WorldWideScience

Sample records for aqueous effluent decontamination

  1. Introduction of a cation in aqueous solution by electrolytic dissolution of metal. Applications to the decontamination of radioactive effluents

    International Nuclear Information System (INIS)

    Gauchon, Jean-Paul

    1979-01-01

    This research thesis aims at comparing results obtained in chemical decontamination of radioactive effluents with a metallic cation introduced by metal electro-dissolution or by dose addition. After an overview of methods used for the purification of radioactive effluents and a more precise presentation of chemical co-precipitation, the author reports preliminary tests of the application of chemical co-precipitation to the decontamination of radioactive effluents, reports the analysis of iron, zinc and copper behaviour in aqueous environment by means of thermodynamic diagrams and current-voltage curves. He reports the design and use of two electro-dissolution sets, and the application of copper electrolytic dissolution to the elimination of ruthenium in radioactive effluents. He finally addresses the purification treatment of effluents of nuclear reactors

  2. Tests of the use of cation exchange organic resins for the decontamination of radioactive aqueous effluents

    International Nuclear Information System (INIS)

    Bourdrez, Jean; Girault, Jacques; Wormser, Gerald

    1962-01-01

    The authors report tests performed in laboratory and results obtained during an investigation of the use of synthetic ion exchangers for the decontamination of radioactive effluents of moderate activity level and with a non neglectable salt loading. Resins are used under sodium form and regenerated after each fixing operation. Once decontaminated and free of its disturbing ions, the regenerating agent (NaCl) is used for several operations. The authors present the used resins, the treated effluents, describe the tests, and discuss the obtained results [fr

  3. Tests of the use of cation exchange organic resins for the decontamination of radioactive aqueous effluents; Essais d'emploi des resines organiques echangeuses de cations pour la decontamination des effluents aqueux radioactifs

    Energy Technology Data Exchange (ETDEWEB)

    Bourdrez, Jean; Girault, Jacques; Wormser, Gerald

    1962-12-14

    The authors report tests performed in laboratory and results obtained during an investigation of the use of synthetic ion exchangers for the decontamination of radioactive effluents of moderate activity level and with a non neglectable salt loading. Resins are used under sodium form and regenerated after each fixing operation. Once decontaminated and free of its disturbing ions, the regenerating agent (NaCl) is used for several operations. The authors present the used resins, the treated effluents, describe the tests, and discuss the obtained results [French] Dans ce rapport nous faisons le point des essais et resultats obtenus au laboratoire au cours d'une etude concernant l'utilisation des echangeurs d'ions synthetiques pour la decontamination des effluents radioactifs de niveau d'activite moyenne et de charge en sels non negligeable. Les resines sont employees sous forme sodique et regenerees apres chaque operation de fixation. Le regenerant decontamine et debarrasse de ses ions genants est utilise pour plusieurs operations d'elution. Les seuls residus a stocker proviennent d'une part eventuellement d'un pretraitement de l'effluent, d'autre part, dans tous les cas des precipites consecutifs a la purification de l'eluant dont le traitement chimique est plus aise et donne lieu a des boues beaucoup moins volumineuses qu'une coprecipitation effectuee sur la totalite de l'effluent. (auteurs)

  4. The potentialities of the complexation ultrafiltration technique for the decontamination of fission product contaminated aqueous effluents

    International Nuclear Information System (INIS)

    Thibert, V.

    1995-07-01

    Many nuclear researchers and industrial operators lay emphasis on improving the back end of the fuel cycle. A major problem concerns the liquid wastes generated by the reprocessing plant at La Hague, discharged into the sea after treatment in the Effluent Treatment Station (STE) 3), and which have become crucial matter. The activity of these wastes is well below the current legal limits, and is constantly decreasing these last years. To bring it close to zero, and ambitious goal, entails innovative new reprocessing techniques. We accordingly investigated the possibilities of complexation-ultrafiltration, a technique that uses water-soluble macromolecules to complex the target elements to be separated. We first achieved the strontium (II) separation with poly-acrylic and poly-sulfonic acids. The effects of pH and NaNO 3 concentration influence on Sr (II) complexation were studied. The Sr (II) complexation and concentration phases, followed by cation de-complexation to recover the polymer, were also taken into account. This research, combined with a potentiometric study of the polymers, offered a close understanding of the chemical systems involved, and of the operating conditions and limits of complexation-ultrafiltration. The laboratory results were also validated on a tangential ultrafiltration pilot plant. We then used complexation-ultrafiltration to treat a real effluent generated bu La Hague's STE 3 plant. This experiment demonstrated minimum 90 % decontamination of Sr (II) (with polyacrylate complexing agent), and also for 134-137 Cs (with simple ultrafiltration). The use of two polyamides allowed partial decontamination of the effluent for 60 Co and 106 Ru. This work therefore offers a global approach to complexation-ultrafiltration, from laboratory to pilot scale, on real and simulated effluents. The future of this technique relies chiefly on the ability to solve the problem of polymer recovery. In other respect, complexation-ultrafiltration clearly offers a

  5. Decontamination of aqueous effluents containing metallic cations or anions by iron oxides under the action of a magnetic field

    International Nuclear Information System (INIS)

    Goncalves, M. A.; Camilo, R. L.; Cohen, V. H.; Yamaura, M.

    1999-01-01

    This work deals with a review of decontamination processes of aqueous effluents containing metallic cations and anions by using iron oxides as adsorber. Conditions to obtain the different iron oxides and adsorption capacities for cations and anions are presented and precipitation and/or adsorption mechanisms studies under the point of view of oxide-interface phenomena are described. Emphasis will be applied to the magnetite combined with inorganic exchanger or liquid extractants which magnetic properties has been used to enhance metals removal. Experimental results of a synthetic magnetite production and its adsorption capacity as a function of a magnetic field intensity are also showed. (authors)

  6. Effluent treatment plant and decontamination centre, Trombay

    International Nuclear Information System (INIS)

    Kaushik, C.P.; Agarwal, K.

    2017-01-01

    The Bhabha Atomic Research Centre, Trombay, has a number of plants and laboratories, which generate Radioactive Liquid Waste and Protective Wears. Two facilities have been established in late 1960s to cater to this requirement. The Centre, on the average generates about 50,000 m"3 of active liquid effluents of varying specific activities. The Effluent Treatment Plant was setup to receive and process radioactive liquids generated by various facilities of BARC in Trombay. It also serves a single-point discharge facility to enable monitoring of radioactive effluents discharged from the Trombay site. About 120-150 Te of protective wears and inactive apparel are generated annually from various radioactive facilities and laboratories of BARC. In addition, contaminated fuel assembly components are generated by DHRUVA and formerly by CIRUS. These components require decontamination before its recycle to the fuel assembly process. The Decontamination Centre, setup in late 1960s, is mandated to carry out the above mentioned decontamination activities

  7. The potentialities of the complexation ultrafiltration technique for the decontamination of fission product contaminated aqueous effluents; Potentialites de la complexation - ultrafiltration a la decontamination d`effluents radioactifs en produits de fission

    Energy Technology Data Exchange (ETDEWEB)

    Thibert, V

    1995-07-01

    Many nuclear researchers and industrial operators lay emphasis on improving the back end of the fuel cycle. A major problem concerns the liquid wastes generated by the reprocessing plant at La Hague, discharged into the sea after treatment in the Effluent Treatment Station (STE) (3), and which have become crucial matter. The activity of these wastes is well below the current legal limits, and is constantly decreasing these last years. To bring it close to zero, and ambitious goal, entails innovative new reprocessing techniques. We accordingly investigated the possibilities of complexation-ultrafiltration, a technique that uses water-soluble macromolecules to complex the target elements to be separated. We first achieved the strontium (II) separation with poly-acrylic and poly-sulfonic acids. The effects of pH and NaNO{sub 3} concentration influence on Sr (II) complexation were studied. The Sr (II) complexation and concentration phases, followed by cation de-complexation to recover the polymer, were also taken into account. This research, combined with a potentiometric study of the polymers, offered a close understanding of the chemical systems involved, and of the operating conditions and limits of complexation-ultrafiltration. The laboratory results were also validated on a tangential ultrafiltration pilot plant. We then used complexation-ultrafiltration to treat a real effluent generated bu La Hague`s STE 3 plant. This experiment demonstrated minimum 90 % decontamination of Sr (II) (with polyacrylate complexing agent), and also for {sup 134-137}Cs (with simple ultrafiltration). The use of two polyamides allowed partial decontamination of the effluent for {sup 60}Co and {sup 106}Ru. This work therefore offers a global approach to complexation-ultrafiltration, from laboratory to pilot scale, on real and simulated effluents. The future of this technique relies chiefly on the ability to solve the problem of polymer recovery. (Abstract Truncated)

  8. Contribution to immersed arc plasma study: applications to organic aqueous effluent decontamination and gasification

    International Nuclear Information System (INIS)

    Boudesocque, N.

    2007-07-01

    This work is concerned with decontamination and gasification of aqueous organic liquid waste by immersed thermal plasma technology. In this concept, the organic compounds are decomposed into gas by high temperature plasma. A quench of about 107-108 K/s, is obtained by immersion into a given effluent. Two kinds of arc plasma are studied. The first one is an immersed electrical arc stricken between two graphite electrodes. The second one is a plasma jet generated by a non-transferred plasma torch. For dilute liquid waste (1 g/L) containing molecules incompatible with conventional biological processes, the hydroxyl radicals (OH 0 ) are continuously produced by the plasma jet directly into the solution allowing complete molecule mineralization into carbon dioxide and water. The hetero-atoms, if present, are converted into solvated ions. The decomposition of the molecules, such as chloro-phenols and aniline, are studied. Considering the identified intermediate products, a reaction mechanism is proposed. For each tested molecules, their concentration decreased at least of 90 percent. Based on the 'gasosiphon' phenomenon, the experimental reactor insures the simultaneous recirculation of both gas and liquid phases. The hydrodynamic was studied using in situ high frequency imaging technology. A CFD code was applied for numerical simulation of the observed recirculation phenomena. The results were compared with obtained experimental data. In the case of concentrated liquid waste (≥ 100 g/L), syngas was produced by thermal cracking of organic molecules. The best measured composition of the gas is about 45% v/v of H 2 and 45 % v/v of CO when an electrical arc is used. The usability of both studied plasma types were investigated in this field. The experimental study was carried on using fructose and glucose solution (several hundreds g/L) as surrogated effluent. With a specific injection method, gasification rate is about 30 % with one way. Optical Emission Spectroscopy and

  9. Study of the mineral absorbent precipitation phenomena used in decontamination of radioactive effluents; Etude des phenomenes de precipitation d'adsorbants mineraux utilises en decontamination d'effluents radioactifs

    Energy Technology Data Exchange (ETDEWEB)

    Pacary, V. [Institut National Polytechnique, 54 - Nancy (France)]|[CEA Valrho, Lab. des Procedes Avances de Decontamination (LPAD), 30 - Marcoule (France)

    2006-07-01

    The aim of this work is to determine the optimal conditions of the reactor running (feed rate, reagents concentration..) for which the effluent decontamination is the most efficient. Thus will be in particular studied the coprecipitation mechanisms and the influence of the physico-chemical conditions on these mechanisms. On the other hand, the processes occurred in the coprecipitation phenomenon being complex, the elaboration of a model is indispensable to guide and interpret the experimental work. This model will be based on the knowledge developed in precipitation and will allow to simulate the decontamination in two reactors types: the reactor fed in continuous in reagents and in effluents as the Hague's ones and the closed reactor fed only in reagents as the Marcoule's ones. (O.M.)

  10. Decontamination of irradiated-fuel processing waste using manganese dioxide hydrate; Decontamination des effluents de traitement des combustibles irradies par le bioxyde de manganese hydrate

    Energy Technology Data Exchange (ETDEWEB)

    Auchapt, J M; Gaudier, J F [Commissariat a l' Energie Atomique, Chusclan (France). Centre de Production de Plutonium de Marcoule

    1969-07-01

    The 'manganese dioxide' process is designed to replace the 'calcium carbonate' treatment for low and medium activity wastes. The objective to attain during the research for a new process was the diminution of the volume of the sludge without decreasing the decontamination factor of the wastes. The new process involves addition in series of twice over 100 ppm of Mn{sup 2+} in the waste which has previously been made basic and oxidizing; the precipitate formed in situ is separated after each addition. The process has the advantage of increasing the decontamination of strontium. The treatment can be used in a plant including two decantation units and has given effective results when applied in such a plant. (author) [French] Le procede au ''bioxyde de manganese'' est destine a remplacer le traitement ''carbonate de calcium'' dans les effluents de moyenne activite. L'objectif poursuivi lors de la recherche d'un procede nouveau etait de diminuer le volume des boues sans diminuer le facteur de decontamination des effluents. Le nouveau traitement consiste a effectuer en cascade sur les effluents rendus basiques et oxydants une double precipitation de 100 ppm de Mn{sup 2+} avec separation intermediaire du precipite. Il presente en outre l'avantage d'ameliorer la decontamination en strontium. Le traitement est utilisable dans la chaine des deux decanteurs et a donne satisfaction lors de son exploitation industrielle. Le volume des boues seches a ete reduit d'un facteur 3 a 4 par rapport au traitement carbonate. (auteur)

  11. The treatment of effluents

    International Nuclear Information System (INIS)

    Wormser, G.; Rodier, J.; Robien, E. de; Fernandez, N.

    1964-01-01

    For several years the French Atomic Energy Commission has been studying with interest problems presented by radio-active effluents. Since high activities have not yet received a definite solution we will deal only, in this paper, with the achievements and research concerning low and medium activity effluents. In the field of the achievements, we may mention the various effluent treatment stations which have been built in France; a brief list will be given together with an outline of their main new features. Thus in particular the latest treatment stations put into operation (Grenoble, Fontenay-aux-Roses, Cadarache) will be presented. From all these recent achievements three subjects will be dealt with in more detail. 1 - The workshop for treating with bitumen the sludge obtained after concentration of radionuclides. 2 - The workshop for treating radioactive solid waste by incineration. 3 - A unit for concentrating radio-active liquid effluents by evaporation. In the field of research, several topics have been undertaken, a list will be given. In most cases the research concerns the concentration of radionuclides with a view to a practical and low cost storage, a concentration involving an efficient decontamination of the aqueous liquids in the best possible economic conditions. For improving the treatments leading to the concentration of nuclides, our research has naturally been concerned with perfecting the treatments used in France: coprecipitation and evaporation. In our work we have taken into account in particular two conditions laid down in the French Centres. 1 - A very strict sorting out of the effluents at their source in order to limit in each category the volume of liquid to be dealt with. 2 - The necessity for a very complete decontamination due to the high population density in our country. In the last past we present two original methods for treating liquid effluents. 1 - The use of ion-exchange resins for liquids containing relatively many salts. The

  12. Contribution to immersed arc plasma study: applications to organic aqueous effluent decontamination and gasification; Contribution a l'etude de plasmas d'arc immerge: applications a la decontamination et a la gazeification d'effluents organiques aqueux

    Energy Technology Data Exchange (ETDEWEB)

    Boudesocque, N

    2007-07-15

    This work is concerned with decontamination and gasification of aqueous organic liquid waste by immersed thermal plasma technology. In this concept, the organic compounds are decomposed into gas by high temperature plasma. A quench of about 107-108 K/s, is obtained by immersion into a given effluent. Two kinds of arc plasma are studied. The first one is an immersed electrical arc stricken between two graphite electrodes. The second one is a plasma jet generated by a non-transferred plasma torch. For dilute liquid waste (1 g/L) containing molecules incompatible with conventional biological processes, the hydroxyl radicals (OH{sup 0}) are continuously produced by the plasma jet directly into the solution allowing complete molecule mineralization into carbon dioxide and water. The hetero-atoms, if present, are converted into solvated ions. The decomposition of the molecules, such as chloro-phenols and aniline, are studied. Considering the identified intermediate products, a reaction mechanism is proposed. For each tested molecules, their concentration decreased at least of 90 percent. Based on the 'gasosiphon' phenomenon, the experimental reactor insures the simultaneous recirculation of both gas and liquid phases. The hydrodynamic was studied using in situ high frequency imaging technology. A CFD code was applied for numerical simulation of the observed recirculation phenomena. The results were compared with obtained experimental data. In the case of concentrated liquid waste ({>=} 100 g/L), syngas was produced by thermal cracking of organic molecules. The best measured composition of the gas is about 45% v/v of H{sub 2} and 45 % v/v of CO when an electrical arc is used. The usability of both studied plasma types were investigated in this field. The experimental study was carried on using fructose and glucose solution (several hundreds g/L) as surrogated effluent. With a specific injection method, gasification rate is about 30 % with one way. Optical

  13. Separation of tritium from gaseous and aqueous effluent systems

    International Nuclear Information System (INIS)

    Kobisk, E.H.

    1977-01-01

    Three processes are discussed for separating tritium from gaseous and aqueous effluent systems: separation in the gas phase using Pd-25 wt percent Ag alloy diffusion membranes; electrolytic separation in the aqueous phase using ''bipolar'' electrodes; and the countercurrent exchange of tritium-containing hydrogen gas with water on catalytic surfaces combined with separation by direct electrolysis

  14. Adsorption behavior of rice husk for the decontamination of chromium from industrial effluents

    International Nuclear Information System (INIS)

    Khalid, N.; Rahman, A.; Ahmad, S.; Toheed, A.; Ahmed, J.

    1999-01-01

    Rice husk, an agricultural waste product, was studied as a potential decontaminant for chromium in the effluents of leather tanning industries. Physico-chemical parameters such as selection of appropriate electrolyte, shaking time, concentration of absorbent and absorbate were studied to optimize the best conditions in which this material can be utilized on commercial scale for the decontamination of effluents. The radiotracer technique was used to determine the distribution of chromium. In certain cases atomic absorption spectrophotometry was also employed. Maximum adsorption was observed at 0.01 mol x dm -3 acid solutions (HNO 3 , HCl, H 2 SO 4 and HClO 4 ) using 3.0 g of absorbent for 2.73 x 10 -3 mol x dm -3 chromium concentration in five minutes equilibration time. Studies show that the adsorption decreases with the increase in the concentrations of all acids. The adsorption data follows the Freundlich isotherm over the range of 2.73 x 10 -3 to 2.73 x 10 -2 mol x dm -3 chromium concentration. The characteristic Freundlich constants, i.e., 1/n = 0.86 ± 0.06 and A = 2.35 ± 0.06 mmol x g -1 have been computed for the sorption system. Thermodynamic parameters, i.e., ΔG deg, ΔS deg and ΔH deg have also been calculated for the system. Application of the method to a test case of a medium size industry showed that 21 kg of rice husk was sufficient to maintain the NEQS limits of chromium for industrial effluents. (author)

  15. Development of improved radioactive effluent treatment to remove Zn-65, Mo-99 and I-125 by the coagulation-flocculation process

    International Nuclear Information System (INIS)

    Sakuma, S.H.

    1997-01-01

    Coagulation-flocculation treatment using aluminum sulphate, sodium carbonate, ferric chloride and coagulant aid was able to remove 65 Zn, 99 Mo and 125 I from an aqueous effluent. Chemicals' dosages into the samples were varied which contributed different decontamination factors. For 65 Zn removal, optimum pH value was 8 that provided the decontamination factor of 35. For 125 I, optimum pH value was 7 with the decontamination factor of 4.8. Treatment of the effluent containing 99 Mo at a laboratory scale was proved to be valid for the extrapolation to a plant scale. The pH range for optimum treatment was between 4.0 to 4.5. (author). 6 refs, 6 figs

  16. Liquid effluent processing group. Activity details 1963

    International Nuclear Information System (INIS)

    1964-08-01

    This report first gives a quantitative overview of volumes of effluents of high activity, medium activity and low activity which passed through the department for effluent processing. It also makes the distinction between the shape or type of container of these effluents. A table indicates their origin and another indicates their destination. The β and α decontamination rates are determined, and the assessment of stored aqueous and organic effluents on the 31 December 1963 is given. The next part proposes an assessment of laboratory activities: control operations (input controls, control of processed effluent before discarding), controls related to processing (processing types, radiochemical and chemical dosing performed on effluent mixes before processing). Tables indicate the characteristics of medium activity effluents collected in 1963, the results of high activity liquid analysis, and Beryllium dosing results. A summary of ALEA processing, a table of the characteristics of stored oils and solvents are given. The third part reports data related to transport activities, and various works performed in the Saclay plant to improve exploitation conditions and results

  17. Development of improved radioactive effluent treatment to remove Zn-65, Mo-99 and I-125 by the coagulation-flocculation process

    Energy Technology Data Exchange (ETDEWEB)

    Sakuma, S H [Malaysian Inst. for Nuclear Technology Research, Bangi, Selangor (Malaysia)

    1997-02-01

    Coagulation-flocculation treatment using aluminum sulphate, sodium carbonate, ferric chloride and coagulant aid was able to remove {sup 65}Zn, {sup 99}Mo and {sup 125}I from an aqueous effluent. Chemicals` dosages into the samples were varied which contributed different decontamination factors. For {sup 65}Zn removal, optimum pH value was 8 that provided the decontamination factor of 35. For {sup 125}I, optimum pH value was 7 with the decontamination factor of 4.8. Treatment of the effluent containing {sup 99}Mo at a laboratory scale was proved to be valid for the extrapolation to a plant scale. The pH range for optimum treatment was between 4.0 to 4.5. (author). 6 refs, 6 figs.

