Sample records for arabidopsis protein kinase

  1. Characterization of a calmodulin binding protein kinase from Arabidopsis thalian


    A full-length calmodulin binding protein kinase cDNA, AtCBK1, from Arabidopsis has been isolated by screening of an Arabidopsis cDNA library and by 5′-RACE. Northern blot and in situ hybridization indicated that the expression of AtCBK1 was more abundant in the vascular bundles and the meristems than in other tissues. The phylogenetic analyses reveal that AtCBK1 is different from animal CaMKs and it falls into CRK subgroup, indicating that they may come from different ancestors. The result suggests that AtCBK1 encodes a CaM-binding serine/threonine protein kinase.

  2. Protein kinase GCN2 mediates responses to glyphosate in Arabidopsis

    Faus, I.; ZABALZA OSTOS, ANA Mª; Santiago, J.; González Nebauer, Sergio; Royuela, M.; Serrano, R; J Gadea


    Background The increased selection pressure of the herbicide glyphosate has played a role in the evolution of glyphosate-resistance in weedy species, an issue that is becoming a threat to global agriculture. The molecular components involved in the cellular toxicity response to this herbicide at the expression level are still unidentified. Results In this study, we identify the protein kinase GCN2 as a cellular component that fosters the action of glyphosate in the model plant Arabidopsis tha...

  3. Arabidopsis Yak1 protein (AtYak1) is a dual specificity protein kinase

    Kim, Dongjin


    Yak1 is a member of dual-specificity Tyr phosphorylation-regulated kinases (DYRKs) that are evolutionarily conserved. The downstream targets of Yak1 and their functions are largely unknown. Here, a homologous protein AtYAK1 was identified in Arabidopsis thaliana and the phosphoprotein profiles of the wild type and an atyak1 mutant were compared on two-dimensional gel following Pro-Q Diamond phosphoprotein gel staining. Annexin1, Annexin2 and RBD were phosphorylated at serine/ threonine residues by the AtYak1 kinase. Annexin1, Annexin2 and Annexin4 were also phosphorylated at tyrosine residues. Our study demonstrated that AtYak1 is a dual specificity protein kinase in Arabidopsis that may regulate the phosphorylation status of the annexin family proteins.

  4. TPX2 Protein of Arabidopsis Activates Aurora Kinase 1, But Not Aurora Kinase 3 In Vitro

    Tomaštíková, Eva; Demidov, D.; Jeřábková, Hana; Binarová, Pavla; Houben, A.; Doležel, Jaroslav; Petrovská, Beáta


    Roč. 33, č. 6 (2015), s. 1988-1995. ISSN 0735-9640 R&D Projects: GA ČR(CZ) GA14-28443S; GA MŠk(CZ) LO1204; GA ČR GAP501/12/2333 Institutional support: RVO:61389030 ; RVO:61388971 Keywords : Aurora kinase * Targeting protein for Xklp2 * In vitro kinase assay Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.656, year: 2014

  5. Quantitative phosphoproteomics of protein kinase SnRK1 regulated protein phosphorylation in Arabidopsis under submergence.

    Cho, Hsing-Yi; Wen, Tuan-Nan; Wang, Ying-Tsui; Shih, Ming-Che


    SNF1 RELATED PROTEIN KINASE 1 (SnRK1) is proposed to be a central integrator of the plant stress and energy starvation signalling pathways. We observed that the Arabidopsis SnRK1.1 dominant negative mutant (SnRK1.1 (K48M) ) had lower tolerance to submergence than the wild type, suggesting that SnRK1.1-dependent phosphorylation of target proteins is important in signalling pathways triggered by submergence. We conducted quantitative phosphoproteomics and found that the phosphorylation levels of 57 proteins increased and the levels of 27 proteins decreased in Col-0 within 0.5-3h of submergence. Among the 57 proteins with increased phosphorylation in Col-0, 38 did not show increased phosphorylation levels in SnRK1.1 (K48M) under submergence. These proteins are involved mainly in sugar and protein synthesis. In particular, the phosphorylation of MPK6, which is involved in regulating ROS responses under abiotic stresses, was disrupted in the SnRK1.1 (K48M) mutant. In addition, PTP1, a negative regulator of MPK6 activity that directly dephosphorylates MPK6, was also regulated by SnRK1.1. We also showed that energy conservation was disrupted in SnRK1.1 (K48M) , mpk6, and PTP1 (S7AS8A) under submergence. These results reveal insights into the function of SnRK1 and the downstream signalling factors related to submergence. PMID:27029354

  6. Calcium-Dependent Protein Kinase CPK21 Functions in Abiotic Stress Response in Arabidopsis thaliana

    Sandra Franz; Britta Ehlert; Anja Liese; Joachim Kurth; Anne-Claire Cazalé; Tina Romeis


    Calcium-dependent protein kinases(CDPKs)comprise a family of plant serine/threonine protein kinases in which the calcium sensing domain and the kinase effector domain are combined within one molecule.So far,a biological function in abiotic stress signaling has only been reported for few CDPK isoforms,whereas the underlying biochemical mechanism for these CDPKs is still mainly unknown.Here,we show that CPK21 from Arabidopsis thaliana is biochemically activated in vivo in response to hyperosmotic stress.Loss-of-function seedlings of cpk21 are more tolerant to hyperosmotic stress and mutant plants show increased stress responses with respect to marker gene expression and metabolite accumulation.In transgenic Arabidopsis complementation lines in the cpk21 mutant background,in which either CPK21 wildtype,or a full-length enzyme variant carrying an amino-acid substitution were stably expressed,stress responsitivity was restored by CPK21 but not with the kinase inactive variant.The biochemical characterization of in planta synthesized and purified CPK21 protein revealed that within the calcium-binding domain,N-terminal EF1- and EF2-motifs compared to C-terminal EF3- and EF4-motifs differ in their contribution to calcium-regulated kinase activity,suggesting a crucial role for the N-terminal EF-hand pair.Our data provide evidence for CPK21 contributing in abiotic stress signaling and suggest that the N-terminal EF-hand pair is a calcium-sensing determinant controlling specificity of CPK21 function.

  7. SRK2C, a SNF1-related protein kinase 2, improves drought tolerance by controlling stress-responsive gene expression in Arabidopsis thaliana

    Umezawa, Taishi; Yoshida, Riichiro; Maruyama, Kyonoshin; Yamaguchi-Shinozaki, Kazuko; Shinozaki, Kazuo


    Protein phosphorylation/dephosphorylation are major signaling events induced by osmotic stress in higher plants. Here, we showed that a SNF1-related protein kinase 2 (SnRK2), SRK2C, is an osmotic-stress-activated protein kinase in Arabidopsis thaliana that can significantly impact drought tolerance of Arabidopsis plants. Knockout mutants of SRK2C exhibited drought hypersensitivity in their roots, suggesting that SRK2C is a positive regulator of drought tolerance in Arabidopsis roots. Addition...

  8. Regulation of WRKY46 Transcription Factor Function by Mitogen-Activated Protein Kinases in Arabidopsis thaliana.

    Sheikh, Arsheed H; Eschen-Lippold, Lennart; Pecher, Pascal; Hoehenwarter, Wolfgang; Sinha, Alok K; Scheel, Dierk; Lee, Justin


    Mitogen-activated protein kinase (MAPK) cascades are central signaling pathways activated in plants after sensing internal developmental and external stress cues. Knowledge about the downstream substrate proteins of MAPKs is still limited in plants. We screened Arabidopsis WRKY transcription factors as potential targets downstream of MAPKs, and concentrated on characterizing WRKY46 as a substrate of the MAPK, MPK3. Mass spectrometry revealed in vitro phosphorylation of WRKY46 at amino acid position S168 by MPK3. However, mutagenesis studies showed that a second phosphosite, S250, can also be phosphorylated. Elicitation with pathogen-associated molecular patterns (PAMPs), such as the bacterial flagellin-derived flg22 peptide led to in vivo destabilization of WRKY46 in Arabidopsis protoplasts. Mutation of either phosphorylation site reduced the PAMP-induced degradation of WRKY46. Furthermore, the protein for the double phosphosite mutant is expressed at higher levels compared to wild-type proteins or single phosphosite mutants. In line with its nuclear localization and predicted function as a transcriptional activator, overexpression of WRKY46 in protoplasts raised basal plant defense as reflected by the increase in promoter activity of the PAMP-responsive gene, NHL10, in a MAPK-dependent manner. Thus, MAPK-mediated regulation of WRKY46 is a mechanism to control plant defense. PMID:26870073

  9. Profiling Protein Kinases and Other ATP Binding Proteins in Arabidopsis Using Acyl-ATP Probes*

    Villamor, J. G.; Kaschani, F.; Colby, T; Oeljeklaus, J.; Zhao, D; Kaiser, M.; Patricelli, M. P.; R. A. L. van der Hoorn


    Many protein activities are driven by ATP binding and hydrolysis. Here, we explore the ATP binding proteome of the model plant Arabidopsis thaliana using acyl-ATP (AcATP)1 probes. These probes target ATP binding sites and covalently label lysine residues in the ATP binding pocket. Gel-based profiling using biotinylated AcATP showed that labeling is dependent on pH and divalent ions and can be competed by nucleotides. The vast majority of these AcATP-labeled proteins are known ATP binding prot...

  10. Sustained mitogen-activated protein kinase activation reprograms defense metabolism and phosphoprotein profile in Arabidopsis thaliana.

    Ines eLassowskat


    Full Text Available Mitogen-activated protein kinases (MAPKs target a variety of protein substrates to regulate cellular signaling processes in eukaryotes. In plants, the number of identified MAPK substrates that control plant defense responses is still limited. Here, we generated transgenic Arabidopsis thaliana plants with an inducible system to simulate in vivo activation of two stress-activated MAPKs, MPK3 and MPK6. Metabolome analysis revealed that this artificial MPK3/6 activation (without any exposure to pathogens or other stresses is sufficient to drive the production of major defense-related metabolites, including various camalexin, indole glucosinolate and agmatine derivatives. An accompanying (phosphoproteome analysis led to detection of hundreds of potential phosphoproteins downstream of MPK3/6 activation. Besides known MAPK substrates, many candidates on this list possess typical MAPK-targeted phosphosites and in many cases, the corresponding phosphopeptides were detected by mass spectrometry. Notably, several of these putative phosphoproteins have been reported to be associated with the biosynthesis of antimicrobial defense substances (e.g. WRKY transcription factors and proteins encoded by the genes from the PEN pathway required for penetration resistance to filamentous pathogens. Thus, this work provides an inventory of candidate phosphoproteins, including putative direct MAPK substrates, for future analysis of MAPK-mediated defense control. (Proteomics data are available with the identifier PXD001252 via ProteomeXchange,

  11. Subcellular targeting of nine calcium-dependent protein kinase isoforms from Arabidopsis

    Dammann, Christian; Ichida, Audrey; Hong, Bimei; Romanowsky, Shawn M.; Hrabak, Estelle M.; Harmon, Alice C.; Pickard, Barbara G.; Harper, Jeffrey F.; Evans, M. L. (Principal Investigator)


    Calcium-dependent protein kinases (CDPKs) are specific to plants and some protists. Their activation by calcium makes them important switches for the transduction of intracellular calcium signals. Here, we identify the subcellular targeting potentials for nine CDPK isoforms from Arabidopsis, as determined by expression of green fluorescent protein (GFP) fusions in transgenic plants. Subcellular locations were determined by fluorescence microscopy in cells near the root tip. Isoforms AtCPK3-GFP and AtCPK4-GFP showed a nuclear and cytosolic distribution similar to that of free GFP. Membrane fractionation experiments confirmed that these isoforms were primarily soluble. A membrane association was observed for AtCPKs 1, 7, 8, 9, 16, 21, and 28, based on imaging and membrane fractionation experiments. This correlates with the presence of potential N-terminal acylation sites, consistent with acylation as an important factor in membrane association. All but one of the membrane-associated isoforms targeted exclusively to the plasma membrane. The exception was AtCPK1-GFP, which targeted to peroxisomes, as determined by covisualization with a peroxisome marker. Peroxisome targeting of AtCPK1-GFP was disrupted by a deletion of two potential N-terminal acylation sites. The observation of a peroxisome-located CDPK suggests a mechanism for calcium regulation of peroxisomal functions involved in oxidative stress and lipid metabolism.

  12. Biochemical and functional analysis of CTR1, a protein kinase that negatively regulates ethylene signaling in Arabidopsis

    Huang, Yafan; Li, Hui; Hutchison, Claire E.; Laskey, James; Kieber, Joseph J.


    CTR1 encodes a negative regulator of the ethylene response pathway in Arabidopsis thaliana. The C-terminal domain of CTR1 is similar to the Raf family of protein kinases, but its first two-thirds encodes a novel protein domain. We used a variety of approaches to investigate the function of these two CTR1 domains. Recombinant CTR1 protein was purified from a baculoviral expression system, and shown to possess intrinsic Ser/Thr protein kinase activity with enzymatic properties similar to Raf-1. Deletion of the N-terminal domain did not elevate the kinase activity of CTR1, indicating that, at least in vitro, this domain does not autoinhibit kinase function. Molecular analysis of loss-of-function ctr1 alleles indicated that several mutations disrupt the kinase catalytic domain, and in vitro studies confirmed that at least one of these eliminates kinase activity, which indicates that kinase activity is required for CTR1 function. One missense mutation, ctr1-8, was found to result from an amino acid substitution within a new conserved motif within the N-terminal domain. Ctr1-8 has no detectable effect on the kinase activity of CTR1 in vitro, but rather disrupts the interaction with the ethylene receptor ETR1. This mutation also disrupts the dominant negative effect that results from overexpression of the CTR1 amino-terminal domain in transgenic Arabidopsis. These results suggest that CTR1 interacts with ETR1 in vivo, and that this association is required to turn off the ethylene-signaling pathway.

  13. Mitogen-activated protein kinase phosphatase is required for genotoxic stress relief in Arabidopsis

    Ulm, Roman; Revenkova, Ekaterina; Di Sansebastiano, Gian-Pietro; Bechtold, Nicole; Paszkowski, Jerzy


    Genotoxic stress activates complex cellular responses allowing for the repair of DNA damage and proper cell recovery. Although plants are exposed constantly to increasing solar UV irradiation, the signaling cascades activated by genotoxic environments are largely unknown. We have identified an Arabidopsis mutant (mkp1) hypersensitive to genotoxic stress treatments (UV-C and methyl methanesulphonate) due to disruption of a gene that encodes an Arabidopsis homolog of mitogen-activated protein k...

  14. A maize mitogen-activated protein kinase kinase, ZmMKK1, positively regulated the salt and drought tolerance in transgenic Arabidopsis.

    Cai, Guohua; Wang, Guodong; Wang, Li; Liu, Yang; Pan, Jiaowen; Li, Dequan


    Mitogen-activated protein kinase (MAPK) cascades are highly conserved signal transduction modules in animals, plants and yeast. MAPK cascades are complicated networks and play vital roles in signal transduction pathways involved in biotic and abiotic stresses. In this study, a maize MAPKK gene, ZmMKK1, was characterized. Quantitative real time PCR (qRT-PCR) analysis demonstrated that ZmMKK1 transcripts were induced by diverse stresses and ABA signal molecule in maize root. Further study showed that the ZmMKK1-overexpressing Arabidopsis enhanced the tolerance to salt and drought stresses. However, seed germination, post-germination growth and stomatal aperture analysis demonstrated that ZmMKK1 overexpression was sensitive to ABA in transgenic Arabidopsis. Molecular genetic analysis revealed that the overexpression of ZmMKK1 in Arabidopsis enhanced the expression of ROS scavenging enzyme- and ABA-related genes, such as POD, CAT, RAB18 and RD29A under salt and drought conditions. In addition, heterologous overexpression of ZmMKK1 in yeast (Saccharomyces cerevisiae) improved the tolerance to salt and drought stresses. These results suggested that ZmMKK1 might act as an ABA- and ROS-dependent protein kinase in positive modulation of salt and drought tolerance. Most importantly, ZmMKK1 interacted with ZmMEKK1 as evidenced by yeast two-hybrid assay, redeeming a deficiency of MAPK interaction partners in maize. PMID:24974327

  15. Arabidopsis Raf-Like Mitogen-Activated Protein Kinase Kinase Kinase Gene Raf43 Is Required for Tolerance to Multiple Abiotic Stresses.

    Nasar Virk

    Full Text Available Mitogen-activated protein kinase (MAPK cascades are critical signaling modules that mediate the transduction of extracellular stimuli into intracellular response. A relatively large number of MAPKKKs have been identified in a variety of plant genomes but only a few of them have been studied for their biological function. In the present study, we identified an Arabidopsis Raf-like MAPKKK gene Raf43 and studied its function in biotic and abiotic stress response using a T-DNA insertion mutant raf43-1 and two Raf43-overexpressing lines Raf43-OE#1 and Raf43-OE#13. Expression of Raf43 was induced by multiple abiotic and biotic stresses including treatments with drought, mannitol and oxidative stress or defense signaling molecule salicylic acid and infection with necrotrophic fungal pathogen Botrytis cinerea. Seed germination and seedling root growth of raf43-1 were significantly inhibited on MS medium containing mannitol, NaCl, H2O2 or methyl viologen (MV while seed germination and seedling root growth of the Raf43-OE#1 and Raf43-OE#13 lines was similar to wild type Col-0 under the above stress conditions. Soil-grown raf43-1 plants exhibited reduced tolerance to MV, drought and salt stress. Abscisic acid inhibited significantly seed germination and seedling root growth of the raf43-1 line but had no effect on the two Raf43-overexpressing lines. Expression of stress-responsive RD17 and DREB2A genes was significantly down-regulated in raf43-1 plants. However, the raf43-1 and Raf43-overexpressing plants showed similar disease phenotype to the wild type plants after infection with B. cinerea or Pseudomonas syringae pv. tomato DC3000. Our results demonstrate that Raf43, encoding for a Raf-like MAPKKK, is required for tolerance to multiple abiotic stresses in Arabidopsis.

  16. Regulation of salt and ABA responses by CIPK14, a calcium sensor interacting protein kinase in Arabidopsis


    Calcium and protein kinase serve as the common mediators to regulate plant responses to multiple stresses including salt and ABA stimulus. Here we reported a novel protein kinase (CIPK14) that regulated the responses to ABA treatment and salt stress in Arabidopsis. CIPK14 transcripts, capable been checked in roots, stems, leaves and flowers, were highly expressed in flowers and roots. CIPK14 was induced by ABA and salt treatments. The disruption of CIPK14 altered the transcriptional pattern of a gene marker line related to ABA and salt responses, and the results suggested that CIPK14 probably was responsible to the control of the salt and ABA responses. Comparing with wild types, the lines inserted with the T-DNA in which CIPK14 gene expression was knocked out were also more sensitive to ABA and salt stimulus, showing low germination rate and the less root elongation. While, when these conditioned seeds were treated with norflurazon, their germination percentages could recover to a certain extent. We also found that exogenous calcium could have an effect on the transcription of CIPK14 under ABA and salt treatments, and it seemed that calcium ion might work upstream CIPK14 to regulate the plant response to ABA and salt response.

  17. Regulation of salt and ABA responses by CIPK14, a calcium sensor interacting protein kinase in Arabidopsis

    QIN YuZhi; LI Xu; GUO Ming; DENG KeQin; LIN dianZhong; TANG DongYing; GUO XinHong; LIU XuanMing


    Calcium and protein kinsse serve as the common mediators to regulate plant responses to multiple stresses including salt and ABA stimulus. Here we reported a novel protein kinase (CIPK14) that regulated the responses to ABA treatment and salt stress in Arabidopsis. CIPK14 transcripts, capable been checked in roots, stems, leaves and flowers, were highly expressed in flowers and roots. CIPK14 was induced by ABA and salt treatments. The disruption of CIPK14 altered the transcriptional pattern of a gene marker line related to ABA and salt responses, and the results suggested that CIPK14 probably was responsible to the control of the salt and ABA responses. Comparing with wild types, the lines inserted with the T-DNA in which CIPK14 gene expression was knocked out were also more sensitive to ABA and salt stimulus, showing low germination rate and the less root elongation. While, when these conditioned seeds were treated with norflurazon, their germination percentages could recover to a certain extent. We also found that exogenous calcium could have an effect on the transcription of CIPK14 under ABA end salt treatments, and it seemed that calcium ion might work upstream ClPK14 to regulate the plant response to ABA and salt response.

  18. Genome-wide cloning and sequence analysis of leucine-rich repeat receptor-like protein kinase genes in Arabidopsis thaliana

    Yuan Tong


    Full Text Available Abstract Background Transmembrane receptor kinases play critical roles in both animal and plant signaling pathways regulating growth, development, differentiation, cell death, and pathogenic defense responses. In Arabidopsis thaliana, there are at least 223 Leucine-rich repeat receptor-like kinases (LRR-RLKs, representing one of the largest protein families. Although functional roles for a handful of LRR-RLKs have been revealed, the functions of the majority of members in this protein family have not been elucidated. Results As a resource for the in-depth analysis of this important protein family, the complementary DNA sequences (cDNAs of 194 LRR-RLKs were cloned into the GatewayR donor vector pDONR/ZeoR and analyzed by DNA sequencing. Among them, 157 clones showed sequences identical to the predictions in the Arabidopsis sequence resource, TAIR8. The other 37 cDNAs showed gene structures distinct from the predictions of TAIR8, which was mainly caused by alternative splicing of pre-mRNA. Most of the genes have been further cloned into GatewayR destination vectors with GFP or FLAG epitope tags and have been transformed into Arabidopsis for in planta functional analysis. All clones from this study have been submitted to the Arabidopsis Biological Resource Center (ABRC at Ohio State University for full accessibility by the Arabidopsis research community. Conclusions Most of the Arabidopsis LRR-RLK genes have been isolated and the sequence analysis showed a number of alternatively spliced variants. The generated resources, including cDNA entry clones, expression constructs and transgenic plants, will facilitate further functional analysis of the members of this important gene family.

  19. Riboflavin-Induced Disease Resistance Requires the Mitogen-Activated Protein Kinases 3 and 6 in Arabidopsis thaliana

    Nie, Shengjun; Xu, Huilian


    As a resistance elicitor, riboflavin (vitamin B2) protects plants against a wide range of pathogens. At molecular biological levels, it is important to elucidate the signaling pathways underlying the disease resistance induced by riboflavin. Here, riboflavin was tested to induce resistance against virulent Pseudomonas syringae pv. Tomato DC3000 (Pst DC3000) in Arabidopsis. Results showed that riboflavin induced disease resistance based on MAPK-dependent priming for the expression of PR1 gene. Riboflavin induced transient expression of PR1 gene. However, following Pst DC3000 inoculation, riboflavin potentiated stronger PR1 gene transcription. Further was suggested that the transcript levels of mitogen-activated protein kinases, MPK3 and MPK6, were primed under riboflavin. Upon infection by Pst DC3000, these two enzymes were more strongly activated. The elevated activation of both MPK3 and MPK6 was responsible for enhanced defense gene expression and resistance after riboflavin treatment. Moreover, riboflavin significantly reduced the transcript levels of MPK3 and MPK6 by application of AsA and BAPTA, an H2O2 scavenger and a calcium (Ca2+) scavenger, respectively. In conclusion, MPK3 and MPK6 were responsible for riboflavin-induced resistance, and played an important role in H2O2- and Ca2+-related signaling pathways, and this study could provide a new insight into the mechanistic study of riboflavin-induced defense responses. PMID:27054585

  20. Aluminum-induced gene expression and protein localization of a cell wall-associated receptor kinase in Arabidopsis.

    Sivaguru, Mayandi; Ezaki, Bunichi; He, Zheng-Hui; Tong, Hongyun; Osawa, Hiroki; Baluska, Frantisek; Volkmann, Dieter; Matsumoto, Hideaki


    Here, we report the aluminum (Al)-induced organ-specific expression of a WAK1 (cell wall-associated receptor kinase 1) gene and cell type-specific localization of WAK proteins in Arabidopsis. WAK1-specific reverse transcriptase-polymerase chain reaction analysis revealed an Al-induced WAK1 gene expression in roots. Short- and long-term analysis of gene expression in root fractions showed a typical "on" and "off" pattern with a first peak at 3 h of Al exposure followed by a sharp decline at 6 h and a complete disappearance after 9 h of Al exposure, suggesting the WAK1 is a further representative of Al-induced early genes. In shoots, upon root Al exposure, an increased but stable WAK1 expression was observed. Using confocal microscopy, we visualized Al-induced closure of leaf stomata, consistent with previous suggestions that the Al stress primarily experienced in roots associated with the transfer of root-shoot signals. Elevated levels of WAK protein in root cells were observed through western blots after 6 h of Al exposure, indicating a lag time between the Al-induced WAK transcription and translation. WAK proteins are localized abundantly to peripheries of cortex cells within the elongation zone of the root apex. In these root cells, disintegration of cortical microtubules was observed after Al treatment but not after the Al analog lanthanum treatments. Tip-growing control root hairs, stem stomata, and leaf stomatal pores are characterized with high amounts of WAKs, suggesting WAKs are accumulating at plasma membrane domains, which suffer from mechanical stress and lack dense arrays of supporting cortical microtubules. Further, transgenic plants overexpressing WAK1 showed an enhanced Al tolerance in terms of root growth when compared with the wild-type plants, making the WAK1 one of the important candidates for plant defense against Al toxicity. PMID:12913180

  1. An Arabidopsis MADS-box protein, AGL24, is specifically bound to and phosphorylated by meristematic receptor-like kinase (MRLK).

    Fujita, Hidetomo; Takemura, Miho; Tani, Emi; Nemoto, Kyoko; Yokota, Akiho; Kohchi, Takayuki


    Intercellular signaling mediated by receptor-like kinases (RLKs) is important for diverse processes in plant development, although downstream intracellular signaling pathways remain poorly understood. Proteins interacting directly with RLK were screened for by yeast two-hybrid assay with the kinase domain as bait. A MADS-box protein, AGL24 was identified as a candidate substrate of MRLK (Meristematic Receptor-Like Kinase), which was named for its spatial expression in shoot and root apical meristems in Arabidopsis: The AGL24 protein specifically interacted with, and was phosphorylated by, the MRLK kinase domain in in vitro assays. The simultaneous expression of AGL24 and MRLK in shoot apices during floral transition suggested that the interaction occurs in plants. Using plants constitutively expressing a fusion protein of AGL24 and green fluorescent protein, the subcellular localization of AGL24 protein was observed exclusively in the nucleus in apical tissues where MRLK was expressed, while AGL24 was localized in both the cytoplasm and the nucleus in tissues where no MRLK expression was detectable. These results suggest that MRLK signaling promotes translocation of AGL24 from the cytoplasm to the nucleus. We propose that the RLK signaling pathway involves phosphorylation of a MADS-box transcription factor. PMID:12881501

  2. Genetic analysis of ectopic growth suppression during planar growth of integuments mediated by the Arabidopsis AGC protein kinase UNICORN

    Enugutti Balaji


    Full Text Available Abstract Background The coordination of growth within a tissue layer is of critical importance for tissue morphogenesis. For example, cells within the epidermis undergo stereotypic cell divisions that are oriented along the plane of the layer (planar growth, thereby propagating the layered epidermal structure. Little is known about the developmental control that regulates such planar growth in plants. Recent evidence suggested that the Arabidopsis AGC VIII protein kinase UNICORN (UCN maintains planar growth by suppressing the formation of ectopic multicellular protrusions in several floral tissues including integuments. In the current model UCN controls this process during integument development by directly interacting with the ABERRANT TESTA SHAPE (ATS protein, a member of the KANADI (KAN family of transcription factors, thereby repressing its activity. Here we report on the further characterization of the UCN mechanism. Results Phenotypic analysis of flowers of ucn-1 plants impaired in floral homeotic gene activity revealed that any of the four floral whorls could produce organs carrying ucn-1 protrusions. The ectopic outgrowths of ucn integuments did not accumulate detectable signals of the auxin and cytokinin reporters DR5rev::GFP and ARR5::GUS, respectively. Furthermore, wild-type and ucn-1 seedlings showed similarly strong callus formation upon in vitro culture on callus-inducing medium. We also show that ovules of ucn-1 plants carrying the dominant ats allele sk21-D exhibited more pronounced protrusion formation. Finally ovules of ucn-1 ett-1 double mutants and ucn-1 ett-1 arf4-1 triple mutants displayed an additive phenotype. Conclusions These data deepen the molecular insight into the UCN-mediated control of planar growth during integument development. The presented evidence indicates that UCN downstream signaling does not involve the control of auxin or cytokinin homeostasis. The results also reveal that UCN interacts with ATS

  3. Large-scale Arabidopsis phosphoproteome profiling reveals novel chloroplast kinase substrates and phosphorylation networks

    Reiland, S; Messerli, G.; Baerenfaller, K.; Gerrits, B.; Endler, A; Grossmann, J.; Gruissem, W; Baginsky, S


    We have characterized the phosphoproteome of Arabidopsis (Arabidopsis thaliana) seedlings using high-accuracy mass spectrometry and report the identification of 1,429 phosphoproteins and 3,029 unique phosphopeptides. Among these, 174 proteins were chloroplast phosphoproteins. Motif-X (motif extractor) analysis of the phosphorylation sites in chloroplast proteins identified four significantly enriched kinase motifs, which include casein kinase II (CKII) and proline-directed kinase motifs, as w...

  4. Protein (Viridiplantae): 15227263 [PGDBj - Ortholog DB


  5. A maize calcium-dependent protein kinase gene, ZmCPK4, positively regulated abscisic acid signaling and enhanced drought stress tolerance in transgenic Arabidopsis.

    Jiang, Shanshan; Zhang, Dan; Wang, Li; Pan, Jiaowen; Liu, Yang; Kong, Xiangpei; Zhou, Yan; Li, Dequan


    Calcium-dependent protein kinases (CDPKs) play essential roles in calcium-mediated signal transductions in plant response to abiotic stress. Several members have been identified to be regulators for plants response to abscisic acid (ABA) signaling. Here, we isolated a subgroup I CDPK gene, ZmCPK4, from maize. Quantitative real time PCR (qRT-PCR) analysis revealed that the ZmCPK4 transcripts were induced by various stresses and signal molecules. Transient and stable expression of the ZmCPK4-GFP fusion proteins revealed ZmCPK4 localized to the membrane. Moreover, overexpression of ZmCPK4 in the transgenic Arabidopsis enhanced ABA sensitivity in seed germination, seedling growth and stomatal movement. The transgenic plants also enhanced drought stress tolerance. Taken together, the results suggest that ZmCPK4 might be involved in ABA-mediated regulation of stomatal closure in response to drought stress. PMID:23911729

  6. The functional interplay between protein kinase CK2 and CCA1 transcriptional activity is essential for clock temperature compensation in Arabidopsis.

    Sergi Portolés


    Full Text Available Circadian rhythms are daily biological oscillations driven by an endogenous mechanism known as circadian clock. The protein kinase CK2 is one of the few clock components that is evolutionary conserved among different taxonomic groups. CK2 regulates the stability and nuclear localization of essential clock proteins in mammals, fungi, and insects. Two CK2 regulatory subunits, CKB3 and CKB4, have been also linked with the Arabidopsis thaliana circadian system. However, the biological relevance and the precise mechanisms of CK2 function within the plant clockwork are not known. By using ChIP and Double-ChIP experiments together with in vivo luminescence assays at different temperatures, we were able to identify a temperature-dependent function for CK2 modulating circadian period length. Our study uncovers a previously unpredicted mechanism for CK2 antagonizing the key clock regulator CIRCADIAN CLOCK-ASSOCIATED 1 (CCA1. CK2 activity does not alter protein accumulation or subcellular localization but interferes with CCA1 binding affinity to the promoters of the oscillator genes. High temperatures enhance the CCA1 binding activity, which is precisely counterbalanced by the CK2 opposing function. Altering this balance by over-expression, mutation, or pharmacological inhibition affects the temperature compensation profile, providing a mechanism by which plants regulate circadian period at changing temperatures. Therefore, our study establishes a new model demonstrating that two opposing and temperature-dependent activities (CCA1-CK2 are essential for clock temperature compensation in Arabidopsis.

  7. Overexpression of a maize SNF-related protein kinase gene, ZmSnRK2.11, reduces salt and drought tolerance in Arabidopsis

    ZHANG Fan; CHEN Xun-ji; WANG Jian-hua; ZHENG Jun


    Sucrose non-fermenting-1 related protein kinase 2 (SnRK2) is a unique family of protein kinases associated with abiotic stress signal transduction in plants. In this study, a maize SnRK2 gene ZmSnRK2.11 was cloned and characterized. The results showed that ZmSnRK2.11 is up-regulated by high-salinity and dehydration treatment, and it is expressed mainly in maize mature leaf. A transient expression assay using onion epidermal cel s revealed that ZmSnRK2.11-GFP fusion proteins are localized to both the nucleus and cytoplasm. Overexpressing-ZmSnRK2.11 in Arabidopsis resulted in salt and drought sensitivity phenotypes that exhibited an increased rate of water loss, reduced relative water content, delayed stoma closure, accumulated less free proline content and increased malondialdehyde (MDA) content relative to the phenotypes observed in wild-type (WT) control. Furthermore, overexpression of ZmSnRK2.11 up-regulated the expression of the genes ABI1 and ABI2 and decreased the expression of DREB2A and P5CS1. Taken together, our results suggest that ZmSnRK2.11 is a possible negative regulator involved in the salt and drought stress signal transduction pathways in plants.

  8. Phytohormones participate in an S6 kinase signal transduction pathway in Arabidopsis

    Turck, Franziska; Zilbermann, Frederic; Kozma, Sara C.; Thomas, George; Nagy, Ferenc


    Addition of fresh medium to stationary cells of Arabidopsis suspension culture induces increased phosphorylation of the S6 ribosomal protein and activation of its cognate kinase, AtS6k. Analysis of the activation response revealed that medium constituents required for S6 kinase activation were the phytohormones 1-naphthylacetic acid (auxin) and kinetin. Pretreatment of cells with anti-auxin or PI3-kinase drugs inhibited this response. Consistent with these findings, LY294002, a PI3-kinase inh...

