Kadelka, C.; D. Murrugarra; Laubenbacher, R.
2013-01-01
The global dynamics of gene regulatory networks are known to show robustness to perturbations in the form of intrinsic and extrinsic noise, as well as mutations of individual genes. One molecular mechanism underlying this robustness has been identified as the action of so-called microRNAs that operate via feedforward loops. We present results of a computational study, using the modeling framework of stochastic Boolean networks, which explores the role that such network motifs play in stabiliz...
Intrinsic noise and two-dimensional maps: quasicycles, quasiperiodicity, and chaos.
Parra-Rojas, César; Challenger, Joseph D; Fanelli, Duccio; McKane, Alan J
2014-09-01
We develop a formalism to describe the discrete-time dynamics of systems containing an arbitrary number of interacting species. The individual-based model, which forms our starting point, is described by a Markov chain, which in the limit of large system sizes is shown to be very well-approximated by a Fokker-Planck-like equation, or equivalently by a set of stochastic difference equations. This formalism is applied to the specific case of two species: one predator species and its prey species. Quasicycles, stochastic cycles sustained and amplified by the demographic noise, previously found in continuous-time predator-prey models are shown to exist, and their behavior predicted from a linear noise analysis is shown to be in very good agreement with simulations. The effects of the noise on other attractors in the corresponding deterministic map, such as periodic cycles, quasiperiodicity, and chaos, are also investigated. PMID:25314423
Physical white chaos generation
Wang, Anbang; Wang, Bingjie; Li, Lei; Zhang, Mingjiang; Zhang, Wendong
2014-01-01
Physical chaos is a fascinating prospect for high-speed data security by serving as a masking carrier or a key source, but suffers from a colored spectrum that divulges system's intrinsic oscillations and degrades randomness. Here, we demonstrate that physical chaos with a white spectrum can be achieved by the optical heterodyning of two delayed-feedback lasers. A white chaotic spectrum with 1-dB fluctuation in a band of 11 GHz is experimentally obtained. The white chaos also has a perfect delta-like autocorrelation function and a high dimensionality of greater than 10, which makes chaos reconstruction extremely difficult and thus improves security.
Kirilyuk, A P
1999-01-01
As was shown previously, a simple system of interacting electromagnetic and gravitational protofields with generic parameters shows intrinsic instability with respect to unceasing cycles of physically real auto-squeeze (reduction) to randomly chosen centres and the reverse extension which form the causally probabilistic process of quantum beat observed as an elementary particle (like electron). Here we show that the emerging wave-particle duality, space, and time lead to the well-known equations of special relativity and quantum mechanics thus providing their causal extension and intrinsic unification. The relativistic inertial mass (energy) is universally defined as the temporal rate (intensity) of the chaotic quantum beat process(es). The same complex-dynamical processes and the same mass-energy account for the universal gravitation, since any reduction event in the electromagnetic protofield is reproduced within the (directly unobservable) gravitational protofield leading to an increase of its tension whic...
The first archaic Homo from Taiwan.
Chang, Chun-Hsiang; Kaifu, Yousuke; Takai, Masanaru; Kono, Reiko T; Grün, Rainer; Matsu'ura, Shuji; Kinsley, Les; Lin, Liang-Kong
2015-01-01
Recent studies of an increasing number of hominin fossils highlight regional and chronological diversities of archaic Homo in the Pleistocene of eastern Asia. However, such a realization is still based on limited geographical occurrences mainly from Indonesia, China and Russian Altai. Here we describe a newly discovered archaic Homo mandible from Taiwan (Penghu 1), which further increases the diversity of Pleistocene Asian hominins. Penghu 1 revealed an unexpectedly late survival (younger than 450 but most likely 190-10 thousand years ago) of robust, apparently primitive dentognathic morphology in the periphery of the continent, which is unknown among the penecontemporaneous fossil records from other regions of Asia except for the mid-Middle Pleistocene Homo from Hexian, Eastern China. Such patterns of geographic trait distribution cannot be simply explained by clinal geographic variation of Homo erectus between northern China and Java, and suggests survival of multiple evolutionary lineages among archaic hominins before the arrival of modern humans in the region. PMID:25625212
Archaic and modern human distal humeral morphology.
Yokley, Todd R; Churchill, Steven E
2006-12-01
The morphology of the proximal ulna has been shown to effectively differentiate archaic or premodern humans (such as Homo heidelbergensis and H. neanderthalensis) from modern humans (H. sapiens). Accordingly, the morphology of adjacent, articulating elements should be able to distinguish these two broad groups as well. Here we test the taxonomic utility of another portion of the elbow, the distal humerus, as a discriminator of archaic and modern humans. Principal components analysis was employed on a suite of log-raw and log-shape distal humeral measures to examine differences between Neandertal and modern human distal humeri. In addition, the morphological affinities of Broken Hill (Kabwe) E.898, an archaic human distal humeral fragment from the middle Pleistocene of Zambia, and five Pliocene and early Pleistocene australopith humeri were assessed. The morphometric analyses effectively differentiated the Neandertals from the other groups, while the Broken Hill humerus appears morphologically similar to modern human distal humeri. Thus, an archaic/modern human dichotomy-as previously reported for proximal ulnar morphology-is not supported with respect to distal humeral morphology. Relative to australopiths and modern humans, Neandertal humeri are characterized by large olecranon fossae and small distodorsal medial and lateral pillars. The seeming disparity in morphological affinities of proximal ulnae (in which all archaic human groups appear distinct from modern humans) and distal humeri (in which Neandertals appear distinct from modern humans, but other archaic humans do not) is probably indicative of a highly variable, possibly transitional population of which our knowledge is hampered by sample-size limitations imposed by the scarcity of middle-to-late Pleistocene premodern human fossils outside of Europe. PMID:16959299
Authenticity and autochthonous traditions in archaic and Hellenistic poetry
Klooster, Julia
2016-01-01
J.J.H. Klooster, ‘Authenticity and autochthonous traditions in archaic and Hellenistic poetry’. In E. Bakker (ed): Authorship, Authority and Authenticity in Archaic and Classical Greek Song. Proceedings of the Network for the Study of Archaic and Classical Greek Song, Vol. 2, Leiden: Brill
Silver sources of archaic Greek coinage
International Nuclear Information System (INIS)
The authors report on new chemical and lead isotopic results and interpretations of archaic Greek silver coins from the Asyut hoard which was buried around 475 B.C. Aeginetan coins were of central interest in this study. Possible ancient silver mines were explored in the Aegean region in the course of several geologic expeditions, and chemically and isotopically investigated. Some of the silver sources in Greece were traced by combination of the analytical methods and questions of provenance were solved. In addition, processes of silver smelting and refining were studied. Results and implications of this work are summarized in the final section on Conclusions. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Mueller, B.
1997-09-22
The report contains viewgraphs on the following: ergodicity and chaos; Hamiltonian dynamics; metric properties; Lyapunov exponents; KS entropy; dynamical realization; lattice formulation; and numerical results.
Space in archaic Greek lyric: city, countryside and sea
Heirman, Jo
2012-01-01
From the end of the twentieth century onwards space has become a 'hot topic' in literary studies. This thesis contributes to the spatial turn by focusing on space in archaic Greek lyric (7th-5th c bc). A theoretical framework inspired by narratology, phenomenology and metaphor theory is applied to archaic lyric poems in which city, countryside and sea are of importance. Heirman argues that space is predominantly symbolic: the city is a political or an erotic metaphor, the countryside an eroti...
Space in archaic Greek lyric: city, countryside and sea
Jong, de, J.; Heirman, J.G.M.
2012-01-01
From the end of the twentieth century onwards space has become a ‘hot topic’ in literary studies. This thesis contributes to the spatial turn by focusing on space in archaic Greek lyric (7th-5th C BC). A theoretical framework inspired by narratology, phenomenology and metaphor theory is applied to archaic lyric poems in which city, countryside and sea are of importance. Heirman argues that space is predominantly symbolic: the city is a political or an erotic metaphor, the countryside an eroti...
Space in Archaic Greek Lyric : City, Countryside and Sea
Heirman, Jo
2012-01-01
From the end of the twentieth century onwards space has become a 'hot topic' in literary studies. This thesis contributes to the spatial turn by focusing on space in archaic Greek lyric (7th-5th c bc). A theoretical framework inspired by narratology, phenomenology and metaphor theory is applied to a
Space in archaic Greek lyric: city, countryside and sea
J.G.M. Heirman
2012-01-01
From the end of the twentieth century onwards space has become a ‘hot topic’ in literary studies. This thesis contributes to the spatial turn by focusing on space in archaic Greek lyric (7th-5th C BC). A theoretical framework inspired by narratology, phenomenology and metaphor theory is applied to a
Stochastic Chaos with Its Control and Synchronization
Institute of Scientific and Technical Information of China (English)
Zhang Ying; Xu Wei; Zhang Tianshu; Yang Xiaoli; Wu Cunli; Fang Tong
2008-01-01
The discovery of chaos in the sixties of last century was a breakthrough in concept,revealing the truth that some disorder behavior, called chaos, could happen even in a deterministic nonlinear system under barely deterministic disturbance. After a series of serious studies, people begin to acknowledge that chaos is a specific type of steady state motion other than the conventional periodic and quasi-periodic ones, featuring a sensitive dependence on initial conditions, resulting from the intrinsic randomness of a nonlinear system itself. In fact, chaos is a collective phenomenon consisting of massive individual chaotic responses, corresponding to different initial conditions in phase space. Any two adjacent individual chaotic responses repel each other, thus causing not only the sensitive dependence on initial conditions but also the existence of at least one positive top Lyapunov exponent (TLE) for chaos. Meanwhile, all the sample responses share one common invariant set on the Poincaré map, called chaotic attractor,which every sample response visits from time to time ergodically. So far, the existence of at least one positive TLE is a commonly acknowledged remarkable feature of chaos. We know that there are various forms of uncertainties in the real world. In theoretical studies, people often use stochastic models to describe these uncertainties, such as random variables or random processes.Systems with random variables as their parameters or with random processes as their excitations are often called stochastic systems. No doubt, chaotic phenomena also exist in stochastic systems, which we call stochastic chaos to distinguish it from deterministic chaos in the deterministic system. Stochastic chaos reflects not only the intrinsic randomness of the nonlinear system but also the external random effects of the random parameter or the random excitation.Hence, stochastic chaos is also a collective massive phenomenon, corresponding not only to different initial
Analysis of human accelerated DNA regions using archaic hominin genomes.
Burbano, Hernán A; Green, Richard E; Maricic, Tomislav; Lalueza-Fox, Carles; de la Rasilla, Marco; Rosas, Antonio; Kelso, Janet; Pollard, Katherine S; Lachmann, Michael; Pääbo, Svante
2012-01-01
Several previous comparisons of the human genome with other primate and vertebrate genomes identified genomic regions that are highly conserved in vertebrate evolution but fast-evolving on the human lineage. These human accelerated regions (HARs) may be regions of past adaptive evolution in humans. Alternatively, they may be the result of non-adaptive processes, such as biased gene conversion. We captured and sequenced DNA from a collection of previously published HARs using DNA from an Iberian Neandertal. Combining these new data with shotgun sequence from the Neandertal and Denisova draft genomes, we determine at least one archaic hominin allele for 84% of all positions within HARs. We find that 8% of HAR substitutions are not observed in the archaic hominins and are thus recent in the sense that the derived allele had not come to fixation in the common ancestor of modern humans and archaic hominins. Further, we find that recent substitutions in HARs tend to have come to fixation faster than substitutions elsewhere in the genome and that substitutions in HARs tend to cluster in time, consistent with an episodic rather than a clock-like process underlying HAR evolution. Our catalog of sequence changes in HARs will help prioritize them for functional studies of genomic elements potentially responsible for modern human adaptations. PMID:22412940
Huwe, Terence K.
2009-01-01
"Embracing the chaos" is an ongoing challenge for librarians. Embracing the chaos means librarians must have a plan for responding to the flood of new products, widgets, web tools, and gizmos that students use daily. In this article, the author argues that library instruction and access services have been grappling with that chaos with some degree…
Late archaic settlement systems in the northern Rio Grande
Energy Technology Data Exchange (ETDEWEB)
Vierra, Bradley J.
2003-01-01
Last year at these meetings I proposed a possible seasonal transhumance pattern for the Late Archaic in the northern Rio Grande region. This pattern involved the movement of groups from the lowland juniper-savanna grasslands in the early summer, to the upland ponderosa pindmixed conifer forests in the mid to late summer, and then back down to the piiion-juniper woodlands during the fall. The Rio Grande Valley was also used for winter habitation sites. Following on this research, I take the next step by studying the inter-assemblage variability represented in a sample of open-air sites located within each of these vegetation communities. The results indicate that there are significant differences in reduction tactics represented between valley habitation vs., upland campsites, and that these site sites are linked together by obsidian procurement patterns.
Universal quantification for deterministic chaos in dynamical systems
Selvam, A. Mary
2000-01-01
A cell dynamical system model for deterministic chaos enables precise quantification of the round-off error growth,i.e., deterministic chaos in digital computer realizations of mathematical models of continuum dynamical systems. The model predicts the following: (a) The phase space trajectory (strange attractor) when resolved as a function of the computer accuracy has intrinsic logarithmic spiral curvature with the quasiperiodic Penrose tiling pattern for the internal structure. (b) The unive...
Manifestation of resonance-related chaos in coupled Josephson junctions
International Nuclear Information System (INIS)
Manifestation of chaos in the temporal dependence of the electric charge is demonstrated through the calculation of the maximal Lyapunov exponent, phase–charge and charge–charge Lissajous diagrams and correlation functions. It is found that the number of junctions in the stack strongly influences the fine structure in the current–voltage characteristics and a strong proximity effect results from the nonperiodic boundary conditions. The observed resonance-related chaos exhibits intermittency. The criteria for a breakpoint region with no chaos are obtained. Such criteria could clarify recent experimental observations of variations in the power output from intrinsic Josephson junctions in high temperature superconductors.
Erçetin, Şefika; Tekin, Ali
2014-01-01
The present work investigates global politics and political implications of social science and management with the aid of the latest complexity and chaos theories. Until now, deterministic chaos and nonlinear analysis have not been a focal point in this area of research. This book remedies this deficiency by utilizing these methods in the analysis of the subject matter. The authors provide the reader a detailed analysis on politics and its associated applications with the help of chaos theory, in a single edited volume.
Quantum Chaos and Statistical Mechanics
Srednicki, Mark
1994-01-01
We briefly review the well known connection between classical chaos and classical statistical mechanics, and the recently discovered connection between quantum chaos and quantum statistical mechanics.
Understanding Chaos via Nuclei
Cejnar, Pavel; Stránský, Pavel
2014-01-01
We use two models of nuclear collective dynamics - the geometric collective model and the interacting boson model - to illustrate principles of classical and quantum chaos. We propose these models as a suitable testing ground for further elaborations of the general theory of chaos in both classical and quantum domains.
Science of Chaos or Chaos in Science?
Bricmont, Jean
1996-01-01
I try to clarify several confusions in the popular literature concerning chaos, determinism, the arrow of time, entropy and the role of probability in physics. Classical ideas going back to Laplace and Boltzmann are explained and defended while some recent views on irreversibility, due to Prigogine, are criticized.
Maldacena, Juan; Stanford, Douglas
2015-01-01
We conjecture a sharp bound on the rate of growth of chaos in thermal quantum systems with a large number of degrees of freedom. Chaos can be diagnosed using an out-of-time-order correlation function closely related to the commutator of operators separated in time. We conjecture that the influence of chaos on this correlator can develop no faster than exponentially, with Lyapunov exponent $\\lambda_L \\le 2 \\pi k_B T/\\hbar$. We give a precise mathematical argument, based on plausible physical assumptions, establishing this conjecture.
International Nuclear Information System (INIS)
Rapid growth in the study of nonlinear dynamics and chaos in classical mechanics, has led physicists to reappraise their abandonment of this definition of atomic theory in favour of quantum mechanics adopted earlier this century. The concept of chaos in classical mechanics is examined in this paper and manifestations of chaos in quantum mechanics are explored. While quantum mechanics teaches that atomic particles must not be pictured as moving sharply in defined orbits, these precise orbits can be used to describe essential features of the measurable quantum mechanical spectra. (UK)
Chaos applications in telecommunications
Stavroulakis, Peter
2005-01-01
IntroductionPeter StavroulakisChaotic Signal Generation and Transmission Antonio Cândido Faleiros,Waldecir João Perrella,TâniaNunes Rabello,Adalberto Sampaio Santos, andNeiYoshihiro SomaChaotic Transceiver Design Arthur Fleming-DahlChaos-Based Modulation and DemodulationTechniques Francis C.M. Lau and Chi K. TseA Chaos Approach to Asynchronous DS-CDMASystems S. Callegari, G. Mazzini, R. Rovatti, and G. SettiChannel Equalization in Chaotic CommunicationSystems Mahmut CiftciOptical Communications using ChaoticTechniques Gregory D. VanWiggerenAPPENDIX AFundamental Concepts of the Theory ofChaos a
Jorás, S E; Jor\\'as, Sergio E.
2003-01-01
We show evidence for a relationship between chaos and parametric resonance both in a classical system and in the semiclassical process of particle creation. We apply our considerations in a toy model for preheating after inflation.
Exploiting chaos for applications
International Nuclear Information System (INIS)
We discuss how understanding the nature of chaotic dynamics allows us to control these systems. A controlled chaotic system can then serve as a versatile pattern generator that can be used for a range of application. Specifically, we will discuss the application of controlled chaos to the design of novel computational paradigms. Thus, we present an illustrative research arc, starting with ideas of control, based on the general understanding of chaos, moving over to applications that influence the course of building better devices
Hosur, Pavan; Qi, Xiao-Liang; Roberts, Daniel; Yoshida, Beni(Institute for Quantum Information & Matter and Walter Burke Institute for Theoretical Physics, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA, 91125, U.S.A.)
2016-01-01
We study chaos and scrambling in unitary channels by considering their entanglement properties as states. Using out-of-time-order correlation functions to diagnose chaos, we characterize the ability of a channel to process quantum information. We show that the generic decay of such correlators implies that any input subsystem must have near vanishing mutual information with almost all partitions of the output. Additionally, we propose the negativity of the tripartite information of the channe...
Exploiting chaos for applications
Energy Technology Data Exchange (ETDEWEB)
Ditto, William L., E-mail: wditto@hawaii.edu [Department of Physics and Astronomy, University of Hawaii at Mānoa, Honolulu, Hawaii 96822 (United States); Sinha, Sudeshna, E-mail: sudeshna@iisermohali.ac.in [Indian Institute of Science Education and Research (IISER), Mohali, Knowledge City, Sector 81, SAS Nagar, PO Manauli 140306, Punjab (India)
2015-09-15
We discuss how understanding the nature of chaotic dynamics allows us to control these systems. A controlled chaotic system can then serve as a versatile pattern generator that can be used for a range of application. Specifically, we will discuss the application of controlled chaos to the design of novel computational paradigms. Thus, we present an illustrative research arc, starting with ideas of control, based on the general understanding of chaos, moving over to applications that influence the course of building better devices.
Deterministic chaos an introduction
Schuster, Heinz Georg
2005-01-01
A new edition of this well-established monograph, this volume provides a comprehensive overview over the still fascinating field of chaos research. The authors include recent developments such as systems with restricted degrees of freedom but put also a strong emphasis on the mathematical foundations. Partly illustrated in color, this fourth edition features new sections from applied nonlinear science, like control of chaos, synchronisation of nonlinear systems, and turbulence, as well as recent theoretical concepts like strange nonchaotic attractors, on-off intermittency and spatio-temporal chaotic motion
Directory of Open Access Journals (Sweden)
B. Buti
1999-01-01
Full Text Available A nonlinear wave, in general, is equivalent to a nonlinear dynamical system, which exhibits the phenomena of chaos. By means of techniques of nonlinear dynamical systems, we have investigated the conditions under which nonlinear Alfvén waves and lower-hybrid waves can become chaotic. The role of heavy ions, in controlling the chaos in magnetoplasmas, is examined. Chaotic routes to Alfvénic turbulence, with k-1 spectra, are observed in case of externally driven nonlinear Alfvén waves. Anomalous heating and particle acceleration resulting from chaotic fields, generated by lower-hybrid waves, are briefly outlined.
Akhmet, Marat; Fen, Mehmet Onur
2012-01-01
Morphogenesis, as it is understood in a wide sense by Ren\\'e Thom, is considered for various types of chaos. That is, those, obtained by period-doubling cascade, Devaney's and Li-Yorke chaos. Moreover, in discussion form we consider inheritance of intermittency, the double-scroll Chua's attractor and quasiperiodical motions as a possible skeleton of a chaotic attractor. To make our introduction of the paper more clear, we have to say that one may consider other various accompanying concepts o...
Dissipative structures and chaos
Mori, Hazime
1998-01-01
This monograph consists of two parts and gives an approach to the physics of open nonequilibrium systems. Part I derives the phenomena of dissipative structures on the basis of reduced evolution equations and includes Bénard convection and Belousov-Zhabotinskii chemical reactions. Part II discusses the physics and structures of chaos. While presenting a construction of the statistical physics of chaos, the authors unify the geometrical and statistical descriptions of dynamical systems. The shape of chaotic attractors is characterized, as are the mixing and diffusion of chaotic orbits and the fluctuation of energy dissipation exhibited by chaotic systems.
International Nuclear Information System (INIS)
Classification of chaotic patterns in classical Hamiltonian systems is given as a series of levels with increasing disorder. Hamiltonian dynamics is presented, including the renormalization chaos, based upon the fairly simple resonant theory. First estimates for the critical structure and related statistical anomalies in arbitrary dimensions are discussed. 49 refs
Directory of Open Access Journals (Sweden)
Kratochvíl C.
2007-10-01
Full Text Available The purpose of this article is to provide an elementary introduction to the subject of chaos in the electromechanical drive systems. In this article, we explore chaotic solutions of maps and continuous time systems. These solutions are also bounded like equilibrium, periodic and quasiperiodic solutions.
Neural chaos and schizophrenia
Czech Academy of Sciences Publication Activity Database
Bob, P.; Chládek, Jan; Šusta, M.; Glaslová, K.; Jagla, F.; Kukleta, M.
2007-01-01
Roč. 26, č. 4 (2007), s. 298-305. ISSN 0231-5882 Institutional research plan: CEZ:AV0Z20650511 Keywords : EDA * Lyapunov exponent * schizophrenia * chaos Subject RIV: FL - Psychiatry, Sexuology Impact factor: 1.286, year: 2007
Directory of Open Access Journals (Sweden)
R. Kříž
2011-01-01
Full Text Available This paper presents an analysis of GDP and finds chaos in GDP. I tried to find a nonlinear lower-dimensional discrete dynamic macroeconomic model that would characterize GDP. This model is represented by a set of differential equations. I have used the Mathematica and MS Excel programs for the analysis.
R. Kříž
2011-01-01
This paper presents an analysis of GDP and finds chaos in GDP. I tried to find a nonlinear lower-dimensional discrete dynamic macroeconomic model that would characterize GDP. This model is represented by a set of differential equations. I have used the Mathematica and MS Excel programs for the analysis.
High-dimensional chaos from self-sustained collisions of solitons
International Nuclear Information System (INIS)
We experimentally demonstrate chaos generation based on collisions of electrical solitons on a nonlinear transmission line. The nonlinear line creates solitons, and an amplifier connected to it provides gain to these solitons for their self-excitation and self-sustenance. Critically, the amplifier also provides a mechanism to enable and intensify collisions among solitons. These collisional interactions are of intrinsically nonlinear nature, modulating the phase and amplitude of solitons, thus causing chaos. This chaos generated by the exploitation of the nonlinear wave phenomena is inherently high-dimensional, which we also demonstrate.
Global genetic variation at OAS1 provides evidence of archaic admixture in Melanesian populations.
