WorldWideScience

Sample records for arabidopsis resurrection1 gene

  1. The role of SDG8i from the resurrection grass Sporobolus stapfianus in ectopic expression system of Arabidopsis

    OpenAIRE

    Islam, Sharmin

    2017-01-01

    Isolation of gene transcripts from desiccated leaf tissue of the resurrection grass Sporobolus stapfianus Gandoger, resulted in the identification of the gene, SDG8i, encoding a Group 1 glycosyltransferase (UGT). Glycolsyltransferases transfer a sugar to a number of acceptor molecules, including hormones and secondary metabolites, changing the solubility, stability and biological activity of these compounds. Functional analysis of the SDG8i was undertaken in Arabidopsis thaliana because no pr...

  2. Increased biomass, seed yield and stress tolerance is conferred in Arabidopsis by a novel enzyme from the resurrection grass Sporobolus stapfianus that glycosylates the strigolactone analogue GR24.

    Directory of Open Access Journals (Sweden)

    Sharmin Islam

    Full Text Available Isolation of gene transcripts from desiccated leaf tissues of the resurrection grass, Sporobolus stapfianus, resulted in the identification of a gene, SDG8i, encoding a Group 1 glycosyltransferase (UGT. Here, we examine the effects of introducing this gene, under control of the CaMV35S promoter, into the model plant Arabidopsis thaliana. Results show that Arabidopsis plants constitutively over-expressing SDG8i exhibit enhanced growth, reduced senescence, cold tolerance and a substantial improvement in protoplasmic drought tolerance. We hypothesise that expression of SDG8i in Arabidopsis negatively affects the bioactivity of metabolite/s that mediate/s environmentally-induced repression of cell division and expansion, both during normal development and in response to stress. The phenotype of transgenic plants over-expressing SDG8i suggests modulation in activities of both growth- and stress-related hormones. Plants overexpressing the UGT show evidence of elevated auxin levels, with the enzyme acting downstream of ABA to reduce drought-induced senescence. Analysis of the in vitro activity of the UGT recombinant protein product demonstrates that SDG8i can glycosylate the synthetic strigolactone analogue GR24, evoking a link with strigolactone-related processes in vivo. The large improvements observed in survival of transgenic Arabidopsis plants under cold-, salt- and drought-stress, as well as the substantial increases in growth rate and seed yield under non-stress conditions, indicates that overexpression of SDG8i in crop plants may provide a novel means of increasing plant productivity.

  3. Involvement of the VEP1 gene in vascular strand development in Arabidopsis thaliana.

    Science.gov (United States)

    Jun, Ji Hyung; Ha, Chan Man; Nam, Hong Gil

    2002-03-01

    A dominant mutant line characterized by abnormal leaf venation pattern was isolated from a transgenic Arabidopsis plant pool that was generated with Agrobacterium culture harboring an Arabidopsis antisense cDNA library. In the mutant line, the phenotype was due to antisense suppression of a gene we named VEP1 (Vein Patterning). The predicted amino acid sequence of the gene contained a motif related to the mammalian death domain that is found in the apoptotic machinery. Reduced expression of the VEP1 gene resulted in the reduced complexity of the venation pattern of the cotyledons and foliar leaves, which was mainly due to the reduced number of the minor veins and their incomplete connection. The analysis of mutant embryos indicated that the phenotype was originated, at least in part, from a defect in the procambium patterning. In the mutant, the stem and root were thinner than those in wild type. This phenotype was associated with reduced vascular development. The promoter activity of the VEP1 gene was detected preferentially in the vascular regions. We propose that the death domain-containing protein VEP1 functions as a positive element required for vascular strand development in Arabidopsis thaliana.

  4. The resurrection genome of Boea hygrometrica: A blueprint for survival of dehydration

    Science.gov (United States)

    Xiao, Lihong; Yang, Ge; Zhang, Liechi; Yang, Xinhua; Zhao, Shuang; Ji, Zhongzhong; Zhou, Qing; Hu, Min; Wang, Yu; Chen, Ming; Xu, Yu; Jin, Haijing; Xiao, Xuan; Hu, Guipeng; Bao, Fang; Hu, Yong; Wan, Ping; Li, Legong; Deng, Xin; Kuang, Tingyun; Xiang, Chengbin; Zhu, Jian-Kang; Oliver, Melvin J.; He, Yikun

    2015-01-01

    “Drying without dying” is an essential trait in land plant evolution. Unraveling how a unique group of angiosperms, the Resurrection Plants, survive desiccation of their leaves and roots has been hampered by the lack of a foundational genome perspective. Here we report the ∼1,691-Mb sequenced genome of Boea hygrometrica, an important resurrection plant model. The sequence revealed evidence for two historical genome-wide duplication events, a compliment of 49,374 protein-coding genes, 29.15% of which are unique (orphan) to Boea and 20% of which (9,888) significantly respond to desiccation at the transcript level. Expansion of early light-inducible protein (ELIP) and 5S rRNA genes highlights the importance of the protection of the photosynthetic apparatus during drying and the rapid resumption of protein synthesis in the resurrection capability of Boea. Transcriptome analysis reveals extensive alternative splicing of transcripts and a focus on cellular protection strategies. The lack of desiccation tolerance-specific genome organizational features suggests the resurrection phenotype evolved mainly by an alteration in the control of dehydration response genes. PMID:25902549

  5. DOG1-like genes in cereals: investigation of their function by means of ectopic expression in Arabidopsis.

    Science.gov (United States)

    Ashikawa, Ikuo; Abe, Fumitaka; Nakamura, Shingo

    2013-07-01

    The Arabidopsis gene DOG1 (AtDOG1) functions in seed dormancy and in sugar signaling. Little is known about the structural and functional features of plant genes homologous to AtDOG1, except for one type (clade 1) of Triticeae AtDOG1-like genes, which was previously demonstrated to be functionally orthologous to AtDOG1. Here, through phylogenetic, structural, and functional analyses of cereal AtDOG1-like genes, we characterized their features: these genes exist as a gene family that can be classified into five distinct clades (1-5). Of these, AtDOG1-like genes in clades 1-4 have a similar architecture to AtDOG1: they encode proteins with three conserved regions. In contrast, the clade 5 genes are distinct; their encoded proteins lack these conserved regions, but harbor domains that interact with DNA. Ectopic expression of the cereal AtDOG1-like genes of clades 2-4 in Arabidopsis demonstrated that like the clade 1 genes, they performed the same function as AtDOG1. The correlation between the depth of seed dormancy and the efficiency of sugar signaling in transgenic Arabidopsis conferred by genes in clades 1-4 suggests a close link in the underlying mechanisms between the seed dormancy and sugar signaling functions of AtDOG1. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  6. Putative sugarcane FT/TFL1 genes delay flowering time and alter reproductive architecture in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Carla P. Coelho

    2014-05-01

    Full Text Available Agriculturally important grasses such as rice, maize and sugarcane are evolutionarily distant from Arabidopsis, yet some components of the floral induction process are highly conserved. Flowering in sugarcane is an important factor that negatively affects cane yield and reduces sugar/ethanol production from this important perennial bioenergy crop. Comparative studies have facilitated the identification and characterization of putative orthologs of key flowering time genes in sugarcane, a complex polyploid plant whose genome has yet to be sequenced completely. Using this approach we identified phosphatidylethanolamine-binding protein (PEBP gene family members in sugarcane that are similar to the archetypical FT and TFL1 genes of Arabidopsis that play an essential role in controlling the transition from vegetative to reproductive growth. Expression analysis of ScTFL1, which falls into the TFL1-clade of floral repressors, showed transcripts in developing leaves surrounding the shoot apex but not at the apex itself. ScFT1 was detected in immature leaves and apical regions of vegetatively growing plants and, after the floral transition, expression also occurred in mature leaves. Ectopic over-expression of ScTFL1 in Arabidopsis caused delayed flowering in Arabidopsis, as might be expected for a gene related to TFL1. In addition, lines with the latest flowering phenotype exhibited aerial rosette formation. Unexpectedly, over-expression of ScFT1, which has greatest similarity to the florigen-encoding FT, also caused a delay in flowering. This preliminary analysis of divergent sugarcane FT and TFL1 gene family members from Saccharum spp. suggests that their expression patterns and roles in the floral transition has diverged from the predicted role of similar PEBP family members.

  7. Putative sugarcane FT/TFL1 genes delay flowering time and alter reproductive architecture in Arabidopsis.

    Science.gov (United States)

    Coelho, Carla P; Minow, Mark A A; Chalfun-Júnior, Antonio; Colasanti, Joseph

    2014-01-01

    Agriculturally important grasses such as rice, maize, and sugarcane are evolutionarily distant from Arabidopsis, yet some components of the floral induction process are highly conserved. Flowering in sugarcane is an important factor that negatively affects cane yield and reduces sugar/ethanol production from this important perennial bioenergy crop. Comparative studies have facilitated the identification and characterization of putative orthologs of key flowering time genes in sugarcane, a complex polyploid plant whose genome has yet to be sequenced completely. Using this approach we identified phosphatidylethanolamine-binding protein (PEBP) gene family members in sugarcane that are similar to the archetypical FT and TFL1 genes of Arabidopsis that play an essential role in controlling the transition from vegetative to reproductive growth. Expression analysis of ScTFL1, which falls into the TFL1-clade of floral repressors, showed transcripts in developing leaves surrounding the shoot apex but not at the apex itself. ScFT1 was detected in immature leaves and apical regions of vegetatively growing plants and, after the floral transition, expression also occurred in mature leaves. Ectopic over-expression of ScTFL1 in Arabidopsis caused delayed flowering in Arabidopsis, as might be expected for a gene related to TFL1. In addition, lines with the latest flowering phenotype exhibited aerial rosette formation. Unexpectedly, over-expression of ScFT1, which has greatest similarity to the florigen-encoding FT, also caused a delay in flowering. This preliminary analysis of divergent sugarcane FT and TFL1 gene family members from Saccharum spp. suggests that their expression patterns and roles in the floral transition has diverged from the predicted role of similar PEBP family members.

  8. Death and resurrection of the human IRGM gene.

    Directory of Open Access Journals (Sweden)

    Cemalettin Bekpen

    2009-03-01

    Full Text Available Immunity-related GTPases (IRG play an important role in defense against intracellular pathogens. One member of this gene family in humans, IRGM, has been recently implicated as a risk factor for Crohn's disease. We analyzed the detailed structure of this gene family among primates and showed that most of the IRG gene cluster was deleted early in primate evolution, after the divergence of the anthropoids from prosimians ( about 50 million years ago. Comparative sequence analysis of New World and Old World monkey species shows that the single-copy IRGM gene became pseudogenized as a result of an Alu retrotransposition event in the anthropoid common ancestor that disrupted the open reading frame (ORF. We find that the ORF was reestablished as a part of a polymorphic stop codon in the common ancestor of humans and great apes. Expression analysis suggests that this change occurred in conjunction with the insertion of an endogenous retrovirus, which altered the transcription initiation, splicing, and expression profile of IRGM. These data argue that the gene became pseudogenized and was then resurrected through a series of complex structural events and suggest remarkable functional plasticity where alleles experience diverse evolutionary pressures over time. Such dynamism in structure and evolution may be critical for a gene family locked in an arms race with an ever-changing repertoire of intracellular parasites.

  9. Recombination Rate Heterogeneity within Arabidopsis Disease Resistance Genes.

    Science.gov (United States)

    Choi, Kyuha; Reinhard, Carsten; Serra, Heïdi; Ziolkowski, Piotr A; Underwood, Charles J; Zhao, Xiaohui; Hardcastle, Thomas J; Yelina, Nataliya E; Griffin, Catherine; Jackson, Matthew; Mézard, Christine; McVean, Gil; Copenhaver, Gregory P; Henderson, Ian R

    2016-07-01

    Meiotic crossover frequency varies extensively along chromosomes and is typically concentrated in hotspots. As recombination increases genetic diversity, hotspots are predicted to occur at immunity genes, where variation may be beneficial. A major component of plant immunity is recognition of pathogen Avirulence (Avr) effectors by resistance (R) genes that encode NBS-LRR domain proteins. Therefore, we sought to test whether NBS-LRR genes would overlap with meiotic crossover hotspots using experimental genetics in Arabidopsis thaliana. NBS-LRR genes tend to physically cluster in plant genomes; for example, in Arabidopsis most are located in large clusters on the south arms of chromosomes 1 and 5. We experimentally mapped 1,439 crossovers within these clusters and observed NBS-LRR gene associated hotspots, which were also detected as historical hotspots via analysis of linkage disequilibrium. However, we also observed NBS-LRR gene coldspots, which in some cases correlate with structural heterozygosity. To study recombination at the fine-scale we used high-throughput sequencing to analyze ~1,000 crossovers within the RESISTANCE TO ALBUGO CANDIDA1 (RAC1) R gene hotspot. This revealed elevated intragenic crossovers, overlapping nucleosome-occupied exons that encode the TIR, NBS and LRR domains. The highest RAC1 recombination frequency was promoter-proximal and overlapped CTT-repeat DNA sequence motifs, which have previously been associated with plant crossover hotspots. Additionally, we show a significant influence of natural genetic variation on NBS-LRR cluster recombination rates, using crosses between Arabidopsis ecotypes. In conclusion, we show that a subset of NBS-LRR genes are strong hotspots, whereas others are coldspots. This reveals a complex recombination landscape in Arabidopsis NBS-LRR genes, which we propose results from varying coevolutionary pressures exerted by host-pathogen relationships, and is influenced by structural heterozygosity.

  10. Regulation of RNA-dependent RNA polymerase 1 and isochorismate synthase gene expression in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Lydia J R Hunter

    Full Text Available RNA-dependent RNA polymerases (RDRs function in anti-viral silencing in Arabidopsis thaliana and other plants. Salicylic acid (SA, an important defensive signal, increases RDR1 gene expression, suggesting that RDR1 contributes to SA-induced virus resistance. In Nicotiana attenuata RDR1 also regulates plant-insect interactions and is induced by another important signal, jasmonic acid (JA. Despite its importance in defense RDR1 regulation has not been investigated in detail.In Arabidopsis, SA-induced RDR1 expression was dependent on 'NON-EXPRESSER OF PATHOGENESIS-RELATED GENES 1', indicating regulation involves the same mechanism controlling many other SA- defense-related genes, including pathogenesis-related 1 (PR1. Isochorismate synthase 1 (ICS1 is required for SA biosynthesis. In defensive signal transduction RDR1 lies downstream of ICS1. However, supplying exogenous SA to ics1-mutant plants did not induce RDR1 or PR1 expression to the same extent as seen in wild type plants. Analysing ICS1 gene expression using transgenic plants expressing ICS1 promoter:reporter gene (β-glucuronidase constructs and by measuring steady-state ICS1 transcript levels showed that SA positively regulates ICS1. In contrast, ICS2, which is expressed at lower levels than ICS1, is unaffected by SA. The wound-response hormone JA affects expression of Arabidopsis RDR1 but jasmonate-induced expression is independent of CORONATINE-INSENSITIVE 1, which conditions expression of many other JA-responsive genes. Transiently increased RDR1 expression following tobacco mosaic virus inoculation was due to wounding and was not a direct effect of infection. RDR1 gene expression was induced by ethylene and by abscisic acid (an important regulator of drought resistance. However, rdr1-mutant plants showed normal responses to drought.RDR1 is regulated by a much broader range of phytohormones than previously thought, indicating that it plays roles beyond those already suggested in virus

  11. Transcription factors AS1 and AS2 interact with LHP1 to repress KNOX genes in Arabidopsis.

    Science.gov (United States)

    Li, Zhongfei; Li, Bin; Liu, Jian; Guo, Zhihao; Liu, Yuhao; Li, Yan; Shen, Wen-Hui; Huang, Ying; Huang, Hai; Zhang, Yijing; Dong, Aiwu

    2016-12-01

    Polycomb group proteins are important repressors of numerous genes in higher eukaryotes. However, the mechanism by which Polycomb group proteins are recruited to specific genes is poorly understood. In Arabidopsis, LIKE HETEROCHROMATIN PROTEIN 1 (LHP1), also known as TERMINAL FLOWER 2, was originally proposed as a subunit of polycomb repressive complex 1 (PRC1) that could bind the tri-methylated lysine 27 of histone H3 (H3K27me3) established by the PRC2. In this work, we show that LHP1 mainly functions with PRC2 to establish H3K27me3, but not with PRC1 to catalyze monoubiquitination at lysine 119 of histone H2A. Our results show that complexes of the transcription factors ASYMMETRIC LEAVES 1 (AS1) and AS2 could help to establish the H3K27me3 modification at the chromatin regions of Class-I KNOTTED1-like homeobox (KNOX) genes BREVIPEDICELLUS and KNAT2 via direct interactions with LHP1. Additionally, our transcriptome analysis indicated that there are probably more common target genes of AS1 and LHP1 besides Class-I KNOX genes during leaf development in Arabidopsis. © 2016 Institute of Botany, Chinese Academy of Sciences.

  12. Evolutionary Fates and Dynamic Functionalization of Young Duplicate Genes in Arabidopsis Genomes1[OPEN

    Science.gov (United States)

    Wang, Jun; Tao, Feng; Marowsky, Nicholas C.; Fan, Chuanzhu

    2016-01-01

    Gene duplication is a primary means to generate genomic novelties, playing an essential role in speciation and adaptation. Particularly in plants, a high abundance of duplicate genes has been maintained for significantly long periods of evolutionary time. To address the manner in which young duplicate genes were derived primarily from small-scale gene duplication and preserved in plant genomes and to determine the underlying driving mechanisms, we generated transcriptomes to produce the expression profiles of five tissues in Arabidopsis thaliana and the closely related species Arabidopsis lyrata and Capsella rubella. Based on the quantitative analysis metrics, we investigated the evolutionary processes of young duplicate genes in Arabidopsis. We determined that conservation, neofunctionalization, and specialization are three main evolutionary processes for Arabidopsis young duplicate genes. We explicitly demonstrated the dynamic functionalization of duplicate genes along the evolutionary time scale. Upon origination, duplicates tend to maintain their ancestral functions; but as they survive longer, they might be likely to develop distinct and novel functions. The temporal evolutionary processes and functionalization of plant duplicate genes are associated with their ancestral functions, dynamic DNA methylation levels, and histone modification abundances. Furthermore, duplicate genes tend to be initially expressed in pollen and then to gain more interaction partners over time. Altogether, our study provides novel insights into the dynamic retention processes of young duplicate genes in plant genomes. PMID:27485883

  13. Transgenic Arabidopsis Gene Expression System

    Science.gov (United States)

    Ferl, Robert; Paul, Anna-Lisa

    2009-01-01

    The Transgenic Arabidopsis Gene Expression System (TAGES) investigation is one in a pair of investigations that use the Advanced Biological Research System (ABRS) facility. TAGES uses Arabidopsis thaliana, thale cress, with sensor promoter-reporter gene constructs that render the plants as biomonitors (an organism used to determine the quality of the surrounding environment) of their environment using real-time nondestructive Green Fluorescent Protein (GFP) imagery and traditional postflight analyses.

  14. Drying without senescence in resurrection plants

    Science.gov (United States)

    Griffiths, Cara A.; Gaff, Donald F.; Neale, Alan D.

    2014-01-01

    Research into extreme drought tolerance in resurrection plants using species such as Craterostigma plantagineum, C. wilmsii, Xerophyta humilis, Tortula ruralis, and Sporobolus stapfianus has provided some insight into the desiccation tolerance mechanisms utilized by these plants to allow them to persist under extremely adverse environmental conditions. Some of the mechanisms used to ensure cellular preservation during severe dehydration appear to be peculiar to resurrection plants. Apart from the ability to preserve vital cellular components during drying and rehydration, such mechanisms include the ability to down-regulate growth-related metabolism rapidly in response to changes in water availability, and the ability to inhibit dehydration-induced senescence programs enabling reconstitution of photosynthetic capacity quickly following a rainfall event. Extensive research on the molecular mechanism of leaf senescence in non-resurrection plants has revealed a multi-layered regulatory network operates to control programed cell death pathways. However, very little is known about the molecular mechanisms that resurrection plants employ to avoid undergoing drought-related senescence during the desiccation process. To survive desiccation, dehydration in the perennial resurrection grass S. stapfianus must proceed slowly over a period of 7 days or more. Leaves detached from the plant before 60% relative water content (RWC) is attained are desiccation-sensitive indicating that desiccation tolerance is conferred in vegetative tissue of S. stapfianus when the leaf RWC has declined to 60%. Whilst some older leaves remaining attached to the plant during dehydration will senesce, suggesting dehydration-induced senescence may be influenced by leaf age or the rate of dehydration in individual leaves, the majority of leaves do not senesce. Rather these leaves dehydrate to air-dryness and revive fully following rehydration. Hence it seems likely that there are genes expressed in

  15. A wheat calreticulin gene (TaCRT1) contributes to drought tolerance in transgenic arabidopsis

    International Nuclear Information System (INIS)

    Xiang, V.; Du, C.; Jia, H.; Song, M.; Wang, Y.; Ma, Z.

    2018-01-01

    The TaCRT1 gene is a member of calreticulin (CRT) family in wheat. In our previous study, we showed that transgenic tobacco lines over expressing wheat TaCRT1 showed enhanced tolerance to salt stress. This study aimed to determine whether TaCRT1 over expression would increase drought tolerance in transgenic Arabidopsis. Over expression of TaCRT1 in Arabidopsis plants enhances tolerance to drought stress. However, the transgenic line was found to retard the growth. Moreover, the transgenic line showed decreased water loss but higher sensitivity to exogenous abscisic acid (ABA) compared with the wild type (Col-0). Meanwhile, the transgenic line had the elevated endogenous ABA level. The semi-quantitative RT-PCR (sqRT-PCR) analysis showed that transcription levels of ABA-biosynthesizing gene (NCED3) and ABA-responsive gene (ABF3) were higher in the transgenic line than that in the Col-0 under normal condition. The above results implied that the TaCRT1 might be able to used as a potential target to improve the drought tolerance in crops. (author)

  16. Expression of Aluminum-Induced Genes in Transgenic Arabidopsis Plants Can Ameliorate Aluminum Stress and/or Oxidative Stress1

    Science.gov (United States)

    Ezaki, Bunichi; Gardner, Richard C.; Ezaki, Yuka; Matsumoto, Hideaki

    2000-01-01

    To examine the biological role of Al-stress-induced genes, nine genes derived from Arabidopsis, tobacco (Nicotiana tabacum L.), wheat (Triticum aestivum L.), and yeast (Saccharomyces cerevisiae) were expressed in Arabidopsis ecotype Landsberg. Lines containing eight of these genes were phenotypically normal and were tested in root elongation assays for their sensitivity to Al, Cd, Cu, Na, Zn, and to oxidative stresses. An Arabidopsis blue-copper-binding protein gene (AtBCB), a tobacco glutathione S-transferase gene (parB), a tobacco peroxidase gene (NtPox), and a tobacco GDP-dissociation inhibitor gene (NtGDI1) conferred a degree of resistance to Al. Two of these genes, AtBCB and parB, and a peroxidase gene from Arabidopsis (AtPox) also showed increased resistance to oxidative stress induced by diamide, while parB conferred resistance to Cu and Na. Al content of Al-treated root tips was reduced in the four Al-resistant plant lines compared with wild-type Ler-0, as judged by morin staining. All four Al-resistant lines also showed reduced staining of roots with 2′,7′-dichloro fluorescein diacetate (H2DCFDA), an indicator of oxidative stress. We conclude that Al-induced genes can serve to protect against Al toxicity, and also provide genetic evidence for a link between Al stress and oxidative stress in plants. PMID:10712528

  17. Splicing factor SR34b mutation reduces cadmium tolerance in Arabidopsis by regulating iron-regulated transporter 1 gene

    International Nuclear Information System (INIS)

    Zhang, Wentao; Du, Bojing; Liu, Di; Qi, Xiaoting

    2014-01-01

    Highlights: • Arabidopsis splicing factor SR34b gene is cadmium-inducible. • SR34b T-DNA insertion mutant is sensitive to cadmium due to high cadmium uptake. • SR34b is a regulator of cadmium transporter IRT1 at the posttranscription level. • These results highlight the roles of splicing factors in cadmium tolerance of plant. - Abstract: Serine/arginine-rich (SR) proteins are important splicing factors. However, the biological functions of plant SR proteins remain unclear especially in abiotic stresses. Cadmium (Cd) is a non-essential element that negatively affects plant growth and development. In this study, we provided clear evidence for SR gene involved in Cd tolerance in planta. Systemic expression analysis of 17 Arabidopsis SR genes revealed that SR34b is the only SR gene upregulated by Cd, suggesting its potential roles in Arabidopsis Cd tolerance. Consistent with this, a SR34b T-DNA insertion mutant (sr34b) was moderately sensitive to Cd, which had higher Cd 2+ uptake rate and accumulated Cd in greater amounts than wild-type. This was due to the altered expression of iron-regulated transporter 1 (IRT1) gene in sr34b mutant. Under normal growth conditions, IRT1 mRNAs highly accumulated in sr34b mutant, which was a result of increased stability of IRT1 mRNA. Under Cd stress, however, sr34b mutant plants had a splicing defect in IRT1 gene, thus reducing the IRT1 mRNA accumulation. Despite of this, sr34b mutant plants still constitutively expressed IRT1 proteins under Cd stress, thereby resulting in Cd stress-sensitive phenotype. We therefore propose the essential roles of SR34b in posttranscriptional regulation of IRT1 expression and identify it as a regulator of Arabidopsis Cd tolerance

  18. Splicing factor SR34b mutation reduces cadmium tolerance in Arabidopsis by regulating iron-regulated transporter 1 gene

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wentao; Du, Bojing; Liu, Di; Qi, Xiaoting, E-mail: qixiaoting@cnu.edu.cn

    2014-12-12

    Highlights: • Arabidopsis splicing factor SR34b gene is cadmium-inducible. • SR34b T-DNA insertion mutant is sensitive to cadmium due to high cadmium uptake. • SR34b is a regulator of cadmium transporter IRT1 at the posttranscription level. • These results highlight the roles of splicing factors in cadmium tolerance of plant. - Abstract: Serine/arginine-rich (SR) proteins are important splicing factors. However, the biological functions of plant SR proteins remain unclear especially in abiotic stresses. Cadmium (Cd) is a non-essential element that negatively affects plant growth and development. In this study, we provided clear evidence for SR gene involved in Cd tolerance in planta. Systemic expression analysis of 17 Arabidopsis SR genes revealed that SR34b is the only SR gene upregulated by Cd, suggesting its potential roles in Arabidopsis Cd tolerance. Consistent with this, a SR34b T-DNA insertion mutant (sr34b) was moderately sensitive to Cd, which had higher Cd{sup 2+} uptake rate and accumulated Cd in greater amounts than wild-type. This was due to the altered expression of iron-regulated transporter 1 (IRT1) gene in sr34b mutant. Under normal growth conditions, IRT1 mRNAs highly accumulated in sr34b mutant, which was a result of increased stability of IRT1 mRNA. Under Cd stress, however, sr34b mutant plants had a splicing defect in IRT1 gene, thus reducing the IRT1 mRNA accumulation. Despite of this, sr34b mutant plants still constitutively expressed IRT1 proteins under Cd stress, thereby resulting in Cd stress-sensitive phenotype. We therefore propose the essential roles of SR34b in posttranscriptional regulation of IRT1 expression and identify it as a regulator of Arabidopsis Cd tolerance.

  19. Evolutionary origins of Brassicaceae specific genes in Arabidopsis thaliana

    Science.gov (United States)

    2011-01-01

    Background All sequenced genomes contain a proportion of lineage-specific genes, which exhibit no sequence similarity to any genes outside the lineage. Despite their prevalence, the origins and functions of most lineage-specific genes remain largely unknown. As more genomes are sequenced opportunities for understanding evolutionary origins and functions of lineage-specific genes are increasing. Results This study provides a comprehensive analysis of the origins of lineage-specific genes (LSGs) in Arabidopsis thaliana that are restricted to the Brassicaceae family. In this study, lineage-specific genes within the nuclear (1761 genes) and mitochondrial (28 genes) genomes are identified. The evolutionary origins of two thirds of the lineage-specific genes within the Arabidopsis thaliana genome are also identified. Almost a quarter of lineage-specific genes originate from non-lineage-specific paralogs, while the origins of ~10% of lineage-specific genes are partly derived from DNA exapted from transposable elements (twice the proportion observed for non-lineage-specific genes). Lineage-specific genes are also enriched in genes that have overlapping CDS, which is consistent with such novel genes arising from overprinting. Over half of the subset of the 958 lineage-specific genes found only in Arabidopsis thaliana have alignments to intergenic regions in Arabidopsis lyrata, consistent with either de novo origination or differential gene loss and retention, with both evolutionary scenarios explaining the lineage-specific status of these genes. A smaller number of lineage-specific genes with an incomplete open reading frame across different Arabidopsis thaliana accessions are further identified as accession-specific genes, most likely of recent origin in Arabidopsis thaliana. Putative de novo origination for two of the Arabidopsis thaliana-only genes is identified via additional sequencing across accessions of Arabidopsis thaliana and closely related sister species

  20. Transgenic Citrus Expressing an Arabidopsis NPR1 Gene Exhibit Enhanced Resistance against Huanglongbing (HLB; Citrus Greening).

    Science.gov (United States)

    Dutt, Manjul; Barthe, Gary; Irey, Michael; Grosser, Jude

    2015-01-01

    Commercial sweet orange cultivars lack resistance to Huanglongbing (HLB), a serious phloem limited bacterial disease that is usually fatal. In order to develop sustained disease resistance to HLB, transgenic sweet orange cultivars 'Hamlin' and 'Valencia' expressing an Arabidopsis thaliana NPR1 gene under the control of a constitutive CaMV 35S promoter or a phloem specific Arabidopsis SUC2 (AtSUC2) promoter were produced. Overexpression of AtNPR1 resulted in trees with normal phenotypes that exhibited enhanced resistance to HLB. Phloem specific expression of NPR1 was equally effective for enhancing disease resistance. Transgenic trees exhibited reduced diseased severity and a few lines remained disease-free even after 36 months of planting in a high-disease pressure field site. Expression of the NPR1 gene induced expression of several native genes involved in the plant defense signaling pathways. The AtNPR1 gene being plant derived can serve as a component for the development of an all plant T-DNA derived consumer friendly GM tree.

  1. Transgenic Citrus Expressing an Arabidopsis NPR1 Gene Exhibit Enhanced Resistance against Huanglongbing (HLB; Citrus Greening.

    Directory of Open Access Journals (Sweden)

    Manjul Dutt

    Full Text Available Commercial sweet orange cultivars lack resistance to Huanglongbing (HLB, a serious phloem limited bacterial disease that is usually fatal. In order to develop sustained disease resistance to HLB, transgenic sweet orange cultivars 'Hamlin' and 'Valencia' expressing an Arabidopsis thaliana NPR1 gene under the control of a constitutive CaMV 35S promoter or a phloem specific Arabidopsis SUC2 (AtSUC2 promoter were produced. Overexpression of AtNPR1 resulted in trees with normal phenotypes that exhibited enhanced resistance to HLB. Phloem specific expression of NPR1 was equally effective for enhancing disease resistance. Transgenic trees exhibited reduced diseased severity and a few lines remained disease-free even after 36 months of planting in a high-disease pressure field site. Expression of the NPR1 gene induced expression of several native genes involved in the plant defense signaling pathways. The AtNPR1 gene being plant derived can serve as a component for the development of an all plant T-DNA derived consumer friendly GM tree.

  2. Functional analysis of the cellulose synthase-like genes CSLD1, CSLD2 and CSLD4 in tip-growing arabidopsis cells

    DEFF Research Database (Denmark)

    Bernal Giraldo, Adriana Jimena; Yoo, Cheol-Min; Mutwil, Marek

    2008-01-01

    A reverse genetic approach was used to investigate the functions of three members of the cellulose synthase superfamily in Arabidopsis (Arabidopsis thaliana), CELLULOSE SYNTHASE-LIKE D1 (CSLD1), CSLD2, and CSLD4. CSLD2 is required for normal root hair growth but has a different role from that pre......A reverse genetic approach was used to investigate the functions of three members of the cellulose synthase superfamily in Arabidopsis (Arabidopsis thaliana), CELLULOSE SYNTHASE-LIKE D1 (CSLD1), CSLD2, and CSLD4. CSLD2 is required for normal root hair growth but has a different role from...... for insertions in these genes were partially rescued by reduced temperature growth. However, this was not the case for a double mutant homozygous for insertions in both CSLD2 and CSLD3, suggesting that there may be partial redundancy in the functions of these genes. Mutants in CSLD1 and CSLD4 had a defect...

  3. A Comprehensive Dataset of Genes with a Loss-of-Function Mutant Phenotype in Arabidopsis1[W][OA

    Science.gov (United States)

    Lloyd, Johnny; Meinke, David

    2012-01-01

    Despite the widespread use of Arabidopsis (Arabidopsis thaliana) as a model plant, a curated dataset of Arabidopsis genes with mutant phenotypes remains to be established. A preliminary list published nine years ago in Plant Physiology is outdated, and genome-wide phenotype information remains difficult to obtain. We describe here a comprehensive dataset of 2,400 genes with a loss-of-function mutant phenotype in Arabidopsis. Phenotype descriptions were gathered primarily from manual curation of the scientific literature. Genes were placed into prioritized groups (essential, morphological, cellular-biochemical, and conditional) based on the documented phenotypes of putative knockout alleles. Phenotype classes (e.g. vegetative, reproductive, and timing, for the morphological group) and subsets (e.g. flowering time, senescence, circadian rhythms, and miscellaneous, for the timing class) were also established. Gene identities were classified as confirmed (through molecular complementation or multiple alleles) or not confirmed. Relationships between mutant phenotype and protein function, genetic redundancy, protein connectivity, and subcellular protein localization were explored. A complementary dataset of 401 genes that exhibit a mutant phenotype only when disrupted in combination with a putative paralog was also compiled. The importance of these genes in confirming functional redundancy and enhancing the value of single gene datasets is discussed. With further input and curation from the Arabidopsis community, these datasets should help to address a variety of important biological questions, provide a foundation for exploring the relationship between genotype and phenotype in angiosperms, enhance the utility of Arabidopsis as a reference plant, and facilitate comparative studies with model genetic organisms. PMID:22247268

  4. The Arabidopsis mutant iop1 exhibits induced over-expression of the plant defensin gene PDF1.2 and enhanced pathogen resistance

    NARCIS (Netherlands)

    Penninckx, I.A.M.A.; Eggermont, K.; Schenk, P.M.; Ackerveken, van den G.; Cammue, B.P.A.; Thomma, B.P.H.J.

    2003-01-01

    Jasmonate and ethylene are concomitantly involved in the induction of the Arabidopsis plant defensin gene PDF1.2. To define genes in the signal transduction pathway leading to the induction of PDF1.2, we screened for mutants with induced over-expression of a β-glucuronidase reporter, under the

  5. Expression of the sweetpotato R2R3-type IbMYB1a gene induces anthocyanin accumulation in Arabidopsis.

    Science.gov (United States)

    Chu, Hyosub; Jeong, Jae Cheol; Kim, Wook-Jin; Chung, Dong Min; Jeon, Hyo Kon; Ahn, Young Ock; Kim, Sun Ha; Lee, Haeng-Soon; Kwak, Sang-Soo; Kim, Cha Young

    2013-06-01

    R2R3-type MYB transcription factors (TFs) play important roles in transcriptional regulation of anthocyanins. The R2R3-type IbMYB1 is known to be a key regulator of anthocyanin biosynthesis in the storage roots of sweetpotato. We previously showed that transient expression of IbMYB1a led to anthocyanin pigmentation in tobacco leaves. In this article, we generated transgenic Arabidopsis plants expressing the IbMYB1a gene under the control of CaMV 35S promoter, and the sweetpotato SPO and SWPA2 promoters. Overexpression of IbMYBa in transgenic Arabidopsis produced strong anthocyanin pigmentation in seedlings and generated a deep purple color in leaves, stems and seeds. Reverse transcription-polymerase chain reaction analysis showed that IbMYB1a expression induced upregulation of several structural genes in the anthocyanin biosynthetic pathway, including 4CL, CHI, F3'H, DFR, AGT, AAT and GST. Furthermore, overexpression of IbMYB1a led to enhanced expression of the AtTT8 (bHLH) and PAP1/AtMYB75 genes. high-performance liquid chromatography analysis revealed that IbMYB1a expression led to the production of cyanidin as a major core molecule of anthocyanidins in Arabidopsis, as occurs in the purple leaves of sweetpotato (cv. Sinzami). This result shows that the IbMYB1a TF is sufficient to induce anthocyanin accumulation in seedlings, leaves, stems and seeds of Arabidopsis plants. Copyright © Physiologia Plantarum 2012.

  6. Quantitative statistical analysis of cis-regulatory sequences in ABA/VP1- and CBF/DREB1-regulated genes of Arabidopsis.

    Science.gov (United States)

    Suzuki, Masaharu; Ketterling, Matthew G; McCarty, Donald R

    2005-09-01

    We have developed a simple quantitative computational approach for objective analysis of cis-regulatory sequences in promoters of coregulated genes. The program, designated MotifFinder, identifies oligo sequences that are overrepresented in promoters of coregulated genes. We used this approach to analyze promoter sequences of Viviparous1 (VP1)/abscisic acid (ABA)-regulated genes and cold-regulated genes, respectively, of Arabidopsis (Arabidopsis thaliana). We detected significantly enriched sequences in up-regulated genes but not in down-regulated genes. This result suggests that gene activation but not repression is mediated by specific and common sequence elements in promoters. The enriched motifs include several known cis-regulatory sequences as well as previously unidentified motifs. With respect to known cis-elements, we dissected the flanking nucleotides of the core sequences of Sph element, ABA response elements (ABREs), and the C repeat/dehydration-responsive element. This analysis identified the motif variants that may correlate with qualitative and quantitative differences in gene expression. While both VP1 and cold responses are mediated in part by ABA signaling via ABREs, these responses correlate with unique ABRE variants distinguished by nucleotides flanking the ACGT core. ABRE and Sph motifs are tightly associated uniquely in the coregulated set of genes showing a strict dependence on VP1 and ABA signaling. Finally, analysis of distribution of the enriched sequences revealed a striking concentration of enriched motifs in a proximal 200-base region of VP1/ABA and cold-regulated promoters. Overall, each class of coregulated genes possesses a discrete set of the enriched motifs with unique distributions in their promoters that may account for the specificity of gene regulation.

  7. LWD–TCP complex activates the morning gene CCA1 in Arabidopsis

    Science.gov (United States)

    Wu, Jing-Fen; Tsai, Huang-Lung; Joanito, Ignasius; Wu, Yi-Chen; Chang, Chin-Wen; Li, Yi-Hang; Wang, Ying; Hong, Jong Chan; Chu, Jhih-Wei; Hsu, Chao-Ping; Wu, Shu-Hsing

    2016-01-01

    A double-negative feedback loop formed by the morning genes CIRCADIAN CLOCK ASSOCIATED1 (CCA1)/LATE ELONGATED HYPOCOTYL (LHY) and the evening gene TIMING OF CAB EXPRESSION1 (TOC1) contributes to regulation of the circadian clock in Arabidopsis. A 24-h circadian cycle starts with the peak expression of CCA1 at dawn. Although CCA1 is targeted by multiple transcriptional repressors, including PSEUDO-RESPONSE REGULATOR9 (PRR9), PRR7, PRR5 and CCA1 HIKING EXPEDITION (CHE), activators of CCA1 remain elusive. Here we use mathematical modelling to infer a co-activator role for LIGHT-REGULATED WD1 (LWD1) in CCA1 expression. We show that the TEOSINTE BRANCHED 1-CYCLOIDEA-PCF20 (TCP20) and TCP22 proteins act as LWD-interacting transcriptional activators. The concomitant binding of LWD1 and TCP20/TCP22 to the TCP-binding site in the CCA1 promoter activates CCA1. Our study reveals activators of the morning gene CCA1 and provides an action mechanism that ensures elevated expression of CCA1 at dawn to sustain a robust clock. PMID:27734958

  8. LWD-TCP complex activates the morning gene CCA1 in Arabidopsis.

    Science.gov (United States)

    Wu, Jing-Fen; Tsai, Huang-Lung; Joanito, Ignasius; Wu, Yi-Chen; Chang, Chin-Wen; Li, Yi-Hang; Wang, Ying; Hong, Jong Chan; Chu, Jhih-Wei; Hsu, Chao-Ping; Wu, Shu-Hsing

    2016-10-13

    A double-negative feedback loop formed by the morning genes CIRCADIAN CLOCK ASSOCIATED1 (CCA1)/LATE ELONGATED HYPOCOTYL (LHY) and the evening gene TIMING OF CAB EXPRESSION1 (TOC1) contributes to regulation of the circadian clock in Arabidopsis. A 24-h circadian cycle starts with the peak expression of CCA1 at dawn. Although CCA1 is targeted by multiple transcriptional repressors, including PSEUDO-RESPONSE REGULATOR9 (PRR9), PRR7, PRR5 and CCA1 HIKING EXPEDITION (CHE), activators of CCA1 remain elusive. Here we use mathematical modelling to infer a co-activator role for LIGHT-REGULATED WD1 (LWD1) in CCA1 expression. We show that the TEOSINTE BRANCHED 1-CYCLOIDEA-PCF20 (TCP20) and TCP22 proteins act as LWD-interacting transcriptional activators. The concomitant binding of LWD1 and TCP20/TCP22 to the TCP-binding site in the CCA1 promoter activates CCA1. Our study reveals activators of the morning gene CCA1 and provides an action mechanism that ensures elevated expression of CCA1 at dawn to sustain a robust clock.

  9. Arabidopsis ETR1 and ERS1 Differentially Repress the Ethylene Response in Combination with Other Ethylene Receptor Genes1[W

    Science.gov (United States)

    Liu, Qian; Wen, Chi-Kuang

    2012-01-01

    The ethylene response is negatively regulated by a family of five ethylene receptor genes in Arabidopsis (Arabidopsis thaliana). The five members of the ethylene receptor family can physically interact and form complexes, which implies that cooperativity for signaling may exist among the receptors. The ethylene receptor gene mutations etr1-1(C65Y)(for ethylene response1-1), ers1-1(I62P) (for ethylene response sensor1-1), and ers1C65Y are dominant, and each confers ethylene insensitivity. In this study, the repression of the ethylene response by these dominant mutant receptor genes was examined in receptor-defective mutants to investigate the functional significance of receptor cooperativity in ethylene signaling. We showed that etr1-1(C65Y), but not ers1-1(I62P), substantially repressed various ethylene responses independent of other receptor genes. In contrast, wild-type receptor genes differentially supported the repression of ethylene responses by ers1-1(I62P); ETR1 and ETHYLENE INSENSITIVE4 (EIN4) supported ers1-1(I62P) functions to a greater extent than did ERS2, ETR2, and ERS1. The lack of both ETR1 and EIN4 almost abolished the repression of ethylene responses by ers1C65Y, which implied that ETR1 and EIN4 have synergistic effects on ers1C65Y functions. Our data indicated that a dominant ethylene-insensitive receptor differentially repressed ethylene responses when coupled with a wild-type ethylene receptor, which supported the hypothesis that the formation of a variety of receptor complexes may facilitate differential receptor signal output, by which ethylene responses can be repressed to different extents. We hypothesize that plants can respond to a broad ethylene concentration range and exhibit tissue-specific ethylene responsiveness with differential cooperation of the multiple ethylene receptors. PMID:22227969

  10. NTL8 Regulates Trichome Formation in Arabidopsis by Directly Activating R3 MYB Genes TRY and TCL1.

    Science.gov (United States)

    Tian, Hainan; Wang, Xianling; Guo, Hongyan; Cheng, Yuxin; Hou, Chunjiang; Chen, Jin-Gui; Wang, Shucai

    2017-08-01

    The NAM, ATAF1/2, and CUC (NAC) are plant-specific transcription factors that regulate multiple aspects of plant growth and development and plant response to environmental stimuli. We report here the identification of NTM1-LIKE8 (NTL8), a membrane-associated NAC transcription factor, as a novel regulator of trichome formation in Arabidopsis ( Arabidopsis thaliana ). From an activation-tagged Arabidopsis population, we identified a dominant, gain-of-function mutant with glabrous inflorescence stem. By using plasmid rescue and RT-PCR analyses, we found that NTL8 was tagged; thus, the mutant was named ntl8-1 Dominant ( ntl8-1D ). Recapitulation experiment further confirmed that the phenotype observed in the ntl8-1D mutant was caused by elevated expression of NTL8 Quantitative RT-PCR results showed that the expression level of the single-repeat R3 MYB genes TRIPTYCHON ( TRY ) and TRICHOMELESS1 ( TCL1 ) was elevated in the ntl8-1D mutant. Genetic analyses demonstrated that NTL8 acts upstream of TRY and TCL1 in the regulation of trichome formation. When recruited to the promoter region of the reporter gene Gal4:GUS by a fused GAL4 DNA-binding domain, NTL8 activated the expression of the reporter gene. Chromatin immunoprecipitation results indicated that TRY and TCL1 are direct targets of NTL8. However, NTL8 did not interact with SQUAMOSA PROMOTER BINDING PROTEIN LIKE9, another transcription factor that regulates the expression of TRY and TCL1 , in yeast and plant cells. Taken together, our results suggest that NTL8 negatively regulates trichome formation in Arabidopsis by directly activating the expression of TRY and TCL1 . © 2017 American Society of Plant Biologists. All Rights Reserved.

  11. Gravity-regulated gene expression in Arabidopsis thaliana

    Science.gov (United States)

    Sederoff, Heike; Brown, Christopher S.; Heber, Steffen; Kajla, Jyoti D.; Kumar, Sandeep; Lomax, Terri L.; Wheeler, Benjamin; Yalamanchili, Roopa

    Plant growth and development is regulated by changes in environmental signals. Plants sense environmental changes and respond to them by modifying gene expression programs to ad-just cell growth, differentiation, and metabolism. Functional expression of genes comprises many different processes including transcription, translation, post-transcriptional and post-translational modifications, as well as the degradation of RNA and proteins. Recently, it was discovered that small RNAs (sRNA, 18-24 nucleotides long), which are heritable and systemic, are key elements in regulating gene expression in response to biotic and abiotic changes. Sev-eral different classes of sRNAs have been identified that are part of a non-cell autonomous and phloem-mobile network of regulators affecting transcript stability, translational kinetics, and DNA methylation patterns responsible for heritable transcriptional silencing (epigenetics). Our research has focused on gene expression changes in response to gravistimulation of Arabidopsis roots. Using high-throughput technologies including microarrays and 454 sequencing, we iden-tified rapid changes in transcript abundance of genes as well as differential expression of small RNA in Arabidopsis root apices after minutes of reorientation. Some of the differentially regu-lated transcripts are encoded by genes that are important for the bending response. Functional mutants of those genes respond faster to reorientation than the respective wild type plants, indicating that these proteins are repressors of differential cell elongation. We compared the gravity responsive sRNAs to the changes in transcript abundances of their putative targets and identified several potential miRNA: target pairs. Currently, we are using mutant and transgenic Arabidopsis plants to characterize the function of those miRNAs and their putative targets in gravitropic and phototropic responses in Arabidopsis.

  12. ATAF1 transcription factor directly regulates abscisic acid biosynthetic gene NCED3 in Arabidopsis thaliana

    DEFF Research Database (Denmark)

    Jensen, Michael Krogh; Lindemose, Søren; De Masi, Federico

    2013-01-01

    ATAF1, an Arabidopsis thaliana NAC transcription factor, plays important roles in plant adaptation to environmental stress and development. To search for ATAF1 target genes, we used protein binding microarrays and chromatin-immunoprecipitation (ChIP). This identified T[A,C,G]CGT[A,G] and TT[A,C,G...... abscisic acid (ABA) phytohormone biosynthetic gene NCED3. ChIP-qPCR and expression analysis showed that ATAF1 binding to the NCED3 promoter correlated with increased NCED3 expression and ABA hormone levels. These results indicate that ATAF1 regulates ABA biosynthesis....

  13. Spermine modulates the expression of two probable polyamine transporter genes and determines growth responses to cadaverine in Arabidopsis.

    Science.gov (United States)

    Sagor, G H M; Berberich, Thomas; Kojima, Seiji; Niitsu, Masaru; Kusano, Tomonobu

    2016-06-01

    Two genes, LAT1 and OCT1 , are likely to be involved in polyamine transport in Arabidopsis. Endogenous spermine levels modulate their expression and determine the sensitivity to cadaverine. Arabidopsis spermine (Spm) synthase (SPMS) gene-deficient mutant was previously shown to be rather resistant to the diamine cadaverine (Cad). Furthermore, a mutant deficient in polyamine oxidase 4 gene, accumulating about twofold more of Spm than wild type plants, showed increased sensitivity to Cad. It suggests that endogenous Spm content determines growth responses to Cad in Arabidopsis thaliana. Here, we showed that Arabidopsis seedlings pretreated with Spm absorbs more Cad and has shorter root growth, and that the transgenic Arabidopsis plants overexpressing the SPMS gene are hypersensitive to Cad, further supporting the above idea. The transgenic Arabidopsis overexpressing L-Amino acid Transporter 1 (LAT1) absorbed more Cad and showed increased Cad sensitivity, suggesting that LAT1 functions as a Cad importer. Recently, other research group reported that Organic Cation Transporter 1 (OCT1) is a causal gene which determines the Cad sensitivity of various Arabidopsis accessions. Furthermore, their results suggested that OCT1 is involved in Cad efflux. Thus we monitored the expression of OCT1 and LAT1 during the above experiments. Based on the results, we proposed a model in which the level of Spm content modulates the expression of OCT1 and LAT1, and determines Cad sensitivity of Arabidopsis.

  14. Resurrecting ancestral genes in bacteria to interpret ancient biosignatures

    Science.gov (United States)

    Kacar, Betul; Guy, Lionel; Smith, Eric; Baross, John

    2017-11-01

    Two datasets, the geologic record and the genetic content of extant organisms, provide complementary insights into the history of how key molecular components have shaped or driven global environmental and macroevolutionary trends. Changes in global physico-chemical modes over time are thought to be a consistent feature of this relationship between Earth and life, as life is thought to have been optimizing protein functions for the entirety of its approximately 3.8 billion years of history on the Earth. Organismal survival depends on how well critical genetic and metabolic components can adapt to their environments, reflecting an ability to optimize efficiently to changing conditions. The geologic record provides an array of biologically independent indicators of macroscale atmospheric and oceanic composition, but provides little in the way of the exact behaviour of the molecular components that influenced the compositions of these reservoirs. By reconstructing sequences of proteins that might have been present in ancient organisms, we can downselect to a subset of possible sequences that may have been optimized to these ancient environmental conditions. How can one use modern life to reconstruct ancestral behaviours? Configurations of ancient sequences can be inferred from the diversity of extant sequences, and then resurrected in the laboratory to ascertain their biochemical attributes. One way to augment sequence-based, single-gene methods to obtain a richer and more reliable picture of the deep past, is to resurrect inferred ancestral protein sequences in living organisms, where their phenotypes can be exposed in a complex molecular-systems context, and then to link consequences of those phenotypes to biosignatures that were preserved in the independent historical repository of the geological record. As a first step beyond single-molecule reconstruction to the study of functional molecular systems, we present here the ancestral sequence reconstruction of the

  15. CRISPR/Cas9-mediated gene targeting in Arabidopsis using sequential transformation.

    Science.gov (United States)

    Miki, Daisuke; Zhang, Wenxin; Zeng, Wenjie; Feng, Zhengyan; Zhu, Jian-Kang

    2018-05-17

    Homologous recombination-based gene targeting is a powerful tool for precise genome modification and has been widely used in organisms ranging from yeast to higher organisms such as Drosophila and mouse. However, gene targeting in higher plants, including the most widely used model plant Arabidopsis thaliana, remains challenging. Here we report a sequential transformation method for gene targeting in Arabidopsis. We find that parental lines expressing the bacterial endonuclease Cas9 from the egg cell- and early embryo-specific DD45 gene promoter can improve the frequency of single-guide RNA-targeted gene knock-ins and sequence replacements via homologous recombination at several endogenous sites in the Arabidopsis genome. These heritable gene targeting can be identified by regular PCR. Our approach enables routine and fine manipulation of the Arabidopsis genome.

  16. Nucleotide variation in ATHK1 region of Arabidopsis thaliana and its ...

    African Journals Online (AJOL)

    The ATHK1 gene in Arabidopsis encodes a putative histidine kinase that is transcriptionally upregulated in response to changes in external osmolarity. In this work, we investigated the nucleotide variability of the ATHK1 gene in a sample of 32 core Arabidopsis accessions originating from different ecoclimatic regions and ...

  17. DNA mismatch repair related gene expression as potential biomarkers to assess cadmium exposure in Arabidopsis seedlings

    International Nuclear Information System (INIS)

    Liu Wan; Zhou Qixing; Li Peijun; Gao Hairong; Han, Y.P.; Li, X.J.; Yang, Y.S.; Li Yanzhi

    2009-01-01

    In the current study, Arabidopsis seedlings were hydroponically grown on MS media containing cadmium (Cd) of 0-2.0 mg L -1 for 60 h of treatment. Gene expression profiles were used to relate exposure to Cd with some altered biological responses and/or specific growth effects. RT-PCR analysis was used to quantitate mRNA expression for seven genes known to be involved in DNA mismatch repair (MMR) system and cell division. Results indicated that Cd concentrations of 0.25-2.0 mg L -1 cause increased total soluble protein levels in shoots of Arabidopsis seedlings in an inverted U-shaped dose-response manner. Exposure to 0.25 and 0.5 mg L -1 of Cd dramatically induced expression of four genes (i.e. proliferating cell nuclear antigen 2 (atPCNA 2), MutL1 homolog (atMLH1), MutS 2 homolog (atMSH2) and atMSH3) and five genes (i.e. atPCNA1,2, atMLH1 and atMSH2,7), respectively, in shoots of Arabidopsis seedlings; Exposure to 1.0 mg L -1 of Cd significantly elevated expression of only two genes (atMSH6,7), but caused prominent inhibition in expression of three genes (atPCNA2, atMLH1 and atMSH3) in shoots of Arabidopsis seedlings. The expression alterations of the above genes were independent of any biological effects such as survival, fresh weight and chlorophyll level of shoots. However, shoots of Arabidopsis seedlings exposed to 2.0 mg L -1 of Cd exhibited statistically prominent repression in expression of these seven genes, and showed incipient reduction of fresh weight and chlorophyll level. This research provides data concerning sensitivity of expression profiles of atMLH1, atMSH2,3,6,7 and atPCNA1,2 genes in Arabidopsis seedlings to Cd exposure, as well as the potential use of these gene expression patterns as representative molecular biomarkers indicative of Cd exposure and related biological effects.

  18. Historicity of The Resurrection: A Theological Approach of Evidence of The Resurrection of Christ In The New Testament

    Directory of Open Access Journals (Sweden)

    Made Astika

    2012-04-01

    Full Text Available Jesus is the resurrection and the life. He'll never wear grave clothesagain. When he appeared to his disciples after the resurrection, heappeared not in a shroud of death, but walking in endless life.The Lord Jesus is the Son of God who became man. He is very Godand very man. He was crucified, he died and was buried, and he wasraised from the dead on the third day according to the Scriptures.The proofs of resurrection can be found both in the Scripture andalso in the history. Historically, the empty tomb and Jesus appearancesto His disciples and many of His followers are clear proving that theresurrection of Chris is real. Biblically, it was the main preaching andteaching of the apostles. Beside that Jesus Himself prophesied andteaches about His resurrection.These three great facts--the resurrection appearances, the emptytomb, and the origin of the Christian faith--all point unavoidably to oneconclusion: The resurrection of Jesus. Today the rational man can hardlybe blamed if he believes that on that first Easter morning a divine miracleoccurred. Further fact is, if no resurrection, there will no church, therewill no Christianity. Because of Jesus resurrection, the believers haveassurance future life. Because He lives, there is hope for the future; thereis certain hope for the salvation of the believers.

  19. Personal Identity and Resurrection from the Dead

    Directory of Open Access Journals (Sweden)

    Gasparov Igor

    2017-04-01

    Full Text Available The paper examines arguments of the “Christian materialist” Trenton Merricks that he provided in support of the claim that the Christian doctrine of resurrection from the dead is compatible with the materialist understanding of the nature of human beings. In his paper The Resurrection of the Body, Merricks discussed two aspects of the materialist interpretation of the traditional religious doctrine of the bodily resurrection. On the one hand, he analyses and tries to overcome objections against the possibility of the general resurrection in case the materialist understanding of the nature of human personality should be true (mainly the problem of the temporal gap. On the other hand, he provides some reasons why the materialist understanding of human nature is more relevant than its dualist counterpart to the doctrine of the bodily resurrection. The present paper evaluates his arguments and discusses the suggestion that the doctrine of resurrection is not only compatible with materialism, but is also tenable if human beings are identical with their physical bodies. The conclusion of the paper is that Merricks’ apologetic arguments achieve their aims in defending the doctrine of resurrection only partially; the resurrection doctrine appears more tenable if we accept the dualistic conception of human nature.

  20. GENE EXPRESSION CHANGES IN ARABIDOPSIS THALIANA SEEDLING ROOTS EXPOSED TO THE MUNITION HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE

    Science.gov (United States)

    Arabidopsis thaliana root transcriptome responses to the munition, hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), were assessed using serial analysis of gene expression (SAGE). Comparison of the transcriptional profile for the RDX response to a profile previously described for Ar...

  1. Divergent regulation of Arabidopsis SAUR genes

    NARCIS (Netherlands)

    Mourik, van Hilda; Dijk, van Aalt D.J.; Stortenbeker, Niek; Angenent, Gerco C.; Bemer, Marian

    2017-01-01

    Background: Small Auxin-Upregulated RNA (SAUR) genes encode growth regulators that induce cell elongation. Arabidopsis contains more than 70 SAUR genes, of which the growth-promoting function has been unveiled in seedlings, while their role in other tissues remained largely unknown. Here, we

  2. Overexpression of three TaEXPA1 homoeologous genes with distinct expression divergence in hexaploid wheat exhibit functional retention in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Zhaorong Hu

    Full Text Available Common wheat is a hexaploid species with most of the genes present as triplicate homoeologs. Expression divergences of homoeologs are frequently observed in wheat as well as in other polyploid plants. However, little is known about functional variances among homologous genes arising from polyploidy. Expansins play diverse roles in plant developmental processes related to the action of cell wall loosening. Expression of the three TaEXPA1 homoeologs varied dynamically at different stages and organs, and epigenetic modifications contribute to the expression divergence of three TaEXPA1 homoeologs during wheat development. Nevertheless, their functions remain to be clarified. We found that over expression of TaEXPA1-A, -B and -D produced similar morphological changes in transgenic Arabidopsis plants, including increased germination and growth rate during seedling and adult stages, indicating that the proteins encoded by these three wheat TaEXPA1 homoeologs have similar (or conserved functions in Arabidopsis. Collectively, our present study provided an example of a set of homoeologous genes expression divergence in different developmental stages and organs in hexaploid wheat but functional retention in transgenic Arabidopsis plants.

  3. Arabidopsis genes, AtNPR1, AtTGA2 and AtPR-5, confer partial resistance to soybean cyst nematode (Heterodera glycines) when overexpressed in transgenic soybean roots

    Science.gov (United States)

    2014-01-01

    Background Extensive studies using the model system Arabidopsis thaliana to elucidate plant defense signaling and pathway networks indicate that salicylic acid (SA) is the key hormone triggering the plant defense response against biotrophic and hemi-biotrophic pathogens, while jasmonic acid (JA) and derivatives are critical to the defense response against necrotrophic pathogens. Several reports demonstrate that SA limits nematode reproduction. Results Here we translate knowledge gained from studies using Arabidopsis to soybean. The ability of thirty-one Arabidopsis genes encoding important components of SA and JA synthesis and signaling in conferring resistance to soybean cyst nematode (SCN: Heterodera glycines) are investigated. We demonstrate that overexpression of three of thirty-one Arabidoposis genes in transgenic soybean roots of composite plants decreased the number of cysts formed by SCN to less than 50% of those found on control roots, namely AtNPR1(33%), AtTGA2 (38%), and AtPR-5 (38%). Three additional Arabidopsis genes decreased the number of SCN cysts by 40% or more: AtACBP3 (53% of the control value), AtACD2 (55%), and AtCM-3 (57%). Other genes having less or no effect included AtEDS5 (77%), AtNDR1 (82%), AtEDS1 (107%), and AtPR-1 (80%), as compared to control. Overexpression of AtDND1 greatly increased susceptibility as indicated by a large increase in the number of SCN cysts (175% of control). Conclusions Knowledge of the pathogen defense system gained from studies of the model system, Arabidopsis, can be directly translated to soybean through direct overexpression of Arabidopsis genes. When the genes, AtNPR1, AtGA2, and AtPR-5, encoding specific components involved in SA regulation, synthesis, and signaling, are overexpressed in soybean roots, resistance to SCN is enhanced. This demonstrates functional compatibility of some Arabidopsis genes with soybean and identifies genes that may be used to engineer resistance to nematodes. PMID:24739302

  4. Arabidopsis genes, AtNPR1, AtTGA2 and AtPR-5, confer partial resistance to soybean cyst nematode (Heterodera glycines) when overexpressed in transgenic soybean roots.

    Science.gov (United States)

    Matthews, Benjamin F; Beard, Hunter; Brewer, Eric; Kabir, Sara; MacDonald, Margaret H; Youssef, Reham M

    2014-04-16

    Extensive studies using the model system Arabidopsis thaliana to elucidate plant defense signaling and pathway networks indicate that salicylic acid (SA) is the key hormone triggering the plant defense response against biotrophic and hemi-biotrophic pathogens, while jasmonic acid (JA) and derivatives are critical to the defense response against necrotrophic pathogens. Several reports demonstrate that SA limits nematode reproduction. Here we translate knowledge gained from studies using Arabidopsis to soybean. The ability of thirty-one Arabidopsis genes encoding important components of SA and JA synthesis and signaling in conferring resistance to soybean cyst nematode (SCN: Heterodera glycines) are investigated. We demonstrate that overexpression of three of thirty-one Arabidoposis genes in transgenic soybean roots of composite plants decreased the number of cysts formed by SCN to less than 50% of those found on control roots, namely AtNPR1(33%), AtTGA2 (38%), and AtPR-5 (38%). Three additional Arabidopsis genes decreased the number of SCN cysts by 40% or more: AtACBP3 (53% of the control value), AtACD2 (55%), and AtCM-3 (57%). Other genes having less or no effect included AtEDS5 (77%), AtNDR1 (82%), AtEDS1 (107%), and AtPR-1 (80%), as compared to control. Overexpression of AtDND1 greatly increased susceptibility as indicated by a large increase in the number of SCN cysts (175% of control). Knowledge of the pathogen defense system gained from studies of the model system, Arabidopsis, can be directly translated to soybean through direct overexpression of Arabidopsis genes. When the genes, AtNPR1, AtGA2, and AtPR-5, encoding specific components involved in SA regulation, synthesis, and signaling, are overexpressed in soybean roots, resistance to SCN is enhanced. This demonstrates functional compatibility of some Arabidopsis genes with soybean and identifies genes that may be used to engineer resistance to nematodes.

  5. Arabidopsis Pol II-Dependent in Vitro Transcription System Reveals Role of Chromatin for Light-Inducible rbcS Gene Transcription1

    Science.gov (United States)

    Ido, Ayaka; Iwata, Shinya; Iwata, Yuka; Igarashi, Hisako; Hamada, Takahiro; Sonobe, Seiji; Sugiura, Masahiro; Yukawa, Yasushi

    2016-01-01

    In vitro transcription is an essential tool to study the molecular mechanisms of transcription. For over a decade, we have developed an in vitro transcription system from tobacco (Nicotiana tabacum)-cultured cells (BY-2), and this system supported the basic activities of the three RNA polymerases (Pol I, Pol II, and Pol III). However, it was not suitable to study photosynthetic genes, because BY-2 cells have lost their photosynthetic activity. Therefore, Arabidopsis (Arabidopsis thaliana) in vitro transcription systems were developed from green and etiolated suspension cells. Sufficient in vitro Pol II activity was detected after the minor modification of the nuclear soluble extracts preparation method; removal of vacuoles from protoplasts and L-ascorbic acid supplementation in the extraction buffer were particularly effective. Surprisingly, all four Arabidopsis Rubisco small subunit (rbcS-1A, rbcS-1B, rbcS-2B, and rbcS-3B) gene members were in vitro transcribed from the naked DNA templates without any light-dependent manner. However, clear light-inducible transcriptions were observed using chromatin template of rbcS-1A gene, which was prepared with a human nucleosome assembly protein 1 (hNAP1) and HeLa histones. This suggested that a key determinant of light-dependency through the rbcS gene transcription was a higher order of DNA structure (i.e. chromatin). PMID:26662274

  6. The ASK1 gene regulates development and interacts with the UFO gene to control floral organ identity in Arabidopsis.

    Science.gov (United States)

    Zhao, D; Yang, M; Solava, J; Ma, H

    1999-09-01

    Normal flower development likely requires both specific and general regulators. We have isolated an Arabidopsis mutant ask1-1 (for -Arabidopsis skp1-like1-1), which exhibits defects in both vegetative and reproductive development. In the ask1-1mutant, rosette leaf growth is reduced, resulting in smaller than normal rosette leaves, and internodes in the floral stem are shorter than normal. Examination of cell sizes in these organs indicates that cell expansion is normal in the mutant, but cell number is reduced. In the mutant, the numbers of petals and stamens are reduced, and many flowers have one or more petals with a reduced size. In addition, all mutant flowers have short stamen filaments. Furthermore, petal/stamen chimeric organs are found in many flowers. These results indicate that the ASK1 gene affects the size of vegetative and floral organs. The ask1 floral phenotype resembles somewhat that of the Arabidopsis ufo mutants in that both genes affect whorls 2 and 3. We therefore tested for possible interactions between ASK1 and UFO by analyzing the phenotypes of ufo-2 ask1-1 double mutant plants. In these plants, vegetative development is similar to that of the ask1-1 single mutant, whereas the floral defects are more severe than those in either single mutant. Interior to the first whorl, the double mutant flowers have more sepals or sepal-like organs than are found in ufo-2, and less petals than ask1-1. Our results suggest that ASK1 interacts with UFO to control floral organ identity in whorls 2 and 3. This is very intriguing because ASK1 is very similar in sequence to the yeast SKP1 protein and UFO contains an F-box, a motif known to interact with SKP1 in yeast. Although the precise mechanism of ASK1 and UFO action is unknown, our results support the hypothesis that these two proteins physically interact in vivo. Copyright 1999 Wiley-Liss, Inc.

  7. Diurnal and circadian expression profiles of glycerolipid biosynthetic genes in Arabidopsis.

    Science.gov (United States)

    Nakamura, Yuki; Andrés, Fernando; Kanehara, Kazue; Liu, Yu-chi; Coupland, George; Dörmann, Peter

    2014-01-01

    Glycerolipid composition in plant membranes oscillates in response to diurnal change. However, its functional significance remained unclear. A recent discovery that Arabidopsis florigen FT binds diurnally oscillating phosphatidylcholine molecules to promote flowering suggests that diurnal oscillation of glycerolipid composition is an important input in flowering time control. Taking advantage of public microarray data, we globally analyzed the expression pattern of glycerolipid biosynthetic genes in Arabidopsis under long-day, short-day, and continuous light conditions. The results revealed that 12 genes associated with glycerolipid metabolism showed significant oscillatory profiles. Interestingly, expression of most of these genes followed circadian profiles, suggesting that glycerolipid biosynthesis is partially under clock regulation. The oscillating expression profile of one representative gene, PECT1, was analyzed in detail. Expression of PECT1 showed a circadian pattern highly correlated with that of the clock-regulated gene GIGANTEA. Thus, our study suggests that a considerable number of glycerolipid biosynthetic genes are under circadian control.

  8. Influence of EARLI1-like genes on flowering time and lignin synthesis of Arabidopsis thaliana.

    Science.gov (United States)

    Shi, Y; Zhang, X; Xu, Z-Y; Li, L; Zhang, C; Schläppi, M; Xu, Z-Q

    2011-09-01

    EARLI1 encodes a 14.7 kDa protein in the cell wall, is a member of the PRP (proline-rich protein) family and has multiple functions, including resistance to low temperature and fungal infection. RNA gel blot analyses in the present work indicated that expression of EARLI1-like genes, EARLI1, At4G12470 and At4G12490, was down-regulated in Col-FRI-Sf2 RNAi plants derived from transformation with Agrobacterium strain ABI, which contains a construct encoding a double-strand RNA targeting 8CM of EARLI1. Phenotype analyses revealed that Col-FRI-Sf2 RNAi plants of EARLI1 flowered earlier than Col-FRI-Sf2 wild-type plants. The average bolting time of Col-FRI-Sf2 and Col-FRI-Sf2 RNAi plants was 39.7 and 19.4 days, respectively, under a long-day photoperiod. In addition, there were significant differences in main stem length, internode number and rosette leaf number between Col-FRI-Sf2 and Col-FRI-Sf2 RNAi plants. RT-PCR showed that EARLI1-like genes might delay flowering time through the autonomous and long-day photoperiod pathways by maintaining the abundance of FLC transcripts. In Col-FRI-Sf2 RNAi plants, transcription of FLC was repressed, while expression of SOC1 and FT was activated. Microscopy observations showed that EARLI1-like genes were also associated with morphogenesis of leaf cells in Arabidopsis. Using histochemical staining, EARLI1-like genes were found to be involved in regulation of lignin synthesis in inflorescence stems, and Col-FRI-Sf2 and Col-FRI-Sf2 RNAi plants had 9.67% and 8.76% dry weight lignin, respectively. Expression analysis revealed that cinnamoyl-CoA reductase, a key enzyme in lignin synthesis, was influenced by EARLI1-like genes. These data all suggest that EARLI1-like genes could control the flowering process and lignin synthesis in Arabidopsis. © 2011 German Botanical Society and The Royal Botanical Society of the Netherlands.

  9. The arabidopsis thaliana AGRAVITROPIC 1 gene encodes a component of the polar-auxin-transport efflux carrier

    Science.gov (United States)

    Chen, R.; Hilson, P.; Sedbrook, J.; Rosen, E.; Caspar, T.; Masson, P. H.

    1998-01-01

    Auxins are plant hormones that mediate many aspects of plant growth and development. In higher plants, auxins are polarly transported from sites of synthesis in the shoot apex to their sites of action in the basal regions of shoots and in roots. Polar auxin transport is an important aspect of auxin functions and is mediated by cellular influx and efflux carriers. Little is known about the molecular identity of its regulatory component, the efflux carrier [Estelle, M. (1996) Current Biol. 6, 1589-1591]. Here we show that mutations in the Arabidopsis thaliana AGRAVITROPIC 1 (AGR1) gene involved in root gravitropism confer increased root-growth sensitivity to auxin and decreased sensitivity to ethylene and an auxin transport inhibitor, and cause retention of exogenously added auxin in root tip cells. We used positional cloning to show that AGR1 encodes a putative transmembrane protein whose amino acid sequence shares homologies with bacterial transporters. When expressed in Saccharomyces cerevisiae, AGR1 promotes an increased efflux of radiolabeled IAA from the cells and confers increased resistance to fluoro-IAA, a toxic IAA-derived compound. AGR1 transcripts were localized to the root distal elongation zone, a region undergoing a curvature response upon gravistimulation. We have identified several AGR1-related genes in Arabidopsis, suggesting a global role of this gene family in the control of auxin-regulated growth and developmental processes.

  10. Overexpression of cotton RAV1 gene in Arabidopsis confers transgenic plants high salinity and drought sensitivity.

    Science.gov (United States)

    Li, Xiao-Jie; Li, Mo; Zhou, Ying; Hu, Shan; Hu, Rong; Chen, Yun; Li, Xue-Bao

    2015-01-01

    RAV (related to ABI3/VP1) protein containing an AP2 domain in the N-terminal region and a B3 domain in the C-terminal region, which belongs to AP2 transcription factor family, is unique in higher plants. In this study, a gene (GhRAV1) encoding a RAV protein of 357 amino acids was identified in cotton (Gossypium hirsutum). Transient expression analysis of the eGFP:GhRAV1 fusion genes in tobacco (Nicotiana tabacum) epidermal cells revealed that GhRAV1 protein was localized in the cell nucleus. Quantitative RT-PCR analysis indicated that expression of GhRAV1 in cotton is induced by abscisic acid (ABA), NaCl and polyethylene glycol (PEG). Overexpression of GhRAV1 in Arabidopsis resulted in plant sensitive to ABA, NaCl and PEG. With abscisic acid (ABA) treatment, seed germination and green seedling rates of the GhRAV1 transgenic plants were remarkably lower than those of wild type. In the presence of NaCl, the seed germination and seedling growth of the GhRAV1 transgenic lines were inhibited greater than those of wild type. And chlorophyll content and maximum photochemical efficiency of the transgenic plants were significantly lower than those of wild type. Under drought stress, the GhRAV1 transgenic plants displayed more severe wilting than wild type. Furthermore, expressions of the stress-related genes were altered in the GhRAV1 transgenic Arabidopsis plants under high salinity and drought stresses. Collectively, our data suggested that GhRAV1 may be involved in response to high salinity and drought stresses through regulating expressions of the stress-related genes during cotton development.

  11. PNL1 and PNL2 : Arabidopsis homologs of maize PAN1

    OpenAIRE

    Clark, Lauren Gail

    2010-01-01

    PNL1 and PNL2 are the closest Arabidopsis relatives of maize pan1. pan1 and the PNL family of 11 genes encode leucine-rich repeat, receptor-like kinases, however none of these putative kinases is predicted to have actual kinase function, due to one or more amino acid substitutions in residues necessary for kinase function. Because PAN1 plays a role in subsidiary cell formation in maize, it is hypothesized that PNL1 and PNL2 are involved in stomatal formation in Arabidopsis. YFP fusions of the...

  12. Abscisic Acid (ABA) Regulation of Arabidopsis SR Protein Gene Expression

    Science.gov (United States)

    Cruz, Tiago M. D.; Carvalho, Raquel F.; Richardson, Dale N.; Duque, Paula

    2014-01-01

    Serine/arginine-rich (SR) proteins are major modulators of alternative splicing, a key generator of proteomic diversity and flexible means of regulating gene expression likely to be crucial in plant environmental responses. Indeed, mounting evidence implicates splicing factors in signal transduction of the abscisic acid (ABA) phytohormone, which plays pivotal roles in the response to various abiotic stresses. Using real-time RT-qPCR, we analyzed total steady-state transcript levels of the 18 SR and two SR-like genes from Arabidopsis thaliana in seedlings treated with ABA and in genetic backgrounds with altered expression of the ABA-biosynthesis ABA2 and the ABA-signaling ABI1 and ABI4 genes. We also searched for ABA-responsive cis elements in the upstream regions of the 20 genes. We found that members of the plant-specific SC35-Like (SCL) Arabidopsis SR protein subfamily are distinctively responsive to exogenous ABA, while the expression of seven SR and SR-related genes is affected by alterations in key components of the ABA pathway. Finally, despite pervasiveness of established ABA-responsive promoter elements in Arabidopsis SR and SR-like genes, their expression is likely governed by additional, yet unidentified cis-acting elements. Overall, this study pinpoints SR34, SR34b, SCL30a, SCL28, SCL33, RS40, SR45 and SR45a as promising candidates for involvement in ABA-mediated stress responses. PMID:25268622

  13. The SKP1-like gene family of Arabidopsis exhibits a high degree of differential gene expression and gene product interaction during development.

    Directory of Open Access Journals (Sweden)

    Mohammad H Dezfulian

    Full Text Available The Arabidopsis thaliana genome encodes several families of polypeptides that are known or predicted to participate in the formation of the SCF-class of E3-ubiquitin ligase complexes. One such gene family encodes the Skp1-like class of polypeptide subunits, where 21 genes have been identified and are known to be expressed in Arabidopsis. Phylogenetic analysis based on deduced polypeptide sequence organizes the family of ASK proteins into 7 clades. The complexity of the ASK gene family, together with the close structural similarity among its members raises the prospect of significant functional redundancy among select paralogs. We have assessed the potential for functional redundancy within the ASK gene family by analyzing an expanded set of criteria that define redundancy with higher resolution. The criteria used include quantitative expression of locus-specific transcripts using qRT-PCR, assessment of the sub-cellular localization of individual ASK:YFP auto-fluorescent fusion proteins expressed in vivo as well as the in planta assessment of individual ASK-F-Box protein interactions using bimolecular fluorescent complementation techniques in combination with confocal imagery in live cells. The results indicate significant functional divergence of steady state transcript abundance and protein-protein interaction specificity involving ASK proteins in a pattern that is poorly predicted by sequence-based phylogeny. The information emerging from this and related studies will prove important for defining the functional intersection of expression, localization and gene product interaction that better predicts the formation of discrete SCF complexes, as a prelude to investigating their molecular mode of action.

  14. Effect of hypergravity on lignin formation and expression of lignin-related genes in inflorescence stems of an ethylene-insensitive Arabidopsis mutant ein3-1

    Science.gov (United States)

    Karahara, Ichirou; Kobayashi, Mai; Tamaoki, Daisuke; Kamisaka, Seiichiro

    Our previous studies have shown that hypergravity inhibits growth and promotes lignin forma-tion in inflorescence stems of Arabidopsis thaliana by up-regulation of genes involved in lignin biosynthesis (Tamaoki et al. 2006, 2009). In the present study, we have examined whether ethylene is involved in these responses using an ethylene-insensitive Arabidopsis mutant ein3-1. Our results revealed that hypergravity treatment at 300 G for 24 h significantly inhibited growth of inflorescence stems, promoted both deposition of acetyl bromide extractable lignin and gene expression involved in lignin formation in inflorescence stems of wild type plants. Growth inhibition of inflorescence stems was also observed in ein3-1. However, the effects of hypergravity on the promotion of the deposition of acetyl bromide lignin and the expression of genes involved in lignin formation were not observed in ein3-1, indicating that ethylene sig-naling is involved in the up-regulation of the expression of lignin-related genes as well as the promotion of deposition of lignin by hypergravity in Arabidopsis inflorescence stems.

  15. The FRIABLE1 gene product affects cell adhesion in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Lutz Neumetzler

    Full Text Available Cell adhesion in plants is mediated predominantly by pectins, a group of complex cell wall associated polysaccharides. An Arabidopsis mutant, friable1 (frb1, was identified through a screen of T-DNA insertion lines that exhibited defective cell adhesion. Interestingly, the frb1 plants displayed both cell and organ dissociations and also ectopic defects in organ separation. The FRB1 gene encodes a Golgi-localized, plant specific protein with only weak sequence similarities to known proteins (DUF246. Unlike other cell adhesion deficient mutants, frb1 mutants do not have reduced levels of adhesion related cell wall polymers, such as pectins. Instead, FRB1 affects the abundance of galactose- and arabinose-containing oligosaccharides in the Golgi. Furthermore, frb1 mutants displayed alteration in pectin methylesterification, cell wall associated extensins and xyloglucan microstructure. We propose that abnormal FRB1 action has pleiotropic consequences on wall architecture, affecting both the extensin and pectin matrices, with consequent changes to the biomechanical properties of the wall and middle lamella, thereby influencing cell-cell adhesion.

  16. The fate of retrotransposed processed genes in Arabidopsis thaliana.

    Science.gov (United States)

    Abdelkarim, Basma T M; Maranda, Vincent; Drouin, Guy

    2017-04-20

    Processed genes are functional genes that have arisen as a result of the retrotransposition of mRNA molecules. We found 6 genes that generated processed genes in the common ancestor of five Brassicaceae species (Arabidopsis thaliana, Arabidopsis lyrata, Capsella rubella, Brassica rapa and Thellungiella parvula). These processed genes have therefore been kept for at least 30millionyears. Analyses of the Ka/Ks ratio of these genes, and of those having given rise to them, show that they evolve relatively slowly and suggest that the processed genes maintained the same function as that of their parental gene. There is a significant negative correlation between the number of ESTs and transcripts produced and the Ka/Ks ratios of the parental genes but not of the processed genes. This suggests that selection has not yet adapted the selective pressure the processed genes experience to their expression level. However, the A. thaliana processed genes tend to be expressed in the same tissues as that of their parental genes. Furthermore, most have a CAATT-box, a TATA-box and are located about 1kb from another protein-coding gene. Altogether, our results suggest that the processed genes found in the A. thaliana genome have been kept to produce more of the same product, and in the same tissues, as that encoded by their parental gene. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  17. Arabidopsis plastid AMOS1/EGY1 integrates abscisic acid signaling to regulate global gene expression response to ammonium stress

    KAUST Repository

    Li, Baohai

    2012-10-12

    Ammonium (NH4 +) is a ubiquitous intermediate of nitrogen metabolism but is notorious for its toxic effects on most organisms. Extensive studies of the underlying mechanisms of NH4 + toxicity have been reported in plants, but it is poorly understood how plants acclimate to high levels of NH4 +. Here, we identified an Arabidopsis (Arabidopsis thaliana) mutant, ammonium overly sensitive1 (amos1), that displays severe chlorosis under NH4 + stress. Map-based cloning shows amos1 to carry a mutation in EGY1 (for ethylene-dependent, gravitropism-deficient, and yellow-green-like protein1), which encodes a plastid metalloprotease. Transcriptomic analysis reveals that among the genes activated in response to NH4 +, 90% are regulated dependent on AMOS1/ EGY1. Furthermore, 63% of AMOS1/EGY1-dependent NH4 +-activated genes contain an ACGTG motif in their promoter region, a core motif of abscisic acid (ABA)-responsive elements. Consistent with this, our physiological, pharmacological, transcriptomic, and genetic data show that ABA signaling is a critical, but not the sole, downstream component of the AMOS1/EGY1-dependent pathway that regulates the expression of NH4 +-responsive genes and maintains chloroplast functionality under NH4 + stress. Importantly, abi4 mutants defective in ABA-dependent and retrograde signaling, but not ABA-deficient mutants, mimic leaf NH4 + hypersensitivity of amos1. In summary, our findings suggest that an NH4 +-responsive plastid retrograde pathway, which depends on AMOS1/EGY1 function and integrates with ABA signaling, is required for the regulation of expression of the presence of high NH4 + levels. © 2012 American Society of Plant Biologists. All Rights Reserved.

  18. Arabidopsis plastid AMOS1/EGY1 integrates abscisic acid signaling to regulate global gene expression response to ammonium stress

    KAUST Repository

    Li, Baohai; Li, Qing; Xiong, Liming; Kronzucker, Herbert J.; Krä mer, Ute; Shi, Weiming

    2012-01-01

    Ammonium (NH4 +) is a ubiquitous intermediate of nitrogen metabolism but is notorious for its toxic effects on most organisms. Extensive studies of the underlying mechanisms of NH4 + toxicity have been reported in plants, but it is poorly understood how plants acclimate to high levels of NH4 +. Here, we identified an Arabidopsis (Arabidopsis thaliana) mutant, ammonium overly sensitive1 (amos1), that displays severe chlorosis under NH4 + stress. Map-based cloning shows amos1 to carry a mutation in EGY1 (for ethylene-dependent, gravitropism-deficient, and yellow-green-like protein1), which encodes a plastid metalloprotease. Transcriptomic analysis reveals that among the genes activated in response to NH4 +, 90% are regulated dependent on AMOS1/ EGY1. Furthermore, 63% of AMOS1/EGY1-dependent NH4 +-activated genes contain an ACGTG motif in their promoter region, a core motif of abscisic acid (ABA)-responsive elements. Consistent with this, our physiological, pharmacological, transcriptomic, and genetic data show that ABA signaling is a critical, but not the sole, downstream component of the AMOS1/EGY1-dependent pathway that regulates the expression of NH4 +-responsive genes and maintains chloroplast functionality under NH4 + stress. Importantly, abi4 mutants defective in ABA-dependent and retrograde signaling, but not ABA-deficient mutants, mimic leaf NH4 + hypersensitivity of amos1. In summary, our findings suggest that an NH4 +-responsive plastid retrograde pathway, which depends on AMOS1/EGY1 function and integrates with ABA signaling, is required for the regulation of expression of the presence of high NH4 + levels. © 2012 American Society of Plant Biologists. All Rights Reserved.

  19. Wheat Brassinosteroid-Insensitive1 (TaBRI1 Interacts with Members of TaSERK Gene Family and Cause Early Flowering and Seed Yield Enhancement in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Akanksha Singh

    Full Text Available Brassinosteroids (BRs hormones are important for plant growth, development and immune responses. They are sensed by the transmembrane receptor kinase Brassinosteroid-Insensitive 1 (BRI1 when they bind to its extracellular Leu-rich repeat (LRR domain. We cloned and characterized the TaBRI1 from T. aestivum and raised overexpression transgenics in Arabidopsis to decipher its functional role. TaBRI1 protein consists of a putative signal peptide followed by 25 leucine rich repeats (LRR, a transmembrane domain and a C-terminal kinase domain. The analysis determined the interaction of TaBRI1 with five members of the wheat Somatic Embryogenesis Receptor Kinase (TaSERKs gene family (TaSERK1, TaSERK2, TaSERK3, TaSERK4 and TaSERK5, at the plasma membrane. Furthermore, overexpression of TaBRI1 in Arabidopsis leads to the early flowering, increased silique size and seed yield. Root growth analysis of TaBRI1 overexpressing transgenic plants showed hypersensitivity to epi-brassinolide (epi-BL hormone in a dose-dependent manner. Interestingly, transgenic Arabidopsis plants show thermotolerance phenotype at the seedling stages as revealed by chlorophyll content, photosystem II activity and membrane stability. The transcriptome profiling on the basis of microarray analysis indicates up-regulation of several genes related to brassinosteroid signaling pathway, abiotic stress response, defense response and transcription factors. These studies predict the possible role of TaBRI1 gene in plant growth and development imparting tolerance to thermal stress.

  20. Mechanism of Gene Expression of Arabidopsis Glutathione S-Transferase, AtGST1, and AtGST11 in Response to Aluminum Stress1

    Science.gov (United States)

    Ezaki, Bunichi; Suzuki, Masakatsu; Motoda, Hirotoshi; Kawamura, Masako; Nakashima, Susumu; Matsumoto, Hideaki

    2004-01-01

    The gene expression of two Al-induced Arabidopsis glutathione S-transferase genes, AtGST1 and AtGST11, was analyzed to investigate the mechanism underlying the response to Al stress. An approximately 1-kb DNA fragment of the 5′-upstream region of each gene was fused to a β-glucuronidase (GUS) reporter gene (pAtGST1::GUS and pAtGST11::GUS) and introduced into Arabidopsis ecotype Landsberg erecta. The constructed transgenic lines showed a time-dependent gene expression to a different degree in the root and/or leaf by Al stress. The pAtGST1::GUS gene was induced after a short Al treatment (maximum expression after a 2-h exposure), while the pAtGST11::GUS gene was induced by a longer Al treatment (approximately 8 h for maximum expression). Since the gene expression was observed in the leaf when only the root was exposed to Al stress, a signaling system between the root and shoot was suggested in Al stress. A GUS staining experiment using an adult transgenic line carrying the pAtGST11::GUS gene supported this suggestion. Furthermore, Al treatment simultaneously with various Ca depleted conditions in root region enhanced the gene expression of the pAtGST11::GUS in the shoot region. This result suggested that the degree of Al toxicity in the root reflects the gene response of pAtGST11::GUS in the shoot via the deduced signaling system. Both transgenic lines also showed an increase of GUS activity after cold stress, heat stress, metal toxicity, and oxidative damages, suggesting a common induction mechanism in response to the tested stresses including Al stress. PMID:15047894

  1. Upland cotton gene GhFPF1 confers promotion of flowering time and shade-avoidance responses in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Xiaoyan Wang

    Full Text Available Extensive studies on floral transition in model species have revealed a network of regulatory interactions between proteins that transduce and integrate developmental and environmental signals to promote or inhibit the transition to flowering. Previous studies indicated FLOWERING PROMOTING FACTOR 1 (FPF1 gene was involved in the promotion of flowering, but the molecular mechanism was still unclear. Here, FPF1 homologous sequences were screened from diploid Gossypium raimondii L. (D-genome, n = 13 and Gossypium arboreum L. genome (A-genome, n = 13 databases. Orthologous genes from the two species were compared, suggesting that distinctions at nucleic acid and amino acid levels were not equivalent because of codon degeneracy. Six FPF1 homologous genes were identified from the cultivated allotetraploid Gossypium hirsutum L. (AD-genome, n = 26. Analysis of relative transcripts of the six genes in different tissues revealed that this gene family displayed strong tissue-specific expression. GhFPF1, encoding a 12.0-kDa protein (Accession No: KC832319 exerted more transcripts in floral apices of short-season cotton, hinting that it could be involved in floral regulation. Significantly activated APETALA 1 and suppressed FLOWERING LOCUS C expression were induced by over-expression of GhFPF1 in the Arabidopsis Columbia-0 ecotype. In addition, transgenic Arabidopsis displayed a constitutive shade-avoiding phenotype that is characterized by long hypocotyls and petioles, reduced chlorophyll content, and early flowering. We propose that GhFPF1 may be involved in flowering time control and shade-avoidance responses.

  2. The ASK1 gene regulates B function gene expression in cooperation with UFO and LEAFY in Arabidopsis.

    Science.gov (United States)

    Zhao, D; Yu, Q; Chen, M; Ma, H

    2001-07-01

    The Arabidopsis floral regulatory genes APETALA3 (AP3) and PISTILLATA (PI) are required for the B function according to the ABC model for floral organ identity. AP3 and PI expression are positively regulated by the LEAFY (LFY) and UNUSUAL FLORAL ORGANS (UFO) genes. UFO encodes an F-box protein, and we have shown previously that UFO genetically interacts with the ASK1 gene encoding a SKP1 homologue; both the F-box containing protein and SKP1 are subunits of ubiquitin ligases. We show here that the ask1-1 mutation can enhance the floral phenotypes of weak lfy and ap3 mutants; therefore, like UFO, ASK1 also interacts with LFY and AP3 genetically. Furthermore, our results from RNA in situ hybridizations indicate that ASK1 regulates early AP3 and PI expression. These results support the idea that UFO and ASK1 together positively regulate AP3 and PI expression. We propose that the UFO and ASK1 proteins are components of a ubiquitin ligase that mediates the proteolysis of a repressor of AP3 and PI expression. Our genetic studies also indicate that ASK1 and UFO play a role in regulating the number of floral organ primordia, and we discuss possible mechanisms for such a regulation.

  3. Which Cheek did the Resurrected Jesus Turn?

    Science.gov (United States)

    Acosta, Lealani Mae Y; Williamson, John B; Heilman, Kenneth M

    2015-06-01

    Secular portraits are likely to show more of the left than right side of the face (hemiface). Prior research has shown that emotions are more strongly expressed by the left hemiface. In addition, the valence theory of emotion proposes that the right hemisphere is dominant for mediating negative emotions, and the left hemisphere for positive emotions. Since religious art depicting a scene such as the Resurrection of Jesus is more likely to be associated with positive emotions, we postulated that there would be a significant smaller percentage number of artistic works of the Resurrection that reveal the left side of the face of Jesus than in those art works portraying the Crucifixion. Thus, we analyzed artistic portrayals of the Resurrection of Jesus and compared them to the artistic scenes of the Crucifixion. This analysis revealed that the left side of the face of Jesus is less commonly depicted in portraits of the Resurrection than the Crucifixion. In addition, both the right hemiface, and forward-facing faces were also more commonly portrayed in painting of the Resurrection than the Crucifixion. Whereas this right-left hemiface, Resurrection-Crucifixion dichotomy may be related to right-left hemispheric difference in the mediation of emotional valence other factors such as agency, action-intention, and biblical text may have influenced these differences.