  18. Separation of tritium from aqueous effluents

    International Nuclear Information System (INIS)

    Geens, L.; Bruggeman, A.; Meynendonckx, L.; Parmentier, C.; Belien, H.; Ooms, E.; Smets, D.; Stevens, J.; van Vlerken, J.

    1988-01-01

    From 1975 until 1982 - within the framework of the CEC indirect action programme on management and storage of radioactive waste - the SCK/CEN has developed the ELEX process from laboratory scale experiments up to the construction of an integrated pilot installation. The ELEX process combines water electrolysis and catalytical isotope exchange for the separation of tritium from aqueous reprocessing effluents by isotope enrichment. Consequently, the pilot installation consists of two main parts: an 80 kW water electrolyser and a 10 cm diameter trickle bed exchange column. The feed rate of tritiated water amounts to 5 dm 3 .h -1 , containing up to 3.7 GBq.dm -3 of tritium. This report describes the further development of the process during the second phase of the second programme. Three main items are reported: (i) research work in the field of pretreatment of real reprocessing effluents, before feeding them to an ELEX installation; (ii) demonstration of the technical feasibility of the ELEX process with simulated active effluent streams in the pilot installation; (iii) a cost estimation for the ELEX installation, comprising the required investments and the annual operation costs

  19. Treatment of low and intermediate aqueous waste containing Cs-137 by chemical precipitation

    International Nuclear Information System (INIS)

    Valdezco, E.M.; Marcelo, E.A.; Alamares, A.L.; Junio, J.B.; Dela Cruz, J.M.

    1996-01-01

    The use of radioactive materials in various applications has been increasing since its introduction in the early sixties. The Philippine Nuclear Research Institute has established a centralized facility for treating radioactive wastes i.e. aqueous wastes with assistance from the International Atomic Energy Agency - Technical Cooperation Programme. Liquid wastes containing Cs-137 are generated from aqueous wastes containing Cs-137 by nickel ferrocyanide precipitation will be presented. The aim of this study is to investigate the efficiency treatment in removing Cs-137 from an aqueous effluent. Actual aqueous wastes known to contain Cs-137 were used in the experiments. Low cost and simple nickel ferrocyanide precipitation method with the aid of a flocculant has been selected for the separation of Cs-137 from low and intermediate aqueous waste. By varying the chemical dosage added into the aqueous waste, different decontamination factors were obtained. Hence, the optimum dosage of the chemicals that give the highest decontamination factor can be determined. (author)

  20. Rework of process effluents from the fabrication of HTR fuel

    International Nuclear Information System (INIS)

    Lasberg, Ingo; Braehler, Georg; Boyes, David

    2008-01-01

    HTR fuel facilities require the application of several liquid chemicals and accordingly they produce significant amounts of Uranium contaminated/potentially contaminated effluents. The main effluents are (amounts for a 3 t Uranium/a plant): aqueous solutions including tetrahydrofurfuryl alcohol THFA, ammonium hydroxide NH4OH, and ammonium nitrate NH4NO3 (180 m 3 /a), isopropanol IPA/water mixtures (130 m 3 /a); Non-Process Water NPW (300 m 3 /a); methanol (7m 3 /a); additionally off-gas streams, containing ammonia (9 t/a) have to be treated. In an industrial scale facility all such effluents/gases need to be processed for recycling, decontamination prior to release to the environment (as waste or as valuable material). Thermal decomposition is applied to dispose of burnable residues.

  1. Removal of Zn-65, Mo-99 and I-125 from effluent by coagulation-flocculation process

    International Nuclear Information System (INIS)

    Syed Hakimi Sakuma Syed Ahmad

    1996-01-01

    The aim of this study is to investigate the efficiency treatment in removing Zn-65, Mo-99 and I-1 25 from an aqueous radioactive effluent. The wastes are currently being produced from hospitals, research institutes, clinics and universities. Effluent was spiked separately with each type of the radioisotope and was treated by the coagulation-flocculation process. By varying the chemical dosages (i.e., alum, soda ash, ferric chloride and coagulant aid) in the treatment, different decontamination factor values were obtained. Optimum dosages and types of chemical used to remove a particular radioisotope was determined. Results indicated that optimum pH value for removing Zn-65 in an effluent was pH 8. The highest decontamination factor value was 61. In removal of 1-125 radioisotope, ferric chloride was suitable as a coagulant that gives the highest decontamination factor value of 5.0. Treatment to remove Mo-99 radioisotopes was conducted in the laboratory and treatment plant scale. For Mo-99 radioisotope treatment by laboratory and Plant scale, the highest decontamination factor obtained was between pH values of 4.0 to 4.5. By extrapolation of both scales, the plant scale treatment does not vary significantly from laboratory scale. This indicated treatment dosages of chemicals for the Low Level Treatment Plant scale be deduced from the laboratory scale

  2. Polysaccharide-thickened aqueous fluoride solutions for rapid destruction of the nerve agent VX. Introducing the opportunity for extensive decontamination scenarios.

    Science.gov (United States)

    Elias, Shlomi; Saphier, Sigal; Columbus, Ishay; Zafrani, Yossi

    2014-01-01

    Among the chemical warfare agents, the extremely toxic nerve agent VX (O-ethyl S-2-(diisopropylamino)ethyl methylphosphonothioate) is a target of high importance in the development of decontamination methods, due to its indefinite persistence on common environmental surfaces. Liquid decontaminants are mostly characterized by high corrosivity, usually offer poor coverage, and tend to flow and accumulate in low areas. Therefore, the development of a noncorrosive decontaminant, sufficiently viscous to resist dripping from the contaminated surface, is necessary. In the present paper we studied different polysaccharides-thickened fluoride aqueous solutions as noncorrosive decontaminants for rapid and efficient VX degradation to the nontoxic product EMPA (ethyl methylphosphonic acid). Polysaccharides are environmentally benign, natural, and inexpensive. Other known decontaminants cannot be thickened by polysaccharides, due to the sensitivity of the latter toward basic or oxidizing agents. We found that the efficiency of VX degradation in these viscous solutions in terms of kinetics and product identity is similar to that of KF aqueous solutions. Guar gum (1.5 wt %) with 4 wt % KF was chosen for further evaluation. The benign nature, rheological properties, adhering capabilities to different surfaces, and decontamination from a porous matrix were examined. This formulation showed promising properties for implementation as a spray decontaminant for common and sensitive environmental surfaces.

  3. Rework of process effluents from the fabrication of HTR fuel

    Energy Technology Data Exchange (ETDEWEB)

    Lasberg, Ingo; Braehler, Georg [NUKEM Technologies GmbH (Germany); Boyes, David [Pebble Bed Modular Reactor (Pty) Ltd., Centurion (South Africa)

    2008-07-01

    HTR fuel facilities require the application of several liquid chemicals and accordingly they produce significant amounts of Uranium contaminated/potentially contaminated effluents. The main effluents are (amounts for a 3 t Uranium/a plant): aqueous solutions including tetrahydrofurfuryl alcohol THFA, ammonium hydroxide NH4OH, and ammonium nitrate NH4NO3 (180 m{sup 3}/a), isopropanol IPA/water mixtures (130 m{sup 3}/a); Non-Process Water NPW (300 m{sup 3}/a); methanol (7m{sup 3}/a); additionally off-gas streams, containing ammonia (9 t/a) have to be treated. In an industrial scale facility all such effluents/gases need to be processed for recycling, decontamination prior to release to the environment (as waste or as valuable material). Thermal decomposition is applied to dispose of burnable residues.

  4. New decontamination techniques generating a low volume of effluent

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    This document presents some decontamination techniques, their principles, characteristics and advantages and provides references on the subject. Techniques as foam and spray foam decontamination, dry steam decontamination, electro-decontamination and gel decontamination are presented. A presentation of TRIADE, cleanup dismantling servicing, is also provided. (A.L.B.)

  5. New decontamination techniques generating a low volume of effluent

    International Nuclear Information System (INIS)

    2002-01-01

    This document presents some decontamination techniques, their principles, characteristics and advantages and provides references on the subject. Techniques as foam and spray foam decontamination, dry steam decontamination, electro-decontamination and gel decontamination are presented. A presentation of TRIADE, cleanup dismantling servicing, is also provided. (A.L.B.)

  6. Method for removing and decolorizing aqueous waste effluents containing dissolved or dispersed organic matter

    International Nuclear Information System (INIS)

    Case, F.N.; Ketchen, E.E.

    1975-01-01

    A method is provided for treating organic waste material dissolved or dispersed in an aqueous effluent, which comprises contacting the effluent with an inert particulate carbonaceous sorbent at an oxygen pressure up to 2000 psi, irradiating the resultant mixture with high energy radiation until a decolorized liquid is produced, and then separating the decolorized liquid

  7. New decontamination processes for liquid effluents and solid materials

    International Nuclear Information System (INIS)

    Faure, S.

    2008-01-01

    New decontamination processes are being studied in order to protect workers and to reduce strongly the quantity of secondary wastes produced. 2 decontamination processes for liquid nuclear wastes are under studies. First, the coprecipitation process whose improvement is based on a better control of the 2 coupled mechanisms involved in the process: the formation of adsorbent particles and the uptake of radionuclides. Secondly, the column process whose development focuses on new materials that can be used to absorb cesium in a reversible way. 3 new decontamination processes for solid materials are being developed. First, processes using drying gels are under investigation in order to treat materials like lead, aluminium, iron and stainless steel. Real decontamination of hot cells by drying gel process has been performed and a decontamination factor between 16 and 25 has been obtained on stainless steels. Secondly, new foam decontamination processes have been developed, they are based on the use of new foams stabilized by biodegradable non-ionic surfactants: alkyl-poly-glucosides and viscofiers or nano-particles. The aim is to increase the foam lifetime. Thirdly, new surfactants in solution decontamination processes have been studied, the aim is to decontaminate through degreasing by using acidic surfactants. The idea is to combine emulsification and wetting power. (A.C.)

  8. Screening of natural adsorbents for removal of radio-contaminants from aqueous effluents

    International Nuclear Information System (INIS)

    Thorat, Vidya; Katarni, V.G.; Kaushik, C.P.; Kaushik, Chander P.; Sharma, J.K.

    2010-01-01

    The present paper is a summary of studies carried out to examine the uptake potential of some of the bio/natural adsorbents for removal of radiocontaminants from aqueous effluents. Three different bio/natural materials namely coconut coir pith, sugarcane bagasse and saw dust were selected as adsorbents. Preliminary characterisations of the above adsorbents were carried out and percentage of removal of 239 Pu and 241 Am from aqueous solutions were checked using batch equilibration method. (author)

  9. Coir pith of the green coconut in the decontamination of radioactive aqueous effluent

    Energy Technology Data Exchange (ETDEWEB)

    Monteiro, Raquel Almeida; Yamaura, Mitiko [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil)]. E-mail: quequelll_monteiro@yahoo.com.br; myamaura@ipen.br

    2007-07-01

    Industrial segments as plant of mining, hospitals and university generate considerable volumes of radioactive wastewater containing uranium. The increasing development of the use of the nuclear energy to lead away to an expansion of the sectors of the nuclear fuel cycle, but it leads to security problems and it appears the necessity of control of the removing of uranium and radioactive effluent treatments. Researches evaluate if the technique of the biosorption would promote an alternative process with attractive characteristics of cost-benefit. The residual biomass from agricultural activities has been studied and used as adsorbent of metals and organic composts by low cost, abundance and for being biodegradable. In this work, it is presented the efficiency of the coir pith for the adsorption of ions UO{sub 2}{sup 2+}. The coir pith is a by-product of the harvest of the coconut, a renewable natural source. The study was accomplished using the batch techniques. The influence from pH 2 to 5, the dose of the coir pith, equilibrium time and the models of kinetic reaction were investigated. It was verified that the adsorption increased with the increase of pH and of the dose. The equilibrium time was of 30 min and the best correspondence with the model of pseudo second-order was observed. The results obtained has been promising, so use as adsorbent of metallic ions represents an economic alternative in relation to the conventional treatment of effluent. (author)

  10. Coir pith of the green coconut in the decontamination of radioactive aqueous effluent

    International Nuclear Information System (INIS)

    Monteiro, Raquel Almeida; Yamaura, Mitiko

    2007-01-01

    Industrial segments as plant of mining, hospitals and university generate considerable volumes of radioactive wastewater containing uranium. The increasing development of the use of the nuclear energy to lead away to an expansion of the sectors of the nuclear fuel cycle, but it leads to security problems and it appears the necessity of control of the removing of uranium and radioactive effluent treatments. Researches evaluate if the technique of the biosorption would promote an alternative process with attractive characteristics of cost-benefit. The residual biomass from agricultural activities has been studied and used as adsorbent of metals and organic composts by low cost, abundance and for being biodegradable. In this work, it is presented the efficiency of the coir pith for the adsorption of ions UO 2 2+ . The coir pith is a by-product of the harvest of the coconut, a renewable natural source. The study was accomplished using the batch techniques. The influence from pH 2 to 5, the dose of the coir pith, equilibrium time and the models of kinetic reaction were investigated. It was verified that the adsorption increased with the increase of pH and of the dose. The equilibrium time was of 30 min and the best correspondence with the model of pseudo second-order was observed. The results obtained has been promising, so use as adsorbent of metallic ions represents an economic alternative in relation to the conventional treatment of effluent. (author)

  11. The treatment of effluents; Ameliorations apportees aux traitements des residus radioactifs

    Energy Technology Data Exchange (ETDEWEB)

    Wormser, G; Rodier, J; Robien, E de; Fernandez, N [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1964-07-01

    For several years the French Atomic Energy Commission has been studying with interest problems presented by radio-active effluents. Since high activities have not yet received a definite solution we will deal only, in this paper, with the achievements and research concerning low and medium activity effluents. In the field of the achievements, we may mention the various effluent treatment stations which have been built in France; a brief list will be given together with an outline of their main new features. Thus in particular the latest treatment stations put into operation (Grenoble, Fontenay-aux-Roses, Cadarache) will be presented. From all these recent achievements three subjects will be dealt with in more detail. 1 - The workshop for treating with bitumen the sludge obtained after concentration of radionuclides. 2 - The workshop for treating radioactive solid waste by incineration. 3 - A unit for concentrating radio-active liquid effluents by evaporation. In the field of research, several topics have been undertaken, a list will be given. In most cases the research concerns the concentration of radionuclides with a view to a practical and low cost storage, a concentration involving an efficient decontamination of the aqueous liquids in the best possible economic conditions. For improving the treatments leading to the concentration of nuclides, our research has naturally been concerned with perfecting the treatments used in France: coprecipitation and evaporation. In our work we have taken into account in particular two conditions laid down in the French Centres. 1 - A very strict sorting out of the effluents at their source in order to limit in each category the volume of liquid to be dealt with. 2 - The necessity for a very complete decontamination due to the high population density in our country. In the last past we present two original methods for treating liquid effluents. 1 - The use of ion-exchange resins for liquids containing relatively many salts. The

  12. Application of inorganic ion exchangers for low and medium activity radioactive effluent decontamination

    International Nuclear Information System (INIS)

    Dozol, J.F.; Eymard, S.; Gambade, R.; La Rosa, G.

    1986-01-01

    This study proposes an alternative pretreatment or treatment for low and medium activity liquid wastes, allowing to improve the quality of containment and decrease the cost of storage. Inorganic ion exchangers are used to remove alpha emitters and long lived fission products and concentrate them in a small volume; these exchangers can be converted into a stable matrix by thermal treatment. This treatment, at least for some liquid wastes, don't exclude a complementary decontamination by chemical precipitation. Sludges, arising from precipitation, exempt from alpha emitters and long lived fission products can be stored in a shallow land burial. This study includes two parts: - Measurements of distribution coefficients for the main nuclides in order to choose, for each liquid wastes, the most suitable ion exchanger. - Estimation of performances of selected inorganic ion exchangers, from tests of percolation of genuine effluents

  13. Treatment plan for aqueous/organic/decontamination wastes under the Oak Ridge Reservation FFCA Development, Demonstration, Testing, and Evaluation Program

    International Nuclear Information System (INIS)

    Backus, P.M.; Benson, C.E.; Gilbert, V.P.

    1994-08-01

    The U.S. Department of Energy (DOE) Oak Ridge Operations Office and the U.S. Environmental Protection Agency (EPA)-Region IV have entered into a Federal Facility Compliance Agreement (FFCA) which seeks to facilitate the treatment of low-level mixed wastes currently stored at the Oak Ridge Reservation (ORR) in violation of the Resource, Conservation and Recovery Act Land Disposal Restrictions. The FFCA establishes schedules for DOE to identify treatment for wastes, referred to as Appendix B wastes, that current have no identified or existing capacity for treatment. A development, demonstration, testing, and evaluation (DDT ampersand E) program was established to provide the support necessary to identify treatment methods for mixed was meeting the Appendix B criteria. The Program has assembled project teams to address treatment development needs for major categories of the Appendix B wastes based on the waste characteristics and possible treatment technologies. The Aqueous, Organic, and Decontamination (A OE D) project team was established to identify pretreatment options for aqueous and organic wastes which will render the waste acceptable for treatment in existing waste treatment facilities and to identify the processes to decontaminate heterogeneous debris waste. In addition, the project must also address the treatment of secondary waste generated by other DDT ampersand E projects. This report details the activities to be performed under the A OE D Project in support of the identification, selection, and evaluation of treatment processes. The goals of this plan are (1) to determine the major aqueous and organic waste streams requiring treatment, (2) to determine the treatment steps necessary to make the aqueous and organic waste acceptable for treatment in existing treatment facilities on the ORR or off-site, and (3) to determine the processes necessary to decontaminate heterogeneous wastes that are considered debris

  14. Aqueous media treatment and decontamination of hazardous chemical and biological substances by contact plasma

    International Nuclear Information System (INIS)

    Pivovarov, A.; Kravchenko, A.; Kublanovsky, V.

    2009-01-01

    Usage of non-equilibrium contact plasma for processes of decontamination and neutralization in conditions of manifestation of chemical, biological and radiation terrorism takes on special significance due to portability of equipment and its mobility in places where toxic liquid media hazardous for people's health are located. Processes of decontamination of aqueous media, seminated with pathogenic microorganisms and viruses, treatment of water containing toxic heavy metals, cyanides, surface-active substances, and heavy radioactive elements, are investigated. Examples of activation processes in infected water and toxic aqueous solutions present convincing evidence of the way, how new quality technological approach for achievement of high enough degree of the said media treatment is used in each specific case. Among new properties of water activated as a result of action of non-equilibrium contact plasma, it is necessary to mention presence of cluster structure, confirmed by well-known spectral and physical-chemical methods, presence of peroxide compounds, active particles and radicals. Anti-microbial activity which is displayed under action of plasma in aqueous media (chemically pure water, drinking water, aqueous solutions of sodium chloride, potassium iodide, as well as other inorganic compounds) towards wide range of pathogenic and conventionally pathogenic microorganisms allows use them as reliable, accessible and low-cost preparations for increasing the degree of safety of food products. Combination of such processes with known methods of filtration and ultra-filtration gives an efficient and available complex capable of withstanding any threats, which may arise for population and living organisms. Present-day level of machine-building, electrical engineering, and electronics allows predict creation of industrial plasma installations, adapted to conditions of various terrorist threats, with minimized power consumption and optimized technological parameters

  15. Aqueous media treatment and decontamination of hazardous chemical and biological substances by contact plasma

    Energy Technology Data Exchange (ETDEWEB)

    Pivovarov, A; Kravchenko, A [Ukrainian State University of Chemical Engineering, Dnepropetrovsk (Ukraine); Kublanovsky, V [V. I. Vernadsky Institute of General and Inorganic Chemistry of National Academy of Science, Kiev (Ukraine)

    2009-07-01

    Usage of non-equilibrium contact plasma for processes of decontamination and neutralization in conditions of manifestation of chemical, biological and radiation terrorism takes on special significance due to portability of equipment and its mobility in places where toxic liquid media hazardous for people's health are located. Processes of decontamination of aqueous media, seminated with pathogenic microorganisms and viruses, treatment of water containing toxic heavy metals, cyanides, surface-active substances, and heavy radioactive elements, are investigated. Examples of activation processes in infected water and toxic aqueous solutions present convincing evidence of the way, how new quality technological approach for achievement of high enough degree of the said media treatment is used in each specific case. Among new properties of water activated as a result of action of non-equilibrium contact plasma, it is necessary to mention presence of cluster structure, confirmed by well-known spectral and physical-chemical methods, presence of peroxide compounds, active particles and radicals. Anti-microbial activity which is displayed under action of plasma in aqueous media (chemically pure water, drinking water, aqueous solutions of sodium chloride, potassium iodide, as well as other inorganic compounds) towards wide range of pathogenic and conventionally pathogenic microorganisms allows use them as reliable, accessible and low-cost preparations for increasing the degree of safety of food products. Combination of such processes with known methods of filtration and ultra-filtration gives an efficient and available complex capable of withstanding any threats, which may arise for population and living organisms. Present-day level of machine-building, electrical engineering, and electronics allows predict creation of industrial plasma installations, adapted to conditions of various terrorist threats, with minimized power consumption and optimized technological parameters

  16. REMOVAL OF REMAZOL ROSSO RB DYE FROM AQUEOUS EFFLUENTS BY HOMOGENOUS FENTON OXIDATION PROCESSES

    Directory of Open Access Journals (Sweden)

    Carmen Zaharia

    2014-06-01

    Full Text Available The paper presents some data from our laboratory-setup experiments of homogenous oxidative processes with hydrogen peroxide (i.e. advanced Fenton oxidation processes applied for Remazol Rosso RB dye-containing aqueous systems, especially textile effluents. Therefore, some different operating parameters (including pH, concentration of dye, H2O2 and ferrous ions, oxidation time, temperature, stirring regime, among its were tested for determination of the best performance in effluent decoloration and dye removal, meaning the optimal values of each studied parameters for highest decoloration or dye removal.