Mendez, Fernando L; Watkins, Joseph C; Hammer, Michael F
2012-06-01
Recent analysis of DNA extracted from two Eurasian forms of archaic human shows that more genetic variants are shared with humans currently living in Eurasia than with anatomically modern humans in sub-Saharan Africa. Although these genome-wide average measures of genetic similarity are consistent with the hypothesis of archaic admixture in Eurasia, analyses of individual loci exhibiting the signal of archaic introgression are needed to test alternative hypotheses and investigate the admixture process. Here, we provide a detailed sequence analysis of the innate immune gene OAS1, a locus with a divergent Melanesian haplotype that is very similar to the Denisova sequence from the Altai region of Siberia. We resequenced a 7-kb region encompassing the OAS1 gene in 88 individuals from six Old World populations (San, Biaka, Mandenka, French Basque, Han Chinese, and Papua New Guineans) and discovered previously unknown and ancient genetic variation. The 5' region of this gene has unusual patterns of diversity, including 1) higher levels of nucleotide diversity in Papuans than in sub-Saharan Africans, 2) very deep ancestry with an estimated time to the most recent common ancestor of >3 myr, and 3) a basal branching pattern with Papuan individuals on either side of the rooted network. A global geographic survey of >1,500 individuals showed that the divergent Papuan haplotype is nearly restricted to populations from eastern Indonesia and Melanesia. Polymorphic sites within this haplotype are shared with the draft Denisova genome over a span of ∼90 kb and are associated with an extended block of linkage disequilibrium, supporting the hypothesis that this haplotype introgressed from an archaic source that likely lived in Eurasia. PMID:22319157
Wild Goat style ceramics at Troy and the impact of Archaic period colonisation on the Troad
Aslan, Carolyn C.; Pernicka, Ernst
2013-01-01
The establishment of colonies along the Hellespont by inhabitants of Ionia, Athens and Lesbos is well-known from historical texts. Recently, stratified contexts at Troy as well as other surveys and excavations have yielded new information about the chronology and material markers of Archaic period settlements in the Troad and the Gallipoli peninsula. The archaeological evidence for colonisation in this region is not clearly seen until the late seventh to early sixth century BC when there is a...
Ceramic Technology, Women, and Settlement Patterns in Late Archaic Southwestern Idaho
Dougherty, Jessica A.
2014-01-01
This research employs a sample of archaeological sites from three ecological zones to investigate the mobility strategies of hunter-gatherer groups in Late Archaic southwestern Idaho. The sample sites are organized into site types based on an independent evaluation of site components and existing site records. Ceramic assemblages at each site were analyzed to quantify the investment in ceramic technology, as a proxy for mobility. These measures were then compared to expectations generated fro...
The Birth of the Mob: Representations of Crowds in Archaic and Classical Greek Literature
Schwab, Justin Jon
2011-01-01
AbstractThe Birth of the Mob: Representations of Crowds in Archaic and Classical Greek LiteraturebyJustin Jon SchwabDoctor of Philosophy in ClassicsUniversity of California, BerkeleyProfessor Leslie Kurke, Chair This dissertation surveys the representation of crowds and related phenomena in Homer, the Attic tragedians, and Aristophanes. The first chapter begins by noting that while recent scholarship has explored the role of the crowd in ancient Roman history and literature, virtually no simi...
Fuzzy controller based on chaos optimal design and its application
Institute of Scientific and Technical Information of China (English)
邹恩; 李祥飞; 张泰山
2004-01-01
In order to overcome difficulty of tuning parameters of fuzzy controller, a chaos optimal design method based on annealing strategy is proposed. First, apply the chaotic variables to search for parameters of fuzzy controller, and transform the optimal variables into chaotic variables by carrier-wave method. Making use of the intrinsic stochastic property and ergodicity of chaos movement to escape from the local minimum and direct optimization searching within global range, an approximate global optimal solution is obtained. Then, the chaos local searching and optimization based on annealing strategy are cited, the parameters are optimized again within the limits of the approximate global optimal solution, the optimization is realized by means of combination of global and partial chaos searching, which can converge quickly to global optimal value. Finally, the third order system and discrete nonlinear system are simulated and compared with traditional method of fuzzy control. The results show that the new chaos optimal design method is superior to fuzzy control method, and that the control results are of high precision, with no overshoot and fast response.
A Structure behind Primitive Chaos
Ogasawara, Yoshihito
2015-06-01
Recently, a new concept, primitive chaos, has been proposed as a concept closely related to the fundamental problems of physics itself such as determinism, causality, free will, predictability, and irreversibility [J. Phys. Soc. Jpn. 79, 015002 (2010)]. This paper reveals a structure hidden behind the primitive chaos; under some conditions, a new primitive chaos is constructed from the original primitive chaos, this procedure can be repeated, and the hierarchical structure of the primitive chaos is obtained. This implies such a picture that new events and causality are constructed from the old ones, with the aid of the concept of a coarse graining. As an application of this structure, interesting facts are revealed for the essential condition of the primitive chaos and for chaotic behaviors.
Energy Technology Data Exchange (ETDEWEB)
Tél, Tamás [Institute for Theoretical Physics, Eötvös University, and MTA-ELTE Theoretical Physics Research Group, Pázmány P. s. 1/A, Budapest H-1117 (Hungary)
2015-09-15
We intend to show that transient chaos is a very appealing, but still not widely appreciated, subfield of nonlinear dynamics. Besides flashing its basic properties and giving a brief overview of the many applications, a few recent transient-chaos-related subjects are introduced in some detail. These include the dynamics of decision making, dispersion, and sedimentation of volcanic ash, doubly transient chaos of undriven autonomous mechanical systems, and a dynamical systems approach to energy absorption or explosion.
Chaos detection and predictability
Gottwald, Georg; Laskar, Jacques
2016-01-01
Distinguishing chaoticity from regularity in deterministic dynamical systems and specifying the subspace of the phase space in which instabilities are expected to occur is of utmost importance in as disparate areas as astronomy, particle physics and climate dynamics. To address these issues there exists a plethora of methods for chaos detection and predictability. The most commonly employed technique for investigating chaotic dynamics, i.e. the computation of Lyapunov exponents, however, may suffer a number of problems and drawbacks, for example when applied to noisy experimental data. In the last two decades, several novel methods have been developed for the fast and reliable determination of the regular or chaotic nature of orbits, aimed at overcoming the shortcomings of more traditional techniques. This set of lecture notes and tutorial reviews serves as an introduction to and overview of modern chaos detection and predictability techniques for graduate students and non-specialists. The book cover...
Hosur, Pavan; Roberts, Daniel A; Yoshida, Beni
2015-01-01
We study chaos and scrambling in unitary channels by considering their entanglement properties as states. Using out-of-time-order correlation functions to diagnose chaos, we characterize the ability of a channel to process quantum information. We show that the generic decay of such correlators implies that any input subsystem must have near vanishing mutual information with almost all partitions of the output. Additionally, we propose the negativity of the tripartite information of the channel as a general diagnostic of scrambling. This measures the delocalization of information and is closely related to the decay of out-of-time-order correlators. We back up our results with numerics in two non-integrable models and analytic results in a perfect tensor network model of chaotic time evolution. These results show that the butterfly effect in quantum systems implies the information-theoretic definition of scrambling.
Recent Progress in Controlling Chaos
Sanjuan, Miguel AF
2010-01-01
This book provides a collection of research papers on one of the topics where the applications of chaos have been more fruitful: controlling chaos. Here, new theoretical ideas, as experimental implementations of controlling chaos, are included, while the applications contained in this volume can be referred to turbulent magnetized plasmas, chaotic neural networks, modeling city traffic and models of interest in celestial mechanics. "Recent Progress in Controlling Chaos" will provide an overview of the recent progress in this field, which will be very useful for students and researche
Robust chaos and its applications
Zeraoulia, Elhadj
2011-01-01
Robust chaos is defined by the absence of periodic windows and coexisting attractors in some neighborhoods in the parameter space of a dynamical system. This unique book explores the definition, sources, and roles of robust chaos. The book is written in a reasonably self-contained manner and aims to provide students and researchers with the necessary understanding of the subject. Most of the known results, experiments, and conjectures about chaos in general and about robust chaos in particular are collected here in a pedagogical form. Many examples of dynamical systems, ranging from purely mat
Martingales, Nonlinearity, and Chaos
Barnett, William A.; Apostolos Serletis
1998-01-01
In this article we provide a review of the literature with respect to the efficient markets hypothesis and chaos. In doing so, we contrast the martingale behavior of asset prices to nonlinear chaotic dynamics, discuss some recent techniques used in distinguishing between probabilistic and deterministic behavior in asset prices, and report some evidence. Moreover, we look at the controversies that have arisen about the available tests and results, and raise the issue of whether dynamical syste...
Czech Academy of Sciences Publication Activity Database
Beran, Zdeněk; Čelikovský, Sergej
2013-01-01
Roč. 23, č. 5 (2013), 1350084-1-1350084-9. ISSN 0218-1274 R&D Projects: GA ČR GA13-20433S Institutional support: RVO:67985556 Keywords : Hyperspace * chaos * shadowing * Bernoulli shift Subject RIV: BC - Control Systems Theory Impact factor: 1.017, year: 2013 http://library.utia.cas.cz/separaty/2013/TR/beran-0392926.pdf
Earnshow, R; Jones, H
1991-01-01
This volume is based upon the presentations made at an international conference in London on the subject of 'Fractals and Chaos'. The objective of the conference was to bring together some of the leading practitioners and exponents in the overlapping fields of fractal geometry and chaos theory, with a view to exploring some of the relationships between the two domains. Based on this initial conference and subsequent exchanges between the editors and the authors, revised and updated papers were produced. These papers are contained in the present volume. We thank all those who contributed to this effort by way of planning and organisation, and also all those who helped in the production of this volume. In particular, we wish to express our appreciation to Gerhard Rossbach, Computer Science Editor, Craig Van Dyck, Production Director, and Nancy A. Rogers, who did the typesetting. A. J. Crilly R. A. Earnshaw H. Jones 1 March 1990 Introduction Fractals and Chaos The word 'fractal' was coined by Benoit Mandelbrot i...
Directory of Open Access Journals (Sweden)
A. Bonatto
2015-06-01
Full Text Available Chaos is based on nonlinear phenomena occurring everywhere, but it brings stability and its own structure. Many are the linear realities, but there are phenomena to which mathematical systems do not describe acceptably. Charting these relationships is challenging to obtain a representative model of reality. In the chaos, a small disturbance will amplify, and initially close trajectories diverge. The instability leads to new aspects. This helps in the process of modeling for the study of simulations that are applied in the financial and economic fields, showing that the market continues to disorder in an organized manner. Research in the last 25 years focus on the risk and volatility of the behavior of commodity prices. The analysis and forecast of price behavior in commodity markets are relevant both for producers, cooperatives and industries and for global financial markets. These applications aim to enable projections of future commodity prices, improving decision-making in the future. In modeling commodity time series we must take into account several factors such as seasonality in prices due to fluctuations in supply and demand during periods of crop and season. The analysis of the behavior of prices of an asset is important for predicting future revenue, past behavior analysis of a series of prices and study of the historical price of a product. That's one reason the applicability of chaos theory: the ability to identify and explain fluctuations in the markets that appear to be random, but actually are not.
International Nuclear Information System (INIS)
In the last decade quantum chaos has become a well established discipline with outreach to different fields, from condensed-matter to nuclear physics. The most important signature of quantum chaos is the statistical analysis of the energy spectrum, which distinguishes between systems with integrable and chaotic classical analogues. In recent years, spectral statistical techniques inherited from quantum chaos have been applied successfully to the baryon spectrum revealing its likely chaotic behaviour even at the lowest energies. However, the theoretical spectra present a behaviour closer to the statistics of integrable systems which makes theory and experiment statistically incompatible. The usual statement of missing resonances in the experimental spectrum when compared to the theoretical ones cannot account for the discrepancies. In this communication we report an improved analysis of the baryon spectrum, taking into account the low statistics and the error bars associated with each resonance. Our findings give a major support to the previous conclusions. Besides, analogue analyses are performed in the experimental meson spectrum, with comparison to theoretical models.
Chaos Theory and Post Modernism
Snell, Joel
2009-01-01
Chaos theory is often associated with post modernism. However, one may make the point that both terms are misunderstood. The point of this article is to define both terms and indicate their relationship. Description: Chaos theory is associated with a definition of a theory dealing with variables (butterflies) that are not directly related to a…
Chaos Criminology: A critical analysis
McCarthy, Adrienne L.
There has been a push since the early 1980's for a paradigm shift in criminology from a Newtonian-based ontology to one of quantum physics. Primarily this effort has taken the form of integrating Chaos Theory into Criminology into what this thesis calls 'Chaos Criminology'. However, with the melding of any two fields, terms and concepts need to be translated properly, which has yet to be done. In addition to proving a translation between fields, this thesis also uses a set of criteria to evaluate the effectiveness of the current use of Chaos Theory in Criminology. While the results of the theory evaluation reveal that the current Chaos Criminology work is severely lacking and in need of development, there is some promise in the development of Marx's dialectical materialism with Chaos Theory.
Transition to Chaos in Random Neuronal Networks
Kadmon, Jonathan; Sompolinsky, Haim
2015-10-01
Firing patterns in the central nervous system often exhibit strong temporal irregularity and considerable heterogeneity in time-averaged response properties. Previous studies suggested that these properties are the outcome of the intrinsic chaotic dynamics of the neural circuits. Indeed, simplified rate-based neuronal networks with synaptic connections drawn from Gaussian distribution and sigmoidal nonlinearity are known to exhibit chaotic dynamics when the synaptic gain (i.e., connection variance) is sufficiently large. In the limit of an infinitely large network, there is a sharp transition from a fixed point to chaos, as the synaptic gain reaches a critical value. Near the onset, chaotic fluctuations are slow, analogous to the ubiquitous, slow irregular fluctuations observed in the firing rates of many cortical circuits. However, the existence of a transition from a fixed point to chaos in neuronal circuit models with more realistic architectures and firing dynamics has not been established. In this work, we investigate rate-based dynamics of neuronal circuits composed of several subpopulations with randomly diluted connections. Nonzero connections are either positive for excitatory neurons or negative for inhibitory ones, while single neuron output is strictly positive with output rates rising as a power law above threshold, in line with known constraints in many biological systems. Using dynamic mean field theory, we find the phase diagram depicting the regimes of stable fixed-point, unstable-dynamic, and chaotic-rate fluctuations. We focus on the latter and characterize the properties of systems near this transition. We show that dilute excitatory-inhibitory architectures exhibit the same onset to chaos as the single population with Gaussian connectivity. In these architectures, the large mean excitatory and inhibitory inputs dynamically balance each other, amplifying the effect of the residual fluctuations. Importantly, the existence of a transition to chaos
Can We Get Inside the Aesthetic Sensibility of the Archaic Past?
Frederic Will
2008-01-01
This essay is about getting inside the sensibility of the archaic past.[1] Can we get into the creative mind of the painter of The Sorcerer? Can we reconstruct the sensibility of prehistoric humans? Can we recover the humor of the prehistoric artist? Can we do it? After all, sense equipment is the same in men and women of all ages, and though each age inflects its sense usages uniquely, there should remain an underlying continuity among sensibilities. Shouldn't we be able to return into earli...
International Nuclear Information System (INIS)
Samples of archaic bronze were investigated by fast neutron activation analysis using both the absolute and relative method. The components Cu, Zn, Sn and Pb were determined quantitatively. For nondestructive analysis of antique Chinese coins the samples had to be irradiated. The activation reactions, the evaluation of the elemental concentrations and the accuracy of the results are discussed. The data were corrected for γ-ray self-absorption in the samples and summing of coincident γ-rays in the detector. According to reported typical compositions of Chinese bronze from different dynasties, the age of the samples has been derived from the results obtained. (author) 18 refs.; 3 figs.; 7 tabs
An archaic crested plesiosaur in opal from the Lower Cretaceous high-latitude deposits of Australia
Kear, Benjamin P.; Schroeder, Natalie I; Michael S Y Lee
2006-01-01
Umoonasaurus demoscyllus gen. et sp. nov. is a new small-bodied (approx. 2.5 m) pliosauroid plesiosaur from the Lower Cretaceous (Aptian–Albian) of southern Australia. It is represented by several partial skeletons (one with a near complete skull is the most complete opalized vertebrate fossil yet known), and is unique in having large crests on the skull midline and above the orbits. Umoonasaurus is surprisingly archaic despite its relatively late age (approx. 115 Myr ago)—being simultaneousl...
The Sacrificial Rituals of Greek Hero-Cults in the Archaic to the Early Hellenistic Period
Ekroth, Gunnel
2013-01-01
This study questions the traditional view of sacrifices in hero-cults during the Archaic to the early Hellenistic periods. The analysis of the epigraphical and literary evidence for sacrifices to heroes in these periods shows, contrary to the traditional notion, that the main ritual in hero-cults was a thysia at which the worshippers consumed the meat from the animal victim. A particular handling of the animal’s blood or a holocaust, rituals previously taken to be typical for heroes, can rare...
The Retentivity of Chaos under Topological Conjugation
Tianxiu Lu; Peiyong Zhu; Xinxing Wu
2013-01-01
The definitions of Devaney chaos (DevC), exact Devaney chaos (EDevC), mixing Devaney chaos (MDevC), and weak mixing Devaney chaos (WMDevC) are extended to topological spaces. This paper proves that these chaotic properties are all preserved under topological conjugation. Besides, an example is given to show that the Li-Yorke chaos is not preserved under topological conjugation if the domain is extended to a general metric space.
Chaos a very short introduction
Smith, Leonard
2007-01-01
Chaos: A Very Short Introduction shows that we all have an intuitive understanding of chaotic systems. It uses accessible maths and physics (replacing complex equations with simple examples like pendulums, railway lines, and tossing coins) to explain the theory, and points to numerous examples in philosophy and literature (Edgar Allen Poe, Chang-Tzu, and Arthur Conan Doyle) that illuminate the problems. The beauty of fractal patterns and their relation to chaos, as well as the history of chaos, and its uses in the real world and implications for the philosophy of science are all discussed in this Very Short Introduction.
Directory of Open Access Journals (Sweden)
Goldsmith Brendan
2015-10-01
Full Text Available The intrinsic algebraic entropy ent(ɸ of an endomorphism ɸ of an Abelian group G can be computed using fully inert subgroups of ɸ-invariant sections of G, instead of the whole family of ɸ-inert subgroups. For a class of groups containing the groups of finite rank, aswell as those groupswhich are trajectories of finitely generated subgroups, it is proved that only fully inert subgroups of the group itself are needed to comput ent(ɸ. Examples show how the situation may be quite different outside of this class.
Schmidt, Britney E.
2013-10-01
A critical question for the habitability of Europa remains: how does the ice shell work? The detection of shallow subsurface lenses below Europa’s chaos implies that the ice shell is recycled rapidly and that Europa may be currently active. While this is not the first time liquid water has been implicated for Europa, the location of these features combined with new perspective on their dynamics frames the question in a new way. Melt lenses are intriguing potential habitats. Moreover, their formation requires the existence of impurities within the upper ice shell that may be sources of energy for microorganisms. Geomorphic evidence also exists for hydraulic redistribution of fluids both vertically and horizontally through pores and fractures. This process, observed in terrestrial ice shelves, may preserve liquid water within the ice matrix over many kilometers from the source. Horizontal transport of material may produce interconnectivity between distinct regions of Europa, thus preserving habitable conditions within the ice over a longer duration. At a surface age of 40-90 Myr, with 25-50% covered by chaos terrain, Europa's resurfacing rate is very high and water likely plays a significant role. Because of the vigor of overturn implied by this new work, it is likely that surface and subsurface materials are well-mixed within the largest and deepest lenses, providing a mechanism for bringing oxidants and other surface contaminants to the deeper ice shell where it can reach the ocean by convective or compositional effects. The timescales over which large lenses refreeze are large compared to the timescales for vertical transport, while the timescales for smaller lenses are comparable to or shorter than convective timescales. Moreover, marine ice accretion at the bottom of the ice shell may be contributing to a compositional buoyancy engine that would change the makeup of the ice shell. From this point of view, we evaluate the habitability of Europa’s ice and
Ancient and Current Chaos Theories
Directory of Open Access Journals (Sweden)
Güngör Gündüz
2006-07-01
Full Text Available Chaos theories developed in the last three decades have made very important contributions to our understanding of dynamical systems and natural phenomena. The meaning of chaos in the current theories and in the past is somewhat different from each other. In this work, the properties of dynamical systems and the evolution of chaotic systems were discussed in terms of the views of ancient philosophers. The meaning of chaos in Anaximenes’ philosophy and its role in the Ancient natural philosophy has been discussed in relation to other natural philosophers such as of Anaximander, Parmenides, Heraclitus, Empedocles, Leucippus (i.e. atomists and Aristotle. In addition, the fundamental concepts of statistical mechanics and the current chaos theories were discussed in relation to the views in Ancient natural philosophy. The roots of the scientific concepts such as randomness, autocatalysis, nonlinear growth, information, pattern, etc. in the Ancient natural philosophy were investigated.
Cryptography with chaos and shadowing
Energy Technology Data Exchange (ETDEWEB)
Smaoui, Nejib [Department of Mathematics and Computer Science, Kuwait University, P.O. Box 5969, Safat 13060 (Kuwait)], E-mail: nsmaoui64@yahoo.com; Kanso, Ali [Department of Mathematics and Computer Science, Kuwait University, P.O. Box 5969, Safat 13060 (Kuwait)], E-mail: akanso@hotmail.com
2009-11-30
In this paper, we present a novel approach to encrypt a message (a text composed by some alphabets) using chaos and shadowing. First, we generate a numerical chaotic orbit based on the logistic map, and use the shadowing algorithm of Smaoui and Kostelich [Smaoui N, Kostelich E. Using chaos to shadow the quadratic map for all time. Int J Comput Math 1998;70:117-29] to show that there exists a finite number of true orbits that shadow the numerical orbit. Then, the finite number of maps generated is used in Baptista's algorithm [Baptista MS. Cryptography with chaos. Phys Lett A 1998;240:50-4] to encrypt each character of the message. It is shown that the use of chaos and shadowing in the encryption process enhances the security level.
Quantum Instantons and Quantum Chaos
Jirari, H.; Kröger, H.; Luo, X. Q.; Moriarty, K. J. M.; Rubin, S. G.
1999-01-01
Based on a closed form expression for the path integral of quantum transition amplitudes, we suggest rigorous definitions of both, quantum instantons and quantum chaos. As an example we compute the quantum instanton of the double well potential.
Cryptography with chaos and shadowing
International Nuclear Information System (INIS)
In this paper, we present a novel approach to encrypt a message (a text composed by some alphabets) using chaos and shadowing. First, we generate a numerical chaotic orbit based on the logistic map, and use the shadowing algorithm of Smaoui and Kostelich [Smaoui N, Kostelich E. Using chaos to shadow the quadratic map for all time. Int J Comput Math 1998;70:117-29] to show that there exists a finite number of true orbits that shadow the numerical orbit. Then, the finite number of maps generated is used in Baptista's algorithm [Baptista MS. Cryptography with chaos. Phys Lett A 1998;240:50-4] to encrypt each character of the message. It is shown that the use of chaos and shadowing in the encryption process enhances the security level.
Quantum Chaos and Quantum Computers
Shepelyansky, D L
2001-01-01
The standard generic quantum computer model is studied analytically and numerically and the border for emergence of quantum chaos, induced by imperfections and residual inter-qubit couplings, is determined. This phenomenon appears in an isolated quantum computer without any external decoherence. The onset of quantum chaos leads to quantum computer hardware melting, strong quantum entropy growth and destruction of computer operability. The time scales for development of quantum chaos and ergodicity are determined. In spite the fact that this phenomenon is rather dangerous for quantum computing it is shown that the quantum chaos border for inter-qubit coupling is exponentially larger than the energy level spacing between quantum computer eigenstates and drops only linearly with the number of qubits n. As a result the ideal multi-qubit structure of the computer remains rather robust against imperfections. This opens a broad parameter region for a possible realization of quantum computer. The obtained results are...