  9. Phosphorylation of plastoglobular proteins in Arabidopsis thaliana.

    Lohscheider, Jens N; Friso, Giulia; van Wijk, Klaas J


    Plastoglobules (PGs) are plastid lipid-protein particles with a small specialized proteome and metabolome. Among the 30 core PG proteins are six proteins of the ancient ABC1 atypical kinase (ABC1K) family and their locations in an Arabidopsis mRNA-based co-expression network suggested central regulatory roles. To identify candidate ABC1K targets and a possible ABC1K hierarchical phosphorylation network within the chloroplast PG proteome, we searched Arabidopsis phosphoproteomics data from publicly available sources. Evaluation of underlying spectra and/or associated information was challenging for a variety of reasons, but supported pSer sites and a few pThr sites in nine PG proteins, including five FIBRILLINS. PG phosphorylation motifs are discussed in the context of possible responsible kinases. The challenges of collection and evaluation of published Arabidopsis phosphorylation data are discussed, illustrating the importance of deposition of all mass spectrometry data in well-organized repositories such as PRIDE and ProteomeXchange. This study provides a starting point for experimental testing of phosho-sites in PG proteins and also suggests that phosphoproteomics studies specifically designed toward the PG proteome and its ABC1K are needed to understand phosphorylation networks in these specialized particles. PMID:26962209

  10. Two guard cell mitogen-activated protein kinases, MPK9 and MPK12, function in methyl jasmonate-induced stomatal closure in Arabidopsis thaliana.

    Khokon, Md A R; Salam, M A; Jammes, F; Ye, W; Hossain, M A; Uraji, M; Nakamura, Y; Mori, I C; Kwak, J M; Murata, Y


    Methyl jasmonate (MeJA) and abscisic acid (ABA) signalling cascades share several signalling components in guard cells. We previously showed that two guard cell-preferential mitogen-activated protein kinases (MAPKs), MPK9 and MPK12, positively regulate ABA signalling in Arabidopsis thaliana. In this study, we examined whether these two MAP kinases function in MeJA signalling using genetic mutants for MPK9 and MPK12 combined with a pharmacological approach. MeJA induced stomatal closure in mpk9-1 and mpk12-1 single mutants as well as wild-type plants, but not in mpk9-1 mpk12-1 double mutants. Consistently, the MAPKK inhibitor PD98059 inhibited the MeJA-induced stomatal closure in wild-type plants. MeJA elicited reactive oxygen species (ROS) production and cytosolic alkalisation in guard cells of the mpk9-1, mpk12-1 and mpk9-1 mpk12-1 mutants, as well in wild-type plants. Furthermore, MeJA triggered elevation of cytosolic Ca(2+) concentration ([Ca(2+)]cyt ) in the mpk9-1 mpk12-1 double mutant as well as wild-type plants. Activation of S-type anion channels by MeJA was impaired in mpk9-1 mpk12-1. Together, these results indicate that MPK9 and MPK12 function upstream of S-type anion channel activation and downstream of ROS production, cytosolic alkalisation and [Ca(2+)]cyt elevation in guard cell MeJA signalling, suggesting that MPK9 and MPK12 are key regulators mediating both ABA and MeJA signalling in guard cells. PMID:25703019

  11. Arabidopsis phosphatidylinositol monophosphate 5-kinase 2 is involved in root gravitropism through regulation of polar auxin transport by affecting the cycling of PIN proteins

    Yu Mei; Wen-Jing Jia; Yu-Jia Chu; Hong-Wei Xue


    Phosphatidylinositol monophosphate 5-kinase(PIP5K)catalyzes the synthesis of PI-4,5-bisphosphate(PtdIns(4,5)P2)by phosphorylation of PI-4-phosphate at the 5 position of the inositol ring,and is involved in regulating multiple developmental processes and stress responses.We here report on the functional characterization of Arabidopsis PIP5K2,which is expressed during lateral root initiation and elongation,and whose expression is enhanced by exogenous auxin.The knockout mutant pip5k2 shows reduced lateral root formation,which could be recovered with exogenous auxin,and interestingly,delayed root gravity response that could not be recovered with exogenous auxin.Crossing with the DR5-GUS marker line and measurement of free IAA content confirmed the reduced auxin accumulation in pip5k2.In addition,analysis using the membrane-selective dye FM4-64 revealed the decelerated vesicle trafficking caused by PtdIns(4,5)P2 reduction,which hence results in suppressed cycling of PIN proteins(PIN2 and 3),and delayed redistribution of PIN2 and auxin under gravistimulation in pipSk2 roots.On the contrary,PtdIns(4,5)P2 significantly enhanced the vesicle trafficking and cycling of PIN proteins.These results demonstrate that PIP5K2 is involved in regulating lateral root formation and root gravity response,and reveal a critical role of PIP5K2/Ptdlns(4,5)P2 in root development through regulation of PIN proteins,providing direct evidence of crosstalk between the phosphatidylinositol signaling pathway and auxin response,and new insights into the control of polar auxin transport.

  12. Arabidopsis phosphatidylinositol monophosphate 5-kinase 2 is involved in root gravitropism through regulation of polar auxin transport by affecting the cycling of PIN proteins.

    Mei, Yu; Jia, Wen-Jing; Chu, Yu-Jia; Xue, Hong-Wei


    Phosphatidylinositol monophosphate 5-kinase (PIP5K) catalyzes the synthesis of PI-4,5-bisphosphate (PtdIns(4,5)P(2)) by phosphorylation of PI-4-phosphate at the 5 position of the inositol ring, and is involved in regulating multiple developmental processes and stress responses. We here report on the functional characterization of Arabidopsis PIP5K2, which is expressed during lateral root initiation and elongation, and whose expression is enhanced by exogenous auxin. The knockout mutant pip5k2 shows reduced lateral root formation, which could be recovered with exogenous auxin, and interestingly, delayed root gravity response that could not be recovered with exogenous auxin. Crossing with the DR5-GUS marker line and measurement of free IAA content confirmed the reduced auxin accumulation in pip5k2. In addition, analysis using the membrane-selective dye FM4-64 revealed the decelerated vesicle trafficking caused by PtdIns(4,5)P(2) reduction, which hence results in suppressed cycling of PIN proteins (PIN2 and 3), and delayed redistribution of PIN2 and auxin under gravistimulation in pip5k2 roots. On the contrary, PtdIns(4,5)P(2) significantly enhanced the vesicle trafficking and cycling of PIN proteins. These results demonstrate that PIP5K2 is involved in regulating lateral root formation and root gravity response, and reveal a critical role of PIP5K2/PtdIns(4,5)P(2) in root development through regulation of PIN proteins, providing direct evidence of crosstalk between the phosphatidylinositol signaling pathway and auxin response, and new insights into the control of polar auxin transport. PMID:21894193

  13. CDPKs are dual-specificity protein kinases and tyrosine autophosphorylation attenuates kinase activity

    Calcium-dependent protein kinases (CDPKs or CPKs) are classified as serine/threonine protein kinases but we made the surprising observation that soybean CDPK' and several Arabidopsis isoforms (AtCPK4 and AtCPK34) could also autophosphorylate on tyrosine residues. In studies with His6-GmCDPK', we ide...

  14. Arabidopsis phosphatidylinositol monophosphate 5-kinase 2 is involved in root gravitropism through regulation of polar auxin transport by affecting the cycling of PIN proteins

    Mei, Yu; Jia, Wen-Jing; Chu, Yu-Jia; Xue, Hong-Wei


    Phosphatidylinositol monophosphate 5-kinase (PIP5K) catalyzes the synthesis of PI-4,5-bisphosphate (PtdIns(4,5)P2) by phosphorylation of PI-4-phosphate at the 5 position of the inositol ring, and is involved in regulating multiple developmental processes and stress responses. We here report on the functional characterization of Arabidopsis PIP5K2, which is expressed during lateral root initiation and elongation, and whose expression is enhanced by exogenous auxin. The knockout mutant pip5k...

  15. Synergistic interaction of CLAVATA1, CLAVATA2, and RECEPTOR-LIKE PROTEIN KINASE 2 in cyst nematode parasitism of Arabidopsis

    Plant-parasitic cyst nematodes secrete CLAVATA3 (CLV3)/ENDOSPERM SURROUNDING REGION (ESR) (CLE)-like effector proteins. These proteins act as ligand mimics of plant CLE peptides and are required for successful nematode infection. Previously, we showed that CLV2 and CORYNE (CRN), a heterodimer recept...

  16. TaABC1, a member of the activity of bc 1 complex protein kinase family from common wheat, confers enhanced tolerance to abiotic stresses in Arabidopsis

    Wang, Caixiang; Jing, Ruilian; Mao, Xinguo; Chang, Xiaoping; Li, Ang


    Abiotic stresses such as drought, salinity, and low temperature have drastic effects on plant growth and development. However, the molecular mechanisms regulating biochemical and physiological changes in response to stresses are not well understood. Protein kinases are major signal transduction factors among the reported molecular mechanisms mediating acclimation to environmental changes. Protein kinase ABC1 (activity of bc 1 complex) is involved in regulating coenzyme Q biosynthesis in mitoc...

  17. Auxin efflux by PIN-FORMED proteins is activated by two different protein kinases, D6 PROTEIN KINASE and PINOID

    Zourelidou, Melina


    The development and morphology of vascular plants is critically determined by synthesis and proper distribution of the phytohormone auxin. The directed cell-to-cell distribution of auxin is achieved through a system of auxin influx and efflux transporters. PIN-FORMED (PIN) proteins are proposed auxin efflux transporters, and auxin fluxes can seemingly be predicted based on the-in many cells-asymmetric plasma membrane distribution of PINs. Here, we show in a heterologous Xenopus oocyte system as well as in Arabidopsis thaliana inflorescence stems that PIN-mediated auxin transport is directly activated by D6 PROTEIN KINASE (D6PK) and PINOID (PID)/WAG kinases of the Arabidopsis AGCVIII kinase family. At the same time, we reveal that D6PKs and PID have differential phosphosite preferences. Our study suggests that PIN activation by protein kinases is a crucial component of auxin transport control that must be taken into account to understand auxin distribution within the plant.

  18. Kinome profiling of Arabidopsis using arrays of kinase consensus substrates

    Pieterse Corné MJ


    Full Text Available Abstract Background Kinome profiling aims at the parallel analysis of kinase activities in a cell. Novel developed arrays containing consensus substrates for kinases are used to assess those kinase activities. The arrays described in this paper were already used to determine kinase activities in mammalian systems, but since substrates from many organisms are present we decided to test these arrays for the determination of kinase activities in the model plant species Arabidopsis thaliana. Results Kinome profiling using Arabidopsis cell extracts resulted in the labelling of many consensus peptides by kinases from the plant, indicating the usefulness of this kinome profiling tool for plants. Method development showed that fresh and frozen plant material could be used to make cell lysates containing active kinases. Dilution of the plant extract increased the signal to noise ratio and non-radioactive ATP enhances full development of spot intensities. Upon infection of Arabidopsis with an avirulent strain of the bacterial pathogen Pseudomonas syringae pv. tomato, we could detect differential kinase activities by measuring phosphorylation of consensus peptides. Conclusion We show that kinome profiling on arrays with consensus substrates can be used to monitor kinase activities in plants. In a case study we show that upon infection with avirulent P. syringae differential kinase activities can be found. The PepChip can for example be used to purify (unknown kinases that play a role in P. syringae infection. This paper shows that kinome profiling using arrays of consensus peptides is a valuable new tool to study signal-transduction in plants. It complements the available methods for genomics and proteomics research.

  19. Plant protein kinase genes induced by drought, high salt and cold stresses


    Drought, high salt and cold are three different kinds of environment stresses that severely influence the growth, development and productivity of crops. They all decrease the water state of plant cells, and consequently result in the harm of plant from water deficit. Several genes encoding protein kinases and induced by drought, high salt and low temperature have been isolated from Arabidopsis. These protein kinases include receptor protein kinase (RPK), MAP kinases, ribosomal-protein kinases and transcription-regulation protein kinase. The expression features of these genes and the regulatory roles of these protein kinases in stress response and signal transduction are discussed.

  20. Phosphorylation sites of Arabidopsis MAP Kinase Substrate 1 (MKS1)

    Caspersen, M.B.; Qiu, J.-L.; Zhang, X.; Andreasson, E.; Naested, H.; Mundy, J.; Svensson, Birte


    The Arabidopsis MAP kinase 4 (MPK4) substrate MKS1 was expressed in Escherichia coli and purified, full-length, 6x histidine (His)-tagged MKS1 was phosphorylated in vitro by hemagglutinin (HA)-tagged MPK4 immuno-precipitated from plants. MKS1 phosphorylation was initially verified by electrophore...

  1. Arabidopsis CALCIUM-DEPENDENT PROTEIN KINASE8 and CATALASE3 Function in Abscisic Acid-Mediated Signaling and H2O2 Homeostasis in Stomatal Guard Cells under Drought Stress.

    Zou, Jun-Jie; Li, Xi-Dong; Ratnasekera, Disna; Wang, Cun; Liu, Wen-Xin; Song, Lian-Fen; Zhang, Wen-Zheng; Wu, Wei-Hua


    Drought is a major threat to plant growth and crop productivity. Calcium-dependent protein kinases (CDPKs, CPKs) are believed to play important roles in plant responses to drought stress. Here, we report that Arabidopsis thaliana CPK8 functions in abscisic acid (ABA)- and Ca(2+)-mediated plant responses to drought stress. The cpk8 mutant was more sensitive to drought stress than wild-type plants, while the transgenic plants overexpressing CPK8 showed enhanced tolerance to drought stress compared with wild-type plants. ABA-, H2O2-, and Ca(2+)-induced stomatal closing were impaired in cpk8 mutants. Arabidopsis CATALASE3 (CAT3) was identified as a CPK8-interacting protein, confirmed by yeast two-hybrid, coimmunoprecipitation, and bimolecular fluorescence complementation assays. CPK8 can phosphorylate CAT3 at Ser-261 and regulate its activity. Both cpk8 and cat3 plants showed lower catalase activity and higher accumulation of H2O2 compared with wild-type plants. The cat3 mutant displayed a similar drought stress-sensitive phenotype as cpk8 mutant. Moreover, ABA and Ca(2+) inhibition of inward K(+) currents were diminished in guard cells of cpk8 and cat3 mutants. Together, these results demonstrated that CPK8 functions in ABA-mediated stomatal regulation in responses to drought stress through regulation of CAT3 activity. PMID:25966761

  2. Bacterial Protein-Tyrosine Kinases

    Shi, Lei; Kobir, Ahasanul; Jers, Carsten;


    Bacteria and Eukarya share essentially the same family of protein-serine/threonine kinases, also known as the Hanks-type kinases. However, when it comes to protein-tyrosine phosphorylation, bacteria seem to have gone their own way. Bacterial protein-tyrosine kinases (BY-kinases) are bacterial...... enzymes that are unique in exploiting the ATP/GTP-binding Walker motif to catalyze phosphorylation of protein tyrosine residues. Characterized for the first time only a decade ago, BY-kinases have now come to the fore. Important regulatory roles have been linked with these enzymes, via their involvement...... in exopolysaccharide production, virulence, DNA metabolism, stress response and other key functions of the bacterial cell. BY-kinases act through autophosphorylation (mainly in exopolysaccharide production) and phosphorylation of other proteins, which have in most cases been shown to be activated by...

  3. Arabidopsis MAP kinase 4 negatively regulates systemic acquired resistance

    Petersen, M.; Brodersen, P.; Naested, H.;


    Transposon inactivation of Arabidopsis MAP kinase 4 produced the mpk4 mutant exhibiting constitutive systemic acquired resistance (SAR) including elevated salicylic acid (SA) revels, increased resistance to virulent pathogens, and constitutive pathogenesis-related gene expression shown by Northern...... of NPR1. PDF1.2 and THI2.1 gene induction by jasmonate was blocked in mpk4 expressing NahG, suggesting that MPK4 is required for jasmonic acid-responsive gene expression....

  4. Arabidopsis map kinase 4 negatively regulates systemic acquired resistance

    Brodersen, P; Johansen, Bo; Petersen, M;


    Transposon inactivation of Arabidopsis MAP kinase 4 produced the mpk4 mutant exhibiting constitutive systemic acquired resistance (SAR) including elevated salicylic acid (SA) levels, increased resistance to virulent pathogens, and constitutive pathogenesis-related gene expression shown by Northern...... of NPR1. PDF1.2 and THI2.1 gene induction by jasmonate was blocked in mpk4 expressing NahG, suggesting that MPK4 is required for jasmonic acid-responsive gene expression....

  5. A Quantitative Mass Spectrometry-based Approach for Identifying Protein Kinase-Clients and Quantifying Kinase Activity

    The Homo sapiens and Arabidopsis thaliana genomes are believed to encode >500 and >1,000 protein kinases, respectively. Despite this abundance, few bona fide kinase-client relationships have been described in detail. Mass spectrometry (MS)-based approaches have been integral to the large-scale mapp...

  6. Evidence for Intermolecular Interactions between the Intracellular Domains of the Arabidopsis Receptor-Like Kinase ACR4, Its Homologs and the Wox5 Transcription Factor

    Meyer, Matthew R; Shah, Shweta; Zhang, J.; Rohrs, Henry; Rao, A Gururaj


    Arabidopsis CRINKLY4 (ACR4) is a receptor-like kinase (RLK) involved in the global development of the plant. The Arabidopsis genome encodes four homologs of ACR4 that contain sequence similarity and analogous architectural elements to ACR4, termed Arabidopsis CRINKLY4 Related (AtCRRs) proteins. Additionally, a signaling module has been previously proposed including a postulated peptide ligand, CLE40, the ACR4 RLK, and the WOX5 transcription factor that engage in a possible feedback mechanism ...

  7. Protein Crystals of Raf Kinase


    This image shows crystals of the protein raf kinase grown on Earth (photo a) and on USML-2 (photo b). The space-grown crystals are an order of magnitude larger. Principal Investigator: Dan Carter of New Century Pharmaceuticals

  8. A link between magnesium-chelatase H subunit and sucrose nonfermenting 1 (SNF1)-related protein kinase SnRK2.6/OST1 in Arabidopsis guard cell signalling in response to abscisic acid.

    Liang, Shan; Lu, Kai; Wu, Zhen; Jiang, Shang-Chuan; Yu, Yong-Tao; Bi, Chao; Xin, Qi; Wang, Xiao-Fang; Zhang, Da-Peng


    Magnesium-chelatase H subunit [CHLH/putative abscisic acid (ABA) receptor ABAR] positively regulates guard cell signalling in response to ABA, but the molecular mechanism remains largely unknown. A member of the sucrose nonfermenting 1 (SNF1)-related protein kinase 2 family, SnRK2.6/open stomata 1 (OST1)/SRK2E, which plays a critical role in ABA signalling in Arabidopsis guard cells, interacts with ABAR/CHLH. Neither mutation nor over-expression of the ABAR gene affects significantly ABA-insensitive phenotypes of stomatal movement in the OST1 knockout mutant allele srk2e. However, OST1 over-expression suppresses ABA-insensitive phenotypes of the ABAR mutant allele cch in stomatal movement. These genetic data support that OST1 functions downstream of ABAR in ABA signalling in guard cells. Consistent with this, ABAR protein is phosphorylated, but independently of the OST1 protein kinase. Two ABAR mutant alleles, cch and rtl1, show ABA insensitivity in ABA-induced reactive oxygen species and nitric oxide production, as well as in ABA-activated phosphorylation of a K(+) inward channel KAT1 in guard cells, which is consistent with that observed in the pyr1 pyl1 pyl2 pyl4 quadruple mutant of the well-characterized ABA receptor PYR/PYL/RCAR family acting upstream of OST1. These findings suggest that ABAR shares, at least in part, downstream signalling components with PYR/PYL/RCAR receptors for ABA in guard cells; though cch and rtl1 show strong ABA-insensitive phenotypes in both ABA-induced stomatal closure and inhibition of stomatal opening, while the pyr1 pyl1 pyl2 pyl4 quadruple mutant shows strong ABA insensitivity only in ABA-induced stomatal closure. These data establish a link between ABAR/CHLH and SnRK2.6/OST1 in guard cell signalling in response to ABA. PMID:26175350

  9. Involvement of OST1 Protein Kinase and PYR/PYL/RCAR Receptors in Methyl Jasmonate-Induced Stomatal Closure in Arabidopsis Guard Cells.

    Yin, Ye; Adachi, Yuji; Nakamura, Yoshimasa; Munemasa, Shintaro; Mori, Izumi C; Murata, Yoshiyuki


    Methyl jasmonate (MeJA) induces stomatal closure. It has been shown that stomata of many ABA-insensitive mutants are also insensitive to MeJA, and a low amount of ABA is a prerequisite for the MeJA response. However, the molecular mechanisms of the interaction between ABA and MeJA signaling remain to be elucidated. Here we studied the interplay of signaling of the two hormones in guard cells using the quadruple ABA receptor mutant pyr1 pyl1 pyl2 pyl4 and ABA-activated protein kinase mutants ost1-2 and srk2e. In the quadruple mutant, MeJA-induced stomatal closure, H2O2 production, nitric oxide (NO) production, cytosolic alkalization and plasma membrane Ca(2+)-permeable current (ICa) activation were not impaired. At the same time, the inactivation of the inward-rectifying K(+) current was impaired. In contrast to the quadruple mutant, MeJA-induced stomatal closure, H2O2 production, NO production and cytosolic alkalization were impaired in ost1-2 and srk2e as well as in aba2-2, the ABA-deficient mutant. The activation of ICa was also impaired in srk2e. Collectively, these results indicated that OST1 was essential for MeJA-induced stomatal closure, while PYR1, PYL1, PYL2 and PYL4 ABA receptors were not sufficient factors. MeJA did not appear to activate OST1 kinase activity. This implies that OST1 mediates MeJA signaling through an undetectable level of activity or a non-enzymatic action. MeJA induced the expression of an ABA synthesis gene, NCED3, and increased ABA contents only modestly. Taken together with previous reports, this study suggests that MeJA signaling in guard cells is primed by ABA and is not brought about through the pathway mediated by PYR1, PYL1 PYL2 and PYL4. PMID:27354421

  10. Phosphoproteomic identification of targets of the Arabidopsis sucrose nonfermenting-like kinase SnRK2.8 reveals a connection to metabolic processes

    Shin, Ryoung; Alvarez, Sophie; Burch, Adrien Y.; Jez, Joseph M.; Schachtman, Daniel P.


    SnRK2.8 is a member of the sucrose nonfermenting-related kinase family that is down-regulated when plants are deprived of nutrients and growth is reduced. When this kinase is over expressed in Arabidopsis, the plants grow larger. To understand how this kinase modulates growth, we identified some of the proteins that are phosphorylated by this kinase. A new phosphoproteomic method was used in which total protein from plants overexpressing the kinase was compared with total protein from plants ...

  11. Two thymidine kinases and one multisubstrate deoxyribonucleoside kinase salvage DNA precursors in Arabidopsis thaliana

    Anders Ranegaard Clausen, Anders Ranegaard; Girandon, Lenart; Ali, Ashfaq; Knecht, Wolfgang; Rozpedowska, Elzbieta; Sandrini, Michael Paolo; Andreasson, Erik; Munch-Petersen, Birgitte; Piskur, Jure


    Deoxyribonucleotides are the building blocks of DNA and can be synthesized via de novo and salvage pathways. Deoxyribonucleoside kinases (EC salvage deoxyribonucleosides by transfer of a phosphate group to the 5' of a deoxyribonucleoside. This salvage pathway is well characterized in...... mammals, but in contrast, little is known about how plants salvage deoxyribonucleosides. We show that during salvage, deoxyribonucleosides can be phosphorylated by extracts of Arabidopsis thaliana into corresponding monophosphate compounds with an unexpected preference for purines over pyrimidines....... Deoxyribonucleoside kinase activities were present in all tissues during all growth stages. In the A. thaliana genome, we identified two types of genes that could encode enzymes which are involved in the salvage of deoxyribonucleosides. Thymidine kinase activity was encoded by two thymidine kinase 1 (EC 2...

  12. Two thymidine kinases and one multisubstrate deoxyribonucleoside kinase salvage DNA precursors in Arabidopsis thaliana

    Clausen, Anders R.; Girandon, Lenart; Ali, Ashfaq; Knecht, Wolfgang; Rozpedowska, Elzbieta; Sandrini, Michael; Andreasson, Erik; Munch‐Petersen, Birgitte; Piskur, Jure


    Deoxyribonucleotides are the building blocks of DNA and can be synthesized via de novo and salvage pathways. Deoxyribonucleoside kinases (EC salvage deoxyribonucleosides by transfer of a phosphate group to the 5′ of a deoxyribonucleoside. This salvage pathway is well characterized in...... mammals, but in contrast, little is known about how plants salvage deoxyribonucleosides. We show that during salvage, deoxyribonucleosides can be phosphorylated by extracts of Arabidopsis thaliana into corresponding monophosphate compounds with an unexpected preference for purines over pyrimidines....... Deoxyribonucleoside kinase activities were present in all tissues during all growth stages. In the A. thaliana genome, we identified two types of genes that could encode enzymes which are involved in the salvage of deoxyribonucleosides. Thymidine kinase activity was encoded by two thymidine kinase 1 (EC 2...

  13. The Arabidopsis mitogen-activated protein kinase 6 is associated with γ-tubulin on microtubules, phosphorylates EB1c and maintains spindle orientation under nitrosative stress

    Kohoutová, Lucie; Kourová, Hana; Nagy, S. K.; Volc, Jindřich; Halada, Petr; Mészáros, T.; Meskiene, I.; Bögre, L.; Binarová, Pavla


    Roč. 207, č. 4 (2015), s. 1061-1074. ISSN 0028-646X R&D Projects: GA MŠk 7AMB13AT013; GA ČR GAP501/12/2333 Institutional support: RVO:61388971 Keywords : Arabidopsis * cell division * EB1c Subject RIV: EE - Microbiology, Virology Impact factor: 7.672, year: 2014

  14. Involvement of YODA and mitogen activated protein kinase 6 in Arabidopsis post-embryogenic root development through auxin up-regulation and cell division plane orientation

    Smékalová, V.; Luptovčiak, I.; Komis, G.; Šamajová, O.; Ovečka, M.; Doskočilová, A.; Takáč, T.; Vadovič, P.; Novák, Ondřej; Pechan, T.; Ziemann, A.; Košútová, P.; Šamaj, J.


    Roč. 203, č. 4 (2014), s. 1175-1193. ISSN 0028-646X R&D Projects: GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : Arabidopsis * cell division plane * MAP65-1 Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 7.672, year: 2014

  15. A novel protective function for cytokinin in the light stress response is mediated by the Arabidopsis histidine kinase2 and Arabidopsis histidine kinase3 receptors.

    Cortleven, Anne; Nitschke, Silvia; Klaumünzer, Marion; Abdelgawad, Hamada; Asard, Han; Grimm, Bernhard; Riefler, Michael; Schmülling, Thomas


    Cytokinins are plant hormones that regulate diverse processes in plant development and responses to biotic and abiotic stresses. In this study, we show that Arabidopsis (Arabidopsis thaliana) plants with a reduced cytokinin status (i.e. cytokinin receptor mutants and transgenic cytokinin-deficient plants) are more susceptible to light stress compared with wild-type plants. This was reflected by a stronger photoinhibition after 24 h of high light (approximately 1,000 µmol m(-2) s(-1)), as shown by the decline in maximum quantum efficiency of photosystem II photochemistry. Photosystem II, especially the D1 protein, is highly sensitive to the detrimental impact of light. Therefore, photoinhibition is always observed when the rate of photodamage exceeds the rate of D1 repair. We demonstrate that in plants with a reduced cytokinin status, the D1 protein level was strongly decreased upon light stress. Inhibition of the D1 repair cycle by lincomycin treatment indicated that these plants experience stronger photodamage. The efficiency of photoprotective mechanisms, such as nonenzymatic and enzymatic scavenging systems, was decreased in plants with a reduced cytokinin status, which could be a cause for the increased photodamage and subsequent D1 degradation. Additionally, slow and incomplete recovery in these plants after light stress indicated insufficient D1 repair. Mutant analysis revealed that the protective function of cytokinin during light stress depends on the Arabidopsis histidine KINASE2 (AHK2) and AHK3 receptors and the type B Arabidopsis response regulator1 (ARR1) and ARR12. We conclude that proper cytokinin signaling and regulation of specific target genes are necessary to protect leaves efficiently from light stress. PMID:24424319

  16. A calcium-dependent protein kinase can inhibit a calmodulin-stimulated Ca2+ pump (ACA2) located in the endoplasmic reticulum of Arabidopsis

    Hwang, I.; Sze, H.; Harper, J. F.; Evans, M. L. (Principal Investigator)


    The magnitude and duration of a cytosolic Ca(2+) release can potentially be altered by changing the rate of Ca(2+) efflux. In plant cells, Ca(2+) efflux from the cytoplasm is mediated by H(+)/Ca(2+)-antiporters and two types of Ca(2+)-ATPases. ACA2 was recently identified as a calmodulin-regulated Ca(2+)-pump located in the endoplasmic reticulum. Here, we show that phosphorylation of its N-terminal regulatory domain by a Ca(2+)-dependent protein kinase (CDPK isoform CPK1), inhibits both basal activity ( approximately 10%) and calmodulin stimulation ( approximately 75%), as shown by Ca(2+)-transport assays with recombinant enzyme expressed in yeast. A CDPK phosphorylation site was mapped to Ser(45) near a calmodulin binding site, using a fusion protein containing the N-terminal domain as an in vitro substrate for a recombinant CPK1. In a full-length enzyme, an Ala substitution for Ser(45) (S45/A) completely blocked the observed CDPK inhibition of both basal and calmodulin-stimulated activities. An Asp substitution (S45/D) mimicked phosphoinhibition, indicating that a negative charge at this position is sufficient to account for phosphoinhibition. Interestingly, prior binding of calmodulin blocked phosphorylation. This suggests that, once ACA2 binds calmodulin, its activation state becomes resistant to phosphoinhibition. These results support the hypothesis that ACA2 activity is regulated as the balance between the initial kinetics of calmodulin stimulation and CDPK inhibition, providing an example in plants for a potential point of crosstalk between two different Ca(2+)-signaling pathways.

  17. Oncoprotein protein kinase

    Karin, Michael (San Diego, CA); Hibi, Masahiko (San Diego, CA); Lin, Anning (La Jolla, CA); Davis, Roger (Princeton, MA); Derijard, Benoit (Shrewsbury, MA)


    An isolated polypeptide (JNK) characterized by having a molecular weight of 46kD as determined by reducing SDS-PAGE, having serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  18. The calcium-dependent protein kinase CPK28 regulates development by inducing growth phase-specific, spatially restricted alterations in jasmonic acid levels independent of defense responses in Arabidopsis.

    Matschi, Susanne; Hake, Katharina; Herde, Marco; Hause, Bettina; Romeis, Tina


    Phytohormones play an important role in development and stress adaptations in plants, and several interacting hormonal pathways have been suggested to accomplish fine-tuning of stress responses at the expense of growth. This work describes the role played by the CALCIUM-DEPENDENT PROTEIN KINASE CPK28 in balancing phytohormone-mediated development in Arabidopsis thaliana, specifically during generative growth. cpk28 mutants exhibit growth reduction solely as adult plants, coinciding with altered balance of the phytohormones jasmonic acid (JA) and gibberellic acid (GA). JA-dependent gene expression and the levels of several JA metabolites were elevated in a growth phase-dependent manner in cpk28, and accumulation of JA metabolites was confined locally to the central rosette tissue. No elevated resistance toward herbivores or necrotrophic pathogens was detected for cpk28 plants, either on the whole-plant level or specifically within the tissue displaying elevated JA levels. Abolishment of JA biosynthesis or JA signaling led to a full reversion of the cpk28 growth phenotype, while modification of GA signaling did not. Our data identify CPK28 as a growth phase-dependent key negative regulator of distinct processes: While in seedlings, CPK28 regulates reactive oxygen species-mediated defense signaling; in adult plants, CPK28 confers developmental processes by the tissue-specific balance of JA and GA without affecting JA-mediated defense responses. PMID:25736059

  19. Abundant protein phosphorylation potentially regulates Arabidopsis anther development.

    Ye, Juanying; Zhang, Zaibao; You, Chenjiang; Zhang, Xumin; Lu, Jianan; Ma, Hong


    As the male reproductive organ of flowering plants, the stamen consists of the anther and filament. Previous studies on stamen development mainly focused on single gene functions by genetic methods or gene expression changes using comparative transcriptomic approaches, especially in model plants such as Arabidopsis thaliana However, studies on Arabidopsis anther protein expression and post-translational modifications are still lacking. Here we report proteomic and phosphoproteomic studies on developing Arabidopsis anthers at stages 4-7 and 8-12. We identified 3908 high-confidence phosphorylation sites corresponding to 1637 phosphoproteins. Among the 1637 phosphoproteins, 493 were newly identified, with 952 phosphorylation sites. Phosphopeptide enrichment prior to LC-MS analysis facilitated the identification of low-abundance proteins and regulatory proteins, thereby increasing the coverage of proteomic analysis, and facilitated the analysis of more regulatory proteins. Thirty-nine serine and six threonine phosphorylation motifs were uncovered from the anther phosphoproteome and further analysis supports that phosphorylation of casein kinase II, mitogen-activated protein kinases, and 14-3-3 proteins is a key regulatory mechanism in anther development. Phosphorylated residues were preferentially located in variable protein regions among family members, but they were they were conserved across angiosperms in general. Moreover, phosphorylation might reduce activity of reactive oxygen species scavenging enzymes and hamper brassinosteroid signaling in early anther development. Most of the novel phosphoproteins showed tissue-specific expression in the anther according to previous microarray data. This study provides a community resource with information on the abundance and phosphorylation status of thousands of proteins in developing anthers, contributing to understanding post-translational regulatory mechanisms during anther development. PMID:27531888

  20. The regulatory PII protein controls arginine biosynthesis in Arabidopsis.

    Ferrario-Méry, Sylvie; Besin, Evelyne; Pichon, Olivier; Meyer, Christian; Hodges, Michael


    In higher plants, PII is a nuclear-encoded plastid protein which is homologous to bacterial PII signalling proteins known to be involved in the regulation of nitrogen metabolism. A reduced ornithine, citrulline and arginine accumulation was observed in two Arabidopsis PII knock-out mutants in response to NH4+ resupply after N starvation. This difference could be explained by the regulation of a key enzyme of the arginine biosynthesis pathway, N-acetyl glutamate kinase (NAGK) by PII. In vitro assays using purified recombinant proteins showed the catalytic activation of Arabidopsis NAGK by PII giving the first evidence of a physiological role of the PII protein in higher plants. Using Arabidopsis transcriptome microarray (CATMA) and RT-PCR analyses, it was found that none of the genes involved in the arginine biosynthetic or catabolic pathways were differentially expressed in a PII knock-out mutant background. In conclusion, the observed changes in metabolite levels can be explained by the reduced activation of NAGK by PII. PMID:16545809

  1. Degradation of Activated Protein Kinases by Ubiquitination

    Lu, Zhimin; Hunter, Tony


    Protein kinases are important regulators of intracellular signal transduction pathways and play critical roles in diverse cellular functions. Once a protein kinase is activated, its activity is subsequently downregulated through a variety of mechanisms. Accumulating evidence indicates that the activation of protein kinases commonly initiates their downregulation via the ubiquitin/proteasome pathway. Failure to regulate protein kinase activity or expression levels can cause human diseases.

