Arbitrary Order Mixed Mimetic Finite Differences Method with Nodal Degrees of Freedom
Iaroshenko, Oleksandr [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gyrya, Vitaliy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Manzini, Gianmarco [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2016-09-01
In this work we consider a modification to an arbitrary order mixed mimetic finite difference method (MFD) for a diffusion equation on general polygonal meshes [1]. The modification is based on moving some degrees of freedom (DoF) for a flux variable from edges to vertices. We showed that for a non-degenerate element this transformation is locally equivalent, i.e. there is a one-to-one map between the new and the old DoF. Globally, on the other hand, this transformation leads to a reduction of the total number of degrees of freedom (by up to 40%) and additional continuity of the discrete flux.
Degree sequences of k-multi-hypertournaments
Pirzada S
2009-01-01
Let n and k (n ≥ k > 1) be two non-negative integers. A k-multi-hypertournament on n vertices is a pair (V, A), where V is a set of vertices with |V|= n, and A is a set of k-tuples of vertices, called arcs, such that for any k-subset S of V, A contains at least one (at most k!) of the k! k-tuples whose entries belong to S. The necessary and sufficient conditions for a non-decreasing sequence of non-negative integers to be the out-degree sequence (in-degree sequence) of some k-multi-hypertournament are given.
Minimum degree and density of binary sequences
Brandt, Stephan; Müttel, J.; Rautenbach, D.;
2010-01-01
For d,k∈N with k ≤ 2d, let g(d,k) denote the infimum density of binary sequences (x)∈{0,1} which satisfy the minimum degree condition σ(x+) ≥ k for all i∈Z with xi=1. We reduce the problem of computing g(d,k) to a combinatorial problem related to the generalized k-girth of a graph G which is...
A Derived Equivalence For A Del Pezzo Surface Of Degree 6 Over An Arbitrary Field
Blunk, Mark; Sierra, S. J.; Smith, S. Paul
2009-01-01
Let $S$ be a degree six del Pezzo surface over an arbitrary field $F$. Motivated by the first author's classification of all such $S$ up to isomorphism in terms of a separable $F$-algebra $B \\times Q \\times F$, and by his K-theory isomorphism $K_n(S) \\cong K_n(B \\times Q \\times F)$ for $n \\ge 0$, we prove an equivalence of derived categories $$ \\sD^b(\\coh S) \\equiv \\sD^b(\\mod A) $$ where $A$ is an explicitly given finite dimensional $F$-algebra whose semisimple part is $B \\times Q \\times F$. ...
Parabolic Presentations of the Super Yangian {Y(gl_{M|N})} Associated with Arbitrary 01-Sequences
Peng, Yung-Ning
2016-01-01
Let μ be an arbitrary composition of M + N and let s be an arbitrary {0M1N} - sequence. A new presentation, depending on μ and s , of the super Yangian Y M|N associated to the general linear Lie superalgebra gl_{M|N} is obtained.
Strong Limit Theorems for Arbitrary Fuzzy Stochastic Sequences
FEI Wei-yin
2008-01-01
Based on fuzzy random variables, the concept of fuzzy stochastic sequences is defined. Strong limit theorems for fuzzy stochastic sequences are established. Some known results in non-fuzzy stochastic sequences are extended. In order to prove results of this paper, the notion of fuzzy martingale difference sequences is also introduced.
AbCD: arbitrary coverage design for sequencing-based genetic studies
Kang, Jian; Huang, Kuan-Chieh; Xu, Zheng; Wang, Yunfei; Abecasis, Gonçalo R.; Li, Yun
2013-01-01
Summary: Recent advances in sequencing technologies have revolutionized genetic studies. Although high-coverage sequencing can uncover most variants present in the sequenced sample, low-coverage sequencing is appealing for its cost effectiveness. Here, we present AbCD (arbitrary coverage design) to aid the design of sequencing-based studies. AbCD is a user-friendly interface providing pre-estimated effective sample sizes, specific to each minor allele frequency category, for designs with arbi...
Dynamical Properties of Diffusion Process on Complex Networks with Arbitrary Degree Distribution
Dynamical properties of diffusion process on complex networks with arbitrary degree distribution are investigated. The rule of the diffusion process encompasses both the structural characteristics and the information processing dynamics. Considering the influence of a node on the global dynamical behavior, the dynamical generating function of the process, which is deeply reflecting the basic characteristic of the process and mutually decided with the dynamical process, is proposed. Based on the analysis of the dynamical generating function we introduce dynamical centrality for each node, which determines the relative importance of nodes and the capability of the given node to collect and communicate information with its neighbouring environment in the network via the diffusion process. Furthermore, a new parameter, dynamical entropy, is proposed to measure the interplay between dynamical centrality and diffusion dynamics. The experimental results on large-scale complex networks with Poisson distribution confirm our analytical prediction. (authors)
Kong, Qian; Wang, Q.; Bang, Ole;
2010-01-01
We investigate theoretically the interaction of dark solitons in materials with a spatially nonlocal nonlinearity. In particular we do this analytically and for arbitrary degree of nonlocality. We employ the variational technique to show that nonlocality induces an attractive force in the otherwise...
Renner, Elizabeth; Price, Elizabeth E; Subiaul, Francys
2016-01-01
Do visual cues such as size, color, and number facilitate sequential recall in orangutans and human children? In Experiment 1, children and adult orangutans solved two types of sequences, arbitrary (unrelated pictures) and meaningful (pictures varied along a spectrum according to the size, color, or number of items shown), in a touchscreen paradigm. It was found that visual cues did not increase the percentage of correct responses for either children or orangutans. In order to demonstrate that the failure to spontaneously seriate along these dimensions was not due to a general inability to perceive the dimensions nor to an inability to seriate items, in Experiment 2, orangutans were trained on one type of sequence and tested on novel sequences organized according to the same rule (i.e., pictures varied on the number spectrum only). The orangutans performed significantly better on novel meaningful sequences in this task than on novel arbitrary sequences. These results indicate that, while orangutans and human children share the ability to learn how to order items according to their size, color, or number, both orangutans and humans lack a cognitive propensity to spontaneously (i.e., without prior training or enculturation) order multiple items by size, color, or number. PMID:26298671
Nonconvexity of the set of hypergraph degree sequences
Liu, Ricky Ini
2012-01-01
It is well known that the set of possible degree sequences for a graph on $n$ vertices is the intersection of a lattice and a convex polytope. We show that the set of possible degree sequences for a $k$-uniform hypergraph on $n$ vertices is not the intersection of a lattice and a convex polytope for $k \\geq 3$ and $n \\geq k+13$. We also show an analogous nonconvexity result for the set of degree sequences of $k$-partite $k$-uniform hypergraphs and the generalized notion of $\\lambda$-balanced $k$-uniform hypergraphs.
Zhou Qi
2012-01-01
To a large degree,language is arbitrary. But there are exceptions to prove that language is not always arbitrary. However,non-arbitrariness is itself inevitably arbitrary. In fact,arbitrariness and non-arbitrariness work together to complete a language. It seems that they contradict to each other, but they actually coexist as a whole in the same unity.
Classification of excited-state quantum phase transitions for arbitrary number of degrees of freedom
Stránský, Pavel; Cejnar, Pavel
2016-08-01
Classical stationary points of an analytic Hamiltonian induce singularities of the density of quantum energy levels and their flow with a control parameter in the system's infinite-size limit. We show that for a system with f degrees of freedom, a non-degenerate stationary point with index r causes a discontinuity (for r even) or divergence (r odd) of the (f - 1) th derivative of both density and flow of the spectrum. An increase of flatness for a degenerate stationary point shifts the singularity to lower derivatives. The findings are verified in an f = 3 toy model.
Brodal, Gerth Stølting; Fagerberg, Rolf; Mailund, Thomas;
2013-01-01
), respectively, and counting how often the induced topologies in the two input trees are different. In this paper we present efficient algorithms for computing these distances. We show how to compute the triplet distance in time O(n log n) and the quartet distance in time O(d n log n), where d is the maximal...... degree of any node in the two trees. Within the same time bounds, our framework also allows us to compute the parameterized triplet and quartet distances, where a parameter is introduced to weight resolved (binary) topologies against unresolved (non-binary) topologies. The previous best algorithm for...... computing the triplet and parameterized triplet distances have O(n2) running time, while the previous best algorithms for computing the quartet distance include an O(d9 n log n) time algorithm and an O(n2.688) time algorithm, where the latter can also compute the parameterized quartet distance. Since d ≤ n...
Configuring Random Graph Models with Fixed Degree Sequences
Fosdick, Bailey K; Nishimura, Joel; Ugander, Johan
2016-01-01
Random graph null models have found widespread application in diverse research communities analyzing network datasets. The most popular family of random graph null models, called configuration models, are defined as uniform distributions over a space of graphs with a fixed degree sequence. Commonly, properties of an empirical network are compared to properties of an ensemble of graphs from a configuration model in order to quantify whether empirical network properties are meaningful or whether they are instead a common consequence of the particular degree sequence. In this work we study the subtle but important decisions underlying the specification of a configuration model, and investigate the role these choices play in graph sampling procedures and a suite of applications. We place particular emphasis on the importance of specifying the appropriate graph labeling---stub-labeled or vertex-labeled---under which to consider a null model, a choice that closely connects the study of random graphs to the study of...
A DEGREE SEQUENCE METHOD FOR THE CUTWIDTH PROBLEM OF GRAPHS
LinYixun; LiXianglu; YangAifeng
2002-01-01
The cutwidth problem for a graph G is to embed G into a path such that the maximum number of overlap edges is minimized. This paper presents an approach based on the degree sequence of G for determining the exact value of cutwidth of typical graphs (e. g. , n-cube,cater-pillars). Relations between the cutwidth and other graph-theoretic parameters are studied as well.
Synchronization in random networks with given expected degree sequences
Biey, Mario
2008-01-01
Synchronization in random networks with given expected degree sequences is studied. We also investigate in details the synchronization in networks whose topology is described by classical random graphs, power-law random graphs and hybrid graphs when N goes to infinity. In particular, we show that random graphs almost surely synchronize. We also show that adding small number of global edges to a local graph makes the corresponding hybrid graph to synchronize
Canonical Horizontal Visibility Graphs are uniquely determined by their degree sequence
Luque, Bartolo
2016-01-01
Horizontal visibility graphs (HVGs) are graphs constructed in correspondence with number sequences that have been introduced and explored recently in the context of graph-theoretical time series analysis. In most of the cases simple measures based on the degree sequence (or functionals of these such as entropies over degree and joint degree distributions) appear to be highly informative features for automatic classification and provide nontrivial information on the associated dynam- ical process, working even better than more sophisticated topological metrics. It is thus an open question why these seemingly simple measures capture so much information. Here we prove that, under suitable conditions, there exist a bijection between the adjacency matrix of an HVG and its degree sequence, and we give an explicit construction of such bijection. As a consequence, under these conditions HVGs are unigraphs and the degree sequence fully encapsulates all the information of these graphs, thereby giving a plausible reason...
Largest Eigenvalues of the Discrete p-Laplacian of Trees with Degree Sequences
Biyikoglu, Türker; Hellmuth, Marc; Leydold, Josef
2009-01-01
We characterize trees that have greatest maximum p-Laplacian eigenvalue among all trees with a given degree sequence. We show that such extremal trees can be obtained by breadth-first search where the vertex degrees are non-increasing. These trees are uniquely determined up to isomorphism. Moreover, their structure does not depend on p. (author´s abstract)
On the Sum Neccesary to Ensure that a Degree Sequence is Potentially H-Graphic
Ferrara, Michael; Moffatt, Casey K; Wenger, Paul S
2012-01-01
A sequence of nonnegative integers \\pi =(d_1,d_2,...,d_n) is graphic if there is a (simple) graph G with degree sequence \\pi. In this case, G is said to realize or be a realization of \\pi. Degree sequence results in the literature generally fall into two classes: forcible problems, in which all realizations of a graphic sequence must have a given property, and potential problems, in which at least one realization of \\pi must have the given property. Given a graph H, a graphic sequence \\pi is potentially H-graphic if there is some realization of \\pi that contains H as a subgraph. In 1991, Erd\\H{o}s, Jacobson and Lehel posed the following question: Determine the minimum integer \\sigma(H,n) such that every n-term graphic sequence with sum at least \\sigma(H,n) is potentially H-graphic. As the sum of the terms of \\pi is twice the number of edges in any realization of \\pi, the Erd\\H{o}s-Jacobson-Lehel problem can be viewed as a potential degree sequence relaxation of the (forcible) Tur\\'{a}n problem, wherein one wi...
A strong deviation theorem for arbitrary discrete random sequence%关于任意离散随机序列的一个强偏差定理
汪忠志
2005-01-01
引用极限对数似然比的概念作为任意随机序列联合分布与其边缘分布"不相似性"的度量,构造几乎处处收敛的上鞅,讨论了任意离散随机序列的强偏差定理.%In this paper, the notion of limit logarithmic likelihood ratio of stochastic sequences, as a measure of "dissimilarity" between their joint distributions and the product of their marginals, is introduced. Construct convergence super-martingale, a strong deviation theorem for arbitrary discrete stochastic sequence is obtained.
Characterizing general scale-free networks by vertex-degree sequences
Xiao, Wenjun; Lai, Zhengwen; Chen, Guanrong
2015-11-01
Many complex networks possess a scale-free vertex-degree distribution in a power-law form of c k-γ , where k is the vertex-degree variable and c and γ are constants. To better understand the mechanism of the power-law formation in scale-free networks, it is important to understand and analyze their vertex-degree sequences. We had shown before that, for a scale-free network of size N , if its vertex-degree sequence is k1 1 , then the length l of the vertex-degree sequence is of order log N . In the present paper, we further study complex networks with a more general vertex-degree distribution, not restricted to the power-law, and prove that the same conclusion holds as well. In addition, we verify the new result by real data from a large number of real-world examples. We finally discuss some potential applications of the new finding in various fields of science, technology, and society.
The Sequencing of a College Degree during the Transition to Adulthood: Implications for Obesity*
Miech, Richard Allen; Shanahan, Michael J.; Boardman, Jason; Bauldry, Shawn
2016-01-01
In this study we consider the health implications of the sequencing of a college degree vis-à-vis familial roles during the transition to adulthood. We hypothesize that people who earned a college degree before assuming familial roles will have better health than people who earned a college degree afterwards. To test this hypothesis, we focus on obesity and use data from the National Longitudinal Study of Adolescent Health. Results show that marriage before completion of college was associated with a 50% higher probability of becoming obese when compared with marriage after completion of college. Parenthood before college completion was associated with a greater-than two-fold increase in the probability of becoming obese when compared to parenthood afterwards for Black men. These findings suggest that the well-established association of education with health depends on its place in a sequence of roles. PMID:26022787
Largest Domination Number and Smallest Independence Number of Forests with given Degree Sequence
Gentner, Michael; Henning, Michael A.; Rautenbach, Dieter
2015-01-01
For a sequence $d$ of non-negative integers, let ${\\cal F}(d)$ be the set of all forests whose degree sequence is $d$. We present closed formulas for $\\gamma_{\\max}^{\\cal F}(d)=\\max\\{ \\gamma(F):F\\in {\\cal F}(d)\\}$ and $\\alpha_{\\min}^{\\cal F}(d)=\\min\\{ \\alpha(F):F\\in {\\cal F}(d)\\}$ where $\\gamma(F)$ and $\\alpha(F)$ are the domination number and the independence number of a forest $F$, respectively.
Stephen Phillips
2013-09-01
Full Text Available States have international obligations to ensure that all deprivations of an individual’s liberty are consistent with international human rights law. The majority of provisions in the international human rights law instruments that deal with such deprivations of liberty contain the term ‘arbitrary’, yet there is no clear definition of what this entails. Arbitrariness is defined differently by different supervisory bodies in different cases, and in different contexts; understanding it requires awareness of the different factors affecting how individual deprivations of liberty are examined and understood.A longer version of this article can be found at:http://tinyurl.com/HRD-arbitrary-August2013
Stephen Phillips
2013-01-01
States have international obligations to ensure that all deprivations of an individual’s liberty are consistent with international human rights law. The majority of provisions in the international human rights law instruments that deal with such deprivations of liberty contain the term ‘arbitrary’, yet there is no clear definition of what this entails. Arbitrariness is defined differently by different supervisory bodies in different cases, and in different contexts; understanding it requires ...
Bai-Ni Guo
2003-09-01
Full Text Available For all nonnegative integers $ k $ and natural numbers $ n $ and $ m $, we have$$ \\frac{a(n+k+1+b}{a(n+m+k+1+b} where $ a $ and $ b $ are positive constants. The equality above is valid for $ n = 1 $ and $ m = 1 $. Moreover, some monotonicity results for the sequences involving $ \\sqrt[n]{\\prod_{i=k+1}^{n+k} (ai+b} $ are obtained.
Ritchie, Martin; Kiss, Istvan Z
2015-01-01
Designing algorithms that generate networks with a given degree sequence while varying both subgraph composition and distribution of subgraphs around nodes is an important but challenging research problem. Current algorithms lack control of key network parameters, the ability to specify to what subgraphs a node belongs to, come at a considerable complexity cost or, critically, sample from a limited ensemble of networks. To enable controlled investigations of the impact and role of subgraphs, especially for epidemics, neuronal activity or complex contagion, it is essential that the generation process be versatile and the generated networks as diverse as possible. In this paper, we present two new network generation algorithms that use subgraphs as building blocks to construct networks preserving a given degree sequence. Additionally, these algorithms provide control over clustering both at node and global level. In both cases, we show that, despite being constrained by a degree sequence and global clustering, ...
The smallest degree sum that yields potentially Kr,r-graphic sequences
YlN; Jianhua(尹建华); LI; Jiongsheng(李炯生)
2002-01-01
We consider a variation of a classical Turán-type extremal problem as follows: Determine the smallest even integer σ(Kr,r, n) such that every n-term graphic sequence π = (d1, d2,..., dn) with term sum σ(π) = d1 + d2 +…+ dn ≥σ(Kr,r, n) is potentially Kr,r-graphic, where Kr,r is an r × r complete bipartite graph, i.e. πr has a realization G containing Kr,r as its subgraph. In this paper, the values σ(Kr,r,n) for even r and n ≥ 4r2 - r - 6 and for odd r and n ≥ 4r2 + 3r - 8 are determined.
Lu, Ting; Balogh, Michael L; Bognat, Adam
2009-01-01
The global star formation rate has decreased significantly since z ~ 1, for reasons that are not well understood. Red-sequence galaxies, dominating in galaxy clusters, represent the population that have had their star formation shut off, and may therefore be the key to this problem. In this work, we select 127 rich galaxy clusters at 0.17
Arbitrary orbital angular momentum of photons
Pan, Yue; Ren, Zhi-Cheng; Wang, Xi-Lin; Tu, Chenghou; Li, Yongnan; Wang, Hui-Tian
2015-01-01
Orbital angular momentum (OAM) of photons, as a new fundamental degree of freedom, has excited a great diversity of interest, because of a variety of emerging applications. Arbitrarily tunable OAM has gained much attention, but its creation remains still a tremendous challenge. We demonstrate the realization of well-controlled arbitrary OAM in both theory and experiment. We present the concept of general OAM, which extends the OAM carried by the scalar vortex field to the OAM carried by the azimuthally varying polarized vector field. The arbitrary OAM has the same characteristics as the well-defined integer OAM: intrinsic OAM, uniform local OAM and intensity ring, and propagation stability. The arbitrary OAM has unique natures: it is allowed to be flexibly tailored and the radius of the focusing ring can have various choices for a desired OAM, which are of great significance to the benefit of surprising applications of the arbitrary OAM.
Arbitrary Spin Galilean Oscillator
Hagen, C R
2014-01-01
The so-called Dirac oscillator was proposed as a modification of the free Dirac equation which reproduces many of the properties of the simple harmonic oscillator but accompanied by a strong spin-orbit coupling term. It has yet to be extended successfully to the arbitrary spin S case primarily because of the unwieldiness of general spin Lorentz invariant wave equations. It is shown here using the formalism of totally symmetric multispinors that the Dirac oscillator can, however, be made to accommodate spin by incorporating it into the framework of Galilean relativity. This is done explicitly for spin zero and spin one as special cases of the arbitrary spin result. For the general case it is shown that the coefficient of the spin-orbit term has a 1/S behavior by techniques which are virtually identical to those employed in the derivation of the g-factor carried out over four decades ago.