Directory of Open Access Journals (Sweden)
Akio Matsumoto
1997-01-01
Full Text Available This study augments the traditional linear cobweb model with lower and upper bounds for variations of output. Its purpose is to detect the relationship between the output constraints and the dynamics of the modified model. Due to the upper and lower bounds, a transitional function takes on a tilted z-profile having three piecewise segments with two turning points. It prevents the price (or quantity dynamics from explosive oscillations. This study demonstrates, by presenting numerical examples, that the modified cobweb model can generate various dynamics ranging from stable periodic cycles to ergodic chaos if a product of the marginal propensity to consume and the marginal product is greater than unity.
Wernecke, Hendrik; Gros, Claudius
2016-01-01
For a chaotic system pairs of initially close-by trajectories become eventually fully uncorrelated on the attracting set. This process of decorrelation is split into an initial decrease characterized by the maximal Lyapunov exponent and a subsequent diffusive process on the chaotic attractor causing the final loss of predictability. The time scales of both processes can be either of the same or of very different orders of magnitude. In the latter case the two trajectories linger within a finite but small distance (with respect to the overall size of the attractor) for exceedingly long times and therefore remain partially predictable. We introduce a 0-1 indicator for chaos capable of describing this scenario, arguing, in addition, that the chaotic closed braids found close to a period-doubling transition are generically partially predictable.
Ercsey-Ravasz, Maria
2012-01-01
The mathematical structure of the widely popular Sudoku puzzles is akin to typical hard constraint satisfaction problems that lie at the heart of many applications, including protein folding and the general problem of finding the ground state of a glassy spin system. Via an exact mapping of Sudoku into a deterministic, continuous-time dynamical system, here we show that the difficulty of Sudoku translates into transient chaotic behavior exhibited by the dynamical system. In particular, we show that the escape rate $\\kappa$, an invariant characteristic of transient chaos, provides a single scalar measure of the puzzle's hardness, which correlates well with human difficulty level ratings. Accordingly, $\\eta = -\\log_{10}{\\kappa}$ can be used to define a "Richter"-type scale for puzzle hardness, with easy puzzles falling in the range $0 3$. To our best knowledge, there are no known puzzles with $\\eta > 4$.
Chaos in Partial Differential Equations
Li, Y. Charles
2009-01-01
This is a survey on Chaos in Partial Differential Equations. First we classify soliton equations into three categories: 1. (1+1)-dimensional soliton equations, 2. soliton lattices, 3. (1+n)-dimensional soliton equations (n greater than 1). A systematic program has been established by the author and collaborators, for proving the existence of chaos in soliton equations under perturbations. For each category, we pick a representative to present the results. Then we review some initial results o...
Chen, Guanrong
2002-01-01
In this volume, leading experts present current achievements in the forefront of research in the challenging field of chaos in circuits and systems, with emphasis on engineering perspectives, methodologies, circuitry design techniques, and potential applications of chaos and bifurcation. A combination of overview, tutorial and technical articles, the book describes state-of-the-art research on significant problems in this field. It is suitable for readers ranging from graduate students, university professors, laboratory researchers and industrial practitioners to applied mathematicians and phy
Stimulus-dependent suppression of chaos in recurrent neural networks
International Nuclear Information System (INIS)
Neuronal activity arises from an interaction between ongoing firing generated spontaneously by neural circuits and responses driven by external stimuli. Using mean-field analysis, we ask how a neural network that intrinsically generates chaotic patterns of activity can remain sensitive to extrinsic input. We find that inputs not only drive network responses, but they also actively suppress ongoing activity, ultimately leading to a phase transition in which chaos is completely eliminated. The critical input intensity at the phase transition is a nonmonotonic function of stimulus frequency, revealing a 'resonant' frequency at which the input is most effective at suppressing chaos even though the power spectrum of the spontaneous activity peaks at zero and falls exponentially. A prediction of our analysis is that the variance of neural responses should be most strongly suppressed at frequencies matching the range over which many sensory systems operate.
International Nuclear Information System (INIS)
Samples of archaic bronze have been investigated by fast neutron activation analysis using both the absolute and relative method. The components Cu, Zn, Sn and Pb have been determined quantitatively. For the detection of lead via the short-lived isomeric state 207mPb, cyclic activation and measurement technique was used with pneumatic sample transfer between detector and central irradiation position of the neutron tube. For non-destructive analysis of antique Chinese coins the samples had to be irradiated outside the neutron generator KORONA. The activation reactions, the evaluation of the elemental concentrations and the accuracy of the results are discussed. The data were corrected for γ-ray self-absorption in the samples and summing of coincident γ-rays in the detector. According to reported typical compositions of Chinese bronze from different dynasties, the age of the samples has been derived from the results obtained. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Tian, Y.H. (Academia Sinica, Lanzhou, Gansu (China). Inst. of Modern Physics); Pepelnik, R.; Fanger, H.U. (GKSS-Forschungszentrum Geesthacht GmbH, Geesthacht-Tesperhude (Germany, F.R.). Inst. fuer Physik)
1990-01-01
Samples of archaic bronze have been investigated by fast neutron activation analysis using both the absolute and relative method. The components Cu, Zn, Sn and Pb have been determined quantitatively. For the detection of lead via the short-lived isomeric state {sup 207m}Pb, cyclic activation and measurement technique was used with pneumatic sample transfer between detector and central irradiation position of the neutron tube. For non-destructive analysis of antique Chinese coins the samples had to be irradiated outside the neutron generator KORONA. The activation reactions, the evaluation of the elemental concentrations and the accuracy of the results are discussed. The data were corrected for {gamma}-ray self-absorption in the samples and summing of coincident {gamma}-rays in the detector. According to reported typical compositions of Chinese bronze from different dynasties, the age of the samples has been derived from the results obtained. (orig.).
From archaic narcissism to empathy for the self: the evolution of new capacities in psychoanalysis.
Gehrie, Mark J
2011-04-01
The concept of the selfobject was central to Heinz Kohut's psychology of the self. With an eye to studying the development of narcissism and its implications for the growth of new psychic structure, this concept is reviewed and reassessed. Post-Kohutian complexities regarding its definition and use extend our consideration of the development of narcissism beyond archaic configurations toward further evolution of the self and the nature of mature narcissism. The hypothesis is offered that developing narcissism and the growth of self-regulation impact the acquisition of new structure and new capacities through the emergence of newly potentiated aspects of the self. The implications of these emergent qualities of the self are examined in the context of our understanding of self-esteem regulation, the state of the self, and the goals of psychoanalysis. A clinical example illustrates how technique and process in an analysis may be organized around the development of such new capacities. PMID:21653917
CT-based description and phyletic evaluation of the archaic human calvarium from Ceprano, Italy.
Bruner, Emiliano; Manzi, Giorgio
2005-07-01
The discovery in 1994, of a fossilized human calvarium near Ceprano, Italy, dated about 800-900 thousand years before present, opened a new page for the study of human evolution in Europe. It extended the continental fossil record over the boundary between Early and Middle Pleistocene for the first time and revealed the cranial morphology of humans that where probably ancestral to both Neanderthals and modern Homo sapiens. A tomographic analysis of the Italian specimen is reported here in order to describe size and shape, vascular traces, and other features of the endocranium, as well as some relevant ectocranial traits (particularly of the frontal region). Our results show that the Ceprano calvarium displays plesiomorphies shared by early Homo taxa, involving a general archaic phenotype. At the same time, the presence of some derived features suggests a phylogenetic relationship with the populations referred to the subsequent polymorphic species H. heidelbergensis. The morphology of the supraorbital structures is different from the double-arched browridge of the African H. ergaster, while its superior shape shows similarities with African Middle Pleistocene specimens (Bodo, Kabwe). In contrast, the relationship between supraorbital torus and frontal squama points to an archaic pattern of the relationship between face and vault, associated to moderately narrow frontal lobes and limited development of the upper parietal areas. Despite a nonderived endocranial shape, the increase of cranial capacity (related to a general endocranial widening) and the probable absence of a clear occipital projection also suggest an evolutionary independence from the Asian H. erectus lineage. This analysis therefore supports the conclusion that the Ceprano calvarium represents the best available candidate for the ancestral phenotype of the cranial variation observed among Middle Pleistocene fossil samples in Africa and Europe. Nevertheless, a proper taxonomic interpretation of this
Chromosomal Rearrangements as Barriers to Genetic Homogenization between Archaic and Modern Humans.
Rogers, Rebekah L
2015-12-01
Chromosomal rearrangements, which shuffle DNA throughout the genome, are an important source of divergence across taxa. Using a paired-end read approach with Illumina sequence data for archaic humans, I identify changes in genome structure that occurred recently in human evolution. Hundreds of rearrangements indicate genomic trafficking between the sex chromosomes and autosomes, raising the possibility of sex-specific changes. Additionally, genes adjacent to genome structure changes in Neanderthals are associated with testis-specific expression, consistent with evolutionary theory that new genes commonly form with expression in the testes. I identify one case of new-gene creation through transposition from the Y chromosome to chromosome 10 that combines the 5'-end of the testis-specific gene Fank1 with previously untranscribed sequence. This new transcript experienced copy number expansion in archaic genomes, indicating rapid genomic change. Among rearrangements identified in Neanderthals, 13% are transposition of selfish genetic elements, whereas 32% appear to be ectopic exchange between repeats. In Denisovan, the pattern is similar but numbers are significantly higher with 18% of rearrangements reflecting transposition and 40% ectopic exchange between distantly related repeats. There is an excess of divergent rearrangements relative to polymorphism in Denisovan, which might result from nonuniform rates of mutation, possibly reflecting a burst of transposable element activity in the lineage that led to Denisovan. Finally, loci containing genome structure changes show diminished rates of introgression from Neanderthals into modern humans, consistent with the hypothesis that rearrangements serve as barriers to gene flow during hybridization. Together, these results suggest that this previously unidentified source of genomic variation has important biological consequences in human evolution. PMID:26399483
2012 Symposium on Chaos, Complexity and Leadership
Erçetin, Şefika
2014-01-01
These proceedings from the 2012 symposium on "Chaos, complexity and leadership" reflect current research results from all branches of Chaos, Complex Systems and their applications in Management. Included are the diverse results in the fields of applied nonlinear methods, modeling of data and simulations, as well as theoretical achievements of Chaos and Complex Systems. Also highlighted are Leadership and Management applications of Chaos and Complexity Theory.
Decoherence, determinism and chaos
International Nuclear Information System (INIS)
The author claims by now to have made his case that modern work on fractals and chaos theory has already removed the presumption that classical physics is 'deterministic'. Further, he claims that in so far as classical relativistic field theory (i.e. electromagnetism and gravitation) are scale invariant, they are self-consistent only if the idea of 'test-particle' is introduced from outside the theory. Einstein spent the last years of his life trying to use singularities in the metric as 'particles' or to get them out of the non-linearities in a grand unified theory -- in vain. So classical physics in this sense cannot be the fundamental theory. However, the author claims to have shown that if he introduces a 'scale invariance bounded from below' by measurement accuracy, then Tanimura's generalization of the Feynman proof as reconstructed by Dyson allows him to make a consistent classical theory for decoherent sources sinks. Restoring coherence to classical physics via relativistic action-at-a distance is left as a task for the future. Relativistic quantum mechanics, properly reconstructed from a finite and discrete basis, emerges in much better shape. The concept of 'particles has to be replaced by NO-YES particulate events, and particle-antiparticle pair creation and annihilation properly formulated
Hashimoto, Koji; Yoshida, Kentaroh
2016-01-01
Assigning a chaos index for vacua of generic quantum field theories is a challenging problem. We find chaotic behavior of chiral condensates of a quantum gauge theory at strong coupling limit, by using the AdS/CFT correspondence. We evaluate the time evolution of homogeneous quark condensates and in an N=2 supersymmetric QCD with the SU(N_c) gauge group at large N_c and at large 't Hooft coupling lambda. At an equivalent classical gravity picture, a Lyapunov exponent is readily defined. We show that the condensates exhibit chaotic behavior for energy density E > (6x10^2) (N_c/lambda^2) (m_q)^4 where m_q is the quark mass. The energy region of the chaotic vacua of the N=2 supersymmetric QCD increases for smaller N_c or larger lambda. The Lyapunov exponent is calculated as a function of the theory (N_c,lambda,E), showing that the N=2 supersymmetric QCD is more chaotic for smaller N_c.
Decoherence, determinism and chaos
Energy Technology Data Exchange (ETDEWEB)
Noyes, H.P.
1994-01-01
The author claims by now to have made his case that modern work on fractals and chaos theory has already removed the presumption that classical physics is `deterministic`. Further, he claims that in so far as classical relativistic field theory (i.e. electromagnetism and gravitation) are scale invariant, they are self-consistent only if the idea of `test-particle` is introduced from outside the theory. Einstein spent the last years of his life trying to use singularities in the metric as `particles` or to get them out of the non-linearities in a grand unified theory -- in vain. So classical physics in this sense cannot be the fundamental theory. However, the author claims to have shown that if he introduces a `scale invariance bounded from below` by measurement accuracy, then Tanimura`s generalization of the Feynman proof as reconstructed by Dyson allows him to make a consistent classical theory for decoherent sources sinks. Restoring coherence to classical physics via relativistic action-at-a distance is left as a task for the future. Relativistic quantum mechanics, properly reconstructed from a finite and discrete basis, emerges in much better shape. The concept of `particles has to be replaced by NO-YES particulate events, and particle-antiparticle pair creation and annihilation properly formulated.
International Nuclear Information System (INIS)
ZnO typifies a class of materials that can be doped via native defects in only one way: either n type or p type. We explain this asymmetry in ZnO via a study of its intrinsic defect physics, including ZnO, Zni, VO, Oi, and VZn and n-type impurity dopants, Al and F. We find that ZnO is n type at Zn-rich conditions. This is because (i) the Zn interstitial, Zni, is a shallow donor, supplying electrons; (ii) its formation enthalpy is low for both Zn-rich and O-rich conditions, so this defect is abundant; and (iii) the native defects that could compensate the n-type doping effect of Zni (interstitial O, Oi, and Zn vacancy, VZn), have high formation enthalpies for Zn-rich conditions, so these ''electron killers'' are not abundant. We find that ZnO cannot be doped p type via native defects (Oi,VZn) despite the fact that they are shallow (i.e., supplying holes at room temperature). This is because at both Zn-rich and O-rich conditions, the defects that could compensate p-type doping (VO,Zni,ZnO) have low formation enthalpies so these ''hole killers'' form readily. Furthermore, we identify electron-hole radiative recombination at the VO center as the source of the green luminescence. In contrast, a large structural relaxation of the same center upon double hole capture leads to slow electron-hole recombination (either radiative or nonradiative) responsible for the slow decay of photoconductivity
Turiaci, Gustavo
2016-01-01
We make three observations that help clarify the relation between CFT and quantum chaos. We show that any 1+1-D system in which conformal symmetry is non-linearly realized exhibits two main characteristics of chaos: maximal Lyapunov behavior and a spectrum of Ruelle resonances. We use this insight to identify a lattice model for quantum chaos, built from parafermionic spin variables with an equation of motion given by a Y-system. Finally we point to a relation between the spectrum of Ruelle resonances of a CFT and the analytic properties of OPE coefficients between light and heavy operators. In our model, this spectrum agrees with the quasi-normal modes of the BTZ black hole.
Chaos, decoherence and quantum cosmology
International Nuclear Information System (INIS)
In this topical review we discuss the connections between chaos, decoherence and quantum cosmology. We understand chaos as classical chaos in systems with a finite number of degrees of freedom, decoherence as environment induced decoherence and quantum cosmology as the theory of the Wheeler-DeWitt equation or else the consistent history formulation thereof, first in mini super spaces and later through its extension to midi super spaces. The overall conclusion is that consideration of decoherence is necessary (and probably sufficient) to sustain an interpretation of quantum cosmology based on the wavefunction of the Universe adopting a Wentzel-Kramers-Brillouin form for large Universes, but a definitive account of the semiclassical transition in classically chaotic cosmological models is not available in the literature yet. (topical review)
Quantum chaos in multiwell potentials
International Nuclear Information System (INIS)
Till the present time signatures of quantum chaos were studied mostly for the billiard-type systems, for dumped one-dimensional systems or for two-dimensional systems with potential energy surface of simple geometry. Almost nothing is known about the quantum chaos for generic Hamiltonian systems, including multiwell potentials, though those are the models describing the dynamics of transition between different states, for example, nuclear isomeric transitions and decay of superdeformed states of nuclei. An important feature of classical dynamics in generic multiwell potentials is the so-called mixed state, namely: regular and chaotic regimes coexist at the same energy, being localized in different local minima of the potential. The aim of our work is to show that studies of quantum chaos in the mixed state are promising and in many cases optimal. (author)
Deterministic polarization chaos from a laser diode
Virte, Martin; Thienpont, Hugo; Sciamanna, Marc
2014-01-01
Fifty years after the invention of the laser diode and fourty years after the report of the butterfly effect - i.e. the unpredictability of deterministic chaos, it is said that a laser diode behaves like a damped nonlinear oscillator. Hence no chaos can be generated unless with additional forcing or parameter modulation. Here we report the first counter-example of a free-running laser diode generating chaos. The underlying physics is a nonlinear coupling between two elliptically polarized modes in a vertical-cavity surface-emitting laser. We identify chaos in experimental time-series and show theoretically the bifurcations leading to single- and double-scroll attractors with characteristics similar to Lorenz chaos. The reported polarization chaos resembles at first sight a noise-driven mode hopping but shows opposite statistical properties. Our findings open up new research areas that combine the high speed performances of microcavity lasers with controllable and integrated sources of optical chaos.
International Nuclear Information System (INIS)
Plasma exhibits a full of variety of nonlinear phenomena. Active research in nonlinear plasma physics contributed to explore the concepts of soliton and chaos. Structure of soliton equations and dynamics of low dimensional Hamiltonian systems are discussed to emphasize the universality of these novel concepts in the wide branch of science and engineering. (author) 52 refs
Distributed chaos in turbulent wakes
Bershadskii, A
2016-01-01
Soft and hard spontaneous breaking of space translational symmetry (homogeneity) have been studied in turbulent wakes by means of distributed chaos. In the case of the soft translational symmetry breaking the vorticity correlation integral $\\int_{V} \\langle {\\boldsymbol \\omega} ({\\bf x},t) \\cdot {\\boldsymbol \\omega} ({\\bf x} + {\\bf r},t) \\rangle_{V} d{\\bf r}$ dominates the distributed chaos and the chaotic spectra $\\exp-(k/k_{\\beta})^{\\beta }$ have $\\beta =1/2$. In the case of the hard translational symmetry breaking, control on the distributed chaos is switched from one type of fundamental symmetry to another (in this case to Lagrangian relabeling symmetry). Due to the Noether's theorem the relabeling symmetry results in the inviscid helicity conservation and helicity correlation integral $I=\\int \\langle h({\\bf x},t)~h({\\bf x}+{\\bf r}, t)\\rangle d{\\bf r}$ (Levich-Tsinober invariant) dominates the distributed chaos with $\\beta =1/3$. Good agreement with the experimatal data has been established for turbulent ...
Chaos Behaviour of Molecular Orbit
Institute of Scientific and Technical Information of China (English)
LIU Shu-Tang; SUN Fu-Yan; SHEN Shu-Lan
2007-01-01
Based on H(u)ckel's molecular orbit theory,the chaos and;bifurcation behaviour of a molecular orbit modelled by a nonlinear dynamic system is studied.The relationship between molecular orbit and its energy level in the nonlinear dynamic system is obtained.
MHD turbulence and distributed chaos
Bershadskii, A
2016-01-01
It is shown, using results of recent direct numerical simulations, that spectral properties of distributed chaos in MHD turbulence with zero mean magnetic field are similar to those of hydrodynamic turbulence. An exception is MHD spontaneous breaking of space translational symmetry, when the stretched exponential spectrum $\\exp(-k/k_{\\beta})^{\\beta}$ has $\\beta=4/7$.
Chaos Synthesis by Evolutionary Algorithms
Czech Academy of Sciences Publication Activity Database
Zelinka, I.; Chen, G.; Čelikovský, Sergej
Berlin : Springer-Verlag, 2010 - (Zelinka, I.; Čelikovský, S.; Richter, H.; Chen, G.), s. 345-382 ISBN 978-3-642-10706-1. - (Studies in Computational Intelligence. 267) Institutional research plan: CEZ:AV0Z10750506 Keywords : chaos synthesis * evolutionary algorithms * self organizingmigrating * evolutionary computing Subject RIV: BC - Control Systems Theory
Chaos and remedial investigations
International Nuclear Information System (INIS)
Current research into the nature of chaos indicates that even for systems that are well known and easily modeled, slight changes in the scale used to measure the input have unpredictable results in the model output. The conduct of a remedial investigation (RI) is dictated by well-established rules of investigation and management, yet small changes in project orientation, regulatory environment, or site conditions have unpredictable consequences to the project. The consequences can lead to either brilliant success or utter failure. The chaotic effect of a change in scale is most often illustrated by an exercise in measuring the length of the coast of Great Britain. If a straight ruler 10-kilometers long is used, the sum of the 10-kilometer increments gives the length of the coast. If the ruler is changed to five kilometers long and the exercise is repeated, the sum of the five-kilometer increments will not be the same as the sum of the 10-kilometer increments. Nor is there a way to predict what the length of the coast will be using any other scale. Several examples from the Fernald Project RI are used to illustrate open-quotes changes in scaleclose quotes in both technical and management situations. Given that there is no way to predict the outcome of scale changes in a RI, technical and project management must be alert to the fact that a scale has changed and the investigation is no longer on the path it was thought to be on. The key to success, therefore, is to develop specific units of measure for a number of activities, in addition to cost and schedule, and track them regularly. An example for tracking a portion of the field investigation is presented. The determination of effective units of measure is perhaps the most difficult aspect of any project. Changes in scale sometimes go unnoticed until suddenly the budget is expended and only a portion of the work is completed. Remedial investigations on large facilities provide new and complex challenges
Directory of Open Access Journals (Sweden)
Antonia Vieira dos Santos
2014-07-01
Full Text Available The use of hyphen within compounds was not built up before the nineteenth century. Thus, compounds spelled with hyphen in archaic Portuguese texts are a result of editing criteria adopted by editors. From this type of intervention, the relationship between hyphen use – result of a spelling convention – and the definition of compound adopted by the editor are discussed. Its absence is significant to the history of the language.
Hamiltonian Chaos and Fractional Dynamics
International Nuclear Information System (INIS)
This book provides an introduction and discussion of the main issues in the current understanding of classical Hamiltonian chaos, and of its fractional space-time structure. It also develops the most complex and open problems in this context, and provides a set of possible applications of these notions to some fundamental questions of dynamics: complexity and entropy of systems, foundation of classical statistical physics on the basis of chaos theory, and so on. Starting with an introduction of the basic principles of the Hamiltonian theory of chaos, the book covers many topics that can be found elsewhere in the literature, but which are collected here for the readers' convenience. In the last three parts, the author develops topics which are not typically included in the standard textbooks; among them are: - the failure of the traditional description of chaotic dynamics in terms of diffusion equations; - he fractional kinematics, its foundation and renormalization group analysis; - 'pseudo-chaos', i.e. kinetics of systems with weak mixing and zero Lyapunov exponents; - directional complexity and entropy. The purpose of this book is to provide researchers and students in physics, mathematics and engineering with an overview of many aspects of chaos and fractality in Hamiltonian dynamical systems. In my opinion it achieves this aim, at least provided researchers and students (mainly those involved in mathematical physics) can complement this reading with comprehensive material from more specialized sources which are provided as references and 'further reading'. Each section contains introductory pedagogical material, often illustrated by figures coming from several numerical simulations which give the feeling of what's going on, and thus is very useful to the reader who is not very familiar with the topics presented. Some problems are included at the end of most sections to help the reader to go deeper into the subject. My one regret is that the book does not
Directory of Open Access Journals (Sweden)
Yang Liu
Full Text Available Mitochondrial genomes have maintained some bacterial features despite their residence within eukaryotic cells for approximately two billion years. One of these features is the frequent presence of polycistronic operons. In land plants, however, it has been shown that all sequenced vascular plant chondromes lack large polycistronic operons while bryophyte chondromes have many of them. In this study, we provide the completely sequenced mitochondrial genome of a lycophyte, from Huperzia squarrosa, which is a member of the sister group to all other vascular plants. The genome, at a size of 413,530 base pairs, contains 66 genes and 32 group II introns. In addition, it has 69 pseudogene fragments for 24 of the 40 protein- and rRNA-coding genes. It represents the most archaic form of mitochondrial genomes of all vascular plants. In particular, it has one large conserved gene cluster containing up to 10 ribosomal protein genes, which likely represents a polycistronic operon but has been disrupted and greatly reduced in the chondromes of other vascular plants. It also has the least rearranged gene order in comparison to the chondromes of other vascular plants. The genome is ancestral in vascular plants in several other aspects: the gene content resembling those of charophytes and most bryophytes, all introns being cis-spliced, a low level of RNA editing, and lack of foreign DNA of chloroplast or nuclear origin.