  2. The OXI1 kinase pathway mediates Piriformospora indica-induced growth promotion in Arabidopsis.

    Iris Camehl


    Full Text Available Piriformospora indica is an endophytic fungus that colonizes roots of many plant species and promotes growth and resistance to certain plant pathogens. Despite its potential use in agriculture, little is known on the molecular basis of this beneficial plant-fungal interaction. In a genetic screen for plants, which do not show a P. indica- induced growth response, we isolated an Arabidopsis mutant in the OXI1 (Oxidative Signal Inducible1 gene. OXI1 has been characterized as a protein kinase which plays a role in pathogen response and is regulated by H₂O₂ and PDK1 (3-PHOSPHOINOSITIDE-DEPENDENT PROTEIN KINASE1. A genetic analysis showed that double mutants of the two closely related PDK1.1 and PDK1.2 genes are defective in the growth response to P. indica. While OXI1 and PDK1 gene expression is upregulated in P. indica-colonized roots, defense genes are downregulated, indicating that the fungus suppresses plant defense reactions. PDK1 is activated by phosphatidic acid (PA and P. indica triggers PA synthesis in Arabidopsis plants. Under beneficial co-cultivation conditions, H₂O₂ formation is even reduced by the fungus. Importantly, phospholipase D (PLDα1 or PLDδ mutants, which are impaired in PA synthesis do not show growth promotion in response to fungal infection. These data establish that the P. indica-stimulated growth response is mediated by a pathway consisting of the PLD-PDK1-OXI1 cascade.

  3. A membrane protein / signaling protein interaction network for Arabidopsis version AMPv2

    Sylvie Lalonde


    Full Text Available Interactions between membrane proteins and the soluble fraction are essential for signal transduction and for regulating nutrient transport. To gain insights into the membrane-based interactome, 3,852 open reading frames (ORFs out of a target list of 8,383 representing membrane and signaling proteins from Arabidopsis thaliana were cloned into a Gateway compatible vector. The mating-based split-ubiquitin system was used to screen for potential protein-protein interactions (pPPIs among 490 Arabidopsis ORFs. A binary robotic screen between 142 receptor-like kinases, 72 transporters, 57 soluble protein kinases and phosphatases, 40 glycosyltransferases, 95 proteins of various functions and 89 proteins with unknown function detected 387 out of 90,370 possible PPIs. A secondary screen confirmed 343 (of 387 pPPIs between 179 proteins, yielding a scale-free network (r2=0.863. Eighty of 142 transmembrane receptor-like kinases (RLK tested positive, identifying three homomers, 63 heteromers and 80 pPPIs with other proteins. Thirty-one out of 142 RLK interactors (including RLKs had previously been found to be phosphorylated; thus interactors may be substrates for respective RLKs. None of the pPPIs described here had been reported in the major interactome databases, including potential interactors of G protein-coupled receptors, phospholipase C, and AMT ammonium transporters. Two RLKs found as putative interactors of AMT1;1 were independently confirmed using a split luciferase assay in Arabidopsis protoplasts. These RLKs may be involved in ammonium-dependent phosphorylation of the C-terminus and regulation of ammonium uptake activity. The robotic screening method established here will enable a systematic analysis of membrane protein interactions in fungi, plants and metazoa.

  4. Genome-wide identification and analysis of expression profiles of maize mitogen-activated protein kinase kinase kinase.

    Xiangpei Kong

    Full Text Available Mitogen-activated protein kinase (MAPK cascades are highly conserved signal transduction model in animals, yeast and plants. Plant MAPK cascades have been implicated in development and stress responses. Although MAPKKKs have been investigated in several plant species including Arabidopsis and rice, no systematic analysis has been conducted in maize. In this study, we performed a bioinformatics analysis of the entire maize genome and identified 74 MAPKKK genes. Phylogenetic analyses of MAPKKKs from maize, rice and Arabidopsis have classified them into three subgroups, which included Raf, ZIK and MEKK. Evolutionary relationships within subfamilies were also supported by exon-intron organizations and the conserved protein motifs. Further expression analysis of the MAPKKKs in microarray databases revealed that MAPKKKs were involved in important signaling pathways in maize different organs and developmental stages. Our genomics analysis of maize MAPKKK genes provides important information for evolutionary and functional characterization of this family in maize.

  5. The wheat MAP kinase phosphatase 1 alleviates salt stress and increases antioxidant activities in Arabidopsis.

    Zaidi, Ikram; Ebel, Chantal; Belgaroui, Nibras; Ghorbel, Mouna; Amara, Imène; Hanin, Moez


    Mitogen-activated protein kinase phosphatases (MKPs) are important negative regulators in the MAPK signaling pathways, which play crucial roles in plant growth, development and stress responses. We have previously shown that the heterologous expression of a durum wheat MKP, TMKP1, results in increased tolerance to salt stress in yeast but its particular contribution in salt stress tolerance in plants was not investigated. Here, TMKP1 was overexpressed in Arabidopsis thaliana and physiological changes were assessed in transgenic plants exposed to stress conditions. Under salt stress and especially LiCl, the TMKP1 overexpressors displayed higher germination rates in comparison to wild type plants. The enhancement of salt stress tolerance was accompanied by increased antioxidant enzyme activities, namely superoxide dismutase, catalase and peroxydases. Such increases in antioxidant activities were concomitant with lower malondialdehyde, superoxide anion O2(-) and hydrogen peroxide levels in the TMKP1 transgenic seedlings. Moreover, we provide evidence that, in contrast to the Arabidopsis ortholog AtMKP1, TMKP1 acts as a positive regulator of salt stress tolerance via its ectopic expression in the Arabidopsis mkp1 mutant. PMID:26927025

  6. Protein kinase CK2 in human diseases

    Guerra, Barbara; Issinger, Olaf-Georg


    Protein kinase CK2 (formerly referred to as casein kinase II) is an evolutionary conserved, ubiquitous protein kinase. There are two paralog catalytic subunits, i.e. alpha (A1) and alpha' (A2). The alpha and alpha' subunits are linked to two beta subunits to produce a heterotetrameric structure....... The catalytic alpha subunits are distantly related to the CMGC subfamily of kinases, such as the Cdk kinases. There are some peculiarities associated with protein kinase CK2, which are not found with most other protein kinases: (i) the enzyme is constitutively active, (ii) it can use ATP and GTP and...... specifically target this protein kinase [10]. Since not all the aspects of what has been published on CK2 can be covered in this review, we would like to recommend the following reviews; (i) for general information on CK2 [11-18] and (ii) with a focus on aberrant CK2 [19-22]....

  7. Metabolite regulation of the interaction between Arabidopsis thaliana PII and N-acetyl-l-glutamate kinase.

    Feria Bourrellier, Ana Belén; Ferrario-Méry, Sylvie; Vidal, Jean; Hodges, Michael


    The metabolic control of the interaction between ArabidopsisN-acetyl-l-glutamate kinase (NAGK) and the PII protein has been studied. Both gel exclusion and affinity chromatography analyses of recombinant, affinity-purified PII (trimeric complex) and NAGK (hexameric complex) showed that NAGK strongly interacted with PII only in the presence of Mg-ATP, and that this process was reversed by 2-oxoglutarate (2-OG). Furthermore, metabolites such as arginine, glutamate, citrate, and oxalacetate also exerted a negative effect on the PII-NAGK complex formation in the presence of Mg-ATP. Using chloroplast protein extracts and PII affinity chromatography, NAGK interacted with PII only in the presence of ATP-Mg(2+), and this process was antagonized by 2-OG. These results reveal a complex metabolic control of the PII interaction with NAGK in the chloroplast stroma of higher plants. PMID:19631611

  8. The structure of arabidopsis thaliana OST1 provides insights into the kinase regulation mechanism in response to osmotic stress

    Yunta, Cristina


    SnRK [SNF1 (sucrose non-fermenting-1)-related protein kinase] 2.6 [open stomata 1 (OST1)] is well characterized at molecular and physiological levels to control stomata closure in response to water-deficit stress. OST1 is a member of a family of 10 protein kinases from Arabidopsis thaliana (SnRK2) that integrates abscisic acid (ABA)-dependent and ABA-independent signals to coordinate the cell response to osmotic stress. A subgroup of protein phosphatases type 2C binds OST1 and keeps the kinase dephosphorylated and inactive. Activation of OST1 relies on the ABA-dependent inhibition of the protein phosphatases type 2C and the subsequent self-phosphorylation of the kinase. The OST1 ABA-independent activation depends on a short sequence motif that is conserved among all the members of the SnRK2 family. However, little is known about the molecular mechanism underlying this regulation. The crystallographic structure of OST1 shows that ABA-independent regulation motif stabilizes the conformation of the kinase catalytically essential α C helix, and it provides the basis of the ABA-independent regulation mechanism for the SnRK2 family of protein kinases. © 2011 Elsevier Ltd. All rights reserved.

  9. Constitutive activation of AtMEK5, a MAPK kinase, induces salicylic acid-independent cell death in Arabidopsis thaliana

    LIU Hongxia; WANG Ying; ZHOU Tianhong; SUN Yujing; LIU Guoqin; REN Dongtao


    AtMEK5DD is an active mutant of AtMEK5, a MAP kinase kinase in Arabidopsis. Induction of AtMEK5DD expression in transgenic plants leads to activation of 44 and 48 kD MAPKs and causes a rapid cell death. To compare the cell death induced by the expression of AtMEK5DD with the HR-cell death induced by avirulence pathogen infection, we analyzed the activation of downstream MAP Kinase and induction of PR genes expression in permanent transgenic Arabidopsis plants. In-gel kinase activity assay revealed that the infection of Pseudomonas syringae DC3000 harboring Avr Rpt2 gene also lead to activation of 44 and 48 kD MAPKs. PAL, PR1 and PR5 were strongly induced in plants undergoing HR-cell death caused by the infection of P. Syringae DC3000, while only the expression of PR5 was strongly induced in transgenic plants expressing AtMEK5DD protein. NahG protein in AtMEK5DD×NahG plants cannot suppress the cell death induced by AtMEK5DD. And AtMEK5DD protein expressed AtMEK5DD×NahG plants showed no significant change in salicylic acid (SA)level.All these suggest that the cell death induced by the activation of AtMEK5 is salicylic acid-independent.

  10. Expression of a Gibberellin-Induced Leucine-Rich Repeat Receptor-Like Protein Kinase in Deepwater Rice and Its Interaction with Kinase-Associated Protein Phosphatase1

    van der Knaap, Esther; Song, Wen-Yuan; Ruan, De-Ling; Sauter, Margret; Ronald, Pamela C.; Kende, Hans


    We identified in deepwater rice (Oryza sativa L.) a gene encoding a leucine-rich repeat receptor-like transmembrane protein kinase, OsTMK (O. sativa transmembrane kinase). The transcript levels of OsTMK increased in the rice internode in response to gibberellin. Expression of OsTMK was especially high in regions undergoing cell division and elongation. The kinase domain of OsTMK was enzymatically active, autophosphorylating on serine and threonine residues. A cDNA encoding a rice ortholog of a kinase-associated type 2C protein phosphatase (OsKAPP) was cloned. KAPPs are putative downstream components in kinase-mediated signal transduction pathways. The kinase interaction domain of OsKAPP was phosphorylated in vitro by the kinase domain of OsTMK. RNA gel-blot analysis indicated that the expression of OsTMK and OsKAPP was similar in different tissues of the rice plant. In protein-binding assays, OsKAPP interacted with a receptor-like protein kinase, RLK5 of Arabidopsis, but not with the protein kinase domains of the rice and maize receptor-like protein kinases Xa21 and ZmPK1, respectively. PMID:10364408

  11. Expression of a gibberellin-induced leucine-rich repeat receptor-like protein kinase in deepwater rice and its interaction with kinase-associated protein phosphatase

    Knaap, E. van der; Sauter, M.; Kende, H. (Michigan State Univ., East Lansing, MI (United States). DOE Plant Research Lab.); Song, W.Y.; Ruan, D.L.; Ronald, P.C. (Univ. of California, Davis, CA (United States). Dept. of Plant Pathology)


    The authors identified in deepwater rice (Oryza sativa L.) a gene encoding a leucine-rich repeat receptor-like transmembrane protein kinase, OsTMK (O. sativa transmembrane kinase). The transcript levels of OsTMK increased in the rice internode in response to gibberellin. Expression of OsTMK was especially high in regions undergoing cell division and elongation. The kinase domain of OsTMK was enzymatically active autophosphorylating on serine and threonine residues. A cDNA encoding a rice ortholog of a kinase-associated type 2C protein phosphatase (OsKAPP) was cloned. KAPPs are putative downstream components in kinase-mediated signal transduction pathways. The kinase interaction domain of OsKAPP was phosphorylated in vitro by the kinase domain of OsTMK. RNA gel-blot analysis indicated that the expression of OsTMK and OsKAPP was similar in different tissues of the rice plant. In protein-binding assays, OsKAPP interacted with a receptor-like protein kinase, RLK5 of Arabidopsis, but not with the protein kinase domains of the rice and maize receptor-like protein kinases Xa21 and ZmPK1, respectively.

  12. Immunochemical characterization of rat brain protein kinase

    Polyclonal antibodies against rat brain protein kinase C (the Ca2+/phospholipid-dependent enzyme) were raised in goat. These antibodies can neutralize completely the kinase activity in purified enzyme preparation as well as that in the crude homogenate. Immunoblot analysis of the purified and the crude protein kinase C preparations revealed a major immunoreactive band of 80 kDa. The antibodies also recognize the same enzyme from other rat tissues. Neuronal tissues (cerebral cortex, cerebellum, hypothalamus, and retina) and lymphoid organs (thymus and spleen) were found to be enriched in protein kinase C, whereas lung, kidney, liver, heart, and skeletal muscle contained relatively low amounts of this kinase. Limited proteolysis of the purified rat brain protein kinase C with trypsin results in an initial degradation of the kinase into two major fragments of 48 and 38 kDa. Both fragments are recognized by the antibodies. However, further digestion of the 48-kDa fragment to 45 kDa and the 38-kDa fragment to 33 kDa causes a loss of the immunoreactivity. Upon incubation of the cerebellar extract with Ca2+, the 48-kDa fragment was also identified as a major proteolytic product of protein kinase C. Proteolytic degradation of protein kinase C converts the Ca2+/phospholipid-dependent kinase to an independent form without causing a large impairment of the binding of [3H]phorbol 12,13-dibutyrate. The two major proteolytic fragments were separated by ion exchange chromatography and one of them (45-48 kDa) was identified as a protein kinase and the other (33-38 kDa) as a phorbol ester-binding protein. These results demonstrate that rat brain protein kinase C is composed of two functionally distinct units, namely, a protein kinase and a Ca2+-independent/phospholipid-dependent phorbol ester-binding protein

  13. Differential Function of Arabidopsis SERK Family Receptor-like Kinases in Stomatal Patterning.

    Meng, Xiangzong; Chen, Xin; Mang, Hyunggon; Liu, Chenglong; Yu, Xiao; Gao, Xiquan; Torii, Keiko U; He, Ping; Shan, Libo


    Plants use cell-surface-resident receptor-like kinases (RLKs) to sense diverse extrinsic and intrinsic cues and elicit distinct biological responses. In Arabidopsis, ERECTA family RLKs recognize EPIDERMAL PATTERNING FACTORS (EPFs) to specify stomatal patterning. However, little is known about the molecular link between ERECTA activation and intracellular signaling. We report here that the SOMATIC EMBRYOGENESIS RECEPTOR KINASE (SERK) family RLKs regulate stomatal patterning downstream of EPF ligands and upstream of a MAP kinase cascade. EPF ligands induce the heteromerization of ERECTA and SERK family RLKs. SERK and ERECTA family RLKs transphosphorylate each other. In addition, SERKs associate with the receptor-like protein (RLP) TMM, a signal modulator of stomata development, in a ligand-independent manner, suggesting that ERECTA, SERKs, and TMM form a multiprotein receptorsome consisting of different RLKs and RLP perceiving peptide ligands to regulate stomatal patterning. In contrast to the differential requirement of individual SERK members in plant immunity, cell-death control, and brassinosteroid (BR) signaling, all four functional SERKs are essential but have unequal genetic contributions to stomatal patterning, with descending order of importance from SERK3/BAK1 to SERK2 to SERK1 to SERK4. Although BR signaling connects stomatal development via multiple components, the function of SERKs in stomatal patterning is uncoupled from their involvement in BR signaling. Our results reveal that the SERK family is a shared key module in diverse Arabidopsis signaling receptorsomes and that different combinatorial codes of individual SERK members regulate distinct functions. PMID:26320950

  14. Cellular reprogramming through mitogen-activated protein kinases

    Justin eLee


    Full Text Available Mitogen-activated protein kinase (MAPK cascades are conserved eukaryote signaling modules where MAPKs, as the final kinases in the cascade, phosphorylate protein substrates to regulate cellular processes. While some progress in the identification of MAPK substrates has been made in plants, the knowledge on the spectrum of substrates and their mechanistic action is still fragmentary. In this focused review, we discuss the biological implications of the data in our original paper (Sustained mitogen-activated protein kinase activation reprograms defense metabolism and phosphoprotein profile in Arabidopsis thaliana; Frontiers in Plant Science 5: 554 in the context of related research. In our work, we mimicked in vivo activation of two stress-activated MAPKs, MPK3 and MPK6, through transgenic manipulation of Arabidopsis thaliana and used phosphoproteomics analysis to identify potential novel MAPK substrates. Here, we plotted the identified putative MAPK substrates (and downstream phosphoproteins as a global protein clustering network. Based on a highly stringent selection confidence level, the core networks highlighted a MAPK-induced cellular reprogramming at multiple levels of gene and protein expression – including transcriptional, post-transcriptional, translational, post-translational (such as protein modification, folding and degradation steps, and also protein re-compartmentalization. Additionally, the increase in putative substrates/phosphoproteins of energy metabolism and various secondary metabolite biosynthesis pathways coincides with the observed accumulation of defense antimicrobial substances as detected by metabolome analysis. Furthermore, detection of protein networks in phospholipid or redox elements suggests activation of downstream signaling events. Taken in context with other studies, MAPKs are key regulators that reprogram cellular events to orchestrate defense signaling in eukaryotes.

  15. Protein Kinase A in Cancer

    Antonio Caretta


    Full Text Available In the past, many chromosomal and genetic alterations have been examined as possible causes of cancer. However, some tumors do not display a clear molecular and/or genetic signature. Therefore, other cellular processes may be involved in carcinogenesis. Genetic alterations of proteins involved in signal transduction have been extensively studied, for example oncogenes, while modifications in intracellular compartmentalization of these molecules, or changes in the expression of unmodified genes have received less attention. Yet, epigenetic modulation of second messenger systems can deeply modify cellular functioning and in the end may cause instability of many processes, including cell mitosis. It is important to understand the functional meaning of modifications in second messenger intracellular pathways and unravel the role of downstream proteins in the initiation and growth of tumors. Within this framework, the cAMP system has been examined. cAMP is a second messenger involved in regulation of a variety of cellular functions. It acts mainly through its binding to cAMP-activated protein kinases (PKA, that were suggested to participate in the onset and progression of various tumors. PKA may represent a biomarker for tumor detection, identification and staging, and may be a potential target for pharmacological treatment of tumors.

  16. Protein Kinase A in Cancer

    Caretta, Antonio; Mucignat-Caretta, Carla, E-mail: [Department of Human Anatomy and Physiology, University of Padova, Via Marzolo 3, 35131 Padova (Italy)


    In the past, many chromosomal and genetic alterations have been examined as possible causes of cancer. However, some tumors do not display a clear molecular and/or genetic signature. Therefore, other cellular processes may be involved in carcinogenesis. Genetic alterations of proteins involved in signal transduction have been extensively studied, for example oncogenes, while modifications in intracellular compartmentalization of these molecules, or changes in the expression of unmodified genes have received less attention. Yet, epigenetic modulation of second messenger systems can deeply modify cellular functioning and in the end may cause instability of many processes, including cell mitosis. It is important to understand the functional meaning of modifications in second messenger intracellular pathways and unravel the role of downstream proteins in the initiation and growth of tumors. Within this framework, the cAMP system has been examined. cAMP is a second messenger involved in regulation of a variety of cellular functions. It acts mainly through its binding to cAMP-activated protein kinases (PKA), that were suggested to participate in the onset and progression of various tumors. PKA may represent a biomarker for tumor detection, identification and staging, and may be a potential target for pharmacological treatment of tumors.

  17. Kinome profiling of Arabidopsis using arrays of kinase consensus substrates

    Ritsema, T.; Joore, J.; Workum, W. van; Pieterse, C.M.J.


    Background: Kinome profiling aims at the parallel analysis of kinase activities in a cell. Novel developed arrays containing consensus substrates for kinases are used to assess those kinase activities. The arrays described in this paper were already used to determine kinase activities in mammalian s

  18. Protein kinases associated with the yeast phosphoproteome

    Munn Alan L


    Full Text Available Abstract Background Protein phosphorylation is an extremely important mechanism of cellular regulation. A large-scale study of phosphoproteins in a whole-cell lysate of Saccharomyces cerevisiae has previously identified 383 phosphorylation sites in 216 peptide sequences. However, the protein kinases responsible for the phosphorylation of the identified proteins have not previously been assigned. Results We used Predikin in combination with other bioinformatic tools, to predict which of 116 unique protein kinases in yeast phosphorylates each experimentally determined site in the phosphoproteome. The prediction was based on the match between the phosphorylated 7-residue sequence and the predicted substrate specificity of each kinase, with the highest weight applied to the residues or positions that contribute most to the substrate specificity. We estimated the reliability of the predictions by performing a parallel prediction on phosphopeptides for which the kinase has been experimentally determined. Conclusion The results reveal that the functions of the protein kinases and their predicted phosphoprotein substrates are often correlated, for example in endocytosis, cytokinesis, transcription, replication, carbohydrate metabolism and stress response. The predictions link phosphoproteins of unknown function with protein kinases with known functions and vice versa, suggesting functions for the uncharacterized proteins. The study indicates that the phosphoproteins and the associated protein kinases represented in our dataset have housekeeping cellular roles; certain kinases are not represented because they may only be activated during specific cellular responses. Our results demonstrate the utility of our previously reported protein kinase substrate prediction approach (Predikin as a tool for establishing links between kinases and phosphoproteins that can subsequently be tested experimentally.

  19. The histidine kinases CYTOKININ-INDEPENDENT1 and ARABIDOPSIS HISTIDINE KINASE2 and 3 regulate vascular tissue development in Arabidopsis shoots

    Hejátko, J.; Ryu, H.; Kim, G.-T.; Dobešová, R.; Choi, S.; Choi, S.M.; Souček, Přemysl; Horák, J.; Pekárová, B.; Palme, K.; Brzobohatý, Břetislav; Hwang, I.


    Roč. 21, č. 7 (2009), s. 2008-2021. ISSN 1040-4651 Grant ostatní: GA MŠk(CZ) LN00A081; GA MŠk(CZ) LC06034; GA AV ČR(CZ) IAA600380507 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : cytokinin-independent1 * histidine kinase2 and 3 * Arabidopsis Subject RIV: BO - Biophysics Impact factor: 9.293, year: 2009

  20. The mechanism of protein kinase C regulation

    Julhash U. KAZI


    Protein kinase C (PKC) is a family ofserine/threonine protein kinases that plays a central role in transducing extracellular signals into a variety of intracellular responses ranging from cell proliferation to apoptosis.Nine PKC genes have been identified in the human genome,which encode 10 proteins.Each member of this protein kinase family displays distinct biochemical characteristics and is enriched in different cellular and subcellular locations.Activation of PKC has been implicated in the regulation of cell growth and differentiation.This review summarizes works of the past years in the field of PKC biochemistry that covers regulation and activation mechanism of different PKC isoforms.

  1. Non-degradative Ubiquitination of Protein Kinases.

    K Aurelia Ball; Johnson, Jeffrey R.; Lewinski, Mary K; John Guatelli; Erik Verschueren; Krogan, Nevan J.; Matthew P Jacobson


    Growing evidence supports other regulatory roles for protein ubiquitination in addition to serving as a tag for proteasomal degradation. In contrast to other common post-translational modifications, such as phosphorylation, little is known about how non-degradative ubiquitination modulates protein structure, dynamics, and function. Due to the wealth of knowledge concerning protein kinase structure and regulation, we examined kinase ubiquitination using ubiquitin remnant immunoaffinity enrichm...

  2. Physiological roles of mitogen-activated-protein-kinase-activated p38-regulated/activated protein kinase

    Sergiy; Kostenko; Gianina; Dumitriu; Kari; Jenssen; Lgreid; Ugo; Moens


    Mitogen-activated protein kinases(MAPKs)are a family of proteins that constitute signaling pathways involved in processes that control gene expression,cell division, cell survival,apoptosis,metabolism,differentiation and motility.The MAPK pathways can be divided into conventional and atypical MAPK pathways.The first group converts a signal into a cellular response through a relay of three consecutive phosphorylation events exerted by MAPK kinase kinases,MAPK kinase,and MAPK.Atypical MAPK pathways are not organized into this three-tiered cascade.MAPK that belongs to both conventional and atypical MAPK pathways can phosphorylate both non-protein kinase substrates and other protein kinases.The latter are referred to as MAPK-activated protein kinases.This review focuses on one such MAPK-activated protein kinase,MAPK-activated protein kinase 5(MK5)or p38-regulated/activated protein kinase(PRAK).This protein is highly conserved throughout the animal kingdom and seems to be the target of both conventional and atypical MAPK pathways.Recent findings on the regulation of the activity and subcellular localization,bona fide interaction partners and physiological roles of MK5/PRAK are discussed.

  3. Protein kinase substrate identification on functional protein arrays

    Zhou Fang


    Full Text Available Abstract Background Over the last decade, kinases have emerged as attractive therapeutic targets for a number of different diseases, and numerous high throughput screening efforts in the pharmaceutical community are directed towards discovery of compounds that regulate kinase function. The emerging utility of systems biology approaches has necessitated the development of multiplex tools suitable for proteomic-scale experiments to replace lower throughput technologies such as mass spectroscopy for the study of protein phosphorylation. Recently, a new approach for identifying substrates of protein kinases has applied the miniaturized format of functional protein arrays to characterize phosphorylation for thousands of candidate protein substrates in a single experiment. This method involves the addition of protein kinases in solution to arrays of immobilized proteins to identify substrates using highly sensitive radioactive detection and hit identification algorithms. Results To date, the factors required for optimal performance of protein array-based kinase substrate identification have not been described. In the current study, we have carried out a detailed characterization of the protein array-based method for kinase substrate identification, including an examination of the effects of time, buffer compositions, and protein concentration on the results. The protein array approach was compared to standard solution-based assays for assessing substrate phosphorylation, and a correlation of greater than 80% was observed. The results presented here demonstrate how novel substrates for protein kinases can be quickly identified from arrays containing thousands of human proteins to provide new clues to protein kinase function. In addition, a pooling-deconvolution strategy was developed and applied that enhances characterization of specific kinase-substrate relationships and decreases reagent consumption. Conclusion Functional protein microarrays are an

  4. Momilactone sensitive proteins in Arabidopsis thaliana.

    Kato-Noguchi, Hisashi; Kitajima, Shinya


    The labdane-related diterpenoid, momilactone B has potent growth inhibitory activity and was demonstrated to play a particularly critical role in the allelopathy of rice (Oryza sativa L.). However, there is limited information available about the mode of action of momilactone B on the growth inhibition. The present research describes the effects of momilactone B on protein expression in the early development of Arabidopsis thaliana seedling, which was determined by two-dimensional electrophoresis and MALDI-TOFMS. Momilactone B inhibited the accumulation of subtilisin-like serine protease, amyrin synthase LUP2, β-glucosidase and malate synthase at 1 h after the momilactone application. Those proteins are involved in the metabolic turnover and the production of intermediates needed for cell structures resulting in plant growth and development. Momilactone B also inhibited the breakdown of cruciferin 2, which is essential for seed germination and seedling growth to construct cell structures. Momilactone B induced the accumulation of translationally controlled tumor protein, glutathione S-transferase and 1-cysteine peroxiredoxin 1. These proteins are involved in stress responses and increased stress tolerance. In addition, glutathione S-transferase has the activity of herbicide detoxification and 1-cysteine peroxiredoxin 1 has inhibitory activity for seed germination under unfavorable conditions. The present research suggests that momilactone B may inhibit the seedling growth by the inhibition of the metabolic turnover and the production of intermediates for cell structures. In addition, momilactone induced proteins associated with plant defense responses. PMID:26058145

  5. FERONIA receptor kinase interacts with S-adenosylmethionine synthetase and suppresses S-adenosylmethionine production and ethylene biosynthesis in Arabidopsis.

    Mao, Dandan; Yu, Feng; Li, Jian; Van de Poel, Bram; Tan, Dan; Li, Jianglin; Liu, Yanqionq; Li, Xiushang; Dong, Mengqiu; Chen, Liangbi; Li, Dongping; Luan, Sheng


    Environmental inputs such as stress can modulate plant cell metabolism, but the detailed mechanism remains unclear. We report here that FERONIA (FER), a plasma membrane receptor-like kinase, may negatively regulate the S-adenosylmethionine (SAM) synthesis by interacting with two S-adenosylmethionine synthases (SAM1 and SAM2). SAM participates in ethylene, nicotianamine and polyamine biosynthetic pathways and provides the methyl group for protein and DNA methylation reactions. The Arabidopsis fer mutants contained a higher level of SAM and ethylene in plant tissues and displayed a dwarf phenotype. Such phenotype in the fer mutants was mimicked by over-expressing the S-adenosylmethionine synthetase in transgenic plants, whereas sam1/2 double mutant showed an opposite phenotype. We propose that FER receptor kinase, in response to environmental stress and plant hormones such as auxin and BR, interacts with SAM synthases and down-regulates ethylene biosynthesis. PMID:25988356

  6. Protein kinase domain of twitchin has protein kinase activity and an autoinhibitory region.

    Lei, J; Tang, X; Chambers, T C; Pohl, J; Benian, G M


    Twitchin is a 753-kDa polypeptide located in the muscle A-bands of the nematode, Caenorhabditis elegans. It consists of multiple copies of both fibronectin III and immunoglobulin C2 domains and, near the C terminus, a protein kinase domain with greatest homology to the catalytic domains of myosin light chain kinases. We have expressed and purified from Escherichia coli twitchin's protein kinase catalytic core and flanking sequences that do not include fibronectin III and immunoglobulin C2 domains. The protein was shown to phosphorylate a model substrate and to undergo autophosphorylation. The autophosphorylation occurs at a slow rate, attaining a maximum at 3 h with a stoichiometry of about 1.0 mol of phosphate/mol of protein, probably through an intramolecular mechanism. Sequence analysis of proteolytically derived phosphopeptides revealed that autophosphorylation occurred N-terminal to the catalytic core, predominantly at Thr-5910, with possible minor sites at Ser5912 and/or Ser-5913. This portion of twitchin (residues 5890-6268) was also phosphorylated in vitro by protein kinase C in the absence of calcium and phosphotidylserine, but not by cAMP-dependent protein kinase. By comparing the activities of three twitchin segments, the enzyme appears to be inhibited by the 60-amino acid residues lying just C-terminal to the kinase catalytic core. Thus, like a number of other protein kinases including myosin light chain kinases, the twitchin kinase appears to be autoregulated. PMID:8063727

  7. Regulation of the interaction between protein kinase C-related protein kinase 2 (PRK2) and its upstream kinase, 3-phosphoinositide-dependent protein kinase 1 (PDK1)

    Dettori, Rosalia; Sonzogni, Silvina; Meyer, Lucas;


    The members of the AGC kinase family frequently exhibit three conserved phosphorylation sites: the activation loop, the hydrophobic motif (HM), and the zipper (Z)/turn-motif (TM) phosphorylation site. 3-Phosphoinositide-dependent protein kinase 1 (PDK1) phosphorylates the activation loop of...... numerous AGC kinases, including the protein kinase C-related protein kinases (PRKs). Here we studied the docking interaction between PDK1 and PRK2 and analyzed the mechanisms that regulate this interaction. In vivo labeling of recombinant PRK2 by (32)P(i) revealed phosphorylation at two sites, the...... the mechanism that negatively regulates the docking interaction of PRK2 to the upstream kinase PDK1 is directly linked to the activation mechanism of PRK2 itself. Finally, our results indicate that the mechanisms underlying the regulation of the interaction between PRK2 and PDK1 are specific for PRK2...

