water ecosystems dynamically process, transport, and sequester carbon. However, the transport of carbon through aquatic environments has not been quantitatively integrated in the context of terrestrial ecosystems. Here, we present the first integrated assessment, to our knowledge, of freshwater carbon fluxes for the conterminous United States, where 106 (range: 71-149) teragrams of carbon per year (TgC⋅y(-1)) is exported downstream or emitted to the atmosphere and sedimentation stores 21 (range: 9-65) TgC⋅y(-1) in lakes and reservoirs. We show that there is significant regional variation in aquatic carbon flux, but verify that emission across stream and river surfaces represents the dominant flux at 69 (range: 36-110) TgC⋅y(-1) or 65% of the total aquatic carbon flux for the conterminous United States. Comparing our results with the output of a suite of terrestrial biosphere models (TBMs), we suggest that within the current modeling framework, calculations of net ecosystem production (NEP) defined as terrestrial only may be overestimated by as much as 27%. However, the internal production and mineralization of carbon in freshwaters remain to be quantified and would reduce the effect of including aquatic carbon fluxes within calculations of terrestrial NEP. Reconciliation of carbon mass-flux interactions between terrestrial and aquatic carbon sources and sinks will require significant additional research and modeling capacity.

  13. Aquatic carbon cycling in the conterminous United States and implications for terrestrial carbon accounting

    Science.gov (United States)

    Butman, David; Stackpoole, Sarah; Stets, Edward; McDonald, Cory P.; Clow, David W.; Striegl, Robert G.

    2016-01-01

    Inland water ecosystems dynamically process, transport, and sequester carbon. However, the transport of carbon through aquatic environments has not been quantitatively integrated in the context of terrestrial ecosystems. Here, we present the first integrated assessment, to our knowledge, of freshwater carbon fluxes for the conterminous United States, where 106 (range: 71–149) teragrams of carbon per year (TgC⋅y−1) is exported downstream or emitted to the atmosphere and sedimentation stores 21 (range: 9–65) TgC⋅y−1 in lakes and reservoirs. We show that there is significant regional variation in aquatic carbon flux, but verify that emission across stream and river surfaces represents the dominant flux at 69 (range: 36–110) TgC⋅y−1 or 65% of the total aquatic carbon flux for the conterminous United States. Comparing our results with the output of a suite of terrestrial biosphere models (TBMs), we suggest that within the current modeling framework, calculations of net ecosystem production (NEP) defined as terrestrial only may be overestimated by as much as 27%. However, the internal production and mineralization of carbon in freshwaters remain to be quantified and would reduce the effect of including aquatic carbon fluxes within calculations of terrestrial NEP. Reconciliation of carbon mass–flux interactions between terrestrial and aquatic carbon sources and sinks will require significant additional research and modeling capacity. PMID:26699473

  14. Mercury and other trace elements in a pelagic Arctic marine food web (Northwater Polynya, Baffin Bay)

    International Nuclear Information System (INIS)

    Campbell, Linda M.; Norstrom, Ross J.; Hobson, Keith A.; Muir, Derek C.G.; Backus, Sean; Fisk, Aaron T.

    2005-01-01

    Total mercury (THg), methylmercury (MeHg) and 22 other trace elements were measured in ice algae, three species of zooplankton, mixed zooplankton samples, Arctic cod (Boreogadus saida), ringed seals (Phoca hispida) and eight species of seabirds to examine the trophodynamics of these metals in an Arctic marine food web. All samples were collected in 1998 in the Northwater Polynya (NOW) located between Ellesmere Island and Greenland in Baffin Bay. THg and MeHg were found to biomagnify through the NOW food web, based on significant positive relationships between log THg and log MeHg concentrations vs. δ 15 N muscle and liver . The slope of these relationships for muscle THg and MeHg concentrations (slope = 0.197 and 0.223, respectively) were similar to those reported for other aquatic food webs. The food web behavior of THg and δ 15 N appears constant, regardless of trophic state (eutrophic vs. oligotrophic), latitude (Arctic vs. tropical) or salinity (marine vs. freshwater) of the ecosystem. Rb in both liver and muscle tissue and Zn in muscle tissue were also found to biomagnify through this food web, although at a rate that is approximately 25% of that of THg. A number of elements (Cd, Pb and Ni in muscle tissue and Cd and Li in seabird liver tissue) were found to decrease trophically through the food web, as indicated by significantly negative relationships with tissue-specific δ 15 N. A diverse group of metals (Ag, Ba, La, Li, Sb, Sr, U and V) were found to have higher concentrations in zooplankton than seabirds or marine mammals due to bioconcentration from seawater. The remaining metals (As, Co, Cu, Ga, Mn, Mo and Se in muscle tissue) showed no relationship with trophic position, as indicated by δ 15 N values, although As in liver tissue showed significant biomagnification in the seabird portion of the food web

  15. Upstream Freshwater and Terrestrial Sources Are Differentially Reflected in the Bacterial Community Structure along a Small Arctic River and Its Estuary

    DEFF Research Database (Denmark)

    Hauptmann, Aviaja Zenia Edna Lyberth; Markussen, Thor N; Stibal, Marek

    2016-01-01

    of different water sources on the microbial communities in Arctic rivers and estuaries remains unknown. In this study we used 16S rRNA gene amplicon sequencing to assess a small river and its estuary on the Disko Island, West Greenland (69°N). Samples were taken in August when there is maximum precipitation......Glacier melting and altered precipitation patterns influence Arctic freshwater and coastal ecosystems. Arctic rivers are central to Arctic water ecosystems by linking glacier meltwaters and precipitation with the ocean through transport of particulate matter and microorganisms. However, the impact...... and temperatures are high in the Disko Bay area. We describe the bacterial community through a river into the estuary, including communities originating in a glacier and a proglacial lake. Our results show that water from the glacier and lake transports distinct communities into the river in terms of diversity...

  16. Rainfall changes affect the algae dominance in tank bromeliad ecosystems

    Science.gov (United States)

    Pires, Aliny Patricia Flauzino; Leal, Juliana da Silva; Peeters, Edwin T. H. M.

    2017-01-01

    Climate change and biodiversity loss have been reported as major disturbances in the biosphere which can trigger changes in the structure and functioning of natural ecosystems. Nonetheless, empirical studies demonstrating how both factors interact to affect shifts in aquatic ecosystems are still unexplored. Here, we experimentally test how changes in rainfall distribution and litter diversity affect the occurrence of the algae-dominated condition in tank bromeliad ecosystems. Tank bromeliads are miniature aquatic ecosystems shaped by the rainwater and allochthonous detritus accumulated in the bases of their leaves. Here, we demonstrated that changes in the rainfall distribution were able to reduce the chlorophyll-a concentration in the water of bromeliad tanks affecting significantly the occurrence of algae-dominated conditions. On the other hand, litter diversity did not affect the algae dominance irrespective to the rainfall scenario. We suggest that rainfall changes may compromise important self-reinforcing mechanisms responsible for maintaining high levels of algae on tank bromeliads ecosystems. We summarized these results into a theoretical model which suggests that tank bromeliads may show two different regimes, determined by the bromeliad ability in taking up nutrients from the water and by the total amount of light entering the tank. We concluded that predicted climate changes might promote regime shifts in tropical aquatic ecosystems by shaping their structure and the relative importance of other regulating factors. PMID:28422988

  17. Global distribution of dissolved organic matter along the aquatic continuum: Across rivers, lakes and oceans.

    Science.gov (United States)

    Massicotte, Philippe; Asmala, Eero; Stedmon, Colin; Markager, Stiig

    2017-12-31

    Based on an extensive literature survey containing more than 12,000 paired measurements of dissolved organic carbon (DOC) concentrations and absorption of chromophoric dissolved organic matter (CDOM) distributed over four continents and seven oceans, we described the global distribution and transformation of dissolved organic matter (DOM) along the aquatic continuum across rivers and lakes to oceans. A strong log-linear relationship (R 2 =0.92) between DOC concentration and CDOM absorption at 350nm was observed at a global scale, but was found to be ecosystem-dependent at local and regional scales. Our results reveal that as DOM is transported towards the oceans, the robustness of the observed relation decreases rapidly (R 2 from 0.94 to 0.44) indicating a gradual decoupling between DOC and CDOM. This likely reflects the decreased connectivity between the landscape and DOM along the aquatic continuum. To support this hypothesis, we used the DOC-specific UV absorbance (SUVA) to characterize the reactivity of the DOM pool which decreased from 4.9 to 1.7m 2 × gC -1 along the aquatic continuum. Across the continuum, a piecewise linear regression showed that the observed decrease of SUVA occurred more rapidly in freshwater ecosystems compared to marine water ecosystems, suggesting that the different degradation processes act preferentially on CDOM rather than carbon content. The observed change in the DOM characteristics along the aquatic continuum also suggests that the terrestrial DOM pool is gradually becoming less reactive, which has profound consequences on cycling of organic carbon in aquatic ecosystems. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Cumulative effect assessment in Canada: a regional framework for aquatic ecosystems

    International Nuclear Information System (INIS)

    Dube, Monique G.

    2003-01-01

    Sustainable development of the aquatic environment depends upon routine and defensible cumulative effects assessment (CEA). CEA is the process of predicting the consequences of development relative to an assessment of existing environmental quality. Theoretically, it provides an on-going mechanism to evaluate if levels of development exceed the environment's assimilative capacity; i.e., its ability to sustain itself. In practice, the link between CEA and sustainable development has not been realized because CEA concepts and methods have developed along two dichotomous tracks. One track views CEA as an extension of the environmental assessment (EA) process for project developments. Under this track, stressor-based (S-B) methods have been developed where the emphasis is on local, project-related stressors, their link with aquatic indicators, and the potential for environmental effects through stressor-indicator interactions. S-B methods focus on the proposed development and prediction of project-related effects. They lack a mechanism to quantify existing aquatic quality especially at scales broader than an isolated development. This limitation results in the prediction of potential effects relative to a poorly defined baseline state. The other track views CEA as a broader, regional assessment tool where effects-based (E-B) methods specialize in quantification of existing aquatic effects over broad spatial scales. However, the predictive capabilities of E-B methods are limited because they are retrospective, i.e., the stressor causing the effect is identified after the effect has been measured. When used in isolation, S-B and E-B methods do not address CEA in the context necessary for sustainable development. However, if the strengths of these approaches were integrated into a holistic framework for CEA, an operational mechanism would exist to better monitor and assess sustainable development of our aquatic resources. This paper reviews the existing conceptual basis

  19. Inelastic hyperspectral lidar for aquatic ecosystems monitoring and landscape plant scanning test

    Science.gov (United States)

    Zhao, Guangyu; Malmqvist, Elin; Rydhmer, Klas; Strand, Alfred; Bianco, Giuseppe; Hansson, Lars-Anders; Svanberg, Sune; Brydegaard, Mikkel

    2018-04-01

    We have developed an aquatic inelastic hyperspectral lidar with unrestricted focal-depth and enough sensitivity and spatio-temporal resolution to detect and resolve position and behavior of individual sub-millimeter aquatic organisms. We demonstrate ranging with monitoring of elastic echoes, water Raman signals and fluorescence from chlorophyllbearing phytoplankton and dye tagged organisms. The system is based on a blue CW diode laser and a Scheimpflug optical arrangement.