  17. TBP production plant effluent treatment process

    International Nuclear Information System (INIS)

    Sriniwas, C.; Sugilal, G.; Wattal, P.K.

    2004-06-01

    TBP production facility at Heavy Water Plant, Talcher generates about 2000 litres of effluent per 200 kg batch. The effluent is basically an aqueous solution containing dissolved and dispersed organics such as dibutyl phosphate, butanol etc. The effluent has high salinity, chemical oxygen demand (30-80 g/L) and pungent odour. It requires treatment before discharge. A chemical precipitation process using ferric chloride was developed for quantitative separation of organics from the aqueous part of the effluent. This process facilitates the discharge of the aqueous effluent. Results of the laboratory and bench scale experiments on actual effluent samples are presented in this report. (author)

  18. Studies on the Use of Oyster, Snail and Periwinkle Shells as Adsorbents for the Removalof Pb2+ Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Stevens A. Odoemelam

    2009-01-01

    Full Text Available In view of increasing rate of lead pollution resulting from discharge of lead containing effluents by industries into the environment, this study was carried out to investigate the removal of Pb2+ from aqueous solutions by oyster, snail and periwinkle shells. The effects of contact time and concentration on adsorption, thermodynamics of sorption and distribution coefficients of the adsorbents were examined to optimize the conditions to be utilized for decontamination of effluents containing Pb2+. The study revealed that these materials are good adsorbents that can be used for the removal of Pb2+ from aqueous solution. Adsorption of Pb2+ by oyster, snail and periwinkle shells were found to conform to the classical models of Langmuir, Freundlich and Temkin adsorption isotherms. Thermodynamic consideration revealed that adsorption of Pb2+ by these materials was spontaneous and proceeded via chemical adsorption. The use of these materials for the removal of lead ion from aqueous solution is therefore advocated

  19. Specific decontamination methods: water nozzle, cavitation erosion

    International Nuclear Information System (INIS)

    Boulitrop, D.; Gauchon, J.P.; Lecoffre, Y.

    1984-05-01

    The erosion and decontamination tests carried out in the framework of this study, allowed to specify the fields favourable to the use of the high pressure jet taking into account the determinant parameters that are the pressure and the target-nozzle distance. The previous spraying of gels with chemical reagents (sulfuric acid anf hydrazine) allows to get better decontamination factors. Then, the feasibility study of a decontamination method by cavitation erosion is presented. Gelled compounds for decontamination have been developed; their decontamination quality has been evaluated by comparative contamination tests in laboratory and decontamination tests of samples of materials used in nuclear industry; this last method is adapted to remote handling devices and produces a low quantity of secondary effluents, so it allows to clean high contaminated installation on the site without additional exposure of the personnel [fr

  20. A review of chemical decontamination systems for nuclear facilities

    International Nuclear Information System (INIS)

    Chen, L.; Chamberlain, D.B.; Conner, C.; Vandegrift, G.F.

    1996-01-01

    With the downsizing of the Department of Energy (DOE) complex, many of its buildings and facilities will be decommissioned and dismantled. As part of this decommissioning, some form of decontamination will be required. To develop an appropriate technology for in situ chemical decontamination of equipment interiors in the decommissioning of DOE nuclear facilities, knowledge of the existing chemical decontamination methods is needed. This paper attempts to give an up-to-date review of chemical decontamination methods. This survey revealed that aqueous systems are the most widely used for the decontamination and cleaning of metal surfaces. We have subdivided the aqueous systems by types of chemical solvent: acid, alkaline permanganate, highly oxidizing, peroxide, and proprietary. Two other systems, electropolishing and foams and gels, are also described in this paper

  1. Chemical decontaminating method for stainless steel

    International Nuclear Information System (INIS)

    Onuma, Tsutomu; Akimoto, Hidetoshi.

    1990-01-01

    Radioactive metal wastes comprising passivated stainless steels are chemically decontaminated to such a radioactivity level as that of usual wastes. The present invention for chemically decontaminating stainless steels comprises a first step of immersing decontaminates into a sulfuric acid solution and a second step of immersing them into an aqueous solution prepared by adding oxidative metal salts to sulfuric acid, in which a portion of the surface of stainless steels as decontaminates are chemically ground to partially expose substrate materials and then the above-mentioned decontamination steps are applied. More than 90% of radioactive materials are removed in this method by the dissolution of the exposed substrate materials and peeling of cruds secured to the surface of the materials upon dissolution. This method is applicable to decontamination of articles having complicate shapes, can reduce the amount of secondary wastes after decontamination and also remarkably shorten the time required for decontamination. (T.M.)

  2. Advanced biological treatment of aqueous effluent from the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Pitt, W.W. Jr.; Hancher, C.W.; Patton, B.D.; Shumate, S.E. II.

    1979-01-01

    Many of the processing steps in the nuclear fuel cycle generate aqueous effluent streams bearing contaminants that can, because of their chemical or radiological properties, pose an environmental hazard. Concentration of such contaminants must be reduced to acceptable levels before the streams can be discharged to the environment. Two classes of contaminants, nitrates and heavy metals, are addressed in this study. Specific techniques aimed at the removal of nitrates and radioactive heavy metals by biological processes are being developed, tested, and demonstrated. Although cost comparisons between biological processes and current treatment methods are presented, these comparisons may be misleading because biological processes yield environmentally better end results which are difficult to price. However, a strong case is made for the use of biological processes for removing nitrates and heavy metals fron nuclear fuel cycle effluents. The estimated costs for these methods are as low as, or lower than, those for alternate processes. In addition, the resulting disposal products - nitrogen gas, CO 2 , and heavy metals incorporated into microorganisms - are much more ecologically desirable than the end products of other waste treatment methods

  3. Low level radioactive liquid waste decontamination by electrochemical way

    International Nuclear Information System (INIS)

    Tronche, E.

    1994-10-01

    As part of the work on decontamination treatments for low level radioactive aqueous liquid wastes, the study of an electro-chemical process has been chosen by the C.E.A. at the Cadarache research centre. The first part of this report describes the main methods used for the decontamination of aqueous solutions. Then an electro-deposition process and an electro-dissolution process are compared on the basis of the decontamination results using genuine radioactive aqueous liquid waste. For ruthenium decontamination, the former process led to very high yields (99.9 percent eliminated). But the elimination of all the other radionuclides (antimony, strontium, cesium, alpha emitters) was only favoured by the latter process (90 percent eliminated). In order to decrease the total radioactivity level of the waste to be treated, we have optimized the electro-dissolution process. That is why the chemical composition of the dissolved anode has been investigated by a mixture experimental design. The radionuclides have been adsorbed on the precipitating products. The separation of the precipitates from the aqueous liquid enabled us to remove the major part of the initial activity. On the overall process some operations have been investigated to minimize waste embedding. Finally, a pilot device (laboratory scale) has been built and tested with genuine radioactive liquid waste. (author). 77 refs., 41 tabs., 55 figs., 4 appendixes

  4. Decontamination of burns contaminated with radioactive materials

    International Nuclear Information System (INIS)

    Vykouril, L.

    1986-01-01

    The suitability of various solutions for the decontamination of burnt skin and their efficiency were tested by experiments on rats. Tested was the decontamination of undisturbed skin, second degree skin burns and third degree skin burns. Decontamination solutions used included: distilled water, jodonal (an aqueous solution of iodine, ethoxylated nonylphenols, the copolymer of ethylene oxide with propylene oxide, and phosphoric acid) and a decontamination mixture of Sapon, Komplexon (trade names of detergents) and sodium hexametaphosphate. Decontamination efficiency was 68.4% for second degree burns and 47.1% for third degree burns. Most effective was the decontamination solution with an efficiency of 72%; the efficiency of jodonal was 67% and of water - 54%. Jodonal is the most suitable: in addition, it acts as a disinfectant and antiseptic. (M.D.)

  5. Health physics and industrial hygiene aspects of decontamination as a precursor to decontamination

    International Nuclear Information System (INIS)

    Card, C.J.; Hoenes, G.R.; Munson, L.F.; Halseth, G.A.

    1982-06-01

    The Pacific Northwest Laboratory is conducting a comprehensive study of the impacts, benefits and effects of decontamination as a precursor to decommissioning for the US Nuclear Regulatory Commission. The program deals primarily with chemical cleaning of light-water reactor (LWR) systems that will not be returned to operation. A major section of this study defines the health physics and industrial hygiene and safety concerns during decontamination operations. The primary health physics concerns include providing adequate protection for workers from radiation sources which are transported by the decontamination processes, estimating and limiting radioactive effluents to the environment and maintaining operations in accordance with the ALARA philosophy. Locating and identifying the areas of contamination and measuring the radiation exposure rates throughout the reactor primary system are fundamental to implementing these health physics goals. The principal industrial hygiene and safety concerns stem from the fact that a nuclear power plant is being converted for a time to a chemical plant which will contain large volumes of chemical solutions

  6. Performances and microbial features of an aerobic packed-bed biofilm reactor developed to post-treat an olive mill effluent from an anaerobic GAC reactor

    Directory of Open Access Journals (Sweden)

    Marchetti Leonardo

    2006-04-01

    Full Text Available Abstract Background Olive mill wastewater (OMW is the aqueous effluent of olive oil producing processes. Given its high COD and content of phenols, it has to be decontaminated before being discharged. Anaerobic digestion is one of the most promising treatment process for such an effluent, as it combines high decontamination efficiency with methane production. The large scale anaerobic digestion of OMWs is normally conducted in dispersed-growth reactors, where however are generally achieved unsatisfactory COD removal and methane production yields. The possibility of intensifying the performance of the process using a packed bed biofilm reactor, as anaerobic treatment alternative, was demonstrated. Even in this case, however, a post-treatment step is required to further reduce the COD. In this work, a biological post-treatment, consisting of an aerobic biological "Manville" silica bead-packed bed aerobic reactor, was developed, tested for its ability to complete COD removal from the anaerobic digestion effluents, and characterized biologically through molecular tools. Results The aerobic post-treatment was assessed through a 2 month-continuous feeding with the digested effluent at 50.42 and 2.04 gl-1day-1 of COD and phenol loading rates, respectively. It was found to be a stable process, able to remove 24 and 39% of such organic loads, respectively, and to account for 1/4 of the overall decontamination efficiency displayed by the anaerobic-aerobic integrated system when fed with an amended OMW at 31.74 and 1.70 gl-1day-1 of COD and phenol loading rates, respectively. Analysis of 16S rRNA gene sequences of biomass samples from the aerobic reactor biofilm revealed that it was colonized by Rhodobacterales, Bacteroidales, Pseudomonadales, Enterobacteriales, Rhodocyclales and genera incertae sedis TM7. Some taxons occurring in the influent were not detected in the biofilm, whereas others, such as Paracoccus, Pseudomonas, Acinetobacter and Enterobacter

  7. Cadmium decontamination using in-house resin

    International Nuclear Information System (INIS)

    Pal, Sangita; Thalor, K.L; Prabhakar, S.; Srivastava, V.K.; Goswami, J.L.; Tewari, P.K.; Dhanpal, Pranav; Goswami, J.L.

    2010-01-01

    A selective and strong in-house chelator has been studied w.r.t. basic parameters like concentration, time, and elution. De-contamination of cadmium, mercury, chromium, lead etc by using high uptake values fro cadmium ions proves its selectivity with high elution ratio ensures further decontamination of run-off water during natural calamities. In three step cascade use the concentration of original cadmium solution (500 ppm) decocted to safe disposable attribute. This polymeric ligand exchanger displayed outlet effluent concentration to 1 ppm and less than 200 ppb when treated for inlet feed concentration of 50 ppm and 500 ppm respectively. (author)

  8. Chemical decontamination of stainless steel

    International Nuclear Information System (INIS)

    Onuma, Tsutomu; Akimoto, Hidetoshi

    1991-01-01

    The present invention concerns a method for chemical decontamination of radioactive metal waste materials contaminated with radioactive materials on the surface, generated in radioactive materials-handling facilities. The invention is comprised of a method of chemical decontamination of stainless steel, characterized by comprising a first process of immersing a stainless steel-based metal waste material contaminated by radioactive materials on the surface in a sulfuric acid solution and second process of immersing in an aqueous solution of sulfuric acid and oxidizing metal salt, in which a portion of the surface of the stainless steel to be decontaminated is polished mechanically to expose a portion of the base material before the above first and second processes. 1 figs., 2 tabs

  9. Pilot scale study of a chemical treatment process for decontamination of aqueous radioactive waste of pakistan research reactor-1

    International Nuclear Information System (INIS)

    Jan, F.; Hussain, M.; Ahmad, S.S.; Aslam, M.; Haq, E.U.

    2007-12-01

    Chemical treatment process for the low level liquid radioactive waste generated at PINSTECH was previously optimized on lab-scale making use of coprecipitation of hydrous oxides of iron in basic medium. Ferrous sulfate was used as coagulant. Batch wise application of this procedure on pilot scale has been tested on a 1200 L batch volume of typical PINSTECH liquid waste. Different parameters and unit operations have been evaluated. The required data for the construction of a small size treatment plant envisioned can be used for demonstration/teaching purpose as well as for the decontamination of the waste effluents of the Institute. The lab-scale process parameters were verified valid on pilot scale. It was observed that reagent doses can further be economized with out any deterioration of the Decontamination Factors (DF) achieved or of any other aspect of the process. This simple, cost- effective, DF-efficient and time-smart batch wise process could be coupled with an assortment of other treatment operations thus affording universal application. Observations recorded during this study are presented. (author)

  10. Separation of tritium from gaseous and aqueous effluent systems

    International Nuclear Information System (INIS)

    Kobisk, E.H.

    1977-01-01

    Removal or reduction of tritium content in a wide variety of effluent streams has been extensively studied in the United States. This paper specifically reviews three processes involving tritium separation in the gaseous phase and the aqueous phase. Diffusion through a selective Pd-25Ag alloy membrane at temperatures up to 600 0 C and at pressures up to 700 kg/cm 2 has resulted in successful separation of hydrogen-deuterium mixtures with an associated separation factor of 1.65 (and gives a calculated separation factor for hydrogen-tritium mixtures of 2.0). Use of a single palladium bipolar membrane in an electrolysis system has been found to yield a hydrogen-deuterium separation factor of 4 and a hydrogen-tritium factor of 6 to 11 without the production of gaseous hydrogen. Finally, countercurrent catalytic exchange between tritium-containing hydrogen gas and water has yielded a separation factor of 6.3. The specific advantages of each of these systems will be discussed in terms of their potential applications. In all cases, further investigations are necessary to scale the systems to handle large quantities of feed material in a continuous mode and to minimize energy requirements. Such separative systems must necessarily be cascaded to yield gaseous or aqueous product streams suitable for recycling to the tritium producing systems, for storage or for discharge to the environment. (orig./HP) [de

  11. Biological treatment of aqueous effluents in a bacterial bed

    Energy Technology Data Exchange (ETDEWEB)

    1978-12-14

    Biological treatment of aqueous effluents in a bacterial bed is carried out effectively for refinery waters having a low five-day BOD by using a plastic packing to support the bacteria in place of the less reliable pozzolana (volcanic ash) formerly employed. Such biofilters, developed by Lurgi S.A., are more sensitive to BOD overloading than activated sludge beds, so that very stable operating conditions are required. In these bacterial beds, the water trickles over the plastic packing and becomes oxygenated, which leads to degradation of undesirable substances in the water. In the refinery, this process can give excellent results when properly carried out, but the biofilter may generate suspended matter under unsatisfactory operating conditions, and is therefore usually placed upstream from the flocculation and filtration units. To date, all installations have remained below the required standard limit of 30 mg/l. of suspended matter.

  12. Cleaning and decontamination: Experimental feedback from PHENIX

    International Nuclear Information System (INIS)

    Masse, F.; Rodriguez, G.

    1997-01-01

    After the first few years of operation of PHENIX, it proved necessary to clean, then decontaminate sodium-polluted components, particularly large components such as the intermediate heat exchangers (IHX) and the primary pumps (PP). Ibis document presents the evolution of the cleaning and decontamination processes used, and specifies the reasons for this evolution. As regards the cleaning, experimental feedback and a greater rigour with respect to the hydrogen hazard have resulted in a modification of the process. The new cleaning process used at present (since 1994) is described in greater detail in this document. The main steps are: cold CO 2 bubbling in water, followed by hot CO 2 bubbling, spraying phase, then drying for inspection before immersion. In order to optimize and validate the process, the cleaning and decontamination plant has been highly instrumented, which, in particular, has allowed confirmation of the contention that the major part of the sodium is eliminated during the bubbling phases. With respect to decontamination, the objective is to perfect an efficient process that allows both human intervention with no particular biological shield for repair or maintenance of the components, and requalification of the materials after the decontamination operation. Owing to the high operating temperature of Fast Breeder Reactor components (400 to 550 deg. C), the activated corrosion products deposited on the components melt into the metal. The decontamination process therefore consists in either dissolving the deposits on the surface, or dissolving a thickness of about less than ten micrometers of the base metal. The reference process for austenitic-type steels is the SPm process, which consists in immersing the component in a sulphuric-phosphoric bath (sulphuric acid and phosphoric acid) at a temperature of 60 deg. C for 6 hours. The problem linked to this process is the treatment of the effluents that are produced, particularly phosphate releases. A

  13. OPO fabric decontamination

    International Nuclear Information System (INIS)

    Severa, J.; Bar, J.; Grujbar, V.

    1978-01-01

    Samples of five polypropylene-based man-made fabrics were studied with regard to the degree of contamination and possibilities of decontamination in order to assess their suitability as material for protective clothing in the nuclear industry. The contamination degree of the fabrics in an aqueous solution of a fission product mixture was found to be low. Soaking in a mixture of the Sapon detergent and sodium hexametaphosphate at a concentration of both materials of 1 g/l with subsequent washing in a solution of the Zenit detergent at a concentration of 3 g/l was suggested as the most suitable decontamination procedure. It reduces the initial contamination by almost 99%. (Z.M.)

  14. Effectiveness of Vaporous Hydrogen Peroxide for the Decontamination of Representative Military Materials

    National Research Council Canada - National Science Library

    Dutt, D. L; Turetsky, A. L; Brickhouse, M; Pfarr, J. W; McVey, I. F; Meilander, S. L; Janick, A. J; Schulte, S. L; Dallmier, A. W

    2004-01-01

    .... While many chemical decontamination methods, including aqueous hydrogen peroxide, have been used or are under development for direct application, few vaporous methods are being evaluated for decontamination efficacy (McDonnell, G. et al., 2002...

  15. Decontamination of Chemical/Biological Warfare (CBW) Agents Using an Atmospheric Pressure Plasma Jet (APPJ)

    Science.gov (United States)

    Herrmann, Hans W.

    1998-11-01

    The atmospheric pressure plasma jet (APPJ) is a non-thermal, high pressure, uniform glow discharge that produces a high velocity effluent stream of highly reactive chemical species. The discharge operates on a feedstock gas (e.g. He/O_2/H_2O) which flows between an outer, grounded, cylindrical electrode and an inner, coaxial electrode powered at 13.56 MHz RF. While passing through the plasma, the feedgas becomes excited, dissociated or ionized by electron impact. Once the gas exits the discharge volume, ions and electrons are rapidly lost by recombination, but the fast-flowing effluent still contains metastables (e.g. O2*, He*) and radicals (e.g. O, OH). These reactive species have been shown to be effective neutralizers of surrogates for anthrax spores, mustard blister agent and VX nerve gas. Unlike conventional, wet decontamination methods, the plasma effluent does not cause corrosion of most surfaces and does not damage wiring, electronics, nor most plastics. This makes it highly suitable for decontamination of high value sensitive equipment such as is found in vehicle interiors (i.e. tanks, planes...) for which there is currently no good decontamination technique. Furthermore, the reactive species rapidly degrade into harmless products leaving no lingering residue or harmful byproducts. Physics of the APPJ will be discussed and results of surface decontamination experiments using simulant and actual CBW agents will be presented.

  16. Separation of tritium from reprocessing effluents

    International Nuclear Information System (INIS)

    Bruggeman, A.; Doyen, W.; Harnie, R.; Leysen, R.; Meynendonckx, L.; Monsecour, M.; Goossens, W.R.A.; Baetsle, L.H.