  8. Mitogen-activated protein kinases in atherosclerosis

    Dorota Bryk


    Full Text Available Intracellular signalling cascades, in which MAPK (mitogen-activated protein kinases intermediate, are responsible for a biological response of a cell to an external stimulus. MAP kinases, which include ERK1/2 (extracellular signalling-regulated kinase, JNK (c-Jun N-terminal kinase and p 38 MAPK, regulate the activity of many proteins, enzymes and transcription factors and thus have a wide spectrum of biological effects. Many basic scientific studies have defined numerous details of their pathway organization and activation. There are also more and more studies suggesting that individual MAP kinases probably play an important role in the pathogenesis of atherosclerosis. They may mediate inflammatory processes, endothelial cell activation, monocyte/macrophage recruitment and activation, smooth muscle cell proliferation and T-lymphocyte differentiation, all of which represent crucial mechanisms involved in pathogenesis of atherosclerosis. The specific inhibition of an activity of the respective MAP kinases may prove a new therapeutic approach to attenuate atherosclerotic plaque formation in the future. In this paper, we review the current state of knowledge concerning MAP kinase-dependent cellular and molecular mechanisms underlying atherosclerosis.

  9. [Mitogen-activated protein kinases in atherosclerosis].

    Bryk, Dorota; Olejarz, Wioletta; Zapolska-Downar, Danuta


    Intracellular signalling cascades, in which MAPK (mitogen-activated protein kinases) intermediate, are responsible for a biological response of a cell to an external stimulus. MAP kinases, which include ERK1/2 (extracellular signalling-regulated kinase), JNK (c-Jun N-terminal kinase) and p 38 MAPK, regulate the activity of many proteins, enzymes and transcription factors and thus have a wide spectrum of biological effects. Many basic scientific studies have defined numerous details of their pathway organization and activation. There are also more and more studies suggesting that individual MAP kinases probably play an important role in the pathogenesis of atherosclerosis. They may mediate inflammatory processes, endothelial cell activation, monocyte/macrophage recruitment and activation, smooth muscle cell proliferation and T-lymphocyte differentiation, all of which represent crucial mechanisms involved in pathogenesis of atherosclerosis. The specific inhibition of an activity of the respective MAP kinases may prove a new therapeutic approach to attenuate atherosclerotic plaque formation in the future. In this paper, we review the current state of knowledge concerning MAP kinase-dependent cellular and molecular mechanisms underlying atherosclerosis. PMID:24491891

  10. Rapid Oligo-Galacturonide Induced Changes in Protein Phosphorylation in Arabidopsis.

    Kohorn, Bruce D; Hoon, Divya; Minkoff, Benjamin B; Sussman, Michael R; Kohorn, Susan L


    The wall-associated kinases (WAKs)(1)are receptor protein kinases that bind to long polymers of cross-linked pectin in the cell wall. These plasma-membrane-associated protein kinases also bind soluble pectin fragments called oligo-galacturonides (OGs) released from the wall after pathogen attack and damage. WAKs are required for cell expansion during development but bind water soluble OGs generated from walls with a higher affinity than the wall-associated polysaccharides. OGs activate a WAK-dependent, distinct stress-like response pathway to help plants resist pathogen attack. In this report, a quantitative mass-spectrometric-based phosphoproteomic analysis was used to identify Arabidopsis cellular events rapidly induced by OGsin planta Using N(14/)N(15)isotopicin vivometabolic labeling, we screened 1,000 phosphoproteins for rapid OG-induced changes and found 50 proteins with increased phosphorylation, while there were none that decreased significantly. Seven of the phosphosites within these proteins overlap with those altered by another signaling molecule plants use to indicate the presence of pathogens (the bacterial "elicitor" peptide Flg22), indicating distinct but overlapping pathways activated by these two types of chemicals. Genetic analysis of genes encoding 10 OG-specific and two Flg22/OG-induced phosphoproteins reveals that null mutations in eight proteins compromise the OG response. These phosphorylated proteins with genetic evidence supporting their role in the OG response include two cytoplasmic kinases, two membrane-associated scaffold proteins, a phospholipase C, a CDPK, an unknown cadmium response protein, and a motor protein. Null mutants in two proteins, the putative scaffold protein REM1.3, and a cytoplasmic receptor like kinase ROG2, enhance and suppress, respectively, a dominantWAKallele. Altogether, the results of these chemical and genetic experiments reveal the identity of several phosphorylated proteins involved in the kinase

  11. Structural basis for the regulation of N-acetylglutamate kinase by PII in Arabidopsis thaliana.

    Mizuno, Yutaka; Moorhead, Greg B G; Ng, Kenneth K-S


    PII is a highly conserved regulatory protein found in organisms across the three domains of life. In cyanobacteria and plants, PII relieves the feedback inhibition of the rate-limiting step in arginine biosynthesis catalyzed by N-acetylglutamate kinase (NAGK). To understand the molecular structural basis of enzyme regulation by PII, we have determined a 2.5-A resolution crystal structure of a complex formed between two homotrimers of PII and a single hexamer of NAGK from Arabidopsis thaliana bound to the metabolites N-acetylglutamate, ADP, ATP, and arginine. In PII, the T-loop and Trp(22) at the start of the alpha1-helix, which are both adjacent to the ATP-binding site of PII, contact two beta-strands as well as the ends of two central helices (alphaE and alphaG) in NAGK, the opposing ends of which form major portions of the ATP and N-acetylglutamate substrate-binding sites. The binding of Mg(2+).ATP to PII stabilizes a conformation of the T-loop that favors interactions with both open and closed conformations of NAGK. Interactions between PII and NAGK appear to limit the degree of opening and closing of the active-site cleft in opposition to a domain-separating inhibitory effect exerted by arginine, thus explaining the stimulatory effect of PII on the kinetics of arginine-inhibited NAGK. PMID:17913711

  12. Oncoprotein protein kinase antibody kit

    Karin, Michael; Hibi, Masahiko; Lin, Anning


    An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD as determined by reducing SDS-PAGE, having serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  13. Non-degradative Ubiquitination of Protein Kinases.

    K Aurelia Ball


    Full Text Available Growing evidence supports other regulatory roles for protein ubiquitination in addition to serving as a tag for proteasomal degradation. In contrast to other common post-translational modifications, such as phosphorylation, little is known about how non-degradative ubiquitination modulates protein structure, dynamics, and function. Due to the wealth of knowledge concerning protein kinase structure and regulation, we examined kinase ubiquitination using ubiquitin remnant immunoaffinity enrichment and quantitative mass spectrometry to identify ubiquitinated kinases and the sites of ubiquitination in Jurkat and HEK293 cells. We find that, unlike phosphorylation, ubiquitination most commonly occurs in structured domains, and on the kinase domain, ubiquitination is concentrated in regions known to be important for regulating activity. We hypothesized that ubiquitination, like other post-translational modifications, may alter the conformational equilibrium of the modified protein. We chose one human kinase, ZAP-70, to simulate using molecular dynamics with and without a monoubiquitin modification. In Jurkat cells, ZAP-70 is ubiquitinated at several sites that are not sensitive to proteasome inhibition and thus may have other regulatory roles. Our simulations show that ubiquitination influences the conformational ensemble of ZAP-70 in a site-dependent manner. When monoubiquitinated at K377, near the C-helix, the active conformation of the ZAP-70 C-helix is disrupted. In contrast, when monoubiquitinated at K476, near the kinase hinge region, an active-like ZAP-70 C-helix conformation is stabilized. These results lead to testable hypotheses that ubiquitination directly modulates kinase activity, and that ubiquitination is likely to alter structure, dynamics, and function in other protein classes as well.


    Pyruvate dehydrogenase kinase (PDK) is the primary regulator of flux through the mitochondrial pyruvate dehydrogenase complex (PDC). Analysis of the primary amino acid sequences of PDK from various sources reveals that these enzymes include the five domains characteristic of prokaryotic two-compone...

  15. Rational design of protein kinase inhibitors

    Yarmoluk S. M.


    Full Text Available Modern methodological approaches to rational design of low molecular weight compounds with specific activity in relation to predetermined biomolecular targets are considered by example of development of high effective protein kinase inhibitors. The application of new computational methods that allow to significantly improve the quality of computational experiments (in, particular, accuracy of low molecular weight compounds activity prediction without increase of computational and time costs are highlighted. The effectiveness of strategy of rational design is demonstrated by examples of several own investigations devoted to development of new inhibitors that are high effective and selective towards protein kinases CK2, FGFR1 and ASK1.

  16. Statistical analysis of protein kinase specificity determinants

    Kreegipuu, Andres; Blom, Nikolaj; Brunak, Søren;


    The site and sequence specificity of protein kinase, as well as the role of the secondary structure and surface accessibility of the phosphorylation sites on substrate proteins, was statistically analyzed. The experimental data were collected from the literature and are available on the World Wide...... Web at The set of data involved 1008 phosphorylatable sites in 406 proteins, which were phosphorylated by 58 protein kinases. It was found that there exists almost absolute SER/Thr or Tyr specificity, with rare exceptions. The sequence specificity...... determinants were less strict and were located between positions -4 and +4 relative to the phosphorylation site. Secondary structure and surface accessibility predictions revealed that most of the phosphorylation sites were located on the surface of the target proteins....

  17. Arabidopsis decuple mutant reveals the importance of SnRK2 kinases in osmotic stress responses in vivo

    Fujii, Hiroaki


    Osmotic stress associated with drought or salinity is a major factor that limits plant productivity. Protein kinases in the SNF1-related protein kinase 2 (SnRK2) family are activated by osmotic stress, suggesting that the kinases are involved in osmotic stress signaling. However, due to functional redundancy, their contribution to osmotic stress responses remained unclear. In this report, we constructed an Arabidopsis line carrying mutations in all 10 members of the SnRK2 family. The decuple mutant snrk2.1/2/3/4/5/6/7/8/9/10 grew poorly under hyperosmotic stress conditions but was similar to the wild type in culture media in the absence of osmotic stress. The mutant was also defective in gene regulation and the accumulation of abscisic acid (ABA), proline, and inositol 1,4,5-trisphosphate under osmotic stress. In addition, analysis of mutants defective in the ABA-activated SnRK2s (snrk2.2/3/6) and mutants defective in the rest of the SnRK2s (snrk2.1/4/5/7/8/9/10) revealed that SnRK2s are a merging point of ABA-dependent and -independent pathways for osmotic stress responses. These results demonstrate critical functions of the SnRK2s in mediating osmotic stress signaling and tolerance.

  18. CPK12: A Ca2+-dependent protein kinase balancer in abscisic acid signaling

    Zhao, Rui; Wang, Xiao-Fang; Zhang, Da-Peng


    Ca2+ is believed to be a critical second messenger in ABA signal transduction. Ca2+-dependent protein kinases (CDPKs) are the best characterized Ca2+ sensors in plants. Recently, we identified an Arabidopsis CDPK member CPK12 as a negative regulator of ABA signaling in seed germination and post-germination growth, which reveals that different members of the CDPK family may constitute a regulation loop by functioning positively and negatively in ABA signal transduction. We observed that both R...

  19. Problem-Solving Test: "In Vitro" Protein Kinase A Reaction

    Szeberenyi, Jozsef


    Phosphorylation of proteins by protein kinases is an important mechanism in the regulation of protein activity. Among hundreds of protein kinases present in human cells, PKA, the first kinase discovered, belongs to the most important and best characterized group of these enzymes. The author presents an experiment that analyzes the "in vitro"…

  20. Statistical analysis of protein kinase specificity determinants

    Kreegipuu, Andres; Blom, Nikolaj; Brunak, Søren; Jarv, Jaak


    The site and sequence specificity of protein kinase, as well as the role of the secondary structure and surface accessibility of the phosphorylation sites on substrate proteins, was statistically analyzed. The experimental data were collected from the literature and are available on the World Wid...... determinants were less strict and were located between positions -4 and +4 relative to the phosphorylation site. Secondary structure and surface accessibility predictions revealed that most of the phosphorylation sites were located on the surface of the target proteins.......The site and sequence specificity of protein kinase, as well as the role of the secondary structure and surface accessibility of the phosphorylation sites on substrate proteins, was statistically analyzed. The experimental data were collected from the literature and are available on the World Wide...... Web at The set of data involved 1008 phosphorylatable sites in 406 proteins, which were phosphorylated by 58 protein kinases. It was found that there exists almost absolute SER/Thr or Tyr specificity, with rare exceptions. The sequence specificity...

  1. Proteomic identification of S-nitrosylated proteins in Arabidopsis

    Lindermayr, C.; Saalbach, G.; Durner, J.


    one of the dominant regulation mechanisms for many animal proteins. For plants, the principle of S-nitrosylation remained to be elucidated. We generated S-nitrosothiols by treating extracts from Arabidopsis (Arabidopsis thaliana) cell suspension cultures with the NO-donor S......Although nitric oxide (NO) has grown into a key signaling molecule in plants during the last few years, less is known about how NO regulates different events in plants. Analyses of NO-dependent processes in animal systems have demonstrated protein S-nitrosylation of cysteine (Cys) residues to be......-nitrosoglutathione. Furthermore, Arabidopsis plants were treated with gaseous NO to analyze whether S-nitrosylation can occur in the specific redox environment of a plant cell in vivo. S-Nitrosylated proteins were detected by a biotin switch method, converting S-nitrosylated Cys to biotinylated Cys. Biotin-labeled proteins were...

  2. A proteomic approach for comprehensively screening substrates of protein kinases such as Rho-kinase.

    Mutsuki Amano

    Full Text Available BACKGROUND: Protein kinases are major components of signal transduction pathways in multiple cellular processes. Kinases directly interact with and phosphorylate downstream substrates, thus modulating their functions. Despite the importance of identifying substrates in order to more fully understand the signaling network of respective kinases, efficient methods to search for substrates remain poorly explored. METHODOLOGY/PRINCIPAL FINDINGS: We combined mass spectrometry and affinity column chromatography of the catalytic domain of protein kinases to screen potential substrates. Using the active catalytic fragment of Rho-kinase/ROCK/ROK as the model bait, we obtained about 300 interacting proteins from the rat brain cytosol fraction, which included the proteins previously reported as Rho-kinase substrates. Several novel interacting proteins, including doublecortin, were phosphorylated by Rho-kinase both in vitro and in vivo. CONCLUSIONS/SIGNIFICANCE: This method would enable identification of novel specific substrates for kinases such as Rho-kinase with high sensitivity.

  3. ARAMEMNON, a novel database for Arabidopsis integral membrane proteins

    Schwacke, Rainer; Schneider, Anja; van der Graaff, Eric;


    A specialized database (DB) for Arabidopsis membrane proteins, ARAMEMNON, was designed that facilitates the interpretation of gene and protein sequence data by integrating features that are presently only available from individual sources. Using several publicly available prediction programs, put...... is accessible at the URL

  4. Identification of novel in vivo MAP kinase substrates in Arabidopsis thaliana through use of tandem metal oxide affinity chromatography.

    Hoehenwarter, Wolfgang; Thomas, Martin; Nukarinen, Ella; Egelhofer, Volker; Röhrig, Horst; Weckwerth, Wolfram; Conrath, Uwe; Beckers, Gerold J M


    Mitogen-activated protein kinase (MPK) cascades are important for eukaryotic signal transduction. They convert extracellular stimuli (e.g. some hormones, growth factors, cytokines, microbe- or damage-associated molecular patterns) into intracellular responses while at the same time amplifying the transmitting signal. By doing so, they ensure proper performance, and eventually survival, of a given organism, for example in times of stress. MPK cascades function via reversible phosphorylation of cascade components MEKKs, MEKs, and MPKs. In plants the identity of most MPK substrates remained elusive until now. Here, we provide a robust and powerful approach to identify and quantify, with high selectivity, site-specific phosphorylation of MPK substrate candidates in the model plant Arabidopsis thaliana. Our approach represents a two-step chromatography combining phosphoprotein enrichment using Al(OH)(3)-based metal oxide affinity chromatography, tryptic digest of enriched phosphoproteins, and TiO(2)-based metal oxide affinity chromatography to enrich phosphopeptides from complex protein samples. When applied to transgenic conditional gain-of-function Arabidopsis plants supporting in planta activation of MPKs, the approach allows direct measurement and quantification ex vivo of site-specific phosphorylation of several reported and many yet unknown putative MPK substrates in just a single experiment. PMID:23172892

  5. Protein kinase CK2 in health and disease: Protein kinase CK2: from structures to insights

    Niefind, K; Raaf, J; Issinger, Olaf-Georg


    Within the last decade, 40 crystal structures corresponding to protein kinase CK2 (former name 'casein kinase 2'), to its catalytic subunit CK2alpha and to its regulatory subunit CK2beta were published. Together they provide a valuable, yet by far not complete basis to rationalize the biochemical...... critical region of CK2alpha recruitment is pre-formed in the unbound state. In CK2alpha the activation segment - a key element of protein kinase regulation - adapts invariably the typical conformation of the active enzymes. Recent structures of human CK2alpha revealed a surprising plasticity in the ATP...

  6. Evidence for Intermolecular Interactions between the Intracellular Domains of the Arabidopsis Receptor-Like Kinase ACR4, Its Homologs and the Wox5 Transcription Factor

    Meyer, Matthew R.; Shah, Shweta; Zhang, J.; Rohrs, Henry; Rao, A. Gururaj


    Arabidopsis CRINKLY4 (ACR4) is a receptor-like kinase (RLK) involved in the global development of the plant. The Arabidopsis genome encodes four homologs of ACR4 that contain sequence similarity and analogous architectural elements to ACR4, termed Arabidopsis CRINKLY4 Related (AtCRRs) proteins. Additionally, a signaling module has been previously proposed including a postulated peptide ligand, CLE40, the ACR4 RLK, and the WOX5 transcription factor that engage in a possible feedback mechanism controlling stem cell differentiation. However, little biochemical evidence is available to ascertain the molecular aspects of receptor heterodimerization and the role of phosphorylation in these interactions. Therefore, we have undertaken an investigation of the in vitro interactions between the intracellular domains (ICD) of ACR4, the CRRs and WOX5. We demonstrate that interaction can occur between ACR4 and all four CRRs in the unphosphorylated state. However, phosphorylation dependency is observed for the interaction between ACR4 and CRR3. Furthermore, sequence analysis of the ACR4 gene family has revealed a conserved ‘KDSAF’ motif that may be involved in protein-protein interactions among the receptor family. We demonstrate that peptides harboring this conserved motif in CRR3 and CRK1are able to bind to the ACR4 kinase domain. Our investigations also indicate that the ACR4 ICD can interact with and phosphorylate the transcription factor WOX5. PMID:25756623

  7. Oral protein kinase c β inhibition using ruboxistaurin

    Aiello, Lloyd Paul; Vignati, Louis; Sheetz, Matthew J;


    To evaluate efficacy, safety, and causes of vision loss among 813 patients (1,392 eyes) with moderately severe to very severe nonproliferative diabetic retinopathy from the Protein Kinase C β Inhibitor-Diabetic Retinopathy Study and Protein Kinase C β Inhibitor-Diabetic Retinopathy Study 2...... ruboxistaurin (RBX) protein kinase C β inhibitor trials....

  8. Differential phosphorylation of ribosomal acidic proteins from yeast cell by two endogenous protein kinases: casein kinase-2 and 60S kinase

    The native 80S ribosomes isolated from ''Saccharomyces cerevisiae'' (strain W303) cells was phosphorylated by two endogenous protein kinases: multifunctional casein kinase-2 (CK-2) and specific 60S kinase. Three acidic proteins within the 60S ribosomal subunit: YP1β, YP1β' and YP2α are phosphorylated by both kinases. The other two proteins: YP1α and YP2β are predominantly phosphorylated by CK-2 but not by 60S kinase. This was confirmed in the experiment with the recombinant protein, YP2β, as a substrate, which is practically not phosphorylated by specific 60S kinase. These results together with the previous data based on the target amino-acid sequences suggest that, in addition to the multifunctional casein kinase-2 and specific 60S kinase, there exist probably other protein kinase(s) which phosphorylate the ribosomal acidic proteins in the cell. (author). 23 refs, 3 figs, 1 tab


    Wong, Aloysius Tze


    Nitric oxide (NO) is an important signaling molecule in plants. In the pollen of Arabidopsis thaliana, NO causes re-orientation of the growing tube and this response is mediated by 3′,5′-cyclic guanosine monophosphate (cGMP). However, in plants, NO-sensors have remained somewhat elusive. Here, the findings of an NO-binding candidate, Arabidopsis thaliana DIACYLGLYCEROL KINASE 4 (ATDGK4; AT5G57690) is presented. In addition to the annotated diacylglycerol kinase domain, this molecule also harbors a predicted heme-NO/oxygen (H-NOX) binding site and a guanylyl cyclase (GC) catalytic domain which have been identified based on the alignment of functionally conserved amino acid residues across species. A 3D model of the molecule was constructed, and from which the locations of the kinase catalytic center, the ATP-binding site, the GC and H-NOX domains were estimated. Docking of ATP to the kinase catalytic center was also modeled. The recombinant ATDGK4 demonstrated kinase activity in vitro, catalyzing the ATP-dependent conversion of sn-1,2-diacylglycerol (DAG) to phosphatidic acid (PA). This activity was inhibited by the mammalian DAG kinase inhibitor R59949 and importantly also by the NO donors diethylamine NONOate (DEA NONOate) and sodium nitroprusside (SNP). Recombinant ATDGK4 also has GC activity in vitro, catalyzing the conversion of guanosine-5\\'-triphosphate (GTP) to cGMP. The catalytic domains of ATDGK4 kinase and GC may be independently regulated since the kinase but not the GC, was inhibited by NO while Ca2+ only stimulates the GC. It is likely that the DAG kinase product, PA, causes the release of Ca2+ from the intracellular stores and Ca2+ in turn activates the GC domain of ATDGK4 through a feedback mechanism. Analysis of publicly available microarray data has revealed that ATDGK4 is highly expressed in the pollen. Here, the pollen tubes of mis-expressing atdgk4 recorded slower growth rates than the wild-type (Col-0) and importantly, they showed altered

  10. Modulation of mitogen-activated protein kinase-activated protein kinase 3 by hepatitis C virus core protein

    Ngo, HT; Pham, Long; Kim, JW;


    , approximately 100 cellular proteins were identified as HCV core-interacting partners. Of these candidates, mitogen-activated protein kinase-activated protein kinase 3 (MAPKAPK3) was selected for further characterization. MAPKAPK3 is a serine/threonine protein kinase that is activated by stress and growth...... inducers. Binding of HCV core to MAPKAPK3 was confirmed by in vitro pulldown assay and further verified by coimmunoprecipitation assay. HCV core protein interacted with MAPKAPK3 through amino acid residues 41 to 75 of core and the N-terminal half of kinase domain of MAPKAPK3. In addition, both RNA and......Hepatitis C virus (HCV) is highly dependent on cellular proteins for its own propagation. In order to identify the cellular factors involved in HCV propagation, we performed protein microarray assays using the HCV core protein as a probe. Of ~9,000 host proteins immobilized in a microarray...

  11. CK2: a protein kinase in need of control

    Guerra, B; Boldyreff, B; Sarno, S;


    Protein kinase CK2 is a heterotetrameric alpha2beta2 Ser/Thr protein kinase with some features unusual among the eukaryotic protein kinases: (1) CK2 recognizes phosphoacceptor sites specified by several acidic determinants; (2) CK2 can use both ATP and GTP as phosphoryl donors; and (3) the...... response to nucleotide analogs. The increasing knowledge of CK2 structure-function relationships will allow the design of highly selective inhibitors of this pleiotropic kinase with oncogenic potential....

  12. Differential AMP-activated Protein Kinase (AMPK) Recognition Mechanism of Ca2+/Calmodulin-dependent Protein Kinase Kinase Isoforms.

    Fujiwara, Yuya; Kawaguchi, Yoshinori; Fujimoto, Tomohito; Kanayama, Naoki; Magari, Masaki; Tokumitsu, Hiroshi


    Ca(2+)/calmodulin-dependent protein kinase kinase β (CaMKKβ) is a known activating kinase for AMP-activated protein kinase (AMPK). In vitro, CaMKKβ phosphorylates Thr(172) in the AMPKα subunit more efficiently than CaMKKα, with a lower Km (∼2 μm) for AMPK, whereas the CaMKIα phosphorylation efficiencies by both CaMKKs are indistinguishable. Here we found that subdomain VIII of CaMKK is involved in the discrimination of AMPK as a native substrate by measuring the activities of various CaMKKα/CaMKKβ chimera mutants. Site-directed mutagenesis analysis revealed that Leu(358) in CaMKKβ/Ile(322) in CaMKKα confer, at least in part, a distinct recognition of AMPK but not of CaMKIα. PMID:27151216

  13. Genome-wide Analysis of Ovate Family Proteins in Arabidopsis

    Huang Jian-ping; Li Hong-ling; Chang Ying


    Arabidopsis thaliana ovate family proteins (AtOFPs) is a newly found plant-specific protein family interacting with TALE (3-aa loop extension homeodomain proteins) homeodomain proteins in Arabidopsis. Here, based on bioinformatic analysis, we found that Arabidopsis genome actually encoded 17 OVATE domain-containing proteins. One of them, AtOFP19, has not been previously identified. Based on their amino acid sequence similarity, AtOFPs proteins can be divided into two groups. Most of the AtOFPs were located in nuclear, four of them were presented in chloroplast and the remaining two members appeared in cytoplasmic. A genome- wide microarray based gene expression analysis involving 47 stages of vegetative and reproductive development revealed that AtOFPs have diverse expression pattems. Investigation of proteins interaction showed that nine AtOFPs only interacted with TALE homeodomain proteins, which are fundamental regulators of plant meristem function and leaf development. Our work could provide important leads toward functional genomics studies of ovate family proteins, which may be involved in a previously unrecognized control mechanism in plant development

  14. Arabidopsis cysteine-rich receptor-like kinase 45 functions in the responses to abscisic acid and abiotic stresses

    Zhang, Xiujuan


    The phytohormone abscisic acid (ABA) regulates seed germination, plant growth and development, and response to abiotic stresses such as drought and salt stresses. Receptor-like kinases are well known signaling components that mediate plant responses to developmental and environmental stimuli. Here, we characterized the biological function of an ABA and stress-inducible cysteine-rich receptor-like protein kinase, CRK45, in ABA signaling in Arabidopsis thaliana. The crk45 mutant was less sensitive to ABA than the wild type during seed germination and early seedling development, whereas CRK45 overexpression plants were more sensitive to ABA compared to the wild type. Furthermore, overexpression of CRK45 led to hypersensitivity to salt and glucose inhibition of seed germination, whereas the crk45 mutant showed the opposite phenotypes. In addition, CRK45 overexpression plants had enhanced tolerance to drought. Gene expression analyses revealed that the expression of representative stress-responsive genes was significantly enhanced in CRK45 overexpression plants in response to salt stress. ABA biosynthetic genes such as NCED3,. 22NCED3, 9-Cis-Epoxycarotenoid Dioxygenase 3.NCED5,. 33NCED5, 9-Cis-Epoxycarotenoid Dioxygenase 5.ABA2,. 44ABA2, Abscisic Acid Deficient 2. and AAO355AAO3, Abscisic Aldehyde Oxidase 3. were also constitutively elevated in the CRK45 overexpression plants. We concluded that CRK45 plays an important role in ABA signaling that regulates Arabidopsis seeds germination, early seedling development and abiotic stresses response, by positively regulating ABA responses in these processes. © 2013 Elsevier Masson SAS.

  15. AtPIN: Arabidopsis thaliana Protein Interaction Network

    Silva-Filho Marcio C


    Full Text Available Abstract Background Protein-protein interactions (PPIs constitute one of the most crucial conditions to sustain life in living organisms. To study PPI in Arabidopsis thaliana we have developed AtPIN, a database and web interface for searching and building interaction networks based on publicly available protein-protein interaction datasets. Description All interactions were divided into experimentally demonstrated or predicted. The PPIs in the AtPIN database present a cellular compartment classification (C3 which divides the PPI into 4 classes according to its interaction evidence and subcellular localization. It has been shown in the literature that a pair of genuine interacting proteins are generally expected to have a common cellular role and proteins that have common interaction partners have a high chance of sharing a common function. In AtPIN, due to its integrative profile, the reliability index for a reported PPI can be postulated in terms of the proportion of interaction partners that two proteins have in common. For this, we implement the Functional Similarity Weight (FSW calculation for all first level interactions present in AtPIN database. In order to identify target proteins of cytosolic glutamyl-tRNA synthetase (Cyt-gluRS (AT5G26710 we combined two approaches, AtPIN search and yeast two-hybrid screening. Interestingly, the proteins glutamine synthetase (AT5G35630, a disease resistance protein (AT3G50950 and a zinc finger protein (AT5G24930, which has been predicted as target proteins for Cyt-gluRS by AtPIN, were also detected in the experimental screening. Conclusions AtPIN is a friendly and easy-to-use tool that aggregates information on Arabidopsis thaliana PPIs, ontology, and sub-cellular localization, and might be a useful and reliable strategy to map protein-protein interactions in Arabidopsis. AtPIN can be accessed at

  16. Protein kinase A signalling in Schistosoma mansoni cercariae and schistosomules.

    Hirst, Natasha L; Lawton, Scott P; Walker, Anthony J


    Cyclic AMP (cAMP)-dependent protein kinase/protein kinase A regulates multiple processes in eukaryotes by phosphorylating diverse cellular substrates, including metabolic and signalling enzymes, ion channels and transcription factors. Here we provide insight into protein kinase A signalling in cercariae and 24h in vitro cultured somules of the blood parasite, Schistosoma mansoni, which causes human intestinal schistosomiasis. Functional mapping of activated protein kinase A using anti-phospho protein kinase A antibodies and confocal laser scanning microscopy revealed activated protein kinase A in the central and peripheral nervous system, oral-tip sensory papillae, oesophagus and excretory system of intact cercariae. Cultured 24h somules, which biologically represent the skin-resident stage of the parasite, exhibited similar activation patterns in oesophageal and nerve tissues but also displayed striking activation at the tegument and activation in a region resembling the germinal 'stem' cell cluster. The adenylyl cyclase activator, forskolin, stimulated somule protein kinase A activation and produced a hyperkinesia phenotype. The biogenic amines, serotonin and dopamine known to be present in skin also induced protein kinase A activation in somules, whereas neuropeptide Y or [Leu(31),Pro(34)]-neuropeptide Y attenuated protein kinase A activation. However, neuropeptide Y did not block the forskolin-induced somule hyperkinesia. Bioinformatic investigation of potential protein associations revealed 193 medium confidence and 59 high confidence protein kinase A interacting partners in S. mansoni, many of which possess putative protein kinase A phosphorylation sites. These data provide valuable insight into the intricacies of protein kinase A signalling in S. mansoni and a framework for further physiological investigations into the roles of protein kinase A in schistosomes, particularly in the context of interactions between the parasite and the host. PMID:26777870

  17. Distribution of protein kinase Mzeta and the complete protein kinase C isoform family in rat brain

    Naik, M U; Benedikz, Eirikur; Hernandez, I;


    Protein kinase C (PKC) is a multigene family of at least ten isoforms, nine of which are expressed in brain (alpha, betaI, betaII, gamma, delta, straightepsilon, eta, zeta, iota/lambda). Our previous studies have shown that many of these PKCs participate in synaptic plasticity in the CA1 region of......, protein kinase Mzeta (PKMzeta). In this study, we used immunoblot and immunocytochemical techniques with isoform-specific antisera to examine the distribution of the complete family of PKC isozymes and PKMzeta in rat brain. Each form of PKC showed a widespread distribution in the brain with a distinct...

  18. Mitogen-activated protein kinase signaling in plants

    Rodriguez, Maria Cristina Suarez; Petersen, Morten; Mundy, John


    Eukaryotic mitogen-activated protein kinase (MAPK) cascades have evolved to transduce environmental and developmental signals into adaptive and programmed responses. MAPK cascades relay and amplify signals via three types of reversibly phosphorylated kinases leading to the phosphorylation of...... substrate proteins, whose altered activities mediate a wide array of responses, including changes in gene expression. Cascades may share kinase components, but their signaling specificity is maintained by spaciotemporal constraints and dynamic protein-protein interactions and by mechanisms that include...

  19. Photoinduced structural changes to protein kinase A

    Rozinek, Sarah C.; Thomas, Robert J.; Brancaleon, Lorenzo


    The importance of porphyrins in organisms is underscored by the ubiquitous biological and biochemical functions that are mediated by these compounds and by their potential biomedical and biotechnological applications. Protoporphyrin IX (PPIX) is the precursor to heme and has biomedical applications such as its use as a photosensitizer in phototherapy and photodetection of cancer. Among other applications, our group has demonstrated that low-irradiance exposure to laser irradiation of PPIX, Fe-PPIX, or meso-tetrakis (4-sulfonatophenyl) porphyrin (TSPP) non-covalently docked to a protein causes conformational changes in the polypeptide. Such approach can have remarkable consequences in the study of protein structure/function relationship and can be used to prompt non-native protein properties. Therefore we have investigated protein kinase A (PKA), a more relevant protein model towards the photo-treatment of cancer. PKA's enzymatic functions are regulated by the presence of cyclic adenosine monophosphate for intracellular signal transduction involved in, among other things, stimulation of transcription, tumorigenesis in Carney complex and migration of breast carcinoma cells. Since phosphorylation is a necessary step in some cancers and inflammatory diseases, inhibiting the protein kinase, and therefore phosphorylation, may serve to treat these diseases. Changes in absorption, steady-state fluorescence, and fluorescence lifetime indicate: 1) both TSPP and PPIX non-covalently bind to PKA where they maintain photoreactivity; 2) absorptive photoproduct formation occurs only when PKA is bound to TSPP and irradiated; and 3) PKA undergoes secondary structural changes after irradiation with either porphyrin bound. These photoinduced changes could affect the protein's enzymatic and signaling capabilities.