Wang Jiang
2009-01-01
Full Text Available Abstract Background The nucleosome is the fundamental unit of eukaryotic genomes. Its positioning plays a central role in diverse cellular processes that rely on access to genomic DNA. Experimental evidence suggests that the genomic DNA sequence is one important determinant of nucleosome positioning. Yet it is less clear whether the role of the underlying DNA sequence in nucleosome positioning varies across different promoters. Whether different determinants of nucleosome positioning have characteristic influences on nucleosome modulation also remains to be elucidated. Results We identified two typical promoter classes in yeast associated with high or low dependence of nucleosome positioning on the underlying DNA sequence, respectively. Importantly, the two classes have low or high intrinsic sequence preferences for nucleosomes, respectively. The two classes are further distinguished by multiple promoter features, including nucleosome occupancy, nucleosome fuzziness, H2A.Z occupancy, changes in nucleosome positions before and after transcriptional perturbation, and gene activity. Both classes have significantly high turnover rates of histone H3, but employ distinct modes of nucleosome modulation: The first class is characterized by hyperacetylation, whereas the second class is highly regulated by ATP-dependent chromatin remodelling. Conclusion Our results, coupled with the known features of nucleosome modulation, suggest that the two distinct modes of nucleosome modulation selectively employed by different genes are linked with the intrinsic sequence preferences for nucleosomes. The difference in modes of nucleosome modulation can account for the difference in the contribution of DNA sequence to nucleosome positioning between both promoter classes.
Arbitrary mechanical system description by a symbolic line
Dmitrochenko, O.; Mikkola, A.; Olshevskiy, A.
2016-04-01
A single-line symbolic notation is proposed for description of an arbitrary multibody system. The kinematics is represented by a sequence of elementary transformations, each of those being marked by a reserved alphabetic character. Force and constraint links between the bodies are also defined by reserved characters. The parameters of the system, such as identifiers of degrees of freedom, inertia parameters and others, are assigned default names if not specified. However, user-defined names, parameters and functions can be placed instead if needed. The proposed description in its shortest form is suitable for academic purpose to identify only the essential properties of a multibody system. In an extended form, by explicit mentioning names of variables and parameters and other data like initial conditions, this description can serve as input data for a multibody analysis software. Lots of examples from the academic area and technical applications are given to show the applicability of the description.
图的割宽总是的度序列方法%A DEGREE SEQUENCE METHOD FOR THE CUTWIDTH PROBLEM OF GRAPHS
林诒勋; 李湘露; 杨爱峰
2002-01-01
The cutwidth problem for a graph G is to embed G into a path such that the maximum number of overlap edges is minimized. This paper presents an approach based on the degree sequence of G for determining the exact value of cutwidth of typical graphs (e.g., n-cube,caterpillars). Relations between the cutwidth and other graph-theoretic parameters are studied as well.
Arbitrary orbital angular momentum of photons
Pan, Yue; Gao, Xu-Zhen; Ren, Zhi-Cheng; Wang, Xi-Lin; Tu, Chenghou; Li, Yongnan; Wang, Hui-Tian
2015-01-01
Orbital angular momentum (OAM) of photons, as a new fundamental degree of freedom, has excited a great diversity of interest, because of a variety of emerging applications. Arbitrarily tunable OAM has gained much attention, but its creation remains still a tremendous challenge. We demonstrate the realization of well-controlled arbitrary OAM in both theory and experiment. We present the concept of general OAM, which extends the OAM carried by the scalar vortex field to the OAM carried by the a...
Perkins-Balding, D; D. P Dias; Glasgow, A. C.
1997-01-01
The Fis protein of Escherichia coli and Salmonella typhimurium stimulates several site-specific DNA recombination reactions, as well as transcription of a number of genes. Fis binds to a 15-bp core recognition sequence and induces DNA bending. Mutations in Fis which alter its ability to bend DNA have been shown to reduce the stimulatory activity of Fis in both site-specific recombination and transcription systems. To examine the role of DNA bending in the activity of the Fis-recombinational e...
Arbitrary shape surface Fresnel diffraction
Shimobaba, Tomoyoshi; Masuda, Nobuyuki; Ito, Tomoyoshi
2012-01-01
Fresnel diffraction calculation on an arbitrary shape surface is proposed. This method is capable of calculating Fresnel diffraction from a source surface with an arbitrary shape to a planar destination surface. Although such calculation can be readily calculated by the direct integral of a diffraction calculation, the calculation cost is proportional to $O(N^2)$ in one dimensional or $O(N^4)$ in two dimensional cases, where $N$ is the number of sampling points. However, the calculation cost ...
Fotouhi, Babak
2014-01-01
In studying network growth, the conventional approach is to devise a growth mechanism, quantify the evolution of a statistic or distribution (such as the degree distribution), and then solve the equations in the steady state (the infinite-size limit). Consequently, empirical studies also seek to verify the steady-state prediction in real data. The caveat concomitant with confining the analysis to this time regime is that no real system has infinite size; most real growing networks are far from the steady state. This underlines the importance of finite-size analysis. In this paper, we consider the shifted-linear preferential attachment as an illustrative example of arbitrary-time network growth analysis. We obtain the degree distribution for arbitrary initial conditions at arbitrary times. We corroborate our theoretical predictions with Monte Carlo simulations.
Bell inequalities for arbitrary situations
We present a simple way based on the joint global probability distribution to derive CHSH inequalities. Inspired by this derivation we develop a simple method that gives a set of conditions which are necessary for a model to be a local variable theory. This method generates candidate Bell inequalities for models of arbitrary situations in which there are an arbitrary number of particles, measurements and outcomes. With the help of a type of distribution it will be clear that all necessary conditions are Bell inequalities. This work gives a unified way to write Bell inequalities for arbitrary situations. - Highlights: • Constructing CHSH inequalities based on joint global probability distribution. • Constructing conditions which are necessary for a model to be local and realistic. • Bell inequalities for general situations
Arbitrary shape surface Fresnel diffraction.
Shimobaba, Tomoyoshi; Masuda, Nobuyuki; Ito, Tomoyoshi
2012-04-01
Fresnel diffraction calculation on an arbitrary shape surface is proposed. This method is capable of calculating Fresnel diffraction from a source surface with an arbitrary shape to a planar destination surface. Although such calculation can be readily calculated by the direct integral of a diffraction calculation, the calculation cost is proportional to O(N²) in one dimensional or O(N⁴) in two dimensional cases, where N is the number of sampling points. However, the calculation cost of the proposed method is O(N log N) in one dimensional or O(N² log N) in two dimensional cases using non-uniform fast Fourier transform. PMID:22513646
Arbitrary shape surface Fresnel diffraction
Shimobaba, Tomoyoshi; Ito, Tomoyoshi
2012-01-01
Fresnel diffraction calculation on an arbitrary shape surface is proposed. This method is capable of calculating Fresnel diffraction from a source surface with an arbitrary shape to a planar destination surface. Although such calculation can be readily calculated by the direct integral of a diffraction calculation, the calculation cost is proportional to $O(N^2)$ in one dimensional or $O(N^4)$ in two dimensional cases, where $N$ is the number of sampling points. However, the calculation cost of the proposed method is $O(N \\log N)$ in one dimensional or $O(N^2 \\log N)$ in two dimensional cases using non-uniform fast Fourier transform.
The Interpretation of Saussure’s Arbitrariness
王艳
2015-01-01
According to Saussure,The arbitrary nature of language is"first principle of linguistic".With the development of cognitive science,some exaggerate the importance of iconicity;some even suggest iconicity should replace arbitrariness.What leads to this extreme view is the misunderstanding of arbitrariness.The paper aims at advocating an overall and objective view towards the arbitrary nature of language,putting forward that arbitrariness and iconicity are not incompatible but complementary.
Quantitative modeling of degree-degree correlation in complex networks
Niño, Alfonso
2013-01-01
This paper presents an approach to the modeling of degree-degree correlation in complex networks. Thus, a simple function, \\Delta(k', k), describing specific degree-to- degree correlations is considered. The function is well suited to graphically depict assortative and disassortative variations within networks. To quantify degree correlation variations, the joint probability distribution between nodes with arbitrary degrees, P(k', k), is used. Introduction of the end-degree probability function as a basic variable allows using group theory to derive mathematical models for P(k', k). In this form, an expression, representing a family of seven models, is constructed with the needed normalization conditions. Applied to \\Delta(k', k), this expression predicts a nonuniform distribution of degree correlation in networks, organized in two assortative and two disassortative zones. This structure is actually observed in a set of four modeled, technological, social, and biological networks. A regression study performed...
Winters, P; Caldwell, R; Enfield, L; Ferrari, E
1996-11-01
A stretch of DNA approximately 27 kb in length, adjacent to the nprE gene of Bacillus subtilis, has been sequenced. The sequenced fragment carries a total of 23 ORFs. Of these, 15 could be assigned probable functions based on homologies to characterized genes either in B. subtilis or in other organisms. The sequencing of this region has also allowed us to assign to this area adeC and strB, previously located on the other side of nprE, between nprE and the pyr operon. PMID:8969500
Degree-degree correlations in directed networks with heavy-tailed degrees
Hoorn, van, J.J.; Litvak, Nelly
2013-01-01
In network theory, Pearson's correlation coefficients are most commonly used to measure the degree assortativity of a network. We investigate the behavior of these coefficients in the setting of directed networks with heavy-tailed degree sequences. We prove that for graphs where the in- and out-degree sequences satisfy a power law, Pearson's correlation coefficients converge to a non-negative number in the infinite network size limit. We propose alternative measures for degree-degree correlat...
Bang, O.; Juul Rasmussen, J.; Christiansen, P.L.
1994-01-01
Discretizing the continuous nonlinear Schrodinger equation with arbitrary power nonlinearity influences the time evolution of its ground state solitary solution. In the subcritical case, for grid resolutions above a certain transition value, depending on the degree of nonlinearity, the solution...
A General Model for Representing Arbitrary Unsymmetries in Various Types of Network Analysis
Rønne-Hansen, Jan
1997-01-01
transient stability studies in order to allow for an arbitrary fault representation as seen from the positive sequence network. The method results in impedances -or admittances-combining the negative sequence and zero sequence representation for the symmetrical network with the structure and electrical...... complicated fault situation which has not been treated before for traditional transient stability analysis...
Entangling two oscillators with arbitrary asymmetric initial states
Yang, Chui-Ping; Su, Qi-Ping; Zheng, Shi-Biao; Nori, Franco; Han, Siyuan
2016-01-01
A Hamiltonian is presented, which can be used to convert any asymmetric state $|\\varphi \\rangle_{a}|\\phi \\rangle_{b}$ of two oscillators $a$ and $b$ into an entangled state. Furthermore, with this Hamiltonian and local operations only, two oscillators, initially in any asymmetric initial states, can be entangled with a third oscillator. The prepared entangled states can be engineered with an arbitrary degree of entanglement. A discussion on the realization of this Hamiltonian is given. Numeri...
Spread of arbitrary conventions among chimpanzees: a controlled experiment.
Bonnie, Kristin E; Horner, Victoria; Whiten, Andrew; de Waal, Frans B M
2007-02-01
Wild chimpanzees (Pan troglodytes) have a rich cultural repertoire--traditions common in some communities are not present in others. The majority of reports describe functional, material traditions, such as tool use. Arbitrary conventions have received far less attention. In the same way that observations of material culture in wild apes led to experiments to confirm social transmission and identify underlying learning mechanisms, experiments investigating how arbitrary habits or conventions arise and spread within a group are also required. The few relevant experimental studies reported thus far have relied on cross-species (i.e. human-ape) interaction offering limited ecological validity, and no study has successfully generated a tradition not involving tool use in an established group. We seeded one of two rewarded alternative endpoints to a complex sequence of behaviour in each of two chimpanzee groups. Each sequence spread in the group in which it was seeded, with many individuals unambiguously adopting the sequence demonstrated by a group member. In one group, the alternative sequence was discovered by a low ranking female, but was not learned by others. Since the action-sequences lacked meaning before the experiment and had no logical connection with reward, chimpanzees must have extracted both the form and benefits of these sequences through observation of others. PMID:17164200
Degree-degree dependencies in directed networks with heavy-tailed degrees
van der Hoorn, Pim; Litvak, Nelly
2013-01-01
In network theory, Pearson's correlation coefficients are most commonly used to measure the degree assortativity of a network. We investigate the behavior of these coefficients in the setting of directed networks with heavy-tailed degree sequences. We prove that for graphs where the in- and out-degree sequences satisfy a power law with realistic parameters, Pearson's correlation coefficients converge to a non-negative number in the infinite network size limit. We propose alternative measures ...
Kalyuzhnyi, Sergey; Gladchenko, Marina; Epov, Andrey; Appanna, Vasu
2003-01-01
As a first step of treatment of landfill leachates (total chemical oxygen demand [COD]: 1.43-3.81 g/L; total nitrogen: 90-162 mg/L), performance of laboratory upflow anaerobic sludge bed reactors was investigated under mesophilic (30 degrees C), submesophilic (20 degrees C), and psychrophilic (10 degrees C) conditions. Under hydraulic retention times (HRTs) of about 0.3 d, when the average organic loading rates (OLRs) were about 5 g of COD/(L.d), the total COD removal accounted for 81% (on average) with the effluent concentrations close to the anaerobic biodegradability limit (0.25 g of COD/L) for mesophilic and submesophilic regimes. The psychrophilic treatment conducted under an average HRT of 0.34 d and an average OLR of 4.22 g of COD/(L.d) showed a total COD removal of 47%, giving effluents (0.75 g of COD/L) more suitable for subsequent biologic nitrogen removal. All three anaerobic regimes used for leachate treatment were quite efficient for elimination of heavy metals (Fe, Zn, Cu, Pb, Cd) by concomitant precipitation in the form of insoluble sulfides inside the sludge bed. The application of aerobic/ anoxic biofilter as a sole polishing step for psychrophilic anaerobic effluents was acceptable for elimination of biodegradable COD and nitrogen approaching the current standards for direct discharge of treated wastewater. PMID:12794293
Pose Estimation from a Single Depth Image for Arbitrary Kinematic Skeletons
Ly, Daniel L; Lipson, Hod
2011-01-01
We present a method for estimating pose information from a single depth image given an arbitrary kinematic structure without prior training. For an arbitrary skeleton and depth image, an evolutionary algorithm is used to find the optimal kinematic configuration to explain the observed image. Results show that our approach can correctly estimate poses of 39 and 78 degree-of-freedom models from a single depth image, even in cases of significant self-occlusion.
Controlling arbitrary humidity without convection.
Wasnik, Priyanka S; N'guessan, Hartmann E; Tadmor, Rafael
2015-10-01
In this paper we show a way that allows for the first time to induce arbitrary humidity of desired value for systems without convective flow. To enable this novelty we utilize a semi-closed environment in which evaporation is not completely suppressed. In this case, the evaporation rate is determined both by the outer (open) humidity and by the inner (semi-closed) geometry including the size/shape of the evaporating medium and the size/shape of the semi-closure. We show how such systems can be used to induce desired humidity conditions. We consider water droplet placed on a solid surface and study its evaporation when it is surrounded by other drops, hereon "satellite" drops and covered by a semi-closed hemisphere. The main drop's evaporation rate is proportional to its height, in agreement with theory. Surprisingly, however, the influence of the satellite drops on the main drop's evaporation suppression is not proportional to the sum of heights of the satellite drops. Instead, it shows proportionality close to the satellite drops' total surface area. The resultant humidity conditions in the semi-closed system can be effectively and accurately induced using different satellite drops combinations. PMID:26072445
Optimizing the controllability of arbitrary networks with genetic algorithm
Li, Xin-Feng; Lu, Zhe-Ming
2016-04-01
Recently, as the controllability of complex networks attracts much attention, how to optimize networks' controllability has become a common and urgent problem. In this paper, we develop an efficient genetic algorithm oriented optimization tool to optimize the controllability of arbitrary networks consisting of both state nodes and control nodes under Popov-Belevitch-Hautus rank condition. The experimental results on a number of benchmark networks show the effectiveness of this method and the evolution of network topology is captured. Furthermore, we explore how network structure affects its controllability and find that the sparser a network is, the more control nodes are needed to control it and the larger the differences between node degrees, the more control nodes are needed to achieve the full control. Our framework provides an alternative to controllability optimization and can be applied to arbitrary networks without any limitations.
Trumper, Ricardo; Gelbman, Moshe
2002-01-01
Uses microcomputer-based laboratories (MBL) to teach Newton's second law and the impulse-momentum relationship with a high degree of precision and accuracy while applying forces that change in an arbitrary way. (YDS)
Trivariate Local Lagrange Interpolation and Macro Elements of Arbitrary Smoothness
Matt, Michael Andreas
2012-01-01
Michael A. Matt constructs two trivariate local Lagrange interpolation methods which yield optimal approximation order and Cr macro-elements based on the Alfeld and the Worsey-Farin split of a tetrahedral partition. The first interpolation method is based on cubic C1 splines over type-4 cube partitions, for which numerical tests are given. The second is the first trivariate Lagrange interpolation method using C2 splines. It is based on arbitrary tetrahedral partitions using splines of degree nine. The author constructs trivariate macro-elements based on the Alfeld split, where each tetrahedron
THE EIGENVALUE PERTURBATION BOUND FOR ARBITRARY MATRICES
Wen Li; Jian-xin Chen
2006-01-01
In this paper we present some new absolute and relative perturbation bounds for the eigenvalue for arbitrary matrices, which improves some recent results. The eigenvalue inclusion region is also discussed.
The Sugawara generators at arbitrary level
Gebert, R.; Koepsell, K.; Nicolai, H.
1996-01-01
We construct an explicit representation of the Sugawara generators for arbitrary level in terms of the homogeneous Heisenberg subalgebra, which generalizes the well-known expression at level 1. This is achieved by employing a physical vertex operator realization of the affine algebra at arbitrary level, in contrast to the Frenkel--Kac--Segal construction which uses unphysical oscillators and is restricted to level 1. At higher level, the new operators are transcendental functions of DDF ``osc...
Quantum polar codes for arbitrary channels
Wilde, Mark M.; Renes, Joseph M.
2012-01-01
We construct a new entanglement-assisted quantum polar coding scheme which achieves the symmetric coherent information rate by synthesizing "amplitude" and "phase" channels from a given, arbitrary quantum channel. We first demonstrate the coding scheme for arbitrary quantum channels with qubit inputs, and we show that quantum data can be reliably decoded by O(N) rounds of coherent quantum successive cancellation, followed by N controlled-NOT gates (where N is the number of channel uses). We a...
Arbitrary Dimensional Schwarzschild-FRW Black Holes
Gao, Chang Jun
2004-01-01
The metric of arbitrary dimensional Schwarzschild black hole in the background of Friedman-Robertson-Walker universe is presented in the cosmic coordinates system. In particular, the arbitrary dimensional Schwarzschild-de Sitter metric is rewritten in the Schwarzschild coordinates system and basing on which the even more generalized higher dimensional Schwarzschild-de Sitter metric with another extra dimensions is found. The generalized solution shows that the cosmological constant may roots ...
Arbitrary laser beam propagation in free space
Arpali, Çağlar; Baykal, Yahya; Nakiboğlu, Cem
2009-08-01
The propagation of arbitrary laser beams in free space is examined. For this purpose, starting with an incident field of arbitrary field distribution, the intensity at the receiver plane is formulated via Huygens Fresnel diffraction integral. Arbitrary source field profile is produced by decomposing the source into incremental areas (pixels). The received field through the propagation in free space is found by superposing the contributions from all source incremental areas. The proposed method enables us to evaluate the received intensity originating from any type of source field. Using the arbitrary beam excitation, intensity of various laser beams such as cos-Gaussian, cosh-Gaussian, general type beams are checked to be consistent with the already existing results in literature, and the received intensity distributions are obtained for some original arbitrary beam field profiles. Our received intensity formulation for the arbitrary source field profiles presented in this paper can find application in optics communication links, reflection from rough surfaces, optical cryptography and optical imaging systems.