  4. A novel Zea mays ssp. mexicana L. MYC-type ICE-like transcription factor gene ZmmICE1, enhances freezing tolerance in transgenic Arabidopsis thaliana.

    Science.gov (United States)

    Lu, Xiang; Yang, Lei; Yu, Mengyuan; Lai, Jianbin; Wang, Chao; McNeil, David; Zhou, Meixue; Yang, Chengwei

    2017-04-01

    The annual Zea mays ssp. mexicana L., a member of the teosinte group, is a close wild relative of maize and thus can be effectively used in maize improvement. In this study, an ICE-like gene, ZmmICE1, was isolated from a cDNA library of RNA-Seq from cold-treated seedling tissues of Zea mays ssp. mexicana L. The deduced protein of ZmmICE1 contains a highly conserved basic helix-loop-helix (bHLH) domain and C-terminal region of ICE-like proteins. The ZmmICE1 protein localizes to the nucleus and shows sumoylation when expressed in an Escherichia coli reconstitution system. In addition, yeast one hybrid assays indicated that ZmmICE1 has transactivation activities. Moreover, ectopic expression of ZmmICE1 in the Arabidopsis ice1-2 mutant increased freezing tolerance. The ZmmICE1 overexpressed plants showed lower electrolyte leakage (EL), reduced contents of malondialdehyde (MDA). The expression of downstream cold related genes of Arabidopsis C-repeat-binding factors (AtCBF1, AtCBF2 and AtCBF3), cold-responsive genes (AtCOR15A and AtCOR47), kinesin-1 member gene (AtKIN1) and responsive to desiccation gene (AtRD29A) was significantly induced when compared with wild type under low temperature treatment. Taken together, these results indicated that ZmmICE1 is the homolog of Arabidopsis inducer of CBF expression genes (AtICE1/2) and plays an important role in the regulation of freezing stress response. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  5. Polycomb Group Proteins RING1A and RING1B Regulate the Vegetative Phase Transition in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Jian Li

    2017-05-01

    Full Text Available Polycomb group (PcG protein-mediated gene silencing is a major regulatory mechanism in higher eukaryotes that affects gene expression at the transcriptional level. Here, we report that two conserved homologous PcG proteins, RING1A and RING1B (RING1A/B, are required for global H2A monoubiquitination (H2Aub in Arabidopsis. The mutation of RING1A/B increased the expression of members of the SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL gene family and caused an early vegetative phase transition. The early vegetative phase transition observed in ring1a ring1b double mutant plants was dependent on an SPL family gene, and the H2Aub status of the chromatin at SPL locus was dependent on RING1A/B. Moreover, mutation in RING1A/B affected the miRNA156a-mediated vegetative phase transition, and RING1A/B and the AGO7-miR390-TAS3 pathway were found to additively regulate this transition in Arabidopsis. Together, our results demonstrate that RING1A/B regulates the vegetative phase transition in Arabidopsis through the repression of SPL family genes.

  6. Cuticle ultrastructure, cuticular lipid composition, and gene expression in hypoxia-stressed Arabidopsis stems and leaves.

    Science.gov (United States)

    Kim, Hyojin; Choi, Dongsu; Suh, Mi Chung

    2017-06-01

    An increased permeability of the cuticle is closely associated with downregulation of genes involved in cuticular lipid synthesis in hypoxia-stressed Arabidopsis and may allow plants to cope with oxygen deficiency. The hydrophobic cuticle layer consisting of cutin polyester and cuticular wax is the first barrier to protect the aerial parts of land plants from environmental stresses. In the present study, we investigated the role of cuticle membrane in Arabidopsis responses to oxygen deficiency. TEM analysis showed that the epidermal cells of hypoxia-treated Arabidopsis stems and leaves possessed a thinner electron-translucent cuticle proper and a more electron-dense cuticular layer. A reduction in epicuticular wax crystal deposition was observed in SEM images of hypoxia-treated Arabidopsis stem compared with normoxic control. Cuticular transpiration was more rapid in hypoxia-stressed leaves than in normoxic control. Total wax and cutin loads decreased by approximately 6-12 and 12-22%, respectively, and the levels of C29 alkanes, secondary alcohols, and ketones, C16:0 ω-hydroxy fatty acids, and C18:2 dicarboxylic acids were also prominently reduced in hypoxia-stressed Arabidopsis leaves and/or stems relative to normoxic control. Genome-wide transcriptome and quantitative RT-PCR analyses revealed that the expression of several genes involved in the biosynthesis and transport of cuticular waxes and cutin monomers were downregulated more than fourfold, but no significant alterations were detected in the transcript levels of fatty acid biosynthetic genes, BCCP2, PDH-E1α, and ENR1 in hypoxia-treated Arabidopsis stems and leaves compared with normoxic control. Taken together, an increased permeability of the cuticle is closely associated with downregulation of genes involved in cuticular lipid synthesis in hypoxia-stressed Arabidopsis. The present study elucidates one of the cuticle-related adaptive responses that may allow plants to cope with low oxygen levels.

  7. Isolation and characterization of an auxin-inducible glutathione S-transferase gene of Arabidopsis thaliana

    NARCIS (Netherlands)

    Kop, D.A.M. van der; Schuyer, M.; Scheres, B.J.G.; Zaal, B.J. van der; Hooykaas, P.J.J.

    1996-01-01

    Genes homologous to the auxin-inducible Nt103 glutathione S-transferase (GST) gene of tobacco, were isolated from a genomic library of Arabidopsis thaliana. We isolated a λ clone containing an auxin-inducible gene, At103-1a, and part of a constitutively expressed gene, At103-1b. The coding regions

  8. Developmental transitions in Arabidopsis are regulated by antisense RNAs resulting from bidirectionally transcribed genes.

    Science.gov (United States)

    Krzyczmonik, Katarzyna; Wroblewska-Swiniarska, Agata; Swiezewski, Szymon

    2017-07-03

    Transcription terminators are DNA elements located at the 3' end of genes that ensure efficient cleavage of nascent RNA generating the 3' end of mRNA, as well as facilitating disengagement of elongating DNA-dependent RNA polymerase II. Surprisingly, terminators are also a potent source of antisense transcription. We have recently described an Arabidopsis antisense transcript originating from the 3' end of a master regulator of Arabidopsis thaliana seed dormancy DOG1. In this review, we discuss the broader implications of our discovery in light of recent developments in yeast and Arabidopsis. We show that, surprisingly, the key features of terminators that give rise to antisense transcription are preserved between Arabidopsis and yeast, suggesting a conserved mechanism. We also compare our discovery to known antisense-based regulatory mechanisms, highlighting the link between antisense-based gene expression regulation and major developmental transitions in plants.

  9. Systemic acquired resistance in soybean is regulated by two proteins, Orthologous to Arabidopsis NPR1

    Directory of Open Access Journals (Sweden)

    Sandhu Devinder

    2009-08-01

    Full Text Available Abstract Background Systemic acquired resistance (SAR is induced in non-inoculated leaves following infection with certain pathogenic strains. SAR is effective against many pathogens. Salicylic acid (SA is a signaling molecule of the SAR pathway. The development of SAR is associated with the induction of pathogenesis related (PR genes. Arabidopsis non-expressor of PR1 (NPR1 is a regulatory gene of the SA signal pathway 123. SAR in soybean was first reported following infection with Colletotrichum trancatum that causes anthracnose disease. We investigated if SAR in soybean is regulated by a pathway, similar to the one characterized in Arabidopsis. Results Pathogenesis-related gene GmPR1 is induced following treatment of soybean plants with the SAR inducer, 2,6-dichloroisonicotinic acid (INA or infection with the oomycete pathogen, Phytophthora sojae. In P. sojae-infected plants, SAR was induced against the bacterial pathogen, Pseudomonas syringae pv. glycinea. Soybean GmNPR1-1 and GmNPR1-2 genes showed high identities to Arabidopsis NPR1. They showed similar expression patterns among the organs, studied in this investigation. GmNPR1-1 and GmNPR1-2 are the only soybean homologues of NPR1and are located in homoeologous regions. In GmNPR1-1 and GmNPR1-2 transformed Arabidopsis npr1-1 mutant plants, SAR markers: (i PR-1 was induced following INA treatment and (ii BGL2 following infection with Pseudomonas syringae pv. tomato (Pst, and SAR was induced following Pst infection. Of the five cysteine residues, Cys82, Cys150, Cys155, Cys160, and Cys216 involved in oligomer-monomer transition in NPR1, Cys216 in GmNPR1-1 and GmNPR1-2 proteins was substituted to Ser and Leu, respectively. Conclusion Complementation analyses in Arabidopsis npr1-1 mutants revealed that homoeologous GmNPR1-1 and GmNPR1-2 genes are orthologous to Arabidopsis NPR1. Therefore, SAR pathway in soybean is most likely regulated by GmNPR1 genes. Substitution of Cys216 residue, essential

  10. Systemic acquired resistance in soybean is regulated by two proteins, Orthologous to Arabidopsis NPR1.

    Science.gov (United States)

    Sandhu, Devinder; Tasma, I Made; Frasch, Ryan; Bhattacharyya, Madan K

    2009-08-05

    Systemic acquired resistance (SAR) is induced in non-inoculated leaves following infection with certain pathogenic strains. SAR is effective against many pathogens. Salicylic acid (SA) is a signaling molecule of the SAR pathway. The development of SAR is associated with the induction of pathogenesis related (PR) genes. Arabidopsis non-expressor of PR1 (NPR1) is a regulatory gene of the SA signal pathway 123. SAR in soybean was first reported following infection with Colletotrichum trancatum that causes anthracnose disease. We investigated if SAR in soybean is regulated by a pathway, similar to the one characterized in Arabidopsis. Pathogenesis-related gene GmPR1 is induced following treatment of soybean plants with the SAR inducer, 2,6-dichloroisonicotinic acid (INA) or infection with the oomycete pathogen, Phytophthora sojae. In P. sojae-infected plants, SAR was induced against the bacterial pathogen, Pseudomonas syringae pv. glycinea. Soybean GmNPR1-1 and GmNPR1-2 genes showed high identities to Arabidopsis NPR1. They showed similar expression patterns among the organs, studied in this investigation. GmNPR1-1 and GmNPR1-2 are the only soybean homologues of NPR1and are located in homoeologous regions. In GmNPR1-1 and GmNPR1-2 transformed Arabidopsis npr1-1 mutant plants, SAR markers: (i) PR-1 was induced following INA treatment and (ii) BGL2 following infection with Pseudomonas syringae pv. tomato (Pst), and SAR was induced following Pst infection. Of the five cysteine residues, Cys82, Cys150, Cys155, Cys160, and Cys216 involved in oligomer-monomer transition in NPR1, Cys216 in GmNPR1-1 and GmNPR1-2 proteins was substituted to Ser and Leu, respectively. Complementation analyses in Arabidopsis npr1-1 mutants revealed that homoeologous GmNPR1-1 and GmNPR1-2 genes are orthologous to Arabidopsis NPR1. Therefore, SAR pathway in soybean is most likely regulated by GmNPR1 genes. Substitution of Cys216 residue, essential for oligomer-monomer transition of Arabidopsis NPR1

  11. quatre-quart1 is an indispensable U12 intron-containing gene that plays a crucial role in Arabidopsis development.

    Science.gov (United States)

    Kwak, Kyung Jin; Kim, Bo Mi; Lee, Kwanuk; Kang, Hunseung

    2017-05-17

    Despite increasing understanding of the importance of the splicing of U12-type introns in plant development, the key question of which U12 intron-containing genes are essential for plant development has not yet been explored. Here, we assessed the functional role of the quatre-quart1 (QQT1) gene, one of the ~230 U12 intron-containing genes in Arabidopsis thaliana. Expression of QQT1 in the U11/U12-31K small nuclear ribonucleoprotein mutant (31k) rescued the developmental-defect phenotypes of the 31k mutant, whereas the miRNA-mediated qqt1 knockdown mutants displayed severe defects in growth and development, including severely arrested stem growth, small size, and the formation of serrated leaves. The structures of the shoot apical meristems in the qqt1 mutants were abnormal and disordered. Identification of QQT1-interacting proteins via a yeast two-hybrid screening and a firefly luciferase complementation-imaging assay revealed that a variety of proteins, including many chloroplast-targeted proteins, interacted with QQT1. Importantly, the levels of chloroplast-targeted proteins in the chloroplast were reduced, and the chloroplast structure was abnormal in the qqt1 mutant. Collectively, these results provide clear evidence that QQT1 is an indispensable U12 intron-containing gene whose correct splicing is crucial for the normal development of Arabidopsis. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  12. Overexpression of the mulberry latex gene MaMLX-Q1 enhances defense against Plutella xylostella in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Liu Yan

    2017-01-01

    Full Text Available Purified mulberry latex chitinase (MLX has a role in defense against some lepidopteran insects. In this study, a full length chitinase gene, MaMLX-Q1, of 1405 bp with a 1140 bp open reading frame, was obtained from mulberry leaves by the degenerate primers and rapid amplification of cDNA ends polymerase chain reaction (RACE-PCR procedure. The gene encoded a mature protein with the predicted molecular mass of 39.38 kDa and an isoelectric point (pI of 6.43; it contained two chitin-binding domains and a hydrolase family 19 chitinase domain. Sequence alignment and phylogenetic analysis grouped it in the class I chitinase protein group. Heterogeneous expression of this MaMLX-Q1 in Arabidopsis showed non-visible alterations in growth phenotype, except for the higher transcriptional expression of MaMLX-Q1 when compared to that of wild-type Arabidopsis. This ectopic MaMLX-Q1 exhibited toxicity to the growth and development of Plutella xylostella larvae, causing significantly lower weight gain and higher mortality. These results indicate an application of MaMLX-Q1 as an insecticide for plant protection.

  13. Identification of cytokinin-responsive genes using microarray meta-analysis and RNA-Seq in Arabidopsis.

    Science.gov (United States)

    Bhargava, Apurva; Clabaugh, Ivory; To, Jenn P; Maxwell, Bridey B; Chiang, Yi-Hsuan; Schaller, G Eric; Loraine, Ann; Kieber, Joseph J

    2013-05-01

    Cytokinins are N(6)-substituted adenine derivatives that play diverse roles in plant growth and development. We sought to define a robust set of genes regulated by cytokinin as well as to query the response of genes not represented on microarrays. To this end, we performed a meta-analysis of microarray data from a variety of cytokinin-treated samples and used RNA-seq to examine cytokinin-regulated gene expression in Arabidopsis (Arabidopsis thaliana). Microarray meta-analysis using 13 microarray experiments combined with empirically defined filtering criteria identified a set of 226 genes differentially regulated by cytokinin, a subset of which has previously been validated by other methods. RNA-seq validated about 73% of the up-regulated genes identified by this meta-analysis. In silico promoter analysis indicated an overrepresentation of type-B Arabidopsis response regulator binding elements, consistent with the role of type-B Arabidopsis response regulators as primary mediators of cytokinin-responsive gene expression. RNA-seq analysis identified 73 cytokinin-regulated genes that were not represented on the ATH1 microarray. Representative genes were verified using quantitative reverse transcription-polymerase chain reaction and NanoString analysis. Analysis of the genes identified reveals a substantial effect of cytokinin on genes encoding proteins involved in secondary metabolism, particularly those acting in flavonoid and phenylpropanoid biosynthesis, as well as in the regulation of redox state of the cell, particularly a set of glutaredoxin genes. Novel splicing events were found in members of some gene families that are known to play a role in cytokinin signaling or metabolism. The genes identified in this analysis represent a robust set of cytokinin-responsive genes that are useful in the analysis of cytokinin function in plants.

  14. Evolutionary Fates and Dynamic Functionalization of Young Duplicate Genes in Arabidopsis Genomes.

    Science.gov (United States)

    Wang, Jun; Tao, Feng; Marowsky, Nicholas C; Fan, Chuanzhu

    2016-09-01

    Gene duplication is a primary means to generate genomic novelties, playing an essential role in speciation and adaptation. Particularly in plants, a high abundance of duplicate genes has been maintained for significantly long periods of evolutionary time. To address the manner in which young duplicate genes were derived primarily from small-scale gene duplication and preserved in plant genomes and to determine the underlying driving mechanisms, we generated transcriptomes to produce the expression profiles of five tissues in Arabidopsis thaliana and the closely related species Arabidopsis lyrata and Capsella rubella Based on the quantitative analysis metrics, we investigated the evolutionary processes of young duplicate genes in Arabidopsis. We determined that conservation, neofunctionalization, and specialization are three main evolutionary processes for Arabidopsis young duplicate genes. We explicitly demonstrated the dynamic functionalization of duplicate genes along the evolutionary time scale. Upon origination, duplicates tend to maintain their ancestral functions; but as they survive longer, they might be likely to develop distinct and novel functions. The temporal evolutionary processes and functionalization of plant duplicate genes are associated with their ancestral functions, dynamic DNA methylation levels, and histone modification abundances. Furthermore, duplicate genes tend to be initially expressed in pollen and then to gain more interaction partners over time. Altogether, our study provides novel insights into the dynamic retention processes of young duplicate genes in plant genomes. © 2016 American Society of Plant Biologists. All rights reserved.

  15. Identification of imprinted genes subject to parent-of-origin specific expression in Arabidopsis thaliana seeds

    LENUS (Irish Health Repository)

    McKeown, Peter C

    2011-08-12

    Abstract Background Epigenetic regulation of gene dosage by genomic imprinting of some autosomal genes facilitates normal reproductive development in both mammals and flowering plants. While many imprinted genes have been identified and intensively studied in mammals, smaller numbers have been characterized in flowering plants, mostly in Arabidopsis thaliana. Identification of additional imprinted loci in flowering plants by genome-wide screening for parent-of-origin specific uniparental expression in seed tissues will facilitate our understanding of the origins and functions of imprinted genes in flowering plants. Results cDNA-AFLP can detect allele-specific expression that is parent-of-origin dependent for expressed genes in which restriction site polymorphisms exist in the transcripts derived from each allele. Using a genome-wide cDNA-AFLP screen surveying allele-specific expression of 4500 transcript-derived fragments, we report the identification of 52 maternally expressed genes (MEGs) displaying parent-of-origin dependent expression patterns in Arabidopsis siliques containing F1 hybrid seeds (3, 4 and 5 days after pollination). We identified these MEGs by developing a bioinformatics tool (GenFrag) which can directly determine the identities of transcript-derived fragments from (i) their size and (ii) which selective nucleotides were added to the primers used to generate them. Hence, GenFrag facilitates increased throughput for genome-wide cDNA-AFLP fragment analyses. The 52 MEGs we identified were further filtered for high expression levels in the endosperm relative to the seed coat to identify the candidate genes most likely representing novel imprinted genes expressed in the endosperm of Arabidopsis thaliana. Expression in seed tissues of the three top-ranked candidate genes, ATCDC48, PDE120 and MS5-like, was confirmed by Laser-Capture Microdissection and qRT-PCR analysis. Maternal-specific expression of these genes in Arabidopsis thaliana F1 seeds was

  16. Identification of imprinted genes subject to parent-of-origin specific expression in Arabidopsis thaliana seeds

    Directory of Open Access Journals (Sweden)

    Wennblom Trevor J

    2011-08-01

    Full Text Available Abstract Background Epigenetic regulation of gene dosage by genomic imprinting of some autosomal genes facilitates normal reproductive development in both mammals and flowering plants. While many imprinted genes have been identified and intensively studied in mammals, smaller numbers have been characterized in flowering plants, mostly in Arabidopsis thaliana. Identification of additional imprinted loci in flowering plants by genome-wide screening for parent-of-origin specific uniparental expression in seed tissues will facilitate our understanding of the origins and functions of imprinted genes in flowering plants. Results cDNA-AFLP can detect allele-specific expression that is parent-of-origin dependent for expressed genes in which restriction site polymorphisms exist in the transcripts derived from each allele. Using a genome-wide cDNA-AFLP screen surveying allele-specific expression of 4500 transcript-derived fragments, we report the identification of 52 maternally expressed genes (MEGs displaying parent-of-origin dependent expression patterns in Arabidopsis siliques containing F1 hybrid seeds (3, 4 and 5 days after pollination. We identified these MEGs by developing a bioinformatics tool (GenFrag which can directly determine the identities of transcript-derived fragments from (i their size and (ii which selective nucleotides were added to the primers used to generate them. Hence, GenFrag facilitates increased throughput for genome-wide cDNA-AFLP fragment analyses. The 52 MEGs we identified were further filtered for high expression levels in the endosperm relative to the seed coat to identify the candidate genes most likely representing novel imprinted genes expressed in the endosperm of Arabidopsis thaliana. Expression in seed tissues of the three top-ranked candidate genes, ATCDC48, PDE120 and MS5-like, was confirmed by Laser-Capture Microdissection and qRT-PCR analysis. Maternal-specific expression of these genes in Arabidopsis thaliana F1

  17. The ULT1 and ULT2 trxG genes play overlapping roles in Arabidopsis development and gene regulation.

    Science.gov (United States)

    Monfared, Mona M; Carles, Cristel C; Rossignol, Pascale; Pires, Helena R; Fletcher, Jennifer C

    2013-09-01

    The epigenetic regulation of gene expression is critical for ensuring the proper deployment and stability of defined genome transcription programs at specific developmental stages. The cellular memory of stable gene expression states during animal and plant development is mediated by the opposing activities of Polycomb group (PcG) factors and trithorax group (trxG) factors. Yet, despite their importance, only a few trxG factors have been characterized in plants and their roles in regulating plant development are poorly defined. In this work, we report that the closely related Arabidopsis trxG genes ULTRAPETALA1 (ULT1) and ULT2 have overlapping functions in regulating shoot and floral stem cell accumulation, with ULT1 playing a major role but ULT2 also making a minor contribution. The two genes also have a novel, redundant activity in establishing the apical–basal polarity axis of the gynoecium, indicating that they function in differentiating tissues. Like ULT1 proteins, ULT2 proteins have a dual nuclear and cytoplasmic localization, and the two proteins physically associate in planta. Finally, we demonstrate that ULT1 and ULT2 have very similar overexpression phenotypes and regulate a common set of key development target genes, including floral MADS-box genes and class I KNOX genes. Our results reveal that chromatin remodeling mediated by the ULT1 and ULT2 proteins is necessary to control the development of meristems and reproductive organs. They also suggest that, like their animal counterparts, plant trxG proteins may function in multi-protein complexes to up-regulate the expression of key stage- and tissue-specific developmental regulatory genes.

  18. Mechanical touch responses of Arabidopsis TCH1-3 mutant roots on inclined hard-agar surface

    Science.gov (United States)

    Zha, Guodong; Wang, Bochu; Liu, Junyu; Yan, Jie; Zhu, Liqing; Yang, Xingyan

    2016-01-01

    The gravity-induced mechanical touch stimulus can affect plant root architecture. Mechanical touch responses of plant roots are an important aspect of plant root growth and development. Previous studies have reported that Arabidopsis TCH1-3 genes are involved in mechano-related events, how-ever, the physiological functions of TCH1-3 genes in Arabidopsis root mechanoresponses remain unclear. In the present study, we applied an inclined hard agar plate method to produce mechanical touch stimulus, and provided evidence that altered mechanical environment could influence root growth. Furthermore, tch1-3 Arabidopsis mutants were investigated on inclined agar surfaces to explore the functions of TCH1-3 genes on Arabidopsis root mechanoresponses. The results showed that two tch2 mutants, cml24-2 and cml24-4, exhibited significantly reduced root length, biased skewing, and decreased density of lateral root. In addition, primary root length and density of lateral root of tch3 (cml12-2) was significantly decreased on inclined agar surfaces. This study indicates that the tch2 and tch3 mutants are hypersensitive to mechanical touch stimulus, and TCH2 (CML24-2 and CML24-4) and TCH3 (CML12-2) genes may participate in the mechanical touch response of Arabidopsis roots.

  19. Ectopic expression of ubiquitin-conjugating enzyme gene from wild rice, OgUBC1, confers resistance against UV-B radiation and Botrytis infection in Arabidopsis thaliana

    International Nuclear Information System (INIS)

    Jeon, En Hee; Pak, Jung Hun; Kim, Mi Jin; Kim, Hye Jeong; Shin, Sang Hyun; Lee, Jai Heon; Kim, Doh Hoon; Oh, Ju Sung; Oh, Boung-Jun; Jung, Ho Won; Chung, Young Soo

    2012-01-01

    Highlights: ► We isolated a novel E2 ubiquitin-conjugating enzyme from leaves of wild rice plants. ► The OgUBC1 was highly expressed in leaves treated with SA and UV-B radiation. ► The recombinant OgUBC1 has an enzymatic activity of E2 in vitro. ► The OgUBC1 could protect disruption of plant cells by UV-B radiation. ► OgUBC1 confers disease resistance and UV-B tolerance in transgenic Arabidopsis plants. -- Abstract: A previously unidentified gene encoding ubiquitin-conjugating enzyme was isolated from leaves of wild rice plant treated with wounding and microbe-associated molecular patterns. The OgUBC1 gene was composed of 148 amino acids and contained a typical active site and 21 ubiquitin thioester intermediate interaction residues and 4 E3 interaction residues. Both exogenous application of salicylic acid and UV-B irradiation triggered expression of OgUBC1 in leaves of wild rice. Recombinant OgUBC1 proteins bound to ubiquitins in vitro, proposing that the protein might act as E2 enzyme in planta. Heterologous expression of the OgUBC1 in Arabidopsis thaliana protected plants from cellular damage caused by an excess of UV-B radiation. A stable expression of chalcone synthase gene was detected in leaves of OgUBC1-expressing Arabidopsis, resulting in producing higher amounts of anthocyanin than those in wild-type Col-0 plants. Additionally, both pathogenesis-related gene1 and 5 were transcribed in the transgenic Arabidopsis in the absence of pathogen infection. The OgUBC1-expressing plants were resistant to the infection of Botrytis cinerea. Taken together, we suggested that the OgUBC1 is involved in ubiquitination process important for cellular response against biotic and abiotic stresses in plants.

  20. Ectopic expression of ubiquitin-conjugating enzyme gene from wild rice, OgUBC1, confers resistance against UV-B radiation and Botrytis infection in Arabidopsis thaliana

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, En Hee; Pak, Jung Hun; Kim, Mi Jin; Kim, Hye Jeong [Department of Genetic Engineering, Dong-A University, Busan 604-714 (Korea, Republic of); Shin, Sang Hyun [National Crop Experiment Station, Rural Development Administration, Suwon 441-100 (Korea, Republic of); Lee, Jai Heon; Kim, Doh Hoon; Oh, Ju Sung [Department of Genetic Engineering, Dong-A University, Busan 604-714 (Korea, Republic of); Oh, Boung-Jun [BioControl Center, Jeonnam 516-942 (Korea, Republic of); Jung, Ho Won, E-mail: hwjung@dau.ac.kr [Department of Genetic Engineering, Dong-A University, Busan 604-714 (Korea, Republic of); Chung, Young Soo, E-mail: chungys@dau.ac.kr [Department of Genetic Engineering, Dong-A University, Busan 604-714 (Korea, Republic of)

    2012-10-19

    Highlights: Black-Right-Pointing-Pointer We isolated a novel E2 ubiquitin-conjugating enzyme from leaves of wild rice plants. Black-Right-Pointing-Pointer The OgUBC1 was highly expressed in leaves treated with SA and UV-B radiation. Black-Right-Pointing-Pointer The recombinant OgUBC1 has an enzymatic activity of E2 in vitro. Black-Right-Pointing-Pointer The OgUBC1 could protect disruption of plant cells by UV-B radiation. Black-Right-Pointing-Pointer OgUBC1 confers disease resistance and UV-B tolerance in transgenic Arabidopsis plants. -- Abstract: A previously unidentified gene encoding ubiquitin-conjugating enzyme was isolated from leaves of wild rice plant treated with wounding and microbe-associated molecular patterns. The OgUBC1 gene was composed of 148 amino acids and contained a typical active site and 21 ubiquitin thioester intermediate interaction residues and 4 E3 interaction residues. Both exogenous application of salicylic acid and UV-B irradiation triggered expression of OgUBC1 in leaves of wild rice. Recombinant OgUBC1 proteins bound to ubiquitins in vitro, proposing that the protein might act as E2 enzyme in planta. Heterologous expression of the OgUBC1 in Arabidopsis thaliana protected plants from cellular damage caused by an excess of UV-B radiation. A stable expression of chalcone synthase gene was detected in leaves of OgUBC1-expressing Arabidopsis, resulting in producing higher amounts of anthocyanin than those in wild-type Col-0 plants. Additionally, both pathogenesis-related gene1 and 5 were transcribed in the transgenic Arabidopsis in the absence of pathogen infection. The OgUBC1-expressing plants were resistant to the infection of Botrytis cinerea. Taken together, we suggested that the OgUBC1 is involved in ubiquitination process important for cellular response against biotic and abiotic stresses in plants.

  1. Genes encoding calmodulin-binding proteins in the Arabidopsis genome

    Science.gov (United States)

    Reddy, Vaka S.; Ali, Gul S.; Reddy, Anireddy S N.

    2002-01-01

    Analysis of the recently completed Arabidopsis genome sequence indicates that approximately 31% of the predicted genes could not be assigned to functional categories, as they do not show any sequence similarity with proteins of known function from other organisms. Calmodulin (CaM), a ubiquitous and multifunctional Ca(2+) sensor, interacts with a wide variety of cellular proteins and modulates their activity/function in regulating diverse cellular processes. However, the primary amino acid sequence of the CaM-binding domain in different CaM-binding proteins (CBPs) is not conserved. One way to identify most of the CBPs in the Arabidopsis genome is by protein-protein interaction-based screening of expression libraries with CaM. Here, using a mixture of radiolabeled CaM isoforms from Arabidopsis, we screened several expression libraries prepared from flower meristem, seedlings, or tissues treated with hormones, an elicitor, or a pathogen. Sequence analysis of 77 positive clones that interact with CaM in a Ca(2+)-dependent manner revealed 20 CBPs, including 14 previously unknown CBPs. In addition, by searching the Arabidopsis genome sequence with the newly identified and known plant or animal CBPs, we identified a total of 27 CBPs. Among these, 16 CBPs are represented by families with 2-20 members in each family. Gene expression analysis revealed that CBPs and CBP paralogs are expressed differentially. Our data suggest that Arabidopsis has a large number of CBPs including several plant-specific ones. Although CaM is highly conserved between plants and animals, only a few CBPs are common to both plants and animals. Analysis of Arabidopsis CBPs revealed the presence of a variety of interesting domains. Our analyses identified several hypothetical proteins in the Arabidopsis genome as CaM targets, suggesting their involvement in Ca(2+)-mediated signaling networks.

  2. Resurrection of the Body and Cryonics

    Directory of Open Access Journals (Sweden)

    Calvin Mercer

    2017-05-01

    Full Text Available The Christian doctrine of resurrection of the body is employed to interpret the cryonics program of preserving legally dead people with the plan to restore them when future medicine can effectively address the cause of death. Cryonics is not accepted by mainstream science, and even if the vision is never realized, it is worth the effort to use it as a thought experiment to test the capability of the Christian theological system to address this issue in the unfolding new world of human enhancement. Drawing on the apostle Paul, whose view was based in the Jewish notion of psychosomatic unity, Christian resurrection includes emphases on physicality, radical transformation, and continuity of personal identity. Successful cryonics scenarios can include restoring a person to more or less the same life they had before or, more likely, utilize robotics, tissue regeneration, and other future advances in human enhancement technology to restore one to an enhanced state. Christian resurrection and the more likely cryonics scenario both entail physicality, radical transformation, and continuity of personal identity and, as such, can be understood to be technological expressions of Christian resurrection.

  3. Molecular and physiological characterization of AtHIGD1 in Arabidopsis.

    Science.gov (United States)

    Hwang, Soong-Taek; Li, Huiling; Alavilli, Hemasundar; Lee, Byeong-Ha; Choi, Dongsu

    2017-06-10

    Flooding is a principal stress that limits plant productivity. The sensing of low oxygen levels (hypoxia) plays a critical role in the signaling pathway that functions in plants in flooded environments. In this study, to investigate hypoxia response mechanisms in Arabidopsis, we identified three hypoxia-related genes and subjected one of these genes, Arabidopsis thaliana HYPOXIA-INDUCED GENE DOMAIN 1 (AtHIGD1), to molecular characterization including gene expression analysis and intracellular localization of the encoded protein. AtHIGD1 was expressed in various organs but was preferentially expressed in developing siliques. Confocal microscopy of transgenic plants harboring eGFP-tagged AtHIGD1 indicated that AtHIGD1 is localized to mitochondria. Importantly, plants overexpressing AtHIGD1 exhibited increased resistance to hypoxia compared to wild type. Our results represent the first report of a biological function for an HIGD protein in plants and indicate that AtHIGD1 is a mitochondrial protein that plays an active role in mitigating the effects of hypoxia on plants. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. An Atlas of Type I MADS Box Gene Expression during Female Gametophyte and Seed Development in Arabidopsis[W].

    NARCIS (Netherlands)

    Bemer, M.; Heijmans, K.; Airoldi, C.A.; Davies, B.; Angenent, G.C.

    2010-01-01

    Members of the plant type I MADS domain subfamily have been reported to be involved in reproductive development in Arabidopsis (Arabidopsis thaliana). However, from the 61 type I genes in the Arabidopsis genome, only PHERES1, AGAMOUS-LIKE80 (AGL80), DIANA, AGL62, and AGL23 have been functionally

  5. A comprehensive dataset of genes with a loss-of-function mutant phenotype in Arabidopsis.

    Science.gov (United States)

    Lloyd, Johnny; Meinke, David

    2012-03-01

    Despite the widespread use of Arabidopsis (Arabidopsis thaliana) as a model plant, a curated dataset of Arabidopsis genes with mutant phenotypes remains to be established. A preliminary list published nine years ago in Plant Physiology is outdated, and genome-wide phenotype information remains difficult to obtain. We describe here a comprehensive dataset of 2,400 genes with a loss-of-function mutant phenotype in Arabidopsis. Phenotype descriptions were gathered primarily from manual curation of the scientific literature. Genes were placed into prioritized groups (essential, morphological, cellular-biochemical, and conditional) based on the documented phenotypes of putative knockout alleles. Phenotype classes (e.g. vegetative, reproductive, and timing, for the morphological group) and subsets (e.g. flowering time, senescence, circadian rhythms, and miscellaneous, for the timing class) were also established. Gene identities were classified as confirmed (through molecular complementation or multiple alleles) or not confirmed. Relationships between mutant phenotype and protein function, genetic redundancy, protein connectivity, and subcellular protein localization were explored. A complementary dataset of 401 genes that exhibit a mutant phenotype only when disrupted in combination with a putative paralog was also compiled. The importance of these genes in confirming functional redundancy and enhancing the value of single gene datasets is discussed. With further input and curation from the Arabidopsis community, these datasets should help to address a variety of important biological questions, provide a foundation for exploring the relationship between genotype and phenotype in angiosperms, enhance the utility of Arabidopsis as a reference plant, and facilitate comparative studies with model genetic organisms.

  6. An auxin responsive CLE gene regulates shoot apical meristem development in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Hongyan eGuo

    2015-05-01

    Full Text Available Plant hormone auxin regulates most, if not all aspects of plant growth and development, including lateral root formation, organ pattering, apical dominance and tropisms. Peptide hormones are peptides with hormone activities. Some of the functions of peptide hormones in regulating plant growth and development are similar to that of auxin, however, the relationship between auxin and peptide hormones remains largely unknown. Here we report the identification of OsCLE48, a rice (Oryza sativa CLE (CLAVATA3/ENDOSPERM SURROUNDING REGION gene, as an auxin response gene, and the functional characterization of OsCLE48 in Arabidopsis and rice. OsCLE48 encodes a CLE peptide hormone that is similar to Arabidopsis CLEs. RT-PCR analysis showed that OsCLE48 was induced by exogenously application of IAA (indole-3-acetic acid, a naturally occurred auxin. Expression of integrated OsCLE48p:GUS reporter gene in transgenic Arabidopsis plants was also induced by exogenously IAA treatment. These results indicate that OsCLE48 is an auxin responsive gene. Histochemical staining showed that GUS activity was detected in all the tissue and organs of the OsCLE48p:GUS transgenic Arabidopsis plants. Expression of OsCLE48 under the control of the 35S promoter in Arabidopsis inhibited shoot apical meristem development. Expression of OsCLE48 under the control of the CLV3 native regulatory elements almost completely complemented clv3-2 mutant phenotypes, suggesting that OsCLE48 is functionally similar to CLV3. On the other hand, expression of OsCLE48 under the control of the 35S promoter in Arabidopsis has little, if any effects on root apical meristem development, and transgenic rice plants overexpressing OsCLE48 are morphologically indistinguishable from wild type plants, suggesting that the functions of some CLE peptides may not be fully conserved in Arabidopsis and rice.

  7. Wheat TaSP gene improves salt tolerance in transgenic Arabidopsis thaliana.

    Science.gov (United States)

    Ma, Xiaoli; Cui, Weina; Liang, Wenji; Huang, Zhanjing

    2015-12-01

    A novel salt-induced gene with unknown functions was cloned through analysis of gene expression profile of a salt-tolerant wheat mutant RH8706-49 under salt stress. The gene was named Triticum aestivum salt-related protein (TaSP) and deposited in GenBank (Accession No. KF307326). Quantitative polymerase chain reaction (qPCR) results showed that TaSP expression was induced under salt, abscisic acid (ABA), and polyethylene glycol (PEG) stresses. Subcellular localization revealed that TaSP was mainly localized in cell membrane. Overexpression of TaSP in Arabidopsis could improve salt tolerance of 35S::TaSP transgenic Arabidopsis. 35S::TaSP transgenic Arabidopsis lines after salt stress presented better physiological indexes than the control group. In the non-invasive micro-test (NMT), an evident Na(+) excretion was observed at the root tip of salt-stressed 35S::TaSP transgenic Arabidopsis. TaSP promoter was cloned, and its beta-glucuronidase (GUS) activities before and after ABA, salt, cold, heat, and salicylic acid (SA) stresses were determined. Full-length TaSP promoter contained ABA and salt response elements. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  8. Regulation of disease-responsive genes mediated by epigenetic factors: interaction of Arabidopsis-Pseudomonas.

    Science.gov (United States)

    De-La-Peña, Clelia; Rangel-Cano, Alicia; Alvarez-Venegas, Raúl

    2012-05-01

    Genes in eukaryotic organisms function within the context of chromatin, and the mechanisms that modulate the structure of chromatin are defined as epigenetic. In Arabidopsis, pathogen infection induces the expression of at least one histone deacetylase, suggesting that histone acetylation/deacetylation has an important role in the pathogenic response in plants. How/whether histone methylation affects gene response to pathogen infection is unknown. To gain a better understanding of the epigenetic mechanisms regulating the interaction between Pseudomonas syringae and Arabidopsis thaliana, we analysed three different Arabidopsis ash1-related (absent, small or homeotic discs 1) mutants. We found that the loss of function of ASHH2 and ASHR1 resulted in faster hypersensitive responses (HRs) to both mutant (hrpA) and pathogenic (DC3000) strains of P. syringae, whereas control (Col-0) and ashr3 mutants appeared to be more resistant to the infection after 2 days. Furthermore, we showed that, in the ashr3 background, the PR1 gene (PATHOGENESIS-RELATED GENE 1) displayed the highest expression levels on infection with DC3000, correlating with increased resistance against this pathogen. Our results show that, in both the ashr1 and ashh2 backgrounds, the histone H3 lysine 4 dimethylation (H3K4me2) levels decreased at the promoter region of PR1 on infection with the DC3000 strain, suggesting that an epigenetically regulated PR1 expression is involved in the plant defence. Our results suggest that histone methylation in response to pathogen infection may be a critical component in the signalling and defence processes occurring between plants and microbes. © 2011 THE AUTHORS. MOLECULAR PLANT PATHOLOGY © 2011 BSPP AND BLACKWELL PUBLISHING LTD.

  9. DNA replication factor C1 mediates genomic stability and transcriptional gene silencing in Arabidopsis

    KAUST Repository

    Liu, Qian; Wang, Junguo; Miki, Daisuke; Xia, Ran; Yu, Wenxiang; He, Junna; Zheng, Zhimin; Zhu, Jian-Kang; Gonga, Zhizhong

    2010-01-01

    Genetic screening identified a suppressor of ros1-1, a mutant of REPRESSOR OF SILENCING1 (ROS1; encoding a DNA demethylation protein). The suppressor is a mutation in the gene encoding the largest subunit of replication factor C (RFC1). This mutation of RFC1 reactivates the unlinked 35S-NPTII transgene, which is silenced in ros1 and also increases expression of the pericentromeric Athila retrotransposons named transcriptional silent information in a DNA methylationindependent manner. rfc1 is more sensitive than the wild type to the DNA-damaging agent methylmethane sulphonate and to the DNA inter- and intra- cross-linking agent cisplatin. The rfc1 mutant constitutively expresses the G2/M-specific cyclin CycB1;1 and other DNA repair-related genes. Treatment with DNA-damaging agents mimics the rfc1 mutation in releasing the silenced 35S-NPTII, suggesting that spontaneously induced genomic instability caused by the rfc1 mutation might partially contribute to the released transcriptional gene silencing (TGS). The frequency of somatic homologous recombination is significantly increased in the rfc1 mutant. Interestingly, ros1 mutants show increased telomere length, but rfc1 mutants show decreased telomere length and reduced expression of telomerase. Our results suggest that RFC1 helps mediate genomic stability and TGS in Arabidopsis thaliana. © 2010 American Society of Plant Biologists.

  10. DNA replication factor C1 mediates genomic stability and transcriptional gene silencing in Arabidopsis

    KAUST Repository

    Liu, Qian

    2010-07-01

    Genetic screening identified a suppressor of ros1-1, a mutant of REPRESSOR OF SILENCING1 (ROS1; encoding a DNA demethylation protein). The suppressor is a mutation in the gene encoding the largest subunit of replication factor C (RFC1). This mutation of RFC1 reactivates the unlinked 35S-NPTII transgene, which is silenced in ros1 and also increases expression of the pericentromeric Athila retrotransposons named transcriptional silent information in a DNA methylationindependent manner. rfc1 is more sensitive than the wild type to the DNA-damaging agent methylmethane sulphonate and to the DNA inter- and intra- cross-linking agent cisplatin. The rfc1 mutant constitutively expresses the G2/M-specific cyclin CycB1;1 and other DNA repair-related genes. Treatment with DNA-damaging agents mimics the rfc1 mutation in releasing the silenced 35S-NPTII, suggesting that spontaneously induced genomic instability caused by the rfc1 mutation might partially contribute to the released transcriptional gene silencing (TGS). The frequency of somatic homologous recombination is significantly increased in the rfc1 mutant. Interestingly, ros1 mutants show increased telomere length, but rfc1 mutants show decreased telomere length and reduced expression of telomerase. Our results suggest that RFC1 helps mediate genomic stability and TGS in Arabidopsis thaliana. © 2010 American Society of Plant Biologists.

  11. A receptor-like kinase gene (GbRLK) from Gossypium barbadense enhances salinity and drought-stress tolerance in Arabidopsis.

    Science.gov (United States)

    Zhao, Jun; Gao, Yulong; Zhang, Zhiyuan; Chen, Tianzi; Guo, Wangzhen; Zhang, Tianzhen

    2013-08-06

    Cotton (Gossypium spp.) is widely cultivated due to the important economic value of its fiber. However, extreme environmental degradation impedes cotton growth and production. Receptor-like kinase (RLK) proteins play important roles in signal transduction and participate in a diverse range of processes in response to plant hormones and environmental cues. Here, we introduced an RLK gene (GbRLK) from cotton into Arabidopsis and investigated its role in imparting abiotic stress tolerance. GbRLK transcription was induced by exogenously supplied abscisic acid (ABA), salicylic acid, methyl jasmonate, mock drought conditions and high salinity. We cloned the promoter sequence of this gene via self-formed adaptor PCR. Sequence analysis revealed that the promoter region contains many cis-acting stress-responsive elements such as ABRE, W-Box, MYB-core, W-Box core, TCA-element and others. We constructed a vector containing a 1,890-bp sequence in the 5' region upstream of the initiation codon of this promoter and transformed it into Arabidopsis thaliana. GUS histochemical staining analysis showed that GbRLK was expressed mainly in leaf veins, petioles and roots of transgenic Arabidopsis, but not in the cotyledons or root hairs. GbRLK promoter activity was induced by ABA, PEG, NaCl and Verticillium dahliae. Transgenic Arabidopsis with constitutive overexpression of GbRLK exhibited a reduced rate of water loss in leaves in vitro, along with improved salinity and drought tolerance and increased sensitivity to ABA compared with non-transgenic Col-0 Arabidopsis. Expression analysis of stress-responsive genes in GbRLK Arabidopsis revealed that there was increased expression of genes involved in the ABA-dependent signaling pathway (AtRD20, AtRD22 and AtRD26) and antioxidant genes (AtCAT1, AtCCS, AtCSD2 and AtCSD1) but not ion transporter genes (AtNHX1, AtSOS1). GbRLK is involved in the drought and high salinity stresses pathway by activating or participating in the ABA signaling

  12. carboxylate synthase gene family in Arabidopsis, rice, grapevine

    African Journals Online (AJOL)

    Yomi

    2012-01-16

    Jan 16, 2012 ... evolutionary relationships of ACS genes in the four plant species. Chromosomal .... classification was consistent with the report from. Jakubowicz et al. ..... Analysis of the genome sequence of the flowering plant Arabidopsis ...

  13. Gene expression in plant lipid metabolism in Arabidopsis seedlings.

    Directory of Open Access Journals (Sweden)

    An-Shan Hsiao

    Full Text Available Events in plant lipid metabolism are important during seedling establishment. As it has not been experimentally verified whether lipid metabolism in 2- and 5-day-old Arabidopsis thaliana seedlings is diurnally-controlled, quantitative real-time PCR analysis was used to investigate the expression of target genes in acyl-lipid transfer, β-oxidation and triacylglycerol (TAG synthesis and hydrolysis in wild-type Arabidopsis WS and Col-0. In both WS and Col-0, ACYL-COA-BINDING PROTEIN3 (ACBP3, DIACYLGLYCEROL ACYLTRANSFERASE1 (DGAT1 and DGAT3 showed diurnal control in 2- and 5-day-old seedlings. Also, COMATOSE (CTS was diurnally regulated in 2-day-old seedlings and LONG-CHAIN ACYL-COA SYNTHETASE6 (LACS6 in 5-day-old seedlings in both WS and Col-0. Subsequently, the effect of CIRCADIAN CLOCK ASSOCIATED1 (CCA1 and LATE ELONGATED HYPOCOTYL (LHY from the core clock system was examined using the cca1lhy mutant and CCA1-overexpressing (CCA1-OX lines versus wild-type WS and Col-0, respectively. Results revealed differential gene expression in lipid metabolism between 2- and 5-day-old mutant and wild-type WS seedlings, as well as between CCA1-OX and wild-type Col-0. Of the ACBPs, ACBP3 displayed the most significant changes between cca1lhy and WS and between CCA1-OX and Col-0, consistent with previous reports that ACBP3 is greatly affected by light/dark cycling. Evidence of oil body retention in 4- and 5-day-old seedlings of the cca1lhy mutant in comparison to WS indicated the effect of cca1lhy on storage lipid reserve mobilization. Lipid profiling revealed differences in primary lipid metabolism, namely in TAG, fatty acid methyl ester and acyl-CoA contents amongst cca1lhy, CCA1-OX, and wild-type seedlings. Taken together, this study demonstrates that lipid metabolism is subject to diurnal regulation in the early stages of seedling development in Arabidopsis.

  14. Arabidopsis YAK1 regulates abscisic acid response and drought resistance.

    Science.gov (United States)

    Kim, Dongjin; Ntui, Valentine Otang; Xiong, Liming

    2016-07-01

    Abscisic acid (ABA) is an important phytohormone that controls several plant processes such as seed germination, seedling growth, and abiotic stress response. Here, we report that AtYak1 plays an important role in ABA signaling and postgermination growth in Arabidopsis. AtYak1 knockout mutant plants were hyposensitive to ABA inhibition of seed germination, cotyledon greening, seedling growth, and stomatal movement. atyak1-1 mutant plants display reduced drought stress resistance, as evidenced by water loss rate and survival rate. Molecular genetic analysis revealed that AtYak1 deficiency led to elevated expression of stomatal-related gene, MYB60, and down-regulation of several stress-responsive genes. Altogether, these results indicate that AtYak1 plays a role as a positive regulator in ABA-mediated drought response in Arabidopsis. © 2016 Federation of European Biochemical Societies.

  15. Arabidopsis YAK1 regulates abscisic acid response and drought resistance

    KAUST Repository

    Kim, Dongjin

    2016-06-06

    Abscisic acid (ABA) is an important phytohormone that controls several plant processes such as seed germination, seedling growth, and abiotic stress response. Here, we report that AtYak1 plays an important role in ABA signaling and postgermination growth in Arabidopsis. AtYak1 knockout mutant plants were hyposensitive to ABA inhibition of seed germination, cotyledon greening, seedling growth, and stomatal movement. atyak1-1 mutant plants display reduced drought stress resistance, as evidenced by water loss rate and survival rate. Molecular genetic analysis revealed that AtYak1 deficiency led to elevated expression of stomatal-related gene, MYB60, and down-regulation of several stress-responsive genes. Altogether, these results indicate that AtYak1 plays a role as a positive regulator in ABA-mediated drought response in Arabidopsis. © 2016 Federation of European Biochemical Societies.

  16. Gene expression profile of zeitlupe/lov kelch protein1 T-DNA insertion mutants in Arabidopsis thaliana: Downregulation of auxin-inducible genes in hypocotyls.

    Science.gov (United States)

    Saitoh, Aya; Takase, Tomoyuki; Kitaki, Hiroyuki; Miyazaki, Yuji; Kiyosue, Tomohiro

    2015-01-01

    Elongation of hypocotyl cells has been studied as a model for elucidating the contribution of cellular expansion to plant organ growth. ZEITLUPE (ZTL) or LOV KELCH PROTEIN1 (LKP1) is a positive regulator of warmth-induced hypocotyl elongation under white light in Arabidopsis, although the molecular mechanisms by which it promotes hypocotyl cell elongation remain unknown. Microarray analysis showed that 134 genes were upregulated and 204 genes including 15 auxin-inducible genes were downregulated in the seedlings of 2 ztl T-DNA insertion mutants grown under warm conditions with continuous white light. Application of a polar auxin transport inhibitor, an auxin antagonist or an auxin biosynthesis inhibitor inhibited hypocotyl elongation of control seedlings to the level observed with the ztl mutant. Our data suggest the involvement of auxin and auxin-inducible genes in ZTL-mediated hypocotyl elongation.

  17. Expression of Root Genes in Arabidopsis Seedlings Grown by Standard and Improved Growing Methods.

    Science.gov (United States)

    Qu, Yanli; Liu, Shuai; Bao, Wenlong; Xue, Xian; Ma, Zhengwen; Yokawa, Ken; Baluška, František; Wan, Yinglang

    2017-05-03

    Roots of Arabidopsis thaliana seedlings grown in the laboratory using the traditional plant-growing culture system (TPG) were covered to maintain them in darkness. This new method is based on a dark chamber and is named the improved plant-growing method (IPG). We measured the light conditions in dark chambers, and found that the highest light intensity was dramatically reduced deeper in the dark chamber. In the bottom and side parts of dark chambers, roots were almost completely shaded. Using the high-throughput RNA sequencing method on the whole RNA extraction from roots, we compared the global gene expression levels in roots of seedlings from these two conditions and identified 141 differently expressed genes (DEGs) between them. According to the KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment, the flavone and flavonol biosynthesis and flavonoid biosynthesis pathways were most affected among all annotated pathways. Surprisingly, no genes of known plant photoreceptors were identified as DEGs by this method. Considering that the light intensity was decreased in the IPG system, we collected four sections (1.5 cm for each) of Arabidopsis roots grown in TPG and IPG conditions, and the spatial-related differential gene expression levels of plant photoreceptors and polar auxin transporters, including CRY1 , CRY2 , PHYA , PHYB , PHOT1 , PHOT2 , and UVR8 were analyzed by qRT-PCR. Using these results, we generated a map of the spatial-related expression patterns of these genes under IPG and TPG conditions. The expression levels of light-related genes in roots is highly sensitive to illumination and it provides a background reference for selecting an improved culture method for laboratory-maintained Arabidopsis seedlings.

  18. The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Baumgarten Andrew

    2004-06-01

    Full Text Available Abstract Background Most genes in Arabidopsis thaliana are members of gene families. How do the members of gene families arise, and how are gene family copy numbers maintained? Some gene families may evolve primarily through tandem duplication and high rates of birth and death in clusters, and others through infrequent polyploidy or large-scale segmental duplications and subsequent losses. Results Our approach to understanding the mechanisms of gene family evolution was to construct phylogenies for 50 large gene families in Arabidopsis thaliana, identify large internal segmental duplications in Arabidopsis, map gene duplications onto the segmental duplications, and use this information to identify which nodes in each phylogeny arose due to segmental or tandem duplication. Examples of six gene families exemplifying characteristic modes are described. Distributions of gene family sizes and patterns of duplication by genomic distance are also described in order to characterize patterns of local duplication and copy number for large gene families. Both gene family size and duplication by distance closely follow power-law distributions. Conclusions Combining information about genomic segmental duplications, gene family phylogenies, and gene positions provides a method to evaluate contributions of tandem duplication and segmental genome duplication in the generation and maintenance of gene families. These differences appear to correspond meaningfully to differences in functional roles of the members of the gene families.

  19. Direct Repression of Evening Genes by CIRCADIAN CLOCK-ASSOCIATED1 in the Arabidopsis Circadian Clock.

    Science.gov (United States)

    Kamioka, Mari; Takao, Saori; Suzuki, Takamasa; Taki, Kyomi; Higashiyama, Tetsuya; Kinoshita, Toshinori; Nakamichi, Norihito

    2016-03-01

    The circadian clock is a biological timekeeping system that provides organisms with the ability to adapt to day-night cycles. Timing of the expression of four members of the Arabidopsis thaliana PSEUDO-RESPONSE REGULATOR(PRR) family is crucial for proper clock function, and transcriptional control of PRRs remains incompletely defined. Here, we demonstrate that direct regulation of PRR5 by CIRCADIAN CLOCK-ASSOCIATED1 (CCA1) determines the repression state of PRR5 in the morning. Chromatin immunoprecipitation followed by deep sequencing (ChIP-seq) analyses indicated that CCA1 associates with three separate regions upstream of PRR5 CCA1 and its homolog LATE ELONGATED HYPOCOTYL (LHY) suppressed PRR5 promoter activity in a transient assay. The regions bound by CCA1 in the PRR5 promoter gave rhythmic patterns with troughs in the morning, when CCA1 and LHY are at high levels. Furthermore,ChIP-seq revealed that CCA1 associates with at least 449 loci with 863 adjacent genes. Importantly, this gene set contains genes that are repressed but upregulated incca1 lhy double mutants in the morning. This study shows that direct binding by CCA1 in the morning provides strong repression of PRR5, and repression by CCA1 also temporally regulates an evening-expressed gene set that includes PRR5. © 2016 American Society of Plant Biologists. All rights reserved.

  20. Sucrose mimics the light induction of Arabidopsis nitrate reductase gene transcription

    DEFF Research Database (Denmark)

    Cheng, Chi-Lien; Acedo, Gregoria N; Kristensen, Michael

    1992-01-01

    can replace light in eliciting an increase of nitrate reductase mRNA accumulation in dark-adapted green Arabidopsis plants. We show further that sucrose alone is sufficient for the full expression of nitrate reductase genes in etiolated Arabidopsis plants. Finally, using a reporter gene, we show......Nitrate reductase, the first enzyme in nitrate assimilation, is located at the crossroad of two energy-consuming pathways: nitrate assimilation and carbon fixation. Light, which regulates the expression of many higher-plant carbon fixation genes, also regulates nitrate reductase gene expression....... Located in the cytosol, nitrate reductase obtains its reductant not from photosynthesis but from carbohydrate catabolism. This relationship prompted us to investigate the indirect role that light might play, via photosynthesis, in the regulation of nitrate reductase gene expression. We show that sucrose...

  1. Repression of Lateral Organ Boundary Genes by PENNYWISE and POUND-FOOLISH Is Essential for Meristem Maintenance and Flowering in Arabidopsis.

    Science.gov (United States)

    Khan, Madiha; Ragni, Laura; Tabb, Paul; Salasini, Brenda C; Chatfield, Steven; Datla, Raju; Lock, John; Kuai, Xiahezi; Després, Charles; Proveniers, Marcel; Yongguo, Cao; Xiang, Daoquan; Morin, Halima; Rullière, Jean-Pierre; Citerne, Sylvie; Hepworth, Shelley R; Pautot, Véronique

    2015-11-01

    In the model plant Arabidopsis (Arabidopsis thaliana), endogenous and environmental signals acting on the shoot apical meristem cause acquisition of inflorescence meristem fate. This results in changed patterns of aerial development seen as the transition from making leaves to the production of flowers separated by elongated internodes. Two related BEL1-like homeobox genes, PENNYWISE (PNY) and POUND-FOOLISH (PNF), fulfill this transition. Loss of function of these genes impairs stem cell maintenance and blocks internode elongation and flowering. We show here that pny pnf apices misexpress lateral organ boundary genes BLADE-ON-PETIOLE1/2 (BOP1/2) and KNOTTED-LIKE FROM ARABIDOPSIS THALIANA6 (KNAT6) together with ARABIDOPSIS THALIANA HOMEOBOX GENE1 (ATH1). Inactivation of genes in this module fully rescues pny pnf defects. We further show that BOP1 directly activates ATH1, whereas activation of KNAT6 is indirect. The pny pnf restoration correlates with renewed accumulation of transcripts conferring floral meristem identity, including FD, SQUAMOSA PROMOTER-BINDING PROTEIN LIKE genes, LEAFY, and APETALA1. To gain insight into how this module blocks flowering, we analyzed the transcriptome of BOP1-overexpressing plants. Our data suggest a central role for the microRNA156-SQUAMOSA PROMOTER BINDING PROTEIN-LIKE-microRNA172 module in integrating stress signals conferred in part by promotion of jasmonic acid biosynthesis. These data reveal a potential mechanism by which repression of lateral organ boundary genes by PNY-PNF is essential for flowering. © 2015 American Society of Plant Biologists. All Rights Reserved.

  2. AGROBEST: an efficient Agrobacterium-mediated transient expression method for versatile gene function analyses in Arabidopsis seedlings

    Science.gov (United States)

    2014-01-01

    Background Transient gene expression via Agrobacterium-mediated DNA transfer offers a simple and fast method to analyze transgene functions. Although Arabidopsis is the most-studied model plant with powerful genetic and genomic resources, achieving highly efficient and consistent transient expression for gene function analysis in Arabidopsis remains challenging. Results We developed a highly efficient and robust Agrobacterium-mediated transient expression system, named AGROBEST (Agrobacterium-mediated enhanced seedling transformation), which achieves versatile analysis of diverse gene functions in intact Arabidopsis seedlings. Using β-glucuronidase (GUS) as a reporter for Agrobacterium-mediated transformation assay, we show that the use of a specific disarmed Agrobacterium strain with vir gene pre-induction resulted in homogenous GUS staining in cotyledons of young Arabidopsis seedlings. Optimization with AB salts in plant culture medium buffered with acidic pH 5.5 during Agrobacterium infection greatly enhanced the transient expression levels, which were significantly higher than with two existing methods. Importantly, the optimized method conferred 100% infected seedlings with highly increased transient expression in shoots and also transformation events in roots of ~70% infected seedlings in both the immune receptor mutant efr-1 and wild-type Col-0 seedlings. Finally, we demonstrated the versatile applicability of the method for examining transcription factor action and circadian reporter-gene regulation as well as protein subcellular localization and protein–protein interactions in physiological contexts. Conclusions AGROBEST is a simple, fast, reliable, and robust transient expression system enabling high transient expression and transformation efficiency in Arabidopsis seedlings. Demonstration of the proof-of-concept experiments elevates the transient expression technology to the level of functional studies in Arabidopsis seedlings in addition to previous

  3. Death, resurrection, and rebirth: observations in cardiac surgery.

    Science.gov (United States)

    Blacher, R S

    1983-01-01

    The fantasy of life after death is universal, and every culture attempts to deal with concepts of resurrection and rebirth. In the past, these fantasies have dealt with religious and symbolic meanings, but cardiac resuscitation and cardiac surgery have introduced a new dimension: the patients' concept that they die in reality and are reborn or resurrected. This study, which was based on pre- and postoperative psychiatric interviews with cardiac patients, has focused on the problems such patients face. Their defensive immortality-formations appear to confirm Freud's speculations in Thoughts for the Times on War and Death concerning the human being's difficulty in accepting death as an end to life. Case history vignettes were presented, showing how these fantasies of death and resurrection can influence patients' ability to undergo necessary surgery. It was suggested that the idea of rebirth indicates starting life anew without blemish, whereas resurrection fantasies involve having another chance to live but with the same defective body.

  4. Overexpression of a PLDα1 gene from Setaria italica enhances the sensitivity of Arabidopsis to abscisic acid and improves its drought tolerance.

    Science.gov (United States)

    Peng, Yunling; Zhang, Jinpeng; Cao, Gaoyi; Xie, Yuanhong; Liu, Xihui; Lu, Minhui; Wang, Guoying

    2010-07-01

    Phospholipase D (PLD) plays an important role in various physiological processes in plants, including drought tolerance. Here, we report the cloning and characterization of the full-length cDNA of PLDalpha1 from foxtail millet, which is a cereal crop with high water use efficiency. The expression pattern of the SiPLDalpha1 gene in foxtail millet revealed that it is up-regulated under dehydration, ABA and NaCl treatments. Heterologous overexpression of SiPLDalpha1 in Arabidopsis can significantly enhance their sensitivity to ABA, NaCl and mannitol during post-germination growth. Under water deprivation, overexpression of SiPLDalpha1 in Arabidopsis resulted in significantly enhanced tolerance to drought stress, displaying higher biomass and RWC, lower ion leakage and higher survival percentages than the wild type. Further analysis indicated that transgenic plants showed increased transcription of the stress-related genes, RD29A, RD29B, RAB18 and RD22, and the ABA-related genes, ABI1 and NCED3 under dehydration conditions. These results demonstrate that SiPLDalpha1 is involved in plant stress signal transduction, especially in the ABA signaling pathway. Moreover, no obvious adverse effects on growth and development in the 35S::SiPLDalpha1 transgenic plants implied that SiPLDalpha1 is a good candidate gene for improving crop drought tolerance.

  5. Functional characterisation of an Arabidopsis gene strongly induced by ionising radiation: the gene coding the poly(ADP-ribose)polymerase-1 (AthPARP-1)

    International Nuclear Information System (INIS)

    Doucet-Chabeaud, G.

    2000-01-01

    Arabidopsis thaliana, the model-system in plant genetics, has been used to study the responses to DNA damage, experimentally introduced by γ-irradiation. We have characterised a radiation-induced gene coding a 111 kDa protein, AthPARP-1, homologous to the human poly(ADP-ribose)polymerase-1 (hPARP-1). As hPARP-1 is composed by three functional domain with characteristic motifs, AthPARP-1 binds to DNA bearing single-strand breaks and shows DNA damage-dependent poly(ADP-ribosyl)ation. The preferential expression of AthPARP-1 in mitotically active tissues is in agreement with a potential role in the maintenance of genome integrity during DNA replication, as proposed for its human counterpart. Transcriptional gene activation by ionising radiation of AthPARP-1 and AthPARP-2 genes is to date plant specific activation. Our expression analyses after exposure to various stress indicate that 1) AthPARP-1 and AthPARP-2 play an important role in the response to DNA lesions, particularly they are activated by genotoxic agents implicating the BER DNA repair pathway 2) AthPARP-2 gene seems to play an additional role in the signal transduction induced by oxidative stress 3) the observed expression profile of AthPARP-1 is in favour of the regulation of AthPARP-1 gene expression at the level of transcription and translation. This mode of regulation of AthPARP-1 protein biosynthesis, clearly distinct from that observed in animals, needs the implication of a so far unidentified transcription factor that is activated by the presence of DNA lesions. The major outcome of this work resides in the isolation and characterisation of such new transcription factor, which will provide new insight on the regulation of plant gene expression by genotoxic stress. (author) [fr

  6. The ARG1-LIKE2 gene of Arabidopsis functions in a gravity signal transduction pathway that is genetically distinct from the PGM pathway

    Science.gov (United States)

    Guan, Changhui; Rosen, Elizabeth S.; Boonsirichai, Kanokporn; Poff, Kenneth L.; Masson, Patrick H.

    2003-01-01

    The arl2 mutants of Arabidopsis display altered root and hypocotyl gravitropism, whereas their inflorescence stems are fully gravitropic. Interestingly, mutant roots respond like the wild type to phytohormones and an inhibitor of polar auxin transport. Also, their cap columella cells accumulate starch similarly to wild-type cells, and mutant hypocotyls display strong phototropic responses to lateral light stimulation. The ARL2 gene encodes a DnaJ-like protein similar to ARG1, another protein previously implicated in gravity signal transduction in Arabidopsis seedlings. ARL2 is expressed at low levels in all organs of seedlings and plants. arl2-1 arg1-2 double mutant roots display kinetics of gravitropism similar to those of single mutants. However, double mutants carrying both arl2-1 and pgm-1 (a mutation in the starch-biosynthetic gene PHOSPHOGLUCOMUTASE) at the homozygous state display a more pronounced root gravitropic defect than the single mutants. On the other hand, seedlings with a null mutation in ARL1, a paralog of ARG1 and ARL2, behave similarly to the wild type in gravitropism and other related assays. Taken together, the results suggest that ARG1 and ARL2 function in the same gravity signal transduction pathway in the hypocotyl and root of Arabidopsis seedlings, distinct from the pathway involving PGM.

  7. Functional network analysis of genes differentially expressed during xylogenesis in soc1ful woody Arabidopsis plants.

    Science.gov (United States)

    Davin, Nicolas; Edger, Patrick P; Hefer, Charles A; Mizrachi, Eshchar; Schuetz, Mathias; Smets, Erik; Myburg, Alexander A; Douglas, Carl J; Schranz, Michael E; Lens, Frederic

    2016-06-01

    Many plant genes are known to be involved in the development of cambium and wood, but how the expression and functional interaction of these genes determine the unique biology of wood remains largely unknown. We used the soc1ful loss of function mutant - the woodiest genotype known in the otherwise herbaceous model plant Arabidopsis - to investigate the expression and interactions of genes involved in secondary growth (wood formation). Detailed anatomical observations of the stem in combination with mRNA sequencing were used to assess transcriptome remodeling during xylogenesis in wild-type and woody soc1ful plants. To interpret the transcriptome changes, we constructed functional gene association networks of differentially expressed genes using the STRING database. This analysis revealed functionally enriched gene association hubs that are differentially expressed in herbaceous and woody tissues. In particular, we observed the differential expression of genes related to mechanical stress and jasmonate biosynthesis/signaling during wood formation in soc1ful plants that may be an effect of greater tension within woody tissues. Our results suggest that habit shifts from herbaceous to woody life forms observed in many angiosperm lineages could have evolved convergently by genetic changes that modulate the gene expression and interaction network, and thereby redeploy the conserved wood developmental program. © 2016 The Authors. The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.

  8. Wound-induced expression of DEFECTIVE IN ANTHER DEHISCENCE1 and DAD1-like lipase genes is mediated by both CORONATINE INSENSITIVE1-dependent and independent pathways in Arabidopsis thaliana.

    Science.gov (United States)

    Ruduś, Izabela; Terai, Haruka; Shimizu, Takafumi; Kojima, Hisae; Hattori, Kazuki; Nishimori, Yuka; Tsukagoshi, Hironaka; Kamiya, Yuji; Seo, Mitsunori; Nakamura, Kenzo; Kępczyński, Jan; Ishiguro, Sumie

    2014-06-01

    Endogenous JA production is not necessary for wound-induced expression of JA-biosynthetic lipase genes such as DAD1 in Arabidopsis. However, the JA-Ile receptor COI1 is often required for their JA-independent induction. Wounding is a serious event in plants that may result from insect feeding and increase the risk of pathogen infection. Wounded plants produce high amounts of jasmonic acid (JA), which triggers the expression of insect and pathogen resistance genes. We focused on the transcriptional regulation of DEFECTIVE IN ANTHER DEHISCENCE1 and six of its homologs including DONGLE (DGL) in Arabidopsis, which encode lipases involved in JA biosynthesis. Plants constitutively expressing DAD1 accumulated a higher amount of JA than control plants after wounding, indicating that the expression of these lipase genes contributes to determining JA levels. We found that the expression of DAD1, DGL, and other DAD1-LIKE LIPASE (DALL) genes is induced upon wounding. Some DALLs were also expressed in unwounded leaves. Further experiments using JA-biosynthetic and JA-response mutants revealed that the wound induction of these genes is regulated by several distinct pathways. DAD1 and most of its homologs other than DALL4 were fully induced without relying on endogenous JA-Ile production and were only partly affected by JA deficiency, indicating that positive feedback by JA is not necessary for induction of these genes. However, DAD1 and DGL required CORONATINE INSENSITIVE1 (COI1) for their expression, suggesting that a molecule other than JA might act as a regulator of COI1. Wound induction of DALL1, DALL2, and DALL3 did not require COI1. This differential regulation of DAD1 and its homologs might explain their functions at different time points after wounding.

  9. REDUCED CHLOROPLAST COVERAGE genes from Arabidopsis thaliana help to establish the size of the chloroplast compartment.

    Science.gov (United States)

    Larkin, Robert M; Stefano, Giovanni; Ruckle, Michael E; Stavoe, Andrea K; Sinkler, Christopher A; Brandizzi, Federica; Malmstrom, Carolyn M; Osteryoung, Katherine W

    2016-02-23

    Eukaryotic cells require mechanisms to establish the proportion of cellular volume devoted to particular organelles. These mechanisms are poorly understood. From a screen for plastid-to-nucleus signaling mutants in Arabidopsis thaliana, we cloned a mutant allele of a gene that encodes a protein of unknown function that is homologous to two other Arabidopsis genes of unknown function and to FRIENDLY, which was previously shown to promote the normal distribution of mitochondria in Arabidopsis. In contrast to FRIENDLY, these three homologs of FRIENDLY are found only in photosynthetic organisms. Based on these data, we proposed that FRIENDLY expanded into a small gene family to help regulate the energy metabolism of cells that contain both mitochondria and chloroplasts. Indeed, we found that knocking out these genes caused a number of chloroplast phenotypes, including a reduction in the proportion of cellular volume devoted to chloroplasts to 50% of wild type. Thus, we refer to these genes as REDUCED CHLOROPLAST COVERAGE (REC). The size of the chloroplast compartment was reduced most in rec1 mutants. The REC1 protein accumulated in the cytosol and the nucleus. REC1 was excluded from the nucleus when plants were treated with amitrole, which inhibits cell expansion and chloroplast function. We conclude that REC1 is an extraplastidic protein that helps to establish the size of the chloroplast compartment, and that signals derived from cell expansion or chloroplasts may regulate REC1.

  10. A novel cold-regulated gene from Phlox subulata, PsCor413im1, enhances low temperature tolerance in Arabidopsis.

    Science.gov (United States)

    Zhou, Aimin; Sun, Hongwei; Feng, Shuang; Zhou, Mi; Gong, Shufang; Wang, Jingang; Zhang, Shuzhen

    2018-01-08

    Low temperature stress adversely affects plant growth, development, and crop productivity. Analysis of the function of genes in the response of plants to low temperature stress is essential for understanding the mechanism of chilling and freezing tolerance. In this study, PsCor413im1, a novel cold-regulated gene isolated from Phlox subulata, was transferred to Arabidopsis to investigate its function under low temperature stress. Real-time quantitative PCR analysis revealed that PsCor413im1 expression was induced by cold and abscisic acid. Subcellular localization revealed that PsCor413im1-GFP fusion protein was localized to the periphery of the chloroplast, consistent with the localization of chloroplast inner membrane protein AtCor413im1, indicating that PsCor413im1 is a chloroplast membrane protein. Furthermore, the N-terminal of PsCor413im1 was determined to be necessary for its localization. Compared to the wild-type plants, transgenic plants showed higher germination and survival rates under cold and freezing stress. Moreover, the expression of AtCor15 in transgenic plants was higher than that in the wild-type plants under cold stress. Taken together, our results suggest that the overexpression of PsCor413im1 enhances low temperature tolerance in Arabidopsis. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. A non-canonical transferred DNA insertion at the BRI1 locus in Arabidopsis thaliana.

    Science.gov (United States)

    Zhao, Zhong; Zhu, Yan; Erhardt, Mathieu; Ruan, Ying; Shen, Wen-Hui

    2009-04-01

    Agrobacterium-mediated transformation is widely used in transgenic plant engineering and has been proven to be a powerful tool for insertional mutagenesis of the plant genome. The transferred DNA (T-DNA) from Agrobacterium is integrated into the plant genome through illegitimate recombination between the T-DNA and the plant DNA. Contrasting to the canonical insertion, here we report on a locus showing a complex mutation associated with T-DNA insertion at the BRI1 gene in Arabidopsis thaliana. We obtained a mutant line, named salade for its phenotype of dwarf stature and proliferating rosette. Molecular characterization of this mutant revealed that in addition to T-DNA a non-T-DNA-localized transposon from bacteria was inserted in the Arabidopsis genome and that a region of more than 11.5 kb of the Arabidopsis genome was deleted at the insertion site. The deleted region contains the brassinosteroid receptor gene BRI1 and the transcription factor gene WRKY13. Our finding reveals non-canonical T-DNA insertion, implicating horizontal gene transfer and cautioning the use of T-DNA as mutagen in transgenic research.

  12. Drought-responsive WRKY transcription factor genes TaWRKY1 and TaWRKY33 from wheat confer drought and/or heat resistance in Arabidopsis.

    Science.gov (United States)

    He, Guan-Hua; Xu, Ji-Yuan; Wang, Yan-Xia; Liu, Jia-Ming; Li, Pan-Song; Chen, Ming; Ma, You-Zhi; Xu, Zhao-Shi

    2016-05-23

    Drought stress is one of the major causes of crop loss. WRKY transcription factors, as one of the largest transcription factor families, play important roles in regulation of many plant processes, including drought stress response. However, far less information is available on drought-responsive WRKY genes in wheat (Triticum aestivum L.), one of the three staple food crops. Forty eight putative drought-induced WRKY genes were identified from a comparison between de novo transcriptome sequencing data of wheat without or with drought treatment. TaWRKY1 and TaWRKY33 from WRKY Groups III and II, respectively, were selected for further investigation. Subcellular localization assays revealed that TaWRKY1 and TaWRKY33 were localized in the nuclei in wheat mesophyll protoplasts. Various abiotic stress-related cis-acting elements were observed in the promoters of TaWRKY1 and TaWRKY33. Quantitative real-time PCR (qRT-PCR) analysis showed that TaWRKY1 was slightly up-regulated by high-temperature and abscisic acid (ABA), and down-regulated by low-temperature. TaWRKY33 was involved in high responses to high-temperature, low-temperature, ABA and jasmonic acid methylester (MeJA). Overexpression of TaWRKY1 and TaWRKY33 activated several stress-related downstream genes, increased germination rates, and promoted root growth in Arabidopsis under various stresses. TaWRKY33 transgenic Arabidopsis lines showed lower rates of water loss than TaWRKY1 transgenic Arabidopsis lines and wild type plants during dehydration. Most importantly, TaWRKY33 transgenic lines exhibited enhanced tolerance to heat stress. The functional roles highlight the importance of WRKYs in stress response.

  13. Dissecting a hidden gene duplication: the Arabidopsis thaliana SEC10 locus.

    Directory of Open Access Journals (Sweden)

    Nemanja Vukašinović

    Full Text Available Repetitive sequences present a challenge for genome sequence assembly, and highly similar segmental duplications may disappear from assembled genome sequences. Having found a surprising lack of observable phenotypic deviations and non-Mendelian segregation in Arabidopsis thaliana mutants in SEC10, a gene encoding a core subunit of the exocyst tethering complex, we examined whether this could be explained by a hidden gene duplication. Re-sequencing and manual assembly of the Arabidopsis thaliana SEC10 (At5g12370 locus revealed that this locus, comprising a single gene in the reference genome assembly, indeed contains two paralogous genes in tandem, SEC10a and SEC10b, and that a sequence segment of 7 kb in length is missing from the reference genome sequence. Differences between the two paralogs are concentrated in non-coding regions, while the predicted protein sequences exhibit 99% identity, differing only by substitution of five amino acid residues and an indel of four residues. Both SEC10 genes are expressed, although varying transcript levels suggest differential regulation. Homozygous T-DNA insertion mutants in either paralog exhibit a wild-type phenotype, consistent with proposed extensive functional redundancy of the two genes. By these observations we demonstrate that recently duplicated genes may remain hidden even in well-characterized genomes, such as that of A. thaliana. Moreover, we show that the use of the existing A. thaliana reference genome sequence as a guide for sequence assembly of new Arabidopsis accessions or related species has at least in some cases led to error propagation.

  14. Maltase protein of Ogataea (Hansenula) polymorpha is a counterpart to resurrected ancestor protein ancMALS of yeast maltases and isomaltases

    DEFF Research Database (Denmark)

    Viigand, Katrin; Visnapuu, Triinu; Mardo, Karin

    2016-01-01

    and mutation of the genes. We studied substrate specificity of the maltase protein MAL1 from an earlier diverged yeast, Ogataea polymorpha (Op), in the light of this hypothesis. MAL1 has extended substrate specificity and its properties are strikingly similar to those of resurrected ancMALS. Moreover, amino......, indicating the power of the method to predict substrate binding. Deletion of either the maltase (MAL1) or α-glucoside permease (MAL2) gene in Op abolished the growth of yeast on MAL1 substrates, confirming the requirement of both proteins for usage of these sugars....

  15. Spatio-Temporal Expression Patterns of Arabidopsis thaliana and Medicago truncatula Defensin-Like Genes

    Science.gov (United States)

    Nallu, Sumitha; Wang, Lin; Botanga, Christopher J.; Gomez, S. Karen; Costa, Liliana M.; Harrison, Maria J.; Samac, Deborah A.; Glazebrook, Jane; Katagiri, Fumiaki; Gutierrez-Marcos, Jose F.; VandenBosch, Kathryn A.

    2013-01-01

    Plant genomes contain several hundred defensin-like (DEFL) genes that encode short cysteine-rich proteins resembling defensins, which are well known antimicrobial polypeptides. Little is known about the expression patterns or functions of many DEFLs because most were discovered recently and hence are not well represented on standard microarrays. We designed a custom Affymetrix chip consisting of probe sets for 317 and 684 DEFLs from Arabidopsis thaliana and Medicago truncatula, respectively for cataloging DEFL expression in a variety of plant organs at different developmental stages and during symbiotic and pathogenic associations. The microarray analysis provided evidence for the transcription of 71% and 90% of the DEFLs identified in Arabidopsis and Medicago, respectively, including many of the recently annotated DEFL genes that previously lacked expression information. Both model plants contain a subset of DEFLs specifically expressed in seeds or fruits. A few DEFLs, including some plant defensins, were significantly up-regulated in Arabidopsis leaves inoculated with Alternaria brassicicola or Pseudomonas syringae pathogens. Among these, some were dependent on jasmonic acid signaling or were associated with specific types of immune responses. There were notable differences in DEFL gene expression patterns between Arabidopsis and Medicago, as the majority of Arabidopsis DEFLs were expressed in inflorescences, while only a few exhibited root-enhanced expression. By contrast, Medicago DEFLs were most prominently expressed in nitrogen-fixing root nodules. Thus, our data document salient differences in DEFL temporal and spatial expression between Arabidopsis and Medicago, suggesting distinct signaling routes and distinct roles for these proteins in the two plant species. PMID:23527067

  16. Spatio-temporal expression patterns of Arabidopsis thaliana and Medicago truncatula defensin-like genes.

    Directory of Open Access Journals (Sweden)

    Mesfin Tesfaye

    Full Text Available Plant genomes contain several hundred defensin-like (DEFL genes that encode short cysteine-rich proteins resembling defensins, which are well known antimicrobial polypeptides. Little is known about the expression patterns or functions of many DEFLs because most were discovered recently and hence are not well represented on standard microarrays. We designed a custom Affymetrix chip consisting of probe sets for 317 and 684 DEFLs from Arabidopsis thaliana and Medicago truncatula, respectively for cataloging DEFL expression in a variety of plant organs at different developmental stages and during symbiotic and pathogenic associations. The microarray analysis provided evidence for the transcription of 71% and 90% of the DEFLs identified in Arabidopsis and Medicago, respectively, including many of the recently annotated DEFL genes that previously lacked expression information. Both model plants contain a subset of DEFLs specifically expressed in seeds or fruits. A few DEFLs, including some plant defensins, were significantly up-regulated in Arabidopsis leaves inoculated with Alternaria brassicicola or Pseudomonas syringae pathogens. Among these, some were dependent on jasmonic acid signaling or were associated with specific types of immune responses. There were notable differences in DEFL gene expression patterns between Arabidopsis and Medicago, as the majority of Arabidopsis DEFLs were expressed in inflorescences, while only a few exhibited root-enhanced expression. By contrast, Medicago DEFLs were most prominently expressed in nitrogen-fixing root nodules. Thus, our data document salient differences in DEFL temporal and spatial expression between Arabidopsis and Medicago, suggesting distinct signaling routes and distinct roles for these proteins in the two plant species.

  17. Identification of transcription-factor genes expressed in the Arabidopsis female gametophyte

    Directory of Open Access Journals (Sweden)

    Kang Il-Ho

    2010-06-01

    Full Text Available Abstract Background In flowering plants, the female gametophyte is typically a seven-celled structure with four cell types: the egg cell, the central cell, the synergid cells, and the antipodal cells. These cells perform essential functions required for double fertilization and early seed development. Differentiation of these distinct cell types likely involves coordinated changes in gene expression regulated by transcription factors. Therefore, understanding female gametophyte cell differentiation and function will require dissection of the gene regulatory networks operating in each of the cell types. These efforts have been hampered because few transcription factor genes expressed in the female gametophyte have been identified. To identify such genes, we undertook a large-scale differential expression screen followed by promoter-fusion analysis to detect transcription-factor genes transcribed in the Arabidopsis female gametophyte. Results Using quantitative reverse-transcriptase PCR, we analyzed 1,482 Arabidopsis transcription-factor genes and identified 26 genes exhibiting reduced mRNA levels in determinate infertile 1 mutant ovaries, which lack female gametophytes, relative to ovaries containing female gametophytes. Spatial patterns of gene transcription within the mature female gametophyte were identified for 17 transcription-factor genes using promoter-fusion analysis. Of these, ten genes were predominantly expressed in a single cell type of the female gametophyte including the egg cell, central cell and the antipodal cells whereas the remaining seven genes were expressed in two or more cell types. After fertilization, 12 genes were transcriptionally active in the developing embryo and/or endosperm. Conclusions We have shown that our quantitative reverse-transcriptase PCR differential-expression screen is sufficiently sensitive to detect transcription-factor genes transcribed in the female gametophyte. Most of the genes identified in this

  18. The Function of the Early Trichomes Gene in Arabidopsis and Maize.

    Energy Technology Data Exchange (ETDEWEB)

    Scott Poethig

    2011-12-05

    Lateral organ polarity in Arabidopsis is regulated by antagonistic interactions between genes that promote either adaxial or abaxial identity, but the molecular basis of this interaction is largely unknown. We show that the adaxial regulator ASYMMETRIC LEAVES2 (AS2) is a direct target of the abaxial regulator KANADI1 (KAN1), and that KAN1 represses the transcription of AS2 in abaxial cells. Mutation of a single nucleotide in a KAN1 binding site in the AS2 promoter causes AS2 to be ectopically expressed in abaxial cells, resulting in a dominant, adaxialized phenotype. We also show that the abaxial expression of KAN1 is mediated directly or indirectly by AS2. These results demonstrate that KAN1 acts as a transcriptional repressor and that mutually repressive interactions between KAN1 and AS2 contribute to the establishment of adaxial-abaxial polarity in plants. A screen for mutations that affect the expression of a GFP reporter for KANADI2 produced mutations in two genes, CENTER CITY (CCT) and GRAND CENTRAL (GCT). Mutations in GCT and CCT delay the specification of central and peripheral identity and the globular-to-heart transition, but have little or no effect on the initial growth rate of the embryo. Mutant embryos eventually recover and undergo relatively normal patterning, albeit at an inappropriate size. GCT and CCT were identified as the Arabidopsis orthologs of MED12 and MED13--evolutionarily conserved proteins that act in association with the Mediator complex to negatively regulate transcription. The predicted function of these proteins combined with the effect of gct and cct on embryo development suggests that MED12 and MED13 regulate pattern formation during Arabidopsis embryogenesis by transiently repressing a transcriptional program that interferes with this process. Their mutant phenotype reveals the existence of a previously unknown temporal regulatory mechanism in plant embryogenesis.

  19. Arabidopsis NATA1 Acetylates Putrescine and Decreases Defense-Related Hydrogen Peroxide Accumulation1[OPEN

    Science.gov (United States)

    Preuss, Aileen S.

    2016-01-01

    Biosynthesis of the polyamines putrescine, spermidine, and spermine is induced in response to pathogen infection of plants. Putrescine, which is produced from Arg, serves as a metabolic precursor for longer polyamines, including spermidine and spermine. Polyamine acetylation, which has important regulatory functions in mammalian cells, has been observed in several plant species. Here we show that Arabidopsis (Arabidopsis thaliana) N-ACETYLTRANSFERASE ACTIVITY1 (NATA1) catalyzes acetylation of putrescine to N-acetylputrescine and thereby competes with spermidine synthase for a common substrate. NATA1 expression is strongly induced by the plant defense signaling molecule jasmonic acid and coronatine, an effector molecule produced by DC3000, a Pseudomonas syringae strain that initiates a virulent infection in Arabidopsis ecotype Columbia-0. DC3000 growth is reduced in nata1 mutant Arabidopsis, suggesting a role for NATA1-mediated putrescine acetylation in suppressing antimicrobial defenses. During infection by P. syringae and other plant pathogens, polyamine oxidases use spermidine and spermine as substrates for the production of defense-related H2O2. Compared to wild-type Columbia-0 Arabidopsis, the response of nata1mutants to P. syringae infection includes reduced accumulation of acetylputrescine, greater abundance of nonacetylated polyamines, elevated H2O2 production by polyamine oxidases, and higher expression of genes related to pathogen defense. Together, these results are consistent with a model whereby P. syringae growth is improved in a targeted manner through coronatine-induced putrescine acetylation by NATA1. PMID:27208290

  20. The rules of gene expression in plants: Organ identity and gene body methylation are key factors for regulation of gene expression in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Gutiérrez Rodrigo A

    2008-09-01

    Full Text Available Abstract Background Microarray technology is a widely used approach for monitoring genome-wide gene expression. For Arabidopsis, there are over 1,800 microarray hybridizations representing many different experimental conditions on Affymetrix™ ATH1 gene chips alone. This huge amount of data offers a unique opportunity to infer the principles that govern the regulation of gene expression in plants. Results We used bioinformatics methods to analyze publicly available data obtained using the ATH1 chip from Affymetrix. A total of 1887 ATH1 hybridizations were normalized and filtered to eliminate low-quality hybridizations. We classified and compared control and treatment hybridizations and determined differential gene expression. The largest differences in gene expression were observed when comparing samples obtained from different organs. On average, ten-fold more genes were differentially expressed between organs as compared to any other experimental variable. We defined "gene responsiveness" as the number of comparisons in which a gene changed its expression significantly. We defined genes with the highest and lowest responsiveness levels as hypervariable and housekeeping genes, respectively. Remarkably, housekeeping genes were best distinguished from hypervariable genes by differences in methylation status in their transcribed regions. Moreover, methylation in the transcribed region was inversely correlated (R2 = 0.8 with gene responsiveness on a genome-wide scale. We provide an example of this negative relationship using genes encoding TCA cycle enzymes, by contrasting their regulatory responsiveness to nitrate and methylation status in their transcribed regions. Conclusion Our results indicate that the Arabidopsis transcriptome is largely established during development and is comparatively stable when faced with external perturbations. We suggest a novel functional role for DNA methylation in the transcribed region as a key determinant

  1. Highlights of meiotic genes in Arabidopsis thaliana | Consiglio ...

    African Journals Online (AJOL)

    Meiosis is a fascinating and complex phenomenon and, despite its central role in sexual plant reproduction, little is known on the molecular mechanisms involved in this process. We review the progress made in recent years using Arabidopsis thaliana mutants for isolating meiotic genes. In particular, emphasis is given on ...

  2. The Chromatin Protein DUET/MMD1 Controls Expression of the Meiotic Gene TDM1 during Male Meiosis in Arabidopsis.

    Science.gov (United States)

    Andreuzza, Sébastien; Nishal, Bindu; Singh, Aparna; Siddiqi, Imran

    2015-09-01

    Meiosis produces haploid cells essential for sexual reproduction. In yeast, entry into meiosis activates transcription factors which trigger a transcriptional cascade that results in sequential co-expression of early, middle and late meiotic genes. However, these factors are not conserved, and the factors and regulatory mechanisms that ensure proper meiotic gene expression in multicellular eukaryotes are poorly understood. Here, we report that DUET/MMD1, a PHD finger protein essential for Arabidopsis male meiosis, functions as a transcriptional regulator in plant meiosis. We find that DUET-PHD binds H3K4me2 in vitro, and show that this interaction is critical for function during meiosis. We also show that DUET is required for proper microtubule organization during meiosis II, independently of its function in meiosis I. Remarkably, DUET protein shows stage-specific expression, confined to diplotene. We identify two genes TDM1 and JAS with critical functions in cell cycle transitions and spindle organization in male meiosis, as DUET targets, with TDM1 being a direct target. Thus, DUET is required to regulate microtubule organization and cell cycle transitions during male meiosis, and functions as a direct transcription activator of the meiotic gene TDM1. Expression profiling showed reduced expression of a subset comprising about 12% of a known set of meiosis preferred genes in the duet mutant. Our results reveal the action of DUET as a transcriptional regulator during male meiosis in plants, and suggest that transcription of meiotic genes is under stagewise control in plants as in yeast.

  3. Surviving metabolic arrest: photosynthesis during desiccation and rehydration in resurrection plants.

    Science.gov (United States)

    Challabathula, Dinakar; Puthur, Jos T; Bartels, Dorothea

    2016-02-01

    Photosynthesis is the key process that is affected by dehydration in plants. Desiccation-tolerant resurrection plants can survive conditions of very low relative water content. During desiccation, photosynthesis is not operational, but is recovered within a short period after rehydration. While homoiochlorophyllous resurrection plants retain their photosynthetic apparatus during desiccation, poikilochlorophyllous resurrection species dismantle chloroplasts and degrade chlorophyll but resynthesize them again during rehydration. Dismantling the chloroplasts avoids the photooxidative stress in poikilochlorophyllous resurrection plants, whereas it is minimized in homoiochlorophyllous plants through the synthesis of antioxidant enzymes and protective proteins or metabolites. Although the cellular protection mechanisms in both of these species vary, these mechanisms protect cells from desiccation-induced damage and restore photosynthesis upon rehydration. Several of the proteins synthesized during dehydration are localized in chloroplasts and are believed to play major roles in the protection of photosynthetic structures and in recovery in resurrection species. This review focuses on the strategies of resurrection plants in terms of how they protect their photosynthetic apparatus from oxidative stress during desiccation without membrane damage and with full recovery during rehydration. We review the role of the dehydration-induced protection mechanisms in chloroplasts and how photosynthesis is restored during rehydration. © 2015 New York Academy of Sciences.