  20. The Arabidopsis thaliana cysteine-rich receptor-like kinase CRK20 modulates host responses to Pseudomonas syringae pv. tomato DC3000 infection

    Ederli, Luisa


    In plants, the cysteine-rich repeat kinases (CRKs) are a sub-family of receptor-like protein kinases that contain the DUF26 motif in their extracellular domains. It has been shown that in Arabidopsis thaliana, CRK20 is transcriptionally induced by pathogens, salicylic acid and ozone (O3). However, its role in responses to biotic and abiotic stress remains to be elucidated. To determine the function of CRK20 in such responses, two CRK20 loss-of-function mutants, crk20-1 and crk20-2, were isolated from public collections of Arabidopsis T-DNA tagged lines and examined for responses to O3 and Pseudomonas syringae pv. tomato (Pst) DC3000. crk20-1 and crk20-2 showed similar O3 sensitivities and no differences in the expression of defense genes when compared with the wild-type. However, pathogen growth was significantly reduced, while there were no differences in the induction of salicylic acid related defense genes or salicylic acid accumulation. Furthermore, correlation analysis of CRK20 gene expression suggests that it has a role in the control of H2O and/or nutrient transport. We therefore propose that CRK20 promotes conditions that are favorable for Pst DC3000 growth in Arabidopsis, possibly through the regulation of apoplastic homeostasis, and consequently, of the environment of this biotrophic pathogen. © 2011 Elsevier GmbH.

  1. Direct Modulation of Heterotrimeric G Protein-coupled Signaling by a Receptor Kinase Complex.

    Tunc-Ozdemir, Meral; Urano, Daisuke; Jaiswal, Dinesh Kumar; Clouse, Steven D; Jones, Alan M


    Plants and some protists have heterotrimeric G protein complexes that activate spontaneously without canonical G protein-coupled receptors (GPCRs). In Arabidopsis, the sole 7-transmembrane regulator of G protein signaling 1 (AtRGS1) modulates the G protein complex by keeping it in the resting state (GDP-bound). However, it remains unknown how a myriad of biological responses is achieved with a single G protein modulator. We propose that in complete contrast to G protein activation in animals, plant leucine-rich repeat receptor-like kinases (LRR RLKs), not GPCRs, provide this discrimination through phosphorylation of AtRGS1 in a ligand-dependent manner. G protein signaling is directly activated by the pathogen-associated molecular pattern flagellin peptide 22 through its LRR RLK, FLS2, and co-receptor BAK1. PMID:27235398

  2. Structural Evolution of the Protein Kinase-Like Superfamily.


    Full Text Available The protein kinase family is large and important, but it is only one family in a larger superfamily of homologous kinases that phosphorylate a variety of substrates and play important roles in all three superkingdoms of life. We used a carefully constructed structural alignment of selected kinases as the basis for a study of the structural evolution of the protein kinase-like superfamily. The comparison of structures revealed a "universal core" domain consisting only of regions required for ATP binding and the phosphotransfer reaction. Remarkably, even within the universal core some kinase structures display notable changes, while still retaining essential activity. Hence, the protein kinase-like superfamily has undergone substantial structural and sequence revision over long evolutionary timescales. We constructed a phylogenetic tree for the superfamily using a novel approach that allowed for the combination of sequence and structure information into a unified quantitative analysis. When considered against the backdrop of species distribution and other metrics, our tree provides a compelling scenario for the development of the various kinase families from a shared common ancestor. We propose that most of the so-called "atypical kinases" are not intermittently derived from protein kinases, but rather diverged early in evolution to form a distinct phyletic group. Within the atypical kinases, the aminoglycoside and choline kinase families appear to share the closest relationship. These two families in turn appear to be the most closely related to the protein kinase family. In addition, our analysis suggests that the actin-fragmin kinase, an atypical protein kinase, is more closely related to the phosphoinositide-3 kinase family than to the protein kinase family. The two most divergent families, alpha-kinases and phosphatidylinositol phosphate kinases (PIPKs, appear to have distinct evolutionary histories. While the PIPKs probably have an

  3. Enhanced Arabidopsis pattern-triggered immunity by overexpression of cysteine-rich receptor-like kinases

    Yu-Hung eYeh


    Full Text Available Upon recognition of microbe-associated molecular patterns (MAMPs such as the bacterial flagellin (or the derived peptide flg22 by pattern-recognition receptors (PRRs such as the FLAGELLIN SENSING2 (FLS2, plants activate the pattern-triggered immunity (PTI response. The L-type lectin receptor kinase-VI.2 (LecRK-VI.2 is a positive regulator of Arabidopsis thaliana PTI. Cysteine-rich receptor-like kinases (CRKs possess two copies of the C-X8-C-X2-C (DUF26 motif in their extracellular domains and are thought to be involved in plant stress resistance, but data about CRK functions are scarce. Here we show that Arabidopsis overexpressing the LecRK-VI.2-responsive CRK4, CRK6 and CRK36 demonstrated an enhanced PTI response and were resistant to virulent bacteria Pseudomonas syringae pv. tomato DC3000. Notably, the flg22-triggered oxidative burst was primed in CRK4, CRK6, and CRK36 transgenics and up-regulation of the PTI-responsive gene FLG22-INDUCED RECEPTOR-LIKE 1 (FRK1 was potentiated upon flg22 treatment in CRK4 and CRK6 overexpression lines or constitutively increased by CRK36 overexpression. PTI-mediated callose deposition was not affected by overexpression of CRK4 and CRK6, while CRK36 overexpression lines demonstrated constitutive accumulation of callose. In addition, Pst DC3000-mediated stomatal reopening was blocked in CRK4 and CRK36 overexpression lines, while overexpression of CRK6 induced constitutive stomatal closure suggesting a strengthening of stomatal immunity. Finally, bimolecular fluorescence complementation and co-immunoprecipitation analyses in Arabidopsis protoplasts suggested that the plasma membrane localized CRK4, CRK6 and CRK36 associate with the PRR FLS2. Association with FLS2 and the observation that overexpression of CRK4, CRK6, and CRK36 boosts specific PTI outputs and resistance to bacteria suggest a role for these CRKs in Arabidopsis innate immunity.

  4. Contractions activate hormone-sensitive lipase in rat muscle by protein kinase C and mitogen-activated protein kinase

    Donsmark, Morten; Langfort, Jozef; Holm, Cecilia;


    contractions. Adrenaline acts via cAMP-dependent protein kinase (PKA). The signalling mediating the effect of contractions is unknown and was explored in this study. Incubated soleus muscles from 70 g male rats were electrically stimulated to perform repeated tetanic contractions for 5 min. The contraction......-induced activation of HSL was abolished by the protein kinase C (PKC) inhibitors bisindolylmaleimide I and calphostin C and reduced 50% by the mitogen-activated protein kinase kinase (MEK) inhibitor U0126, which also completely blocked extracellular signal-regulated kinase (ERK) 1 and 2 phosphorylation. None of the...

  5. Protein kinases are potential targets to treat inflammatory bowel disease

    Lei; Yang; Yutao; Yan


    Protein kinases play a crucial role in the pathogenesis of inflammatory bowel disease(IBD), the two main forms of which are ulcerative colitis and Crohn’s dis-ease. In this article, we will review the mechanisms of involvement of protein kinases in the pathogenesis of and intervention against IBD, in terms of their effects on genetics, microbiota, mucous layer and tight junc-tion, and the potential of protein kinases as therapeutic targets against IBD.

  6. Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASES1 and 2 are essential for tapetum development and microspore maturation.

    Colcombet, Jean; Boisson-Dernier, Aurélien; Ros-Palau, Roc; Vera, Carlos E; Schroeder, Julian I


    Among the >200 members of the leucine-rich repeat receptor kinase family in Arabidopsis thaliana, only a few have been functionally characterized. Here, we report a critical function in anther development for the SOMATIC EMBRYOGENESIS RECEPTOR KINASE1 (SERK1) and SERK2 genes. Both SERK1 and SERK2 are expressed widely in locules until stage 6 anthers and are more concentrated in the tapetal cell layer later. Whereas serk1 and serk2 single insertion mutants did not show developmental phenotypes, serk1 serk2 double mutants were not able to produce seeds because of a lack of pollen development in mutant anthers. In young buds, double mutant anthers developed normally, but serk1 serk2 microsporangia produced more sporogenous cells that were unable to develop beyond meiosis. Furthermore, serk1 serk2 double mutants developed only three cell layers surrounding the sporogenous cell mass, whereas wild-type anthers developed four cell layers. Further confocal microscopic and molecular analyses showed that serk1 serk2 double mutant anthers lack development of the tapetal cell layer, which accounts for the microspore abortion and male sterility. Taken together, these findings demonstrate that the SERK1 and SERK2 receptor kinases function redundantly as an important control point for sporophytic development controlling male gametophyte production. PMID:16284306

  7. The Roles of Protein Kinases in Learning and Memory

    Giese, Karl Peter; Mizuno, Keiko


    In the adult mammalian brain, more than 250 protein kinases are expressed, but only a few of these kinases are currently known to enable learning and memory. Based on this information it appears that learning and memory-related kinases either impact on synaptic transmission by altering ion channel properties or ion channel density, or regulate…

  8. Arabidopsis CDS blastp result: AK111785 [KOME

    Full Text Available AK111785 J023089N11 At5g62310.1 incomplete root hair ... elongation (IRE) / protein kinase, putative ... nearly identical to IRE (incomplete root hair ... elongation) [Arabidopsis thaliana] gi|6729346|dbj| ...

  9. Interleukin 3-dependent survival by the Akt protein kinase

    Songyang, Zhou; Baltimore, David; Cantley, Lewis C.; Kaplan, David R; Franke, Thomas F.


    Interleukin 3 (IL-3)-dependent survival of hematopoietic cells is known to rely on the activity of multiple signaling pathways, including a pathway leading to activation of phosphoinositide 3-kinase (PI 3-kinase), and protein kinase Akt is a direct target of PI 3-kinase. We find that Akt kinase activity is rapidly induced by the cytokine IL-3, suggesting a role for Akt in PI 3-kinase-dependent signaling in hematopoetic cells. Dominant-negative mutants of Akt specifically block Akt activation ...

  10. Protein Interaction Network of Arabidopsis thaliana Female Gametophyte Development Identifies Novel Proteins and Relations

    Hosseinpour, Batool; HajiHoseini, Vahid; Kashfi, Rafieh; Ebrahimie, Esmaeil; Hemmatzadeh, Farhid


    Although the female gametophyte in angiosperms consists of just seven cells, it has a complex biological network. In this study, female gametophyte microarray data from Arabidopsis thaliana were integrated into the Arabidopsis interactome database to generate a putative interaction map of the female gametophyte development including proteome map based on biological processes and molecular functions of proteins. Biological and functional groups as well as topological characteristics of the net...

  11. A Dominant Allele of Arabidopsis Pectin-Binding Wall-Associated Kinase Induces a Stress Response Suppressed by MPK6 but Not MPK3 Mutations

    Bruce D.Kohorn; Susan L.Kohorn; Tanya Todorova; Gillian Baptiste; Kevin Stansky; Meghan McCullough


    The plant cell wall is composed of a matrix of cellulose fibers,flexible pectin polymers,and an array of assorted carbohydrates and proteins.The receptor-like Wall-Associated Kinases(WAKs)of Arabidopsis bind pectin in the wall,and are necessary both for cell expansion during development and for a response to pathogens and wounding.Mitogen Activated Protein Kinases(MPKs)form a major signaling link between cell surface receptors and both transcriptional and enzyme regulation in eukaryotes,and Arabidopsis MPK6 and MPK3 indeed have important roles in development and the response to stress and pathogens.A dominant allele of WAK2 requires kinase activity and activates a stress response that includes an increased ROS accumulation and the up-regulation of numerous genes involved in pathogen resistance,wounding,and cell wall biogenesis.This dominant allele requires a functional pectin binding and kinase domain,indicating that it is engaged in a WAK signaling pathway.A null mutant of the major plasma membrane ROS-producing enzyme complex,rbohd/f does not suppress the WAK2cTAP-induced phenotype.A mpk6,but not a mpk3,null allele is able to suppress the effects of this dominant WAK2 mutation,thus distinguishing MPK3 and MPK6,whose activity previously was thought to be redundant.Pectin activation of gene expression is abated in a wak2-null,but is tempered by the WAK-dominant allele that induces elevated basal stress-related transcript levels.The results suggest a mechanism in which changes to the cell wall can lead to a large change in cellular responses and help to explain how pathogens and wounding can have general effects on growth.

  12. Structural investigation of protein kinase C inhibitors

    Barak, D.; Shibata, M.; Rein, R.


    The phospholipid and Ca2+ dependent protein kinase (PKC) plays an essential role in a variety of cellular events. Inhibition of PKC was shown to arrest growth in tumor cell cultures making it a target for possible antitumor therapy. Calphostins are potent inhibitors of PKC with high affinity for the enzyme regulatory site. Structural characteristics of calphostins, which confer the inhibitory activity, are investigated by comparing their optimized structures with the existing models for PKC activation. The resulting model of inhibitory activity assumes interaction with two out of the three electrostatic interaction sites postulated for activators. The model shows two sites of hydrophobic interaction and enables the inhibitory activity of gossypol to be accounted for.

  13. The Ca2+/Calmodulin-Dependent Protein Kinase Kinase, CaMKK2, Inhibits Preadipocyte Differentiation

    Lin, Fumin; Ribar, Thomas J.; Means, Anthony R.


    When fed a standard chow diet, CaMKK2 null mice have increased adiposity and larger adipocytes than do wild-type mice, whereas energy balance is unchanged. Here, we show that Ca2+/calmodulin-dependent protein kinase kinase 2 (CaMKK2) is expressed in preadipocytes, where it functions as an AMP-activated protein kinase (AMPK)α kinase. Acute inhibition or deletion of CaMKK2 in preadipocytes enhances their differentiation into mature adipocytes, which can be reversed by 5-aminoimidazole-4-carboxa...

  14. Pumilio Puf domain RNA-binding proteins in Arabidopsis.

    Abbasi, Nazia; Park, Youn-Il; Choi, Sang-Bong


    Pumilio proteins are a class of RNA-binding proteins harboring Puf domains (or PUM-HD; Pumilio-Homology Domain), named after the founding members, Pumilio (from Drosophila melanogaster) and FBF (Fem-3 mRNA-Binding Factor from Caenorhabditis elegans). The domains contain multiple tandem repeats each of which recognizes one RNA base and is comprised of 35-39 amino acids. Puf domain proteins have been reported in organisms ranging from single-celled yeast to higher multicellular eukaryotes, such as humans and plants. In yeast and animals, they are involved in a variety of posttranscriptional RNA metabolism including RNA decay, RNA transport, rRNA processing and translational repression. However, their roles in plants are largely unknown. Recently, we have characterized the first member of the Puf family of RNA-binding proteins, APUM23, in Arabidopsis. Here, we discuss and summarize the diverse roles and targets of Puf proteins previously reported in other organisms and then highlight the potential regulatory roles of Puf proteins in Arabidopsis, using our recent study as an example. PMID:21350339

  15. Rac-1 and Raf-1 kinases, components of distinct signaling pathways, activate myotonic dystrophy protein kinase

    Shimizu, M.; Wang, W.; Walch, E. T.; Dunne, P. W.; Epstein, H. F.


    Myotonic dystrophy protein kinase (DMPK) is a serine-threonine protein kinase encoded by the myotonic dystrophy (DM) locus on human chromosome 19q13.3. It is a close relative of other kinases that interact with members of the Rho family of small GTPases. We show here that the actin cytoskeleton-linked GTPase Rac-1 binds to DMPK, and coexpression of Rac-1 and DMPK activates its transphosphorylation activity in a GTP-sensitive manner. DMPK can also bind Raf-1 kinase, the Ras-activated molecule of the MAP kinase pathway. Purified Raf-1 kinase phosphorylates and activates DMPK. The interaction of DMPK with these distinct signals suggests that it may play a role as a nexus for cross-talk between their respective pathways and may partially explain the remarkable pleiotropy of DM.

  16. Protein phosphatases active on acetyl-CoA carboxylase phosphorylated by casein kinase I, casein kinase II and the cAMP-dependent protein kinase

    The protein phosphatases in rat liver cytosol, active on rat liver acetyl-CoA carboxylase (ACC) phosphorylated by casein kinase I, casein kinase II and the cAMP-dependent protein kinase, have been partially purified by anion-exchange and gel filtration chromatography. The major phosphatase activities against all three substrates copurify through fractionation and appear to be identical to protein phosphatases 2A1 and 2A2. No unique protein phosphatase active on 32P-ACC phosphorylated by the casein kinases was identified

  17. The RNA-binding protein repertoire of Arabidopsis thaliana

    Marondedze, Claudius


    RNA-binding proteins (RBPs) have essential roles in determining the fate of RNA from synthesis to decay and have been studied on a protein-by-protein basis, or computationally based on a number of well-characterised RNA-binding domains. Recently, high-throughput methods enabled the capture of mammalian RNA-binding proteomes. To gain insight into the role of Arabidopsis thaliana RBPs at the systems level, we have employed interactome capture techniques using cells from different ecotypes grown in cultures and leaves. In vivo UV-crosslinking of RNA to RBPs, oligo(dT) capture and mass spectrometry yielded 1,145 different proteins including 550 RBPs that either belong to the functional category ‘RNA-binding’, have known RNA-binding domains or have orthologs identified in mammals, C. elegans, or S. cerevisiae in addition to 595 novel candidate RBPs. We noted specific subsets of RBPs in cultured cells and leaves and a comparison of Arabidopsis, mammalian, C. elegans, and S. cerevisiae RBPs reveals a common set of proteins with a role in intermediate metabolism, as well as distinct differences suggesting that RBPs are also species and tissue specific. This study provides a foundation for studies that will advance our understanding of the biological significance of RBPs in plant developmental and stimulus specific responses.

  18. Transphosphorylation of E. coli proteins during production of recombinant protein kinases provides a robust system to characterize kinase specificity

    Protein kinase specificity is of fundamental importance to pathway regulation and signal transduction. Here, we report a convenient system to monitor the activity and specificity of recombinant protein kinases expressed in E.coli. We apply this to the study of the cytoplasmic domain of the plant rec...

  19. The Arabidopsis NIMIN proteins affect NPR1 differentially

    Meike eHermann


    Full Text Available NON-EXPRESSOR OF PATHOGENESIS-RELATED GENES1 (NPR1 is the central regulator of the pathogen defense reaction systemic acquired resistance (SAR. NPR1 acts by sensing the SAR signal molecule salicylic acid (SA to induce expression of PATHOGENESIS-RELATED (PR genes. Mechanistically, NPR1 is the core of a transcription complex interacting with TGA transcription factors and NIM1 INTERACTING (NIMIN proteins. Arabidopsis NIMIN1 has been shown to suppress NPR1 activity in transgenic plants. The Arabidopsis NIMIN family comprises four structurally related, yet distinct members. Here, we show that NIMIN1, NIMIN2 and NIMIN3 are expressed differentially, and that the encoded proteins affect expression of the SAR marker PR-1 differentially. NIMIN3 is expressed constitutively at a low level, but NIMIN2 and NIMIN1 are both responsive to SA. While NIMIN2 is an immediate early SA-induced and NPR1-independent gene, NIMIN1 is activated after NIMIN2, but clearly before PR-1. Notably, NIMIN1, like PR-1, depends on NPR1. In a transient assay system, NIMIN3 suppresses SA-induced PR-1 expression, albeit to a lesser extent than NIMIN1, whereas NIMIN2 does not negatively affect PR-1 gene activation. Furthermore, although binding to the same domain in the C-terminus, NIMIN1 and NIMIN2 interact differentially with NPR1, thus providing a molecular basis for their opposing effects on NPR1. Together, our data suggest that the Arabidopsis NIMIN proteins are regulators of the SAR response. We propose that NIMINs act in a strictly consecutive and SA-regulated manner on the SA sensor protein NPR1, enabling NPR1 to monitor progressing threat by pathogens and to promote appropriate defense gene activation at distinct stages of SAR. In this scenario, the defense gene PR-1 is repressed at the onset of SAR by SA-induced, yet instable NIMIN1.

  20. On the structural features of the substrates of protein kinase

    Structural integrity of case in and phosvitin as substrates of a mitochondrial protein kinase preparation has been examined with reference to maximal phosphate incorporation with AT32P. These proteins subjected to degradative treatments with trypsin and chymotrypsin gave rise to peptides which could still be phosphorylated by the kinase to the extent of 30.80% as compared to the parent proteins. The more active peptides from both casein and phosvitin contained high proportion of serine residue along with certain other amino acids. The hexosamine content in phosvitin did not determine its function as substrate of protein kinase. (author)

  1. Conserved phosphorylation sites in the activation loop of the Arabidopsis phytosulfokine receptor PSKR1 differentially affect kinase and receptor activity

    Hartmann, Jens; Linke, Dennis; Bönniger, Christine; Tholey, Andreas; Sauter, Margret


    PSK (phytosulfokine) is a plant peptide hormone perceived by a leucine-rich repeat receptor kinase. Phosphosite mapping of epitope-tagged PSKR1 (phytosulfokine receptor 1) from Arabidopsis thaliana plants identified Ser696 and Ser698 in the JM (juxtamembrane) region and probably Ser886 and/or Ser893 in the AL (activation loop) as in planta phosphorylation sites. In vitro-expressed kinase was autophosphorylated at Ser717 in the JM, and at Ser733, Thr752, Ser783, Ser864, Ser911, Ser958 and Thr9...

  2. Protein kinase A regulates molecular chaperone transcription and protein aggregation.

    Yue Zhang

    Full Text Available Heat shock factor 1 (HSF1 regulates one of the major pathways of protein quality control and is essential for deterrence of protein-folding disorders, particularly in neuronal cells. However, HSF1 activity declines with age, a change that may open the door to progression of neurodegenerative disorders such as Huntington's disease. We have investigated mechanisms of HSF1 regulation that may become compromised with age. HSF1 binds stably to the catalytic domain of protein kinase A (PKAcα and becomes phosphorylated on at least one regulatory serine residue (S320. We show here that PKA is essential for effective transcription of HSP genes by HSF1. PKA triggers a cascade involving HSF1 binding to the histone acetylase p300 and positive translation elongation factor 1 (p-TEFb and phosphorylation of the c-terminal domain of RNA polymerase II, a key mechanism in the downstream steps of HSF1-mediated transcription. This cascade appears to play a key role in protein quality control in neuronal cells expressing aggregation-prone proteins with long poly-glutamine (poly-Q tracts. Such proteins formed inclusion bodies that could be resolved by HSF1 activation during heat shock. Resolution of the inclusions was inhibited by knockdown of HSF1, PKAcα, or the pTEFb component CDK9, indicating a key role for the HSF1-PKA cascade in protein quality control.

  3. Resolution of thylakoid polyphenol oxidase and a protein kinase

    Race, H.L.; Davenport, J.W.; Hind, G.


    The predominant protein kinase activity in octylglucoside (OG) extracts of spinach thylakoids has been attributed to a 64-kDa protein, tp64. Recent work calls into question the relation between tp64 and protein kinase activity, which were fractionated apart using fluid phase IEF and hydroxylapatite chromatography. Hind et al. sequenced tp64 from the cDNA and showed it to be a polyphenol oxidase (PPO) homolog. Its transit peptide indicates a location for the mature protein within the thylakoid lumen, where there is presumably no ATP and where it is remote from the presumed kinase substrates: the stromally exposed regions of integral PS-II membrane proteins. Here the authors suggest that the kinase is a 64-kDa protein distinct from tp64.

  4. Protein kinase C involvement in focal adhesion formation

    Woods, A; Couchman, J R


    still to be elucidated. We show here that the kinase inhibitors H7 and HA1004 reduce focal adhesion and stress fiber formation in response to fibronectin in a dose-dependent manner, and that activators of protein kinase C can promote their formation under conditions where they do not normally form...... then treated with kinase inhibitors H7 and HA1004 for 2h, IRM indicated a reduction in focal adhesion formation at concentrations where protein kinase C (PKC) should be inhibited. In contrast, focal adhesions formed normally at concentrations of these inhibitors where cyclic AMP- or cyclic GMP......-dependent kinases should be inactivated. Inhibition of PKC, but not that of cyclic AMP- or cyclic GMP-dependent kinases, also prevented the formation of stress fibers and induced a dispersal of talin and vinculin, but not integrin beta 1 subunits, from small condensations present at 1h. Consistent with the...

  5. Glycosylation of a Fasciclin-Like Arabinogalactan-Protein (SOS5) Mediates Root Growth and Seed Mucilage Adherence via a Cell Wall Receptor-Like Kinase (FEI1/FEI2) Pathway in Arabidopsis

    Basu, Debarati; Tian, Lu; Debrosse, Tayler; Poirier, Emily; Emch, Kirk; Herock, Hayley; Travers, Andrew; Showalter, Allan M.


    Fundamental processes that underpin plant growth and development depend crucially on the action and assembly of the cell wall, a dynamic structure that changes in response to both developmental and environmental cues. While much is known about cell wall structure and biosynthesis, much less is known about the functions of the individual wall components, particularly with respect to their potential roles in cellular signaling. Loss-of-function mutants of two arabinogalactan-protein (AGP)-speci...

  6. The F-box protein MAX2 contributes to resistance to bacterial phytopathogens in Arabidopsis thaliana

    PiisilÀ, Maria; Keceli, Mehmet A; Brader, GÌnter; Jakobson, Liina; Jõesaar, Indrek; Sipari, Nina; Kollist, Hannes; Palva, E. T.; Kariola, Tarja


    Abstract Background The Arabidopsis thaliana F-box protein MORE AXILLARY GROWTH2 (MAX2) has previously been characterized for its role in plant development. MAX2 appears essential for the perception of the newly characterized phytohormone strigolactone, a negative regulator of polar auxin transport in Arabidopsis. Results A reverse genetic screen for F-box protein ...

  7. Host Signal Transduction and Protein Kinases Implicated in Legionella Infection

    Hempstead, Andrew D.; Isberg, Ralph R.


    Modulation of the phosphorylation status of proteins by both kinases and phosphatases plays an important role in cellular signal transduction. Challenge of host cells by Legionella pneumophila manipulates the phosphorylation state of multiple host factors. These changes play roles in bacterial uptake, vacuole modification, cellular survival, and the immune response. In addition to modification by host cell kinases in response to the bacterium, L. pneumophila translocates bacterial kinases int...

  8. Leishmanial protein kinases phosphorylate components of the complement system.

    Hermoso, T; Fishelson, Z; Becker, S I; Hirschberg, K.; Jaffe, C. L.


    Externally oriented protein kinases are present on the plasma membrane of the human parasite, Leishmania. Since activation of complement plays an important role in the survival of these parasites, we examined the ability of protein kinases from Leishmania major to phosphorylate components of the human complement system. The leishmanial protein kinase-1 (LPK-1) isolated from promastigotes of L. major was able to phosphorylate purified human C3, C5 and C9. Only the alpha-chain of C3 and C5 was ...

  9. RAF protein-serine/threonine kinases: Structure and regulation

    Research highlights: → The formation of unique side-to-side RAF dimers is required for full kinase activity. → RAF kinase inhibitors block MEK activation in cells containing oncogenic B-RAF. → RAF kinase inhibitors can lead to the paradoxical increase in RAF kinase activity. -- Abstract: A-RAF, B-RAF, and C-RAF are a family of three protein-serine/threonine kinases that participate in the RAS-RAF-MEK-ERK signal transduction cascade. This cascade participates in the regulation of a large variety of processes including apoptosis, cell cycle progression, differentiation, proliferation, and transformation to the cancerous state. RAS mutations occur in 15-30% of all human cancers, and B-RAF mutations occur in 30-60% of melanomas, 30-50% of thyroid cancers, and 5-20% of colorectal cancers. Activation of the RAF kinases requires their interaction with RAS-GTP along with dephosphorylation and also phosphorylation by SRC family protein-tyrosine kinases and other protein-serine/threonine kinases. The formation of unique side-to-side RAF dimers is required for full kinase activity. RAF kinase inhibitors are effective in blocking MEK1/2 and ERK1/2 activation in cells containing the oncogenic B-RAF Val600Glu activating mutation. RAF kinase inhibitors lead to the paradoxical increase in RAF kinase activity in cells containing wild-type B-RAF and wild-type or activated mutant RAS. C-RAF plays a key role in this paradoxical increase in downstream MEK-ERK activation.

  10. Inactivation of a MAPK-like protein kinase and activation of a MBP kinase in germinating barley embryos

    Testerink, C.; Vennik, M.; Kijne, J.W.; Wang, M.; Heimovaara-Dijkstra, S.


    We provide evidence for involvement of two different 45 kDa protein kinases in rehydration and germination of barley embryos. In dry embryos, a myelin basic protein (MBP) phosphorylating kinase was detected, which could be immunoprecipitated with an anti-MAPK (mitogen-activated protein kinase) antib

  11. Inferring the Brassica rapa interactome using protein-protein interaction data from Arabidopsis thaliana

    Jianhua eYang; Kim eOsman; Mudassar eIqbal; Stekel, Dov J; Zewei eLuo; Armstrong, Susan J; Franklin, F. Chris H.


    Following successful completion of the Brassica rapa sequencing project, the next step is to investigate functions of individual genes/proteins. For Arabidopsis thaliana, large amounts of protein-protein interaction (PPI) data are available from the major PPI databases. It is known that Brassica crop species are closely related to A. thaliana. This provides an opportunity to infer the B. rapa interactome using PPI data available from A. thaliana. In this paper, we present an inferred B. rapa ...

  12. Purification and characterization of a casein kinase 2-type protein kinase from pea nuclei

    Li, H.; Roux, S. J.


    Almost all the polyamine-stimulated protein kinase activity associated with the chromatin fraction of nuclei purified from etiolated pea (Pisum sativum L.) plumules is present in a single enzyme that can be extracted from chromatin by 0.35 molar NaCl. This protein kinase can be further purified over 2000-fold by salt fractionation and anion-exchange and casein-agarose column chromatography, after which it is more than 90% pure. The purified kinase has a specific activity of about 650 nanomoles per minute per milligram protein in the absence of polyamines, with either ATP or GTP as phosphoryl donor. Spermidine can stimulate its activity fourfold, with half-maximal activation at about 2 millimolar. Spermine and putrescine also stimulate activity, although somewhat less effectively. This kinase has a tetrameric alpha 2 beta 2 structure with a native molecular weight of 130,000, and subunit molecular weights of 36,000 for the catalytic subunit (alpha) and 29,000 for the regulatory subunit (beta). In western blot analyses, only the alpha subunit reacts strongly with polyclonal antibodies to a Drosophila casein kinase II. The pea kinase can use casein and phosvitin as artificial substrates, phosphorylating both the serine and threonine residues of casein. It has a pH optimum near 8.0, a Vmax of 1.5 micromoles per minute per milligram protein, and a Km for ATP of approximately 75 micromolar. Its activity can be almost completely inhibited by heparin at 5 micrograms per milliliter, but is relatively insensitive to concentrations of staurosporine, K252a, and chlorpromazine that strongly antagonize Ca(2+) -regulated protein kinases. These results are discussed in relation to recent findings that casein kinase 2-type kinases may phosphorylate trans-acting factors that bind to light-regulated promoters in plants.

  13. Molecular cloning and mRNA expression analysis of a novel rice (Oryzasativa L.) MAPK kinase kinase, OsEDR1, an ortholog of Arabidopsis AtEDR1, reveal its role in defense/stress signalling pathways and development.

    Kim, Jung-A; Agrawal, Ganesh K; Rakwal, Randeep; Han, Keon Seon; Kim, Kyung-Nam; Yun, Choong-Hyo; Heu, Sunggi; Park, Sook-Young; Lee, Yong-Hwan; Jwa, Nam-Soo


    Mitogen-activated protein kinase (MAPK) cascade(s) is important for plant defense/stress responses. Though MAPKs have been identified and characterized in rice (Oryza sativa L.), a monocot cereal crop research model, the first upstream component of the kinase cascade, namely MAPK kinase kinase (MAPKKK) has not yet been identified. Here we report the cloning of a novel rice gene encoding a MAPKKK, OsEDR1, designated based on its homology with the Arabidopsis MAPKKK, AtEDR1. OsEDR1, a single copy gene in the genome of rice, encodes a predicted protein with molecular mass of 113046.13 and a pI of 9.03. Using our established two-week-old rice seedling in vitro model system, we show that OsEDR1 has a constitutive expression in seedling leaves and is further up-regulated within 15 min upon wounding by cut, treatment with the global signals jasmonic acid (JA), salicylic acid (SA), ethylene (ethephon, ET), abscisic acid, and hydrogen peroxide. In addition, protein phosphatase inhibitors, fungal elicitor chitosan, drought, high salt and sugar, and heavy metals also dramatically induce its expression. Moreover, OsEDR1 expression was altered by co-application of JA, SA, and ET, and required de novo synthesized protein factor(s) in its transient regulation. Furthermore, using an in vivo system we also show that OsEDR1 responds to changes in temperature and environmental pollutants-ozone and sulfur dioxide. Finally, OsEDR1 expression varied significantly in vegetative and reproductive tissues. These results suggest a role for OsEDR1 in defense/stress signalling pathways and development. PMID:12559953

  14. Side-effects of protein kinase inhibitors on ion channels

    Youn Kyoung Son; Hongzoo Park; Amy L Firth; Won Sun Park


    Protein kinases are one of the largest gene families and have regulatory roles in all aspects of eukaryotic cell function. Modulation of protein kinase activity is a desirable therapeutic approach for a number of human diseases associated with aberrant kinase activity, including cancers, arthritis and cardiovascular disorders. Several strategies have been used to develop specific and selective protein kinase modulators, primarily via inhibition of phosphorylation and down-regulation of kinase gene expression. These strategies are effective at regulating intracellular signalling pathways, but are unfortunately associated with several undesirable effects, particularly those that modulate ion channel function. In fact, the side-effects have precluded these inhibitors from being both useful experimental tools and therapeutically viable. This review focuses on the ion channel side-effects of several protein kinase inhibitors and specifically on those modulating K+, Na+ and Ca2+ ion channels. It is hoped that the information provided with a detailed summary in this review will assist the future development of novel specific and selective compounds targeting protein kinases both for experimental tools and for therapeutic approaches.