  20. Modern pollen data from the Canadian Arctic, 1972-1973

    Science.gov (United States)

    Nichols, Harvey; Stolze, Susann

    2017-05-01

    This data descriptor reports results of a 1972-73 baseline study of modern pollen deposition in the Canadian Arctic to originally aid interpretation of Holocene pollen diagrams from that region, especially focussed on the arctic tree-line. The data set is geographically unique due to its extent, and allows the assessment of the effects of modern climate change on northern ecosystems, including fluctuations of the a arctic tree-line. Repeated sampling was conducted along an interior transect at 29 sites from the Boreal Forest to the High Arctic, with five additional coastal sites covering a total distance of 3,200 km. Static pollen samplers captured both local pollen and long-distance pollen wind-blown from the Boreal Forest. Moss and lichen polsters provided multi-year pollen fallout to assess the effectiveness of the static pollen samplers. The local vegetation was recorded at each site. This descriptor provides information on data archived at the World Data Center PANGAEA, which includes spreadsheets detailing site and sample information as well as raw and processed pollen data obtained on over 500 samples.

  1. Mercury bioaccumulation in bats reflects dietary connectivity to aquatic food webs.

    Science.gov (United States)

    Becker, Daniel J; Chumchal, Matthew M; Broders, Hugh G; Korstian, Jennifer M; Clare, Elizabeth L; Rainwater, Thomas R; Platt, Steven G; Simmons, Nancy B; Fenton, M Brock

    2018-02-01

    Mercury (Hg) is a persistent and widespread heavy metal with neurotoxic effects in wildlife. While bioaccumulation of Hg has historically been studied in aquatic food webs, terrestrial consumers can become contaminated with Hg when they feed on aquatic organisms (e.g., emergent aquatic insects, fish, and amphibians). However, the extent to which dietary connectivity to aquatic ecosystems can explain patterns of Hg bioaccumulation in terrestrial consumers has not been well studied. Bats (Order: Chiroptera) can serve as a model system for illuminating the trophic transfer of Hg given their high dietary diversity and foraging links to both aquatic and terrestrial food webs. Here we quantitatively characterize the dietary correlates of long-term exposure to Hg across a diverse local assemblage of bats in Belize and more globally across bat species from around the world with a comparative analysis of hair samples. Our data demonstrate considerable interspecific variation in hair total Hg concentrations in bats that span three orders of magnitude across species, ranging from 0.04 mg/kg in frugivorous bats (Artibeus spp.) to 145.27 mg/kg in the piscivorous Noctilio leporinus. Hg concentrations showed strong phylogenetic signal and were best explained by dietary connectivity of bat species to aquatic food webs. Our results highlight that phylogeny can be predictive of Hg concentrations through similarity in diet and how interspecific variation in feeding strategies influences chronic exposure to Hg and enables movement of contaminants from aquatic to terrestrial ecosystems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Biological response to climate change in the Arctic Ocean: The view from the past

    Science.gov (United States)

    Cronin, Thomas M.; Cronin, Matthew A.

    2017-01-01

    The Arctic Ocean is undergoing rapid climatic changes including higher ocean temperatures, reduced sea ice, glacier and Greenland Ice Sheet melting, greater marine productivity, and altered carbon cycling. Until recently, the relationship between climate and Arctic biological systems was poorly known, but this has changed substantially as advances in paleoclimatology, micropaleontology, vertebrate paleontology, and molecular genetics show that Arctic ecosystem history reflects global and regional climatic changes over all timescales and climate states (103–107 years). Arctic climatic extremes include 25°C hyperthermal periods during the Paleocene-Eocene (56–46 million years ago, Ma), Quaternary glacial periods when thick ice shelves and sea ice cover rendered the Arctic Ocean nearly uninhabitable, seasonally sea-ice-free interglacials and abrupt climate reversals. Climate-driven biological impacts included large changes in species diversity, primary productivity, species’ geographic range shifts into and out of the Arctic, community restructuring, and possible hybridization, but evidence is not sufficient to determine whether or when major episodes of extinction occurred.

  3. Mercury in freshwater ecosystems of the Canadian Arctic: recent advances on its cycling and fate.

    Science.gov (United States)

    Chételat, John; Amyot, Marc; Arp, Paul; Blais, Jules M; Depew, David; Emmerton, Craig A; Evans, Marlene; Gamberg, Mary; Gantner, Nikolaus; Girard, Catherine; Graydon, Jennifer; Kirk, Jane; Lean, David; Lehnherr, Igor; Muir, Derek; Nasr, Mina; Poulain, Alexandre J; Power, Michael; Roach, Pat; Stern, Gary; Swanson, Heidi; van der Velden, Shannon

    2015-03-15

    The Canadian Arctic has vast freshwater resources, and fish are important in the diet of many Northerners. Mercury is a contaminant of concern because of its potential toxicity and elevated bioaccumulation in some fish populations. Over the last decade, significant advances have been made in characterizing the cycling and fate of mercury in these freshwater environments. Large amounts of new data on concentrations, speciation and fluxes of Hg are provided and summarized for water and sediment, which were virtually absent for the Canadian Arctic a decade ago. The biogeochemical processes that control the speciation of mercury remain poorly resolved, including the sites and controls of methylmercury production. Food web studies have examined the roles of Hg uptake, trophic transfer, and diet for Hg bioaccumulation in fish, and, in particular, advances have been made in identifying determinants of mercury levels in lake-dwelling and sea-run forms of Arctic char. In a comparison of common freshwater fish species that were sampled across the Canadian Arctic between 2002 and 2009, no geographic patterns or regional hotspots were evident. Over the last two to four decades, Hg concentrations have increased in some monitored populations of fish in the Mackenzie River Basin while other populations from the Yukon and Nunavut showed no change or a slight decline. The different Hg trends indicate that the drivers of temporal change may be regional or habitat-specific. The Canadian Arctic is undergoing profound environmental change, and preliminary evidence suggests that it may be impacting the cycling and bioaccumulation of mercury. Further research is needed to investigate climate change impacts on the Hg cycle as well as biogeochemical controls of methylmercury production and the processes leading to increasing Hg levels in some fish populations in the Canadian Arctic. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  4. Killer whale (Orcinus orca photo-identification in the eastern Canadian Arctic

    Directory of Open Access Journals (Sweden)

    Brent G. Young

    2011-05-01

    Full Text Available We identified individual killer whales (Orcinus orca using recent (2004–09 photographs to obtain a minimum count of whales that use eastern Canadian Arctic waters. Fifty-three individuals were identified from nine different sightings; 11 individuals from western Hudson Bay sightings and 42 from the areas around northern and eastern Baffin Island. One whale was re-sighted: an adult female or large juvenile photographed 17 days and 375 km apart at Churchill, Manitoba, and off-shore of Rankin Inlet, Nunavut, in August 2007. With only one individual re-sighted, the number of individuals that use this area is likely much larger. No re-sightings occurred between Arctic killer whales and individuals photographed off the coast of Newfoundland. Our results represent the minimum number of killer whales sighted in eastern Canadian Arctic waters and provide the foundation for further killer whale research. Little is known about Arctic killer whales and, as a top predator, it is unclear what effect they have on Arctic marine ecosystems.

  5. The virtues of localism and arctic wilderness politics

    Science.gov (United States)

    James N. Gladden

    2007-01-01

    An analysis of co-managing structures and land use issues in three case studies of arctic wilderness politics shows that more formal and informal power sharing by government officials with local people results in less conflict. Greater input and control by nearby communities may also help to protect wilderness ecosystems and traditional values of northern cultures....

  6. Development of integrated scenarios to assess future conditions of aquatic ecosystems under water scarcity in the Mediterranean - perspectives from the GLOBAQUA project

    Science.gov (United States)

    Huber-Garcia, Verena; Akinsete, Ebun; Gampe, David; Ker Rault, Philippe; Kok, Kasper; Koundouri, Phoebe; Luttik, Joke; Nikulin, Grigory; Pistocchi, Alberto; Souliotis, Ioannis; Ludwig, Ralf

    2017-04-01

    Water and water-related services are major components of the human wellbeing, and as such are major factors of socio-economic development; yet freshwater systems are under threat by a variety of stressors (organic and inorganic pollution, geomorphological alterations, land cover change, water abstraction, invasive species and pathogens). Water scarcity is most commonly associated with inappropriate water management and resulting river flow reductions. It has become one of the most important drivers of change in freshwater ecosystems. Conjoint occurrence of a myriad of stressors (chemical, geomorphological, biological) under water scarcity will produce novel and unfamiliar synergies and most likely very pronounced effects. Stressors are hierarchically arranged in terms of intensity, frequency and scale, and their effects can be predicted to be from transient to irreversible. Most ecosystems are simulta¬neously exposed to multiple-stress situations. Within the scope of the GLOBAQUA project the effects of multiple stressors on aquatic ecosystems in selected river basins across Europe with a focus on areas suffering from water scarcity are analyzed. In addition, management strategies are improved and adapted with the aim of inhibiting adverse effects on aquatic ecosystems and ensuring the supply with water for all purposes in the study areas also in the future. Policy relevant implications will be given to ensure a best possible status of these aquatic ecosystems also under future conditions. In this context, land use and land cover as well as the meteorological conditions can be seen as two main stressors for the quality and quantity of surface and subsurface water. These factors considerably affect the use and availability of water, especially in regions which already experience water scarcity. If the problem is not addressed correctly, negative effects on biodiversity, water supply as well as important economic consequences may arise. In Europe, many fresh water

  7. Climate of the Arctic marine environment.

    Science.gov (United States)