    1980-01-01

    For several years tritium retention has been studied at the Belgian Nuclear Research Centre, SCK/CEN; initially attention was focused on the removal of tritium from gaseous reprocessing effluents. If tritium can be released from the spent fuel into the gaseous phase before any aqueous operation, adsorption on molecular sieves after some isotopic dilution with hydrogen and after complete conversion to (tritiated) water is the most practical collection method. A once-through 15 m 3 .h -1 oxidation-adsorption unit with a closed regeneration system and with a decontamination factor of 1000 at total (tritiated) hydrogen and water inlet concentrations down to 1000 vpm (parts per million by volume) has been constructed and tested at SCK/CEN and it is described in the text. If no special head-end treatment is used an appropriate liquid management inside the reprocessing plant restricts the volume of tritiated aqueous effluents to about 3 m 3 per tonne of LWR fuel processed. However, for further reduction an isotope separation process becomes necessary. SCK/CEN is developing the ELEX process, which is a combination of water ELectrolysis and tritium EXchange between hydrogen and water, the exchange being promoted by a hydrophobic catalyst. For electrolysis under normal conditions an elementary tritium separation factor of 11.6 with a standard deviation of 6% was obtained. As concerns the exchange step a hydrophobic catalyst has been developed which yields for the flow rates used at atmospheric pressure and at 20 0 C an overall exchange rate constant of 9 mol.s -1 .m -3 in a countercurrent trickle-bed reactor. At present an integrated bench scale de-tritiation unit is being built for further tests and for a dynamic demonstration of the ELEX process

  17. Chemical decontamination process and device therefor

    International Nuclear Information System (INIS)

    Takahashi, Ryota; Sakai, Hitoshi

    1998-01-01

    The present invention provides a process and a device for chemical decontamination, which can suppress corrosion of low corrosion resistant materials, keep decontamination properties substantially as same as before and further, reduce the volume of secondary wastes. In a step of reductively melting oxide membranes on an objective material to be decontaminated, a mixture of oxalic acid and a salt thereof is used as a reducing agent, and the reductive melting is conducted while suppressing hydrogen ion concentration of an aqueous liquid system. In order to enhance the reducibility of the oxalic acid ions, it is desirable to add a cyclic hetero compound thereto. The device of the present invention comprises, a decontamination loop including a member to be decontaminated, a heater and a pH meter, a medical injection pump for injecting a reducing agent to the decontamination loop, a metal ion recovering loop including an ion exchange resin tower, a reducing agent decomposing loop including an electrolytic vessel and/or a UV ray irradiation cell, a circulation pump for circulating the decontamination liquid to each of the loops and a plurality of opening/closing valves for switching the loop in which the decontamination liquid is circulated. (T.M.)

  18. Experiment of decontamination of radioactive liquid by a biological method; Experience de decontamination de liquides radioactifs far voie biologique

    Energy Technology Data Exchange (ETDEWEB)

    Wormser, G.

    1962-07-01

    The author reports experiments of treatment of radioactive liquid effluents by percolation on a bacterial bed like the one used for the treatment of sewer wastewaters. He also reports results obtained in other countries in terms of reduction of effluent radioactivity for various radioactive ions. The installation is described and results are presented in terms of variation of contamination of an effluent with respect to its recycling on a bacterial bed [French] Dans le monde entier, on se preoccupe des moyens de decontamination pour des liquides radioactifs. Les experiences de l'auteur ont confirme qu'un lit bacterien neuf peut donner de bons resultats: il est a noter que ce procede biologique se montre selectif a l'egard des divers ions radioactifs. (auteur)

  19. British Nuclear Fuels plc's effluent plant services building

    International Nuclear Information System (INIS)

    Williams, L.

    1990-01-01

    The new Effluent Plant Services building (EPSB) on the Sellafield Nine Acre Site was built by Costain Engineering Limited for British Nuclear Fuels Limited. The EPSB is dedicated to a new generation of nuclear waste treatment plants, aimed at reducing discharges into the Irish Sea and other environmental impacts by removing actinides from liquid effluents and decontaminating waste solvents. This article describes the design, construction and operation of the plant. (UK)

  20. Development of a lab-scale contaminated organic effluents treatment process using evaporation and supercritical water oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Turc, H.A.; Joussot-Dubien, C

    2004-07-01

    The organic liquid waste produced in the ATALANTE facility have to be treated in order to reduce the fire and contamination risks. Therefore, the Mini-DELOS process has been developed, which combines a low pressure evaporator in a shielded enclosure and a continuous supercritical water oxidation (SCWO) reactor in a glovebox. Evaporation makes it possible to evacuate the main organic stream as decontaminated distillates to an industrial incinerator. The remaining residue, concentrating the radioactivity can be converted through SCWO into a contaminated aqueous effluent, fully compatible with the existing outlets of the facility. The preliminary results of the first year of active operation of the Mini- DELOS process are here presented. (authors)

  1. Facility effluent monitoring plan for the 2724-W Protective Equipment Decontamination Facility

    International Nuclear Information System (INIS)

    Nickels, J.M.; Lavey, G.H.

    1992-12-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1* for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. A facility effluent monitoring plan determination was performed during Calendar Year 1991 and the evaluation requires the need for a facility effluent monitoring plan. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438**. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements

  2. Comparison of four different fuller's earth formulations in skin decontamination.

    Science.gov (United States)

    Roul, Annick; Le, Cong-Anh-Khanh; Gustin, Marie-Paule; Clavaud, Emmanuel; Verrier, Bernard; Pirot, Fabrice; Falson, Françoise

    2017-12-01

    Industrial accidents, wars and terrorist threats are potential sources of skin contamination by highly toxic chemical warfare agents and manufacturing compounds. We have compared the time-dependent adsorption capacity and decontamination efficiency of fuller's earth (FE) for four different formulations for the molecular tracer, 4-cyanophenol (4-CP), in vitro and ex vivo using water decontamination as standard. The adsorption capacity of FE was assessed in vitro for 4-CP aqueous solutions whereas decontamination efficiency was investigated ex vivo by tracking porcine skin 4-CP content using attenuated total reflectance Fourier transform infrared spectroscopy. Decontamination was performed on short time, exposed porcine skin to 4-CP by application of FE: (1) as free powder; (2) loaded on adhesive tape; (3) on powdered glove; or (4) in suspension. Removal rate of 4-CP from aqueous solutions correlates with the amount of FE and its contact time. Decontamination efficiency estimated by the percentage of 4-CP recovery from contaminated porcine skin, achieved 54% with water, ranged between ~60 and 70% with dry FE and reached ~90% with FE suspension. Successful decontamination of the FE suspension, enabling a dramatic reduction of skin contamination after a brief exposure scenario, appears to be rapid, reliable and should be formulated in a new device ready to use for self-application. Copyright © 2017 John Wiley & Sons, Ltd.

  3. ELEX process for tritium separation from aqueous effluents

    International Nuclear Information System (INIS)

    Bruggeman, A.; Doyen, W.; Leysen, R.; Meynendonckx, L.; Monsecour, M.; Goossens, W.R.A.

    1980-01-01

    Within the framework of the European Communities' indirect action program on management and storage of radioactive waste the Belgian Nuclear Research Centre, S.C.K./C.E.N., is developing the ELEX process for tritium separation from aqueous reprocessing effluents. This process is a combination of water electrolysis and tritium exchange between hydrogen and water, the exchange being promoted by a hydrophobic catalyst. For classical electrolysis under normal working conditions with elementary tritium separation factor of 11.6 with a standard deviation of 6% was obtained. As to the exchange step an appropriate hydrophobic catalyst has been developed, and overall tritium exchange rates were measured in a countercurrent packed-bed reactor. Extrapolation of these results to the 3 m 3 per day scale of a reprocessing plant leads to an electrolyser capacity of about 1 MW and to an exchange volume of about 1 m 3 for an ELEX installation that concentrates 90% of the original tritium in 1% of the original volume. At the moment the construction of a small integrated detritiation unit is nearly finished. A larger pilot installation will be built later on

  4. Management of radioactive effluents from research Reactors and PHWRs

    International Nuclear Information System (INIS)

    Bodke, S.B.; Surender Kumar; Sinha, P.K.; Budhwar, R.K.; Raj, Kanwar

    2006-01-01

    Indian nuclear power programme is mainly based on pressurized heavy water reactors (PHWRs). In addition we have research reactors namely Apsara, CIRUS, Dhruva at Trombay. The operation and maintenance activities of these reactors generate radioactive liquid waste. These wastes require effective management so that the release of radioactivity to the environment is well within the authorized limits. India is self reliant in the design, erection, commissioning and operation of effluent management system for nuclear reactors. Segregation at source based on nature of effluents and radioactivity content is the first and foremost step in the over all management of liquid effluents. The effluents from the power reactors contain mainly activation products like 3 H. It also contains fission products like 137 Cs. Containment of these radionuclide along with 60 Co, 90 Sr, 131 I plays an important part in liquid waste management. Treatment processes for decontamination of these radionuclide include chemical treatment, ion exchange, evaporation etc. Effluents after treatment are monitored and discharged to the nearby water body after filtration and dilution. The concentrates from the processes are conditioned in cement matrix and disposed in Near Surface Disposal Facilities (NSDFs) co-located at each site. Some times large quantity of effluents with higher radioactivity concentration may get generated from the abnormal operation such as failure of heat exchangers. These effluents are handled on a campaign basis for which adequate storage capacity is provided. The treatment is given taking into consideration the required decontamination factor (DF), capacities of available treatment process, discharge limits and the availability of the dilution water. Similarly large quantities of effluents may get generated during fuel clad failure incident in reactors. In such situation, as in CIRUS large volume of effluent containing higher radioactivity are generated and are managed by delay

  5. Decontamination of chemical and biological warfare (CBW) agents using an atmospheric pressure plasma jet (APPJ)

    Science.gov (United States)

    Herrmann, H. W.; Henins, I.; Park, J.; Selwyn, G. S.

    1999-05-01

    The atmospheric pressure plasma jet (APPJ) [A. Schütze et al., IEEE Trans. Plasma Sci. 26, 1685 (1998)] is a nonthermal, high pressure, uniform glow plasma discharge that produces a high velocity effluent stream of highly reactive chemical species. The discharge operates on a feedstock gas (e.g., He/O2/H2O), which flows between an outer, grounded, cylindrical electrode and an inner, coaxial electrode powered at 13.56 MHz rf. While passing through the plasma, the feedgas becomes excited, dissociated or ionized by electron impact. Once the gas exits the discharge volume, ions and electrons are rapidly lost by recombination, but the fast-flowing effluent still contains neutral metastable species (e.g., O2*, He*) and radicals (e.g., O, OH). This reactive effluent has been shown to be an effective neutralizer of surrogates for anthrax spores and mustard blister agent. Unlike conventional wet decontamination methods, the plasma effluent does not cause corrosion and it does not destroy wiring, electronics, or most plastics, making it highly suitable for decontamination of sensitive equipment and interior spaces. Furthermore, the reactive species in the effluent rapidly degrade into harmless products leaving no lingering residue or harmful by-products.

  6. Reaction-diffusion models of decontamination

    DEFF Research Database (Denmark)

    Hjorth, Poul G.

    A contaminant, which also contains a polymer is in the form of droplets on a solid surface. It is to be removed by the action of a decontaminant, which is applied in aqueous solution. The contaminant is only sparingly soluble in water, so the reaction mechanism is that it slowly dissolves...

  7. Chemical decontamination method for stainless steel

    International Nuclear Information System (INIS)

    Yomo, Nobuo; Onuma, Tsutomu; Akimoto, Hidetoshi.

    1991-01-01

    In a case where an object to be decontaminated has a restricted portion in which the passage of liquids is difficult, decontamination liquids are not circulated effectively upon decontamination for the inner surfaces, and it requires a quite long period of time. In view of the above, through holes are perforated by, for example, a drill in the restricted portion of metal wastes made of stainless steels. Then, they are immersed in a sulfuric acid solution, and further immersed in an aqueous solution in which oxidative metal salts are added to the sulfuric acid. With such procedures, substrates are exposed at the inner circumference of the holes even if they are fine holes, and a local cell is formed between the substrate and an oxidized membranes, which may cause dissolution due to the reduction of the oxidized membranes. Further, since it is possible to discharge bubbles formed upon the solution, even from such fine holes, decontamination can be conducted effectively. (T.M.)

  8. Environmental and occupational hazards associated with decontamination solutions (a)

    International Nuclear Information System (INIS)

    Levanthal, L.

    1985-01-01

    Some of the reagents employed in the decontamination of reactor coolant systems are potentially hazardous. Potential exposure to decontamination agents by operating personnel, or members of the general population, could occur during use, processing, transportation to, or disposal at a low-level waste site. Federal and state agencies have promulgated regulations relevant to the disposal of decontamination solution waste to prevent acute or chronic exposures. In particular, the Nuclear Regulatory Commission (NRC), U.S. Environmental Protection Agency (EPA), Department of Transportation (DOT), Department of Labor - Occupational Safety and Health Administration (OSHA), State of South Carolina, State of Nevada, and the State of Washington have such regulations. These regulations may impact on the choice of decontamination solutions, operations procedures, processing methods, or disposal methods. Laws and regulations relate to both chemically hazardous, or toxic materials and to radioactive hazards. Laws which regulate the exposure of workers and the general public to effluents and emissions during processing, disposal and transport have been abstracted. As a result of these regulations, utilities are required to obtain permits to perform monitoring and sampling of personnel and the on-site and off-site environment, provide proper protective clothing and ventilation, make certain the solutions are properly contained during use, storage and processing, and destroy and/or properly immobilize the residues for disposal. Waste treatment processes such as neutralization, ion exchange, evaporation, incineration, etc., must not produce, nor result in hazardous emissions, effluents, residues, or hazards to workers. The laws also stipulate record keeping and documentation

  9. Vehicle for surface decontamination by electropolishing

    International Nuclear Information System (INIS)

    Maury, A.

    1984-01-01

    The invention concerns a remote controlled, electric powered vehicle for continuous decontamination of several supports forming an angle for instance the bottom and the walls of nuclear swimming pools. The vehicle is provided with all the means required for electropolishing (electrolyte, pumps, effluent recovery etc...) and two electropolishing units, one under the vehicle for horizontal surface treatment the other adjustable in height on a bracket for vertical surface treatment [fr

  10. Facility Effluent Monitoring Plan for the 2724-W Protective Equipment Decontamination Facility

    International Nuclear Information System (INIS)

    Carter, G.J.

    1991-11-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1* for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan is the first annual report. It shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updates as a minimum every three years

  11. The use of magnetite for decontaminating alpha containing effluents

    International Nuclear Information System (INIS)

    Ivens, R.

    1988-06-01

    The feasibility of retention of precipitated magnetite by magnetic filtration followed by direct cementation offered an attractive alternative to conventional ferric hydroxide treatment of radioactive liquid effluents. The magnetically-assisted dewatering of laboratory-prepared magnetite was examined in a number of ways, none of which achieved the desired optimum solids content for cementation. Attempts to prepare magnetite in situ from typical effluents containing iron were unsuccessful owing to the presence of interfering ions. Preformed magnetite was reasonably effective at absorbing actinides from solution but did not appear to offer any significant advantage over ferric hydroxide. (author)

  12. Comparison of skin decontamination efficacy of commercial decontamination products following exposure to VX on human skin.

    Science.gov (United States)

    Thors, L; Koch, M; Wigenstam, E; Koch, B; Hägglund, L; Bucht, A

    2017-08-01

    The decontamination efficacy of four commercially available skin decontamination products following exposure to the nerve agent VX was evaluated in vitro utilizing a diffusion cell and dermatomed human skin. The products included were Reactive Skin Decontamination Lotion (RSDL), the Swedish decontamination powder 104 (PS104), the absorbent Fuller's Earth and the aqueous solution alldecontMED. In addition, various decontamination procedures were assessed to further investigate important mechanisms involved in the specific products, e.g. decontamination removal from skin, physical removal by sponge swabbing and activation of degradation mechanisms. The efficacy of each decontamination product was evaluated 5 or 30 min after dermal application of VX (neat or diluted to 20% in water). The RSDL-lotion was superior in reducing the penetration of VX through human skin, both when exposed as neat agent and when diluted to 20% in water. Swabbing with the RSDL-sponge during 2 min revealed decreased efficacy compared to applying the RSDL-lotion directly on the skin for 30 min. Decontamination with Fuller's Earth and alldecontMED significantly reduced the penetration of neat concentration of VX through human skin. PS104-powder was insufficient for decontamination of VX at both time-points, independently of the skin contact time of PS104. The PS104-slurry (a mixture of PS104-powder and water), slightly improved the decontamination efficacy. Comparing the time-points for initiated decontamination revealed less penetrated VX for RSDL and Fuller's Earth when decontamination was initiated after 5 min compared to 30 min post-exposure, while alldecontMED displayed similar efficacy at both time-points. Decontamination by washing with water only resulted in a significant reduction of penetrated VX when washing was performed 5 min after exposure, but not when decontamination was delayed to 30 min post-exposure of neat VX. In conclusion, early initiated decontamination with the

  13. Amélioration de la qualité microbiologique des effluents secondaires par stockage en bassins

    Directory of Open Access Journals (Sweden)

    Trad-Rais M.

    1999-01-01

    Full Text Available Microbiological quality improvement of secondary effluent by reservoir storage. Storing secondary effluents is of particular interest for water resource management. It constitutes further treatment which reduces the microbial contamination of water to a level where it can be used for the irrigation of all crops, without restriction. The storage of treated wastewater takes place during the winter, ensuring that such a resource is not lost and enabling a larger area to be irrigated during the dry season, thereby increasing agricultural production. Storage trials in reservoirs were conducted in north-eastern Tunisia. Their objective was to determine the length and conditions of secondary effluent decontamination as well as the impact of seasonal storage on water quality. The results indicate that the decontamination of effluents slows down with increased reservoir depth. For a depth of less than 150 cm, a reduction of fecal coliforms in the order of 3 log units is attained in 3 days when the average temperature of the water ranges from 22 to 25 degrees C; when this temperature is between 25.5 and 28 degrees C, the same reduction takes 8 days. Below 20 degrees C, decontamination is considerably reduced: for a mean water temperature ranging from 12.5 to 18 degrees C, the reduction of fecal coliforms reaches 3 log units only after a retention time of 17 days in the reservoir. Seasonal storage from 2 to 7 months does not affect the bacteriological quality of water: after decontamination, no proliferation of bacterial indicators occurs during storage.

  14. Planning guidance for nuclear-power-plant decontamination. [PWR; BWR

    Energy Technology Data Exchange (ETDEWEB)

    Munson, L.F.; Divine, J.R.; Martin, J.B.

    1983-06-01

    Direct and indirect costs of decontamination are considered in the benefit-cost analysis. A generic form of the benefit-cost ratio is evaluated in monetary and nonmonetary terms, and values of dollar per man-rem are cited. Federal and state agencies that may have jurisiction over various aspects of decontamination and waste disposal activities are identified. Methods of decontamination, their general effectiveness, and the advantages and disadvantages of each are outlined. Dilute or concentrated chemical solutions are usually used in-situ to dissolve the contamination layer and a thin layer of the underlying substrate. Electrochemical techniques are generally limited to components but show high decontamination effectiveness with uniform corrosion. Mechanical agents are particularly appropriate for certain out-of-system surfaces and disassembled parts. These processes are catagorized and specific concerns are discussed. The treatment, storage, and disposal or discharge or discharge of liquid, gaseous, and solid wastes generated during the decontamination process are discussed. Radioactive and other hazardous chemical wastes are considered. The monitoring, treatment, and control of radioactive and nonradioactive effluents, from both routine operations and possible accidents, are discussed. Protecting the health and safety of personnel onsite during decontamination is of prime importance and should be considered in each facet of the decontamination process. The radiation protection philosophy of reducing exposure to levels as low as reasonably achievable should be stressed. These issues are discussed.

  15. Bioprospecting of gum kondagogu (Cochlospermum gossypium) for bioremediation of uranium (VI) from aqueous solution and synthetic nuclear power reactor effluents

    International Nuclear Information System (INIS)

    Sashidhar, R.B.; Selvi, S. Kalaignana; Vinod, V.T.P.; Kosuri, Tanuja; Raju, D.; Karuna, R.

    2015-01-01

    An ecofriendly green chemistry method using a natural biopolymer, Gum Kondagogu (GK) for the removal of U (VI) from aqueous, simulated nuclear effluents was studied. The adsorption characteristic of GK towards U (VI) from aqueous solution was studied at varied pH, contact time, adsorbent dose, initial U (VI) concentration and temperature using UV–Visible spectroscopy and ICP-MS. Maximum adsorption was seen at pH 4, 0.1% GK with 60 min contact time at room temperature. The GK- U (VI) composite was characterized by FT-IR, zeta potential, TEM and SEM-EDAX. The Langmuir isotherm was found to be 487 mg of U (VI) g −1 of GK. The adsorption capacity and (%) of U (VI) was found to be 490 ± 5.4 mg g −1 and 98.5%. Moreover adsorption of U (VI) by GK was not influenced by other cations present in the simulated effluents. The adsorbed U (VI) was efficiently stripped from composite using 1 M HCl. - Highlights: • An eco-friendly method for removal of U (VI) from simulated nuclear effluents by Gum Kondagogu. • The Langmuir and Freundlich isotherm indicated favourable adsorption. • The adsorption (%) of U (VI) by GK was found to be 98.5%. • Desorption studies on biosorbed metal ions showed that HCl was a good eluent

  16. Decontamination of chemical and biological warfare (CBW) agents using an atmospheric pressure plasma jet (APPJ)

    International Nuclear Information System (INIS)

    Herrmann, H.W.; Henins, I.; Park, J.; Selwyn, G.S.