  15. Arabidopsis 14-3-3 proteins: fascinating and less fascinating aspects

    Nina eJaspert


    Full Text Available 14-3-3 dimers are well known to interact with diverse target proteins throughout eukaryotes. Most notably, association of 14-3-3s commonly requires phosphorylation of a serine or threonine residue within a specific sequence motif of the client protein. Studies with a focus on individual target proteins have unequivocally demonstrated 14-3-3s to be the crucial factors modifying the client’s activity state upon phosphorylation and, thus, finishing the job initiated by a kinase. In this respect, a recent in-depth analysis of the rice transcription factor FLOWERING LOCUS D1 (OsFD1 revealed 14-3-3s to be essential players in floral induction. However, such fascinating discoveries can often be ascribed to the random identification of 14-3-3 as an interaction partner of the favorite protein. In contrast, our understanding of 14-3-3 function in higher organisms is frustratingly limited, mainly due to an overwhelming spectrum of putative targets in combination with the existence of a multigene 14-3-3 family. In this review we will discuss our current understanding of the function of plant 14-3-3 proteins, taking into account surveys of the Arabidopsis 14-3-3 interactome.

  16. Protein kinase A regulatory subunit distribution in medulloblastoma

    Previous studies showed a differential distribution of the four regulatory subunits of cAMP-dependent protein kinases inside the brain, that changed in rodent gliomas: therefore, the distribution of these proteins inside the brain can give information on the functional state of the cells. Our goal was to examine human brain tumors to provide evidence for a differential distribution of protein kinase A in different tumors. The distribution of detergent insoluble regulatory (R1 and R2) and catalytic subunits of cAMP dependent kinases was examined in pediatric brain tumors by immunohistochemistry and fluorescent cAMP analogues binding. R2 is organized in large single dots in medulloblastomas, while it has a different appearance in other tumors. Fluorescent cAMP labelling was observed only in medulloblastoma. A different distribution of cAMP dependent protein kinases has been observed in medulloblastoma

  17. Regulatory crosstalk by protein kinases on CFTR trafficking and activity

    Farinha, Carlos Miguel; Swiatecka-Urban, Agnieszka; Brautigan, David; Jordan, Peter


    Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) is a member of the ATP binding cassette (ABC) transporter superfamily that functions as a cAMP-activated chloride ion channel in fluid-transporting epithelia. There is abundant evidence that CFTR activity (i.e. channel opening and closing) is regulated by protein kinases and phosphatases via phosphorylation and dephosphorylation. Here, we review recent evidence for the role of protein kinases in regulation of CFTR delivery to and retention in the plasma membrane. We review this information in a broader context of regulation of other transporters by protein kinases because the overall functional output of transporters involves the integrated control of both their number at the plasma membrane and their specific activity. While many details of the regulation of intracellular distribution of CFTR and other transporters remain to be elucidated, we hope that this review will motivate research providing new insights into how protein kinases control membrane transport to impact health and disease.

  18. Endoplasmic Reticulum-Mediated Protein Quality Control in Arabidopsis

    Jianming eLi


    Full Text Available A correct three-dimensional structure is crucial for the physiological functions of a protein, yet the folding of proteins to acquire native conformation is a fundamentally error-prone process. Eukaryotic organisms have evolved a highly conserved endoplasmic reticulum-mediated protein quality control (ERQC mechanism to monitor folding processes of secretory and membrane proteins, allowing export of only correctly folded proteins to their physiological destinations, retaining incompletely/mis-folded ones in the ER for additional folding attempts, marking and removing terminally-misfolded ones via a unique multiple-step degradation process known as ER-associate degradation (ERAD. Most of our current knowledge on ERQC and ERAD came from genetic and biochemical investigations in yeast and mammalian cells. Recent studies in the reference plant Arabidopsis thaliana uncovered homologous components and similar mechanisms in plants for monitoring protein folding and for retaining, repairing, and removing misfolded proteins. These studies also revealed critical roles of the plant ERQC/ERAD systems in regulating important biochemical/physiological processes, such as abiotic stress tolerance and plant defense. In this review, we discuss our current understanding about the molecular components and biochemical mechanisms of the plant ERQC/ERAD system in comparison to yeast and mammalian systems.

  19. Inhibition of protein kinase C intracerebroventricularly attenuates sensitization

    Mrowczynski, Oliver Daniel


    Drug relapse, mediated by drug-associated memories, is a major problem associated with addiction. Protein kinase C (PKC) is a family of protein kinase enzymes that has been implicated in learning and memory with regards to addiction. This study used a PKC inhibitor, chelerythrine (10nmol), to investigate the effects of blocking PKC throughout the brain on addiction related memories. Cocaine (15mg/kg) induced locomotor sensitization, used to model the transition from casual to compulsive use, ...

  20. MBD 4-a potential substrate for protein kinase X

    Ying Lin; Wei Li


    Human protein kinase X (PrKX) is an X chromosomeencoded cAMP-dependent protein kinase.PrKX has 50.2%,50.8%,and 44.83% identity with the catalytic,C-subunit of PKAα,PKAβ,and PKAγ,respectively [1].PrKX shares some biochemical characteristics with PKA.Both kinases catalyze phosphorylation of histone H1 and the PKA synthetic septapeptide substrate,referred to as Kemptide (LRRASLG),in vitro.However,the specific activities of PrKX phosphorylation of histone H1 and Kemptide are significantly lower than that of PKA [2,3].

  1. Conservation, variability and the modeling of active protein kinases.

    James D R Knight

    Full Text Available The human proteome is rich with protein kinases, and this richness has made the kinase of crucial importance in initiating and maintaining cell behavior. Elucidating cell signaling networks and manipulating their components to understand and alter behavior require well designed inhibitors. These inhibitors are needed in culture to cause and study network perturbations, and the same compounds can be used as drugs to treat disease. Understanding the structural biology of protein kinases in detail, including their commonalities, differences and modes of substrate interaction, is necessary for designing high quality inhibitors that will be of true use for cell biology and disease therapy. To this end, we here report on a structural analysis of all available active-conformation protein kinases, discussing residue conservation, the novel features of such conservation, unique properties of atypical kinases and variability in the context of substrate binding. We also demonstrate how this information can be used for structure prediction. Our findings will be of use not only in understanding protein kinase function and evolution, but they highlight the flaws inherent in kinase drug design as commonly practiced and dictate an appropriate strategy for the sophisticated design of specific inhibitors for use in the laboratory and disease therapy.

  2. Topology of cAMP dependent protein kinase and A-kinase anchor proteins in mammalian mitochondria

    Nuzzi, R.; Sardanelli, A. M.; Dobrová, Zuzana; Signorile, A.; De Rasmo, D.; Papa, S.

    Milano, 2005, s. 57. ISSN 0021-2938. [SIB 2005. Riccione (IT), 27.09.2005-30.09.2005] Institutional research plan: CEZ:AV0Z50200510 Keywords : protein kinase * mammalian mitochondria Subject RIV: EE - Microbiology, Virology

  3. Arabidopsis chloroplast chaperonin 10 is a calmodulin-binding protein

    Yang, T.; Poovaiah, B. W.


    Calcium regulates diverse cellular activities in plants through the action of calmodulin (CaM). By using (35)S-labeled CaM to screen an Arabidopsis seedling cDNA expression library, a cDNA designated as AtCh-CPN10 (Arabidopsis thaliana chloroplast chaperonin 10) was cloned. Chloroplast CPN10, a nuclear-encoded protein, is a functional homolog of E. coli GroES. It is believed that CPN60 and CPN10 are involved in the assembly of Rubisco, a key enzyme involved in the photosynthetic pathway. Northern analysis revealed that AtCh-CPN10 is highly expressed in green tissues. The recombinant AtCh-CPN10 binds to CaM in a calcium-dependent manner. Deletion mutants revealed that there is only one CaM-binding site in the last 31 amino acids of the AtCh-CPN10 at the C-terminal end. The CaM-binding region in AtCh-CPN10 has higher homology to other chloroplast CPN10s in comparison to GroES and mitochondrial CPN10s, suggesting that CaM may only bind to chloroplast CPN10s. Furthermore, the results also suggest that the calcium/CaM messenger system is involved in regulating Rubisco assembly in the chloroplast, thereby influencing photosynthesis. Copyright 2000 Academic Press.

  4. A-Raf kinase is a new interacting partner of protein kinase CK2 beta subunit

    Boldyreff, B; Issinger, O G


    In a search for protein kinase CK2 beta subunit binding proteins using the two-hybrid system, more than 1000 positive clones were isolated. Beside clones for the alpha' and beta subunit of CK2, there were clones coding for a so far unknown protein, whose partial cDNA sequence was already deposited...... in the EMBL database under the accession numbers R08806 and Z17360, for the ribosomal protein L5 and for A-Raf kinase. All isolated clones except the one for CK2 beta showed no interaction with the catalytic alpha subunit of CK2. A-Raf kinase is a new interesting partner of CK2 beta. The isolated A...

  5. The arabidopsis wall associated kinase-like 10 gene encodes a functional guanylyl cyclase and is co-expressed with pathogen defense related genes

    Meier, Stuart


    Background: Second messengers have a key role in linking environmental stimuli to physiological responses. One such messenger, guanosine 3?,5?-cyclic monophosphate (cGMP), has long been known to be an essential signaling molecule in many different physiological processes in higher plants, including biotic stress responses. To date, however, the guanylyl cyclase (GC) enzymes that catalyze the formation of cGMP from GTP have largely remained elusive in higher plants. Principal Findings: We have identified an Arabidopsis receptor type wall associated kinase-like molecule (AtWAKL10) as a candidate GC and provide experimental evidence to show that the intracellular domain of AtWAKL10431-700 can generate cGMP in vitro. Further, we also demonstrate that the molecule has kinase activity indicating that AtWAKL10 is a twin-domain catalytic protein. A co-expression and stimulus-specific expression analysis revealed that AtWAKL10 is consistently coexpressed with well characterized pathogen defense related genes and along with these genes is induced early and sharply in response to a range of pathogens and their elicitors. Conclusions: We demonstrate that AtWAKL10 is a twin-domain, kinase-GC signaling molecule that may function in biotic stress responses that are critically dependent on the second messenger cGMP. © 2010 Meier et al.

  6. Dominant and recessive mutations in the Raf-like kinase HT1 gene completely disrupt stomatal responses to CO2 in Arabidopsis.

    Hashimoto-Sugimoto, Mimi; Negi, Juntaro; Monda, Keina; Higaki, Takumi; Isogai, Yasuhiro; Nakano, Toshiaki; Hasezawa, Seiichiro; Iba, Koh


    HT1 (HIGH LEAF TEMPERATURE 1) is the first component associated with changes in stomatal aperture in response to CO2 to be isolated by forward genetic screening. The HT1 gene encodes a protein kinase expressed mainly in guard cells. The loss-of-function ht1-1 and ht1-2 mutants in Arabidopsis thaliana have CO2-hypersensitive stomatal closure with concomitant reductions in their kinase activities in vitro In addition to these mutants, in this study we isolate or obtaine five new ht1 alleles (ht1-3, ht1-4, ht1-5, ht1-6, and ht1-7). Among the mutants, only ht1-3 has a dominant mutant phenotype and has widely opened stomata due to CO2 insensitivity. The ht1-3 mutant has a missense mutation affecting a non-conserved residue (R102K), whereas the other six recessive mutants have mutations in highly conserved residues in the catalytic domains required for kinase activity. We found that the dominant mutation does not affect the expression of HT1 or the ability to phosphorylate casein, a universal kinase substrate, but it does affect autophosphorylation activity in vitro A 3D structural model of HT1 also shows that the R102 residue protrudes from the surface of the kinase, implying a role for the formation of oligomers and/or interaction with its targets. We demonstrate that both the loss-of-function and gain-of-function ht1 mutants have completely disrupted CO2 responses, although they have normal responses to ABA. Furthermore, light-induced stomatal opening is smaller in ht1-3 and much smaller in ht1-2 Taken together, these results indicate that HT1 is a critical regulator for CO2 signaling and is partially involved in the light-induced stomatal opening pathway. PMID:27034327

  7. DETORQUEO, QUIRKY, and ZERZAUST represent novel components involved in organ development mediated by the receptor-like kinase STRUBBELIG in Arabidopsis thaliana.

    Lynette Fulton


    Full Text Available Intercellular signaling plays an important role in controlling cellular behavior in apical meristems and developing organs in plants. One prominent example in Arabidopsis is the regulation of floral organ shape, ovule integument morphogenesis, the cell division plane, and root hair patterning by the leucine-rich repeat receptor-like kinase STRUBBELIG (SUB. Interestingly, kinase activity of SUB is not essential for its in vivo function, indicating that SUB may be an atypical or inactive receptor-like kinase. Since little is known about signaling by atypical receptor-like kinases, we used forward genetics to identify genes that potentially function in SUB-dependent processes and found recessive mutations in three genes that result in a sub-like phenotype. Plants with a defect in DETORQEO (DOQ, QUIRKY (QKY, and ZERZAUST (ZET show corresponding defects in outer integument development, floral organ shape, and stem twisting. The mutants also show sub-like cellular defects in the floral meristem and in root hair patterning. Thus, SUB, DOQ, QKY, and ZET define the STRUBBELIG-LIKE MUTANT (SLM class of genes. Molecular cloning of QKY identified a putative transmembrane protein carrying four C(2 domains, suggesting that QKY may function in membrane trafficking in a Ca(2+-dependent fashion. Morphological analysis of single and all pair-wise double-mutant combinations indicated that SLM genes have overlapping, but also distinct, functions in plant organogenesis. This notion was supported by a systematic comparison of whole-genome transcript profiles during floral development, which molecularly defined common and distinct sets of affected processes in slm mutants. Further analysis indicated that many SLM-responsive genes have functions in cell wall biology, hormone signaling, and various stress responses. Taken together, our data suggest that DOQ, QKY, and ZET contribute to SUB-dependent organogenesis and shed light on the mechanisms, which are dependent on

  8. The ACR11 encodes a novel type of chloroplastic ACT domain repeat protein that is coordinately expressed with GLN2 in Arabidopsis

    Hsu Chih-Ping


    Full Text Available Abstract Background The ACT domain, named after bacterial aspartate kinase, chorismate mutase and TyrA (prephenate dehydrogenase, is a regulatory domain that serves as an amino acid-binding site in feedback-regulated amino acid metabolic enzymes. We have previously identified a novel type of ACT domain-containing protein family, the ACT domain repeat (ACR protein family, in Arabidopsis. Members of the ACR family, ACR1 to ACR8, contain four copies of the ACT domain that extend throughout the entire polypeptide. Here, we describe the identification of four novel ACT domain-containing proteins, namely ACR9 to ACR12, in Arabidopsis. The ACR9 and ACR10 proteins contain three copies of the ACT domain, whereas the ACR11 and ACR12 proteins have a putative transit peptide followed by two copies of the ACT domain. The functions of these plant ACR proteins are largely unknown. Results The ACR11 and ACR12 proteins are predicted to target to chloroplasts. We used protoplast transient expression assay to demonstrate that the Arabidopsis ACR11- and ACR12-green fluorescent fusion proteins are localized to the chloroplast. Analysis of an ACR11 promoter-β-glucuronidase (GUS fusion in transgenic Arabidopsis revealed that the GUS activity was mainly detected in mature leaves and sepals. Interestingly, coexpression analysis revealed that the GLN2, which encodes a chloroplastic glutamine synthetase, has the highest mutual rank in the coexpressed gene network connected to ACR11. We used RNA gel blot analysis to confirm that the expression pattern of ACR11 is similar to that of GLN2 in various organs from 6-week-old Arabidopsis. Moreover, the expression of ACR11 and GLN2 is highly co-regulated by sucrose and light/dark treatments in 2-week-old Arabidopsis seedlings. Conclusions This study reports the identification of four novel ACT domain repeat proteins, ACR9 to ACR12, in Arabidopsis. The ACR11 and ACR12 proteins are localized to the chloroplast, and the expression

  9. Protein kinase C mediated phosphorylation blocks juvenile hormone action.

    Kethidi, Damu R; Li, Yiping; Palli, Subba R


    Juvenile hormones (JH) regulate a wide variety of developmental and physiological processes in insects. Although the biological actions of JH are well documented, the molecular mechanisms underlying JH action are poorly understood. We studied the molecular basis of JH action using a JH response element (JHRE) identified in the promoter region of JH esterase gene cloned from Choristoneura fumiferana, which is responsive to JH and 20-hydroxyecdysone (20E). In Drosophila melanogaster L57 cells, the JHRE-regulated reporter gene was induced by JH I, JH III, methoprene, and hydroprene. Nuclear proteins isolated from L57 cells bound to the JHRE and exposure of these proteins to ATP resulted in a reduction in their DNA binding. Either JH III or calf intestinal alkaline phosphatase (CIAP) was able to restore the binding of nuclear proteins to the DNA. In addition, protein kinase C inhibitors increased and protein kinase C activators reduced the binding of nuclear proteins to the JHRE. In transactivation assays, protein kinase C inhibitors induced the luciferase gene placed under the control of a minimal promoter and the JHRE. These data suggest that protein kinase C mediated phosphorylation prevents binding of nuclear proteins to juvenile hormone responsive promoters resulting in suppression of JH action. PMID:16448742

  10. Early light-induced proteins protect Arabidopsis from photooxidative stress.

    Hutin, Claire; Nussaume, Laurent; Moise, Nicolae; Moya, Ismaël; Kloppstech, Klaus; Havaux, Michel


    The early light-induced proteins (ELIPs) belong to the multigenic family of light-harvesting complexes, which bind chlorophyll and absorb solar energy in green plants. ELIPs accumulate transiently in plants exposed to high light intensities. By using an Arabidopsis thaliana mutant (chaos) affected in the posttranslational targeting of light-harvesting complex-type proteins to the thylakoids, we succeeded in suppressing the rapid accumulation of ELIPs during high-light stress, resulting in leaf bleaching and extensive photooxidative damage. Constitutive expression of ELIP genes in chaos before light stress resulted in ELIP accumulation and restored the phototolerance of the plants to the wild-type level. Free chlorophyll, a generator of singlet oxygen in the light, was detected by chlorophyll fluorescence lifetime measurements in chaos leaves before the symptoms of oxidative stress appeared. Our findings indicate that ELIPs fulfill a photoprotective function that could involve either the binding of chlorophylls released during turnover of pigment-binding proteins or the stabilization of the proper assembly of those proteins during high-light stress. PMID:12676998

  11. Modulation of the MAP kinase signaling cascade by Raf kinase inhibitory protein

    Nicholas TRAKUL; Marsha R. ROSNER


    Proteins like Raf kinase inhibitory protein (RKIP) that serve as modulators of signaling pathways, either by promoting or inhibiting the formation of productive signaling complexes through protein-protein interactions, have been demonstrated to play an increasingly important role in a number of cell types and organisms. These proteins have been implicated in development as well as the progression of cancer. RKIP is a particularly interesting regulator, as it is a highly conserved, ubiquitously expressed protein that has been shown to play a role in growth and differentiation in a number of organisms and can regulate multiple signaling pathways. RKIP is also the first MAP kinase signaling modulator to be identified as playing a role in cancer metastasis, and identification of the mechanism by which it regulates Raf-1 activation provides new targets for therapeutic intervention.

  12. Construction of a chloroplast protein interaction network and functional mining of photosynthetic proteins in Arabidopsis thaliana

    Qing-Bo Yu; Yong-Lan Cui; Kang Chong; Yi-Xue Li; Yu-Hua Li; Zhongming Zhao; Tie-Liu Shi; Zhong-Nan Yang; Guang Li; Guan Wang; Jing-Chun Sun; Peng-Cheng Wang; Chen Wang; Hua-Ling Mi; Wei-Min Ma; Jian Cui


    Chloroplast is a typical plant cell organeUe where photosynthesis takes place.In this study,a total of 1 808 chloroplast core proteins in Arabidopsis thaliana were reliably identified by combining the results of previously published studies and our own predictions.We then constructed a chloroplast protein interaction network primarily based on these core protein interactions.The network had 22 925 protein interaction pairs which involved 2 214 proteins.A total of 160 previously uncharacterized proteins were annotated in this network.The subunits of the photosynthetic complexes were modularized,and the functional relationships among photosystem Ⅰ (PSI),photosystem Ⅱ (PSII),light harvesting complex of photosystem Ⅰ (LHC Ⅰ) and light harvesting complex of photosystem Ⅰ (LHC Ⅱ) could be deduced from the predicted protein interactions in this network.We further confirmed an interaction between an unknown protein AT1G52220 and a photosynthetic subunit PSI-D2 by yeast two-hybrid analysis.Our chloroplast protein interaction network should be useful for functional mining of photosynthetic proteins and investigation of chloroplast-related functions at the systems biology level in Arabidopsis.

  13. Mitogen activated protein kinases: a role in inflammatory bowel disease?

    Broom, O J; Widjaya, B; Troelsen, J;


    Since their discovery more than 15 years ago, the mitogen activated protein kinases (MAPK) have been implicated in an ever-increasingly diverse array of pathways, including inflammatory signalling cascades. Inflammatory bowel diseases (IBD), such as ulcerative colitis and Crohn's disease, are...... their related signalling proteins in influencing the progression of IBD....

  14. Effect of triiodothyronine on rat liver chromatin protein kinase

    1) Injection of triiodothyronine to rats stimulates protein kinase activity in liver chromatin nonhistone proteins. A significant increase was found after two daily injections. A 4-fold increase was observed with the purified enzyme after eight daily injections of the hormone. No variations were observed in cytosol protein kinase activity. Electrophoretic pattern, effect of heat denaturation, effect of p-hydroxymercuribenzoate seem to indicate that the enzyme present in treated rats is not identical to the enzyme in control animals, which suggests that thyroid hormone has induced nuclear protein kinase. Diiodothyronine, 3, 3', 5'-triiodothyronine have no effect on protein kinase. 2) Chromatin non-histone proteins isolated from rats injected with triiodothyronine incorporated more 32P when incubated with [γ-32P]ATP than the chromatin proteins from untreated rats. Thyroidectomy reduced the in vitro 32P incorporation. It is suggested that some of the biological activity of thyroid hormone could be mediated through its effect on chromatin non-histone proteins. (orig.)

  15. Characterization of pathogenic germline mutations in human Protein Kinases

    Orengo Christine A


    Full Text Available Abstract Background Protein Kinases are a superfamily of proteins involved in crucial cellular processes such as cell cycle regulation and signal transduction. Accordingly, they play an important role in cancer biology. To contribute to the study of the relation between kinases and disease we compared pathogenic mutations to neutral mutations as an extension to our previous analysis of cancer somatic mutations. First, we analyzed native and mutant proteins in terms of amino acid composition. Secondly, mutations were characterized according to their potential structural effects and finally, we assessed the location of the different classes of polymorphisms with respect to kinase-relevant positions in terms of subfamily specificity, conservation, accessibility and functional sites. Results Pathogenic Protein Kinase mutations perturb essential aspects of protein function, including disruption of substrate binding and/or effector recognition at family-specific positions. Interestingly these mutations in Protein Kinases display a tendency to avoid structurally relevant positions, what represents a significant difference with respect to the average distribution of pathogenic mutations in other protein families. Conclusions Disease-associated mutations display sound differences with respect to neutral mutations: several amino acids are specific of each mutation type, different structural properties characterize each class and the distribution of pathogenic mutations within the consensus structure of the Protein Kinase domain is substantially different to that for non-pathogenic mutations. This preferential distribution confirms previous observations about the functional and structural distribution of the controversial cancer driver and passenger somatic mutations and their use as a proxy for the study of the involvement of somatic mutations in cancer development.

  16. The Snf1 Protein Kinase in the Yeast Saccharomyces cerevisiae

    Usaite, Renata


    In yeast, Saccharomyces cerevisiae, the Snf1 protein kinase is primarily known as a key component of the glucose repression regulatory cascade. The Snf1 kinase is highly conserved among eukaryotes and its mammalian homolog AMPK is responsible for energy homeostasis in cells, organs and whole bodies....... Failure in the AMPK regulatory cascade leads to metabolic disorders, such as obesity or type 2 diabetes. The knowledge about the Snf1 protein kinase remains to be of much interest in studying yeast carbon metabolism and human biology. To investigate the effect of Snf1 kinase and its regulatory subunit Snf...... was the lack of reproducible sampling for proteins with low spectral counts. To reconstruct a regulatory map of the yeast Snf1 protein kinase, I used the abundances of 5716 mRNAs, 2388 proteins, and 44 metabolites measured for the wild-type, Δsnf1, Δsnf4, and Δsnf1Δsnf4 strains. By integrating these...

  17. Genetic identification of an autoinhibitor in CDPK, a protein kinase with a calmodulin-like domain.

    Harper, J F; Huang, J F; Lloyd, S J


    CDPKs are a family of calcium (Ca2+)-dependent protein kinases which are defined by a carboxyl-terminal calmodulin-like domain. Mutational analysis indicates that the junction domain, which joins the kinase and calmodulin-like domains, contains an autoinhibitor. CDPK isoform AK1 from Arabidopsis was expressed in Escherichia coli as a fusion protein sandwiched between glutathione S-transferase and six consecutive histidines at the N- and C-terminal ends, respectively. This fusion, called AK1-6H, was purified and displayed kinase activity which was stimulated up to 127-fold by Ca2+, with a typical specific activity of 2000 nmol min-1 mg-1, using syntide-2 as peptide substrate. A truncation which deletes the calmodulin-like domain, as in mutant delta C-6H, disrupts Ca2+ activation and leaves the enzyme with a basal level of activity. Delta C-6H could be activated 87-fold by preincubation with a purified polyclonal IgG which was raised against a junction domain fusion. A further deletion of the junction domain, as in mutant delta JC, results in a constitutively active enzyme. This indicates that the junction domain in delta C-6H can function as an autoinhibitor. Its function as an autoinhibitor in a full-length enzyme was confirmed by site-specific mutagenesis, as shown by mutant KJM23-6H, which had a six-residue substitution in the junction domain between A422 and A432. Both delta JC and KJM23-6H encoded Ca(2+)-independent enzymes which had specific activities greater than 70% that of a fully active AK1-6H and displayed equivalent Km values for ATP and syntide-2. Inhibition studies on delta JC, using peptides based on the autoinhibitory domains of Ca2+/calmodulin-dependent protein kinases, are consistent with a model where the junction domain contains a similar pseudosubstrate-type autoinhibitor. PMID:8003490

  18. Conserved phosphorylation sites in the activation loop of the Arabidopsis phytosulfokine receptor PSKR1 differentially affect kinase and receptor activity.

    Hartmann, Jens; Linke, Dennis; Bönniger, Christine; Tholey, Andreas; Sauter, Margret


    PSK (phytosulfokine) is a plant peptide hormone perceived by a leucine-rich repeat receptor kinase. Phosphosite mapping of epitope-tagged PSKR1 (phytosulfokine receptor 1) from Arabidopsis thaliana plants identified Ser(696) and Ser(698) in the JM (juxtamembrane) region and probably Ser(886) and/or Ser(893) in the AL (activation loop) as in planta phosphorylation sites. In vitro-expressed kinase was autophosphorylated at Ser(717) in the JM, and at Ser(733), Thr(752), Ser(783), Ser(864), Ser(911), Ser(958) and Thr(998) in the kinase domain. The LC-ESI-MS/MS spectra provided support that up to three sites (Thr(890), Ser(893) and Thr(894)) in the AL were likely to be phosphorylated in vitro. These sites are evolutionarily highly conserved in PSK receptors, indicative of a conserved function. Site-directed mutagenesis of the four conserved residues in the activation segment, Thr(890), Ser(893), Thr(894) and Thr(899), differentially altered kinase activity in vitro and growth-promoting activity in planta. The T899A and the quadruple-mutated TSTT-A (T890A/S893A/T894A/T899A) mutants were both kinase-inactive, but PSKR1(T899A) retained growth-promoting activity. The T890A and S893A/T894A substitutions diminished kinase activity and growth promotion. We hypothesize that phosphorylation within the AL activates kinase activity and receptor function in a gradual and distinctive manner that may be a means to modulate the PSK response. PMID:26472115

  19. Stress-induced activation of protein kinase CK2 by direct interaction with p38 mitogen-activated protein kinase

    Sayed, M; Kim, S O; Salh, B S;


    Protein kinase CK2 has been implicated in the regulation of a wide range of proteins that are important in cell proliferation and differentiation. Here we demonstrate that the stress signaling agents anisomycin, arsenite, and tumor necrosis factor-alpha stimulate the specific enzyme activity of CK2...

  20. Diverse Transcriptional Programs Associated with Environmental Stress and Hormones in the Arabidopsis Receptor-Like Kinase Gene Family

    Lee Chae; Sylvia Sudat; Sandrine Dudoit; Tong Zhu; Sheng Luan


    The genome of Arabidopsis thaliana encodes more than 600 receptor-like kinase (RLK) genes, by far the dominant class of receptors found in land plants. Although similar to the mammalian receptor tyrosine kinases, plant RLKs are serine/threonine kinases that represent a novel signaling innovation unique to plants and, consequently, an excellent opportunity to understand how extracellular signaling evolved and functions in plants as opposed to animals. RLKs are predicted to be major components of the signaling pathways that allow plants to respond to environmental and developmental conditions. However, breakthroughs in identifying these processes have been limited to only a handful of individual RLKs. Here, we used a Syngenta custom Arabidopsis GeneChip array to compile a detailed profile of the transcriptional activity of 604 receptor-like kinase genes after exposure to a cross-section of known signaling factors in plants,including abiotic stresses, biotic stresses, and hormones. In the 68 experiments comprising the study, we found that 582 of the 604 RLK genes displayed a two-fold or greater change in expression to at least one of 12 types of treatments, thereby providing a large body of experimental evidence for targeted functional screens of individual RLK genes. We investigated whether particular subfamilies of RLK genes are responsive to specific types of signals and found that each subfamily displayed broad ranges of expression, as opposed to being targeted towards particular signal classes. Finally, by analyzing the divergence of sequence and gene expression among the RLK subfamilies, we present evidence as to the functional basis for the expansion of the RLKs and how this expansion may have affected conservation and divergences in their function. Taken as a whole, our study represents a preliminary, working model of processes and interactions in which the members of the RLK gene family may be involved, where such information has remained elusive for so many

  1. Modulation of the Chromatin Phosphoproteome by the Haspin Protein Kinase

    Maiolica, Alessio; de Medina-Redondo, Maria; Schoof, Erwin;


    protein- protein interaction network. We determined the Haspin consensus motif and the co-crystal structure of the kinase with the histone H3 tail. The structure revealed a unique bent substrate binding mode positioning the histone H3 residues Arg2 and Lys4 adjacent to the Haspin phosphorylated threonine......Recent discoveries have highlighted the importance of Haspin kinase activity for the correct positioning of the kinase Aurora B at the centromere. Haspin phosphorylates Thr3 of the histone H3 (H3), which provides a signal for Aurora B to localize to the centromere of mitotic chromosomes. To date......, histone H3 is the only confirmed Haspin substrate. We used a combination of biochemical, pharmacological, and mass spectrometric approaches to study the consequences of Haspin inhibition in mitotic cells. We quantified 3964 phosphorylation sites on chromatin- associated proteins and identified a Haspin...

  2. Purification and characterization of a thylakoid protein kinase

    Control of state transitions in the thylakoid by reversible phosphorylation of the light-harvesting chlorophyll a/b protein complex of photosystem II (LHC-II) is modulated by a kinase. The kinase catalyzing this phosphorylation is associated with the thylakoid membrane, and is regulated by the redox state of the plastoquinone pool. The isolation and partial purification from spinach thylakoids of two protein kinases (CPK1, CPK2) of apparent molecular masses 25 kDa and 38 kDa has been reported. Neither enzyme utilizes isolated LHC-II as a substrate. The partial purification of a third protein kinase (LHCK) which can utilize both lysine-rich histones (IIIs and Vs) and isolated LHC-II as substrate has now been purified to homogeneity and characterized by SDS-polyacrylamide gel electrophoresis as a 64 kDa peptide. From a comparison of the two isolation procedures we have concluded that CPK1 is indeed a protein kinase, but has a lower specific activity than that of LHCK. 8 refs., 4 figs

  3. Characterization of nuclear protein kinases of Xenopus laevis oocytes

    Xenopus laevis oocytes contain large nuclei (germinal vesicles) that can be isolated in very pure form and which permit the study of enzymatic activities present in these organelles. Incubation of pure oocyte nuclear homogenates with 32P in a buffered solution containing 5 mM MgCl2 results in the phosphorylation of a large number of proteins by endogenous protein kinases. This phosphorylation is not affected by the addition of cyclic nucleotides or calcium ion and calmodulin. On the other hand the nuclear kinases are considerably stimulated by spermine and spermidine and strongly inhibited by heparin (10 μg/ml). Addition of exogenous protein substrates shows that the major oocyte kinases are very active with casein and phosvitin as substrates but do not phosphorylate histones or protamines. DEAE-Sephadex chromatography of the nuclear extract fractionates the casein phosphorylating activity in two main peaks. The first peak is not retained on the column equilibrated with 0.1 M NH2SO4 and uses exclusively ATP as phosphate donor and is insensitive to polyamines or heparin. The second peak which corresponds to 70% of the casein phosphorylation elutes at 0.27 M NH2SO4 and uses both ATP and GTP as phosphate donors and is greatly stimulated by polyamines and completely inhibited by 10 μg/ml heparin. On this evidence the authors conclude that the major protein kinase peak corresponds to casein kinase type II which has been found in mammalian nuclei

  4. Synthetic peptides and ribosomal proteins as substrate for 60S ribosomal protein kinase from yeast cells

    Grankowski, N; Gasior, E; Issinger, O G


    Kinetic studies on the 60S protein kinase were conducted with synthetic peptides and ribosomal proteins as substrate. Peptide RRREEESDDD proved to be the best synthetic substrate for this enzyme. The peptide has a sequence of amino acids which most closely resembles the structure of potential...... phosphorylation sites in natural substrates, i.e., acidic ribosomal proteins. The superiority of certain kinetic parameters for 60S kinase obtained with the native whole 80S ribosomes over those of the isolated fraction of acidic ribosomal proteins indicates that the affinity of 60S kinase to the specific protein...