From the archaic states to romanization: a historical and evolutionary perspective on the Iberians
Directory of Open Access Journals (Sweden)
Joan Sanmartí
2009-01-01
Full Text Available In the middle of the first millennium BC small-scale societies (local or even family level communities on the Eastern coast of the Iberian Peninsula were rapidly transformed, socially and culturally, into complex ones of at least tens of thousands of people and endowed with centralised forms of political organization that controlled vast territories, often of several thousand square kilometres. From the beginning of the 4th century BC, the rapid expansion of writing suggests the establishment of an administrative system and the development of the institutional complexity particular to the archaic states.These states were governed by kings who emerged from the aristocratic ranks that dominated the diverse communities forming the bulk of the population. We know from Greco-Latin sources that the inhabitants of these territories were known by the name of Iberians, and that this ethnic group was divided into different peoples that in some cases corresponded to the afore mentioned political entities, whereas in other cases several of them must have been included. Epigraphyshows that the same language was used in the whole of this region, although perhaps not exclusively; in modern times it is known as ‘Iberian’, and cannot be deciphered. Incorporation into the Roman world around 200 BC meant a gradual integration into Latin culture, that was completed a little before the change of era.
The stem species of our species: a place for the archaic human cranium from Ceprano, Italy.
Mounier, Aurélien; Condemi, Silvana; Manzi, Giorgio
2011-01-01
One of the present challenges in the study of human evolution is to recognize the hominin taxon that was ancestral to Homo sapiens. Some researchers regard H. heidelbergensis as the stem species involved in the evolutionary divergence leading to the emergence of H. sapiens in Africa, and to the evolution of the Neandertals in Europe. Nevertheless, the diagnosis and hypodigm of H. heidelbergensis still remain to be clarified. Here we evaluate the morphology of the incomplete cranium (calvarium) known as Ceprano whose age has been recently revised to the mid of the Middle Pleistocene, so as to test whether this specimen may be included in H. heidelbergensis. The analyses were performed according to a phenetic routine including geometric morphometrics and the evaluation of diagnostic discrete traits. The results strongly support the uniqueness of H. heidelbergensis on a wide geographical horizon, including both Eurasia and Africa. In this framework, the Ceprano calvarium--with its peculiar combination of archaic and derived traits--may represent, better than other penecontemporaneous specimens, an appropriate ancestral stock of this species, preceding the appearance of regional autapomorphic features. PMID:21533096
On the trail of the genus Homo between archaic and derived morphologies.
Manzi, Giorgio
2012-01-01
The topic of this review is the evolution of the genus Homo, focusing on evolutionary transitions that occurred during the Early and Middle Pleistocene. Two crucial issues are addressed in particular: 1) the emergence in the Early Pleistocene of the archaic variant of Homo that might represent the last common ancestor before the emergence of at least two (more probably three) geographically distinct trajectories; and (2) the evolution of these derived lineages, ultimately leading to the allopatric speciations of the most encephalised species of Homo: H. neanderthalensis and H. sapiens. In this framework, the time window between 1.0 million years ago (Ma) and 500 thousand years ago (ka) is of crucial importance, since it is probable that a new kind of humanity emerged in this period and then spread across a wide area encompassing Africa and Eurasia. These humans are represented by a number of specimens that are included within the single, polymorphic, and widespread species H. heidelbergensis. It is suggested that, in the course of the Middle Pleistocene, this species diversified in a number of incipient species -or subspecies- geographically and phenotypically distinct from one another. The case-study furnished by the calvarium found near Ceprano, in Italy, is of great interest in this regard, since it displays the least derived morphology seen among the hypodigm of H. heidelbergensis, and may represent better than other specimens the ancestral morphotype (i.e., the stem subspecies) of this taxon. PMID:23274748
Investigation of Chinese archaic jade by PIXE and {mu}Raman spectrometry
Energy Technology Data Exchange (ETDEWEB)
Chen, T.H. [UMR 171 du CNRS, Centre de Recherche et de Restauration des Musees de France, Palais du Louvre, Porte des Lions, 14 Quai Francois Mitterrand, 75001, Paris (France); Ecole Doctorale MMRMM, Universite de Versailles - St Quentin en Yvelines, 45 Avenue des Etats Unis, 78035, Versailles Cedex (France); Calligaro, T.; Pages-Camagna, S.; Menu, M. [UMR 171 du CNRS, Centre de Recherche et de Restauration des Musees de France, Palais du Louvre, Porte des Lions, 14 Quai Francois Mitterrand, 75001, Paris (France)
2004-07-01
External-beam particle-induced X-ray emission (PIXE) and {mu}Raman spectrometry were used for elemental and structural studies of Chinese archaic nephrite jades of the Guimet Asian Museum in Paris in a non-destructive way. Nephrite is a variety of tremolite-actinolite of the amphibole group, with variable iron and magnesium contents. In the present work, in addition to identification of materials, the cation distribution in nephrite was investigated. Cation order-disorder is related to thermodynamic properties of minerals, and hence associated with geological conditions of the mineral formation. Besides, it plays an important role in the mechanism of coloration. So far, little work has been done on the cation distribution in nephrite. We thus initiated this research expecting to answer open questions concerning art and archaeological issues such as jade provenance and colour. The OH stretching vibration band of nephrite, depending on the electronegativity of the bonded cations, presents a fine structure. The study of this fine structure, together with the total cation content obtained by PIXE, allows estimation of the cation distribution in nephrite. In this study, six jade artefacts, dated from the Neolithic period to the Han dynasty (about 3000 BC to 220 AD), with diverse colours including white, yellow-green, green, dark green and black, were analysed. The data obtained permits establishing a geological database for determination of nephrite provenance and explaining the correlation between colour and cation distribution. (orig.)
Advances in chaos theory and intelligent control
Vaidyanathan, Sundarapandian
2016-01-01
The book reports on the latest advances in and applications of chaos theory and intelligent control. Written by eminent scientists and active researchers and using a clear, matter-of-fact style, it covers advanced theories, methods, and applications in a variety of research areas, and explains key concepts in modeling, analysis, and control of chaotic and hyperchaotic systems. Topics include fractional chaotic systems, chaos control, chaos synchronization, memristors, jerk circuits, chaotic systems with hidden attractors, mechanical and biological chaos, and circuit realization of chaotic systems. The book further covers fuzzy logic controllers, evolutionary algorithms, swarm intelligence, and petri nets among other topics. Not only does it provide the readers with chaos fundamentals and intelligent control-based algorithms; it also discusses key applications of chaos as well as multidisciplinary solutions developed via intelligent control. The book is a timely and comprehensive reference guide for graduate s...
Recent Developments on Chaos in Mechanical Systems
Mohammad Sajid
2013-01-01
Recent advancements in complexity of mechanical systems have led to the application of chaos theory. In this paper, some recent developments on chaos in mechanical systems are explored. The aim is to bring together researchers from various interests of mechanical systems, exposing them to chaos theory. This exposure gives researchers from the discipline of mechanical systems to find opportunity of cross disciplinary research, which may ultimately lead to novel solutions and understanding of m...
Fitzpatrick, A Liam
2016-01-01
We use results on Virasoro conformal blocks to study chaotic dynamics in CFT$_2$ at large central charge c. The Lyapunov exponent $\\lambda_L$, which is a diagnostic for the early onset of chaos, receives $1/c$ corrections that may be interpreted as $\\lambda_L = \\frac{2 \\pi}{\\beta} \\left( 1 + \\frac{12}{c} \\right)$. However, out of time order correlators receive other equally important $1/c$ suppressed contributions that do not have such a simple interpretation. We revisit the proof of a bound on $\\lambda_L$ that emerges at large $c$, focusing on CFT$_2$ and explaining why our results do not conflict with the analysis leading to the bound. We also comment on relationships between chaos, scattering, causality, and bulk locality.
Scrambling without chaos in RCFT
Caputa, Pawel; Veliz-Osorio, Alvaro
2016-01-01
In this letter we investigate measures of chaos and entanglement scrambling in rational conformal field theories in 1+1 dimensions. First, we derive a formula for the late time value of the out-of-time-order correlators for these class of theories. Our universal result can be expressed as a particular combination of the modular S-matrix elements known as anyon monodromy scalar. Next, in the explicit setup of a $SU(N)_k$ WZW model, we compare the late time behaviour of the out-of-time correlators and the purity. Interestingly, in the large-c limit, the purity grows logarithmically but the out-of-time-order correlators remain constant. Therefore, we find that some systems may display entanglement scrambling in the absence of chaos.
Spatiotemporal chaos from bursting dynamics
Energy Technology Data Exchange (ETDEWEB)
Berenstein, Igal; De Decker, Yannick [Nonlinear Physical Chemistry Unit and Interdisciplinary Center for Nonlinear Phenomena and Complex Systems (CENOLI), Faculté des Sciences, Université libre de Bruxelles (ULB), Campus Plaine, C.P. 231, B-1050 Brussels (Belgium)
2015-08-14
In this paper, we study the emergence of spatiotemporal chaos from mixed-mode oscillations, by using an extended Oregonator model. We show that bursting dynamics consisting of fast/slow mixed mode oscillations along a single attractor can lead to spatiotemporal chaotic dynamics, although the spatially homogeneous solution is itself non-chaotic. This behavior is observed far from the Hopf bifurcation and takes the form of a spatiotemporal intermittency where the system locally alternates between the fast and the slow phases of the mixed mode oscillations. We expect this form of spatiotemporal chaos to be generic for models in which one or several slow variables are coupled to activator-inhibitor type of oscillators.
International Nuclear Information System (INIS)
A new definition of a chaotic invariant set is given for a continuous semiflow in a metric space. It generalizes the well-known definition due to Devaney and allows one to take into account a special feature occurring in the non-compact infinite-dimensional case: so-called turbulent chaos. The paper consists of two sections. The first contains several well-known facts from chaotic dynamics, together with new definitions and results. The second presents a concrete example demonstrating that our definition of chaos is meaningful. Namely, an infinite-dimensional system of ordinary differential equations is investigated having an attractor that is chaotic in the sense of the new definition but not in the sense of Devaney or Knudsen. Bibliography: 65 titles.
Chaos, turbulence and strange attractors
International Nuclear Information System (INIS)
Using the turbulence example, the author recalls the two different conceptions of the nature of an erratic regime: the one in which a great number of elementary events are concerned (Landau) and the other one in which, on the contrary, a few number of elementary events are concerned (Ruelle and Takens). The last type of erratic comportment has a deterministic origin and is pointed by the adjective chaotic. Phase space for a dynamic system is presented and so the attractor nation. Chaos and notion of sensitiveness to initial conditions are defined. In scrutining the geometry of an attractor corresponding to a chaotic regime, the notion of strange attractor is shown. Some experiments results are given as illustration. Application field is recalled: for example, studies on hamiltonian chaos are made at DRFC (Department of research on controlled fusion at CEA) in relation with plasma instabilities
Master stability analysis in transient spatiotemporal chaos.
Wackerbauer, Renate
2007-11-01
The asymptotic stability of spatiotemporal chaos is difficult to determine, since transient spatiotemporal chaos may be extremely long lived. A master stability analysis reveals that the asymptotic state of transient spatiotemporal chaos in the Gray-Scott system and in the Bär-Eiswirth system is characterized by negative transverse Lyapunov exponents on the attractor of the invariant synchronization manifold. The average lifetime of transient spatiotemporal chaos depends on the number of transverse directions that are unstable along a typical excitation cycle. PMID:18233739
The chaos cookbook a practical programming guide
Pritchard, Joe
2014-01-01
The Chaos Cookbook: A Practical Programming Guide discusses the use of chaos in computer programming. The book is comprised of 11 chapters that tackle various topics relevant to chaos and programming. Chapter 1 reviews the concept of chaos, and Chapter 2 discusses the iterative functions. Chapters 3 and 4 cover differential and Lorenz equations. Chapter 5 talks about strange attractors, while Chapter 6 deals with the fractal link. The book also discusses the Mandelbrot set, and then covers the Julia sets. The other fractal systems and the cellular automata are also explained. The last chapter
Chaos in the library environment
Κατσιρίκου, Ανθή
2001-01-01
Describes the impact of chaos theory in social systems and the phenomena that result from it, drawing attention to related phenomena in the state of the library today. Then considers the factors that lead library systems to exhibit chaotic behaviour. These factors are the plethora of technological tools and the variety of software and interfaces, the dependence of resource providers and the increasing supply and diversity of information resources. The changes dictated by these factors influen...
Relative chaos in stellar systems
International Nuclear Information System (INIS)
Statistical properties of many-dimensional dynamical system -s tellar systems of different types, are investigated by means of estimation of Ricci curvature in the direction of the velocity of geodesics. Numerical experiment is performed to calculate the Ricci and scalar curvatures for systems with equal total energy. The results of calculations enable one to obtain schematic classification of stellar systems by increasing degree of chaos
Analysis of FBC deterministic chaos
Energy Technology Data Exchange (ETDEWEB)
Daw, C.S.
1996-06-01
It has recently been discovered that the performance of a number of fossil energy conversion devices such as fluidized beds, pulsed combustors, steady combustors, and internal combustion engines are affected by deterministic chaos. It is now recognized that understanding and controlling the chaotic elements of these devices can lead to significantly improved energy efficiency and reduced emissions. Application of these techniques to key fossil energy processes are expected to provide important competitive advantages for U.S. industry.
Chaos and multiple photon absorption
International Nuclear Information System (INIS)
An anharmonic vibrational mode of a molecule, driven by an intense infrared laser and coupled to a quasi-continuum of background modes, is found to undergo chaotic oscillations. This chaos leads to predominantly fluence-dependent rather than intensity-dependent multiple-photon absorption, as is found experimentally. The loss of coherence is associated with the decay of temporal correlation of background-mode oscillations
Kasimov, Aslan R.
2013-03-08
We propose the following model equation, ut+1/2(u2−uus)x=f(x,us) that predicts chaotic shock waves, similar to those in detonations in chemically reacting mixtures. The equation is given on the half line, x<0, and the shock is located at x=0 for any t≥0. Here, us(t) is the shock state and the source term f is taken to mimic the chemical energy release in detonations. This equation retains the essential physics needed to reproduce many properties of detonations in gaseous reactive mixtures: steady traveling wave solutions, instability of such solutions, and the onset of chaos. Our model is the first (to our knowledge) to describe chaos in shock waves by a scalar first-order partial differential equation. The chaos arises in the equation thanks to an interplay between the nonlinearity of the inviscid Burgers equation and a novel forcing term that is nonlocal in nature and has deep physical roots in reactive Euler equations.
Hamiltonian chaos and fractional dynamics
Zaslavsky, George M
2008-01-01
The dynamics of realistic Hamiltonian systems has unusual microscopic features that are direct consequences of its fractional space-time structure and its phase space topology. The book deals with the fractality of the chaotic dynamics and kinetics, and also includes material on non-ergodic and non-well-mixing Hamiltonian dynamics. The book does not follow the traditional scheme of most of today's literature on chaos. The intention of the author has been to put together some of the most complex and yet open problems on the general theory of chaotic systems. The importance of the discussed issues and an understanding of their origin should inspire students and researchers to touch upon some of the deepest aspects of nonlinear dynamics. The book considers the basic principles of the Hamiltonian theory of chaos and some applications including for example, the cooling of particles and signals, control and erasing of chaos, polynomial complexity, Maxwell's Demon, and others. It presents a new and realistic image ...
Landmark-based shape analysis of the archaic Homo calvarium from Ceprano (Italy).
Bruner, Emiliano; Manzi, Giorgio
2007-03-01
The Ceprano calvarium represents one of the most important sources of information about both the dynamics of the earliest hominid dispersal toward Europe and the evolution of the genus Homo in the early-to-middle Pleistocene. In this paper, the midsagittal vault profile and the 3D frontal bone morphology of Ceprano are investigated comparatively, using landmark coordinates and Procrustes superimposition. In fact, despite the fact that the skull appears partially distorted by diagenetic pressures (thus precluding a comprehensive landmark-based analysis), some aspects of the overall morphology are suitable for consideration in terms of geometric morphometrics. The midsagittal profile shows an archaic shape, comparable with the H. ergaster/erectus range of variation because of the fronto-parietal flattening, the development of the supraorbital and nuchal structures, and the occurrence of a slightly larger occipital bone. By contrast, the frontal bone displays a derived 3D shape that, mostly because of the widening of the frontal squama, appears comparable with the Afro-European variation of the Middle Pleistocene (i.e., H. heidelbergensis/rhodesiensis). Taking into account the unique morphological pattern displayed by Ceprano, its role as a link between early Homo and the Middle Pleistocene populations of Europe and Africa is not falsified. Thus, when aspects of the Ceprano's morphology are described within the analytical framework provided by geometric morphometrics, the relationships between Ceprano and the subsequent Afro-European fossil record are emphasized, suggesting the occurrence of an ancestral stock of H. heidelbergensis/rhodesiensis that is properly represented by the Italian specimen. PMID:17177181
Directory of Open Access Journals (Sweden)
Mónica Díaz
2011-01-01
Full Text Available Introduction: Ancient DNA (aDNAstudies can support hypotheses regarding ancient populations; molecular studies can analyze the local population’s genetic composition, minimizing biases introduced by later migrations, demographic expansions, mutations, and bottleneck effects. These analyses must be performed with special care because of the low DNA concentrations and contamination risk; therefore, it is necessary to establish protocols to guarantee the reproducibility and veracity of results. Objective: The present study aims to establish a protocol to obtain ancient DNA from 16 pre-Columbian bone samples found in an excavation performed in the area «Candelaria La Nueva» in Bogota, Colombia, dated in the period «Muisca Tardio». Methods: Four founder mitochondrial DNA Amerindian haplotypes were analyzed by high resolution restriction enzyme analyses, obtaining fragments between 121 and 186 base pairs (bp. Different analyses were performed following a strict control of authenticity criteria regarding laboratory conditions, including: positive and negative controls, reproducibility of results, and verification of particular characteristics present in ancient DNA. Results: Results obtained from the bone samples showed the exclusive presence of haplogroup A in the population studied. This data support the statement of the archaeologists of a single biological population in space and time. The distribution of this haplogroup in a 100% frequency supports the hypothesis of Chibcha genetic affiliation. Conclusion: The present study is a contribution to the study of genetic diversity in archaic American populations, allowing the integration of geographic and historic data with genetic characterization techniques associated with linguistic, ethnographic, and glottochronology patterns. Following the protocol proposed in the present study allows fulfilling authenticity criteria for ancient samples with the available techniques.
Dynamical chaos and power spectra in toy models of heteropolymers and proteins
Li, Mai Suan; Cieplak, Marek; Sushko, Nazar
2000-01-01
The dynamical chaos in Lennard-Jones toy models of heteropolymers is studied by molecular dynamics simulations. It is shown that two nearby trajectories quickly diverge from each other if the heteropolymer corresponds to a random sequence. For good folders, on the other hand, two nearby trajectories may initially move apart but eventually they come together. Thus good folders are intrinsically non-chaotic. A choice of a distance of the initial conformation from the native state affects the wa...
Discretization chaos - Feedback control and transition to chaos
Grantham, Walter J.; Athalye, Amit M.
1990-01-01
Problems in the design of feedback controllers for chaotic dynamical systems are considered theoretically, focusing on two cases where chaos arises only when a nonchaotic continuous-time system is discretized into a simpler discrete-time systems (exponential discretization and pseudo-Euler integration applied to Lotka-Volterra competition and prey-predator systems). Numerical simulation results are presented in extensive graphs and discussed in detail. It is concluded that care must be taken in applying standard dynamical-systems methods to control systems that may be discontinuous or nondifferentiable.
PHASE CHAOS IN THE DISCRETE KURAMOTO MODEL
DEFF Research Database (Denmark)
Maistrenko, V.; Vasylenko, A.; Maistrenko, Y.; Mosekilde, Erik
2010-01-01
The paper describes the appearance of a novel, high-dimensional chaotic regime, called phase chaos, in a time-discrete Kuramoto model of globally coupled phase oscillators. This type of chaos is observed at small and intermediate values of the coupling strength. It arises from the nonlinear inter...
Chaos and fractals. Applications to nuclear engineering
International Nuclear Information System (INIS)
This work presents a description of the research lines carried out by the authors on chaos and fractal theories, oriented to the nuclear field. The possibilities that appear in the nuclear security branch where the information deriving from chaos and fractal techniques may help to the development of better criteria and more reliable designs, are of special importance. (Author)
Chaos in nonlinear oscillations controlling and synchronization
Lakshamanan, M
1996-01-01
This book deals with the bifurcation and chaotic aspects of damped and driven nonlinear oscillators. The analytical and numerical aspects of the chaotic dynamics of these oscillators are covered, together with appropriate experimental studies using nonlinear electronic circuits. Recent exciting developments in chaos research are also discussed, such as the control and synchronization of chaos and possible technological applications.
"Chaos" Theory: Implications for Educational Research.
Lindsay, Jean S.
"Chaos" theory is a revolutionary new paradigm developed by scientists to study the behavior of natural systems. "Chaos" refers to the tendency of dynamic non-linear systems toward irregular, sometimes unpredictable, yet deterministic behavior. Major tenets of the theory are presented. The precedent for use of models developed in the natural…
The CHAOS-4 geomagnetic field model
DEFF Research Database (Denmark)
Olsen, Nils; Lühr, H.; Finlay, Chris;
2014-01-01
We present CHAOS-4, a new version in the CHAOS model series, which aims to describe the Earth's magnetic field with high spatial and temporal resolution. Terms up to spherical degree of at least n = 85 for the lithospheric field, and up to n = 16 for the time-varying core field are robustly deter...
The CHAOS-4 Geomagnetic Field Model
DEFF Research Database (Denmark)
Olsen, Nils; Finlay, Chris; Lühr, H.;
We present CHAOS-4, a new version in the CHAOS model series, which aims at describing the Earth's magnetic field with high spatial resolution (terms up to spherical degree n=90 for the crustal field, and up to n=16 for the time-varying core field are robustly determined) and high temporal resolut...
Thomas, R
2004-01-01
This paper considers questions of transmission and circulation of knowledge between Greeks and Babylonians, and in particular within the medical sphere. It compares evidence for the extensive exchange of goods and ideas with the Near East in the archaic period and considers the channels and means of transmission involved. It suggests, however, that the evidence of Hippocratic medicine and of Herodotus implies that interaction in the medical sphere followed the main areas of contact through trade and colonisation, and above all Egypt, rather than Mesopotamia. Contact with Babylonian wisdom was to reappear only in the late classical and Hellenistic period. PMID:17152173
4th international interdisciplinary chaos symposium
Banerjee, Santo; Caglar, Suleyman; Ozer, Mehmet; Chaos and complex systems
2013-01-01
Complexity Science and Chaos Theory are fascinating areas of scientific research with wide-ranging applications. The interdisciplinary nature and ubiquity of complexity and chaos are features that provides scientists with a motivation to pursue general theoretical tools and frameworks. Complex systems give rise to emergent behaviors, which in turn produce novel and interesting phenomena in science, engineering, as well as in the socio-economic sciences. The aim of all Symposia on Chaos and Complex Systems (CCS) is to bring together scientists, engineers, economists and social scientists, and to discuss the latest insights and results obtained in the area of corresponding nonlinear-system complex (chaotic) behavior. Especially for the “4th International Interdisciplinary Chaos Symposium on Chaos and Complex Systems,” which took place April 29th to May 2nd, 2012 in Antalya, Turkey, the scope of the symposium had been further enlarged so as to encompass the presentation of work from circuits to econophysic...