    Walsh, John E

    2008-03-01

    The climate of the Arctic marine environment is characterized by strong seasonality in the incoming solar radiation and by tremendous spatial variations arising from a variety of surface types, including open ocean, sea ice, large islands, and proximity to major landmasses. Interannual and decadal-scale variations are prominent features of Arctic climate, complicating the distinction between natural and anthropogenically driven variations. Nevertheless, climate models consistently indicate that the Arctic is the most climatically sensitive region of the Northern Hemisphere, especially near the sea ice margins. The Arctic marine environment has shown changes over the past several decades, and these changes are part of a broader global warming that exceeds the range of natural variability over the past 1000 years. Record minima of sea ice coverage during the past few summers and increased melt from Greenland have important implications for the hydrographic regime of the Arctic marine environment. The recent changes in the atmosphere (temperature, precipitation, pressure), sea ice, and ocean appear to be a coordinated response to systematic variations of the large-scale atmospheric circulation, superimposed on a general warming that is likely associated with increasing greenhouse gases. The changes have been sufficiently large in some sectors (e.g., the Bering/Chukchi Seas) that consequences for marine ecosystems appear to be underway. Global climate models indicate an additional warming of several degrees Celsius in much of the Arctic marine environment by 2050. However, the warming is seasonal (largest in autumn and winter), spatially variable, and closely associated with further retreat of sea ice. Additional changes predicted for 2050 are a general decrease of sea level pressure (largest in the Bering sector) and an increase of precipitation. While predictions of changes in storminess cannot be made with confidence, the predicted reduction of sea ice cover will

  8. AMEG: the new SETAC advisory group on aquatic macrophyte ecotoxicology

    OpenAIRE

    Arts, G.; Davies, J.; Dobbs, M.; Ebke, P.; Hanson, M.; Hommen, U.; Knauer, K.; Loutseti, S.; Maltby, L.; Mohr, S.; Poovey, A.; Poulsen, V.

    2010-01-01

    \\ud Introduction and background\\ud \\ud Primary producers play critical structural and functional roles in aquatic ecosystems; therefore, it is imperative that the potential risks of toxicants to aquatic plants are adequately assessed in the risk assessment of chemicals. The standard required macrophyte test species is the floating (non-sediment-rooted) duckweed Lemna spp. This macrophyte species might not be representative of all floating, rooted, emergent, and submerged macrophyte species be...

  9. Trophic transfer of metal nanoparticles in freshwater ecosystems

    DEFF Research Database (Denmark)

    Tangaa, Stine Rosendal

    freshwater ecosystems range from a few ng/L in surface waters and up to mg/kg in sediments. Several studies have shown Ag ENPs to be toxic, bioaccumulative and harmful to aquatic biota within these concentration ranges. However, research on potential trophic transfer of Ag ENPs is limited. To investigate...... the aquatic ecosystems, Ag ENPs will undergo several transformation processes, ultimately leading to particles settling out of the water column. This will likely result in an increased concentration of ENPs in the sediment. In fact, predicted environmental concentrations of Ag ENPs in Danish and European...... freshwater food web. Future studies should concentrate on the internal distribution of Me-ENPs after uptake in both prey and predator, as this will increase the understanding of fate and effects of Me-ENPs on aquatic biota. Trophic transfer studies including more trophic levels, and higher pelagic organisms...

  10. Inelastic hyperspectral lidar for aquatic ecosystems monitoring and landscape plant scanning test

    Directory of Open Access Journals (Sweden)

    Zhao Guangyu

    2018-01-01

    Full Text Available We have developed an aquatic inelastic hyperspectral lidar with unrestricted focal-depth and enough sensitivity and spatio-temporal resolution to detect and resolve position and behavior of individual sub-millimeter aquatic organisms. We demonstrate ranging with monitoring of elastic echoes, water Raman signals and fluorescence from chlorophyllbearing phytoplankton and dye tagged organisms. The system is based on a blue CW diode laser and a Scheimpflug optical arrangement.

  11. Insect herbivory on native and exotic aquatic plants: phosphorus and nitrogen drive insect growth and nutrient release

    OpenAIRE

    Grutters, B.M.C.; Gross, E.M.; Bakker, E.S.

    2016-01-01

    Eutrophication and globalisation facilitate the dominance of exotic plants in aquatic ecosystems worldwide. Aquatic omnivores can provide biotic resistance to plant invasions, but little is known about whether obligate aquatic herbivores can do the same. Herbivores such as insects can decimate aquatic vegetation, but may not be able to consume exotic plants due to their more or less specialised nature of feeding. We experimentally tested the larval feeding of an aquatic insect, the moth Parap...

  12. Methods for measuring arctic and alpine shrub growth: A review

    NARCIS (Netherlands)

    Myers-Smith, I.H.; Hallinger, M.; Blok, D.; Sass-Klaassen, U.G.W.; Rayback, S.A.

    2015-01-01

    Shrubs have increased in abundance and dominance in arctic and alpine regions in recent decades. This often dramatic change, likely due to climate warming, has the potential to alter both the structure and function of tundra ecosystems. The analysis of shrub growth is improving our understanding of

  13. Year-round Regional CO2 Fluxes from Boreal and Tundra Ecosystems in Alaska

    Science.gov (United States)

    Commane, R.; Lindaas, J.; Benmergui, J. S.; Luus, K. A.; Chang, R. Y. W.; Daube, B. C.; Euskirchen, E. S.; Henderson, J.; Karion, A.; Miller, J. B.; Miller, S. M.; Parazoo, N.; Randerson, J. T.; Sweeney, C.; Tans, P. P.; Thoning, K. W.; Veraverbeke, S.; Miller, C. E.; Wofsy, S. C.

    2016-12-01

    High-latitude ecosystems could release large amounts of carbon dioxide (CO2) to the atmosphere in a warmer climate. We derive temporally and spatially resolved year-round CO2 fluxes in Alaska from a synthesis of airborne and tower CO2 observations in 2012-2014. We find that tundra ecosystems were net sources of atmospheric CO2. We discuss these flux estimates in the context of long-term CO2 measurements at Barrow, AK, to asses the long term trend in carbon fluxes in the Arctic. Many Earth System Models incorrectly simulate net carbon uptake in Alaska presently. Our results imply that annual net emission of CO2 to the atmosphere may have increased markedly in this region of the Arctic in response to warming climate, supporting the view that climate-carbon feedback is strongly positive in the high Arctic.

  14. The effects of land cover and land use change on the contemporary carbon balance of the arctic and boreal terrestrial ecosystems of northern Eurasia

    Science.gov (United States)

    Hayes, Daniel J.; McGuire, A. David; Kicklighter, David W.; Burnside , Todd J.; Melillo, Jerry M.

    2010-01-01

    Recent changes in climate, disturbance regimes and land use and management systems in Northern Eurasia have the potential to disrupt the terrestrial sink of atmospheric CO2 in a way that accelerates global climate change. To determine the recent trends in the carbon balance of the arctic and boreal ecosystems of this region, we performed a retrospective analysis of terrestrial carbon dynamics across northern Eurasia over a recent 10-year period using a terrestrial biogeochemical process model. The results of the simulations suggest a shift in direction of the net flux from the terrestrial sink of earlier decades to a net source on the order of 45 Tg C year−1between 1997 and 2006. The simulation framework and subsequent analyses presented in this study attribute this shift to a large loss of carbon from boreal forest ecosystems, which experienced a trend of decreasing precipitation and a large area burned during this time period.

  15. Comparison of the relative sensitivity of Arctic species to dispersed oil using total petroleum and PAH measures of toxicity

    Science.gov (United States)

    Extended periods of open water have expanded the potential opportunities for petroleum and gas exploration and production in the Arctic, increasing the focus on understanding the potential impacts of released oil on aquatic organisms. However, information regarding the toxicity o...

  16. Trends in NDVI and tundra community composition in the Arctic of NE Alaska between 1984 and 2009

    Science.gov (United States)

    Robert R. Pattison; Janet C. Jorgenson; Martha K. Raynolds; Jeffery M. Welker

    2015-01-01

    As Arctic ecosystems experience increases in surface air temperatures, plot-level analyses of tundra vegetation composition suggest that there are important changes occurring in tundra communities that are typified by increases in shrubs and declines in non-vascular species. At the same time analyses of NDVI indicate that the Arctic tundra is greening. Few studies have...

  17. Artificial Light at Night Affects Organism Flux across Ecosystem Boundaries and Drives Community Structure in the Recipient Ecosystem

    Directory of Open Access Journals (Sweden)

    Alessandro Manfrin

    2017-10-01

    Full Text Available Artificial light at night (ALAN is a widespread alteration of the natural environment that can affect the functioning of ecosystems. ALAN can change the movement patterns of freshwater animals that move into the adjacent riparian and terrestrial ecosystems, but the implications for local riparian consumers that rely on these subsidies are still unexplored. We conducted a 2-year field experiment to quantify changes of freshwater-terrestrial linkages by installing streetlights in a previously light-naïve riparian area adjacent to an agricultural drainage ditch. We compared the abundance and community composition of emerging aquatic insects, flying insects, and ground-dwelling arthropods with an unlit control site. Comparisons were made within and between years using two-way generalized least squares (GLS model and a BACI design (Before-After Control-Impact. Aquatic insect emergence, the proportion of flying insects that were aquatic in origin, and the total abundance of flying insects all increased in the ALAN-illuminated area. The abundance of several night-active ground-dwelling predators (Pachygnatha clercki, Trochosa sp., Opiliones increased under ALAN and their activity was extended into the day. Conversely, the abundance of nocturnal ground beetles (Carabidae decreased under ALAN. The changes in composition of riparian predator and scavenger communities suggest that the increase in aquatic-to-terrestrial subsidy flux may cascade through the riparian food web. The work is among the first studies to experimentally manipulate ALAN using a large-scale field experiment, and provides evidence that ALAN can affect processes that link adjacent ecosystems. Given the large number of streetlights that are installed along shorelines of freshwater bodies throughout the globe, the effects could be widespread and represent an underestimated source of impairment for both aquatic and riparian systems.

  18. Integration of DNA barcoding approaches into aquatic bioassessments

    Science.gov (United States)

    The Clean Water Act directs states to protect water resources by developing criteria based in part on biological assessments of natural aquatic ecosystems. Current protocols can be limited by the availability of taxonomic expertise and concerns about precision and accuracy in mor...

  19. A methodology for assessing the impact of mutagens on aquatic ecosystems. Final report

    International Nuclear Information System (INIS)

    Knezovich, J.P.; Martinelli, R.E.