  4. The Arabidopsis co-expression tool (act): a WWW-based tool and database for microarray-based gene expression analysis

    DEFF Research Database (Denmark)

    Jen, C. H.; Manfield, I. W.; Michalopoulos, D. W.

    2006-01-01

    be examined using the novel clique finder tool to determine the sets of genes most likely to be regulated in a similar manner. In combination, these tools offer three levels of analysis: creation of correlation lists of co-expressed genes, refinement of these lists using two-dimensional scatter plots......We present a new WWW-based tool for plant gene analysis, the Arabidopsis Co-Expression Tool (act) , based on a large Arabidopsis thaliana microarray data set obtained from the Nottingham Arabidopsis Stock Centre. The co-expression analysis tool allows users to identify genes whose expression...

  5. The Kurdish Resurrection Society (1942-1945

    Directory of Open Access Journals (Sweden)

    Sohrab Yazdani

    2017-12-01

    Full Text Available The Kurdish Resurrection Society (known as Komeley Jiyanewey Kurd was the first political society that was founded after August and September 1941 and following the Anglo-Soviet Invasion of Iran. This society arose from traditional and modern strata of urban Kurdish petty bourgeois in Mahabad. The present study aims at discussing the following questions applying a descriptive-analytical approach and using the historical resources and studies: 1. What is the role of the new social and historical structure of the Iranian Kurdistan in forming the Kurdish Resurrection Society? 2. How did the nationalism discourses of the modern absolutist Pahlavi state result in evolving the ideology of Kurdish Resurrection Society (KRS? The evolution of KRS among the traditional and modern strata was the result of the changes and developments occurred in the structure of social forces in Iranian Kurdistan. These changes took place in the aftermath of modernization-related plans of the modern absolutist Pahlavi state in renewing the social structure and cultural assimilation of this era. This policy provoked a new form of collectivism based upon linguistic and ethnic minorities. In other words, while weakening and isolating the forces of the previous order, modernization paved the social and political ways needed for the emergence of new urban Kurdish forces. The Kurdish leaders and elites, affected by the nationalistic discourse of the modern absolutist Pahlavi state, attempted to provide a new definition of their ethnic identity. Thus, the nationalism discourse of the modern absolutist state led to the emergence of a particularistic nationalism discourse of KRS among the Kurds.

  6. The Reaumuria trigyna transcription factor RtWRKY1 confers tolerance to salt stress in transgenic Arabidopsis.

    Science.gov (United States)

    Du, Chao; Zhao, Pingping; Zhang, Huirong; Li, Ningning; Zheng, Linlin; Wang, Yingchun

    2017-08-01

    Reaumuria trigyna (R. trigyna) is an endangered small shrub endemic to the Eastern Alxa-Western Ordos area in Inner Mongolia, China. Based on R. trigyna transcriptome data, the Group I WRKY transcription factor gene RtWRKY1 was cloned from R. trigyna. The full-length RtWRKY1 gene was 2100bp, including a 1261-bp open reading frame (ORF) encoding 573 amino acids. RtWRKY1 was mainly expressed in the stem and was induced by salt, cold stress, and ABA treatment. Overexpression of RtWRKY1 in Arabidopsis significantly enhanced the chlorophyll content, root length, and fresh weight of the transgenic lines under salt stress. RtWRKY1 transgenic Arabidopsis exhibited higher proline content, GSH-PX, POD, SOD, and CAT activities, and lower MDA content, Na + content, and Na + /K + ratio than wild-type Arabidopsis under salt stress conditions. Salt stress affected the expression of ion transport, proline biosynthesis, and antioxidant related genes, including AtAPX1, AtCAT1, AtSOD1, AtP5CS1, AtP5CS2, AtPRODH1, AtPRODH2, and AtSOS1 in transgenic lines. RtWRKY1 confers tolerance to salt stress in transgenic Arabidopsis by regulating plant growth, osmotic balance, Na + /K + homeostasis, and the antioxidant system. Copyright © 2017 Elsevier GmbH. All rights reserved.

  7. Transcriptomic variation among six Arabidopsis thaliana accessions identified several novel genes controlling aluminium tolerance.

    Science.gov (United States)

    Kusunoki, Kazutaka; Nakano, Yuki; Tanaka, Keisuke; Sakata, Yoichi; Koyama, Hiroyuki; Kobayashi, Yuriko

    2017-02-01

    Differences in the expression levels of aluminium (Al) tolerance genes are a known determinant of Al tolerance among plant varieties. We combined transcriptomic analysis of six Arabidopsis thaliana accessions with contrasting Al tolerance and a reverse genetic approach to identify Al-tolerance genes responsible for differences in Al tolerance between accession groups. Gene expression variation increased in the signal transduction process under Al stress and in growth-related processes in the absence of stress. Co-expression analysis and promoter single nucleotide polymorphism searching suggested that both trans-acting polymorphisms of Al signal transduction pathway and cis-acting polymorphisms in the promoter sequences caused the variations in gene expression associated with Al tolerance. Compared with the wild type, Al sensitivity increased in T-DNA knockout (KO) lines for five genes, including TARGET OF AVRB OPERATION1 (TAO1) and an unannotated gene (At5g22530). These were identified from 53 Al-inducible genes showing significantly higher expression in tolerant accessions than in sensitive accessions. These results indicate that the difference in transcriptional signalling is partly associated with the natural variation in Al tolerance in Arabidopsis. Our study also demonstrates the feasibility of comparative transcriptome analysis by using natural genetic variation for the identification of genes responsible for Al stress tolerance. © 2016 John Wiley & Sons Ltd.

  8. Simulation of Fungal-Mediated Cell Death by Fumonisin B1 and Selection of Fumonisin B1–Resistant (fbr) Arabidopsis Mutants

    Science.gov (United States)

    Stone, Julie M.; Heard, Jacqueline E.; Asai, Tsuneaki; Ausubel, Frederick M.

    2000-01-01

    Fumonisin B1 (FB1), a programmed cell death–eliciting toxin produced by the necrotrophic fungal plant pathogen Fusarium moniliforme, was used to simulate pathogen infection in Arabidopsis. Plants infiltrated with 10 μM FB1 and seedlings transferred to agar media containing 1 μM FB1 develop lesions reminiscent of the hypersensitive response, including generation of reactive oxygen intermediates, deposition of phenolic compounds and callose, accumulation of phytoalexin, and expression of pathogenesis-related (PR) genes. Arabidopsis FB1-resistant (fbr) mutants were selected directly by sowing seeds on agar containing 1 μM FB1, on which wild-type seedlings fail to develop. Two mutants chosen for further analyses, fbr1 and fbr2, had altered PR gene expression in response to FB1. fbr1 and fbr2 do not exhibit differential resistance to the avirulent bacterial pathogen Pseudomonas syringae pv maculicola (ES4326) expressing the avirulence gene avrRpt2 but do display enhanced resistance to a virulent isogenic strain that lacks the avirulence gene. Our results demonstrate the utility of FB1 for high-throughput isolation of Arabidopsis defense-related mutants and suggest that pathogen-elicited programmed cell death of host cells may be an important feature of compatible plant–pathogen interactions. PMID:11041878

  9. Heterologous expression of the Arabidopsis etr1-1 allele inhibits the senescence of carnation flowers

    NARCIS (Netherlands)

    Bovy, A.G.; Angenent, G.C.; Dons, H.J.M.; Altvorst, van A.

    1999-01-01

    The Arabidopsis thaliana etr1-1 allele, capable of conferring ethylene insensitivity in a heterologous host, was introduced into transgenic carnation plants. This gene was expressed under control of either its own promoter, the constitutive CaMV 35S promoter or the flower-specific petunia FBP1

  10. Cloning of the cryptochrome-encoding PeCRY1 gene from Populus euphratica and functional analysis in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Ke Mao

    Full Text Available Cryptochromes are photolyase-like blue/UV-A light receptors that evolved from photolyases. In plants, cryptochromes regulate various aspects of plant growth and development. Despite of their involvement in the control of important plant traits, however, most studies on cryptochromes have focused on lower plants and herbaceous crops, and no data on cryptochrome function are available for forest trees. In this study, we isolated a cryptochrome gene, PeCRY1, from Euphrates poplar (Populus euphratica, and analyzed its structure and function in detail. The deduced PeCRY1 amino acid sequence contained a conserved N-terminal photolyase-homologous region (PHR domain as well as a C-terminal DQXVP-acidic-STAES (DAS domain. Secondary and tertiary structure analysis showed that PeCRY1 shares high similarity with AtCRY1 from Arabidopsis thaliana. PeCRY1 expression was upregulated at the mRNA level by light. Using heterologous expression in Arabidopsis, we showed that PeCRY1 overexpression rescued the cry1 mutant phenotype. In addition, PeCRY1 overexpression inhibited hypocotyl elongation, promoted root growth, and enhanced anthocyanin accumulation in wild-type background seedlings grown under blue light. Furthermore, we examined the interaction between PeCRY1 and AtCOP1 using a bimolecular fluorescence complementation (BiFc assay. Our data provide evidence for the involvement of PeCRY1 in the control of photomorphogenesis in poplar.

  11. Harpin-induced expression and transgenic overexpression of the phloem protein gene AtPP2-A1 in Arabidopsis repress phloem feeding of the green peach aphid Myzus persicae

    Directory of Open Access Journals (Sweden)

    Sun Weiwei

    2011-01-01

    Full Text Available Abstract Background Treatment of plants with HrpNEa, a protein of harpin group produced by Gram-negative plant pathogenic bacteria, induces plant resistance to insect herbivores, including the green peach aphid Myzus persicae, a generalist phloem-feeding insect. Under attacks by phloem-feeding insects, plants defend themselves using the phloem-based defense mechanism, which is supposed to involve the phloem protein 2 (PP2, one of the most abundant proteins in the phloem sap. The purpose of this study was to obtain genetic evidence for the function of the Arabidopsis thaliana (Arabidopsis PP2-encoding gene AtPP2-A1 in resistance to M. persicae when the plant was treated with HrpNEa and after the plant was transformed with AtPP2-A1. Results The electrical penetration graph technique was used to visualize the phloem-feeding activities of apterous agamic M. persicae females on leaves of Arabidopsis plants treated with HrpNEa and an inactive protein control, respectively. A repression of phloem feeding was induced by HrpNEa in wild-type (WT Arabidopsis but not in atpp2-a1/E/142, the plant mutant that had a defect in the AtPP2-A1 gene, the most HrpNEa-responsive of 30 AtPP2 genes. In WT rather than atpp2-a1/E/142, the deterrent effect of HrpNEa treatment on the phloem-feeding activity accompanied an enhancement of AtPP2-A1 expression. In PP2OETAt (AtPP2-A1-overexpression transgenic Arabidopsis thaliana plants, abundant amounts of the AtPP2-A1 gene transcript were detected in different organs, including leaves, stems, calyces, and petals. All these organs had a deterrent effect on the phloem-feeding activity compared with the same organs of the transgenic control plant. When a large-scale aphid population was monitored for 24 hours, there was a significant decrease in the number of aphids that colonized leaves of HrpNEa-treated WT and PP2OETAt plants, respectively, compared with control plants. Conclusions The repression in phloem-feeding activities of

  12. Harpin-induced expression and transgenic overexpression of the phloem protein gene AtPP2-A1 in Arabidopsis repress phloem feeding of the green peach aphid Myzus persicae.

    Science.gov (United States)

    Zhang, Chunling; Shi, Haojie; Chen, Lei; Wang, Xiaomeng; Lü, Beibei; Zhang, Shuping; Liang, Yuan; Liu, Ruoxue; Qian, Jun; Sun, Weiwei; You, Zhenzhen; Dong, Hansong

    2011-01-13

    Treatment of plants with HrpNEa, a protein of harpin group produced by Gram-negative plant pathogenic bacteria, induces plant resistance to insect herbivores, including the green peach aphid Myzus persicae, a generalist phloem-feeding insect. Under attacks by phloem-feeding insects, plants defend themselves using the phloem-based defense mechanism, which is supposed to involve the phloem protein 2 (PP2), one of the most abundant proteins in the phloem sap. The purpose of this study was to obtain genetic evidence for the function of the Arabidopsis thaliana (Arabidopsis) PP2-encoding gene AtPP2-A1 in resistance to M. persicae when the plant was treated with HrpNEa and after the plant was transformed with AtPP2-A1. The electrical penetration graph technique was used to visualize the phloem-feeding activities of apterous agamic M. persicae females on leaves of Arabidopsis plants treated with HrpNEa and an inactive protein control, respectively. A repression of phloem feeding was induced by HrpNEa in wild-type (WT) Arabidopsis but not in atpp2-a1/E/142, the plant mutant that had a defect in the AtPP2-A1 gene, the most HrpNEa-responsive of 30 AtPP2 genes. In WT rather than atpp2-a1/E/142, the deterrent effect of HrpNEa treatment on the phloem-feeding activity accompanied an enhancement of AtPP2-A1 expression. In PP2OETAt (AtPP2-A1-overexpression transgenic Arabidopsis thaliana) plants, abundant amounts of the AtPP2-A1 gene transcript were detected in different organs, including leaves, stems, calyces, and petals. All these organs had a deterrent effect on the phloem-feeding activity compared with the same organs of the transgenic control plant. When a large-scale aphid population was monitored for 24 hours, there was a significant decrease in the number of aphids that colonized leaves of HrpNEa-treated WT and PP2OETAt plants, respectively, compared with control plants. The repression in phloem-feeding activities of M. persicae as a result of AtPP2-A1 overexpression, and

  13. Transcriptomic and proteomic approach to identify differentially expressed genes and proteins in Arabidopsis thaliana mutants lacking chloroplastic 1 and cytosolic FBPases reveals several levels of metabolic regulation.

    Science.gov (United States)

    Soto-Suárez, Mauricio; Serrato, Antonio J; Rojas-González, José A; Bautista, Rocío; Sahrawy, Mariam

    2016-12-01

    During the photosynthesis, two isoforms of the fructose-1,6-bisphosphatase (FBPase), the chloroplastidial (cFBP1) and the cytosolic (cyFBP), catalyse the first irreversible step during the conversion of triose phosphates (TP) to starch or sucrose, respectively. Deficiency in cyFBP and cFBP1 isoforms provokes an imbalance of the starch/sucrose ratio, causing a dramatic effect on plant development when the plastidial enzyme is lacking. We study the correlation between the transcriptome and proteome profile in rosettes and roots when cFBP1 or cyFBP genes are disrupted in Arabidopsis thaliana knock-out mutants. By using a 70-mer oligonucleotide microarray representing the genome of Arabidopsis we were able to identify 1067 and 1243 genes whose expressions are altered in the rosettes and roots of the cfbp1 mutant respectively; whilst in rosettes and roots of cyfbp mutant 1068 and 1079 genes are being up- or down-regulated respectively. Quantitative real-time PCR validated 100% of a set of 14 selected genes differentially expressed according to our microarray analysis. Two-dimensional (2-D) gel electrophoresis-based proteomic analysis revealed quantitative differences in 36 and 26 proteins regulated in rosettes and roots of cfbp1, respectively, whereas the 18 and 48 others were regulated in rosettes and roots of cyfbp mutant, respectively. The genes differentially expressed and the proteins more or less abundant revealed changes in protein metabolism, RNA regulation, cell signalling and organization, carbon metabolism, redox regulation, and transport together with biotic and abiotic stress. Notably, a significant set (25%) of the proteins identified were also found to be regulated at a transcriptional level. This transcriptomic and proteomic analysis is the first comprehensive and comparative study of the gene/protein re-adjustment that occurs in photosynthetic and non-photosynthetic organs of Arabidopsis mutants lacking FBPase isoforms.

  14. A Shortest-Path-Based Method for the Analysis and Prediction of Fruit-Related Genes in Arabidopsis thaliana.

    Science.gov (United States)

    Zhu, Liucun; Zhang, Yu-Hang; Su, Fangchu; Chen, Lei; Huang, Tao; Cai, Yu-Dong

    2016-01-01

    Biologically, fruits are defined as seed-bearing reproductive structures in angiosperms that develop from the ovary. The fertilization, development and maturation of fruits are crucial for plant reproduction and are precisely regulated by intrinsic genetic regulatory factors. In this study, we used Arabidopsis thaliana as a model organism and attempted to identify novel genes related to fruit-associated biological processes. Specifically, using validated genes, we applied a shortest-path-based method to identify several novel genes in a large network constructed using the protein-protein interactions observed in Arabidopsis thaliana. The described analyses indicate that several of the discovered genes are associated with fruit fertilization, development and maturation in Arabidopsis thaliana.

  15. Involvement of Multiple Gene-Silencing Pathways in a Paramutation-like Phenomenon in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Zhimin Zheng

    2015-05-01

    Full Text Available Paramutation is an epigenetic phenomenon that has been observed in a number of multicellular organisms. The epigenetically silenced state of paramutated alleles is not only meiotically stable but also “infectious” to active homologous alleles. The molecular mechanism of paramutation remains unclear, but components involved in RNA-directed DNA methylation (RdDM are required. Here, we report a multi-copy pRD29A-LUC transgene in Arabidopsis thaliana that behaves like a paramutation locus. The silent state of LUC is induced by mutations in the DNA glycosylase gene ROS1. The silent alleles of LUC are not only meiotically stable but also able to transform active LUC alleles into silent ones, in the absence of ros1 mutations. Maintaining silencing at the LUC gene requires action of multiple pathways besides RdDM. Our study identified specific factors that are involved in the paramutation-like phenomenon and established a model system for the study of paramutation in Arabidopsis.

  16. Stochastic gene expression in Arabidopsis thaliana.

    Science.gov (United States)

    Araújo, Ilka Schultheiß; Pietsch, Jessica Magdalena; Keizer, Emma Mathilde; Greese, Bettina; Balkunde, Rachappa; Fleck, Christian; Hülskamp, Martin

    2017-12-14

    Although plant development is highly reproducible, some stochasticity exists. This developmental stochasticity may be caused by noisy gene expression. Here we analyze the fluctuation of protein expression in Arabidopsis thaliana. Using the photoconvertible KikGR marker, we show that the protein expressions of individual cells fluctuate over time. A dual reporter system was used to study extrinsic and intrinsic noise of marker gene expression. We report that extrinsic noise is higher than intrinsic noise and that extrinsic noise in stomata is clearly lower in comparison to several other tissues/cell types. Finally, we show that cells are coupled with respect to stochastic protein expression in young leaves, hypocotyls and roots but not in mature leaves. Our data indicate that stochasticity of gene expression can vary between tissues/cell types and that it can be coupled in a non-cell-autonomous manner.

  17. The Arabidopsis Halophytic Relative Thellungiella halophila Tolerates Nitrogen-Limiting Conditions by Maintaining Growth, Nitrogen Uptake, and Assimilation1[W][OA

    Science.gov (United States)

    Kant, Surya; Bi, Yong-Mei; Weretilnyk, Elizabeth; Barak, Simon; Rothstein, Steven J.

    2008-01-01

    A comprehensive knowledge of mechanisms regulating nitrogen (N) use efficiency is required to reduce excessive input of N fertilizers while maintaining acceptable crop yields under limited N supply. Studying plant species that are naturally adapted to low N conditions could facilitate the identification of novel regulatory genes conferring better N use efficiency. Here, we show that Thellungiella halophila, a halophytic relative of Arabidopsis (Arabidopsis thaliana), grows better than Arabidopsis under moderate (1 mm nitrate) and severe (0.4 mm nitrate) N-limiting conditions. Thellungiella exhibited a lower carbon to N ratio than Arabidopsis under N limitation, which was due to Thellungiella plants possessing higher N content, total amino acids, total soluble protein, and lower starch content compared with Arabidopsis. Furthermore, Thellungiella had higher amounts of several metabolites, such as soluble sugars and organic acids, under N-sufficient conditions (4 mm nitrate). Nitrate reductase activity and NR2 gene expression in Thellungiella displayed less of a reduction in response to N limitation than in Arabidopsis. Thellungiella shoot GS1 expression was more induced by low N than in Arabidopsis, while in roots, Thellungiella GS2 expression was maintained under N limitation but was decreased in Arabidopsis. Up-regulation of NRT2.1 and NRT3.1 expression was higher and repression of NRT1.1 was lower in Thellungiella roots under N-limiting conditions compared with Arabidopsis. Differential transporter gene expression was correlated with higher nitrate influx in Thellungiella at low 15NO3− supply. Taken together, our results suggest that Thellungiella is tolerant to N-limited conditions and could act as a model system to unravel the mechanisms for low N tolerance. PMID:18467466

  18. DNA demethylases target promoter transposable elements to positively regulate stress responsive genes in Arabidopsis.

    Science.gov (United States)

    Le, Tuan-Ngoc; Schumann, Ulrike; Smith, Neil A; Tiwari, Sameer; Au, Phil Chi Khang; Zhu, Qian-Hao; Taylor, Jennifer M; Kazan, Kemal; Llewellyn, Danny J; Zhang, Ren; Dennis, Elizabeth S; Wang, Ming-Bo

    2014-09-17

    DNA demethylases regulate DNA methylation levels in eukaryotes. Arabidopsis encodes four DNA demethylases, DEMETER (DME), REPRESSOR OF SILENCING 1 (ROS1), DEMETER-LIKE 2 (DML2), and DML3. While DME is involved in maternal specific gene expression during seed development, the biological function of the remaining DNA demethylases remains unclear. We show that ROS1, DML2, and DML3 play a role in fungal disease resistance in Arabidopsis. A triple DNA demethylase mutant, rdd (ros1 dml2 dml3), shows increased susceptibility to the fungal pathogen Fusarium oxysporum. We identify 348 genes differentially expressed in rdd relative to wild type, and a significant proportion of these genes are downregulated in rdd and have functions in stress response, suggesting that DNA demethylases maintain or positively regulate the expression of stress response genes required for F. oxysporum resistance. The rdd-downregulated stress response genes are enriched for short transposable element sequences in their promoters. Many of these transposable elements and their surrounding sequences show localized DNA methylation changes in rdd, and a general reduction in CHH methylation, suggesting that RNA-directed DNA methylation (RdDM), responsible for CHH methylation, may participate in DNA demethylase-mediated regulation of stress response genes. Many of the rdd-downregulated stress response genes are downregulated in the RdDM mutants nrpd1 and nrpe1, and the RdDM mutants nrpe1 and ago4 show enhanced susceptibility to F. oxysporum infection. Our results suggest that a primary function of DNA demethylases in plants is to regulate the expression of stress response genes by targeting promoter transposable element sequences.

  19. Identifying novel fruit-related genes in Arabidopsis thaliana based on the random walk with restart algorithm.

    Science.gov (United States)

    Zhang, Yunhua; Dai, Li; Liu, Ying; Zhang, YuHang; Wang, ShaoPeng

    2017-01-01

    Fruit is essential for plant reproduction and is responsible for protection and dispersal of seeds. The development and maturation of fruit is tightly regulated by numerous genetic factors that respond to environmental and internal stimulation. In this study, we attempted to identify novel fruit-related genes in a model organism, Arabidopsis thaliana, using a computational method. Based on validated fruit-related genes, the random walk with restart (RWR) algorithm was applied on a protein-protein interaction (PPI) network using these genes as seeds. The identified genes with high probabilities were filtered by the permutation test and linkage tests. In the permutation test, the genes that were selected due to the structure of the PPI network were discarded. In the linkage tests, the importance of each candidate gene was measured from two aspects: (1) its functional associations with validated genes and (2) its similarity with validated genes on gene ontology (GO) terms and KEGG pathways. Finally, 255 inferred genes were obtained, subsequent extensive analysis of important genes revealed that they mainly contribute to ubiquitination (UBQ9, UBQ8, UBQ11, UBQ10), serine hydroxymethyl transfer (SHM7, SHM5, SHM6) or glycol-metabolism (HXKL2_ARATH, CSY5, GAPCP1), suggesting essential roles during the development and maturation of fruit in Arabidopsis thaliana.

  20. Identification and analysis of novel genes involved in gravitropism of Arabidopsis thaliana.

    Science.gov (United States)

    Morita, Miyo T.; Tasaka, Masao; Masatoshi Taniguchi, .

    2012-07-01

    Gravitropism is a continuous control with regard to the orientation and juxtaposition of the various parts of the plant body in response to gravity. In higher plants, the relative directional change of gravity is mainly suscepted in specialized cells called statocytes, followed by signal conversion from physical information into physiological information within the statocytes. We have studied the early process of shoot gravitropism, gravity sensing and signaling process, mainly by molecular genetic approach. In Arabidopsis shoot, statocytes are the endodermal cells. sgr1/scarcrow (scr) and sgr7/short-root (shr) mutants fail to form the endodermis and to respond to gravity in their inflorescence stems. Since both SGR1/SCR and SGR7/SHR are transcriptional factors, at least a subset of their downstream genes can be expected to be involved in gravitropism. In addition, eal1 (endodermal-amyloplast less 1), which exhibits no gravitropism in inflorescence stem but retains ability to form endodermis, is a hypomorphic allele of sgr7/shr. Take advantage of these mutants, we performed DNA microarray analysis and compared gene expression profiles between wild type and the mutants. We found that approx. 40 genes were commonly down-regulated in these mutants and termed them DGE (DOWN-REGULATED GENE IN EAL1) genes. DGE1 has sequence similarity to Oryza sativa LAZY1 that is involved in shoot gravitropism of rice. DGE2 has a short region homologous to DGE1. DTL (DGE TWO-LIKE}) that has 54% identity to DGE2 is found in Arabidopsis genome. All three genes are conserved in angiosperm but have no known functional domains or motifs. We analyzed T-DNA insertion for these genes in single or multiple combinations. In dge1 dge2 dtl triple mutant, gravitropic response of shoot, hypocotyl and root dramatically reduced. Now we are carrying out further physiological and molecular genetic analysis of the triple mutant.

  1. Two differentially regulated Arabidopsis genes define a new branch of the DFR superfamily

    DEFF Research Database (Denmark)

    Østergaard, L; Lauvergeat, V; Naested, H

    2001-01-01

    that, whereas high expression of AtCRL1 in mature seeds declines during subsequent vegetative growth, transcriptional activity from the AtCRL2 promoter increases during vegetative growth. Expression of both genes is restricted to vascular tissue. Based upon their homology to proteins involved in lignin......Two tandem genes were identified on Arabidopsis chromosome II (AtCRL1 and AtCRL2) encoding proteins with homology to members of the dihydroflavonol-4-reductase (DFR) superfamily. The encoded CRL1 and CRL2 proteins share 87% mutual amino acid sequence identity whereas their promoter regions...

  2. HYPER RECOMBINATION1 of the THO/TREX complex plays a role in controlling transcription of the REVERSION-TO-ETHYLENE SENSITIVITY1 gene in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Congyao Xu

    2015-02-01

    Full Text Available Arabidopsis REVERSION-TO-ETHYLENE SENSITIVITY1 (RTE1 represses ethylene hormone responses by promoting ethylene receptor ETHYLENE RESPONSE1 (ETR1 signaling, which negatively regulates ethylene responses. To investigate the regulation of RTE1, we performed a genetic screening for mutations that suppress ethylene insensitivity conferred by RTE1 overexpression in Arabidopsis. We isolated HYPER RECOMBINATION1 (HPR1, which is required for RTE1 overexpressor (RTE1ox ethylene insensitivity at the seedling but not adult stage. HPR1 is a component of the THO complex, which, with other proteins, forms the TRanscription EXport (TREX complex. In yeast, Drosophila, and humans, the THO/TREX complex is involved in transcription elongation and nucleocytoplasmic RNA export, but its role in plants is to be fully determined. We investigated how HPR1 is involved in RTE1ox ethylene insensitivity in Arabidopsis. The hpr1-5 mutation may affect nucleocytoplasmic mRNA export, as revealed by in vivo hybridization of fluorescein-labeled oligo(dT45 with unidentified mRNA in the nucleus. The hpr1-5 mutation reduced the total and nuclear RTE1 transcript levels to a similar extent, and RTE1 transcript reduction rate was not affected by hpr1-5 with cordycepin treatment, which prematurely terminates transcription. The defect in the THO-interacting TEX1 protein of TREX but not the mRNA export factor SAC3B also reduced the total and nuclear RTE1 levels. SERINE-ARGININE-RICH (SR proteins are involved mRNA splicing, and we found that SR protein SR33 co-localized with HPR1 in nuclear speckles, which agreed with the association of human TREX with the splicing machinery. We reveal a role for HPR1 in RTE1 expression during transcription elongation and less likely during export. Gene expression involved in ethylene signaling suppression was not reduced by the hpr1-5 mutation, which indicates selectivity of HPR1 for RTE1 expression affecting the consequent ethylene response. Thus

  3. Transcriptomic profiling of Arabidopsis gene expression in response to varying micronutrient zinc supply

    Directory of Open Access Journals (Sweden)

    Herlânder Azevedo

    2016-03-01

    Full Text Available Deficiency of the micronutrient zinc is a widespread condition in agricultural soils, causing a negative impact on crop quality and yield. Nevertheless, there is an insufficient knowledge on the regulatory and molecular mechanisms underlying the plant response to inadequate zinc nutrition [1]. This information should contribute to the development of plant-based solutions with improved nutrient-use-efficiency traits in crops. Previously, the transcription factors bZIP19 and bZIP23 were identified as essential regulators of the response to zinc deficiency in Arabidopsis thaliana [2]. A microarray experiment comparing gene expression between roots of wild-type and the mutant bzip19 bzip23, exposed to zinc deficiency, led to the identification of differentially expressed genes related with zinc homeostasis, namely its transport and plant internal translocation [2]. Here, we provide the detailed methodology, bioinformatics analysis and quality controls related to the microarray gene expression profiling published by Assunção and co-workers [2]. Most significantly, the present dataset comprises new experimental variables, including analysis of shoot tissue, and zinc sufficiency and excess supply. Thus, it expands from 8 to 42 microarrays hybridizations, which have been deposited at the Gene Expression Omnibus (GEO under the accession number GSE77286. Overall, it provides a resource for research on the molecular basis and regulatory events of the plant response to zinc supply, emphasizing the importance of Arabidopsis bZIP19 and bZIP23 transcription factors. Keywords: Microarray, Micronutrient, Zinc deficiency, Arabidopsis, bZIP

  4. Soybean Salt Tolerance 1 (GmST1) Reduces ROS Production, Enhances ABA Sensitivity, and Abiotic Stress Tolerance in Arabidopsis thaliana.

    Science.gov (United States)

    Ren, Shuxin; Lyle, Chimera; Jiang, Guo-Liang; Penumala, Abhishek

    2016-01-01

    Abiotic stresses, including high soil salinity, significantly reduce crop production worldwide. Salt tolerance in plants is a complex trait and is regulated by multiple mechanisms. Understanding the mechanisms and dissecting the components on their regulatory pathways will provide new insights, leading to novel strategies for the improvement of salt tolerance in agricultural and economic crops of importance. Here we report that soybean salt tolerance 1, named GmST1, exhibited strong tolerance to salt stress in the Arabidopsis transgenic lines. The GmST1-overexpressed Arabidopsis also increased sensitivity to ABA and decreased production of reactive oxygen species under salt stress. In addition, GmST1 significantly improved drought tolerance in Arabidopsis transgenic lines. GmST1 belongs to a 3-prime part of Glyma.03g171600 gene in the current version of soybean genome sequence annotation. However, comparative reverse transcription-polymerase chain reaction analysis around Glyma.03g171600 genomic region confirmed that GmST1 might serve as an intact gene in soybean leaf tissues. Unlike Glyma.03g171600 which was not expressed in leaves, GmST1 was strongly induced by salt treatment in the leaf tissues. By promoter analysis, a TATA box was detected to be positioned close to GmST1 start codon and a putative ABRE and a DRE cis-acting elements were identified at about 1 kb upstream of GmST1 gene. The data also indicated that GmST1-transgenic lines survived under drought stress and showed a significantly lower water loss than non-transgenic lines. In summary, our results suggest that overexpression of GmST1 significantly improves Arabidopsis tolerance to both salt and drought stresses and the gene may be a potential candidate for genetic engineering of salt- and drought-tolerant crops.

  5. Soybean salt tolerance 1 (GmST1 reduces ROS production, enhances ABA sensitivity and abiotic stress tolerance in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Shuxin eRen

    2016-04-01

    Full Text Available Abiotic stresses, including high soil salinity, significantly reduce crop production worldwide. Salt tolerance in plants is a complex trait and is regulated by multiple mechanisms. Understanding the mechanisms and dissecting the components on their regulatory pathways will provide new insights, leading to novel strategies for the improvement of salt tolerance in agricultural and economic crops of importance. Here we report that soybean salt tolerance 1, named GmST1, exhibited strong tolerance to salt stress in the Arabidopsis transgenic lines. The GmST1-overexpressed Arabidopsis also increased sensitivity to ABA and decreased production of reactive oxygen species (ROS under salt stress. In addition, GmST1 significantly improved drought tolerance in Arabidopsis transgenic lines. GmST1 belongs to a 3-prime part of Glyma.03g171600 gene in the current version of soybean genome sequence annotation. However, comparative RT-PCR analysis around Glyma.03g171600 genomic region confirmed that GmST1 might serve as an intact gene in soybean leaf tissues. Unlike Glyma.03g171600 which was not expressed in leaves, GmST1 was strongly induced by salt treatment in the leaf tissues. By promoter analysis, a TATA box was detected to be positioned close to GmST1 start codon and a putative ABRE and a DRE cis-acting elements were identified at about 1kb upstream of GmST1 gene. The data also indicated that GmST1-transgenic lines survived under drought stress and showed a significantly lower water loss than non-transgenic lines. In summary, our results suggest that overexpression of GmST1 significantly improves Arabidopsis tolerance to both salt and drought stresses and the gene may be a potential candidate for genetic engineering of salt- and drought-tolerant crops.

  6. Arabidopsis Vacuolar Pyrophosphatase gene (AVP1) induces drought and salt tolerance in Nicotiana tabacum plants (abstract)

    International Nuclear Information System (INIS)

    Arif, A.; Mohsin, A.M.; Shafiq, S.; Zafar, Y.; Hameed, S.M.; Arif, M.; Javed, M.; Gaxiola, R.A.

    2005-01-01

    Drought and salinity are global problems. In Pakistan these problems are increasing to an alarming situation due to low rain-fall and bad agricultural practices. Salt and drought stress shows a high degree of similarity with respect to physiological, biochemical, molecular and genetic effects. This is due to the fact that sub-lethal salt-stress condition is ultimately an osmotic effect which is apparently similar to that brought in by water deficit. Genetic engineering allows the re-introduction of plant genes into their genomes by increasing their expression level. Plant vacuoles play a central role in cellular mechanisms of adaptation to salinity and drought stresses. In principle, increased vacuolar solute accumulation should have a positive impact in the adaptation of plants to salinity and drought. The active transport of the solutes depends on the proton gradients established by proton pumps. We have over expressed Arabidopsis gene AVP1 (Arabidopsis thaliana vacuolar pyro phosphatase H/sup +/ pump) to increase drought/salt tolerance in tobacco. The AVP1 ORF with a tandem repeat of 358 promoter was cloned in pPZP212 vector and Agrobacterium-mediated transformation was performed. Transgenic plants were selected on plant nutrient agar medium supplemented with 50 mg/liter kanamycin. Transgenic plants were confirmed for transfer of genes by AVP1 and nptll gene specific PCR and Southern hybridization. AVP1 transgenic plants were screened for salt tolerance by providing NaCl solution in addition to nutrient solution. AVP1 transgenic plants showed tolerance up to 300 mM NaCl as compared to control which died ten days after 200 mM NaCl. Sodium and potassium were measured in salt treated and control plants. Results showed that sodium ion uptake in the salt treated transgenic plants was four times more as compared to wild type. This remarkable increase in Na/sup +/ ion uptake indicates that AVP1 vacuole proton pumps are actively involved in the transport of Na

  7. Meta-analysis of Arabidopsis KANADI1 direct target genes identifies basic growth-promoting module acting upstream of hormonal signaling pathways

    DEFF Research Database (Denmark)

    Xie, Yakun; Straub, Daniel; Eguen, Teinai Ebimienere

    2015-01-01

    An intricate network of antagonistically acting transcription factors mediates formation of a flat leaf lamina of Arabidopsis thaliana plants. In this context, members of the class III homeodomain leucine zipper (HD-ZIPIII) transcription factor family specify the adaxial domain (future upper side......) of the leaf, while antagonistically acting KANADI transcription factors determine the abaxial domain (future lower side). Here we used an mRNA-seq approach to identify genes regulated by KANADI1 (KAN1) and subsequently performed a meta-analysis approach combining our datasets with published genome......-wide datasets. Our analysis revealed that KAN1 acts upstream of several genes encoding auxin biosynthetic enzymes. When exposed to shade, we find three YUCCA genes, YUC2, YUC5 and YUC8 to be transcriptionally upregulated, which correlates with an increase in the levels of free auxin. When ectopically expressed...

  8. Genome-wide identification of GLABRA3 downstream genes for anthocyanin biosynthesis and trichome formation in Arabidopsis.

    Science.gov (United States)

    Gao, Chenhao; Li, Dong; Jin, Changyu; Duan, Shaowei; Qi, Shuanghui; Liu, Kaige; Wang, Hanchen; Ma, Haoli; Hai, Jiangbo; Chen, Mingxun

    2017-04-01

    GLABRA3 (GL3), a bHLH transcription factor, has previously proved to be involved in anthocyanin biosynthesis and trichome formation in Arabidopsis, however, its downstream targeted genes are still largely unknown. Here, we found that GL3 was widely present in Arabidopsis vegetative and reproductive organs. New downstream targeted genes of GL3 for anthocyanin biosynthesis and trichome formation were identified in young shoots and expanding true leaves by RNA sequencing. GL3-mediated gene expression was tissue specific in the two biological processes. This study provides new clues to further understand the GL3-mediated regulatory network of anthocyanin biosynthesis and trichome formation in Arabidopsis. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Single nucleotide polymorphism analysis of ubiquitin extension protein genes (ubq) of gossypium arboreum and gossypium herbaceum in comparison with arabidopsis thaliana

    International Nuclear Information System (INIS)

    Shaheen, T.; Zafar, Y.; Rahman, M.

    2014-01-01

    Single nucleotide polymorphism analysis is an expedient way to study polymorphisms at genomic level. In the present study we have explored Ubiquitin extension protein gene of G. arboreum (A2) and G. herbaceum (A1) of cotton which is a multiple copy gene. We have found SNPs at 16 positions in 200 bp region within A genome of cotton indicating frequency of SNPs 1/13 bp. Both sequences from cotton have shown maximum similarity with UBQ5 and UBQ6 of Arabidopsis thaliana. Sequence obtained from G. arboreum has shown SNPs at 28 positions in comparison with each UBQ5 and UBQ6 of Arabidopsis thaliana while sequence obtained from G. herbaceum has shown SNPs at 31 positions in comparison with each UBQ5 and UBQ6 of Arabidopsis thaliana. In conclusion although during pace of evolution ubiquitin extension protein genes of both A genome species have got some mutations from nature but still most of their sequence is similar. Single nucleotide polymorphism study can prove a vital tool to identify gene type in case of Multicopy genes. (author)

  10. Characterization of Putative cis-Regulatory Elements in Genes Preferentially Expressed in Arabidopsis Male Meiocytes

    Directory of Open Access Journals (Sweden)

    Junhua Li

    2014-01-01

    Full Text Available Meiosis is essential for plant reproduction because it is the process during which homologous chromosome pairing, synapsis, and meiotic recombination occur. The meiotic transcriptome is difficult to investigate because of the size of meiocytes and the confines of anther lobes. The recent development of isolation techniques has enabled the characterization of transcriptional profiles in male meiocytes of Arabidopsis. Gene expression in male meiocytes shows unique features. The direct interaction of transcription factors (TFs with DNA regulatory sequences forms the basis for the specificity of transcriptional regulation. Here, we identified putative cis-regulatory elements (CREs associated with male meiocyte-expressed genes using in silico tools. The upstream regions (1 kb of the top 50 genes preferentially expressed in Arabidopsis meiocytes possessed conserved motifs. These motifs are putative binding sites of TFs, some of which share common functions, such as roles in cell division. In combination with cell-type-specific analysis, our findings could be a substantial aid for the identification and experimental verification of the protein-DNA interactions for the specific TFs that drive gene expression in meiocytes.

  11. Evolution of floral meristem identity genes. Analysis of Lolium temulentum genes related to APETALA1 and LEAFY of Arabidopsis

    DEFF Research Database (Denmark)

    Gocal, G.F.W.; King, R.W.; Blundell, C.A.

    2001-01-01

    Flowering (inflorescence formation) of the grass Lolium temulentum is strictly regulated, occurring rapidly on exposure to a single long day (LD). During floral induction, L. temulentum differs significantly from dicot species such as Arabidopsis in the expression, at the shoot apex, of two APETALA...... are consecutively activated early during flower formation. LtMADS2, when expressed in transgenic Arabidopsis plants under the control of the AP1 promoter, could partially complement the organ number defect of the severe ap1-15 mutant allele, confirming a close relationship between LtMADS2 and AP1....

  12. AtMRP1 gene of Arabidopsis encodes a glutathione S-conjugate pump: isolation and functional definition of a plant ATP-binding cassette transporter gene.

    Science.gov (United States)

    Lu, Y P; Li, Z S; Rea, P A

    1997-07-22

    Because plants produce cytotoxic compounds to which they, themselves, are susceptible and are exposed to exogenous toxins (microbial products, allelochemicals, and agrochemicals), cell survival is contingent on mechanisms for detoxifying these agents. One detoxification mechanism is the glutathione S-transferase-catalyzed glutathionation of the toxin, or an activated derivative, and transport of the conjugate out of the cytosol. We show here that a transporter responsible for the removal of glutathione S-conjugates from the cytosol, a specific Mg2+-ATPase, is encoded by the AtMRP1 gene of Arabidopsis thaliana. The sequence of AtMRP1 and the transport capabilities of membranes prepared from yeast cells transformed with plasmid-borne AtMRP1 demonstrate that this gene encodes an ATP-binding cassette transporter competent in the transport of glutathione S-conjugates of xenobiotics and endogenous substances, including herbicides and anthocyanins.

  13. Arabidopsis Histone Demethylases LDL1 and LDL2 Control Primary Seed Dormancy by Regulating DELAY OF GERMINATION 1 and ABA Signaling-Related Genes

    Directory of Open Access Journals (Sweden)

    Ming lei Zhao

    2015-03-01

    Full Text Available Seed dormancy controls germination and plays a critical role in regulating the beginning of the life cycle of plants. Seed dormancy is established and maintained during seed maturation and is gradually broken during dry storage (after-ripening. The plant hormone abscisic acid (ABA and DELAY OF GERMINATION1 (DOG1 protein are essential regulators of seed dormancy. Recent studies revealed that chromatin modifications are also involved in the transcription regulation of seed dormancy. Here, we showed that two Arabidopsis histone demethylases, LYSINESPECIFIC DEMETHYLASE LIKE 1 and 2 (LDL1 and LDL2 act redundantly in repressing of seed dormancy. LDL1 and LDL2 are highly expressed in the early silique developing stage. The ldl1 ldl2 double mutant displays increased seed dormancy, whereas overexpression of LDL1 or LDL2 in Arabidopsis causes reduced dormancy. Furthermore, we showed that LDL1 and LDL2 repress the expression of seed dormancy-related genes, including DOG1, ABA2 and ABI3 during seed dormancy establishment. Furthermore, genetic analysis revealed that the repression of seed dormancy by LDL1 and LDL2 requires DOG1, ABA2 and ABI3. Taken together, our findings revealed that LDL1 and LDL2 play an essential role in seed dormancy.

  14. Genome structures and halophyte-specific gene expression of the extremophile thellungiella parvula in comparison with Thellungiella salsuginea (Thellungiella halophila) and arabidopsis

    KAUST Repository

    Oh, Dongha

    2010-09-10

    The genome of Thellungiella parvula, a halophytic relative of Arabidopsis (Arabidopsis thaliana), is being assembled using Roche-454 sequencing. Analyses of a 10-Mb scaffold revealed synteny with Arabidopsis, with recombination and inversion and an uneven distribution of repeat sequences. T. parvula genome structure and DNA sequences were compared with orthologous regions from Arabidopsis and publicly available bacterial artificial chromosome sequences from Thellungiella salsuginea (previously Thellungiella halophila). The three-way comparison of sequences, from one abiotic stress-sensitive species and two tolerant species, revealed extensive sequence conservation and microcolinearity, but grouping Thellungiella species separately from Arabidopsis. However, the T. parvula segments are distinguished from their T. salsuginea counterparts by a pronounced paucity of repeat sequences, resulting in a 30% shorter DNA segment with essentially the same gene content in T. parvula. Among the genes is SALT OVERLY SENSITIVE1 (SOS1), a sodium/proton antiporter, which represents an essential component of plant salinity stress tolerance. Although the SOS1 coding region is highly conserved among all three species, the promoter regions show conservation only between the two Thellungiella species. Comparative transcript analyses revealed higher levels of basal as well as salt-induced SOS1 expression in both Thellungiella species as compared with Arabidopsis. The Thellungiella species and other halophytes share conserved pyrimidine-rich 5\\' untranslated region proximal regions of SOS1 that are missing in Arabidopsis. Completion of the genome structure of T. parvula is expected to highlight distinctive genetic elements underlying the extremophile lifestyle of this species. © American Society of Plant Biologists.

  15. Promoter DNA hypermethylation and gene repression in undifferentiated Arabidopsis cells.

    Directory of Open Access Journals (Sweden)

    María Berdasco

    Full Text Available Maintaining and acquiring the pluripotent cell state in plants is critical to tissue regeneration and vegetative multiplication. Histone-based epigenetic mechanisms are important for regulating this undifferentiated state. Here we report the use of genetic and pharmacological experimental approaches to show that Arabidopsis cell suspensions and calluses specifically repress some genes as a result of promoter DNA hypermethylation. We found that promoters of the MAPK12, GSTU10 and BXL1 genes become hypermethylated in callus cells and that hypermethylation also affects the TTG1, GSTF5, SUVH8, fimbrin and CCD7 genes in cell suspensions. Promoter hypermethylation in undifferentiated cells was associated with histone hypoacetylation and primarily occurred at CpG sites. Accordingly, we found that the process specifically depends on MET1 and DRM2 methyltransferases, as demonstrated with DNA methyltransferase mutants. Our results suggest that promoter DNA methylation may be another important epigenetic mechanism for the establishment and/or maintenance of the undifferentiated state in plant cells.

  16. Arabidopsis GLUTATHIONE REDUCTASE1 plays a crucial role in leaf responses to intracellular hydrogen peroxide and in ensuring appropriate gene expression through both salicylic acid and jasmonic acid signaling pathways.

    Science.gov (United States)

    Mhamdi, Amna; Hager, Jutta; Chaouch, Sejir; Queval, Guillaume; Han, Yi; Taconnat, Ludivine; Saindrenan, Patrick; Gouia, Houda; Issakidis-Bourguet, Emmanuelle; Renou, Jean-Pierre; Noctor, Graham

    2010-07-01

    Glutathione is a major cellular thiol that is maintained in the reduced state by glutathione reductase (GR), which is encoded by two genes in Arabidopsis (Arabidopsis thaliana; GR1 and GR2). This study addressed the role of GR1 in hydrogen peroxide (H(2)O(2)) responses through a combined genetic, transcriptomic, and redox profiling approach. To identify the potential role of changes in glutathione status in H(2)O(2) signaling, gr1 mutants, which show a constitutive increase in oxidized glutathione (GSSG), were compared with a catalase-deficient background (cat2), in which GSSG accumulation is conditionally driven by H(2)O(2). Parallel transcriptomics analysis of gr1 and cat2 identified overlapping gene expression profiles that in both lines were dependent on growth daylength. Overlapping genes included phytohormone-associated genes, in particular implicating glutathione oxidation state in the regulation of jasmonic acid signaling. Direct analysis of H(2)O(2)-glutathione interactions in cat2 gr1 double mutants established that GR1-dependent glutathione status is required for multiple responses to increased H(2)O(2) availability, including limitation of lesion formation, accumulation of salicylic acid, induction of pathogenesis-related genes, and signaling through jasmonic acid pathways. Modulation of these responses in cat2 gr1 was linked to dramatic GSSG accumulation and modified expression of specific glutaredoxins and glutathione S-transferases, but there is little or no evidence of generalized oxidative stress or changes in thioredoxin-associated gene expression. We conclude that GR1 plays a crucial role in daylength-dependent redox signaling and that this function cannot be replaced by the second Arabidopsis GR gene or by thiol systems such as the thioredoxin system.

  17. Identification and Expression Profiling of Radiation-sensitive Genes Using Plant Model System, Arabidopsis thaliana

    International Nuclear Information System (INIS)

    Kim, Dong-Sub; Kang, Si-Yong; Lee, Geung-Joo; Kim, Jin-Baek

    2008-06-01

    The purpose of this study is to characterize genes specifically expressed in response to ionizing energy (gamma-rays) of acute irradiation and elucidate signalling mechanisms via functional analysis of isolated genes in Arabidopsis thaliana. Recent improvements in DNA microarray technologies and bioinformatics have made it possible to look for common features of ionizing radiation-responsive genes and their regulatory regions. It has produced massive quantities of gene expression and other functional genomics data, and its application will increase in plant genomics. In this study, we used oligonucleotide microarrays to detect the Arabidopsis genes expressed differentially by a gamma-irradiation during the vegetative (VT, 21 DAG) and reproductive (RT, 28 DAG) stages. Wild-type (Ler) Arabidopsis was irradiated with gamma-rays with 100 and 800 Gy doses. Among the 21,500 genes represented in the Agilent chip, approximately 13,500 ( ∼ 61.4 %) responsive genes to ν -irradiation were expressed with signal intensity greater than 192 when compared to the combined control (non-irradiated vegetative and reproductive pool). Expression patterns of several radiation inducible genes were confirmed by RT-PCR and Northern blotting. Our microarray results may contribute to an overall understanding of the type and quantities of genes that are expressed by an acute gamma-irradiation. In addition, to investigate the oxidative damage caused by irradiation, RT-PCR analysis for the expression of antioxidant isoenzyme genes, and a Transmission Electron Microscope (TEM) observation for visualizing the H 2 O 2 scavenging activity in leaves were applied

  18. AtALMT1, which encodes a malate transporter, is identified as one of several genes critical for aluminum tolerance in Arabidopsis

    OpenAIRE

    Hoekenga, Owen A.; Maron, Lyza G.; Piñeros, Miguel A.; Cançado, Geraldo M. A.; Shaff, Jon; Kobayashi, Yuriko; Ryan, Peter R.; Dong, Bei; Delhaize, Emmanuel; Sasaki, Takayuki; Matsumoto, Hideaki; Yamamoto, Yoko; Koyama, Hiroyuki; Kochian, Leon V.

    2006-01-01

    Aluminum (Al) tolerance in Arabidopsis is a genetically complex trait, yet it is mediated by a single physiological mechanism based on Al-activated root malate efflux. We investigated a possible molecular determinant for Al tolerance involving a homolog of the wheat Al-activated malate transporter, ALMT1. This gene, named AtALMT1 (At1g08430), was the best candidate from the 14-memberAtALMT family to be involved with Al tolerance based on expression patterns and genomic location. Physiological...

  19. Orthodox seeds and resurrection plants

    NARCIS (Netherlands)

    Costa, Maria Cecília Dias; Cooper, Keren; Hilhorst, Henk W.M.; Farrant, Jill M.

    2017-01-01

    Although staple crops do not survive extended periods of drought, their seeds possess desiccation tolerance (DT), as they survive almost complete dehydration (desiccation) during the late maturation phase of development. Resurrection plants are plant species whose seeds and vegetative tissues are

  20. Interspecific and interploidal gene flow in Central European Arabidopsis (Brassicaceae

    Directory of Open Access Journals (Sweden)

    Jørgensen Marte H

    2011-11-01

    Full Text Available Abstract Background Effects of polyploidisation on gene flow between natural populations are little known. Central European diploid and tetraploid populations of Arabidopsis arenosa and A. lyrata are here used to study interspecific and interploidal gene flow, using a combination of nuclear and plastid markers. Results Ploidal levels were confirmed by flow cytometry. Network analyses clearly separated diploids according to species. Tetraploids and diploids were highly intermingled within species, and some tetraploids intermingled with the other species, as well. Isolation with migration analyses suggested interspecific introgression from tetraploid A. arenosa to tetraploid A. lyrata and vice versa, and some interploidal gene flow, which was unidirectional from diploid to tetraploid in A. arenosa and bidirectional in A. lyrata. Conclusions Interspecific genetic isolation at diploid level combined with introgression at tetraploid level indicates that polyploidy may buffer against negative consequences of interspecific hybridisation. The role of introgression in polyploid systems may, however, differ between plant species, and even within the small genus Arabidopsis, we find very different evolutionary fates when it comes to introgression.

  1. Transcriptional feedback regulation of YUCCA genes in response to auxin levels in Arabidopsis.

    Science.gov (United States)

    Suzuki, Masashi; Yamazaki, Chiaki; Mitsui, Marie; Kakei, Yusuke; Mitani, Yuka; Nakamura, Ayako; Ishii, Takahiro; Soeno, Kazuo; Shimada, Yukihisa

    2015-08-01

    The IPyA pathway, the major auxin biosynthesis pathway, is transcriptionally regulated through a negative feedback mechanism in response to active auxin levels. The phytohormone auxin plays an important role in plant growth and development, and levels of active free auxin are determined by biosynthesis, conjugation, and polar transport. Unlike conjugation and polar transport, little is known regarding the regulatory mechanism of auxin biosynthesis. We discovered that expression of genes encoding indole-3-pyruvic acid (IPyA) pathway enzymes is regulated by elevated or reduced active auxin levels. Expression levels of TAR2, YUC1, YUC2, YUC4, and YUC6 were downregulated in response to synthetic auxins [1-naphthaleneacetic acid (NAA) and 2,4-dichlorophenoxyacetic acid (2,4-D)] exogenously applied to Arabidopsis thaliana L. seedlings. Concomitantly, reduced levels of endogenous indole-3-acetic acid (IAA) were observed. Alternatively, expression of these YUCCA genes was upregulated by the auxin biosynthetic inhibitor kynurenine in Arabidopsis seedlings, accompanied by reduced IAA levels. These results indicate that expression of YUCCA genes is regulated by active auxin levels. Similar results were also observed in auxin-overproduction and auxin-deficient mutants. Exogenous application of IPyA to Arabidopsis seedlings preincubated with kynurenine increased endogenous IAA levels, while preincubation with 2,4-D reduced endogenous IAA levels compared to seedlings exposed only to IPyA. These results suggest that in vivo conversion of IPyA to IAA was enhanced under reduced auxin levels, while IPyA to IAA conversion was depressed in the presence of excess auxin. Based on these results, we propose that the IPyA pathway is transcriptionally regulated through a negative feedback mechanism in response to active auxin levels.

  2. Overexpression of WsSGTL1 Gene of Withania somnifera Enhances Salt Tolerance, Heat Tolerance and Cold Acclimation Ability in Transgenic Arabidopsis Plants

    Science.gov (United States)

    Mishra, Manoj K.; Chaturvedi, Pankaj; Singh, Ruchi; Singh, Gaurav; Sharma, Lokendra K.; Pandey, Vibha; Kumari, Nishi; Misra, Pratibha

    2013-01-01

    Background Sterol glycosyltrnasferases (SGT) are enzymes that glycosylate sterols which play important role in plant adaptation to stress and are medicinally important in plants like Withania somnifera. The present study aims to find the role of WsSGTL1 which is a sterol glycosyltransferase from W. somnifera, in plant’s adaptation to abiotic stress. Methodology The WsSGTL1 gene was transformed in Arabidopsis thaliana through Agrobacterium mediated transformation, using the binary vector pBI121, by floral dip method. The phenotypic and physiological parameters like germination, root length, shoot weight, relative electrolyte conductivity, MDA content, SOD levels, relative electrolyte leakage and chlorophyll measurements were compared between transgenic and wild type Arabidopsis plants under different abiotic stresses - salt, heat and cold. Biochemical analysis was done by HPLC-TLC and radiolabelled enzyme assay. The promoter of the WsSGTL1 gene was cloned by using Genome Walker kit (Clontech, USA) and the 3D structures were predicted by using Discovery Studio Ver. 2.5. Results The WsSGTL1 transgenic plants were confirmed to be single copy by Southern and homozygous by segregation analysis. As compared to WT, the transgenic plants showed better germination, salt tolerance, heat and cold tolerance. The level of the transgene WsSGTL1 was elevated in heat, cold and salt stress along with other marker genes such as HSP70, HSP90, RD29, SOS3 and LEA4-5. Biochemical analysis showed the formation of sterol glycosides and increase in enzyme activity. When the promoter of WsSGTL1 gene was cloned from W. somnifera and sequenced, it contained stress responsive elements. Bioinformatics analysis of the 3D structure of the WsSGTL1 protein showed functional similarity with sterol glycosyltransferase AtSGT of A. thaliana. Conclusions Transformation of WsSGTL1 gene in A. thaliana conferred abiotic stress tolerance. The promoter of the gene in W.somnifera was found to have stress

  3. Activation of Arabidopsis seed hair development by cotton fiber-related genes.

    Directory of Open Access Journals (Sweden)

    Xueying Guan

    Full Text Available Each cotton fiber is a single-celled seed trichome or hair, and over 20,000 fibers may develop semi-synchronously on each seed. The molecular basis for seed hair development is unknown but is likely to share many similarities with leaf trichome development in Arabidopsis. Leaf trichome initiation in Arabidopsis thaliana is activated by GLABROUS1 (GL1 that is negatively regulated by TRIPTYCHON (TRY. Using laser capture microdissection and microarray analysis, we found that many putative MYB transcription factor and structural protein genes were differentially expressed in fiber and non-fiber tissues. Gossypium hirsutum MYB2 (GhMYB2, a putative GL1 homolog, and its downstream gene, GhRDL1, were highly expressed during fiber cell initiation. GhRDL1, a fiber-related gene with unknown function, was predominately localized around cell walls in stems, sepals, seed coats, and pollen grains. GFP:GhRDL1 and GhMYB2:YFP were co-localized in the nuclei of ectopic trichomes in siliques. Overexpressing GhRDL1 or GhMYB2 in A. thaliana Columbia-0 (Col-0 activated fiber-like hair production in 4-6% of seeds and had on obvious effects on trichome development in leaves or siliques. Co-overexpressing GhRDL1 and GhMYB2 in A. thaliana Col-0 plants increased hair formation in ∼8% of seeds. Overexpressing both GhRDL1 and GhMYB2 in A. thaliana Col-0 try mutant plants produced seed hair in ∼10% of seeds as well as dense trichomes inside and outside siliques, suggesting synergistic effects of GhRDL1 and GhMYB2 with try on development of trichomes inside and outside of siliques and seed hair in A. thaliana. These data suggest that a different combination of factors is required for the full development of trichomes (hairs in leaves, siliques, and seeds. A. thaliana can be developed as a model a system for discovering additional genes that control seed hair development in general and cotton fiber in particular.

  4. In silico identification of known osmotic stress responsive genes from Arabidopsis in soybean and Medicago

    Directory of Open Access Journals (Sweden)

    Nina M. Soares-Cavalcanti

    2012-01-01

    Full Text Available Plants experience various environmental stresses, but tolerance to these adverse conditions is a very complex phenomenon. The present research aimed to evaluate a set of genes involved in osmotic response, comparing soybean and medicago with the well-described Arabidopsis thaliana model plant. Based on 103 Arabidopsis proteins from 27 categories of osmotic stress response, comparative analyses against Genosoja and Medicago truncatula databases allowed the identification of 1,088 soybean and 1,210 Medicago sequences. The analysis showed a high number of sequences and high diversity, comprising genes from all categories in both organisms. Genes with unknown function were among the most representative, followed by transcription factors, ion transport proteins, water channel, plant defense, protein degradation, cellular structure, organization & biogenesis and senescence. An analysis of sequences with unknown function allowed the annotation of 174 soybean and 217 Medicago sequences, most of them concerning transcription factors. However, for about 30% of the sequences no function could be attributed using in silico procedures. The establishment of a gene set involved in osmotic stress responses in soybean and barrel medic will help to better understand the survival mechanisms for this type of stress condition in legumes.

  5. Gene Discovery and Functional Analyses in the Model Plant Arabidopsis

    DEFF Research Database (Denmark)

    Feng, Cai-ping; Mundy, J.

    2006-01-01

    The present mini-review describes newer methods and strategies, including transposon and T-DNA insertions, TILLING, Deleteagene, and RNA interference, to functionally analyze genes of interest in the model plant Arabidopsis. The relative advantages and disadvantages of the systems are also discus...

  6. Differential transcriptomic analysis by RNA-Seq of GSNO-responsive genes between Arabidopsis roots and leaves.

    Science.gov (United States)

    Begara-Morales, Juan C; Sánchez-Calvo, Beatriz; Luque, Francisco; Leyva-Pérez, María O; Leterrier, Marina; Corpas, Francisco J; Barroso, Juan B

    2014-06-01

    S-Nitrosoglutathione (GSNO) is a nitric oxide-derived molecule that can regulate protein function by a post-translational modification designated S-nitrosylation. GSNO has also been detected in different plant organs under physiological and stress conditions, and it can also modulate gene expression. Thirty-day-old Arabidopsis plants were grown under hydroponic conditions, and exogenous 1 mM GSNO was applied to the root systems for 3 h. Differential gene expression analyses were carried out both in roots and in leaves by RNA sequencing (RNA-seq). A total of 3,263 genes were identified as being modulated by GSNO. Most of the genes identified were associated with the mechanism of protection against stress situations, many of these having previously been identified as target genes of GSNO by array-based methods. However, new genes were identified, such as that for methionine sulfoxide reductase (MSR) in leaves or different miscellaneous RNA (miscRNA) genes in Arabidopsis roots. As a result, 1,945 GSNO-responsive genes expressed differently in leaves and roots were identified, and 114 of these corresponded exclusively to one of these organs. In summary, it is demonstrated that RNA-seq extends our knowledge of GSNO as a signaling molecule which differentially modulates gene expression in roots and leaves under non-stress conditions. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  7. Differentially expressed genes associated with dormancy or germination of Arabidopsis thaliana seeds

    NARCIS (Netherlands)

    Toorop, P.E.; Barroco, R.M.; Engler, G.; Groot, S.P.C.; Hilhorst, H.W.M.

    2005-01-01

    Differential display analysis using dormant and non-dormant Arabidopsis thaliana (L.) Heynh seeds resulted in a set of genes that were associated with either dormancy or germination. Expression of the germination-associated genes AtRPL36B and AtRPL27B, encoding two ribosomal proteins, was

  8. Abscisic acid deficiency increases defence responses against Myzus persicae in Arabidopsis.

    Science.gov (United States)

    Hillwig, Melissa S; Chiozza, Mariana; Casteel, Clare L; Lau, Siau Ting; Hohenstein, Jessica; Hernández, Enrique; Jander, Georg; MacIntosh, Gustavo C

    2016-02-01

    Comparison of Arabidopsis thaliana (Arabidopsis) gene expression induced by Myzus persicae (green peach aphid) feeding, aphid saliva infiltration and abscisic acid (ABA) treatment showed a significant positive correlation. In particular, ABA-regulated genes are over-represented among genes that are induced by M. persicae saliva infiltration into Arabidopsis leaves. This suggests that the induction of ABA-related gene expression could be an important component of the Arabidopsis-aphid interaction. Consistent with this hypothesis, M. persicae populations induced ABA production in wild-type plants. Furthermore, aphid populations were smaller on Arabidopsis aba1-1 mutants, which cannot synthesize ABA, and showed a significant preference for wild-type plants compared with the mutant. Total free amino acids, which play an important role in aphid nutrition, were not altered in the aba1-1 mutant line, but the levels of isoleucine (Ile) and tryptophan (Trp) were differentially affected by aphids in wild-type and mutant plants. Recently, indole glucosinolates have been shown to promote aphid resistance in Arabidopsis. In this study, 4-methoxyindol-3-ylmethylglucosinolate was more abundant in the aba1-1 mutant than in wild-type Arabidopsis, suggesting that the induction of ABA signals that decrease the accumulation of defence compounds may be beneficial for aphids. © 2015 BSPP AND JOHN WILEY & SONS LTD.

  9. Analysis of gene expression in resynthesized Brassica napus Allopolyploids using arabidopsis 70mer oligo microarrays.

    Directory of Open Access Journals (Sweden)

    Robert T Gaeta

    Full Text Available BACKGROUND: Studies in resynthesized Brassica napus allopolyploids indicate that homoeologous chromosome exchanges in advanced generations (S(5ratio6 alter gene expression through the loss and doubling of homoeologous genes within the rearrangements. Rearrangements may also indirectly affect global gene expression if homoeologous copies of gene regulators within rearrangements have differential affects on the transcription of genes in networks. METHODOLOGY/PRINCIPAL FINDINGS: We utilized Arabidopsis 70mer oligonucleotide microarrays for exploring gene expression in three resynthesized B. napus lineages at the S(0ratio1 and S(5ratio6 generations as well as their diploid progenitors B. rapa and B. oleracea. Differential gene expression between the progenitors and additive (midparent expression in the allopolyploids were tested. The S(5ratio6 lines differed in the number of genetic rearrangements, allowing us to test if the number of genes displaying nonadditive expression was related to the number of rearrangements. Estimates using per-gene and common variance ANOVA models indicated that 6-15% of 26,107 genes were differentially expressed between the progenitors. Individual allopolyploids showed nonadditive expression for 1.6-32% of all genes. Less than 0.3% of genes displayed nonadditive expression in all S(0ratio1 lines and 0.1-0.2% were nonadditive among all S(5ratio6 lines. Differentially expressed genes in the polyploids were over-represented by genes differential between the progenitors. The total number of differentially expressed genes was correlated with the number of genetic changes in S(5ratio6 lines under the common variance model; however, there was no relationship using a per-gene variance model, and many genes showed nonadditive expression in S(0ratio1 lines. CONCLUSIONS/SIGNIFICANCE: Few genes reproducibly demonstrated nonadditive expression among lineages, suggesting few changes resulted from a general response to polyploidization

  10. Regulation of Flavonoid Biosynthetic Genes in Germinating Arabidopsis Seedlings.

    Science.gov (United States)

    Kubasek, WL; Shirley, BW; McKillop, A; Goodman, HM; Briggs, W; Ausubel, FM

    1992-01-01

    Many higher plants, including Arabidopsis, transiently display purple anthocyanin pigments just after seed germination. We observed that steady state levels of mRNAs encoded by four flavonoid biosynthetic genes, PAL1 (encoding phenylalanine ammonia-lyase 1), CHS (encoding chalcone synthase), CHI (encoding chalcone isomerase), and DFR (encoding dihydroflavonol reductase), were temporally regulated, peaking in 3-day-old seedlings grown in continuous white light. Except for the case of PAL1 mRNA, mRNA levels for these flavonoid genes were very low in seedlings grown in darkness. Light induction studies using seedlings grown in darkness showed that PAL1 mRNA began to accumulate before CHS and CHI mRNAs, which, in turn, began to accumulate before DFR mRNA. This order of induction is the same as the order of the biosynthetic steps in flavonoid biosynthesis. Our results suggest that the flavonoid biosynthetic pathway is coordinately regulated by a developmental timing mechanism during germination. Blue light and UVB light induction experiments using red light- and dark-grown seedlings showed that the flavonoid biosynthetic genes are induced most effectively by UVB light and that blue light induction is mediated by a specific blue light receptor. PMID:12297632

  11. Potential role of Arabidopsis PHP as an accessory subunit of the PAF1 transcriptional cofactor.

    Science.gov (United States)

    Park, Sunchung; Ek-Ramos, Maria Julissa; Oh, Sookyung; van Nocker, Steven

    2011-08-01

    Paf1C is a transcriptional cofactor that has been implicated in various transcription-associated mechanisms spanning initiation, elongation and RNA processing, and is important for multiple aspects of development in Arabidopsis. Our recent studies suggest Arabidopsis Paf1C is crucial for proper regulation of genes within H3K27me3-enriched chromatin, and that a protein named PHP may act as an accessory subunit of Paf1C that promotes this function.

  12. Sugar regulation of SUGAR TRANSPORTER PROTEIN 1 (STP1) expression in Arabidopsis thaliana

    Science.gov (United States)

    Cordoba, Elizabeth; Aceves-Zamudio, Denise Lizeth; Hernández-Bernal, Alma Fabiola; Ramos-Vega, Maricela; León, Patricia

    2015-01-01

    Sugars regulate the expression of many genes at the transcriptional level. In Arabidopsis thaliana, sugars induce or repress the expression of >1800 genes, including the STP1 (SUGAR TRANSPORTER PROTEIN 1) gene, which encodes an H+/monosaccharide cotransporter. STP1 transcript levels decrease more rapidly after the addition of low concentrations of sugars than the levels of other repressed genes, such as DIN6 (DARK-INDUCED 6). We found that this regulation is exerted at the transcriptional level and is initiated by phosphorylatable sugars. Interestingly, the sugar signal that modulates STP1 expression is transmitted through a HEXOKINASE 1-independent signalling pathway. Finally, analysis of the STP1 5′ regulatory region allowed us to delimit a region of 309bp that contains the cis elements implicated in the glucose regulation of STP1 expression. Putative cis-acting elements involved in this response were identified. PMID:25281700

  13. Nucleolin is required for DNA methylation state and the expression of rRNA gene variants in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Frédéric Pontvianne

    2010-11-01

    Full Text Available In eukaryotes, 45S rRNA genes are arranged in tandem arrays in copy numbers ranging from several hundred to several thousand in plants. Although it is clear that not all copies are transcribed under normal growth conditions, the molecular basis controlling the expression of specific sets of rRNA genes remains unclear. Here, we report four major rRNA gene variants in Arabidopsis thaliana. Interestingly, while transcription of one of these rRNA variants is induced, the others are either repressed or remain unaltered in A. thaliana plants with a disrupted nucleolin-like protein gene (Atnuc-L1. Remarkably, the most highly represented rRNA gene variant, which is inactive in WT plants, is reactivated in Atnuc-L1 mutants. We show that accumulated pre-rRNAs originate from RNA Pol I transcription and are processed accurately. Moreover, we show that disruption of the AtNUC-L1 gene induces loss of symmetrical DNA methylation without affecting histone epigenetic marks at rRNA genes. Collectively, these data reveal a novel mechanism for rRNA gene transcriptional regulation in which the nucleolin protein plays a major role in controlling active and repressed rRNA gene variants in Arabidopsis.

  14. The Resurrection of the Dead, Based on Avicenna’s and Thomas Aquinas’ View

    Directory of Open Access Journals (Sweden)

    Mohammad Mahdi Meshkati

    2013-03-01

    Full Text Available  ’Resurrection’ is one of the most important issue among the religious, philosophical and theological issues. As an aim, this essay has to compare some opinions of the two prominent thinkers in Islam and Christianity. Avicenna and Aquinas, in regard with the Resurrection. Exept in respect to badily Resurrection, Avicenna’s method of dispute is an absolutely philosophical one whereas Aquinas’ is a theological- philosophical method. Avicenna and Aquinas are both agreed that the soul is and incorporeal substance, so that it won’t be destroyed, supposing destruction of the body. Moreover, they both have the view that the soul is created and are agreed that it is eternal. There is no place for purgatory, bodily paradise and hell in Avicena’s philosophy. But, Aquinas, according to the narrative texts, accepts them and deals with thire’s details. As Aquinas, Avicenna believe in necessity of the Resurrection, but he thinks that the only way of accepting bodily Resurrection is to have earnest trust in our religious tradition. His main obstacle is the materiality of imagination. But, while insisting on the point that, man is a compound of soul and body, and that we cannot obtain perfect happiness in this world, Aquinas, consequently, arrives at necessity of bodily Resurrection accepthing, of course, some differences between corporeality in this world and corporeality in the Resurrection.Concerning spiritual Resurrection, Avicenna, proves immateriality of the soul and so he guarantees it’s permanence. Then, by proposing some principles, he claimes the existence of intelctual enjoyment and intellectual pain or, the human soul’s misery and happiness . On the other hand, Aquinas, by denying various probable cases of happiness he concludes that the last happiness will not happen unless you have an immediate intelectual vision of God’s entity, and this occurs only in Resurrection and by Divine illumination.

  15. Identification and Expression Profiling of Radiation-sensitive Genes Using Plant Model System, Arabidopsis thaliana

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong-Sub; Kang, Si-Yong; Lee, Geung-Joo; Kim, Jin-Baek

    2008-06-15

    The purpose of this study is to characterize genes specifically expressed in response to ionizing energy (gamma-rays) of acute irradiation and elucidate signalling mechanisms via functional analysis of isolated genes in Arabidopsis thaliana. Recent improvements in DNA microarray technologies and bioinformatics have made it possible to look for common features of ionizing radiation-responsive genes and their regulatory regions. It has produced massive quantities of gene expression and other functional genomics data, and its application will increase in plant genomics. In this study, we used oligonucleotide microarrays to detect the Arabidopsis genes expressed differentially by a gamma-irradiation during the vegetative (VT, 21 DAG) and reproductive (RT, 28 DAG) stages. Wild-type (Ler) Arabidopsis was irradiated with gamma-rays with 100 and 800 Gy doses. Among the 21,500 genes represented in the Agilent chip, approximately 13,500 ({sup {approx}}61.4 %) responsive genes to {nu} -irradiation were expressed with signal intensity greater than 192 when compared to the combined control (non-irradiated vegetative and reproductive pool). Expression patterns of several radiation inducible genes were confirmed by RT-PCR and Northern blotting. Our microarray results may contribute to an overall understanding of the type and quantities of genes that are expressed by an acute gamma-irradiation. In addition, to investigate the oxidative damage caused by irradiation, RT-PCR analysis for the expression of antioxidant isoenzyme genes, and a Transmission Electron Microscope (TEM) observation for visualizing the H{sub 2}O{sub 2} scavenging activity in leaves were applied.

  16. Multiple Roles for UV RESISTANCE LOCUS8 in Regulating Gene Expression and Metabolite Accumulation in Arabidopsis under Solar Ultraviolet Radiation1[W][OA

    Science.gov (United States)

    Morales, Luis O.; Brosché, Mikael; Vainonen, Julia; Jenkins, Gareth I.; Wargent, Jason J.; Sipari, Nina; Strid, Åke; Lindfors, Anders V.; Tegelberg, Riitta; Aphalo, Pedro J.

    2013-01-01

    Photomorphogenic responses triggered by low fluence rates of ultraviolet B radiation (UV-B; 280–315 nm) are mediated by the UV-B photoreceptor UV RESISTANCE LOCUS8 (UVR8). Beyond our understanding of the molecular mechanisms of UV-B perception by UVR8, there is still limited information on how the UVR8 pathway functions under natural sunlight. Here, wild-type Arabidopsis (Arabidopsis thaliana) and the uvr8-2 mutant were used in an experiment outdoors where UV-A (315–400 nm) and UV-B irradiances were attenuated using plastic films. Gene expression, PYRIDOXINE BIOSYNTHESIS1 (PDX1) accumulation, and leaf metabolite signatures were analyzed. The results show that UVR8 is required for transcript accumulation of genes involved in UV protection, oxidative stress, hormone signal transduction, and defense against herbivores under solar UV. Under natural UV-A irradiance, UVR8 is likely to interact with UV-A/blue light signaling pathways to moderate UV-B-driven transcript and PDX1 accumulation. UVR8 both positively and negatively affects UV-A-regulated gene expression and metabolite accumulation but is required for the UV-B induction of phenolics. Moreover, UVR8-dependent UV-B acclimation during the early stages of plant development may enhance normal growth under long-term exposure to solar UV. PMID:23250626

  17. TRANSPARENT TESTA GLABRA 1 ubiquitously regulates plant growth and development from Arabidopsis to foxtail millet (Setaria italica).

    Science.gov (United States)

    Liu, Kaige; Qi, Shuanghui; Li, Dong; Jin, Changyu; Gao, Chenhao; Duan, Shaowei; Feng, Baili; Chen, Mingxun

    2017-01-01

    TRANSPARENT TESTA GLABRA 1 of Arabidopsis thaliana (AtTTG1) is a WD40 repeat transcription factor that plays multiple roles in plant growth and development, particularly in seed metabolite production. In the present study, to determine whether SiTTG1 of the phylogenetically distant monocot foxtail millet (Setaria italica) has similar functions, we used transgenic Arabidopsis and Nicotiana systems to explore its activities. We found that SiTTG1 functions as a transcription factor. Overexpression of the SiTTG1 gene rescued many of the mutant phenotypes in Arabidopsis ttg1-13 plants. Additionally, SiTTG1 overexpression fully corrected the reduced expression of mucilage biosynthetic genes, and the induced expression of genes involved in accumulation of seed fatty acids and storage proteins in developing seeds of ttg1-13 plants. Ectopic expression of SiTTG1 restored the sensitivity of the ttg1-13 mutant to salinity and high glucose stresses during germination and seedling establishment, and restored altered expression levels of some stress-responsive genes in ttg1-13 seedlings to the wild type level under salinity and glucose stresses. Our results provide information that will be valuable for understanding the function of TTG1 from monocot to dicot species and identifying a promising target for genetic manipulation of foxtail millet to improve the amount of seed metabolites. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. GmGBP1, a homolog of human ski interacting protein in soybean, regulates flowering and stress tolerance in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Zhang Yanwei

    2013-02-01

    Full Text Available Abstract Background SKIP is a transcription cofactor in many eukaryotes. It can regulate plant stress tolerance in rice and Arabidopsis. But the homolog of SKIP protein in soybean has been not reported up to now. Results In this study, the expression patterns of soybean GAMYB binding protein gene (GmGBP1 encoding a homolog of SKIP protein were analyzed in soybean under abiotic stresses and different day lengths. The expression of GmGBP1 was induced by polyethyleneglycol 6000, NaCl, gibberellin, abscisic acid and heat stress. GmGBP1 had transcriptional activity in C-terminal. GmGBP1 could interact with R2R3 domain of GmGAMYB1 in SKIP domain to take part in gibberellin flowering pathway. In long-day (16 h-light condition, transgenic Arabidopsis with the ectopic overexpression of GmGBP1 exhibited earlier flowering and less number of rosette leaves; Suppression of AtSKIP in Arabidopsis resulted in growth arrest, flowering delay and down-regulation of many flowering-related genes (CONSTANS, FLOWERING LOCUS T, LEAFY; Arabidopsis myb33 mutant plants with ectopic overexpression of GmGBP1 showed the same flowering phenotype with wild type. In short-day (8 h-light condition, transgenic Arabidopsis plants with GmGBP1 flowered later and showed a higher level of FLOWERING LOCUS C compared with wild type. When treated with abiotic stresses, transgenic Arabidopsis with the ectopic overexpression of GmGBP1 enhanced the tolerances to heat and drought stresses but reduced the tolerance to high salinity, and affected the expressions of several stress-related genes. Conclusions In Arabidopsis, GmGBP1 might positively regulate the flowering time by affecting CONSTANS, FLOWERING LOCUS T, LEAFY and GAMYB directly or indirectly in photoperiodic and gibberellin pathways in LDs, but GmGBP1 might represse flowering by affecting FLOWERING LOCUS C and SHORT VEGETATIVE PHASE in autonomous pathway in SDs. GmGBP1 might regulate the activity of ROS-eliminating to improve the

  19. Divergent regulation of Arabidopsis SAUR genes: a focus on the SAUR10-clade.

    Science.gov (United States)

    van Mourik, Hilda; van Dijk, Aalt D J; Stortenbeker, Niek; Angenent, Gerco C; Bemer, Marian

    2017-12-19

    Small Auxin-Upregulated RNA (SAUR) genes encode growth regulators that induce cell elongation. Arabidopsis contains more than 70 SAUR genes, of which the growth-promoting function has been unveiled in seedlings, while their role in other tissues remained largely unknown. Here, we focus on the regulatory regions of Arabidopsis SAUR genes, to predict the processes in which they play a role, and understand the dynamics of plant growth. In this study, we characterized in detail the entire SAUR10-clade: SAUR8, SAUR9, SAUR10, SAUR12, SAUR16, SAUR50, SAUR51 and SAUR54. Overexpression analysis revealed that the different proteins fulfil similar functions, while the SAUR expression patterns were highly diverse, showing expression throughout plant development in a variety of tissues. In addition, the response to application of different hormones largely varied between the different genes. These tissue-specific and hormone-specific responses could be linked to transcription factor binding sites using in silico analyses. These analyses also supported the existence of two groups of SAURs in Arabidopsis: Class I genes can be induced by combinatorial action of ARF-BZR-PIF transcription factors, while Class II genes are not regulated by auxin. SAUR10-clade genes generally induce cell-elongation, but exhibit diverse expression patterns and responses to hormones. Our experimental and in silico analyses suggest that transcription factors involved in plant development determine the tissue specific expression of the different SAUR genes, whereas the amplitude of this expression can often be controlled by hormone response transcription factors. This allows the plant to fine tune growth in a variety of tissues in response to internal and external signals.

  20. Gene expression in arabidopsis shoot tips after liquid nitrogen exposure

    Science.gov (United States)

    Arabidopsis thaliana shoot tips can be successfully cryopreserved using either Plant Vitrification Solution 2 (PVS2) or Plant Vitrification Solution 3 (PVS3) as the cryoprotectant. We used this model system to identify suites of genes that were either upregulated or downregulated as shoot tips recov...

  1. The Arabidopsis Transcription Factor AtTCP15 Regulates Endoreduplication by Modulating Expression of Key Cell-cycle Genes

    Institute of Scientific and Technical Information of China (English)

    Zi-Yu Li; Bin Li; Ai-Wu Dong

    2012-01-01

    Plant cells frequently undergo endoreduplication,a modified cell cycle in which genome is repeatedly replicated without cytokinesis.As the key step to achieve final size and function for cells,endoreduplication is prevalent during plant development.However,mechanisms to control the balance between endoreduplication and mitotic cell division are still poorly understood.Here,we show that the Arabidopsis TCP (CINCINNATA-like TEOSINTE BRANCHED1-CYCLOIDEA-PCF)-family transcription factor gene AtTCP15 is expressed in trichomes,as well as in rapidly dividing and vascular tissues.Expression of AtTCP15SRDX,AtTCP15 fused with a SRDX repressor domain,induces extra endoreduplication in trichomes and cotyledon cells in transgenic Arabidopsis.On the contrary,overexpression of AtTCP15 suppresses endoreduplication in trichomes and other examined cells.Misregulation of AtTCP15 affects the expression of several important genes involved in cell-cycle regulation.AtTCP15 protein binds directly to the promoter regions of CYCA2;3 and RETINOBLASTOMA-RELATED (RBR) genes,which play key roles in endoreduplication.Taken together,AtTCP15 plays an important role in regulating endoreduplication during Arabidopsis development.

  2. The Kurdish Resurrection Society (1942-1945)

    OpenAIRE

    Sohrab Yazdani; Amir Sajjadi

    2017-01-01

    The Kurdish Resurrection Society (known as Komeley Jiyanewey Kurd) was the first political society that was founded after August and September 1941 and following the Anglo-Soviet Invasion of Iran. This society arose from traditional and modern strata of urban Kurdish petty bourgeois in Mahabad. The present study aims at discussing the following questions applying a descriptive-analytical approach and using the historical resources and studies: 1. What is the role of the new social and histori...

  3. NKS1, Na+- and K+-sensitive 1, regulates ion homeostasis in an SOS-independent pathway in Arabidopsis

    KAUST Repository

    Choi, Wonkyun

    2011-04-01

    An Arabidopsis thaliana mutant, nks1-1, exhibiting enhanced sensitivity to NaCl was identified in a screen of a T-DNA insertion population in the genetic background of Col-0 gl1 sos3-1. Analysis of the genome sequence in the region flanking the T-DNA left border indicated two closely linked mutations in the gene encoded at locus At4g30996. A second allele, nks1-2, was obtained from the Arabidopsis Biological Resource Center. NKS1 mRNA was detected in all parts of wild-type plants but was not detected in plants of either mutant, indicating inactivation by the mutations. Both mutations in NKS1 were associated with increased sensitivity to NaCl and KCl, but not to LiCl or mannitol. NaCl sensitivity was associated with nks1 mutations in Arabidopsis lines expressing either wild type or alleles of SOS1, SOS2 or SOS3. The NaCl-sensitive phenotype of the nks1-2 mutant was complemented by expression of a full-length NKS1 allele from the CaMV35S promoter. When grown in medium containing NaCl, nks1 mutants accumulated more Na+ than wild type and K +/Na+ homeostasis was perturbed. It is proposed NKS1, a plant-specific gene encoding a 19 kDa endomembrane-localized protein of unknown function, is part of an ion homeostasis regulation pathway that is independent of the SOS pathway. © 2011 Elsevier Ltd. All rights reserved.

  4. NKS1, Na+- and K+-sensitive 1, regulates ion homeostasis in an SOS-independent pathway in Arabidopsis

    KAUST Repository

    Choi, Wonkyun; Baek, Dongwon; Oh, Dongha; Park, Jiyoung; Hong, Hyewon; Kim, Woeyeon; Bohnert, Hans Jü rgen; Bressan, Ray Anthony; Park, Hyeongcheol; Yun, Daejin

    2011-01-01

    An Arabidopsis thaliana mutant, nks1-1, exhibiting enhanced sensitivity to NaCl was identified in a screen of a T-DNA insertion population in the genetic background of Col-0 gl1 sos3-1. Analysis of the genome sequence in the region flanking the T-DNA left border indicated two closely linked mutations in the gene encoded at locus At4g30996. A second allele, nks1-2, was obtained from the Arabidopsis Biological Resource Center. NKS1 mRNA was detected in all parts of wild-type plants but was not detected in plants of either mutant, indicating inactivation by the mutations. Both mutations in NKS1 were associated with increased sensitivity to NaCl and KCl, but not to LiCl or mannitol. NaCl sensitivity was associated with nks1 mutations in Arabidopsis lines expressing either wild type or alleles of SOS1, SOS2 or SOS3. The NaCl-sensitive phenotype of the nks1-2 mutant was complemented by expression of a full-length NKS1 allele from the CaMV35S promoter. When grown in medium containing NaCl, nks1 mutants accumulated more Na+ than wild type and K +/Na+ homeostasis was perturbed. It is proposed NKS1, a plant-specific gene encoding a 19 kDa endomembrane-localized protein of unknown function, is part of an ion homeostasis regulation pathway that is independent of the SOS pathway. © 2011 Elsevier Ltd. All rights reserved.

  5. Overexpression of ARGOS Genes Modifies Plant Sensitivity to Ethylene, Leading to Improved Drought Tolerance in Both Arabidopsis and Maize.

    Science.gov (United States)

    Shi, Jinrui; Habben, Jeffrey E; Archibald, Rayeann L; Drummond, Bruce J; Chamberlin, Mark A; Williams, Robert W; Lafitte, H Renee; Weers, Ben P

    2015-09-01

    Lack of sufficient water is a major limiting factor to crop production worldwide, and the development of drought-tolerant germplasm is needed to improve crop productivity. The phytohormone ethylene modulates plant growth and development as well as plant response to abiotic stress. Recent research has shown that modifying ethylene biosynthesis and signaling can enhance plant drought tolerance. Here, we report novel negative regulators of ethylene signal transduction in Arabidopsis (Arabidopsis thaliana) and maize (Zea mays). These regulators are encoded by the ARGOS gene family. In Arabidopsis, overexpression of maize ARGOS1 (ZmARGOS1), ZmARGOS8, Arabidopsis ARGOS homolog ORGAN SIZE RELATED1 (AtOSR1), and AtOSR2 reduced plant sensitivity to ethylene, leading to enhanced drought tolerance. RNA profiling and genetic analysis suggested that the ZmARGOS1 transgene acts between an ethylene receptor and CONSTITUTIVE TRIPLE RESPONSE1 in the ethylene signaling pathway, affecting ethylene perception or the early stages of ethylene signaling. Overexpressed ZmARGOS1 is localized to the endoplasmic reticulum and Golgi membrane, where the ethylene receptors and the ethylene signaling protein ETHYLENE-INSENSITIVE2 and REVERSION-TO-ETHYLENE SENSITIVITY1 reside. In transgenic maize plants, overexpression of ARGOS genes also reduces ethylene sensitivity. Moreover, field testing showed that UBIQUITIN1:ZmARGOS8 maize events had a greater grain yield than nontransgenic controls under both drought stress and well-watered conditions. © 2015 American Society of Plant Biologists. All Rights Reserved.

  6. Overexpression of SAMDC1 gene in Arabidopsis thaliana increases expression of defense-related genes as well as resistance to Pseudomonas syringae and Hyaloperonospora arabidopsidis

    Directory of Open Access Journals (Sweden)

    Francisco eMarco

    2014-03-01

    Full Text Available It has been previously described that elevation of endogenous spermine levels in Arabidopsis could be achieved by transgenic overexpression of S-Adenosylmethionine decarboxylase (SAMDC or Spermine synthase (SPMS. In both cases, spermine accumulation had an impact on the plant transcriptome, with up-regulation of a set of genes enriched in functional categories involved in defense-related processes against both biotic and abiotic stresses. In this work, the response of SAMDC1-overexpressing plants against bacterial and oomycete pathogens has been tested. The expression of several pathogen defense-related genes was induced in these plants as well as in wild type plants exposed to an exogenous supply of spermine. SAMDC1-overexpressing plants showed an increased tolerance to infection by Pseudomonas syringae and by Hyaloperonospora arabidopsidis. Both results add more evidence to the hypothesis that spermine plays a key role in plant resistance to biotic stress.