Semiconductor Lasers Stability, Instability and Chaos
Ohtsubo, Junji
2013-01-01
This third edition of “Semiconductor Lasers, Stability, Instability and Chaos” was significantly extended. In the previous edition, the dynamics and characteristics of chaos in semiconductor lasers after the introduction of the fundamental theory of laser chaos and chaotic dynamics induced by self-optical feedback and optical injection was discussed. Semiconductor lasers with new device structures, such as vertical-cavity surface-emitting lasers and broad-area semiconductor lasers, are interesting devices from the viewpoint of chaotic dynamics since they essentially involve chaotic dynamics even in their free-running oscillations. These topics are also treated with respect to the new developments in the current edition. Also the control of such instabilities and chaos control are critical issues for applications. Another interesting and important issue of semiconductor laser chaos in this third edition is chaos synchronization between two lasers and the application to optical secure communication. One o...
Chaos the science of predictable random motion
Kautz, Richard
2011-01-01
Based on only elementary mathematics, this engaging account of chaos theory bridges the gap between introductions for the layman and college-level texts. It develops the science of dynamics in terms of small time steps, describes the phenomenon of chaos through simple examples, and concludes with a close look at a homoclinic tangle, the mathematical monster at the heart of chaos. The presentation is enhanced by many figures, animations of chaotic motion (available on a companion CD), and biographical sketches of the pioneers of dynamics and chaos theory. To ensure accessibility to motivated high school students, care has been taken to explain advanced mathematical concepts simply, including exponentials and logarithms, probability, correlation, frequency analysis, fractals, and transfinite numbers. These tools help to resolve the intriguing paradox of motion that is predictable and yet random, while the final chapter explores the various ways chaos theory has been put to practical use.
Decoherence, determinism and chaos revisited
Energy Technology Data Exchange (ETDEWEB)
Noyes, H.P.
1994-11-15
We suggest that the derivation of the free space Maxwell Equations for classical electromagnetism, using a discrete ordered calculus developed by L.H. Kauffman and T. Etter, necessarily pushes the discussion of determinism in natural science down to the level of relativistic quantum mechanics and hence renders the mathematical phenomena studied in deterministic chaos research irrelevant to the question of whether the world investigated by physics is deterministic. We believe that this argument reinforces Suppes` contention that the issue of determinism versus indeterminism should be viewed as a Kantian antinomy incapable of investigation using currently available scientific tools.
Quelques aspects de Chaos Quantique
Nonnenmacher, Stéphane
2009-01-01
Ce mémoire résume mes travaux dans 3 domaines reliés au "chaos quantique". J'y aborde tout d'abord les questions de répartition spatiale des fonctions propres de systèmes quantiques classiquement chaotiques. Dans une seconde partie, je résume mes travaux sur la distribution des résonances pour les systèmes de diffusion dont l'ensemble des trajectoires captées est fractal, et supporte une dynamique chaotique. Enfin, je mentionne des résultats obtenus sur les transformations chaotiques bruitées...
Periodic orbits in arithmetical chaos
International Nuclear Information System (INIS)
Length spectra of periodic orbits are investigated for some chaotic dynamical systems whose quantum energy spectra show unexpected statistical properties and for which the notion of arithmetical chaos has been introduced recently. These systems are defined as the unconstrained motions of particles on two dimensional surfaces of constant negative curvature whose fundamental groups are given by number theoretical statements (arithmetic Fuchsian groups). It is shown that the mean multiplicity of lengths l of periodic orbits grows asymptotically like c x el/2/l, l → ∞. Moreover, the constant c (depending on the arithmetic group) is determined. (orig.)
Decoherence, determinism and chaos revisited
International Nuclear Information System (INIS)
We suggest that the derivation of the free space Maxwell Equations for classical electromagnetism, using a discrete ordered calculus developed by L.H. Kauffman and T. Etter, necessarily pushes the discussion of determinism in natural science down to the level of relativistic quantum mechanics and hence renders the mathematical phenomena studied in deterministic chaos research irrelevant to the question of whether the world investigated by physics is deterministic. We believe that this argument reinforces Suppes' contention that the issue of determinism versus indeterminism should be viewed as a Kantian antinomy incapable of investigation using currently available scientific tools
Biro, TS; Mueller, B
1995-01-01
This book introduces a rapidly growing new research area - the study of dynamical properties of elementary fields. The methods used in this field range from algebraic topology to parallel computer programming. The main aim of this research is to understand the behavior of elementary particles and fields under extreme circumstances, first of all at high temperature and energy density generated in the largest accelerators of the world and supposed to be present in the early evolution of our Universe shortly after the Big Bang.In particular, chaos is rediscovered in a new appearance in these stud
Unstable periodic orbits and noise in chaos computing.
Kia, Behnam; Dari, Anna; Ditto, William L; Spano, Mark L
2011-12-01
Different methods to utilize the rich library of patterns and behaviors of a chaotic system have been proposed for doing computation or communication. Since a chaotic system is intrinsically unstable and its nearby orbits diverge exponentially from each other, special attention needs to be paid to the robustness against noise of chaos-based approaches to computation. In this paper unstable periodic orbits, which form the skeleton of any chaotic system, are employed to build a model for the chaotic system to measure the sensitivity of each orbit to noise, and to select the orbits whose symbolic representations are relatively robust against the existence of noise. Furthermore, since unstable periodic orbits are extractable from time series, periodic orbit-based models can be extracted from time series too. Chaos computing can be and has been implemented on different platforms, including biological systems. In biology noise is always present; as a result having a clear model for the effects of noise on any given biological implementation has profound importance. Also, since in biology it is hard to obtain exact dynamical equations of the system under study, the time series techniques we introduce here are of critical importance. PMID:22225394
An Experimental Investigation of Secure Communication With Chaos Masking
Dhar, Sourav
2007-01-01
The most exciting recent development in nonlinear dynamics is realization that chaos can be useful. One application involves "Secure Communication". Two piecewise linear systems with switching nonlinearities have been taken as chaos generators. In the present work the phenomenon of secure communication with chaos masking has been investigated experimentally. In this investigation chaos which is generated from two chaos generators is masked with the massage signal to be transmitted, thus makes communication is more secure.
Quantifying chaos for ecological stoichiometry
Duarte, Jorge; Januário, Cristina; Martins, Nuno; Sardanyés, Josep
2010-09-01
The theory of ecological stoichiometry considers ecological interactions among species with different chemical compositions. Both experimental and theoretical investigations have shown the importance of species composition in the outcome of the population dynamics. A recent study of a theoretical three-species food chain model considering stoichiometry [B. Deng and I. Loladze, Chaos 17, 033108 (2007)] shows that coexistence between two consumers predating on the same prey is possible via chaos. In this work we study the topological and dynamical measures of the chaotic attractors found in such a model under ecological relevant parameters. By using the theory of symbolic dynamics, we first compute the topological entropy associated with unimodal Poincaré return maps obtained by Deng and Loladze from a dimension reduction. With this measure we numerically prove chaotic competitive coexistence, which is characterized by positive topological entropy and positive Lyapunov exponents, achieved when the first predator reduces its maximum growth rate, as happens at increasing δ1. However, for higher values of δ1 the dynamics become again stable due to an asymmetric bubble-like bifurcation scenario. We also show that a decrease in the efficiency of the predator sensitive to prey's quality (increasing parameter ζ) stabilizes the dynamics. Finally, we estimate the fractal dimension of the chaotic attractors for the stoichiometric ecological model.
Chaos suppression through asymmetric coupling
Bragard, J.; Vidal, G.; Mancini, H.; Mendoza, C.; Boccaletti, S.
2007-12-01
We study pairs of identical coupled chaotic oscillators. In particular, we have used Roessler (in the funnel and no funnel regimes), Lorenz, and four-dimensional chaotic Lotka-Volterra models. In all four of these cases, a pair of identical oscillators is asymmetrically coupled. The main result of the numerical simulations is that in all cases, specific values of coupling strength and asymmetry exist that render the two oscillators periodic and synchronized. The values of the coupling strength for which this phenomenon occurs is well below the previously known value for complete synchronization. We have found that this behavior exists for all the chaotic oscillators that we have used in the analysis. We postulate that this behavior is presumably generic to all chaotic oscillators. In order to complete the study, we have tested the robustness of this phenomenon of chaos suppression versus the addition of some Gaussian noise. We found that chaos suppression is robust for the addition of finite noise level. Finally, we propose some extension to this research.
Competitive coexistence in stoichiometric chaos
Deng, Bo; Loladze, Irakli
2007-09-01
Classical predator-prey models, such as Lotka-Volterra, track the abundance of prey, but ignore its quality. Yet, in the past decade, some new and occasionally counterintuitive effects of prey quality on food web dynamics emerged from both experiments and mathematical modeling. The underpinning of this work is the theory of ecological stoichiometry that is centered on the fact that each organism is a mixture of multiple chemical elements such as carbon (C), nitrogen (N), and phosphorus (P). The ratios of these elements can vary within and among species, providing simple ways to represent prey quality as its C:N or C:P ratios. When these ratios modeled to vary, as they frequently do in nature, seemingly paradoxical results can arise such as the extinction of a predator that has an abundant and accessible prey. Here, for the first time, we show analytically that the reduction in prey quality can give rise to chaotic oscillations. In particular, when competing predators differ in their sensitivity to prey quality then all species can coexist via chaotic fluctuations. The chaos generating mechanism is based on the existence of a junction-fold point on the nullcline surfaces of the species. Conditions on parameters are found for such a point, and the singular perturbation method and the kneading sequence analysis are used to demonstrate the existence of a period-doubling cascade to chaos as a result of the point.
Chua's circuit a paradigm for chaos
1993-01-01
For uninitiated researchers, engineers, and scientists interested in a quick entry into the subject of chaos, this book offers a timely collection of 55 carefully selected papers covering almost every aspect of this subject. Because Chua's circuit is endowed with virtually every bifurcation phenomena reported in the extensive literature on chaos, and because it is the only chaotic system which can be easily built by a novice, simulated in a personal computer, and tractable mathematically, it has become a paradigm for chaos, and a vehicle for illustrating this ubiquitous phenomenon. Its supreme
Edge of Chaos and Genesis of Turbulence
Chian, Abraham C -L; Rempel, Erico
2013-01-01
The edge of chaos is analyzed in a spatially extended system, modeled by the regularized long-wave equation, prior to the transition to permanent spatiotemporal chaos. In the presence of coexisting attractors, a chaotic saddle is born at the basin boundary due to a smooth-fractal metamorphosis. As a control parameter is varied, the chaotic transient evolves to well-developed transient turbulence via a cascade of fractal-fractal metamorphoses. The edge state responsible for the edge of chaos and the genesis of turbulence is an unstable travelling wave in the laboratory frame, corresponding to a saddle point lying at the basin boundary in the Fourier space.
Physics and Applications of Laser Diode Chaos
Sciamanna, Marc
2015-01-01
An overview of chaos in laser diodes is provided which surveys experimental achievements in the area and explains the theory behind the phenomenon. The fundamental physics underpinning this behaviour and also the opportunities for harnessing laser diode chaos for potential applications are discussed. The availability and ease of operation of laser diodes, in a wide range of configurations, make them a convenient test-bed for exploring basic aspects of nonlinear and chaotic dynamics. It also makes them attractive for practical tasks, such as chaos-based secure communications and random number generation. Avenues for future research and development of chaotic laser diodes are also identified.
Distributed chaos and helicity in turbulence
Bershadskii, A
2016-01-01
The distributed chaos driven by Levich-Tsinober (helicity) integral: $I=\\int \\langle h({\\bf x},t)~h({\\bf x}+{\\bf r}, t)\\rangle d{\\bf r}$ has been studied. It is shown that the helical distributed chaos can be considered as basis for complex turbulent flows with interplay between large-scale coherent structures and small-scale turbulence, such as Cuette-Taylor flow, wake behind cylinder and turbulent flow in the Large Plasma Device (LAPD) with inserted limiters. In the last case appearance of the helical distributed chaos, caused by the limiters, results in improvement of radial particle confinement.
From Hamiltonian chaos to Maxwell's Demon
International Nuclear Information System (INIS)
The problem of the existence of Maxwell's Demon (MD) is formulated for systems with dynamical chaos. Property of stickiness of individual trajectories, anomalous distribution of the Poincare recurrence time, and anomalous (non-Gaussian) transport for a typical system with Hamiltonian chaos results in a possibility to design a situation equivalent to the MD operation. A numerical example demonstrates a possibility to set without expenditure of work a thermodynamically non-equilibrium state between two contacted domains of the phase space lasting for an arbitrarily long time. This result offers a new view of the Hamiltonian chaos and its role in the foundation of statistical mechanics. copyright 1995 American Institute of Physics
Chaos dynamic characteristics during mine fires
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
Mine fires break out and continue in confmed scopes, studying mine fire dynamics characteristics is very usefulto prevent and control fire. The judgement index of fire chaos characteristics was introduced, chaos analysis of mine Fireprocess was described, and the reconstruction of phase space was also presented. An example of mine fire was calculated.The computations show that it is feasible to analyze mine fire dynamic characteristics with chaos theory, and indicate thatfire preoeas is a catastrophe, that is to say, the fire system changes from one state to another during mine fire
Chaos from simple models to complex systems
Cencini, Massimo; Vulpiani, Angelo
2010-01-01
Chaos: from simple models to complex systems aims to guide science and engineering students through chaos and nonlinear dynamics from classical examples to the most recent fields of research. The first part, intended for undergraduate and graduate students, is a gentle and self-contained introduction to the concepts and main tools for the characterization of deterministic chaotic systems, with emphasis to statistical approaches. The second part can be used as a reference by researchers as it focuses on more advanced topics including the characterization of chaos with tools of information theor
Dessi, Roberta; Rustichini, Aldo
2015-01-01
A large literature in psychology, and more recently in economics, has argued that monetary rewards can reduce intrinsic motivation. We investigate whether the negative impact persists when intrinsic motivation is strong, and test this hypothesis experimentally focusing on the motivation to undertake interesting and challenging tasks, informative about individual ability. We find that this type of task can generate strong intrinsic motivation, that is impervious to the effect of monetary incen...
Quantum Correlations, Chaos and Information
Madhok, Vaibhav
Quantum chaos is the study of quantum systems whose classical description is chaotic. How does chaos manifest itself in the quantum world? In this spirit, we study the dynamical generation of entanglement as a signature of chaos in a system of periodically kicked coupled-tops, where chaos and entanglement arise from the same physical mechanism. The long-time entanglement as a function of the position of an initially localized wave packet very closely correlates with the classical phase space surface of section - it is nearly uniform in the chaotic sea, and reproduces the detailed structure of the regular islands. The uniform value in the chaotic sea is explained by the random state conjecture. As classically chaotic dynamics take localized distributions in phase space to random distributions, quantized versions take localized coherent states to pseudo-random states in Hilbert space. Such random states are highly entangled, with an average value near that of the maximally entangled state. For a map with global chaos, we derive that value based on new analytic results for the entropy of random states. For a mixed phase space, we use the Percival conjecture to identify a "chaotic subspace" of the Hilbert space. The typical entanglement, averaged over the unitarily invariant Haar measure in this subspace, agrees with the long-time averaged entanglement for initial states in the chaotic sea. In all cases the dynamically generated entanglement is that of a random complex vector, even though the system is time-reversal invariant, and the Floquet operator is a member of the circular orthogonal ensemble. Continuing on our journey to find the footprints of chaos in the quantum world, we explore quantum signatures of classical chaos by studying the rate of information gain in quantum tomography. The measurement record is obtained as a sequence of expectation values of a Hermitian operator evolving under repeated application of the Floquet operator of the quantum kicked top on
Superfluid (quantum) turbulence and distributed chaos
Bershadskii, A
2016-01-01
Properties of distributed chaos in superfluid (quantum) turbulence have been studied using the data of recent direct numerical simulations (HVBK two-fluid model for He II, and a moving grid in the frames of Gross-Pitaevskii model of the Bose-Einstein condensates at low temperatures). It is found that for the viscous (normal) component of the velocity field in He II the viscosity dominates the distributed chaos with the stretched exponential spectrum $\\exp(-k/k_{\\beta})^{\\beta}$ and $\\beta = 2/3$. For the superfluid component the distributed chaos is dominated by the vorticity correlation integral with $\\beta =1/2$ (the soft spontaneous breaking of the space translational symmetry - homogeneity). For very low temperature the distributed chaos is tuned to the large-scale coherent motions: the viscous (normal) component is tuned to the fundamental mode, whereas the superfluid component is subharmonically tuned. For the Gross-Pitaevskii superfluid turbulence incompressible part of the energy spectrum (containing ...
Coherence and chaos in condensed matter
International Nuclear Information System (INIS)
This paper discusses the following topics: nonlinearity in condensed matter; coherence and chaos in spatially extended condensed matter systems; nonlinearity and magnetism; and solitons and conducting polymers. 52 refs., 7 figs
Symmetry vs. Chaos in collective dynamics
International Nuclear Information System (INIS)
Models of nuclear collective dynamics are used to study the interplay of order (approximate dynamical symmetry) and chaos in general physical systems. We report on some recent results obtained within the interacting boson model and the geometric model. (author)
Geodesics deviation equation approach to chaos
Dobrowolski, Tomasz; Szczesny, Jerzy
1999-01-01
Geodesics deviation equation (GDE) is itroduced. In "adiabatic" approximation exact solution of the GDE if found. Perturbation theory in general case is formulated. Geometrical criterion of local instability which may lead to chaos is formulated.
Sándor, Bulcsú; Tél, Tamás; Néda, Zoltán
2013-01-01
The dynamics of a spring-block train placed on a moving conveyor belt is investigated both by simple experiments and computer simulations. The first block is connected by spring to an external static point, and due to the dragging effect of the belt the blocks undergo complex stick-slip dynamics. A qualitative agreement with the experimental results can only be achieved by taking into account the spatial inhomogeneity of the friction force on the belt's surface, modeled as noise. As a function of the velocity of the conveyor belt and the noise strength, the system exhibits complex, self-organized critical, sometimes chaotic dynamics and phase transition-like behavior. Noise induced chaos and intermittency is also observed. Simulations suggest that the maximum complexity of the dynamical states is achieved for a relatively small number of blocks, around five.
2008-01-01
[figure removed for brevity, see original site] Click on image for animation of 3-dimensional model with 5x vertical exaggeration This image of chaotic terrain in the Aureum Chaos region of Mars was taken by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) at 0858UTC (3:58 a.m. EST) on January 24, 2008, near 3.66 degrees south latitude, 26.5 degrees west longitude. The image was taken in 544 colors covering 0.36-3.92 micrometers, and shows features as small as 18 meters (60 feet) across. The image is about 10 kilometers (6.2 miles) wide at its narrowest point. Aureum Chaos is a 368 kilometer (229 mile) wide area of chaotic terrain in the eastern part of Valles Marineris. The chaotic terrain is thought to have formed by collapse of the surrounding Margaritifer Terra highland region. Aureum Chaos contains heavily eroded, randomly oriented mesas, plateaus, and knobs many revealing distinct layered deposits along their slopes. These deposits may be formed from remnants of the collapsed highlands, sand carried by Martian winds, dust or volcanic ash that settled out of the atmosphere, or sediments laid down on the floor of an ancient lake. The top panel in the montage above shows the location of the CRISM image on a mosaic taken by the Mars Odyssey spacecraft's Thermal Emission Imaging System (THEMIS). The CRISM data cover a narrow plateau near the edge of the chaotic terrain, that stretches across from the southwest to the northeast. The lower left image, an infrared false color image, reveals the plateau and several eroded knobs of varying sizes. The plateau's layer-cake structure is similar to that of other layered outcrops in Valles Marineris. The lower right image reveals the strengths of mineral spectral features overlain on a black-and-white version of the infrared image. Areas shaded in red hold more of the mineral pyroxene, a primary component of basaltic rocks that are prevalent in the highlands. Spots of green indicate monohydrated sulfate
Chaos in junctions and devices
International Nuclear Information System (INIS)
The plan of the paper is as follows. Section 2 is an introduction into chaos in dissipative systems with an emphasis on period doubling and intermittency. The logistic map and the circle map are discussed and their significance as describing systems of continuous dynamics is emphasized. Section 3 is subdivided into two parts after the introduction of the RSJ equations. The first is on the ac driven Josephson junction without a dc bias and the second on the same with a dc current. Each of these subdivisions includes a discussion of experiments as well. There is also a section on investigations that do not fit into either of the above categories. Section 4 is devoted to the dc-SQUID, in the first part as a magnetic flux gauge and in the second as a four dimensional dynamical system, which can be simulated with great accuracy and compared with one dimensional models. (orig./BUD)
Ordered and Disordered Defect Chaos
Granzow, G D; Granzow, Glen D.; Riecke, Hermann
1997-01-01
Defect-chaos is studied numerically in coupled Ginzburg-Landau equations for parametrically driven waves. The motion of the defects is traced in detail yielding their life-times, annihilation partners, and distances traveled. In a regime in which in the one-dimensional case the chaotic dynamics is due to double phase slips, the two-dimensional system exhibits a strongly ordered stripe pattern. When the parity-breaking instability to traveling waves is approached this order vanishes and the correlation function decays rapidly. In the ordered regime the defects have a typical life-time, whereas in the disordered regime the life-time distribution is exponential. The probability of large defect loops is substantially larger in the disordered regime.
P. Tallapragada; Ross, Shane. D.; Schmale, D. G., III
2011-01-01
Many microorganisms are advected in the lower atmosphere from one habitat to another with scales of motion being hundreds to thousands of kilometers. The concentration of these microbes in the lower atmosphere at a single geographic location can show rapid temporal changes. We used autonomous unmanned aerial vehicles equipped with microbe-sampling devices to collect fungi in the genus Fusarium 100 m above ground level at a single sampling location in Blacksburg, Virginia, USA. Some Fusarium s...
Detecting nonlinearity and chaos in epidemic data
Energy Technology Data Exchange (ETDEWEB)
Ellner, S.; Gallant, A.R. [North Carolina State Univ., Raleigh, NC (United States). Dept. of Statistics; Theiler, J. [Santa Fe Inst., NM (United States)]|[Los Alamos National Lab., NM (United States)
1993-08-01
Historical data on recurrent epidemics have been central to the debate about the prevalence of chaos in biological population dynamics. Schaffer and Kot who first recognized that the abundance and accuracy of disease incidence data opened the door to applying a range of methods for detecting chaos that had been devised in the early 1980`s. Using attractor reconstruction, estimates of dynamical invariants, and comparisons between data and simulation of SEIR models, the ``case for chaos in childhood epidemics`` was made through a series of influential papers beginning in the mid 1980`s. The proposition that the precise timing and magnitude of epidemic outbreaks are deterministic but chaotic is appealing, since it raises the hope of finding determinism and simplicity beneath the apparently stochastic and complicated surface of the data. The initial enthusiasm for methods of detecting chaos in data has been followed by critical re-evaluations of their limitations. Early hopes of a ``one size fits all`` algorithm to diagnose chaos vs. noise in any data set have given way to a recognition that a variety of methods must be used, and interpretation of results must take into account the limitations of each method and the imperfections of the data. Our goals here are to outline some newer methods for detecting nonlinearity and chaos that have a solid statistical basis and are suited to epidemic data, and to begin a re-evaluation of the claims for nonlinear dynamics and chaos in epidemics using these newer methods. We also identify features of epidemic data that create problems for the older, better known methods of detecting chaos. When we ask ``are epidemics nonlinear?``, we are not questioning the existence of global nonlinearities in epidemic dynamics, such as nonlinear transmission rates. Our question is whether the data`s deviations from an annual cyclic trend (which would reflect global nonlinearities) are described by a linear, noise-driven stochastic process.