Supersymmetry generators of arbitrary spin
The infinitesimal generators of supersymmetry and translation form a solvable invariant subalgebra of the full graded Lie algebra. In O'Raifeartaigh's classification scheme this belongs to Case (iii). In general, the degree-n supersymmetry generators may be defined by requiring their nth derived algebra to be equal to translations. Degree-1 supersymmetries are studied for which S/subi/,S/subj/ = c (α/sup mu/C)/subi//subj/P/sub mu/, where a graded commutator is used. Supposing that ]S/subi/] belongs to some representation of the Lorentz group, the conditions on α/sup mu/ and C which result from Jacobi identities and Hermitian conjugation are studied. For the three-dimensional case the conditions are satisfied if (α/subk/C)/subi//subj/ is chosen to be a Clebsch-Gordan coefficient. This allows S to have any spin not-equal 0 and also gives the correct spin-statistics connection (grading). In the four-dimensional case it is shown how the problem is related to that of finding Lagrangian densities L/subk/ = ipsi-barα/sup mu/partial/sub mu/psi and L/subm/ = psi-barpsi, which are Hermitian scalars. There are an infinite number of possible representations to which S/subi/ can belong, including those of Bhabha type, for which the spin-statistics connection comes naturally from the representation. At the same time there can be supersymmetry generators of several different spins. The Volkov-Akulov nonlinear realization works in all cases and a supersymmetry-invariant Lagrangian can be constructed. Anticommutators seem to be important only in the sense that then finite-dimensional linear realizations can exist
Realization of arbitrary discrete unitary transformations using spatial and internal modes of light
Dhand, Ish
2015-01-01
Any lossless transformation on $n_{s}$ spatial and $n_{p}$ internal modes of light can be described by an $n_{s}n_{p}\\times n_{s}n_{p}$ unitary matrix, but no procedure to effect arbitrary $n_{s}n_{p}\\times n_{s}n_{p}$ unitary matrix on the combined spatial and internal modes is known. We devise an algorithm to realize an arbitrary discrete unitary transformation on the combined spatial and internal degrees of freedom of light. Our realization uses beamsplitters and operations on internal modes to effect arbitrary linear transformations. The number of beamsplitters required to realize a unitary transformation is reduced as compared to existing realization by a factor equal to the dimension of the employed internal degree of freedom. Our algorithm thus enables the optical implementation of higher dimensional unitary transformations.
Perturbation Theory for Arbitrary Coupling Strength ?
Mahapatra, B P
2016-01-01
We demonstrate Borel summability for arbitrary coupling strength in a new formulation of perturbation theory (designated here as "Mean Field Perturbation Theory (MFPT)") by applying it to one dimensional anharmonic-interactions, which includes the case of the quartic and sextic anharmonic oscillators(AHO) and the quartic double-well-oscillator (QDWO).It is well known that the perturbation-series is not Borel-summable for the QDWO in the standard formulation of perturbation theory(SFPT). In contrast, MFPT leads to a Borel-summable perturbation series and accurate values for the energy-spectra for arbitrary (physical) value of the coupling strength in each case as stated above. The general nature and the simplicity of the formulation underlying MFPT leads us to conjecture that this scheme may be applicable to arbitrary interactions in quantum theory.
Quaternion based generalization of Chern-Simons theories in arbitrary dimensions
D'Adda, Alessandro; Shimode, Naoki; Tsukioka, Takuya
2016-01-01
A generalization of Chern-Simons gauge theory is formulated in any dimension and arbitrary gauge group where gauge fields and gauge parameters are differential forms of any degree. The quaternion algebra structure of this formulation is shown to be equivalent to a three Z(2)-gradings structure, thus clarifying the quaternion role in a previous formulation.
Spectral measures with arbitrary Hausdorff dimensions
Dai, Xin-Rong; Sun, Qiyu
2014-01-01
In this paper, we consider spectral properties of Riesz product measures supported on homogeneous Cantor sets and we show the existence of spectral measures with arbitrary Hausdorff dimensions, including non-atomic zero-dimensional spectral measures and one-dimensional singular spectral measures.
Vacuum Birefringence Caused by Arbitrary Spin Particles
Kruglov, S. I.
2007-01-01
We study the propagation of a linearly polarized laser beam in the external transverse magnetic field taking into consideration the vacuum polarization by arbitrary spin particles. Induced ellipticity of the beam are evaluated using the effective Lagrangian. With the help of the PVLAS experimental data, we obtain bounds on masses of charged higher spin particles contributed to ellipticity.
Kraus representation for arbitrary open qubit system
Tong, D M; Kwek, L C; Oh, C H; Chen, Jing-Ling
2003-01-01
We show that the time evolution of an arbitrary open qubit system can always be described in terms of the Kraus representation irrespective of the presence of initial correlations between the open system and its environment. A general scheme on how to construct the Kraus operators for an open qubit system is proposed, which can be generalized to open higher dimensional quantum systems.
Single-mode squeezing in arbitrary spatial modes
Semmler, Marion; Chille, Vanessa; Gabriel, Christian; Banzer, Peter; Aiello, Andrea; Marquardt, Christoph; Leuchs, Gerd
2016-01-01
As the generation of squeezed states of light has become a standard technique in laboratories, attention is increasingly directed towards adapting the optical parameters of squeezed beams to the specific requirements of individual applications. It is known that imaging, metrology, and quantum information may benefit from using squeezed light with a tailored transverse spatial mode. However, experiments have so far been limited to generating only a few squeezed spatial modes within a given setup. Here, we present the generation of single-mode squeezing in Laguerre-Gauss and Bessel-Gauss modes, as well as an arbitrary intensity pattern, all from a single setup using a spatial light modulator (SLM). The degree of squeezing obtained is limited mainly by the initial squeezing and diffractive losses introduced by the SLM, while no excess noise from the SLM is detectable at the measured sideband. The experiment illustrates the single-mode concept in quantum optics and demonstrates the viability of current SLMs as fl...
Sanderson, P N; Huckerby, T N; Nieduszynski, I A
1984-01-01
Tetrasaccharides with the general structure UA-GlcNAc-GlcUA-aManOH (where UA represents uronate, GlcNAc N-acetylglucosamine, GlcUA glucuronate and aManOH anhydromannitol) were prepared from low-sulphated heparan sulphates of bovine lung origin by complete nitrous acid deaminative cleavage followed by reduction and fractionated by gel filtration. Ion-exchange chromatography of the tetrasaccharides yielded three major fractions in approximate yields of 37%, 45% and 14%. These were shown to be non-, mono- and di-sulphated respectively. Complete structural characterization of the tetrasaccharide fractions by quantitative high-field n.m.r. spectroscopy showed that each fraction contained only two discrete species and led to the following observations. (1) All of the uronate residues in the tetrasaccharides (and in larger oligosaccharides) are unsulphated, and hence sulphated iduronate [IdUA(2SO3)] must occur exclusively within -GlcNSO3-IdUA(2SO3)-GlcNSO3- sequences (where GlcNSO3 represents N-sulpho-glucosamine) in the parent polymers. (2) The GlcNAc residues in the tetrasaccharides are more highly C-6-O-sulphated than are the aManOH residues, and furthermore sulphation on the aManOH appears to occur only where the GlcNAc is also sulphated. (3) Where the GlcNAc is C-6-O-sulphated, iduronate is the major non-reducing terminal residue, whereas glucuronate predominates in this position if the GlcNAc is unsulphated. The quantitative data obtained are used to determine the degree of C-6-O-sulphation of glucosamine residues in specific sequences within the parent heparan sulphates. PMID:6238591
Compound words prompt arbitrary semantic associations in conceptual memory
GuillaumeThierry
2014-03-01
Full Text Available Linguistic relativity theory has received empirical support in domains such as colour perception and object categorisation. It is unknown however, whether relations between words idiosyncratic to language impact nonverbal representations and conceptualisations. For instance, would one consider the concepts of horse and sea as related were it not for the existence of the compound seahorse? Here, we investigated such arbitrary conceptual relationships using a non-linguistic picture relatedness task in participants undergoing event-related brain potential recordings. Picture pairs arbitrarily related because of a compound and presented in the compound order elicited N400 amplitudes similar to unrelated pairs. Surprisingly, however, pictures presented in the reverse order (as in the sequence horse – sea reduced N400 amplitudes significantly, demonstrating the existence of a link in memory between these two concepts otherwise unrelated. These results break new ground in the domain of linguistic relativity by revealing predicted semantic associations driven by lexical relations intrinsic to language.
Quantum Fidelity for Arbitrary Gaussian States
Banchi, Leonardo; Braunstein, Samuel L.; Pirandola, Stefano
2015-12-01
We derive a computable analytical formula for the quantum fidelity between two arbitrary multimode Gaussian states which is simply expressed in terms of their first- and second-order statistical moments. We also show how such a formula can be written in terms of symplectic invariants and used to derive closed forms for a variety of basic quantities and tools, such as the Bures metric, the quantum Fisher information, and various fidelity-based bounds. Our result can be used to extend the study of continuous-variable protocols, such as quantum teleportation and cloning, beyond the current one-mode or two-mode analyses, and paves the way to solve general problems in quantum metrology and quantum hypothesis testing with arbitrary multimode Gaussian resources.
Quantum fidelity for arbitrary Gaussian states
Banchi, Leonardo; Pirandola, Stefano
2015-01-01
We derive a computable analytical formula for the quantum fidelity between two arbitrary multimode Gaussian states which is simply expressed in terms of their first- and second-order statistical moments. We also show how such a formula can be written in terms of symplectic invariants and used to derive closed forms for a variety of basic quantities and tools, such as the Bures metric, the quantum Fisher information and various fidelity-based bounds. Our result can be used to extend the study of continuous-variable protocols, such as quantum teleportation and cloning, beyond the current one-mode or two-mode analyses, and paves the way to solve general problems in quantum metrology and quantum hypothesis testing with arbitrary multimode Gaussian resources.
Potential flow about arbitrary biplane wing sections
Garrick, I E
1937-01-01
A rigorous treatment is given of the problem of determining the two-dimensional potential flow around arbitrary biplane cellules. The analysis involves the use of elliptic functions and is sufficiently general to include the effects of such elements as the section shapes, the chord ratio, gap, stagger, and decalage, which elements may be specified arbitrarily. The flow problem is resolved by making use of the methods of conformal representation. Thus the solution of the problem of transforming conformally two arbitrary contours into two circles is expressed by a pair of simultaneous integral equations, for which a method of numerical solution is outlined. As an example of the numerical process, the pressure distribution over certain arrangements of the NACA 4412 airfoil in biplane combinations is presented and compared with the monoplane pressure distribution.
On Arbitrary Phases in Quantum Amplitude Amplification
Hoyer, P
2000-01-01
We consider the use of arbitrary phases in quantum amplitude amplification which is a generalization of quantum searching. We prove that the phase condition in amplitude amplification is given by $\\tan(\\phi/2)=\\tan(\\phi/2)(1-2a)$, where $\\phi$ and $\\phi$ are the phases used and where $a$ is the success probability of the given algorithm. Thus the choice of phases depends nontrivially and nonlinearly on the success probability. Utilizing this condition, we give methods for constructing quantum algorithms that succeed with certainty and for implementing arbitrary rotations. We also conclude that phase errors of order up to $\\frac{1}{\\sqrt{a}}$ can be tolerated in amplitude amplification.
Strong field ionization in arbitrary laser polarizations
Protopapas, M.; Lappas, D. G.; Knight, P. L.
1997-01-01
We present a new method for investigating the nonperturbative quantum mechanical interaction of light with atoms in two dimensions, without a basis expansion. This enables us to investigate intense laser-atom interactions with light of arbitrary polarization without approximation, within the model restrictions. Results are presented for the dependence of ionization and high harmonic generation on ellipticity seen in recent experiments. Strong evidence of stabilization in circular polarization...
Acoustic Casimir Pressure for Arbitrary Media
Barcenas, J.; Reyes, L.; Esquivel-Sirvent, R.
2004-01-01
In this paper we derive a general expression for the acoustic Casimir pressure between two parallel slabs made of arbitrary materials and whose acoustic reflection coefficients are not equal. The formalism is based on the calculation of the local density of modes using a Green's function approach. The results for the Casimir acoustic pressure are generalized to a sphere/plate configuration using the proximity theorem
Thermodynamic limit and surface energy of the XXZ spin chain with arbitrary boundary fields
Li, Yuan-Yuan [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Cao, Junpeng [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Collaborative Innovation Center of Quantum Matter, Beijing (China); Yang, Wen-Li [Institute of Modern Physics, Northwest University, Xian 710069 (China); Beijing Center for Mathematics and Information Interdisciplinary Sciences, Beijing 100048 (China); Shi, Kangjie [Institute of Modern Physics, Northwest University, Xian 710069 (China); Wang, Yupeng, E-mail: yupeng@iphy.ac.cn [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Collaborative Innovation Center of Quantum Matter, Beijing (China)
2014-07-15
In two previous papers [26,27], the exact solutions of the spin-1/2 chains with arbitrary boundary fields were constructed via the off-diagonal Bethe ansatz (ODBA). Here we introduce a method to approach the thermodynamic limit of those models. The key point is that at a sequence of degenerate points of the crossing parameter η=η{sub m}, the off-diagonal Bethe ansatz equations (BAEs) can be reduced to the conventional ones. This allows us to extrapolate the formulae derived from the reduced BAEs to arbitrary η case with O(N{sup −2}) corrections in the thermodynamic limit N→∞. As an example, the surface energy of the XXZ spin chain model with arbitrary boundary magnetic fields is derived exactly. This approach can be generalized to all the ODBA solvable models.
Virtual displays for 360-degree video
Gilbert, Stephen; Boonsuk, Wutthigrai; Kelly, Jonathan W.
2012-03-01
In this paper we describe a novel approach for comparing users' spatial cognition when using different depictions of 360- degree video on a traditional 2D display. By using virtual cameras within a game engine and texture mapping of these camera feeds to an arbitrary shape, we were able to offer users a 360-degree interface composed of four 90-degree views, two 180-degree views, or one 360-degree view of the same interactive environment. An example experiment is described using these interfaces. This technique for creating alternative displays of wide-angle video facilitates the exploration of how compressed or fish-eye distortions affect spatial perception of the environment and can benefit the creation of interfaces for surveillance and remote system teleoperation.
On Finding Predictors for Arbitrary Families of Processes
Ryabko, Daniil
2009-01-01
The problem is sequence prediction in the following setting. A sequence $x_1,...,x_n,...$ of discrete-valued observations is generated according to some unknown probabilistic law (measure) $\\mu$. After observing each outcome, it is required to give the conditional probabilities of the next observation. The measure $\\mu$ belongs to an arbitrary but known class $C$ of stochastic process measures. We are interested in predictors $\\rho$ whose conditional probabilities converge (in some sense) to the "true" $\\mu$-conditional probabilities if any $\\mu\\in C$ is chosen to generate the sequence. The contribution of this work is in characterizing the families $C$ for which such predictors exist, and in providing a specific and simple form in which to look for a solution. We show that if any predictor works, then there exists a Bayesian predictor, whose prior is discrete, and which works too. We also find several sufficient and necessary conditions for the existence of a predictor, in terms of topological characterizati...
Multiboson Correlation Interferometry with arbitrary single-photon pure states
Tamma, Vincenzo; Laibacher, Simon
2014-01-01
We provide a compact full description of multiboson correlation measurements of arbitrary order N in passive linear interferometers with arbitrary input single-photon pure states. This allows us to physically analyze the novel problem of multiboson correlation sampling at the output of random linear interferometers. Our results also describe general multiboson correlation landscapes for an arbitrary number of input single photons and arbitrary interferometers. In particular, we use two differ...
Independence, Odd Girth, and Average Degree
Löwenstein, Christian; Pedersen, Anders Sune; Rautenbach, Dieter;
2011-01-01
We prove several tight lower bounds in terms of the order and the average degree for the independence number of graphs that are connected and/or satisfy some odd girth condition. Our main result is the extension of a lower bound for the independence number of triangle-free graphs of maximum...... degree at most three due to Heckman and Thomas [Discrete Math 233 (2001), 233–237] to arbitrary triangle-free graphs. For connected triangle-free graphs of order n and size m, our result implies the existence of an independent set of order at least (4n−m−1) / 7. ...
Gaussian quadrature formulae for arbitrary positive measures.
Fernandes, Andrew D; Atchley, William R
2006-01-01
We present computational methods and subroutines to compute Gaussian quadrature integration formulas for arbitrary positive measures. For expensive integrands that can be factored into well-known forms, Gaussian quadrature schemes allow for efficient evaluation of high-accuracy and -precision numerical integrals, especially compared to general ad hoc schemes. In addition, for certain well-known density measures (the normal, gamma, log-normal, Student's t, inverse-gamma, beta, and Fisher's F) we present exact formulae for computing the respective quadrature scheme. PMID:19455218
Gaussian Quadrature Formulae for Arbitrary Positive Measures
William R. Atchley
2006-01-01
Full Text Available We present computational methods and subroutines to compute Gaussian quadrature integration formulas for arbitrary positive measures. For expensive integrands that can be factored into well-known forms, Gaussian quadrature schemes allow for efficient evaluation of high-accuracy and -precision numerical integrals, especially compared to general ad hoc schemes. In addition, for certain well-known density measures (the normal, gamma, log-normal, Student’s t, inversegamma, beta, and Fisher’s F we present exact formulae for computing the respective quadrature scheme.
Sampling to estimate arbitrary subset sums
Duffield, Nick; Lund, Carsten; Thorup, Mikkel
2005-01-01
Starting with a set of weighted items, we want to create a generic sample of a certain size that we can later use to estimate the total weight of arbitrary subsets. For this purpose, we propose priority sampling which tested on Internet data performed better than previous methods by orders of magnitude. Priority sampling is simple to define and implement: we consider a steam of items i=0,...,n-1 with weights w_i. For each item i, we generate a random number r_i in (0,1) and create a priority ...
Circuits with arbitrary gates for random operators
Jukna, S.; Schnitger, G.
2010-01-01
We consider boolean circuits computing n-operators f:{0,1}^n --> {0,1}^n. As gates we allow arbitrary boolean functions; neither fanin nor fanout of gates is restricted. An operator is linear if it computes n linear forms, that is, computes a matrix-vector product y=Ax over GF(2). We prove the existence of n-operators requiring about n^2 wires in any circuit, and linear n-operators requiring about n^2/\\log n wires in depth-2 circuits, if either all output gates or all gates on the middle laye...
Path integrals for arbitrary canonical transformations
Some aspects of the path integral formulation of quantum mechanics are studied. This formalism is generalized to arbitrary canonical transformations, by means of an association between path integral probalility amplitudes and classical generators of transformations, analogous to the usual Hamiltonian time development phase space expression. Such association turns out to be equivalent to the Weyl quantization rule, and it is also shown that this formalism furnishes a path integral representation for a Lie algebra of a given set of classical generators. Some physical considerations about the path integral quantization procedure and about the relationship between classical and quantum dynamical structures are also discussed. (Author)
Holographic Flavor Transport in Arbitrary Constant Background Fields
Ammon, Martin; O'Bannon, Andy
2009-01-01
We use gauge-gravity duality to compute a new transport coefficient associated with a number Nf of massive N=2 supersymmetric hypermultiplet fields propagating through an N=4 SU(Nc) super-Yang-Mills theory plasma in the limits of large Nc and large 't Hooft coupling, with Nf << Nc. We introduce a baryon number density as well as arbitrary constant electric and magnetic fields, generalizing previous calculations by including a magnetic field with a component parallel to the electric field. We can thus compute all components of the conductivity tensor associated with transport of baryon number charge, including a component never before calculated in gauge-gravity duality. We also compute the contribution that the flavor degrees of freedom make to the stress-energy tensor, which exhibits divergences associated with the rates of energy and momentum loss of the flavor degrees of freedom. We discuss two currents that are free from these divergences, one of which becomes anomalous when the magnetic field has a...