    1995-03-01

    Assessments of impacts of hazardous agents (i.e., chemical and physical mutagens) on human health have focused on defining the effects of chronic exposure on individuals, with cancer being the main effect of concern. In contrast, impacts on ecosystems have traditionally been gauged by the assessment of near-term organism mortality, which is clearly not a useful endpoint for assessing the long-term effects of chronic exposures. Impacts on individual organisms that affect the long-term survival of populations are much more important but are also more difficult to define. Therefore, methods that provide accurate measures of sub-lethal effects that are linked to population survival are required so that accurate assessments of environmental damage can be made and remediation efforts, if required, can be initiated. Radioactive substances have entered aquatic environments as a result of research and production activities, intentional disposal, and accidental discharges. At several DOE sites, surface waters and sediments are contaminated with radioactive and mutagenic materials. The accident at the Chernobyl power station in the former Soviet Union (FSU) has resulted in the contamination of biota present in the Kiev Reservoir. This documents presents a methodology which addresses the effects of a direct-acting mutagen (radiation) on aquantic organisms by applying sensitive techniques for assessing damage to genetic material

  20. Adaptive strategies and life history characteristics in a warming climate: salmon in the Arctic?

    Science.gov (United States)

    Nielsen, Jennifer L.; Ruggerone, Gregory T.; Zimmerman, Christian E.

    2013-01-01

    In the warming Arctic, aquatic habitats are in flux and salmon are exploring their options. Adult Pacific salmon, including sockeye (Oncorhynchus nerka), coho (O. kisutch), Chinook (O. tshawytscha), pink (O. gorbuscha) and chum (O. keta) have been captured throughout the Arctic. Pink and chum salmon are the most common species found in the Arctic today. These species are less dependent on freshwater habitats as juveniles and grow quickly in marine habitats. Putative spawning populations are rare in the North American Arctic and limited to pink salmon in drainages north of Point Hope, Alaska, chum salmon spawning rivers draining to the northwestern Beaufort Sea, and small populations of chum and pink salmon in Canada’s Mackenzie River. Pacific salmon have colonized several large river basins draining to the Kara, Laptev and East Siberian seas in the Russian Arctic. These populations probably developed from hatchery supplementation efforts in the 1960’s. Hundreds of populations of Arctic Atlantic salmon (Salmo salar) are found in Russia, Norway and Finland. Atlantic salmon have extended their range eastward as far as the Kara Sea in central Russian. A small native population of Atlantic salmon is found in Canada’s Ungava Bay. The northern tip of Quebec seems to be an Atlantic salmon migration barrier for other North American stocks. Compatibility between life history requirements and ecological conditions are prerequisite for salmon colonizing Arctic habitats. Broad-scale predictive models of climate change in the Arctic give little information about feedback processes contributing to local conditions, especially in freshwater systems. This paper reviews the recent history of salmon in the Arctic and explores various patterns of climate change that may influence range expansions and future sustainability of salmon in Arctic habitats. A summary of the research needs that will allow informed expectation of further Arctic colonization by salmon is given.

  1. Impact of long-term radiation exposure on aquatic biota within the Chernobyl exclusion zone: 30 years after accident

    International Nuclear Information System (INIS)

    Gudkov, D.I.; Pomortseva, N.A.; Shevtsova, N.L.; Dzyubenko, E.V.; Nazarov, A.B.

    2016-01-01

    Self-purification of closed water bodies within the Chernobyl exclusion zone (EZ) is an extremely slow process. Therefore, ecosystems of the majority of lakes, dead channels and crawls possess high levels of radionuclide contamination of all components. Along with natural decontamination processes in aquatic ecosystems such as physical decay of radionuclides and their water transport outside the EZ, there is a change of physical and chemical forms of radioactive substances in soils of catchment areas, their transformation and transition in the mobile and bioavailable state, washout to the closed aquatic ecosystems and accumulation by hydrobionts. This essentially deteriorates the radiation situation in closed aquatic ecosystems, which are some kind of 'storage system' of radioactive substances in the EZ and results in increase of radiation dose to aquatic species and manifests in a variety of radiation effects at different levels of biological systems. We established dose-related effects in hydrobionts of lakes within the EZ which indicates a damage of biological systems at subcellular, cellular, tissue, organ, organism and population levels as a result of chronic exposure to low doses of ionizing radiation. The rate of chromosomal aberrations in cells of aquatic species, many-a-times exceeds the level of spontaneous mutagenesis level to aquatic biota. Increased levels of chromosome damages may be a manifestation of radiation-induced genetic instability, which is one of the main mechanisms for the protection of living organisms from exposure to stressors with subsequent implementation at higher levels of organization of biological systems. (author)

  2. Functional feeding groups of aquatic insect families in Latin America: a critical analysis and review of existing literature.

    Science.gov (United States)

    Ramírez, Alonso; Gutiérrez-Fonseca, Pablo E

    2014-04-01

    Aquatic macroinvertebrates are involved in numerous processes within aquatic ecosystems. They often have important effects on ecosystem processes such as primary production (via grazing), detritus breakdown, and nutrient mineralization and downstream spiraling. The functional feeding groups (FFG) classification was developed as a tool to facilitate the incorporation of macroinvertebrates in studies of aquatic ecosystems. This classification has the advantage of combining morphological characteristics (e.g., mouth part specialization) and behavioral mechanisms (e.g., way of feeding) used by macroinvertebrates when consuming resources. Although recent efforts have greatly advanced our ability to identify aquatic macroinvertebrates, there is limited information on FFG assignment. Furthermore, there has been some variation in the use of the FFG classification, in part due to an emphasis on using gut content analysis to assign FFG, which is more appropriate for assigning trophic guilds. Thus, the main goals of this study are to (1) provide an overview of the value of using the FFG classification, (2) make an initial attempt to summarize available information on FFG for aquatic insects in Latin America, and (3) provide general guidelines on how to assign organisms to their FFGs. FFGs are intended to reflect the potential effects of organisms in their ecosystems and the way they consume resources. Groups include scrapers that consume resources that grow attached to the substrate by removing them with their mouth parts; shredders that cut or chew pieces of living or dead plant material, including all plant parts like leaves and wood; collectors-gatherers that use modified mouth parts to sieve or collect small particles (aquatic insects in Latin America, with an initial assignment to FFGs. We recommended caution when assigning FFGs based on gut contents, as it can provide misleading information. Overall, FFG is a very useful tool to understand the role of aquatic

  3. Application of Bayesian belief net in modelling the origin and effects of terrigenous dissolved organic matter in a boreal aquatic ecosystem

    Science.gov (United States)

    Rahikainen, Mika; Hoikkala, Laura; Soinne, Helena

    2013-04-01

    Bayesian belief nets (BBN) are capable of developing holistic understanding of the origin, transportation, and effects of dissolved organic matter (DOM) in ecosystems. The role of riverine DOM, transporting carbon and macronutrients N and P into lakes and coastal areas, has been largely neglected in research about processes influencing aquatic ecosystem functions although dissolved organic matter provides a significant nutrient source for primary producers in aquatic environments. This neglect has also contributed to the environmental policies which are focused in the control of inorganic N and P load. It is of great social and economic interest to gain improved knowledge of whether the currently applied policy instruments act in synchrony in mitigating eutrophication caused by N and P versus DOM load. DOM is a complex mixture of compounds that are poorly characterized. DOM export is strongly regulated by land use (urban, forest, agricultural land, peat land), in addition to soil type and soil organic carbon concentration. Furthermore, the composition of DOM varies according to its origin. The fate and effects of DOM loads in the fresh water and coastal environments depend, for example, on their biodegradability. Degradation kinetics again depends on the interactions between composition of the DOM pool and the receiving environment. Impact studies of dissolved organic matter pose a complicated environmental impact assessment challenge for science. There exists strategic uncertainty in the science about the causal dependencies and about the quality of knowledge related to DOM. There is a clear need for systematization in the approach as uncertainty is typically high about many key processes. A cross-sectorial, integrative analysis will aid in focusing on the most relevant issues. A holistic and unambiguous analysis will provide support for policy-decisions and management by indicating which outcome is more probable than another. The task requires coupling complex

  4. [A process of aquatic ecological function regionalization: The dual tree framework and conceptual model].

    Science.gov (United States)

    Guo, Shu Hai; Wu, Bo

    2017-12-01

    Aquatic ecological regionalization and aquatic ecological function regionalization are the basis of water environmental management of a river basin and rational utilization of an aquatic ecosystem, and have been studied in China for more than ten years. Regarding the common problems in this field, the relationship between aquatic ecological regionalization and aquatic ecological function regionalization was discussed in this study by systematic analysis of the aquatic ecological zoning and the types of aquatic ecological function. Based on the dual tree structure, we put forward the RFCH process and the diamond conceptual model. Taking Liaohe River basin as an example and referring to the results of existing regionalization studies, we classified the aquatic ecological function regions based on three-class aquatic ecological regionalization. This study provided a process framework for aquatic ecological function regionalization of a river basin.

  5. Scaling relationships among drivers of aquatic respiration from the smallest to the largest freshwater ecosystems

    Science.gov (United States)

    Hall, Ed K; Schoolmaster, Donald; Amado, A.M; Stets, Edward G.; Lennon, J.T.; Domaine, L.; Cotner, J.B.

    2016-01-01

    To address how various environmental parameters control or constrain planktonic respiration (PR), we used geometric scaling relationships and established biological scaling laws to derive quantitative predictions for the relationships among key drivers of PR. We then used empirical measurements of PR and environmental (soluble reactive phosphate [SRP], carbon [DOC], chlorophyll a [Chl-a)], and temperature) and landscape parameters (lake area [LA] and watershed area [WA]) from a set of 44 lakes that varied in size and trophic status to test our hypotheses. We found that landscape-level processes affected PR through direct effects on DOC and temperature and indirectly via SRP. In accordance with predictions made from known relationships and scaling laws, scale coefficients (the parameter that describes the shape of a relationship between 2 variables) were found to be negative and have an absolute value 1, others respiration from small pond catchments to the largest body of freshwater on the planet, Lake Superior, these findings should be applicable to controls of PR for the great majority of temperate aquatic ecosystems.