    1999-01-01

    The atmospheric pressure plasma jet (APPJ) [A. Schuetze et al., IEEE Trans. Plasma Sci. 26, 1685 (1998)] is a nonthermal, high pressure, uniform glow plasma discharge that produces a high velocity effluent stream of highly reactive chemical species. The discharge operates on a feedstock gas (e.g., He/O 2 /H 2 O), which flows between an outer, grounded, cylindrical electrode and an inner, coaxial electrode powered at 13.56 MHz rf. While passing through the plasma, the feedgas becomes excited, dissociated or ionized by electron impact. Once the gas exits the discharge volume, ions and electrons are rapidly lost by recombination, but the fast-flowing effluent still contains neutral metastable species (e.g., O 2 * , He * ) and radicals (e.g., O, OH). This reactive effluent has been shown to be an effective neutralizer of surrogates for anthrax spores and mustard blister agent. Unlike conventional wet decontamination methods, the plasma effluent does not cause corrosion and it does not destroy wiring, electronics, or most plastics, making it highly suitable for decontamination of sensitive equipment and interior spaces. Furthermore, the reactive species in the effluent rapidly degrade into harmless products leaving no lingering residue or harmful by-products. copyright 1999 American Institute of Physics

  17. On the problem of radiation decontamination of the domestic sewage sludge

    International Nuclear Information System (INIS)

    Arbuzova, N.A.

    1978-01-01

    Soviet and foreign investigations on decontamination of drinking, natural, and waste waters with the use of gamma radiation are surveyed. A comparative analysis of data published on radiation decontamination showed that most experimental investigations were carried out on artificially prepared suspensions of microorganisms. The value of such investigations lies in the fact that they give the representation on the relative radiosensitivity of microorganisms in and aqueous medium and enable one to establish the effect of some physicochemical factors on the efficiency of radiation decontamination. Nevertheless, the results of the investigations carried out in this direction do not fully reflect actual conditions at existing decontamination stations and connot serve as a basis for estimating the technological and economic efficiency of the radiation decontamination method

  18. Enhanced toxic cloud knockdown spray system for decontamination applications

    Science.gov (United States)

    Betty, Rita G [Rio Rancho, NM; Tucker, Mark D [Albuquerque, NM; Brockmann, John E [Albuquerque, NM; Lucero, Daniel A [Albuquerque, NM; Levin, Bruce L [Tijeras, NM; Leonard, Jonathan [Albuquerque, NM

    2011-09-06

    Methods and systems for knockdown and neutralization of toxic clouds of aerosolized chemical or biological warfare (CBW) agents and toxic industrial chemicals using a non-toxic, non-corrosive aqueous decontamination formulation.

  19. Chemical decontamination and melt densification

    International Nuclear Information System (INIS)

    Dillon, R.L.; Griggs, B.; Kemper, R.S.; Nelson, R.G.

    1976-01-01

    Preliminary studies on the chemical decontamination and densification of Zircaloy, stainless steel, and Inconel undissolved residues remaining after dissolution of the UO 2 --PuO 2 spent fuel material from sheared fuel bundles are reported. The studies were made on cold or very small samples to demonstrate the feasibility of the processes developed before proceeding to hot cell demonstrations with kg level of the sources. A promising aqueous decontamination method for Zr alloy cladding was developed in which oxidized surfaces are conditioned with HF prior to leaching with ammonium oxalate, ammonium citrate, ammonium fluoride, and hydrogen peroxide. Feasibility of molten salt decontamination of oxidized Zircaloy was demonstrated. A low melting alloy of Zircaloy, stainless steel, and Inconel was obtained in induction heated graphite crucibles. Segregated Zircaloy cladding sections were directly melted by the inductoslag process to yield a metal ingot suitable for storage. Both Zircaloy and Zircaloy--stainless steel--Inconel alloys proved to be highly satisfactory getters and sinks for recovered tritium

  20. Bioprospecting of gum kondagogu (Cochlospermum gossypium) for bioremediation of uranium (VI) from aqueous solution and synthetic nuclear power reactor effluents.

    Science.gov (United States)

    Sashidhar, R B; Selvi, S Kalaignana; Vinod, V T P; Kosuri, Tanuja; Raju, D; Karuna, R

    2015-10-01

    An ecofriendly green chemistry method using a natural biopolymer, Gum Kondagogu (GK) for the removal of U (VI) from aqueous, simulated nuclear effluents was studied. The adsorption characteristic of GK towards U (VI) from aqueous solution was studied at varied pH, contact time, adsorbent dose, initial U (VI) concentration and temperature using UV-Visible spectroscopy and ICP-MS. Maximum adsorption was seen at pH 4, 0.1% GK with 60 min contact time at room temperature. The GK- U (VI) composite was characterized by FT-IR, zeta potential, TEM and SEM-EDAX. The Langmuir isotherm was found to be 487 mg of U (VI) g(-1) of GK. The adsorption capacity and (%) of U (VI) was found to be 490 ± 5.4 mg g(-1) and 98.5%. Moreover adsorption of U (VI) by GK was not influenced by other cations present in the simulated effluents. The adsorbed U (VI) was efficiently stripped from composite using 1 M HCl. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Method of bituminization equipment decontamination

    International Nuclear Information System (INIS)

    Alexa, J.

    1982-01-01

    Overheated water vapour is fed into the contaminated area containing substances insoluble in water but soluble in organic solvents. Prior to entry into the decontaminated area the vapour bubbles through the aqueous solution layer of suitable detergents and a layer of suitable organic solvent. In this process the distillation takes place of the solvent and the aerosols of the aqueous solution are carried away with the vapour stream, condense on the inner surface of the vessel and thus wash it. The condensate flows down the walls and in its place condense other fractions of pure solvent and the aqueous solution. The walls of the vessel are slowly heated and the liquid waste is discharged via a mud discharge pipe. (J.B.)

  2. A survey of decontamination processes applicable to DOE nuclear facilities

    International Nuclear Information System (INIS)

    Chen, L.; Chamberlain, D.B.; Conner, C.; Vandegrift, G.F.

    1997-05-01

    The objective of this survey was to select an appropriate technology for in situ decontamination of equipment interiors as part of the decommissioning of U.S. Department of Energy nuclear facilities. This selection depends on knowledge of existing chemical decontamination methods. This report provides an up-to-date review of chemical decontamination methods. According to available information, aqueous systems are probably the most universally used method for decontaminating and cleaning metal surfaces. We have subdivided the technologies, on the basis of the types of chemical solvents, into acid, alkaline permanganate, highly oxidizing, peroxide, and miscellaneous systems. Two miscellaneous chemical decontamination methods (electrochemical processes and foam and gel systems) are also described. A concise technical description of various processes is given, and the report also outlines technical considerations in the choice of technologies, including decontamination effectiveness, waste handing, fields of application, and the advantages and limitations in application. On the basis of this survey, six processes were identified for further evaluation. 144 refs., 2 tabs

  3. A survey of decontamination processes applicable to DOE nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Chen, L.; Chamberlain, D.B.; Conner, C.; Vandegrift, G.F.

    1997-05-01

    The objective of this survey was to select an appropriate technology for in situ decontamination of equipment interiors as part of the decommissioning of U.S. Department of Energy nuclear facilities. This selection depends on knowledge of existing chemical decontamination methods. This report provides an up-to-date review of chemical decontamination methods. According to available information, aqueous systems are probably the most universally used method for decontaminating and cleaning metal surfaces. We have subdivided the technologies, on the basis of the types of chemical solvents, into acid, alkaline permanganate, highly oxidizing, peroxide, and miscellaneous systems. Two miscellaneous chemical decontamination methods (electrochemical processes and foam and gel systems) are also described. A concise technical description of various processes is given, and the report also outlines technical considerations in the choice of technologies, including decontamination effectiveness, waste handing, fields of application, and the advantages and limitations in application. On the basis of this survey, six processes were identified for further evaluation. 144 refs., 2 tabs.

  4. Surface decontamination using dry ice snow

    International Nuclear Information System (INIS)

    Ryu, Jungdong; Park, Kwangheon; Lee, Bumsik; Kim Yangeun

    1999-01-01

    An adjustable nozzle for controlling the size of dry ice snow was developed. The converging/diverging nozzle can control the size of snows from sub-microns to 10 micron size. Using the nozzle, a surface decontamination device was made. The removal mechanisms of surface contaminants are mechanical impact, partial dissolving and evaporation process, and viscous flow. A heat supply system is added for the prevention of surface ice layer formation. The cleaning power is slightly dependent on the size of snow. Small snows are the better in viscous flow cleaning, while large snows are slightly better in dissolving and sublimation process. Human oils like fingerprints on glass were easy to remove. Decontamination ability was tested using a contaminated pump-housing surface. About 40 to 80% of radioactivity was removed. This device is effective in surface-decontamination of any electrical devices like detector, controllers which cannot be cleaned in aqueous solution. (author)

  5. Role of the chemical engineering technician in applied research related to tritium separation from aqueous effluents

    International Nuclear Information System (INIS)

    Nelson, S.D.

    1978-01-01

    Applied research and development activities related to the removal of tritium from aqueous effluent streams have presented broad opportunities to the chemical engineering technician for professional growth. Technician job activities involve operating complex analytical instrumentation and constructing, maintaining, and operating experimental electrolysis apparatus. The technician is a member of a professional team including scientific, engineering, and other technical personnel and as such is expected to exercise creative thought. Proximity of a large university and availability of formalized ''in house'' training courses provide incentives for technicians to broaden their academic base concurrent with their work involvement

  6. Decontamination of cesium, strontium, and cobalt from aqueous solutions by bentonite

    Energy Technology Data Exchange (ETDEWEB)

    Khan, M.A. [Univ. of the Punjab, Lahore (Pakistan); Khan, S.A. [Government F.C. College, Lahore (Pakistan)

    1996-12-31

    Sorption studies of cesium, strontium, and cobalt (Cs, Sr, and Co) on bentonite under various experimental conditions, such as contact time, pH, sorbent and sorbate concentration, and temperature, have been performed. The sorption data for all these metals have been interpreted in terms of Freundlich, Langmuir, and Dubinin-Radushkevich equations. Thermodynamics parameters, such as heat of sorption {Delta}H{degrees}, free energy change {Delta}G{degrees}, and entropy change {Delta}S{degrees}, for the sorption of these metals on bentonite have been calculated. The value of {Delta}H{degrees} shows that the sorption of Cs was exothermic, while the sorption of Sr and Co on bentonite were endothermic in nature. The value of {Delta}G{degrees} for their sorption was negative, showing the spontaneity of the process. The maximum loading capacity of Cs, Sr, and Co were 75.5, 22, and 27.5 meq, respectively, for 100 g of bentonite. The mean free energy E of Cs, Sr, and Co sorption on bentonite was 14.5, 9, and 7.7 kJ/mol, respectively. The value of E indicates that ion exchange may be the predominant mode of sorption for these radionuclides. The desorption studies with 0.01 M CaCl{sub 2} and groundwater at low-metal loading on bentonite showed that about 95% of Cs, 85-90% of Sr, and 97% of Co were irreversibly sorbed. Bentonite could be effectively used for the decontamination of wastewater effluent containing low concentrations of radioactive nuclides of Cs, Sr, and Co. 16 refs., 7 figs., 3 tabs.

  7. Irradiation technologies used for combustion gases and diluted sulfurous gases decontamination

    International Nuclear Information System (INIS)

    Villanueva Z, Loreto

    1998-01-01

    A brief description of irradiation technology used for ambient decontamination is presented here. The system is adequate fort gas and liquid effluents and solid wastes. In particular, the characteristics and applications of the irradiation done with an electron beam to gas effluent is described, mainly to clean combustion gases and other industrial gases containing sulfur and nitrogen oxides, S O x and N O x , respectively. This technology permits the remove of these contaminants and the acquisition of a solid byproduct, an ammonia sulfate-nitrate, apt for fertilizer applications. (author)

  8. Modification of the Decontamination Facility at the Kruemmel NPP - 13451

    International Nuclear Information System (INIS)

    Klute, Stefan; Kupke, Peter

    2013-01-01

    walls are welded gap-free and all rough edges are rounded off. All wetted parts are steel grade 1.4301 or higher. In an extension to the high pressure water decontamination box, 2 ultrasonic ponds and one washing station for small components as provide by new construction. A long pond with 3.25 m length for the decontamination of large components (e.g. turbine blades, pump rotors, driving rods) was installed. For the handling heavy components, a 2 t crane was installed. New construction of a mechanical effluent treatment facility including oil separator was connected to the existing effluent storage tank provided by the customer. One exhaust air filtration system is provided for each decontamination box, with the following requirements. The exhaust air is sent back to the room (recirculated air system). Dry blasting box including raw separator with dust collection in 200 l drum, filter for suspended particles; High pressure water decontamination box and wet area with water separator, pre-separator, filter for suspended particles. Installation of a steel platform at building height +12.85 above the decontamination boxes + 8.50 m for the erection of the high pressure water facilities, the recirculating air filter system, the air compressor and the respiratory air supply unit. The aforementioned components are placed on the steel platform and have been encased in a sound-lowering and accessible manner. New construction of the entire E and C technology for the TU system including modification of the supply lines from the switch gear. All devices are to be operated automatically. Dry blasting box, high pressure water decontamination box and wet area are designed to guarantee a unitary 'exterior view' of the decontamination facility. (authors)

  9. Modification of the Decontamination Facility at the Kruemmel NPP - 13451

    Energy Technology Data Exchange (ETDEWEB)

    Klute, Stefan; Kupke, Peter [Siempelkamp Nukleartechnik GmbH Am Taubenfeld 25/1, 69123 Heidelberg (Germany)

    2013-07-01

    walls are welded gap-free and all rough edges are rounded off. All wetted parts are steel grade 1.4301 or higher. In an extension to the high pressure water decontamination box, 2 ultrasonic ponds and one washing station for small components as provide by new construction. A long pond with 3.25 m length for the decontamination of large components (e.g. turbine blades, pump rotors, driving rods) was installed. For the handling heavy components, a 2 t crane was installed. New construction of a mechanical effluent treatment facility including oil separator was connected to the existing effluent storage tank provided by the customer. One exhaust air filtration system is provided for each decontamination box, with the following requirements. The exhaust air is sent back to the room (recirculated air system). Dry blasting box including raw separator with dust collection in 200 l drum, filter for suspended particles; High pressure water decontamination box and wet area with water separator, pre-separator, filter for suspended particles. Installation of a steel platform at building height +12.85 above the decontamination boxes + 8.50 m for the erection of the high pressure water facilities, the recirculating air filter system, the air compressor and the respiratory air supply unit. The aforementioned components are placed on the steel platform and have been encased in a sound-lowering and accessible manner. New construction of the entire E and C technology for the TU system including modification of the supply lines from the switch gear. All devices are to be operated automatically. Dry blasting box, high pressure water decontamination box and wet area are designed to guarantee a unitary 'exterior view' of the decontamination facility. (authors)

  10. Laser-based characterization and decontamination of contaminated facilities

    International Nuclear Information System (INIS)

    Leong, K.H.; Hunter, B.V.; Grace, J.E.; Pellin, M.J.; Leidich, H.F.; Kugler, T.R.

    1996-01-01

    This study examines the application of laser ablation to the characterization and decontamination of painted and unpainted concrete and metal surfaces that are typical of many facilities within the US Department of Energy complex. The utility of this promising technology is reviewed and the essential requirements for efficient ablation extracted. Recent data obtained on the ablation of painted steel surfaces and concrete are presented. The affects of beam irradiance, ablation speed and efficiency, and characteristics of the aerosol effluent are discussed. Characterization of the ablated components of the surface offers the ability of concurrent determination of the level of contamination. This concept can be applied online where the ablation endpoint can be determined. A conceptual system for the characterization and decontamination of surfaces is proposed

  11. Synthesis of novel complexing macromolecular surfactants and study of their interactions with cobalt for the development of a decontamination process of textiles in dense CO2 medium

    International Nuclear Information System (INIS)

    Chirat, M.

    2012-01-01

    This study is about textile decontamination in dense CO 2 (liquid CO 2 or supercritical CO 2 ). The study is carried out in the framework of decontamination of textile used in the nuclear industry. The dense CO 2 offers an alternative to aqueous medium used in the current process which generates a huge quantity of contaminated aqueous effluent requiring a post-treatment. Cobalt is the targeted contamination and can be found as ionic species or particles. The cobalt extraction in dense CO 2 is achieved with an additive: a complexing CO 2 -philic/CO 2 -phobic macromolecular surfactant. Several types of additives were synthesized by controlled free radical polymerization: gradient copolymers made with CO 2 -philic groups (silicone-based or fluorinated moieties) and CO 2 -phobic complexing groups (aceto acetoxy, di-ethylphosphonate or phosphonic acid moieties). The copolymer behavior in dense CO 2 was determined by phase diagram measurements (cloud point method) and their self-assembly in dense CO 2 was investigated by small angle neutron scattering. The fluorinated copolymers were found advantageous in terms of solubility. Nevertheless, the silicone-based copolymers showed solubilities which are compatible with the process, therefore they are a good alternative to avoid fluorinated compounds which are unwanted in the conditioning of nuclear wastes. The study of cobalt complexation by the copolymers (UV-vis spectroscopy and inductively coupled plasma-mass spectroscopy) established relations between the type of complexing group and the affinity with the cobalt. The solubility of copolymer-cobalt complexes in dense CO 2 is similar to those of copolymers. Moreover, the self-assembly study of the complex revealed a low aggregation. Finally, the synthesized copolymers were used in particle or ionic decontamination processes. In the case of ionic decontamination process, a rate of 70% of decontamination was reached with the use of gradient copolymer poly(1

  12. Method of recovering phosphoric acid type decontaminating electrolytes by electrodeposition

    International Nuclear Information System (INIS)

    Sasaki, Takashi; Wada, Koichi; Kobayashi, Toshio.

    1985-01-01

    Purpose: To recoving phosphoric acid type highly concentrated decontaminating liquid used for the electrolytic decontamination of contaminated equipments, components, etc in nuclear power plants or the like through electrodeposition by diaphragm electrolysis. Method: Before supplying phosphoric acid decontaminating liquid at high concentration used in the electrolytic decontaminating step to an electrodeposition recovering tank, phosphoric acid in the decontaminating electrolyte is extracted with solvents and decomposed liquid extracts (electrolyte reduced with the phosphoric acid component) are supplied to the cathode chamber of the electrodeposition recovering tank, where phosphoric acid is back-extracted with water from the solvents after extraction of phosphoric acid. Then, the back-extracted liquids (aqueous phosphoric acid solution scarcely containing metal ions) are sent to the anode chamber of the electrodeposition recovering tank. Metal ions in the liquid are captured by electrodeposition in the cathode chamber, as well as phosphoric acid in the liquids is concentrated to the initial concentration of the electrolyte in the anode chamber for reuse as the decontaminating electrolyte. As the phosphoric acid extracting agent used in the electrodeposition recovering step for the decontaminating electrolyte, water-insoluble and non-combustible tributyl phosphate (TBP) is most effective. (Horiuchi, T.)

  13. The removal of Cs-137 from soil using washing-electrokinetic decontamination equipment

    International Nuclear Information System (INIS)

    Kim, Gyenam; Kim, Seungsoo; Kim, Geunho; Park, Hyemin; Kim, Wansuk; Park, Ukryang; Kwon, Hyeokju; Ryu, Ohha; Moon, Jeikwon

    2012-01-01

    The radioactive soil at the KAERI radioactive waste storage facility has slightly high hydro-conductivity, and was mainly contaminated with 137 Cs 30-35 years ago. Recently, a soil washing method has been applied to remove 137 Cs from radioactive soil, but it appears that the removal efficiency of 137 Cs had low and a lot of waste solution was generated. Meanwhile, an electrokinetic decontamination method provides high removal efficiency of 137 Cs and generates little waste effluent. Thus, it is suggested that an electrokinetic decontamination method is a suitable technology in consideration of the soil characteristics near South Korean nuclear facilities

  14. Integrating the Fenton's Process with Biofiltration by to Reduce Chemical Oxygen Demand of Winery Effluents.

    Science.gov (United States)

    Pipolo, Marco; Martins, Rui C; Quinta-Ferreira, Rosa M; Costa, Raquel

    2017-03-01

    The discharge of poorly decontaminated winery wastewater remains a serious environmental problem in many regions, and the industry is welcoming improved treatment methods. Here, an innovative decontamination approach integrating Fenton's process with biofiltration by Asian clams is proposed. The potential of this approach was assessed at the pilot scale using real effluent and by taking an actual industrial treatment system as a benchmark. Fenton peroxidation was observed to remove 84% of the effluent's chemical oxygen demand (COD), reducing it to 205 mg L. Subsequent biofiltration decreased the effluent's COD to approximately zero, well below the legal discharge limit of 150 mg L, in just 3 d. The reduction of the effluent's organic load through Fenton's process did not decrease its toxicity toward , but the effluent was much less harmful after biofiltration. The performance of the treatment proposed exceeded that of the integrated Fenton's process-sequencing batch reactor design implemented in the winery practice, where a residence time of around 10 d in the biological step typically results in 80 to 90% of COD removal. The method proposed is effective and compatible with typical winery budgets and potentially contributes to the management of a nuisance species. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  15. Composition of CBRN Decontamination Effluent and Development of Surrogate Mixtures for Testing Effluent Treatment Technologies

    Science.gov (United States)

    2016-07-01

    possible, the site around the wash stations is graded to allow the wash water to run off to a pit, where it can seep into the earth or be collected...Caustic soda solution Radioisotopes /Nuclear Residuals Soap with warm water DS2 = Decontamination Solution 2 STB = Super Tropical bleach HTH = High... DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER

  16. Cleanup Verification Package for the 116-K-2 Effluent Trench

    International Nuclear Information System (INIS)

    Capron, J.M.