  7. Natural variants of AtHKT1 enhance Na+ accumulation in two wild populations of Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Ana Rus

    2006-12-01

    Full Text Available Plants are sessile and therefore have developed mechanisms to adapt to their environment, including the soil mineral nutrient composition. Ionomics is a developing functional genomic strategy designed to rapidly identify the genes and gene networks involved in regulating how plants acquire and accumulate these mineral nutrients from the soil. Here, we report on the coupling of high-throughput elemental profiling of shoot tissue from various Arabidopsis accessions with DNA microarray-based bulk segregant analysis and reverse genetics, for the rapid identification of genes from wild populations of Arabidopsis that are involved in regulating how plants acquire and accumulate Na(+ from the soil. Elemental profiling of shoot tissue from 12 different Arabidopsis accessions revealed that two coastal populations of Arabidopsis collected from Tossa del Mar, Spain, and Tsu, Japan (Ts-1 and Tsu-1, respectively, accumulate higher shoot levels of Na(+ than do Col-0 and other accessions. We identify AtHKT1, known to encode a Na(+ transporter, as being the causal locus driving elevated shoot Na(+ in both Ts-1 and Tsu-1. Furthermore, we establish that a deletion in a tandem repeat sequence approximately 5 kb upstream of AtHKT1 is responsible for the reduced root expression of AtHKT1 observed in these accessions. Reciprocal grafting experiments establish that this loss of AtHKT1 expression in roots is responsible for elevated shoot Na(+. Interestingly, and in contrast to the hkt1-1 null mutant, under NaCl stress conditions, this novel AtHKT1 allele not only does not confer NaCl sensitivity but also cosegregates with elevated NaCl tolerance. We also present all our elemental profiling data in a new open access ionomics database, the Purdue Ionomics Information Management System (PiiMS; http://www.purdue.edu/dp/ionomics. Using DNA microarray-based genotyping has allowed us to rapidly identify AtHKT1 as the casual locus driving the natural variation in shoot Na

  8. AHP2, AHP3, and AHP5 act downstream of CKI1 in Arabidopsis female gametophyte development.

    Science.gov (United States)

    Liu, Zhenning; Yuan, Li; Song, Xiaoya; Yu, Xiaolin; Sundaresan, Venkatesan

    2017-06-15

    Histidine phosphotransfer proteins (HPs) are key elements of the two-component signaling system, which act as a shuttle to transfer phosphorylation signals from histidine kinases (HKs) to response regulators (RRs). CYTOKININ INDEPENDENT 1 (CKI1), a key regulator of central cell specification in the Arabidopsis female gametophyte, activates the cytokinin signaling pathway through the Arabidopsis histidine phosphotransfer proteins (AHPs). There are five HP genes in Arabidopsis, AHP1-AHP5, but it remains unknown which AHP genes act downstream of CKI1 in Arabidopsis female gametophyte development. Promoter activity analysis of AHP1-AHP5 in embryo sacs revealed AHP1, AHP2, AHP3, and AHP5 expression in the central cell. Phenotypic studies of various combinations of ahp mutants showed that triple mutations in AHP2, AHP3, and AHP5 resulted in defective embryo sac development. Using cell-specific single and double markers in the female gametophyte, the ahp2-2 ahp3 ahp5-2/+ triple mutant ovules showed loss of central cell and antipodal cell fates and gain of egg cell or synergid cell attributes, resembling the cki1 mutant phenotypes. These data suggest that AHP2, AHP3, and AHP5 are the major factors acting downstream of CKI1 in the two-component cytokinin signaling pathway to promote Arabidopsis female gametophyte development. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  9. Resurrection imageries: A study of the motives for extravagant burial rituals in ancient Egypt

    Directory of Open Access Journals (Sweden)

    Jock M. Agai

    2015-03-01

    Full Text Available Unlike in the New Testament whereby faith in Christ can resurrect the dead, the ancient Egyptians believed that the bereaved created the resurrection of their deceased through burial rituals and by encouraging the living to serve their kings. They thought that faith alone in god or the gods was not enough to resurrect the dead, thus they seemingly superimposed resurrection alongside burials. Using the various forms of Egyptian burial rituals and evaluated from the perspective of the Christian concept of resurrection, this researcher attempts to search for the motives behind specific Egyptian burial rituals. The researcher proposes that the activities of the bereaved or of the living over the dead were paramount in resurrecting the dead in ancient Egypt. The purpose of this research is, firstly, to explain how the Egyptian burial rituals influenced their thoughts on resurrection and, secondly, to show that the Egyptian god(s might have depended on the living to raise the dead.Intradisciplinary and/or interdisciplinary implications: The ancient Egyptians lived their lives mainly to satisfy the interests of the dead, hence their extensive burial rituals. Whilst they believed in the power of the gods to raise the dead, there seemed to be another motive behind their burial practices which suggested that the living may have had more power to raise the dead. The power was realised in the activities of the living in the form of burials, tomb designs, mummification, food offering, and in remembering the dead. This research explains that these burial activities were relevant in resurrecting the dead without which the gods alone were not able to do that.

  10. A clade-specific Arabidopsis gene connects primary metabolism and senescence

    Science.gov (United States)

    Plants have to deal with environmental insults as they cannot move to escape from stressful conditions. To do so, they have evolved novel components that respond to the changing environments. A primary example is Qua Quine Starch (QQS, AT3G30720), an Arabidopsis thaliana-specific (orphan) gene that ...

  11. Comprehensive transcriptional profiling of NaCl-stressed Arabidopsis roots reveals novel classes of responsive genes

    Directory of Open Access Journals (Sweden)

    Deyholos Michael K

    2006-10-01

    Full Text Available Abstract Background Roots are an attractive system for genomic and post-genomic studies of NaCl responses, due to their primary importance to agriculture, and because of their relative structural and biochemical simplicity. Excellent genomic resources have been established for the study of Arabidopsis roots, however, a comprehensive microarray analysis of the root transcriptome following NaCl exposure is required to further understand plant responses to abiotic stress and facilitate future, systems-based analyses of the underlying regulatory networks. Results We used microarrays of 70-mer oligonucleotide probes representing 23,686 Arabidopsis genes to identify root transcripts that changed in relative abundance following 6 h, 24 h, or 48 h of hydroponic exposure to 150 mM NaCl. Enrichment analysis identified groups of structurally or functionally related genes whose members were statistically over-represented among up- or down-regulated transcripts. Our results are consistent with generally observed stress response themes, and highlight potentially important roles for underappreciated gene families, including: several groups of transporters (e.g. MATE, LeOPT1-like; signalling molecules (e.g. PERK kinases, MLO-like receptors, carbohydrate active enzymes (e.g. XTH18, transcription factors (e.g. members of ZIM, WRKY, NAC, and other proteins (e.g. 4CL-like, COMT-like, LOB-Class 1. We verified the NaCl-inducible expression of selected transcription factors and other genes by qRT-PCR. Conclusion Micorarray profiling of NaCl-treated Arabidopsis roots revealed dynamic changes in transcript abundance for at least 20% of the genome, including hundreds of transcription factors, kinases/phosphatases, hormone-related genes, and effectors of homeostasis, all of which highlight the complexity of this stress response. Our identification of these transcriptional responses, and groups of evolutionarily related genes with either similar or divergent

  12. Arabidopsis ETO1 specifically interacts with and negatively regulates type 2 1-aminocyclopropane-1-carboxylate synthases

    Directory of Open Access Journals (Sweden)

    Saito Koji

    2005-08-01

    Full Text Available Abstract Background In Arabidopsis, ETO1 (ETHYLENE-OVERPRODUCER1 is a negative regulator of ethylene evolution by interacting with AtACS5, an isoform of the rate-limiting enzyme, 1-aminocyclopropane-1-carboxylate synthases (ACC synthase or ACS, in ethylene biosynthetic pathway. ETO1 directly inhibits the enzymatic activity of AtACS5. In addition, a specific interaction between ETO1 and AtCUL3, a constituent of a new type of E3 ubiquitin ligase complex, suggests the molecular mechanism in promoting AtACS5 degradation by the proteasome-dependent pathway. Because orthologous sequences to ETO1 are found in many plant species including tomato, we transformed tomato with Arabidopsis ETO1 to evaluate its ability to suppress ethylene production in tomato fruits. Results Transgenic tomato lines that overexpress Arabidopsis ETO1 (ETO1-OE did not show a significant delay of fruit ripening. So, we performed yeast two-hybrid assays to investigate potential heterologous interaction between ETO1 and three isozymes of ACC synthases from tomato. In the yeast two-hybrid system, ETO1 interacts with LE-ACS3 as well as AtACS5 but not with LE-ACS2 or LE-ACS4, two major isozymes whose gene expression is induced markedly in ripening fruits. According to the classification of ACC synthases, which is based on the C-terminal amino acid sequences, both LE-ACS3 and AtACS5 are categorized as type 2 isozymes and possess a consensus C-terminal sequence. In contrast, LE-ACS2 and LE-ACS4 are type 1 and type 3 isozymes, respectively, both of which do not possess this specific C-terminal sequence. Yeast two-hybrid analysis using chimeric constructs between LE-ACS2 and LE-ACS3 revealed that the type-2-ACS-specific C-terminal tail is required for interaction with ETO1. When treated with auxin to induce LE-ACS3, seedlings of ETO1-OE produced less ethylene than the wild type, despite comparable expression of the LE-ACS3 gene in the wild type. Conclusion These results suggest that ETO1

  13. Intracellular Localization of Arabidopsis Sulfurtransferases1

    Science.gov (United States)

    Bauer, Michael; Dietrich, Christof; Nowak, Katharina; Sierralta, Walter D.; Papenbrock, Jutta

    2004-01-01

    Sulfurtransferases (Str) comprise a group of enzymes widely distributed in archaea, eubacteria, and eukaryota which catalyze the transfer of a sulfur atom from suitable sulfur donors to nucleophilic sulfur acceptors. In all organisms analyzed to date, small gene families encoding Str proteins have been identified. The gene products were localized to different compartments of the cells. Our interest concerns the localization of Str proteins encoded in the nuclear genome of Arabidopsis. Computer-based prediction methods revealed localization in different compartments of the cell for six putative AtStrs. Several methods were used to determine the localization of the AtStr proteins experimentally. For AtStr1, a mitochondrial localization was demonstrated by immunodetection in the proteome of isolated mitochondria resolved by one- and two-dimensional gel electrophoresis and subsequent blotting. The respective mature AtStr1 protein was identified by mass spectrometry sequencing. The same result was obtained by transient expression of fusion constructs with the green fluorescent protein in Arabidopsis protoplasts, whereas AtStr2 was exclusively localized to the cytoplasm by this method. Three members of the single-domain AtStr were localized in the chloroplasts as demonstrated by transient expression of green fluorescent protein fusions in protoplasts and stomata, whereas the single-domain AtStr18 was shown to be cytoplasmic. The remarkable subcellular distribution of AtStr15 was additionally analyzed by transmission electron immunomicroscopy using a monospecific antibody against green fluorescent protein, indicating an attachment to the thylakoid membrane. The knowledge of the intracellular localization of the members of this multiprotein family will help elucidate their specific functions in the organism. PMID:15181206

  14. Suppressor of Overexpression of CO 1 Negatively Regulates Dark-Induced Leaf Degreening and Senescence by Directly Repressing Pheophytinase and Other Senescence-Associated Genes in Arabidopsis.

    Science.gov (United States)

    Chen, Junyi; Zhu, Xiaoyu; Ren, Jun; Qiu, Kai; Li, Zhongpeng; Xie, Zuokun; Gao, Jiong; Zhou, Xin; Kuai, Benke

    2017-03-01

    Although the biochemical pathway of chlorophyll (Chl) degradation has been largely elucidated, how Chl is rapidly yet coordinately degraded during leaf senescence remains elusive. Pheophytinase (PPH) is the enzyme for catalyzing the removal of the phytol group from pheophytin a , and PPH expression is significantly induced during leaf senescence. To elucidate the transcriptional regulation of PPH , we used a yeast ( Saccharomyces cerevisiae ) one-hybrid system to screen for its trans-regulators. SUPPRESSOR OF OVEREXPRESSION OF CO 1 (SOC1), a key flowering pathway integrator, was initially identified as one of the putative trans-regulators of PPH After dark treatment, leaves of an SOC1 knockdown mutant ( soc1-6 ) showed an accelerated yellowing phenotype, whereas those of SOC1 -overexpressing lines exhibited a partial stay-green phenotype. SOC1 and PPH expression showed a negative correlation during leaf senescence. Substantially, SOC1 protein could bind specifically to the CArG box of the PPH promoter in vitro and in vivo, and overexpression of SOC1 significantly inhibited the transcriptional activity of the PPH promoter in Arabidopsis ( Arabidopsis thaliana ) protoplasts. Importantly, soc1-6 pph-1 (a PPH knockout mutant) double mutant displayed a stay-green phenotype similar to that of pph-1 during dark treatment. These results demonstrated that SOC1 inhibits Chl degradation via negatively regulating PPH expression. In addition, measurement of the Chl content and the maximum photochemical efficiency of photosystem II of soc1-6 and SOC1-OE leaves after dark treatment suggested that SOC1 also negatively regulates the general senescence process. Seven SENESCENCE-ASSOCIATED GENES ( SAGs ) were thereafter identified as its potential target genes, and NONYELLOWING1 and SAG113 were experimentally confirmed. Together, we reveal that SOC1 represses dark-induced leaf Chl degradation and senescence in general in Arabidopsis. © 2017 American Society of Plant Biologists. All

  15. Natural genetic variation in Arabidopsis thaliana defense metabolism genes modulates field fitness.

    Science.gov (United States)

    Kerwin, Rachel; Feusier, Julie; Corwin, Jason; Rubin, Matthew; Lin, Catherine; Muok, Alise; Larson, Brandon; Li, Baohua; Joseph, Bindu; Francisco, Marta; Copeland, Daniel; Weinig, Cynthia; Kliebenstein, Daniel J

    2015-04-13

    Natural populations persist in complex environments, where biotic stressors, such as pathogen and insect communities, fluctuate temporally and spatially. These shifting biotic pressures generate heterogeneous selective forces that can maintain standing natural variation within a species. To directly test if genes containing causal variation for the Arabidopsis thaliana defensive compounds, glucosinolates (GSL) control field fitness and are therefore subject to natural selection, we conducted a multi-year field trial using lines that vary in only specific causal genes. Interestingly, we found that variation in these naturally polymorphic GSL genes affected fitness in each of our environments but the pattern fluctuated such that highly fit genotypes in one trial displayed lower fitness in another and that no GSL genotype or genotypes consistently out-performed the others. This was true both across locations and within the same location across years. These results indicate that environmental heterogeneity may contribute to the maintenance of GSL variation observed within Arabidopsis thaliana.

  16. Medicago truncatula SOC1 Genes Are Up-regulated by Environmental Cues That Promote Flowering

    Directory of Open Access Journals (Sweden)

    Jared B. Fudge

    2018-04-01

    Full Text Available Like Arabidopsis thaliana, the flowering of the legume Medicago truncatula is promoted by long day (LD photoperiod and vernalization. However, there are differences in the molecular mechanisms involved, with orthologs of two key Arabidopsis thaliana regulators, FLOWERING LOCUS C (FLC and CONSTANS (CO, being absent or not having a role in flowering time function in Medicago. In Arabidopsis, the MADS-box transcription factor gene, SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (AtSOC1, plays a key role in integrating the photoperiodic and vernalization pathways. In this study, we set out to investigate whether the Medicago SOC1 genes play a role in regulating flowering time. Three Medicago SOC1 genes were identified and characterized (MtSOC1a–MtSOC1c. All three MtSOC1 genes, when heterologously expressed, were able to promote earlier flowering of the late-flowering Arabidopsis soc1-2 mutant. The three MtSOC1 genes have different patterns of expression. However, consistent with a potential role in flowering time regulation, all three MtSOC1 genes are expressed in the shoot apex and are up-regulated in the shoot apex of plants in response to LD photoperiods and vernalization. The up-regulation of MtSOC1 genes was reduced in Medicago fta1-1 mutants, indicating that they are downstream of MtFTa1. Insertion mutant alleles of Medicago soc1b do not flower late, suggestive of functional redundancy among Medicago SOC1 genes in promoting flowering.

  17. A pomegranate (Punica granatum L.) WD40-repeat gene is a functional homologue of Arabidopsis TTG1 and is involved in the regulation of anthocyanin biosynthesis during pomegranate fruit development.

    Science.gov (United States)

    Ben-Simhon, Zohar; Judeinstein, Sylvie; Nadler-Hassar, Talia; Trainin, Taly; Bar-Ya'akov, Irit; Borochov-Neori, Hamutal; Holland, Doron

    2011-11-01

    Anthocyanins are the major pigments responsible for the pomegranate (Punica granatum L.) fruit skin color. The high variability in fruit external color in pomegranate cultivars reflects variations in anthocyanin composition. To identify genes involved in the regulation of anthocyanin biosynthesis pathway in the pomegranate fruit skin we have isolated, expressed and characterized the pomegranate homologue of the Arabidopsis thaliana TRANSPARENT TESTA GLABRA1 (TTG1), encoding a WD40-repeat protein. The TTG1 protein is a regulator of anthocyanins and proanthocyanidins (PAs) biosynthesis in Arabidopsis, and acts by the formation of a transcriptional regulatory complex with two other regulatory proteins: bHLH and MYB. Our results reveal that the pomegranate gene, designated PgWD40, recovered the anthocyanin, PAs, trichome and seed coat mucilage phenotype in Arabidopsis ttg1 mutant. PgWD40 expression and anthocyanin composition in the skin were analyzed during pomegranate fruit development, in two accessions that differ in skin color intensity and timing of appearance. The results indicate high positive correlation between the total cyanidin derivatives quantity (red pigments) and the expression level of PgWD40. Furthermore, strong correlation was found between the steady state levels of PgWD40 transcripts and the transcripts of pomegranate homologues of the structural genes PgDFR and PgLDOX. PgWD40, PgDFR and PgLDOX expression also correlated with the expression of pomegranate homologues of the regulatory genes PgAn1 (bHLH) and PgAn2 (MYB). On the basis of our results we propose that PgWD40 is involved in the regulation of anthocyanin biosynthesis during pomegranate fruit development and that expression of PgWD40, PgAn1 and PgAn2 in the pomegranate fruit skin is required to regulate the expression of downstream structural genes involved in the anthocyanin biosynthesis.

  18. Isolation and characterization of CNGC17 gene from Arabidopsis thaliana

    International Nuclear Information System (INIS)

    Yamagami, Mutsumi; Kobayashi, Daisuke; Hisamatsu, Shun'ichi

    2007-01-01

    Phytoremediation is a possible countermeasure for cleaning up soil contaminated by 137 Cs, and development of plants which can effectively absorb 137 Cs is important for it. It is expected that capability of Cs extraction from soil can be strengthened by genetic alteration of the Cs + root-uptake mechanism of plants. This study aimed at elucidating the uptake mechanism of Cs + for future genetic engineering. Plant roots take up Cs + from the soil solution via transport proteins at the plasma membrane of root cells. Voltage-insensitive cation channels (VICCs) are a possible transfer route of Cs + , and they are encoded by cyclic-nucleotide gated channel (CNGC) and glutamate receptor (GLR) gene families. The genome of Arabidopsis thaliana contains 20 CNGC genes. We have cloned a putative AtCNGC17 gene from cDNAs which were generated with total-RNA obtained from leaves of Arabidopsis thaliana by RT-PCR. The cDNA contained 2163 bp with an ORF that encoded a protein consisting of 721 amino acids residues. The plasmid prepared by the insertion of the gene under a Taq promoter was used to transform an E. coli deficient in the three major K + uptake systems (Kdp, Trk, and Kup). Only the E. coli with AtCNGC17 gene grew in low K + concentration minimal medium. This result suggested that the AtCNGC17 protein has a function of K + uptake. Growth rates of the E. coli cells expressing the gene were strongly inhibited by CsCl in low K + concentration minimal medium, suggesting that the AtCNGC17 transporter also carries Cs + . (author)

  19. The Wheat Bax Inhibitor-1 Protein Interacts with an Aquaporin TaPIP1 and Enhances Disease Resistance in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Pan-Pan Lu

    2018-01-01

    Full Text Available Bax inhibitor-1 (BI-1 is an endoplasmic reticulum (ER-resident cell death suppressor evolutionarily conserved in eukaryotes. The ability of BI-1 to inhibit the biotic and abiotic stresses have been well-studied in Arabidopsis, while the functions of wheat BI-1 are largely unknown. In this study, the wheat BI-1 gene TaBI-1.1 was isolated by an RNA-seq analysis of Fusarium graminearum (Fg-treated wheat. TaBI-1.1 expression was induced by a salicylic acid (SA treatment and down-regulated by an abscisic acid (ABA treatment. Based on β-glucuronidase (GUS staining, TaBI-1.1 was expressed in mature leaves and roots but not in the hypocotyl or young leaves. Constitutive expression of TaBI-1.1 in Arabidopsis enhanced its resistance to Pseudomonas syringae pv. Tomato (Pst DC3000 infection and induced SA-related gene expression. Additionally, TaBI-1.1 transgenic Arabidopsis exhibited an alleviation of damage caused by high concentrations of SA and decreased the sensitivity to ABA. Consistent with the phenotype, the RNA-seq analysis of 35S::TaBI-1.1 and Col-0 plants showed that TaBI-1.1 was involved in biotic stresses. These results suggested that TaBI-1.1 positively regulates SA signals and plays important roles in the response to biotic stresses. In addition, TaBI-1.1 interacted with the aquaporin TaPIP1, and both them were localized to ER membrane. Furthermore, we demonstrated that TaPIP1 was up-regulated by SA treatment and TaPIP1 transgenic Arabidopsis enhanced the resistance to Pst DC3000 infection. Thus, the interaction between TaBI-1.1 and TaPIP1 on the ER membrane probably occurs in response to SA signals and defense response.

  20. Ectopic overexpression of castor bean LEAFY COTYLEDON2 (LEC2 in Arabidopsis triggers the expression of genes that encode regulators of seed maturation and oil body proteins in vegetative tissues

    Directory of Open Access Journals (Sweden)

    Hyun Uk Kim

    2014-01-01

    Full Text Available The LEAFY COTYLEDON2 (LEC2 gene plays critically important regulatory roles during both early and late embryonic development. Here, we report the identification of the LEC2 gene from the castor bean plant (Ricinus communis, and characterize the effects of its overexpression on gene regulation and lipid metabolism in transgenic Arabidopsis plants. LEC2 exists as a single-copy gene in castor bean, is expressed predominantly in embryos, and encodes a protein with a conserved B3 domain, but different N- and C-terminal domains to those found in LEC2 from Arabidopsis. Ectopic overexpression of LEC2 from castor bean under the control of the cauliflower mosaic virus (CaMV 35S promoter in Arabidopsis plants induces the accumulation of transcripts that encodes five major transcription factors (the LEAFY COTYLEDON1 (LEC1, LEAFY COTYLEDON1-LIKE (L1L, FUSCA3 (FUS3, and ABSCISIC ACID INSENSITIVE 3 (ABI3 transcripts for seed maturation, and WRINKELED1 (WRI1 transcripts for fatty acid biosynthesis, as well as OLEOSIN transcripts for the formation of oil bodies in vegetative tissues. Transgenic Arabidopsis plants that express the LEC2 gene from castor bean show a range of dose-dependent morphological phenotypes and effects on the expression of LEC2-regulated genes during seedling establishment and vegetative growth. Expression of castor bean LEC2 in Arabidopsis increased the expression of fatty acid elongase 1 (FAE1 and induced the accumulation of triacylglycerols, especially those containing the seed-specific fatty acid, eicosenoic acid (20:1Δ11, in vegetative tissues.

  1. Ectopic overexpression of castor bean LEAFY COTYLEDON2 (LEC2) in Arabidopsis triggers the expression of genes that encode regulators of seed maturation and oil body proteins in vegetative tissues.

    Science.gov (United States)

    Kim, Hyun Uk; Jung, Su-Jin; Lee, Kyeong-Ryeol; Kim, Eun Ha; Lee, Sang-Min; Roh, Kyung Hee; Kim, Jong-Bum

    2013-01-01

    The LEAFY COTYLEDON2 (LEC2) gene plays critically important regulatory roles during both early and late embryonic development. Here, we report the identification of the LEC2 gene from the castor bean plant (Ricinus communis), and characterize the effects of its overexpression on gene regulation and lipid metabolism in transgenic Arabidopsis plants. LEC2 exists as a single-copy gene in castor bean, is expressed predominantly in embryos, and encodes a protein with a conserved B3 domain, but different N- and C-terminal domains to those found in LEC2 from Arabidopsis. Ectopic overexpression of LEC2 from castor bean under the control of the cauliflower mosaic virus (CaMV) 35S promoter in Arabidopsis plants induces the accumulation of transcripts that encodes five major transcription factors (the LEAFY COTYLEDON1 (LEC1), LEAFY COTYLEDON1-LIKE (L1L), FUSCA3 (FUS3), and ABSCISIC ACID INSENSITIVE 3 (ABI3) transcripts for seed maturation, and WRINKELED1 (WRI1) transcripts for fatty acid biosynthesis), as well as OLEOSIN transcripts for the formation of oil bodies in vegetative tissues. Transgenic Arabidopsis plants that express the LEC2 gene from castor bean show a range of dose-dependent morphological phenotypes and effects on the expression of LEC2-regulated genes during seedling establishment and vegetative growth. Expression of castor bean LEC2 in Arabidopsis increased the expression of fatty acid elongase 1 (FAE1) and induced the accumulation of triacylglycerols, especially those containing the seed-specific fatty acid, eicosenoic acid (20:1(Δ11)), in vegetative tissues.

  2. Ectopic overexpression of castor bean LEAFY COTYLEDON2 (LEC2) in Arabidopsis triggers the expression of genes that encode regulators of seed maturation and oil body proteins in vegetative tissues☆

    Science.gov (United States)

    Kim, Hyun Uk; Jung, Su-Jin; Lee, Kyeong-Ryeol; Kim, Eun Ha; Lee, Sang-Min; Roh, Kyung Hee; Kim, Jong-Bum

    2013-01-01

    The LEAFY COTYLEDON2 (LEC2) gene plays critically important regulatory roles during both early and late embryonic development. Here, we report the identification of the LEC2 gene from the castor bean plant (Ricinus communis), and characterize the effects of its overexpression on gene regulation and lipid metabolism in transgenic Arabidopsis plants. LEC2 exists as a single-copy gene in castor bean, is expressed predominantly in embryos, and encodes a protein with a conserved B3 domain, but different N- and C-terminal domains to those found in LEC2 from Arabidopsis. Ectopic overexpression of LEC2 from castor bean under the control of the cauliflower mosaic virus (CaMV) 35S promoter in Arabidopsis plants induces the accumulation of transcripts that encodes five major transcription factors (the LEAFY COTYLEDON1 (LEC1), LEAFY COTYLEDON1-LIKE (L1L), FUSCA3 (FUS3), and ABSCISIC ACID INSENSITIVE 3 (ABI3) transcripts for seed maturation, and WRINKELED1 (WRI1) transcripts for fatty acid biosynthesis), as well as OLEOSIN transcripts for the formation of oil bodies in vegetative tissues. Transgenic Arabidopsis plants that express the LEC2 gene from castor bean show a range of dose-dependent morphological phenotypes and effects on the expression of LEC2-regulated genes during seedling establishment and vegetative growth. Expression of castor bean LEC2 in Arabidopsis increased the expression of fatty acid elongase 1 (FAE1) and induced the accumulation of triacylglycerols, especially those containing the seed-specific fatty acid, eicosenoic acid (20:1Δ11), in vegetative tissues. PMID:24363987

  3. Versatile Gene-Specific Sequence Tags for Arabidopsis Functional Genomics: Transcript Profiling and Reverse Genetics Applications

    Science.gov (United States)

    Hilson, Pierre; Allemeersch, Joke; Altmann, Thomas; Aubourg, Sébastien; Avon, Alexandra; Beynon, Jim; Bhalerao, Rishikesh P.; Bitton, Frédérique; Caboche, Michel; Cannoot, Bernard; Chardakov, Vasil; Cognet-Holliger, Cécile; Colot, Vincent; Crowe, Mark; Darimont, Caroline; Durinck, Steffen; Eickhoff, Holger; de Longevialle, Andéol Falcon; Farmer, Edward E.; Grant, Murray; Kuiper, Martin T.R.; Lehrach, Hans; Léon, Céline; Leyva, Antonio; Lundeberg, Joakim; Lurin, Claire; Moreau, Yves; Nietfeld, Wilfried; Paz-Ares, Javier; Reymond, Philippe; Rouzé, Pierre; Sandberg, Goran; Segura, Maria Dolores; Serizet, Carine; Tabrett, Alexandra; Taconnat, Ludivine; Thareau, Vincent; Van Hummelen, Paul; Vercruysse, Steven; Vuylsteke, Marnik; Weingartner, Magdalena; Weisbeek, Peter J.; Wirta, Valtteri; Wittink, Floyd R.A.; Zabeau, Marc; Small, Ian

    2004-01-01

    Microarray transcript profiling and RNA interference are two new technologies crucial for large-scale gene function studies in multicellular eukaryotes. Both rely on sequence-specific hybridization between complementary nucleic acid strands, inciting us to create a collection of gene-specific sequence tags (GSTs) representing at least 21,500 Arabidopsis genes and which are compatible with both approaches. The GSTs were carefully selected to ensure that each of them shared no significant similarity with any other region in the Arabidopsis genome. They were synthesized by PCR amplification from genomic DNA. Spotted microarrays fabricated from the GSTs show good dynamic range, specificity, and sensitivity in transcript profiling experiments. The GSTs have also been transferred to bacterial plasmid vectors via recombinational cloning protocols. These cloned GSTs constitute the ideal starting point for a variety of functional approaches, including reverse genetics. We have subcloned GSTs on a large scale into vectors designed for gene silencing in plant cells. We show that in planta expression of GST hairpin RNA results in the expected phenotypes in silenced Arabidopsis lines. These versatile GST resources provide novel and powerful tools for functional genomics. PMID:15489341

  4. Three novel rice genes closely related to the Arabidopsis IRX9, IRX9L, and IRX14 genes and their roles in xylan biosynthesis

    Directory of Open Access Journals (Sweden)

    Dawn eChiniquy

    2013-04-01

    Full Text Available Xylan is the second most abundant polysaccharide on Earth, and represents a major component of both dicot wood and the cell walls of grasses. Much knowledge has been gained from studies of xylan biosynthesis in the model plant, Arabidopsis. In particular, the irregular xylem (irx mutants, named for their collapsed xylem cells, have been essential in gaining a greater understanding of the genes involved in xylan biosynthesis. In contrast, xylan biosynthesis in grass cell walls is poorly understood. We identified three rice genes Os07g49370 (OsIRX9, Os01g48440 (OsIRX9L, and Os06g47340 (OsIRX14, from glycosyltransferase family 43 as putative orthologs to the putative β-1,4-xylan backbone elongating Arabidopsis IRX9, IRX9L, and IRX14 genes, respectively. We demonstrate that the overexpression of the closely related rice genes, in full or partly complement the two well-characterized Arabidopsis irregular xylem (irx mutants: irx9 and irx14. Complementation was assessed by measuring dwarfed phenotypes, irregular xylem cells in stem cross sections, xylose content of stems, xylosyltransferase activity of stems, and stem strength. The expression of OsIRX9 in the irx9 mutant resulted in xylosyltransferase activity of stems that was over double that of wild type plants, and the stem strength of this line increased to 124% above that of wild type. Taken together, our results suggest that OsIRX9/OsIRX9L, and OsIRX14, have similar functions to the Arabidopsis IRX9 and IRX14 genes, respectively. Furthermore, our expression data indicate that OsIRX9 and OsIRX9L may function in building the xylan backbone in the secondary and primary cell walls, respectively. Our results provide insight into xylan biosynthesis in rice and how expression of a xylan synthesis gene may be modified to increase stem strength.

  5. Expression of the dspA/E gene of Erwinia amylovora in non-host plant Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Hasan Murat Aksoy

    2017-01-01

    Full Text Available In the Erwinia amylovora genome, the hrp gene cluster containing the dspA/E/EB/F operon plays a crucial role in mediating the pathogenicity and the hypersensitive response (HR in the host plant. The role of the dspA/E gene derived from E. amylovora was investigated by monitoring the expression of the β-glucuronidase (GUS reporter system in transgenic Arabidopsis thaliana cv. Pri-Gus seedlings. A mutant ΔdspA/E strain of E. amylovora was generated to contain a deletion of the dspA/E gene for the purpose of this study. Two-week-old seedlings of GUS transgenic Arabidopsis were vacuum-infiltrated with the wild-type and the mutant (ΔdspA/E E. amylovora strains. The Arabidopsis seedlings were fixed and stained for GUS activity after 3–5 days following infiltration. The appearance of dense spots with blue staining on the Arabidopsis leaves indicated the typical characteristic of GUS activity. This observation indicated that the wild-type E. amylovora strain had induced a successful and efficient infection on the A. thaliana Pri-Gus leaves. In contrast, there was no visible GUS expression on leaf tissues which were inoculated with the ΔdspA/E mutant E. amylovora strain. These results indicate that the dspA/E gene is required by the bacterial cells to induce HR in non-host plants.

  6. Overexpression of ARGOS Genes Modifies Plant Sensitivity to Ethylene, Leading to Improved Drought Tolerance in Both Arabidopsis and Maize[OPEN

    Science.gov (United States)

    Shi, Jinrui; Habben, Jeffrey E.; Archibald, Rayeann L.; Drummond, Bruce J.; Chamberlin, Mark A.; Williams, Robert W.; Lafitte, H. Renee; Weers, Ben P.

    2015-01-01

    Lack of sufficient water is a major limiting factor to crop production worldwide, and the development of drought-tolerant germplasm is needed to improve crop productivity. The phytohormone ethylene modulates plant growth and development as well as plant response to abiotic stress. Recent research has shown that modifying ethylene biosynthesis and signaling can enhance plant drought tolerance. Here, we report novel negative regulators of ethylene signal transduction in Arabidopsis (Arabidopsis thaliana) and maize (Zea mays). These regulators are encoded by the ARGOS gene family. In Arabidopsis, overexpression of maize ARGOS1 (ZmARGOS1), ZmARGOS8, Arabidopsis ARGOS homolog ORGAN SIZE RELATED1 (AtOSR1), and AtOSR2 reduced plant sensitivity to ethylene, leading to enhanced drought tolerance. RNA profiling and genetic analysis suggested that the ZmARGOS1 transgene acts between an ethylene receptor and CONSTITUTIVE TRIPLE RESPONSE1 in the ethylene signaling pathway, affecting ethylene perception or the early stages of ethylene signaling. Overexpressed ZmARGOS1 is localized to the endoplasmic reticulum and Golgi membrane, where the ethylene receptors and the ethylene signaling protein ETHYLENE-INSENSITIVE2 and REVERSION-TO-ETHYLENE SENSITIVITY1 reside. In transgenic maize plants, overexpression of ARGOS genes also reduces ethylene sensitivity. Moreover, field testing showed that UBIQUITIN1:ZmARGOS8 maize events had a greater grain yield than nontransgenic controls under both drought stress and well-watered conditions. PMID:26220950

  7. Functional Characterization of the Apple RING E3 Ligase MdMIEL1 in Transgenic Arabidopsis

    Directory of Open Access Journals (Sweden)

    Jianping AN

    2017-03-01

    Full Text Available E3 ubiquitin ligases are involved in various physiological processes, and they play pivotal roles in growth and development. In this study, we identified a previously unknown gene in the apple fruit (Malus × domestica and named it MdMIEL1. The MdMIEL1 gene encoded a protein that contained a zinc-finger domain at its N-terminus and a RING-finger motif at its C-terminus. To investigate MdMIEL1 functions, we generated transgenic Arabidopsis lines expressing the MdMIEL1 gene under the control of the Cauliflower mosaic virus 35S promoter. Interestingly, ectopic expression of MdMIEL1 in Arabidopsis produced multiple phenotypes, including early germination, early flowering and a lateral root number increase relative to wild-type plants. Further analysis indicated that MdMIEL1 regulated lateral root initiation by increasing auxin accumulation in the roots. In a word, these results suggest that, MdMIEL1 as a novel RING-finger ubiquitin ligase influences plant growth and development, and highlight that MdMIEL1 regulates lateral root growth.

  8. Cassava C-repeat binding factor 1 gene responds to low temperature and enhances cold tolerance when overexpressed in Arabidopsis and cassava.

    Science.gov (United States)

    An, Dong; Ma, Qiuxiang; Wang, Hongxia; Yang, Jun; Zhou, Wenzhi; Zhang, Peng

    2017-05-01

    Cassava MeCBF1 is a typical CBF transcription factor mediating cold responses but its low expression in apical buds along with a retarded response cause inefficient upregulation of downstream cold-related genes, rendering cassava chilling-sensitive. Low temperature is a major abiotic stress factor affecting survival, productivity and geographic distribution of important crops worldwide. The C-repeat/dehydration-responsive element binding transcription factors (CBF/DREB) are important regulators of abiotic stress response in plants. In this study, MeCBF1, a CBF-like gene, was identified in the tropical root crop cassava (Manihot esculenta Crantz). The MeCBF1 encodes a protein that shares strong homology with DREB1As/CBFs from Arabidopsis as well as other species. The MeCBF1 was localized to the nucleus and is mainly expressed in stem and mature leaves, but not in apical buds or stem cambium. MeCBF1 expression was not only highly responsive to cold, but also significantly induced by salt, PEG and ABA treatment. Several stress-associated cis-elements were found in its promoter region, e.g., ABRE-related, MYC recognition sites, and MYB responsive element. Compared with AtCBF1, the MeCBF1 expression induced by cold in cassava was retarded and upregulated only after 4 h, which was also confirmed by its promoter activity. Overexpression of MeCBF1 in transgenic Arabidopsis and cassava plants conferred enhanced crytolerance. The CBF regulon was smaller and not entirely co-regulated with MeCBF1 expression in overexpressed cassava. The retarded MeCBF1 expression in response to cold and attenuated CBF-regulon might lead cassava to chilling sensitivity.

  9. Allelic variation at the rpv1 locus controls partial resistance to Plum pox virus infection in Arabidopsis thaliana.

    Science.gov (United States)

    Poque, S; Pagny, G; Ouibrahim, L; Chague, A; Eyquard, J-P; Caballero, M; Candresse, T; Caranta, C; Mariette, S; Decroocq, V

    2015-06-25

    Sharka is caused by Plum pox virus (PPV) in stone fruit trees. In orchards, the virus is transmitted by aphids and by grafting. In Arabidopsis, PPV is transferred by mechanical inoculation, by biolistics and by agroinoculation with infectious cDNA clones. Partial resistance to PPV has been observed in the Cvi-1 and Col-0 Arabidopsis accessions and is characterized by a tendency to escape systemic infection. Indeed, only one third of the plants are infected following inoculation, in comparison with the susceptible Ler accession. Genetic analysis showed this partial resistance to be monogenic or digenic depending on the allelic configuration and recessive. It is detected when inoculating mechanically but is overcome when using biolistic or agroinoculation. A genome-wide association analysis was performed using multiparental lines and 147 Arabidopsis accessions. It identified a major genomic region, rpv1. Fine mapping led to the positioning of rpv1 to a 200 kb interval on the long arm of chromosome 1. A candidate gene approach identified the chloroplast phosphoglycerate kinase (cPGK2) as a potential gene underlying the resistance. A virus-induced gene silencing strategy was used to knock-down cPGK2 expression, resulting in drastically reduced PPV accumulation. These results indicate that rpv1 resistance to PPV carried by the Cvi-1 and Col-0 accessions is linked to allelic variations at the Arabidopsis cPGK2 locus, leading to incomplete, compatible interaction with the virus.

  10. Family-based linkage and association mapping reveals novel genes affecting Plum pox virus infection in Arabidopsis thaliana.

    Science.gov (United States)

    Pagny, Gaëlle; Paulstephenraj, Pauline S; Poque, Sylvain; Sicard, Ophélie; Cosson, Patrick; Eyquard, Jean-Philippe; Caballero, Mélodie; Chague, Aurélie; Gourdon, Germain; Negrel, Lise; Candresse, Thierry; Mariette, Stéphanie; Decroocq, Véronique

    2012-11-01

    Sharka is a devastating viral disease caused by the Plum pox virus (PPV) in stone fruit trees and few sources of resistance are known in its natural hosts. Since any knowledge gained from Arabidopsis on plant virus susceptibility factors is likely to be transferable to crop species, Arabidopsis's natural variation was searched for host factors essential for PPV infection. To locate regions of the genome associated with susceptibility to PPV, linkage analysis was performed on six biparental populations as well as on multiparental lines. To refine quantitative trait locus (QTL) mapping, a genome-wide association analysis was carried out using 147 Arabidopsis accessions. Evidence was found for linkage on chromosomes 1, 3 and 5 with restriction of PPV long-distance movement. The most relevant signals occurred within a region at the bottom of chromosome 3, which comprises seven RTM3-like TRAF domain-containing genes. Since the resistance mechanism analyzed here is recessive and the rtm3 knockout mutant is susceptible to PPV infection, it suggests that other gene(s) present in the small identified region encompassing RTM3 are necessary for PPV long-distance movement. In consequence, we report here the occurrence of host factor(s) that are indispensable for virus long-distance movement. © 2012 INRA. New Phytologist © 2012 New Phytologist Trust.

  11. Arabidopsis female gametophyte gene expression map reveals similarities between plant and animal gametes.

    Science.gov (United States)

    Wuest, Samuel E; Vijverberg, Kitty; Schmidt, Anja; Weiss, Manuel; Gheyselinck, Jacqueline; Lohr, Miriam; Wellmer, Frank; Rahnenführer, Jörg; von Mering, Christian; Grossniklaus, Ueli

    2010-03-23

    The development of multicellular organisms is controlled by differential gene expression whereby cells adopt distinct fates. A spatially resolved view of gene expression allows the elucidation of transcriptional networks that are linked to cellular identity and function. The haploid female gametophyte of flowering plants is a highly reduced organism: at maturity, it often consists of as few as three cell types derived from a common precursor [1, 2]. However, because of its inaccessibility and small size, we know little about the molecular basis of cell specification and differentiation in the female gametophyte. Here we report expression profiles of all cell types in the mature Arabidopsis female gametophyte. Differentially expressed posttranscriptional regulatory modules and metabolic pathways characterize the distinct cell types. Several transcription factor families are overrepresented in the female gametophyte in comparison to other plant tissues, e.g., type I MADS domain, RWP-RK, and reproductive meristem transcription factors. PAZ/Piwi-domain encoding genes are upregulated in the egg, indicating a role of epigenetic regulation through small RNA pathways-a feature paralleled in the germline of animals [3]. A comparison of human and Arabidopsis egg cells for enrichment of functional groups identified several similarities that may represent a consequence of coevolution or ancestral gametic features. 2010 Elsevier Ltd. All rights reserved.

  12. The Resurrection of Jesus: do extra-canonical sources change the landscape?

    Directory of Open Access Journals (Sweden)

    F P Viljoen

    2005-10-01

    Full Text Available The resurrection of Jesus is assumed by the New Testament to be a historical event. Some scholars argue, however, that there was no empty tomb, but that the New Testament accounts are midrashic or mythological stories about Jesus.� In this article extra-canonical writings are investigated to find out what light it may throw on intra-canonical tradition. Many extra-canonical texts seemingly have no knowledge of the passion and resurrection, and such traditions may be earlier than the intra-canonical traditions. Was the resurrection a later invention?� Are intra-canonical texts developments of extra-canonical tradition, or vice versa?� This article demonstrates that extra-canonical texts do not materially alter the landscape of enquiry.

  13. GSHR, a Web-Based Platform Provides Gene Set-Level Analyses of Hormone Responses in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Xiaojuan Ran

    2018-01-01

    Full Text Available Phytohormones regulate diverse aspects of plant growth and environmental responses. Recent high-throughput technologies have promoted a more comprehensive profiling of genes regulated by different hormones. However, these omics data generally result in large gene lists that make it challenging to interpret the data and extract insights into biological significance. With the rapid accumulation of theses large-scale experiments, especially the transcriptomic data available in public databases, a means of using this information to explore the transcriptional networks is needed. Different platforms have different architectures and designs, and even similar studies using the same platform may obtain data with large variances because of the highly dynamic and flexible effects of plant hormones; this makes it difficult to make comparisons across different studies and platforms. Here, we present a web server providing gene set-level analyses of Arabidopsis thaliana hormone responses. GSHR collected 333 RNA-seq and 1,205 microarray datasets from the Gene Expression Omnibus, characterizing transcriptomic changes in Arabidopsis in response to phytohormones including abscisic acid, auxin, brassinosteroids, cytokinins, ethylene, gibberellins, jasmonic acid, salicylic acid, and strigolactones. These data were further processed and organized into 1,368 gene sets regulated by different hormones or hormone-related factors. By comparing input gene lists to these gene sets, GSHR helped to identify gene sets from the input gene list regulated by different phytohormones or related factors. Together, GSHR links prior information regarding transcriptomic changes induced by hormones and related factors to newly generated data and facilities cross-study and cross-platform comparisons; this helps facilitate the mining of biologically significant information from large-scale datasets. The GSHR is freely available at http://bioinfo.sibs.ac.cn/GSHR/.

  14. the resurrection as christ's entry into his glory (lk. 24:26)

    African Journals Online (AJOL)

    with general remarks about the mystical nature of the resurrection in Luke's writings. 1. ... angels, the operations of the natural elements and with historical surveys.2 ..... To understand this better, two aspects of the short, introductory episode.

  15. Overexpression of DOSOC1, an ortholog of Arabidopsis SOC1, promotes flowering in the orchid Dendrobium Chao Parya Smile.

    Science.gov (United States)

    Ding, Lihua; Wang, Yanwen; Yu, Hao

    2013-04-01

    SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1) encodes a MADS-box protein that plays an essential role in integrating multiple flowering signals to regulate the transition from vegetative to reproductive development in the model plant Arabidopsis. Although SOC1-like genes have been isolated in various angiosperms, its orthologs in Orchidaceae, one of the largest families of flowering plants, are so far unknown. To investigate the regulatory mechanisms of flowering time control in orchids, we isolated a SOC1-like gene, DOSOC1, from Dendrobium Chao Praya Smile. DOSOC1 was highly expressed in reproductive organs, including inflorescence apices, pedicels, floral buds and open flowers. Its expression significantly increased in whole plantlets during the transition from vegetative to reproductive development, which usually occurred after 8 weeks of culture in Dendrobium Chao Praya Smile. In the shoot apex at the floral transitional stage, DOSOC1 was particularly expressed in emerging floral meristems. Overexpression of DOSOC1 in wild-type Arabidopsis plants resulted in early flowering, which was coupled with the up-regulation of two other flowering promoters, AGAMOUS-LIKE 24 and LEAFY. In addition, overexpression of DOSOC1 was able partially to complement the late-flowering phenotype of Arabidopsis soc1-2 loss-of-function mutants. Furthermore, we successfully created seven 35S:DOSOC1 transgenic Dendrobium orchid lines, which consistently exhibited earlier flowering than wild-type orchids. Our results suggest that SOC1-like genes play an evolutionarily conserved role in promoting flowering in the Orchidaceae family, and that DOSOC1 isolated from Dendrobium Chao Praya Smile could serve as an important target for genetic manipulation of flowering time in orchids.

  16. Opposite roles of the Arabidopsis cytokinin receptors AHK2 and AHK3 in the expression of plastid genes and genes for the plastid transcriptional machinery during senescence.

    Science.gov (United States)

    Danilova, Maria N; Kudryakova, Natalia V; Doroshenko, Anastasia S; Zabrodin, Dmitry A; Rakhmankulova, Zulfira F; Oelmüller, Ralf; Kusnetsov, Victor V

    2017-03-01

    Cytokinin membrane receptors of the Arabidopsis thaliana AHK2 and AHK3 play opposite roles in the expression of plastid genes and genes for the plastid transcriptional machinery during leaf senescence Loss-of-function mutants of Arabidopsis thaliana were used to study the role of cytokinin receptors in the expression of chloroplast genes during leaf senescence. Accumulation of transcripts of several plastid-encoded genes is dependent on the АНК2/АНК3 receptor combination. АНК2 is particularly important at the final stage of plant development and, unlike АНК3, a positive regulator of leaf senescence. Cytokinin-dependent up-regulation of the nuclear encoded genes for chloroplast RNA polymerases RPOTp and RPOTmp suggests that the hormone controls plastid gene expression, at least in part, via the expression of nuclear genes for the plastid transcription machinery. This is further supported by cytokinin dependent regulation of genes for the nuclear encoded plastid σ-factors, SIG1-6, which code for components of the transcriptional apparatus in chloroplasts.

  17. Enhancement of naphthalene tolerance in transgenic Arabidopsis plants overexpressing the ferredoxin-like protein (ADI1) from rice.

    Science.gov (United States)

    Fu, Xiao-Yan; Zhu, Bo; Han, Hong-Juan; Zhao, Wei; Tian, Yong-Sheng; Peng, Ri-He; Yao, Quan-Hong

    2016-01-01

    The ADI1 Arabidopsis plants enhanced tolerance and degradation efficiency to naphthalene and had great potential for phytoremediation of naphthalene in the plant material before composting or harvesting and removal. Naphthalene is a global environmental concern, because this substance is assumed to contribute considerably to human cancer risk. Cleaning up naphthalene contamination in the environment is crucial. Phytoremediation is an efficient technology to clean up contaminants. However, no gene that can efficiently degrade exogenous recalcitrant naphthalene in plants has yet been discovered. Ferredoxin (Fd) is a key player of biological electron transfer reaction in the PAH degradation process. The biochemical pathway for bacterial degradation of naphthalene has been well investigated. In this study, a rice gene, ADI1, which codes for a putative photosynthetic-type Fd, has been transformed into Arabidopsis thaliana. The transgenic Arabidopsis plants enhanced tolerance and degradation efficiency of naphthalene. Compared with wild-type plants, transgenic plants assimilated naphthalene from the culture media faster and removed more of this substance. When taken together, our findings suggest that breeding plants with overexpressed ADI1 gene is an effective strategy to degrade naphthalene in the environment.

  18. The OXI1 kinase pathway mediates Piriformospora indica-induced growth promotion in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Iris Camehl

    2011-05-01

    Full Text Available Piriformospora indica is an endophytic fungus that colonizes roots of many plant species and promotes growth and resistance to certain plant pathogens. Despite its potential use in agriculture, little is known on the molecular basis of this beneficial plant-fungal interaction. In a genetic screen for plants, which do not show a P. indica- induced growth response, we isolated an Arabidopsis mutant in the OXI1 (Oxidative Signal Inducible1 gene. OXI1 has been characterized as a protein kinase which plays a role in pathogen response and is regulated by H₂O₂ and PDK1 (3-PHOSPHOINOSITIDE-DEPENDENT PROTEIN KINASE1. A genetic analysis showed that double mutants of the two closely related PDK1.1 and PDK1.2 genes are defective in the growth response to P. indica. While OXI1 and PDK1 gene expression is upregulated in P. indica-colonized roots, defense genes are downregulated, indicating that the fungus suppresses plant defense reactions. PDK1 is activated by phosphatidic acid (PA and P. indica triggers PA synthesis in Arabidopsis plants. Under beneficial co-cultivation conditions, H₂O₂ formation is even reduced by the fungus. Importantly, phospholipase D (PLDα1 or PLDδ mutants, which are impaired in PA synthesis do not show growth promotion in response to fungal infection. These data establish that the P. indica-stimulated growth response is mediated by a pathway consisting of the PLD-PDK1-OXI1 cascade.

  19. Identification of unique cis-element pattern on simulated microgravity treated Arabidopsis by in silico and gene expression

    Science.gov (United States)

    Soh, Hyuncheol; Choi, Yongsang; Lee, Taek-Kyun; Yeo, Up-Dong; Han, Kyeongsik; Auh, Chungkyun; Lee, Sukchan

    2012-08-01

    Arabidopsis gene expression microarray (44 K) was used to detect genes highly induced under simulated microgravity stress (SMS). Ten SMS-inducible genes were selected from the microarray data and these 10 genes were found to be abundantly expressed in 3-week-old plants. Nine out of the 10 SMS-inducible genes were also expressed in response to the three abiotic stresses of drought, touch, and wounding in 3-week-old Arabidopsis plants respectively. However, WRKY46 was elevated only in response to SMS. Six other WRKY genes did not respond to SMS. To clarify the characteristics of the genes expressed at high levels in response to SMS, 20 cis-elements in the promoters of the 40 selected genes including the 10 SMS-inducible genes, the 6 WRKY genes, and abiotic stress-inducible genes were analyzed and their spatial positions on each promoter were determined. Four cis-elements (M/T-G-T-P from MYB1AT or TATABOX5, GT1CONSENSUS, TATABOX5, and POLASIG1) showed a unique spatial arrangement in most SMS-inducible genes including WRKY46. Therefore the M/T-G-T-P cis-element patterns identified in the promoter of WRKY46 may play important roles in regulating gene expression in response to SMS. The presences of the cis-element patterns suggest that the order or spatial positioning of certain groups of cis-elements is more important than the existence or numbers of specific cis-elements. Taken together, our data indicate that WRKY46 is a novel SMS inducible transcription factor and the unique spatial arrangement of cis-elements shown in WRKY46 promoter may play an important role for its response to SMS.

  20. Characterization of Arabidopsis FPS isozymes and FPS gene expression analysis provide insight into the biosynthesis of isoprenoid precursors in seeds.

    Science.gov (United States)

    Keim, Verónica; Manzano, David; Fernández, Francisco J; Closa, Marta; Andrade, Paola; Caudepón, Daniel; Bortolotti, Cristina; Vega, M Cristina; Arró, Montserrat; Ferrer, Albert

    2012-01-01

    Arabidopsis thaliana contains two genes encoding farnesyl diphosphate (FPP) synthase (FPS), the prenyl diphoshate synthase that catalyzes the synthesis of FPP from isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). In this study, we provide evidence that the two Arabidopsis short FPS isozymes FPS1S and FPS2 localize to the cytosol. Both enzymes were expressed in E. coli, purified and biochemically characterized. Despite FPS1S and FPS2 share more than 90% amino acid sequence identity, FPS2 was found to be more efficient as a catalyst, more sensitive to the inhibitory effect of NaCl, and more resistant to thermal inactivation than FPS1S. Homology modelling for FPS1S and FPS2 and analysis of the amino acid differences between the two enzymes revealed an increase in surface polarity and a greater capacity to form surface salt bridges of FPS2 compared to FPS1S. These factors most likely account for the enhanced thermostability of FPS2. Expression analysis of FPS::GUS genes in seeds showed that FPS1 and FPS2 display complementary patterns of expression particularly at late stages of seed development, which suggests that Arabidopsis seeds have two spatially segregated sources of FPP. Functional complementation studies of the Arabidopsis fps2 knockout mutant seed phenotypes demonstrated that under normal conditions FPS1S and FPS2 are functionally interchangeable. A putative role for FPS2 in maintaining seed germination capacity under adverse environmental conditions is discussed.

  1. Two rubisco activase genes from ipomoea batatas have different roles in photosynthesis of arabidopsis

    International Nuclear Information System (INIS)

    Jiang, Y.

    2014-01-01

    Rubisco activase (RCA) that functions as a molecular chaperone regulates the activity of the Calvin-Benson cycle via regulation of the Rubisco activity. In plants such as Arabidopsis thaliana, Spinacia oleracea, and Oryza sativa, there are two RCA isoforms from two mRNAs that are produced from alternative splicing of the transcribed pre-mRNA of a single RCA gene. However, this research reported that the transcripts of the two IbRCA isoforms in sweet potato (Ipomoea batatas) were transcribed from two different genes. To study the roles of these two IbRCA isoforms in photosynthesis, we inserted these two IbRCA genes into the genome of Arabidopsis with deletion of RCA gene (RCA), resulting in IbRCAs- and IbRCAl-expressing plants, respectively. Analysis of these transgenic Arabidopsis indicated that the IbRCAs-expressing plants were similar to wild-type plants under ambient CO/sub 2/ concentration and 22 degree C conditions, suggesting that expression of IbRCAs gene was sufficient for functional complementation of RCA plants under normal conditions. However, IbRCAs-expressing plants were more susceptible to moderate heat stress (26 degree C) compared to wild-type plants. In contrast, although the IbRCAl-expressing plants had to grow normally in high CO/sub 2/ concentration conditions, there were almost no differences in growth and photosynthesis between normally grown and heat-treated plants, implying that IbRCAl-expressing plants had a better heat-resistance than IbRCAs-expressing plants. (author)

  2. Nitric oxide responsive heavy metal-associated gene AtHMAD1 contributes to development and disease resistance in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Qari Muhammad Imran

    2016-11-01

    Full Text Available Exposure of plants to different biotic and abiotic stress condition instigates significant change in the cellular redox status; resulting in the elevation of reactive nitrogen species that play signaling role in mediating defense responses. Heavy metal associated (HMA domain containing genes are required for spatio-temporal transportation of metal ions that bind with various enzymes and co-factors within the cell. To uncover the underlying mechanisms mediated by AtHMA genes, we identified 14 Arabidopsis HMA genes that were differentially expressed in response to nitrosative stress through RNA-seq analysis. Of those 14 genes, the expression of eight HMA genes was significantly increased, whereas that of six genes was significantly reduced. We further validated the RNA-seq results through quantitative real-time PCR analysis. Gene ontology analysis revealed the involvement of these genes in biological processes such as hemostasis and transport. The majority of these nitric oxide (NO-responsive AtHMA gene products are carrier/transport proteins. AtHMAD1 (At1g51090 showed the highest fold change to S-nitrosocystein. We therefore, further investigated its role in oxidative and nitrosative mediated stress conditions and found that AtHMAD1 has antagonistic role in shoot and root growth. Characterization of AtHMAD1 through functional genomics showed that the knock out mutant athmad1 plants were resistant to virulent Pseudomonas syringae (DC3000 and showed early induction and high transcript accumulation of pathogenesis related gene. Furthermore, inoculation of athamd1 with avirulent strain of the same bacteria showed negative regulation of R-gene mediated resistance. These results were supported by hypersensitive cell death response and cell death induced electrolyte leakage. AtHMAD1 was also observed to negatively regulate systemic acquired resistance SAR as the KO mutant showed induction of SAR marker genes. Overall, these results imply that NO

  3. Genes and co-expression modules common to drought and bacterial stress responses in Arabidopsis and rice.

    Directory of Open Access Journals (Sweden)

    Rafi Shaik

    Full Text Available Plants are simultaneously exposed to multiple stresses resulting in enormous changes in the molecular landscape within the cell. Identification and characterization of the synergistic and antagonistic components of stress response mechanisms contributing to the cross talk between stresses is of high priority to explore and enhance multiple stress responses. To this end, we performed meta-analysis of drought (abiotic, bacterial (biotic stress response in rice and Arabidopsis by analyzing a total of 386 microarray samples belonging to 20 microarray studies and identified approximately 3100 and 900 DEGs in rice and Arabidopsis, respectively. About 38.5% (1214 and 28.7% (272 DEGs were common to drought and bacterial stresses in rice and Arabidopsis, respectively. A majority of these common DEGs showed conserved expression status in both stresses. Gene ontology enrichment analysis clearly demarcated the response and regulation of various plant hormones and related biological processes. Fatty acid metabolism and biosynthesis of alkaloids were upregulated and, nitrogen metabolism and photosynthesis was downregulated in both stress conditions. WRKY transcription family genes were highly enriched in all upregulated gene sets while 'CO-like' TF family showed inverse relationship of expression between drought and bacterial stresses. Weighted gene co-expression network analysis divided DEG sets into multiple modules that show high co-expression and identified stress specific hub genes with high connectivity. Detection of consensus modules based on DEGs common to drought and bacterial stress revealed 9 and 4 modules in rice and Arabidopsis, respectively, with conserved and reversed co-expression patterns.

  4. Nanoparticle-specific changes in Arabidopsis thaliana gene expression after exposure to ZnO, TiO2, and fullerene soot

    International Nuclear Information System (INIS)

    Landa, Premysl; Vankova, Radomira; Andrlova, Jana; Hodek, Jan; Marsik, Petr; Storchova, Helena; White, Jason C.; Vanek, Tomas

    2012-01-01

    Highlights: ► Exposure to different nanoparticles resulted in specific changes in gene transcription. ► Nano ZnO caused most dramatic changes in Arabidopsis gene expression. ► Nano ZnO was the most toxic and up-regulated most stress-related genes. ► Fullerene soot caused significant gene expression response – mainly stress-related. ► Nano TiO 2 had weak impact on Arabidopsis gene expression indicating minimal toxicity. - Abstract: The effect of exposure to 100 mg/L zinc oxide (nZnO), fullerene soot (FS) or titanium dioxide (nTiO 2 ) nanoparticles on gene expression in Arabidopsis thaliana roots was studied using microarrays. After 7 d, nZnO, FS, or nTiO 2 exposure resulted in 660 up- and 826 down-regulated genes, 232 up- and 189 down-regulated genes, and 80 up- and 74 down-regulated genes, respectively (expression difference > 2-fold; p[t test] 2 exposure, which resulted in up- and down-regulation of genes involved mainly in responses to biotic and abiotic stimuli. The data clearly indicate that the mechanisms of phytotoxicity are highly nanoparticle dependent despite of a limited overlap in gene expression response.

  5. Two C3H Type Zinc Finger Protein Genes, CpCZF1 and CpCZF2, from Chimonanthus praecox Affect Stamen Development in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Huamin Liu

    2017-08-01

    Full Text Available Wintersweet (Chimonanthus praecox is a popular garden plant because of its flowering time, sweet fragrance, and ornamental value. However, research into the molecular mechanism that regulates flower development in wintersweet is still limited. In this study, we sought to investigate the molecular characteristics, expression patterns, and potential functions of two C3H-type zinc finger (CZF protein genes, CpCZF1 and CpCZF2, which were isolated from the wintersweet flowers based on the flower developmental transcriptome database. CpCZF1 and CpCZF2 were more highly expressed in flower organs than in vegetative tissues, and during the flower development, their expression profiles were associated with flower primordial differentiation, especially that of petal and stamen primordial differentiation. Overexpression of either CpCZF1 or CpCZF2 caused alterations on stamens in transgenic Arabidopsis. The expression levels of the stamen identity-related genes, such as AGAMOUS (AG, PISTILLATA (PI, SEPALLATA1 (SEP1, SEPALLATA2 (SEP2, SEPALLATA3 (SEP3, APETALA1 (AP1, APETALA2 (AP2, and boundary gene RABBIT EAR (RBE were significantly up-regulated in CpCZF1 overexpression lines. Additionally, the transcripts of AG, PI, APETALA3 SEP1-3, AP1, and RBE were markedly increased in CpCZF2 overexpressed plant inflorescences. Moreover, CpCZF1 and CpCZF2 could interact with each other by using yeast two-hybrid and bimolecular fluorescence complementation assays. Our results suggest that CpCZF1 and CpCZF2 may be involved in the regulation of stamen development and cause the formation of abnormal flowers in transgenic Arabidopsis plants.

  6. New combinations and resurrected names in Microcharis and Indigastrum (Fabaceae—Papilionoideae

    Directory of Open Access Journals (Sweden)

    B. D. Schrire

    1992-10-01

    Full Text Available As a result of cladistic studies in the tribe Indigofereae in Africa and Madagascar (Schrire 1991 evidence was accumulated to justify resurrecting the genera Microcharis Benth. and  Indigastrum Jaub. & Spach, which were previously considered part of Indigofera L. All described species in each genus are listed alphabetically. Forty-seven new combinations, six changes ain rank and four resurrected names are published.

  7. Inferring the palaeoenvironment of ancient bacteria on the basis of resurrected proteins

    Science.gov (United States)

    Gaucher, Eric A.; Thomson, J. Michael; Burgan, Michelle F.; Benner, Steven A.

    2003-01-01

    Features of the physical environment surrounding an ancestral organism can be inferred by reconstructing sequences of ancient proteins made by those organisms, resurrecting these proteins in the laboratory, and measuring their properties. Here, we resurrect candidate sequences for elongation factors of the Tu family (EF-Tu) found at ancient nodes in the bacterial evolutionary tree, and measure their activities as a function of temperature. The ancient EF-Tu proteins have temperature optima of 55-65 degrees C. This value seems to be robust with respect to uncertainties in the ancestral reconstruction. This suggests that the ancient bacteria that hosted these particular genes were thermophiles, and neither hyperthermophiles nor mesophiles. This conclusion can be compared and contrasted with inferences drawn from an analysis of the lengths of branches in trees joining proteins from contemporary bacteria, the distribution of thermophily in derived bacterial lineages, the inferred G + C content of ancient ribosomal RNA, and the geological record combined with assumptions concerning molecular clocks. The study illustrates the use of experimental palaeobiochemistry and assumptions about deep phylogenetic relationships between bacteria to explore the character of ancient life.

  8. Genome-wide cloning and sequence analysis of leucine-rich repeat receptor-like protein kinase genes in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Yuan Tong

    2010-01-01

    Full Text Available Abstract Background Transmembrane receptor kinases play critical roles in both animal and plant signaling pathways regulating growth, development, differentiation, cell death, and pathogenic defense responses. In Arabidopsis thaliana, there are at least 223 Leucine-rich repeat receptor-like kinases (LRR-RLKs, representing one of the largest protein families. Although functional roles for a handful of LRR-RLKs have been revealed, the functions of the majority of members in this protein family have not been elucidated. Results As a resource for the in-depth analysis of this important protein family, the complementary DNA sequences (cDNAs of 194 LRR-RLKs were cloned into the GatewayR donor vector pDONR/ZeoR and analyzed by DNA sequencing. Among them, 157 clones showed sequences identical to the predictions in the Arabidopsis sequence resource, TAIR8. The other 37 cDNAs showed gene structures distinct from the predictions of TAIR8, which was mainly caused by alternative splicing of pre-mRNA. Most of the genes have been further cloned into GatewayR destination vectors with GFP or FLAG epitope tags and have been transformed into Arabidopsis for in planta functional analysis. All clones from this study have been submitted to the Arabidopsis Biological Resource Center (ABRC at Ohio State University for full accessibility by the Arabidopsis research community. Conclusions Most of the Arabidopsis LRR-RLK genes have been isolated and the sequence analysis showed a number of alternatively spliced variants. The generated resources, including cDNA entry clones, expression constructs and transgenic plants, will facilitate further functional analysis of the members of this important gene family.

  9. Arabidopsis VASCULAR-RELATED UNKNOWN PROTEIN1 Regulates Xylem Development and Growth by a Conserved Mechanism That Modulates Hormone Signaling1[W][OPEN

    Science.gov (United States)

    Grienenberger, Etienne; Douglas, Carl J.

    2014-01-01

    Despite a strict conservation of the vascular tissues in vascular plants (tracheophytes), our understanding of the genetic basis underlying the differentiation of secondary cell wall-containing cells in the xylem of tracheophytes is still far from complete. Using coexpression analysis and phylogenetic conservation across sequenced tracheophyte genomes, we identified a number of Arabidopsis (Arabidopsis thaliana) genes of unknown function whose expression is correlated with secondary cell wall deposition. Among these, the Arabidopsis VASCULAR-RELATED UNKNOWN PROTEIN1 (VUP1) gene encodes a predicted protein of 24 kD with no annotated functional domains but containing domains that are highly conserved in tracheophytes. Here, we show that the VUP1 expression pattern, determined by promoter-β-glucuronidase reporter gene expression, is associated with vascular tissues, while vup1 loss-of-function mutants exhibit collapsed morphology of xylem vessel cells. Constitutive overexpression of VUP1 caused dramatic and pleiotropic developmental defects, including severe dwarfism, dark green leaves, reduced apical dominance, and altered photomorphogenesis, resembling brassinosteroid-deficient mutants. Constitutive overexpression of VUP homologs from multiple tracheophyte species induced similar defects. Whole-genome transcriptome analysis revealed that overexpression of VUP1 represses the expression of many brassinosteroid- and auxin-responsive genes. Additionally, deletion constructs and site-directed mutagenesis were used to identify critical domains and amino acids required for VUP1 function. Altogether, our data suggest a conserved role for VUP1 in regulating secondary wall formation during vascular development by tissue- or cell-specific modulation of hormone signaling pathways. PMID:24567189

  10. Repression of BLADE-ON-PETIOLE genes by KNOX homeodomain protein BREVIPEDICELLUS is essential for differentiation of secondary xylem in Arabidopsis root.

    Science.gov (United States)

    Woerlen, Natalie; Allam, Gamalat; Popescu, Adina; Corrigan, Laura; Pautot, Véronique; Hepworth, Shelley R

    2017-06-01

    Repression of boundary genes by KNOTTED1-like homeodomain transcription factor BREVIPEDICELLUS promotes the differentiation of phase II secondary xylem in Arabidopsis roots. Plant growth and development relies on the activity of meristems. Boundaries are domains of restricted growth that separate forming organs and the meristem. Class I KNOX homeodomain transcription factors are important regulators of meristem maintenance. Members of this class including BREVIDICELLUS also called KNOTTED-LIKE FROM ARABIDOPSIS THALIANA1 (BP/KNAT1) fulfill this function in part by spatially regulating boundary genes. The vascular cambium is a lateral meristem that allows for radial expansion of organs during secondary growth. We show here that BP/KNAT1 repression of boundary genes plays a crucial role in root secondary growth. In particular, exclusion of BLADE-ON-PETIOLE1/2 (BOP1/2) and other members of this module from xylem is required for the differentiation of lignified fibers and vessels during the xylem expansion phase of root thickening. These data reveal a previously undiscovered role for boundary genes in the root and shed light on mechanisms controlling wood development in trees.

  11. Ectopic expression of Jatropha curcas APETALA1 (JcAP1 caused early flowering in Arabidopsis, but not in Jatropha

    Directory of Open Access Journals (Sweden)

    Mingyong Tang

    2016-04-01

    Full Text Available Jatropha curcas is a promising feedstock for biofuel production because Jatropha oil is highly suitable for the production of biodiesel and bio-jet fuels. However, Jatropha exhibits a low seed yield as a result of unreliable and poor flowering. APETALA1 (AP1 is a floral meristem and organ identity gene in higher plants. The flower meristem identity genes of Jatropha have not yet been identified or characterized. To better understand the genetic control of flowering in Jatropha, an AP1 homolog (JcAP1 was isolated from Jatropha. An amino acid sequence analysis of JcAP1 revealed a high similarity to the AP1 proteins of other perennial plants. JcAP1 was expressed in inflorescence buds, flower buds, sepals and petals. The highest expression level was observed during the early developmental stage of the flower buds. The overexpression of JcAP1 using the cauliflower mosaic virus (CaMV 35S promoter resulted in extremely early flowering and abnormal flowers in transgenic Arabidopsis plants. Several flowering genes downstream of AP1 were up-regulated in the JcAP1-overexpressing transgenic plant lines. Furthermore, JcAP1 overexpression rescued the phenotype caused by the Arabidopsis AP1 loss-of-function mutant ap1-11. Therefore, JcAP1 is an ortholog of AtAP1, which plays a similar role in the regulation of flowering in Arabidopsis. However, the overexpression of JcAP1 in Jatropha using the same promoter resulted in little variation in the flowering time and floral organs, indicating that JcAP1 may be insufficient to regulate flowering by itself in Jatropha. This study helps to elucidate the function of JcAP1 and contributes to the understanding of the molecular mechanisms of flower development in Jatropha.

  12. Ectopic expression of Jatropha curcas APETALA1 (JcAP1) caused early flowering in Arabidopsis, but not in Jatropha

    Science.gov (United States)

    Tang, Mingyong; Tao, Yan-Bin

    2016-01-01

    Jatropha curcas is a promising feedstock for biofuel production because Jatropha oil is highly suitable for the production of biodiesel and bio-jet fuels. However, Jatropha exhibits a low seed yield as a result of unreliable and poor flowering. APETALA1 (AP1) is a floral meristem and organ identity gene in higher plants. The flower meristem identity genes of Jatropha have not yet been identified or characterized. To better understand the genetic control of flowering in Jatropha, an AP1 homolog (JcAP1) was isolated from Jatropha. An amino acid sequence analysis of JcAP1 revealed a high similarity to the AP1 proteins of other perennial plants. JcAP1 was expressed in inflorescence buds, flower buds, sepals and petals. The highest expression level was observed during the early developmental stage of the flower buds. The overexpression of JcAP1 using the cauliflower mosaic virus (CaMV) 35S promoter resulted in extremely early flowering and abnormal flowers in transgenic Arabidopsis plants. Several flowering genes downstream of AP1 were up-regulated in the JcAP1-overexpressing transgenic plant lines. Furthermore, JcAP1 overexpression rescued the phenotype caused by the Arabidopsis AP1 loss-of-function mutant ap1-11. Therefore, JcAP1 is an ortholog of AtAP1, which plays a similar role in the regulation of flowering in Arabidopsis. However, the overexpression of JcAP1 in Jatropha using the same promoter resulted in little variation in the flowering time and floral organs, indicating that JcAP1 may be insufficient to regulate flowering by itself in Jatropha. This study helps to elucidate the function of JcAP1 and contributes to the understanding of the molecular mechanisms of flower development in Jatropha. PMID:27168978

  13. Overexpression of a maize plasma membrane intrinsic protein ZmPIP1;1 confers drought and salt tolerance in Arabidopsis.

    Science.gov (United States)

    Zhou, Lian; Zhou, Jing; Xiong, Yuhan; Liu, Chaoxian; Wang, Jiuguang; Wang, Guoqiang; Cai, Yilin

    2018-01-01

    Drought and salt stress are major abiotic stress that inhibit plants growth and development, here we report a plasma membrane intrinsic protein ZmPIP1;1 from maize and identified its function in drought and salt tolerance in Arabidopsis. ZmPIP1;1 was localized to the plasma membrane and endoplasmic reticulum in maize protoplasts. Treatment with PEG or NaCl resulted in induced expression of ZmPIP1;1 in root and leaves. Constitutive overexpression of ZmPIP1;1 in transgenic Arabidopsis plants resulted in enhanced drought and salt stress tolerance compared to wild type. A number of stress responsive genes involved in cellular osmoprotection in ZmPIP1;1 overexpression plants were up-regulated under drought or salt condition. ZmPIP1;1 overexpression plants showed higher activities of reactive oxygen species (ROS) scavenging enzymes such as catalase and superoxide dismutase, lower contents of stress-induced ROS such as superoxide, hydrogen peroxide and malondialdehyde, and higher levels of proline under drought and salt stress than did wild type. ZmPIP1;1 may play a role in drought and salt stress tolerance by inducing of stress responsive genes and increasing of ROS scavenging enzymes activities, and could provide a valuable gene for further plant breeding.

  14. Expression pattern of the AHP gene family from Arabidopsis thaliana and organ specific alternative splicing in the AHP5 gene

    Czech Academy of Sciences Publication Activity Database

    Hradilová, Jana; Brzobohatý, Břetislav

    2007-01-01

    Roč. 51, č. 2 (2007), s. 257-267 ISSN 0006-3134 Grant - others:GA MŠk(CZ) LN00A081; GA AV ČR(CZ) IAA600040612 Program:LN; IA Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : Arabidopsis two component systems * gene expression analysis * real time RT-PCR Subject RIV: BO - Biophysics Impact factor: 1.259, year: 2007

  15. Arabidopsis CPR5 is a senescence-regulatory gene with pleiotropic functions as predicted by the evolutionary theory of senescence

    NARCIS (Netherlands)

    Jing, Hai-Chun; Anderson, Lisa; Sturre, Marcel J. G.; Hille, Jacques; Dijkwel, Paul P.

    2007-01-01

    Arabidopsis CPR5 is a senescence-regulatory gene with pleiotropic functions as predicted by the evolutionary theory of senescence Hai-Chun Jing1,2, Lisa Anderson3, Marcel J.G. Sturre1, Jacques Hille1 and Paul P. Dijkwel1,* 1Molecular Biology of Plants, Groningen Biomolecular Sciences and

  16. Natural genetic variation in Arabidopsis thaliana defense metabolism genes modulates field fitness

    Science.gov (United States)

    Kerwin, Rachel; Feusier, Julie; Corwin, Jason; Rubin, Matthew; Lin, Catherine; Muok, Alise; Larson, Brandon; Li, Baohua; Joseph, Bindu; Francisco, Marta; Copeland, Daniel; Weinig, Cynthia; Kliebenstein, Daniel J

    2015-01-01

    Natural populations persist in complex environments, where biotic stressors, such as pathogen and insect communities, fluctuate temporally and spatially. These shifting biotic pressures generate heterogeneous selective forces that can maintain standing natural variation within a species. To directly test if genes containing causal variation for the Arabidopsis thaliana defensive compounds, glucosinolates (GSL) control field fitness and are therefore subject to natural selection, we conducted a multi-year field trial using lines that vary in only specific causal genes. Interestingly, we found that variation in these naturally polymorphic GSL genes affected fitness in each of our environments but the pattern fluctuated such that highly fit genotypes in one trial displayed lower fitness in another and that no GSL genotype or genotypes consistently out-performed the others. This was true both across locations and within the same location across years. These results indicate that environmental heterogeneity may contribute to the maintenance of GSL variation observed within Arabidopsis thaliana. DOI: http://dx.doi.org/10.7554/eLife.05604.001 PMID:25867014

  17. A Cytosolic Arabidopsis d-Xylulose Kinase Catalyzes the Phosphorylation of 1-Deoxy-d-Xylulose into a Precursor of the Plastidial Isoprenoid Pathway1

    Science.gov (United States)

    Hemmerlin, Andréa; Tritsch, Denis; Hartmann, Michael; Pacaud, Karine; Hoeffler, Jean-François; van Dorsselaer, Alain; Rohmer, Michel; Bach, Thomas J.

    2006-01-01

    Plants are able to integrate exogenous 1-deoxy-d-xylulose (DX) into the 2C-methyl-d-erythritol 4-phosphate pathway, implicated in the biosynthesis of plastidial isoprenoids. Thus, the carbohydrate needs to be phosphorylated into 1-deoxy-d-xylulose 5-phosphate and translocated into plastids, or vice versa. An enzyme capable of phosphorylating DX was partially purified from a cell-free Arabidopsis (Arabidopsis thaliana) protein extract. It was identified by mass spectrometry as a cytosolic protein bearing d-xylulose kinase (XK) signatures, already suggesting that DX is phosphorylated within the cytosol prior to translocation into the plastids. The corresponding cDNA was isolated and enzymatic properties of a recombinant protein were determined. In Arabidopsis, xylulose kinases are encoded by a small gene family, in which only two genes are putatively annotated. The additional gene is coding for a protein targeted to plastids, as was proved by colocalization experiments using green fluorescent protein fusion constructs. Functional complementation assays in an Escherichia coli strain deleted in xk revealed that the cytosolic enzyme could exclusively phosphorylate xylulose in vivo, not the enzyme that is targeted to plastids. xk activities could not be detected in chloroplast protein extracts or in proteins isolated from its ancestral relative Synechocystis sp. PCC 6803. The gene encoding the plastidic protein annotated as “xylulose kinase” might in fact yield an enzyme having different phosphorylation specificities. The biochemical characterization and complementation experiments with DX of specific Arabidopsis knockout mutants seedlings treated with oxo-clomazone, an inhibitor of 1-deoxy-d-xylulose 5-phosphate synthase, further confirmed that the cytosolic protein is responsible for the phosphorylation of DX in planta. PMID:16920870

  18. UFO: an Arabidopsis gene involved in both floral meristem and floral organ development.

    Science.gov (United States)

    Levin, J Z; Meyerowitz, E M

    1995-05-01

    We describe the role of the UNUSUAL FLORAL ORGANS (UFO) gene in Arabidopsis floral development based on a genetic and molecular characterization of the phenotypes of nine ufo alleles. UFO is required for the proper identity of the floral meristem and acts in three different aspects of the process that distinguishes flowers from shoots. UFO is involved in establishing the whorled pattern of floral organs, controlling the determinacy of the floral meristem, and activating the APETALA3 and PISTILLATA genes required for petal and stamen identity. In many respects, UFO acts in a manner similar to LEAFY, but the ufo mutant phenotype also suggests an additional role for UFO in defining boundaries within the floral primordia or controlling cell proliferation during floral organ growth. Finally, genetic interactions that prevent flower formation and lead to the generation of filamentous structures implicate UFO as a member of a new, large, and diverse class of genes in Arabidopsis necessary for flower formation.

  19. Review article: Jesus’ resurrection in Joseph’s garden

    Directory of Open Access Journals (Sweden)

    Estelle Dannhauser

    2010-07-01

    Full Text Available The article is a lengthy review of the book Jesus’ resurrection in Joseph’s garden by P.J.W. (Flip Schutte. The book represents a quest to trace the relationship between Jesus’ resurrection, myth and canon. Schutte finds the origin of events underlying the biblical canon in proclamation. His focus in the book is the proclamation of the death and resurrection of Christ, which, in its developmental stages, hinged on the life and death of the historical Jesus. Proclamation developed into a mythical narrative that became the foundational myth for the Christ cult, validating its existence and rituals. With the growth and institutionalisation of the faith community (church, came an increased production of literature, causing the power-wielding orthodoxy to identify a body of literature containing the ‘truth’ and ‘correct teaching’, thus establishing the authoritative canon. In, through, behind and beyond Jesus of Nazareth, Schutte has perceived a canon behind the canon: a God of love. In Jesus, the man of myth with historical roots who has become to us the observable face of God, Schutte confesses the kerygma to open up before him. The proclamation therefore extends an invitation to join in a mythological experience and an encounter with God whose love is preached in the metaphor called Easter.

  20. 转香蕉MaASR1基因的拟南芥株系在干旱胁迫条件下的表达谱分析%Analysis of Banana MaASR1 Gene Expression Profiles in Arabidopsis Under Drought Stress

    Institute of Scientific and Technical Information of China (English)

    张丽丽; 徐碧玉; 刘菊华; 贾彩红; 张建斌; 金志强

    2017-01-01

    Drought is the most important environmental stress.MaASR1 gene of banana plays an important role in plant responding to stress.In order to further study the molecular mechanism of drought resistance for over expressing MaASR1 gene in Arabidopsis thaliana.DNA microarray was used to broad-spectrum screening the differentially expressed genes under natural and drought treatment in wild-type Arabidopsis thaliana and transgenic lines.The results of the DNA microarray were analyzed by bioinformatics and RT-PCR verification of the related genes.The results showed that when the wild-type Arabidopsis thaliana and transgenic lines were all without any treatment,there was a total of 747 differentially expressed genes,including 559 up-regulated genes and 188down-regulated genes.And when the wild-type Arabidopsis thaliana and transgenic lines were all drought-treated,there was a total of 653 differentially expressed genes,including 256 up-regulated genes and 397 down-regulated genes.MaASR1 gene can increase the drought resistance of Arabidopsis thaliana by affecting the expression of hormone,photosynthesis,zinc finger protein and DREB2A which involved in the ABA-independent pathway.And to lay the foundation for the molecular mechanism of MaASR1 gene as a transcription factor to improve plant drought resistance.%干旱是最重要的环境胁迫,香蕉MaASR1基因在植物响应逆境胁迫时发挥着重要作用,为了深入研究MaASR1基因的过表达使拟南芥抗旱的分子机制,利用全基因组表达芯片来广谱的筛选MaASR1基因转入后自然条件下及干旱处理条件下差异基因的表达情况.对基因芯片的结果进行了详细的生物信息学分析及相关基因的RT-PCR验证,结果表明MaASR1基因异源表达的拟南芥株系在自然生长条件下共有747个差异基因,其中上调基因559个,下调基因188个;在干旱胁迫条件下共得到653个差异基因,其中上调基因256个,下调基因397个;MaASR1

  1. Light-dependent expression of flg22-induced defense genes in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Satoshi eSano

    2014-10-01

    Full Text Available Chloroplasts have been reported to generate retrograde immune signals that activate defense gene expression in the nucleus. However, the roles of light and photosynthesis in plant immunity remain largely elusive. In this study, we evaluated the effects of light on the expression of defense genes induced by flg22, a peptide derived from bacterial flagellins which acts as a potent elicitor in plants. Whole-transcriptome analysis of flg22-treated Arabidopsis thaliana seedlings under light and dark conditions for 30 min revealed that a number of (30% genes strongly induced by flg22 (>4.0 require light for their rapid expression, whereas flg22-repressed genes include a significant number of genes that are down-regulated by light. Furthermore, light is responsible for the flg22-induced accumulation of salicylic acid, indicating that light is indispensable for basal defense responses in plants. To elucidate the role of photosynthesis in defense, we further examined flg22-induced defense gene expression in the presence of specific inhibitors of photosynthetic electron transport: 3-(3,4-dichlorophenyl-1,1-dimethylurea (DCMU and 2,5-dibromo-3-methyl-6-isopropyl-benzoquinone (DBMIB. Light-dependent expression of defense genes was largely suppressed by DBMIB, but only partially suppressed by DCMU. These findings suggest that photosynthetic electron flow plays a role in controling the light-dependent expression of flg22-inducible defense genes.

  2. Arabidopsis ATRX Modulates H3.3 Occupancy and Fine-Tunes Gene Expression

    KAUST Repository

    Duc, Céline

    2017-07-07

    Histones are essential components of the nucleosome, the major chromatin subunit that structures linear DNA molecules and regulates access of other proteins to DNA. Specific histone chaperone complexes control the correct deposition of canonical histones and their variants to modulate nucleosome structure and stability. In this study, we characterize the Arabidopsis Alpha Thalassemia-mental Retardation X-linked (ATRX) ortholog and show that ATRX is involved in histone H3 deposition. Arabidopsis ATRX mutant alleles are viable, but show developmental defects and reduced fertility. Their combination with mutants of the histone H3.3 chaperone HIRA (Histone Regulator A) results in impaired plant survival, suggesting that HIRA and ATRX function in complementary histone deposition pathways. Indeed, ATRX loss of function alters cellular histone H3.3 pools and in consequence modulates the H3.1/H3.3 balance in the cell. H3.3 levels are affected especially at genes characterized by elevated H3.3 occupancy, including the 45S ribosomal DNA (45S rDNA) loci, where loss of ATRX results in altered expression of specific 45S rDNA sequence variants. At the genome-wide scale, our data indicate that ATRX modifies gene expression concomitantly to H3.3 deposition at a set of genes characterized both by elevated H3.3 occupancy and high expression. Altogether, our results show that ATRX is involved in H3.3 deposition and emphasize the role of histone chaperones in adjusting genome expression.

  3. Over-Expression of Arabidopsis EDT1 Gene Confers Drought Tolerance in Alfalfa (Medicago sativa L.

    Directory of Open Access Journals (Sweden)

    Guangshun Zheng

    2017-12-01

    Full Text Available Alfalfa (Medicago sativa L. is an important legume forage crop with great economic value. However, as the growth of alfalfa is seriously affected by an inadequate supply of water, drought is probably the major abiotic environmental factor that most severely affects alfalfa production worldwide. In an effort to enhance alfalfa drought tolerance, we transformed the Arabidopsis Enhanced Drought Tolerance 1 (AtEDT1 gene into alfalfa via Agrobacterium-mediated transformation. Compared with wild type plants, drought stress treatment resulted in higher survival rates and biomass, but reduced water loss rates in the transgenic plants. Furthermore, transgenic alfalfa plants had increased stomatal size, but reduced stomatal density, and these stomatal changes contributed greatly to reduced water loss from leaves. Importantly, transgenic alfalfa plants exhibited larger root systems with larger root lengths, root weight, and root diameters than wild type plants. The transgenic alfalfa plants had reduced membrane permeability and malondialdehyde content, but higher soluble sugar and proline content, higher superoxide dismutase activity, higher chlorophyll content, enhanced expression of drought-responsive genes, as compared with wild type plants. Notably, transgenic alfalfa plants grew better in a 2-year field trial and showed enhanced growth performance with increased biomass yield. All of our morphological, physiological, and molecular analyses demonstrated that the ectopic expression of AtEDT1 improved growth and enhanced drought tolerance in alfalfa. Our study provides alfalfa germplasm for use in forage improvement programs, and may help to increase alfalfa production in arid lands.

  4. Heterologous Expression of the Cotton NBS-LRR Gene GbaNA1 Enhances Verticillium Wilt Resistance in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Nan-Yang Li

    2018-02-01

    Full Text Available Verticillium wilt caused by Verticillium dahliae results in severe losses in cotton, and is economically the most destructive disease of this crop. Improving genetic resistance is the cleanest and least expensive option to manage Verticillium wilt. Previously, we identified the island cotton NBS-LRR-encoding gene GbaNA1 that confers resistance to the highly virulent V. dahliae isolate Vd991. In this study, we expressed cotton GbaNA1 in the heterologous system of Arabidopsis thaliana and investigated the defense response mediated by GbaNA1 following inoculations with V. dahliae. Heterologous expression of GbaNA1 conferred Verticillium wilt resistance in A. thaliana. Moreover, overexpression of GbaNA1 enabled recovery of the resistance phenotype of A. thaliana mutants that had lost the function of GbaNA1 ortholog gene. Investigations of the defense response in A. thaliana showed that the reactive oxygen species (ROS production and the expression of genes associated with the ethylene signaling pathway were enhanced significantly following overexpression of GbaNA1. Intriguingly, overexpression of the GbaNA1 ortholog from Gossypium hirsutum (GhNA1 in A. thaliana did not induce the defense response of ROS production due to the premature termination of GhNA1, which lacks the encoded NB-ARC and LRR motifs. GbaNA1 therefore confers Verticillium wilt resistance in A. thaliana by the activation of ROS production and ethylene signaling. These results demonstrate the functional conservation of the NBS-LRR-encoding GbaNA1 in a heterologous system, and the mechanism of this resistance, both of which may prove valuable in incorporating GbaNA1-mediated resistance into other plant species.

  5. Co-expression analysis identifies CRC and AP1 the regulator of Arabidopsis fatty acid biosynthesis.

    Science.gov (United States)

    Han, Xinxin; Yin, Linlin; Xue, Hongwei

    2012-07-01

    Fatty acids (FAs) play crucial rules in signal transduction and plant development, however, the regulation of FA metabolism is still poorly understood. To study the relevant regulatory network, fifty-eight FA biosynthesis genes including de novo synthases, desaturases and elongases were selected as "guide genes" to construct the co-expression network. Calculation of the correlation between all Arabidopsis thaliana (L.) genes with each guide gene by Arabidopsis co-expression dating mining tools (ACT) identifies 797 candidate FA-correlated genes. Gene ontology (GO) analysis of these co-expressed genes showed they are tightly correlated to photosynthesis and carbohydrate metabolism, and function in many processes. Interestingly, 63 transcription factors (TFs) were identified as candidate FA biosynthesis regulators and 8 TF families are enriched. Two TF genes, CRC and AP1, both correlating with 8 FA guide genes, were further characterized. Analyses of the ap1 and crc mutant showed the altered total FA composition of mature seeds. The contents of palmitoleic acid, stearic acid, arachidic acid and eicosadienoic acid are decreased, whereas that of oleic acid is increased in ap1 and crc seeds, which is consistent with the qRT-PCR analysis revealing the suppressed expression of the corresponding guide genes. In addition, yeast one-hybrid analysis and electrophoretic mobility shift assay (EMSA) revealed that CRC can bind to the promoter regions of KCS7 and KCS15, indicating that CRC may directly regulate FA biosynthesis. © 2012 Institute of Botany, Chinese Academy of Sciences.

  6. The Arabidopsis mutant cev1 has constitutively active jasmonate and ethylene signal pathways and enhanced resistance to pathogens.

    Science.gov (United States)

    Ellis, C; Turner, J G

    2001-05-01

    Jasmonates (JAs) inhibit plant growth and induce plant defense responses. To define genes in the Arabidopsis JA signal pathway, we screened for mutants with constitutive expression of a luciferase reporter for the JA-responsive promoter from the vegetative storage protein gene VSP1. One mutant, named constitutive expression of VSP1 (cev1), produced plants that were smaller than wild type, had stunted roots with long root hairs, accumulated anthocyanin, had constitutive expression of the defense-related genes VSP1, VSP2, Thi2.1, PDF1.2, and CHI-B, and had enhanced resistance to powdery mildew diseases. Genetic evidence indicated that the cev1 phenotype required both COI1, an essential component of the JA signal pathway, and ETR1, which encodes the ethylene receptor. We conclude that cev1 stimulates both the JA and the ethylene signal pathways and that CEV1 regulates an early step in an Arabidopsis defense pathway.

  7. Characterization of Arabidopsis FPS isozymes and FPS gene expression analysis provide insight into the biosynthesis of isoprenoid precursors in seeds.