On Computation of a Power Series Root with Arbitrary Degree of Convergence
Kitamoto, Takuya
2008-01-01
Given a bivariate polynomial $f(x,y)$, let $\\phi(y)$ be a power series root of $f(x,y)=0$ with respect to $x$, i.e., $\\phi(y)$ is a function of $y$ such that $f(\\phi(y),y)=0$. If $\\phi(y)$ is analytic at $y=0$, then we have its power series expansion \\begin{equation} \\phi(y)=\\alpha_{0}+\\alpha_{1}y+\\alpha_{2}y^{2}+\\cdots+\\alpha_{r}y^{r}+\\cdots. \\end{equation} Let $\\phi^{(k)}(y)$ denote $\\phi(y)$ truncated at $y^{k}$, i.e., \\begin{equation} \\phi^{(k)}(y)=\\alpha_{0}...
Haas, Fernando; Mahmood, Shahzad
2016-01-01
Linear and nonlinear ion-acoustic waves are studied in a fluid model for non-relativistic, unmagnetized quantum plasma with electrons with an arbitrary degeneracy degree. The equation of state for electrons follows from a local Fermi-Dirac distribution function and apply equally well both to fully degenerate or classical, non-degenerate limits. Ions are assumed to be cold. Quantum diffraction effects through the Bohm potential are also taken into account. A general coupling parameter valid fo...
Symplectic Projector and The Physical Degrees of Freedom of The Classical Particle
De Andrade, M A; Vancea, I V
2003-01-01
The symplectic projector method is applied to derive the local physical degrees of freedom of a particle moving freely on an arbitrary surface. The dependence of the projector on the coordinates and momenta of the particle is discussed.
Mixed multiplicities for arbitrary ideals and generalized Buchsbaum-Rim multiplicities
We introduce first the notion of mixed multiplicities for arbitrary ideals in a local d-dimensional noetherian ring (A, m) which, in some sense, generalizes the concept of mixed multiplicities for m-primary ideals. We also generalize Teissier's Product Formula for a set of arbitrary ideals. We also extend the notion of the Buchsbaum-Rim multiplicity (in short, we write BR-multiplicity) of a submodule of a free module to the case where the submodule no longer has finite colength. For a submodule M of Ap we introduce a sequence eBRk(M), k = 0,...,d + p - 1 which in the ideal case coincides with the multiplicity sequence c0(I, A),...,cd(I, A) defined for an arbitrary ideal I of A by Achilles and Manaresi in [AM]. In case that M has finite colength in Ap and it is totally decomposable we prove that our BR-multiplicity sequence essentially falls into the standard BR-multiplicity of M. (author)
Large Zero Autocorrelation Zone of Golay Sequences and $4^q$-QAM Golay Complementary Sequences
Gong, Guang; Yang, Yang
2011-01-01
Sequences with good correlation properties have been widely adopted in modern communications, radar and sonar applications. In this paper, we present our new findings on some constructions of single $H$-ary Golay sequence and $4^q$-QAM Golay complementary sequence with a large zero autocorrelation zone, where $H\\ge 2$ is an arbitrary even integer and $q\\ge 2$ is an arbitrary integer. Those new results on Golay sequences and QAM Golay complementary sequences can be explored during synchronization and detection at the receiver end and thus improve the performance of the communication system.
Discrete Equilibrium Sampling with Arbitrary Nonequilibrium Processes
Hamze, Firas
2015-01-01
We present a novel framework for performing statistical sampling, expectation estimation, and partition function approximation using \\emph{arbitrary} heuristic stochastic processes defined over discrete state spaces. Using a highly parallel construction we call the \\emph{sequential constraining process}, we are able to simultaneously generate states with the heuristic process and accurately estimate their probabilities, even when they are far too small to be realistically inferred by direct counting. After showing that both theoretically correct importance sampling and Markov chain Monte Carlo are possible using the sequential constraining process, we integrate it into a methodology called \\emph{state space sampling}, extending the ideas of state space search from computer science to the sampling context. The methodology comprises a dynamic data structure that constructs a robust Bayesian model of the statistics generated by the heuristic process subject to an accuracy constraint, the posterior Kullback-Leibl...
ABJM Wilson loops in arbitrary representations
Hatsuda, Yasuyuki [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Theory Group; Tokyo Institute of Technology (Japan). Dept. of Physics; Honda, Masazumi [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki (Japan); Moriyama, Sanefumi [Nagoya Univ. (Japan). Kobayashi Maskawa Inst. and Graduate School of Mathematics; Okuyama, Kazumi [Shinshu Univ., Matsumoto, Nagano (Japan). Dept. of Physics
2013-06-15
We study vacuum expectation values (VEVs) of circular half BPS Wilson loops in arbitrary representations in ABJM theory. We find that those in hook representations are reduced to elementary integrations thanks to the Fermi gas formalism, which are accessible from the numerical studies similar to the partition function in the previous studies. For non-hook representations, we show that the VEVs in the grand canonical formalism can be exactly expressed as determinants of those in the hook representations. Using these facts, we can study the instanton effects of the VEVs in various representations. Our results are consistent with the worldsheet instanton effects studied from the topological string and a prescription to include the membrane instanton effects by shifting the chemical potential, which has been successful for the partition function.
ABJM Wilson loops in arbitrary representations
We study vacuum expectation values (VEVs) of circular half BPS Wilson loops in arbitrary representations in ABJM theory. We find that those in hook representations are reduced to elementary integrations thanks to the Fermi gas formalism, which are accessible from the numerical studies similar to the partition function in the previous studies. For non-hook representations, we show that the VEVs in the grand canonical formalism can be exactly expressed as determinants of those in the hook representations. Using these facts, we can study the instanton effects of the VEVs in various representations. Our results are consistent with the worldsheet instanton effects studied from the topological string and a prescription to include the membrane instanton effects by shifting the chemical potential, which has been successful for the partition function.
Metamaterial Electromagnetic Superabsorber with Arbitrary Geometries
Jingjing Yang
2010-06-01
Full Text Available The electromagnetic superabsorber that has larger absorption cross section than its real size may be a novel photothermal device with improved solar energy conversion rates. Based on a transformation optical approach, the material parameters for a two-dimensional (2D metamaterial-assisted electromagnetic superabsorber with arbitrary geometries are derived and validated by numerical simulation. We find that for the given geometry size, the absorption cross section of the superabsorber using nonlinear transformation is larger than that using linear transformation. These transformations can also be specialized to the designing the N-sided regular polygonal superabsorber just by changing the contour equation. All theoretical and numerical results validate the material parameters for the 2D electromagnetic superabsorber we have developed.
ABJM Wilson Loops in Arbitrary Representations
Hatsuda, Yasuyuki; Moriyama, Sanefumi; Okuyama, Kazumi
2013-01-01
We study vacuum expectation values (VEVs) of circular half BPS Wilson loops in arbitrary representations in ABJM theory. We find that those in hook representations are reduced to elementary integrations thanks to the Fermi gas formalism, which are accessible from the numerical studies similar to the partition function in the previous studies. For non-hook representations, we show that the VEVs in the grand canonical formalism can be exactly expressed as determinants of those in the hook representations. Using these facts, we can study the instanton effects of the VEVs in various representations. Our results are consistent with the worldsheet instanton effects studied from the topological string and a prescription to include the membrane instanton effects by shifting the chemical potential, which has been successful for the partition function.
Measuring degree-degree association in networks
Raschke, Mathias; Schläpfer, Markus; Nibali, Roberto
2010-01-01
The Pearson correlation coefficient is commonly used for quantifying the global level of degree-degree association in complex networks. Here, we use a probabilistic representation of the underlying network structure for assessing the applicability of different association measures to heavy-tailed degree distributions. Theoretical arguments together with our numerical study indicate that Pearson's coefficient often depends on the size of networks with equal association structure, impeding a sy...
Properties of Semijoin Sequences
BengC.Ooi; B.Srinivasan
1989-01-01
The problem of finding optimum semijoin sequ4ence of an arbitrary query under linear cost function for the transmission cost is NP.hard.Hence heuristic algorithms with desirable properties are explored.In this paper four properties of semijoin programs for distributed query processing are identified,The use of these properties in constructing semijoin sequence is justified.An existing algorithm is modified incorporating these properties.Empirical comparison with existing algorithms shows the superiority of the proposed algorithm.
Learning Read-constant Polynomials of Constant Degree modulo Composites
Chattopadhyay, Arkadev; Gavaldá, Richard; Hansen, Kristoffer Arnsfelt;
2011-01-01
known to be learnable in any reasonable learning model. In this paper, we provide a deterministic polynomial time algorithm for learning Boolean functions represented by polynomials of constant degree over arbitrary finite rings from membership queries, with the additional constraint that each variable...
Permutation Polynomials of Degree 6 or 7 over Finite Fields of Characteristic 2
Li, Jiyou; Chandler, David B.; Xiang, Qing
2010-01-01
In \\cite{D1}, Dickson listed all permutation polynomials up to degree 5 over an arbitrary finite field, and all permutation polynomials of degree 6 over finite fields of odd characteristic. The classification of degree 6 permutation polynomials over finite fields of characteristic 2 was left incomplete. In this paper we complete the classification of permutation polynomials of degree 6 over finite fields of characteristic 2. In addition, all permutation polynomials of degree 7 over finite fie...
Permutation Polynomials of Degree 6 or 7 over Finite Fields of Characteristic 2
Li, Jiyou; Xiang, Qing
2010-01-01
In \\cite{D1}, Dickson listed all permutation polynomials up to degree 5 over an arbitrary finite field, and all permutation polynomials of degree 6 over finite fields of odd characteristic. The classification of degree 6 permutation polynomials over finite fields of characteristic 2 was left incomplete. In this paper we complete the classification of permutation polynomials of degree 6 over finite fields of characteristic 2. In addition, all permutation polynomials of degree 7 over finite fields of characteristic 2 are classified.
An Arbitrary Benchmark CAPM: One Additional Frontier Portfolio is Sufficient
Ekern, Steinar
2008-01-01
The benchmark CAPM linearly relates the expected returns on an arbitrary asset, an arbitrary benchmark portfolio, and an arbitrary MV frontier portfolio. The benchmark is not required to be on the frontier and may be non-perfectly correlated with the frontier portfolio. The benchmark CAPM extends and generalizes previous CAPM formulations, including the zero beta, two correlated frontier portfolios, riskless augmented frontier, and inefficient portfolio versions. The covariance between the of...
Node degree distribution in spanning trees
A method is presented for computing the number of spanning trees involving one link or a specified group of links, and excluding another link or a specified group of links, in a network described by a simple graph in terms of derivatives of the spanning-tree generating function defined with respect to the eigenvalues of the Kirchhoff (weighted Laplacian) matrix. The method is applied to deduce the node degree distribution in a complete or randomized set of spanning trees of an arbitrary network. An important feature of the proposed method is that the explicit construction of spanning trees is not required. It is shown that the node degree distribution in the spanning trees of the complete network is described by the binomial distribution. Numerical results are presented for the node degree distribution in square, triangular, and honeycomb lattices. (paper)
Understanding rigid body motion in arbitrary dimensions
Leyvraz, Francois
2014-01-01
Why would anyone wish to generalize the already unappetizing subject of rigid body motion to an arbitrary number of dimensions? At first sight, the subject seems to be both repellent and superfluous. The author will try to argue that an approach involving no specifically three-dimensional constructs is actually easier to grasp than the traditional one and might thus be generally useful to understand rigid body motion both in three dimensions and in the general case. Specific differences between the viewpoint suggested here and the usual one include the following: here angular velocities are systematically treated as antisymmetric matrices, a symmetric tensor $I$ quite different from the moment of inertia tensor plays a central role, whereas the latter is shown to be a far more complex object, namely a tensor of rank four. A straightforward way to define it is given. The Euler equation is derived and the use of Noether's theorem to obtain conserved quantities is illustrated. Finally the equation of motion for ...
Electron plasma oscillations at arbitrary Debye lengths
A solution is presented for electron plasma oscillation in a thermalized homogeneous plasma, at arbitrary ratios between the Debye length λD and the perturbation wave length λ. The limit λD D >> λ corresponds to the free-streaming limit of strong kinetic phase-mixing due to large particle excursions. A strong large Debye distance (LDD) effect already appears when λD > approx λ. The initial amplitude of the fluid-like contribution to the macroscopic density perturbation then becomes small as compared to the contribution from the free-streaming part. As a consequence, only a small fraction of the density perturbation remains after a limited number of kinetic damping times of the free-streaming part. The analysis further shows that a representation in terms of normal model of the form exp(-iωt) leads to amplitude factors of these modes which are related to each other and which depend on the combined free-streaming and fluid behaviour of the plasma. Consequently, these modes are coupled and cannot be treated as being independent of each other. (au)
We show that the Implicit Regularization Technique is useful to display quantum symmetry breaking in a complete regularization independent fashion. Arbitrary parameters are expressed by finite differences between integrals of the same superficial degree of divergence whose value is fixed on physical grounds (symmetry requirements or phenomenology). We study Weyl fermions on a classical gravitational background in two dimensions and show that, assuming Lorentz symmetry, the Weyl and Einstein Ward identities reduce to a set of algebraic equations for the arbitrary parameters which allows us to study the Ward identities on equal footing. We conclude in a renormalization independent way that the axial part of the Einstein Ward identity is always violated. Moreover whereas we can preserve the pure tensor part of the Einstein Ward identity at the expense of violating the Weyl Ward identities we may as well violate the former and preserve the latter
Souza, L A M; Nemes, M C; Souza, Leonardo A. M.; Sampaio, Marcos
2006-01-01
We show that the Implicit Regularization Technique is useful to display quantum symmetry breaking in a complete regularization independent fashion. Arbitrary parameters are expressed by finite differences between integrals of the same superficial degree of divergence whose value is fixed on physical grounds (symmetry requirements or phenomenology). We study Weyl fermions on a classical gravitational background in two dimensions and show that, assuming Lorentz symmetry, the Weyl and Einstein Ward identities reduce to a set of algebraic equations for the arbitrary parameters which allows us to study the Ward identities on equal footing. We conclude in a renormalization independent way that the axial part of the Einstein Ward identity is always violated. Moreover whereas we can preserve the pure tensor part of the Einstein Ward identity at the expense of violating the Weyl Ward identities we may as well violate the former and preserve the latter.
Including Arbitrary Antenna Patterns in Microwave Imaging of Buried Objects
Meincke, Peter; Kim, Oleksiy S.; Lenler-Eriksen, Hans-Rudolph
A linear inversion scheme for microwave imaging of buried objects is presented in which arbitrary antennas are accounted for through their plane-wave transmitting and receiving spectra......A linear inversion scheme for microwave imaging of buried objects is presented in which arbitrary antennas are accounted for through their plane-wave transmitting and receiving spectra...
Arbitrary Shape Deformation in CFD Design
Landon, Mark; Perry, Ernest
2014-01-01
Sculptor(R) is a commercially available software tool, based on an Arbitrary Shape Design (ASD), which allows the user to perform shape optimization for computational fluid dynamics (CFD) design. The developed software tool provides important advances in the state-of-the-art of automatic CFD shape deformations and optimization software. CFD is an analysis tool that is used by engineering designers to help gain a greater understanding of the fluid flow phenomena involved in the components being designed. The next step in the engineering design process is to then modify, the design to improve the components' performance. This step has traditionally been performed manually via trial and error. Two major problems that have, in the past, hindered the development of an automated CFD shape optimization are (1) inadequate shape parameterization algorithms, and (2) inadequate algorithms for CFD grid modification. The ASD that has been developed as part of the Sculptor(R) software tool is a major advancement in solving these two issues. First, the ASD allows the CFD designer to freely create his own shape parameters, thereby eliminating the restriction of only being able to use the CAD model parameters. Then, the software performs a smooth volumetric deformation, which eliminates the extremely costly process of having to remesh the grid for every shape change (which is how this process had previously been achieved). Sculptor(R) can be used to optimize shapes for aerodynamic and structural design of spacecraft, aircraft, watercraft, ducts, and other objects that affect and are affected by flows of fluids and heat. Sculptor(R) makes it possible to perform, in real time, a design change that would manually take hours or days if remeshing were needed.
Multiplicative asset exchange with arbitrary return distributions
The conservative wealth exchange process derived from trade interactions is modeled as a multiplicative stochastic transference of value, where each interaction multiplies the wealth of the poorest of the two intervening agents by a random gain η = 1 + κ, with κ a random return. Analyzing the kinetic equation for the wealth distribution P(w, t), general properties are derived for arbitrary return distributions π(κ). If the geometrical average of the gain is larger than one, i.e. if (lnη)π > 0, in the long time limit a nontrivial equilibrium wealth distribution P(w) is attained. Whenever (lnη)π π of the poor agent is positive. In the stable phase, P(w) behaves as w(T−1) for w→0, and we find T exactly. This exponent is nonzero in the stable phase but goes to zero on approach to the condensation interface. The exact wealth distribution can be obtained analytically for the particular case of Kelly betting, and it turns out to be an exponential P(w) = e−w. We show, however, that our model is never reversible, no matter what π(κ) is. In the condensing phase, the wealth of an agent with relative rank x is found to be w(x, t) ∼ ext(lnη)π for finite times t. The wealth distribution is consequently P(w) ∼ 1/w for finite times, while all wealth ends up in the hands of the richest agent for large times. Numerical simulations are carried out and found to satisfactorily compare with the above-mentioned analytical results
Huang Lujun; Zhou Daming; Wang Jian; Li Guanhai; Li Zhifeng; Chen Xiaoshuang; Lu Wei, E-mail: xschen@mail.sitp.ac.cn [National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 200083 Shanghai (China)
2011-06-15
A generalized transformation is proposed to design an illusion device. The device can reshape an arbitrarily shaped perfect electrical conductor (PEC) into another dielectric object with arbitrary geometry. Such a device can evolve into an ideal invisibility cloak with non-conformal boundaries if the virtual space is filled with air. Furthermore, the validity of our proposed transformation is confirmed by two specific devices. One is to convert a regular polygonal PEC cylinder into a circular dielectric cylinder. Another one is to reshape a circular PEC cylinder into a regular polygonal dielectric cylinder.
Numerical studies of the ABJM theory for arbitrary N at arbitrary coupling constant
Hanada, Masanori; Honda, Masazumi; Honma, Yoshinori; Nishimura, Jun; Shiba, Shotaro; Yoshida, Yutaka
2012-05-01
We show that the ABJM theory, which is an {N} = {6} superconformal U( N) × U( N) Chern-Simons gauge theory, can be studied for arbitrary N at arbitrary coupling constant by applying a simple Monte Carlo method to the matrix model that can be derived from the theory by using the localization technique. This opens up the possibility of probing the quantum aspects of M-theory and testing the AdS4/CFT3 duality at the quantum level. Here we calculate the free energy, and confirm the N 3/2 scaling in the M-theory limit predicted from the gravity side. We also find that our results nicely interpolate the analytical formulae proposed previously in the M-theory and type IIA regimes. Furthermore, we show that some results obtained by the Fermi gas approach can be clearly understood from the constant map contribution obtained by the genus expansion. The method can be easily generalized to the calculations of BPS operators and to other theories that reduce to matrix models.
Arbitrary Phase Vocoders by means of Warping
Gianpaolo Evangelista
2013-08-01
duration and/or frequency dependent bandwidth. As an example, in a constant Q frequency band allocation, the ratios of center band frequencies over bandwidth remains constant, so that the frequency bands become wider and wider as center frequency increases, similarly to the frequency distance of 12-tone scale notes or of octaves.While time-frequency allocation can be performed in an arbitrary way, the ability to reconstruct the original signal from Vocoder analysis data is essential in sound processing and transformation applications. Moreover, even the analysis or the production of spectrograms benefits from the perfect reconstruction property if one needs to be confident that no important information is hidden, which serves to completely describe the signal.