  5. Functional analysis of the Hikeshi-like protein and its interaction with HSP70 in Arabidopsis

    Koizumi, Shinya; Ohama, Naohiko; Mizoi, Junya [Laboratory of Plant Molecular Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657 (Japan); Shinozaki, Kazuo [RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045 (Japan); Yamaguchi-Shinozaki, Kazuko, E-mail: [Laboratory of Plant Molecular Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657 (Japan)


    Highlights: • HKL, a Hikeshi homologous gene is identified in Arabidopsis. • HKL interacts with two HSP70 isoforms and regulates the subcellular localization of HSC70-1. • The two HSP70 translocate into nucleus in response to heat stress. • Overexpression of HKL confers thermotolerance in transgenic plants. - Abstract: Heat shock proteins (HSPs) refold damaged proteins and are an essential component of the heat shock response. Previously, the 70 kDa heat shock protein (HSP70) has been reported to translocate into the nucleus in a heat-dependent manner in many organisms. In humans, the heat-induced translocation of HSP70 requires the nuclear carrier protein Hikeshi. In the Arabidopsis genome, only one gene encodes a protein with high homology to Hikeshi, and we named this homolog Hikeshi-like (HKL) protein. In this study, we show that two Arabidopsis HSP70 isoforms accumulate in the nucleus in response to heat shock and that HKL interacts with these HSP70s. Our histochemical analysis revealed that HKL is predominantly expressed in meristematic tissues, suggesting the potential importance of HKL during cell division in Arabidopsis. In addition, we show that HKL regulates HSP70 localization, and HKL overexpression conferred thermotolerance to transgenic Arabidopsis plants. Our results suggest that HKL plays a positive role in the thermotolerance of Arabidopsis plants and cooperatively interacts with HSP70.

  6. A Screen for Novel Phosphoinositide 3-kinase Effector Proteins*

    Dixon, Miles J.; Gray, Alexander; Boisvert, François-Michel; Agacan, Mark; Morrice, Nicholas A.; Gourlay, Robert; Leslie, Nicholas R.; Downes, C. Peter; Batty, Ian H.


    Class I phosphoinositide 3-kinases exert important cellular effects through their two primary lipid products, phosphatidylinositol 3,4,5-trisphosphate and phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4)P2). As few molecular targets for PtdIns(3,4)P2 have yet been identified, a screen for PI 3-kinase-responsive proteins that is selective for these is described. This features a tertiary approach incorporating a unique, primary recruitment of target proteins in intact cells to membranes selec...

  7. Arabidopsis flower development-of protein complexes, targets, and transport.

    Becker, Annette; Ehlers, Katrin


    Tremendous progress has been achieved over the past 25 years or more of research on the molecular mechanisms of floral organ identity, patterning, and development. While collections of floral homeotic mutants of Antirrhinum majus laid the foundation already at the beginning of the previous century, it was the genetic analysis of these mutants in A. majus and Arabidopsis thaliana that led to the development of the ABC model of floral organ identity more than 20 years ago. This intuitive model kick-started research focused on the genetic mechanisms regulating flower development, using mainly A. thaliana as a model plant. In recent years, interactions among floral homeotic proteins have been elucidated, and their direct and indirect target genes are known to a large extent. Here, we provide an overview over the advances in understanding the molecular mechanism orchestrating A. thaliana flower development. We focus on floral homeotic protein complexes, their target genes, evidence for their transport in floral primordia, and how these new results advance our view on the processes downstream of floral organ identity, such as organ boundary formation or floral organ patterning. PMID:25845756

  8. Cloning, purification, crystallization and preliminary X-ray analysis of the receiver domain of the histidine kinase CKI1 from Arabidopsis thaliana

    The crystallization of the receiver domain of the histidine kinase CYTOKININ-INDEPENDENT1 from A. thaliana is described. The crystals diffracted to 2.0 Å resolution. The receiver domain (RD) of a sensor histidine kinase (HK) catalyses the transphosphorylation reaction during the action of HKs in hormonal and abiotic signalling in plants. Crystals of the recombinant RD of the Arabidopsis thaliana HK CYTOKININ-INDEPENDENT1 (CKI1RD) have been obtained by the hanging-drop vapour-diffusion method using ammonium sulfate as a precipitant and glycerol as a cryoprotectant. The crystals diffracted to approximately 2.4 Å resolution on beamline BW7B of the DORIS-III storage ring. The diffraction improved significantly after the use of a non-aqueous cryoprotectant. Crystals soaked in Paratone-N diffracted to at least 2.0 Å resolution on beamline BW7B and their mosaicity decreased more than tenfold. The crystals belonged to space group C2221, with unit-cell parameters a = 54.46, b = 99.82, c = 79.94 Å. Assuming the presence of one molecule of the protein in the asymmetric unit gives a Matthews coefficient VM of 2.33 Å3 Da−1. A molecular-replacement solution has been obtained and structure refinement is in progress

  9. Microfluidic IEF technique for sequential phosphorylation analysis of protein kinases

    Choi, Nakchul; Song, Simon; Choi, Hoseok; Lim, Bu-Taek; Kim, Young-Pil


    Sequential phosphorylation of protein kinases play the important role in signal transduction, protein regulation, and metabolism in living cells. The analysis of these phosphorylation cascades will provide new insights into their physiological functions in many biological functions. Unfortunately, the existing methods are limited to analyze the cascade activity. Therefore, we suggest a microfluidic isoelectric focusing technique (μIEF) for the analysis of the cascade activity. Using the technique, we show that the sequential phosphorylation of a peptide by two different kinases can be successfully detected on a microfluidic chip. In addition, the inhibition assay for kinase activity and the analysis on a real sample have also been conducted. The results indicate that μIEF is an excellent means for studies on phosphorylation cascade activity.

  10. Cyclophilin represents a novel class of protein kinases

    Cyclophilin (CyP, Mr 17,737, pI 9.6), a highly specific cytosolic receptor for cyclosporin A (CsA) has ser/thr protein kinase activity. Incorporation of 32P into bovine histone H3 (BH3) was catalyzed by major and minor CyP isozymes at the same rate. Salt effects were biphasic with optimal kinase activity between 50-100 mM Na+ or K+. Kinase activity was maximal at 370C, stable for 5 min at 450, labile at 560, optimal between pH 6.8 and 8.0 and had an apparent Km of 20 uM ATP with both isozymes. The specific activity of CyP was 1.0 nmole P/mg protein/min with chicken histone H1 (CH1), 0.2 nmoles P/mg prot/min with BH3 and less than 0.01 nmoles P/mg prot/min with synapsin, casein, phosvitin, and ribosomal protein S6. Cofactors including Mn++, Zn++, Ca++, phosphatidyl serine, diolein and phorbol ester, cAMP, cGMP and Ca++ did not affect basal CyP kinase activity. CsA (3 by 50% but did not inhibit phosphorylation of other histones; 2ug CsA/ml was required to cause 50% inhibition of cAMP and Ca++/CaM dependent kinases. A non-immunosuppressive analog (Me-leu-11-CsA) that does not bind to CyP did not inhibit CH3 phosphorylation. Thus, CyP is a novel protein kinase that mediates immunosuppression by CsA

  11. Evolution of NIN-like proteins in Arabidopsis, rice, and Lotus japonicus.

    Schauser, Leif; Wieloch, Wioletta; Stougaard, Jens


    Genetic studies in Lotus japonicus and pea have identified Nin as a core symbiotic gene required for establishing symbiosis between legumes and nitrogen fixing bacteria collectively called Rhizobium. Sequencing of additional Lotus cDNAs combined with analysis of genome sequences from Arabidopsis and rice reveals that Nin homologues in all three species constitute small gene families. In total, the Arabidopsis and rice genomes encode nine and three NIN-like proteins (NLPs), respectively. We present here a bioinformatics analysis and prediction of NLP evolution. On a genome scale we show that in Arabidopsis, this family has evolved through segmental duplication rather than through tandem amplification. Alignment of all predicted NLP protein sequences shows a composition with six conserved modules. In addition, Lotus and pea NLPs contain segments that might characterize NIN proteins of legumes and be of importance for their function in symbiosis. The most conserved region in NLPs, the RWP-RK domain, has secondary structure predictions consistent with DNA binding properties. This motif is shared by several other small proteins in both Arabidopsis and rice. In rice, the RWP-RK domain sequences have diversified significantly more than in Arabidopsis. Database searches reveal that, apart from its presence in Arabidopsis and rice, the motif is also found in the algae Chlamydomonas and in the slime mold Dictyostelium discoideum. Thus, the origin of this putative DNA binding region seems to predate the fungus-plant divide. PMID:15785851

  12. Substrates of protein kinases involved in cell signal transduction

    In this study substrates for protein-tyrosine kinases and protein kinase C are examined to gain a better understanding of the conditions of their phosphorylation, their functions, and their potential involvement in intracellular signaling pathways. The tissue, cell type, and intracellular distributions of two protein-tyrosine kinase substrates, termed p36 and p81, are determined by immunoblotting of murine tissues, indirect immunofluorescence and immunoperoxidase staining of frozen rat tissue sections, and biochemical fractionation and indirect immunofluorescence staining of tissue culture cells. Both p36 and p81 are constitutively phosphorylated to low levels in tissue culture cells. In 32P-labeled A431 cells, pp81 contains both phosphoserine and phosphothreonine. Following brief epidermal growth factor treatment of A431 cells, pp81 is more heavily phosphorylated on threonine and approximately 10% of p81 molecules become phosphorylated on tyrosine. Treatment of A431 cells with the potent tumor promoter and protein kinase C activator, 12-O-tetradecanoylphorbol-13-acetate (TPA), does not alter the phosphorylation state of p81. However, TPA treatment of A431 cells and certain other cell types leads to augmented serine phosphorylation of p36

  13. The Role of Protein Kinase CK2 in Glioblastoma Development

    Ji, Haitao; Lu, Zhimin


    Glioblastoma (GBM) is the most prevalent and malignant primary brain tumor in adults, and its response to current therapies is limited. Protein kinase CK2 is overexpressed in GBM and regulates GBM cell survival, proliferation, and migration and brain tumorigenesis. Targeting CK2 for GBM treatment may benefit GBM patients.

  14. Isoform Specificity of Protein Kinase Cs in Synaptic Plasticity

    Sossin, Wayne S.


    Protein kinase Cs (PKCs) are implicated in many forms of synaptic plasticity. However, the specific isoform(s) of PKC that underlie(s) these events are often not known. We have used "Aplysia" as a model system in order to investigate the isoform specificity of PKC actions due to the presence of fewer isoforms and a large number of documented…

  15. Protein kinase CK2 structure-function relationship

    Boldyreff, B; Meggio, F; Pinna, L A;


    Protein kinase CK2 subunits alpha and beta were expressed either separately or together in a bacterial expression system (pT7-7/BL21(DE3)) and purified to homogeneity. After mixing the subunits, a CK2 holoenzyme (alpha 2 beta 2) was spontaneously reconstituted, which displays identical features as...

  16. Targeting protein kinases to reverse multidrug resistance in sarcoma.

    Chen, Hua; Shen, Jacson; Choy, Edwin; Hornicek, Francis J; Duan, Zhenfeng


    Sarcomas are a group of cancers that arise from transformed cells of mesenchymal origin. They can be classified into over 50 subtypes, accounting for approximately 1% of adult and 15% of pediatric cancers. Wide surgical resection, radiotherapy, and chemotherapy are the most common treatments for the majority of sarcomas. Among these therapies, chemotherapy can palliate symptoms and prolong life for some sarcoma patients. However, sarcoma cells can have intrinsic or acquired resistance after treatment with chemotherapeutics drugs, leading to the development of multidrug resistance (MDR). MDR attenuates the efficacy of anticancer drugs and results in treatment failure for sarcomas. Therefore, overcoming MDR is an unmet need for sarcoma therapy. Certain protein kinases demonstrate aberrant expression and/or activity in sarcoma cells, which have been found to be involved in the regulation of sarcoma cell progression, such as cell cycle, apoptosis, and survival. Inhibiting these protein kinases may not only decrease the proliferation and growth of sarcoma cells, but also reverse their resistance to chemotherapeutic drugs to subsequently reduce the doses of anticancer drugs and decrease drug side-effects. The discovery of novel strategies targeting protein kinases opens a door to a new area of sarcoma research and provides insight into the mechanisms of MDR in chemotherapy. This review will focus on the recent studies in targeting protein kinase to reverse chemotherapeutic drug resistance in sarcoma. PMID:26827688

  17. Leishmania amazonensis: PKC-like protein kinase modulates the (Na++K+)ATPase activity.

    Almeida-Amaral, Elmo Eduardo de; Caruso-Neves, Celso; Lara, Lucienne Silva; Pinheiro, Carla Mônica; Meyer-Fernandes, José Roberto


    The present study aimed to identify the presence of protein kinase C-like (PKC-like) in Leishmania amazonensis and to elucidate its possible role in the modulation of the (Na(+)+K(+))ATPase activity. Immunoblotting experiments using antibody against a consensus sequence (Ac 543-549) of rabbit protein kinase C (PKC) revealed the presence of a protein kinase of 80 kDa in L. amazonensis. Measurements of protein kinase activity showed the presence of both (Ca(2+)-dependent) and (Ca(2+)-independent) protein kinase activity in plasma membrane and cytosol. Phorbol ester (PMA) activation of the Ca(2+)-dependent protein kinase stimulated the (Na(+)+K(+))ATPase activity, while activation of the Ca(2+)-independent protein kinase was inhibitory. Both effects of protein kinase on the (Na(+)+K(+))ATPase of the plasma membrane were lower than that observed in intact cells. PMA induced the translocation of protein kinase from cytosol to plasma membrane, indicating that the maximal effect of protein kinase on the (Na(+)+K(+))ATPase activity depends on the synergistic action of protein kinases from both plasma membrane and cytosol. This is the first demonstration of a protein kinase activated by PMA in L. amazonensis and the first evidence for a possible role in the regulation of the (Na(+)+K(+))ATPase activity in this trypanosomatid. Modulation of the (Na(+)+K(+))ATPase by protein kinase in a trypanosomatid opens up new possibilities to understand the regulation of ion homeostasis in this parasite. PMID:17475255

  18. Protein inhibitor of neuronal nitric oxide synthase interacts with protein kinase A inhibitors.

    Yu, Jianqiang; Yu, Long; Chen, Zheng; Zheng, Lihua; Chen, Xiaosong; Wang, Xiang; Ren, Daming; Zhao, Shouyuan


    Protein kinase A (PKA) and neuronal nitric oxide synthase (nNOS) are important signaling molecules. It is well known that PKA can specifically phosphorylate nNOS. But the underlying molecular mechanism is still obscure. Our data indicate that the protein inhibitor of nNOS (PIN) binds to protein kinase A inhibitors (PKIs), which suggests that PKIs, together with PIN, might mediate the phosphorylation of nNOS by PKA. PMID:11978406

  19. Selective Phosphorylation Inhibitor of Delta Protein Kinase C-Pyruvate Dehydrogenase Kinase Protein-Protein Interactions: Application for Myocardial Injury in Vivo.

    Qvit, Nir; Disatnik, Marie-Hélène; Sho, Eiketsu; Mochly-Rosen, Daria


    Protein kinases regulate numerous cellular processes, including cell growth, metabolism, and cell death. Because the primary sequence and the three-dimensional structure of many kinases are highly similar, the development of selective inhibitors for only one kinase is challenging. Furthermore, many protein kinases are pleiotropic, mediating diverse and sometimes even opposing functions by phosphorylating multiple protein substrates. Here, we set out to develop an inhibitor of a selective protein kinase phosphorylation of only one of its substrates. Focusing on the pleiotropic delta protein kinase C (δPKC), we used a rational approach to identify a distal docking site on δPKC for its substrate, pyruvate dehydrogenase kinase (PDK). We reasoned that an inhibitor of PDK's docking should selectively inhibit the phosphorylation of only PDK without affecting phosphorylation of the other δPKC substrates. Our approach identified a selective inhibitor of PDK docking to δPKC with an in vitro Kd of ∼50 nM and reducing cardiac injury IC50 of ∼5 nM. This inhibitor, which did not affect the phosphorylation of other δPKC substrates even at 1 μM, demonstrated that PDK phosphorylation alone is critical for δPKC-mediated injury by heart attack. The approach we describe is likely applicable for the identification of other substrate-specific kinase inhibitors. PMID:27218445

  20. Arabidopsis dynamin-related protein 1A polymers bind, but do not tubulate, liposomes

    The Arabidopsis dynamin-related protein 1A (AtDRP1A) is involved in endocytosis and cell plate maturation in Arabidopsis. Unlike dynamin, AtDRP1A does not have any recognized membrane binding or protein-protein interaction domains. We report that GTPase active AtDRP1A purified from Escherichia coli as a fusion to maltose binding protein forms homopolymers visible by negative staining electron microscopy. These polymers interact with protein-free liposomes whose lipid composition mimics that of the inner leaflet of the Arabidopsis plasma membrane, suggesting that lipid-binding may play a role in AtDRP1A function. However, AtDRP1A polymers do not appear to assemble and disassemble in a dynamic fashion and do not have the ability to tubulate liposomes in vitro, suggesting that additional factors or modifications are necessary for AtDRP1A's in vivo function.

  1. Phosphoproteins and protein kinases of the Golgi apparatus membrane

    Incubation of a highly purified fraction derived from rat liver Golgi apparatus with [gamma-32P]ATP results in phosphorylation of several endogenous phosphoproteins. One phosphoprotein with an apparent Mr of 48,300 is radiolabeled to an apparent extent at least 5-fold higher than any other phosphoprotein as part of either the Golgi apparatus or highly purified rat liver fractions derived from the rough endoplasmic reticulum, mitochondria, plasma membrane, coated vesicles, cytosol, and total homogenate. Approximately 70% of the 48.3-kDa phosphoprotein appears to be a specific extrinsic Golgi membrane protein with the phosphorylated amino acid being threonine. The protein kinase which phosphorylates the 48.3-kDa protein is an intrinsic Golgi membrane protein and is dependent on Mg2+, independent of Ca2+, calmodulin, and cAMP, and is inhibited by N-ethylmaleimide. Preliminary evidence suggests that there are also intrinsic membrane protein kinases in the Golgi apparatus which are dependent on Ca2+ and cAMP. The physiological role of the above phosphoproteins and protein kinases is not known

  2. Synapsis of DNA ends by DNA-dependent protein kinase

    DeFazio, Lisa G.; Stansel, Rachel M.; Griffith, Jack D.; Chu, Gilbert


    The catalytic subunit of DNA-dependent protein kinase (DNA-PKCS) is required for a non-homologous end-joining pathway that repairs DNA double-strand breaks produced by ionizing radiation or V(D)J recombination; however, its role in this pathway has remained obscure. Using a neutravidin pull-down assay, we found that DNA-PKCS mediates formation of a synaptic complex containing two DNA molecules. Furthermore, kinase activity was cooperative with respect to DNA concentration, suggesting that act...

  3. Overinhibition of Mitogen-Activated Protein Kinase Inducing Tau Hyperphosphorylation

    LI Hong-lian; CHEN Juan; LIU Shi-jie; ZHANG Jia-yu; WANG Qun; WANG Jian-zhi


    To reveal the relationship between mitogen-activated protein kinase (MAPK) and tau phosphorylation, we used different concentration of PD98059, an inhibitor of MEK (MAPK kinase), to treat mice neuroblastma (N2a) cell line for 6 h. It showed that the activity of MAPK decreased in a dose-dependent manner. But Western blot and immunofluorescence revealed that just when the cells were treated with 16 μmol/L PD98059, tau was hyperphosphorylated at Ser396/404 and Ser199/202 sites. We obtained the conclusion that overinhibited MAPK induced tau hyperphosphorylation at Ser396/404 and Ser199/202 sites.

  4. Influence of Translation Initiation on Organellar Protein Targeting in Arabidopsis

    Sally A. Mackenzie


    A primary focus of the Mackenzie laboratory is the elucidation of processes and machinery for mitochondrial genome maintenance and transmission in higher plants. We have found that numerous organellar DNA maintenance components in plants appear to be dual targeted to mitochondria and plastids. Of particular interest was the observation that some twin (tandemly arrayed) dual targeting presequences appeared to utilize non-AUG alternative translation initiation, allowing for multiple translation starts at a single gene. Two aspects of this phenomenon were of particular interest: (1) Alternative translation initiation might provide a mechanism to regulate protein targeting temporally and spatially, a possibility that had not been demonstrated previously, and (2) alternative translation initiation might occur in genes involved in nuclear-controlled mitochondrial genome recombination, thought to be exclusively mitochondrial in their function. During the course of this research, we pursued three aims, with an emphasis on two specific genes of interest: POLgamma2, an organellar DNA polymerase, and MSH1, a MutS homolog thought to participate in mitochondrial, but not plastid, genome recombination surveillance. Our aims were to (1) Identify additional genes within Arabidopsis and other genomes that employ non-AUG alternative translation initiation, (2) Locate sequences upstream to the annotated AUG that confer alternative non-AUG translation initiation activity, and (3) Identify cis and trans factors that influence start site selection in genes with non-AUG starts. Toward these ends, we have shown that non-AUG initiation occurs in a number of genes, likely influencing targeting behavior of the protein. We have also shown that start site selection is strongly influenced by Kozak consensus sequence environment, indicating that alternative translation initiation in plants occurs by relaxation of ribosome scanning.

  5. Phosphorylation of the mRNA cap binding protein and eIF-4A by different protein kinases

    These studies were done to determine the identity of a protein kinase that phosphorylates the mRNA cap binding protein (CBP). Two chromatographic steps (dye and ligand and ion exchange HPLC) produced a 500x purification of an enzyme activity in rabbit reticulocytes that phosphorylated CBP at serine residues. Isoelectric focusing analysis of kinase treated CBP demonstrated 5 isoelectric species of which the 2 most anodic species were phosphorylated (contained 32P). This kinase activity phosphorylated CBP when it was isolated or in the eIF-4F complex. Purified protein kinase C, cAMP or cGMP dependent protein kinase, casein kinase I or II, myosin light chain kinase or insulin receptor kinase did not significantly phosphorylate isolated CBP or CBP in the eIF-4F complex. However, cAMP and cGMP dependent protein kinases and casein kinase II phosphorylated eIF-4A but did not phosphorylate the 46 kDa component of eIF-4F. cAMP dependent protein kinase phosphorylated a ∼ 220 kDa protein doublet in eIF-4F preparations. These studies indicate that CBP kinase activity probably represents a previously unidentified protein kinase. In addition, eIF-4A appears to be phosphorylated by several protein kinases whereas the 46 kDa component of the eIF-4F complex was not

  6. Identification and characterization of an ABA-activated MAP kinase cascade in Arabidopsis thaliana

    Danquah, Agyemang


    Summary Abscisic acid (ABA) is a major phytohormone involved in important stress-related and developmental plant processes. Recent phosphoproteomic analyses revealed a large set of ABA-triggered phosphoproteins as putative mitogen-activated protein kinase (MAPK) targets, although the evidence for MAPKs involved in ABA signalling is still scarce. Here, we identified and reconstituted in vivo a complete ABA-activated MAPK cascade, composed of the MAP3Ks MAP3K17/18, the MAP2K MKK3 and the four C group MAPKs MPK1/2/7/14. In planta, we show that ABA activation of MPK7 is blocked in mkk3-1 and map3k17mapk3k18 plants. Coherently, both mutants exhibit hypersensitivity to ABA and altered expression of a set of ABA-dependent genes. A genetic analysis further reveals that this MAPK cascade is activated by the PYR/PYL/RCAR-SnRK2-PP2C ABA core signalling module through protein synthesis of the MAP3Ks, unveiling an atypical mechanism for MAPK activation in eukaryotes. Our work provides evidence for a role of an ABA-induced MAPK pathway in plant stress signalling. Significance Statement We report in this article the identification of a complete MAPK module, composed of MAP3K17/18, MKK3 and MPK1/2/7/14, which is activated by ABA through the ABA core signalling complex. We showed that the activation of this module requires the MAP3K protein synthesis which occurs after hours of stress treatment, suggesting that the pathway is involved in a delayed wave of cellular responses to ABA and drought. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  7. Emerging Roles of AMP-Activated Protein Kinase

    Fritzen, Andreas Mæchel

    The cellular energy sensor AMP-activated protein kinase (AMPK) is activated, when the energy balance of the cell decreases. AMPK has been proposed to regulate multiple metabolic processes. However, much of the evidence for these general effects of AMPK relies on investigations in cell systems or...... exercise appears to inhibit pyruvate dehydrogenase (PDH) activity by an immediate up-regulation of pyruvate dehydrogenase kinase 4 (PDK4) protein content. Consequently, this may inhibit glucose oxidation and thereby generate conditions for increased FA oxidation and glycogen resynthesis in skeletal muscle...... importance for prioritising energy dissipation, inhibition of lipid storage pathways and regulation of mitochondrial and metabolic proteins, but this needs further investigations. In addition, we provide evidence that AMPK is regulating autophagic signalling in skeletal muscle. Thus, in skeletal muscle AMPK...

  8. Mitogen-activated protein kinases mediate Mycobacterium tuberculosis–induced CD44 surface expression in monocytes

    Natarajan Palaniappan; S Anbalagan; Sujatha Narayanan


    CD44, an adhesion molecule, has been reported to be a binding site for Mycobacterium tuberculosis (M. tuberculosis) in macrophages and it also mediates mycobacterial phagocytosis, macrophage recruitment and protective immunity against pulmonary tuberculosis in vivo. However, the signalling pathways that are involved in M. tuberculosis–induced CD44 surface expression in monocytic cells are currently unknown. Exposure of THP-1 human monocytes to M. tuberculosis H37Rv and H37Ra induced distinct, time-dependent, phosphorylation of mitogen-activated protein kinase kinase-1, extracellular signal regulated kinase 1/2, mitogen-activated protein kinase kinase 3/6, p38 mitogen-activated protein kinase and c-jun N-terminal kinases. The strains also differed in their usage of CD14 and human leukocyte antigen-DR (HLA-DR) receptors in mediating mitogen-activated protein kinase activation. M. tuberculosis H37Rv strain induced lower CD44 surface expression and tumour necrosis factor-alpha levels, whereas H37Ra the reverse. Using highly specific inhibitors of mitogen-activated protein kinase kinase-1, p38 mitogen-activated protein kinase and c-jun N-terminal kinase, we report that inhibition of extracellular signal regulated kinase 1/2 and c-jun N-terminal kinases increases, but that inhibition of p38 mitogen-activated protein kinase decreases M. tuberculosis–induced CD44 surface expression in THP-1 human monocytes.

  9. Mitochondrial protein import under kinase surveillance

    Magdalena Opalińska


    Full Text Available Despite the simplicity of the yeast Saccharomyces cerevisiae,its basic cellular machinery tremendously mirrors that of higher eukaryotic counterparts. Thus, this unicellular organism turned out to be an invaluable model system to study the countless mechanisms that govern life of the cell. Recently, it has also enabled the deciphering of signalling pathways that control flux of mitochondrial proteins to the organelle according to metabolic requirements. For decades mitochondria were considered autonomous organelles that are only partially incorporated into cellular signalling networks. Consequently, only little has been known about the role of reversible phosphorylation as a meaningful mechanism that orchestrates mitochondrial biology accordingly to cellular needs. Therefore, research in this direction has been vastly neglected. However, findings over the past few years have changed this view and new exciting fields in mitochondrial biology have emerged. Here, we summarize recent discoveries in the yeast model system that point towards a vital role of reversible phosphorylation in regulation of mitochondrial protein import.

  10. Identification of a Fungi-Specific Lineage of Protein Kinases Closely Related to Tyrosine Kinases

    Zhao, Zhongtao; Jin, Qiaojun; Liu, Huiquan; Xu, Jin-Rong


    Tyrosine kinases (TKs) specifically catalyze the phosphorylation of tyrosine residues in proteins and play essential roles in many cellular processes. Although TKs mainly exist in animals, recent studies revealed that some organisms outside the Opisthokont clade also contain TKs. The fungi, as the sister group to animals, are thought to lack TKs. To better understand the origin and evolution of TKs, it is important to investigate if fungi have TK or TK-related genes. We therefore systematical...

  11. Molecular Physiology of SPAK and OSR1: Two Ste20-Related Protein Kinases Regulating Ion Transport

    Gagnon, Kenneth B; Delpire, Eric


    SPAK (Ste20-related proline alanine rich kinase) and OSR1 (oxidative stress responsive kinase) are members of the germinal center kinase VI sub-family of the mammalian Ste20 (Sterile20)-related protein kinase family. Although there are 30 enzymes in this protein kinase family, their conservation across the fungi, plant and animal kingdom confirms their evolutionary importance. Already, a large volume of work has accumulated on the tissue distribution, binding partners, signaling cascades, and...

  12. Comparative differential gene expression analysis of nucleus-encoded proteins for Rafflesia cantleyi against Arabidopsis thaliana

    Ng, Siuk-Mun; Lee, Xin-Wei; Wan, Kiew-Lian; Firdaus-Raih, Mohd


    Regulation of functional nucleus-encoded proteins targeting the plastidial functions was comparatively studied for a plant parasite, Rafflesia cantleyi versus a photosynthetic plant, Arabidopsis thaliana. This study involved two species of different feeding modes and different developmental stages. A total of 30 nucleus-encoded proteins were found to be differentially-regulated during two stages in the parasite; whereas 17 nucleus-encoded proteins were differentially-expressed during two developmental stages in Arabidopsis thaliana. One notable finding observed for the two plants was the identification of genes involved in the regulation of photosynthesis-related processes where these processes, as expected, seem to be present only in the autotroph.

  13. Protein kinase activity associated with the nuclear lamina.

    Dessev, G; Iovcheva, C; Tasheva, B; R. Goldman


    A nuclear lamina-enriched fraction from Ehrlich ascites tumor cells contains a tightly bound protein kinase activity, which phosphorylates in vitro the nuclear lamins, a 52-kilodalton protein, and several unknown minor components. The enzyme(s) is thermolabile, independent of Ca2+ and cAMP, and inhibited by quercetin. After treatment with 4 M urea it remains bound to the nuclear lamina in an active state, but it is irreversibly inactivated in 6 M urea. The lamin proteins are phosphorylated on...

  14. Casein kinase I-like protein kinases encoded by YCK1 and YCK2 are required for yeast morphogenesis.

    Robinson, L. C.; Menold, M. M.; Garrett, S.; Culbertson, M R


    Casein kinase I is an acidotropic protein kinase class that is widely distributed among eukaryotic cell types. In the yeast Saccharomyces cerevisiae, the casein kinase I isoform encoded by the gene pair YCK1 and YCK2 is a 60- to 62-kDa membrane-associated form. The Yck proteins perform functions essential for growth and division; either alone supports growth, but loss of function of both is lethal. We report here that casein kinase I-like activity is associated with a soluble Yck2-beta-galact...

  15. Regulation of polar auxin transport by protein and lipid kinases.

    Armengot, Laia; Marquès-Bueno, Maria Mar; Jaillais, Yvon


    The directional transport of auxin, known as polar auxin transport (PAT), allows asymmetric distribution of this hormone in different cells and tissues. This system creates local auxin maxima, minima, and gradients that are instrumental in both organ initiation and shape determination. As such, PAT is crucial for all aspects of plant development but also for environmental interaction, notably in shaping plant architecture to its environment. Cell to cell auxin transport is mediated by a network of auxin carriers that are regulated at the transcriptional and post-translational levels. Here we review our current knowledge on some aspects of the 'non-genomic' regulation of auxin transport, placing an emphasis on how phosphorylation by protein and lipid kinases controls the polarity, intracellular trafficking, stability, and activity of auxin carriers. We describe the role of several AGC kinases, including PINOID, D6PK, and the blue light photoreceptor phot1, in phosphorylating auxin carriers from the PIN and ABCB families. We also highlight the function of some receptor-like kinases (RLKs) and two-component histidine kinase receptors in PAT, noting that there are probably RLKs involved in co-ordinating auxin distribution yet to be discovered. In addition, we describe the emerging role of phospholipid phosphorylation in polarity establishment and intracellular trafficking of PIN proteins. We outline these various phosphorylation mechanisms in the context of primary and lateral root development, leaf cell shape acquisition, as well as root gravitropism and shoot phototropism. PMID:27242371

  16. Effects of protein kinase C activators and staurosporine on protein kinase activity, cell survival, and proliferation in Tetrahymena thermophila

    Straarup, EM; Schousboe, P; Hansen, HQ;


    Autocrine factors prevent cell death in the ciliate Tetrahymena thermophila, a unicellular eukaryote, in a chemically defined medium. At certain growth conditions these factors are released at a sufficient concentration by > 500 cells ml-1 to support cell survival and proliferation. The protein...... kinase C activators phorbol 12-myristate 13-acetate (PMA) or 1-oleyl 2-acetate glycerol (OAG) when added to 250 cells ml-1 supported cell survival and proliferation. In the presence of the serine and threonine kinase inhibitor staurosporine the cells died both at 250 cells ml-1 in cultures supplemented...... with either PMA or OAG, or at 2,500 cells ml-1. At 500 cells ml-1 PMA induced the in vivo phosphorylation of at least six proteins. The myelin basic protein fragment 4-14 was phosphorylated in vitro in crude extracts of a culture of 250,000 cells ml-1. Both the in vivo and the in vitro phosphorylation...

  17. Arabidopsis eIF2α kinase GCN2 is essential for growth in stress conditions and is activated by wounding

    Robaglia Christophe


    Full Text Available Abstract Background Phosphorylation of eIF2α provides a key mechanism for down-regulating protein synthesis in response to nutrient starvation or stresses in mammalian and yeast cells. However, this process has not been well characterized in plants Results We show here that in response to amino acid and purine starvations, UV, cold shock and wounding, the Arabidopsis GCN2 kinase (AtGCN2 is activated and phosphorylates eIF2α. We show that AtGCN2 is essential for plant growth in stress situations and that its activity results in a strong reduction in global protein synthesis. Conclusion Our results suggest that a general amino acid control response is conserved between yeast and plants but that the plant enzyme evolved to fulfill a more general function as an upstream sensor and regulator of diverse stress-response pathways. The activation of AtGCN2 following wounding or exposure to methyl jasmonate, the ethylene precursor 1-Aminocyclopropane-1-carboxylic acid (ACC and salicylic acid, further suggests that this enzyme could play a role in plant defense against insect herbivores.