    Directory of Open Access Journals (Sweden)

    Verónica Keim

    Full Text Available Arabidopsis thaliana contains two genes encoding farnesyl diphosphate (FPP synthase (FPS, the prenyl diphoshate synthase that catalyzes the synthesis of FPP from isopentenyl diphosphate (IPP and dimethylallyl diphosphate (DMAPP. In this study, we provide evidence that the two Arabidopsis short FPS isozymes FPS1S and FPS2 localize to the cytosol. Both enzymes were expressed in E. coli, purified and biochemically characterized. Despite FPS1S and FPS2 share more than 90% amino acid sequence identity, FPS2 was found to be more efficient as a catalyst, more sensitive to the inhibitory effect of NaCl, and more resistant to thermal inactivation than FPS1S. Homology modelling for FPS1S and FPS2 and analysis of the amino acid differences between the two enzymes revealed an increase in surface polarity and a greater capacity to form surface salt bridges of FPS2 compared to FPS1S. These factors most likely account for the enhanced thermostability of FPS2. Expression analysis of FPS::GUS genes in seeds showed that FPS1 and FPS2 display complementary patterns of expression particularly at late stages of seed development, which suggests that Arabidopsis seeds have two spatially segregated sources of FPP. Functional complementation studies of the Arabidopsis fps2 knockout mutant seed phenotypes demonstrated that under normal conditions FPS1S and FPS2 are functionally interchangeable. A putative role for FPS2 in maintaining seed germination capacity under adverse environmental conditions is discussed.

  8. Immortality versus resurrection in the Christian tradition.

    Science.gov (United States)

    Murphy, Nancey

    2011-10-01

    For those in contemporary society who believe in an afterlife, there are a number of views available. The most common may be based on belief in an immortal soul. However, the early Christian account was, instead, bodily resurrection. As Christianity moved throughout the Mediterranean world, apologists and theologians adapted their teaching on human nature and the afterlife to Greek and Roman philosophies. By the time of Augustine (d. 430), the doctrines of body-soul dualism and immortality of the soul were firmly entrenched in Christian teaching. The incorporation of the concept of an immortal soul into Christian accounts of life after death produced a hybrid account. The body dies, the soul (at least of those who were to be saved) travels to heaven. At the end of history, there would be a general resurrection, and the souls would be reunited with their bodies, although the bodies would be in a transformed, indestructible state. This hybrid account of life after death went largely uncontested until the twentieth century. In this essay, I describe this history and argue for a return to the early Christian view of humans as a unity, not a duality, and for belief in resurrection of the body as the appropriate expectation for eternal life. This would not only be truer to Christian sources, but, valuable, I believe, in focusing Christian attention on the need to care for the environment. © 2011 New York Academy of Sciences.

  9. Differential SPL gene expression patterns reveal candidate genes underlying flowering time and architectural differences in Mimulus and Arabidopsis.

    Science.gov (United States)

    Jorgensen, Stacy A; Preston, Jill C

    2014-04-01

    Evolutionary transitions in growth habit and flowering time responses to variable environmental signals have occurred multiple times independently across angiosperms and have major impacts on plant fitness. Proteins in the SPL family of transcription factors collectively regulate flowering time genes that have been implicated in interspecific shifts in annuality/perenniality. However, their potential importance in the evolution of angiosperm growth habit has not been extensively investigated. Here we identify orthologs representative of the major SPL gene clades in annual Arabidopsis thaliana and Mimulus guttatus IM767, and perennial A. lyrata and M. guttatus PR, and characterize their expression. Spatio-temporal expression patterns are complex across both diverse tissues of the same taxa and comparable tissues of different taxa, consistent with genic sub- or neo-functionalization. However, our data are consistent with a general role for several SPL genes in the promotion of juvenile to adult phase change and/or flowering time in Mimulus and Arabidopsis. Furthermore, several candidate genes were identified for future study whose differential expression correlates with growth habit and architectural variation in annual versus perennial taxa. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Comparative genomic analysis of the WRKY III gene family in populus, grape, arabidopsis and rice.

    Science.gov (United States)

    Wang, Yiyi; Feng, Lin; Zhu, Yuxin; Li, Yuan; Yan, Hanwei; Xiang, Yan

    2015-09-08

    WRKY III genes have significant functions in regulating plant development and resistance. In plant, WRKY gene family has been studied in many species, however, there still lack a comprehensive analysis of WRKY III genes in the woody plant species poplar, three representative lineages of flowering plant species are incorporated in most analyses: Arabidopsis (a model plant for annual herbaceous dicots), grape (one model plant for perennial dicots) and Oryza sativa (a model plant for monocots). In this study, we identified 10, 6, 13 and 28 WRKY III genes in the genomes of Populus trichocarpa, grape (Vitis vinifera), Arabidopsis thaliana and rice (Oryza sativa), respectively. Phylogenetic analysis revealed that the WRKY III proteins could be divided into four clades. By microsynteny analysis, we found that the duplicated regions were more conserved between poplar and grape than Arabidopsis or rice. We dated their duplications by Ks analysis of Populus WRKY III genes and demonstrated that all the blocks were formed after the divergence of monocots and dicots. Strong purifying selection has played a key role in the maintenance of WRKY III genes in Populus. Tissue expression analysis of the WRKY III genes in Populus revealed that five were most highly expressed in the xylem. We also performed quantitative real-time reverse transcription PCR analysis of WRKY III genes in Populus treated with salicylic acid, abscisic acid and polyethylene glycol to explore their stress-related expression patterns. This study highlighted the duplication and diversification of the WRKY III gene family in Populus and provided a comprehensive analysis of this gene family in the Populus genome. Our results indicated that the majority of WRKY III genes of Populus was expanded by large-scale gene duplication. The expression pattern of PtrWRKYIII gene identified that these genes play important roles in the xylem during poplar growth and development, and may play crucial role in defense to drought

  11. Heterologous expression of wheat VERNALIZATION 2 (TaVRN2 gene in Arabidopsis delays flowering and enhances freezing tolerance.

    Directory of Open Access Journals (Sweden)

    Amadou Diallo

    Full Text Available The vernalization gene 2 (VRN2, is a major flowering repressor in temperate cereals that is regulated by low temperature and photoperiod. Here we show that the gene from Triticum aestivum (TaVRN2 is also regulated by salt, heat shock, dehydration, wounding and abscissic acid. Promoter analysis indicates that TaVRN2 regulatory region possesses all the specific responsive elements to these stresses. This suggests pleiotropic effects of TaVRN2 in wheat development and adaptability to the environment. To test if TaVRN2 can act as a flowering repressor in species different from the temperate cereals, the gene was ectopically expressed in the model plant Arabidopsis. Transgenic plants showed no alteration in morphology, but their flowering time was significantly delayed compared to controls plants, indicating that TaVRN2, although having no ortholog in Brassicaceae, can act as a flowering repressor in these species. To identify the possible mechanism by which TaVRN2 gene delays flowering in Arabidopsis, the expression level of several genes involved in flowering time regulation was determined. The analysis indicates that the late flowering of the 35S::TaVRN2 plants was associated with a complex pattern of expression of the major flowering control genes, FCA, FLC, FT, FVE and SOC1. This suggests that heterologous expression of TaVRN2 in Arabidopsis can delay flowering by modulating several floral inductive pathways. Furthermore, transgenic plants showed higher freezing tolerance, likely due to the accumulation of CBF2, CBF3 and the COR genes. Overall, our data suggests that TaVRN2 gene could modulate a common regulator of the two interacting pathways that regulate flowering time and the induction of cold tolerance. The results also demonstrate that TaVRN2 could be used to manipulate flowering time and improve cold tolerance in other species.

  12. Expression profiling of AUXIN RESPONSE FACTOR genes during somatic embryogenesis induction in Arabidopsis.

    Science.gov (United States)

    Wójcikowska, Barbara; Gaj, Małgorzata D

    2017-06-01

    Extensive modulation of numerous ARF transcripts in the embryogenic culture of Arabidopsis indicates a substantial role of auxin signaling in the mechanism of somatic embryogenesis induction. Somatic embryogenesis (SE) is induced by auxin in plants and auxin signaling is considered to play a key role in the molecular mechanism that controls the embryogenic transition of plant somatic cells. Accordingly, the expression of AUXIN RESPONSE FACTOR (ARF) genes in embryogenic culture of Arabidopsis was analyzed. The study revealed that 14 of the 22 ARFs were transcribed during SE in Arabidopsis. RT-qPCR analysis indicated that the expression of six ARFs (ARF5, ARF6, ARF8, ARF10, ARF16, and ARF17) was significantly up-regulated, whereas five other genes (ARF1, ARF2, ARF3, ARF11, and ARF18) were substantially down-regulated in the SE-induced explants. The activity of ARFs during SE was also monitored with GFP reporter lines and the ARFs that were expressed in areas of the explants engaged in SE induction were detected. A functional test of ARFs transcribed during SE was performed and the embryogenic potential of the arf mutants and overexpressor lines was evaluated. ARFs with a significantly modulated expression during SE coupled with an impaired embryogenic response of the relevant mutant and/or overexpressor line, including ARF1, ARF2, ARF3, ARF5, ARF6, ARF8, and ARF11 were indicated as possibly being involved in SE induction. The study provides evidence that embryogenic induction strongly depends on ARFs, which are key regulators of the auxin signaling. Some clues on the possible functions of the candidate ARFs, especially ARF5, in the mechanism of embryogenic transition are discussed. The results provide guidelines for further research on the auxin-related functional genomics of SE and the developmental plasticity of somatic cells.

  13. Over-expression of Arabidopsis thaliana SFD1/GLY1, the gene encoding plastid localized glycerol-3-phosphate dehydrogenase, increases plastidic lipid content in transgenic rice plants.

    Science.gov (United States)

    Singh, Vijayata; Singh, Praveen Kumar; Siddiqui, Adnan; Singh, Subaran; Banday, Zeeshan Zahoor; Nandi, Ashis Kumar

    2016-03-01

    Lipids are the major constituents of all membranous structures in plants. Plants possess two pathways for lipid biosynthesis: the prokaryotic pathway (i.e., plastidic pathway) and the eukaryotic pathway (i.e., endoplasmic-reticulum (ER) pathway). Whereas some plants synthesize galactolipids from diacylglycerol assembled in the plastid, others, including rice, derive their galactolipids from diacylglycerols assembled by the eukaryotic pathway. Arabidopsis thaliana glycerol-3-phosphate dehydrogenase (G3pDH), coded by SUPPRESSOR OF FATTY ACID DESATURASE 1 (SFD1; alias GLY1) gene, catalyzes the formation of glycerol 3-phosphate (G3p), the backbone of many membrane lipids. Here SFD1 was introduced to rice as a transgene. Arabidopsis SFD1 localizes in rice plastids and its over-expression increases plastidic membrane lipid content in transgenic rice plants without any major impact on ER lipids. The results suggest that over-expression of plastidic G3pDH enhances biosynthesis of plastid-localized lipids in rice. Lipid composition in the transgenic plants is consistent with increased phosphatidylglycerol synthesis in the plastid and increased galactolipid synthesis from diacylglycerol produced via the ER pathway. The transgenic plants show a higher photosynthetic assimilation rate, suggesting a possible application of this finding in crop improvement.

  14. ABI3 mediates dehydration stress recovery response in Arabidopsis thaliana by regulating expression of downstream genes.

    Science.gov (United States)

    Bedi, Sonia; Sengupta, Sourabh; Ray, Anagh; Nag Chaudhuri, Ronita

    2016-09-01

    ABI3, originally discovered as a seed-specific transcription factor is now implicated to act beyond seed physiology, especially during abiotic stress. In non-seed plants, ABI3 is known to act in desiccation stress signaling. Here we show that ABI3 plays a role in dehydration stress response in Arabidopsis. ABI3 gene was upregulated during dehydration stress and its expression was maintained during subsequent stress recovery phases. Comparative gene expression studies in response to dehydration stress and stress recovery were done with genes which had potential ABI3 binding sites in their upstream regulatory regions. Such studies showed that several genes including known seed-specific factors like CRUCIFERIN1, CRUCIFERIN3 and LEA-group of genes like LEA76, LEA6, DEHYDRIN LEA and LEA-LIKE got upregulated in an ABI3-dependent manner, especially during the stress recovery phase. ABI3 got recruited to regions upstream to the transcription start site of these genes during dehydration stress response through direct or indirect DNA binding. Interestingly, ABI3 also binds to its own promoter region during such stress signaling. Nucleosomes covering potential ABI3 binding sites in the upstream sequences of the above-mentioned genes alter positions, and show increased H3 K9 acetylation during stress-induced transcription. ABI3 thus mediates dehydration stress signaling in Arabidopsis through regulation of a group of genes that play a role primarily during stress recovery phase. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. Superoxide-responsive gene expression in Arabidopsis thaliana and Zea mays.

    Science.gov (United States)

    Xu, Junhuan; Tran, Thu; Padilla Marcia, Carmen S; Braun, David M; Goggin, Fiona L

    2017-08-01

    Superoxide (O 2 - ) and other reactive oxygen species (ROS) are generated in response to numerous biotic and abiotic stresses. Different ROS have been reported to elicit different transcriptional responses in plants, and so ROS-responsive marker genes and promoter::reporter gene fusions have been proposed as indirect means of detecting ROS and discriminating among different species. However, further information about the specificity of transcriptional responses to O 2 - is needed in order to assess potential markers for this critical stress-responsive signaling molecule. Using qRT-PCR, the expression of 12 genes previously reported to be upregulated by O 2 - was measured in Arabidopsis thaliana plants exposed to elicitors of common stress-responsive ROS: methyl viologen (an inducer of O 2 - ), rose bengal (an inducer of singlet oxygen, 1 ΔO 2 ), and exogenous hydrogen peroxide (H 2 O 2 ). Surprisingly, Zinc-Finger Protein 12 (AtZAT12), which had previously been used as a reporter for H 2 O 2 , responded more strongly to O 2 - than to H 2 O 2 ; moreover, the expression of an AtZAT12 promoter-reporter fusion (AtZAT12::Luc) was enhanced by diethyldithiocarbamate, which inhibits dismutation of O 2 - to H 2 O 2 . These results suggest that AtZAT12 is transcriptionally upregulated in response to O 2 - , and that AtZAT12::Luc may be a useful biosensor for detecting O 2 - generation in vivo. In addition, transcripts encoding uncoupling proteins (AtUCPs) showed selectivity for O 2 - in Arabidopsis, and an AtUCP homolog upregulated by methyl viologen was also identified in maize (Zea mays L.), indicating that there are O 2 - -responsive members of this family in monocots. These results expand our limited knowledge of ROS-responsive gene expression in monocots, as well as O 2 - -selective responses in dicots. Copyright © 2017 The Authors. Published by Elsevier Masson SAS.. All rights reserved.

  16. Identification of reference genes for quantitative expression analysis using large-scale RNA-seq data of Arabidopsis thaliana and model crop plants.

    Science.gov (United States)

    Kudo, Toru; Sasaki, Yohei; Terashima, Shin; Matsuda-Imai, Noriko; Takano, Tomoyuki; Saito, Misa; Kanno, Maasa; Ozaki, Soichi; Suwabe, Keita; Suzuki, Go; Watanabe, Masao; Matsuoka, Makoto; Takayama, Seiji; Yano, Kentaro

    2016-10-13

    In quantitative gene expression analysis, normalization using a reference gene as an internal control is frequently performed for appropriate interpretation of the results. Efforts have been devoted to exploring superior novel reference genes using microarray transcriptomic data and to evaluating commonly used reference genes by targeting analysis. However, because the number of specifically detectable genes is totally dependent on probe design in the microarray analysis, exploration using microarray data may miss some of the best choices for the reference genes. Recently emerging RNA sequencing (RNA-seq) provides an ideal resource for comprehensive exploration of reference genes since this method is capable of detecting all expressed genes, in principle including even unknown genes. We report the results of a comprehensive exploration of reference genes using public RNA-seq data from plants such as Arabidopsis thaliana (Arabidopsis), Glycine max (soybean), Solanum lycopersicum (tomato) and Oryza sativa (rice). To select reference genes suitable for the broadest experimental conditions possible, candidates were surveyed by the following four steps: (1) evaluation of the basal expression level of each gene in each experiment; (2) evaluation of the expression stability of each gene in each experiment; (3) evaluation of the expression stability of each gene across the experiments; and (4) selection of top-ranked genes, after ranking according to the number of experiments in which the gene was expressed stably. Employing this procedure, 13, 10, 12 and 21 top candidates for reference genes were proposed in Arabidopsis, soybean, tomato and rice, respectively. Microarray expression data confirmed that the expression of the proposed reference genes under broad experimental conditions was more stable than that of commonly used reference genes. These novel reference genes will be useful for analyzing gene expression profiles across experiments carried out under various

  17. An efficient and reproducible protocol for the production of salt tolerant transgenic wheat plants expressing the Arabidopsis AtNHX1 gene.

    Science.gov (United States)

    Moghaieb, Reda E A; Sharaf, Ahmed N; Soliman, Mohamed H; El-Arabi, Nagwa I; Momtaz, Osama A

    2014-01-01

    We present an efficient method for the production of transgenic salt tolerant hexaploid wheat plants expressing the Arabidopsis AtNHX1 gene. Wheat mature zygotic embryos were isolated from two hexaploid bread wheat (Triticum aestivum) cultivars (namely: Gemmeiza 9 and Gemmeiza 10) and were transformed with the A. tumefaciens LBA4404 harboring the pBI-121 vector containing the AtNHX1 gene. Transgenic wheat lines that express the gus intron was obtained and used as control. The results confirmed that npt-II gene could be transmitted and expressed in the T2 following 3:1 Mendelian segregation while the control plant couldn't. The data indicate that, the AtNHX1 gene was integrated in a stable manner into the wheat genome and the corresponding transcripts were expressed. The transformation efficiency was 5.7 and 7.5% for cultivars Gemmeiza 10 and Gemmeiza 9, respectively. A greenhouse experiment was conducted to investigate the effect of AtNHX1 gene in wheat salt tolerance. The transgenic wheat lines could maintain high growth rate under salt stress condition (350 mM NaCl) while the control plant couldn't. The results confirmed that Na(+)/H(+) antiporter gene AtNHX1 increased salt tolerance by increasing Na(+) accumulation and keeping K+/Na(+) balance. Thus, transgenic plants showed high tolerance to salt stress and can be considered as a new genetic resource in breeding programs.

  18. A double-mutant collection targeting MAP kinase related genes in Arabidopsis for studying genetic interactions.

    Science.gov (United States)

    Su, Shih-Heng; Krysan, Patrick J

    2016-12-01

    Mitogen-activated protein kinase cascades are conserved in all eukaryotes. In Arabidopsis thaliana there are approximately 80 genes encoding MAP kinase kinase kinases (MAP3K), 10 genes encoding MAP kinase kinases (MAP2K), and 20 genes encoding MAP kinases (MAPK). Reverse genetic analysis has failed to reveal abnormal phenotypes for a majority of these genes. One strategy for uncovering gene function when single-mutant lines do not produce an informative phenotype is to perform a systematic genetic interaction screen whereby double-mutants are created from a large library of single-mutant lines. Here we describe a new collection of 275 double-mutant lines derived from a library of single-mutants targeting genes related to MAP kinase signaling. To facilitate this study, we developed a high-throughput double-mutant generating pipeline using a system for growing Arabidopsis seedlings in 96-well plates. A quantitative root growth assay was used to screen for evidence of genetic interactions in this double-mutant collection. Our screen revealed four genetic interactions, all of which caused synthetic enhancement of the root growth defects observed in a MAP kinase 4 (MPK4) single-mutant line. Seeds for this double-mutant collection are publicly available through the Arabidopsis Biological Resource Center. Scientists interested in diverse biological processes can now screen this double-mutant collection under a wide range of growth conditions in order to search for additional genetic interactions that may provide new insights into MAP kinase signaling. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  19. The CUP-SHAPED COTYLEDON3 gene is required for boundary and shoot meristem formation in Arabidopsis

    DEFF Research Database (Denmark)

    Vroemen, Casper W; Mordhorst, Andreas P; Albrecht, Cathy

    2003-01-01

    From an enhancer trap screen for genes expressed in Arabidopsis embryos, we identified a gene expressed from the octant stage onward in the boundary between the two presumptive cotyledons and in a variety of postembryonic organ and meristem boundaries. This gene, CUP-SHAPED COTYLEDON3 (CUC3...

  20. Developmental Functions of miR156-Regulated SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) Genes in Arabidopsis thaliana.

    Science.gov (United States)

    Xu, Mingli; Hu, Tieqiang; Zhao, Jianfei; Park, Mee-Yeon; Earley, Keith W; Wu, Gang; Yang, Li; Poethig, R Scott

    2016-08-01

    Correct developmental timing is essential for plant fitness and reproductive success. Two important transitions in shoot development-the juvenile-to-adult vegetative transition and the vegetative-to-reproductive transition-are mediated by a group of genes targeted by miR156, SQUAMOSA PROMOTER BINDING PROTEIN (SBP) genes. To determine the developmental functions of these genes in Arabidopsis thaliana, we characterized their expression patterns, and their gain-of-function and loss-of-function phenotypes. Our results reveal that SBP-LIKE (SPL) genes in Arabidopsis can be divided into three functionally distinct groups: 1) SPL2, SPL9, SPL10, SPL11, SPL13 and SPL15 contribute to both the juvenile-to-adult vegetative transition and the vegetative-to-reproductive transition, with SPL9, SP13 and SPL15 being more important for these processes than SPL2, SPL10 and SPL11; 2) SPL3, SPL4 and SPL5 do not play a major role in vegetative phase change or floral induction, but promote the floral meristem identity transition; 3) SPL6 does not have a major function in shoot morphogenesis, but may be important for certain physiological processes. We also found that miR156-regulated SPL genes repress adventitious root development, providing an explanation for the observation that the capacity for adventitious root production declines as the shoot ages. miR156 is expressed at very high levels in young seedlings, and declines in abundance as the shoot develops. It completely blocks the expression of its SPL targets in the first two leaves of the rosette, and represses these genes to different degrees at later stages of development, primarily by promoting their translational repression. These results provide a framework for future studies of this multifunctional family of transcription factors, and offer new insights into the role of miR156 in Arabidopsis development.

  1. The AAP gene family for amino acid permeases contributes to development of the cyst nematode Heterodera schachtii in roots of Arabidopsis.

    Science.gov (United States)

    Elashry, Abdelnaser; Okumoto, Sakiko; Siddique, Shahid; Koch, Wolfgang; Kreil, David P; Bohlmann, Holger

    2013-09-01

    The beet cyst nematode Heterodera schachtii is able to infect Arabidopsis plants and induce feeding sites in the root. These syncytia are the only source of nutrients for the nematodes throughout their life and are a nutrient sink for the host plant. We have studied here the role of amino acid transporters for nematode development. Arabidopsis contains a large number of different amino acid transporters in several gene families but those of the AAP family were found to be especially expressed in syncytia. Arabidopsis contains 8 AAP genes and they were all strongly expressed in syncytia with the exception of AAP5 and AAP7, which were slightly downregulated. We used promoter::GUS lines and in situ RT-PCR to confirm the expression of several AAP genes and LHT1, a lysine- and histidine-specific amino acid transporter, in syncytia. The strong expression of AAP genes in syncytia indicated that these transporters are important for the transport of amino acids into syncytia and we used T-DNA mutants for several AAP genes to test for their influence on nematode development. We found that mutants of AAP1, AAP2, and AAP8 significantly reduced the number of female nematodes developing on these plants. Our study showed that amino acid transport into syncytia is important for the development of the nematodes. Copyright © 2013 The Authors. Published by Elsevier Masson SAS.. All rights reserved.

  2. Reduced seed germination in Arabidopsis over-expressing SWI/SNF2 ATPase genes.

    Science.gov (United States)

    Leeggangers, Hendrika A C F; Folta, Adam; Muras, Aleksandra; Nap, Jan-Peter; Mlynarova, Ludmila

    2015-02-01

    In the life of flowering plants, seed germination is a critical step to ensure survival into the next generation. Generally the seed prior to germination has been in a dormant state with a low rate of metabolism. In the transition from a dormant seed to a germinating seed, various epigenetic mechanisms play a regulatory role. Here, we demonstrate that the over-expression of chromatin remodeling ATPase genes (AtCHR12 or AtCHR23) reduced the frequency of seed germination in Arabidopsis thaliana up to 30% relative to the wild-type seeds. On the other hand, single loss-of-function mutations of the two genes did not affect seed germination. The reduction of germination in over-expressing mutants was more pronounced in stress conditions (salt or high temperature), showing the impact of the environment. Reduced germinations upon over-expression coincided with increased transcript levels of seed maturation genes and with reduced degradation of their mRNAs stored in dry seeds. Our results indicate that repression of AtCHR12/23 gene expression in germinating wild-type Arabidopsis seeds is required for full germination. This establishes a functional link between chromatin modifiers and regulatory networks towards seed maturation and germination. © 2014 Scandinavian Plant Physiology Society.

  3. Catalase and NO CATALASE ACTIVITY1 Promote Autophagy-Dependent Cell Death in Arabidopsis

    DEFF Research Database (Denmark)

    Hackenberg, Thomas; Juul, Trine Maxel; Auzina, Aija

    2013-01-01

    Programmed cell death often depends on generation of reactive oxygen species, which can be detoxified by antioxidative enzymes, including catalases. We previously isolated catalase-deficient mutants (cat2) in a screen for resistance to hydroxyurea-induced cell death. Here, we identify...... an Arabidopsis thaliana hydroxyurea-resistant autophagy mutant, atg2, which also shows reduced sensitivity to cell death triggered by the bacterial effector avrRpm1. To test if catalase deficiency likewise affected both hydroxyurea and avrRpm1 sensitivity, we selected mutants with extremely low catalase...... activities and showed that they carried mutations in a gene that we named NO CATALASE ACTIVITY1 (NCA1). nca1 mutants showed severely reduced activities of all three catalase isoforms in Arabidopsis, and loss of NCA1 function led to strong suppression of RPM1-triggered cell death. Basal and starvation...

  4. Suppression of PCD-related genes affects salt tolerance in Arabidopsis.

    Science.gov (United States)

    Bahieldin, Ahmed; Alqarni, Dhafer A M; Atef, Ahmed; Gadalla, Nour O; Al-matary, Mohammed; Edris, Sherif; Al-Kordy, Magdy A; Makki, Rania M; Al-Doss, Abdullah A; Sabir, Jamal S M; Mutwakil, Mohammed H Z; El-Domyati, Fotouh M

    2016-01-01

    This work aims at examining a natural exciting phenomenon suggesting that suppression of genes inducing programmed cell death (PCD) might confer tolerance against abiotic stresses in plants. PCD-related genes were induced in tobacco under oxalic acid (OA) treatment (20 mM), and plant cells were characterized to confirm the incidence of PCD. The results indicated that PCD was triggered 24 h after the exposure to OA. Then, RNAs were extracted from tobacco cells 0, 2, 6, 12 and 24 h after treatment for deep sequencing. RNA-Seq analyses were done with a special emphasis to clusters whose PCD-related genes were upregulated after 2 h of OA exposure. Accordingly, 23 tobacco PCD-related genes were knocked down via virus-induced gene silencing (VIGS), whereas our results indicated the influence of five of them on inducing or suppressing PCD. Knockout T-DNA insertion mutants of these five genes in Arabidopsis were tested under salt stress (0, 100, 150, and 200 mM NaCl), and the results indicated that a mutant of an antiapoptotic gene, namely Bax Inhibitor-1 (BI-1), whose VIGS induced PCD in tobacco, was salt sensitive, while a mutant of an apoptotic gene, namely mildew resistance locus O (Mlo), whose VIGS suppressed PCD, was salt tolerant as compared to the WT (Col) control. These data support our hypothesis that retarding PCD-inducing genes can result in higher levels of salt tolerance, while retarding PCD-suppressing genes can result in lower levels of salt tolerance in plants. Copyright © 2016 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  5. The Arabidopsis GASA10 gene encodes a cell wall protein strongly expressed in developing anthers and seeds.

    Science.gov (United States)

    Trapalis, Menelaos; Li, Song Feng; Parish, Roger W

    2017-07-01

    The Arabidopsis GASA10 gene encodes a GAST1-like (Gibberellic Acid-Stimulated) protein. Reporter gene analysis identified consistent expression in anthers and seeds. In anthers expression was developmentally regulated, first appearing at stage 7 of anther development and reaching a maximum at stage 11. Strongest expression was in the tapetum and developing microspores. GASA10 expression also occurred throughout the seed and in root vasculature. GASA10 was shown to be transported to the cell wall. Using GASA1 and GASA6 as positive controls, gibberellic acid was found not to induce GASA10 expression in Arabidopsis suspension cells. Overexpression of GASA10 (35S promoter-driven) resulted in a reduction in silique elongation. GASA10 shares structural similarities to the antimicrobial peptide snakin1, however, purified GASA10 failed to influence the growth of a variety of bacterial and fungal species tested. We propose cell wall associated GASA proteins are involved in regulating the hydroxyl radical levels at specific sites in the cell wall to facilitate wall growth (regulating cell wall elongation). Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Dynamics of Membrane Potential Variation and Gene Expression Induced by Spodoptera littoralis, Myzus persicae, and Pseudomonas syringae in Arabidopsis

    Science.gov (United States)

    Bricchi, Irene; Bertea, Cinzia M.; Occhipinti, Andrea; Paponov, Ivan A.; Maffei, Massimo E.

    2012-01-01

    Background Biotic stress induced by various herbivores and pathogens invokes plant responses involving different defense mechanisms. However, we do not know whether different biotic stresses share a common response or which signaling pathways are involved in responses to different biotic stresses. We investigated the common and specific responses of Arabidopsis thaliana to three biotic stress agents: Spodoptera littoralis, Myzus persicae, and the pathogen Pseudomonas syringae. Methodology/Principal Findings We used electrophysiology to determine the plasma membrane potential (Vm) and we performed a gene microarray transcriptome analysis on Arabidopsis upon either herbivory or bacterial infection. Vm depolarization was induced by insect attack; however, the response was much more rapid to S. littoralis (30 min −2 h) than to M. persicae (4–6 h). M. persicae differentially regulated almost 10-fold more genes than by S. littoralis with an opposite regulation. M. persicae modulated genes involved in flavonoid, fatty acid, hormone, drug transport and chitin metabolism. S. littoralis regulated responses to heat, transcription and ion transport. The latest Vm depolarization (16 h) was found for P. syringae. The pathogen regulated responses to salicylate, jasmonate and to microorganisms. Despite this late response, the number of genes differentially regulated by P. syringae was closer to those regulated by S. littoralis than by M. persicae. Conclusions/Significance Arabidopsis plasma membranes respond with a Vm depolarization at times depending on the nature of biotic attack which allow setting a time point for comparative genome-wide analysis. A clear relationship between Vm depolarization and gene expression was found. At Vm depolarization timing, M. persicae regulates a wider array of Arabidopsis genes with a clear and distinct regulation than S. littoralis. An almost completely opposite regulation was observed between the aphid and the pathogen, with the former

  7. A Regulatory Network Analysis of Orphan Genes in Arabidopsis Thaliana

    Science.gov (United States)

    Singh, Pramesh; Chen, Tianlong; Arendsee, Zebulun; Wurtele, Eve S.; Bassler, Kevin E.

    Orphan genes, which are genes unique to each particular species, have recently drawn significant attention for their potential usefulness for organismal robustness. Their origin and regulatory interaction patterns remain largely undiscovered. Recently, methods that use the context likelihood of relatedness to infer a network followed by modularity maximizing community detection algorithms on the inferred network to find the functional structure of regulatory networks were shown to be effective. We apply improved versions of these methods to gene expression data from Arabidopsis thaliana, identify groups (clusters) of interacting genes with related patterns of expression and analyze the structure within those groups. Focusing on clusters that contain orphan genes, we compare the identified clusters to gene ontology (GO) terms, regulons, and pathway designations and analyze their hierarchical structure. We predict new regulatory interactions and unravel the structure of the regulatory interaction patterns of orphan genes. Work supported by the NSF through Grants DMR-1507371 and IOS-1546858.

  8. SKL1 Is Essential for Chloroplast Development in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Huimin Xu

    2018-02-01

    Full Text Available The Arabidopsis shikimate kinase-like 1 (skl1-8 mutant is characterized by a pigment-defective phenotype. Although the related phenotypical defect mainly has been attributed to the blocking of chloroplast development, the molecular functions of SKL1 remain largely unknown. In this study, we combined multiple approaches to investigate the potential functions of SKL1. Results showed that the skl1-8 mutant exhibited an albino phenotype and had dramatically reduced chlorophyll content as a consequence of a single nuclear recessive gene mutation. Chemical complementation analysis indicated that SKL1 does not function as SK enzyme in the shikimate pathway. In addition, by chlorophyll fluorescence parameters and immunoblot analysis, the levels of photosynthetic proteins are substantially reduced. Moreover, by transcriptome analysis, specific groups of nuclear genes involved in photosynthesis, such as light-harvesting complex, pigment metabolism, carbon metabolism, and chloroplast gene expression, were down-regulated, whereas several defense and oxidative stress responsive genes were up-regulated in the skl1-8 mutant compared with the wide type. Furthermore, we found the expression of genes related to auxin transport and response was repressed in the skl1-8 mutant, probable suggesting that SKL1 is involved in auxin-related pathways during chloroplast development. Together, these results provide a useful reference for characterization of SKL1 function during chloroplast biogenesis and development.

  9. Intergenic sequence between Arabidopsis caseinolytic protease B-cytoplasmic/heat shock protein100 and choline kinase genes functions as a heat-inducible bidirectional promoter.

    Science.gov (United States)

    Mishra, Ratnesh Chandra; Grover, Anil

    2014-11-01

    In Arabidopsis (Arabidopsis thaliana), the At1g74310 locus encodes for caseinolytic protease B-cytoplasmic (ClpB-C)/heat shock protein100 protein (AtClpB-C), which is critical for the acquisition of thermotolerance, and At1g74320 encodes for choline kinase (AtCK2) that catalyzes the first reaction in the Kennedy pathway for phosphatidylcholine biosynthesis. Previous work has established that the knockout mutants of these genes display heat-sensitive phenotypes. While analyzing the AtClpB-C promoter and upstream genomic regions in this study, we noted that AtClpB-C and AtCK2 genes are head-to-head oriented on chromosome 1 of the Arabidopsis genome. Expression analysis showed that transcripts of these genes are rapidly induced in response to heat stress treatment. In stably transformed Arabidopsis plants harboring this intergenic sequence between head-to-head oriented green fluorescent protein and β-glucuronidase reporter genes, both transcripts and proteins of the two reporters were up-regulated upon heat stress. Four heat shock elements were noted in the intergenic region by in silico analysis. In the homozygous transfer DNA insertion mutant Salk_014505, 4,393-bp transfer DNA is inserted at position -517 upstream of ATG of the AtClpB-C gene. As a result, AtCk2 loses proximity to three of the four heat shock elements in the mutant line. Heat-inducible expression of the AtCK2 transcript was completely lost, whereas the expression of AtClpB-C was not affected in the mutant plants. Our results suggest that the 1,329-bp intergenic fragment functions as a heat-inducible bidirectional promoter and the region governing the heat inducibility is possibly shared between the two genes. We propose a model in which AtClpB-C shares its regulatory region with heat-induced choline kinase, which has a possible role in heat signaling. © 2014 American Society of Plant Biologists. All Rights Reserved.

  10. Reintroducing resurrected species: selecting DeExtinction candidates.

    Science.gov (United States)

    Seddon, Philip J; Moehrenschlager, Axel; Ewen, John

    2014-03-01

    Technological advances have raised the controversial prospect of resurrecting extinct species. Species DeExtinction should involve more than the production of biological orphans to be scrutinized in the laboratory or zoo. If DeExtinction is to realize its stated goals of deep ecological enrichment, then resurrected animals must be translocated (i.e., released within suitable habitat). Therefore, DeExtinction is a conservation translocation issue and the selection of potential DeExtinction candidates must consider the feasibility and risks associated with reintroduction. The International Union for the Conservation of Nature (IUCN) Guidelines on Reintroductions and Other Conservation Translocations provide a framework for DeExtinction candidate selection. We translate these Guidelines into ten questions to be addressed early on in the selection process to eliminate unsuitable reintroduction candidates. We apply these questions to the thylacine, Yangtze River Dolphin, and Xerces blue butterfly. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Two genes with similarity to bacterial response regulators are rapidly and specifically induced by cytokinin in Arabidopsis

    Science.gov (United States)

    Brandstatter, I.; Kieber, J. J.; Evans, M. L. (Principal Investigator)

    1998-01-01

    Cytokinins are central regulators of plant growth and development, but little is known about their mode of action. By using differential display, we identified a gene, IBC6 (for induced by cytokinin), from etiolated Arabidopsis seedlings, that is induced rapidly by cytokinin. The steady state level of IBC6 mRNA was elevated within 10 min by the exogenous application of cytokinin, and this induction did not require de novo protein synthesis. IBC6 was not induced by other plant hormones or by light. A second Arabidopsis gene with a sequence highly similar to IBC6 was identified. This IBC7 gene also was induced by cytokinin, although with somewhat slower kinetics and to a lesser extent. The pattern of expression of the two genes was similar, with higher expression in leaves, rachises, and flowers and lower transcript levels in roots and siliques. Sequence analysis revealed that IBC6 and IBC7 are similar to the receiver domain of bacterial two-component response regulators. This homology, coupled with previously published work on the CKI1 histidine kinase homolog, suggests that these proteins may play a role in early cytokinin signaling.

  12. Cross-family translational genomics of abiotic stress-responsive genes between Arabidopsis and Medicago truncatula.

    Directory of Open Access Journals (Sweden)

    Daejin Hyung

    Full Text Available Cross-species translation of genomic information may play a pivotal role in applying biological knowledge gained from relatively simple model system to other less studied, but related, genomes. The information of abiotic stress (ABS-responsive genes in Arabidopsis was identified and translated into the legume model system, Medicago truncatula. Various data resources, such as TAIR/AtGI DB, expression profiles and literatures, were used to build a genome-wide list of ABS genes. tBlastX/BlastP similarity search tools and manual inspection of alignments were used to identify orthologous genes between the two genomes. A total of 1,377 genes were finally collected and classified into 18 functional criteria of gene ontology (GO. The data analysis according to the expression cues showed that there was substantial level of interaction among three major types (i.e., drought, salinity and cold stress of abiotic stresses. In an attempt to translate the ABS genes between these two species, genomic locations for each gene were mapped using an in-house-developed comparative analysis platform. The comparative analysis revealed that fragmental colinearity, represented by only 37 synteny blocks, existed between Arabidopsis and M. truncatula. Based on the combination of E-value and alignment remarks, estimated translation rate was 60.2% for this cross-family translation. As a prelude of the functional comparative genomic approaches, in-silico gene network/interactome analyses were conducted to predict key components in the ABS responses, and one of the sub-networks was integrated with corresponding comparative map. The results demonstrated that core members of the sub-network were well aligned with previously reported ABS regulatory networks. Taken together, the results indicate that network-based integrative approaches of comparative and functional genomics are important to interpret and translate genomic information for complex traits such as abiotic stresses.

  13. Exploiting a Reference Genome in Terms of Duplications: The Network of Paralogs and Single Copy Genes in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Mara Sangiovanni

    2013-12-01

    Full Text Available Arabidopsis thaliana became the model organism for plant studies because of its small diploid genome, rapid lifecycle and short adult size. Its genome was the first among plants to be sequenced, becoming the reference in plant genomics. However, the Arabidopsis genome is characterized by an inherently complex organization, since it has undergone ancient whole genome duplications, followed by gene reduction, diploidization events and extended rearrangements, which relocated and split up the retained portions. These events, together with probable chromosome reductions, dramatically increased the genome complexity, limiting its role as a reference. The identification of paralogs and single copy genes within a highly duplicated genome is a prerequisite to understand its organization and evolution and to improve its exploitation in comparative genomics. This is still controversial, even in the widely studied Arabidopsis genome. This is also due to the lack of a reference bioinformatics pipeline that could exhaustively identify paralogs and singleton genes. We describe here a complete computational strategy to detect both duplicated and single copy genes in a genome, discussing all the methodological issues that may strongly affect the results, their quality and their reliability. This approach was used to analyze the organization of Arabidopsis nuclear protein coding genes, and besides classifying computationally defined paralogs into networks and single copy genes into different classes, it unraveled further intriguing aspects concerning the genome annotation and the gene relationships in this reference plant species. Since our results may be useful for comparative genomics and genome functional analyses, we organized a dedicated web interface to make them accessible to the scientific community.

  14. Expression of tomato prosystemin gene in Arabidopsis reveals systemic translocation of its mRNA and confers necrotrophic fungal resistance.

    Science.gov (United States)

    Zhang, Haiyan; Yu, Pengli; Zhao, Jiuhai; Jiang, Hongling; Wang, Haiyang; Zhu, Yingfang; Botella, Miguel A; Šamaj, Jozef; Li, Chuanyou; Lin, Jinxing

    2018-01-01

    Systemin (SYS), an octadecapeptide hormone processed from a 200-amino-acid precursor (prosystemin, PS), plays a central role in the systemic activation of defense genes in tomato in response to herbivore and pathogen attacks. However, whether PS mRNA is transferable and its role in systemic defense responses remain unknown. We created the transgenic tomato PS gene tagged with the green fluorescent protein (PS-GFP) using a shoot- or root-specific promoter, and the constitutive 35S promoter in Arabidopsis. Subcellular localization of PS-/SYS-GFP was observed using confocal laser scanning microscopy and gene transcripts were determined using quantitative real-time PCR. In Arabidopsis, PS protein can be processed and SYS is secreted. Shoot-/root-specific expression of PS-GFP in Arabidopsis, and grafting experiments, revealed that the PS mRNA moves in a bi-directional manner. We also found that ectopic expression of PS improves Arabidopsis resistance to the necrotrophic fungus Botrytis cinerea, consistent with substantial upregulation of the transcript levels of specific pathogen-responsive genes. Our results provide novel insights into the multifaceted mechanism of SYS signaling transport and its potential application in genetic engineering for increasing pathogen resistance across diverse plant families. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  15. Inferring transcriptional gene regulation network of starch metabolism in Arabidopsis thaliana leaves using graphical Gaussian model

    Directory of Open Access Journals (Sweden)

    Ingkasuwan Papapit

    2012-08-01

    Full Text Available Abstract Background Starch serves as a temporal storage of carbohydrates in plant leaves during day/night cycles. To study transcriptional regulatory modules of this dynamic metabolic process, we conducted gene regulation network analysis based on small-sample inference of graphical Gaussian model (GGM. Results Time-series significant analysis was applied for Arabidopsis leaf transcriptome data to obtain a set of genes that are highly regulated under a diurnal cycle. A total of 1,480 diurnally regulated genes included 21 starch metabolic enzymes, 6 clock-associated genes, and 106 transcription factors (TF. A starch-clock-TF gene regulation network comprising 117 nodes and 266 edges was constructed by GGM from these 133 significant genes that are potentially related to the diurnal control of starch metabolism. From this network, we found that β-amylase 3 (b-amy3: At4g17090, which participates in starch degradation in chloroplast, is the most frequently connected gene (a hub gene. The robustness of gene-to-gene regulatory network was further analyzed by TF binding site prediction and by evaluating global co-expression of TFs and target starch metabolic enzymes. As a result, two TFs, indeterminate domain 5 (AtIDD5: At2g02070 and constans-like (COL: At2g21320, were identified as positive regulators of starch synthase 4 (SS4: At4g18240. The inference model of AtIDD5-dependent positive regulation of SS4 gene expression was experimentally supported by decreased SS4 mRNA accumulation in Atidd5 mutant plants during the light period of both short and long day conditions. COL was also shown to positively control SS4 mRNA accumulation. Furthermore, the knockout of AtIDD5 and COL led to deformation of chloroplast and its contained starch granules. This deformity also affected the number of starch granules per chloroplast, which increased significantly in both knockout mutant lines. Conclusions In this study, we utilized a systematic approach of microarray

  16. Investigation of epigenetic gene regulation in Arabidopsis modulated by gamma radiation

    International Nuclear Information System (INIS)

    Woo, Hye Ryun; Kim, Jae Sung; Lee, Myung Jin; Lee, Dong Joon; Kim, Young Min; Jung, Joon Yong; Han, Wan Keun; Kang, Soo Jin

    2011-12-01

    To investigate epigenetic gene regulation in Arabidopsis modulated by gamma radiation, we examined the changes in DNA methylation and histone modification after gamma radiation and investigated the effects of gamma radiation on epigenetic information and gene expression. We have selected 14 genes with changes in DNA methylation by gamma radiation, analyzed the changes of histone modification in the selected genes to reveal the relationship between DNA methylation and histone modification by gamma radiation. We have also analyzed the effects of gamma radiation on gene expression to investigate the relationship between epigenetic information and gene expression by gamma radiation. The results will be useful to reveal the effects of gamma radiation on DNA methylation, histone modification and gene expression. We anticipate that the information generated in this proposal will help to find out the mechanism underlying the changes in epigenetic information by gamma radiation

  17. Co-ordinate regulation of genes involved in storage lipid mobilization in Arabidopsis thaliana.

    Science.gov (United States)

    Rylott, E L; Hooks, M A; Graham, I A

    2001-05-01

    Molecular genetic approaches in the model plant Arabidopsis thaliana (Col0) are shedding new light on the role and control of the pathways associated with the mobilization of lipid reserves during oilseed germination and post-germinative growth. Numerous independent studies have reported on the expression of individual genes encoding enzymes from the three major pathways: beta-oxidation, the glyoxylate cycle and gluconeogenesis. However, a single comprehensive study of representative genes and enzymes from the different pathways in a single plant species has not been done. Here we present results from Arabidopsis that demonstrate the co-ordinate regulation of gene expression and enzyme activities for the acyl-CoA oxidase- and 3-ketoacyl-CoA thiolase-mediated steps of beta-oxidation, the isocitrate lyase and malate synthase steps of the glyoxylate cycle and the phosphoenolpyruvate carboxykinase step of gluconeogenesis. The mRNA abundance and enzyme activities increase to a peak at stage 2, 48 h after the onset of seed germination, and decline thereafter either to undetectable levels (for malate synthase and isocitrate lyase) or low basal levels (for the genes of beta-oxidation and gluconeogenesis). The co-ordinate induction of all these genes at the onset of germination raises the possibility that a global regulatory mechanism operates to induce the expression of genes associated with the mobilization of storage reserves during the heterotrophic growth period.

  18. Inhibition of histone deacetylation alters Arabidopsis root growth in response to auxin via PIN1 degradation.

    Science.gov (United States)

    Nguyen, Hoai Nguyen; Kim, Jun Hyeok; Jeong, Chan Young; Hong, Suk-Whan; Lee, Hojoung

    2013-10-01

    Our results showed the histone deacetylase inhibitors (HDIs) control root development in Arabidopsis via regulation of PIN1 degradation. Epigenetic regulation plays a crucial role in the expression of many genes in response to exogenous or endogenous signals in plants as well as other organisms. One of epigenetic mechanisms is modifications of histone, such as acetylation and deacetylation, are catalyzed by histone acetyltransferase (HAT) and histone deacetylase (HDAC), respectively. The Arabidopsis HDACs, HDA6, and HDA19, were reported to function in physiological processes, including embryo development, abiotic stress response, and flowering. In this study, we demonstrated that histone deacetylase inhibitors (HDIs) inhibit primary root elongation and lateral root emergence. In response to HDIs treatment, the PIN1 protein was almost abolished in the root tip. However, the PIN1 gene did not show decreased expression in the presence of HDIs, whereas IAA genes exhibited increases in transcript levels. In contrast, we observed a stable level of gene expression of stress markers (KIN1 and COR15A) and a cell division marker (CYCB1). Taken together, these results suggest that epigenetic regulation may control auxin-mediated root development through the 26S proteasome-mediated degradation of PIN1 protein.

  19. A cold-induced pectin methyl-esterase inhibitor gene contributes negatively to freezing tolerance but positively to salt tolerance in Arabidopsis.

    Science.gov (United States)

    Chen, Jian; Chen, Xuehui; Zhang, Qingfeng; Zhang, Yidan; Ou, Xiangli; An, Lizhe; Feng, Huyuan; Zhao, Zhiguang

    2018-03-01

    Plant pectin methyl-esterase (PME) and PME inhibitor (PMEI) belong to large gene families whose members are proposed to be widely involved in growth, development, and stress responses; however, the biological functions of most PMEs and PMEIs have not been characterized. In this study, we studied the roles of CbPMEI1, a cold-induced pectin methyl-esterase inhibitor (PMEI) gene from Chorispora bungeana, under freezing and salt stress. The putative CbPMEI1 peptide shares highest similarity (83%) with AT5G62360 (PMEI13) of Arabidopsis. Overexpression of either CbPMEI1 or PMEI13 in Arabidopsis decreased tissue PME activity and enhanced the degree of methoxylation of cell wall pectins, indicating that both genes encode functional PMEIs. CbPMEI1 and PMEI13 were induced by cold but repressed by salt stress and abscisic acid, suggesting distinct roles of the genes in freezing and salt stress tolerance. Interestingly, transgenic Arabidopsis plants overexpressing CbPMEI1 or PMEI13 showed decreased freezing tolerance, as indicated by survival and electrolyte leakage assays. On the other hand, the salt tolerance of transgenic plants was increased, showing higher rates of germination, root growth, and survival under salinity conditions as compared with non-transgenic wild-type plants. Although the transgenic plants were freezing-sensitive, they showed longer roots than wild-type plants under cold conditions, suggesting a role of PMEs in balancing the trade-off between freezing tolerance and growth. Thus, our study indicates that CbPMEI1 and PMEI13 are involved in root growth regulation under cold and salt stresses, and suggests that PMEIs may be potential targets for genetic engineering aimed to improve fitness of plants under stress conditions. Copyright © 2018 Elsevier GmbH. All rights reserved.

  20. Evolution of Cis-Regulatory Elements and Regulatory Networks in Duplicated Genes of Arabidopsis.

    Science.gov (United States)

    Arsovski, Andrej A; Pradinuk, Julian; Guo, Xu Qiu; Wang, Sishuo; Adams, Keith L

    2015-12-01

    Plant genomes contain large numbers of duplicated genes that contribute to the evolution of new functions. Following duplication, genes can exhibit divergence in their coding sequence and their expression patterns. Changes in the cis-regulatory element landscape can result in changes in gene expression patterns. High-throughput methods developed recently can identify potential cis-regulatory elements on a genome-wide scale. Here, we use a recent comprehensive data set of DNase I sequencing-identified cis-regulatory binding sites (footprints) at single-base-pair resolution to compare binding sites and network connectivity in duplicated gene pairs in Arabidopsis (Arabidopsis thaliana). We found that duplicated gene pairs vary greatly in their cis-regulatory element architecture, resulting in changes in regulatory network connectivity. Whole-genome duplicates (WGDs) have approximately twice as many footprints in their promoters left by potential regulatory proteins than do tandem duplicates (TDs). The WGDs have a greater average number of footprint differences between paralogs than TDs. The footprints, in turn, result in more regulatory network connections between WGDs and other genes, forming denser, more complex regulatory networks than shown by TDs. When comparing regulatory connections between duplicates, WGDs had more pairs in which the two genes are either partially or fully diverged in their network connections, but fewer genes with no network connections than the TDs. There is evidence of younger TDs and WGDs having fewer unique connections compared with older duplicates. This study provides insights into cis-regulatory element evolution and network divergence in duplicated genes. © 2015 American Society of Plant Biologists. All Rights Reserved.

  1. Structural Redesigning Arabidopsis Lignins into Alkali-Soluble Lignins through the Expression of p-Coumaroyl-CoA:Monolignol Transferase PMT1

    Science.gov (United States)

    Sibout, Richard; Le Bris, Philippe; Cézard, Laurent

    2016-01-01

    Grass lignins can contain up to 10% to 15% by weight of p-coumaric esters. This acylation is performed on monolignols under the catalysis of p-coumaroyl-coenzyme A monolignol transferase (PMT). To study the impact of p-coumaroylation on lignification, we first introduced the Brachypodium distachyon Bradi2g36910 (BdPMT1) gene into Arabidopsis (Arabidopsis thaliana) under the control of the constitutive maize (Zea mays) ubiquitin promoter. The resulting p-coumaroylation was far lower than that of lignins from mature grass stems and had no impact on stem lignin content. By contrast, introducing either the BdPMT1 or the Bradi1g36980 (BdPMT2) gene into Arabidopsis under the control of the Arabidopsis cinnamate-4-hydroxylase promoter boosted the p-coumaroylation of mature stems up to the grass lignin level (8% to 9% by weight), without any impact on plant development. The analysis of purified lignin fractions and the identification of diagnostic products confirmed that p-coumaric acid was associated with lignins. BdPMT1-driven p-coumaroylation was also obtained in the fah1 (deficient for ferulate 5-hydroxylase) and ccr1g (deficient for cinnamoyl-coenzyme A reductase) lines, albeit to a lower extent. Lignins from BdPMT1-expressing ccr1g lines were also found to be feruloylated. In Arabidopsis mature stems, substantial p-coumaroylation of lignins was achieved at the expense of lignin content and induced lignin structural alterations, with an unexpected increase of lignin units with free phenolic groups. This higher frequency of free phenolic groups in Arabidopsis lignins doubled their solubility in alkali at room temperature. These findings suggest that the formation of alkali-leachable lignin domains rich in free phenolic groups is favored when p-coumaroylated monolignols participate in lignification in a grass in a similar manner. PMID:26826222

  2. The Arabidopsis NPR1 Protein Is a Receptor for the Plant Defense Hormone Salicylic Acid

    Directory of Open Access Journals (Sweden)

    Yue Wu

    2012-06-01

    Full Text Available Salicylic acid (SA is an essential hormone in plant immunity, but its receptor has remained elusive for decades. The transcriptional coregulator NPR1 is central to the activation of SA-dependent defense genes, and we previously found that Cys521 and Cys529 of Arabidopsis NPR1's transactivation domain are critical for coactivator function. Here, we demonstrate that NPR1 directly binds SA, but not inactive structural analogs, with an affinity similar to that of other hormone-receptor interactions and consistent with in vivo Arabidopsis SA concentrations. Binding of SA occurs through Cys521/529 via the transition metal copper. Mechanistically, our results suggest that binding of SA causes a conformational change in NPR1 that is accompanied by the release of the C-terminal transactivation domain from the N-terminal autoinhibitory BTB/POZ domain. While NPR1 is already known as a link between the SA signaling molecule and defense-gene activation, we now show that NPR1 is the receptor for SA.

  3. RRM domain of Arabidopsis splicing factor SF1 is important for pre-mRNA splicing of a specific set of genes

    KAUST Repository

    Lee, Keh Chien

    2017-04-11

    The RNA recognition motif of Arabidopsis splicing factor SF1 affects the alternative splicing of FLOWERING LOCUS M pre-mRNA and a heat shock transcription factor HsfA2 pre-mRNA. Splicing factor 1 (SF1) plays a crucial role in 3\\' splice site recognition by binding directly to the intron branch point. Although plant SF1 proteins possess an RNA recognition motif (RRM) domain that is absent in its fungal and metazoan counterparts, the role of the RRM domain in SF1 function has not been characterized. Here, we show that the RRM domain differentially affects the full function of the Arabidopsis thaliana AtSF1 protein under different experimental conditions. For example, the deletion of RRM domain influences AtSF1-mediated control of flowering time, but not the abscisic acid sensitivity response during seed germination. The alternative splicing of FLOWERING LOCUS M (FLM) pre-mRNA is involved in flowering time control. We found that the RRM domain of AtSF1 protein alters the production of alternatively spliced FLM-β transcripts. We also found that the RRM domain affects the alternative splicing of a heat shock transcription factor HsfA2 pre-mRNA, thereby mediating the heat stress response. Taken together, our results suggest the importance of RRM domain for AtSF1-mediated alternative splicing of a subset of genes involved in the regulation of flowering and adaptation to heat stress.

  4. Genome-wide classification and expression analysis of MYB transcription factor families in rice and Arabidopsis

    Science.gov (United States)

    2012-01-01

    Background The MYB gene family comprises one of the richest groups of transcription factors in plants. Plant MYB proteins are characterized by a highly conserved MYB DNA-binding domain. MYB proteins are classified into four major groups namely, 1R-MYB, 2R-MYB, 3R-MYB and 4R-MYB based on the number and position of MYB repeats. MYB transcription factors are involved in plant development, secondary metabolism, hormone signal transduction, disease resistance and abiotic stress tolerance. A comparative analysis of MYB family genes in rice and Arabidopsis will help reveal the evolution and function of MYB genes in plants. Results A genome-wide analysis identified at least 155 and 197 MYB genes in rice and Arabidopsis, respectively. Gene structure analysis revealed that MYB family genes possess relatively more number of introns in the middle as compared with C- and N-terminal regions of the predicted genes. Intronless MYB-genes are highly conserved both in rice and Arabidopsis. MYB genes encoding R2R3 repeat MYB proteins retained conserved gene structure with three exons and two introns, whereas genes encoding R1R2R3 repeat containing proteins consist of six exons and five introns. The splicing pattern is similar among R1R2R3 MYB genes in Arabidopsis. In contrast, variation in splicing pattern was observed among R1R2R3 MYB members of rice. Consensus motif analysis of 1kb upstream region (5′ to translation initiation codon) of MYB gene ORFs led to the identification of conserved and over-represented cis-motifs in both rice and Arabidopsis. Real-time quantitative RT-PCR analysis showed that several members of MYBs are up-regulated by various abiotic stresses both in rice and Arabidopsis. Conclusion A comprehensive genome-wide analysis of chromosomal distribution, tandem repeats and phylogenetic relationship of MYB family genes in rice and Arabidopsis suggested their evolution via duplication. Genome-wide comparative analysis of MYB genes and their expression analysis

  5. Overexpression of an Arabidopsis heterogeneous nuclear ribonucleoprotein gene, AtRNP1, affects plant growth and reduces plant tolerance to drought and salt stresses

    International Nuclear Information System (INIS)

    Wang, Zhenyu; Zhao, Xiuyang; Wang, Bing; Liu, Erlong; Chen, Ni; Zhang, Wei; Liu, Heng

    2016-01-01

    Heterogeneous nuclear ribonucleoproteins (hnRNPs) participate in diverse regulations of plant growth and environmental stress responses. In this work, an Arabidopsis hnRNP of unknown function, AtRNP1, was investigated. We found that AtRNP1 gene is highly expressed in rosette and cauline leaves, and slightly induced under drought, salt, osmotic and ABA stresses. AtRNP1 protein is localized to both the nucleus and cytoplasm. We performed homologous overexpression of AtRNP1 and found that the transgenic plants showed shortened root length and plant height, and accelerated flowering. In addition, the transgenic plants also showed reduced tolerance to drought, salt, osmotic and ABA stresses. Further studies revealed that under both normal and stress conditions, the proline contents in the transgenic plants are markedly decreased, associated with reduced expression levels of a proline synthase gene and several stress-responsive genes. These results suggested that the overexpression of AtRNP1 negatively affects plant growth and abiotic stress tolerance. - Highlights: • AtRNP1 is a widely expressed gene and its expression is slightly induced under abiotic stresses. • AtRNP1 protein is localized to both the nucleus and cytoplasm. • Overexpression of AtRNP1 affects plant growth. • Overexpression of AtRNP1 reduces plant tolerance to drought and salt stresses. • AtRNP1 overexpression plants show decreased proline accumulation and stress-responsive gene expressions.

  6. Overexpression of an Arabidopsis heterogeneous nuclear ribonucleoprotein gene, AtRNP1, affects plant growth and reduces plant tolerance to drought and salt stresses

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhenyu, E-mail: wzy72609@163.com [Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730030 (China); Zhao, Xiuyang, E-mail: xiuzh@psb.vib-ugent.be [Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730030 (China); Wang, Bing, E-mail: wangbing@ibcas.ac.cn [Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730030 (China); Liu, Erlong, E-mail: liuel14@lzu.edu.cn [Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730030 (China); Chen, Ni, E-mail: 63710156@qq.com [Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730030 (China); Zhang, Wei, E-mail: wzhang1216@yahoo.com [Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444 (China); Liu, Heng, E-mail: hengliu@lzu.edu.cn [Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730030 (China)

    2016-04-01

    Heterogeneous nuclear ribonucleoproteins (hnRNPs) participate in diverse regulations of plant growth and environmental stress responses. In this work, an Arabidopsis hnRNP of unknown function, AtRNP1, was investigated. We found that AtRNP1 gene is highly expressed in rosette and cauline leaves, and slightly induced under drought, salt, osmotic and ABA stresses. AtRNP1 protein is localized to both the nucleus and cytoplasm. We performed homologous overexpression of AtRNP1 and found that the transgenic plants showed shortened root length and plant height, and accelerated flowering. In addition, the transgenic plants also showed reduced tolerance to drought, salt, osmotic and ABA stresses. Further studies revealed that under both normal and stress conditions, the proline contents in the transgenic plants are markedly decreased, associated with reduced expression levels of a proline synthase gene and several stress-responsive genes. These results suggested that the overexpression of AtRNP1 negatively affects plant growth and abiotic stress tolerance. - Highlights: • AtRNP1 is a widely expressed gene and its expression is slightly induced under abiotic stresses. • AtRNP1 protein is localized to both the nucleus and cytoplasm. • Overexpression of AtRNP1 affects plant growth. • Overexpression of AtRNP1 reduces plant tolerance to drought and salt stresses. • AtRNP1 overexpression plants show decreased proline accumulation and stress-responsive gene expressions.

  7. The Genetic Basis of Constitutive and Herbivore-Induced ESP-Independent Nitrile Formation in Arabidopsis1[W][OA

    Science.gov (United States)

    Burow, Meike; Losansky, Anja; Müller, René; Plock, Antje; Kliebenstein, Daniel J.; Wittstock, Ute

    2009-01-01

    Glucosinolates are a group of thioglucosides that are components of an activated chemical defense found in the Brassicales. Plant tissue damage results in hydrolysis of glucosinolates by endogenous thioglucosidases known as myrosinases. Spontaneous rearrangement of the aglucone yields reactive isothiocyanates that are toxic to many organisms. In the presence of specifier proteins, alternative products, namely epithionitriles, simple nitriles, and thiocyanates with different biological activities, are formed at the expense of isothiocyanates. Recently, simple nitriles were recognized to serve distinct functions in plant-insect interactions. Here, we show that simple nitrile formation in Arabidopsis (Arabidopsis thaliana) ecotype Columbia-0 rosette leaves increases in response to herbivory and that this increase is independent of the known epithiospecifier protein (ESP). We combined phylogenetic analysis, a screen of Arabidopsis mutants, recombinant protein characterization, and expression quantitative trait locus mapping to identify a gene encoding a nitrile-specifier protein (NSP) responsible for constitutive and herbivore-induced simple nitrile formation in Columbia-0 rosette leaves. AtNSP1 is one of five Arabidopsis ESP homologues that promote simple nitrile, but not epithionitrile or thiocyanate, formation. Four of these homologues possess one or two lectin-like jacalin domains, which share a common ancestry with the jacalin domains of the putative Arabidopsis myrosinase-binding proteins MBP1 and MBP2. A sixth ESP homologue lacked specifier activity and likely represents the ancestor of the gene family with a different biochemical function. By illuminating the genetic and biochemical bases of simple nitrile formation, our study provides new insights into the evolution of metabolic diversity in a complex plant defense system. PMID:18987211

  8. Pseudomonas sax genes overcome aliphatic isothiocyanate-mediated non-host resistance in Arabidopsis

    Science.gov (United States)

    Jun Fan; Casey Crooks; Gary Creissen; Lionel Hill; Shirley Fairhurst; Peter Doerner; Chris Lamb

    2011-01-01

    Most plant-microbe interactions do not result in disease; natural products restrict non-host pathogens. We found that sulforaphane (4-methylsulfinylbutyl isothiocyanate), a natural product derived from aliphatic glucosinolates, inhibits growth in Arabidopsis of non-host Pseudomonas bacteria in planta. Multiple sax genes (saxCAB/F/D/G) were identified in Pseudomonas...

  9. Pleiotropic effects of flowering time genes in the annual crucifer Arabidopsis thaliana (Brassicaceae)

    NARCIS (Netherlands)

    Van Tienderen, P.H.; Hammad, I.; Zwaal, F.C.

    1996-01-01

    Variation in flowering time of Arabidopsis thaliana was studied in an experiment with mutant lines. The pleiotropic effects of flowering time genes on morphology and reproductive yield were assessed under three levels of nutrient supply. At all nutrient levels flowering time and number of rosette

  10. Arabidopsis calcium-dependent protein kinase AtCPK1 plays a positive role in salt/drought-stress response.

    Science.gov (United States)

    Huang, Kui; Peng, Lu; Liu, Yingying; Yao, Rundong; Liu, Zhibin; Li, Xufeng; Yang, Yi; Wang, Jianmei

    2018-03-25

    The calcium-dependent protein kinases (CDPKs) play vital roles in plant response to various environmental stimuli. Here, we investigated the function of Arabidopsis AtCPK1 in response to salt and drought stress. The loss-of-function cpk1 mutant displayed hypersensitive to salt and drought stress, whereas overexpressing AtCPK1 in Arabidopsis plants significantly enhanced the resistance to salt or drought stress. The reduced or elevated tolerance of cpk1 mutant and AtCPK1-overexpressing lines was confirmed by the changes of proline, malondialdehyde (MDA) and H 2 O 2 . Real-time PCR analysis revealed that the expression of several stress-inducible genes (RD29A, COR15A, ZAT10, APX2) down-regulated in cpk1 mutant and up-regulated in AtCPK1-overexpressing plants. These results are likely to indicate that AtCPK1 positively regulates salt and drought stress in Arabidopsis. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Identification of late O{sub 3}-responsive genes in Arabidopsis thaliana by cDNA microarray analysis

    Energy Technology Data Exchange (ETDEWEB)

    D' Haese, D. [Univ. of Antwerp, Dept. of Biology, Antwerp (BE) and Univ. of Newcastle, School of Biology and Psychology, Div. of Biology, Newcastle-Upon-Tyne (United Kingdom); Horemans, N.; Coen, W. De; Guisez, Y. [Univ. of Antwerp, Dept. of Biology, Antwerp (Belgium)

    2006-09-15

    To better understand the response of a plant to 0{sub 3} stress, an integrated microarray analysis was performed on Arabidopsis plants exposed during 2 days to purified air or 150 nl l{sup -1} O{sub 3}, 8 h day-l. Agilent Arabidopsis 2 Oligo Microarrays were used of which the reliability was confirmed by quantitative real-time PCR of nine randomly selected genes. We confirmed the O{sub 3} responsiveness of heat shock proteins (HSPs), glutathione-S-tranferases and genes involved in cell wall stiffening and microbial defence. Whereas, a previous study revealed that during an early stage of the O{sub 3} stress response, gene expression was strongly dependent on jasmonic acid and ethylene, we report that at a later stage (48 h) synthesis of jasrnonic acid and ethylene was downregulated. In addition, we observed the simultaneous induction of salicylic acid synthesis and genes involved in programmed cell death and senescence. Also typically, the later stage of the response to O{sub 3} appeared to be the induction of the complete pathway leading to the biosynthesis of anthocyanin diglucosides and the induction of thioredoxin-based redox control. Surprisingly absent in the list of induced genes were genes involved in ASC-dependent antioxidation, few of which were found to be induced after 12 h of 0{sub 3} exposure in another study. We discuss these and other particular results of the microarray analysis and provide a map depicting significantly affected genes and their pathways highlighting their interrelationships and subcellular localization. (au)

  12. Transcriptome analysis by GeneTrail revealed regulation of functional categories in response to alterations of iron homeostasis in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Lenhof Hans-Peter

    2011-05-01

    Full Text Available Abstract Background High-throughput technologies have opened new avenues to study biological processes and pathways. The interpretation of the immense amount of data sets generated nowadays needs to be facilitated in order to enable biologists to identify complex gene networks and functional pathways. To cope with this task multiple computer-based programs have been developed. GeneTrail is a freely available online tool that screens comparative transcriptomic data for differentially regulated functional categories and biological pathways extracted from common data bases like KEGG, Gene Ontology (GO, TRANSPATH and TRANSFAC. Additionally, GeneTrail offers a feature that allows screening of individually defined biological categories that are relevant for the respective research topic. Results We have set up GeneTrail for the use of Arabidopsis thaliana. To test the functionality of this tool for plant analysis, we generated transcriptome data of root and leaf responses to Fe deficiency and the Arabidopsis metal homeostasis mutant nas4x-1. We performed Gene Set Enrichment Analysis (GSEA with eight meaningful pairwise comparisons of transcriptome data sets. We were able to uncover several functional pathways including metal homeostasis that were affected in our experimental situations. Representation of the differentially regulated functional categories in Venn diagrams uncovered regulatory networks at the level of whole functional pathways. Over-Representation Analysis (ORA of differentially regulated genes identified in pairwise comparisons revealed specific functional plant physiological categories as major targets upon Fe deficiency and in nas4x-1. Conclusion Here, we obtained supporting evidence, that the nas4x-1 mutant was defective in metal homeostasis. It was confirmed that nas4x-1 showed Fe deficiency in roots and signs of Fe deficiency and Fe sufficiency in leaves. Besides metal homeostasis, biotic stress, root carbohydrate, leaf

  13. Reference: 150 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available ridization, Pht1;4 was found mainly expressed in inorgan...physiological characterization of Arabidopsis pht1;4 high affinity phosphate transporter mutants. Using GUS-gene trap and in situ hyb

  14. The better growth phenotype of DvGS1-transgenic arabidopsis thaliana is attributed to the improved efficiency of nitrogen assimilation

    Directory of Open Access Journals (Sweden)

    Zhu Chenguang

    2015-01-01

    Full Text Available The overexpression of the algal glutamine synthetase (GS gene DvGS1 in Arabidopsis thaliana resulted in higher plant biomass and better growth phenotype. The purpose of this study was to recognize the biological mechanism for the growth improvement of DvGS1-transgenic Arabidopsis. A series of molecular and biochemical investigations related to nitrogen and carbon metabolism in the DvGS1-transgenic line was conducted. Analysis of nitrogen use efficiency (NUE-related gene transcription and enzymatic activity revealed that the transcriptional level and enzymatic activity of the genes encoding GS, glutamate synthase, glutamate dehydrogenase, alanine aminotransferase and aspartate aminotransferase, were significantly upregulated, especially from leaf tissues of the DvGS1-transgenic line under two nitrate conditions. The DvGS1-transgenic line showed increased total nitrogen content and decreased carbon: nitrogen ratio compared to wild-type plants. Significant reduced concentrations of free nitrate, ammonium, sucrose, glucose and starch, together with higher concentrations of total amino acids, individual amino acids (glutamate, aspartate, asparagine, methionine, soluble proteins and fructose in leaf tissues confirmed that the DvGS1-transgenic line demonstrated a higher efficiency of nitrogen assimilation, which subsequently affected carbon metabolism. These improved metabolisms of nitrogen and carbon conferred the DvGS1-transgenic Arabidopsis higher NUE, more biomass and better growth phenotype compared with the wild-type plants.

  15. Reference: 34 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available al gene in different tissues, under normal growth conditions, and when the plants were subjected to anoxia or other environmental...e1 gene of Arabidopsis is required during anoxia but not other environmental stre...ronmental stresses. We also characterize the expression of the aldehyde dehydrogena...ed under oxygen limitation among the PDC1 gene family and that a pdc1 null mutant is comprised in anoxia tolerance but not other envi

  16. Identification of proteins interacting with Arabidopsis ACD11

    DEFF Research Database (Denmark)

    Petersen, Nikolaj H T; Joensen, Jan; McKinney, Lea V

    2009-01-01

    The Arabidopsis ACD11 gene encodes a sphingosine transfer protein and was identified by the accelerated cell death phenotype of the loss of function acd11 mutant, which exhibits heightened expression of genes involved in the disease resistance hypersensitive response (HR). We used ACD11 as bait...... in a yeast two-hybrid screen of an Arabidopsis cDNA library to identify ACD11 interacting proteins. One interactor identified is a protein of unknown function with an RNA recognition motif (RRM) designated BPA1 (binding partner of ACD11). Co-immunoprecipitation experiments confirmed the ACD11-BPA1...

  17. Regulatory network construction in Arabidopsis by using genome-wide gene expression quantitative trait loci

    NARCIS (Netherlands)

    Keurentjes, Joost J.B.; Fu, Jingyuan; Terpstra, Inez R.; Garcia, Juan M.; Ackerveken, Guido van den; Snoek, L. Basten; Peeters, Anton J.M.; Vreugdenhil, Dick; Koornneef, Maarten; Jansen, Ritsert C.

    2007-01-01

    Accessions of a plant species can show considerable genetic differences that are analyzed effectively by using recombinant inbred line (RIL) populations. Here we describe the results of genome-wide expression variation analysis in an RIL population of Arabidopsis thaliana. For many genes, variation

  18. Mitochondrial Porin Isoform AtVDAC1 Regulates the Competence of Arabidopsis thaliana to Agrobacterium-Mediated Genetic Transformation.

    Science.gov (United States)

    Kwon, Tackmin

    2016-09-01

    The efficiency of Agrobacterium-mediated transformation in plants depends on the virulence of Agrobacterium strains, the plant tissue culture conditions, and the susceptibility of host plants. Understanding the molecular interactions between Agrobacterium and host plant cells is crucial when manipulating the susceptibility of recalcitrant crop plants and protecting orchard trees from crown gall disease. It was discovered that Arabidopsis voltage-dependent anion channel 1 (atvdac1) mutant has drastic effects on Agrobacterium-mediated tumorigenesis and growth developmental phenotypes, and that these effects are dependent on a Ws-0 genetic background. Genetic complementation of Arabidopsis vdac1 mutants and yeast porin1-deficient strain with members of the AtVDAC gene family revealed that AtVDAC1 is required for Agrobacterium-mediated transformation, and there is weak functional redundancy between AtVDAC1 and AtVDAC3, which is independent of porin activity. Furthermore, atvdac1 mutants were deficient in transient and stable transformation by Agrobacterium, suggesting that AtVDAC1 is involved in the early stages of Agrobacterium infection prior to transferred-DNA (T-DNA) integration. Transgenic plants overexpressing AtVDAC1 not only complemented the phenotypes of the atvdac1 mutant, but also showed high efficiency of transient T-DNA gene expression; however, the efficiency of stable transformation was not affected. Moreover, the effect of phytohormone treatment on competence to Agrobacterium was compromised in atvdac1 mutants. These data indicate that AtVDAC1 regulates the competence of Arabidopsis to Agrobacterium infection.

  19. Purifying selection acts on coding and non-coding sequences of paralogous genes in Arabidopsis thaliana.

    Science.gov (United States)

    Hoffmann, Robert D; Palmgren, Michael

    2016-06-13

    Whole-genome duplications in the ancestors of many diverse species provided the genetic material for evolutionary novelty. Several models explain the retention of paralogous genes. However, how these models are reflected in the evolution of coding and non-coding sequences of paralogous genes is unknown. Here, we analyzed the coding and non-coding sequences of paralogous genes in Arabidopsis thaliana and compared these sequences with those of orthologous genes in Arabidopsis lyrata. Paralogs with lower expression than their duplicate had more nonsynonymous substitutions, were more likely to fractionate, and exhibited less similar expression patterns with their orthologs in the other species. Also, lower-expressed genes had greater tissue specificity. Orthologous conserved non-coding sequences in the promoters, introns, and 3' untranslated regions were less abundant at lower-expressed genes compared to their higher-expressed paralogs. A gene ontology (GO) term enrichment analysis showed that paralogs with similar expression levels were enriched in GO terms related to ribosomes, whereas paralogs with different expression levels were enriched in terms associated with stress responses. Loss of conserved non-coding sequences in one gene of a paralogous gene pair correlates with reduced expression levels that are more tissue specific. Together with increased mutation rates in the coding sequences, this suggests that similar forces of purifying selection act on coding and non-coding sequences. We propose that coding and non-coding sequences evolve concurrently following gene duplication.

  20. A mutation in the Arabidopsis HYL1 gene encoding a dsRNA binding protein affects responses to abscisic acid, auxin, and cytokinin

    Science.gov (United States)

    Lu, C.; Fedoroff, N.

    2000-01-01

    Both physiological and genetic evidence indicate interconnections among plant responses to different hormones. We describe a pleiotropic recessive Arabidopsis transposon insertion mutation, designated hyponastic leaves (hyl1), that alters the plant's responses to several hormones. The mutant is characterized by shorter stature, delayed flowering, leaf hyponasty, reduced fertility, decreased rate of root growth, and an altered root gravitropic response. It also exhibits less sensitivity to auxin and cytokinin and hypersensitivity to abscisic acid (ABA). The auxin transport inhibitor 2,3,5-triiodobenzoic acid normalizes the mutant phenotype somewhat, whereas another auxin transport inhibitor, N-(1-naph-thyl)phthalamic acid, exacerbates the phenotype. The gene, designated HYL1, encodes a 419-amino acid protein that contains two double-stranded RNA (dsRNA) binding motifs, a nuclear localization motif, and a C-terminal repeat structure suggestive of a protein-protein interaction domain. We present evidence that the HYL1 gene is ABA-regulated and encodes a nuclear dsRNA binding protein. We hypothesize that the HYL1 protein is a regulatory protein functioning at the transcriptional or post-transcriptional level.

  1. A plant small polypeptide is a novel component of DNA-binding protein phosphatase 1-mediated resistance to plum pox virus in Arabidopsis.

    Science.gov (United States)

    Castelló, María José; Carrasco, Jose Luis; Navarrete-Gómez, Marisa; Daniel, Jacques; Granot, David; Vera, Pablo

    2011-12-01

    DNA-binding protein phosphatases (DBPs) have been identified as a novel class of plant-specific regulatory factors playing a role in plant-virus interactions. NtDBP1 from tobacco (Nicotiana tabacum) was shown to participate in transcriptional regulation of gene expression in response to virus infection in compatible interactions, and AtDBP1, its closest relative in the model plant Arabidopsis (Arabidopsis thaliana), has recently been found to mediate susceptibility to potyvirus, one of the most speciose taxa of plant viruses. Here, we report on the identification of a novel family of highly conserved small polypeptides that interact with DBP1 proteins both in tobacco and Arabidopsis, which we have designated DBP-interacting protein 2 (DIP2). The interaction of AtDIP2 with AtDBP1 was demonstrated in vivo by bimolecular fluorescence complementation, and AtDIP2 was shown to functionally interfere with AtDBP1 in yeast. Furthermore, reducing AtDIP2 gene expression leads to increased susceptibility to the potyvirus Plum pox virus and to a lesser extent also to Turnip mosaic virus, whereas overexpression results in enhanced resistance. Therefore, we describe a novel family of conserved small polypeptides in plants and identify AtDIP2 as a novel host factor contributing to resistance to potyvirus in Arabidopsis.

  2. Identification of genes affecting the response of tomato and Arabidopsis upon powdery mildew infection

    NARCIS (Netherlands)

    Gao, D.

    2014-01-01

    Many plant species are hosts of powdery mildew fungi, including Arabidopsis and economically important crops such as wheat, barley and tomato. Resistance has been explored using induced mutagenesis and natural variation in the plant species. The isolated genes encompass loss-of-function

  3. Comparative metabolic profiling of Haberlea rhodopensis, Thellungiella halophyla, and Arabidopsis thaliana exposed to low temperature

    Directory of Open Access Journals (Sweden)

    Maria eBenina

    2013-12-01

    Full Text Available Haberlea rhodopensis is a resurrection species with extreme resistance to drought stress and desiccation but also with ability to withstand low temperatures and freezing stress. In order to identify biochemical strategies which contribute to Haberlea’s remarkable stress tolerance, the metabolic reconfiguration of H. rhodopensis during low temperature (4°C and subsequent return to optimal temperatures was investigated and compared with that of the stress tolerant Thellungiella halophyla and the stress sensitive A. thaliana. The effect of the low temperature treatment in the three species was confirmed by gene expression of low-temperature- and dehydration-inducible genes. Metabolic analysis by GC-MS revealed intrinsic differences in the metabolite levels of the three species even at 21°C. H. rhodopensis had significantly more raffinose, melibiose, trehalose, myo-inositol, sorbitol, and galactinol than the other two species. A. thaliana had the highest levels of putrescine and fumarate, while T. halophila had much higher levels of several amino acids, including alanine, asparagine, beta-alanine, histidine, isoleucine, phenylalanine, serine, threonine, and valine. In addition, the three species responded differently to the low temperature treatment and the subsequent recovery, especially with regard to the sugar metabolism. Chilling induced accumulation of maltose in Haberlea and raffinose in A. thaliana, but raffinose levels in low temperature exposed Arabidopsis were still much lower than these in unstressed Haberlea. While all species accumulated sucrose during chilling, that accumulation was transient in Haberlea and Arabidopsis but sustained in T. halophila after the return to optimal temperature. In T. halophila, the levels of proline and hydroxyproline drastically increased upon recovery. Collectively, these results show inherent. differences in the metabolomes under the ambient temperature and the strategies to respond to low

  4. Reference: 2 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available at share 60 to 80% protein sequence identity. Gene disruptions of the yeast (Saccharomyces cerevisiae) ortho... that these syntaxins are not essential for growth in yeast. However, we have isolated and characterized gene disruption...s in two genes from each family, finding that disruption of individual syntaxins from these fami...lies is lethal in the male gametophyte of Arabidopsis. Complementation of the syp21-1 gene disruption

  5. Transcriptomic profiling of Arabidopsis gene expression in response to varying micronutrient zinc supply

    DEFF Research Database (Denmark)

    Azevedo, Herlânder; Azinheiro, Sarah Gaspar; Muñoz-Mérida, Antonio

    2016-01-01

    Deficiency of the micronutrient zinc is a widespread condition in agricultural soils, causing a negative impact on crop quality and yield. Nevertheless, there is an insufficient knowledge on the regulatory and molecular mechanisms underlying the plant response to inadequate zinc nutrition [1......]. This information should contribute to the development of plant-based solutions with improved nutrient-use-efficiency traits in crops. Previously, the transcription factors bZIP19 and bZIP23 were identified as essential regulators of the response to zinc deficiency in Arabidopsis thaliana [2]. A microarray...... experiment comparing gene expression between roots of wild-type and the mutant bzip19 bzip23, exposed to zinc deficiency, led to the identification of differentially expressed genes related with zinc homeostasis, namely its transport and plant internal translocation [2]. Here, we provide the detailed...

  6. A single-repeat R3-MYB transcription factor MYBC1 negatively regulates freezing tolerance in Arabidopsis

    International Nuclear Information System (INIS)

    Zhai, Hong; Bai, Xi; Zhu, Yanming; Li, Yong; Cai, Hua; Ji, Wei; Ji, Zuojun; Liu, Xiaofei; Liu, Xin; Li, Jing

    2010-01-01

    We had previously identified the MYBC1 gene, which encodes a single-repeat R3-MYB protein, as a putative osmotic responding gene; however, no R3-MYB transcription factor has been reported to regulate osmotic stress tolerance. Thus, we sought to elucidate the function of MYBC1 in response to osmotic stresses. Real-time RT-PCR analysis indicated that MYBC1 expression responded to cold, dehydration, salinity and exogenous ABA at the transcript level. mybc1 mutants exhibited an increased tolerance to freezing stress, whereas 35S::MYBC1 transgenic plants exhibited decreased cold tolerance. Transcript levels of some cold-responsive genes, including CBF/DREB genes, KIN1, ADC1, ADC2 and ZAT12, though, were not altered in the mybc1 mutants or the 35S::MYBC1 transgenic plants in response to cold stress, as compared to the wild type. Microarray analysis results that are publically available were investigated and found transcript level of MYBC1 was not altered by overexpression of CBF1, CBF2, and CBF3, suggesting that MYBC1 is not down regulated by these CBF family members. Together, these results suggested that MYBC1is capable of negatively regulating the freezing tolerance of Arabidopsis in the CBF-independent pathway. In transgenic Arabidopsis carrying an MYBC1 promoter driven β-glucuronidase (GUS) construct, GUS activity was observed in all tissues and was relatively stronger in the vascular tissues. Fused MYBC1 and GFP protein revealed that MYBC1 was localized exclusively in the nuclear compartment.

  7. Overexpression of PtABCC1 contributes to mercury tolerance and accumulation in Arabidopsis and poplar.

    Science.gov (United States)

    Sun, Liping; Ma, Yifeng; Wang, Huihong; Huang, Weipeng; Wang, Xiaozhu; Han, Li; Sun, Wanmei; Han, Erqin; Wang, Bangjun

    2018-03-18

    Mercury (Hg) is a highly biotoxic heavy metal that contaminates the environment. Phytoremediation is a green technology for environmental remediation and is used to clean up Hg contaminated soil in recent years. In this study, we isolated an ATP-binding cassette (ABC) transporter gene PtABCC1 from Populus trichocarpa and overexpressed it in Arabidopsis and poplar. The transgenic plants conferred higher Hg tolerance than wild type (WT) plants, and overexpression of PtABCC1 could lead to 26-72% or 7-160% increase of Hg accumulation in Arabidopsis or poplar plants, respectively. These results demonstrated that PtABCC1 plays a crucial role in enhancing tolerance and accumulation to Hg in plants, which provides a promising way for phytoremediation of Hg contamination. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Classical Imagery and the Joy of the Resurrection. Arsenios' Stichoi on the Sunday of the Resurrection

    Directory of Open Access Journals (Sweden)

    Nicholas Newman

    2016-12-01

    Full Text Available In the Stichoi on the Sunday of the Resurrection, Arsenios of Corfu alludes to several couples from Classical mythology in the context of a springtime idyll. These mythological couples are not the ideal lovers the paradisic context of the poem makes them seem to be. This paper examines these allusions and discusses how Arsenios uses their mythological context to create a juxtaposition of the frustrated eroticism of Classical myth and the fulfillment of Pascha.

  9. Overexpression of LOV KELCH protein 2 confers dehydration tolerance and is associated with enhanced expression of dehydration-inducible genes in Arabidopsis thaliana.

    Science.gov (United States)

    Miyazaki, Yuji; Abe, Hiroshi; Takase, Tomoyuki; Kobayashi, Masatomo; Kiyosue, Tomohiro

    2015-05-01

    The overexpression of LKP2 confers dehydration tolerance in Arabidopsis thaliana ; this is likely due to enhanced expression of dehydration-inducible genes and reduced stomatal opening. LOV KELCH protein 2 (LKP2) modulates the circadian rhythm and flowering time in plants. In this study, we observed that LKP2 overexpression enhanced dehydration tolerance in Arabidopsis. Microarray analysis demonstrated that expression of water deprivation-responsive genes was higher in the absence of dehydration stress in transgenic Arabidopsis plants expressing green fluorescent protein-tagged LKP2 (GFP-LKP2) than in control transgenic plants expressing GFP. After dehydration followed by rehydration, GFP-LKP2 plants developed more leaves and roots and exhibited higher survival rates than control plants. In the absence of dehydration stress, four dehydration-inducible genes, namely DREB1A, DREB1B, DREB1C, and RD29A, were expressed in GFP-LKP2 plants, whereas they were not expressed or were expressed at low levels in control plants. Under dehydration stress, the expression of DREB2B and RD29A peaked faster in the GFP-LKP2 plants than in control plants. The stomatal aperture of GFP-LKP2 plants was smaller than that of control plants. These results suggest that the dehydration tolerance of GFP-LKP2 plants is caused by upregulation of DREB1A-C/CBF1-3 and their downstream targets; restricted stomatal opening in the absence of dehydration stress also appears to contribute to the phenotype. The rapid and high expression of DREB2B and its downstream target genes also likely accounts for some features of the GFP-LKP2 phenotype. Our results suggest that LKP2 can be used for biotechnological applications not only to adjust the flowering time control but also to enhance dehydration tolerance.

  10. The Resurrection of the Dead, Based on Avicenna’s and Thomas Aquinas’ View

    Directory of Open Access Journals (Sweden)

    Mohammad Mahdi Meshkati

    2013-02-01

    Full Text Available ’Resurrection’ is one of the most important issue among the religious, philosophical and theological issues. As an aim, this essay has to compare some opinions of the two prominent thinkers in Islam and Christianity. Avicenna and Aquinas, in regard with the Resurrection. Exept in respect to badily Resurrection, Avicenna’s method of dispute is an absolutely philosophical one whereas Aquinas’ is a theological- philosophical method. Avicenna and Aquinas are both agreed that the soul is and incorporeal substance, so that it won’t be destroyed, supposing destruction of the body. Moreover, they both have the view that the soul is created and are agreed that it is eternal. There is no place for purgatory, bodily paradise and hell in Avicena’s philosophy. But, Aquinas, according to the narrative texts, accepts them and deals with thire’s details. As Aquinas, Avicenna believe in necessity of the Resurrection, but he thinks that the only way of accepting bodily Resurrection is to have earnest trust in our religious tradition. His main obstacle is the materiality of imagination. But, while insisting on the point that, man is a compound of soul and body, and that we cannot obtain perfect happiness in this world, Aquinas, consequently, arrives at necessity of bodily Resurrection accepthing, of course, some differences between corporeality in this world and corporeality in the Resurrection.Concerning spiritual Resurrection, Avicenna, proves immateriality of the soul and so he guarantees it’s permanence. Then, by proposing some principles, he claimes the existence of intelctual enjoyment and intellectual pain or, the human soul’s misery and happiness . On the other hand, Aquinas, by denying various probable cases of happiness he concludes that the last happiness will not happen unless you have an immediate intelectual vision of God’s entity, and this occurs only in Resurrection and by Divine illumination.

  11. Integration of Auxin and Salt Signals by the NAC Transcription Factor NTM2 during Seed Germination in Arabidopsis1[W

    Science.gov (United States)

    Park, Jungmin; Kim, Youn-Sung; Kim, Sang-Gyu; Jung, Jae-Hoon; Woo, Je-Chang; Park, Chung-Mo

    2011-01-01

    Seed germination is regulated through elaborately interacting signaling networks that integrate diverse environmental cues into hormonal signaling pathways. Roles of gibberellic acid and abscisic acid in germination have been studied extensively using Arabidopsis (Arabidopsis thaliana) mutants having alterations in seed germination. Auxin has also been implicated in seed germination. However, how auxin influences germination is largely unknown. Here, we demonstrate that auxin is linked via the IAA30 gene with a salt signaling cascade mediated by the NAM-ATAF1/2-CUC2 transcription factor NTM2/Arabidopsis NAC domain-containing protein 69 (for NAC with Transmembrane Motif1) during seed germination. Germination of the NTM2-deficient ntm2-1 mutant seeds exhibited enhanced resistance to high salinity. However, the salt resistance disappeared in the ntm2-1 mutant overexpressing the IAA30 gene, which was induced by salt in a NTM2-dependent manner. Auxin exhibited no discernible effects on germination under normal growth conditions. Under high salinity, however, whereas exogenous application of auxin further suppressed the germination of control seeds, the auxin effects were reduced in the ntm2-1 mutant. Consistent with the inhibitory effects of auxin on germination, germination of YUCCA 3-overexpressing plants containing elevated levels of active auxin was more severely influenced by salt. These observations indicate that auxin delays seed germination under high salinity through cross talk with the NTM2-mediated salt signaling in Arabidopsis. PMID:21450938

  12. Role of the plant-specific endoplasmic reticulum stress-inducible gene TIN1 in the formation of pollen surface structure in Arabidopsis thaliana

    KAUST Repository

    Iwata, Yuji; Nishino, Tsuneyo; Iwano, Megumi; Takayama, Seiji; Koizumi, Nozomu

    2012-01-01

    Accumulation of unfolded proteins in the endoplasmic reticulum (ER) of eukaryotic cells triggers the transcriptional activation of ER-resident molecular chaperones and folding enzymes to maintain cellular homeostasis. This process is known as the ER stress response or the unfolded protein response. We have identified tunicamycin induced 1 (TIN1), a plant-specific ER stress-inducible Arabidopsis thaliana gene. The TIN1 protein is localized in the ER; however, its molecular function has yet to be clarified. In this study, we performed functional analysis of TIN1 in planta. RT-PCR analysis showed that TIN1 is highly expressed in pollen. Analysis using the β-glucuronidase reporter gene demonstrated that the TIN1 promoter is active throughout pollen development, peaking at the time of flowering and in an ovule of an open flower. Although a T-DNA insertion mutant of TIN1 grows normally under ambient laboratory conditions, abnormal pollen surface morphology was observed under a scanning electron microscope. Based on the current and previous observations, a possible physiological function of TIN1 during pollen development is discussed. © 2012 The Japanese Society for Plant Cell and Molecular Biology.