Teleportation of an arbitrary mixture of diagonal states of multiqudit
This paper proposes a scheme to teleport an arbitrary mixture of diagonal states of multiqutrit via classical correlation and classical communication. To teleport an arbitrary mixture of diagonal states of N qutrits, N classically correlated pairs of two qutrits are used as channel. The sender (Alice) makes Fourier transform and conditional gate (i.e., XOR(3) gate) on her qutrits and does measurement in appropriate computation bases. Then she sends N ctrits to the receiver (Bob). Based on the received information, Bob performs the corresponding unitary transformation on his qutrits and obtains the teleported state. Teleportation of an arbitrary mixture of diagonal states of multiqudit is also discussed
Teleportation of an arbitrary mixture of diagonal states of multiqudit
Du, Qian-Hua; Lin, Xiu-Min; Chen, Zhi-Hua; Lin, Gong-Wei; Chen, Li-Bo; Gu, Yong-Jian
2008-03-01
This paper proposes a scheme to teleport an arbitrary mixture of diagonal states of multiqutrit via classical correlation and classical communication. To teleport an arbitrary mixture of diagonal states of N qutrits, N classically correlated pairs of two qutrits are used as channel. The sender (Alice) makes Fourier transform and conditional gate (i.e., XOR(3) gate) on her qutrits and does measurement in appropriate computation bases. Then she sends N ctrits to the receiver (Bob). Based on the received information, Bob performs the corresponding unitary transformation on his qutrits and obtains the teleported state. Teleportation of an arbitrary mixture of diagonal states of multiqudit is also discussed.
Feynman propagator for an arbitrary half-integral spin
黄时中; 张鹏飞; 阮图南; 祝玉灿; 郑志鹏
2003-01-01
Based on the solution to Bargmann-Wigner equation for a particle with arbitrary half-integral spin, a direct derivation of the projection operator and propagator for a particle with arbitrary half-integral spin is worked out. The projection operator constructed by Behrends and Fronsdal is re-deduced and confirmed and simplified, the general commutation rules and Feynman propagator with additional non-covariant terms for a free particle with arbitrary half-inteRzal spin are derived, and explicit expressions for the propagators for spins 3/2, 5/2 and 7/2 are provided.
STUDY FOR STREAMLINE OF ARBITRARY SHAPED HOMOGENEOUS RESERVOIRS WITH IMPERMEABLE BARRIERS
YIN Hong-jun; FU Chun-quan; HE Ying-fu
2006-01-01
The steady-state flow mathematical model of arbitrary shaped homogeneous reservoirs with impermeable barrier is constructed in this paper. By using Boundary Element Method (BEM), the mathematical model is solved. And a streamline generating technique is presented. The figures of streamlines are plotted and analyzed considering the effect of complex boundary and impermeable barriers. Through analyzing, it indicates that the size, shape and orientation of impermeable barriers have various degree of influence on the streamlines. So, if there are impermeable barriers in reservoir according to the geological materials, the influence of impermeable barriers must be considered when adjusting flood pattern and injection strategy.
Linear dynamic analysis of arbitrary thin shells modal superposition by using finite element method
The linear dynamic behaviour of arbitrary thin shells by the Finite Element Method is studied. Plane triangular elements with eighteen degrees of freedom each are used. The general equations of movement are obtained from the Hamilton Principle and solved by the Modal Superposition Method. The presence of a viscous type damping can be considered by means of percentages of the critical damping. An automatic computer program was developed to provide the vibratory properties and the dynamic response to several types of deterministic loadings, including temperature effects. The program was written in FORTRAN IV for the Burroughs B-6700 computer. (author)
Arbitrary vector beams with selective polarization states patterned by tailored polarizing films
A new method of generating arbitrary vector beams with selective polarization states in composite sectors is proposed and experimentally verified by using tailored polarizing film cooperated with a micro-fabricated phase plate. Three examples of the beams are demonstrated in terms of quasi-radially, quasi-azimuthally and alternating radially and azimuthally polarized beams. Polarization states of the beams are measured by a linear polarizer and the experimental results show excellent agreement with the theoretical predictions. The proposed method presents the great advantages of a high degree of freedom in polarization distribution, and easy implementation with low cost. (paper)
Saillard, Marianne; Hall, S. R; Audin, Laurence; Farber, D. L.; Regard, V.; Hérail, Gérard
2011-01-01
Along the San Juan de Marcona Bay of southern Peru, two spectacular sequences of preserved marine terraces record net Quaternary uplift. Previous geomorphic analysis of these paleo-shorelines has revealed evidence of upper plate deformation and regional uplift. However, in the absence of a robust absolute dating method, these studies contain substantial uncertainties concerning the numerical dating of these marine markers and thus the corresponding calculated surface uplift rates. However, fi...
Symmetric finite volume schemes for eigenvalue problems in arbitrary dimensions
2008-01-01
Based on a linear finite element space,two symmetric finite volume schemes for eigenvalue problems in arbitrary dimensions are constructed and analyzed.Some relationships between the finite element method and the finite difference method are addressed,too.
Arbitrary orbital angular momentum addition in second harmonic generation
We demonstrate second harmonic generation performed with optical vortices with different topological charges imprinted on orthogonal polarizations. Besides the intuitive charge doubling, we implement arbitrary topological charge addition on the second harmonic field using polarization as an auxiliary parameter. (paper)
Symmetric finite volume schemes for eigenvalue problems in arbitrary dimensions
DAI Xiaoying; YANG Zhang; ZHOU Aihui
2008-01-01
Based on a linear finite element space, two symmetric finite volume schemes for eigenvalue problems in arbitrary dimensions are constructed and analyzed. Some relationships between the finite element method and the finite difference method are addressed, too.
ON QUADRATURE FORMULAE FOR SINGULAR INTEGRALS OF ARBITRARY ORDER
杜金元
2004-01-01
Some quadrature formulae for the numerical evaluation of singular integrals of arbitrary order are established and both the estimate of remainder and the convergence of each quadrature formula derived here are also given.
Novel FBG Writing System With Arbitrary Amplitude and Phase Control
J.J.; Pan; Claire; Gu; Albert; Li; Henry; He
2003-01-01
FBGs with arbitrary apodization and phase have been fabricated by constantly moving fibers with a highly precision air bearing translation stage while a CW UV laser beam is switched on/off by triggers with nanosecond accuracy.
Closed description of arbitrariness in resolving quantum master equation
Batalin, Igor A.; Lavrov, Peter M.
2016-07-01
In the most general case of the Delta exact operator valued generators constructed of an arbitrary Fermion operator, we present a closed solution for the transformed master action in terms of the original master action in the closed form of the corresponding path integral. We show in detail how that path integral reduces to the known result in the case of being the Delta exact generators constructed of an arbitrary Fermion function.
Closed description of arbitrariness in resolving quantum master equation
Igor A. Batalin
2016-07-01
Full Text Available In the most general case of the Delta exact operator valued generators constructed of an arbitrary Fermion operator, we present a closed solution for the transformed master action in terms of the original master action in the closed form of the corresponding path integral. We show in detail how that path integral reduces to the known result in the case of being the Delta exact generators constructed of an arbitrary Fermion function.
Sunrise: Polychromatic Dust Radiative Transfer in Arbitrary Geometries
Jonsson, Patrik
2006-01-01
This paper describes Sunrise, a parallel, free Monte-Carlo code for the calculation of radiation transfer through astronomical dust. Sunrise uses an adaptive-mesh refinement grid to describe arbitrary geometries of emitting and absorbing/scattering media, with spatial dynamical range exceeding 10^4, and it can efficiently generate images of the emerging radiation at arbitrary points in space. In addition to the monochromatic radiative transfer typically used by Monte-Carlo codes, Sunrise is c...
CMOS circuits generating arbitrary chaos by using pulsewidthmodulation techniques
Morie, Takashi; Sakabayashi, S; Nagata, M.; Iwata, A
2000-01-01
This paper describes CMOS circuits generating arbitrary chaotic signals. The proposed circuits implement discrete-time continuous-state dynamics by means of analog processing in a time domain. Arbitrary nonlinear transformation functions can be generated by using the conversion from an analog voltage to a pulsewidth modulation (PWM) signal; for the transformation, time-domain nonlinear voltage waveforms having the same shape as the inverse function of the desired transformation function are u...
Closed description of arbitrariness in resolving quantum master equation
Batalin, Igor A
2016-01-01
In the most general case of the Delta exact operator valued generators constructed of an arbitrary Fermion operator, we present a closed solution for the transformed master action in terms of the original master action in the closed form of the corresponding path integral. We show in detail how that path integral reduces to the known result in the case of being the Delta exact generators constructed of an arbitrary Fermion function.
Spread of arbitrary conventions among chimpanzees: a controlled experiment
Bonnie, Kristin E.; Horner, Victoria; Whiten, Andrew; de Waal, Frans B. M.
2006-01-01
Wild chimpanzees (Pan troglodytes) have a rich cultural repertoire—traditions common in some communities are not present in others. The majority of reports describe functional, material traditions, such as tool use. Arbitrary conventions have received far less attention. In the same way that observations of material culture in wild apes led to experiments to confirm social transmission and identify underlying learning mechanisms, experiments investigating how arbitrary habits or conventions a...
Corbett, Kevin
2016-05-25
Let's face it, nurse education is big business for British universities. The lobby group of universities offering nursing degrees, the Council of Deans of health (CoDH), argues that the true cost of nursing degrees is subsidised by their members. PMID:27224609
Families of Fixed Degree Graphs for Processor Interconnection
Jerrum, Mark; Skyum, Sven
1984-01-01
A construction is presented which, given a fixed undirected graph of low degree and small average path length, yields an infinite sequence of low diameter graphs of increasing order and fixed degree. As examples of the construction, infinite sequences of low diameter graphs are presented with deg...
Sequence information signal processor
Peterson, John C.; Chow, Edward T.; Waterman, Michael S.; Hunkapillar, Timothy J.
1999-01-01
An electronic circuit is used to compare two sequences, such as genetic sequences, to determine which alignment of the sequences produces the greatest similarity. The circuit includes a linear array of series-connected processors, each of which stores a single element from one of the sequences and compares that element with each successive element in the other sequence. For each comparison, the processor generates a scoring parameter that indicates which segment ending at those two elements produces the greatest degree of similarity between the sequences. The processor uses the scoring parameter to generate a similar scoring parameter for a comparison between the stored element and the next successive element from the other sequence. The processor also delivers the scoring parameter to the next processor in the array for use in generating a similar scoring parameter for another pair of elements. The electronic circuit determines which processor and alignment of the sequences produce the scoring parameter with the highest value.
Inverse Degree and Connectivity
MA Xiao-ling; TIAN Ying-zhi
2013-01-01
Let G be a connected graph with vertex set V(G),order n =丨V(G)丨,minimum degree δ(G) and connectivity κ(G).The graph G is called maximally connected if κ(G) =δ(G).Define the inverse degree of G with no isolated vertices as R(G) =Σv∈V(G)1/d(v),where d(v) denotes the degree of the vertex v.We show that G is maximally connected if R(G) ＜ 1 + 2/δ + n-2δ+1/(n-1)(n-3).
Quantum entanglement degrees amplifier
Wu, Xiang-Yao; Liu, Xiao-Jing; Liang, Yu; Meng, Xiang-Dong; Li, Hong; Zhang, Si-Qi
2015-01-01
The quantum entangled degrees of entangled states become smaller with the transmission distance increasing, how to keep the purity of quantum entangled states is the puzzle in quantum communication. In the paper, we have designed a new type entanglement degrees amplifier by one-dimensional photonic crystal, which is similar as the relay station of classical electromagnetic communication. We find when the entangled states of two-photon and three-photon pass through photonic crystal, their entanglement degrees can be magnified, which make the entanglement states can be long range propagation and the quantum communication can be really realized.
Self-forces on static bodies in arbitrary dimensions
Harte, Abraham I; Taylor, Peter
2016-01-01
We derive exact expressions for the scalar and electromagnetic self-forces and self-torques acting on arbitrary static extended bodies in arbitrary static spacetimes with any number of dimensions. Non-perturbatively, our results are identical in all dimensions. Meaningful point particle limits are quite different in different dimensions, however. These limits are defined and evaluated, resulting in simple "regularization algorithms" which can be used in concrete calculations. In these limits, self-interaction is shown to be progressively less important in higher numbers of dimensions; it generically competes in magnitude with increasingly high-order extended-body effects. Conversely, we show that self-interaction effects can be relatively large in $1+1$ and $2+1$ dimensions. Our motivations for this work are twofold: First, no previous derivation of the self-force has been provided in arbitrary dimensions, and heuristic arguments presented by different authors have resulted in conflicting conclusions. Second,...
Personality mobility as arbitrary management conduct and activity
Artyushenko A.А.
2010-05-01
Full Text Available A concept «Personality mobility» is considered in the light of pictures of arbitrary management conduct and activity of a man. The analysis of psychological pedagogical literature is conducted. Concept «co-ordination», «adroitness», «arbitrary management», «personality mobility» very near on the rich in content essence. A concept «Personality mobility» is more wide and more precisely represents the capacity of man for conscious, intentional motive activity. Exactly this concept is more clear and acceptable to description of character and essence of management motive activity. Consciousness and premeditation is considered the basic signs of arbitrary activity.
Topological flat band models with arbitrary Chern numbers
Yang, Shuo; Gu, Zheng-Cheng; Sun, Kai; Sarma, S. Das
2012-01-01
We report the theoretical discovery of a systematic scheme to produce topological flat bands (TFBs) with arbitrary Chern numbers. We find that generically a multi-orbital high Chern number TFB model can be constructed by considering multi-layer Chern number C=1 TFB models with enhanced translational symmetry. A series of models are presented as examples, including a two-band model on a triangular lattice with a Chern number C=3 and an $N$-band square lattice model with $C=N$ for an arbitrary ...
Hadrons of arbitrary spin and heavy quark symmetry
We present a general construction of the spin content of the Bethe-Salpeter amplitudes (covariant wave functions) for heavy hadrons with arbitrary orbital excitations, using representations of l x O(3, 1). These wave functions incorporate the symmetries manifest in the heavy quark limit. In the baryonic sector we clearly differentiate between the Λ and Σ-type excited baryons. We then use the trace formalism to evaluate the weak transitions of ground state heavy hadrons to arbitrary excited heavy hadrons. The contributions of excited states to the Bjorken sum rule are also worked out in detail. (author). 21 refs
Probabilistic teleportation of an arbitrary three-particle state
Lin Xiu; Li Hong-Cai
2005-01-01
A scheme for teleporting an arbitrary and unknown three-particle state from a sender to either one of two receivers is proposed. The quantum channel is composed of a two-particle non-maximally entangled state and two three-particle non-maximally entangled W states. An arbitrary three-particle state can be perfectly teleported probabilistically if the sender performs three generalized Bell-state measurements and sends to the two receivers the classical result of these measurements, and either one of the two receivers adopts an appropriate unitary transformation conditioned on the suitable measurement outcomes of the other receiver. All kinds of unitary transformations are given in detail.
Probabilistic teleportation of an arbitrary pure state of two atoms
Yang Zhen-Biao; Wu Huai-Zhi; Su Wan-Jun
2007-01-01
In the context of microwave cavity QED, this paper proposes a new scheme for teleportation of an arbitrary pure state of two atoms. The scheme is very different from the previous ones which achieve the integrated state measurement,it deals in a probabilistic but simplified way. In the scheme, no additional atoms are involved and thus only two atoms are required to be detected. The scheme can also be used for the teleportation of arbitrary pure states of many atoms or two-mode cavities.
The sewing technique and correlation functions on arbitrary Riemann surfaces
We describe in the case of free bosonic and fermionic theories the sewing procedure, that is a very convenient way for constructing correlation functions of these theories on an arbitrary Riemann surface from their knowledge on the sphere. The fundamental object that results from this construction is the N-point g-loop vertex. It summarizes the information of all correlation functions of the theory on an arbitrary Riemann surface. We then check explicitly the bosonization rules and derive some useful formulas. (orig.)
De Marco, N
2013-01-01
Two identical sets of calorimeters are located on both sides with respect to the beam Interaction Point (IP), 112.5 m away from it. Each set of detectors consists of a neutron (ZN) and a proton (ZP) Zero Degree Calorimeter (ZDC), positioned on remotely controlled platforms. The ZN is placed at zero degree with respect to the LHC beam axis, between the two beam pipes, while the ZP is positioned externally to the outgoing beam pipe. The spectator protons are separated from the ion beams by means of the dipole magnet D1.
Thomas, EG
2014-01-01
Physics to a Degree provides an extensive collection of problems suitable for self-study or tutorial and group work at the level of an undergraduate physics course. This novel set of exercises draws together the core elements of an undergraduate physics degree and provides students with the problem solving skills needed for general physics' examinations and for real-life situations encountered by the professional physicist. Topics include force, momentum, gravitation, Bernoulli's Theorem, magnetic fields, blackbody radiation, relativistic travel, mechanics near the speed of light, radioactive
Probabilistic Teleportation of an Arbitrary n-Particle Entangled State
XIYong-Jun; FANGJian-Xing; ZHUShi-Qun; GUOZhan-Ying
2005-01-01
A scheme for teleporting an arbitrary n-particle entangled state via n pairs of non-maximally entangled states is proposed. The probability of successful teleportation is determined only by the smaller coefficients of the partially entangled pairs. The method is very easy to be realized.
Dynamics of number systems computation with arbitrary precision
Kurka, Petr
2016-01-01
This book is a source of valuable and useful information on the topics of dynamics of number systems and scientific computation with arbitrary precision. It is addressed to scholars, scientists and engineers, and graduate students. The treatment is elementary and self-contained with relevance both for theory and applications. The basic prerequisite of the book is linear algebra and matrix calculus. .
Criterion for faithful teleportation with an arbitrary multiparticle channel
Cheung, Chi-Yee; Zhang, Zhan-Jun
2009-08-01
We present a general criterion which allows one to judge if an arbitrary multiparticle entanglement channel can be used to teleport faithfully an unknown quantum state of a given dimension. We also present a general multiparticle teleportation protocol which is applicable for all channel states satisfying this criterion.
Pair Production of Arbitrary Spin Particles by Electromagnetic Fields
Kruglov, S I
2004-01-01
The exact solutions of the wave equation for arbitrary spin particles in the field of the soliton-like electric impulse were obtained. The differential probability of pair production of particles by electromagnetic fields has been evaluated on the basis of the exact solutions. As a particular case, the particle pair producing in the constant and uniform electric field were studied.
Zero Cycles on Certain Surfaces in Arbitrary Characteristic
G V Ravindra
2006-02-01
Let be a field of arbitrary characteristic. Let be a singular surface defined over with multiple rational curve singularities and suppose that the Chow group of zero cycles of its normalisation $\\overline{S}$ is finite dimensional. We give numerical conditions under which the Chow group of zero cycles of is finite dimensional.
Mathematical model of bisubject qualimetric arbitrary objects evaluation
Morozova, A.
2016-04-01
An analytical basis and the process of formalization of arbitrary objects bisubject qualimetric evaluation mathematical model information spaces are developed. The model is applicable in solving problems of control over both technical and socio-economic systems for objects evaluation using systems of parameters generated by different subjects taking into account their performance and priorities of decision-making.
Canonical Quantum Teleportation of Two-Particle Arbitrary State
HAO Xiang; ZHU Shi-Qun
2005-01-01
The canonical quantum teleportation of two-particle arbitrary state is realized by means of phase operator and number operator. The maximally entangled eigenstates between the difference of phase operators and the sum of number operators are considered as the quantum channels. In contrast to the standard quantum teleportation, the different unitary local operation of canonical teleportation can be simplified by a general expression.
Anyons, modular invariance and anyon gauge for arbitrary rational statistics
We perform the implementation of modular invariance for a system of free anyons on a torus, described by means of the Chern-Simons action, for arbitrary rational Chern-Simons coupling constant. We explain in which sense the 'anyon gauge', in which the wavefunction is multivalued, can be achieved on the torus. (orig.)
Garbage-free reversible constant multipliers for arbitrary integers
Mogensen, Torben Ægidius
2013-01-01
We present a method for constructing reversible circuitry for multiplying integers by arbitrary integer constants. The method is based on Mealy machines and gives circuits whose size are (in the worst case) linear in the size of the constant. This makes the method unsuitable for large constants, ......, but gives quite compact circuits for small constants. The circuits use no garbage or ancillary lines....