Polynomial chaos representation of a stochastic preconditioner
Desceliers, Christophe; Ghanem, R; Soize, Christian
2005-01-01
A method is developed in this paper to accelerate the convergence in computing the solution of stochastic algebraic systems of equations. The method is based on computing, via statistical sampling, a polynomial chaos decomposition of a stochastic preconditioner to the system of equations. This preconditioner can subsequently be used in conjunction with either chaos representations of the solution or with approaches based on Monte Carlo sampling. In addition to presenting the supporting theory...
Microscopic theory of intrinsic shear and bulk viscosities
International Nuclear Information System (INIS)
A microscopic theory of intrinsic shear and bulk viscosities of solutions is given for a model of particles that interact with hard-sphere cores and weak long-range attraction. The approximation considered (the velocity chaos assumption of the Enskog theory) can be expected to yield quantitatively useful values for viscosities of the model solute-solvent system when the solute particles are not much larger than the solvent particles. Under solute-solvent mixing conditions of constant pressure and temperature, it is found that the intrinsic viscosities of a hard-sphere solute in a hard-sphere solvent can be positive or negative, depending upon size and mass ratios; for solute and solvent particles whose mass ratio equals their volume ratio, the intrinsic shear and bulk viscosities are always positive for solute particles larger than solvent particles: in the opposite case, the intrinsic shear viscosity is always negative while the intrinsic bulk viscosity is for the most part negative, becoming positive again when the solute particle is sufficiently small. For solute particles smaller than solvent particles, this result is sensitive to change in mass ratio. The addition of solvent-solvent attraction is found to lower the intrinsic viscosities substantially; the addition of solute-solvent attraction raises it. Detailed quantitative analysis of these effects is given
On indeterminism, chaos, and small number particle systems in the brain.
Lewis, Edwin R; MacGregor, Ronald J
2006-06-01
This paper presents rational, theoretical, and empirical grounds for doubting the principle of determinism in nature and in the brain, and discusses implications of this for free will and the chaos model of the brain. Small number particle systems are practically indeterministic and may be intrinsically indeterministic. Determinism in nature has often been taken to preclude free will. Strict determinism is a concept frequently applied to systems theory, establishing, e.g., the uniqueness of state-space trajectories. In order to consider determinism as a law of nature, however, one must be able to subject it to empirical tests. Presently, one is not able to and whether this can be shown to enable free will or not is not clear. It does remove, at least for the present, determinism itself as a rationale for precluding free will. The work partially supports the chaos model, but weakens the computational computer metaphor of brain function. PMID:16783870
Spatial interaction creates period-doubling bifurcation and chaos of urbanization
International Nuclear Information System (INIS)
This paper provides a new way of looking at complicated dynamics of simple mathematical models. The complicated behavior of simple equations is one of the headstreams of chaos theory. However, a recent study based on dynamical equations of urbanization shows that there are still some undiscovered secrets behind the simple mathematical models such as logistic equation. The rural-urban interaction model can also display varied kinds of complicated dynamics, including period-doubling bifurcation and chaos. The two-dimension map of urbanization presents the same dynamics as that from the one-dimension logistic map. In theory, the logistic equation can be derived from the two-population interaction model. This seems to suggest that the complicated behavior of simple models results from interaction rather than pure intrinsic randomicity. In light of this idea, the classical predator-prey interaction model can be revised to explain the complex dynamics of logistic equation in physical and social sciences.
Input-dependent Suppression of Chaos in Recurrent Neural Networks
Rajan, K.; Abbott, L. F.; Sompolinsky, H.
2010-03-01
Neuronal responses arise from an interaction between spontaneous activity and responses driven by external inputs. Experiments studying cortical circuits reveal a striking similarity between the magnitude and complexity of intrinsic and input-generated activity. How does a network generating complex activity remain sensitive to external inputs? This seems unlikely for a network in which input-driven responses add linearly to ongoing activity generated by stochastic noise generators. We developed a mean-field theory and used recurrent network models to distinguish between this type of external noise and chaotic background generated by strong coupling within the circuit. As a result of a highly nonlinear relationship between input- and internally generated activity, we show that intrinsic noise is sensitive to the amplitude and the spatiotemporal structure of the input. We find that input not only drives responses, it also actively suppresses spontaneous activity, leading to a phase transition in which the chaotic background is absent. Although the power spectrum of the spontaneous activity falls exponentially from zero, the phase transition reveals a resonant frequency at which relatively a weak input suppresses chaos. As long as the input drives the system across the phase transition, a spontaneously active network can work with coupling strong enough to allow large signal amplification and selectivity without the complex background interfering with sensory processing.
Chaos forgets and remembers: Measuring information creation, destruction, and storage
Energy Technology Data Exchange (ETDEWEB)
James, Ryan G., E-mail: rgjames@ucdavis.edu [Complexity Sciences Center and Physics Department, University of California at Davis, One Shields Avenue, Davis, CA 95616 (United States); Burke, Korana, E-mail: kburke@ucdavis.edu [Complexity Sciences Center and Physics Department, University of California at Davis, One Shields Avenue, Davis, CA 95616 (United States); Crutchfield, James P., E-mail: chaos@ucdavis.edu [Complexity Sciences Center and Physics Department, University of California at Davis, One Shields Avenue, Davis, CA 95616 (United States); Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501 (United States)
2014-06-13
Highlights: • Kolmogorov–Sinai entropy measures information creation in dynamical systems. • It decomposes into information remembered (bound) and that forgotten (ephemeral). • Thus chaotic dynamical systems compute: they actively store and destroy information. • This is easily estimated and, in many cases, analytically computed. • Decomposition illustrated for the Logistic, Tent, and Lozi discrete-time maps. - Abstract: The hallmark of deterministic chaos is that it creates information—the rate being given by the Kolmogorov–Sinai metric entropy. Since its introduction half a century ago, the metric entropy has been used as a unitary quantity to measure a system's intrinsic unpredictability. Here, we show that it naturally decomposes into two structurally meaningful components: A portion of the created information—the ephemeral information—is forgotten and a portion—the bound information—is remembered. The bound information is a new kind of intrinsic computation that differs fundamentally from information creation: it measures the rate of active information storage. We show that it can be directly and accurately calculated via symbolic dynamics, revealing a hitherto unknown richness in how dynamical systems compute.
CHAOS III: Gas-Phase Abundances in NGC5457
Croxall, Kevin; Berg, Danielle A; Skillman, Evan D; Moustakas, John
2016-01-01
The CHemical Abundances of Spirals (CHAOS) project leverages the combined power of the Large Binocular Telescope with the broad spectral range and sensitivity of the Multi Object Double Spectrograph (MODS) to measure direct abundances in large samples of HII regions in spiral galaxies. We present LBT MODS observations of 109 Hii regions in NGC5457, of which 74 have robust measurements of key auroral lines, a factor of 3 larger than all previous published detections of auroral lines in the HII regions of NGC5457. Comparing the temperatures derived from the different ionic species we find: (1) strong correlations of T[NII] with T[SIII] and T[OIII], consistent with little or no intrinsic scatter; (2) a correlation of T[SIII] with T[OIII], but with significant intrinsic dispersion; (3) overall agreement between T[NII], T[SII], and T[OII], as expected, but with significant outliers; (4) the correlations of T[NII] with T[SIII] and T[OIII] match the predictions of photoionization modeling while the correlation of T[...
Murakami, Shuichi
2005-01-01
A brief review is given on the spin Hall effect, where an external electric field induces a transverse spin current. It has been recognized over 30 years that such effect occurs due to impurities in the presence of spin-orbit coupling. Meanwhile, it was proposed recently that there is also an intrinsic contribution for this effect. We explain the mechanism for this intrinsic spin Hall effect. We also discuss recent experimental observations of the spin Hall effect.
Truc Le
2014-01-01
We review the nature of some well-known phenomena such as volatility smiles, convexity adjustments and parallel derivative markets. We propose that the market is incomplete and postulate the existence of intrinsic risks in every contingent claim as a basis for understanding these phenomena. In a continuous time framework, we bring together the notion of intrinsic risk and the theory of change of measures to derive a probability measure, namely risk-subjective measure, for evaluating contingen...
2nd International Symposium on Chaos, Complexity and Leadership
Banerjee, Santo
2015-01-01
These proceedings from the 2013 symposium on "Chaos, complexity and leadership" reflect current research results from all branches of Chaos, Complex Systems and their applications in Management. Included are the diverse results in the fields of applied nonlinear methods, modeling of data and simulations, as well as theoretical achievements of Chaos and Complex Systems. Also highlighted are Leadership and Management applications of Chaos and Complexity Theory.
Chaos Theory and Literature from an Existentialist Perspective
Khamees Ragab Aman, Yasser
2007-01-01
Yasser Khamees Ragab Aman proposes in his article "Chaos Theory and Literature from an Existentialist Perspective" that in literature the relation, principles, and processes of chaos and order can be analyzed from an existentialist perspective. Chaos lies at the heart of nothingness and order is the appearance of the achievement it tries to realize, temporary it may seem. Aman argues that with the application of chaos theory to works of literature may yield new insight and applies in his pape...
Nuclear collective dynamics and chaos
International Nuclear Information System (INIS)
The present status and future problems in both the classical-level theory and full quantum theory of nuclear collective dynamics are discussed by putting special emphasis on their relation to the classical and quantum order-to-chaos transition dynamics, respectively. The nonlinear dynamics between the collective and single-particle excitation modes of motion specific for the finite, self-sustained and self-organizing system as the nucleus is discussed within the time-dependent Hartree-Fock (TDHF) theory, the basic equation of which is shown to be formally equivalent to the Hamilton's canonical equations of motion in the classical nonlinear dynamical system. An importance to relate the structure of the TDHF symplectic manifold with an inexhaustible rich structure of the classical phase space in the nonlinear system is stressed. A full quantum theory of nuclear collective dynamics is proposed under a dictation of what has been developed in the classical-level TDHF theory. It is shown that the proposed quantum theory enables us to explore exceeding complexity of the Hilbert space. It is discussed that a resonant denominator known as a source of the extraordinary rich structure of the phase space trajectories, also plays a decisive role in generating a rich structure of the quantum Hilbert space. (author) 87 refs
Generic superweak chaos induced by Hall effect
Ben-Harush, Moti; Dana, Itzhack
2016-05-01
We introduce and study the "kicked Hall system" (KHS), i.e., charged particles periodically kicked in the presence of uniform magnetic (B ) and electric (E ) fields that are perpendicular to each other and to the kicking direction. We show that for resonant values of B and E and in the weak-chaos regime of sufficiently small nonintegrability parameter κ (the kicking strength), there exists a generic family of periodic kicking potentials for which the Hall effect from B and E significantly suppresses the weak chaos, replacing it by "superweak" chaos (SWC). This means that the system behaves as if the kicking strength were κ2 rather than κ . For E =0 , SWC is known to be a classical fingerprint of quantum antiresonance, but it occurs under much less generic conditions, in particular only for very special kicking potentials. Manifestations of SWC are a decrease in the instability of periodic orbits and a narrowing of the chaotic layers, relative to the ordinary weak-chaos case. Also, for global SWC, taking place on an infinite "stochastic web" in phase space, the chaotic diffusion on the web is much slower than the weak-chaos one. Thus, the Hall effect can be relatively stabilizing for small κ . In some special cases, the effect is shown to cause ballistic motion for almost all parameter values. The generic global SWC on stochastic webs in the KHS appears to be the two-dimensional closest analog to the Arnol'd web in higher dimensional systems.
Household Chaos--Links with Parenting and Child Behaviour
Coldwell, Joanne; Pike, Alison; Dunn, Judy
2006-01-01
Background: The study aimed to confirm previous findings showing links between household chaos and parenting in addition to examining whether household chaos was predictive of children's behaviour over and above parenting. In addition, we investigated whether household chaos acts as a moderator between parenting and children's behaviour. Method:…
God's Stuff: The Constructive Powers of Chaos for Teaching Religion
Willhauck, Susan
2010-01-01
Order and organization are valued in the classroom, and there is a prevailing understanding that chaos should be avoided. Yet chaos can also be potent space or a source from which new things spring forth. This article investigates biblical, scientific, and cultural understandings of chaos to discover how these contribute to a revelatory metaphor…
Reliable Computational Predictions by Modeling Uncertainties Using Arbitrary Polynomial Chaos
Witteveen, J.A.S.; Bijl, H
2006-01-01
Inherent physical uncertainties can have a significant influence on computational predictions. It is therefore important to take physical uncertainties into account to obtain more reliable computational predictions. The Galerkin polynomial chaos method is a commonly applied uncertainty quantification method. However, the polynomial chaos expansion has some limitations. Firstly, the polynomial chaos expansion based on classical polynomials can achieve exponential convergence for a limited set ...
International Nuclear Information System (INIS)
Anti-control of chaos of single time scale brushless dc motors (BLDCM) and chaos synchronization of different order systems are studied in this paper. By addition of an external nonlinear term, we can obtain anti-control of chaos. Then, by addition of the coupling terms, by the use of Lyapunov stability theorem and by the linearization of the error dynamics, chaos synchronization between a third-order BLDCM and a second-order Duffing system are presented
Chaos Concepts, Control and Constructive Use
Bolotin, Yurii; Yanovsky, Vladimir
2009-01-01
The study of chaotic behaviour in nonlinear, dynamical systems is now a well established research domain with ramifications into all fields of sciences, spanning a vast range of applications, from celestial mechanics, via climate change, to the functioning of brownian motors in cells. A more recent discovery is that chaos can be controlled and, under appropriate conditions, can actually be constructive in the sense of becoming a control parameter itself for the system under investigation, stochastic resonance being a prime example. The present work is putting emphasis on the latter aspects, and after recalling the paradigm changes introduced by the concept of chaos, leads the reader skillfully through the basics of chaos control by detailing relevant algorithms for both Hamiltonian and dissipative systems amongst others. The main part of the book is then devoted to the issue of synchronization in chaotic systems, an introduction to stochastic resonance and a survey of ratchet models. This short and concise pr...
Associative memory with spatiotemporal chaos control
Kushibe, Masanori; Liu, Yun; Ohtsubo, Junji
1996-05-01
Control of spatiotemporal chaos in a neural network with discrete time and continuous state variables is investigated. The chaos control is performed with the knowledge of only a part of the target information in the memory patterns. The success rate for the pattern associations and the dependence of the search time on the sampling number in the proposed chaos neural network are studied. By the introduction of the reinforcement factor in the learning process, the recognition rate of the network can be much enhanced. Random and regular samplings of the pattern for the control are tested and the successful results of the associations are demonstrated. The chaotic behavior and recalling ability of the system are evaluated based on the analysis of the Lyapunov spectrum of the network.
Improved particle swarm optimization combined with chaos
International Nuclear Information System (INIS)
As a novel optimization technique, chaos has gained much attention and some applications during the past decade. For a given energy or cost function, by following chaotic ergodic orbits, a chaotic dynamic system may eventually reach the global optimum or its good approximation with high probability. To enhance the performance of particle swarm optimization (PSO), which is an evolutionary computation technique through individual improvement plus population cooperation and competition, hybrid particle swarm optimization algorithm is proposed by incorporating chaos. Firstly, adaptive inertia weight factor (AIWF) is introduced in PSO to efficiently balance the exploration and exploitation abilities. Secondly, PSO with AIWF and chaos are hybridized to form a chaotic PSO (CPSO), which reasonably combines the population-based evolutionary searching ability of PSO and chaotic searching behavior. Simulation results and comparisons with the standard PSO and several meta-heuristics show that the CPSO can effectively enhance the searching efficiency and greatly improve the searching quality
Nonlinear dynamics and quantum chaos an introduction
Wimberger, Sandro
2014-01-01
The field of nonlinear dynamics and chaos has grown very much over the last few decades and is becoming more and more relevant in different disciplines. This book presents a clear and concise introduction to the field of nonlinear dynamics and chaos, suitable for graduate students in mathematics, physics, chemistry, engineering, and in natural sciences in general. It provides a thorough and modern introduction to the concepts of Hamiltonian dynamical systems' theory combining in a comprehensive way classical and quantum mechanical description. It covers a wide range of topics usually not found in similar books. Motivations of the respective subjects and a clear presentation eases the understanding. The book is based on lectures on classical and quantum chaos held by the author at Heidelberg University. It contains exercises and worked examples, which makes it ideal for an introductory course for students as well as for researchers starting to work in the field.
Experimental Evidence of Chaos from Memristors
Gambuzza, Lucia Valentina; Fortuna, Luigi; Frasca, Mattia; Gale, Ella
Until now, most memristor-based chaotic circuits proposed in the literature are based on mathematical models which assume ideal characteristics such as piecewise-linear or cubic nonlinearities. The idea, illustrated here and originating from the experimental approach for device characterization, is to realize a chaotic system exploiting the nonlinearity of only one memristor with a very simple experimental set-up using feedback. In this way, a simple circuit is obtained and chaos is experimentally observed and is confirmed by the calculation of the largest Lyapunov exponent. Numerical results using the Strukov model support the existence of robust chaos in our circuit. To our knowledge, this is the first experimental demonstration of chaos in a real memristor circuit and suggests that memristors are well placed for hardware encryption.
Towards CHAOS-5 - How can Swarm contribute?
DEFF Research Database (Denmark)
Finlay, Chris; Olsen, Nils; Tøffner-Clausen, Lars
2014-01-01
The launch of ESA's satellite trio Swarm in November 2013 opens an exciting new chapter in the observation and monitoring of Earth's magnetic field from space. We report preliminary results from an extension of the CHAOS series of geomagnetic field models to include both scalar and vector field...... observations from the three Swarm satellites, along with the most recent quasi-definitive ground observatory data. The fit of this new update CHAOS field model to the Swarm observations will be presented in detail providing useful insight the initial Swarm data. Enhancements of the CHAOS modelling scheme...... include a 1 minute time resolution for the RC index and anisotropic weighting of vector field data depending on quasi-dipole latitude. We shall also report on the perspective given by the initial Swarm data on rapid field changes currently taking place in the Atlantic sector....
Nonlinear Physics Integrability, Chaos and Beyond
Lakshmanan, M
1997-01-01
Integrability and chaos are two of the main concepts associated with nonlinear physical systems which have revolutionized our understanding of them. Highly stable exponentially localized solitons are often associated with many of the important integrable nonlinear systems while motions which are sensitively dependent on initial conditions are associated with chaotic systems. Besides dramatically raising our perception of many natural phenomena, these concepts are opening up new vistas of applications and unfolding technologies: Optical soliton based information technology, magnetoelectronics, controlling and synchronization of chaos and secure communications, to name a few. These developments have raised further new interesting questions and potentialities. We present a particular view of some of the challenging problems and payoffs ahead in the next few decades by tracing the early historical events, summarizing the revolutionary era of 1950-70 when many important new ideas including solitons and chaos were ...
Polynomial chaos functions and stochastic differential equations
International Nuclear Information System (INIS)
The Karhunen-Loeve procedure and the associated polynomial chaos expansion have been employed to solve a simple first order stochastic differential equation which is typical of transport problems. Because the equation has an analytical solution, it provides a useful test of the efficacy of polynomial chaos. We find that the convergence is very rapid in some cases but that the increased complexity associated with many random variables can lead to very long computational times. The work is illustrated by exact and approximate solutions for the mean, variance and the probability distribution itself. The usefulness of a white noise approximation is also assessed. Extensive numerical results are given which highlight the weaknesses and strengths of polynomial chaos. The general conclusion is that the method is promising but requires further detailed study by application to a practical problem in transport theory
Chaos in periodically forced Holling type IV predator-prey system with impulsive perturbations
International Nuclear Information System (INIS)
The effect of periodic forcing and impulsive perturbations on predator-prey model with Holling type IV functional response is investigated. The periodic forcing is affected by assuming a periodic variation in the intrinsic growth rate of the prey. The impulsive perturbations are affected by introducing periodic constant impulsive immigration of predator. The dynamical behavior of the system is simulated and bifurcation diagrams are obtained for different parameters. The results show that periodic forcing and impulsive perturbation can easily give rise to complex dynamics, including (1) quasi-periodic oscillating, (2) period doubling cascade, (3) chaos, (4) period halfing cascade
Chaos in periodically forced Holling type II predator-prey system with impulsive perturbations
International Nuclear Information System (INIS)
The effect of periodic forcing and impulsive perturbations on predator-prey model with Holling type II functional response is investigated. The periodic forcing is affected by assuming a periodic variation in the intrinsic growth rate of prey. The impulsive perturbation is affected by introducing periodic constant impulsive immigration of predator. The dynamical behavior of the system is simulated and bifurcation diagrams are obtained for different parameters. The results show that periodic forcing and impulsive perturbation can very easily give rise to complex dynamics, including (1) quasi-periodic oscillating, (2) period doubling cascade, (3) chaos, (4) period halfing cascade, (5) non-unique dynamics
Transition to chaos of thermocapillary convection
Li, Kai; Tang, Ze Mei; Aa, Yan; Hu, Wen-Rui
Transition of fluid convection to chaos in dissipative dynamical systems is a subject of great interest for both its theoretical and practical aspects in the fluid mechanics. Extensive studies have shown that there are several routes of the buoyant natural convection to chaos depending on parameters of the dissipative dynamical systems such as the Rayleigh number, the Prandtl number and geometry aspect. Another important type of natural convection is thermocapillary convection driven by the surface-tension gradient prominent in fluid systems with interface in the microgravity condition or in small-scaled terrestrial configurations (The relative importance of the gravity effect to the capillary effect is scaled by the static Bond number, , and the dynamic Bond number, , the geometrical scale of the system in the terrestrial experiments, therefore, was significantly reduced to make the capillary effect dominant). The thermocapillary convection has become one of the fundamental subjects in the microgravity fluid physics and space fluid/heat management. However, most studies now available were focused on the onset of oscillatory thermocapillary convection, the initial regime of the route to chaos. A complete route to chaos in such a new sort of dissipative system is still an attractive open question, especially in the experimental study. In present study, the route to chaos of the thermocapillary convection has been investigated. Several routes to chaos, e.g. period oscillatory convection to quasi-period oscillatory convection with 2 to 3 major frequencies, a series of successive period doubling bifurcations and their combination, of the thermocapillary flow is reported through the temperature measurements and the corresponding real time analysis of frequency spectra accomplished by Fast-Fourier-Transformation (FFT) or numerically. The corresponding phase diagrams are also provided.
Chaos, brain and divided consciousness.
Bob, Petr
2007-01-01
Modern trends in psychology and cognitive neuroscience suggest that applications of nonlinear dynamics, chaos and self-organization seem to be particularly important for research of some fundamental problems regarding mind-brain relationship. Relevant problems among others are formations of memories during alterations of mental states and nature of a barrier that divides mental states, and leads to the process called dissociation. This process is related to a formation of groups of neurons which often synchronize their firing patterns in a unique spatial maner. Central theme of this study is the relationship between level of moving and oscilating mental processes and their neurophysiological substrate. This opens a question about principles of organization of conscious experiences and how these experiences arise in the brain. Chaotic self-organization provides a unique theoretical and experimental tool for deeper understanding of dissociative phenomena and enables to study how dissociative phenomena can be linked to epileptiform discharges which are related to various forms of psychological and somatic manifestations. Organizing principles that constitute human consciousness and other mental phenomena from this point of view may be described by analysis and reconstruction of underlying dynamics of psychological or psychophysiological measures. These nonlinear methods in this study were used for analysis of characteristic changes in EEG and bilateral electrodermal activity (EDA) during reliving of dissociated traumatic and stressful memories and during psychopathological states. Analysis confirms a possible role of chaotic transitions in the processing of dissociated memory. Supportive finding for a possible chaotic process related to dissociation found in this study represent also significant relationship of dissociation, epileptiform discharges measured by typical psychopathological manifestations and characteristic laterality changes in bilateral EDA in patients
Distributed chaos and inertial ranges in turbulence
Bershadskii, A
2016-01-01
It is shown that appearance of inertial range of scales, adjacent to distributed chaos range, results in adiabatic invariance of an energy correlation integral for isotropic homogeneous turbulence and for buoyancy driven turbulence (with stable or unstable stratification, including Rayleigh-Taylor mixing zone). Power spectrum of velocity field for distributed chaos dominated by this adiabatic invariant has a stretched exponential form $\\propto \\exp(-k/k_{\\beta})^{3/5}$. Results of recent direct numerical simulations have been used in order to support these conclusions.