  13. Tissue-specific production of limonene in Camelina sativa with the Arabidopsis promoters of genes BANYULS and FRUITFULL.

    Science.gov (United States)

    Borghi, Monica; Xie, De-Yu

    2016-02-01

    Arabidopsis promoters of genes BANYULS and FRUITFULL are transcribed in Camelina. They triggered the transcription of limonene synthase and induced higher limonene production in seeds and fruits than CaMV 35S promoter. Camelina sativa (Camelina) is an oilseed crop of relevance for the production of biofuels and the plant has been target of a recent and intense program of genetic manipulation aimed to increase performance, seed yield and to modify the fatty acid composition of the oil. Here, we have explored the performance of two Arabidopsis thaliana (Arabidopsis) promoters in triggering transgene expression in Camelina. The promoters of two genes BANYULS (AtBAN pro ) and FRUITFULL (AtFUL pro ), which are expressed in seed coat and valves of Arabidopsis, respectively, have been chosen to induce the expression of limonene synthase (LS) from Citrus limon. In addition, the constitutive CaMV 35S promoter was utilized to overexpress LS in Camelina . The results of experiments revealed that AtBAN pro and AtFUL pro are actively transcribed in Camelina where they also retain specificity of expression in seeds and valves as previously observed in Arabidopsis. LS induced by AtBAN pro and AtFUL pro leads to higher limonene production in seeds and fruits than when the CaMV 35S was used to trigger the expression. In conclusion, the results of experiments indicate that AtBAN pro and AtFUL pro can be successfully utilized to induce the expression of the transgenes of interest in seeds and fruits of Camelina.

  14. A quantitative and dynamic model of the Arabidopsis flowering time gene regulatory network.

    Directory of Open Access Journals (Sweden)

    Felipe Leal Valentim

    Full Text Available Various environmental signals integrate into a network of floral regulatory genes leading to the final decision on when to flower. Although a wealth of qualitative knowledge is available on how flowering time genes regulate each other, only a few studies incorporated this knowledge into predictive models. Such models are invaluable as they enable to investigate how various types of inputs are combined to give a quantitative readout. To investigate the effect of gene expression disturbances on flowering time, we developed a dynamic model for the regulation of flowering time in Arabidopsis thaliana. Model parameters were estimated based on expression time-courses for relevant genes, and a consistent set of flowering times for plants of various genetic backgrounds. Validation was performed by predicting changes in expression level in mutant backgrounds and comparing these predictions with independent expression data, and by comparison of predicted and experimental flowering times for several double mutants. Remarkably, the model predicts that a disturbance in a particular gene has not necessarily the largest impact on directly connected genes. For example, the model predicts that SUPPRESSOR OF OVEREXPRESSION OF CONSTANS (SOC1 mutation has a larger impact on APETALA1 (AP1, which is not directly regulated by SOC1, compared to its effect on LEAFY (LFY which is under direct control of SOC1. This was confirmed by expression data. Another model prediction involves the importance of cooperativity in the regulation of APETALA1 (AP1 by LFY, a prediction supported by experimental evidence. Concluding, our model for flowering time gene regulation enables to address how different quantitative inputs are combined into one quantitative output, flowering time.

  15. Arabidopsis mutant sk156 reveals complex regulation of SPL15 in a miR156-controlled gene network.

    Science.gov (United States)

    Wei, Shu; Gruber, Margaret Y; Yu, Bianyun; Gao, Ming-Jun; Khachatourians, George G; Hegedus, Dwayne D; Parkin, Isobel A P; Hannoufa, Abdelali

    2012-09-18

    The Arabidopsis microRNA156 (miR156) regulates 11 members of the SQUAMOSA PROMOTER BINDING PROTEIN LIKE (SPL) family by base pairing to complementary target mRNAs. Each SPL gene further regulates a set of other genes; thus, miR156 controls numerous genes through a complex gene regulation network. Increased axillary branching occurs in transgenic Arabidopsis overexpressing miR156b, similar to that observed in loss-of-function max3 and max4 mutants with lesions in carotenoid cleavage dioxygenases. Arabidopsis miR156b was found to enhance carotenoid levels and reproductive shoot branching when expressed in Brassica napus, suggesting a link between miR156b expression and carotenoid metabolism. However, details of the miR156 regulatory network of SPL genes related to carotenoid metabolism are not known. In this study, an Arabidopsis T-DNA enhancer mutant, sk156, was identified due to its altered branching and trichome morphology and increased seed carotenoid levels compared to wild type (WT) ecovar Columbia. Enhanced miR156b expression due to the 35S enhancers present on the T-DNA insert was responsible for these phenotypes. Constitutive and leaf primodium-specific expression of a miR156-insensitive (mutated) SPL15 (SPL15m) largely restored WT seed carotenoid levels and plant morphology when expressed in sk156. The Arabidopsis native miR156-sensitive SPL15 (SPL15n) and SPL15m driven by a native SPL15 promoter did not restore the WT phenotype in sk156. Our findings suggest that SPL15 function is somewhat redundant with other SPL family members, which collectively affect plant phenotypes. Moreover, substantially decreased miR156b transcript levels in sk156 expressing SPL15m, together with the presence of multiple repeats of SPL-binding GTAC core sequence close to the miR156b transcription start site, suggested feedback regulation of miR156b expression by SPL15. This was supported by the demonstration of specific in vitro interaction between DNA-binding SBP domain of SPL15

  16. HSI2/VAL1 PHD-like domain promotes H3K27 trimethylation to repress the expression of seed maturation genes and complex transgenes in Arabidopsis seedlings.

    Science.gov (United States)

    Veerappan, Vijaykumar; Chen, Naichong; Reichert, Angelika I; Allen, Randy D

    2014-11-01

    The novel mutant allele hsi2-4 was isolated in a genetic screen to identify Arabidopsis mutants with constitutively elevated expression of a glutathione S-transferase F8::luciferase (GSTF8::LUC) reporter gene in Arabidopsis. The hsi2-4 mutant harbors a point mutation that affects the plant homeodomain (PHD)-like domain in HIGH-LEVEL EXPRESSION OF SUGAR-INDUCIBLE GENE2 (HSI2)/VIVIPAROUS1/ABI3-LIKE1 (VAL1). In hsi2-4 seedlings, expression of this LUC transgene and certain endogenous seed-maturation genes is constitutively enhanced. The parental reporter line (WT LUC ) that was used for mutagenesis harbors two independent transgene loci, Kan R and Kan S . Both loci express luciferase whereas only the Kan R locus confers resistance to kanamycin. Here we show that both transgene loci harbor multiple tandem insertions at single sites. Luciferase expression from these sites is regulated by the HSI2 PHD-like domain, which is required for the deposition of repressive histone methylation marks (H3K27me3) at both Kan R and Kan S loci. Expression of LUC and Neomycin Phosphotransferase II transgenes is associated with dynamic changes in H3K27me3 levels, and the activation marks H3K4me3 and H3K36me3 but does not appear to involve repressive H3K9me2 marks, DNA methylation or histone deacetylation. However, hsi2-2 and hsi2-4 mutants are partially resistant to growth inhibition associated with exposure to the DNA methylation inhibitor 5-aza-2'-deoxycytidine. HSI2 is also required for the repression of a subset of regulatory and structural seed maturation genes in vegetative tissues and H3K27me3 marks associated with most of these genes are also HSI2-dependent. These data implicate HSI2 PHD-like domain in the regulation of gene expression involving histone modifications and DNA methylation-mediated epigenetic mechanisms.

  17. The Arabidopsis thiamin-deficient mutant pale green1 lacks thiamin monophosphate phosphatase of the vitamin B1 biosynthesis pathway.

    Science.gov (United States)

    Hsieh, Wei-Yu; Liao, Jo-Chien; Wang, Hsin-Tzu; Hung, Tzu-Huan; Tseng, Ching-Chih; Chung, Tsui-Yun; Hsieh, Ming-Hsiun

    2017-07-01

    Thiamin diphosphate (TPP, vitamin B 1 ) is an essential coenzyme present in all organisms. Animals obtain TPP from their diets, but plants synthesize TPPde novo. We isolated and characterized an Arabidopsis pale green1 (pale1) mutant that contained higher concentrations of thiamin monophosphate (TMP) and less thiamin and TPP than the wild type. Supplementation with thiamin, but not the thiazole and pyrimidine precursors, rescued the mutant phenotype, indicating that the pale1 mutant is a thiamin-deficient mutant. Map-based cloning and whole-genome sequencing revealed that the pale1 mutant has a mutation in At5g32470 encoding a TMP phosphatase of the TPP biosynthesis pathway. We further confirmed that the mutation of At5g32470 is responsible for the mutant phenotypes by complementing the pale1 mutant with constructs overexpressing full-length At5g32470. Most plant TPP biosynthetic enzymes are located in the chloroplasts and cytosol, but At5g32470-GFP localized to the mitochondrion of the root, hypocotyl, mesophyll and guard cells of the 35S:At5g32470-GFP complemented plants. The subcellular localization of a functional TMP phosphatase suggests that the complete vitamin B1 biosynthesis pathway may involve the chloroplasts, mitochondria and cytosol in plants. Analysis of PALE1 promoter-uidA activity revealed that PALE1 is mainly expressed in vascular tissues of Arabidopsis seedlings. Quantitative RT-PCR analysis of TPP biosynthesis genes and genes encoding the TPP-dependent enzymes pyruvate dehydrogenase, α-ketoglutarate dehydrogenase and transketolase revealed that the transcript levels of these genes were upregulated in the pale1 mutant. These results suggest that endogenous levels of TPP may affect the expression of genes involved in TPP biosynthesis and TPP-dependent enzymes. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  18. A role for circadian evening elements in cold-regulated gene expression in Arabidopsis.

    Science.gov (United States)

    Mikkelsen, Michael D; Thomashow, Michael F

    2009-10-01

    The plant transcriptome is dramatically altered in response to low temperature. The cis-acting DNA regulatory elements and trans-acting factors that regulate the majority of cold-regulated genes are unknown. Previous bioinformatic analysis has indicated that the promoters of cold-induced genes are enriched in the Evening Element (EE), AAAATATCT, a DNA regulatory element that has a role in circadian-regulated gene expression. Here we tested the role of EE and EE-like (EEL) elements in cold-induced expression of two Arabidopsis genes, CONSTANS-like 1 (COL1; At5g54470) and a gene encoding a 27-kDa protein of unknown function that we designated COLD-REGULATED GENE 27 (COR27; At5g42900). Mutational analysis indicated that the EE/EEL elements were required for cold induction of COL1 and COR27, and that their action was amplified through coupling with ABA response element (ABRE)-like (ABREL) motifs. An artificial promoter consisting solely of four EE motifs interspersed with three ABREL motifs was sufficient to impart cold-induced gene expression. Both COL1 and COR27 were found to be regulated by the circadian clock at warm growth temperatures and cold-induction of COR27 was gated by the clock. These results suggest that cold- and clock-regulated gene expression are integrated through regulatory proteins that bind to EE and EEL elements supported by transcription factors acting at ABREL sequences. Bioinformatic analysis indicated that the coupling of EE and EEL motifs with ABREL motifs is highly enriched in cold-induced genes and thus may constitute a DNA regulatory element pair with a significant role in configuring the low-temperature transcriptome.

  19. Gain-of-function analysis of poplar CLE genes in Arabidopsis by exogenous application and over-expression assays.

    Science.gov (United States)

    Liu, Yisen; Yang, Shaohui; Song, Yingjin; Men, Shuzhen; Wang, Jiehua

    2016-04-01

    Among 50 CLE gene family members in the Populus trichocarpa genome, three and six PtCLE genes encode a CLE motif sequence highly homologous to Arabidopsis CLV3 and TDIF peptides, respectively, which potentially make them functional equivalents. To test and compare their biological activity, we first chemically synthesized each dodecapeptide and analysed itsi n vitro bioactivity on Arabidopsis seedlings. Similarly, but to a different extent, three types of poplar CLV3-related peptides caused root meristem consumption, phyllotaxis disorder, anthocyanin accumulation and failure to enter the bolting stage. In comparison, application of two poplar TDIF-related peptides led to root length promotion in a dose-dependent manner with an even stronger effect observed for poplar TDIF-like peptide than TDIF. Next, we constructed CaMV35S:PtCLE transgenic plants for each of the nine PtCLE genes. Phenotypic abnormalities exemplified by arrested shoot apical meristem and abnormal flower structure were found to be more dominant and severe in 35S:PtCLV3 and 35S:PtCLV3-like2 lines than in the 35S:PtCLV3-like line. Disordered vasculature was detected in both stem and hypocotyl cross-sections in Arabidopsis plants over-expressing poplar TDIF-related genes with the most defective vascular patterning observed for TDIF2 and two TDIF-like genes. Phenotypic difference consistently observed in peptide application assay and transgenic analysis indicated the functional diversity of nine poplar PtCLE genes under investigation. This work represents the first report on the functional analysis of CLE genes in a tree species and constitutes a basis for further study of the CLE peptide signalling pathway in tree development. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  20. Two MYB-related transcription factors play opposite roles in sugar signaling in Arabidopsis.

    Science.gov (United States)

    Chen, Yi-Shih; Chao, Yi-Chi; Tseng, Tzu-Wei; Huang, Chun-Kai; Lo, Pei-Ching; Lu, Chung-An

    2017-02-01

    Sugar regulation of gene expression has profound effects at all stages of the plant life cycle. Although regulation at the transcriptional level is one of the most prominent mechanisms by which gene expression is regulated, only a few transcription factors have been identified and demonstrated to be involved in the regulation of sugar-regulated gene expression. OsMYBS1, an R1/2-type MYB transcription factor, has been demonstrated to be involved in sugar- and hormone-regulated α-amylase gene expression in rice. Arabidopsis contains two OsMYBS1 homologs. In the present study, we investigate MYBS1 and MYBS2 in sugar signaling in Arabidopsis. Our results indicate that MYBS1 and MYBS2 play opposite roles in regulating glucose and ABA signaling in Arabidopsis during seed germination and early seedling development. MYB proteins have been classified into four subfamilies: R2R3-MYB, R1/2-MYB, 3R-MYB, and 4R-MYB. An R1/2-type MYB transcription factor, OsMYBS1, has been demonstrated to be involved in sugar- and hormone-regulated α-amylase genes expression in rice. In this study, two genes homologous to OsMYBS1, MYBS1 and MYBS2, were investigated in Arabidopsis. Subcellular localization analysis showed that MYBS1 and MYBS2 were localized in the nucleus. Rice embryo transient expression assays indicated that both MYBS1 and MYBS2 could recognize the sugar response element, TA-box, in the promoter and induced promoter activity. mybs1 mutant exhibited hypersensitivity to glucose, whereas mybs2 seedlings were hyposensitive to it. MYBS1 and MYBS2 are involved in the control of glucose-responsive gene expression, as the mybs1 mutant displayed increased expression of a hexokinase gene (HXK1), chlorophyll a/b-binding protein gene (CAB1), ADP-glucose pyrophosphorylase gene (APL3), and chalcone synthase gene (CHS), whereas the mybs2 mutant exhibited decreased expression of these genes. mybs1 also showed an enhanced response to abscisic acid (ABA) in the seed germination and seedling

  1. Geomagnetic Field (Gmf) and Plant Evolution: Investigating the Effects of Gmf Reversal on Arabidopsis thaliana Development and Gene Expression.

    Science.gov (United States)

    Bertea, Cinzia M; Narayana, Ravishankar; Agliassa, Chiara; Rodgers, Christopher T; Maffei, Massimo E

    2015-11-30

    One of the most stimulating observations in plant evolution is a correlation between the occurrence of geomagnetic field (GMF) reversals (or excursions) and the moment of the radiation of Angiosperms. This led to the hypothesis that alterations in GMF polarity may play a role in plant evolution. Here, we describe a method to test this hypothesis by exposing Arabidopsis thaliana to artificially reversed GMF conditions. We used a three-axis magnetometer and the collected data were used to calculate the magnitude of the GMF. Three DC power supplies were connected to three Helmholtz coil pairs and were controlled by a computer to alter the GMF conditions. Plants grown in Petri plates were exposed to both normal and reversed GMF conditions. Sham exposure experiments were also performed. Exposed plants were photographed during the experiment and images were analyzed to calculate root length and leaf areas. Arabidopsis total RNA was extracted and Quantitative Real Time-PCR (qPCR) analyses were performed on gene expression of CRUCIFERIN 3 (CRU3), copper transport protein1 (COTP1), Redox Responsive Transcription Factor1 (RRTF1), Fe Superoxide Dismutase 1, (FSD1), Catalase3 (CAT3), Thylakoidal Ascorbate Peroxidase (TAPX), a cytosolic Ascorbate Peroxidase1 (APX1), and NADPH/respiratory burst oxidase protein D (RbohD). Four different reference genes were analysed to normalize the results of the qPCR. The best of the four genes was selected and the most stable gene for normalization was used. Our data show for the first time that reversing the GMF polarity using triaxial coils has significant effects on plant growth and gene expression. This supports the hypothesis that GMF reversal contributes to inducing changes in plant development that might justify a higher selective pressure, eventually leading to plant evolution.

  2. Characterization of microRNAs and their target genes associated with transcriptomic changes in gamma-irradiated Arabidopsis.

    Science.gov (United States)

    Kim, J H; Go, Y S; Kim, J K; Chung, B Y

    2016-07-29

    MicroRNAs (miRNAs) regulate gene expression in response to biotic and abiotic stress in plants. We investigated gamma-ray-responsive miRNAs in Arabidopsis wild-type and cmt3-11t mutant plants using miRNA microarray analysis. miRNA expression was differentiated between the wild-type and cmt3-11t mutants. miR164a, miR169d, miR169h, miR172b*, and miR403 were identified as repressible in the wild-type and/or cmt3-11t mutant in response to gamma irradiation, while miR827, miR840, and miR850 were strongly inducible. These eight miRNA genes contain UV-B-responsive cis-elements, including G-box, I-box core, ARE, and/or MBS in the putative promoter regions. Moreover, Box 4, MBS, TCA-element, and Unnamed_4, as well as CAAT- and TATA-box, were identified in these eight miRNA genes. However, a positive correlation between the transcriptions of miRNAs and their putative target genes was only observed between miR169d and At1g30560 in the wild-type, and between miR827 and At1g70700 in the cmt3-11t mutant. Quantitative RT-PCR analysis confirmed that the transcription of miR164a, miR169d, miR169h, miR172b*, miR403, and miR827 differed after gamma irradiation depending on the genotype (wild-type, cmt3-11t, drm2, drd1-6, and ddm1-2) and developmental stage (14 or 28 days after sowing). In contrast, high transcriptional induction of miR840 and miR850 was observed in these six genotypes regardless of the developmental stage. Although the actual target genes and functions of miR840 and miR850 remain to be determined, our results indicate that these two miRNAs may be strongly induced and reproducible genetic markers in Arabidopsis plants exposed to gamma rays.

  3. Evolution of stress-regulated gene expression in duplicate genes of Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Cheng Zou

    2009-07-01

    Full Text Available Due to the selection pressure imposed by highly variable environmental conditions, stress sensing and regulatory response mechanisms in plants are expected to evolve rapidly. One potential source of innovation in plant stress response mechanisms is gene duplication. In this study, we examined the evolution of stress-regulated gene expression among duplicated genes in the model plant Arabidopsis thaliana. Key to this analysis was reconstructing the putative ancestral stress regulation pattern. By comparing the expression patterns of duplicated genes with the patterns of their ancestors, duplicated genes likely lost and gained stress responses at a rapid rate initially, but the rate is close to zero when the synonymous substitution rate (a proxy for time is > approximately 0.8. When considering duplicated gene pairs, we found that partitioning of putative ancestral stress responses occurred more frequently compared to cases of parallel retention and loss. Furthermore, the pattern of stress response partitioning was extremely asymmetric. An analysis of putative cis-acting DNA regulatory elements in the promoters of the duplicated stress-regulated genes indicated that the asymmetric partitioning of ancestral stress responses are likely due, at least in part, to differential loss of DNA regulatory elements; the duplicated genes losing most of their stress responses were those that had lost more of the putative cis-acting elements. Finally, duplicate genes that lost most or all of the ancestral responses are more likely to have gained responses to other stresses. Therefore, the retention of duplicates that inherit few or no functions seems to be coupled to neofunctionalization. Taken together, our findings provide new insight into the patterns of evolutionary changes in gene stress responses after duplication and lay the foundation for testing the adaptive significance of stress regulatory changes under highly variable biotic and abiotic environments.

  4. Priming of the Arabidopsis pattern-triggered immunity response upon infection by necrotrophic Pectobacterium carotovorum bacteria.

    Science.gov (United States)

    Po-Wen, Chen; Singh, Prashant; Zimmerli, Laurent

    2013-01-01

    Boosted responsiveness of plant cells to stress at the onset of pathogen- or chemically induced resistance is called priming. The chemical β-aminobutyric acid (BABA) enhances Arabidopsis thaliana resistance to hemibiotrophic bacteria through the priming of the salicylic acid (SA) defence response. Whether BABA increases Arabidopsis resistance to the necrotrophic bacterium Pectobacterium carotovorum ssp. carotovorum (Pcc) is not clear. In this work, we show that treatment with BABA protects Arabidopsis against the soft-rot pathogen Pcc. BABA did not prime the expression of the jasmonate/ethylene-responsive gene PLANT DEFENSIN 1.2 (PDF1.2), the up-regulation of which is usually associated with resistance to necrotrophic pathogens. Expression of the SA marker gene PATHOGENESIS RELATED 1 (PR1) on Pcc infection was primed by BABA treatment, but SA-defective mutants demonstrated a wild-type level of BABA-induced resistance against Pcc. BABA primed the expression of the pattern-triggered immunity (PTI)-responsive genes FLG22-INDUCED RECEPTOR-LIKE KINASE 1 (FRK1), ARABIDOPSIS NON-RACE SPECIFIC DISEASE RESISTANCE GENE (NDR1)/HAIRPIN-INDUCED GENE (HIN1)-LIKE 10 (NHL10) and CYTOCHROME P450, FAMILY 81 (CYP81F2) after inoculation with Pcc or after treatment with purified bacterial microbe-associated molecular patterns, such as flg22 or elf26. PTI-mediated callose deposition was also potentiated in BABA-treated Arabidopsis, and BABA boosted Arabidopsis stomatal immunity to Pcc. BABA treatment primed the PTI response in the SA-defective mutants SA induction deficient 2-1 (sid2-1) and phytoalexin deficient 4-1 (pad4-1). In addition, BABA priming was associated with open chromatin configurations in the promoter region of PTI marker genes. Our data indicate that BABA primes the PTI response upon necrotrophic bacterial infection and suggest a role for the PTI response in BABA-induced resistance. © 2012 THE AUTHORS. MOLECULAR PLANT PATHOLOGY © 2012 BSPP AND BLACKWELL PUBLISHING LTD.

  5. Analysis of antisense expression by whole genome tiling microarrays and siRNAs suggests mis-annotation of Arabidopsis orphan protein-coding genes.

    Directory of Open Access Journals (Sweden)

    Casey R Richardson

    2010-05-01

    Full Text Available MicroRNAs (miRNAs and trans-acting small-interfering RNAs (tasi-RNAs are small (20-22 nt long RNAs (smRNAs generated from hairpin secondary structures or antisense transcripts, respectively, that regulate gene expression by Watson-Crick pairing to a target mRNA and altering expression by mechanisms related to RNA interference. The high sequence homology of plant miRNAs to their targets has been the mainstay of miRNA prediction algorithms, which are limited in their predictive power for other kingdoms because miRNA complementarity is less conserved yet transitive processes (production of antisense smRNAs are active in eukaryotes. We hypothesize that antisense transcription and associated smRNAs are biomarkers which can be computationally modeled for gene discovery.We explored rice (Oryza sativa sense and antisense gene expression in publicly available whole genome tiling array transcriptome data and sequenced smRNA libraries (as well as C. elegans and found evidence of transitivity of MIRNA genes similar to that found in Arabidopsis. Statistical analysis of antisense transcript abundances, presence of antisense ESTs, and association with smRNAs suggests several hundred Arabidopsis 'orphan' hypothetical genes are non-coding RNAs. Consistent with this hypothesis, we found novel Arabidopsis homologues of some MIRNA genes on the antisense strand of previously annotated protein-coding genes. A Support Vector Machine (SVM was applied using thermodynamic energy of binding plus novel expression features of sense/antisense transcription topology and siRNA abundances to build a prediction model of miRNA targets. The SVM when trained on targets could predict the "ancient" (deeply conserved class of validated Arabidopsis MIRNA genes with an accuracy of 84%, and 76% for "new" rapidly-evolving MIRNA genes.Antisense and smRNA expression features and computational methods may identify novel MIRNA genes and other non-coding RNAs in plants and potentially other

  6. Charakterisierung der Fanconi Anämie-assoziierten Proteine MHF1 und FAN1 in der DNA-Reparatur und homologen Rekombination in Arabidopsis thaliana

    OpenAIRE

    Herrmann, Natalie

    2014-01-01

    Der Fanconi Anämie (FA) Reparaturweg ist ein essentieller Mechanismus um DNA-Crosslinks (CLs) in Säugern zu beseitigen. Im Rahmen dieser Arbeit wurden die FA-assoziierten Gene MHF1, welches in die Erkennung des CLs involviert ist und FAN1, welches als Nuklease an der Auflösung des CLs beteiligt ist, in Arabidopsis thaliana charakterisiert. Dabei wurden die Funktionen der beiden Gene innerhalb der Reparatur von CLs und während der homologen Rekombination untersucht.

  7. Nuevos genes reguladores de la tolerancia a estrés abiótico en Arabidopsis.

    OpenAIRE

    MARTÍNEZ MACÍAS, FÉLIX

    2015-01-01

    Martínez Macías, F. (2015). Nuevos genes reguladores de la tolerancia a estrés abiótico en Arabidopsis [Tesis doctoral no publicada]. Universitat Politècnica de València. doi:10.4995/Thesis/10251/48560. TESIS

  8. Distinctive features and differential regulation of the DRTS genes of Arabidopsis thaliana.

    Science.gov (United States)

    Maniga, Antonio; Ghisaura, Stefania; Perrotta, Lara; Marche, Maria Giovanna; Cella, Rino; Albani, Diego

    2017-01-01

    In plants and protists, dihydrofolate reductase (DHFR) and thymidylate synthase (TS) are part of a bifunctional enzyme (DRTS) that allows efficient recycling of the dihydrofolate resulting from TS activity. Arabidopsis thaliana possesses three DRTS genes, called AtDRTS1, AtDRTS2 and AtDRTS3, that are located downstream of three members of the sec14-like SFH gene family. In this study, a characterization of the AtDRTS genes identified alternatively spliced transcripts coding for AtDRTS isoforms which may account for monofunctional DHFR enzymes supporting pathways unrelated to DNA synthesis. Moreover, we discovered a complex differential regulation of the AtDRTS genes that confirms the expected involvement of the AtDRTS genes in cell proliferation and endoreduplication, but indicates also functions related to other cellular activities. AtDRTS1 is widely expressed in both meristematic and differentiated tissues, whereas AtDRTS2 expression is almost exclusively limited to the apical meristems and AtDRTS3 is preferentially expressed in the shoot apex, in stipules and in root cap cells. The differential regulation of the AtDRTS genes is associated to distinctive promoter architectures and the expression of AtDRTS1 in the apical meristems is strictly dependent on the presence of an intragenic region that includes the second intron of the gene. Upon activation of cell proliferation in germinating seeds, the activity of the AtDRTS1 and AtDRTS2 promoters in meristematic cells appears to be maximal at the G1/S phase of the cell cycle. In addition, the promoters of AtDRTS2 and AtDRTS3 are negatively regulated through E2F cis-acting elements and both genes, but not AtDRTS1, are downregulated in plants overexpressing the AtE2Fa factor. Our study provides new information concerning the function and the regulation of plant DRTS genes and opens the way to further investigations addressing the importance of folate synthesis with respect to specific cellular activities.

  9. ARABIDOPSIS HOMOLOG of TRITHORAX1 (ATX1) is required for cell production, patterning, and morphogenesis in root development

    OpenAIRE

    Napsucialy-Mendivil, Selene; Alvarez-Venegas, Raúl; Shishkova, Svetlana; Dubrovsky, Joseph G.

    2014-01-01

    ARABIDOPSIS HOMOLOG of TRITHORAX1 (ATX1/SDG27), a known regulator of flower development, encodes a H3K4histone methyltransferase that maintains a number of genes in an active state. In this study, the role of ATX1 in root development was evaluated. The loss-of-function mutant atx1-1 was impaired in primary root growth. The data suggest that ATX1 controls root growth by regulating cell cycle duration, cell production, and the transition from cell proliferation in the root apical meristem (RAM)...

  10. Transcriptome analysis uncovers Arabidopsis F-BOX STRESS INDUCED 1 as a regulator of jasmonic acid and abscisic acid stress gene expression.

    Science.gov (United States)

    Gonzalez, Lauren E; Keller, Kristen; Chan, Karen X; Gessel, Megan M; Thines, Bryan C

    2017-07-17

    The ubiquitin 26S proteasome system (UPS) selectively degrades cellular proteins, which results in physiological changes to eukaryotic cells. F-box proteins are substrate adaptors within the UPS and are responsible for the diversity of potential protein targets. Plant genomes are enriched in F-box genes, but the vast majority of these have unknown roles. This work investigated the Arabidopsis F-box gene F-BOX STRESS INDUCED 1 (FBS1) for its effects on gene expression in order elucidate its previously unknown biological function. Using publically available Affymetrix ATH1 microarray data, we show that FBS1 is significantly co-expressed in abiotic stresses with other well-characterized stress response genes, including important stress-related transcriptional regulators. This gene suite is most highly expressed in roots under cold and salt stresses. Transcriptome analysis of fbs1-1 knock-out plants grown at a chilling temperature shows that hundreds of genes require FBS1 for appropriate expression, and that these genes are enriched in those having roles in both abiotic and biotic stress responses. Based on both this genome-wide expression data set and quantitative real-time PCR (qPCR) analysis, it is apparent that FBS1 is required for elevated expression of many jasmonic acid (JA) genes that have established roles in combatting environmental stresses, and that it also controls a subset of JA biosynthesis genes. FBS1 also significantly impacts abscisic acid (ABA) regulated genes, but this interaction is more complex, as FBS1 has both positive and negative effects on ABA-inducible and ABA-repressible gene modules. One noteworthy effect of FBS1 on ABA-related stress processes, however, is the restraint it imposes on the expression of multiple class I LIPID TRANSFER PROTEIN (LTP) gene family members that have demonstrated protective effects in water deficit-related stresses. FBS1 impacts plant stress responses by regulating hundreds of genes that respond to the plant

  11. Alternative splicing affects the targeting sequence of peroxisome proteins in Arabidopsis.

    Science.gov (United States)

    An, Chuanjing; Gao, Yuefang; Li, Jinyu; Liu, Xiaomin; Gao, Fuli; Gao, Hongbo

    2017-07-01

    A systematic analysis of the Arabidopsis genome in combination with localization experiments indicates that alternative splicing affects the peroxisomal targeting sequence of at least 71 genes in Arabidopsis. Peroxisomes are ubiquitous eukaryotic cellular organelles that play a key role in diverse metabolic functions. All peroxisome proteins are encoded by nuclear genes and target to peroxisomes mainly through two types of targeting signals: peroxisomal targeting signal type 1 (PTS1) and PTS2. Alternative splicing (AS) is a process occurring in all eukaryotes by which a single pre-mRNA can generate multiple mRNA variants, often encoding proteins with functional differences. However, the effects of AS on the PTS1 or PTS2 and the targeting of the protein were rarely studied, especially in plants. Here, we systematically analyzed the genome of Arabidopsis, and found that the C-terminal targeting sequence PTS1 of 66 genes and the N-terminal targeting sequence PTS2 of 5 genes are affected by AS. Experimental determination of the targeting of selected protein isoforms further demonstrated that AS at both the 5' and 3' region of a gene can affect the inclusion of PTS2 and PTS1, respectively. This work underscores the importance of AS on the global regulation of peroxisome protein targeting.

  12. Reference: 278 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available functional ERA1 gene, which encodes the beta-subunit of protein farnesyltransferase (PFT), exhibit pleiotropic effects...gnaling and meristem development. Here, we report the effects of T-DNA insertion mutations in the Arabidopsi

  13. Nanoparticle-specific changes in Arabidopsis thaliana gene expression after exposure to ZnO, TiO{sub 2}, and fullerene soot

    Energy Technology Data Exchange (ETDEWEB)

    Landa, Premysl [Laboratory of Plant Biotechnologies, Institute of Experimental Botany AS CR, v.v.i., 165 02 Prague 6 - Lysolaje (Czech Republic); Vankova, Radomira [Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany AS CR, v.v.i., 165 02 Prague 6 - Lysolaje (Czech Republic); Andrlova, Jana [Laboratory of Plant Biotechnologies, Institute of Experimental Botany AS CR, v.v.i., 165 02 Prague 6 - Lysolaje (Czech Republic); Department of Crop Sciences and Agroforestry, Institute of Tropics and Subtropics, Czech University of Life Sciences Prague, 165 21 Prague 6 - Suchdol (Czech Republic); Hodek, Jan [Department of Molecular Biology, Crop Research Institute, v.v.i., 161 06 Praha 6 - Ruzyne (Czech Republic); Marsik, Petr [Laboratory of Plant Biotechnologies, Institute of Experimental Botany AS CR, v.v.i., 165 02 Prague 6 - Lysolaje (Czech Republic); Storchova, Helena [Plant Reproduction Laboratory, Institute of Experimental Botany AS CR, v.v.i., 165 02 Prague 6 - Lysolaje (Czech Republic); White, Jason C. [Department of Analytical Chemistry, Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, CT 06512 (United States); Vanek, Tomas, E-mail: vanek@ueb.cas.cz [Laboratory of Plant Biotechnologies, Institute of Experimental Botany AS CR, v.v.i., 165 02 Prague 6 - Lysolaje (Czech Republic)

    2012-11-30

    Highlights: Black-Right-Pointing-Pointer Exposure to different nanoparticles resulted in specific changes in gene transcription. Black-Right-Pointing-Pointer Nano ZnO caused most dramatic changes in Arabidopsis gene expression. Black-Right-Pointing-Pointer Nano ZnO was the most toxic and up-regulated most stress-related genes. Black-Right-Pointing-Pointer Fullerene soot caused significant gene expression response - mainly stress-related. Black-Right-Pointing-Pointer Nano TiO{sub 2} had weak impact on Arabidopsis gene expression indicating minimal toxicity. - Abstract: The effect of exposure to 100 mg/L zinc oxide (nZnO), fullerene soot (FS) or titanium dioxide (nTiO{sub 2}) nanoparticles on gene expression in Arabidopsis thaliana roots was studied using microarrays. After 7 d, nZnO, FS, or nTiO{sub 2} exposure resulted in 660 up- and 826 down-regulated genes, 232 up- and 189 down-regulated genes, and 80 up- and 74 down-regulated genes, respectively (expression difference > 2-fold; p[t test] < 0.05). The genes induced by nZnO and FS include mainly ontology groups annotated as stress responsive, including both abiotic (oxidative, salt, water deprivation) and biotic (wounding and defense to pathogens) stimuli. The down-regulated genes upon nZnO exposure were involved in cell organization and biogenesis, including translation, nucleosome assembly and microtubule based process. FS largely repressed the transcription of genes involved in electron transport and energy pathways. Only mild changes in gene expression were observed upon nTiO{sub 2} exposure, which resulted in up- and down-regulation of genes involved mainly in responses to biotic and abiotic stimuli. The data clearly indicate that the mechanisms of phytotoxicity are highly nanoparticle dependent despite of a limited overlap in gene expression response.

  14. The Arabidopsis Vacuolar Sorting Receptor1 Is Required for Osmotic Stress-Induced Abscisic Acid Biosynthesis

    KAUST Repository

    Wang, Zhen-Yu; Gehring, Christoph A; Zhu, Jianhua; Li, Feng-Min; Zhu, Jian-Kang; Xiong, Liming

    2014-01-01

    Osmotic stress activates the biosynthesis of the phytohormone abscisic acid (ABA) through a pathway that is rate limited by the carotenoid cleavage enzyme 9-cis-epoxycarotenoid dioxygenase (NCED). To understand the signal transduction mechanism underlying the activation of ABA biosynthesis, we performed a forward genetic screen to isolate mutants defective in osmotic stress regulation of the NCED3 gene. Here, we identified the Arabidopsis (Arabidopsis thaliana) Vacuolar Sorting Receptor1 (VSR1) as a unique regulator of ABA biosynthesis. The vsr1 mutant not only shows increased sensitivity to osmotic stress, but also is defective in the feedback regulation of ABA biosynthesis by ABA. Further analysis revealed that vacuolar trafficking mediated by VSR1 is required for osmotic stress-responsive ABA biosynthesis and osmotic stress tolerance. Moreover, under osmotic stress conditions, the membrane potential, calcium flux, and vacuolar pH changes in the vsr1 mutant differ from those in the wild type. Given that manipulation of the intracellular pH is sufficient to modulate the expression of ABA biosynthesis genes, including NCED3, and ABA accumulation, we propose that intracellular pH changes caused by osmotic stress may play a signaling role in regulating ABA biosynthesis and that this regulation is dependent on functional VSR1.

  15. The Arabidopsis Vacuolar Sorting Receptor1 Is Required for Osmotic Stress-Induced Abscisic Acid Biosynthesis

    KAUST Repository

    Wang, Zhen-Yu

    2014-11-21

    Osmotic stress activates the biosynthesis of the phytohormone abscisic acid (ABA) through a pathway that is rate limited by the carotenoid cleavage enzyme 9-cis-epoxycarotenoid dioxygenase (NCED). To understand the signal transduction mechanism underlying the activation of ABA biosynthesis, we performed a forward genetic screen to isolate mutants defective in osmotic stress regulation of the NCED3 gene. Here, we identified the Arabidopsis (Arabidopsis thaliana) Vacuolar Sorting Receptor1 (VSR1) as a unique regulator of ABA biosynthesis. The vsr1 mutant not only shows increased sensitivity to osmotic stress, but also is defective in the feedback regulation of ABA biosynthesis by ABA. Further analysis revealed that vacuolar trafficking mediated by VSR1 is required for osmotic stress-responsive ABA biosynthesis and osmotic stress tolerance. Moreover, under osmotic stress conditions, the membrane potential, calcium flux, and vacuolar pH changes in the vsr1 mutant differ from those in the wild type. Given that manipulation of the intracellular pH is sufficient to modulate the expression of ABA biosynthesis genes, including NCED3, and ABA accumulation, we propose that intracellular pH changes caused by osmotic stress may play a signaling role in regulating ABA biosynthesis and that this regulation is dependent on functional VSR1.

  16. The Arabidopsis Malectin-Like/LRR-RLK IOS1 Is Critical for BAK1-Dependent and BAK1-Independent Pattern-Triggered Immunity

    Science.gov (United States)

    Kadota, Yasuhiro; Huang, Pin-Yao; Chien, Hsiao-Chiao; Chu, Po-Wei; Zimmerli, Laurent

    2016-01-01

    Plasma membrane-localized pattern recognition receptors (PRRs) such as FLAGELLIN SENSING2 (FLS2), EF-TU RECEPTOR (EFR), and CHITIN ELICITOR RECEPTOR KINASE1 (CERK1) recognize microbe-associated molecular patterns (MAMPs) to activate pattern-triggered immunity (PTI). A reverse genetics approach on genes responsive to the priming agent β-aminobutyric acid (BABA) revealed IMPAIRED OOMYCETE SUSCEPTIBILITY1 (IOS1) as a critical PTI player. Arabidopsis thaliana ios1 mutants were hypersusceptible to Pseudomonas syringae bacteria. Accordingly, ios1 mutants showed defective PTI responses, notably delayed upregulation of the PTI marker gene FLG22-INDUCED RECEPTOR-LIKE KINASE1, reduced callose deposition, and mitogen-activated protein kinase activation upon MAMP treatment. Moreover, Arabidopsis lines overexpressing IOS1 were more resistant to bacteria and showed a primed PTI response. In vitro pull-down, bimolecular fluorescence complementation, coimmunoprecipitation, and mass spectrometry analyses supported the existence of complexes between the membrane-localized IOS1 and BRASSINOSTEROID INSENSITIVE1-ASSOCIATED KINASE1 (BAK1)-dependent PRRs FLS2 and EFR, as well as with the BAK1-independent PRR CERK1. IOS1 also associated with BAK1 in a ligand-independent manner and positively regulated FLS2-BAK1 complex formation upon MAMP treatment. In addition, IOS1 was critical for chitin-mediated PTI. Finally, ios1 mutants were defective in BABA-induced resistance and priming. This work reveals IOS1 as a novel regulatory protein of FLS2-, EFR-, and CERK1-mediated signaling pathways that primes PTI activation. PMID:27317676

  17. Molecular dissection of the response of the rice Systemic Acquired Resistance Deficient 1 (SARD1) gene to different types of ionizing radiation.

    Science.gov (United States)

    Jung, In Jung; Hwang, Jung Eun; Han, Sung Min; Kim, Dong Sub; Ahn, Joon-Woo; Choi, Hong-Il; Kwon, Soon-Jae; Kang, Si-Yong; Kim, Jin-Baek

    2017-07-01

    Exposure to ionizing radiation induces plant defenses by regulating the expression of response genes. The systemic acquired resistance deficient 1 (SARD1) is a key gene in plant defense response. In this study, the function of Oryza sativa SARD1 (OsSARD1) was investigated after exposure of seeds/plants to ionizing radiation, jasmonic acid (JA) or salicylic acid (SA). Rice seeds exposed to two types of ionizing radiations (gamma ray [GR] and ion beam [IB]) were analyzed by quantitative reverse transcription PCR (qRT-PCR) to identify the genes that are altered in response to ionizing radiation. Then, OsSARD1-overexpressing homozygous Arabidopsis plants were generated to assess the effects of OsSARD1 in the response to irradiation. The phenotypes of these transgenic plants, as well as control plants, were monitored after GR irradiation at doses of 200 and 300 Gray (Gy). The OsSARD1 transcript was strongly downregulated after exposure to GR and IB irradiation. Previous phylogenetic analysis showed that the Arabidopsis SARD1 (AtSARD1) protein is closely related to Arabidopsis calmodulin-binding protein 60g (AtCBP60g), which is known to be required for activation of SA biosynthesis. In this study, phylogenetic analysis showed that OsSARD1 was grouped with AtSARD1. The OsSARD1 gene was induced after exposure to SA and JA. The biological phenotype of OsSARD1-overexpressing Arabidopsis plants was examined. OsSARD1-overexpressing plants displayed resistance to GR; in comparison with wild-type plants, the height and weight of OsSARD1-overexpressing plants were significantly greater after GR irradiation. In addition, OsSARD1 protein was abundantly accumulated in the nucleus. The results indicate that OsSARD1 plays an important role in the regulation of the defense responses to GR and IB irradiation and exhibits phytohormone induced expression.

  18. Cellulose synthesis genes CESA6 and CSI1 are important for salt stress tolerance in Arabidopsis.

    Science.gov (United States)

    Zhang, Shuang-Shuang; Sun, Le; Dong, Xinran; Lu, Sun-Jie; Tian, Weidong; Liu, Jian-Xiang

    2016-07-01

    Two salt hypersensitive mutants she1 and she2 were identified through genetic screening. SHE1 encodes a cellulose synthase CESA6 while SHE2 encodes a cellulose synthase-interactive protein CSI1. Both of them are involved in cellulose deposition. Our results demonstrated that the sustained cellulose synthesis is important for salt stress tolerance in Arabidopsis. © 2015 Institute of Botany, Chinese Academy of Sciences.

  19. Soybean DREB1/CBF-type transcription factors function in heat and drought as well as cold stress-responsive gene expression.

    Science.gov (United States)

    Kidokoro, Satoshi; Watanabe, Keitaro; Ohori, Teppei; Moriwaki, Takashi; Maruyama, Kyonoshin; Mizoi, Junya; Myint Phyu Sin Htwe, Nang; Fujita, Yasunari; Sekita, Sachiko; Shinozaki, Kazuo; Yamaguchi-Shinozaki, Kazuko

    2015-02-01

    Soybean (Glycine max) is a globally important crop, and its growth and yield are severely reduced by abiotic stresses, such as drought, heat, and cold. The cis-acting element DRE (dehydration-responsive element)/CRT plays an important role in activating gene expression in response to these stresses. The Arabidopsis DREB1/CBF genes that encode DRE-binding proteins function as transcriptional activators in the cold stress responsive gene expression. In this study, we identified 14 DREB1-type transcription factors (GmDREB1s) from a soybean genome database. The expression of most GmDREB1 genes in soybean was strongly induced by a variety of abiotic stresses, such as cold, drought, high salt, and heat. The GmDREB1 proteins activated transcription via DREs (dehydration-responsive element) in Arabidopsis and soybean protoplasts. Transcriptome analyses using transgenic Arabidopsis plants overexpressing GmDREB1s indicated that many of the downstream genes are cold-inducible and overlap with those of Arabidopsis DREB1A. We then comprehensively analyzed the downstream genes of GmDREB1B;1, which is closely related to DREB1A, using a transient expression system in soybean protoplasts. The expression of numerous genes induced by various abiotic stresses were increased by overexpressing GmDREB1B;1 in soybean, and DREs were the most conserved element in the promoters of these genes. The downstream genes of GmDREB1B;1 included numerous soybean-specific stress-inducible genes that encode an ABA receptor family protein, GmPYL21, and translation-related genes, such as ribosomal proteins. We confirmed that GmDREB1B;1 directly activates GmPYL21 expression and enhances ABRE-mediated gene expression in an ABA-independent manner. These results suggest that GmDREB1 proteins activate the expression of numerous soybean-specific stress-responsive genes under diverse abiotic stress conditions. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  20. Expression of the grape VqSTS21 gene in Arabidopsis confers resistance to osmotic stress and biotrophic pathogens but not Botrytis cinerea

    Directory of Open Access Journals (Sweden)

    Li Huang

    2016-09-01

    Full Text Available Stilbene synthase (STS is a key gene in the biosynthesis of various stilbenoids, including resveratrol and its derivative glucosides (such as piceid, that has been shown to contribute to disease resistance in plants. However, the mechanism behind such a role has yet to be elucidated. Furthermore, the function of STS genes in osmotic stress tolerance remains unclear. As such, we sought to elucidate the role of STS genes in the defense against biotic and abiotic stress in the model plant Arabidopsis thaliana. Expression profiling of 31 VqSTS genes from Vitis quinquangularis revealed that VqSTS21 was up-regulated in response to powdery mildew (PM infection. To provide a deeper understanding of the function of this gene, we cloned the full-length coding sequence of VqSTS21 and overexpressed it in Arabidopsis thaliana via Agrobacterium-mediated transformation. The resulting VqSTS21 Arabidopsis lines produced trans-piceid rather than resveratrol as their main stilbenoid product and exhibited improved disease resistance to PM and Pseudomonas syringae pv. tomato DC3000, but displayed increased susceptibility to Botrytis cinerea. In addition, transgenic Arabidopsis lines were found to confer tolerance to salt and drought stress from seed germination through plant maturity. Intriguingly, qPCR assays of defense-related genes involved in salicylic acid, jasmonic acid, and abscisic acid-induced signaling pathways in these transgenic lines suggested that VqSTS21 plays a role in various phytohormone-related pathways, providing insight into the mechanism behind VqSTS21-mediated resistance to biotic and abiotic stress.

  1. The Arabidopsis WRINKLED1 transcription factor affects auxin homeostasis in roots.

    Science.gov (United States)

    Kong, Que; Ma, Wei; Yang, Haibing; Ma, Guojie; Mantyla, Jenny J; Benning, Christoph

    2017-07-20

    WRINKLED1 (WRI1) is a key transcriptional regulator of fatty acid biosynthesis genes in diverse oil-containing tissues. Loss of function of Arabidopsis WRI1 leads to a reduction in the expression of genes for fatty acid biosynthesis and glycolysis, and concomitant strong reduction of seed oil content. The wri1-1 loss-of-function mutant shows reduced primary root growth and decreased acidification of the growth medium. The content of a conjugated form of the plant growth hormone auxin, indole-3-acetic acid (IAA)-Asp, was higher in wri1-1 plants compared with the wild-type. GH3.3, a gene encoding an enzyme involved in auxin degradation, displayed higher expression in the wri1-1 mutant. EMSAs demonstrated that AtWRI1 bound to the promoter of GH3.3. Specific AtWRI1-binding motifs were identified in the promoter of GH3.3. In addition, wri1-1 displayed decreased auxin transport. Expression of some PIN genes, which encode IAA carrier proteins, was reduced in wri1-1 plants as well. Correspondingly, AtWRI1 bound to the promoter regions of some PIN genes. It is well known that auxin exerts its maximum effects at a specific, optimal concentration in roots requiring a finely balanced auxin homeostasis. This process appears to be disrupted when the expression of WRI1 and in turn a subset of its target genes are misregulated, highlighting a role for WRI1 in root auxin homeostasis. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  2. Study of genes induced by ionizing radiations at Arabidopsis thaliana: identification and molecular characterization of the ATGR1 gene, a new gene encoding a protein involved in plant cell division

    International Nuclear Information System (INIS)

    Deveaux, Yves

    1999-01-01

    DNA damage, that can be experimentally introduced by ionizing radiation (IR), induces complex signal transduction pathways leading to cell recovery or, alternatively to programmed cell death if damages are too severe. To identify the inducible components of the response to genotoxic stress in plants, we have screened by Differential Display for mRNAs that rapidly and strongly accumulate after IR treatment in A. thaliana cells. We have characterized ATGR1, a new single copy Arabidopsis gene encoding a PEST-box protein of unknown function. In unstressed plant organs the ATGR1 mRNA is hardly detectable, whereas the protein is present in extracts prepared from roots, shoot meristems and inflorescences, that all contain large amounts of actively dividing cells. This pattern is confirmed by immuno localisation on tissue sections that shows constitutive ATGR1 protein expression covering the root elongation zone, the shoot meristem, leaf primordial and the ovules of developing flowers. Histochemical analysis of transgenic plants expressing the GUS reporter gene under the control of the ATGR1 promoter, demonstrate that the developmental and tissue-specific profile of ATGR1 protein expression is conferred by the gene promoter. The massive, transient and dose-dependent accumulation of ATGR1 transcripts after IR treatment observed in all plant organs does not lead to significant changes in ATGR1 protein pattern. Stable ATGR1 protein overexpression, as exemplified by transgenic A. thaliana plants that contain a 35S promoter-ATGR1 gene fusion, does not induce notable changes of the overall ATGR1 protein level, but leads to male and female sterility. The cause of sterility is a lack of correct chromosome assembly and distribution at the stage metaphase II of meiosis. Taken together our results show that i) ATGR1 gene expression is associated to cell division during plant development ii) the ATGR1 protein level is regulated at the transcriptional and post-transcriptional level iii

  3. Phylogenetic analysis and protein structure modelling identifies distinct Ca(2+)/Cation antiporters and conservation of gene family structure within Arabidopsis and rice species.

    Science.gov (United States)

    Pittman, Jon K; Hirschi, Kendal D

    2016-12-01

    The Ca(2+)/Cation Antiporter (CaCA) superfamily is an ancient and widespread family of ion-coupled cation transporters found in nearly all kingdoms of life. In animals, K(+)-dependent and K(+)-indendent Na(+)/Ca(2+) exchangers (NCKX and NCX) are important CaCA members. Recently it was proposed that all rice and Arabidopsis CaCA proteins should be classified as NCX proteins. Here we performed phylogenetic analysis of CaCA genes and protein structure homology modelling to further characterise members of this transporter superfamily. Phylogenetic analysis of rice and Arabidopsis CaCAs in comparison with selected CaCA members from non-plant species demonstrated that these genes form clearly distinct families, with the H(+)/Cation exchanger (CAX) and cation/Ca(2+) exchanger (CCX) families dominant in higher plants but the NCKX and NCX families absent. NCX-related Mg(2+)/H(+) exchanger (MHX) and CAX-related Na(+)/Ca(2+) exchanger-like (NCL) proteins are instead present. Analysis of genomes of ten closely-related rice species and four Arabidopsis-related species found that CaCA gene family structures are highly conserved within related plants, apart from minor variation. Protein structures were modelled for OsCAX1a and OsMHX1. Despite exhibiting broad structural conservation, there are clear structural differences observed between the different CaCA types. Members of the CaCA superfamily form clearly distinct families with different phylogenetic, structural and functional characteristics, and therefore should not be simply classified as NCX proteins, which should remain as a separate gene family.

  4. The Arabidopsis histone chaperone FACT is required for stress-induced expression of anthocyanin biosynthetic genes.

    Science.gov (United States)

    Pfab, Alexander; Breindl, Matthias; Grasser, Klaus D

    2018-03-01

    The histone chaperone FACT is involved in the expression of genes encoding anthocyanin biosynthetic enzymes also upon induction by moderate high-light and therefore contributes to the stress-induced plant pigmentation. The histone chaperone FACT consists of the SSRP1 and SPT16 proteins and associates with transcribing RNAPII (RNAPII) along the transcribed region of genes. FACT can promote transcriptional elongation by destabilising nucleosomes in the path of RNA polymerase II, thereby facilitating efficient transcription of chromatin templates. Transcript profiling of Arabidopsis plants depleted in SSRP1 or SPT16 demonstrates that only a small subset of genes is differentially expressed relative to wild type. The majority of these genes is either up- or down-regulated in both the ssrp1 and spt16 plants. Among the down-regulated genes, those encoding enzymes of the biosynthetic pathway of the plant secondary metabolites termed anthocyanins (but not regulators of the pathway) are overrepresented. Upon exposure to moderate high-light stress several of these genes are up-regulated to a lesser extent in ssrp1/spt16 compared to wild type plants, and accordingly the mutant plants accumulate lower amounts of anthocyanin pigments. Moreover, the expression of SSRP1 and SPT16 is induced under these conditions. Therefore, our findings indicate that FACT is a novel factor required for the accumulation of anthocyanins in response to light-induction.

  5. Arabidopsis wat1 (walls are thin1)-mediated resistance to the bacterial vascular pathogen, Ralstonia solanacearum, is accompanied by cross-regulation of salicylic acid and tryptophan metabolism

    NARCIS (Netherlands)

    Denancé, N.; Ranocha, P.; Oria, N.; Barlet, X.; Rivière, M.P.; Yadeta, K.A.; Hoffmann, L.; Perreau, F.; Clément, G.; Maia-Grondard, A.; Berg, van den G.C.M.; Savelli, B.; Fournier, S.; Aubert, Y.; Pelletier, S.; Thomma, B.P.H.J.; Molina, A.; Jouanin, L.; Marco, Y.; Goffner, D.

    2013-01-01

    Inactivation of Arabidopsis WAT1 (Walls Are Thin1), a gene required for secondary cell-wall deposition, conferred broad-spectrum resistance to vascular pathogens, including the bacteria Ralstonia solanacearum and Xanthomonas campestris pv. campestris, and the fungi Verticillium dahliae and

  6. A Rice Gene Homologous to Arabidopsis AGD2-LIKE DEFENSE1 Participates in Disease Resistance Response against Infection with Magnaporthe oryzae

    Directory of Open Access Journals (Sweden)

    Ga Young Jung

    2016-08-01

    Full Text Available ALD1 (ABERRANT GROWTH AND DEATH2 [AGD2]-LIKE DEFENSE1 is one of the key defense regulators in Arabidopsis thaliana and Nicotiana benthamiana. In these model plants, ALD1 is responsible for triggering basal defense response and systemic resistance against bacterial infection. As well ALD1 is involved in the production of pipecolic acid and an unidentified compound(s for systemic resistance and priming syndrome, respectively. These previous studies proposed that ALD1 is a potential candidate for developing genetically modified (GM plants that may be resistant to pathogen infection. Here we introduce a role of ALD1-LIKE gene of Oryza sativa, named as OsALD1, during plant immunity. OsALD1 mRNA was strongly transcribed in the infected leaves of rice plants by Magnaporthe oryzae, the rice blast fungus. OsALD1 proteins predominantly localized at the chloroplast in the plant cells. GM rice plants over-expressing OsALD1 were resistant to the fungal infection. The stable expression of OsALD1 also triggered strong mRNA expression of PATHOGENESIS-RELATED PROTEIN1 genes in the leaves of rice plants during infection. Taken together, we conclude that OsALD1 plays a role in disease resistance response of rice against the infection with rice blast fungus.

  7. Structural and Functional Analysis of VQ Motif-Containing Proteins in Arabidopsis as Interacting Proteins of WRKY Transcription Factors1[W][OA

    Science.gov (United States)

    Cheng, Yuan; Zhou, Yuan; Yang, Yan; Chi, Ying-Jun; Zhou, Jie; Chen, Jian-Ye; Wang, Fei; Fan, Baofang; Shi, Kai; Zhou, Yan-Hong; Yu, Jing-Quan; Chen, Zhixiang

    2012-01-01

    WRKY transcription factors are encoded by a large gene superfamily with a broad range of roles in plants. Recently, several groups have reported that proteins containing a short VQ (FxxxVQxLTG) motif interact with WRKY proteins. We have recently discovered that two VQ proteins from Arabidopsis (Arabidopsis thaliana), SIGMA FACTOR-INTERACTING PROTEIN1 and SIGMA FACTOR-INTERACTING PROTEIN2, act as coactivators of WRKY33 in plant defense by specifically recognizing the C-terminal WRKY domain and stimulating the DNA-binding activity of WRKY33. In this study, we have analyzed the entire family of 34 structurally divergent VQ proteins from Arabidopsis. Yeast (Saccharomyces cerevisiae) two-hybrid assays showed that Arabidopsis VQ proteins interacted specifically with the C-terminal WRKY domains of group I and the sole WRKY domains of group IIc WRKY proteins. Using site-directed mutagenesis, we identified structural features of these two closely related groups of WRKY domains that are critical for interaction with VQ proteins. Quantitative reverse transcription polymerase chain reaction revealed that expression of a majority of Arabidopsis VQ genes was responsive to pathogen infection and salicylic acid treatment. Functional analysis using both knockout mutants and overexpression lines revealed strong phenotypes in growth, development, and susceptibility to pathogen infection. Altered phenotypes were substantially enhanced through cooverexpression of genes encoding interacting VQ and WRKY proteins. These findings indicate that VQ proteins play an important role in plant growth, development, and response to environmental conditions, most likely by acting as cofactors of group I and IIc WRKY transcription factors. PMID:22535423

  8. GOLDEN2-LIKE transcription factors coordinate the tolerance to Cucumber mosaic virus in Arabidopsis

    International Nuclear Information System (INIS)

    Han, Xue-Ying; Li, Peng-Xu; Zou, Li-Juan; Tan, Wen-rong; Zheng, Ting; Zhang, Da-Wei; Lin, Hong-Hui

    2016-01-01

    Arabidopsis thaliana GOLDEN2-LIKE (GLKs) transcription factors play important roles in regulation of photosynthesis-associated nuclear genes, as well as participate in chloroplast development. However, the involvement of GLKs in plants resistance to virus remains largely unknown. Here, the relationship between GLKs and Cucumber mosaic virus (CMV) stress response was investigated. Our results showed that the Arabidopsis glk1glk2 double-mutant was more susceptible to CMV infection and suffered more serious damages (such as higher oxidative damages, more compromised in PSII photochemistry and more reactive oxygen species accumulation) when compared with the wild-type plants. Interestingly, there was little difference between single mutant (glk1 or glk2) and wild-type plants in response to CMV infection, suggesting GLK1 and GLK2 might function redundant in virus resistance in Arabidopsis. Furthermore, the induction of antioxidant system and defense-associated genes expression in the double mutant were inhibited when compared with single mutant or wild-type plants after CMV infection. Further evidences showed that salicylic acid (SA) and jasmonic acid (JA) might be involved in GLKs-mediated virus resistance, as SA or JA level and synthesis-related genes transcription were impaired in glk1glk2 mutant. Taken together, our results indicated that GLKs played a positively role in virus resistance in Arabidopsis. - Highlights: • GLKs play a positive role in CMV resistance in Arabidopsis. • Defective of GLKs suffered more ROS accumulation. • Arabidopsis lacking GLKs have damaged photosynthesis. • Arabidopsis lacking GLKs show low SA and JA accumulation.

  9. GOLDEN2-LIKE transcription factors coordinate the tolerance to Cucumber mosaic virus in Arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    Han, Xue-Ying; Li, Peng-Xu; Zou, Li-Juan; Tan, Wen-rong; Zheng, Ting; Zhang, Da-Wei, E-mail: yuanmiao1892@163.com; Lin, Hong-Hui, E-mail: hhlin@scu.edu.cn

    2016-09-02

    Arabidopsis thaliana GOLDEN2-LIKE (GLKs) transcription factors play important roles in regulation of photosynthesis-associated nuclear genes, as well as participate in chloroplast development. However, the involvement of GLKs in plants resistance to virus remains largely unknown. Here, the relationship between GLKs and Cucumber mosaic virus (CMV) stress response was investigated. Our results showed that the Arabidopsis glk1glk2 double-mutant was more susceptible to CMV infection and suffered more serious damages (such as higher oxidative damages, more compromised in PSII photochemistry and more reactive oxygen species accumulation) when compared with the wild-type plants. Interestingly, there was little difference between single mutant (glk1 or glk2) and wild-type plants in response to CMV infection, suggesting GLK1 and GLK2 might function redundant in virus resistance in Arabidopsis. Furthermore, the induction of antioxidant system and defense-associated genes expression in the double mutant were inhibited when compared with single mutant or wild-type plants after CMV infection. Further evidences showed that salicylic acid (SA) and jasmonic acid (JA) might be involved in GLKs-mediated virus resistance, as SA or JA level and synthesis-related genes transcription were impaired in glk1glk2 mutant. Taken together, our results indicated that GLKs played a positively role in virus resistance in Arabidopsis. - Highlights: • GLKs play a positive role in CMV resistance in Arabidopsis. • Defective of GLKs suffered more ROS accumulation. • Arabidopsis lacking GLKs have damaged photosynthesis. • Arabidopsis lacking GLKs show low SA and JA accumulation.

  10. Chloroplast RNA-Binding Protein RBD1 Promotes Chilling Tolerance through 23S rRNA Processing in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Shuai Wang

    2016-05-01

    Full Text Available Plants have varying abilities to tolerate chilling (low but not freezing temperatures, and it is largely unknown how plants such as Arabidopsis thaliana achieve chilling tolerance. Here, we describe a genome-wide screen for genes important for chilling tolerance by their putative knockout mutants in Arabidopsis thaliana. Out of 11,000 T-DNA insertion mutant lines representing half of the genome, 54 lines associated with disruption of 49 genes had a drastic chilling sensitive phenotype. Sixteen of these genes encode proteins with chloroplast localization, suggesting a critical role of chloroplast function in chilling tolerance. Study of one of these proteins RBD1 with an RNA binding domain further reveals the importance of chloroplast translation in chilling tolerance. RBD1 is expressed in the green tissues and is localized in the chloroplast nucleoid. It binds directly to 23S rRNA and the binding is stronger under chilling than at normal growth temperatures. The rbd1 mutants are defective in generating mature 23S rRNAs and deficient in chloroplast protein synthesis especially under chilling conditions. Together, our study identifies RBD1 as a regulator of 23S rRNA processing and reveals the importance of chloroplast function especially protein translation in chilling tolerance.

  11. Verticillium dahliae-Arabidopsis Interaction Causes Changes in Gene Expression Profiles and Jasmonate Levels on Different Time Scales

    Directory of Open Access Journals (Sweden)

    Sandra S. Scholz

    2018-02-01

    Full Text Available Verticillium dahliae is a soil-borne vascular pathogen that causes severe wilt symptoms in a wide range of plants. Co-culture of the fungus with Arabidopsis roots for 24 h induces many changes in the gene expression profiles of both partners, even before defense-related phytohormone levels are induced in the plant. Both partners reprogram sugar and amino acid metabolism, activate genes for signal perception and transduction, and induce defense- and stress-responsive genes. Furthermore, analysis of Arabidopsis expression profiles suggests a redirection from growth to defense. After 3 weeks, severe disease symptoms can be detected for wild-type plants while mutants impaired in jasmonate synthesis and perception perform much better. Thus, plant jasmonates have an important influence on the interaction, which is already visible at the mRNA level before hormone changes occur. The plant and fungal genes that rapidly respond to the presence of the partner might be crucial for early recognition steps and the future development of the interaction. Thus they are potential targets for the control of V. dahliae-induced wilt diseases.

  12. Survey of the rubber tree genome reveals a high number of cysteine protease-encoding genes homologous to Arabidopsis SAG12.

    Science.gov (United States)

    Zou, Zhi; Liu, Jianting; Yang, Lifu; Xie, Guishui

    2017-01-01

    Arabidopsis thaliana SAG12, a senescence-specific gene encoding a cysteine protease, is widely used as a molecular marker for the study of leaf senescence. To date, its potential orthologues have been isolated from several plant species such as Brassica napus and Nicotiana tabacum. However, little information is available in rubber tree (Hevea brasiliensis), a rubber-producing plant of the Euphorbiaceae family. This study presents the identification of SAG12-like genes from the rubber tree genome. Results showed that an unexpected high number of 17 rubber orthologues with a single intron were found, contrasting the single copy with two introns in Arabidopsis. The gene expansion was also observed in another two Euphorbiaceae plants, castor bean (Ricinus communis) and physic nut (Jatropha curcas), both of which contain 8 orthologues. In accordance with no occurrence of recent whole-genome duplication (WGD) events, most duplicates in castor and physic nut were resulted from tandem duplications. In contrast, the duplicated HbSAG12H genes were derived from tandem duplications as well as the recent WGD. Expression analysis showed that most HbSAG12H genes were lowly expressed in examined tissues except for root and male flower. Furthermore, HbSAG12H1 exhibits a strictly senescence-associated expression pattern in rubber tree leaves, and thus can be used as a marker gene for the study of senescence mechanism in Hevea.

  13. Reference: 774 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available an essential gene, the disruption of which causes embryonic lethality. Plants carrying a hypomorphic smg7 mu...e progression from anaphase to telophase in the second meiotic division in Arabidopsis. Arabidopsis SMG7 is

  14. Comparative differential gene expression analysis of nucleus-encoded proteins for Rafflesia cantleyi against Arabidopsis thaliana

    Science.gov (United States)

    Ng, Siuk-Mun; Lee, Xin-Wei; Wan, Kiew-Lian; Firdaus-Raih, Mohd

    2015-09-01

    Regulation of functional nucleus-encoded proteins targeting the plastidial functions was comparatively studied for a plant parasite, Rafflesia cantleyi versus a photosynthetic plant, Arabidopsis thaliana. This study involved two species of different feeding modes and different developmental stages. A total of 30 nucleus-encoded proteins were found to be differentially-regulated during two stages in the parasite; whereas 17 nucleus-encoded proteins were differentially-expressed during two developmental stages in Arabidopsis thaliana. One notable finding observed for the two plants was the identification of genes involved in the regulation of photosynthesis-related processes where these processes, as expected, seem to be present only in the autotroph.

  15. Isolation and characterization of a floral homeotic gene in Fraxinus nigra causing earlier flowering and homeotic alterations in transgenic Arabidopsis

    Science.gov (United States)

    Jun Hyung Lee; Paula M. Pijut

    2017-01-01

    Reproductive sterility, which can be obtained by manipulating floral organ identity genes, is an important tool for gene containment of genetically engineered trees. In Arabidopsis, AGAMOUS (AG) is the only C-class gene responsible for both floral meristem determinacy and floral organ identity, and its mutations produce...

  16. Identification of genes involved in the ACC-mediated control of root cell elongation in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Markakis Marios

    2012-11-01

    Full Text Available Abstract Background Along the root axis of Arabidopsis thaliana, cells pass through different developmental stages. In the apical meristem repeated cycles of division increase the numbers of cells. Upon leaving the meristem, these cells pass the transition zone where they are physiologically and mechanically prepared to undergo subsequent rapid elongation. During the process of elongation epidermal cells increase their length by 300% in a couple of hours. When elongation ceases, the cells acquire their final size, shape and functions (in the differentiation zone. Ethylene administered as its precursor 1-aminocyclopropane-1-carboxylic acid (ACC is capable of inhibiting elongation in a concentration-dependent way. Using a microarray analysis, genes and/or processes involved in this elongation arrest are identified. Results Using a CATMA-microarray analysis performed on control and 3h ACC-treated roots, 240 differentially expressed genes were identified. Quantitative Real-Time RT-PCR analysis of the 10 most up and down regulated genes combined with literature search confirmed the accurateness of the analysis. This revealed that inhibition of cell elongation is, at least partly, caused by restricting the events that under normal growth conditions initiate elongation and by increasing the processes that normally stop cellular elongation at the end of the elongation/onset of differentiation zone. Conclusions ACC interferes with cell elongation in the Arabidopsis thaliana roots by inhibiting cells from entering the elongation process and by immediately stimulating the formation of cross-links in cell wall components, diminishing the remaining elongation capacity. From the analysis of the differentially expressed genes, it becomes clear that many genes identified in this response, are also involved in several other kind of stress responses. This suggests that many responses originate from individual elicitors, but that somewhere in the downstream

  17. Isolation and characterization of a novel semi-lethal Arabidopsis thaliana mutant of gene for pentatricopeptide (PPR) repeat-containing protein

    Czech Academy of Sciences Publication Activity Database

    Kocábek, Tomáš; Řepková, J.; Dudová, M.; Hoyerová, Klára; Vrba, Lukáš

    2006-01-01

    Roč. 128, - (2006), s. 395-407 ISSN 0016-6707 R&D Projects: GA ČR GA521/00/D036; GA ČR(CZ) GD204/05/H505; GA AV ČR KJB600510503 Institutional research plan: CEZ:AV0Z50510513 Keywords : Arabidopsis thaliana * gene manipulation Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.492, year: 2006

  18. The Arabidopsis halophytic relative Thellungiella halophila tolerates nitrogen-limiting conditions by maintaining growth, nitrogen uptake, and assimilation.

    Science.gov (United States)

    Kant, Surya; Bi, Yong-Mei; Weretilnyk, Elizabeth; Barak, Simon; Rothstein, Steven J

    2008-07-01

    A comprehensive knowledge of mechanisms regulating nitrogen (N) use efficiency is required to reduce excessive input of N fertilizers while maintaining acceptable crop yields under limited N supply. Studying plant species that are naturally adapted to low N conditions could facilitate the identification of novel regulatory genes conferring better N use efficiency. Here, we show that Thellungiella halophila, a halophytic relative of Arabidopsis (Arabidopsis thaliana), grows better than Arabidopsis under moderate (1 mm nitrate) and severe (0.4 mm nitrate) N-limiting conditions. Thellungiella exhibited a lower carbon to N ratio than Arabidopsis under N limitation, which was due to Thellungiella plants possessing higher N content, total amino acids, total soluble protein, and lower starch content compared with Arabidopsis. Furthermore, Thellungiella had higher amounts of several metabolites, such as soluble sugars and organic acids, under N-sufficient conditions (4 mm nitrate). Nitrate reductase activity and NR2 gene expression in Thellungiella displayed less of a reduction in response to N limitation than in Arabidopsis. Thellungiella shoot GS1 expression was more induced by low N than in Arabidopsis, while in roots, Thellungiella GS2 expression was maintained under N limitation but was decreased in Arabidopsis. Up-regulation of NRT2.1 and NRT3.1 expression was higher and repression of NRT1.1 was lower in Thellungiella roots under N-limiting conditions compared with Arabidopsis. Differential transporter gene expression was correlated with higher nitrate influx in Thellungiella at low (15)NO(3)(-) supply. Taken together, our results suggest that Thellungiella is tolerant to N-limited conditions and could act as a model system to unravel the mechanisms for low N tolerance.

  19. Microarray Data Analysis of Space Grown Arabidopsis Leaves for Genes Important in Vascular Patterning. Analysis of Space Grown Arabidopsis with Microarray Data from GeneLab: Identification of Genes Important in Vascular Patterning

    Science.gov (United States)

    Weitzel, A. J.; Wyatt, S. E.; Parsons-Wingerter, P.

    2016-01-01

    Venation patterning in leaves is a major determinant of photosynthesis efficiency because of its dependency on vascular transport of photo-assimilates, water, and minerals. Arabidopsis thaliana grown in microgravity show delayed growth and leaf maturation. Gene expression data from the roots, hypocotyl, and leaves of A. thaliana grown during spaceflight vs. ground control analyzed by Affymetrix microarray are available through NASA's GeneLab (GLDS-7). We analyzed the data for differential expression of genes in leaves resulting from the effects of spaceflight on vascular patterning. Two genes were found by preliminary analysis to be up-regulated during spaceflight that may be related to vascular formation. The genes are responsible for coding an ARGOS (Auxin-Regulated Gene Involved in Organ Size)-like protein (potentially affecting cell elongation in the leaves), and an F-box/kelch-repeat protein (possibly contributing to protoxylem specification). Further analysis that will focus on raw data quality assessment and a moderated t-test may further confirm up-regulation of the two genes and/or identify other gene candidates. Plants defective in these genes will then be assessed for phenotype by the mapping and quantification of leaf vascular patterning by NASA's VESsel GENeration (VESGEN) software to model specific vascular differences of plants grown in spaceflight.

  20. A mutation in a coproporphyrinogen III oxidase gene confers growth inhibition, enhanced powdery mildew resistance and powdery mildew-induced cell death in Arabidopsis.

    Science.gov (United States)

    Guo, Chuan-yu; Wu, Guang-heng; Xing, Jin; Li, Wen-qi; Tang, Ding-zhong; Cui, Bai-ming

    2013-05-01

    A gene encoding a coproporphyrinogen III oxidase mediates disease resistance in plants by the salicylic acid pathway. A number of genes that regulate powdery mildew resistance have been identified in Arabidopsis, such as ENHANCED DISEASE RESISTANCE 1 to 3 (EDR1 to 3). To further study the molecular interactions between the powdery mildew pathogen and Arabidopsis, we isolated and characterized a mutant that exhibited enhanced resistance to powdery mildew. The mutant also showed dramatic powdery mildew-induced cell death as well as growth defects and early senescence in the absence of pathogens. We identified the affected gene by map-based cloning and found that the gene encodes a coproporphyrinogen III oxidase, a key enzyme in the tetrapyrrole biosynthesis pathway, previously known as LESION INITIATION 2 (LIN2). Therefore, we designated the mutant lin2-2. Further studies revealed that the lin2-2 mutant also displayed enhanced resistance to Hyaloperonospora arabidopsidis (H.a.) Noco2. Genetic analysis showed that the lin2-2-mediated disease resistance and spontaneous cell death were dependent on PHYTOALEXIN DEFICIENT 4 (PAD4), SALICYLIC ACID INDUCTION-DEFICIENT 2 (SID2), and NONEXPRESSOR OF PATHOGENESIS-RELATED GENES 1 (NPR1), which are all involved in salicylic acid signaling. Furthermore, the relative expression levels of defense-related genes were induced after powdery mildew infection in the lin2-2 mutant. These data indicated that LIN2 plays an important role in cell death control and defense responses in plants.

  1. Impact of AtNHX1, a vacuolar Na+/H+ antiporter, upon gene expression during short- and long-term salt stress in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Blumwald Eduardo

    2007-04-01

    Full Text Available Abstract Background AtNHX1, the most abundant vacuolar Na+/H+ antiporter in Arabidopsis thaliana, mediates the transport of Na+ and K+ into the vacuole, influencing plant development and contributing to salt tolerance. In this report, microarray expression profiles of wild type plants, a T-DNA insertion knockout mutant of AtNHX1 (nhx1, and a 'rescued' line (NHX1::nhx1 were exposed to both short (12 h and 48 h and long (one and two weeks durations of a non-lethal salt stress to identify key gene transcripts associated with the salt response that are influenced by AtNHX1. Results 147 transcripts showed both salt responsiveness and a significant influence of AtNHX1. Fifty-seven of these genes showed an influence of the antiporter across all salt treatments, while the remaining genes were influenced as a result of a particular duration of salt stress. Most (69% of the genes were up-regulated in the absence of AtNHX1, with the exception of transcripts encoding proteins involved with metabolic and energy processes that were mostly down-regulated. Conclusion While part of the AtNHX1-influenced transcripts were unclassified, other transcripts with known or putative roles showed the importance of AtNHX1 to key cellular processes that were not necessarily limited to the salt stress response; namely calcium signaling, sulfur metabolism, cell structure and cell growth, as well as vesicular trafficking and protein processing. Only a small number of other salt-responsive membrane transporter transcripts appeared significantly influenced by AtNHX1.

  2. Sex and the City (of God): is sex forfeited or fulfilled in Augustine's resurrection of body?

    Science.gov (United States)

    Miles, Margaret R

    2005-01-01

    Reading Augustine’s hypothetical description of resurrection bodies through Freud and his critics’ construction of "sexuality," I suggest that Augustine’s mature writings on the resurrection include some-thing like post-Freudian ideas of sexuality, even though the concept itself was not part of Augustine’s conceptual universe. Historicizing "sexuality" frees the concept for revision so that sexuality can be thought of as embedded in social assumptions and arrangements rather than individual, as part rather than essence of the self, and as gendered rather than universal. Collecting and composing hints and clues scattered in Augustine’s sermons and treatises, I sketch a post-Augustinian proposal for an ideal sexuality that is not incompatible with, but extends, elaborates, and refines Augustine’s description of resurrection bodies.

  3. Identification, occurrence, and validation of DRE and ABRE Cis-regulatory motifs in the promoter regions of genes of Arabidopsis thaliana.

    Science.gov (United States)

    Mishra, Sonal; Shukla, Aparna; Upadhyay, Swati; Sanchita; Sharma, Pooja; Singh, Seema; Phukan, Ujjal J; Meena, Abha; Khan, Feroz; Tripathi, Vineeta; Shukla, Rakesh Kumar; Shrama, Ashok

    2014-04-01

    Plants posses a complex co-regulatory network which helps them to elicit a response under diverse adverse conditions. We used an in silico approach to identify the genes with both DRE and ABRE motifs in their promoter regions in Arabidopsis thaliana. Our results showed that Arabidopsis contains a set of 2,052 genes with ABRE and DRE motifs in their promoter regions. Approximately 72% or more of the total predicted 2,052 genes had a gap distance of less than 400 bp between DRE and ABRE motifs. For positional orientation of the DRE and ABRE motifs, we found that the DR form (one in direct and the other one in reverse orientation) was more prevalent than other forms. These predicted 2,052 genes include 155 transcription factors. Using microarray data from The Arabidopsis Information Resource (TAIR) database, we present 44 transcription factors out of 155 which are upregulated by more than twofold in response to osmotic stress and ABA treatment. Fifty-one transcripts from the one predicted above were validated using semiquantitative expression analysis to support the microarray data in TAIR. Taken together, we report a set of genes containing both DRE and ABRE motifs in their promoter regions in A. thaliana, which can be useful to understand the role of ABA under osmotic stress condition. © 2013 Institute of Botany, Chinese Academy of Sciences.

  4. RiceFOX: a database of Arabidopsis mutant lines overexpressing rice full-length cDNA that contains a wide range of trait information to facilitate analysis of gene function.

    Science.gov (United States)

    Sakurai, Tetsuya; Kondou, Youichi; Akiyama, Kenji; Kurotani, Atsushi; Higuchi, Mieko; Ichikawa, Takanari; Kuroda, Hirofumi; Kusano, Miyako; Mori, Masaki; Saitou, Tsutomu; Sakakibara, Hitoshi; Sugano, Shoji; Suzuki, Makoto; Takahashi, Hideki; Takahashi, Shinya; Takatsuji, Hiroshi; Yokotani, Naoki; Yoshizumi, Takeshi; Saito, Kazuki; Shinozaki, Kazuo; Oda, Kenji; Hirochika, Hirohiko; Matsui, Minami

    2011-02-01

    Identification of gene function is important not only for basic research but also for applied science, especially with regard to improvements in crop production. For rapid and efficient elucidation of useful traits, we developed a system named FOX hunting (Full-length cDNA Over-eXpressor gene hunting) using full-length cDNAs (fl-cDNAs). A heterologous expression approach provides a solution for the high-throughput characterization of gene functions in agricultural plant species. Since fl-cDNAs contain all the information of functional mRNAs and proteins, we introduced rice fl-cDNAs into Arabidopsis plants for systematic gain-of-function mutation. We generated >30,000 independent Arabidopsis transgenic lines expressing rice fl-cDNAs (rice FOX Arabidopsis mutant lines). These rice FOX Arabidopsis lines were screened systematically for various criteria such as morphology, photosynthesis, UV resistance, element composition, plant hormone profile, metabolite profile/fingerprinting, bacterial resistance, and heat and salt tolerance. The information obtained from these screenings was compiled into a database named 'RiceFOX'. This database contains around 18,000 records of rice FOX Arabidopsis lines and allows users to search against all the observed results, ranging from morphological to invisible traits. The number of searchable items is approximately 100; moreover, the rice FOX Arabidopsis lines can be searched by rice and Arabidopsis gene/protein identifiers, sequence similarity to the introduced rice fl-cDNA and traits. The RiceFOX database is available at http://ricefox.psc.riken.jp/.

  5. Arabidopsis mutant sk156 reveals complex regulation of SPL15 in a miR156-controlled gene network

    Directory of Open Access Journals (Sweden)

    Wei Shu

    2012-09-01

    Full Text Available Abstract Background The Arabidopsis microRNA156 (miR156 regulates 11 members of the SQUAMOSA PROMOTER BINDING PROTEIN LIKE (SPL family by base pairing to complementary target mRNAs. Each SPL gene further regulates a set of other genes; thus, miR156 controls numerous genes through a complex gene regulation network. Increased axillary branching occurs in transgenic Arabidopsis overexpressing miR156b, similar to that observed in loss-of-function max3 and max4 mutants with lesions in carotenoid cleavage dioxygenases. Arabidopsis miR156b was found to enhance carotenoid levels and reproductive shoot branching when expressed in Brassica napus, suggesting a link between miR156b expression and carotenoid metabolism. However, details of the miR156 regulatory network of SPL genes related to carotenoid metabolism are not known. Results In this study, an Arabidopsis T-DNA enhancer mutant, sk156, was identified due to its altered branching and trichome morphology and increased seed carotenoid levels compared to wild type (WT ecovar Columbia. Enhanced miR156b expression due to the 35S enhancers present on the T-DNA insert was responsible for these phenotypes. Constitutive and leaf primodium-specific expression of a miR156-insensitive (mutated SPL15 (SPL15m largely restored WT seed carotenoid levels and plant morphology when expressed in sk156. The Arabidopsis native miR156-sensitive SPL15 (SPL15n and SPL15m driven by a native SPL15 promoter did not restore the WT phenotype in sk156. Our findings suggest that SPL15 function is somewhat redundant with other SPL family members, which collectively affect plant phenotypes. Moreover, substantially decreased miR156b transcript levels in sk156 expressing SPL15m, together with the presence of multiple repeats of SPL-binding GTAC core sequence close to the miR156b transcription start site, suggested feedback regulation of miR156b expression by SPL15. This was supported by the demonstration of specific in vitro

  6. Gene Coexpression Analysis Reveals Complex Metabolism of the Monoterpene Alcohol Linalool in Arabidopsis FlowersW

    NARCIS (Netherlands)

    Ginglinger, J.F.; Boachon, B.; Hofer, R.; Paetz, C.; Kollner, T.G.; Miesch, L.; Lugan, R.; Baltenweck, R.; Mutterer, J.; Ullman, P.; Verstappen, F.W.A.; Bouwmeester, H.J.

    2013-01-01

    The cytochrome P450 family encompasses the largest family of enzymes in plant metabolism, and the functions of many of its members in Arabidopsis thaliana are still unknown. Gene coexpression analysis pointed to two P450s that were coexpressed with two monoterpene synthases in flowers and were thus

  7. Studies on gene expressions analyses for Arabidopsis thaliana plants stimulated by space flight condition

    Science.gov (United States)

    Lu, Jinying; Liu, Min; Pan, Yi; Li, Huasheng

    We carried out whole-genome microarray to screen the transcript profile of Arabidopsis thaliana seedlings after three treatment: space microgravity condition( Seedlings grown in microgravity state of space flight of SIMBOX on Shenzhou-8), 1g centrifugal force in space(Seedlings grown in 1g centrifugal force state of space flight of SIMBOX on Shenzhou-8) and ground control. The result of microarray analysis is as followed: There were 368 genes significantly differentially expressed in space microgravity condition compared with that in 1g centrifuge space condition. Space radiation caused 246 genes significantly differentially expressed between seedlings in 1g centrifuge space condition and ground control. Space conditions (including microgravity and radiation) caused 621 genes significantly differentially expressed between seedlings in space microgravity condition and ground control. Microgravity and radiation as a single factor can cause plant gene expression change, but two factors synergism can produce some new effects on plant gene expression. The function of differential expression genes were analyst by bioinformatics, and we found the expression of genes related with stress were more different, such as the dehydration of protein (dehydrin Xero2) expression is up-regulated 57 times; low-temperature-induced protein expression is up-regulated in 49 times; heat shock protein expression is up-regulated 20 times; transcription factor DREB2A expression increase 25 times; protein phosphatase 2C expression is up-regulated 14 times; transcription factor NAM-like protein expression is up-regulated 13 times; cell wall metabolism related genes (xyloglucan, endo-1, 4-beta-D-glucanase) expression is down-regulated in 15 times. The results provide scientific data for the mechanism of space mutation.

  8. The AtCAO gene, encoding chlorophyll a oxygenase, is required for chlorophyll b synthesis in Arabidopsis thaliana

    Science.gov (United States)

    Espineda, Cromwell E.; Linford, Alicia S.; Devine, Domenica; Brusslan, Judy A.

    1999-01-01

    Chlorophyll b is synthesized from chlorophyll a and is found in the light-harvesting complexes of prochlorophytes, green algae, and both nonvascular and vascular plants. We have used conserved motifs from the chlorophyll a oxygenase (CAO) gene from Chlamydomonas reinhardtii to isolate a homologue from Arabidopsis thaliana. This gene, AtCAO, is mutated in both leaky and null chlorina1 alleles, and DNA sequence changes cosegregate with the mutant phenotype. AtCAO mRNA levels are higher in three different mutants that have reduced levels of chlorophyll b, suggesting that plants that do not have sufficient chlorophyll b up-regulate AtCAO gene expression. Additionally, AtCAO mRNA levels decrease in plants that are grown under dim-light conditions. We have also found that the six major Lhcb proteins do not accumulate in the null ch1-3 allele. PMID:10468639

  9. GEM2Net: from gene expression modeling to -omics networks, a new CATdb module to investigate Arabidopsis thaliana genes involved in stress response.

    Science.gov (United States)

    Zaag, Rim; Tamby, Jean Philippe; Guichard, Cécile; Tariq, Zakia; Rigaill, Guillem; Delannoy, Etienne; Renou, Jean-Pierre; Balzergue, Sandrine; Mary-Huard, Tristan; Aubourg, Sébastien; Martin-Magniette, Marie-Laure; Brunaud, Véronique

    2015-01-01

    CATdb (http://urgv.evry.inra.fr/CATdb) is a database providing a public access to a large collection of transcriptomic data, mainly for Arabidopsis but also for other plants. This resource has the rare advantage to contain several thousands of microarray experiments obtained with the same technical protocol and analyzed by the same statistical pipelines. In this paper, we present GEM2Net, a new module of CATdb that takes advantage of this homogeneous dataset to mine co-expression units and decipher Arabidopsis gene functions. GEM2Net explores 387 stress conditions organized into 18 biotic and abiotic stress categories. For each one, a model-based clustering is applied on expression differences to identify clusters of co-expressed genes. To characterize functions associated with these clusters, various resources are analyzed and integrated: Gene Ontology, subcellular localization of proteins, Hormone Families, Transcription Factor Families and a refined stress-related gene list associated to publications. Exploiting protein-protein interactions and transcription factors-targets interactions enables to display gene networks. GEM2Net presents the analysis of the 18 stress categories, in which 17,264 genes are involved and organized within 681 co-expression clusters. The meta-data analyses were stored and organized to compose a dynamic Web resource. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  10. Of the Nine Cytidine Deaminase-Like Genes in Arabidopsis, Eight Are Pseudogenes and Only One Is Required to Maintain Pyrimidine Homeostasis in Vivo.

    Science.gov (United States)

    Chen, Mingjia; Herde, Marco; Witte, Claus-Peter

    2016-06-01

    CYTIDINE DEAMINASE (CDA) catalyzes the deamination of cytidine to uridine and ammonia in the catabolic route of C nucleotides. The Arabidopsis (Arabidopsis thaliana) CDA gene family comprises nine members, one of which (AtCDA) was shown previously in vitro to encode an active CDA. A possible role in C-to-U RNA editing or in antiviral defense has been discussed for other members. A comprehensive bioinformatic analysis of plant CDA sequences, combined with biochemical functionality tests, strongly suggests that all Arabidopsis CDA family members except AtCDA are pseudogenes and that most plants only require a single CDA gene. Soybean (Glycine max) possesses three CDA genes, but only two encode functional enzymes and just one has very high catalytic efficiency. AtCDA and soybean CDAs are located in the cytosol. The functionality of AtCDA in vivo was demonstrated with loss-of-function mutants accumulating high amounts of cytidine but also CMP, cytosine, and some uridine in seeds. Cytidine hydrolysis in cda mutants is likely caused by NUCLEOSIDE HYDROLASE1 (NSH1) because cytosine accumulation is strongly reduced in a cda nsh1 double mutant. Altered responses of the cda mutants to fluorocytidine and fluorouridine indicate that a dual specific nucleoside kinase is involved in cytidine as well as uridine salvage. CDA mutants display a reduction in rosette size and have fewer leaves compared with the wild type, which is probably not caused by defective pyrimidine catabolism but by the accumulation of pyrimidine catabolism intermediates reaching toxic concentrations. © 2016 American Society of Plant Biologists. All Rights Reserved.

  11. Early leaf senescence is associated with an altered cellular redox balance in Arabidopsis cpr5/old1 mutants

    OpenAIRE

    Jing, H. -C.; Hebeler, R.; Oeljeklaus, S.; Sitek, B.; Stuehler, K.; Meyer, H. E.; Sturre, M. J. G.; Hille, J.; Warscheid, B.; Dijkwel, P. P.; Stühler, K.

    2008-01-01

    Reactive oxygen species (ROS) are the inevitable by-products of essential cellular metabolic and physiological activities. Plants have developed sophisticated gene networks of ROS generation and scavenging systems. However, ROS regulation is still poorly understood. Here, we report that mutations in the Arabidopsis CPR5/OLD1 gene may cause early senescence through deregulation of the cellular redox balance. Genetic analysis showed that blocking stress-related hormonal signalling pathways, suc...

  12. Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings.