  6. Operation of an enclosed aquatic ecosystem in the Shenzhou-8 mission

    Science.gov (United States)

    Li, Xiaoyan; Richter, Peter R.; Hao, Zongjie; An, Yanjun; Wang, Gaohong; Li, Dunhai; Liu, Yongding; Strauch, Sebastian M.; Schuster, Martin; Haag, Ferdinand W.; Lebert, Michael

    2017-05-01

    Long- term spaceflight needs reliable Biological life support systems (BLSS) to supply astronauts with enough food, fresh air and recycle wasters, but the knowledge about the operation pattern and controlling strategy is rear. For this purpose, a miniaturized enclosed aquatic ecosystem was developed and flown on the Chinese spaceship Shenzhou-8. The system with a total volume of about 60 mL was separated into two chambers by means of a gas transparent membrane. The lower chamber was inoculated with Euglena gracilis cells, and the upper chamber was cultured with Chlorella cells and three snails. After 17.5 days flight, the samples were analyzed. It was found that all snails in the ground module (GM) were alive, while in the flight module (FM) only one snail survived. The total cell numbers, assimilation of nutrients like nitrogen and phosphorus, soluble proteins and carbohydrate contents showed a decrease in FM than in GM. The correlation analysis showed upper chambers of both FM and GM had the same positive and negative correlation factors, while differential correlation was found in lower chambers. These results suggested primary productivity in the enclosed system decreased in microgravity, accompanied with nutrients assimilation. The FM chamber endured lacking of domination species to sustain the system development and GM chamber endured richness in population abundance. These results implied photosynthesis intensity should be reduced to keep the system healthy. More Chlorella but less Euglena might be a useful strategy to sustain system stability. It is the first systematic analysis of enclosed systems in microgravity.

  7. Human-polar bear interactions in a changing Arctic: Existing and emerging concerns

    Science.gov (United States)

    Atwood, Todd C.; Simac, Kristin; Breck, Stewart; York, Geoff; Wilder, James

    2017-01-01

    The behavior and sociality of polar bears (Ursus maritimus) have been shaped by evolved preferences for sea ice habitat and preying on marine mammals. However, human behavior is causing changes to the Arctic marine ecosystem through the influence of greenhouse gas emissions that drive long-term change in ecosystem processes and via the presence of in situ stressors associated with increasing human activities. These changes are making it more difficult for polar bears to reliably use their traditional habitats and maintain fitness. Here, we provide an overview of how human activities in the Arctic are likely to change a polar bear’s behavior and to influence their resilience to environmental change. Developing a more thorough understanding of polar bear behavior and their capacity for flexibility in response to anthropogenic disturbances and subsequent mitigations may lead to successful near-term management interventions.

  8. Aquatic Ecology Section

    International Nuclear Information System (INIS)

    Brocksen, R.W.

    1978-01-01

    Population studies were concerned with predicting long-term consequences of mortality imposed on animal populations by man's activities. These studies consisted of development of a generalized life cycle model and an empirical impingement model for use in impact analysis. Chemical effects studies were conducted on chlorine minimization; fouling by the Asiatic clam; identification of halogenated organics in cooling water; and effects of halogenated organics in cooling systems on aquatic organisms. Ecological transport studies were conducted on availability of sediment-bound 137 Cs and 60 Co to fish; 137 Cs and 60 Co in White Oak Lake fish; and chromium levels in fish from a lake chronically contaminated with chromates from cooling towers. Progress is also reported on the following: effects of irradiation on thermal tolerance of mosquito fish; toxicity of nickel to the developing eggs and larvae of carp; accumulation of selected heavy metals associated with fly ash; and environmental monitoring of aquatic ecosystems

  9. Biological conservation of aquatic inland habitats: these are better days

    OpenAIRE

    Ian J. Winfield

    2013-01-01

    The biodiversity of aquatic inland habitats currently faces unprecedented threats from human activities. At the same time, although much is known about the functioning of freshwater ecosystems the successful transfer of such knowledge to practical conservation has not been universal. Global awareness of aquatic conservation issues is also hampered by the fact that conditions under the water surface are largely hidden from the direct experience of most members of society. Connectivity, or lack...

  10. Aquatic macrophytes in the large, sub-tropical Itaipu Reservoir, Brazil

    OpenAIRE

    Roger Paulo Mormul; Fernando Alves Ferreira; Thaisa Sala Michelan; Priscilla Carvalho; Marcio José Silveira; Sidinei Magela Thomaz

    2010-01-01

    In the last three decades, rapid assessment surveys have become an important approach for measuring aquatic ecosystem biodiversity. These methods can be used to detect anthropogenic impacts and recognize local or global species extinctions. We present a floristic survey of the aquatic macrophytes along the Brazilian margin of the Itaipu Reservoir conducted in 2008 and compare this with a floristic survey conducted ten years earlier. We used ordination analysis to determine whether assemblage ...

  11. Biodegradability of dissolved organic carbon in permafrost soils and waterways: a meta-analysis

    Science.gov (United States)

    Vonk, J. E.; Tank, S. E.; Mann, P. J.; Spencer, R. G. M.; Treat, C. C.; Striegl, R. G.; Abbott, B. W.; Wickland, K. P.

    2015-06-01

    As Arctic regions warm, the large organic carbon pool stored in permafrost becomes increasingly vulnerable to thaw and decomposition. The transfer of newly mobilized carbon to the atmosphere and its potential influence upon climate change will largely depend on the reactivity and subsequent fate of carbon delivered to aquatic ecosystems. Dissolved organic carbon (DOC) is a key regulator of aquatic metabolism and its biodegradability will determine the extent and rate of carbon release from aquatic ecosystems to the atmosphere. Knowledge of the mechanistic controls on DOC biodegradability is however currently poor due to a scarcity of long-term data sets, limited spatial coverage of available data, and methodological diversity. Here, we performed parallel biodegradable DOC (BDOC) experiments at six Arctic sites (16 experiments) using a standardized incubation protocol to examine the effect of methodological differences used as common practice in the literature. We further synthesized results from 14 aquatic and soil leachate BDOC studies from across the circum-arctic permafrost region to examine pan-Arctic trends in BDOC. An increasing extent of permafrost across the landscape resulted in higher BDOC losses in both soil and aquatic systems. We hypothesize that the unique composition of permafrost-derived DOC combined with limited prior microbial processing due to low soil temperature and relatively shorter flow path lengths and transport times, resulted in higher overall terrestrial and freshwater BDOC loss. Additionally, we found that the fraction of BDOC decreased moving down the fluvial network in continuous permafrost regions, i.e. from streams to large rivers, suggesting that highly biodegradable DOC is lost in headwater streams. We also observed a seasonal (January-December) decrease in BDOC losses in large streams and rivers, but no apparent change in smaller streams and soil leachates. We attribute this seasonal change to a combination of factors including

  12. Are Aquatic Viruses a Biological Archive of Genetic Information from Universe?

    Science.gov (United States)

    Toparceanu, F.; Negoita, Gh. T.; Nita, I. I.; Sava, D.

    2009-04-01

    After 1990, when the viruses were admited as the most abundant lifeforms from aquatic environments, it became obvious that viral lysis had an essential role on release and recycling of nutrients. Studies on cellular cultures and modeling suggest that this is an important quantitative process. The viruses from oceans represent the widest source of genetic diversity on the Earth, uncharacterized yet. The ancient lifeforms records stretching back a million years are locked in ice caps. The trend of glaciers melting as effect of actual climate change will promote the release of ancient viruses from ice caps. The increasing of the freshwater layer led to the replace of some algae species by others. Law-Racovitza Station (69o23'S 76o23'E) from East Antarctica (Larsemann Hills Oasis) offers opportunities to study the Antarctic marine ecosystem, as well as archaic aquatic ecosystems from this area ( 150 lakes and waterways resulted from ice and snow melting during the austral summer). According to Law-Racovitza Station Scientific Program, we are performing studies regarding the effect of climate changes on virus-algae host relationship in these aquatic ecosystems. Phycodnaviruses, that infect the eukaryote algae, are comprised of ancient genes and they are considered a "peek" of genetic diversity useful in biological studies and exobiology regarding the evolution of genetic sequencing. The latest discoveries of the giant aquatic viruses open the unexpected perspectives for understanding the role of viral infection in global ecosystem; beyond the old concept which considered that the viruses were only etiological agents of human, animals and plants illnesses. The aquatic viruses which infect microalgae contain similar genes of other viruses, bacteria, arhebacteria and eukaryotes, all of them being on the same genome. Which is the signification of enormous abundance of viruses and excessive diversity of genetic information encoded by viruses? There is the possibility that

  13. Influences of aquatic plants on the fate of the pyrethroid insecticide lambda-cyhalothrin in aquatic environments.

    Science.gov (United States)

    Hand, L H; Kuet, S F; Lane, M C; Maund, S J; Warinton, J S; Hill, I R

    2001-08-01

    Aquatic exposure assessments for pesticides are generally based on laboratory studies performed in water alone or water sediment systems. Although aquatic macrophytes, which include a variety of bryophytes, macroalgae, and angiosperms, can be a significant component of many aquatic ecosystems, their impact on pesticide fate is generally not included in exposure assessments. To investigate the influence of aquatic plants on the fate and behavior of the pyrethroid insecticide lambda (lambda)-cyhalothrin, two laboratory experiments (to assess adsorption and degradation) and an indoor microcosm study (to assess fate under semirealistic conditions) were conducted. In the laboratory studies, adsorption to macrophytes was extensive and essentially irreversible, and degradation occurred rapidly by cleavage of the ester bond. In the indoor microcosm, which contained water, sediment, and macrophytes from a pond, degradation was also rapid, with DT50 and DT90 values of less than 3 and 19 h, respectively, for dissipation from the water column and of less than 3 and 56 h, respectively, for the whole system. For adsorptive and readily degraded pesticides like lambda-cyhalothrin, we conclude that macrophytes have considerable influence on fate and behavior in surface waters.

  14. RESEARCH SHOWS IMPORTANCE OF RIPARIAN BUFFERS FOR AQUATIC HEALTH

    Science.gov (United States)

    Issue: Excess nitrogen from fertilizer, septic tanks, animal feedlots, and runoff from pavement can threaten aquatic ecosystem health. Riparian buffers -- the vegetated region adjacent to streams and wetlands -- are thought to be effective at intercepting and controlling excess ...