The Relativistic Generalization of the Gravitational Force for Arbitrary Spacetimes
Qadir, A; Qadir, Asghar
1992-01-01
It has been suggested that re-expressing relativity in terms of forces could provide fresh insights. The formalism developed for this purpose only applied to static, or conformally static, space-times. Here we extend it to arbitrary space-times. It is hoped that this formalism may lead to a workable definition of mass and energy in relativity.
Simpler Online Updates for Arbitrary-Order Central Moments
Meng, Xiangrui
2015-01-01
Statistical moments are widely used in descriptive statistics. Therefore efficient and numerically stable implementations are important in practice. Pebay [1] derives online update formulas for arbitrary-order central moments. We present a simpler version that is also easier to implement.
Rainbows in the grass. II. Arbitrary diagonal incidence.
Adler, Charles L; Lock, James A; Fleet, Richard W
2008-12-01
We consider external reflection rainbow caustics due to the reflection of light from a pendant droplet where the light rays are at an arbitrary angle with respect to the horizontal. We compare this theory to observation of glare spots from pendant drops on grass; we also consider the potential application of this theory to the determination of liquid surface tension. PMID:19037345
Electronic interaction anisotropy between atoms in arbitrary angular momentum states
Krems, R.V.; Groenenboom, G.C.; Dalgarno, A.
2004-01-01
A general tensorial expansion for the interaction potential between two atoms in arbitrary angular momentum states is derived and the relations between the expansion coefficients and the Born-Oppenheimer potentials of the diatomic molecule are obtained. It is demonstrated that a complete expansion o
Unveiling Reality of the Mind: Cultural Arbitrary of Consumerism
Choi, Su-Jin
2012-01-01
This paper discusses the cultural arbitrary of consumerism by focusing on a personal realm. That is, I discuss what consumerism appeals to and how it flourishes in relation to our minds. I argue that we need to unveil reality of the mind, be aware of ourselves in relation to the perpetuation of consumerism, in order to critically intervene in the…
Arbitrary unitary transformations on optical states using a quantum memory
Campbell, Geoff T.; Pinel, Olivier; Hosseini, Mahdi; Buchler, Ben C.; Lam, Ping Koy [Centre for Quantum Computation and Communication Technology, Department of Quantum Science, The Australian National University, Canberra (Australia)
2014-12-04
We show that optical memories arranged along an optical path can perform arbitrary unitary transformations on frequency domain optical states. The protocol offers favourable scaling and can be used with any quantum memory that uses an off-resonant Raman transition to reversibly transfer optical information to an atomic spin coherence.
Public Announcements in Strategic Games with Arbitrary Strategy Sets
Apt, Krzysztof R.; Zvesper, Jonathan A.
2010-01-01
In [Van Benthem 2007] the concept of a public announcement is used to study the effect of the iterated elimination of strictly dominated strategies. We offer a simple generalisation of this approach to cover arbitrary strategic games and many optimality notions. We distinguish between announcements of optimality and announcements of rationality.
Restriction Theorem for Principal bundles in Arbitrary Characteristic
Gurjar, Sudarshan
2015-01-01
The aim of this paper is to prove two basic restriction theorem for principal bundles on smooth projective varieties in arbitrary characteristic generalizing the analogues theorems of Mehta-Ramanathan for vector bundles. More precisely, let G be a reductive algebraic group over an algebraically c...
Quantum electrodynamics with arbitrary charge on a noncommutative space
ZHOU Wan-Ping; CAI Shao-Hong; LONG Zheng-Wen
2009-01-01
Using the Seiberg-Witten map,we obtain a quantum electrodynamics on a noncommutative space,which has arbitrary charge and keep the gauge invariance to at the leading order in theta.The one-loop divergence and Compton scattering are reinvestigated.The uoncommutative effects are larger than those in ordinary noncommutative quantum electrodynamics.
Existence of minimal surfaces of arbitrary large Morse index
Li, Haozhao; Zhou, Xin
2015-01-01
We show that in a closed 3-manifold with a generic metric of positive Ricci curvature, there are minimal surfaces of arbitrary large Morse index, which partially confirms a conjecture by F. Marques and A. Neves. We prove this by analyzing the lamination structure of the limit of minimal surfaces with bounded Morse index.
The Risk Assessment on Arbitrary Accidents Orientating in the TSF For LILW Management
The objective of this study is to conduct the risk assessment on arbitrary accidents originating in the TSF for LILW management through the result of dose assessment. In order to conduct the risk assessment on arbitrary accidents originating in the TSF for LILW management, the result of dose assessment was converted to the risk index. The risk conversion parameter for deriving the risk index was considered in the concept of the total risk factor suggested in the ICRP. After considering each parameter, the total risk factor was represented by the value of 7.3E·5 risk/mSv in terms of risk dimension. And then, the risk-level was also derived with respect to each risk degree. Consequently, the risk-level of all of drums was III regardless of waste stream with respect to the dropping of drums and fire. Especially, the risk originated in dropping of drums could be ignored. In opposition to many of researches on the disposal of LILW, the risk assessment on the TSF has scarcely been conducted. Furthermore, the details in regards of the safety analysis on this facility have not been considered in the preliminary and final safety analysis report because this report focused on the nuclear reactor system rather than this facility. As a consequence of these situations, the number of the researches on the arbitrary accidents occurring in the TSF has not been enough. And then, the numbers of the researches on the predisposal management of LILW have been required for the preparation on new regulatory frame
Johnson, Jean
2012-01-01
A 2011 survey of young adults conducted by Public Agenda found that a cluster of obstacles have prevented many of them from competing college. The author describes the opportunity, college awareness, and funding gaps that put a postsecondary degree out of the reach of so many young people. For example, just 3 in 10 non-college-completers are aware…
Ize, Jorge
2003-01-01
This book presents a new degree theory for maps which commute with a group of symmetries. This degree is no longer a single integer but an element of the group of equivariant homotopy classes of maps between two spheres and depends on the orbit types of the spaces. The authors develop completely the theory and applications of this degree in a self-contained presentation starting with only elementary facts. The first chapter explains the basic tools of representation theory, homotopy theory and differential equations needed in the text. Then the degree is defined and its main abstract properties are derived. The next part is devoted to the study of equivariant homotopy groups of spheres and to the classification of equivariant maps in the case of abelian actions. These groups are explicitely computed and the effects of symmetry breaking, products and composition are thorougly studied. The last part deals with computations of the equivariant index of an isolated orbit and of an isolated loop of stationary point...
Decision Making: Superiority Degree
Zhukovin, Vladimer; Alimbarashvili, Zurab
2010-01-01
It is introduced the concept of Superiority Degree one competitive decision over another. On the basis of this concept the mathematics theoretic structure is developed, which is part of pairs comparisons branch in modern decision making theory. It will be useful for practice and interesting for scientific research.
Braham, Matthew; van Hees, Martin
2009-01-01
The primary aim of this paper is to analyze the concept of degrees of causal contribution for actual events and examine the way in which it can be formally defined. This should go some way to filling out a gap in the legal and philosophical literature on causation. By adopting the conception of a ca
Diverse: Issues in Higher Education, 2012
2012-01-01
This article presents a list of the top 100 producers of associate, bachelor's and graduate degrees awarded to minority students based on research conducted by Dr. Victor M.H. Borden, professor of educational leadership and policy students at the Indiana University Bloomington. For the year 2012, the listings focus on Hispanic students. Data for…
Degree distribution in discrete case
Vertex degree of many network models and real-life networks is limited to non-negative integer. By means of measure and integral, the relation of the degree distribution and the cumulative degree distribution in discrete case is analyzed. The degree distribution, obtained by the differential of its cumulative, is only suitable for continuous case or discrete case with constant degree change. When degree change is not a constant but proportional to degree itself, power-law degree distribution and its cumulative have the same exponent and the mean value is finite for power-law exponent greater than 1. -- Highlights: → Degree change is the crux for using the cumulative degree distribution method. → It suits for discrete case with constant degree change. → If degree change is proportional to degree, power-law degree distribution and its cumulative have the same exponent. → In addition, the mean value is finite for power-law exponent greater than 1.
LI Xi-Han; DENG Fu-Guo; ZHOU Hong-Yu
2007-01-01
A general scheme for controlled teleportation of an arbitrary multi-qudit state with d-dimensional Greenberger-Horne-Zeilinger (GHZ) states is proposed. For an arbitrary m-qudit state, the sender Alice performs m generalized Bell-state projective measurements on her 2m qudits and the controllers need only take some single-particle measurements. The receiver Charlie can reconstruct the unknown m-qudit state by performing some single-qudit unitary operations on her particles if she cooperates with all the controllers. As the quantum channel is a sequence of maximally entangled GHZ states, the intrinsic efficiency for qudits in this scheme approaches 100% in principle.
Inverted Gabor holography principle for tailoring arbitrary shaped three-dimensional beams
Latychevskaia, Tatiana; Fink, Hans-Werner
2016-05-01
It is well known that by modifying the wavefront in a certain manner, the light intensity can be turned into a certain shape. However, all known light modulation techniques allow for limited light modifications only: focusing within a restricted region in space, shaping into a certain class of parametric curves along the optical axis or bending described by a quadratic-dependent deflection as in the case of Airy beams. We show a general case of classical light wavefront shaping that allows for intensity and phase redistribution into an arbitrary profile including pre-determined switching-off of the intensity. To create an arbitrary three-dimensional path of intensity, we represent the path as a sequence of closely packed individual point-like absorbers and simulate the in-line hologram of the created object set; when such a hologram is contrast inverted, thus giving rise to a diffractor, it creates the pre-determined three-dimensional path of intensity behind the diffractor under illumination. The crucial parameter for a smooth optical path is the sampling of the predetermined curves, which is given by the lateral and axial resolution of the optical system. We provide both, simulated and experimental results to demonstrate the power of this novel method.
Generating arbitrary photon-number entangled states for continuous-variable quantum informatics.
Lee, Su-Yong; Park, Jiyong; Lee, Hai-Woong; Nha, Hyunchul
2012-06-18
We propose two experimental schemes that can produce an arbitrary photon-number entangled state (PNES) in a finite dimension. This class of entangled states naturally includes non-Gaussian continuous-variable (CV) states that may provide some practical advantages over the Gaussian counterparts (two-mode squeezed states). We particularly compare the entanglement characteristics of the Gaussian and the non-Gaussian states in view of the degree of entanglement and the Einstein-Podolsky-Rosen correlation, and further discuss their applications to the CV teleportation and the nonlocality test. The experimental imperfection due to the on-off photodetectors with nonideal efficiency is also considered in our analysis to show the feasibility of our schemes within existing technologies. PMID:22714485
How the diffusivity profile reduces the arbitrariness of protein folding free energies
Hinczewski, Michael; Dzubiella, Joachim; Netz, Roland R
2010-01-01
The concept of a protein diffusing in its free energy folding landscape has been fruitful for both theory and experiment. Yet the choice of the reaction coordinate (RC) introduces an undesirable degree of arbitrariness into the problem. We analyze extensive simulation data of an alpha-helix in explicit water solvent as it stochastically folds and unfolds. The free energy profiles for different RCs exhibit significant variation, some having an activation barrier, others not. We show that this variation has little effect on the predicted folding kinetics if the diffusivity profiles are properly taken into account. This kinetic quasi-universality is rationalized by an RC rescaling, which, due to the reparameterization invariance of the Fokker-Planck equation, allows the combination of free energy and diffusivity effects into a single function, the rescaled free energy profile. This rescaled free energy indeed shows less variation among different RCs than the bare free energy and diffusivity profiles separately d...
Gao, He
2014-01-01
Recent broad-band observations of GRBs with the Fermi satellite call for a "hybrid" central engine, with both a hot "fireball" component and a cold "Poynting flux" component. We develop a theory of photosphere emission from such a hybrid relativistic outflow with an arbitrary dimensionless entropy $\\eta$ and magnetization $\\sigma_0$ at the central engine. We develop two approaches: a "bottom-up" approach to predict the temperature and luminosity of the photosphere emission and its relative brightness with respect to the non-thermal emission component from an optically thin region; and a "top-down" approach to diagnose central engine parameters based on the observed photosphere emission properties. For both approaches, we consider two possibilities: one is that the Poynting flux does not suffer significant dissipation beneath the photosphere, while the other is that there is such dissipation. From our bottom-up approach, we show that a variety of observed GRB prompt emission spectra with different degrees of p...
Robust Dynamical Decoupling for Arbitrary Quantum States of a Single NV Center in Diamond
Shim, J H; Zhang, J; Suter, D
2012-01-01
Dynamical decoupling is a powerful technique for extending the coherence time (T$_2$) of qubits. We apply this technique to the electron spin qubit of a single nitrogen-vacancy center in type IIa diamond. In a crystal with natural abundance of $^{13}$C nuclear spins, we extend the decoherence time up to 2.2 ms. This is the longest value reported to date and is close to the T1 value of this NV center (4 ms). Since of dynamical decoupling must perform well for arbitrary initial conditions, we measured the dependence on the initial state and compared the performance of different sequences with respect to initial state dependence and robustness to experimental imperfections.
An atom-by-atom assembler of defect-free arbitrary 2d atomic arrays
Barredo, Daniel; Lienhard, Vincent; Lahaye, Thierry; Browaeys, Antoine
2016-01-01
Large arrays of individually controlled atoms trapped in optical tweezers are a very promising platform for quantum engineering applications. However, to date, only disordered arrays have been demonstrated, due to the non-deterministic loading of the traps. Here, we demonstrate the preparation of fully loaded, two-dimensional arrays of up to 50 microtraps each containing a single atom, and arranged in arbitrary geometries. Starting from initially larger, half-filled matrices of randomly loaded traps, we obtain user-defined target arrays at unit filling. This is achieved with a real-time control system and a moving optical tweezers that performs a sequence of rapid atom moves depending on the initial distribution of the atoms in the arrays. These results open exciting prospects for quantum engineering with neutral atoms in tunable geometries.
Reed, Bryan W.; DeHope, William J.; Huete, Glenn; LaGrange, Thomas B.; Shuttlesworth, Richard M.
2016-02-23
An electron microscope is disclosed which has a laser-driven photocathode and an arbitrary waveform generator (AWG) laser system ("laser"). The laser produces a train of temporally-shaped laser pulses each being of a programmable pulse duration, and directs the laser pulses to the laser-driven photocathode to produce a train of electron pulses. An image sensor is used along with a deflector subsystem. The deflector subsystem is arranged downstream of the target but upstream of the image sensor, and has a plurality of plates. A control system having a digital sequencer controls the laser and a plurality of switching components, synchronized with the laser, to independently control excitation of each one of the deflector plates. This allows each electron pulse to be directed to a different portion of the image sensor, as well as to enable programmable pulse durations and programmable inter-pulse spacings.
Generalization of the electronic susceptibility for arbitrary molecular geometries
Scherrer, Arne; Dreßler, Christian; Ahlert, Paul; Sebastiani, Daniel
2016-04-01
We generalize the explicit representation of the electronic susceptibility χ[R](r, r') for arbitrary molecular geometries R. The electronic susceptibility is a response function that yields the response of the molecular electronic charge density at linear order to an arbitrary external perturbation. We address the dependence of this response function on the molecular geometry. The explicit representation of the molecular geometry dependence is achieved by means of a Taylor expansion in the nuclear coordinates. Our approach relies on a recently developed low-rank representation of the response function χ[R](r, r') which allows a highly condensed storage of the expansion and an efficient application within dynamical chemical environments. We illustrate the performance and accuracy of our scheme by computing the vibrationally induced variations of the response function of a water molecule and its resulting Raman spectrum.
Topological flat band models with arbitrary Chern numbers
Yang, Shuo; Gu, Zheng-Cheng; Sun, Kai; Das Sarma, S.
2012-12-01
We report the theoretical discovery of a systematic scheme to produce topological flat bands (TFBs) with arbitrary Chern numbers. We find that generically a multiorbital high Chern number TFB model can be constructed by considering multilayer Chern number C=1 TFB models with enhanced translational symmetry. A series of models are presented as examples, including a two-band model on a triangular lattice with a Chern number C=3 and an N-band square lattice model with C=N for an arbitrary integer N. In all these models, the flatness ratio for the TFBs is larger than 30 and increases with increasing Chern number. In the presence of appropriate interparticle interactions, these models are likely to lead to the formation of Abelian and non-Abelian fractional Chern insulators. As a simple example, we test the C=2 model with hardcore bosons at 1/3 filling, and an intriguing fractional quantum Hall state is observed.
Generation of Electromagnetic Waves with Arbitrary Orbital Angular Momentum Modes
Cheng, Li; Hong, Wei; Hao, Zhang-Cheng
2014-01-01
Recently, much attention has been focused on beams carrying orbital angular momentum (OAM) for radio communication. Here we experimentally demonstrate a planar-spiral phase plate (planar-SPP) for generating arbitrary mixed OAM beams. This proposed planar-SPP uses the concept of transmit array antenna having a perforated substrate to control the outputting phase for generating beams carrying OAM with arbitrary modes. As demonstrations, three planar-SPPs with a single OAM mode and two mixed OAM modes around 94 GHz have been investigated with design and experiments in this paper, respectively. The typical experimental intensity and phase patterns show that the proposed method of generating OAM beams really works. PMID:24770669
Experimental remote preparation of arbitrary photon polarization states
We demonstrate an experiment for remote preparation of arbitrary photon polarization states. With local operations, polarization measurement, and one way classical communication, any states lying on and inside the Poincare sphere can be remotely prepared. For arbitrary pure states, the efficiency is 100% with a communication cost of one entanglement bit and two classical bits. For mixed states, polarization insensitive measurement is introduced and the classical communication cost is one bit. Spontaneous parametric down-conversion (SPDC) is employed as an entanglement source. The remotely prepared qubits are estimated via quantum tomography process and fidelity between the experimentally prepared state and the expected state is considered to test the data. We achieve remote preparation of 13 states with fidelities all above 0.994
Quantum teleportation of an arbitrary superposition of atomic states
Chen, Qiong; Fang, Xi-Ming
2008-05-01
This paper proposes a scheme to teleport an arbitrary multi-particle two-level atomic state between two parties or an arbitrary zero- and one-photon entangled state of multi-mode between two high-Q cavities in cavity QED. This scheme is based on the resonant interaction between atom and cavity and does not involve Bell-state measurement. It investigates the fidelity of this scheme and find out the case of this unity fidelity of this teleportation. Considering the practical case of the cavity decay, this paper finds that the condition of the unity fidelity is also valid and obtains the effect of the decay of the cavity on the successful probability of the teleportation.
Sunrise: Polychromatic Dust Radiative Transfer in Arbitrary Geometries
Jonsson, P
2006-01-01
This paper describes Sunrise, a parallel, free Monte-Carlo code for the calculation of radiation transfer through astronomical dust. Sunrise uses an adaptive-mesh refinement grid to describe arbitrary geometries of emitting and absorbing/scattering media, with spatial dynamical range exceeding 10^4, and it can efficiently generate images of the emerging radiation at arbitrary points in space. In addition to the monochromatic radiative transfer typically used by Monte-Carlo codes, Sunrise is capable of propagating a range of wavelengths simultaneously. This ``polychromatic'' algorithm gives significant improvements in efficiency and accuracy when spectral features are calculated. Sunrise is used to study the effects of dust in hydrodynamic simulations of interacting galaxies, and the procedure for this is described. The code is tested against previously published results.
Fluid flow over arbitrary bottom topography in a channel
Panda, Srikumar
2016-05-01
In this paper, two-dimensional free surface potential flow over an arbitrary bottom in a channel is considered to analyze the behavior of the free surface profile using linear theory. It is assumed that the fluid is inviscid, incompressible and flow is irrotational. Perturbation analysis in conjunction with Fourier transform technique is employed to determine the first order corrections of some important physical quantities such as free surface profile, velocity potential, etc. From the practical point of view, one arbitrary bottom topography is considered to determine the free surface profile since the free surface profile depends on the bottom topography. It is found that the free surface profile is oscillatory in nature, representing a wave propagating downstream and no wave upstream.