Controlling chaos in an economic model
Chen, Liang; Chen, Guanrong
2007-01-01
A Cournot duopoly, with a bounded inverse demand function and different constant marginal production costs, can be modeled as a discrete-time dynamical system, which exhibits complex bifurcating and chaotic behaviors. Based on some essential features of the model, we show how bifurcation and chaos can be controlled via the delayed feedback control method. We then propose and evaluate an adaptive parameter-tuning algorithm for control. In addition, we discuss possible economic implications of the chaos control strategies described in the paper.
USING OPTIMAL FEEDBACK CONTROL FOR CHAOS TARGETING
Institute of Scientific and Technical Information of China (English)
PENG ZHAO-WANG; ZHONG TING-XIU
2000-01-01
Since the conventional open-loop optimal targeting of chaos is very sensitive to noise, a close-loop optimal targeting method is proposed to improve the targeting performance under noise. The present optimal targeting model takes into consideration both precision and speed of the targeting procedure. The parameters, rather than the output, of the targeting controller, are directly optimized to obtain optimal chaos targeting. Analysis regarding the mechanism is given from physics aspect and numerical experiment on the Hénon map is carried out to compare the targeting performance under noise between the close-loop and the open-loop methods.
On chaos synchronization and secure communication.
Kinzel, W; Englert, A; Kanter, I
2010-01-28
Chaos synchronization, in particular isochronal synchronization of two chaotic trajectories to each other, may be used to build a means of secure communication over a public channel. In this paper, we give an overview of coupling schemes of Bernoulli units deduced from chaotic laser systems, different ways to transmit information by chaos synchronization and the advantage of bidirectional over unidirectional coupling with respect to secure communication. We present the protocol for using dynamical private commutative filters for tap-proof transmission of information that maps the task of a passive attacker to the class of non-deterministic polynomial time-complete problems. PMID:20008407
Directory of Open Access Journals (Sweden)
Thomas C. Hart
2013-09-01
Full Text Available Early Archaic subsistence strategies of New England remain poorly understood despite their importance in helping researchers understand how people adapt to changing landscapes following the end of the last glacial maximum (21,000-14,000 B.P.. Excavations at the Mashantucket Pequot Reservation in Mashantucket, Connecticut during the 1990s revealed a large, semi-sedentary village nestled alongside a complex wetland ecosystem. In this paper, we present preliminary starch grain analysis of several stone tools recovered and curated from these excavations. The results of this study indicate that both transitory and reserve starch grains are preserved on these artifacts and that at least one of the artifacts may have been used for leaf or stem processing. The results of this study also demonstrate the potential for future research in which paired macrobotanical and residue analysis will allow for a better understanding of subsistence practices at the site and during the early Archaic in general.
Lorentz invariant intrinsic decoherence
Milburn, G J
2003-01-01
Quantum decoherence can arise due to classical fluctuations in the parameters which define the dynamics of the system. In this case decoherence, and complementary noise, is manifest when data from repeated measurement trials are combined. Recently a number of authors have suggested that fluctuations in the space-time metric arising from quantum gravity effects would correspond to a source of intrinsic noise, which would necessarily be accompanied by intrinsic decoherence. This work extends a previous heuristic modification of Schr\\"{o}dinger dynamics based on discrete time intervals with an intrinsic uncertainty. The extension uses unital semigroup representations of space and time translations rather than the more usual unitary representation, and does the least violence to physically important invariance principles. Physical consequences include a modification of the uncertainty principle and a modification of field dispersion relations, in a way consistent with other modifications suggested by quantum grav...
Benjamin John Burger
2013-01-01
A new species of an archaic primate (Pleisadapiformes) is described based on a maxilla containing the first and second upper molars from the Fort Union Formation, Atwell Gulch Member in northwestern Colorado. The preserved teeth show the unusual dental characteristics of members of the rare and poorly documented Picrodontidae family, including an elongated centrocrista and wide occlusal surface. The new species is placed within the genus Zanycteris (represented by a single specimen from south...
Intrinsic time quantum geometrodynamics
Ita, Eyo Eyo; Soo, Chopin; Yu, Hoi-Lai
2015-08-01
Quantum geometrodynamics with intrinsic time development and momentric variables is presented. An underlying SU(3) group structure at each spatial point regulates the theory. The intrinsic time behavior of the theory is analyzed, together with its ground state and primordial quantum fluctuations. Cotton-York potential dominates at early times when the universe was small; the ground state naturally resolves Penrose's Weyl curvature hypothesis, and thermodynamic and gravitational "arrows of time" point in the same direction. Ricci scalar potential corresponding to Einstein's general relativity emerges as a zero-point energy contribution. A new set of fundamental commutation relations without Planck's constant emerges from the unification of gravitation and quantum mechanics.
Intrinsic Time Quantum Geometrodynamics
Ita, Eyo Eyo; Yu, Hoi-Lai
2015-01-01
Quantum Geometrodynamics with intrinsic time development and momentric variables is presented. An underlying SU(3) group structure at each spatial point regulates the theory. The intrinsic time behavior of the theory is analyzed, together with its ground state and primordial quantum fluctuations. Cotton-York potential dominates at early times when the universe was small; the ground state naturally resolves Penrose's Weyl Curvature Hypothesis, and thermodynamic and gravitational `arrows of time' point in the same direction. Ricci scalar potential corresponding to Einstein's General Relativity emerges as a zero-point energy contribution. A new set of fundamental canonical commutation relations without Planck's constant emerges from the unification of Gravitation and Quantum Mechanics.
Directory of Open Access Journals (Sweden)
Kostantinos Tziampasis
2015-03-01
Full Text Available Since Homer - who called the island ἑκατόμπολις (Iliad II, 649 - Crete is said to have had a hundred cities. In reality, even if the settlements were numerous, there weren’t more than 50-60 contemporary proper cities. Though most of their names have been saved through texts (either inscriptions or literature, not all have yet been located exactly. In fact, there has been an evolution of the political map of Crete. From around 55 cities in Classical times, the number of cities dropped to 27 in the Roman period and then to 22 in the Byzantine period. The paper will focus on Eastern Crete and study the establishment of the city-states and the evolution of their territory from the Archaic to the Roman period (which includes the study of the frontier, when it is possible. We will see that geography is a key element for understanding this evolution along with the archaeological and historical evidence that we have.
Predicting Intrinsic Motivation
Martens, Rob; Kirschner, Paul A.
2004-01-01
Intrinsic motivation can be predicted from participants' perceptions of the social environment and the task environment (Ryan & Deci, 2000)in terms of control, relatedness and competence. To determine the degree of independence of these factors 251 students in higher vocational education (physiotherapy and hotel management) indicated the extent to…
Chaos control applied to heart rhythm dynamics
International Nuclear Information System (INIS)
Highlights: → A natural cardiac pacemaker is modeled by a modified Van der Pol oscillator. → Responses related to normal and chaotic, pathological functioning of the heart are investigated. → Chaos control methods are applied to avoid pathological behaviors of heart dynamics. → Different approaches are treated: stabilization of unstable periodic orbits and chaos suppression. - Abstract: The dynamics of cardiovascular rhythms have been widely studied due to the key aspects of the heart in the physiology of living beings. Cardiac rhythms can be either periodic or chaotic, being respectively related to normal and pathological physiological functioning. In this regard, chaos control methods may be useful to promote the stabilization of unstable periodic orbits using small perturbations. In this article, the extended time-delayed feedback control method is applied to a natural cardiac pacemaker described by a mathematical model. The model consists of a modified Van der Pol equation that reproduces the behavior of this pacemaker. Results show the ability of the chaos control strategy to control the system response performing either the stabilization of unstable periodic orbits or the suppression of chaotic response, avoiding behaviors associated with critical cardiac pathologies.
Chaos in schizophrenia associations, reality or metaphor?
Czech Academy of Sciences Publication Activity Database
Bob, P.; Šusta, M.; Chládek, Jan; Glaslová, K.; Paluš, Milan
2009-01-01
Roč. 73, č. 3 (2009), s. 179-185. ISSN 0167-8760 Institutional research plan: CEZ:AV0Z20650511; CEZ:AV0Z10300504 Keywords : Chaos * Schizophrenia * Associations * Electrodermal activity * Lyapunov exponent Subject RIV: FH - Neurology Impact factor: 3.045, year: 2009
Order, chaos and nuclear dynamics: An introduction
International Nuclear Information System (INIS)
This is an introductory lecture illustrating by simple examples the anticipated effect on collective nuclear dynamics of a transition from order to chaos in the motions of nucleons inside an idealized nucleus. The destruction of order is paralleled by a transition from a rubber-like to a honey-like behaviour of the independent-particle nuclear model. 10 refs., 6 figs
Chaos theory: A fascinating concept for oncologists
International Nuclear Information System (INIS)
The oncologist is confronted daily by questions related to the fact that any patient presents a specific evolution for his cancer: he is challenged by very different, unexpected and often unpredictable outcomes, in some of his patients. The mathematical approach used today to describe this evolution has recourse to statistics and probability laws: such an approach does not ultimately apply to one particular patient, but to a given more or less heterogeneous population. This approach therefore poorly characterizes the dynamics of this disease and does not allow to state whether a patient is cured, to predict if he will relapse and when this could occur, and in what form, nor to predict the response to treatment and, in particular, to radiation therapy. Chaos theory, not well known by oncologists, could allow a better understanding of these issues. Developed to investigate complex systems producing behaviours that cannot be predicted due to a great sensitivity to initial conditions, chaos theory is rich of suitable concepts for a new approach of cancer dynamics. This article is three-fold: to provide a brief introduction to chaos theory, to clarify the main connecting points between chaos and carcinogenesis and to point out few promising research perspectives, especially in radiotherapy. (authors)
Chaos in a Bose—Einstein condensate
International Nuclear Information System (INIS)
It is demonstrated that Smale-horseshoe chaos exists in the time evolution of the one-dimensional Bose—Einstein condensate driven by time-periodic harmonic or inverted-harmonic potential. A formally exact solution of the time-dependent Gross—Pitaevskii equation is constructed, which describes the matter shock waves with chaotic or periodic amplitudes and phases
The chaos machine: analogue computing rediscovered (1)
Ambaum, Maarten H. P.; Harrison, R. Giles
2011-01-01
Analogue computers provide actual rather than virtual representations of model systems. They are powerful and engaging computing machines that are cheap and simple to build. This two-part Retronics article helps you build (and understand!) your own analogue computer to simulate the Lorenz butterfly that's become iconic for Chaos theory.
Chaos in a Bose-Einstein condensate
Institute of Scientific and Technical Information of China (English)
Wang Zhi-Xia; Ni Zheng-Guo; Cong Fu-Zhong; Liu Xue-Shen; Chen Lei
2010-01-01
It is demonstrated that Smale-horseshoe chaos exists in the time evolution of the one-dimensional Bose-Einstein condensate driven by time-periodic harmonic or inverted-harmonic potential.A formally exact solution of the timedependent Gross-Pitaevskii equation is constructed,which describes the matter shock waves with chaotic or periodic amplitudes and phases.
Chaos and fractals an elementary introduction
Feldman, David P
2012-01-01
For students with a background in elementary algebra, this text provides a vivid introduction to the key phenomena and ideas of chaos and fractals, including the butterfly effect, strange attractors, fractal dimensions, Julia sets and the Mandelbrot set, power laws, and cellular automata.
Chaos control applied to heart rhythm dynamics
Energy Technology Data Exchange (ETDEWEB)
Borem Ferreira, Bianca, E-mail: biaborem@gmail.com [Universidade Federal do Rio de Janeiro, COPPE, Department of Mechanical Engineering, P.O. Box 68.503, 21.941.972 Rio de Janeiro, RJ (Brazil); Souza de Paula, Aline, E-mail: alinedepaula@unb.br [Universidade de Brasi' lia, Department of Mechanical Engineering, 70.910.900 Brasilia, DF (Brazil); Amorim Savi, Marcelo, E-mail: savi@mecanica.ufrj.br [Universidade Federal do Rio de Janeiro, COPPE, Department of Mechanical Engineering, P.O. Box 68.503, 21.941.972 Rio de Janeiro, RJ (Brazil)
2011-08-15
Highlights: > A natural cardiac pacemaker is modeled by a modified Van der Pol oscillator. > Responses related to normal and chaotic, pathological functioning of the heart are investigated. > Chaos control methods are applied to avoid pathological behaviors of heart dynamics. > Different approaches are treated: stabilization of unstable periodic orbits and chaos suppression. - Abstract: The dynamics of cardiovascular rhythms have been widely studied due to the key aspects of the heart in the physiology of living beings. Cardiac rhythms can be either periodic or chaotic, being respectively related to normal and pathological physiological functioning. In this regard, chaos control methods may be useful to promote the stabilization of unstable periodic orbits using small perturbations. In this article, the extended time-delayed feedback control method is applied to a natural cardiac pacemaker described by a mathematical model. The model consists of a modified Van der Pol equation that reproduces the behavior of this pacemaker. Results show the ability of the chaos control strategy to control the system response performing either the stabilization of unstable periodic orbits or the suppression of chaotic response, avoiding behaviors associated with critical cardiac pathologies.
Chaos and Interactions in Quantum Dots
Alhassid, Y.
2001-01-01
Quantum dots are small conducting devices containing up to several thousand electrons. We focus here on closed dots whose single-electron dynamics are mostly chaotic. The mesoscopic fluctuations of the conduction properties of such dots reveal the effects of one-body chaos, quantum coherence and electron-electron interactions.
Chaos synthesis by means of evolutionary algorithms
Czech Academy of Sciences Publication Activity Database
Zelinka, I.; Chen, G.; Čelikovský, Sergej
2008-01-01
Roč. 18, č. 4 (2008), s. 911-942. ISSN 0218-1274 R&D Projects: GA ČR(CZ) GA102/08/0186 Institutional research plan: CEZ:AV0Z10750506 Keywords : Chaos * evolution * synthesis Subject RIV: BC - Control Systems Theory Impact factor: 0.870, year: 2008
Stabilizing the Richardson Algorithm by Controlling Chaos
He, Song
1996-01-01
By viewing the operations of the Richardson purification algorithm as a discrete time dynamical process, we propose a method to overcome the instability of the algorithm by controlling chaos. We present theoretical analysis and numerical results on the behavior and performance of the stabilized algorithm.
Chaos: A Very Short Introduction
International Nuclear Information System (INIS)
This book is a new volume of a series designed to introduce the curious reader to anything from ancient Egypt and Indian philosophy to conceptual art and cosmology. Very handy in pocket size, Chaos promises an introduction to fundamental concepts of nonlinear science by using mathematics that is 'no more complicated than X=2. Anyone who ever tried to give a popular science account of research knows that this is a more challenging task than writing an ordinary research article. Lenny Smith brilliantly succeeds to explain in words, in pictures and by using intuitive models the essence of mathematical dynamical systems theory and time series analysis as it applies to the modern world. In a more technical part he introduces the basic terms of nonlinear theory by means of simple mappings. He masterly embeds this analysis into the social, historical and cultural context by using numerous examples, from poems and paintings over chess and rabbits to Olbers' paradox, card games and 'phynance'. Fundamental problems of the modelling of nonlinear systems like the weather, sun spots or golf balls falling through an array of nails are discussed from the point of view of mathematics, physics and statistics by touching upon philosophical issues. At variance with Laplace's demon, Smith's 21st century demon makes 'real world' observations only with limited precision. This poses a severe problem to predictions derived from complex chaotic models, where small variations of initial conditions typically yield totally different outcomes. As Smith argues, this difficulty has direct implications on decision-making in everyday modern life. However, it also asks for an inherently probabilistic theory, which somewhat reminds us of what we are used to in the microworld. There is little to criticise in this nice little book except that some figures are of poor quality thus not really reflecting the beauty of fractals and other wonderful objects in this field. I feel that occasionally the book
Chaos: A Very Short Introduction
Energy Technology Data Exchange (ETDEWEB)
Klages, R [School of Mathematical Sciences, Mile End Road, London, E1 4NS (United Kingdom)
2007-07-20
This book is a new volume of a series designed to introduce the curious reader to anything from ancient Egypt and Indian philosophy to conceptual art and cosmology. Very handy in pocket size, Chaos promises an introduction to fundamental concepts of nonlinear science by using mathematics that is 'no more complicated than X=2. Anyone who ever tried to give a popular science account of research knows that this is a more challenging task than writing an ordinary research article. Lenny Smith brilliantly succeeds to explain in words, in pictures and by using intuitive models the essence of mathematical dynamical systems theory and time series analysis as it applies to the modern world. In a more technical part he introduces the basic terms of nonlinear theory by means of simple mappings. He masterly embeds this analysis into the social, historical and cultural context by using numerous examples, from poems and paintings over chess and rabbits to Olbers' paradox, card games and 'phynance'. Fundamental problems of the modelling of nonlinear systems like the weather, sun spots or golf balls falling through an array of nails are discussed from the point of view of mathematics, physics and statistics by touching upon philosophical issues. At variance with Laplace's demon, Smith's 21st century demon makes 'real world' observations only with limited precision. This poses a severe problem to predictions derived from complex chaotic models, where small variations of initial conditions typically yield totally different outcomes. As Smith argues, this difficulty has direct implications on decision-making in everyday modern life. However, it also asks for an inherently probabilistic theory, which somewhat reminds us of what we are used to in the microworld. There is little to criticise in this nice little book except that some figures are of poor quality thus not really reflecting the beauty of fractals and other wonderful objects in this
CHAOS-BASED ADVANCED ENCRYPTION STANDARD
Abdulwahed, Naif B.
2013-05-01
This thesis introduces a new chaos-based Advanced Encryption Standard (AES). The AES is a well-known encryption algorithm that was standardized by U.S National Institute of Standard and Technology (NIST) in 2001. The thesis investigates and explores the behavior of the AES algorithm by replacing two of its original modules, namely the S-Box and the Key Schedule, with two other chaos- based modules. Three chaos systems are considered in designing the new modules which are Lorenz system with multiplication nonlinearity, Chen system with sign modules nonlinearity, and 1D multiscroll system with stair case nonlinearity. The three systems are evaluated on their sensitivity to initial conditions and as Pseudo Random Number Generators (PRNG) after applying a post-processing technique to their output then performing NIST SP. 800-22 statistical tests. The thesis presents a hardware implementation of dynamic S-Boxes for AES that are populated using the three chaos systems. Moreover, a full MATLAB package to analyze the chaos generated S-Boxes based on graphical analysis, Walsh-Hadamard spectrum analysis, and image encryption analysis is developed. Although these S-Boxes are dynamic, meaning they are regenerated whenever the encryption key is changed, the analysis results show that such S-Boxes exhibit good properties like the Strict Avalanche Criterion (SAC) and the nonlinearity and in the application of image encryption. Furthermore, the thesis presents a new Lorenz-chaos-based key expansion for the AES. Many researchers have pointed out that there are some defects in the original key expansion of AES and thus have motivated such chaos-based key expansion proposal. The new proposed key schedule is analyzed and assessed in terms of confusion and diffusion by performing the frequency and SAC test respectively. The obtained results show that the new proposed design is more secure than the original AES key schedule and other proposed designs in the literature. The proposed
THEORY OF SECULAR CHAOS AND MERCURY'S ORBIT
International Nuclear Information System (INIS)
We study the chaotic orbital evolution of planetary systems, focusing on secular (i.e., orbit-averaged) interactions, which dominate on long timescales. We first focus on the evolution of a test particle that is forced by multiple planets. To linear order in eccentricity and inclination, its orbit precesses with constant frequencies. But nonlinearities modify the frequencies, and can shift them into and out of resonance with either the planets' eigenfrequencies (forming eccentricity or inclination secular resonances), or with linear combinations of those frequencies (forming mixed high-order secular resonances). The overlap of these nonlinear secular resonances drives secular chaos. We calculate the locations and widths of nonlinear secular resonances, display them together on a newly developed map (the 'map of the mean momenta'), and find good agreement between analytical and numerical results. This map also graphically demonstrates how chaos emerges from overlapping secular resonances. We then apply this newfound understanding to Mercury to elucidate the origin of its orbital chaos. We find that since Mercury's two free precession frequencies (in eccentricity and inclination) lie within ∼25% of two other eigenfrequencies in the solar system (those of the Jupiter-dominated eccentricity mode and the Venus-dominated inclination mode), secular resonances involving these four modes overlap and cause Mercury's chaos. We confirm this with N-body integrations by showing that a slew of these resonant angles alternately librate and circulate. Our new analytical understanding allows us to calculate the criterion for Mercury to become chaotic: Jupiter and Venus must have eccentricity and inclination of a few percent. The timescale for Mercury's chaotic diffusion depends sensitively on the forcing. As it is, Mercury appears to be perched on the threshold for chaos, with an instability timescale comparable to the lifetime of the solar system.
Controlling halo-chaos via wavelet-based feedback
Directory of Open Access Journals (Sweden)
Geng Zhao
2002-01-01
Full Text Available Halo-chaos in high-current accelerator has become one of the key issues because it can cause excessive radioactivity from the accelerators and significantly limits the applications of the new accelerators in industrial and other fields. Some general engineering methods for chaos control have been developed, but they generally are unsuccessful for halo-chaos suppression due to many technical constraints. In this article, controllability condition for beam halo-chaos is analyzed qualitatively. Then Particles-in-Cell (PIC simulations explore the nature of beam halo-chaos formation. A nonlinear control method and wavelet function feedback controller are proposed for controlling beam halo-chaos. After control of beam halo-chaos for initial proton beam with water bag distributions, the beam halo strength factor H is reduced to zero, and other statistical physical quantities of beam halo-chaos are doubly reduced. The results show that the developed methods in this paper are very effective for proton beam halo-chaos suppression. Potential application of the halo-chaos control method is finally pointed out.
Proceedings of the 2nd Experimental Chaos Conference
Ditto, William; Pecora, Lou; Shlesinger, Michael; Spano, Mark; Vohra, Sandeep
1995-02-01
The Table of Contents for the full book PDF is as follows: * Introduction * Spatiotemporal Phenomena * Experimental Studies of Chaotic Mixing * Using Random Maps in the Analysis of Experimental Fluid Flows * Transition to Spatiotemporal Chaos in a Reaction-Diffusion System * Ion-Dynamical Chaos in Plasmas * Optics * Chaos in a Synchronously Driven Optical Resonator * Chaos, Patterns and Defects in Stimulated Scattering Phenomena * Test of the Normal Form for a Subcritical Bifurcation * Observation of Bifurcations and Chaos in a Driven Fiber Optic Coil * Applications -- Communications * Robustness and Signal Recovery in a Synchronized Chaotic System * Synchronizing Nonautonomous Chaotic Circuits * Synchronization of Pulse-Coupled Chaotic Oscillators * Ocean Transmission Effects on Chaotic Signals * Controlling Symbolic Dynamics for Communication * Applications -- Control * Analysis of Nonlinear Actuators Using Chaotic Waveforms * Controlling Chaos in a Quasiperiodic Electronic System * Control of Chaos in a CO2 Laser * General Research * Video-Based Analysis of Bifurcation Phenomena in Radio-Frequency-Excited Inert Gas Plasmas * Transition from Soliton to Chaotic Motion During the Impact of a Nonlinear Structure * Sonoluminescence in a Single Bubble: Periodic, Quasiperiodic and Chaotic Light Source * Quantum Chaos Experiments Using Microwave Cavities * Experiments on Quantum Chaos With and Without Time Reversibility * When Small Noise Imposed on Deterministic Dynamics Becomes Important * Biology * Chaos Control for Cardiac Arrhythmias * Irregularities in Spike Trains of Cat Retinal Ganglion Cells * Broad-Band Synchronization in Monkey Neocortex * Applicability of Correlation Dimension Calculations to Blood Pressure Signal in Rats * Tests for Deterministic Chaos in Noisy Time Series * The Crayfish Mechanoreceptor Cell: A Biological Example of Stochastic Resonance * Chemistry * Chaos During Heterogeneous Chemical Reactions * Stabilizing and Tracking Unstable Periodic
Intrinsic Time Quantum Gravity
Yu, Hoi Lai
2016-01-01
Correct identification of the true gauge symmetry of General Relativity being 3d spatial diffeomorphism invariant(3dDI) (not the conventional infinite tensor product group with principle fibre bundle structure), together with intrinsic time extracted from clean decomposition of the canonical structure yields a self-consistent theory of quantum gravity. A new set of fundamental commutation relations is also presented. The basic variables are the eight components of the unimodular part of the s...