    2006-01-01

    This cleanup verification package documents completion of remedial action for the 116-K-2 effluent trench, also referred to as the 116-K-2 mile-long trench and the 116-K-2 site. During its period of operation, the 116-K-2 site was used to dispose of cooling water effluent from the 105-KE and 105-KW Reactors by percolation into the soil. This site also received mixed liquid wastes from the 105-KW and 105-KE fuel storage basins, reactor floor drains, and miscellaneous decontamination activities

  17. Chemical decontamination and melt densification of chop-leach fuel hulls

    International Nuclear Information System (INIS)

    Dillon, R.L.; Griggs, B.; Kemper, R.S.; Nelson, R.G.

    1976-01-01

    This paper reports on decontamination and densification studies of chop-leach fuel hull residues designed to minimize the transuranic element (TRU) contaminated waste stream. Decontamination requirements have been established from studies of TRU element distribution in the fuel hull residues. Effective surface decontamination of Zircaloy requires removal of zirconium oxide corrosion products. Good decontamination factors have been achieved with aqueous solutions following high temperature HF conditioning of oxide films. Molten fluoride salt mixtures are effective decontaminants, but pose problems in metal loss and salt dragout. Molten metal decontamination methods are highly preliminary, but may be required to reduce TRU originating from tramp uranium in Zircaloy. Low melting (1300 0 C) alloy of Zircaloy, stainless steel, and Inconel have been prepared in induction heated graphite crucibles. High quality ingots of Zircaloy-2 have been prepared directly from short sections of descaled fuel clad tubing using the Inductoslag process. This material is readily capable of refabrication. Inductoslag melts have also been prepared from heavily oxidized Zircaloy tubing demonstrating melt densification without prior decontamination is technically feasible. Hydrogen absorption kinetics have been demonstrated with cast Zircaloy-2 and cast Zircaloy-stainless steel-Inconel alloys. Metallic fuel hull residues have been proposed as a storage medium for tritium released from fuel during reprocessing. (author)

  18. Processing of miscellaneous radioactive effluents by continous flocculation decantation

    International Nuclear Information System (INIS)

    Lundy, D.; Matton, P.; Petteau, J.L.; Roofthooft, R.

    1985-01-01

    In the nuclear power plant of Chooz an installation for flocculation and chemical precipitation has been built to treat miscellaneous radioactive effluents continuously. It is an industrial prototype of 5 m 3 /h resulting of several years of research, first on lab scale in a discontinous system and finally in a continuous pilot plant of small size (500 l/h). The process is based on the adsorption of radioactivity on a floc of copper-ferrocyanide precipitated by ferric chloride. The water is then filtered. After a series of preliminary tests and modifications, it has been possible to develop a technique which satisfies the specified decontamination conditions and to reduce the discharges of radioactivity to the Meuse to only 5 - 10% of the authorized limits. The process aims principally at the treatment of laundry waste, but other effluents such as drains from the rocks, pool water and used decontamination solutions (of the primary pumps) have been treated. A technico-economic evaluation of the process in comparison with evaporation is clearly in favour of the flocculation. 31 figs, 40 tables, 12 refs

  19. Handling and treatment of radioactive aqueous wastes

    International Nuclear Information System (INIS)

    1992-07-01

    This report aims to provide essential guidance to developing Member States without a nuclear power programme regarding selection, design and operation of cost effective treatment processes for radioactive aqueous liquids arising as effluents from small research institutions, hospitals and industries. The restricted quantities and low activity associated with the relevant wastes will generally permit contact-handling and avoid the need for shielding requirements. The selection of liquid waste treatment involves: Characterization of arising with the possibility of segregation; Discharge requirements for decontaminated liquors, both radioactive and non-radioactive; Available technologies and costs; Conditioning of the concentrates resulting from the treatment; Storage and disposal of the conditioned concentrates. The report will serve as a technical manual providing reference material and direct step-by-step know-how to staff in radioisotope user establishments and research centres in the developing Member States without nuclear power generation. Therefore, emphasis is limited to the simpler treatment facilities, which will be included with only the robust, well-established waste management processes carefully chosen as appropriate to developing countries. 20 refs, 12 figs, 7 tabs

  20. The chromatography plant in Wuerzburg for the decontamination of sewage containing 131I

    International Nuclear Information System (INIS)

    Lassmann, M.; Haenscheid, H.; Alt, P.; Boerner, W.

    1994-01-01

    The effluents of the radioiodine therapy ward of the Klinik und Poliklinik fuer Nuklearmedizin der Universitaet Wuerzburg are decontaminated by a new plant working by the chromatography principle. The decontamination effect is caused by adsorption of 131 I to activated coal. From January 1992 to September 1993 1280 GBq 131 I were administered to patients. During this period 1028 m 3 of sewage was gathered in the plant corresponding to an input of 0.15 m 3 per patient and day. The water leaving the chromatography plant was contaminated with less than 7 kBq/m 3 131 I. (orig.) [de

  1. Study of a flowing aqueous decontamination foam drainage mechanisms and hydrodynamic behaviour

    International Nuclear Information System (INIS)

    Boissonnet, G.

    1998-01-01

    For the decontamination of nuclear facilities, the use of foams has a great potentiality. This work deals with the study of a flowing aqueous foam regarding two aspects: the structure and the drainage on one hand, the hydrodynamic behaviour on the other hand. The foam has been studied from a photograph of a plexiglass column wall, in which the foam flows vertically. Image processing and analysis have been used to measure the foam structure parameters and demonstrate that the smaller the average diameter of the bubbles is, the more stable the foam is. The competition between the gravity and the interfacial forces has been showed by two types of fluid flow in the inter-bubble channels: one where the gravity is preponderant, the other where the two forces exist. Two drainage models based on the Darcy law and the Weaire model have been elaborated. From an hydrodynamic behaviour point of view, the sliding of a shear core in the liquid film on wall, has been demonstrated. A Ostwald De Weale type behaviour appears concerning the whole flow; a Herschel Bulkley type behaviour of the foam core appears when the shearing and the sliding are dissociated. The sliding speed is 5 to 95% of the global speed according to the experiment conditions. A method to forecast the pressure losses, based on the Moody diagram has been established. (A.L.B.)

  2. The removal of Cs-137 from soil using washing-electrokinetic decontamination equipment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Gyenam; Kim, Seungsoo; Kim, Geunho; Park, Hyemin; Kim, Wansuk; Park, Ukryang; Kwon, Hyeokju; Ryu, Ohha; Moon, Jeikwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-10-15

    The radioactive soil at the KAERI radioactive waste storage facility has slightly high hydro-conductivity, and was mainly contaminated with {sup 137}Cs 30-35 years ago. Recently, a soil washing method has been applied to remove {sup 137}Cs from radioactive soil, but it appears that the removal efficiency of {sup 137}Cs had low and a lot of waste solution was generated. Meanwhile, an electrokinetic decontamination method provides high removal efficiency of {sup 137}Cs and generates little waste effluent. Thus, it is suggested that an electrokinetic decontamination method is a suitable technology in consideration of the soil characteristics near South Korean nuclear facilities.

  3. Control of semivolatile radionuclides in gaseous effluents at nuclear facilities

    International Nuclear Information System (INIS)

    1982-01-01

    An up-to-date review is presented of the subject, combining the results of laboratory studies on control of the most important semivolatile radionuclides in gaseous effluents at nuclear facilities and the results of operating experience in that area. Ruthenium is the most significant semivolatile contaminant in gaseous effluents at nuclear facilities. Volatilization of ruthenium can be reduced by various means, in particular by adding reductants. Volatilized ruthenium can be retained by adsorbents such as silica gel and ferric-oxide-based materials. Decontamination factors in the order of 10 3 have been obtained with these adsorbents under optimum conditions. Volatilized ruthenium can also be removed by other equipment such as condensers and scrubbers. Experience with high-level liquid waste solidification plants has shown that, in general, ruthenium volatilization is in the order of 10% or more unless special treatment is undertaken. There is little experience with ruthenium adsorbers in plants. Silica gel seems to have performed best, with ruthenium decontamination factors of about 10 2 to 10 3 . However, feed-to-stack ruthenium decontamination factors of 10 9 or more have been obtained even without ruthenium adsorbers. Other semivolatiles are relatively insignificant under normal conditions because of a low level of volatilization potential or mass or activity in the inventory. Moreover, owing to particulate formation, they can be easily removed without specific equipment

  4. Radioactive contamination of protective clothes made of textile and their decontamination in aqueous solutions

    International Nuclear Information System (INIS)

    Fukumori, D.T.

    1989-01-01

    This dissertation deals with the radioactive contamination, its prevention, control and decontamination, related to protective clothing made of textile and usually weared in normal working conditions, within the installations where radioactive materials are handled or processed, especially as unsealed sources. The features of textile materials and contaminants, contamination mechanisms, risks related to contaminated clothes, planning of working areas, monitoring and surface contamination limits are described. Concerning to decontamination, the reagents, their action mechanisms and methods of efficiency evaluation are emphasized. The selected reagents were experimentally tested and their efficiencies in decontaminating cotton cloth samples, contaminated with uranyl nitrate solution, were evaluated by means of counting rate determined with a Geiger-Muller provided counting system. In this way, complexing agents, surfactants and commercial cleanning products were tested. The results were analysed and interpreted considering statistical, radiochemical and Radiation Protection aspects. Both, the radiactive contamination and decontamination of protective clothes are extensive matters and they still could be developed and improved; thus, many suggestions were presented as further studies. (author) [pt

  5. Recovery of sludge from the treatment of liquid radioactive effluents by co-precipitation with calcium carbonate: laboratory study; Recuperation des boues de traitement des effluents radioactifs liquides par coprecipitation avec le carbonate de calcium: etude de laboratoire

    Energy Technology Data Exchange (ETDEWEB)

    Patti, F.; Gailledreau, C.; Cohen, P.

    1961-02-24

    As during the treatment by co-precipitation with calcium carbonate of liquid radioactive residues, a partial decontamination can be obtained by simply agitating an already formed radioactive sludge with the effluent to be processed, the authors study whether it would be possible to first perform a co-precipitation with a lower dose of calcium carbonate and then to complete decontamination by agitating with an adequate quantity of sludge stored during preceding operations. The authors report the study of the influence of reactant quantity on the chemical treatment efficiency, of the evolution of the activity of a radioactive residual solution in contact with a precipitate, of the cleaner element, of a precipitate reuse, of the technological and economic aspects, and of another possibility of reduction of the precipitate volume [French] Dans le traitement par coprecipitation avec le carbonate de calcium des residus radioactifs liquides, une decontamination partielle peut etre obtenue en agitant simplement une boue radioactive deja formee avec l'effluent a traiter. En consequence, il pourrait etre possible d'effectuer d'abord une coprecipitation avec une dose plus faible de carbonate de calcium et de completer ensuite la decontamination en agitant le liquide avec une quantite convenable de boue stockee a partir d'operations precedentes. (auteurs)

  6. Aqueous Waste Treatment Plant at Aldermaston

    International Nuclear Information System (INIS)

    Keene, D.; Fowler, J.; Frier, S.

    2006-01-01

    For over half a century the Pangbourne Pipeline formed part of AWE's liquid waste management system. Since 1952 the 11.5 mile pipeline carried pre-treated wastewater from the Aldermaston site for safe dispersal in the River Thames. Such discharges were in strict compliance with the exacting conditions demanded by all regulatory authorities, latterly, those of the Environment Agency. In March 2005 AWE plc closed the Pangbourne Pipeline and ceased discharges of treated active aqueous waste to the River Thames via this route. The ability to effectively eliminate active liquid discharges to the environment is thanks to an extensive programme of waste minimization on the Aldermaston site, together with the construction of a new Waste Treatment Plant (WTP). Waste minimization measures have reduced the effluent arisings by over 70% in less than four years. The new WTP has been built using best available technology (evaporation followed by reverse osmosis) to remove trace levels of radioactivity from wastewater to exceptionally stringent standards. Active operation has confirmed early pilot scale trials, with the plant meeting throughput and decontamination performance targets, and final discharges being at or below limits of detection. The performance of the plant allows the treated waste to be discharged safely as normal industrial effluent from the AWE site. Although the project has had a challenging schedule, the project was completed on programme, to budget and with an exemplary safety record (over 280,000 hours in construction with no lost time events) largely due to a pro-active partnering approach between AWE plc and RWE NUKEM and its sub-contractors. (authors)

  7. Decontamination of alpha contaminated metallic waste by cerium IV redox process

    International Nuclear Information System (INIS)

    Shah, J.G.; Dhami, P.S.; Gandhi, P.M.; Wattal, P.K.

    2012-01-01

    Decontamination of alpha contaminated metallic waste is an important aspect in the management of waste generated during dismantling and decommissioning of nuclear facilities. Present work on cerium redox process targets decontamination of alpha contaminated metallic waste till it qualifies for the non alpha waste category for disposal in near surface disposal facility. Recovery of the alpha radio nuclides and cerium from aqueous secondary waste streams was also studied deploying solvent extraction process and established. The alpha-lean secondary waste stream has been immobilised in cement based matrix for final disposal. (author)

  8. Decontamination of radioactive contaminated protective wear using dry cleaning solvent

    International Nuclear Information System (INIS)

    Muthiah, Pushpa; Chitra, S.; Paul, Biplob

    2013-01-01

    Liquid waste generated by conventional decontamination of radioactive contaminated cotton protective wear using detergent affects the chemical treatment of the plant. To reduce the generation of aqueous detergent waste, dry cleaning of cotton protective wear, highly soiled with oil and grease towards decontamination was tried with organic solvents. Mineral turpentine oil (MTO) among various other organic solvents was identified as a suitable organic solvent. As MTO leaves characteristic odour on the cloth, various commercial fragrances for the removal of the odour were tried. Application of the optimised dry cleaning solvent and commercial fragrance was adopted in plant scale operation. (author)

  9. F/H effluent treatment facility. Technical data summary

    International Nuclear Information System (INIS)

    Ryan, J.P.; Stimson, R.E.

    1984-12-01

    This document provides the technical basis for the design of the facility. Some of the sections are described with options to permit simplification of the process, depending on the effluent quality criteria that the facility will have to meet. Each part of the F/HETF process is reviewed with respect to decontamination and concentration efficiency, operability, additional waste generation, energy efficiency, and compatability with the rest of the process

  10. Integrated process for the removal of emulsified oils from effluents in the steel industry

    Energy Technology Data Exchange (ETDEWEB)

    Benito, J.M.; Rios, G.; Gutierrez, B.; Pazos, C.; Coca, J.

    1999-11-01

    Emulsified oils contained in aqueous effluents from cold-rolling mills of the steel industry can be effectively removed via an integrated process consisting of a coagulation/flocculation stage followed by ultrafiltration of the resulting aqueous phase. The effects of CaCl{sub 2}, NaOH, and lime on the stability of different industrial effluents were studied in the coagulation experiments. The flocculants tested were inorganic prehydrolyzed aluminum salts and quaternary polyamines. Ultrafiltration of the aqueous phase from the coagulation/flocculation stage was carried out in a stirred cell using Amicon PM30 and XM300 organic membranes. Permeate fluxes were measured for industrial effluents to which the indicated coagulants and flocculants had been added. Oil concentrations in the permeate were 75% lower than the limits established by all European Union countries. Complete regeneration of the membrane was accomplished with an aqueous solution of a commercial detergent.

  11. Cement matrix solidification of decontamination ion-exchange resin waste

    International Nuclear Information System (INIS)

    Holt, N. S.; Hebditch, D. J.

    1991-01-01

    Crossflow membrane separation has been evaluated as an alternative to more conventional separation methods for the removal of oil from nuclear power station aqueous effluents and liquid wastes. Three commercially available membranes were investigated at small pilot scale; sintered metal power and metal fibre membranes, both of tubular geometries, and hollow fibre polypropylene. The sintered powder membrane gave by far the best oil water separation performance. Less than 10 ppm oil in the aqueous permeate was readily achieved and the oil was concentrated up to 75% by volume from feed concentrations in the range 1000 ppm to 10%. The presence of solids was found to have a profound influence on permeation rates. On the basis of the data presented, a single stage scheme for the treatment of oily effluents is proposed

  12. Metallic surfaces decontamination by using laser light

    International Nuclear Information System (INIS)

    Moggia, Fabrice; Lecardonnel, Xavier

    2013-01-01

    Metal surface cleaning appears to be one of the major priorities for industries especially for nuclear industries. The research and the development of a new technology that is able to meet the actual requirements (i.e. waste volume minimization, liquid effluents and chemicals free process...) seems to be the main commitment. Currently, a wide panel of technologies already exists (e.g. blasting, disk sander, electro-decontamination...) but for some of them, the efficiency is limited (e.g, Dry Ice blasting) and for others, the wastes production (liquid and/or solid) remains an important issue. One answer could be the use of a LASER light process. Since a couple of years, the Clean- Up Business Unit of the AREVA group investigates this decontamination technology. Many tests have been already performed in inactive (i.e. on simulants such as paints, inks, resins, metallic oxides) or active conditions (i.e. pieces covered with a thick metallic oxide layer and metallic pieces covered with grease). The paper will describe the results obtained in term of decontamination efficiency during all our validation process. Metallographic characterizations (i.e. SEM, X-ray scattering) and radiological analysis will be provided. We will also focus our paper on the future deployment of the LASER technology and its commercial use at La Hague reprocessing facility in 2013. (authors)

  13. Oxidative Tritium Decontamination System

    International Nuclear Information System (INIS)

    Gentile, Charles A.; Parker, John J.; Guttadora, Gregory L.; Ciebiera, Lloyd P.

    2002-01-01

    The Princeton Plasma Physics Laboratory, Tritium Systems Group has developed and fabricated an Oxidative Tritium Decontamination System (OTDS), which is designed to reduce tritium surface contamination on various components and items. The system is configured to introduce gaseous ozone into a reaction chamber containing tritiated items that require a reduction in tritium surface contamination. Tritium surface contamination (on components and items in the reaction chamber) is removed by chemically reacting elemental tritium to tritium oxide via oxidation, while purging the reaction chamber effluent to a gas holding tank or negative pressure HVAC system. Implementing specific concentrations of ozone along with catalytic parameters, the system is able to significantly reduce surface tritium contamination on an assortment of expendable and non-expendable items. This paper will present the results of various experimentation involving employment of this system

  14. Pickering emulsions for skin decontamination.

    Science.gov (United States)

    Salerno, Alicia; Bolzinger, Marie-Alexandrine; Rolland, Pauline; Chevalier, Yves; Josse, Denis; Briançon, Stéphanie

    2016-08-01

    This study aimed at developing innovative systems for skin decontamination. Pickering emulsions, i.e. solid-stabilized emulsions, containing silica (S-PE) or Fuller's earth (FE-PE) were formulated. Their efficiency for skin decontamination was evaluated, in vitro, 45min after an exposure to VX, one of the most highly toxic chemical warfare agents. Pickering emulsions were compared to FE (FE-W) and silica (S-W) aqueous suspensions. PE containing an oil with a similar hydrophobicity to VX should promote its extraction. All the formulations reduced significantly the amount of VX quantified on and into the skin compared to the control. Wiping the skin surface with a pad already allowed removing more than half of VX. FE-W was the less efficient (85% of VX removed). The other formulations (FE-PE, S-PE and S-W) resulted in more than 90% of the quantity of VX removed. The charge of particles was the most influential factor. The low pH of formulations containing silica favored electrostatic interactions of VX with particles explaining the better elimination from the skin surface. Formulations containing FE had basic pH, and weak interactions with VX did not improve the skin decontamination. However, these low interactions between VX and FE promote the transfer of VX into the oil droplets in the FE-PE. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Chemical Decontamination of Metallic Waste from Uranium Conversion Plant Dismantling

    International Nuclear Information System (INIS)

    Hwang, D. S.; Choi, Y. D.; Hwang, S. T.; Park, J. H.; Byun, J. I.; Jang, N. S.

    2005-01-01

    Korea Atomic Energy Research Institute (KAERI) started a decommissioning program of the uranium conversion plant. Pre-work was carried as follows; installation of the access control facility, installation of a changing room and shower room, designation of an emergency exit way and indicating signs, installation of a radiation management facility, preparation of a storage area for tools and equipments, inspection and load test of crane, distribution and packaging of existing waste, and pre-decontamination of the equipment surface and the interior. First, decommissioning work was performed in kiln room, which will be used for temporary radioactive waste storage room. Kiln room housed hydro fluorination rotary kiln for production of uranium tetra-fluoride. The kiln is about 0.8 m in diameter and 5.5 m long. The total dismantled waste was 6,690 kg, 73 % of which was metallic waste and 27 % the others such as cable, asbestos, concrete, secondary waste, etc. And effluent treatment room and filtration room were dismantled for installation of decontamination equipment and lagoon sludge treatment equipment. There were tanks and square mixer in these rooms. The total dismantled waste was 17,250 kg, 67% of which was metallic waste and 33% the others. These dismantled metallic wastes consist of stainless and carbon steel. In this paper, the stainless steel plate and pipe were decontaminated by the chemical decontamination with ultrasonic

  16. The treatment of liquid effluents of reprocessing plants by a chemical process: French experience

    International Nuclear Information System (INIS)

    Fernandez, N.; Taillard, D.