Locally indistinguishable orthogonal product bases in arbitrary bipartite quantum system
Xu, Guang-Bao; Yang, Ying-Hui; Wen, Qiao-Yan; Qin, Su-Juan; Gao, Fei
2016-08-01
As we know, unextendible product basis (UPB) is an incomplete basis whose members cannot be perfectly distinguished by local operations and classical communication. However, very little is known about those incomplete and locally indistinguishable product bases that are not UPBs. In this paper, we first construct a series of orthogonal product bases that are completable but not locally distinguishable in a general m ⊗ n (m ≥ 3 and n ≥ 3) quantum system. In particular, we give so far the smallest number of locally indistinguishable states of a completable orthogonal product basis in arbitrary quantum systems. Furthermore, we construct a series of small and locally indistinguishable orthogonal product bases in m ⊗ n (m ≥ 3 and n ≥ 3). All the results lead to a better understanding of the structures of locally indistinguishable product bases in arbitrary bipartite quantum system.
Quantum teleportation of an arbitrary superposition of atomic states
Chen Qiong; Fang Xi-Ming
2008-01-01
This paper proposes a scheme to teleport an arbitrary multi-particle two-level atomic state between two parties or an arbitrary zero- and one-photon entangled state of multi-mode between two high-Q cavities in cavity QED.This scheme is based on the resonant interaction between atom and cavity and does not involve Bell-state measurement.It investigates the fidelity of this scheme and find out the case of this unity fidelity of this teleportation.Considering the practical case of the cavity decay,this paper finds that the condition of the unity fidelity is also valid and obtains the effect of the decay of the cavity on the successful probability of the teleportation.
The arbitrary l continuum states of the hyperbolic molecular potential
Wei, Gao-Feng, E-mail: fgwei_2000@163.com [School of Physics and Mechatronics Engineering, Xi' an University of Arts and Science, Xi' an 710065 (China); Chen, Wen-Li, E-mail: physwlchen@163.com [Department of Basic Science, Xi' an Peihua University, Xi' an 710065 (China); Dong, Shi-Hai, E-mail: dongsh2@yahoo.com [Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, Edificio 9, Unidad Profesional Adolfo López Mateos, Mexico D.F. 07738 (Mexico); Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803-4001 (United States)
2014-06-27
Within the framework of partial-wave method, we study in this Letter the arbitrary l continuum states of the Schrödinger equation with the hyperbolic molecular potential in terms of an improved approximation to the centrifugal term. We present the normalized radial wave functions and obtain analytical formula of phase shifts. In addition, the corresponding bound states are also discussed by studying the analytical properties of the scattering amplitude. We calculate the energy spectra and scattering phase shifts by the improved, previous approximations and the accurate methods, respectively and find that the improved approximation is better than the previous one since the present results are in better agreement with the accurate ones. - Highlights: • The hyperbolic potential with arbitrary l state is solved. • Improved approximation to centrifugal term is used. • Phase shift formula is derived analytically. • Accurate results are compared with the present results.
Arbitrary-order parasupersymmetric coherent states of quantum harmonic oscillator
Fakhri, H. [Faculty of Physics, Tabriz University, Tabriz (Iran, Islamic Republic of) and Research Institute for Fundamental Sciences, Tabriz (Iran, Islamic Republic of)]. E-mail: Hfakhri@ark.tabrizu.ac.ir; Bahadori, M.E. [Faculty of Physics, Tabriz University, Tabriz (IR): Research Institute for Fundamental Sciences, Tabriz (Iran)]. E-mail: Msph0977@ark.tabrizu.ac.ir
2000-10-13
The eigenstates of arbitrary-order parasupersymmetric Hamiltonian p corresponding to a particle with spin p/2 in the presence of a harmonic oscillator potential and constant magnetic field directed along the z-axis are constructed in terms of eigenstates of a one-dimensional harmonic oscillator. Also, parasupersymmetric coherent states with degenerate multiplicity of an ad hoc bosonic annihilation operator of parasupersymmetric eigenstates of the Hamiltonian mentioned above are calculated. (author)
Arbitrary-order parasupersymmetric coherent states of quantum harmonic oscillator
The eigenstates of arbitrary-order parasupersymmetric Hamiltonian p corresponding to a particle with spin p/2 in the presence of a harmonic oscillator potential and constant magnetic field directed along the z-axis are constructed in terms of eigenstates of a one-dimensional harmonic oscillator. Also, parasupersymmetric coherent states with degenerate multiplicity of an ad hoc bosonic annihilation operator of parasupersymmetric eigenstates of the Hamiltonian mentioned above are calculated. (author)
Arbitrary rotation and entanglement of flux SQUID qubits
Kis, Z
2003-01-01
We propose a new approach for the arbitrary rotation of a three-level SQUID qubit and describe a new strategy for the creation of coherence transfer and entangled states between two three-level SQUID qubits. The former is succeeded by exploring the coupled-uncoupled states of the system when irradiated with two microwave pulses, and the latter is succeeded by placing the SQUID qubits into a microwave cavity and used adiabatic passage methods for their manipulation.
Solving the Homogeneous Boltzmann Equation with Arbitrary Scattering Kernel
Hohenegger, A.
2008-01-01
With applications in astroparticle physics in mind, we generalize a method for the solution of the nonlinear, space homogeneous Boltzmann equation with isotropic distribution function to arbitrary matrix elements. The method is based on the expansion of the matrix element in terms of two cosines of the "scattering angles". The scattering functions used by previous authors in particle physics for matrix elements in Fermi-approximation are retrieved as lowest order results in this expansion. Th...
Quantification of Entanglement of Teleportation in Arbitrary Dimensions
Sazim, Sk; Adhikari, Satyabrata; Banerjee, Subhashish; Pramanik, T.
2012-01-01
We study bipartite entangled states in arbitrary dimensions and obtain different bounds for the entanglement measures in terms of teleportation fidelity. We find that there is a simple relation between negativity and teleportation fidelity for pure states but for mixed states, an upper bound is obtained for negativity in terms of teleportation fidelity using convex-roof extension negativity (CREN). However, with this it is not clear how to distinguish betweeen states useful for teleportation ...
Self-forces on static bodies in arbitrary dimensions
Harte, Abraham I.; Flanagan, Éanna É.; Taylor, Peter
2016-06-01
We derive exact expressions for the scalar and electromagnetic self-forces and self-torques acting on arbitrary static extended bodies in arbitrary static spacetimes with any number of dimensions. Nonperturbatively, our results are identical in all dimensions. Meaningful point particle limits are quite different in different dimensions, however. These limits are defined and evaluated, resulting in simple "regularization algorithms" which can be used in concrete calculations. In these limits, self-interaction is shown to be progressively less important in higher numbers of dimensions; it generically competes in magnitude with increasingly high-order extended-body effects. Conversely, we show that self-interaction effects can be relatively large in 1 +1 and 2 +1 dimensions. Our motivations for this work are twofold: First, no previous derivation of the self-force has been provided in arbitrary dimensions, and heuristic arguments presented by different authors have resulted in conflicting conclusions. Second, the static self-force problem in arbitrary dimensions provides a valuable test bed with which to continue the development of general, nonperturbative methods in the theory of motion. Several new insights are obtained in this direction, including a significantly improved understanding of the renormalization process. We also show that there is considerable freedom to use different "effective fields" in the laws of motion—a freedom which can be exploited to optimally simplify specific problems. Different choices give rise to different inertias, gravitational forces, and electromagnetic or scalar self-forces, but there is a sense in which none of these quantities are individually accessible to experiment. Certain combinations are observable, however, and these remain invariant under all possible field redefinitions.
Universality and Borel summability of arbitrary quartic tensor models
Delepouve, Thibault; Gurau, Razvan; Rivasseau, Vincent
2016-01-01
We extend the study of \\emph{melonic} quartic tensor models to models with arbitrary quartic interactions. This extension requires a new version of the loop vertex expansion using several species of intermediate fields and iterated Cauchy-Schwarz inequalities. Borel summability is proven, uniformly as the tensor size $N$ becomes large. Every cumulant is written as a sum of explicitly calculated terms plus a remainder, suppressed in $1/N$. Together with the existence of the large $N$ limit of ...
Cell assemblies at multiple time scales with arbitrary lag distributions
Russo, Eleonora; Durstewitz, Daniel
2016-01-01
Hebb's idea of a cell assembly as the fundamental unit of neural information processing has dominated neuroscience like no other theoretical concept within the past 60 years. A range of different physiological phenomena, from precisely synchronized spiking to broadly simultaneous rate increases, has been subsumed under this term. Yet progress in this area is hampered by the lack of statistical tools that would enable to extract assemblies with arbitrary constellations of time lags, and at mul...
Ordering and transport in generalized continua with arbitrary order parameters
With reference to two phase solids, Gurtin has recently formulated a unified framework for Ginzburg-Landau's and Cahn-Hilliard's equations. The present paper deals with its possible extension to generalized continua described by arbitrary tensor-order parameters. The role of the configurational entropy is discussed in detail. Such an entropy allows to obtain kinetic rules even in the theoretical limit case of frictionless materials. (orig.)
Ordering and transport in generalized continua with arbitrary order parameters
Mariano, P.M.; Augusti, G. [Rome Univ. (Italy). Dipt. di Ingegneria Strutturale e Geotecnica
1998-11-01
With reference to two phase solids, Gurtin has recently formulated a unified framework for Ginzburg-Landau`s and Cahn-Hilliard`s equations. The present paper deals with its possible extension to generalized continua described by arbitrary tensor-order parameters. The role of the configurational entropy is discussed in detail. Such an entropy allows to obtain kinetic rules even in the theoretical limit case of frictionless materials. (orig.) 15 refs.
Multilevel Polarization of Polar Codes Over Arbitrary Discrete Memoryless Channels
Sahebi, Aria G.; Pradhan, S. Sandeep
2011-01-01
It is shown that polar codes achieve the symmetric capacity of discrete memoryless channels with arbitrary input alphabet sizes. It is shown that in general, channel polarization happens in several, rather than only two levels so that the synthesized channels are either useless, perfect or "partially perfect". Any subset of the channel input alphabet which is closed under addition, induces a coset partition of the alphabet through its shifts. For any such partition of the input alphabet, ther...
Consistency Conditions for Brane Worlds in Arbitrary Dimensions
Leblond, F; Winters, D J; Leblond, Frederic; Myers, Robert C.; Winters, David J.
2001-01-01
We consider ``brane world sum rules'' for compactifications involving an arbitrary number of spacetime dimensions. One of the most striking results derived from such consistency conditions is the necessity for negative tension branes to appear in five--dimensional scenarios. We show how this result is easily evaded for brane world models with more than five dimensions. As an example, we consider a novel realization of the Randall--Sundrum scenario in six dimensions involving only positive tension branes.
Entanglement of arbitrary spin fields in noninertial frames
We generalize the study of fermionic and bosonic entanglement in noninertial frames to fields of arbitrary spin and beyond the single-mode approximation. After the general analysis we particularize for two interesting cases: entanglement between an inertial and an accelerated observer for massless fields of spin 1 (electromagnetic) and spin 3/2 (Rarita-Schwinger). We show that, in the limit of infinite acceleration, no significant differences appear between the different spin fields for the states considered.
Probabilistic Teleportation of an Arbitrary Two-particle State
顾永建; 郑亦庄; 郭光灿
2001-01-01
A scheme for the teleportation of an arbitrary two-particle state via two non-maximally entangled particle pairsis proposed. We show that teleportation can be successfully realized with a certain probability if the receiveradopts an appropriate unitary-reduction strategy. A specific strategy is provided in detail The probability of successful teleportation is determined by the smaller coefficients of the two entangled pairs.
Bark frequency transform using an arbitrary order allpass filter1
Ghosh, Prasanta Kumar; Narayanan, Shrikanth S.
2010-01-01
We propose an arbitrary order stable allpass filter structure for frequency transformation from Hertz to Bark scale. According to the proposed filter structure, the first order allpass filter is causal, but the second and higher order allpass filters are non-causal. We find that the accuracy of the transformation significantly improves when a second or higher order allpass filter is designed compared to a first order allpass filter. We also find that the RMS error of the transformation monoto...
One-plaquette (2 + 1)-model with arbitrary action
This paper investigates a one-plaquette model with arbitrary lattice action for the compact group G(N) in the framework of the Hamiltonian approach. The 1/N perturbation theory an the strong coupling expansion are considered in the model. The existence of a phase transition of the third kind in the limit of large N is proved for a large class of one-plaquette actions
One-plaquette (2 + 1)-model with arbitrary action
Azakov, S.I.
1985-08-01
This paper investigates a one-plaquette model with arbitrary lattice action for the compact group G(N) in the framework of the Hamiltonian approach. The 1/N perturbation theory an the strong coupling expansion are considered in the model. The existence of a phase transition of the third kind in the limit of large N is proved for a large class of one-plaquette actions.
Arbitrary Order Charge Approximation Event Driven Phase Lock Loop Model
Daniels, Brian; Farrell, Ronan; Baldwin, Gerard
2004-01-01
An alternative technique for the derivation of an event driven phase lock loop (PLL) model is presented enabling the modelling of higher order PLLs. Event driven models have previously been developed for 2nd, and 3rd order PLLs [1,2,3], however for higher order systems (5th, 6th etc.) the derivation of the loop filter difference equations are not amenable. This paper introduces a technique to model PLLs with arbitrary order filters that removes the restriction on the loop...
Arbitrary Waveform Generator for Quantum Information Processing with Trapped Ions
R. Bowler; Warring, U.; Britton, J. W.; Sawyer, B. C.; Amini, J.
2013-01-01
Atomic ions confined in multi-electrode traps have been proposed as a basis for scalable quantum information processing. This scheme involves transporting ions between spatially distinct locations by use of time-varying electric potentials combined with laser or microwave pulses for quantum logic in specific locations. We report the development of a fast multi-channel arbitrary waveform generator for applying the time-varying electric potentials used for transport and for shaping quantum logi...
Generalized Prediction Intervals for Arbitrary Distributed High-Dimensional Data
Kuehn, Steffen
2008-01-01
This paper generalizes the traditional statistical concept of prediction intervals for arbitrary probability density functions in high-dimensional feature spaces by introducing significance level distributions, which provides interval-independent probabilities for continuous random variables. The advantage of the transformation of a probability density function into a significance level distribution is that it enables one-class classification or outlier detection in a direct manner.
Synthesis of an arbitrary ABCD system with fixed lens positions.
Bastiaans, Martin J; Alieva, Tatiana
2006-08-15
On the basis of the modified Iwasawa decomposition of a lossless first-order optical system as a cascade of a lens, a magnifier, and a so-called orthosymplectic system, we show how to synthesize an arbitrary ABCD system (with two transverse coordinates) by means of lenses and predetermined sections of free space such that the lenses are located at fixed positions. PMID:16880840
Bosonization of interacting fermions in arbitrary dimensions / Peter Kopietz
Kopietz, Peter
2006-01-01
This review is a summary of my work (partially in collaboration with Kurt Schoenhammer) on higher-dimensional bosonization during the years 1994-1996. It has been published as a book entitled "Bosonization of interacting fermions in arbitrary dimensions" by Springer Verlag (Lecture Notes in Physics m48, Springer, Berlin, 1997). I have NOT revised this review, so that there is no reference to the literature after 1996. However, the basic ideas underlying the functional bosonization approach ou...
ON THE SCATTERING OF ARBITRARY SHAPE MICROSTRIP PATCH
He Xiulian; Gong Shuxi; Liu Qizhong
2004-01-01
In this letter, discrete complex image method is employed to compute the Green's functions in the spatial domain, which improves the speed of evaluating the impedance matrix.The triangle vector basis function--RWG, is used to simulate the current distribution in order to compute the scattering properties of arbitrary shape microstrip patch without the staircase approximation. The numerical result shows the validity of the proposed method.
Acoustic Illusion near Boundaries of Arbitrary Curved Geometry
Weiwei Kan; Bin Liang; Xuefeng Zhu; Ruiqi Li; Xinye Zou; Haodong Wu; Jun Yang; Jianchun Cheng
2013-01-01
We have proposed a scheme and presented the first experimental demonstration of acoustic illusion, by using anisotropic metamaterials to manipulate the acoustic field near boundaries of arbitrary curved geometry. Numerical simulations and experimental results show that in the presence of an illusion cloak, any object can be acoustically transformed into another object. The designed illusion cloak simply comprises positive-index anisotropic materials whose material parameters are non-singular,...
Irreducible Cartesian tensors of highest weight, for arbitrary order
Mane, S. R.
2016-03-01
A closed form expression is presented for the irreducible Cartesian tensor of highest weight, for arbitrary order. Two proofs are offered, one employing bookkeeping of indices and, after establishing the connection with the so-called natural tensors and their projection operators, the other one employing purely coordinate-free tensor manipulations. Some theorems and formulas in the published literature are generalized from SO(3) to SO(n), for dimensions n ≥ 3.
Resonant tunneling in a Luttinger liquid for arbitrary barrier transmission
Huegle, S.; Egger, R.
2003-01-01
A numerically exact dynamical quantum Monte Carlo approach has been developed and applied to transport through a double barrier in a Luttinger liquid with arbitrary transmission. For strong transmission, we find broad Fabry-Perot Coulomb blockade peaks, with a lineshape parametrized by a single parameter, but at sufficiently low temperatures, non-Lorentzian universal lineshapes characteristic of coherent resonant tunneling emerge, even for strong interactions. For weak transmission, our data ...
Arbitrary Finite-time Tracking Control for Magnetic Levitation Systems
Xuan-Toa Tran; Hee-Jun Kang
2014-01-01
In this paper, an arbitrary finite-time tracking control (AFTC) method is developed for magnetic levitation systems with uncertain dynamics and external disturbances. By introducing a novel augmented sliding- mode manifold function, the proposed method can eliminate the singular problem in traditional terminal sliding-mode control, as well as the reaching-phase problem. Moreover, the tracking errors can reach the reference value with faster convergence and better tracking precision in arbitra...
Compound words prompt arbitrary semantic associations in conceptual memory
GuillaumeThierry; RhondaMcclain
2014-01-01
Linguistic relativity theory has received empirical support in domains such as colour perception and object categorisation. It is unknown however, whether relations between words idiosyncratic to language impact nonverbal representations and conceptualisations. For instance, would one consider the concepts of horse and sea as related were it not for the existence of the compound seahorse? Here, we investigated such arbitrary conceptual relationships using a non-linguistic picture relatedness ...
Temperature-independent Casimir-Polder forces in arbitrary geometries
Ellingsen, Simen Å.; Buhmann, Stefan Yoshi; Scheel, Stefan
2011-01-01
We show that the Casimir-Polder potential of a particle in an energy eigenstate at nonretarded distance from a well-conducting body of arbitrary shape is independent of the environment temperature. This is true even when the thermal photon numbers at the relevant atomic transition energies are large. A compact expression is obtained for the temperature-independent potential, which can greatly simplify calculations in nontrivial geometries for experimentally relevant systems such as Rydberg at...
In this repport is offered, to scientist and technical people, a numeric tool consisting in a FORTRAN program, of interactive use, with destination to make lineal 'least squares', fittings on any set of empirical observations. The method based in the orthogonal functions (for discrete case), instead of direct solving the equations system, is used. The procedure includes also the optionally facilities of: variable change, direct interpolation, correlation non linear factor, 'weights' of the points, confidence intervals (Scheffe, Miller, Student), and plotting results. (Author). 10 refs
In this report is offered, to scientist and technical people, a numeric tool consisting in a FORTRAN program, of interactive use, with destination to make lineal least squares, fittings on any set of empirical observations. The method based in the orthogonal functions (for discrete case), instead of direct solving the equations system, is used. The procedure includes also the optionally facilities of: variable change, direct interpolation, correlation non linear factor, weightsof the points, confidence intervals (Schelle, Miller, Student), and plotting results. (Author) 10 refs
SPIDYAN, a MATLAB library for simulating pulse EPR experiments with arbitrary waveform excitation.