Hackinger, Sophie; Kraaijenbrink, Thirsa; Xue, Yali; Mezzavilla, Massimo; Asan; van Driem, George; Jobling, Mark A; de Knijff, Peter; Tyler-Smith, Chris; Ayub, Qasim
2016-04-01
High-altitude adaptation in Tibetans is influenced by introgression of a 32.7-kb haplotype from the Denisovans, an extinct branch of archaic humans, lying within the endothelial PAS domain protein 1 (EPAS1), and has also been reported in Sherpa. We genotyped 19 variants in this genomic region in 1507 Eurasian individuals, including 1188 from Bhutan and Nepal residing at altitudes between 86 and 4550 m above sea level. Derived alleles for five SNPs characterizing the core Denisovan haplotype (AGGAA) were present at high frequency not only in Tibetans and Sherpa, but also among many populations from the Himalayas, showing a significant correlation with altitude (Spearman's correlation coefficient = 0.75, p value 3.9 × 10(-11)). Seven East- and South-Asian 1000 Genomes Project individuals shared the Denisovan haplotype extending beyond the 32-kb region, enabling us to refine the haplotype structure and identify a candidate regulatory variant (rs370299814) that might be interacting in an additive manner with the derived G allele of rs150877473, the variant previously associated with high-altitude adaptation in Tibetans. Denisovan-derived alleles were also observed at frequencies of 3-14 % in the 1000 Genomes Project African samples. The closest African haplotype is, however, separated from the Asian high-altitude haplotype by 22 mutations whereas only three mutations, including rs150877473, separate the Asians from the Denisovan, consistent with distant shared ancestry for African and Asian haplotypes and Denisovan adaptive introgression. PMID:26883865
Lesecque, Yann; Glémin, Sylvain; Lartillot, Nicolas; Mouchiroud, Dominique; Duret, Laurent
2014-11-01
Recombination is an essential process in eukaryotes, which increases diversity by disrupting genetic linkage between loci and ensures the proper segregation of chromosomes during meiosis. In the human genome, recombination events are clustered in hotspots, whose location is determined by the PRDM9 protein. There is evidence that the location of hotspots evolves rapidly, as a consequence of changes in PRDM9 DNA-binding domain. However, the reasons for these changes and the rate at which they occur are not known. In this study, we investigated the evolution of human hotspot loci and of PRDM9 target motifs, both in modern and archaic human lineages (Denisovan) to quantify the dynamic of hotspot turnover during the recent period of human evolution. We show that present-day human hotspots are young: they have been active only during the last 10% of the time since the divergence from chimpanzee, starting to be operating shortly before the split between Denisovans and modern humans. Surprisingly, however, our analyses indicate that Denisovan recombination hotspots did not overlap with modern human ones, despite sharing similar PRDM9 target motifs. We further show that high-affinity PRDM9 target motifs are subject to a strong self-destructive drive, known as biased gene conversion (BGC), which should lead to the loss of the majority of them in the next 3 MYR. This depletion of PRDM9 genomic targets is expected to decrease fitness, and thereby to favor new PRDM9 alleles binding different motifs. Our refined estimates of the age and life expectancy of human hotspots provide empirical evidence in support of the Red Queen hypothesis of recombination hotspots evolution. PMID:25393762
Directory of Open Access Journals (Sweden)
Yann Lesecque
2014-11-01
Full Text Available Recombination is an essential process in eukaryotes, which increases diversity by disrupting genetic linkage between loci and ensures the proper segregation of chromosomes during meiosis. In the human genome, recombination events are clustered in hotspots, whose location is determined by the PRDM9 protein. There is evidence that the location of hotspots evolves rapidly, as a consequence of changes in PRDM9 DNA-binding domain. However, the reasons for these changes and the rate at which they occur are not known. In this study, we investigated the evolution of human hotspot loci and of PRDM9 target motifs, both in modern and archaic human lineages (Denisovan to quantify the dynamic of hotspot turnover during the recent period of human evolution. We show that present-day human hotspots are young: they have been active only during the last 10% of the time since the divergence from chimpanzee, starting to be operating shortly before the split between Denisovans and modern humans. Surprisingly, however, our analyses indicate that Denisovan recombination hotspots did not overlap with modern human ones, despite sharing similar PRDM9 target motifs. We further show that high-affinity PRDM9 target motifs are subject to a strong self-destructive drive, known as biased gene conversion (BGC, which should lead to the loss of the majority of them in the next 3 MYR. This depletion of PRDM9 genomic targets is expected to decrease fitness, and thereby to favor new PRDM9 alleles binding different motifs. Our refined estimates of the age and life expectancy of human hotspots provide empirical evidence in support of the Red Queen hypothesis of recombination hotspots evolution.
Chaos in electric drive systems analysis control and application
Chau, K T
2011-01-01
In Chaos in Electric Drive Systems: Analysis, Control and Application authors Chau and Wang systematically introduce an emerging technology of electrical engineering that bridges abstract chaos theory and practical electric drives. The authors consolidate all important information in this interdisciplinary technology, including the fundamental concepts, mathematical modeling, theoretical analysis, computer simulation, and hardware implementation. The book provides comprehensive coverage of chaos in electric drive systems with three main parts: analysis, control and application. Corresponding drive systems range from the simplest to the latest types: DC, induction, synchronous reluctance, switched reluctance, and permanent magnet brushless drives.The first book to comprehensively treat chaos in electric drive systemsReviews chaos in various electrical engineering technologies and drive systemsPresents innovative approaches to stabilize and stimulate chaos in typical drivesDiscusses practical application of cha...
Optomechanically induced stochastic resonance and chaos transfer between optical fields
Monifi, Faraz; Zhang, Jing; Özdemir, Şahin Kaya; Peng, Bo; Liu, Yu-Xi; Bo, Fang; Nori, Franco; Yang, Lan
2016-06-01
Chaotic dynamics has been reported in many physical systems and has affected almost every field of science. Chaos involves hypersensitivity to the initial conditions of a system and introduces unpredictability into its output. Thus, it is often unwanted. Interestingly, the very same features make chaos a powerful tool to suppress decoherence, achieve secure communication and replace background noise in stochastic resonance—a counterintuitive concept that a system's ability to transfer information can be coherently amplified by adding noise. Here, we report the first demonstration of chaos-induced stochastic resonance in an optomechanical system, as well as the optomechanically mediated chaos transfer between two optical fields such that they follow the same route to chaos. These results will contribute to the understanding of nonlinear phenomena and chaos in optomechanical systems, and may find applications in the chaotic transfer of information and for improving the detection of otherwise undetectable signals in optomechanical systems.
A novel 2D wavelength-time chaos code in optical CDMA system
Zhang, Qi; Xin, Xiangjun; Wang, Yongjun; Zhang, Lijia; Yu, Chongxiu; Meng, Nan; Wang, Houtian
2012-11-01
Two-dimensional wavelength-time chaos code is proposed and constructed for a synchronous optical code division multiple access system. The access performance is compared between one-dimensional chaos code, WDM/chaos code and the proposed code. Comparison shows that two-dimensional wavelength-time chaos code possesses larger capacity, better spectral efficiency and bit-error ratio than WDM/chaos combinations and one-dimensional chaos code.
CONGENITAL HIGH AIRWAY OBSTRUCTION (CHAOS SYNDROME: A RARE CASE PRESENTATION
Directory of Open Access Journals (Sweden)
Dinakara
2014-04-01
Full Text Available Congenital high airway obstruction syndrome (CHAOS results in a predictable constellation of findings: large echogenic lungs flattened or inverted diaphragms, dilated airways distal to the obstruction, and fetal ascites and/or hydrops.1 The finding of CHAOS on prenatal ultrasound examination is diagnostic of complete or near-complete obstruction of the fetal upper airway, most likely caused by laryngeal atresia. A greater understanding of the natural history of CHAOS may permit improved prenatal and perinatal management
Comments on microcausality, chaos, and gravitational observables
Marolf, Donald
2015-12-01
Observables in gravitational systems must be non-local so as to be invariant under diffeomorphism gauge transformations. But at the classical level some such observables can nevertheless satisfy an exact form of microcausality. This property is conjectured to remain true at all orders in the semiclassical expansion, though with limitations at finite ℏ or {{\\ell }}{Planck}. We also discuss related issues concerning observables in black hole spacetimes and comment on the senses in which they do and do not experience the form of chaos identified by Shenker and Stanford. In particular, in contrast to the situation in a reflecting cavity, this chaos does not afflict observables naturally associated with Hawking radiation for evaporating black holes.
Comments on Microcausality, Chaos, and Gravitational Observables
Marolf, Donald
2015-01-01
Observables in gravitational systems must be non-local so as to be invariant under diffeomorphism gauge transformations. But at the classical level some such observables can nevertheless satisfy an exact form of microcausality. This property is conjectured to remain true at all orders in the semiclassical expansion, though with limitations at finite $\\hbar$ or $\\ell_{Planck}$. We also discuss related issues concerning observables in black hole spacetimes and comment on the senses in which they do and do not experience the form of chaos identified by Shenker and Stanford. In particular, in contrast to the situation in a reflecting cavity, this chaos does not afflict observables naturally associated with Hawking radiation for evaporating black holes.
Chaos synchronization in networks of semiconductor superlattices
Li, Wen; Aviad, Yaara; Reidler, Igor; Song, Helun; Huang, Yuyang; Biermann, Klaus; Rosenbluh, Michael; Zhang, Yaohui; Grahn, Holger T.; Kanter, Ido
2015-11-01
Chaos synchronization has been demonstrated as a useful building block for various tasks in secure communications, including a source of all-electronic ultrafast physical random number generators based on room temperature spontaneous chaotic oscillations in a DC-biased weakly coupled GaAs/Al0.45Ga0.55As semiconductor superlattice (SSL). Here, we experimentally demonstrate the emergence of several types of chaos synchronization, e.g. leader-laggard, face-to-face and zero-lag synchronization in network motifs of coupled SSLs consisting of unidirectional and mutual coupling as well as self-feedback coupling. Each type of synchronization clearly reflects the symmetry of the topology of its network motif. The emergence of a chaotic SSL without external feedback and synchronization among different structured SSLs open up the possibility for advanced secure multi-user communication methods based on large networks of coupled SSLs.
Chaos theory perspective for industry clusters development
Yu, Haiying; Jiang, Minghui; Li, Chengzhang
2016-03-01
Industry clusters have outperformed in economic development in most developing countries. The contributions of industrial clusters have been recognized as promotion of regional business and the alleviation of economic and social costs. It is no doubt globalization is rendering clusters in accelerating the competitiveness of economic activities. In accordance, many ideas and concepts involve in illustrating evolution tendency, stimulating the clusters development, meanwhile, avoiding industrial clusters recession. The term chaos theory is introduced to explain inherent relationship of features within industry clusters. A preferred life cycle approach is proposed for industrial cluster recessive theory analysis. Lyapunov exponents and Wolf model are presented for chaotic identification and examination. A case study of Tianjin, China has verified the model effectiveness. The investigations indicate that the approaches outperform in explaining chaos properties in industrial clusters, which demonstrates industrial clusters evolution, solves empirical issues and generates corresponding strategies.
Experimental chaos detection in the Duffing oscillator
Eyebe Fouda, J. S. Armand; Bodo, Bertrand; Djeufa, Guy M. D.; Sabat, Samrat L.
2016-04-01
This paper presents a comparative study of four algorithms namely the maximal Lyapunov exponent (MLE), 0-1 test, conditional entropy of ordinal patterns (CPE) and recently developed permutation largest slope entropy (PLSE) algorithm for experimental chaos detection in the Duffing oscillator. We consider an electrical model of the Duffing oscillator and its equivalent electronic circuit for generating the data to validate the effectiveness of the algorithms. The performance of the PLSE is compared with the 0-1 test and the CPE algorithms on the data set obtained from the simulated circuit; and with the MLE for the data collected from the experimental circuit. The experimental data are acquired using a digital oscilloscope with 1 MHz sampling frequency. From the comparison of the experimental spectra of the four methods with the analog phase portraits of the real system, it appears that the PLSE is the more reliable algorithm for chaos detection from experimental data.
Experimental Study of the Sampled Labyrinth Chaos
Directory of Open Access Journals (Sweden)
J. Petrzela
2011-12-01
Full Text Available In this paper, some new numerical as well as experimental results connected with the so-called labyrinth chaos are presented. This very unusual chaotic motion can be generated by mathematical model involving the scalar goniometrical functions which makes a three-dimensional autonomous dynamical system strongly nonlinear. Final circuitry implementation with analog core and digital parts can be used for modeling Brownian motion. From the viewpoint of generating chaotic motion by some electronic circuit, first step is to solve problems associated with the two-port nonlinear transfer functions synthesis. In the case of labyrinth chaos the finite dynamical range of the input variables introduced by the used active elements usually limits the performance greatly, similarly as it holds for the multi-grid spiral attractors. This paper shows an elegant way how to remove these obstacles by using uni-versal multiple-port with internal digital signal processing.
Chaos in a Hydraulic Control Valve
Hayashi, S.; Hayase, T.; Kurahashi, T.
1997-08-01
In this paper we have studied the instability and chaos occurring in a pilot-type poppet valve circuit. The system consists of a poppet valve, an upstream plenum chamber, a supply pipeline and an orifice inserted between the pelnum and the pipeline. Although the poppet valve rests on the seat stably for a supply pressure lower than the cracking pressure, the circuit becomes unstable for an initial disturbance beyond a critical value and develops a self-excited vibration. In this unstable region, chaotic vibration appears at the period-doubling bifurcation. We have investigated the stability of the circuit and the chaotic phenomenon numerically, and elucidated it by power spectra, a bifurcation diagram and Lyapunov exponent calculations, showing that the phenomenon follows the Feigenbaum route to chaos.Copyright 1997 Academic Press Limited
Buoyancy driven turbulence and distributed chaos
Bershadskii, A
2016-01-01
It is shown, using results of recent direct numerical simulations, laboratory experiments and atmospheric measurements, that buoyancy driven turbulence exhibits a broad diversity of the types of distributed chaos with its stretched exponential spectrum $\\exp(-k/k_{\\beta})^{\\beta}$. The distributed chaos with $\\beta = 1/3$ (determined by the helicity correlation integral) is the most common feature of the stably stratified turbulence (due to the strong helical waves presence). These waves mostly dominate spectral properties of the vertical component of velocity field, while the horizontal component is dominated by the diffusive processes both for the weak and strong stable stratification ($\\beta =2/3$). For the last case influence of the low boundary can overcome the wave effects and result in $\\beta =1/2$ for the vertical component of the velocity field (the spontaneous breaking of the space translational symmetry - homogeneity). For the unstably stratified turbulence in the Rayleigh-Taylor mixing zone the di...
Chaos in hydrodynamic BL Herculis models
Smolec, R
2014-01-01
We present non-linear, convective, BL Her-type hydrodynamic models that show complex variability characteristic for deterministic chaos. The bifurcation diagram reveals a rich structure, with many phenomena detected for the first time in hydrodynamic models of pulsating stars. The phenomena include not only period doubling cascades en route to chaos (detected in earlier studies) but also periodic windows within chaotic band, type-I and type-III intermittent behaviour, interior crisis bifurcation and others. Such phenomena are known in many textbook chaotic systems, from the simplest discrete logistic map, to more complex systems like Lorenz equations. We discuss the physical relevance of our models. Although except of period doubling such phenomena were not detected in any BL Her star, chaotic variability was claimed in several higher luminosity siblings of BL Her stars - RV Tau variables, and also in longer-period, luminous irregular pulsators. Our models may help to understand these poorly studied stars. Pa...
An exploration of dynamical systems and chaos
Argyris, John H; Haase, Maria; Friedrich, Rudolf
2015-01-01
This book is conceived as a comprehensive and detailed text-book on non-linear dynamical systems with particular emphasis on the exploration of chaotic phenomena. The self-contained introductory presentation is addressed both to those who wish to study the physics of chaotic systems and non-linear dynamics intensively as well as those who are curious to learn more about the fascinating world of chaotic phenomena. Basic concepts like Poincaré section, iterated mappings, Hamiltonian chaos and KAM theory, strange attractors, fractal dimensions, Lyapunov exponents, bifurcation theory, self-similarity and renormalisation and transitions to chaos are thoroughly explained. To facilitate comprehension, mathematical concepts and tools are introduced in short sub-sections. The text is supported by numerous computer experiments and a multitude of graphical illustrations and colour plates emphasising the geometrical and topological characteristics of the underlying dynamics. This volume is a completely revised and enlar...
Chaos A Program Collection for the PC
Korsch, Hans Jürgen; Hartmann, Timo
2008-01-01
This new edition strives yet again to provide readers with a working knowledge of chaos theory and dynamical systems through parallel introductory explanations in the book and interaction with carefully-selected programs supplied on the accompanying diskette. The programs enable readers, especially advanced-undergraduate students in physics, engineering, and math, to tackle relevant physical systems quickly on their PCs, without distraction from algorithmic details. For the third edition of Chaos: A Program Collection for the PC, each of the previous twelve programs is polished and rewritten in C++ (both Windows and Linux versions are included). A new program treats kicked systems, an important class of two-dimensional problems, which is introduced in Chapter 13. Each chapter follows the structure: theoretical background; numerical techniques; interaction with the program; computer experiments; real experiments and empirical evidence; reference. Interacting with the many numerical experiments have proven to h...
Nonlinear physics: Catastrophe, chaos and complexity
International Nuclear Information System (INIS)
Currently in the world of physics, there is open debate on the role of the three C's - catastrophe, chaos and complexity. Seen as new ideas or paradigms, incapable of being harmonized within the realm of traditional physics, these terms seem to be creating turmoil in the classical physics establishment whose foundations date back to the early seventeenth century. This paper first defines catastrophe, chaos and complexity and shows how these terms are all connected to nonlinear dynamics and how they have long since been present within scientific treatises. It also evidences the relationship of the three C's with the concept of organization, inappropriately called self-organization, and with recognition and decisional strategies of cognitive systems. Relevant to natural science, the development of these considerations is necessitating the re-examination of the role and capabilities of human knowledge and a return to inter-disciplinary scientific-philosophical debate
Nonlinear Dynamics In Quantum Physics -- Quantum Chaos and Quantum Instantons
Kröger, H.
2003-01-01
We discuss the recently proposed quantum action - its interpretation, its motivation, its mathematical properties and its use in physics: quantum mechanical tunneling, quantum instantons and quantum chaos.
Frozen spatial chaos induced by boundaries
Eguiluz, V M; Piro, O; Balle, S; Eguiluz, Victor M.; Hernandez-Garcia, Emilio; Piro, Oreste; Balle, Salvador
1999-01-01
We show that rather simple but non-trivial boundary conditions could induce the appearance of spatial chaos (that is stationary, stable, but spatially disordered configurations) in extended dynamical systems with very simple dynamics. We exemplify the phenomenon with a nonlinear reaction-diffusion equation in a two-dimensional undulated domain. Concepts from the theory of dynamical systems, and a transverse-single-mode approximation are used to describe the spatially chaotic structures.
Complex motions and chaos in nonlinear systems
Machado, José; Zhang, Jiazhong
2016-01-01
This book brings together 10 chapters on a new stream of research examining complex phenomena in nonlinear systems—including engineering, physics, and social science. Complex Motions and Chaos in Nonlinear Systems provides readers a particular vantage of the nature and nonlinear phenomena in nonlinear dynamics that can develop the corresponding mathematical theory and apply nonlinear design to practical engineering as well as the study of other complex phenomena including those investigated within social science.
Topological Chaos in Spatially Periodic Mixers
Finn, Matthew D.; Thiffeault, Jean-Luc; Gouillart, Emmanuelle
2005-01-01
Topologically chaotic fluid advection is examined in two-dimensional flows with either or both directions spatially periodic. Topological chaos is created by driving flow with moving stirrers whose trajectories are chosen to form various braids. For spatially periodic flows, in addition to the usual stirrer-exchange braiding motions, there are additional topologically-nontrivial motions corresponding to stirrers traversing the periodic directions. This leads to a study of the braid group on t...
Les ordinateurs quantiques affrontent le chaos
Georgeot, Bertrand; Shepelyansky, Dima L.
2003-01-01
Quantum computers facing chaos. Quantum parallelism allows to perform computation in a radically new manner. A quantum computer based on these new principles may resolve certain problems exponentially faster than a classical computer. We discuss how quantum computers can simulate complex dynamics, in particularly the dynamics of chaotic systems, where the errors of classical computation grow exponentially fast. ----- Le parallelisme autorise par la mecanique quantique permet d'effectuer des c...
Delayed Self-Synchronization in Homoclinic Chaos
Arecchi, F. T.; Meucci, R.; E. Allaria; Di Garbo, A.; Tsimring, L. S.
2001-01-01
The chaotic spike train of a homoclinic dynamical system is self-synchronized by re-inserting a small fraction of the delayed output. Due to the sensitive nature of the homoclinic chaos to external perturbations, stabilization of very long periodic orbits is possible. On these orbits, the dynamics appears chaotic over a finite time, but then it repeats with a recurrence time that is slightly longer than the delay time. The effect, called delayed self-synchronization (DSS), displays analogies ...
Gravity Waves, Chaos, and Spinning Compact Binaries
Levin, Janna
1999-01-01
Spinning compact binaries are shown to be chaotic in the Post-Newtonian expansion of the two body system. Chaos by definition is the extreme sensitivity to initial conditions and a consequent inability to predict the outcome of the evolution. As a result, the spinning pair will have unpredictable gravitational waveforms during coalescence. This poses a challenge to future gravity wave observatories which rely on a match between the data and a theoretical template.
Chaos Theory for Evolutionary Algorithms Researchers
Czech Academy of Sciences Publication Activity Database
Čelikovský, Sergej; Zelinka, I.
Berlin : Springer-Verlag, 2010 - (Zelinka, I.; Čelikovský, S.; Richter, H.; Chen, G.), s. 89-143 ISBN 978-3-642-10706-1. - (Studies in Computational Intelligence. 267) R&D Projects: GA ČR(CZ) GA102/08/0186 Institutional research plan: CEZ:AV0Z10750506 Keywords : Complex Systems * Computational Intelligence * Deterministic Chaos * Evolutionary Computation Subject RIV: BC - Control Systems Theory http://library.utia.cas.cz/separaty/2010/TR/celikovsky-0340153.pdf
Signatures of homoclinic motion in quantum chaos
Wisniacki, D. A.; Vergini, E.; Benito, R. M.; Borondo, F.
2004-01-01
Homoclinic motion plays a key role in the organization of classical chaos in Hamiltonian systems. In this Letter, we show that it also imprints a clear signature in the corresponding quantum spectra. By numerically studying the fluctuations of the widths of wavefunctions localized along periodic orbits we reveal the existence of an oscillatory behavior, that is explained solely in terms of the primary homoclinic motion. Furthermore, our results indicate that it survives the semiclassical limit.