  15. Selenium concentration in compartments of aquatic ecosystems in Central Chile

    Energy Technology Data Exchange (ETDEWEB)

    Pinochet, H.; Gregori, I. de; Cavieres, M.F. [Catholic University of Valparaiso, Valparaiso (Chile). Chemical Institute

    2002-07-01

    A study was conducted during 1995-96 to evaluate Se concentration in water, sediment, and plants from aquatic ecosystems of central Chile, an area particularly affected by mining activities. Samples were collected from Panquehue, Chagres, and Ocoa along the Acongua River (presumably receives discharges from a copper refinery and a copper mine). Samples were also collected from one site on the Puchuncavi Stream (directly contaminated by both a coal power plant and a copper refinery). In addition, samples were also collected from one site on the Limache Stream (an urban area with no Se-contaminating sources). The sediment and plant samples collected in Puchuncavi had higher Se levels, which were statistically different to the concentration in samples from other sites. Sediments from Puchuncavi and Ocoa had the highest levels of Se (520 plus or minus 46 and 440 plus or minus 10 {mu} g/kg, respectively) while the plant (Jussiaea repens (Ludwigia repens)) collected in Puchuncavi had an Se concentration 6.5 times higher than the sample collected in Panquehue (116 plus or minus 154 and 182 plus or minus 54 {mu} g/kg, respectively). Puchuncavi water had more acidic pH than water from the other sites thus decreasing Se solubility. Se concentrations in sediment and water collected in Chagres were lower than the concentration determined in sediment and water from either Ocoa or Panquehue. Plant/water and plant/sediment accumulation factors and a sediment/water distribution factor were similar for all sampling sites, except Puchuncavi (accumulation and distribution factors are higher than at the other sites). Hydrocotyle ranunculoides had practically the same plant/sediment accumulation factor at all sites while the accumulation factor for J. repens varied according to site. The samples collected in the Limache stream had Se at equal or even higher concentration than the other samples collected from presumably contaminated sites (except Puchuncavi). 19 refs.

  16. Aquatic risk assessment of pesticides in Latin America

    NARCIS (Netherlands)

    Carriquiriborde, P.; Mirabella, P.; Waichman, A.; Solomon, K.; Brink, van den P.J.; Maund, S.J.

    2014-01-01

    Latin America is anticipated to be a major growth market for agriculture and production is increasing with use of technologies such as pesticides. Reports of contamination of aquatic ecosystems by pesticides in Latin America have raised concerns about potential for adverse ecological effects. In the

  17. Species-specific vulnerability of Arctic copepods to oil contamination and global warming

    DEFF Research Database (Denmark)

    Dinh, Khuong Van; Nielsen, Torkel Gissel

    Arctic ecosystems are predicted to have more severe effects from global warming as during the last decades the temperatures have increased in this region at a rate of 2-4 times higher than the global average. In addition, oil exploitation and shipping activities in the Arctic are predicted...... to increase under global warming as the result of the retreat of sea ice, posing the risk of oil contamination. It is poorly known how cold adapted copepods in the Arctic deal with the combined effects of global warming and oil exposure. To address this, we exposed females of two copepods species Calanus...... of temperatures. Notably, exposure to high pyrene resulted in ca. 70% of mortality in C. finmarchicus, the species with North Atlantic Origin, that was two times higher than the mortality observed for C. glacialis, the true Arctic species. These results suggest that extreme temperature under global warming...

  18. Studies on the transportation dynamics of 60Co in simulated ecosystem

    International Nuclear Information System (INIS)

    Wei Jianpeng; Chen Chuanqun; Wang Shouxiang; Sun Zhiming; Wang Jiyan

    1999-12-01

    The isotope tracer techniques were applied to study the transportation, accumulation and distribution of 60 Co in the pot-cultivated tomato-soil, aquatic and terrestrial ecosystems. Based on the principle of tracer dynamic compartment models, the mathematical formulae were established via computer simulation to describe the 60 Co behavior patterns in ecosystems and thus provided some basic information for elucidating the behavior of 60 Co in the environment. The results are as follows: (1) When 60 Co was introduced into the tomato-soil system, 60 Co was transported and accumulated in the soil and adsorbed by tomato root quickly, then transported to the above-ground plant. (2) The behavior patterns of 60 Co in the tomato-soil system could be described using the opened two-compartment model. (3) When 60 Co was introduced into aquatic system in the form of 60 Co-CoCl 2 , it was transported and transformed via deposit, complexation with other ions, adsorption and absorption by aquatic living things and led to the distribution and accumulation in individual part of the living things. (4) The behavior pattern of 60 Co in the aquatic-terrestrial ecosystem could be described by using opened five-compartment model

  19. Continental-scale effects of nutrient pollution on stream ecosystem functioning.

    Science.gov (United States)

    Woodward, Guy; Gessner, Mark O; Giller, Paul S; Gulis, Vladislav; Hladyz, Sally; Lecerf, Antoine; Malmqvist, Björn; McKie, Brendan G; Tiegs, Scott D; Cariss, Helen; Dobson, Mike; Elosegi, Arturo; Ferreira, Verónica; Graça, Manuel A S; Fleituch, Tadeusz; Lacoursière, Jean O; Nistorescu, Marius; Pozo, Jesús; Risnoveanu, Geta; Schindler, Markus; Vadineanu, Angheluta; Vought, Lena B-M; Chauvet, Eric

    2012-06-15

    Excessive nutrient loading is a major threat to aquatic ecosystems worldwide that leads to profound changes in aquatic biodiversity and biogeochemical processes. Systematic quantitative assessment of functional ecosystem measures for river networks is, however, lacking, especially at continental scales. Here, we narrow this gap by means of a pan-European field experiment on a fundamental ecosystem process--leaf-litter breakdown--in 100 streams across a greater than 1000-fold nutrient gradient. Dramatically slowed breakdown at both extremes of the gradient indicated strong nutrient limitation in unaffected systems, potential for strong stimulation in moderately altered systems, and inhibition in highly polluted streams. This large-scale response pattern emphasizes the need to complement established structural approaches (such as water chemistry, hydrogeomorphology, and biological diversity metrics) with functional measures (such as litter-breakdown rate, whole-system metabolism, and nutrient spiraling) for assessing ecosystem health.

  20. Spatial isses in Arctic marine resource governance workshop summary and comment

    DEFF Research Database (Denmark)

    Kaiser, Brooks; Bakanev, Sergey; Bertelsen, Rasmus

    2015-01-01

    The rapidly changing Arctic marine ecosystems face new challenges and opportunities that are increasing and shifting governance needs in the region. A group of economists, ecologists, biologists, political scientists and resource managers met in Stockholm, SE, Sept 4–6, 2014 to discuss the govern...

  1. Bioassessment of the ecological integrity of river ecosystems using ...

    African Journals Online (AJOL)

    Bioassessment of the ecological integrity of river ecosystems using aquatic macroinvertebrates: an overview with a focus on South Africa. ... In conclusion, a number of potential avenues for further research regarding the use of macroinvertebrates in the bioassessment of river ecosystems are identified. Keywords: benthic ...

  2. Nitrogen kinetics in aquatic plants in arctic Alaska

    International Nuclear Information System (INIS)

    McRoy, C.P.; Alexander, V.

    1975-01-01

    The kinetics of nitrogen in terms of ammonia uptake was measured for Carex aquatilis in arctic tundra ponds using 15 N tracer techniques. Nitrogen content of the leaves and primary productivity were measured throughout a growing season. The maximum uptake velocity for ammonia was 2.75 x 10 -2 % N/g dry weight per h with a Ksub(t) of 8.4-12.5 μgatoms/l. A second estimate of nitrogen uptake was made from the increase in nitrogen content throughout the season and from this a rate of 1.85 x 10 -2 % N/g dry weight per day was obtained for Carex aquatilis and 3.6 x 10 -2 % N/g dry weight per day for Arctophylla fulva. The total nitrogen concentration in the leaves was closely related to productivity, possible providing a new approach to productivity measurements for emergent vascular plants. Emergent vascular plants absorb ammonia across and translocate it to all portions of the plant. The ecological significance of this is considerable, since in many waters inorganic nitrogen content of sediment is much higher than that of the water surrounding the leaves and stems, and can provide a source of nitrogen

  3. Reconstruction of the Arctic Ocean environment during the Eocene Azolla interval using geochemical proxies and climate modeling. Geologica Ultraiectina (331)

    NARCIS (Netherlands)

    Speelman, E.N.

    2010-01-01

    With the realization that the Arctic Ocean was covered with enormous quantities of the aquatic floating fern Azolla 49 Myrs ago, new questions regarding the Eocene conditions facilitating these blooms arose. This dissertation describes the reconstruction of paleo-environmental conditions

  4. Agrochemical mitigation of three aquatic macrophytes: implications for ecosystem services

    Science.gov (United States)

    Agricultural runoff containing nitrogen and phosphorus is a major contributor to eutrophication in aquatic systems. Vegetated drainage ditches lining agricultural fields have been investigated for their potential to mitigate runoff, acting similarly to a wetland as they filter contaminants. The ef...

  5. What has happened to the “aquatic phycomycetes” (sensu Sparrow)? Part I: A brief historical perspective

    DEFF Research Database (Denmark)

    Gleason, Frank H.; Marano, Agostina V.; Lilje, Osu

    2018-01-01

    Abstract The “aquatic phycomycetes” constitute an ecologically and economically important assemblage of eukaryotic microorganisms, because they share many morphological traits and important ecological functions and they interact with each other in aquatic ecosystems. The last two decades of resea...

  6. Modern pollen data from the Canadian Arctic, 1972–1973

    Science.gov (United States)

    Nichols, Harvey; Stolze, Susann

    2017-01-01

    This data descriptor reports results of a 1972–73 baseline study of modern pollen deposition in the Canadian Arctic to originally aid interpretation of Holocene pollen diagrams from that region, especially focussed on the arctic tree-line. The data set is geographically unique due to its extent, and allows the assessment of the effects of modern climate change on northern ecosystems, including fluctuations of the a arctic tree-line. Repeated sampling was conducted along an interior transect at 29 sites from the Boreal Forest to the High Arctic, with five additional coastal sites covering a total distance of 3,200 km. Static pollen samplers captured both local pollen and long-distance pollen wind-blown from the Boreal Forest. Moss and lichen polsters provided multi-year pollen fallout to assess the effectiveness of the static pollen samplers. The local vegetation was recorded at each site. This descriptor provides information on data archived at the World Data Center PANGAEA, which includes spreadsheets detailing site and sample information as well as raw and processed pollen data obtained on over 500 samples. PMID:28509898

  7. Warming Effects on Enzyme Activities are Predominant in Sub-surface Soils of an Arctic Tundra Ecosystem over 6-Year Field Manipulation

    Science.gov (United States)

    Kang, H.; Seo, J.; Kim, M.; Jung, J. Y.; Lee, Y. K.