    1977-01-01

    The goal of radioactive effluent processing is to obtain a liquid with a residual activity level allowing disposal and a minimum amount of slurries. Insolubilization methods used in France are described to eliminate fission products in reprocessing plants effluents i.e. strontium, cesium, ruthenium and antimony; others radioelements are generally carried away with others precipitates. Evolution of the process is expressed in terms of reprocessing needs and improvements. Decontamination factors better than 100 are now possible with concentration factors between 30 and 50 [fr

  17. Radioactive decontamination

    International Nuclear Information System (INIS)

    1983-07-01

    This Code of Practice covers: (a) the decontamination of plant items, buildings and associated equipment; (b) decontamination of protective clothing; (c) simple personal decontamination; and (d) the basic mechanisms of contamination and their influence on decontaminability. (author)

  18. The Decontamination of Low-Level Radioactive Waste Water at Risoe Research Establishment; Decontamination des Eaux Residuaires de Faible Radioactivite au Centre de Recherche de Risoe; 0414 0415 0417 0410 ; La Descontaminacion de Aguas que Reciben Desechos Radiactivos de Baja Actividad, en el Centro de Investigaciones de Risoe

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Ib [Research Establishment Risoe, Danish Atomic Energy Commission (Denmark)

    1960-07-01

    Because of the low rate of water renewal in the recipient, Roskilde Fiord, an efficient decontamination plant incorporating an evaporator has been constructed at the Risoe research establishment. It is intended that the activity of the fiord-water at a distance of ten metres from the discharge point shall be less than one-tenth of the drinking-water tolerance. This will correspond to ca. 1 millicurie per month contained in ca. 5000 m{sup 3} of effluent. A description of the control and collection of laboratory effluents, of the decontamination plant and of the residue storage building will be given. The results of current experiments dealing with the decontamination factor and the economic aspects of the problem will also be given. (author) [French] Vu la lenteur du rythme de renouvellement des eaux dans le fjord de Roskilde, qui recoit les effluents du centre de recherche de Risoe, une installation efficace de decontamination, munie d'un evaporateur, a ete construite dans le centre. La radioactivite des eaux du fjord, a une distance de dix metres de l'orifice de vidange, devra rester inferieure au dixieme de la dose maximum admissible pour l'eau potable, ce qui correspond a une dose mensuelle approximative d'un millicurie pour environ 5.000 metres cubes d'effluents. Le memoire contient une description du controle et de la collecte des effluents du laboratoire, de l'installation de decontamination et du batiment servant a l'entreposage des residus. L'auteur expose en outre les resultats des experiences en cours sur le facteur de decontamination et sur les aspects economiques du probleme. (author) [Spanish] Debido al bajo indice de renovacion de las aguas en el fiordo de Roskildo, en el que se vierten los desechos radiactivos del Centro de Investigaciones de Risoe, se esta construyendo en el Centro una eficaz instalacion de descontaminacion de la que forma parte un evaporador. Se pretende con ello que la radiactividad de las aguas del fiordo, a una distancia de 10

  19. Decontamination liquid waste processing method

    International Nuclear Information System (INIS)

    Enda, Masami; Hosaka, Katsumi.

    1992-01-01

    Liquid wastes after electrolytic reduction are caused to flow through an anionic exchange membrane in a diffusion dialysis step, and liquid wastes and dialyzed water are passed in a countercurrent manner. Since acids in the liquid wastes transfer on the side of the dialyzed water due to the difference of concentration between the liquid wastes and the dialyzed water, acids can be easily recovered from the liquid wastes. If the acid-removed liquid wastes are put to electrodeposition in an electrodepositing step, the electrodepositing reactions between radioactive materials such as Co ion, Mn ion and leached metals such as Fe ions and Cr ions are caused preferentially to hydrogen generation reaction on a metal deposition cathode. Accordingly, metal ions can be easily separated from the liquid wastes. Since the separated liquid wastes are an aqueous solution in which cerium ions as a decontaminant and an acid at low concentration are dissolved, the concentration thereof is controlled by mixing them to acid recovering water after the diffusion dialysis and they can be reused as the decontaminant. (T.M.)

  20. A unique criterion for the classification of the activity of radioactive effluents according to the activity

    International Nuclear Information System (INIS)

    Tasovac, T.; Bojovic, P.; Svabic, A.

    1964-10-01

    The present classification of radioactive effluents into categories, i.e. low, medium, high and very high activity, has not been given a definite criterion. Therefore, some categories include specific activities from 2-6 and more potentials. Therefore, it occurs that the category of medium active effluents in one nuclear center is indicated as low active in the second or as highly active in the third. Therefore, a proposal is given in this paper for a unique criterion for the classification of radioactive effluents according to their activities. This proposal is based on the decontamination factors obtained by various methods and the maximum permissible concentrations of radioactive isotopes in water (author)

  1. Metal separations using aqueous biphasic partitioning systems

    International Nuclear Information System (INIS)

    Chaiko, D.J.; Zaslavsky, B.; Rollins, A.N.; Vojta, Y.; Gartelmann, J.; Mego, W.

    1996-01-01

    Aqueous biphasic extraction (ABE) processes offer the potential for low-cost, highly selective separations. This countercurrent extraction technique involves selective partitioning of either dissolved solutes or ultrafine particulates between two immiscible aqueous phases. The extraction systems that the authors have studied are generated by combining an aqueous salt solution with an aqueous polymer solution. They have examined a wide range of applications for ABE, including the treatment of solid and liquid nuclear wastes, decontamination of soils, and processing of mineral ores. They have also conducted fundamental studies of solution microstructure using small angle neutron scattering (SANS). In this report they review the physicochemical fundamentals of aqueous biphase formation and discuss the development and scaleup of ABE processes for environmental remediation

  2. Commercial Cleaning Products for Chemical Decontamination: A Scoping Study

    Science.gov (United States)

    2014-05-01

    and may injure human skin without dilution), although this approach is less favoured in a mass casualty decontamination situation than soap and water...commercial cleaning products, full strength K-O-K® liquid bleach (5.25% aqueous solution of NaOCl), dish-washing detergent Cascade® with Extra...Bleach Action Gel, OxiClean® Versatile Stain Remover Powder, and ZEP® Industrial Purple liquid cleaner (proprietary caustic cleaner containing

  3. Efficacy of liquid and foam decontamination technologies for chemical warfare agents on indoor surfaces.

    Science.gov (United States)

    Love, Adam H; Bailey, Christopher G; Hanna, M Leslie; Hok, Saphon; Vu, Alex K; Reutter, Dennis J; Raber, Ellen

    2011-11-30

    Bench-scale testing was used to evaluate the efficacy of four decontamination formulations on typical indoor surfaces following exposure to the liquid chemical warfare agents sarin (GB), soman (GD), sulfur mustard (HD), and VX. Residual surface contamination on coupons was periodically measured for up to 24h after applying one of four selected decontamination technologies [0.5% bleach solution with trisodium phosphate, Allen Vanguard Surface Decontamination Foam (SDF™), U.S. military Decon Green™, and Modec Inc. and EnviroFoam Technologies Sandia Decontamination Foam (DF-200)]. All decontamination technologies tested, except for the bleach solution, performed well on nonporous and nonpermeable glass and stainless-steel surfaces. However, chemical agent residual contamination typically remained on porous and permeable surfaces, especially for the more persistent agents, HD and VX. Solvent-based Decon Green™ performed better than aqueous-based bleach or foams on polymeric surfaces, possibly because the solvent is able to penetrate the polymer matrix. Bleach and foams out-performed Decon Green for penetrating the highly polar concrete surface. Results suggest that the different characteristics needed for an ideal and universal decontamination technology may be incompatible in a single formulation and a strategy for decontaminating a complex facility will require a range of technologies. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Decontamination of material in the Marcoule plutonium producing centre (1961); La decontamination du materiel dans le centre de production du plutonium de Marcoule (1961)

    Energy Technology Data Exchange (ETDEWEB)

    Rodier, J; Bouzigues, H; Boutot, P [Commissariat a l' Energie Atomique, Centre de Production de Plutonium, Marcoule (France). Centre d' Etudes Nucleaires

    1961-07-01

    The decontamination of material in an atomic centre is an essential operation in view of the cost and the difficulties of replacement. It also makes it possible to reduce the storage of radio-active materials always an expensive task. Surfaces are contaminated by retention of radioactive products and the mechanism of the bounding forces can be explained in terms of chemical, mechanical, electrostatic and surface tension phenomena. The methods used for decontamination are either physical (section, abrasion, steam, ultrasonics) or chemical (acids, alkalis, detergents, reducing and oxidising agents). At Marcoule, chemical methods of treatment are used. This is effected in tanks, the exact composition of the liquids being regulated from a control panel. Working experience has shown that the fact of operating in humid conditions eliminates all problems of atmospheric contamination; as a result it is possible for the personnel to work without any special protective devices. Almost all the material can be re-utilized and the operations produce only a small volume of liquid waste. The decontamination workshop is operated by a small number of workers. The working costs, including capital repayment and treatment of the waste, do not exceed 15 per cent of the value of the apparatus treated. (authors) [French] La decontamination du materiel dans un centre atomique est une operation indispensable etant donne le cout et les difficultes du remplacement. Elle contribue aussi a diminuer les stockages toujours onereux des materiaux radioactifs. Les surfaces se contaminent par retention de corps radioactifs, l'origine des forces de liaison devant etre recherchee dans les phenomenes chimiques, mecaniques, electro-statiques ou de tensions superficielles. Les methodes de decontamination peuvent etre physiques (aspiration, abrasion, vapeur, ultra-sons) ou chimiques (acides, alcalins, detergents, reducteurs, oxydants). Sur le centre de Marcoule, la methode des traitements chimiques a ete

  5. Modification and testing of the Sandia Laboratories Livermore tritium decontamination systems

    International Nuclear Information System (INIS)

    Gildea, P.D.; Birnbaum, H.G.; Wall, W.R.

    1978-08-01

    Sandia Laboratories, Livermore, has put into operation a new facility, the Tritium Research Laboratory. The laboratory incorporates containment and cleanup facilities such that any tritium accidentally released is captured rather than vented to the atmosphere. This containment is achieved with hermetically sealed glove boxes that are connected on demand by manifolds to two central decontamination systems called the Gas Purification System (GPS) and the Vacuum Effluent Recovery System (VERS). The primary function of the GPS is to remove tritium and tritiated water vapor from the glove box atmosphere. The primary function of the VERS is to decontaminate the gas exhausted from the glove box pressure control systems and vacuum pumps in the building before venting the gas to the stack. Both of these systems are designed to remove tritium to the few parts per billion range. Acceptance tests at the manufacturer's plant and preoperational testing at Livermore demonstrated that the systems met their design specifications. After preoperational testing the Gas Purification System was modified to enhance the safety of maintanance operations. Both the Gas Purification System and the Vacuum Effluent Recovery System were performance tested with tritium. Results show that concentraion reduction factors (ratio of inlet to exhaust concentrations) much in excess of 1000 per pass have been achieved for both systems at inlet concentrations of 1 ppM or less

  6. Modification and testing of the Sandia Laboratories Livermore tritium decontamination systems

    International Nuclear Information System (INIS)

    Gildea, P.D.; Birnbaum, H.G.; Wall, W.R.

    1979-01-01

    Sandia Laboratories, Livermore, has put into operation a new facility, the Tritium Research Laboratory. The laboratory incorporates containment and cleanup facilities such that any tritium accidentally released is captured rather than vented to the atmosphere. This containment is achieved with hermetically sealed glove boxes that are connected on demand by manifolds to two central decontamination systems called the Gas Purification System (GPS) and the Vacuum Effluent Recovery System (VERS). The primary function of the GPS is to remove tritium and tritiated water vapor from the glove box atmosphere. The primary function of the VERS is to decontaminate the gas exhausted from the glove box pressure control systems and vacuum pumps in the building before venting the gas to the stack. Both of these systems are designed to remove tritium to the few parts per billion range. Acceptance tests at the manufacturer's plant and preoperational testing at Livermore demonstrated that the systems met their design specifications. After preoperational testing the Gas Purification System was modified to enhance the safety of maintanance operations. Both the Gas Purification System and the Vacuum Effluent Recovery System were performance tested with tritium. Results show that concentration reduction factors (ratio of inlet to exhaust concentrations) much in excess of 1000 per pass have been achieved for both systems at inlet concentrations of 1 ppM or less

  7. Tritium effluent removal system

    International Nuclear Information System (INIS)

    Lamberger, P.H.; Gibbs, G.E.

    1978-01-01

    An air detritiation system has been developed and is in routine use for removing tritium and tritiated compounds from glovebox effluent streams before they are released to the atmosphere. The system is also used, in combination with temporary enclosures, to contain and decontaminate airborne releases resulting from the opening of tritium containment systems during maintenance and repair operations. This detritiation system, which services all the tritium handling areas at Mound Facility, has played an important role in reducing effluents and maintaining them at 2 percent of the level of 8 y ago. The system has a capacity of 1.7 m 3 /min and has operated around the clock for several years. A refrigerated in-line filtration system removes water, mercury, or pump oil and other organics from gaseous waste streams. The filtered waste stream is then heated and passed through two different types of oxidizing beds; the resulting tritiated water is collected on molecular sieve dryer beds. Liquids obtained from regenerating the dryers and from the refrigerated filtration system are collected and transferred to a waste solidification and packaging station. Component redundancy and by-pass capabilities ensure uninterrupted system operation during maintenance. When processing capacity is exceeded, an evacuated storage tank of 45 m 3 is automatically opened to the inlet side of the system. The gaseous effluent from the system is monitored for tritium content and recycled or released directly to the stack. The average release is less than 1 Ci/day. The tritium effluent can be reduced by isotopically swamping the tritium; this is accomplished by adding hydrogen prior to the oxidizer beds, or by adding water to the stream between the two final dryer beds

  8. Basic design of alpha aqueous waste treatment process in NUCEF

    Energy Technology Data Exchange (ETDEWEB)

    Mineo, Hideaki; Matsumura, Tatsuro; Nishizawa, Ichio; Mitsui, Takeshi; Ueki, Hiroyuki; Wada, Atsushi; Sakai, Ichita; Takeshita, Isao [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Nishimura, Kenji

    1996-11-01

    This paper described the basic design of Alpha Aqueous Waste Treatment Process in NUCEF. Since various experiments using the TRU (transuranium) elements are carried out in NUCEF, wastes containing TRU elements arise. The liquid wastes in NUCEF are categorized into three types. Decontamination and volume reduction of the liquid waste mainly of recovery water from acid recovery process which has lowest radioactive concentration is the most important task, because the arising rate of the waste is large. The major function of the Alpha Aqueous Waste Treatment Process is to decontaminate the radioactive concentration below the level which is allowed to discharge into sea. Prior the process design of this facility, the followings are evaluated:property and arising rate of the liquid waste, room space to install and licensing condition. Considering varieties of liquid wastes and their large volume, the very high decontamination factor was proposed by a process of multiple evaporation supported with filtration and adsorption in the head end part and reverse osmosis in the distillate part. (author)

  9. Study on thorium removal from effluent by electrocoagulation

    International Nuclear Information System (INIS)

    Nath, Baidurjya; Swaroopa Lakshmi, Y.V.; Tiwari, S.K.; Setty, D.S.; Kalyanakrishnan, G.; Saibaba, N.

    2015-01-01

    Coagulation-flocculation, membrane separation and ion-exchange are traditional methods for treatment of radioactive wastewater generated primarily from the front end processes of the fuel cycle. Electrocoagulation presents a robust and novel alternative to conventional coagulation process. The present study involves the establishment of electrocoagulation as a treatment process for thorium bearing non-process effluents in batch mode. This involved an electrolytic reactor with iron electrodes. The non-process effluent was subjected to coagulation and floatation by Fe(II) ions dissolved from the anode with the resultant flocs floating on the surface after being captured by hydrogen gas bubbles generated at the cathode. The effect of various operational parameters like initial pH, residence time, current density and initial thorium concentration on the removal efficiency was investigated. Maximum decontamination factor obtained was of the order of 10 4 . (author)

  10. Comparison of four decontamination treatments on porcine renal decellularized extracellular matrix structure, composition, and support of human renal cortical tubular epithelium cells.

    Science.gov (United States)

    Poornejad, Nafiseh; Nielsen, Jeffery J; Morris, Ryan J; Gassman, Jason R; Reynolds, Paul R; Roeder, Beverly L; Cook, Alonzo D

    2016-03-01

    Engineering whole organs from porcine decellularized extracellular matrix and human cells may lead to a plentiful source of implantable organs. Decontaminating the porcine decellularized extracellular matrix scaffolds is an essential step prior to introducing human cells. However, decontamination of whole porcine kidneys is a major challenge because the decontamination agent or irradiation needs to diffuse deep into the structure to eliminate all microbial contamination while minimizing damage to the structure and composition of the decellularized extracellular matrix. In this study, we compared four decontamination treatments that could be applicable to whole porcine kidneys: 70% ethanol, 0.2% peracetic acid in 1 M NaCl, 0.2% peracetic acid in 4% ethanol, and gamma (γ)-irradiation. Porcine kidneys were decellularized by perfusion of 0.5% (w/v) aqueous solution of sodium dodecyl sulfate and the four decontamination treatments were optimized using segments (n = 60) of renal tissue to ensure a consistent comparison. Although all four methods were successful in decontamination, γ-irradiation was very damaging to collagen fibers and glycosaminoglycans, leading to less proliferation of human renal cortical tubular epithelium cells within the porcine decellularized extracellular matrix. The effectiveness of the other three optimized solution treatments were then all confirmed using whole decellularized porcine kidneys (n = 3). An aqueous solution of 0.2% peracetic acid in 1 M NaCl was determined to be the best method for decontamination of porcine decellularized extracellular matrix. © The Author(s) 2015.

  11. Radioactive wastes: the challenge of volumes reduction

    International Nuclear Information System (INIS)

    Lepetit, V.

    2005-01-01

    The reduction of radioactive waste volumes is a priority for the French atomic energy commission (CEA) and for the Areva group. This article gives a rapid overview of the equipments and processes used to separate the valorizable materials from the ultimate wastes: pulsed separation columns and evaporators for the liquid-liquid extraction, compactification of spent fuel hulls, remote handling systems, recoverable colloid for surface decontamination, decontaminating foam, hydrothermal oxidation of organic and aqueous effluents, cold crucible vitrification etc. (J.S.)

  12. Application of reverse osmosis to the treatment of liquid effluents produced by nuclear power plants

    International Nuclear Information System (INIS)

    Huet, Y.; Poulat, B.; Menjeaud, C.

    1989-01-01

    Radioactive liquid effluents generated during the operation of PWR nuclear power units are currently treated by two independent systems. The effluents from the reactor coolant system are recycled, unlike the others, which, after treatment, are released into the river or ocean that provides cooling water for the unit. The objective of the treatment of nonrecycled effluents is to separate from them as much of the radioactive particles that they contain as possible, so as to release into the environment a maximum volume of nonradioactive waste, and to be left with only a minimum volume of concentrated waste, containing most of the initial radioactivity, which must be loaded into casks for storage. Membrane-based filtration techniques, because they have excellent separation performances, can logically be used for this decontamination of the liquid effluents. Having developed its own reverse osmosis membrane, a possible application in a nuclear power plant, i.e., integration of a reverse osmosis unit into a radioactive liquid effluent treatment system is presented. (author)

  13. Packaging of radioactive sludges at the Saclay effluent processing plant

    International Nuclear Information System (INIS)

    Cerre, Pierre; Mestre, Emile; Bourdrez, Jean; Leconnetable, Jean

    1964-10-01

    The authors describe technical and technological aspects of the packaging workshop for radioactive sludges produced by processes of co-precipitation of Saclay effluents. This facility is an achievement of studies which aimed at improving working conditions for the plant staff. This workshop implements a process of solidification of filtered sludge by mixing with a hydraulic binding agent. After some generalities on the decontamination process applied to effluents produced by the Saclay research centre, the authors present and describe the adopted process, propose a physical description of the facility: building, chemical engineering equipment (filtration, packaging, and handling). They describe facility operation: introduction of a block into the cell, block filling, output of a packaged container. They briefly discuss the first results of facility exploitation [fr

  14. Results of tritium tests performed on Sandia Laboratories decontamination system

    International Nuclear Information System (INIS)

    Gildea, P.D.; Wall, W.R.; Gede, V.P.

    1978-05-01

    The Tritium Research Laboratory (TRL), a facility for performing experiments using gram amounts of tritium, became operational on October 1, 1977. As secondary containment, the TRL employs sealed glove boxes connected on demand to two central decontamination systems, the Gas Purification System and the Vacuum Effluent Recovery System. Performance tests on these systems show the tritium removal systems can achieve concentration reduction factors (ratio of inlet to exhaust concentrations) much in excess of 1000 per pass at inlet concentrations of 1 part per million or less for both tritium and tritiated methane

  15. Environmental decontamination

    International Nuclear Information System (INIS)

    Cristy, G.A.; Jernigan, H.C.