  18. PKIS: computational identification of protein kinases for experimentally discovered protein phosphorylation sites

    Zou, Liang; Wang, Mang; Shen, Yi; Liao, Jie; Li, Ao; Wang, Minghui


    Background Dynamic protein phosphorylation is an essential regulatory mechanism in various organisms. In this capacity, it is involved in a multitude of signal transduction pathways. Kinase-specific phosphorylation data lay the foundation for reconstruction of signal transduction networks. For this reason, precise annotation of phosphorylated proteins is the first step toward simulating cell signaling pathways. However, the vast majority of kinase-specific phosphorylation data remain undiscov...

  19. The Arabidopsis DREB2 genetic pathway is constitutively repressed by basal phosphoinositide-dependent phospholipase C coupled to diacylglycerol kinase in Arabidopsis thaliana

    Nabila eDjafi


    Full Text Available Phosphoinositide-dependent phospholipases C (PI-PLCs are activated in response to various stimuli. They utilize substrates provided by type III-Phosphatidylinositol-4 kinases (PI4KIII to produce inositol triphosphate and diacylglycerol (DAG that is phosphorylated into phosphatidic acid (PA by DAG-kinases (DGKs. The roles of PI4KIIIs, PI-PLCs and DGKs in basal signalling are poorly understood. We investigated the control of gene expression by basal PI-PLC pathway in Arabidopsis thaliana suspension cells. A transcriptome-wide analysis allowed the identification of genes whose expression was altered by edelfosine, 30 µM wortmannin or R59022, inhibitors of PI-PLCs, PI4KIIIs and DGKs, respectively. We found that a gene responsive to one of these molecules is more likely to be similarly regulated by the other two inhibitors. The common action of these agents is to inhibit PA formation, showing that basal PI-PLCs act, in part, on gene expression through their coupling to DGKs. Amongst the genes up-regulated in presence of the inhibitors, were some DREB2 genes, in suspension cells and in seedlings. The DREB2 genes encode transcription factors with major roles in responses to environmental stresses, including dehydration. They bind to C-repeat motifs, known as Drought-Responsive Elements, that are indeed enriched in the promoters of genes up-regulated by PI-PLC pathway inhibitors. PA can also be produced by phospholipases D (PLDs. We show that the DREB2 genes that are up-regulated by PI-PLC inhibitors are positively or negatively regulated, or indifferent, to PLD basal activity. Our data show that the DREB2 genetic pathway is constitutively repressed in resting conditions and that DGK coupled to PI-PLC is active in this process, in suspension cells and seedlings. We discuss how this basal negative regulation of DREB2 genes is compatible with their stress-triggered positive regulation.

  20. Structural Bioinformatics and Protein Docking Analysis of the Molecular Chaperone-Kinase Interactions: Towards Allosteric Inhibition of Protein Kinases by Targeting the Hsp90-Cdc37 Chaperone Machinery

    Gennady Verkhivker


    Full Text Available A fundamental role of the Hsp90-Cdc37 chaperone system in mediating maturation of protein kinase clients and supporting kinase functional activity is essential for the integrity and viability of signaling pathways involved in cell cycle control and organism development. Despite significant advances in understanding structure and function of molecular chaperones, the molecular mechanisms and guiding principles of kinase recruitment to the chaperone system are lacking quantitative characterization. Structural and thermodynamic characterization of Hsp90-Cdc37 binding with protein kinase clients by modern experimental techniques is highly challenging, owing to a transient nature of chaperone-mediated interactions. In this work, we used experimentally-guided protein docking to probe the allosteric nature of the Hsp90-Cdc37 binding with the cyclin-dependent kinase 4 (Cdk4 kinase clients. The results of docking simulations suggest that the kinase recognition and recruitment to the chaperone system may be primarily determined by Cdc37 targeting of the N-terminal kinase lobe. The interactions of Hsp90 with the C-terminal kinase lobe may provide additional “molecular brakes” that can lock (or unlock kinase from the system during client loading (release stages. The results of this study support a central role of the Cdc37 chaperone in recognition and recruitment of the kinase clients. Structural analysis may have useful implications in developing strategies for allosteric inhibition of protein kinases by targeting the Hsp90-Cdc37 chaperone machinery.

  1. Compartmentalization Role of A-Kinase Anchoring Proteins (AKAPs in Mediating Protein Kinase A (PKA Signaling and Cardiomyocyte Hypertrophy

    Abeer Rababa'h


    Full Text Available The Beta-adrenergic receptors (β-ARs stimulation enhances contractility through protein kinase-A (PKA substrate phosphorylation. This PKA signaling is conferred in part by PKA binding to A-kinase anchoring proteins (AKAPs. AKAPs coordinate multi-protein signaling networks that are targeted to specific intracellular locations, resulting in the localization of enzyme activity and transmitting intracellular actions of neurotransmitters and hormones to its target substrates. In particular, mAKAP (muscle-selective AKAP has been shown to be present on the nuclear envelope of cardiomyocytes with various proteins including: PKA-regulatory subunit (RIIα, phosphodiesterase-4D3, protein phosphatase-2A, and ryanodine receptor (RyR2. Therefore, through the coordination of spatial-temporal signaling of proteins and enzymes, mAKAP controls cyclic-adenosine monophosphate (cAMP levels very tightly and functions as a regulator of PKA-mediated substrate phosphorylation leading to changes in calcium availability and myofilament calcium sensitivity. The goal of this review is to elucidate the critical compartmentalization role of mAKAP in mediating PKA signaling and regulating cardiomyocyte hypertrophy by acting as a scaffolding protein. Based on our literature search and studying the structure–function relationship between AKAP scaffolding protein and its binding partners, we propose possible explanations for the mechanism by which mAKAP promotes cardiac hypertrophy.

  2. An early nodulin-like protein accumulates in the sieve element plasma membrane of Arabidopsis

    Khan, Junaid A.; Wang, Qi; Sjölund, Richard D.;


    ) tissue cultures, recognizes an antigen in the Arabidopsis (Arabidopsis thaliana) ecotype Columbia that is associated specifically with the plasma membrane of sieve elements, but not companion cells, and accumulates at the earliest stages of sieve element differentiation. The identity of the RS6 antigen...... cleaved from the precursor protein, resulting in a mature peptide of approximately 15 kD that is attached to the sieve element plasma membrane via a carboxy-terminal glycosylphosphatidylinositol membrane anchor. Many of the Arabidopsis ENOD-like proteins accumulate in gametophytic tissues, whereas in both......Membrane proteins within the sieve element-companion cell complex have essential roles in the physiological functioning of the phloem. The monoclonal antibody line RS6, selected from hybridomas raised against sieve elements isolated from California shield leaf (Streptanthus tortuosus; Brassicaceae...

  3. Structural and functional diversity in the activity and regulation of DAPK-related protein kinases.

    Temmerman, Koen; Simon, Bertrand; Wilmanns, Matthias


    Within the large group of calcium/calmodulin-dependent protein kinases (CAMKs) of the human kinome, there is a distinct branch of highly related kinases that includes three families: death-associated protein-related kinases, myosin light-chain-related kinases and triple functional domain protein-related kinases. In this review, we refer to these collectively as DMT kinases. There are several functional features that span the three families, such as a broad involvement in apoptotic processes, cytoskeletal association and cellular plasticity. Other CAMKs contain a highly conserved HRD motif, which is a prerequisite for kinase regulation through activation-loop phosphorylation, but in all 16 members of the DMT branch, this is replaced by an HF/LD motif. This DMT kinase signature motif substitutes phosphorylation-dependent active-site interactions with a local hydrophobic core that maintains an active kinase conformation. Only about half of the DMT kinases have an additional autoregulatory domain, C-terminal to the kinase domain that binds calcium/calmodulin in order to regulate kinase activity. Protein substrates have been identified for some of the DMT kinases, but little is known about the mechanism of recognition. Substrate conformation could be an equally important parameter in substrate recognition as specific preferences in sequence position. Taking the data together, this kinase branch encapsulates a treasure trove of features that renders it distinct from many other protein kinases and calls for future research activities in this field. PMID:23745726

  4. Proteomic analysis of secreted proteins from Arabidopsis thaliana seedlings: improved recovery following removal of phenolic compounds.

    Charmont, Stéphane; Jamet, Elisabeth; Pont-Lezica, Rafael; Canut, Hervé


    Arabidopsis thaliana seedlings grown in liquid culture were used to recover proteins secreted from the whole plant. The aim was to identify apoplastic proteins that may be lost during classical extraction procedures such as preparation of cell walls. The inclusion of polyvinyl-polypyrrolidone (PVPP) in the protocol of purification of secreted proteins allowed a more efficient identification of proteins after their separation by two-dimensional gel electrophoresis (2-DE) and mass spectrometry ...

  5. Redox Regulation of the AMP-Activated Protein Kinase

    Yingying Han; Qilong Wang; Ping Song; Yi Zhu; Ming-Hui Zou


    Redox state is a critical determinant of cell function, and any major imbalances can cause severe damage or death. Objectives The aim of this study is to determine if AMP-activated protein kinase (AMPK), a cellular energy sensor, is activated by oxidants generated by Berberine in endothelial cells (EC). Methods Bovine aortic endothelial cells (BAEC) were exposed to Berberine. AMPK activity and reactive oxygen species were monitored after the incubation. Results In BAEC, Berberine caused a dos...

  6. Comparative analysis of fungal protein kinases and associated domains

    Glaser Fabian; Mandel-Gutfreund Yael; Kosti Idit; Horwitz Benjamin A


    Abstract Background Protein phosphorylation is responsible for a large portion of the regulatory functions of eukaryotic cells. Although the list of sequenced genomes of filamentous fungi has grown rapidly, the kinomes of recently sequenced species have not yet been studied in detail. The objective of this study is to apply a comparative analysis of the kinase distribution in different fungal phyla, and to explore its relevance to understanding the evolution of fungi and their taxonomic class...

  7. Comparative analysis of fungal protein kinases and associated domains

    Kosti, Idit; Mandel-Gutfreund, Yael; Glaser, Fabian; Horwitz, Benjamin A.


    Background Protein phosphorylation is responsible for a large portion of the regulatory functions of eukaryotic cells. Although the list of sequenced genomes of filamentous fungi has grown rapidly, the kinomes of recently sequenced species have not yet been studied in detail. The objective of this study is to apply a comparative analysis of the kinase distribution in different fungal phyla, and to explore its relevance to understanding the evolution of fungi and their taxonomic classification...

  8. Mitogen-activated protein kinases in the acute diabetic myocardium

    Strnisková, M.; Barančík, M.; Neckář, Jan; Ravingerová, T.


    Roč. 249, 1-2 (2003), s. 59-65. ISSN 0300-8177 R&D Projects: GA MŠk LN00A069 Grant ostatní: VEGA(SK) 2/2063/22 Institutional research plan: CEZ:AV0Z5011922 Keywords : experimental diabetes * ischemia * mitogen-activated protein kinases (MAPK) Subject RIV: ED - Physiology Impact factor: 1.763, year: 2003

  9. Targeting Protein Kinase C subtypes in pancreatic cancer

    Storz, Peter


    In preclinical studies protein kinase C (PKC) enzymes have been implicated in regulating many aspects of pancreatic cancer development and progression. However, clinical phase I or phase II trials with compounds targeting classical PKC isoforms were not successful. Recent studies implicate that mainly atypical and novel PKC enzymes regulate oncogenic signaling pathways in pancreatic cancer. Members of these two subgroups converge signaling induced by mutant Kras, growth factors and inflammato...

  10. Novel regulation of protein kinase C-η

    Pal, Deepanwita; Outram, Shalini Persaud; Basu, Alakananda


    Protein kinase C (PKC) is the receptor for tumor promoting phorbol esters, which are potent activators of conventional and novel PKCs, but persistent treatment with phorbol esters leads to downregulation of these PKCs. However, PKCη, a novel PKC isozyme, resists downregulation by tumor-promoting phorbol esters, but little is known about how PKCη level is regulated. Phosphorylation and dephosphorylation play an important role in regulating activity and stability of PKCs. In the present study, ...

  11. Tumor suppressor protein C53 antagonizes checkpoint kinases to promote cyclin-dependent kinase 1 activation

    Hai Jiang; Jianchun Wu; Chen He; Wending Yang; Honglin Li


    Cyclin-dependent kinase 1 (Cdk1)/cyclin B1 complex is the driving force for mitotic entry, and its activation is tightly regulated by the G2/M checkpoint. We originally reported that a novel protein C53 (also known as Cdk5rap3 and LZAP) potentiates DNA damage-induced cell death by modulating the G2/M checkpoint. More recently, Wang et al. (2007) found that C53/LZAP may function as a tumor suppressor by way of inhibiting NF-kB signaling. We report here the identification of C53 protein as a novel regulator of Cdk1 activation. We found that knockdown of C53 protein causes delayed Cdkl activation and mitotic entry. During DNA damage response, activation of checkpoint kinase 1 and 2 (Chk1 and Chk2) is partially inhibited by C53 overexpression. Intriguingly, we found that C53 interacts with Chkl and antagonizes its function. Moreover, a portion of C53 protein is localized at the centrosome, and centrosome-targeting C53 potently promotes local Cdk1 activation. Taken together, our results strongly suggest that C53 is a novel negative regulator of checkpoint response. By counteracting Chk1, C53 promotes Cdk1 activation and mitotic entry in both unperturbed cell-cycle progression and DNA damage response.

  12. The ERECTA receptor kinase regulates Arabidopsis shoot apical meristem size, phyllotaxy and floral meristem identity

    Mandel, Tali; Moreau, Fanny; Kutsher, Yaarit; Fletcher, Jennifer C; Carles, Cristel C.; Williams, Leor Eshed


    In plants, the shoot apical meristem (SAM) serves as a reservoir of pluripotent stem cells from which all above ground organs originate. To sustain proper growth, the SAM must maintain homeostasis between the self-renewal of pluripotent stem cells and cell recruitment for lateral organ formation. At the core of the network that regulates this homeostasis in Arabidopsis are the WUSCHEL (WUS) transcription factor specifying stem cell fate and the CLAVATA (CLV) ligand-receptor system limiting WU...

  13. Studies on the Differential Specificity of Protein Kinases and Its Applications

    Loog, Mart


    Protein kinases are enzymes that catalyse the phosphoryl transfer from the g-phosphate of ATP to acceptor amino acids in proteins. The specificity of selected model protein kinases was studied at three different levels using a) novel bi-substrate-analogue inhibitors, b) synthetic peptide substrates and c) mutated protein substrate analogues. A new class of protein kinase bi-substrate-analogue inhibitors was designed on the basis of adenosine-5’-carboxylic acid derivatives, where a short argi...

  14. LOV Domain-Containing F-Box Proteins:Light-Dependent Protein Degradation Modules in Arabidopsis

    Shogo Ito; Young Hun Song; Takato Imaizumi


    Plants constantly survey the surrounding environment using several sets of photoreceptors.They can sense changes in the quantity (=intensity) and quality (=wavelength) of light and use this information to adjust their physiological responses,growth,and developmental patterns.In addition to the classical photoreceptors,such as phytochromes,cryptochromes,and phototropins,ZEITLUPE (ZTL),FLAVIN-BINDING,KELCH REPEAT,F-BOX 1 (FKF1),and LOV KELCH PROTEIN 2 (LKP2) proteins have been recently identified as blue-light photoreceptors that are important for regulation of the circadian clock and photoperiodic flowering.The ZTL/FKF1/LKP2 protein family possesses a unique combination of domains:a blue-light-absorbing LOV (Light,Oxygen,or Voltage) domain along with domains involved in protein degradation.Here,we summarize recent advances in our understanding of the function of the Arabidopsis ZTL/FKF1/LKP2 proteins.We summarize the distinct photochemical properties of their LOV domains and discuss the molecular mechanisms by which the ZTL/FKF1/LKP2 proteins regulate the circadian clock and photoperiodic flowering by controlling blue-light-dependent protein degradation.

  15. Enhanced expression of a calcium-dependent protein kinase from the moss Funaria hygrometrica under nutritional starvation

    Doyel Mitra; Man Mohan Johri


    Among the downstream targets of calcium in plants, calcium-dependent protein kinases (CDPKs) form an interesting class of kinases which are activated by calcium binding. They have been implicated in a diverse array of responses to hormonal and environmental stimuli. In order to dissect the role of CDPKs in the moss Funaria hygrometrica, a polymerase chain reaction (PCR)-based approach was adopted to clone the gene. Using degenerate PCR primers against conserved regions of CDPKs, a 900 bp amplicon was obtained from the genomic DNA of Funaria. Southern hybridization under low stringency conditions indicated the presence of several CDPK related sequences in the Funaria genome. This observation is consistent with reports of multigene families of CDPKs in other plants. The 900 bp fragment was subsequently used to isolate a 2.2 kb partial genomic clone of the CDPK gene from Funaria. The genomic clone encodes an open reading frame (ORF) of 518 amino acids. Interestingly, unlike other CDPK genes from plants, the entire 1.5 kb ORF is not interrupted by introns. The deduced amino acid sequence of the Funaria gene shows extensive homology with CDPKs from higher plants, 73% identity with the Fragaria CDPK and 71% identity with CDPK isoform 7 of Arabidopsis. Phylogenetic analysis revealed that the Funaria CDPK is closer to the CDPKs from higher plants like strawberry and Arabidopsis as compared to those from lower plants such as the liverwort Marchantia, the green alga Chlamydomonas or another moss Tortula. Northern analysis shows enhanced expression of the CDPK transcript within 24–48 h of starvation for nitrogen, phosphorus or sulphur. So far the only other kinase which is known to be induced by nutrient starvation in plants is the wpk 4 which is a snf-1 related kinase (SnRKs). To our knowledge this is the first report that implicates a CDPK in the starvation response.

  16. Benzoselendiazole-based responsive long-lifetime photoluminiscent probes for protein kinases

    Ekambaram, R; Enkvist, E; Manoharan, GB;


    Benzoselenadiazole-containing inhibitors of protein kinases were constructed and their capability to emit phosphorescence in the kinase-bound state was established. Labelling of the inhibitors with a red fluorescent dye led to sensitive responsive photoluminescent probes for protein kinase CK2 that...

  17. GTP plus water mimic ATP in the active site of protein kinase CK2

    Niefind, K; Pütter, M; Guerra, B;


    The structures of the catalytic subunit of protein kinase CK2 from Zea mays complexed with Mg2+ and with analogs of ATP or GTP were determined to 2.2 A resolution. Unlike most other protein kinases, CK2 from various sources shows 'dual-cosubstrate specificity', that is, the ability to efficiently...... target CK2 or other kinases with this property....

  18. A CHASE domain containing protein kinase OsCRL4, represents a new AtCRE1-like gene family in rice

    韩秋敏; 姜华武; 齐晓朋; 丁洁; 吴平


    AtCRE1 is known to be a cytokinin receptor inArabidopsis. The AtCRE1 protein contains CHASE domain at the N-terminal part, followed by a transmitter (histidine kinase) domain and two receiver domains. The N-terminal CHASE domain of AtCRE1 contains putative recognition sites for cytokinin. Five CHASE domains containing proteins were found in rice, OsCRLla, OsCRLlb, OsCRL2, OsCRL3, and OsCRL4. OsCRL1a, OsCRL1b, OsCRL2 and OsCRL3 contain the four domains existing in CRE1, whereas OsCRL4 only contains the CHASE domain and a putative Ser/Thr protein kinase domain The authors cloned the encoding gene OsCRL4 and found that it represents a new member of the cytokinin receptor protein in rice.

  19. Trafficking of endoplasmic reticulum-retained recombinant proteins is unpredictable in Arabidopsis thaliana

    Thomas eDe Meyer


    Full Text Available A wide variety of recombinant proteins has been produced in the dicot model plant, Arabidopsis thaliana. Many of these proteins are targeted for secretion by means of an N terminal endoplasmic reticulum (ER signal peptide. In addition, they can also be designed for ER retention by adding a C terminal H/KDEL-tag. Despite extensive knowledge of the protein trafficking pathways, the final protein destination, especially of such H/KDEL-tagged recombinant proteins, is unpredictable. In this respect, glycoproteins are ideal study objects. Microscopy experiments reveal their deposition pattern and characterization of their N-glycans aids in elucidating the trafficking. Here, we combine microscopy and N glycosylation data generated in Arabidopsis leaves and seeds, and highlight the lack of a decent understanding of heterologous protein trafficking.

  20. Presenilin dependence of phospholipase C and protein kinase C signaling

    Dehvari, Nodi; Cedazo-Minguez, Angel; Isacsson, Ola;


    -stimulated phospholipase C (PLC) activity which was gamma-secretase dependent. To further evaluate the dependence of PLC on PSs we measured PLC activity and the activation of variant protein kinase C (PKC) isoforms in mouse embryonic fibroblasts (MEFs) lacking either PS1, PS2, or both. PLC activity and PKCalpha and......Presenilins (PSs) are involved in processing several proteins such as the amyloid precursor protein (APP), as well as in pathways for cell death and survival. We previously showed that some familial Alzheimer's disease PS mutations cause increased basal and acetylcholine muscarinic receptor...... PKCgamma activations were significantly lower in PS1 and PS2 double knockout MEFs after PLC stimulation. Protein levels of PKCalpha and PKCgamma were lower in PS1 and PS2 double knockout MEFs. In contrast, PKCdelta levels were significantly elevated in PS1 and PS2 double knockout as well as in PS1 knockout...

  1. Calcium-Dependent Protein Kinase Genes in Corn Roots

    Takezawa, D.; Patil, S.; Bhatia, A.; Poovaiah, B. W.


    Two cDNAs encoding Ca-2(+) - Dependent Protein Kinases (CDPKs), Corn Root Protein Kinase 1 and 2 (CRPK 1, CRPK 2) were isolated from the root tip library of corn (Zea mays L., cv. Merit) and their nucleotide sequences were determined. Deduced amino acid sequences of both the clones have features characteristic of plant CDPKS, including all 11 conserved serine/threonine kinase subdomains, a junction domain and a calmodulin-like domain with four Ca-2(+), -binding sites. Northern analysis revealed that CRPKI mRNA is preferentially expressed in roots, especially in the root tip; whereas, the expression of CRPK2 mRNA was very low in all the tissues tested. In situ hybridization experiments revealed that CRPKI mRNA is highly expressed in the root apex, as compared to other parts of the root. Partially purified CDPK from the root tip phosphorylates syntide-2, a common peptide substrate for plant CDPKs, and the phosphorylation was stimulated 7-fold by the addition of Ca-2(+). Our results show that two CDPK isoforms are expressed in corn roots and they may be involved in the Ca-2(+)-dependent signal transduction process.

  2. Diacylglycerol kinase regulation of protein kinase D during oxidative stress-induced intestinal cell injury

    We recently demonstrated that protein kinase D (PKD) exerts a protective function during oxidative stress-induced intestinal epithelial cell injury; however, the exact role of DAG kinase (DGK)ζ, an isoform expressed in intestine, during this process is unknown. We sought to determine the role of DGK during oxidative stress-induced intestinal cell injury and whether DGK acts as an upstream regulator of PKD. Inhibition of DGK with R59022 compound or DGKζ siRNA transfection decreased H2O2-induced RIE-1 cell apoptosis as measured by DNA fragmentation and increased PKD phosphorylation. Overexpression of kinase-dead DGKζ also significantly increased PKD phosphorylation. Additionally, endogenous nuclear DGKζ rapidly translocated to the cytoplasm following H2O2 treatment. Our findings demonstrate that DGK is involved in the regulation of oxidative stress-induced intestinal cell injury. PKD activation is induced by DGKζ, suggesting DGK is an upstream regulator of oxidative stress-induced activation of the PKD signaling pathway in intestinal epithelial cells

  3. Stimulation of the cyclic AMP-dependent protein kinase-catalyzed phosphorylation of phosphorylase kinase by micromolar concentrations of spermine

    The phosphorylation of phosphorylase kinase by cyclic AMP-dependent protein kinase (A-kinase) is stimulated approximately 2-fold by spermine and spermidine. Half maximal effects were observed at 10 microM and 150 microM of spermine and spermidine, respectively. The phosphorylations of other substrates of A-kinase such as glycogen synthase, histone, and casein are not stimulated by these two polyamines. The rates, but not the final extents, of phosphorylation of both the alpha and beta subunits of phosphorylase kinase by A-kinase are stimulated by spermine. The results indicate that spermine and spermidine may play an important role in the activation of glycogenolysis in skeletal muscle

  4. Interactions of protein kinase CK2beta subunit within the holoenzyme and with other proteins

    Kusk, M; Ahmed, R; Thomsen, B;


    Protein kinase CK2 is a ubiquitous, highly conserved protein kinase with a tetrameric alpha2beta2 structure. For the formation of this tetrameric complex a beta-alpha dimer seems to be a prerequisite. Using the two-hybrid system and a series of CK2beta deletion mutants, we mapped domains involved...... in alpha-beta and beta-beta interactions. We also detected an intramolecular beta interaction within the amino acid stretch 132-165. Using CK2beta as a bait in a two-hybrid library screening several new putative cellular partners have been identified, among them the S6 kinase p90rsk, the putative...... tumor suppressor protein Doc-1, the Fas-associated protein FAF1, the mitochondrial translational initiation factor 2 and propionyl CoA carboxylase beta subunit....

  5. Depletion of WRN protein causes RACK1 to activate several protein kinase C isoforms

    Massip, L; Garand, C; Labbé, A;


    show that a knock down of the WRN protein in normal human fibroblasts induces phosphorylation and activation of several protein kinase C (PKC) enzymes. Using a tandem affinity purification strategy, we found that WRN physically and functionally interacts with receptor for activated C-kinase 1 (RACK1...... contrast, different DNA-damaging treatments known to activate PKCs did not induce RACK1/PKCs association in cells. Overall, our results indicate that a depletion of the WRN protein in normal fibroblasts causes the activation of several PKCs through translocation and association of RACK1 with such kinases.......Werner's syndrome (WS) is a rare autosomal disease characterized by the premature onset of several age-associated pathologies. The protein defective in patients with WS (WRN) is a helicase/exonuclease involved in DNA repair, replication, transcription and telomere maintenance. In this study, we...

  6. Phosphorylation of Human Choline Kinase Beta by Protein Kinase A: Its Impact on Activity and Inhibition

    Chang, Ching Ching; Few, Ling Ling; Konrad, Manfred; See Too, Wei Cun


    Choline kinase beta (CKβ) is one of the CK isozymes involved in the biosynthesis of phosphatidylcholine. CKβ is important for normal mitochondrial function and muscle development as the lack of the ckβ gene in human and mice results in the development of muscular dystrophy. In contrast, CKα is implicated in tumorigenesis and has been extensively studied as an anticancer target. Phosphorylation of human CKα was found to regulate the enzyme’s activity and its subcellular location. This study provides evidence for CKβ phosphorylation by protein kinase A (PKA). In vitro phosphorylation of CKβ by PKA was first detected by phosphoprotein staining, as well as by in-gel kinase assays. The phosphorylating kinase was identified as PKA by Western blotting. CKβ phosphorylation by MCF-7 cell lysate was inhibited by a PKA-specific inhibitor peptide, and the intracellular phosphorylation of CKβ was shown to be regulated by the level of cyclic adenosine monophosphate (cAMP), a PKA activator. Phosphorylation sites were located on CKβ residues serine-39 and serine-40 as determined by mass spectrometry and site-directed mutagenesis. Phosphorylation increased the catalytic efficiencies for the substrates choline and ATP about 2-fold, without affecting ethanolamine phosphorylation, and the S39D/S40D CKβ phosphorylation mimic behaved kinetically very similar. Remarkably, phosphorylation drastically increased the sensitivity of CKβ to hemicholinium-3 (HC-3) inhibition by about 30-fold. These findings suggest that CKβ, in concert with CKα, and depending on its phosphorylation status, might play a critical role as a druggable target in carcinogenesis. PMID:27149373

  7. Phosphoenolpyruvate-dependent protein kinase from skeletal muscle

    Soluble extracts of skeletal muscle from rat, rabbit and hamster when incubated with 0.1 mM [32P]phosphoenolpyruvate give rise to a similar set of phosphoproteins as resolved by SDS-PAGE with Mr 25,000, 35,000, 37,000, 43,000 and 59,000. The phosphorylation of these proteins is neither inhibited by excess ATP nor achieved by incubation with [γ-32P]ATP. Except for the Mr 43,000 phosphoprotein, the phosphorylation of the other proteins dramatically increased in the presence of 0.1 mM CTP. Although phosphatase inhibits such as NaF and PPi were not effective, CTP may act to inhibit phosphatase activity rather than activating a protein kinase. The phosphoamino acids produced in these phosphoproteins were acid stable and only phosphoserine has been routinely identified. Using DEAE-cellulose, CM-Sephadex and Ultrogel AcA44 chromatography, the Mr 37,000 phosphoprotein has been purified from rabbit skeletal muscle to near homogeneity. No physiological role for either the protein kinase or its substrates has yet been found



    Objective: To survey the role of protein tyrosine kinases (PTKs) in the pathogenesis of several hematopoietic malignancies. Methods: By reviewing the published laboratory and clinical studies on PTK-related oncoproteins and their causative role in some leukemias and lymphomas. Results: Protein tyrosine kinases are key participants in signal transduction pathways that regulate cellular growth, activation and differentiations. Aberrant PTK activity resulting from gene mutation (often accompanying chromosome translocation) plays an etiologic role in several clonal hematopoietic malignancies. For example, the PTK product of the BCR-ABL fusion gene resulting from the t (9; 22) translocation exhibits several fold higher tyrosine kinase activity than the product of the ABL gene. Evidence suggests that the BCR-ABL oncoprotein alone is sufficient to case chronic myelogenous leukemia (CML) and other Ph positive acute leukemia. PTK over-activity resulting from chromosomal translocations creating TEL-ABL, TEL-JAK2 and TEL-PDGFR( fusion proteins plays an important role in the pathogenesis of other types of leukemia. Another example occurs in anaplastic large cell lymphoma (ALCL). Experimental and clinical evidences indicate that translocations involving ALK gene on chromosome 2p23, most commonly resulting in an NPM-ALK fusion oncogene, result in constitutive activation of ALK and cause ALCL. This group of lymphomas is now named ALK positive lymphoma or ALKoma. Conclusion: Genetic lesions creating aberrant fusion proteins that result in excessive PTK activity are increasingly being recognized as central to the pathogenesis of hemotopoietic malignancies. These chimeric PTK molecules represent attractive disease-specific targets against which new classes therapeutic agents are being developed.

  9. Toward the rational design of protein kinase casein kinase-2 inhibitors.

    Sarno, Stefania; Moro, Stefano; Meggio, Flavio; Zagotto, Giuseppe; Dal Ben, Diego; Ghisellini, Paola; Battistutta, Roberto; Zanotti, Giuseppe; Pinna, Lorenzo A


    Casein kinase-2 (CK2) probably is the most pleiotropic member of the protein kinase family, with more than 200 substrates known to date. Unlike the great majority of protein kinases, which are tightly regulated enzymes, CK2 is endowed with high constitutive activity, a feature that is suspected to underlie its oncogenic potential and possible implication in viral infections. This makes CK2 an attractive target for anti-neoplastic and antiviral drugs. Here, we present an overview of our present knowledge about CK2 inhibitors, with special reference to the information drawn from two recently solved crystal structures of CK2alpha in complex with emodin and with 4,5,6,7-tetrabromo-2-azabenzimidazole (TBB), this latter being the most specific CK2 inhibitor known to date. A comparison with a series of anthraquinone and xanthenone derivatives highlights the crucial relevance of the hydroxyl group at position 3 for inhibition by emodin, and discloses the possibility of increasing the inhibitory potency by placing an electron withdrawing group at position 5. We also present mutational data corroborating the relevance of two hydrophobic residues unique to CK2, Val66 and Ile174, for the interactions with emodin and TBB, but not with the flavonoid inhibitors quercetin and fisetin. In particular, the CK2alpha mutant V66A displays 27- and 11-fold higher IC(50) values with emodin and TBB, respectively, as compared with the wild-type, while the IC(50) value with quercetin is unchanged. The data presented pave the road toward the rational design of more potent and selective inhibitors of CK2 and the generation of CK2 mutants refractory to inhibition, useful to probe the implication of CK2 in specific cellular functions. PMID:12191608

  10. Modulation of the protein kinase activity of mTOR.

    Lawrence, J C; Lin, T A; McMahon, L P; Choi, K M


    mTOR is a founding member of a family of protein kinases having catalytic domains homologous to those in phosphatidylinositol 3-OH kinase. mTOR participates in the control by insulin of the phosphorylation of lipin, which is required for adipocyte differentiation, and the two translational regulators, p70S6K and PHAS-I. The phosphorylation of mTOR, itself, is stimulated by insulin in Ser2448, a site that is also phosphorylated by protein kinase B (PKB) in vitro and in response to activation of PKB activity in vivo. Ser2448 is located in a short stretch of amino acids not found in the two TOR proteins in yeast. A mutant mTOR lacking this stretch exhibited increased activity, and binding of the antibody, mTAb-1, to this region markedly increased mTOR activity. In contrast, rapamycin-FKBP12 inhibited mTOR activity towards both PHAS-I and p70S6K, although this complex inhibited the phosphorylation of some sites more than that of others. Mutating Ser2035 to Ile in the FKBP12-rapamycin binding domain rendered mTOR resistant to inhibition by rapamycin. Unexpectedly, this mutation markedly decreased the ability of mTOR to phosphorylate certain sites in both PHAS-I and p70S6K. The results support the hypotheses that rapamycin disrupts substrate recognition instead of directly inhibiting phosphotransferase activity and that mTOR activity in cells is controlled by the phosphorylation of an inhibitory regulatory domain containing the mTAb-1 epitope. PMID:14560959