    2017-12-01

    Arctic tundra ecosystems are of great importance because they store a large amount of carbon as un-decomposed organic matter. Global climate change is expected to affect enzyme activities and heterotrophic respiration in Arctic soils, which may accelerate greenhouse gas (GHG) emission through positive biological feedbacks. Unlike laboratory-based incubation experiments, field measurements often show different warming effects on decomposition of organic carbon and releases of GHGs. In the present study, we conducted a field-based warming experiment in Cambridge Bay, Canada (69°07'48″N, 105°03'36″W) by employing passive chambers during growing seasons over 6 years. A suite of enzyme activities (ß-glucosidase, cellobiohydrolase, N-acetylglucosaminidase, leucine aminopeptidase and phenol oxidase), microbial community structure (NGS), microbial abundances (gene copy numbers of bacteria and fungi), and soil chemical properties have been monitored in two depths (0-5 cm and 5-10 cm) of tundra soils, which were exposed to four different treatments (`control', `warming-only', `water-addition only', and both `warming and water-addition'). Phenol oxidase activity increased substantially, and bacterial community structure and abundance changed in the early stage (after 1 year's warming manipulation), but these changes disappeared afterwards. Most hydrolases were enhanced in surface soils by `water-addition only' over the period. However, the long-term effects of warming appeared in sub-surface soils where both `warming only' and `warming and water addition' increased hydrolase activities. Overall results of this study indicate that the warming effects on enzyme activities in surface soils are only short-term (phenol oxidase) or masked by water-limitation (hydrolases). However, hydrolases activities in sub-surface soils are more strongly enhanced than surface soils by warming, probably due to the lack of water limitation. Meanwhile, negative correlations between hydrolase

  8. A comparison of PCB bioaccumulation factors between an arctic and a temperate marine food web.

    Science.gov (United States)

    Sobek, Anna; McLachlan, Michael S; Borgå, Katrine; Asplund, Lillemor; Lundstedt-Enkel, Katrin; Polder, Anuschka; Gustafsson, Orjan

    2010-06-01

    To test how environmental conditions in the Arctic and the resulting ecological adaptations affect accumulation of persistent organic pollutants (POPs) in the marine food web, bioaccumulation of four polychlorinated biphenyls (PCBs) in an arctic (Barents Sea 77 degrees N-82 degrees N) and a temperate marine (Baltic Sea 54 degrees N-62 degrees N) food web were compared. Three different trophic levels were studied (zooplankton, fish, and seal), representing the span from first-level consumer to top predator. Previously published high-quality data on PCB water concentrations in the two areas were used for calculation of bioaccumulation factors (BAF). BAF was calculated as the ratio of the PCB concentration in the organism ([PCB](org); pg/kg lipid) to the dissolved water concentration (C(w); pg/L). The BAF(Arctic):BAF(Temperate) ratios were above 1 for all four PCB congeners in zooplankton (6.4-13.8) and planktivorous fish (2.9-5.0)), whereas the ratios were below 1 in seal. The mean ratio between arctic and temperate BAFs for all trophic levels and congeners (BAF(Arcti):BAF(Temperate)) was 4.8. When the data were corrected for the seawater temperature difference between the two ecosystems, the ratio was 2.0. We conclude that bioaccumulation differences caused by ecological or physiological adaptations of organisms between the two ecosystems were well within a water concentration variability of 50%. Further, our data support the hypothesis that lower seawater temperature lead to a thermodynamically favoured passive partitioning to organic matrices and thus elevated ambient BAFs in the Arctic compared to the Baltic Sea. This would imply that bioaccumulation in the Arctic may be described in the same way as bioaccumulation in temperate regions, e.g. by the use of mechanistic models parameterised for the Arctic. Copyright (c) 2010. Published by Elsevier B.V.

  9. A comparison of PCB bioaccumulation factors between an arctic and a temperate marine food web

    International Nuclear Information System (INIS)

    Sobek, Anna; McLachlan, Michael S.; Borga, Katrine; Asplund, Lillemor; Lundstedt-Enkel, Katrin; Polder, Anuschka; Gustafsson, Orjan

    2010-01-01

    To test how environmental conditions in the Arctic and the resulting ecological adaptations affect accumulation of persistent organic pollutants (POPs) in the marine food web, bioaccumulation of four polychlorinated biphenyls (PCBs) in an arctic (Barents Sea 77 o N-82 o N) and a temperate marine (Baltic Sea 54 o N-62 o N) food web were compared. Three different trophic levels were studied (zooplankton, fish, and seal), representing the span from first-level consumer to top predator. Previously published high-quality data on PCB water concentrations in the two areas were used for calculation of bioaccumulation factors (BAF). BAF was calculated as the ratio of the PCB concentration in the organism ([PCB] org ; pg/kg lipid) to the dissolved water concentration (C w ; pg/L). The BAF Arctic :BAF Temperate ratios were above 1 for all four PCB congeners in zooplankton (6.4-13.8) and planktivorous fish (2.9-5.0)), whereas the ratios were below 1 in seal. The mean ratio between arctic and temperate BAFs for all trophic levels and congeners (BAF Arcti :BAF Temperate ) was 4.8. When the data were corrected for the seawater temperature difference between the two ecosystems, the ratio was 2.0. We conclude that bioaccumulation differences caused by ecological or physiological adaptations of organisms between the two ecosystems were well within a water concentration variability of 50%. Further, our data support the hypothesis that lower seawater temperature lead to a thermodynamically favoured passive partitioning to organic matrices and thus elevated ambient BAFs in the Arctic compared to the Baltic Sea. This would imply that bioaccumulation in the Arctic may be described in the same way as bioaccumulation in temperate regions, e.g. by the use of mechanistic models parameterised for the Arctic.

  10. The future of Arctic benthos: Expansion, invasion, and biodiversity

    Science.gov (United States)

    Renaud, Paul E.; Sejr, Mikael K.; Bluhm, Bodil A.; Sirenko, Boris; Ellingsen, Ingrid H.

    2015-12-01

    One of the logical predictions for a future Arctic characterized by warmer waters and reduced sea-ice is that new taxa will expand or invade Arctic seafloor habitats. Specific predictions regarding where this will occur and which taxa are most likely to become established or excluded are lacking, however. We synthesize recent studies and conduct new analyses in the context of climate forecasts and a paleontological perspective to make concrete predictions as to relevant mechanisms, regions, and functional traits contributing to future biodiversity changes. Historically, a warmer Arctic is more readily invaded or transited by boreal taxa than it is during cold periods. Oceanography of an ice-free Arctic Ocean, combined with life-history traits of invading taxa and availability of suitable habitat, determine expansion success. It is difficult to generalize as to which taxonomic groups or locations are likely to experience expansion, however, since species-specific, and perhaps population-specific autecologies, will determine success or failure. Several examples of expansion into the Arctic have been noted, and along with the results from the relatively few Arctic biological time-series suggest inflow shelves (Barents and Chukchi Seas), as well as West Greenland and the western Kara Sea, are most likely locations for expansion. Apparent temperature thresholds were identified for characteristic Arctic and boreal benthic fauna suggesting strong potential for range constrictions of Arctic, and expansions of boreal, fauna in the near future. Increasing human activities in the region could speed introductions of boreal fauna and reduce the value of a planktonic dispersal stage. Finally, shelf regions are likely to experience a greater impact, and also one with greater potential consequences, than the deep Arctic basin. Future research strategies should focus on monitoring as well as compiling basic physiological and life-history information of Arctic and boreal taxa, and

  11. A distributed atmosphere-sea ice-ocean observatory in the central Arctic Ocean: concept and first results

    Science.gov (United States)

    Hoppmann, Mario; Nicolaus, Marcel; Rabe, Benjamin; Wenzhöfer, Frank; Katlein, Christian; Scholz, Daniel; Valcic, Lovro

    2017-04-01

    To understand the current evolution of the Arctic Ocean towards a less extensive, thinner and younger sea ice cover is one of the biggest challenges in climate research. Especially the lack of simultaneous in-situ observations of sea ice, ocean and atmospheric properties leads to significant knowledge gaps in their complex interactions, and how the associated processes impact the polar marine ecosystem. Here we present a concept for the implementation of a long-term strategy to monitor the most essential climate- and ecosystem parameters in the central Arctic Ocean, year round and synchronously. The basis of this strategy is the development and enhancement of a number of innovative autonomous observational platforms, such as rugged weather stations, ice mass balance buoys, ice-tethered bio-optical buoys and upper ocean profilers. The deployment of those complementing platforms in a distributed network enables the simultaneous collection of physical and biogeochemical in-situ data on basin scales and year round, including the largely undersampled winter periods. A key advantage over other observatory systems is that the data is sent via satellite in near-real time, contributing to numerical weather predictions through the Global Telecommunication System (GTS) and to the International Arctic Buoy Programme (IABP). The first instruments were installed on ice floes in the Eurasian Basin in spring 2015 and 2016, yielding exceptional records of essential climate- and ecosystem-relevant parameters in one of the most inaccessible regions of this planet. Over the next 4 years, and including the observational periods of the Year of Polar Prediction (YOPP, 2017-2019) and the Multidisciplinary drifting Observatory for the Study of the Arctic Climate (MOSAiC, 2020), the distributed observatory will be maintained by deployment of additional instruments in the central Arctic each year, benefitting from international logistical efforts.

  12. Temporal development of coastal ecosystems in the Baltic Sea over the past two decades

    DEFF Research Database (Denmark)

    Olsson, Jens; Tomczak, Maciej; Ojaveer, Henn

    2015-01-01

    Coastal areas are among the most biologically productive aquatic systems worldwide, but face strong and variable anthropogenic pressures. Few studies have, however, addressed the temporal development of coastal ecosystems in an integrated context. This study represents an assessment of the develo...... in the capacity of currently available monitoring data to support integrated assessments and the implementation of an integrated ecosystem-based approach to the management of the Baltic Sea coastal ecosystems......Coastal areas are among the most biologically productive aquatic systems worldwide, but face strong and variable anthropogenic pressures. Few studies have, however, addressed the temporal development of coastal ecosystems in an integrated context. This study represents an assessment...

  13. The influence of ecological processes on the accumulation of persistent organochlorines in aquatic ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Berglund, Olof

    1999-09-01

    Several ecological problems influences the fate, transport, and accumulation of persistent organochlorines (OCs) in aquatic ecosystems. In this thesis, I have focused on two processes, namely (i) the food chain bioaccumulation of OCs, and (ii) the trophic status of the aquatic system. To test the biomagnification theory, I investigated PCB concentrations in planktonic food chains in lakes. The concentrations of PCB on a lipid basis did not increase with increasing trophic level. Hence, I could give no support to the theory of biomagnification. Instead, lipid content explained most of the variation in PCB accumulation in these food chains. PCBs were differentially fractionated in the food chains, the relative amount of high molecular weight PCBs increased with increasing trophic level, indicating congener specific differences in either the accumulation or the elimination of PCBs at the different trophic levels. In another study, I investigated the relationship between OC concentrations and trophic level, measured as {delta}{sup 15}N, in a specific predatory fish population. The dry weight OC concentrations and {delta}{sup 15}N were related, indicating effects of prey choice on the OC accumulation. However, here also, lipid content explained the major part of the variation in OC concentrations, independent of trophic level (e. g. {delta}{sup 15}N). I investigated the effects of trophic status, measured as Tot-P concentration in water, on the concentrations of OCs in water, planktonic food chains and sediment in lakes. The dry weight concentrations of PCBs in phytoplankton were negatively related to the trophic status of the lakes. However, this relationship was explained by the decreasing lipid content of phytoplankton with lake trophic status. The phytoplankton in eutrophic lakes had lower lipid content than phytoplankton in oligotrophic lakes, possibly due to inter- and intraspecific differences in lipid content due to nutrient stress. The sediment accumulation and

  14. Shrub water use dynamics in arctic Alaska

    Science.gov (United States)

    Clark, J.; Young-Robertson, J. M.; Tape, K. D.