    Science.gov (United States)

    Gonzalez, Antonio; Zhao, Mingzhe; Leavitt, John M; Lloyd, Alan M

    2008-03-01

    In all higher plants studied to date, the anthocyanin pigment pathway is regulated by a suite of transcription factors that include Myb, bHLH and WD-repeat proteins. However, in Arabidopsis thaliana, the Myb regulators remain to be conclusively identified, and little is known about anthocyanin pathway regulation by TTG1-dependent transcriptional complexes. Previous overexpression of the PAP1 Myb suggested that genes from the entire phenylpropanoid pathway are targets of regulation by Myb/bHLH/WD-repeat complexes in Arabidopsis, in contrast to other plants. Here we demonstrate that overexpression of Myb113 or Myb114 results in substantial increases in pigment production similar to those previously seen as a result of over-expression of PAP1, and pigment production in these overexpressors remains TTG1- and bHLH-dependent. Also, plants harboring an RNAi construct targeting PAP1 and three Myb candidates (PAP2, Myb113 and Myb114) showed downregulated Myb gene expression and obvious anthocyanin deficiencies. Correlated with these anthocyanin deficiencies is downregulation of the same late anthocyanin structural genes that are downregulated in ttg1 and bHLH anthocyanin mutants. Expression studies using GL3:GR and TTG1:GR fusions revealed direct regulation of the late biosynthetic genes only. Functional diversification between GL3 and EGL3 with regard to activation of gene targets was revealed by GL3:GR studies in single and double bHLH mutant seedlings. Expression profiles for Myb and bHLH regulators are also presented in the context of pigment production in young seedlings.

  13. A potato NOA gene increased salinity tolerance in Arabidopsis ...

    African Journals Online (AJOL)

    ONOS

    2010-09-06

    Sep 6, 2010 ... in Arabidopsis thaliana salt stress responses and increased its salinity tolerance. Key words: StNOA1 ... (NR)-dependent pathways (Cueto et al., 1996; Delledonne ..... plastome-encoded proteins uncovers a mechanism for the.

  14. The density and length of root hairs are enhanced in response to cadmium and arsenic by modulating gene expressions involved in fate determination and morphogenesis of root hairs in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Ramin Bahmani

    2016-11-01

    Full Text Available Root hairs are tubular outgrowths that originate from epidermal cells. Exposure of Arabidopsis to cadmium (Cd and arsenic [arsenite, As(III] increases root hair density and length. To examine the underlying mechanism, we measured the expression of genes involved in fate determination and morphogenesis of root hairs. Cd and As(III downregulated TTG1 and GL2 (negative regulators of fate determination and upregulated GEM (positive regulator, suggesting that root hair fate determination is stimulated by Cd and As(III. Cd and As(III increased the transcript levels of genes involved in root hair initiation (RHD6 and AXR2 and root hair elongation (AUX1, AXR1, ETR1, and EIN2 except CTR1. DR5::GUS transgenic Arabidopsis showed a higher DR5 expression in the root tip, suggesting that Cd and As(III increased the auxin content in the root tip. Knockdown of TTG1 in Arabidopsis resulted in increased root hair density and decreased root hair length compared with the control (Col-0 on 1/2 MS media. This phenotype may be attributed to the downregulation of GL2 and CTR1 and upregulation of RHD6. By contrast, gem mutant plants displayed a decrease in root hair density and length with reduced expression of RHD6, AXR2, AUX1, AXR1, ETR1, CTR1, and EIN2. Taken together, our results indicate that fate determination, initiation, and elongation of root hairs are stimulated in response to Cd and As(III through the modulation of the expression of genes involved in these processes in Arabidopsis.

  15. Research on the resurrection evolution mechanism of Gendakan ancient landslide in the upstream on Lancang River, China

    Science.gov (United States)

    H, D.

    2017-12-01

    The Gendakan ancient landslide is located on the West bank of the upstream on Lancang River and about 4 km downstream from the Gushui hydropower station dam site. The ancient landslide is 850 m long and 700 m wide, the drill cores show that the maximum thickness of the landslide body is 107 m, with a mean thickness of approximately 80 m. Thus, the overall volume is about 3000×104m3. At present, the landslide has obvious deformation and failure signs, the leading edge is collapsing step by step. Once the landslide is unstable, it will affect the construction and operation of the Gushui hydropower station. In this paper, the development characteristics of the landslide accumulation body and the characteristics of the resurrection deformation are summarized in detail from the regional geological environment of the Gandakan landslide accumulation body. The three-dimensional geological model is established to analyze the stress and strain, displacement change and deformation failure characteristics and further evaluate its resurrection evolution trend , Combined with the developmental characteristics of the typical rock mass in the nearshore slope of the engineering area, analyzes the process of the resurrection and evolution of the rooted landslide accumulation. The FLAC-3D finite difference software was used to analyze the shear strain increment, displacement and plastic zone of the landslide accumulation body under natural conditions and rainfall conditions. The results show: the Gendakan landslide is stable in the natural state, and its deformation and failure are mainly caused by the tensile and shearing of the surface, under the rainfall condition, the local deformation and failure of the landslide accumulation body is obvious and the resurrection deformation Intensified. The resurrection evolutionary process of Gendakan ancient landslide includes three steps below. 1) The landslide body trailing edge creep cracking, leading edge shear deformation. 2) Sliding

  16. Global Transcription Profiling Reveals Comprehensive Insights into Hypoxic Response in Arabidopsis1[w

    Science.gov (United States)

    Liu, Fenglong; VanToai, Tara; Moy, Linda P.; Bock, Geoffrey; Linford, Lara D.; Quackenbush, John

    2005-01-01

    Plants have evolved adaptation mechanisms to sense oxygen deficiency in their environments and make coordinated physiological and structural adjustments to enhance their hypoxic tolerance. To gain insight into how plants respond to low-oxygen stress, gene expression profiling using whole-genome DNA amplicon microarrays was carried out at seven time points over 24 h, in wild-type and transgenic PSAG12:ipt Arabidopsis (Arabidopsis thaliana) plants under normoxic and hypoxic conditions. Transcript levels of genes involved in glycolysis and fermentation pathways, ethylene synthesis and perception, calcium signaling, nitrogen utilization, trehalose metabolism, and alkaloid synthesis were significantly altered in response to oxygen limitation. Analysis based on gene ontology assignments suggested a significant down-regulation of genes whose functions are associated with cell walls, nucleosome structures, water channels, and ion transporters and a significant up-regulation of genes involved in transcriptional regulation, protein kinase activity, and auxin responses under conditions of oxygen shortage. Promoter analysis on a cluster of up-regulated genes revealed a significant overrepresentation of the AtMYB2-binding motif (GT motif), a sugar response element-like motif, and a G-box-related sequence, and also identified several putative anaerobic response elements. Finally, quantitative real-time polymerase chain reactions using 29 selected genes independently verified the microarray results. This study represents one of the most comprehensive analyses conducted to date investigating hypoxia-responsive transcriptional networks in plants. PMID:15734912

  17. Regulation of root hair initiation and expansin gene expression in Arabidopsis

    Science.gov (United States)

    Cho, Hyung-Taeg; Cosgrove, Daniel J.

    2002-01-01

    The expression of two Arabidopsis expansin genes (AtEXP7 and AtEXP18) is tightly linked to root hair initiation; thus, the regulation of these genes was studied to elucidate how developmental, hormonal, and environmental factors orchestrate root hair formation. Exogenous ethylene and auxin, as well as separation of the root from the medium, stimulated root hair formation and the expression of these expansin genes. The effects of exogenous auxin and root separation on root hair formation required the ethylene signaling pathway. By contrast, blocking the endogenous ethylene pathway, either by genetic mutations or by a chemical inhibitor, did not affect normal root hair formation and expansin gene expression. These results indicate that the normal developmental pathway for root hair formation (i.e., not induced by external stimuli) is independent of the ethylene pathway. Promoter analyses of the expansin genes show that the same promoter elements that determine cell specificity also determine inducibility by ethylene, auxin, and root separation. Our study suggests that two distinctive signaling pathways, one developmental and the other environmental/hormonal, converge to modulate the initiation of the root hair and the expression of its specific expansin gene set.

  18. Plant responses to environmental stress: regulation and functions of the Arabidopsis TCH genes

    Science.gov (United States)

    Braam, J.; Sistrunk, M. L.; Polisensky, D. H.; Xu, W.; Purugganan, M. M.; Antosiewicz, D. M.; Campbell, P.; Johnson, K. A.; McIntire, L. V. (Principal Investigator)

    1997-01-01

    Expression of the Arabidopsis TCH genes is markedly upregulated in response to a variety of environmental stimuli including the seemingly innocuous stimulus of touch. Understanding the mechanism(s) and factors that control TCH gene regulation will shed light on the signaling pathways that enable plants to respond to environmental conditions. The TCH proteins include calmodulin, calmodulin-related proteins and a xyloglucan endotransglycosylase. Expression analyses and localization of protein accumulation indicates that the potential sites of TCH protein function include expanding cells and tissues under mechanical strain. We hypothesize that at least a subset of the TCH proteins may collaborate in cell wall biogenesis.

  19. The Tyrosyl-DNA Phosphodiesterase 1β (Tdp1β Gene Discloses an Early Response to Abiotic Stresses

    Directory of Open Access Journals (Sweden)

    Maria Elisa Sabatini

    2017-11-01

    Full Text Available Tyrosyl-DNA phosphodiesterase 1 (Tdp1 is involved in DNA repair pathways as it mends the topoisomerase I—DNA covalent complexes. In plants, a small Tdp1 gene family, composed by Tdp1α and Tdp1β genes, was identified, but the roles of these genes in abiotic stress responses are not fully understood. To investigate their specific stress response patterns, the present study made use of bioinformatic and molecular tools to look into the Tdp1β gene function, so far described only in the plant kingdom, and compare it with Tdp1α gene coding for the canonical, highly conserved α isoform. The expression profiles of Tdp1α and Tdp1β genes were examined under abiotic stress conditions (cold, heat, high osmolarity, salt, and UV-B in two model species, Arabidopsis thaliana and Medicago truncatula. The two isoforms of topoisomerase I (TOP1α and TOP1β were also taken into consideration in view of their known roles in DNA metabolism and cell proliferation. Data relative to gene expression in Arabidopsis were retrieved from the AtGenExpress microarray dataset, while quantitative Real-Time PCR was carried out to evaluate the stress response in M. truncatula cell cultures. These analyses revealed that Tdp1β gene expression was enhanced during the first hour of treatment, whereas Tdp1α enhanced expression succeeded at subsequent timepoints. In agreement with the gene-specific responses to abiotic stress conditions, the promoter regions of Tdp1α and Tdp1β genes are well equipped with stress-related cis-elements. An in-depth bioinformatic characterization of the HIRAN motif, a distinctive feature of the Tdp1β protein, showed its wide distribution in chromatin remodeling and DNA repair proteins. The reported data suggests that Tdp1β functions in the early response to abiotic stresses.

  20. Induction of epigenetic variation in Arabidopsis by over-expression of DNA METHYLTRANSFERASE1 (MET1.

    Directory of Open Access Journals (Sweden)

    Samuel Brocklehurst

    Full Text Available Epigenetic marks such as DNA methylation and histone modification can vary among plant accessions creating epi-alleles with different levels of expression competence. Mutations in epigenetic pathway functions are powerful tools to induce epigenetic variation. As an alternative approach, we investigated the potential of over-expressing an epigenetic function, using DNA METHYLTRANSFERASE1 (MET1 for proof-of-concept. In Arabidopsis thaliana, MET1 controls maintenance of cytosine methylation at symmetrical CG positions. At some loci, which contain dense DNA methylation in CG- and non-CG context, loss of MET1 causes joint loss of all cytosines methylation marks. We find that over-expression of both catalytically active and inactive versions of MET1 stochastically generates new epi-alleles at loci encoding transposable elements, non-coding RNAs and proteins, which results for most loci in an increase in expression. Individual transformants share some common phenotypes and genes with altered gene expression. Altered expression states can be transmitted to the next generation, which does not require the continuous presence of the MET1 transgene. Long-term stability and epigenetic features differ for individual loci. Our data show that over-expression of MET1, and potentially of other genes encoding epigenetic factors, offers an alternative strategy to identify epigenetic target genes and to create novel epi-alleles.

  1. UGT74D1 is a novel auxin glycosyltransferase from Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Shang-Hui Jin

    Full Text Available Auxin is one type of phytohormones that plays important roles in nearly all aspects of plant growth and developmental processes. The glycosylation of auxins is considered to be an essential mechanism to control the level of active auxins. Thus, the identification of auxin glycosyltransferases is of great significance for further understanding the auxin regulation. In this study, we biochemically screened the group L of Arabidopsis thaliana glycosyltransferase superfamily for enzymatic activity toward auxins. UGT74D1 was identified to be a novel auxin glycosyltransferase. Through HPLC and LC-MS analysis of reaction products in vitro by testing eight substrates including auxins and other compounds, we found that UGT74D1 had a strong glucosylating activity toward indole-3-butyric acid [IBA], indole-3-propionic acid [IPA], indole-3-acetic acid [IAA] and naphthaleneacetic acid [NAA], catalyzing them to form corresponding glucose esters. Biochemical characterization showed that this enzyme had a maximum activity in HEPES buffer at pH 6.0 and 37°C. In addition, the enzymatic activity analysis of crude protein and the IBA metabolite analysis from transgenic Arabidopsis plants overexpressing UGT74D1 gene were also carried out. Experimental results indicated that over-production of the UGT74D1 in plants indeed led to increased level of the glucose conjugate of IBA. Moreover, UGT74D1 overexpression lines displayed curling leaf phenotype, suggesting a physiological role of UGT74D1 in affecting the activity of auxins. Our current data provide a new target gene for further genetic studies to understand the auxin regulation by glycosylation in plants.

  2. The precise regulation of different COR genes by individual CBF transcription factors in Arabidopsis thaliana.

    Science.gov (United States)

    Shi, Yihao; Huang, Jiaying; Sun, Tianshu; Wang, Xuefei; Zhu, Chenqi; Ai, Yuxi; Gu, Hongya

    2017-02-01

    The transcription factors CBF1/2/3 are reported to play a dominant role in the cold responsive network of Arabidopsis by directly regulating the expression levels of cold responsive (COR) genes. In this study, we obtained CRISPR/Cas9-mediated loss-of-function mutants of cbf1∼3. Over 3,000 COR genes identified by RNA-seq analysis showed a slight but significant change in their expression levels in the mutants compared to the wild-type plants after being treated at 4 °C for 12 h. The C-repeat (CRT) motif (5'-CCGAC-3') was enriched in promoters of genes that were up-regulated by CBF2 and CBF3 but not in promoters of genes up-regulated by CBF1. These data suggest that CBF2 and CBF3 play a more important role in directing the cold response by regulating different sets of downstream COR genes. More than 2/3 of COR genes were co-regulated by two or three CBFs and were involved mainly in cellular signal transduction and metabolic processes; less than 1/3 of the genes were regulated by one CBF, and those genes up-regulated were enriched in cold-related abiotic stress responses. Our results indicate that CBFs play an important role in the trade-off between cold tolerance and plant growth through the precise regulation of COR genes in the complicated transcriptional network. © 2016 The Authors. Journal of Integrative Plant Biology Published by John Wiley & Sons Australia, Ltd on behalf of Institute of Botany, Chinese Academy of Sciences.

  3. Heterologous expression of three Camellia sinensis small heat shock protein genes confers temperature stress tolerance in yeast and Arabidopsis thaliana.

    Science.gov (United States)

    Wang, Mingle; Zou, Zhongwei; Li, Qinghui; Xin, Huahong; Zhu, Xujun; Chen, Xuan; Li, Xinghui

    2017-07-01

    CsHSP17.7, CsHSP18.1, and CsHSP21.8 expressions are induced by heat and cold stresses, and CsHSP overexpression confers tolerance to heat and cold stresses in transgenic Pichia pastoris and Arabidopsis thaliana. Small heat shock proteins (sHSPs) are crucial for protecting plants against biotic and abiotic stresses, especially heat stress. However, knowledge concerning the functions of Camellia sinensis sHSP in heat and cold stresses remains poorly understood. In this study, three C. sinensis sHSP genes (i.e., CsHSP17.7, CsHSP18.1, and CsHSP21.8) were isolated and characterized using suppression subtractive hybridization (SSH) technology. The CsHSPs expression levels in C. sinensis leaves were significantly up-regulated by heat and cold stresses. Phylogenetic analyses revealed that CsHSP17.7, CsHSP18.1, and CsHSP21.8 belong to sHSP Classes I, II, and IV, respectively. Heterologous expression of the three CsHSP genes in Pichia pastoris cells enhanced heat and cold stress tolerance. When exposed to heat and cold treatments, transgenic Arabidopsis thaliana plants overexpressing CsHSP17.7, CsHSP18.1, and CsHSP21.8 had lower malondialdehyde contents, ion leakage, higher proline contents, and transcript levels of stress-related genes (e.g., AtPOD, AtAPX1, AtP5CS2, and AtProT1) compared with the control line. In addition, improved seed germination vigor was also observed in the CsHSP-overexpressing seeds under heat stress. Taken together, our results suggest that the three identified CsHSP genes play key roles in heat and cold tolerance.

  4. PLANT HOMOLOGOUS TO PARAFIBROMIN is a component of the PAF1 complex and assists in regulating expression of genes within H3K27ME3-enriched chromatin.

    Science.gov (United States)

    Park, Sunchung; Oh, Sookyung; Ek-Ramos, Julissa; van Nocker, Steven

    2010-06-01

    The human Paf1 complex (Paf1C) subunit Parafibromin assists in mediating output from the Wingless/Int signaling pathway, and dysfunction of the encoding gene HRPT2 conditions specific cancer-related disease phenotypes. Here, we characterize the organismal and molecular roles of PLANT HOMOLOGOUS TO PARAFIBROMIN (PHP), the Arabidopsis (Arabidopsis thaliana) homolog of Parafibromin. PHP resides in an approximately 670-kD protein complex in nuclear extracts, and physically interacts with other known Paf1C-related proteins in vivo. In striking contrast to the developmental pleiotropy conferred by mutation in other plant Paf1C component genes in Arabidopsis, loss of PHP specifically conditioned accelerated phase transition from vegetative growth to flowering and resulted in misregulation of a very limited subset of genes that included the flowering repressor FLOWERING LOCUS C. Those genes targeted by PHP were distinguished from the bulk of Arabidopsis genes and other plant Paf1C targets by strong enrichment for trimethylation of lysine-27 on histone H3 (H3K27me3) within chromatin. These findings suggest that PHP is a component of a plant Paf1C protein in Arabidopsis, but has a more specialized role in modulating expression of a subset of Paf1C targets.

  5. Gene Expression, Protein Function and Pathways of Arabidopsis thaliana Responding to Silver Nanoparticles in Comparison to Silver Ions, Cold, Salt, Drought, and Heat

    Directory of Open Access Journals (Sweden)

    Eisa Kohan-Baghkheirati

    2015-03-01

    Full Text Available Silver nanoparticles (AgNPs have been widely used in industry due to their unique physical and chemical properties. However, AgNPs have caused environmental concerns. To understand the risks of AgNPs, Arabidopsis microarray data for AgNP, Ag+, cold, salt, heat and drought stresses were analyzed. Up- and down-regulated genes of more than two-fold expression change were compared, while the encoded proteins of shared and unique genes between stresses were subjected to differential enrichment analyses. AgNPs affected the fewest genes (575 in the Arabidopsis genome, followed by Ag+ (1010, heat (1374, drought (1435, salt (4133 and cold (6536. More genes were up-regulated than down-regulated in AgNPs and Ag+ (438 and 780, respectively while cold down-regulated the most genes (4022. Responses to AgNPs were more similar to those of Ag+ (464 shared genes, cold (202, and salt (163 than to drought (50 or heat (30; the genes in the first four stresses were enriched with 32 PFAM domains and 44 InterPro protein classes. Moreover, 111 genes were unique in AgNPs and they were enriched in three biological functions: response to fungal infection, anion transport, and cell wall/plasma membrane related. Despite shared similarity to Ag+, cold and salt stresses, AgNPs are a new stressor to Arabidopsis.

  6. Co-overexpressing a plasma membrane and a vacuolar membrane sodium/proton antiporter significantly improves salt tolerance in transgenic Arabidopsis plants.

    Science.gov (United States)

    The Arabidopsis gene AtNHX1 encodes a vacuolar membrane bound sodium/proton (Sodium/Hydrogen) antiporter that transports sodium into the vacuole and exports hydrogen into the cytoplasm. The Arabidopsis gene SOS1 encodes a plasma membrane bound sodium/hydrogen antiporter that exports sodium to the ex...

  7. Probing cytokinin homeostasis in Arabidopsis thaliana by constitutively overexpressing two forms of the maize cytokinin oxidase/dehydrogenase 1 gene

    Czech Academy of Sciences Publication Activity Database

    Kopečný, D.; Tarkowski, Petr; Majira, M.; Bouchez-Mahiout, I.; Nogué, F.; Laurière, M.; Sandberg, G.; Laloue, M.; Houba-Hérin, N.

    2006-01-01

    Roč. 171, č. 1 (2006), s. 114-122 ISSN 0168-9452 Institutional research plan: CEZ:AV0Z50380511 Keywords : Arabidopsis thaliana * Cytokinin oxidase/dehydrogenase * Homeostasis Subject RIV: CE - Biochemistry Impact factor: 1.631, year: 2006

  8. Multiple BiP genes of Arabidopsis thaliana are required for male gametogenesis and pollen competitiveness.

    Science.gov (United States)

    Maruyama, Daisuke; Sugiyama, Tomoyuki; Endo, Toshiya; Nishikawa, Shuh-Ichi

    2014-04-01

    Immunoglobulin-binding protein (BiP) is a molecular chaperone of the heat shock protein 70 (Hsp70) family. BiP is localized in the endoplasmic reticulum (ER) and plays key roles in protein translocation, protein folding and quality control in the ER. The genomes of flowering plants contain multiple BiP genes. Arabidopsis thaliana has three BiP genes. BIP1 and BIP2 are ubiquitously expressed. BIP3 encodes a less well conserved BiP paralog, and it is expressed only under ER stress conditions in the majority of organs. Here, we report that all BiP genes are expressed and functional in pollen and pollen tubes. Although the bip1 bip2 double mutation does not affect pollen viability, the bip1 bip2 bip3 triple mutation is lethal in pollen. This result indicates that lethality of the bip1 bip2 double mutation is rescued by BiP3 expression. A decrease in the copy number of the ubiquitously expressed BiP genes correlates well with a decrease in pollen tube growth, which leads to reduced fitness of mutant pollen during fertilization. Because an increased protein secretion activity is expected to increase the protein folding demand in the ER, the multiple BiP genes probably cooperate with each other to ensure ER homeostasis in cells with active secretion such as rapidly growing pollen tubes.

  9. Expression Profiling during Arabidopsis/Downy Mildew Interaction Reveals a Highly-Expressed Effector That Attenuates Responses to Salicylic Acid

    Science.gov (United States)

    Asai, Shuta; Caillaud, Marie-Cécile; Furzer, Oliver J.; Ishaque, Naveed; Wirthmueller, Lennart; Fabro, Georgina; Shirasu, Ken; Jones, Jonathan D. G.

    2014-01-01

    Plants have evolved strong innate immunity mechanisms, but successful pathogens evade or suppress plant immunity via effectors delivered into the plant cell. Hyaloperonospora arabidopsidis (Hpa) causes downy mildew on Arabidopsis thaliana, and a genome sequence is available for isolate Emoy2. Here, we exploit the availability of genome sequences for Hpa and Arabidopsis to measure gene-expression changes in both Hpa and Arabidopsis simultaneously during infection. Using a high-throughput cDNA tag sequencing method, we reveal expression patterns of Hpa predicted effectors and Arabidopsis genes in compatible and incompatible interactions, and promoter elements associated with Hpa genes expressed during infection. By resequencing Hpa isolate Waco9, we found it evades Arabidopsis resistance gene RPP1 through deletion of the cognate recognized effector ATR1. Arabidopsis salicylic acid (SA)-responsive genes including PR1 were activated not only at early time points in the incompatible interaction but also at late time points in the compatible interaction. By histochemical analysis, we found that Hpa suppresses SA-inducible PR1 expression, specifically in the haustoriated cells into which host-translocated effectors are delivered, but not in non-haustoriated adjacent cells. Finally, we found a highly-expressed Hpa effector candidate that suppresses responsiveness to SA. As this approach can be easily applied to host-pathogen interactions for which both host and pathogen genome sequences are available, this work opens the door towards transcriptome studies in infection biology that should help unravel pathogen infection strategies and the mechanisms by which host defense responses are overcome. PMID:25329884

  10. Expression profiling during arabidopsis/downy mildew interaction reveals a highly-expressed effector that attenuates responses to salicylic acid.

    Directory of Open Access Journals (Sweden)

    Shuta Asai

    2014-10-01

    Full Text Available Plants have evolved strong innate immunity mechanisms, but successful pathogens evade or suppress plant immunity via effectors delivered into the plant cell. Hyaloperonospora arabidopsidis (Hpa causes downy mildew on Arabidopsis thaliana, and a genome sequence is available for isolate Emoy2. Here, we exploit the availability of genome sequences for Hpa and Arabidopsis to measure gene-expression changes in both Hpa and Arabidopsis simultaneously during infection. Using a high-throughput cDNA tag sequencing method, we reveal expression patterns of Hpa predicted effectors and Arabidopsis genes in compatible and incompatible interactions, and promoter elements associated with Hpa genes expressed during infection. By resequencing Hpa isolate Waco9, we found it evades Arabidopsis resistance gene RPP1 through deletion of the cognate recognized effector ATR1. Arabidopsis salicylic acid (SA-responsive genes including PR1 were activated not only at early time points in the incompatible interaction but also at late time points in the compatible interaction. By histochemical analysis, we found that Hpa suppresses SA-inducible PR1 expression, specifically in the haustoriated cells into which host-translocated effectors are delivered, but not in non-haustoriated adjacent cells. Finally, we found a highly-expressed Hpa effector candidate that suppresses responsiveness to SA. As this approach can be easily applied to host-pathogen interactions for which both host and pathogen genome sequences are available, this work opens the door towards transcriptome studies in infection biology that should help unravel pathogen infection strategies and the mechanisms by which host defense responses are overcome.

  11. The MADS Box Genes ABS, SHP1, and SHP2 Are Essential for the Coordination of Cell Divisions in Ovule and Seed Coat Development and for Endosperm Formation in Arabidopsis thaliana.

    Science.gov (United States)

    Ehlers, Katrin; Bhide, Amey S; Tekleyohans, Dawit G; Wittkop, Benjamin; Snowdon, Rod J; Becker, Annette

    2016-01-01

    Seed formation is a pivotal process in plant reproduction and dispersal. It begins with megagametophyte development in the ovule, followed by fertilization and subsequently coordinated development of embryo, endosperm, and maternal seed coat. Two closely related MADS-box genes, SHATTERPROOF 1 and 2 (SHP1 and SHP2) are involved in specifying ovule integument identity in Arabidopsis thaliana. The MADS box gene ARABIDOPSIS BSISTER (ABS or TT16) is required, together with SEEDSTICK (STK) for the formation of endothelium, part of the seed coat and innermost tissue layer formed by the maternal plant. Little is known about the genetic interaction of SHP1 and SHP2 with ABS and the coordination of endosperm and seed coat development. In this work, mutant and expression analysis shed light on this aspect of concerted development. Triple tt16 shp1 shp2 mutants produce malformed seedlings, seed coat formation defects, fewer seeds, and mucilage reduction. While shp1 shp2 mutants fail to coordinate the timely development of ovules, tt16 mutants show less peripheral endosperm after fertilization. Failure in coordinated division of the innermost integument layer in early ovule stages leads to inner seed coat defects in tt16 and tt16 shp1 shp2 triple mutant seeds. An antagonistic action of ABS and SHP1/SHP2 is observed in inner seed coat layer formation. Expression analysis also indicates that ABS represses SHP1, SHP2, and FRUITFUL expression. Our work shows that the evolutionary conserved Bsister genes are required not only for endothelium but also for endosperm development and genetically interact with SHP1 and SHP2 in a partially antagonistic manner.

  12. The MADS Box Genes ABS, SHP1, and SHP2 Are Essential for the Coordination of Cell Divisions in Ovule and Seed Coat Development and for Endosperm Formation in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Katrin Ehlers

    Full Text Available Seed formation is a pivotal process in plant reproduction and dispersal. It begins with megagametophyte development in the ovule, followed by fertilization and subsequently coordinated development of embryo, endosperm, and maternal seed coat. Two closely related MADS-box genes, SHATTERPROOF 1 and 2 (SHP1 and SHP2 are involved in specifying ovule integument identity in Arabidopsis thaliana. The MADS box gene ARABIDOPSIS BSISTER (ABS or TT16 is required, together with SEEDSTICK (STK for the formation of endothelium, part of the seed coat and innermost tissue layer formed by the maternal plant. Little is known about the genetic interaction of SHP1 and SHP2 with ABS and the coordination of endosperm and seed coat development. In this work, mutant and expression analysis shed light on this aspect of concerted development. Triple tt16 shp1 shp2 mutants produce malformed seedlings, seed coat formation defects, fewer seeds, and mucilage reduction. While shp1 shp2 mutants fail to coordinate the timely development of ovules, tt16 mutants show less peripheral endosperm after fertilization. Failure in coordinated division of the innermost integument layer in early ovule stages leads to inner seed coat defects in tt16 and tt16 shp1 shp2 triple mutant seeds. An antagonistic action of ABS and SHP1/SHP2 is observed in inner seed coat layer formation. Expression analysis also indicates that ABS represses SHP1, SHP2, and FRUITFUL expression. Our work shows that the evolutionary conserved Bsister genes are required not only for endothelium but also for endosperm development and genetically interact with SHP1 and SHP2 in a partially antagonistic manner.

  13. PathMAPA: a tool for displaying gene expression and performing statistical tests on metabolic pathways at multiple levels for Arabidopsis

    Directory of Open Access Journals (Sweden)

    Ma Ligeng

    2003-11-01

    Full Text Available Abstract Background To date, many genomic and pathway-related tools and databases have been developed to analyze microarray data. In published web-based applications to date, however, complex pathways have been displayed with static image files that may not be up-to-date or are time-consuming to rebuild. In addition, gene expression analyses focus on individual probes and genes with little or no consideration of pathways. These approaches reveal little information about pathways that are key to a full understanding of the building blocks of biological systems. Therefore, there is a need to provide useful tools that can generate pathways without manually building images and allow gene expression data to be integrated and analyzed at pathway levels for such experimental organisms as Arabidopsis. Results We have developed PathMAPA, a web-based application written in Java that can be easily accessed over the Internet. An Oracle database is used to store, query, and manipulate the large amounts of data that are involved. PathMAPA allows its users to (i upload and populate microarray data into a database; (ii integrate gene expression with enzymes of the pathways; (iii generate pathway diagrams without building image files manually; (iv visualize gene expressions for each pathway at enzyme, locus, and probe levels; and (v perform statistical tests at pathway, enzyme and gene levels. PathMAPA can be used to examine Arabidopsis thaliana gene expression patterns associated with metabolic pathways. Conclusion PathMAPA provides two unique features for the gene expression analysis of Arabidopsis thaliana: (i automatic generation of pathways associated with gene expression and (ii statistical tests at pathway level. The first feature allows for the periodical updating of genomic data for pathways, while the second feature can provide insight into how treatments affect relevant pathways for the selected experiment(s.

  14. Cura animarum as hope care: Towards a theology of the resurrection within the human quest for meaning and hope

    Directory of Open Access Journals (Sweden)

    Daniel J. Louw

    2014-04-01

    Full Text Available The following critical questions are posed: is hope the antidote of dread and despair or a kind of escapism from the harsh realities of anguish and suffering? What is meant by hope in Christian spirituality and how is hope connected to a theology of the resurrection? Is resurrection hope merely a kind of cheap triumphantalism and variant of a theologia gloriae? The basic assumption is that the notion of the resurrection can contribute to ‘the thickening of alternative stories of faith’. A theologia resurrectionis is about the reframing of life by means of a radical paradox: ‘Where, O death is your victory? Where, O death is your sting?’ If pastoral caregiving is indeed about change and hope, the resurrection describes an ontology of hope by which human beings are transformed into a total new being. Beyond the discriminating and stigmatising categories of many social and cultural discourses on our being human, resurrection theology defines hope as a new state of mind and being. The identity of human beings is therefore not determined by descent, gender, race or social status, but by eschatology (new creation. Hope care is primarily about a new courage to be. It opens up different frameworks for meaningful living within the realm of human suffering.

  15. Arabidopsis mRNA polyadenylation machinery: comprehensive analysis of protein-protein interactions and gene expression profiling

    Directory of Open Access Journals (Sweden)

    Mo Min

    2008-05-01

    Full Text Available Abstract Background The polyadenylation of mRNA is one of the critical processing steps during expression of almost all eukaryotic genes. It is tightly integrated with transcription, particularly its termination, as well as other RNA processing events, i.e. capping and splicing. The poly(A tail protects the mRNA from unregulated degradation, and it is required for nuclear export and translation initiation. In recent years, it has been demonstrated that the polyadenylation process is also involved in the regulation of gene expression. The polyadenylation process requires two components, the cis-elements on the mRNA and a group of protein factors that recognize the cis-elements and produce the poly(A tail. Here we report a comprehensive pairwise protein-protein interaction mapping and gene expression profiling of the mRNA polyadenylation protein machinery in Arabidopsis. Results By protein sequence homology search using human and yeast polyadenylation factors, we identified 28 proteins that may be components of Arabidopsis polyadenylation machinery. To elucidate the protein network and their functions, we first tested their protein-protein interaction profiles. Out of 320 pair-wise protein-protein interaction assays done using the yeast two-hybrid system, 56 (~17% showed positive interactions. 15 of these interactions were further tested, and all were confirmed by co-immunoprecipitation and/or in vitro co-purification. These interactions organize into three distinct hubs involving the Arabidopsis polyadenylation factors. These hubs are centered around AtCPSF100, AtCLPS, and AtFIPS. The first two are similar to complexes seen in mammals, while the third one stands out as unique to plants. When comparing the gene expression profiles extracted from publicly available microarray datasets, some of the polyadenylation related genes showed tissue-specific expression, suggestive of potential different polyadenylation complex configurations. Conclusion An

  16. Chloroplast genomes of Arabidopsis halleri ssp. gemmifera and Arabidopsis lyrata ssp. petraea: Structures and comparative analysis.

    Science.gov (United States)

    Asaf, Sajjad; Khan, Abdul Latif; Khan, Muhammad Aaqil; Waqas, Muhammad; Kang, Sang-Mo; Yun, Byung-Wook; Lee, In-Jung

    2017-08-08

    We investigated the complete chloroplast (cp) genomes of non-model Arabidopsis halleri ssp. gemmifera and Arabidopsis lyrata ssp. petraea using Illumina paired-end sequencing to understand their genetic organization and structure. Detailed bioinformatics analysis revealed genome sizes of both subspecies ranging between 154.4~154.5 kbp, with a large single-copy region (84,197~84,158 bp), a small single-copy region (17,738~17,813 bp) and pair of inverted repeats (IRa/IRb; 26,264~26,259 bp). Both cp genomes encode 130 genes, including 85 protein-coding genes, eight ribosomal RNA genes and 37 transfer RNA genes. Whole cp genome comparison of A. halleri ssp. gemmifera and A. lyrata ssp. petraea, along with ten other Arabidopsis species, showed an overall high degree of sequence similarity, with divergence among some intergenic spacers. The location and distribution of repeat sequences were determined, and sequence divergences of shared genes were calculated among related species. Comparative phylogenetic analysis of the entire genomic data set and 70 shared genes between both cp genomes confirmed the previous phylogeny and generated phylogenetic trees with the same topologies. The sister species of A. halleri ssp. gemmifera is A. umezawana, whereas the closest relative of A. lyrata spp. petraea is A. arenicola.

  17. Identification of a seed coat-specific promoter fragment from the Arabidopsis MUCILAGE-MODIFIED4 gene.

    Science.gov (United States)

    Dean, Gillian H; Jin, Zhaoqing; Shi, Lin; Esfandiari, Elahe; McGee, Robert; Nabata, Kylie; Lee, Tiffany; Kunst, Ljerka; Western, Tamara L; Haughn, George W

    2017-09-01

    The Arabidopsis seed coat-specific promoter fragment described is an important tool for basic and applied research in Brassicaceae species. During differentiation, the epidermal cells of the Arabidopsis seed coat produce and secrete large quantities of mucilage. On hydration of mature seeds, this mucilage becomes easily accessible as it is extruded to form a tightly attached halo at the seed surface. Mucilage is composed mainly of pectin, and also contains the key cell wall components cellulose, hemicellulose, and proteins, making it a valuable model for studying numerous aspects of cell wall biology. Seed coat-specific promoters are an important tool that can be used to assess the effects of expressing biosynthetic enzymes and diverse cell wall-modifying proteins on mucilage structure and function. Additionally, they can be used for production of easily accessible recombinant proteins of commercial interest. The MUCILAGE-MODIFIED4 (MUM4) gene is expressed in a wide variety of plant tissues and is strongly up-regulated in the seed coat during mucilage synthesis, implying the presence of a seed coat-specific region in its promoter. Promoter deletion analysis facilitated isolation of a 308 base pair sequence (MUM4 0.3Pro ) that directs reporter gene expression in the seed coat cells of both Arabidopsis and Camelina sativa, and is regulated by the same transcription factor cascade as endogenous MUM4. Therefore, MUM4 0.3Pro is a promoter fragment that serves as a new tool for seed coat biology research.

  18. Dioxygenase-encoding AtDAO1 gene controls IAA oxidation and homeostasis in Arabidopsis

    Czech Academy of Sciences Publication Activity Database

    Porco, S.; Pěnčík, Aleš; Rashed, A.; Voss, U.; Casanova-Saez, R.; Bishopp, A.; Golebiowska, A.; Bhosale, R.; Swarup, R.; Swarup, K.; Peňáková, Pavlína; Novák, Ondřej; Staswick, P.; Hedden, P.; Phillips, A.; Vissenberg, K.; Bennett, M.J.

    2016-01-01

    Roč. 113, č. 39 (2016), s. 11016-11021 ISSN 0027-8424 R&D Projects: GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : Arabidopsis thaliana * IAA degradation * oxidase Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 9.661, year: 2016

  19. Interaction between two cis-acting elements, ABRE and DRE, in ABA-dependent expression of Arabidopsis rd29A gene in response to dehydration and high-salinity stresses.

    Science.gov (United States)

    Narusaka, Yoshihiro; Nakashima, Kazuo; Shinwari, Zabta K; Sakuma, Yoh; Furihata, Takashi; Abe, Hiroshi; Narusaka, Mari; Shinozaki, Kazuo; Yamaguchi-Shinozaki, Kazuko

    2003-04-01

    Many abiotic stress-inducible genes contain two cis-acting elements, namely a dehydration-responsive element (DRE; TACCGACAT) and an ABA-responsive element (ABRE; ACGTGG/TC), in their promoter regions. We precisely analyzed the 120 bp promoter region (-174 to -55) of the Arabidopsis rd29A gene whose expression is induced by dehydration, high-salinity, low-temperature, and abscisic acid (ABA) treatments and whose 120 bp promoter region contains the DRE, DRE/CRT-core motif (A/GCCGAC), and ABRE sequences. Deletion and base substitution analyses of this region showed that the DRE-core motif functions as DRE and that the DRE/DRE-core motif could be a coupling element of ABRE. Gel mobility shift assays revealed that DRE-binding proteins (DREB1s/CBFs and DREB2s) bind to both DRE and the DRE-core motif and that ABRE-binding proteins (AREBs/ABFs) bind to ABRE in the 120 bp promoter region. In addition, transactivation experiments using Arabidopsis leaf protoplasts showed that DREBs and AREBs cumulatively transactivate the expression of a GUS reporter gene fused to the 120 bp promoter region of rd29A. These results indicate that DRE and ABRE are interdependent in the ABA-responsive expression of the rd29A gene in response to ABA in Arabidopsis.

  20. Identification and biochemical characterization of an Arabidopsis indole-3-acetic acid glucosyltransferase.

    Science.gov (United States)

    Jackson, R G; Lim, E K; Li, Y; Kowalczyk, M; Sandberg, G; Hoggett, J; Ashford, D A; Bowles, D J

    2001-02-09

    Biochemical characterization of recombinant gene products following a phylogenetic analysis of the UDP-glucosyltransferase (UGT) multigene family of Arabidopsis has identified one enzyme (UGT84B1) with high activity toward the plant hormone indole-3-acetic acid (IAA) and three related enzymes (UGT84B2, UGT75B1, and UGT75B2) with trace activities. The identity of the IAA conjugate has been confirmed to be 1-O-indole acetyl glucose ester. A sequence annotated as a UDP-glucose:IAA glucosyltransferase (IAA-UGT) in the Arabidopsis genome and expressed sequence tag data bases given its similarity to the maize iaglu gene sequence showed no activity toward IAA. This study describes the first biochemical analysis of a recombinant IAA-UGT and provides the foundation for future genetic approaches to understand the role of 1-O-indole acetyl glucose ester in Arabidopsis.

  1. Gene transposition causing natural variation for growth in Arabidopsis thaliana.

    Science.gov (United States)

    Vlad, Daniela; Rappaport, Fabrice; Simon, Matthieu; Loudet, Olivier

    2010-05-13

    A major challenge in biology is to identify molecular polymorphisms responsible for variation in complex traits of evolutionary and agricultural interest. Using the advantages of Arabidopsis thaliana as a model species, we sought to identify new genes and genetic mechanisms underlying natural variation for shoot growth using quantitative genetic strategies. More quantitative trait loci (QTL) still need be resolved to draw a general picture as to how and where in the pathways adaptation is shaping natural variation and the type of molecular variation involved. Phenotypic variation for shoot growth in the Bur-0 x Col-0 recombinant inbred line set was decomposed into several QTLs. Nearly-isogenic lines generated from the residual heterozygosity segregating among lines revealed an even more complex picture, with major variation controlled by opposite linked loci and masked by the segregation bias due to the defective phenotype of SG3 (Shoot Growth-3), as well as epistasis with SG3i (SG3-interactor). Using principally a fine-mapping strategy, we have identified the underlying gene causing phenotypic variation at SG3: At4g30720 codes for a new chloroplast-located protein essential to ensure a correct electron flow through the photosynthetic chain and, hence, photosynthesis efficiency and normal growth. The SG3/SG3i interaction is the result of a structural polymorphism originating from the duplication of the gene followed by divergent paralogue's loss between parental accessions. Species-wide, our results illustrate the very dynamic rate of duplication/transposition, even over short periods of time, resulting in several divergent--but still functional-combinations of alleles fixed in different backgrounds. In predominantly selfing species like Arabidopsis, this variation remains hidden in wild populations but is potentially revealed when divergent individuals outcross. This work highlights the need for improved tools and algorithms to resolve structural variation

  2. A plasmodesmata-associated beta-1,3-glucanase in Arabidopsis.

    Science.gov (United States)

    Levy, Amit; Erlanger, Michael; Rosenthal, Michal; Epel, Bernard L

    2007-02-01

    Plasmodesmal conductivity is regulated in part by callose turnover, which is hypothesized to be determined by beta-1,3-glucan synthase versus glucanase activities. A proteomic analysis of an Arabidopsis thaliana plasmodesmata (Pd)-rich fraction identified a beta-1,3-glucanase as present in this fraction. The protein encoded by the putative plasmodesmal associated protein (ppap) gene, termed AtBG_ppap, had previously been found to be a post-translationally modified glycosylphosphatidylinositol (GPI) lipid-anchored protein. When fused to green fluorescent protein (GFP) and expressed in tobacco (Nicotiana tabacum) or Nicotiana benthamiana epidermal cells, this protein displays fluorescence patterns in the endoplasmic reticulum (ER) membrane system, along the cell periphery and in a punctate pattern that co-localizes with aniline blue-stained callose present around the Pd. Plasma membrane localization was verified by co-localization of AtBG_ppap:GFP together with a plasma membrane marker N-[3-triethylammoniumpropyl]-4-[p-diethylaminophenylhexatrienyl] pyridinium dibromide (FM4-64) in plasmolysed cells. In Arabidopsis T-DNA insertion mutants that do not transcribe AtBG_ppap, functional studies showed that GFP cell-to-cell movement between epidermal cells is reduced, and the conductivity coefficient of Pd is lower. Measurements of callose levels around Pd after wounding revealed that callose accumulation in the mutant plants was higher. Taken together, we suggest that AtBG_ppap is a Pd-associated membrane protein involved in plasmodesmal callose degradation, and functions in the gating of Pd.

  3. Cloning and characterization of the gene encoding IMP dehydrogenase from Arabidopsis thaliana.

    Science.gov (United States)

    Collart, F R; Osipiuk, J; Trent, J; Olsen, G J; Huberman, E

    1996-10-03

    We have cloned and characterized the gene encoding inosine monophosphate dehydrogenase (IMPDH) from Arabidopsis thaliana (At). The transcription unit of the At gene spans approximately 1900 bp and specifies a protein of 503 amino acids with a calculated relative molecular mass (M(r)) of 54,190. The gene is comprised of a minimum of four introns and five exons with all donor and acceptor splice sequences conforming to previously proposed consensus sequences. The deduced IMPDH amino-acid sequence from At shows a remarkable similarity to other eukaryotic IMPDH sequences, with a 48% identity to human Type II enzyme. Allowing for conservative substitutions, the enzyme is 69% similar to human Type II IMPDH. The putative active-site sequence of At IMPDH conforms to the IMP dehydrogenase/guanosine monophosphate reductase motif and contains an essential active-site cysteine residue.

  4. The effects of microgravity on gene expression of Arabidopsis

    Science.gov (United States)

    Correll, Melanie; Stimpson, Alexander; Pereira, Rhea; Kiss, John Z.

    TROPI (for TROPIsms) consisted of a series of experiments on the International Space Station to study the interaction between phototropism and gravitropism. As part of TROPI, we received frozen Arabidopsis seedlings from the ISS on three shuttle missions (STS-116, STS-117 and STS-120). These seedlings are being used for gene expression studies. Unfortunately, the quality of RNA returned from the first return mission was poor while that from the second and third missions were of high quality. This indicates that some environmental parameters were not maintained during first return mission since all of these samples were stored in the same location at -80° C on the ISS. Therefore, due to the loss during the first sample return, we had to develop new protocols to maximize RNA yields and optimize labeling techniques for microarray analysis. Using these new protocols, RNA was extracted from several sets of seedlings grown in various light treatments and µg levels and microarray analyses performed. Hundreds of genes were shown to be regulated in response to microgravity and include transcription factors (WRKY, MYB, ZF families) and those involved in plant hormone signaling (auxin, ethylene, and ABA responsive genes). The characterization of the regulated pathways and genes specific to gravity and light treatments is underway. (This project is Supported By: NASA NCC2-1200).

  5. Modified cellulose synthase gene from Arabidopsis thaliana confers herbicide resistance to plants

    Science.gov (United States)

    Somerville, Chris R [Portola Valley, CA; Scheible, Wolf [Golm, DE

    2007-07-10

    Cellulose synthase ("CS"), a key enzyme in the biosynthesis of cellulose in plants is inhibited by herbicides comprising thiazolidinones such as 5-tert-butyl-carbamoyloxy-3-(3-trifluromethyl)phenyl-4-thiazolidinone (TZ), isoxaben and 2,6-dichlorobenzonitrile (DCB). Two mutant genes encoding isoxaben and TZ-resistant cellulose synthase have been isolated from isoxaben and TZ-resistant Arabidopsis thaliana mutants. When compared with the gene coding for isoxaben or TZ-sensitive cellulose synthase, one of the resistant CS genes contains a point mutation, wherein glycine residue 998 is replaced by an aspartic acid. The other resistant mutation is due to a threonine to isoleucine change at amino acid residue 942. The mutant CS gene can be used to impart herbicide resistance to a plant; thereby permitting the utilization of the herbicide as a single application at a concentration which ensures the complete or substantially complete killing of weeds, while leaving the transgenic crop plant essentially undamaged.

  6. Cloning and characterization of a gene (UVR3) required for photorepair of 6-4 photoproducts in Arabidopsis thaliana

    International Nuclear Information System (INIS)

    Nakajima, S.; Sugiyama, M.; Iwai, S.; Hitomi, K.; Otoshi, E.; Kim SangTae; Jiang CaiZhong; Todo, T.; Britt, A.B.; Yamamoto, K.

    1998-01-01

    UV radiation induces two major classes of pyrimidine dimers: the pyrimidine [6-4] pyrimidone photoproduct (6-4 product) and the cyclobutane pyrimidine dimer (CPD). Many organisms produce enzymes, termed photolyases, that specifically bind to these damage products and split them via a UV-A/blue light-dependent mechanism, thereby reversing the damage. These photolyases are specific for either CPDs or 6-4 products. A gene that expresses a protein with 6-4 photolyase activity in vitro was recently cloned from Drosophila melanogaster and Xenopus laevis. We report here the isolation of a homolog of this gene, cloned on the basis of sequence similarity, from the higher plant Arabidopsis thaliana. This cloned gene produces a protein with 6-4 photolyase activity when expressed in Escherichia coli. We also find that a previously described mutant of Arabidopsis (uvr3) that is defective in photoreactivation of 6-4 products carries a nonsense mutation in this 6-4 photolyase homolog. We have therefore termed this gene UVR3. Although homologs of this gene have previously been shown to produce a functional 6-4 photolyase when expressed in heterologous systems, this is the first demonstration of a requirement for this gene for photoreactivation of 6-4 products in vivo

  7. Comparative expression profiling reveals gene functions in female meiosis and gametophyte development in Arabidopsis.

    Science.gov (United States)

    Zhao, Lihua; He, Jiangman; Cai, Hanyang; Lin, Haiyan; Li, Yanqiang; Liu, Renyi; Yang, Zhenbiao; Qin, Yuan

    2014-11-01

    Megasporogenesis is essential for female fertility, and requires the accomplishment of meiosis and the formation of functional megaspores. The inaccessibility and low abundance of female meiocytes make it particularly difficult to elucidate the molecular basis underlying megasporogenesis. We used high-throughput tag-sequencing analysis to identify genes expressed in female meiocytes (FMs) by comparing gene expression profiles from wild-type ovules undergoing megasporogenesis with those from the spl mutant ovules, which lack megasporogenesis. A total of 862 genes were identified as FMs, with levels that are consistently reduced in spl ovules in two biological replicates. Fluorescence-assisted cell sorting followed by RNA-seq analysis of DMC1:GFP-labeled female meiocytes confirmed that 90% of the FMs are indeed detected in the female meiocyte protoplast profiling. We performed reverse genetic analysis of 120 candidate genes and identified four FM genes with a function in female meiosis progression in Arabidopsis. We further revealed that KLU, a putative cytochrome P450 monooxygenase, is involved in chromosome pairing during female meiosis, most likely by affecting the normal expression pattern of DMC1 in ovules during female meiosis. Our studies provide valuable information for functional genomic analyses of plant germline development as well as insights into meiosis. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  8. Differential expression analysis of boron transporters and some stress-related genes in response to 24-epibrassinolide and boron by semi-quantitative RT-PCR in Arabidopsis thaliana (L. Heynh

    Directory of Open Access Journals (Sweden)

    Surgun Yonca

    2016-01-01

    Full Text Available Plant steroidal hormones, brassinosteroids (BRs, promote plant developmental processes and enhance tolerance to several abiotic stresses including high boron (B stress. To examine the possible role of BR in high B-induced stress at the transcriptional level, we investigated the response of B transporter genes (BOR1-4, high B-induced genes (MATE, Hsp-like, BR-induced genes (Hsp70-4, Hsp90-1 and other stress-related genes (LTI/COR78, LEA4-5 upon exogenous treatments of 24-epibrassinolide (EBL on Arabidopsis thaliana (L. Heynh exposed to high concentrations of boric acid (BA using semi-quantitative RT-PCR. BA treatments led to down regulation of BOR1 and BOR3 genes in leaf and root tissues and higher concentration of EBL further decreased expression of these genes in roots. The expression of high B-induced genes was observed to be upregulated by 1 μM EBL treatment under high B stress in both tissues of the seedlings. The upregulation of BR-induced genes were clearly evident in root tissues co-treated with 1 μM EBL and BA as compared to BA alone. Higher concentration of EBL was found to be more effective in increasing expression of LTI/COR78 gene in root and LEA4-5 gene in shoot tissues. To our knowledge, this is the first report how exogenous application of EBL modulates high B stress responses at molecular level in model plant Arabidopsis thaliana.

  9. The Arabidopsis thaliana REDUCED EPIDERMAL FLUORESCENCE1 gene encodes an aldehyde dehydrogenase involved in ferulic acid and sinapic acid biosynthesis.

    Science.gov (United States)

    Nair, Ramesh B; Bastress, Kristen L; Ruegger, Max O; Denault, Jeff W; Chapple, Clint

    2004-02-01

    Recent research has significantly advanced our understanding of the phenylpropanoid pathway but has left in doubt the pathway by which sinapic acid is synthesized in plants. The reduced epidermal fluorescence1 (ref1) mutant of Arabidopsis thaliana accumulates only 10 to 30% of the sinapate esters found in wild-type plants. Positional cloning of the REF1 gene revealed that it encodes an aldehyde dehydrogenase, a member of a large class of NADP(+)-dependent enzymes that catalyze the oxidation of aldehydes to their corresponding carboxylic acids. Consistent with this finding, extracts of ref1 leaves exhibit low sinapaldehyde dehydrogenase activity. These data indicate that REF1 encodes a sinapaldehyde dehydrogenase required for sinapic acid and sinapate ester biosynthesis. When expressed in Escherichia coli, REF1 was found to exhibit both sinapaldehyde and coniferaldehyde dehydrogenase activity, and further phenotypic analysis of ref1 mutant plants showed that they contain less cell wall-esterified ferulic acid. These findings suggest that both ferulic acid and sinapic acid are derived, at least in part, through oxidation of coniferaldehyde and sinapaldehyde. This route is directly opposite to the traditional representation of phenylpropanoid metabolism in which hydroxycinnamic acids are instead precursors of their corresponding aldehydes.

  10. Arabidopsis MAP kinase 4 negatively regulates systemic acquired resistance

    DEFF Research Database (Denmark)

    Petersen, M.; Brodersen, P.; Naested, H.

    2000-01-01

    Transposon inactivation of Arabidopsis MAP kinase 4 produced the mpk4 mutant exhibiting constitutive systemic acquired resistance (SAR) including elevated salicylic acid (SA) revels, increased resistance to virulent pathogens, and constitutive pathogenesis-related gene expression shown by Northern...... of NPR1. PDF1.2 and THI2.1 gene induction by jasmonate was blocked in mpk4 expressing NahG, suggesting that MPK4 is required for jasmonic acid-responsive gene expression....

  11. A temperature-sensitive allele of a putative mRNA splicing helicase down-regulates many cell wall genes and causes radial swelling in Arabidopsis thaliana.

    Science.gov (United States)

    Howles, Paul A; Gebbie, Leigh K; Collings, David A; Varsani, Arvind; Broad, Ronan C; Ohms, Stephen; Birch, Rosemary J; Cork, Ann H; Arioli, Tony; Williamson, Richard E

    2016-05-01

    The putative RNA helicase encoded by the Arabidopsis gene At1g32490 is a homolog of the yeast splicing RNA helicases Prp2 and Prp22. We isolated a temperature-sensitive allele (rsw12) of the gene in a screen for root radial swelling mutants. Plants containing this allele grown at the restrictive temperature showed weak radial swelling, were stunted with reduced root elongation, and contained reduced levels of cellulose. The role of the protein was further explored by microarray analysis. By using both fold change cutoffs and a weighted gene coexpression network analysis (WGCNA) to investigate coexpression of genes, we found that the radial swelling phenotype was not linked to genes usually associated with primary cell wall biosynthesis. Instead, the mutation has strong effects on expression of secondary cell wall related genes. Many genes potentially associated with secondary walls were present in the most significant WGCNA module, as were genes coding for arabinogalactans and proteins with GPI anchors. The proportion of up-regulated genes that possess introns in rsw12 was above that expected if splicing was unrelated to the activity of the RNA helicase, suggesting that the helicase does indeed play a role in splicing in Arabidopsis. The phenotype may be due to a change in the expression of one or more genes coding for cell wall proteins.

  12. Nascent peptide-mediated translation elongation arrest coupled with mRNA degradation in the CGS1 gene of Arabidopsis

    Science.gov (United States)

    Onouchi, Hitoshi; Nagami, Yoko; Haraguchi, Yuhi; Nakamoto, Mari; Nishimura, Yoshiko; Sakurai, Ryoko; Nagao, Nobuhiro; Kawasaki, Daisuke; Kadokura, Yoshitomo; Naito, Satoshi

    2005-01-01

    Expression of the Arabidopsis CGS1 gene that codes for cystathionine γ-synthase is feedback regulated at the step of mRNA stability in response to S-adenosyl-L-methionine (AdoMet). A short stretch of amino acid sequence, called the MTO1 region, encoded by the first exon of CGS1 itself is involved in this regulation. Here, we demonstrate, using a cell-free system, that AdoMet induces temporal translation elongation arrest at the Ser-94 codon located immediately downstream of the MTO1 region, by analyzing a translation intermediate and performing primer extension inhibition (toeprint) analysis. This translation arrest precedes the formation of a degradation intermediate of CGS1 mRNA, which has its 5′ end points near the 5′ edge of the stalled ribosome. The position of ribosome stalling also suggests that the MTO1 region in nascent peptide resides in the ribosomal exit tunnel when translation elongation is temporarily arrested. In addition to the MTO1 region amino acid sequence, downstream Trp-93 is also important for the AdoMet-induced translation arrest. This is the first example of nascent peptide-mediated translation elongation arrest coupled with mRNA degradation in eukaryotes. Furthermore, our data suggest that the ribosome stalls at the step of translocation rather than at the step of peptidyl transfer. PMID:16027170

  13. Arabidopsis N-MYC DOWNREGULATED-LIKE1, a positive regulator of auxin transport in a G protein-mediated pathway.

    Science.gov (United States)

    Mudgil, Yashwanti; Uhrig, Joachm F; Zhou, Jiping; Temple, Brenda; Jiang, Kun; Jones, Alan M

    2009-11-01

    Root architecture results from coordinated cell division and expansion in spatially distinct cells of the root and is established and maintained by gradients of auxin and nutrients such as sugars. Auxin is transported acropetally through the root within the central stele and then, upon reaching the root apex, auxin is transported basipetally through the outer cortical and epidermal cells. The two Gbetagamma dimers of the Arabidopsis thaliana heterotrimeric G protein complex are differentially localized to the central and cortical tissues of the Arabidopsis roots. A null mutation in either the single beta (AGB1) or the two gamma (AGG1 and AGG2) subunits confers phenotypes that disrupt the proper architecture of Arabidopsis roots and are consistent with altered auxin transport. Here, we describe an evolutionarily conserved interaction between AGB1/AGG dimers and a protein designated N-MYC DOWNREGULATED-LIKE1 (NDL1). The Arabidopsis genome encodes two homologs of NDL1 (NDL2 and NDL3), which also interact with AGB1/AGG1 and AGB1/AGG2 dimers. We show that NDL proteins act in a signaling pathway that modulates root auxin transport and auxin gradients in part by affecting the levels of at least two auxin transport facilitators. Reduction of NDL family gene expression and overexpression of NDL1 alter root architecture, auxin transport, and auxin maxima. AGB1, auxin, and sugars are required for NDL1 protein stability in regions of the root where auxin gradients are established; thus, the signaling mechanism contains feedback loops.

  14. Growth enhancement and gene expression of Arabidopsis thaliana irradiated with active oxygen species

    Science.gov (United States)

    Watanabe, Satoshi; Ono, Reoto; Hayashi, Nobuya; Shiratani, Masaharu; Tashiro, Kosuke; Kuhara, Satoru; Inoue, Asami; Yasuda, Kaori; Hagiwara, Hiroko

    2016-07-01

    The characteristics of plant growth enhancement effect and the mechanism of the enhancement induced by plasma irradiation are investigated using various active species in plasma. Active oxygen species in oxygen plasma are effective for growth enhancement of plants. DNA microarray analysis of Arabidopsis thaliana indicates that the genes coding proteins that counter oxidative stresses by eliminating active oxygen species are expressed at significantly high levels. The size of plant cells increases owing to oxygen plasma irradiation. The increases in gene expression levels and cell size suggest that the increase in the expression level of the expansin protein is essential for plant growth enhancement phenomena.

  15. The TCP4 transcription factor of Arabidopsis blocks cell division in yeast at G1 → S transition

    International Nuclear Information System (INIS)

    Aggarwal, Pooja; Padmanabhan, Bhavna; Bhat, Abhay; Sarvepalli, Kavitha; Sadhale, Parag P.; Nath, Utpal

    2011-01-01

    Highlights: → TCP4 is a class II TCP transcription factor, that represses cell division in Arabidopsis. → TCP4 expression in yeast retards cell division by blocking G1 → S transition. → Genome-wide expression studies and Western analysis reveals stabilization of cell cycle inhibitor Sic1, as possible mechanism. -- Abstract: The TCP transcription factors control important aspects of plant development. Members of class I TCP proteins promote cell cycle by regulating genes directly involved in cell proliferation. In contrast, members of class II TCP proteins repress cell division. While it has been postulated that class II proteins induce differentiation signal, their exact role on cell cycle has not been studied. Here, we report that TCP4, a class II TCP protein from Arabidopsis that repress cell proliferation in developing leaves, inhibits cell division by blocking G1 → S transition in budding yeast. Cells expressing TCP4 protein with increased transcriptional activity fail to progress beyond G1 phase. By analyzing global transcriptional status of these cells, we show that expression of a number of cell cycle genes is altered. The possible mechanism of G1 → S arrest is discussed.

  16. A predictive coexpression network identifies novel genes controlling the seed-to-seedling phase transition in arabidopsis Thaliana

    NARCIS (Netherlands)

    Silva, Anderson Tadeu; Ribone, Pamela A.; Chan, Raquel L.; Ligterink, Wilco; Hilhorst, Henk W.M.

    2016-01-01

    The transition from a quiescent dry seed to an actively growing photoautotrophic seedling is a complex and crucial trait for plant propagation. This study provides a detailed description of global gene expression in seven successive developmental stages of seedling establishment in Arabidopsis

  17. Tissue-specific production of limonene in Camelina sativa with the Arabidopsis promoters of genes BANYULS and FRUITFULL

    NARCIS (Netherlands)

    Borghi, Monica; Xie, De Yu

    2016-01-01

    Main conclusion: Arabidopsis promoters of genesBANYULSandFRUITFULLare transcribed in Camelina. They triggered the transcription oflimonene synthaseand induced higher limonene production in seeds and fruits thanCaMV 35Spromoter.Camelina sativa (Camelina) is an oilseed crop of relevance for the

  18. Transcriptome analyses reveal the involvement of both C and N termini of cryptochrome 1 in its regulation of phytohormone-responsive gene expression in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Wenxiu eWang

    2016-03-01

    Full Text Available Cryptochromes (CRY are blue-light photoreceptors that mediate various light responses in plants and animals. It has long been demonstrated that Arabidopsis CRY (CRY1 and CRY2 C termini (CCT1 and CCT2 mediate light signaling through direct interaction with COP1. Most recently, CRY1 N terminus (CNT1 has been found to be involved in CRY1 signaling independent of CCT1, and implicated in the inhibition of gibberellin acids (GA/brassinosteroids (BR/auxin-responsive gene expression. Here, we performed RNA-Seq assay using transgenic plants expressing CCT1 fused to β-glucuronidase (GUS-CCT1, abbreviated as CCT1, which exhibit a constitutively photomorphogenic phenotype, and compared the results with those obtained previously from cry1cry2 mutant and the transgenic plants expressing CNT1 fused to nuclear localization signal sequence (NLS-tagged YFP (CNT1-NLS-YFP, abbreviated as CNT1, which display enhanced responsiveness to blue light. We found that 2,903 (67.85% of the CRY-regulated genes are regulated by CCT1 and that 1,095 of these CCT1-regulated genes are also regulated by CNT1. After annotating the gene functions, we found that CCT1 is involved in mediating CRY1 regulation of phytohormone-responsive genes, like CNT1, and that about half of the up-regulated genes by GA/BR/auxin are down-regulated by CCT1 and CNT1, consistent with the antagonistic role for CRY1 and these phytohormones in regulating hypocotyl elongation. Physiological studies showed that both CCT1 and CNT1 are likely involved in mediating CRY1 reduction of seedlings sensitivity to GA under blue light. Furthermore, protein expression studies demonstrate that the inhibition of GA promotion of HY5 degradation by CRY1 is likely mediated by CCT1, but not by CNT1. These results give genome-wide transcriptome information concerning the signaling mechanism of CRY1, unraveling possible involvement of its C and N termini in its regulation of response of GA and likely other phytohormones.

  19. In silico analysis of cis-acting regulatory elements in 5' regulatory regions of sucrose transporter gene families in rice (Oryza sativa Japonica) and Arabidopsis thaliana.

    Science.gov (United States)

    Ibraheem, Omodele; Botha, Christiaan E J; Bradley, Graeme

    2010-12-01

    The regulation of gene expression involves a multifarious regulatory system. Each gene contains a unique combination of cis-acting regulatory sequence elements in the 5' regulatory region that determines its temporal and spatial expression. Cis-acting regulatory elements are essential transcriptional gene regulatory units; they control many biological processes and stress responses. Thus a full understanding of the transcriptional gene regulation system will depend on successful functional analyses of cis-acting elements. Cis-acting regulatory elements present within the 5' regulatory region of the sucrose transporter gene families in rice (Oryza sativa Japonica cultivar-group) and Arabidopsis thaliana, were identified using a bioinformatics approach. The possible cis-acting regulatory elements were predicted by scanning 1.5kbp of 5' regulatory regions of the sucrose transporter genes translational start sites, using Plant CARE, PLACE and Genomatix Matinspector professional databases. Several cis-acting regulatory elements that are associated with plant development, plant hormonal regulation and stress response were identified, and were present in varying frequencies within the 1.5kbp of 5' regulatory region, among which are; A-box, RY, CAT, Pyrimidine-box, Sucrose-box, ABRE, ARF, ERE, GARE, Me-JA, ARE, DRE, GA-motif, GATA, GT-1, MYC, MYB, W-box, and I-box. This result reveals the probable cis-acting regulatory elements that possibly are involved in the expression and regulation of sucrose transporter gene families in rice and Arabidopsis thaliana during cellular development or environmental stress conditions. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. LSM Proteins Provide Accurate Splicing and Decay of Selected Transcripts to Ensure Normal Arabidopsis Development[W

    Science.gov (United States)

    Perea-Resa, Carlos; Hernández-Verdeja, Tamara; López-Cobollo, Rosa; Castellano, María del Mar; Salinas, Julio

    2012-01-01

    In yeast and animals, SM-like (LSM) proteins typically exist as heptameric complexes and are involved in different aspects of RNA metabolism. Eight LSM proteins, LSM1 to 8, are highly conserved and form two distinct heteroheptameric complexes, LSM1-7 and LSM2-8,that function in mRNA decay and splicing, respectively. A search of the Arabidopsis thaliana genome identifies 11 genes encoding proteins related to the eight conserved LSMs, the genes encoding the putative LSM1, LSM3, and LSM6 proteins being duplicated. Here, we report the molecular and functional characterization of the Arabidopsis LSM gene family. Our results show that the 11 LSM genes are active and encode proteins that are also organized in two different heptameric complexes. The LSM1-7 complex is cytoplasmic and is involved in P-body formation and mRNA decay by promoting decapping. The LSM2-8 complex is nuclear and is required for precursor mRNA splicing through U6 small nuclear RNA stabilization. More importantly, our results also reveal that these complexes are essential for the correct turnover and splicing of selected development-related mRNAs and for the normal development of Arabidopsis. We propose that LSMs play a critical role in Arabidopsis development by ensuring the appropriate development-related gene expression through the regulation of mRNA splicing and decay. PMID:23221597

  1. More to NAD+ than meets the eye: A regulator of metabolic pools and gene expression in Arabidopsis.

    Science.gov (United States)

    Gakière, Bertrand; Fernie, Alisdair R; Pétriacq, Pierre

    2018-01-05

    Since its discovery more than a century ago, nicotinamide adenine dinucleotide (NAD + ) is recognised as a fascinating cornerstone of cellular metabolism. This ubiquitous energy cofactor plays vital roles in metabolic pathways and regulatory processes, a fact emphasised by the essentiality of a balanced NAD + metabolism for normal plant growth and development. Research on the role of NAD in plants has been predominantly carried out in the model plant Arabidopsis thaliana (Arabidopsis) with emphasis on the redox properties and cellular signalling functions of the metabolite. This review examines the current state of knowledge concerning how NAD can regulate both metabolic pools and gene expression in Arabidopsis. Particular focus is placed on recent studies highlighting the complexity of metabolic regulations involving NAD, more particularly in the mitochondrial compartment, and of signalling roles with respect to interactions with environmental fluctuations most specifically those involving plant immunity. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Prediction of operon-like gene clusters in the Arabidopsis thaliana genome based on co-expression analysis of neighboring genes.

    Science.gov (United States)

    Wada, Masayoshi; Takahashi, Hiroki; Altaf-Ul-Amin, Md; Nakamura, Kensuke; Hirai, Masami Y; Ohta, Daisaku; Kanaya, Shigehiko

    2012-07-15

    Operon-like arrangements of genes occur in eukaryotes ranging from yeasts and filamentous fungi to nematodes, plants, and mammals. In plants, several examples of operon-like gene clusters involved in metabolic pathways have recently been characterized, e.g. the cyclic hydroxamic acid pathways in maize, the avenacin biosynthesis gene clusters in oat, the thalianol pathway in Arabidopsis thaliana, and the diterpenoid momilactone cluster in rice. Such operon-like gene clusters are defined by their co-regulation or neighboring positions within immediate vicinity of chromosomal regions. A comprehensive analysis of the expression of neighboring genes therefore accounts a crucial step to reveal the complete set of operon-like gene clusters within a genome. Genome-wide prediction of operon-like gene clusters should contribute to functional annotation efforts and provide novel insight into evolutionary aspects acquiring certain biological functions as well. We predicted co-expressed gene clusters by comparing the Pearson correlation coefficient of neighboring genes and randomly selected gene pairs, based on a statistical method that takes false discovery rate (FDR) into consideration for 1469 microarray gene expression datasets of A. thaliana. We estimated that A. thaliana contains 100 operon-like gene clusters in total. We predicted 34 statistically significant gene clusters consisting of 3 to 22 genes each, based on a stringent FDR threshold of 0.1. Functional relationships among genes in individual clusters were estimated by sequence similarity and functional annotation of genes. Duplicated gene pairs (determined based on BLAST with a cutoff of EOperon-like clusters tend to include genes encoding bio-machinery associated with ribosomes, the ubiquitin/proteasome system, secondary metabolic pathways, lipid and fatty-acid metabolism, and the lipid transfer system. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Expression of an alfalfa (Medicago sativa L.) peroxidase gene in transgenic Arabidopsis thaliana enhances resistance to NaCl and H2O2.

    Science.gov (United States)

    Teng, K; Xiao, G Z; Guo, W E; Yuan, J B; Li, J; Chao, Y H; Han, L B

    2016-05-23

    Peroxidases (PODs) are enzymes that play important roles in catalyzing the reduction of H2O2 and the oxidation of various substrates. They function in many different and important biological processes, such as defense mechanisms, immune responses, and pathogeny. The POD genes have been cloned and identified in many plants, but their function in alfalfa (Medicago sativa L.) is not known, to date. Based on the POD gene sequence (GenBank accession No. L36157.1), we cloned the POD gene in alfalfa, which was named MsPOD. MsPOD expression increased with increasing H2O2. The gene was expressed in all of the tissues, including the roots, stems, leaves, and flowers, particularly in stems and leaves under light/dark conditions. A subcellular analysis showed that MsPOD was localized outside the cells. Transgenic Arabidopsis with MsPOD exhibited increased resistance to H2O2 and NaCl. Moreover, POD activity in the transgenic plants was significantly higher than that in wild-type Arabidopsis. These results show that MsPOD plays an important role in resistance to H2O2 and NaCl.

  4. A microarray analysis of the rice transcriptome and its comparison to Arabidopsis

    DEFF Research Database (Denmark)

    Ma, Ligeng; Chen, Chen; Liu, Xigang

    2005-01-01

    Arabidopsis and rice are the only two model plants whose finished phase genome sequence has been completed. Here we report the construction of an oligomer microarray based on the presently known and predicted gene models in the rice genome. This microarray was used to analyze the transcriptional...... with similar genome-wide surveys of the Arabidopsis transcriptome, our results indicate that similar proportions of the two genomes are expressed in their corresponding organ types. A large percentage of the rice gene models that lack significant Arabidopsis homologs are expressed. Furthermore, the expression...... patterns of rice and Arabidopsis best-matched homologous genes in distinct functional groups indicate dramatic differences in their degree of conservation between the two species. Thus, this initial comparative analysis reveals some basic similarities and differences between the Arabidopsis and rice...

  5. Resurrection of DNA function in vivo from an extinct genome.

    Directory of Open Access Journals (Sweden)

    Andrew J Pask

    2008-05-01

    Full Text Available There is a burgeoning repository of information available from ancient DNA that can be used to understand how genomes have evolved and to determine the genetic features that defined a particular species. To assess the functional consequences of changes to a genome, a variety of methods are needed to examine extinct DNA function. We isolated a transcriptional enhancer element from the genome of an extinct marsupial, the Tasmanian tiger (Thylacinus cynocephalus or thylacine, obtained from 100 year-old ethanol-fixed tissues from museum collections. We then examined the function of the enhancer in vivo. Using a transgenic approach, it was possible to resurrect DNA function in transgenic mice. The results demonstrate that the thylacine Col2A1 enhancer directed chondrocyte-specific expression in this extinct mammalian species in the same way as its orthologue does in mice. While other studies have examined extinct coding DNA function in vitro, this is the first example of the restoration of extinct non-coding DNA and examination of its function in vivo. Our method using transgenesis can be used to explore the function of regulatory and protein-coding sequences obtained from any extinct species in an in vivo model system, providing important insights into gene evolution and diversity.

  6. Epistasis × environment interactions among Arabidopsis thaliana glucosinolate genes impact complex traits and fitness in the field

    DEFF Research Database (Denmark)

    Kerwin, Rachel E.; Feusier, Julie; Muok, Alise

    2017-01-01

    (GSL) defense chemistry, leaf damage, and relative fitness using mutant lines of Arabidopsis thaliana varying at pairs of causal aliphatic GSL defense genes to test the impact of epistatic and epistasis × environment interactions on adaptive trait variation. We found that aliphatic GSL accumulation...

  7. Gene expression analysis of WRKY transcription factors in Arabidopsis thaliana cell cultures during a parabolic flight

    Science.gov (United States)

    Babbick, Maren; Barjaktarović, Žarko; Hampp, Ruediger

    Plants sense gravity by specialized cells (statocytes) and adjust growth and development accordingly. It has, however, also been shown that plant cells which are not part of specialized tissues are also able to sense gravitational forces. Therefore we used undifferentiated, homogeneous cell cultures of Arabidopsis thaliana (cv. Columbia) in order to identify early alterations in gene expression as a response to altered gravitational field strengths. In this contribution we report on cell cultures exposed to parabolic flights (approximately 20 sec of microgravity). For this short-term exposure study, we specifically checked for genes at the beginning of signal transduction chains, such as those coding for transcription factors (TFs). TFs are small proteins that regulate expression of their target genes by binding to specific promoter sequences. Our main focus were members of the so-called WRKY TF family. WRKY TFs are known to be involved in various physiological processes like senescence and pathogen defense. By quantifying transcriptional changes of these genes by real-time RT-PCR, we wanted to find out, how gene expression is affected by both hyperand microgravity conditions during a parabolic flight. For this purpose Arabidopsis thaliana callus cultures were metabolically quenched by the injection of RNAlater at the end of the microgravity-phase of each parabola. The data we present will show how fast changes in amounts of transcripts will occur, and to what degree the expression profiles are comparable with data obtained from exposures to hypergravity and simulated microgravity.

  8. Overexpression of GbWRKY1 positively regulates the Pi starvation response by alteration of auxin sensitivity in Arabidopsis.

    Science.gov (United States)

    Xu, Li; Jin, Li; Long, Lu; Liu, Linlin; He, Xin; Gao, Wei; Zhu, Longfu; Zhang, Xianlong

    2012-12-01

    Overexpression of a cotton defense-related gene GbWRKY1 in Arabidopsis resulted in modification of the root system by enhanced auxin sensitivity to positively regulate the Pi starvation response. GbWRKY1 was a cloned WRKY transcription factor from Gossypium barbadense, which was firstly identified as a defense-related gene and showed moderate similarity with AtWRKY75 from Arabidopsis thaliana. Overexpression of GbWRKY1 in Arabidopsis resulted in attenuated Pi starvation stress symptoms, including reduced accumulation of anthocyanin and impaired density of lateral roots (LR) in low Pi stress. The study also indicated that overexpression of GbWRKY1 caused plants constitutively exhibited Pi starvation response including increased development of LR, relatively high level of total P and Pi, high expression level of some high-affinity Pi transporters and phosphatases as well as enhanced accumulation of acid phosphatases activity during Pi-sufficient. It was speculated that GbWRKY1 may act as a positive regulator in the Pi starvation response as well as AtWRKY75. GbWRKY1 probably involves in the modulation of Pi homeostasis and participates in the Pi allocation and remobilization but do not accumulate more Pi in Pi-deficient condition, which was different from the fact that AtWRKY75 influenced the Pi status of the plant during Pi deprivation by increasing root surface area and accumulation of more Pi. Otherwise, further study suggested that the overexpression plants were more sensitive to auxin than wild-type and GbWRKY1 may partly influence the LPR1-dependent (low phosphate response 1) Pi starvation signaling pathway and was putatively independent of SUMO E3 ligase SIZ1 and PHR1 (phosphate starvation response 1) in response to Pi starvation.

  9. Functionally Similar WRKY Proteins Regulate Vacuolar Acidification in Petunia and Hair Development in Arabidopsis.

    Science.gov (United States)

    Verweij, Walter; Spelt, Cornelis E; Bliek, Mattijs; de Vries, Michel; Wit, Niek; Faraco, Marianna; Koes, Ronald; Quattrocchio, Francesca M

    2016-03-01

    The WD40 proteins ANTHOCYANIN11 (AN11) from petunia (Petunia hybrida) and TRANSPARENT TESTA GLABRA1 (TTG1) from Arabidopsis thaliana and associated basic helix-loop-helix (bHLH) and MYB transcription factors activate a variety of differentiation processes. In petunia petals, AN11 and the bHLH protein AN1 activate, together with the MYB protein AN2, anthocyanin biosynthesis and, together with the MYB protein PH4, distinct genes, such as PH1 and PH5, that acidify the vacuole. To understand how AN1 and AN11 activate anthocyanin biosynthetic and PH genes independently, we isolated PH3. We found that PH3 is a target gene of the AN11-AN1-PH4 complex and encodes a WRKY protein that can bind to AN11 and is required, in a feed-forward loop, together with AN11-AN1-PH4 for transcription of PH5. PH3 is highly similar to TTG2, which regulates hair development, tannin accumulation, and mucilage production in Arabidopsis. Like PH3, TTG2 can bind to petunia AN11 and the Arabidopsis homolog TTG1, complement ph3 in petunia, and reactivate the PH3 target gene PH5. Our findings show that the specificity of WD40-bHLH-MYB complexes is in part determined by interacting proteins, such as PH3 and TTG2, and reveal an unanticipated similarity in the regulatory circuitry that controls petunia vacuolar acidification and Arabidopsis hair development. © 2016 American Society of Plant Biologists. All rights reserved.

  10. Genome-wide identification of aquaporin encoding genes in Brassica oleracea and their phylogenetic sequence comparison to Brassica crops and Arabidopsis

    Science.gov (United States)

    Diehn, Till A.; Pommerrenig, Benjamin; Bernhardt, Nadine; Hartmann, Anja; Bienert, Gerd P.

    2015-01-01

    Aquaporins (AQPs) are essential channel proteins that regulate plant water homeostasis and the uptake and distribution of uncharged solutes such as metalloids, urea, ammonia, and carbon dioxide. Despite their importance as crop plants, little is known about AQP gene and protein function in cabbage (Brassica oleracea) and other Brassica species. The recent releases of the genome sequences of B. oleracea and Brassica rapa allow comparative genomic studies in these species to investigate the evolution and features of Brassica genes and proteins. In this study, we identified all AQP genes in B. oleracea by a genome-wide survey. In total, 67 genes of four plant AQP subfamilies were identified. Their full-length gene sequences and locations on chromosomes and scaffolds were manually curated. The identification of six additional full-length AQP sequences in the B. rapa genome added to the recently published AQP protein family of this species. A phylogenetic analysis of AQPs of Arabidopsis thaliana, B. oleracea, B. rapa allowed us to follow AQP evolution in closely related species and to systematically classify and (re-) name these isoforms. Thirty-three groups of AQP-orthologous genes were identified between B. oleracea and Arabidopsis and their expression was analyzed in different organs. The two selectivity filters, gene structure and coding sequences were highly conserved within each AQP subfamily while sequence variations in some introns and untranslated regions were frequent. These data suggest a similar substrate selectivity and function of Brassica AQPs compared to Arabidopsis orthologs. The comparative analyses of all AQP subfamilies in three Brassicaceae species give initial insights into AQP evolution in these taxa. Based on the genome-wide AQP identification in B. oleracea and the sequence analysis and reprocessing of Brassica AQP information, our dataset provides a sequence resource for further investigations of the physiological and molecular functions of

  11. Arabidopsis cryptochrome 1 is a soluble protein mediating blue light-dependent regulation of plant growth and development

    International Nuclear Information System (INIS)

    Lin ChenTao; Ahmad, M.; Cashmore, A.R.

    1996-01-01

    Cryptochrome 1 (CRY1) is a flavin-type blue type receptor of Arabidopsis thaliana which mediates inhibition of hypocotyl elongation. In the work described in this report it is demonstrated that CRY1 is a soluble protein expressed in both young seedlings grown either in the dark or under light, and in different organs of adult plants. The functional role of CRY1 was further investigated using transgenic Arabidopsis plants overexpressing CRY1. It is demonstrated that overexpression of CRY1 resulted in hypersensitivity to blue, UV-A, and green light for the inhibition of hypocotyl elongation response. Transgenic plants overexpressing CRY1 also exhibited a dwarf phenotype with reduced size in almost every organ. This was in keeping with the previous observation of reciprocal alterations found in hy4 mutant plants and is consistent with a hypothesis that CRY1 mediates a light-dependent process resulting in a general inhibitory effect on plant growth. In addition, transgenic plants overexpressing CRY1 showed increased anthocyanin accumulation in response to blue, UV-A, and green light in a fluence rate-dependent manner. This increase in anthocyanin accumulation in transgenic plants was shown to be concomitant with increased blue light-induction of CHS gene expression. It is concluded that CRY1 is a photoreceptor mediating blue light-dependent regulation of gene expression in addition to its affect on plant growth. (author)

  12. The Arabidopsis KH-Domain RNA-Binding Protein ESR1 Functions in Components of Jasmonate Signalling, Unlinking Growth Restraint and Resistance to Stress.

    Directory of Open Access Journals (Sweden)

    Louise F Thatcher

    Full Text Available Glutathione S-transferases (GSTs play important roles in the protection of cells against toxins and oxidative damage where one Arabidopsis member, GSTF8, has become a commonly used marker gene for early stress and defense responses. A GSTF8 promoter fragment fused to the luciferase reporter gene was used in a forward genetic screen for Arabidopsis mutants with up-regulated GSTF8 promoter activity. This identified the esr1-1 (enhanced stress response 1 mutant which also conferred increased resistance to the fungal pathogen Fusarium oxysporum. Through positional cloning, the ESR1 gene was found to encode a KH-domain containing RNA-binding protein (At5g53060. Whole transcriptome sequencing of esr1-1 identified altered expression of genes involved in responses to biotic and abiotic stimuli, hormone signaling pathways and developmental processes. In particular was an overall significant enrichment for jasmonic acid (JA mediated processes in the esr1-1 down-regulated dataset. A subset of these genes were tested for MeJA inducibility and we found the expression of some but not all were reduced in esr1-1. The esr1-1 mutant was not impaired in other aspects of JA-signalling such as JA- sensitivity or development, suggesting ESR1 functions in specific components of the JA-signaling pathway. Examination of salicylic acid (SA regulated marker genes in esr1-1 showed no increase in basal or SA induced expression suggesting repression of JA-regulated genes is not due to antagonistic SA-JA crosstalk. These results define new roles for KH-domain containing proteins with ESR1 unlinking JA-mediated growth and defense responses.

  13. Two intercultural performances: Double Nora and Resurrection Day

    Directory of Open Access Journals (Sweden)

    Mitsuya Mori

    2015-02-01

    Full Text Available I have so far directed two plays of Ibsen as the intercultural performance, that is, the collaboration of the modern theatre with noh, a traditional Japanese theatre, which was established as an artistic theatre form in the 14th century. The first production was Double Nora, based on A Doll’s House, which premiered at a noh theatre in Tokyo in 2005, and the second was Resurrection Day, based on When We Dead Awaken, performed at the Ibsen Festival in Tokyo in 2010. In both productions, professional noh and modern theatre actors appeared together in their own acting styles. At the Ibsen Conference in Tromsø in June 2012, brief scenes of the two productions were shown. But here in the present article the performances are partly described, and the interactive relationship between different acting styles of noh and modern theatre is examined. A new and difficult experiment of Resurrection Day was to try a conversation between the main noh actor and the modern actress. The experiment was possible because the performance took place not on a noh stage in a unique form but on an ordinary stage in a modern theatre. Thus, some problems involved in the intercultural performance of Ibsen are investigated.

  14. Mutually Exclusive Alterations in Secondary Metabolism Are Critical for the Uptake of Insoluble Iron Compounds by Arabidopsis and Medicago truncatula1[C][W

    Science.gov (United States)

    Rodríguez-Celma, Jorge; Lin, Wen-Dar; Fu, Guin-Mau; Abadía, Javier; López-Millán, Ana-Flor; Schmidt, Wolfgang

    2013-01-01

    The generally low bioavailability of iron in aerobic soil systems forced plants to evolve sophisticated genetic strategies to improve the acquisition of iron from sparingly soluble and immobile iron pools. To distinguish between conserved and species-dependent components of such strategies, we analyzed iron deficiency-induced changes in the transcriptome of two model species, Arabidopsis (Arabidopsis thaliana) and Medicago truncatula. Transcriptional profiling by RNA sequencing revealed a massive up-regulation of genes coding for enzymes involved in riboflavin biosynthesis in M. truncatula and phenylpropanoid synthesis in Arabidopsis upon iron deficiency. Coexpression and promoter analysis indicated that the synthesis of flavins and phenylpropanoids is tightly linked to and putatively coregulated with other genes encoding proteins involved in iron uptake. We further provide evidence that the production and secretion of phenolic compounds is critical for the uptake of iron from sources with low bioavailability but dispensable under conditions where iron is readily available. In Arabidopsis, homozygous mutations in the Fe(II)- and 2-oxoglutarate-dependent dioxygenase family gene F6′H1 and defects in the expression of PLEIOTROPIC DRUG RESISTANCE9, encoding a putative efflux transporter for products from the phenylpropanoid pathway, compromised iron uptake from an iron source of low bioavailability. Both mutants were partially rescued when grown alongside wild-type Arabidopsis or M. truncatula seedlings, presumably by secreted phenolics and flavins. We concluded that production and secretion of compounds that facilitate the uptake of iron is an essential but poorly understood aspect of the reduction-based iron acquisition strategy, which is likely to contribute substantially to the efficiency of iron uptake in natural conditions. PMID:23735511

  15. Bioinformatic approach in the identification of arabidopsis gene homologous in amaranthus

    Directory of Open Access Journals (Sweden)

    Jana Žiarovská

    2015-05-01

    Full Text Available Bioinfomatics offers an efficient tool for molecular genetics applications and sequence homology search algorithms became an inevitable part for many different research strategies. Appropriate managing of known data that are stored in public available databases can be used in many ways in the research. Here, we report the identification of RmlC-like cupins superfamily protein DNA sequence than is known in Arabidopsis genome for the Amaranthus - plant specie where this sequence was still not sequenced. A BLAST based approach was used to identify the homologous sequences in the nucleotide database and to find suitable parts of the Arabidopsis sequence were primers can be designed. In total, 64 hits were found in nucleotide database for Arabidopsis RmlC-like cupins sequence. A query cover ranged from 10% up to the 100% among RmlC-like cupins nucleotides and its homologues that are actually stored in public nucleotide databases. The most conserved region was identified for matches that posses nucleotides in the range of 1506 up to the 1925 bp of RmlC-like cupins DNA sequence stored in the database. The in silico approach was subsequently used in PCR analysis where the specifity of designed primers was approved. A unique, 250 bp long fragment was obtained for Amaranthus cruentus and a hybride Amaranthus hypochondriacus x hybridus in our analysis. Bioinformatic based analysis of unknown parts of the plant genomes as showed in this study is a very good additional tool in PCR based analysis of plant variability. This approach is suitable in the case for plants, where concrete genomic data are still missing for the appropriate genes, as was demonstrated for Amaranthus. 

  16. A Predictive Coexpression Network Identifies Novel Genes Controlling the Seed-to-Seedling Phase Transition in Arabidopsis thaliana.

    Science.gov (United States)

    Silva, Anderson Tadeu; Ribone, Pamela A; Chan, Raquel L; Ligterink, Wilco; Hilhorst, Henk W M

    2016-04-01

    The transition from a quiescent dry seed to an actively growing photoautotrophic seedling is a complex and crucial trait for plant propagation. This study provides a detailed description of global gene expression in seven successive developmental stages of seedling establishment in Arabidopsis (Arabidopsis thaliana). Using the transcriptome signature from these developmental stages, we obtained a coexpression gene network that highlights interactions between known regulators of the seed-to-seedling transition and predicts the functions of uncharacterized genes in seedling establishment. The coexpressed gene data sets together with the transcriptional module indicate biological functions related to seedling establishment. Characterization of the homeodomain leucine zipper I transcription factor AtHB13, which is expressed during the seed-to-seedling transition, demonstrated that this gene regulates some of the network nodes and affects late seedling establishment. Knockout mutants for athb13 showed increased primary root length as compared with wild-type (Columbia-0) seedlings, suggesting that this transcription factor is a negative regulator of early root growth, possibly repressing cell division and/or cell elongation or the length of time that cells elongate. The signal transduction pathways present during the early phases of the seed-to-seedling transition anticipate the control of important events for a vigorous seedling, such as root growth. This study demonstrates that a gene coexpression network together with transcriptional modules can provide insights that are not derived from comparative transcript profiling alone. © 2016 American Society of Plant Biologists. All Rights Reserved.