Pribitzer, Stephan; Doll, Andrin; Jeschke, Gunnar
2016-02-01
Frequency-swept chirp pulses, created with arbitrary waveform generators (AWGs), can achieve inversion over a range of several hundreds of MHz. Such passage pulses provide defined flip angles and increase sensitivity. The fact that spectra are not excited at once, but single transitions are passed one after another, can cause new effects in established pulse EPR sequences. We developed a MATLAB library for simulation of pulse EPR, which is especially suited for modeling spin dynamics in ultra-wideband (UWB) EPR experiments, but can also be used for other experiments and NMR. At present the command line controlled SPin DYnamics ANalysis (SPIDYAN) package supports one-spin and two-spin systems with arbitrary spin quantum numbers. By providing the program with appropriate spin operators and Hamiltonian matrices any spin system is accessible, with limits set only by available memory and computation time. Any pulse sequence using rectangular and linearly or variable-rate frequency-swept chirp pulses, including phase cycling can be quickly created. To keep track of spin evolution the user can choose from a vast variety of detection operators, including transition selective operators. If relaxation effects can be neglected, the program solves the Liouville-von Neumann equation and propagates spin density matrices. In the other cases SPIDYAN uses the quantum mechanical master equation and Liouvillians for propagation. In order to consider the resonator response function, which on the scale of UWB excitation limits bandwidth, the program includes a simple RLC circuit model. Another subroutine can compute waveforms that, for a given resonator, maintain a constant critical adiabaticity factor over the excitation band. Computational efficiency is enhanced by precomputing propagator lookup tables for the whole set of AWG output levels. The features of the software library are discussed and demonstrated with spin-echo and population transfer simulations. PMID:26773526
SPIDYAN, a MATLAB library for simulating pulse EPR experiments with arbitrary waveform excitation
Pribitzer, Stephan; Doll, Andrin; Jeschke, Gunnar
2016-02-01
Frequency-swept chirp pulses, created with arbitrary waveform generators (AWGs), can achieve inversion over a range of several hundreds of MHz. Such passage pulses provide defined flip angles and increase sensitivity. The fact that spectra are not excited at once, but single transitions are passed one after another, can cause new effects in established pulse EPR sequences. We developed a MATLAB library for simulation of pulse EPR, which is especially suited for modeling spin dynamics in ultra-wideband (UWB) EPR experiments, but can also be used for other experiments and NMR. At present the command line controlled SPin DYnamics ANalysis (SPIDYAN) package supports one-spin and two-spin systems with arbitrary spin quantum numbers. By providing the program with appropriate spin operators and Hamiltonian matrices any spin system is accessible, with limits set only by available memory and computation time. Any pulse sequence using rectangular and linearly or variable-rate frequency-swept chirp pulses, including phase cycling can be quickly created. To keep track of spin evolution the user can choose from a vast variety of detection operators, including transition selective operators. If relaxation effects can be neglected, the program solves the Liouville-von Neumann equation and propagates spin density matrices. In the other cases SPIDYAN uses the quantum mechanical master equation and Liouvillians for propagation. In order to consider the resonator response function, which on the scale of UWB excitation limits bandwidth, the program includes a simple RLC circuit model. Another subroutine can compute waveforms that, for a given resonator, maintain a constant critical adiabaticity factor over the excitation band. Computational efficiency is enhanced by precomputing propagator lookup tables for the whole set of AWG output levels. The features of the software library are discussed and demonstrated with spin-echo and population transfer simulations.
Dynamic response with arbitrary initial conditions using the FFT
U. Lee
2006-08-01
Full Text Available Purpose: An FFT-based dynamic analysis method is proposed for damped linear discrete dynamic systemssubjected to arbitrary nonzero initial conditions.Design/methodology/approach: The DFT theory is used to develop an FFT-based spectral analysis method.The total dynamic response is considered as the sum of the forced vibration response part and the free vibrationresponse part. The forced vibration response part is obtained from the dynamic stiffness matrix and the Fouriercomponents of excitation force based on the concept of Duhamel’s integral, and the free vibration response partis obtained by determining its integral constant to satisfy arbitrary initial conditions in the frequency-domain.Findings: Through some numeral examples, the proposed FFT-based dynamic analysis method is shown toprovide very successful solutions which satisfy all arbitrary non-zero initial conditions.Research limitations/implications: (not applicable.Practical implications: (not applicable.Originality/value: The present FFT-based method is unique because it does not use the superposition ofcorrective free vibration solution or the pseudo-force concept used by other researchers to take into account thenon-zero initial conditions.
Computing with Hereditarily Finite Sequences
Tarau, Paul
2011-01-01
e use Prolog as a flexible meta-language to provide executable specifications of some fundamental mathematical objects and their transformations. In the process, isomorphisms are unraveled between natural numbers and combinatorial objects (rooted ordered trees representing hereditarily finite sequences and rooted ordered binary trees representing G\\"odel's System {\\bf T} types). This paper focuses on an application that can be seen as an unexpected "paradigm shift": we provide recursive definitions showing that the resulting representations are directly usable to perform symbolically arbitrary-length integer computations. Besides the theoretically interesting fact of "breaking the arithmetic/symbolic barrier", the arithmetic operations performed with symbolic objects like trees or types turn out to be genuinely efficient -- we derive implementations with asymptotic performance comparable to ordinary bitstring implementations of arbitrary-length integer arithmetic. The source code of the paper, organized as a ...
When Graduate Degrees Prostitute the Educational Process: Degrees Gone Wild
Lumadue, Richard T.
2006-01-01
Graduate degrees prostitute the educational process when they are sold to consumers by unaccredited degree/diploma mills as being equivalent to legitimate, bona-fide degrees awarded by accredited graduate schools. This article carefully analyzes the serious problems of bogus degrees and their association with the religious higher education…
Arbitrary protein−protein docking targets biologically relevant interfaces
Martin Juliette
2012-05-01
Full Text Available Abstract Background Protein-protein recognition is of fundamental importance in the vast majority of biological processes. However, it has already been demonstrated that it is very hard to distinguish true complexes from false complexes in so-called cross-docking experiments, where binary protein complexes are separated and the isolated proteins are all docked against each other and scored. Does this result, at least in part, reflect a physical reality? False complexes could reflect possible nonspecific or weak associations. Results In this paper, we investigate the twilight zone of protein-protein interactions, building on an interesting outcome of cross-docking experiments: false complexes seem to favor residues from the true interaction site, suggesting that randomly chosen partners dock in a non-random fashion on protein surfaces. Here, we carry out arbitrary docking of a non-redundant data set of 198 proteins, with more than 300 randomly chosen "probe" proteins. We investigate the tendency of arbitrary partners to aggregate at localized regions of the protein surfaces, the shape and compositional bias of the generated interfaces, and the potential of this property to predict biologically relevant binding sites. We show that the non-random localization of arbitrary partners after protein-protein docking is a generic feature of protein structures. The interfaces generated in this way are not systematically planar or curved, but tend to be closer than average to the center of the proteins. These results can be used to predict biological interfaces with an AUC value up to 0.69 alone, and 0.72 when used in combination with evolutionary information. An appropriate choice of random partners and number of docking models make this method computationally practical. It is also noted that nonspecific interfaces can point to alternate interaction sites in the case of proteins with multiple interfaces. We illustrate the usefulness of arbitrary docking
Arbitrary protein−protein docking targets biologically relevant interfaces
Protein-protein recognition is of fundamental importance in the vast majority of biological processes. However, it has already been demonstrated that it is very hard to distinguish true complexes from false complexes in so-called cross-docking experiments, where binary protein complexes are separated and the isolated proteins are all docked against each other and scored. Does this result, at least in part, reflect a physical reality? False complexes could reflect possible nonspecific or weak associations. In this paper, we investigate the twilight zone of protein-protein interactions, building on an interesting outcome of cross-docking experiments: false complexes seem to favor residues from the true interaction site, suggesting that randomly chosen partners dock in a non-random fashion on protein surfaces. Here, we carry out arbitrary docking of a non-redundant data set of 198 proteins, with more than 300 randomly chosen "probe" proteins. We investigate the tendency of arbitrary partners to aggregate at localized regions of the protein surfaces, the shape and compositional bias of the generated interfaces, and the potential of this property to predict biologically relevant binding sites. We show that the non-random localization of arbitrary partners after protein-protein docking is a generic feature of protein structures. The interfaces generated in this way are not systematically planar or curved, but tend to be closer than average to the center of the proteins. These results can be used to predict biological interfaces with an AUC value up to 0.69 alone, and 0.72 when used in combination with evolutionary information. An appropriate choice of random partners and number of docking models make this method computationally practical. It is also noted that nonspecific interfaces can point to alternate interaction sites in the case of proteins with multiple interfaces. We illustrate the usefulness of arbitrary docking using PEBP (Phosphatidylethanolamine binding
Most probable degree distribution at fixed structural entropy
Ginestra Bianconi
2008-06-01
The structural entropy is the entropy of the ensemble of uncorrelated networks with given degree sequence. Here we derive the most probable degree distribution emerging when we distribute stubs (or half-edges) randomly through the nodes of the network by keeping fixed the structural entropy. This degree distribution is found to decay as a Poisson distribution when the entropy is maximized and to have a power-law tail with an exponent → 2 when the entropy is minimized.
Haeseler, Friedrich
2003-01-01
Automatic sequences are sequences which are produced by a finite automaton. Although they are not random they may look as being random. They are complicated, in the sense of not being not ultimately periodic, they may look rather complicated, in the sense that it may not be easy to name the rule by which the sequence is generated, however there exists a rule which generates the sequence. The concept automatic sequences has special applications in algebra, number theory, finite automata and formal languages, combinatorics on words. The text deals with different aspects of automatic sequences, in particular:· a general introduction to automatic sequences· the basic (combinatorial) properties of automatic sequences· the algebraic approach to automatic sequences· geometric objects related to automatic sequences.
Degree-degree dependencies in random graphs with heavy-tailed degrees
Hofstad, van der Remco; Litvak, Nelly
2014-01-01
Mixing patterns in large self-organizing networks, such as the Internet, the World Wide Web, social, and biological networks are often characterized by degree-degree dependencies between neighboring nodes. In assortative networks, the degree-degree dependencies are positive (nodes with similar degre
Arbitrary Multicolor Photodetection by Hetero-integrated Semiconductor Nanostructures
Liwen Sang; Junqing Hu; Rujia Zou; Yasuo Koide; Meiyong Liao
2013-01-01
The typical photodetectors can only detect one specific optical spectral band, such as InGaAs and graphene-PbS quantum dots for near-infrared (NIR) light detection, CdS and Si for visible light detection, and ZnO and III-nitrides for UV light detection. So far, none of the developed photodetector can achieve the multicolor detection with arbitrary spectral selectivity, high sensitivity, high speed, high signal-to-noise ratio, high stability, and simplicity (called 6S requirements). Here, we p...
Simulation method of arbitrary energy distributed nuclear signals
In this paper, according to the random characteristic of pulse amplitude and time interval of two adjacent pules, we discuss simulation methods of nuclear signal statistical distribution. When energy randomness of nuclear random signal is simulated, the statistical distribution can be decomposed into uniform distribution, Gaussian distribution, exponential distribution, Poisson distribution, multinomial distribution etc, and can be realized by methods we proposed in this paper. Arbitrary energy distributed nuclear signal that cannot be decomposed easily can also be realized by the methods, and simulation effect is excellent. (authors)
Phase Matching of SHG in Arbitrary Directions of Biaxial Crystals
YANG Shengli; CHEN Mouzhi
2002-01-01
In this paper, propagation and polarization characteristics of optical waves in arbitrary directions in a biaxial crystal are analyzed, and universal relationships of refractive index dependence on their propagation directions and the principal refractive indices for two perpendicular polarization waves propagating in arbitrarily directions are derived from indicatrix equation. By using these relationships, methods of collinear phase matching (PM) of SHG are developed, and general expressions of the collinear PM angle dependent of the principal indices are given for SHG in arbitrarily directions. The expressions may be used to make optimization design of PM by computer for the SHG and to select optimum PM direction and to raise the SHG conversion efficiencies.
Teleportation of an arbitrary three-particle state
陈立冰
2002-01-01
We propose two schemes for teleporting an arbitrary three-particle state. In the first scheme, a two-particle state and a three-particle entangled state (both non-maximally entangled states) are used as quantum channels, while in the second scheme, three non-maximally entangled particle pairs are employed as quantum channels. We show that teleportation can be successfully realized with certain probability if a receiver adopts some appropriate unitary transformations. Their success probabilities and the classical communication costs are different.
Revenue comparisons for auctions when bidders have arbitrary types
Yeon-Koo Che
2006-03-01
Full Text Available This paper develops a methodology for characterizing expected revenue from auctions when bidders' types come from an arbitrary distribution. In particular, types may be multidimensional, and there may be mass points in the distribution. One application extends existing revenue equivalence results. Another application shows that first-price auctions yield higher expected revenue than second-price auctions when bidders are risk averse and face financial constraints. This revenue ranking extends to risk-averse bidders with general forms of non-expected utility preferences.
Yang-Mills Spectrum with an Arbitrary Simple Gauge Algebra
The mass spectrum of pure Yang-Mills theory in 3 + 1 dimensions is discussed for an arbitrary simple gauge algebra within a quasi gluon picture. The general structure of the low-lying gluelump and glueball spectrum is shown to be common to all algebras, excepted the lightest C = - glueballs that only exist when the gauge algebra is Ar≥2. The shape of the static energy between adjoint sources is also discussed assuming the Casimir scaling hypothesis and finally, the obtained results are shown to be consistent with existing lattice data in the large-N limit of an su(N) gauge algebra. (author)
Creating arbitrary arrays of two-dimensional topological defects
Murray, Bryce S.; Pelcovits, Robert A.; Rosenblatt, Charles
2014-11-01
An atomic force microscope was used to scribe a polyimide-coated substrate with complex patterns that serve as an alignment template for a nematic liquid crystal. By employing a sufficiently large density of scribe lines, two-dimensional topological defect arrays of arbitrary defect strength were patterned on the substrate. When used as the master surface of a liquid crystal cell, in which the opposing slave surface is treated for planar degenerate alignment, the liquid crystal adopts the pattern's alignment with a disclination line emanating at the defect core on one surface and terminating at the other surface.
Minimum-Energy Bivariate Wavelet Frame with Arbitrary Dilation Matrix
Fengjuan Zhu
2013-01-01
Full Text Available In order to characterize the bivariate signals, minimum-energy bivariate wavelet frames with arbitrary dilation matrix are studied, which are based on superiority of the minimum-energy frame and the significant properties of bivariate wavelet. Firstly, the concept of minimum-energy bivariate wavelet frame is defined, and its equivalent characterizations and a necessary condition are presented. Secondly, based on polyphase form of symbol functions of scaling function and wavelet function, two sufficient conditions and an explicit constructed method are given. Finally, the decomposition algorithm, reconstruction algorithm, and numerical examples are designed.
Classification of arbitrary multipartite entangled states under local unitary equivalence
We propose a practical method for finding the canonical forms of arbitrary dimensional multipartite entangled states, either pure or mixed. By extending the technique developed in one of our recent works, the canonical forms for the mixed N-partite entangled states are constructed where they have inherited local unitary symmetries from their corresponding N + 1 pure state counterparts. A systematic scheme to express the local symmetries of the canonical form is also presented, which provides a feasible way of verifying the local unitary equivalence for two multipartite entangled states. (paper)
Controlling electromagnetic fields at boundaries of arbitrary geometries
Teo, Jonathon Yi Han; Wong, Liang Jie; Molardi, Carlo; Genevet, Patrice
2016-08-01
Rapid developments in the emerging field of stretchable and conformable photonics necessitate analytical expressions for boundary conditions at metasurfaces of arbitrary geometries. Here, we introduce the concept of conformal boundary optics: a design theory that determines the optical response for designer input and output fields at such interfaces. Given any object, we can realize coatings to achieve exotic effects like optical illusions and anomalous diffraction behavior. This approach is relevant to a broad range of applications from conventional refractive optics to the design of the next-generation of wearable optical components. This concept can be generalized to other fields of research where designer interfaces with nontrivial geometries are encountered.
A Proof for a Theorem of Wald in Arbitrary Dimensions
Tan, H S
2009-01-01
Static, axisymmetric solutions form a large class of important black holes in classical GR. In four dimensions, the existence of their most general metric ansatz relies on the fact that two-dimensional subspaces of the tangent space at each point spanned by vectors orthogonal to the time-translation and rotation Killing fields are integrable. This was first proved by Wald via an application of Frobenius theorem. In this note, we furnish an elementary proof for this theorem by Wald in arbitrary dimensions which yields the metric ansatz for the most general solution of the D-dimensional vacuum Einstein equations that admits D-2 orthogonal and commuting Killing vector fields.
A Novel Memory Compress Algorithm for Arbitrary Waveform Generator
吕铁良; 仇玉林
2000-01-01
A memory compress algorithm for 12-bit Arbitrary Waveform Generator (AWG) is presented and optimized. It can compress waveform memory for a sinusoid to 16× 13hits with a Spurious-Free Dynamic Range (SFDR) 90.7dBc (1/1890 of uncompressed memory at the same SFDR) and to 8× 12bits with a SFDR 79dBc. Its hardware cost is six adders and two multipliers. Exploiting this memory compress technique makes it possible to build a high performance AWG on a chip.
Duality for massive spin two theories in arbitrary dimensions
Gonzalez, B; Khoudeir, A.; Montemayor, R.; Urrutia, L. F.
2008-01-01
Using the parent Lagrangian approach we construct a dual formulation, in the sense originally proposed by Curtright and Freund, of a massive spin two Fierz-Pauli theory in arbitrary dimensions $D$. This is achieved in terms of a mixed symmetry tensor $T_{A[B_{1}B_{2}... B_{D-2}]}$, without the need of auxiliary fields. The relation of this method with an alternative formulation based on a gauge symmetry principle proposed by Zinoviev is elucidated. We show that the latter formulation in four ...
Isotropy theorem for arbitrary-spin cosmological fields
Cembranos, J A R; Jareño, S J Núñez
2013-01-01
We show that the energy-momentum tensor of homogeneous fields of arbitrary spin in an expanding universe is always isotropic in average provided the fields remain bounded and evolve rapidly compared to the rate of expansion. An analytic expression for the average equation of state is obtained for Lagrangians with generic power-law kinetic and potential terms. As an example we consider the behavior of a spin-two field in the standard Fierz-Pauli theory of massive gravity. The results can be extended to general space-time geometries for locally inertial observers.
A symplectic integrator with arbitrary vector and scalar potentials
We study a new class of symplectic integrators for particles in arbitrary, time-dependent vector and scalar potentials. The methods were introduced in [Y.K. Wu, E. Forest, D.S. Robin, Phys. Rev. E 68 (2003) 046502] and are based on the ability to integrate Hamiltonians of the form (pi-ai(q))2 exactly for a finite time-step. We show that the integrators are symplectic in the non-relativistic case but not symplectic in the full six-dimensional phase space for relativistic Hamiltonians
Temperature-independent Casimir-Polder forces in arbitrary geometries
Ellingsen, Simen Å; Scheel, Stefan
2011-01-01
We show that the Casimir-Polder potential of a particle in an energy eigenstate at nonretarded distance from a well-conducting body of arbitrary shape is independent of the environment temperature. This is true even when the thermal photon numbers at the relevant atomic transition energies are large. A compact expression is obtained for the temperature-independent potential, which can greatly simplify calculations in nontrivial geometries for experimentally relevant systems such as Rydberg atoms and polar molecules. We give criteria for the validity of our temperature-independent result. They are illustrated by numerical studies of a particle near a gold sphere or inside a gold cylindrical cavity.
NEW DESIGN OF ROBUST OPTIMAL ARBITRARY TIME-DELAY FILTER
WANG Xiaojun; SHAO Huihe
2007-01-01
Zero placement method in the frequency domain is utilized to design robust multi-hump EI optimal arbitrary time-delay filter (OATF) by placing two or more filter zeros near the system poles. A total insensitive OATF can be also achieved if the problem of insensitivity to damping errors is considered. This design strategy is easier to derive and implement. Applications in the anti-swing control of overhead cranes verify the fine performance of this strategy. A better suppression of the load vibrations is obtained using the proposed new OATF, which is more robust to the variation of the cable length.