    2016-12-01

    In the Arctic tundra, hydrologic processes influence the majority of ecosystem processes, from soil thermal dynamics to energy balance and trace gas exchange to vegetation community distributions. The tundra biome is experiencing a broad spectrum of ecosystem changes spurred by 20th century warming, including deciduous shrub expansion. Deciduous woody vegetation typically has high water use rates compared to evergreen and herbaceous species, and is projected to have a greater impact on energy balance than altered albedo from changes in snowpack. However, the impact of greater shrub cover on water balance has been overlooked. Shrubs have the potential to significantly dry the soil, accessing stored soil moisture in the organic layers, while increasing atmospheric moisture. The goal of this study is to quantify the water use dynamics (sap flux and stem water content) of three common arctic shrub species (Salix alexensis, S. pulchra, Betula nana) over two growing seasons. Stem water content was measured through a novel application of time domain reflectometry (TDR). Maximum sap flow rates varied by species: S. alexensis-600g/hr, S. pulchra-60g/hr, and B. nana-40g/hr. We found daily sap flow rates are highly correlated with atmospheric moisture demand (VPD) and not limited by soil moisture or antecedent precipitation. Stem water content varied between 20% and 60%, was correlated with soil moisture, and showed weak diurnal variation. This is one of the first studies to provide a detailed look at arctic tundra shrub water balance and explore the environmental controls on water flux. Planned future work will expand on these results for estimates of evapotranspiration over larger landscape areas.

  15. Changes in the structure and function of northern Alaskan ecosystems when considering variable leaf-out times across groupings of species in a dynamic vegetation model

    Science.gov (United States)

    Euskirchen, E.S.; Carman, T.B.; McGuire, Anthony David

    2013-01-01

    The phenology of arctic ecosystems is driven primarily by abiotic forces, with temperature acting as the main determinant of growing season onset and leaf budburst in the spring. However, while the plant species in arctic ecosystems require differing amounts of accumulated heat for leaf-out, dynamic vegetation models simulated over regional to global scales typically assume some average leaf-out for all of the species within an ecosystem. Here, we make use of air temperature records and observations of spring leaf phenology collected across dominant groupings of species (dwarf birch shrubs, willow shrubs, other deciduous shrubs, grasses, sedges, and forbs) in arctic and boreal ecosystems in Alaska. We then parameterize a dynamic vegetation model based on these data for four types of tundra ecosystems (heath tundra, shrub tundra, wet sedge tundra, and tussock tundra), as well as ecotonal boreal white spruce forest, and perform model simulations for the years 1970 -2100. Over the course of the model simulations, we found changes in ecosystem composition under this new phenology algorithm compared to simulations with the previous phenology algorithm. These changes were the result of the differential timing of leaf-out, as well as the ability for the groupings of species to compete for nitrogen and light availability. Regionally, there were differences in the trends of the carbon pools and fluxes between the new phenology algorithm and the previous phenology algorithm, although these differences depended on the future climate scenario. These findings indicate the importance of leaf phenology data collection by species and across the various ecosystem types within the highly heterogeneous Arctic landscape, and that dynamic vegetation models should consider variation in leaf-out by groupings of species within these ecosystems to make more accurate projections of future plant distributions and carbon cycling in Arctic regions.

  16. Genetic diversity and connectivity within Mytilus spp. in the subarctic and Arctic

    DEFF Research Database (Denmark)

    Mathiesen, Sofie Smedegaard; Thyrring, Jakob; Hansen, Jakob Hemmer

    2017-01-01

    Climate changes in the Arctic are predicted to alter distributions of marine species. However, such changes are difficult to quantify because information on present species distribution and the genetic variation within species is lacking or poorly examined. Blue mussels, Mytilus spp., are ecosystem...... engineers in the coastal zone globally. To improve knowledge of distribution and genetic structure of the Mytilus edulis complex in the Arctic, we analyzed 81 SNPs in 534 Mytilus spp. individuals sampled at 13 sites to provide baseline data for distribution and genetic variation of Mytilus mussels...

  17. Science to support aquatic animal health

    Science.gov (United States)

    Purcell, Maureen K.; Harris, M. Camille

    2016-10-18

    Healthy aquatic ecosystems are home to a diversity of plants, invertebrates, fish and wildlife. Aquatic animal populations face unprecedented threats to their health and survival from climate change, water shortages, habitat alteration, invasive species and environmental contaminants. These environmental stressors can directly impact the prevalence and severity of disease in aquatic populations. For example, periodic fish kills in the upper Chesapeake Bay Watershed are associated with many different opportunistic pathogens that proliferate in stressed fish populations. An estimated 80 percent of endangered juvenile Puget Sound steelhead trout die within two weeks of entering the marine environment, and a role for disease in these losses is being investigated. The introduction of viral hemorrhagic septicemia virus (VHSV) into the Great Lakes—a fishery worth an estimated 7 billion dollars annually—resulted in widespread fish die-offs and virus detections in 28 different fish species. Millions of dying sea stars along the west coast of North America have led to investigations into sea star wasting disease. U.S. Geological Survey (USGS) scientists are assisting managers with these issues through ecological investigations of aquatic animal diseases, field surveillance, and research to promote the development of mitigation strategies.

  18. Science for Managing Riverine Ecosystems: Actions for the USGS Identified in the Workshop "Analysis of Flow and Habitat for Instream Aquatic Communities"

    Science.gov (United States)

    Bencala, Kenneth E.; Hamilton, David B.; Petersen, James H.

    2006-01-01

    Federal and state agencies need improved scientific analysis to support riverine ecosystem management. The ability of the USGS to integrate geologic, hydrologic, chemical, geographic, and biological data into new tools and models provides unparalleled opportunities to translate the best riverine science into useful approaches and usable information to address issues faced by river managers. In addition to this capability to provide integrated science, the USGS has a long history of providing long-term and nationwide information about natural resources. The USGS is now in a position to advance its ability to provide the scientific support for the management of riverine ecosystems. To address this need, the USGS held a listening session in Fort Collins, Colorado in April 2006. Goals of the workshop were to: 1) learn about the key resource issues facing DOI, other Federal, and state resource management agencies; 2) discuss new approaches and information needs for addressing these issues; and 3) outline a strategy for the USGS role in supporting riverine ecosystem management. Workshop discussions focused on key components of a USGS strategy: Communications, Synthesis, and Research. The workshop identified 3 priority actions the USGS can initiate now to advance its capabilities to support integrated science for resource managers in partner government agencies and non-governmental organizations: 1) Synthesize the existing science of riverine ecosystem processes to produce broadly applicable conceptual models, 2) Enhance selected ongoing instream flow projects with complementary interdisciplinary studies, and 3) Design a long-term, watershed-scale research program that will substantively reinvent riverine ecosystem science. In addition, topical discussion groups on hydrology, geomorphology, aquatic habitat and populations, and socio-economic analysis and negotiation identified eleven important complementary actions required to advance the state of the science and to

  19. Survival of ship biofouling assemblages during and after voyages to the Canadian Arctic.

    Science.gov (United States)

    Chan, Farrah T; MacIsaac, Hugh J; Bailey, Sarah A

    2016-01-01

    Human-mediated vectors often inadvertently translocate species assemblages to new environments. Examining the dynamics of entrained species assemblages during transport can provide insights into the introduction risk associated with these vectors. Ship biofouling is a major transport vector of nonindigenous species in coastal ecosystems globally, yet its magnitude in the Arctic is poorly understood. To determine whether biofouling organisms on ships can survive passages in Arctic waters, we examined how biofouling assemblage structure changed before, during, and after eight round-trip military voyages from temperate to Arctic ports in Canada. Species richness first decreased (~70% loss) and then recovered (~27% loss compared to the original assemblages), as ships travelled to and from the Arctic, respectively, whereas total abundance typically declined over time (~55% total loss). Biofouling community structure differed significantly before and during Arctic transits as well as between those sampled during and after voyages. Assemblage structure varied across different parts of the hull; however, temporal changes were independent of hull location, suggesting that niche areas did not provide protection for biofouling organisms against adverse conditions in the Arctic. Biofouling algae appear to be more tolerant of transport conditions during Arctic voyages than are mobile, sessile, and sedentary invertebrates. Our results suggest that biofouling assemblages on ships generally have poor survivorship during Arctic voyages. Nonetheless, some potential for transporting nonindigenous species to the Arctic via ship biofouling remains, as at least six taxa new to the Canadian Arctic, including a nonindigenous cirripede, appeared to have survived transits from temperate to Arctic ports.

  20. The roles of productivity and ecosystem size in determining food chain length in tropical terrestrial ecosystems.

    Science.gov (United States)

    Young, Hillary S; McCauley, Douglas J; Dunbar, Robert B; Hutson, Michael S; Ter-Kuile, Ana Miller; Dirzo, Rodolfo

    2013-03-01

    Many different drivers, including productivity, ecosystem size, and disturbance, have been considered to explain natural variation in the length of food chains. Much remains unknown about the role of these various drivers in determining food chain length, and particularly about the mechanisms by which they may operate in terrestrial ecosystems, which have quite different ecological constraints than aquatic environments, where most food chain length studies have been thus far conducted. In this study, we tested the relative importance of ecosystem size and productivity in influencing food chain length in a terrestrial setting. We determined that (1) there is no effect of ecosystem size or productive space on food chain length; (2) rather, food chain length increases strongly and linearly with productivity; and (3) the observed changes in food chain length are likely achieved through a combination of changes in predator size, predator behavior, and consumer diversity along gradients in productivity. These results lend new insight into the mechanisms by which productivity can drive changes in food chain length, point to potential for systematic differences in the drivers of food web structure between terrestrial and aquatic systems, and challenge us to consider how ecological context may control the drivers that shape food chain length.