  17. Analysis of the grape MYB R2R3 subfamily reveals expanded wine quality-related clades and conserved gene structure organization across Vitis and Arabidopsis genomes

    Science.gov (United States)

    Matus, José Tomás; Aquea, Felipe; Arce-Johnson, Patricio

    2008-01-01

    Background The MYB superfamily constitutes the most abundant group of transcription factors described in plants. Members control processes such as epidermal cell differentiation, stomatal aperture, flavonoid synthesis, cold and drought tolerance and pathogen resistance. No genome-wide characterization of this family has been conducted in a woody species such as grapevine. In addition, previous analysis of the recently released grape genome sequence suggested expansion events of several gene families involved in wine quality. Results We describe and classify 108 members of the grape R2R3 MYB gene subfamily in terms of their genomic gene structures and similarity to their putative Arabidopsis thaliana orthologues. Seven gene models were derived and analyzed in terms of gene expression and their DNA binding domain structures. Despite low overall sequence homology in the C-terminus of all proteins, even in those with similar functions across Arabidopsis and Vitis, highly conserved motif sequences and exon lengths were found. The grape epidermal cell fate clade is expanded when compared with the Arabidopsis and rice MYB subfamilies. Two anthocyanin MYBA related clusters were identified in chromosomes 2 and 14, one of which includes the previously described grape colour locus. Tannin related loci were also detected with eight candidate homologues in chromosomes 4, 9 and 11. Conclusion This genome wide transcription factor analysis in Vitis suggests that clade-specific grape R2R3 MYB genes are expanded while other MYB genes could be well conserved compared to Arabidopsis. MYB gene abundance, homology and orientation within particular loci also suggests that expanded MYB clades conferring quality attributes of grapes and wines, such as colour and astringency, could possess redundant, overlapping and cooperative functions. PMID:18647406

  18. Regeneration and resurrection in Matthew – Peasants in campo ...

    African Journals Online (AJOL)

    The article aimed to describe the distinctive element in the use of the motif of the resurrection in the Gospel of Matthew in comparison with Mark, Luke and the Sayings Gospel Q. It argued that the distinctive element occurs where parallel texts in Luke 22:24–30, Matthew 19:27–29 and Mark 10:28–31 converge.

  19. Systems approach identifies an organic nitrogen-responsive gene network that is regulated by the master clock control gene CCA1.

    Science.gov (United States)

    Gutiérrez, Rodrigo A; Stokes, Trevor L; Thum, Karen; Xu, Xiaodong; Obertello, Mariana; Katari, Manpreet S; Tanurdzic, Milos; Dean, Alexis; Nero, Damion C; McClung, C Robertson; Coruzzi, Gloria M

    2008-03-25

    Understanding how nutrients affect gene expression will help us to understand the mechanisms controlling plant growth and development as a function of nutrient availability. Nitrate has been shown to serve as a signal for the control of gene expression in Arabidopsis. There is also evidence, on a gene-by-gene basis, that downstream products of nitrogen (N) assimilation such as glutamate (Glu) or glutamine (Gln) might serve as signals of organic N status that in turn regulate gene expression. To identify genome-wide responses to such organic N signals, Arabidopsis seedlings were transiently treated with ammonium nitrate in the presence or absence of MSX, an inhibitor of glutamine synthetase, resulting in a block of Glu/Gln synthesis. Genes that responded to organic N were identified as those whose response to ammonium nitrate treatment was blocked in the presence of MSX. We showed that some genes previously identified to be regulated by nitrate are under the control of an organic N-metabolite. Using an integrated network model of molecular interactions, we uncovered a subnetwork regulated by organic N that included CCA1 and target genes involved in N-assimilation. We validated some of the predicted interactions and showed that regulation of the master clock control gene CCA1 by Glu or a Glu-derived metabolite in turn regulates the expression of key N-assimilatory genes. Phase response curve analysis shows that distinct N-metabolites can advance or delay the CCA1 phase. Regulation of CCA1 by organic N signals may represent a novel input mechanism for N-nutrients to affect plant circadian clock function.

  20. Arabidopsis N-MYC DOWNREGULATED-LIKE1, a Positive Regulator of Auxin Transport in a G Protein–Mediated Pathway[W

    Science.gov (United States)

    Mudgil, Yashwanti; Uhrig, Joachm F.; Zhou, Jiping; Temple, Brenda; Jiang, Kun; Jones, Alan M.

    2009-01-01

    Root architecture results from coordinated cell division and expansion in spatially distinct cells of the root and is established and maintained by gradients of auxin and nutrients such as sugars. Auxin is transported acropetally through the root within the central stele and then, upon reaching the root apex, auxin is transported basipetally through the outer cortical and epidermal cells. The two Gβγ dimers of the Arabidopsis thaliana heterotrimeric G protein complex are differentially localized to the central and cortical tissues of the Arabidopsis roots. A null mutation in either the single β (AGB1) or the two γ (AGG1 and AGG2) subunits confers phenotypes that disrupt the proper architecture of Arabidopsis roots and are consistent with altered auxin transport. Here, we describe an evolutionarily conserved interaction between AGB1/AGG dimers and a protein designated N-MYC DOWNREGULATED-LIKE1 (NDL1). The Arabidopsis genome encodes two homologs of NDL1 (NDL2 and NDL3), which also interact with AGB1/AGG1 and AGB1/AGG2 dimers. We show that NDL proteins act in a signaling pathway that modulates root auxin transport and auxin gradients in part by affecting the levels of at least two auxin transport facilitators. Reduction of NDL family gene expression and overexpression of NDL1 alter root architecture, auxin transport, and auxin maxima. AGB1, auxin, and sugars are required for NDL1 protein stability in regions of the root where auxin gradients are established; thus, the signaling mechanism contains feedback loops. PMID:19948787

  1. The tropical cedar tree (Cedrela fissilis Vell., Meliaceae) homolog of the Arabidopsis LEAFY gene is expressed in reproductive tissues and can complement Arabidopsis leafy mutants.

    Science.gov (United States)

    Dornelas, Marcelo Carnier; Rodriguez, Adriana Pinheiro Martinelli

    2006-01-01

    A homolog of FLORICAULA/LEAFY, CfLFY (for Cedrela fissilis LFY), was isolated from tropical cedar. The main stages of the reproductive development in C. fissilis were documented by scanning electron microscopy and the expression patterns of CfLFY were studied during the differentiation of the floral meristems. Furthermore, the biological role of the CfLFY gene was assessed using transgenic Arabidopsis plants. CfLFY showed a high degree of similarity to other plant homologs of FLO/LFY. Southern analysis showed that CfLFY is a single-copy gene in the tropical cedar genome. Northern blot analysis and in situ hybridization results showed that CfLFY was expressed in the reproductive buds during the transition from vegetative to reproductive growth, as well as in floral meristems and floral organs but was excluded from the vegetative apex and leaves. Transgenic Arabidopsis lfy26 mutant lines expressing the CfLFY coding region, under the control of the LFY promoter, showed restored wild-type phenotype. Taken together, our results suggest that CfLFY is a FLO/LFY homolog probably involved in the control of tropical cedar reproductive development.

  2. Characterization of promoter of EgPAL1, a novel PAL gene from the oil palm Elaeis guineensis Jacq.

    Science.gov (United States)

    Yusuf, Chong Yu Lok; Abdullah, Janna Ong; Shaharuddin, Noor Azmi; Abu Seman, Idris; Abdullah, Mohd Puad

    2018-02-01

    The oil palm EgPAL1 gene promoter and its regulatory region were functional as a promoter in the heterologous system of Arabidopsis according to the cis-acting elements present in that region. The promoter was developmentally regulated, vascular tissue specific and responsive to water stress agents. Phenylalanine ammonia lyase (PAL, EC 4.3.1.24) is the key enzyme of the phenylpropanoid pathway which plays important roles in plant development and adaptation. To date, there is no report on the study of PAL from oil palm (Elaeis guineensis), an economically important oil crop. In this study, the 5' regulatory sequence of a highly divergent oil palm PAL gene (EgPAL1) was isolated and fused with GUS in Arabidopsis to create two transgenic plants carrying the minimal promoter with (2302 bp) and without its regulatory elements (139 bp). The regulatory sequence contained cis-acting elements known to be important for plant development and stress response including the AC-II element for lignin biosynthesis and several stress responsive elements. The promoter and its regulatory region were fully functional in Arabidopsis. Its activities were characterised by two common fundamental features of PAL which are responsive to plant internal developmental programme and external factors. The promoter was developmentally regulated in certain organs; highly active in young organs but less active or inactive in mature organs. The presence of the AC elements and global activity of the EgPAL1 promoter in all organs resembled the property of lignin-related genes. The existence of the MBS element and enhancement of the promoter activity by PEG reflected the behaviour of drought-responsive genes. Our findings provide a platform for evaluating oil palm gene promoters in the heterologous system of Arabidopsis and give insights into the activities of EgPAL1 promoter in oil palm.

  3. The glossyhead1 allele of acc1 reveals a principal role for multidomain acetyl-coenzyme a carboxylase in the biosynthesis of cuticular waxes by Arabidopsis

    KAUST Repository

    Lu, Shiyou

    2011-09-23

    A novel mutant of Arabidopsis (Arabidopsis thaliana), having highly glossy inflorescence stems, postgenital fusion in floral organs, and reduced fertility, was isolated from an ethyl methanesulfonate-mutagenized population and designated glossyhead1 (gsd1). The gsd1 locus was mapped to chromosome 1, and the causal gene was identified as a new allele of Acetyl-Coenzyme A Carboxylase1 (ACC1), a gene encoding the main enzyme in cytosolic malonyl-coenzyme A synthesis. This, to our knowledge, is the first mutant allele of ACC1 that does not cause lethality at the seed or early germination stage, allowing for the first time a detailed analysis of ACC1 function in mature tissues. Broad lipid profiling of mature gsd1 organs revealed a primary role for ACC1 in the biosynthesis of the very-long-chain fatty acids (C 20:0 or longer) associated with cuticular waxes and triacylglycerols. Unexpectedly, transcriptome analysis revealed that gsd1 has limited impact on any lipid metabolic networks but instead has a large effect on environmental stress-responsive pathways, especially senescence and ethylene synthesis determinants, indicating a possible role for the cytosolic malonyl-coenzyme A-derived lipids in stress response signaling. © 2011 American Society of Plant Biologists. All Rights Reserved.

  4. ETHYLENE RESPONSE FACTOR 96 positively regulates Arabidopsis resistance to necrotrophic pathogens by direct binding to GCC elements of jasmonate - and ethylene-responsive defence genes.

    Science.gov (United States)

    Catinot, Jérémy; Huang, Jing-Bo; Huang, Pin-Yao; Tseng, Min-Yuan; Chen, Ying-Lan; Gu, Shin-Yuan; Lo, Wan-Sheng; Wang, Long-Chi; Chen, Yet-Ran; Zimmerli, Laurent

    2015-12-01

    The ERF (ethylene responsive factor) family is composed of transcription factors (TFs) that are critical for appropriate Arabidopsis thaliana responses to biotic and abiotic stresses. Here we identified and characterized a member of the ERF TF group IX, namely ERF96, that when overexpressed enhances Arabidopsis resistance to necrotrophic pathogens such as the fungus Botrytis cinerea and the bacterium Pectobacterium carotovorum. ERF96 is jasmonate (JA) and ethylene (ET) responsive and ERF96 transcripts accumulation was abolished in JA-insensitive coi1-16 and in ET-insensitive ein2-1 mutants. Protoplast transactivation and electrophoresis mobility shift analyses revealed that ERF96 is an activator of transcription that binds to GCC elements. In addition, ERF96 mainly localized to the nucleus. Microarray analysis coupled to chromatin immunoprecipitation-PCR of Arabidopsis overexpressing ERF96 revealed that ERF96 enhances the expression of the JA/ET defence genes PDF1.2a, PR-3 and PR-4 as well as the TF ORA59 by direct binding to GCC elements present in their promoters. While ERF96-RNAi plants demonstrated wild-type resistance to necrotrophic pathogens, basal PDF1.2 expression levels were reduced in ERF96-silenced plants. This work revealed ERF96 as a key player of the ERF network that positively regulates the Arabidopsis resistance response to necrotrophic pathogens. © 2015 John Wiley & Sons Ltd.

  5. Functional Analysis of the Arabidopsis thaliana CDPK-Related Kinase Family: AtCRK1 Regulates Responses to Continuous Light

    Directory of Open Access Journals (Sweden)

    Abu Imran Baba

    2018-04-01

    Full Text Available The Calcium-Dependent Protein Kinase (CDPK-Related Kinase family (CRKs consists of eight members in Arabidopsis. Recently, AtCRK5 was shown to play a direct role in the regulation of root gravitropic response involving polar auxin transport (PAT. However, limited information is available about the function of the other AtCRK genes. Here, we report a comparative analysis of the Arabidopsis CRK genes, including transcription regulation, intracellular localization, and biological function. AtCRK transcripts were detectable in all organs tested and a considerable variation in transcript levels was detected among them. Most AtCRK proteins localized at the plasma membrane as revealed by microscopic analysis of 35S::cCRK-GFP (Green Fluorescence Protein expressing plants or protoplasts. Interestingly, 35S::cCRK1-GFP and 35S::cCRK7-GFP had a dual localization pattern which was associated with plasma membrane and endomembrane structures, as well. Analysis of T-DNA insertion mutants revealed that AtCRK genes are important for root growth and control of gravitropic responses in roots and hypocotyls. While Atcrk mutants were indistinguishable from wild type plants in short days, Atcrk1-1 mutant had serious growth defects under continuous illumination. Semi-dwarf phenotype of Atcrk1-1 was accompanied with chlorophyll depletion, disturbed photosynthesis, accumulation of singlet oxygen, and enhanced cell death in photosynthetic tissues. AtCRK1 is therefore important to maintain cellular homeostasis during continuous illumination.

  6. Melatonin-induced CBF/DREB1s are essential for diurnal change of disease resistance and CCA1 expression in Arabidopsis.

    Science.gov (United States)

    Shi, Haitao; Wei, Yunxie; He, Chaozu

    2016-03-01

    Melatonin (N-acetyl-5-methoxytryptamine) is an important regulator of circadian rhythms and immunity in animals. However, the diurnal changes of endogenous melatonin and melatonin-mediated diurnal change of downstream responses remain unclear in Arabidopsis. Using the publicly available microarray data, we found that the transcript levels of two melatonin synthesis genes (serotonin N-acetyltransferase (SNAT) and caffeate O-methyltransferase (COMT)) and endogenous melatonin level were regulated by diurnal cycles, with different magnitudes of change. Moreover, the transcripts of C-repeat-binding factors (CBFs)/Drought response element Binding 1 factors (DREB1s) were co-regulated by exogenous melatonin and diurnal changes, indicating the possible correlation among clock, endogenous melatonin level and AtCBFs expressions. Interestingly, diurnal change of plant immunity against Pst DC3000 and CIRCADIANCLOCK ASSOCIATED 1 (CCA1) expression were largely lost in AtCBFs knockdown line-amiR-1. Taken together, this study identifies the molecular pathway underlying the diurnal changes of immunity in Arabidopsis. Notably, the diurnal changes of endogenous melatonin may regulate corresponding changes of AtCBF/DREB1s expression and their underlying diurnal cycle of plant immunity and AtCCA1. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  7. Building Keypoint Mappings on Multispectral Images by a Cascade of Classifiers with a Resurrection Mechanism

    Directory of Open Access Journals (Sweden)

    Yong Li

    2015-05-01

    Full Text Available Inspired by the boosting technique for detecting objects, this paper proposes a cascade structure with a resurrection mechanism to establish keypoint mappings on multispectral images. The cascade structure is composed of four steps by utilizing best bin first (BBF, color and intensity distribution of segment (CIDS, global information and the RANSAC process to remove outlier keypoint matchings. Initial keypoint mappings are built with the descriptors associated with keypoints; then, at each step, only a small number of keypoint mappings of a high confidence are classified to be incorrect. The unclassified keypoint mappings will be passed on to subsequent steps for determining whether they are correct. Due to the drawback of a classification rule, some correct keypoint mappings may be misclassified as incorrect at a step. Observing this, we design a resurrection mechanism, so that they will be reconsidered and evaluated by the rules utilized in subsequent steps. Experimental results show that the proposed cascade structure combined with the resurrection mechanism can effectively build more reliable keypoint mappings on multispectral images than existing methods.

  8. Reference: 351 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available similarly high levels of ABA. ABA levels decreased rapidly upon imbibition, although they fell further in ND than in D. Gene express...e family (CYP707A)] genes. Of these, only the AtCYP707A2 gene was differentially expressed between D and ND seeds, being express...ed to a much higher level in ND seeds. Similarly, a barley CYP707 homologue, (HvABA8'OH-1) was express...ins. Consistent with this, in situ hybridization studies showed HvABA8'OH-1 mRNA expression was stronger in ... plays a key role in dormancy release. Constitutive expression of a CYP707A gene in transgenic Arabidopsis r

  9. An Alfin-like gene from Atriplex hortensis enhances salt and drought tolerance and abscisic acid response in transgenic Arabidopsis.

    Science.gov (United States)

    Tao, Jian-Jun; Wei, Wei; Pan, Wen-Jia; Lu, Long; Li, Qing-Tian; Ma, Jin-Biao; Zhang, Wan-Ke; Ma, Biao; Chen, Shou-Yi; Zhang, Jin-Song

    2018-02-09

    Alfin-like (AL) is a small plant-specific gene family with prominent roles in root growth and abiotic stress response. Here, we aimed to identify novel stress tolerance AL genes from the stress-tolerant species Atriplex hortensis. Totally, we isolated four AhAL genes, all encoding nuclear-localized proteins with cis-element-binding and transrepression activities. Constitutive expression of AhAL1 in Arabidopsis facilitated plants to survive under saline condition, while expressing anyone of the other three AhAL genes led to salt-hypersensitive response, indicating functional divergence of AhAL family. AhAL1 also conferred enhanced drought tolerance, as judged from enhanced survival, improved growth, decreased malonaldehyde (MDA) content and reduced water loss in AhAL1-expressing plants compared to WT. In addition, abscisic acid (ABA)-mediated stomatal closure and inhibition of seed germination and primary root elongation were enhanced in AhAL1-transgenic plants. Further analysis demonstrated that AhAL1 could bind to promoter regions of GRF7, DREB1C and several group-A PP2C genes and repress their expression. Correspondingly, the expression levels of positive stress regulator genes DREB1A, DREB2A and three ABFs were all increased in AhAL1-expressing plants. Based on these results, AhAL1 was identified as a novel candidate gene for improving abiotic stress tolerance of crop plants.

  10. A web-based resource for the Arabidopsis P450, cytochromes b5, NADPH-cytochrome P450 reductases, and family 1 glycosyltransferases (http://www.P450.kvl.dk).

    Science.gov (United States)

    Paquette, Suzanne M; Jensen, Kenneth; Bak, Søren

    2009-12-01

    Gene and genome duplication is a key driving force in evolution of plant diversity. This has resulted in a number of large multi-gene families. Two of the largest multi-gene families in plants are the cytochromes P450 (P450s) and family 1 glycosyltransferases (UGTs). These two families are key players in evolution, especially of plant secondary metabolism, and in adaption to abiotic and biotic stress. In the model plant Arabidopsis thaliana there are 246 and 112 cytochromes P450 and UGTs, respectively. The Arabidopsis P450, cytochromes b(5), NADPH-cytochrome P450 reductases, and family 1 glycosyltransferases website (http://www.P450.kvl.dk) is a sequence repository of manually curated sequences, multiple sequence alignments, phylogenetic trees, sequence motif logos, 3D structures, intron-exon maps, and customized BLAST datasets.

  11. AtGA3ox2, a key gene responsible for bioactive gibberellin biosynthesis, is regulated during embryogenesis by LEAFY COTYLEDON2 and FUSCA3 in Arabidopsis

    NARCIS (Netherlands)

    Curaba, J.; Moritz, T.; Blervaque, R.; Parcy, F.; Raz, V.; Herzog, M.; Vachon, G.

    2004-01-01

    Embryonic regulators LEC2 (LEAFY COTYLEDON2) and FUS3 (FUSCA3) are involved in multiple aspects of Arabidopsis (Arabidopsis thaliana) seed development, including repression of leaf traits and premature germination and activation of seed storage protein genes. In this study, we show that gibberellin

  12. Colonization by the endophyte Piriformospora indica leads to early flowering in Arabidopsis thaliana likely by triggering gibberellin biosynthesis

    KAUST Repository

    Kim, Dongjin; Abdelaziz, Mohamad E.; Ntui, Valentine Otang; Guo, Xiujie; Al-Babili, Salim

    2017-01-01

    Piriformospora indica is an endophytic fungus colonizing roots of a wide variety of plants. Previous studies showed that P. indica promotes early flowering and plant growth in the medicinal plant Coleus forskohlii. To determine the impact of P. indica on flowering time in Arabidopsis, we co-cultivated the plants with P. indica under long day condition. P. indica inoculated Arabidopsis plants displayed significant early flowering phenotype. qRT-PCR analysis of colonized plants revealed an up-regulation of flowering regulatory (FLOWERING LOCUS T, LEAFY, and APETALA1) and gibberellin biosynthetic (Gibberellin 20-Oxidase2, Gibberellin 3-Oxidase1 and Gibberellin requiring1) genes, while the flowering-repressing gene FLOWERING LOCUS C was down regulated. Quantification of gibberellins content showed that the colonization with P. indica caused an increase in GA4 content. Compared to wild-type plants, inoculation of the Arabidopsis ga5 mutant affected in gibberellin biosynthetic gene led to less pronounced changes in the expression of genes regulating flowering and to a lower increase in GA4 content. Taken together, our data indicate that P. indica promotes early flowering in Arabidopsis likely by increasing gibberellin content.

  13. Colonization by the endophyte Piriformospora indica leads to early flowering in Arabidopsis thaliana likely by triggering gibberellin biosynthesis

    KAUST Repository

    Kim, Dongjin

    2017-06-28

    Piriformospora indica is an endophytic fungus colonizing roots of a wide variety of plants. Previous studies showed that P. indica promotes early flowering and plant growth in the medicinal plant Coleus forskohlii. To determine the impact of P. indica on flowering time in Arabidopsis, we co-cultivated the plants with P. indica under long day condition. P. indica inoculated Arabidopsis plants displayed significant early flowering phenotype. qRT-PCR analysis of colonized plants revealed an up-regulation of flowering regulatory (FLOWERING LOCUS T, LEAFY, and APETALA1) and gibberellin biosynthetic (Gibberellin 20-Oxidase2, Gibberellin 3-Oxidase1 and Gibberellin requiring1) genes, while the flowering-repressing gene FLOWERING LOCUS C was down regulated. Quantification of gibberellins content showed that the colonization with P. indica caused an increase in GA4 content. Compared to wild-type plants, inoculation of the Arabidopsis ga5 mutant affected in gibberellin biosynthetic gene led to less pronounced changes in the expression of genes regulating flowering and to a lower increase in GA4 content. Taken together, our data indicate that P. indica promotes early flowering in Arabidopsis likely by increasing gibberellin content.

  14. Functional and RNA-sequencing analysis revealed expression of a novel stay-green gene from Zoysia japonica (ZjSGR caused chlorophyll degradation and accelerated senescence in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Ke Teng

    2016-12-01

    Full Text Available Senescence is not only an important developmental process, but also a responsive regulation to abiotic and biotic stress for plants. Stay-green protein plays crucial roles in plant senescence and chlorophyll degradation. However, the underlying mechanisms were not well studied, particularly in non-model plants. In this study, a novel stay-green gene, ZjSGR, was isolated from Zoysia japonica. Subcellular localization result demonstrated that ZjSGR was localized in the chloroplasts. Quantitative real-time PCR results together with promoter activity determination using transgenic Arabidopsis confirmed that ZjSGR could be induced by darkness, ABA and MeJA. Its expression levels could also be up-regulated by natural senescence, but suppressed by SA treatments. Overexpression of ZjSGR in Arabidopsis resulted in a rapid yellowing phenotype; complementary experiments proved that ZjSGR was a functional homologue of AtNYE1 from Arabidopsis thaliana. Overexpression of ZjSGR accelerated chlorophyll degradation and impaired photosynthesis in Arabidopsis. Transmission electron microscopy observation revealed that overexpression of ZjSGR decomposed the chloroplasts structure. RNA sequencing analysis showed that ZjSGR could play multiple roles in senescence and chlorophyll degradation by regulating hormone signal transduction and the expression of a large number of senescence and environmental stress related genes. Our study provides a better understanding of the roles of SGRs, and new insight into the senescence and chlorophyll degradation mechanisms in plants.

  15. Role of Arabidopsis ABF1/3/4 during det1 germination in salt and osmotic stress conditions.

    Science.gov (United States)

    Fernando, V C Dilukshi; Al Khateeb, Wesam; Belmonte, Mark F; Schroeder, Dana F

    2018-05-01

    Arabidopsis det1 mutants exhibit salt and osmotic stress resistant germination. This phenotype requires HY5, ABF1, ABF3, and ABF4. While DE-ETIOLATED 1 (DET1) is well known as a negative regulator of light development, here we describe how det1 mutants also exhibit altered responses to salt and osmotic stress, specifically salt and mannitol resistant germination. LONG HYPOCOTYL 5 (HY5) positively regulates both light and abscisic acid (ABA) signalling. We found that hy5 suppressed the det1 salt and mannitol resistant germination phenotype, thus, det1 stress resistant germination requires HY5. We then queried publically available microarray datasets to identify genes downstream of HY5 that were differentially expressed in det1 mutants. Our analysis revealed that ABA regulated genes, including ABA RESPONSIVE ELEMENT BINDING FACTOR 3 (ABF3), are downregulated in det1 seedlings. We found that ABF3 is induced by salt in wildtype seeds, while homologues ABF4 and ABF1 are repressed, and all three genes are underexpressed in det1 seeds. We then investigated the role of ABF3, ABF4, and ABF1 in det1 phenotypes. Double mutant analysis showed that abf3, abf4, and abf1 all suppress the det1 salt/osmotic stress resistant germination phenotype. In addition, abf1 suppressed det1 rapid water loss and open stomata phenotypes. Thus interactions between ABF genes contribute to det1 salt/osmotic stress response phenotypes.

  16. Molecular and Genetic Analysis of Hormone-Regulated Differential Cell Elongation in Arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    Ecker, Joseph R.

    2005-09-15

    We have utilized the response of Arabidopsis seedlings to the plant hormone ethylene to identify new genes involved in the regulation of ethylene biosynthesis, perception, signal transduction and differential cell growth. In building a genetic framework for the action of these genes, we have developed a molecular model that has facilitated our understanding of the molecular requirements of ethylene for cell elongation processes. The ethylene response pathway in Arabidopsis appears to be primarily linear and is defined by the genes: ETR1, ETR2, ERS1, ERS2, EIN4, CTR1, EIN2, EIN3, EIN5, EIN6, and EIN. Downstream branches identified by the HLS1, EIR1, and AUX1 genes involve interactions with other hormonal (auxin) signals in the process of differential cell elongation in the hypocotyl hook. Cloning and characterization of HLS1 (and three HLL genes) and ETO1 (and ETOL genes) in my laboratory has been supported under this award. HLS1 is required for differential elongation of cells in the hypocotyl and may act in the establishment of hormone gradients. Also during the previous period, we have identified and characterized a gene that genetically acts upstream of the ethylene receptors. ETO1 encodes negative regulators of ethylene biosynthesis.

  17. A class V chitinase from Arabidopsis thaliana: gene responses, enzymatic properties, and crystallographic analysis

    DEFF Research Database (Denmark)

    Ohnuma, Takayuki; Numata, Tomoyuki; Osawa, Takuo

    2011-01-01

    Expression of a class V chitinase gene (At4g19810, AtChiC) in Arabidopsis thaliana was examined by quantitative real-time PCR and by analyzing microarray data available at Genevestigator. The gene expression was induced by the plant stress-related hormones abscisic acid (ABA) and jasmonic acid (JA......, the amino acid residues responsible for substrate binding were found to be well conserved when compared with those of the class V chitinase from Nicotiana tabacum (NtChiV). All of the structural and functional properties of AtChiC are quite similar to those obtained for NtChiV, and seem to be common...

  18. Fine mapping of the genic male-sterile ms 1 gene in Capsicum annuum L.

    Science.gov (United States)

    Jeong, Kyumi; Choi, Doil; Lee, Jundae

    2018-01-01

    The genomic region cosegregating with the genic male-sterile ms 1 gene of Capsicum annuum L. was delimited to a region of 869.9 kb on chromosome 5 through fine mapping analysis. A strong candidate gene, CA05g06780, a homolog of the Arabidopsis MALE STERILITY 1 gene that controls pollen development, was identified in this region. Genic male sterility caused by the ms 1 gene has been used for the economically efficient production of massive hybrid seeds in paprika (Capsicum annuum L.), a colored bell-type sweet pepper. Previously, a CAPS marker, PmsM1-CAPS, located about 2-3 cM from the ms 1 locus, was reported. In this study, we constructed a fine map near the ms 1 locus using high-resolution melting (HRM) markers in an F 2 population consisting of 1118 individual plants, which segregated into 867 male-fertile and 251 male-sterile plants. A total of 12 HRM markers linked to the ms 1 locus were developed from 53 primer sets targeting intraspecific SNPs derived by comparing genome-wide sequences obtained by next-generation resequencing analysis. Using this approach, we narrowed down the region cosegregating with the ms 1 gene to 869.9 kb of sequence. Gene prediction analysis revealed 11 open reading frames in this region. A strong candidate gene, CA05g06780, was identified; this gene is a homolog of the Arabidopsis MALE STERILITY 1 (MS1) gene, which encodes a PHD-type transcription factor that regulates pollen and tapetum development. Sequence comparison analysis suggested that the CA05g06780 gene is the strongest candidate for the ms 1 gene of paprika. To summarize, we developed a cosegregated marker, 32187928-HRM, for marker-assisted selection and identified a strong candidate for the ms 1 gene.

  19. Loss of CDKC;2 increases both cell division and drought tolerance in Arabidopsis thaliana.

    Science.gov (United States)

    Zhao, Lina; Li, Yaqiong; Xie, Qi; Wu, Yaorong

    2017-09-01

    Drought stress is one of the abiotic stresses that limit plant growth and agricultural productivity. To further understand the mechanism of drought tolerance and identify the genes involved in this process, a genetic screen for altered drought response was conducted in Arabidopsis. One mutant with enhanced drought tolerance was isolated and named Arabidopsis drought tolerance mutant 1 (atdtm1), which has larger lateral organs, prolonged growth duration, increased relative water content and a reduced leaf stomatal density compared with the wild type. The loss of AtDTM1 increases cell division during leaf development. The phenotype is caused by the loss of a T-DNA tagged gene encoding CYCLIN-DEPENDENT KINASE C;2 (CDKC;2), which functions in the regulation of transcription by influencing the phosphorylation status of RNA polymerase II (Pol II). Here, we show that CDKC;2 affects the transcription of downstream genes such as cell cycle genes and genes involved in stomatal development, resulting in altered plant organ size as well as drought tolerance of the plant. These results reveal the crucial role of CDKC;2 in modulating both cell division and the drought response in Arabidopsis. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  20. Activation of anthocyanin biosynthesis by expression of the radish R2R3-MYB transcription factor gene RsMYB1.

    Science.gov (United States)

    Lim, Sun-Hyung; Song, Ji-Hye; Kim, Da-Hye; Kim, Jae Kwang; Lee, Jong-Yeol; Kim, Young-Mi; Ha, Sun-Hwa

    2016-03-01

    RsMYB1, a MYB TF of red radish origin, was characterized as a positive regulator to transcriptionally activate the anthocyanin biosynthetic machinery by itself in Arabidopsis and tobacco plants. Anthocyanins, providing the bright red-orange to blue-violet colors, are flavonoid-derived pigments with strong antioxidant activity that have benefits for human health. We isolated RsMYB1, which encodes an R2R3-MYB transcription factor (TF), from red radish plants (Raphanus sativus L.) that accumulate high levels of anthocyanins. RsMYB1 shows higher expression in red radish than in common white radish, in both leaves and roots, at different growth stages. Consistent with RsMYB1 function as an anthocyanin-promoting TF, red radishes showed higher expression of all six anthocyanin biosynthetic and two anthocyanin regulatory genes. Transient expression of RsMYB1 in tobacco showed that RsMYB1 is a positive regulator of anthocyanin production with better efficiency than the basic helix-loop-helix (bHLH) TF gene B-Peru. Also, the synergistic effect of RsMYB1 with B-Peru was larger than the effect of the MYB TF gene mPAP1D with B-peru. Arabidopsis plants stably expressing RsMYB1 produced red pigmentation throughout the plant, accompanied by up-regulation of the six structural and two regulatory genes for anthocyanin production. This broad transcriptional activation of anthocyanin biosynthetic machinery in Arabidopsis included up-regulation of TRANSPARENT TESTA8, which encodes a bHLH TF. These results suggest that overexpression of RsMYB1 promotes anthocyanin production by triggering the expression of endogenous bHLH genes as potential binding partners for RsMYB1. In addition, RsMYB1-overexpressing Arabidopsis plants had a higher antioxidant capacity than did non-transgenic control plants. Taken together, RsMYB1 is an actively positive regulator for anthocyanins biosynthesis in radish plants and it might be one of the best targets for anthocyanin production by single gene

  1. Population genomics of the Arabidopsis thaliana flowering time gene network.

    Science.gov (United States)

    Flowers, Jonathan M; Hanzawa, Yoshie; Hall, Megan C; Moore, Richard C; Purugganan, Michael D

    2009-11-01

    The time to flowering is a key component of the life-history strategy of the model plant Arabidopsis thaliana that varies quantitatively among genotypes. A significant problem for evolutionary and ecological genetics is to understand how natural selection may operate on this ecologically significant trait. Here, we conduct a population genomic study of resequencing data from 52 genes in the flowering time network. McDonald-Kreitman tests of neutrality suggested a strong excess of amino acid polymorphism when pooling across loci. This excess of replacement polymorphism across the flowering time network and a skewed derived frequency spectrum toward rare alleles for both replacement and noncoding polymorphisms relative to synonymous changes is consistent with a large class of deleterious polymorphisms segregating in these genes. Assuming selective neutrality of synonymous changes, we estimate that approximately 30% of amino acid polymorphisms are deleterious. Evidence of adaptive substitution is less prominent in our analysis. The photoperiod regulatory gene, CO, and a gibberellic acid transcription factor, AtMYB33, show evidence of adaptive fixation of amino acid mutations. A test for extended haplotypes revealed no examples of flowering time alleles with haplotypes comparable in length to those associated with the null fri(Col) allele reported previously. This suggests that the FRI gene likely has a uniquely intense or recent history of selection among the flowering time genes considered here. Although there is some evidence for adaptive evolution in these life-history genes, it appears that slightly deleterious polymorphisms are a major component of natural molecular variation in the flowering time network of A. thaliana.

  2. Functional analysis of jasmonate-responsive transcription factors in Arabidopsis thaliana

    NARCIS (Netherlands)

    Zarei, Adel

    2007-01-01

    The aim of the studies described in this thesis was the functional analysis of JA-responsive transcription factors in Arabidopsis with an emphasis on the interaction with the promoters of their target genes. In short, the following new results were obtained. The promoter of the PDF1.2 gene contains

  3. Melatonin induction and its role in high light stress tolerance in Arabidopsis thaliana.

    Science.gov (United States)

    Lee, Hyoung Yool; Back, Kyoungwhan

    2018-05-16

    In plants, melatonin is a potent bioactive molecule involved in the response against various biotic and abiotic stresses. However, little is known of its defensive role against high light (HL) stress. In this study, we found that melatonin was transiently induced in response to HL stress in Arabidopsis thaliana with a simultaneous increase in the expression of melatonin biosynthetic genes, including serotonin N-acetyltransferase1 (SNAT1). Transient induction of melatonin was also observed in the flu mutant, a singlet oxygen ( 1 O 2 )-producing mutant, upon light exposure, suggestive of melatonin induction by chloroplastidic 1 O 2 against HL stress. An Arabidopsis snat1 mutant was devoid of melatonin induction upon HL stress, resulting in high susceptibility to HL stress. Exogenous melatonin treatment mitigated damage caused by HL stress in the snat1 mutant by reducing O 2 - production and increasing the expression of various ROS-responsive genes. In analogy, an Arabidopsis SNAT1-overexpressing line showed increased tolerance of HL stress concomitant with a reduction in malondialdehyde and ion leakage. A complementation line expressing an Arabidopsis SNAT1 genomic fragment in the snat1 mutant completely restored HL stress susceptibility in the snat1 mutant to levels comparable to that of wild-type Col-0 plants. The results of the analysis of several Arabidopsis genetic lines reveal for the first time at the genetic level that melatonin is involved in conferring HL stress tolerance in plants. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Overexpression of GmHsp90s, a heat shock protein 90 (Hsp90 gene family cloning from soybean, decrease damage of abiotic stresses in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Jinyan Xu

    Full Text Available Hsp90 is one of the most conserved and abundant molecular chaperones and is an essential component of the protective stress response; however, its roles in abiotic stress responses in soybean (Glycine max remain obscure. Here, 12 GmHsp90 genes from soybean were identified and found to be expressed and to function differentially under abiotic stresses. The 12 GmHsp90 genes were isolated and named GmHsp90A1-GmHsp90A6, GmHsp90B1, GmHsp90B2, GmHsp90C1.1, GmHsp90C1.2, GmHsp90C2.1 and GmHsp90C2.2 based on their characteristics and high homology to other Hsp90s according to a new nomenclature system. Quantitative real-time PCR expression data revealed that all the genes exhibited higher transcript levels in leaves and could be strongly induced under heat, osmotic and salt stress but not cold stress. Overexpression of five typical genes (GmHsp90A2, GmHsp90A4, GmHsp90B1, GmHsp90C1.1 and GmHsp90C2.1 in Arabidopsis thaliana provided useful evidences that GmHsp90 genes can decrease damage of abiotic stresses. In addition, an abnormal accumulation of proline was detected in some transgenic Arabidopsis plants suggested overexpressing GmHsp90s may affect the synthesis and response system of proline. Our work represents a systematic determination of soybean genes encoding Hsp90s, and provides useful evidence that GmHsp90 genes function differently in response to abiotic stresses and may affect the synthesis and response system of proline.

  5. Evolutionary Rate Heterogeneity of Primary and Secondary Metabolic Pathway Genes in Arabidopsis thaliana.

    Science.gov (United States)

    Mukherjee, Dola; Mukherjee, Ashutosh; Ghosh, Tapash Chandra

    2015-11-10

    Primary metabolism is essential to plants for growth and development, and secondary metabolism helps plants to interact with the environment. Many plant metabolites are industrially important. These metabolites are produced by plants through complex metabolic pathways. Lack of knowledge about these pathways is hindering the successful breeding practices for these metabolites. For a better knowledge of the metabolism in plants as a whole, evolutionary rate variation of primary and secondary metabolic pathway genes is a prerequisite. In this study, evolutionary rate variation of primary and secondary metabolic pathway genes has been analyzed in the model plant Arabidopsis thaliana. Primary metabolic pathway genes were found to be more conserved than secondary metabolic pathway genes. Several factors such as gene structure, expression level, tissue specificity, multifunctionality, and domain number are the key factors behind this evolutionary rate variation. This study will help to better understand the evolutionary dynamics of plant metabolism. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  6. Analysis of the grape MYB R2R3 subfamily reveals expanded wine quality-related clades and conserved gene structure organization across Vitis and Arabidopsis genomes

    Directory of Open Access Journals (Sweden)

    Arce-Johnson Patricio

    2008-07-01

    Full Text Available Abstract Background The MYB superfamily constitutes the most abundant group of transcription factors described in plants. Members control processes such as epidermal cell differentiation, stomatal aperture, flavonoid synthesis, cold and drought tolerance and pathogen resistance. No genome-wide characterization of this family has been conducted in a woody species such as grapevine. In addition, previous analysis of the recently released grape genome sequence suggested expansion events of several gene families involved in wine quality. Results We describe and classify 108 members of the grape R2R3 MYB gene subfamily in terms of their genomic gene structures and similarity to their putative Arabidopsis thaliana orthologues. Seven gene models were derived and analyzed in terms of gene expression and their DNA binding domain structures. Despite low overall sequence homology in the C-terminus of all proteins, even in those with similar functions across Arabidopsis and Vitis, highly conserved motif sequences and exon lengths were found. The grape epidermal cell fate clade is expanded when compared with the Arabidopsis and rice MYB subfamilies. Two anthocyanin MYBA related clusters were identified in chromosomes 2 and 14, one of which includes the previously described grape colour locus. Tannin related loci were also detected with eight candidate homologues in chromosomes 4, 9 and 11. Conclusion This genome wide transcription factor analysis in Vitis suggests that clade-specific grape R2R3 MYB genes are expanded while other MYB genes could be well conserved compared to Arabidopsis. MYB gene abundance, homology and orientation within particular loci also suggests that expanded MYB clades conferring quality attributes of grapes and wines, such as colour and astringency, could possess redundant, overlapping and cooperative functions.

  7. Arabidopsis TNL-WRKY domain receptor RRS1 contributes to temperature-conditioned RPS4 auto-immunity

    Directory of Open Access Journals (Sweden)

    Katharina eHeidrich

    2013-10-01

    Full Text Available In plant effector-triggered immunity (ETI, intracellular nucleotide binding-leucine rich repeat (NLR receptors are activated by specific pathogen effectors. The Arabidopsis TIR (Toll Interleukin1 receptor domain-NLR (denoted TNL gene pair, RPS4 and RRS1, confers resistance to Pseudomonas syringae pv tomato (Pst strain DC3000 expressing the Type III-secreted effector, AvrRps4. Nuclear accumulation of AvrRps4, RPS4 and the TNL resistance regulator EDS1 is necessary for ETI. RRS1 possesses a C-terminal ‘WRKY’ transcription factor DNA binding domain suggesting that important RPS4/RRS1 recognition and/or resistance signaling events occur at the nuclear chromatin. In Arabidopsis accession Ws-0, the RPS4Ws/RRS1Ws allelic pair governs resistance to Pst/AvrRps4 accompanied by host programmed cell death (pcd. In accession Col-0, RPS4Col/RRS1Col effectively limits Pst/AvrRps4 growth without pcd. Constitutive expression of HA-StrepII tagged RPS4Col (in a 35S:RPS4-HS line confers temperature conditioned EDS1-dependent auto-immunity. Here we show that a high (28oC, non-permissive to moderate (19oC, permissive temperature shift of 35S:RPS4-HS plants can be used to follow defense-related transcriptional dynamics without a pathogen effector trigger. By comparing responses of 35S:RPS4-HS with 35S:RPS4-HS rrs1-11 and 35S:RPS4-HS eds1-2 mutants, we establish that RPS4Col auto-immunity depends entirely on EDS1 and partially on RRS1Col. Examination of gene expression microarray data over 24h after temperature shift reveals a mainly quantitative RRS1Col contribution to up- or down-regulation of a small subset of RPS4Col-reprogrammed, EDS1-dependent genes. We find significant over-representation of WRKY transcription factor binding W-box cis-elements within the promoters of these genes. Our data show that RRS1Col contributes to temperature-conditioned RPS4Col auto-immunity and are consistent with activated RPS4Col engaging RRS1Col for resistance signaling.

  8. Functional conservation and divergence of four ginger AP1/AGL9 MADS-box genes revealed by analysis of their expression and protein-protein interaction, and ectopic expression of AhFUL gene in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Xiumei Li

    Full Text Available Alpinia genus are known generally as ginger-lilies for showy flowers in the ginger family, Zingiberaceae, and their floral morphology diverges from typical monocotyledon flowers. However, little is known about the functions of ginger MADS-box genes in floral identity. In this study, four AP1/AGL9 MADS-box genes were cloned from Alpinia hainanensis, and protein-protein interactions (PPIs and roles of the four genes in floral homeotic conversion and in floral evolution are surveyed for the first time. AhFUL is clustered to the AP1 lineage, AhSEP4 and AhSEP3b to the SEP lineage, and AhAGL6-like to the AGL6 lineage. The four genes showed conserved and divergent expression patterns, and their encoded proteins were localized in the nucleus. Seven combinations of PPI (AhFUL-AhSEP4, AhFUL-AhAGL6-like, AhFUL-AhSEP3b, AhSEP4-AhAGL6-like, AhSEP4-AhSEP3b, AhAGL6-like-AhSEP3b, and AhSEP3b-AhSEP3b were detected, and the PPI patterns in the AP1/AGL9 lineage revealed that five of the 10 possible combinations are conserved and three are variable, while conclusions cannot yet be made regarding the other two. Ectopic expression of AhFUL in Arabidopsis thaliana led to early flowering and floral organ homeotic conversion to sepal-like or leaf-like. Therefore, we conclude that the four A. hainanensis AP1/AGL9 genes show functional conservation and divergence in the floral identity from other MADS-box genes.

  9. Genome-wide identification of physically clustered genes suggests chromatin-level co-regulation in male reproductive development in Arabidopsis thaliana.

    Science.gov (United States)

    Reimegård, Johan; Kundu, Snehangshu; Pendle, Ali; Irish, Vivian F; Shaw, Peter; Nakayama, Naomi; Sundström, Jens F; Emanuelsson, Olof

    2017-04-07

    Co-expression of physically linked genes occurs surprisingly frequently in eukaryotes. Such chromosomal clustering may confer a selective advantage as it enables coordinated gene regulation at the chromatin level. We studied the chromosomal organization of genes involved in male reproductive development in Arabidopsis thaliana. We developed an in-silico tool to identify physical clusters of co-regulated genes from gene expression data. We identified 17 clusters (96 genes) involved in stamen development and acting downstream of the transcriptional activator MS1 (MALE STERILITY 1), which contains a PHD domain associated with chromatin re-organization. The clusters exhibited little gene homology or promoter element similarity, and largely overlapped with reported repressive histone marks. Experiments on a subset of the clusters suggested a link between expression activation and chromatin conformation: qRT-PCR and mRNA in situ hybridization showed that the clustered genes were up-regulated within 48 h after MS1 induction; out of 14 chromatin-remodeling mutants studied, expression of clustered genes was consistently down-regulated only in hta9/hta11, previously associated with metabolic cluster activation; DNA fluorescence in situ hybridization confirmed that transcriptional activation of the clustered genes was correlated with open chromatin conformation. Stamen development thus appears to involve transcriptional activation of physically clustered genes through chromatin de-condensation. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  10. Localization of the CAPRICE-ENHANCER OF TRY AND CPC1 chimera protein in Arabidopsis root epidermis.

    Science.gov (United States)

    Tominaga-Wada, Rumi; Kurata, Tetsuya; Wada, Takuji

    2017-09-01

    The CAPRICE (CPC) encodes an R3-type MYB transcription factor, which promotes root-hair differentiation. Previously, we showed that the CPC protein moves from the non-hair cell to the neighboring cell and induces root-hair differentiation in Arabidopsis. In addition, we proposed two cell-to-cell movement signal sequences, S1 and S2, in CPC. However, an S1:2xGFP:S2 chimera protein did not move between root epidermal cells. Here, we show that the S1 and S2 sequences do not confer cell-to-cell movement or nuclear localization ability to a GFP protein. The ENHANCER OF TRY AND CPC1 (ETC1) gene encodes the CPC homolog R3 MYB; this protein does not possess cell-to-cell movement ability or the S1 sequence. To elucidate whether the S1 sequence can induce cell-to-cell movement ability in ETC1, CPCp:S1:ETC1:2xGFP was constructed and introduced into Arabidopsis. Our results indicate that the addition of the S1 sequence was not sufficient for ETC1 to acquire cell-to-cell movement ability.

  11. A R2R3-MYB transcription factor gene in common wheat (namely TaMYBsm1) involved in enhancement of drought tolerance in transgenic Arabidopsis.

    Science.gov (United States)

    Li, Meng-Jun; Qiao, Yu; Li, Ya-Qing; Shi, Zhan-Liang; Zhang, Nan; Bi, Cai-Li; Guo, Jin-Kao

    2016-11-01

    We isolated the TaMYBsm1 genes, encoding R2R3-type MYB proteins in common wheat, aimed to uncover the possible molecular mechanisms related to drought response. The TaMYBsm1 genes, TaMYBsm1-A, TaMYBsm1-B and TaMYBsm1-D, were isolated and analyzed from the common wheat cultivar Shimai 15. Their expression patterns under PEG 6000 and mannitol were monitored by semi-quantitative RT-PCR and β-glucuronidase (Gus) assay. The function of TaMYBsm1-D under drought stress in transgenic Arabidopsis plants was investigated, and the germination rate, water loss rate, as well as the proline and malondialdehyde (MDA) content were compared with that in wild type (WT) plants. The expression of three downstream genes (DREB2A, P5CS1 and RD29A) in TaMYBsm1-D transgenic plants was analyzed. The R2R3-MYB domains of the MYBsm1 proteins were highly conserved in plants. In addition, the TaMYBsm1 proteins were targeted to the nucleus and contained transcriptional activation domains (TADs). Gus assay and semi-quantitative RT-PCR analysis demonstrated that the TaMYBsm1 genes were up-regulated when the wheat was treated by PEG and mannitol. Compared with WT plants, the germination rates were much higher, but the water loss rates were much lower in TaMYBsm1-D overexpression plants. TaMYBsm1-D transgenic plants showed distinct higher proline contents but a lower MDA content than the WT plants. The three downstream genes were highly expressed in TaMYBsm1-D transgenic plants. We concluded from these results that TaMYBsm1 genes play an important role in plant drought stress tolerance through up-regulation of DREB2A, P5CS1 and RD29A. The increase of proline content and decrease of MDA content may also be involved in the drought response.

  12. Selection on meiosis genes in diploid and tetraploid Arabidopsis arenosa.

    Science.gov (United States)

    Wright, Kevin M; Arnold, Brian; Xue, Katherine; Šurinová, Maria; O'Connell, Jeremy; Bomblies, Kirsten

    2015-04-01

    Meiotic chromosome segregation is critical for fertility across eukaryotes, and core meiotic processes are well conserved even between kingdoms. Nevertheless, recent work in animals has shown that at least some meiosis genes are highly diverse or strongly differentiated among populations. What drives this remains largely unknown. We previously showed that autotetraploid Arabidopsis arenosa evolved stable meiosis, likely through reduced crossover rates, and that associated with this there is strong evidence for selection in a subset of meiosis genes known to affect axis formation, synapsis, and crossover frequency. Here, we use genome-wide data to study the molecular evolution of 70 meiosis genes in a much wider sample of A. arenosa. We sample the polyploid lineage, a diploid lineage from the Carpathian Mountains, and a more distantly related diploid lineage from the adjacent, but biogeographically distinct Pannonian Basin. We find that not only did selection act on meiosis genes in the polyploid lineage but also independently on a smaller subset of meiosis genes in Pannonian diploids. Functionally related genes are targeted by selection in these distinct contexts, and in two cases, independent sweeps occurred in the same loci. The tetraploid lineage has sustained selection on more genes, has more amino acid changes in each, and these more often affect conserved or potentially functional sites. We hypothesize that Pannonian diploid and tetraploid A. arenosa experienced selection on structural proteins that mediate sister chromatid cohesion, the formation of meiotic chromosome axes, and synapsis, likely for different underlying reasons. © The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Elongation-related functions of LEAFY COTYLEDON1 during the development of Arabidopsis thaliana.

    Science.gov (United States)

    Junker, Astrid; Mönke, Gudrun; Rutten, Twan; Keilwagen, Jens; Seifert, Michael; Thi, Tuyet Minh Nguyen; Renou, Jean-Pierre; Balzergue, Sandrine; Viehöver, Prisca; Hähnel, Urs; Ludwig-Müller, Jutta; Altschmied, Lothar; Conrad, Udo; Weisshaar, Bernd; Bäumlein, Helmut

    2012-08-01

    The transcription factor LEAFY COTYLEDON1 (LEC1) controls aspects of early embryogenesis and seed maturation in Arabidopsis thaliana. To identify components of the LEC1 regulon, transgenic plants were derived in which LEC1 expression was inducible by dexamethasone treatment. The cotyledon-like leaves and swollen root tips developed by these plants contained seed-storage compounds and resemble the phenotypes produced by increased auxin levels. In agreement with this, LEC1 was found to mediate up-regulation of the auxin synthesis gene YUCCA10. Auxin accumulated primarily in the elongation zone at the root-hypocotyl junction (collet). This accumulation correlates with hypocotyl growth, which is either inhibited in LEC1-induced embryonic seedlings or stimulated in the LEC1-induced long-hypocotyl phenotype, therefore resembling etiolated seedlings. Chromatin immunoprecipitation analysis revealed a number of phytohormone- and elongation-related genes among the putative LEC1 target genes. LEC1 appears to be an integrator of various regulatory events, involving the transcription factor itself as well as light and hormone signalling, especially during somatic and early zygotic embryogenesis. Furthermore, the data suggest non-embryonic functions for LEC1 during post-germinative etiolation. © 2012 The Authors. The Plant Journal © 2012 Blackwell Publishing Ltd.

  14. The Antirrhinum AmDEL gene enhances flavonoids accumulation and salt and drought tolerance in transgenic Arabidopsis.

    Science.gov (United States)

    Wang, Feibing; Zhu, Hong; Kong, Weili; Peng, Rihe; Liu, Qingchang; Yao, Quanhong

    2016-07-01

    A basic helix-loop-helix (bHLH) transcription factor gene from Antirrhinum, AmDEL , increases flavonoids accumulation and enhances salt and drought tolerance via up-regulating flavonoid biosynthesis, proline biosynthesis and ROS scavenging genes in transgenic Arabidopsis. In plants, transcriptional regulation is the most important tools for increasing flavonoid biosynthesis. The AmDEL gene, as a basic helix-loop-helix transcription factor gene from Antirrhinum, has been shown to increase flavonoids accumulation in tomato. However, its role in tolerance to abiotic stresses has not yet been investigated. In this study, the codon-optimized AmDEL gene was chemically synthesized. Subcellular localization analysis in onion epidermal cells indicated that AmDEL protein was localized to the nucleus. Expression analysis in yeast showed that the full length of AmDEL exhibited transcriptional activation. Overexpression of AmDEL significantly increased flavonoids accumulation and enhanced salt and drought tolerance in transgenic Arabidopsis plants. Real-time quantitative PCR analysis showed that overexpression of AmDEL resulted in the up-regulation of genes involved in flavonoid biosynthesis, proline biosynthesis and ROS scavenging under salt and drought stresses. Meanwhile, Western blot and enzymatic analyses showed that the activities of phenylalanine ammonia lyase, chalcone isomerase, dihydroflavonol reductase, pyrroline-5-carboxylate synthase, superoxide dismutase and peroxidase were also increased. Further components analyses indicated that the significant increase of proline and relative water content and the significant reduction of H2O2 and malonaldehyde content were observed under salt and drought stresses. In addition, the rates of electrolyte leakage and water loss were reduced in transgenic plants. These findings imply functions of AmDEL in accumulation of flavonoids and tolerance to salt and drought stresses. The AmDEL gene has the potential to be used to increase

  15. Molecular mechanisms of desiccation tolerance in the resurrection glacial relic Haberlea rhodopensis

    NARCIS (Netherlands)

    Gechev, Tsanko S.; Benina, Maria; Obata, Toshihiro; Tohge, Takayuki; Sujeeth, Neerakkal; Minkov, Ivan; Hille, Jacques; Temanni, Mohamed-Ramzi; Marriott, Andrew S.; Bergstrom, Ed; Thomas-Oates, Jane; Antonio, Carla; Mueller-Roeber, Bernd; Schippers, Jos H. M.; Fernie, Alisdair R.; Toneva, Valentina

    Haberlea rhodopensis is a resurrection plant with remarkable tolerance to desiccation. Haberlea exposed to drought stress, desiccation, and subsequent rehydration showed no signs of damage or severe oxidative stress compared to untreated control plants. Transcriptome analysis by next-generation

  16. Transcriptional regulation of receptor-like protein genes by environmental stresses and hormones and their overexpression activities in Arabidopsis thaliana.

    Science.gov (United States)

    Wu, Jinbin; Liu, Zhijun; Zhang, Zhao; Lv, Yanting; Yang, Nan; Zhang, Guohua; Wu, Menyao; Lv, Shuo; Pan, Lixia; Joosten, Matthieu H A J; Wang, Guodong

    2016-05-01

    Receptor-like proteins (RLPs) have been implicated in multiple biological processes, including plant development and immunity to microbial infection. Fifty-seven AtRLP genes have been identified in Arabidopsis, whereas only a few have been functionally characterized. This is due to the lack of suitable physiological screening conditions and the high degree of functional redundancy among AtRLP genes. To overcome the functional redundancy and further understand the role of AtRLP genes, we studied the evolution of AtRLP genes and compiled a comprehensive profile of the transcriptional regulation of AtRLP genes upon exposure to a range of environmental stresses and different hormones. These results indicate that the majority of AtRLP genes are differentially expressed under various conditions that were tested, an observation that will help to select certain AtRLP genes involved in a specific biological process for further experimental studies to eventually dissect their function. A large number of AtRLP genes were found to respond to more than one treatment, suggesting that one single AtRLP gene may be involved in multiple physiological processes. In addition, we performed a genome-wide cloning of the AtRLP genes, and generated and characterized transgenic Arabidopsis plants overexpressing the individual AtRLP genes, presenting new insight into the roles of AtRLP genes, as exemplified by AtRLP3, AtRLP11 and AtRLP28 Our study provides an overview of biological processes in which AtRLP genes may be involved, and presents valuable resources for future investigations into the function of these genes. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  17. Genome-wide comparative in silico analysis of the RNA helicase gene family in Zea mays and Glycine max: a comparison with Arabidopsis and Oryza sativa.

    Science.gov (United States)

    Xu, Ruirui; Zhang, Shizhong; Huang, Jinguang; Zheng, Chengchao

    2013-01-01

    RNA helicases are enzymes that are thought to unwind double-stranded RNA molecules in an energy-dependent fashion through the hydrolysis of NTP. RNA helicases are associated with all processes involving RNA molecules, including nuclear transcription, editing, splicing, ribosome biogenesis, RNA export, and organelle gene expression. The involvement of RNA helicase in response to stress and in plant growth and development has been reported previously. While their importance in Arabidopsis and Oryza sativa has been partially studied, the function of RNA helicase proteins is poorly understood in Zea mays and Glycine max. In this study, we identified a total of RNA helicase genes in Arabidopsis and other crop species genome by genome-wide comparative in silico analysis. We classified the RNA helicase genes into three subfamilies according to the structural features of the motif II region, such as DEAD-box, DEAH-box and DExD/H-box, and different species showed different patterns of alternative splicing. Secondly, chromosome location analysis showed that the RNA helicase protein genes were distributed across all chromosomes with different densities in the four species. Thirdly, phylogenetic tree analyses identified the relevant homologs of DEAD-box, DEAH-box and DExD/H-box RNA helicase proteins in each of the four species. Fourthly, microarray expression data showed that many of these predicted RNA helicase genes were expressed in different developmental stages and different tissues under normal growth conditions. Finally, real-time quantitative PCR analysis showed that the expression levels of 10 genes in Arabidopsis and 13 genes in Zea mays were in close agreement with the microarray expression data. To our knowledge, this is the first report of a comparative genome-wide analysis of the RNA helicase gene family in Arabidopsis, Oryza sativa, Zea mays and Glycine max. This study provides valuable information for understanding the classification and putative functions of

  18. Elongator Plays a Positive Role in Exogenous NAD-Induced Defense Responses in Arabidopsis.

    Science.gov (United States)

    An, Chuanfu; Ding, Yezhang; Zhang, Xudong; Wang, Chenggang; Mou, Zhonglin

    2016-05-01

    Extracellular NAD is emerging as an important signal molecule in animal cells, but its role in plants has not been well-established. Although it has been shown that exogenous NAD(+) activates defense responses in Arabidopsis, components in the exogenous NAD(+)-activated defense pathway remain to be fully discovered. In a genetic screen for mutants insensitive to exogenous NAD(+) (ien), we isolated a mutant named ien2. Map-based cloning revealed that IEN2 encodes ELONGATA3 (ELO3)/AtELP3, a subunit of the Arabidopsis Elongator complex, which functions in multiple biological processes, including histone modification, DNA (de)methylation, and transfer RNA modification. Mutations in the ELO3/AtELP3 gene compromise exogenous NAD(+)-induced expression of pathogenesis-related (PR) genes and resistance to the bacterial pathogen Pseudomonas syringae pv. maculicola ES4326, and transgenic expression of the coding region of ELO3/AtELP3 in elo3/Atelp3 restores NAD(+) responsiveness to the mutant plants, demonstrating that ELO3/AtELP3 is required for exogenous NAD(+)-induced defense responses. Furthermore, mutations in genes encoding the other five Arabidopsis Elongator subunits (ELO2/AtELP1, AtELP2, ELO1/AtELP4, AtELP5, and AtELP6) also compromise exogenous NAD(+)-induced PR gene expression and resistance to P. syringae pv. maculicola ES4326. These results indicate that the Elongator complex functions as a whole in exogenous NAD(+)-activated defense signaling in Arabidopsis.

  19. Comparative analysis of drought resistance genes in Arabidopsis and rice

    NARCIS (Netherlands)

    Trijatmiko, K.R.

    2005-01-01

    Keywords: rice, Arabidopsis, drought, genetic mapping,microarray, transcription factor, AP2/ERF, SHINE, wax, stomata, comparative genetics, activation tagging, Ac/Ds, En/IThis thesis describes the use of genomics information and tools from Arabidopsis and

  20. Conserved and Divergent Rhythms of Crassulacean Acid Metabolism-Related and Core Clock Gene Expression in the Cactus Opuntia ficus-indica1[C][W

    Science.gov (United States)

    Mallona, Izaskun; Egea-Cortines, Marcos; Weiss, Julia

    2011-01-01

    The cactus Opuntia ficus-indica is a constitutive Crassulacean acid metabolism (CAM) species. Current knowledge of CAM metabolism suggests that the enzyme phosphoenolpyruvate carboxylase kinase (PPCK) is circadian regulated at the transcriptional level, whereas phosphoenolpyruvate carboxylase (PEPC), malate dehydrogenase (MDH), NADP-malic enzyme (NADP-ME), and pyruvate phosphate dikinase (PPDK) are posttranslationally controlled. As little transcriptomic data are available from obligate CAM plants, we created an expressed sequence tag database derived from different organs and developmental stages. Sequences were assembled, compared with sequences in the National Center for Biotechnology Information nonredundant database for identification of putative orthologs, and mapped using Kyoto Encyclopedia of Genes and Genomes Orthology and Gene Ontology. We identified genes involved in circadian regulation and CAM metabolism for transcriptomic analysis in plants grown in long days. We identified stable reference genes for quantitative polymerase chain reaction and found that OfiSAND, like its counterpart in Arabidopsis (Arabidopsis thaliana), and OfiTUB are generally appropriate standards for use in the quantification of gene expression in O. ficus-indica. Three kinds of expression profiles were found: transcripts of OfiPPCK oscillated with a 24-h periodicity; transcripts of the light-active OfiNADP-ME and OfiPPDK genes adapted to 12-h cycles, while transcript accumulation patterns of OfiPEPC and OfiMDH were arrhythmic. Expression of the circadian clock gene OfiTOC1, similar to Arabidopsis, oscillated with a 24-h periodicity, peaking at night. Expression of OfiCCA1 and OfiPRR9, unlike in Arabidopsis, adapted best to a 12-h rhythm, suggesting that circadian clock gene interactions differ from those of Arabidopsis. Our results indicate that the evolution of CAM metabolism could be the result of modified circadian regulation at both the transcriptional and posttranscriptional

  1. Arabidopsis AtPAP1 transcription factor induces anthocyanin production in transgenic Taraxacum brevicorniculatum.

    Science.gov (United States)

    Qiu, Jian; Sun, Shuquan; Luo, Shiqiao; Zhang, Jichuan; Xiao, Xianzhou; Zhang, Liqun; Wang, Feng; Liu, Shizhong

    2014-04-01

    This study developed a new purple coloured Taraxacum brevicorniculatum plant through genetic transformation using the Arabidopsis AtPAP1 gene, which overproduced anthocyanins in its vegetative tissues. Rubber-producing Taraxacum plants synthesise high-quality natural rubber (NR) in their roots and so are a promising alternative global source of this raw material. A major factor in its commercialization is the need for multipurpose exploitation of the whole plant. To add value to the aerial tissues, red/purple plants of the rubber-producing Taraxacum brevicorniculatum species were developed through heterologous expression of the production of anthocyanin pigment 1 (AtPAP1) transcription factor from Arabidopsis thaliana. The vegetative tissue of the transgenic plants showed an average of a 48-fold increase in total anthocyanin content over control levels, but with the exception of pigmentation, the transgenic plants were phenotypically comparable to controls and displayed similar growth vigor. Southern blot analysis confirmed that the AtPAP1 gene had been integrated into the genome of the high anthocyanin Taraxacum plants. The AtPAP1 expression levels were estimated by quantitative real-time PCR and were highly correlated with the levels of total anthocyanins in five independent transgenic lines. High levels of three cyanidin glycosides found in the purple plants were characterized by high performance liquid chromatography-mass spectrum analysis. The presence of NR was verified by NMR and infrared spectroscopy, and confirmed that NR biosynthesis had not been affected in the transgenic Taraxacum lines. In addition, other major phenylpropanoid products such as chlorogenic acid and quercetin glycosides were also enhanced in the transgenic Taraxacum. The red/purple transgenic Taraxacum lines described in this study would increase the future application of the species as a rubber-producing crop due to its additional health benefits.

  2. On the Origin of De Novo Genes in Arabidopsis thaliana Populations.

    Science.gov (United States)

    Li, Zi-Wen; Chen, Xi; Wu, Qiong; Hagmann, Jörg; Han, Ting-Shen; Zou, Yu-Pan; Ge, Song; Guo, Ya-Long

    2016-08-03

    De novo genes, which originate from ancestral nongenic sequences, are one of the most important sources of protein-coding genes. This origination process is crucial for the adaptation of organisms. However, how de novo genes arise and become fixed in a population or species remains largely unknown. Here, we identified 782 de novo genes from the model plant Arabidopsis thaliana and divided them into three types based on the availability of translational evidence, transcriptional evidence, and neither transcriptional nor translational evidence for their origin. Importantly, by integrating multiple types of omics data, including data from genomes, epigenomes, transcriptomes, and translatomes, we found that epigenetic modifications (DNA methylation and histone modification) play an important role in the origination process of de novo genes. Intriguingly, using the transcriptomes and methylomes from the same population of 84 accessions, we found that de novo genes that are transcribed in approximately half of the total accessions within the population are highly methylated, with lower levels of transcription than those transcribed at other frequencies within the population. We hypothesized that, during the origin of de novo gene alleles, those neutralized to low expression states via DNA methylation have relatively high probabilities of spreading and becoming fixed in a population. Our results highlight the process underlying the origin of de novo genes at the population level, as well as the importance of DNA methylation in this process. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  3. Gene expression and hormone autonomy in radiation-induced tumors of Arabidopsis thaliana

    International Nuclear Information System (INIS)

    Persinger, S.M.; Town, C.D.

    1989-01-01

    In order to study the molecular genetics of factor controlling plant cell growth, we have isolated a group of radiation-induced tumors from Arabidopsis thaliana. Tumors appeared on plants derived from 60 Co gamma-irradiated seed or seedlings, and are capable of hormone-autonomous growth in culture. We have used vertebrate oncogene probes to explore the hypothesis that the tumors arose by the radiation-induced activation of growth-regulating plant oncogenes. One probe, int-2, was used to isolate cDNA clones representing an mRNA differentially expressed between tumors and hormone-dependent callus tissue. The genomic organization and function of this and other differentially expressed Arabidopsis sequences are being further characterized. A second area of study concerns the hormonal status of individual tumors. Tumor tissue varies in color, texture, and degree of differentiation: while some tumors appear undifferentiated, one consistently produces roots, and others occasionally develop shoots or leaflets. The tumors have characteristic growth rates on hormone-free medium, and growth in response to exogenous hormones differs among the tumors themselves and from wild-type. Characterization of the relationships between hormonal status, morphogenesis, and gene expression should yield valuable insights into the mechanisms regulating plant growth and development

  4. Agrobacterium-mediated transformation of tomato with the ICE1 transcription factor gene.

    Science.gov (United States)

    Juan, J X; Yu, X H; Jiang, X M; Gao, Z; Zhang, Y; Li, W; Duan, Y D; Yang, G

    2015-01-30

    ICE1 genes play a very important role in plants in cold conditions. To improve the cold resistance of tomato, the ICE1 gene of Arabidopsis thaliana was used to construct the plant expression vector p3301-ICE1, and was overexpressed in tomato through Agrobacterium-mediated transformation. Five strains of resistant plants were obtained. PCR and half-quantitative results showed that the ICE1 gene was transferred to tomato; three strains tested positive. After low-temperature stress treatment, praline content and peroxide and catalase activities in the transgenic tomato plants were higher compared with non-transgenic controls, while malondialdehyde content was clearly lower.

  5. Chlorophyll Degradation: The Tocopherol Biosynthesis-Related Phytol Hydrolase in Arabidopsis Seeds Is Still Missing1[C][W][OPEN

    Science.gov (United States)

    Zhang, Wei; Liu, Tianqi; Ren, Guodong; Hörtensteiner, Stefan; Zhou, Yongming; Cahoon, Edgar B.; Zhang, Chunyu

    2014-01-01

    Phytyl diphosphate (PDP) is the prenyl precursor for tocopherol biosynthesis. Based on recent genetic evidence, PDP is supplied to the tocopherol biosynthetic pathway primarily by chlorophyll degradation and sequential phytol phosphorylation. Three enzymes of Arabidopsis (Arabidopsis thaliana) are known to be capable of removing the phytol chain from chlorophyll in vitro: chlorophyllase1 (CLH1), CLH2, and pheophytin pheophorbide hydrolase (PPH), which specifically hydrolyzes pheophytin. While PPH, but not chlorophyllases, is required for in vivo chlorophyll breakdown during Arabidopsis leaf senescence, little is known about the involvement of these phytol-releasing enzymes in tocopherol biosynthesis. To explore the origin of PDP for tocopherol synthesis, seed tocopherol concentrations were determined in Arabidopsis lines engineered for seed-specific overexpression of PPH and in single and multiple mutants in the three genes encoding known dephytylating enzymes. Except for modestly increasing tocopherol content observed in the PPH overexpressor, none of the remaining lines exhibited significantly reduced tocopherol concentrations, suggesting that the known chlorophyll-derived phytol-releasing enzymes do not play major roles in tocopherol biosynthesis. Tocopherol content of seeds from double mutants in NONYELLOWING1 (NYE1) and NYE2, regulators of chlorophyll degradation, had modest reduction compared with wild-type seeds, although mature seeds of the double mutant retained significantly higher chlorophyll levels. These findings suggest that NYEs may play limited roles in regulating an unknown tocopherol biosynthesis-related phytol hydrolase. Meanwhile, seeds of wild-type over-expressing NYE1 had lower tocopherol levels, suggesting that phytol derived from NYE1-dependent chlorophyll degradation probably doesn’t enter tocopherol biosynthesis. Potential routes of chlorophyll degradation are discussed in relation to tocopherol biosynthesis. PMID:25059706

  6. Phytoplasma Effector SAP54 Induces Indeterminate Leaf-Like Flower Development in Arabidopsis Plants1[C][W][OA

    Science.gov (United States)

    MacLean, Allyson M.; Sugio, Akiko; Makarova, Olga V.; Findlay, Kim C.; Grieve, Victoria M.; Tóth, Réka; Nicolaisen, Mogens; Hogenhout, Saskia A.

    2011-01-01

    Phytoplasmas are insect-transmitted bacterial plant pathogens that cause considerable damage to a diverse range of agricultural crops globally. Symptoms induced in infected plants suggest that these phytopathogens may modulate developmental processes within the plant host. We report herein that Aster Yellows phytoplasma strain Witches’ Broom (AY-WB) readily infects the model plant Arabidopsis (Arabidopsis thaliana) ecotype Columbia, inducing symptoms that are characteristic of phytoplasma infection, such as the production of green leaf-like flowers (virescence and phyllody) and increased formation of stems and branches (witches’ broom). We found that the majority of genes encoding secreted AY-WB proteins (SAPs), which are candidate effector proteins, are expressed in Arabidopsis and the AY-WB insect vector Macrosteles quadrilineatus (Hemiptera; Cicadellidae). To identify which of these effector proteins induce symptoms of phyllody and virescence, we individually expressed the effector genes in Arabidopsis. From this screen, we have identified a novel AY-WB effector protein, SAP54, that alters floral development, resulting in the production of leaf-like flowers that are similar to those produced by plants infected with this phytoplasma. This study offers novel insight into the effector profile of an insect-transmitted plant pathogen and reports to our knowledge the first example of a microbial pathogen effector protein that targets flower development in a host. PMID:21849514

  7. Arabidopsis Yak1 protein (AtYak1) is a dual specificity protein kinase

    KAUST Repository

    Kim, Dongjin; Ntui, Valentine Otang; Zhang, Nianshu; Xiong, Liming

    2015-01-01

    Yak1 is a member of dual-specificity Tyr phosphorylation-regulated kinases (DYRKs) that are evolutionarily conserved. The downstream targets of Yak1 and their functions are largely unknown. Here, a homologous protein AtYAK1 was identified in Arabidopsis thaliana and the phosphoprotein profiles of the wild type and an atyak1 mutant were compared on two-dimensional gel following Pro-Q Diamond phosphoprotein gel staining. Annexin1, Annexin2 and RBD were phosphorylated at serine/ threonine residues by the AtYak1 kinase. Annexin1, Annexin2 and Annexin4 were also phosphorylated at tyrosine residues. Our study demonstrated that AtYak1 is a dual specificity protein kinase in Arabidopsis that may regulate the phosphorylation status of the annexin family proteins.

  8. Arabidopsis Yak1 protein (AtYak1) is a dual specificity protein kinase

    KAUST Repository

    Kim, Dongjin

    2015-10-09

    Yak1 is a member of dual-specificity Tyr phosphorylation-regulated kinases (DYRKs) that are evolutionarily conserved. The downstream targets of Yak1 and their functions are largely unknown. Here, a homologous protein AtYAK1 was identified in Arabidopsis thaliana and the phosphoprotein profiles of the wild type and an atyak1 mutant were compared on two-dimensional gel following Pro-Q Diamond phosphoprotein gel staining. Annexin1, Annexin2 and RBD were phosphorylated at serine/ threonine residues by the AtYak1 kinase. Annexin1, Annexin2 and Annexin4 were also phosphorylated at tyrosine residues. Our study demonstrated that AtYak1 is a dual specificity protein kinase in Arabidopsis that may regulate the phosphorylation status of the annexin family proteins.

  9. ERECTA signaling controls Arabidopsis inflorescence architecture through chromatin-mediated activation of PRE1 expression.

    Science.gov (United States)

    Cai, Hanyang; Zhao, Lihua; Wang, Lulu; Zhang, Man; Su, Zhenxia; Cheng, Yan; Zhao, Heming; Qin, Yuan

    2017-06-01

    Flowering plants display a remarkable diversity in inflorescence architecture, and pedicel length is one of the key contributors to this diversity. In Arabidopsis thaliana, the receptor-like kinase ERECTA (ER) mediated signaling pathway plays important roles in regulating inflorescence architecture by promoting cell proliferation. However, the regulating mechanism remains elusive in the pedicel. Genetic interactions between ERECTA signaling and the chromatin remodeling complex SWR1 in the control of inflorescence architecture were studied. Comparative transcriptome analysis was applied to identify downstream components. Chromatin immunoprecipitation and nucleosome occupancy was further investigated. The results indicated that the chromatin remodeler SWR1 coordinates with ERECTA signaling in regulating inflorescence architecture by activating the expression of PRE1 family genes and promoting pedicel elongation. It was found that SWR1 is required for the incorporation of the H2A.Z histone variant into nucleosomes of the whole PRE1 gene family and the ERECTA controlled expression of PRE1 gene family through regulating nucleosome dynamics. We propose that utilization of a chromatin remodeling complex to regulate gene expression is a common theme in developmental control across kingdoms. These findings shed light on the mechanisms through which chromatin remodelers orchestrate complex transcriptional regulation of gene expression in coordination with a developmental cue. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  10. Iron homeostasis in Arabidopsis thaliana: transcriptomic analyses reveal novel FIT-regulated genes, iron deficiency marker genes and functional gene networks.

    Science.gov (United States)

    Mai, Hans-Jörg; Pateyron, Stéphanie; Bauer, Petra

    2016-10-03

    FIT (FER-LIKE IRON DEFICIENCY-INDUCED TRANSCRIPTION FACTOR) is the central regulator of iron uptake in Arabidopsis thaliana roots. We performed transcriptome analyses of six day-old seedlings and roots of six week-old plants using wild type, a fit knock-out mutant and a FIT over-expression line grown under iron-sufficient or iron-deficient conditions. We compared genes regulated in a FIT-dependent manner depending on the developmental stage of the plants. We assembled a high likelihood dataset which we used to perform co-expression and functional analysis of the most stably iron deficiency-induced genes. 448 genes were found FIT-regulated. Out of these, 34 genes were robustly FIT-regulated in root and seedling samples and included 13 novel FIT-dependent genes. Three hundred thirty-one genes showed differential regulation in response to the presence and absence of FIT only in the root samples, while this was the case for 83 genes in the seedling samples. We assembled a virtual dataset of iron-regulated genes based on a total of 14 transcriptomic analyses of iron-deficient and iron-sufficient wild-type plants to pinpoint the best marker genes for iron deficiency and analyzed this dataset in depth. Co-expression analysis of this dataset revealed 13 distinct regulons part of which predominantly contained functionally related genes. We could enlarge the list of FIT-dependent genes and discriminate between genes that are robustly FIT-regulated in roots and seedlings or only in one of those. FIT-regulated genes were mostly induced, few of them were repressed by FIT. With the analysis of a virtual dataset we could filter out and pinpoint new candidates among the most reliable marker genes for iron deficiency. Moreover, co-expression and functional analysis of this virtual dataset revealed iron deficiency-induced and functionally distinct regulons.

  11. Reference: 789 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available ylakoid membranes. Microarray analysis of the chl27-t mutant showed repression of numerous nuclear genes involved in photosynthesis...d CHL27 proteins. Role of Arabidopsis CHL27 protein for photosynthesis, chloroplast development and gene exp

  12. Phosphorylation sites of Arabidopsis MAP Kinase Substrate 1 (MKS1)

    DEFF Research Database (Denmark)

    Caspersen, M.B.; Qiu, J.-L.; Zhang, X.

    2007-01-01

    The Arabidopsis MAP kinase 4 (MPK4) substrate MKS1 was expressed in Escherichia coli and purified, full-length, 6x histidine (His)-tagged MKS1 was phosphorylated in vitro by hemagglutinin (HA)-tagged MPK4 immuno-precipitated from plants. MKS1 phosphorylation was initially verified by electrophore......The Arabidopsis MAP kinase 4 (MPK4) substrate MKS1 was expressed in Escherichia coli and purified, full-length, 6x histidine (His)-tagged MKS1 was phosphorylated in vitro by hemagglutinin (HA)-tagged MPK4 immuno-precipitated from plants. MKS1 phosphorylation was initially verified...... phosphopeptide detection. As MAP kinases generally phosphorylate serine or threonine followed by proline (Ser/Thr-Pro), theoretical masses of potentially phosphorylated peptides were calculated and mass spectrometric peaks matching these masses were fragmented and searched for a neutral-loss signal...... at approximately 98 Da indicative of phosphorylation. Additionally, mass spectrometric peaks present in the MPK4-treated MKS1, but not in the control peptide map of untreated MKS1, were fragmented. Fragmentation spectra were subjected to a MASCOT database search which identified three of the twelve Ser-Pro serine...

  13. Molecular and Genetic Analysis of Hormone-Regulated Differential Cell Elongation in Arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    Ecker, Joseph R.

    2002-12-03

    The authors have utilized the response of Arabidopsis seedlings to the plant hormone ethylene to identify new genes involved in the regulation of ethylene biosynthesis, perception, signal transduction and differential cell growth. In building a genetic framework for the action of these genes, they developed a molecular model that has facilitated the understanding of the molecular requirements of ethylene for cell elongation processes. The ethylene response pathway in Arabidopsis appears to be primarily linear and is defined by the genes: ETR1, ETR2, ERS1, ERS2, EIN4, CTR1, EIN2, EIN3, EIN5 EIN6, and EIN. Downstream branches identified by the HLS1, EIR1, and AUX1 genes involve interactions with other hormonal (auxin) signals in the process of differential cell elongation in the hypocotyl hook. Cloning and characterization of HLS1 and three HLS1-LIKE genes in the laboratory has been supported under this award. HLS1 is required for differential elongation of cells in the hypocotyl and may act in the establishment of hormone gradients. Also during the award period, they have identified and begun preliminary characterization of two genes that genetically act upstream of the ethylene receptors. ETO1 and RAN1 encode negative regulators of ethylene biosynthesis and signaling respectively. Progress on the analysis of these genes along with HOOKLESS1 is described.

  14. Gibberellic Acid-Stimulated Arabidopsis6 Serves as an Integrator of Gibberellin, Abscisic Acid, and Glucose Signaling during Seed Germination in Arabidopsis.

    Science.gov (United States)

    Zhong, Chunmei; Xu, Hao; Ye, Siting; Wang, Shiyi; Li, Lingfei; Zhang, Shengchun; Wang, Xiaojing

    2015-11-01

    The DELLA protein REPRESSOR OF ga1-3-LIKE2 (RGL2) plays an important role in seed germination under different conditions through a number of transcription factors. However, the functions of the structural genes associated with RGL2-regulated germination are less defined. Here, we report the role of an Arabidopsis (Arabidopsis thaliana) cell wall-localized protein, Gibberellic Acid-Stimulated Arabidopsis6 (AtGASA6), in functionally linking RGL2 and a cell wall loosening expansin protein (Arabidopsis expansin A1 [AtEXPA1]), resulting in the control of embryonic axis elongation and seed germination. AtGASA6-overexpressing seeds showed precocious germination, whereas transfer DNA and RNA interference mutant seeds displayed delayed seed germination under abscisic acid, paclobutrazol, and glucose (Glc) stress conditions. The differences in germination rates resulted from corresponding variation in cell elongation in the hypocotyl-radicle transition region of the embryonic axis. AtGASA6 was down-regulated by RGL2, GLUCOSE INSENSITIVE2, and ABSCISIC ACID-INSENSITIVE5 genes, and loss of AtGASA6 expression in the gasa6 mutant reversed the insensitivity shown by the rgl2 mutant to paclobutrazol and the gin2 mutant to Glc-induced stress, suggesting that it is involved in regulating both the gibberellin and Glc signaling pathways. Furthermore, it was found that the promotion of seed germination and length of embryonic axis by AtGASA6 resulted from a promotion of cell elongation at the embryonic axis mediated by AtEXPA1. Taken together, the data indicate that AtGASA6 links RGL2 and AtEXPA1 functions and plays a role as an integrator of gibberellin, abscisic acid, and Glc signaling, resulting in the regulation of seed germination through a promotion of cell elongation. © 2015 American Society of Plant Biologists. All Rights Reserved.

  15. AGO6 functions in RNA-mediated transcriptional gene silencing in shoot and root meristems in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Changho Eun

    Full Text Available RNA-directed DNA methylation (RdDM is a small interfering RNA (siRNA-mediated epigenetic modification that contributes to transposon silencing in plants. RdDM requires a complex transcriptional machinery that includes specialized RNA polymerases, named Pol IV and Pol V, as well as chromatin remodelling proteins, transcription factors, RNA binding proteins, and other plant-specific proteins whose functions are not yet clarified. In Arabidopsis thaliana, DICER-LIKE3 and members of the ARGONAUTE4 group of ARGONAUTE (AGO proteins are involved, respectively, in generating and using 24-nt siRNAs that trigger methylation and transcriptional gene silencing of homologous promoter sequences. AGO4 is the main AGO protein implicated in the RdDM pathway. Here we report the identification of the related AGO6 in a forward genetic screen for mutants defective in RdDM and transcriptional gene silencing in shoot and root apical meristems in Arabidopsis thaliana. The identification of AGO6, and not AGO4, in our screen is consistent with the primary expression of AGO6 in shoot and root growing points.

  16. A moso bamboo WRKY gene PeWRKY83 confers salinity tolerance in transgenic Arabidopsis plants.

    Science.gov (United States)

    Wu, Min; Liu, Huanlong; Han, Guomin; Cai, Ronghao; Pan, Feng; Xiang, Yan

    2017-09-15

    The WRKY family are transcription factors, involved in plant development, and response to biotic and abiotic stresses. Moso bamboo is an important bamboo that has high ecological, economic and cultural value and is widely distributed in the south of China. In this study, we performed a genome-wide identification of WRKY members in moso bamboo and identified 89 members. By comparative analysis in six grass genomes, we found the WRKY gene family may have experienced or be experiencing purifying selection. Based on relative expression levels among WRKY IIc members under three abiotic stresses, PeWRKY83 functioned as a transcription factor and was selected for detailed analysis. The transgenic Arabidopsis of PeWRKY83 showed superior physiological properties compared with the WT under salt stress. Overexpression plants were less sensitive to ABA at both germination and postgermination stages and accumulated more endogenous ABA under salt stress conditions. Further studies demonstrated that overexpression of PeWRKY83 could regulate the expression of some ABA biosynthesis genes (AtAAO3, AtNCED2, AtNCED3), signaling genes (AtABI1, AtPP2CA) and responsive genes (AtRD29A, AtRD29B, AtABF1) under salt stress. Together, these results suggested that PeWRKY83 functions as a novel WRKY-related TF which plays a positive role in salt tolerance by regulating stress-induced ABA synthesis.

  17. Microarray Data Analysis of Space Grown Arabidopsis Leaves for Genes Important in Vascular Patterning

    Science.gov (United States)

    Weitzeal, A. J.; Wyatt, S. E.; Parsons-Wingerter, P.

    2016-01-01

    Venation patterning in leaves is a major determinant of photosynthesis efficiency because of its dependency on vascular transport of photoassimilates, water, and minerals. Arabidopsis thaliana grown in microgravity show delayed growth and leaf maturation. Gene expression data from the roots, hypocotyl, and leaves of A. thaliana grown during spaceflight vs. ground control analyzed by Affymetrix microarray are available through NASAs GeneLab (GLDS-7). We analyzed the data for differential expression of genes in leaves resulting from the effects of spaceflight on vascular patterning. Two genes were found by preliminary analysis to be upregulated during spaceflight that may be related to vascular formation. The genes are responsible for coding an ARGOS like protein (potentially affecting cell elongation in the leaves), and an F-boxkelch-repeat protein (possibly contributing to protoxylem specification). Further analysis that will focus on raw data quality assessment and a moderated t-test may further confirm upregulation of the two genes and/or identify other gene candidates. Plants defective in these genes will then be assessed for phenotype by the mapping and quantification of leaf vascular patterning by NASAs VESsel GENeration (VESGEN) software to model specific vascular differences of plants grown in spaceflight.

  18. Large-scale analysis of Arabidopsis transcription reveals a basal co-regulation network

    Directory of Open Access Journals (Sweden)

    Chamovitz Daniel A

    2009-09-01

    Full Text Available Abstract Background Analyses of gene expression data from microarray experiments has become a central tool for identifying co-regulated, functional gene modules. A crucial aspect of such analysis is the integration of data from different experiments and different laboratories. How to weigh the contribution of different experiments is an important point influencing the final outcomes. We have developed a novel method for this integration, and applied it to genome-wide data from multiple Arabidopsis microarray experiments performed under a variety of experimental conditions. The goal of this study is to identify functional globally co-regulated gene modules in the Arabidopsis genome. Results Following the analysis of 21,000 Arabidopsis genes in 43 datasets and about 2 × 108 gene pairs, we identified a globally co-expressed gene network. We found clusters of globally co-expressed Arabidopsis genes that are enriched for known Gene Ontology annotations. Two types of modules were identified in the regulatory network that differed in their sensitivity to the node-scoring parameter; we further showed these two pertain to general and specialized modules. Some of these modules were further investigated using the Genevestigator compendium of microarray experiments. Analyses of smaller subsets of data lead to the identification of condition-specific modules. Conclusion Our method for identification of gene clusters allows the integration of diverse microarray experiments from many sources. The analysis reveals that part of the Arabidopsis transcriptome is globally co-expressed, and can be further divided into known as well as novel functional gene modules. Our methodology is general enough to apply to any set of microarray experiments, using any scoring function.

  19. Comparative Digital Gene Expression Analysis of the Arabidopsis Response to Volatiles Emitted by Bacillus amyloliquefaciens.

    Directory of Open Access Journals (Sweden)

    Hai-Ting Hao

    Full Text Available Some plant growth-promoting rhizobacteria (PGPR regulated plant growth and elicited plant basal immunity by volatiles. The response mechanism to the Bacillus amyloliquefaciens volatiles in plant has not been well studied. We conducted global gene expression profiling in Arabidopsis after treatment with Bacillus amyloliquefaciens FZB42 volatiles by Illumina Digital Gene Expression (DGE profiling of different growth stages (seedling and mature and tissues (leaves and roots. Compared with the control, 1,507 and 820 differentially expressed genes (DEGs were identified in leaves and roots at the seedling stage, respectively, while 1,512 and 367 DEGs were identified in leaves and roots at the mature stage. Seventeen genes with different regulatory patterns were validated using quantitative RT-PCR. Numerous DEGs were enriched for plant hormones, cell wall modifications, and protection against stress situations, which suggests that volatiles have effects on plant growth and immunity. Moreover, analyzes of transcriptome difference in tissues and growth stage using DGE profiling showed that the plant response might be tissue-specific and/or growth stage-specific. Thus, genes encoding flavonoid biosynthesis were downregulated in leaves and upregulated in roots, thereby indicating tissue-specific responses to volatiles. Genes related to photosynthesis were downregulated at the seedling stage and upregulated at the mature stage, respectively, thereby suggesting growth period-specific responses. In addition, the emission of bacterial volatiles significantly induced killing of cells of other organism pathway with up-regulated genes in leaves and the other three pathways (defense response to nematode, cell morphogenesis involved in differentiation and trichoblast differentiation with up-regulated genes were significantly enriched in roots. Interestingly, some important alterations in the expression of growth-related genes, metabolic pathways, defense response

  20. AtPP2CG1, a protein phosphatase 2C, positively regulates salt tolerance of Arabidopsis in abscisic acid-dependent manner

    International Nuclear Information System (INIS)

    Liu, Xin; Zhu, Yanming; Zhai, Hong; Cai, Hua; Ji, Wei; Luo, Xiao; Li, Jing; Bai, Xi

    2012-01-01

    Highlights: ► AtPP2CG1 positively regulates salt tolerance in ABA-dependent manner. ► AtPP2CG1 up-regulates the expression of marker genes in different pathways. ► AtPP2CG1 expresses in the vascular system and trichomes of Arabidopsis. -- Abstract: AtPP2CG1 (Arabidopsis thaliana protein phosphatase 2C G Group 1) was predicted as an abiotic stress candidate gene by bioinformatic analysis in our previous study. The gene encodes a putative protein phosphatase 2C that belongs to Group G of PP2C. There is no report of Group G genes involved in abiotic stress so far. Real-time RT-PCR analysis showed that AtPP2CG1 expression was induced by salt, drought, and abscisic acid (ABA) treatment. The expression levels of AtPP2CG1 in the ABA synthesis-deficient mutant abi2–3 were much lower than that in WT plants under salt stress suggesting that the expression of AtPP2CG1 acts in an ABA-dependent manner. Over-expression of AtPP2CG1 led to enhanced salt tolerance, whereas its loss of function caused decreased salt tolerance. These results indicate that AtPP2CG1 positively regulates salt stress in an ABA-dependent manner. Under salt treatment, AtPP2CG1 up-regulated the expression levels of stress-responsive genes, including RD29A, RD29B, DREB2A and KIN1. GUS activity was detected in roots, leaves, stems, flower, and trichomes of AtPP2CG1 promoter–GUS transgenic plants. AtPP2CG1 protein was localized in nucleus and cytoplasm via AtPP2CG1:eGFP and YFP:AtPP2CG1 fusion approaches.