    1981-02-01

    The record of the proceedings of the workshop on environmental decontamination contains twenty-seven presentations. Emphasis is placed upon soil and surface decontamination, the decommissioning of nuclear facilities, and assessments of instrumentation and equipment used in decontamination

  16. Decontamination of coal mine effluent generated at the Rajrappa coal mine using phytoremediation technology.

    Science.gov (United States)

    Lakra, Kalpana C; Lal, B; Banerjee, T K

    2017-06-03

    Toxicity of the effluent generated at the Rajrappa coal mine complex under the Central Coalfields Limited (CCL, a subsidiary of Coal India Limited) in Jharkhand, India was investigated. The concentrations (mg L -1 ) of all the toxic metals (Fe, Mn, Ni, Zn, Cu, Pb, Cr, and Cd) in the coal mine effluent were above the safe limit suggested by the Environmental Protection Agency (EPA 2003). Among these, Fe showed the highest concentration (18.21 ± 3.865), while Cr had the lowest effluent concentration (0.15 ± 0.014). Efforts were also made to detoxify the effluent using two species of aquatic macrophytes namely "'Salvinia molesta and Pistia stratiotes." After 10 days of phytoremediation, S. molesta removed Pb (96.96%) > Ni (97.01%) > Cu (96.77%) > Zn (96.38%) > Mn (96.22%) > Fe (94.12%) > Cr (92.85%) > Cd (80.99%), and P. stratiotes removed Pb (96.21%) > Fe (94.34%) > Ni (92.53%) > Mn (85.24%) > Zn (79.51%) > Cr (78.57%) > Cu (74.19%) > Cd (72.72%). The impact of coal mine exposure on chlorophyll content showed a significant decrease of 42.49% and 24.54% from control values in S. molesta and P. stratiotes, respectively, perhaps due to the damage inflicted by the toxic metals, leading to the decay of plant tissues.

  17. Environmental decontamination

    Energy Technology Data Exchange (ETDEWEB)

    Cristy, G.A.; Jernigan, H.C. (eds.)

    1981-02-01

    The record of the proceedings of the workshop on environmental decontamination contains twenty-seven presentations. Emphasis is placed upon soil and surface decontamination, the decommissioning of nuclear facilities, and assessments of instrumentation and equipment used in decontamination. (DLS)

  18. Chemical decontamination method

    International Nuclear Information System (INIS)

    Nishiwaki, Hitoshi.

    1996-01-01

    Metal wastes contaminated by radioactive materials are contained in a rotational decontamination vessel, and the metal wastes are rotated therein while being in contact with a slight amount of a decontamination liquid comprising a mineral acid. As the mineral acid, a mixed acid of nitric acid, hydrochloric acid and fluoric acid is preferably used. Alternatively, chemical decontamination can also be conducted by charging an acid resistant stirring medium in the rotational decontamination vessel. The surface of the metal wastes is uniformly covered by the slight amount of decontamination liquid to dissolve the surface layer. In addition, heat of dissolution generated in this case is accumulated in the inside of the rotational decontamination vessel, the temperature is elevated with no particular heating, thereby enabling to obtain an excellent decontamination effect substantially at the same level as in the case of heating the liquid to 70degC in a conventional immersion decontamination method. Further, although contact areas between the metal wastes and the immersion vessel are difficult to be decontaminated in the immersion decontamination method, all of areas can be dissolved uniformly in the present invention. (T.M.)

  19. Full system decontamination. AREVAs experience in decontamination prior to decommissioning

    International Nuclear Information System (INIS)

    Topf, Christian

    2010-01-01

    Minimizing collective radiation exposure and producing free-release material are two of the highest priorities in the decommissioning of a Nuclear Power Plant (NPP). Full System Decontamination (FSD) is the most effective measure to reduce source term and remove oxide layer contamination within the plant systems. FSD is typically a decontamination of the primary coolant circuit and the auxiliary systems. In recent years AREVA NP has performed several FSDs in PWRs and BWRs prior to decommissioning by applying the proprietary CORD copyright family and AMDA copyright technology. Chemical Oxidation Reduction Decontamination or CORD represents the chemical decontamination process while AMDA stands for Automated Mobile Decontamination Appliance, AREVA NPs decontamination equipment. Described herein are the excellent results achieved for the FSDs applied at the German PWRs Stade in 2004 and Obrigheim in 2007 and for the FSDs performed at the Swedish BWRs, Barsebaeck Unit 1 in 2007 and Barsebaeck Unit 2 in 2008. All four FSDs were performed using the AREVA NP CORD family decontamination technology in combination with the AREVA NP decontamination equipment, AMDA. (orig.)

  20. Skin decontamination

    International Nuclear Information System (INIS)

    Moehrle, G.

    1975-01-01

    A general survey of skin decontamination is given. The success of every decontamination treatments depends mainly on the speed, but also on the care, with which the action is taken. The best way to remove the skin contaminants is thorough washing under lukewarm running water with mild soap and a soft brush. This washing is to be repeated several times for a period of several minutes. If results are not satisfactory, light duty detergents and wetting agents available commercially may also be used. Some solutions which have proved useful are mentioned. The decontamination solutions are best used in the order given. When one has no satisfactory decontamination effect, the next one is to be used. If necessary, these agents must be used several times in the stated order as long as this does not involve too much strain for the skin. All the decontamination measures mentioned refer, of course, to intact healthy skin. After decontamination has been completed, the skin should be treated with a protective cream

  1. Washing-electrokinetic Decontamination for Concrete Contaminated with Cobalt and Cesium

    International Nuclear Information System (INIS)

    Kim, Gye Nam; Yang, Byeong Il; Choi, Wang Kyu; Lee, Kune Woo; Hyeon, Jay Hyeok

    2009-01-01

    A great volume of radioactive concrete is generated during the operation and the decommissioning of nuclear facilities. The washing-electrokinetic technology in this study, which combined an electrokinetic method and a washing method, was developed to decontaminate the concrete generated in nuclear facilities. The results of only an electrokinetic decontamination for the concrete showed that cobalt was removed to below 1% from the concrete due to its high pH. Therefore, the washing electrokinetic technology was applied to lower the pH of the concrete. Namely, when the concrete was washed with 3 M of hydrochloric acid for 4 hours (0.17 day), the CaCO 3 in the concrete was decomposed into CO 2 and the pH of the concrete was reduced to 3.7, and the cobalt and cesium in the concrete were removed by up to 85.0% and 76.3% respectively. Next, when the washed concrete was decontaminated by the electrokinetic method with 0.01M of acetic acid in the 1L electrokinetic equipment for 14.83 days, the cobalt and the cesium in the concrete were both removed by up to 99.7% and 99.6% respectively. The removal efficiencies of the cobalt and cesium by 0.01M of acetic acid were increased more than those by 0.05M of acetic acid due to the increase of the concrete zeta potential. The total effluent volume generated from the washing-electrokinetic decontamination was 11.55L (7.2ml/g).

  2. Area 6 Decontamination Pond Corrective Action Unit 92 Post-Closure Inspection Annual Report for the Period January 2000-December 2000

    International Nuclear Information System (INIS)

    Traynor, J. L.

    2001-01-01

    The Area 6 Decontamination Pond, Corrective Action Unit 92, was closed in accordance with the Resource Conservation and Recovery Act (RCRA) Part B Operational Permit (Nevada Division of Environmental Protection [NDEP, 1995]) and the Federal Facility Agreement and Consent Order (NDEP, 1996) on May 11, 1999. Historically the Decontamination Pond was used for the disposal of partially treated liquid effluent discharged from the Decontamination Facility (Building 6-05) and the Industrial Laundry (Building 6-07) (U.S. Department of Energy, Nevada Operations Office [DOE/NV], 1996). The Decontamination Pond was constructed and became operational in 1979. Releases of RCRA-regulated hazardous waste or hazardous waste constituents have not been discharged to the Decontamination Pond since 1988 (DOE/NV, 1996). The pipe connecting the Decontamination Pond and Decontamination Facility and Industrial Laundry were cut and sealed at the Decontamination Pad Oil/Water Separator in 1992. The Decontamination Pond was closed in place by installing a RCRA cover. Fencing was installed around the periphery to prevent accidental damage to the cover. Post-closure monitoring at the site consists of quarterly inspections of the RCRA cover and fencing, and a subsidence survey. Additional inspections are conducted if: Precipitation occurs in excess of 1.28 centimeters (cm) (0.50 inches [in]) in a 24-hour period, or An earthquake occurs with a magnitude exceeding 4.5 on the Richter scale within 100 kilometers (km) (62 miles [mi]) of the closure

  3. Area 6 Decontamination Pond Corrective Action Unit 92 Post-Closure Inspection Annual Report for the Period January 2000-December 2000

    Energy Technology Data Exchange (ETDEWEB)

    J. L. Traynor

    2001-03-01

    The Area 6 Decontamination Pond, Corrective Action Unit 92, was closed in accordance with the Resource Conservation and Recovery Act (RCRA) Part B Operational Permit (Nevada Division of Environmental Protection [NDEP, 1995]) and the Federal Facility Agreement and Consent Order (NDEP, 1996) on May 11, 1999. Historically the Decontamination Pond was used for the disposal of partially treated liquid effluent discharged from the Decontamination Facility (Building 6-05) and the Industrial Laundry (Building 6-07) (U.S. Department of Energy, Nevada Operations Office [DOE/NV], 1996). The Decontamination Pond was constructed and became operational in 1979. Releases of RCRA-regulated hazardous waste or hazardous waste constituents have not been discharged to the Decontamination Pond since 1988 (DOE/NV, 1996). The pipe connecting the Decontamination Pond and Decontamination Facility and Industrial Laundry were cut and sealed at the Decontamination Pad Oil/Water Separator in 1992. The Decontamination Pond was closed in place by installing a RCRA cover. Fencing was installed around the periphery to prevent accidental damage to the cover. Post-closure monitoring at the site consists of quarterly inspections of the RCRA cover and fencing, and a subsidence survey. Additional inspections are conducted if: Precipitation occurs in excess of 1.28 centimeters (cm) (0.50 inches [in]) in a 24-hour period, or An earthquake occurs with a magnitude exceeding 4.5 on the Richter scale within 100 kilometers (km) (62 miles [mi]) of the closure.

  4. Decontamination

    International Nuclear Information System (INIS)

    Montford, B.

    1975-01-01

    Development of special techniques has permitted the use of mild decontamination processes for the CANDU type reactor primary coolant circuit, overcoming many of the problems associated with conventional decontamination processes, which use strong, acidic reagents. (Author)

  5. Personnel decontamination and preventive skin care

    International Nuclear Information System (INIS)

    Henning, Klaus; Gojowczyk, Peter

    2010-01-01

    Skin contamination arises from contact with contaminated aqueous solutions and from transmission of radioactively contaminated dirt particles. As long as the surface of the skin is neither inflamed nor showing any lesions, normally only a limited part of the top layer (epidermis), i.e. the upper layers of the stratum corneum, is contaminated. The intact horny layer has a barrier function protecting against the penetration of chemicals and dirt particles. The horny layer can be damaged by water, solvents, alkaline substances, and acids. In general, it is safe to say that the horny layer acts as a natural barrier to the penetration of liquid and particulate impurities into lower layers of the skin. As long as the horny layer is intact and free from lesions, the risk of incorporation can be considered low. When decontaminating and cleansing the skin, also in daily skin cleansing, care must be taken to prevent the acid protective layer and the horny layer from being compromised. Daily cleansing and cleansing for decontamination must be carried out with a mild, weakly acidic detergent. In addition, prevention should be achieved daily by applying a non-greasy skin lotion to protect the skin. Following a systematic regular regimen in skin cleansing and preventive skin care as well as a specific approach in skin decontamination and cleansing will avoid damage to the skin and remove any contamination incurred. This approach comprises a three-pronged concept, namely skin protection, cleansing and care. (orig.)

  6. Sorption of europium by Haro river sand in aqueous solution

    International Nuclear Information System (INIS)

    Syed Moosa Hasany; Syed Javaid Khurshid

    1997-01-01

    The sorption of Eu(III) on Haro river sand has been investigated. Influences include composition of the sorptive medium, the concentration of sorbent and sorbate, and shaking time. Haro river sand can be exploited for the preconcentration and removal of europium from very dilute solutions, for the decontamination and treatment of radioactive waste water and effluents from nuclear installations. (Author)

  7. A decontamination system for chemical weapons agents using a liquid solution on a solid sorbent.

    Science.gov (United States)

    Waysbort, Daniel; McGarvey, David J; Creasy, William R; Morrissey, Kevin M; Hendrickson, David M; Durst, H Dupont

    2009-01-30

    A decontamination system for chemical warfare agents was developed and tested that combines a liquid decontamination reagent solution with solid sorbent particles. The components have fewer safety and environmental concerns than traditional chlorine bleach-based products or highly caustic solutions. The liquid solution, based on Decon Greentrade mark, has hydrogen peroxide and a carbonate buffer as active ingredients. The best solid sorbents were found to be a copolymer of ethylene glycol dimethacrylate and n-lauryl methacrylate (Polytrap 6603 Adsorber); or an allyl methacrylate cross-linked polymer (Poly-Pore E200 Adsorber). These solids are human and environmentally friendly and are commonly used in cosmetics. The decontaminant system was tested for reactivity with pinacolyl methylphosphonofluoridate (Soman, GD), bis(2-chloroethyl)sulfide (Mustard, HD), and S-(2-diisopropylaminoethyl) O-ethyl methylphosphonothioate (VX) by using NMR Spectroscopy. Molybdate ion (MoO(4)(-2)) was added to the decontaminant to catalyze the oxidation of HD. The molybdate ion provided a color change from pink to white when the oxidizing capacity of the system was exhausted. The decontaminant was effective for ratios of agent to decontaminant of up to 1:50 for VX (t(1/2) decontamination solution were measured to show that the sorbent decreased the vapor concentration of GD. The E200 sorbent had the additional advantage of absorbing aqueous decontamination solution without the addition of an organic co-solvent such as isopropanol, but the rate depended strongly on mixing for HD.

  8. Role of surfactants and/or polymers on the properties of new gels for decontaminating a radioactive surface; Role des molecules tensioactives et/ou des polymeres sur les proprietes de nouveaux gels pour decontaminer une surface radioactive

    Energy Technology Data Exchange (ETDEWEB)

    Bousquet, C. [Cogema 30 - Marcoule (France)]|[Montpellier-2 Univ., 34 (France)]|[CEA Valrho, Lab. des Procedes Avances de Decontamination (LPAD), 30 - Marcoule (France)

    2006-07-01

    In the framework of the dismantling and drainage of nuclear facilities, the LPAD (Marcoule) develops new decontamination processes such as 'suckable' gels. The principle of the 'suckable' gels process consists in pulverizing a gel on a vertical, horizontal or elbow surface. During its contact time with the wall, the gel corrodes the surface on its first microns. The gel dries, fractures and forms dried solid residues. These residues have fixed the contamination and will be easily removed of the surface by brushing and/or sucking-up. This new process uses few matter and do not require rinsing (no liquid effluent). With this process, it is then possible to reduce the volume of wastes produced during the decontamination step. (O.M.)

  9. Decontamination Efficacy and Skin Toxicity of Two Decontaminants against Bacillus anthracis.

    Directory of Open Access Journals (Sweden)

    Chad W Stratilo

    Full Text Available Decontamination of bacterial endospores such as Bacillus anthracis has traditionally required the use of harsh or caustic chemicals. The aim of this study was to evaluate the efficacy of a chlorine dioxide decontaminant in killing Bacillus anthracis spores in solution and on a human skin simulant (porcine cadaver skin, compared to that of commonly used sodium hypochlorite or soapy water decontamination procedures. In addition, the relative toxicities of these decontaminants were compared in human skin keratinocyte primary cultures. The chlorine dioxide decontaminant was similarly effective to sodium hypochlorite in reducing spore numbers of Bacillus anthracis Ames in liquid suspension after a 10 minute exposure. After five minutes, the chlorine dioxide product was significantly more efficacious. Decontamination of isolated swine skin contaminated with Bacillus anthracis Sterne with the chlorine dioxide product resulted in no viable spores sampled. The toxicity of the chlorine dioxide decontaminant was up to two orders of magnitude less than that of sodium hypochlorite in human skin keratinocyte cultures. In summary, the chlorine dioxide based decontaminant efficiently killed Bacillus anthracis spores in liquid suspension, as well as on isolated swine skin, and was less toxic than sodium hypochlorite in cultures of human skin keratinocytes.

  10. Decontamination of nuclear facilities

    International Nuclear Information System (INIS)

    1982-01-01

    Thirty-seven papers were presented at this conference in five sessions. Topics covered include regulation, control and consequences of decontamination; decontamination of components and facilities; chemical and non-chemical methods of decontamination; and TMI decontamination experience

  11. Surface decontamination

    International Nuclear Information System (INIS)

    Silva, S. da; Teixeira, M.V.

    1986-06-01

    The general methods of surface decontamination used in laboratory and others nuclear installations areas, as well as the procedures for handling radioactive materials and surfaces of work are presented. Some methods for decontamination of body external parts are mentioned. The medical supervision and assistance are required for internal or external contamination involving or not lesion in persons. From this medical radiation protection decontamination procedures are determined. (M.C.K.) [pt

  12. Reactive decontamination formulation

    Science.gov (United States)

    Giletto, Anthony [College Station, TX; White, William [College Station, TX; Cisar, Alan J [Cypress, TX; Hitchens, G Duncan [Bryan, TX; Fyffe, James [Bryan, TX

    2003-05-27

    The present invention provides a universal decontamination formulation and method for detoxifying chemical warfare agents (CWA's) and biological warfare agents (BWA's) without producing any toxic by-products, as well as, decontaminating surfaces that have come into contact with these agents. The formulation includes a sorbent material or gel, a peroxide source, a peroxide activator, and a compound containing a mixture of KHSO.sub.5, KHSO.sub.4 and K.sub.2 SO.sub.4. The formulation is self-decontaminating and once dried can easily be wiped from the surface being decontaminated. A method for decontaminating a surface exposed to chemical or biological agents is also disclosed.

  13. Separation of tritium from aqueous effluents

    International Nuclear Information System (INIS)

    Bruggeman, A.; Leysen, R.; Meynendonckx, L.; Parmentier, C.; Bellien, H.; Smets, D.; Stevens, J.

    1984-01-01

    This report describes the further development of the so-called ELEX process, carried out from 1 July 1980 until 31 December 1982. The ELEX process is the combination of electrolysis with the catalytic tritium exchange between hydrogen and water in order to accumulate the tritium in the liquid phase. The experimental study of the catalytic tritium exchange between hydrogen and liquid water was continued and the overall exchange rate could be substantially increased. An alternative process based on bithermal exchange of tritium has been evaluated. In the 10 mol h -1 mini-pilot bench scale detritiation unit the ELEX process was successfully demonstrated by detritiating up to now more than 1m 3 of water containing up to 100 mCi tritium per dm 3 , which is the feed concentration to be expected for application of the process in a reprocessing plant. A 280 mol h -1 pilot detritiation installation now being constructed is described. This installation will realize a volume reduction factor of 100 and a process decontamination factor of 100. The maximum total tritium inventory will be about 1000 Ci. The plant consists mainly of a 80 kW electrolyser and a 10 cm diameter exchange column and can be considered as the ultimate step before industrial application of the ELEX process

  14. Comparison of Spirulina platensis microalgae and commercial activated carbon as adsorbents for the removal of Reactive Red 120 dye from aqueous effluents

    International Nuclear Information System (INIS)

    Cardoso, Natali F.; Lima, Eder C.; Royer, Betina; Bach, Marta V.; Dotto, Guilherme L.; Pinto, Luiz A.A.; Calvete, Tatiana

    2012-01-01

    Highlights: ► Spirulina platensis (SP) and activated carbon (AC) were used to remove RR-120 dye. ► The maximum adsorption capacities were found at pH 2 and 298 K. ► The values were 482.2 and 267.2 mg g −1 for SP and AC, respectively. ► Adsorption was exothermic, spontaneous and favorable. ► SP and AC were effective to treat a simulated dye-house effluent. - Abstract: Spirulina platensis microalgae (SP) and commercial activated carbon (AC) were compared as adsorbents to remove Reactive Red 120 (RR-120) textile dye from aqueous effluents. The batch adsorption system was evaluated in relation to the initial pH, contact time, initial dye concentration and temperature. An alternative kinetic model (general order kinetic model) was compared with the traditional pseudo-first order and pseudo-second order kinetic models. The equilibrium data were fitted to the Langmuir, Freundlich and Liu isotherm models, and the thermodynamic parameters were also estimated. Finally, the adsorbents were employed to treat a simulated dye-house effluent. The general order kinetic model was more appropriate to explain RR-120 adsorption by SP and AC. The equilibrium data were best fitted to the Liu isotherm model. The maximum adsorption capacities of RR-120 dye were found at pH 2 and 298 K, and the values were 482.2 and 267.2 mg g −1 for the SP and AC adsorbents, respectively. The thermodynamic study showed that the adsorption was exothermic, spontaneous and favourable. The SP and AC adsorbents presented good performance for the treatment of simulated industrial textile effluents, removing 94.4–99.0% and 93.6–97.7%, respectively, of the dye mixtures containing high saline concentrations.

  15. Comparison of Spirulina platensis microalgae and commercial activated carbon as adsorbents for the removal of Reactive Red 120 dye from aqueous effluents

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso, Natali F. [Institute of Chemistry, Federal University of Rio Grande do Sul, UFRGS, AV. Bento Goncalves 9500, 91501-970, Porto Alegre, RS (Brazil); Lima, Eder C., E-mail: profederlima@gmail.com [Institute of Chemistry, Federal University of Rio Grande do Sul, UFRGS, AV. Bento Goncalves 9500, 91501-970, Porto Alegre, RS (Brazil); Royer, Betina; Bach, Marta V. [Institute of Chemistry, Federal University of Rio Grande do Sul, UFRGS, AV. Bento Goncalves 9500, 91501-970, Porto Alegre, RS (Brazil); Dotto, Guilherme L.; Pinto, Luiz A.A. [Unit Operation Laboratory, School of Chemistry and Food, Federal University of Rio Grande, FURG, R. Engenheiro Alfredo Huch 475, 96201-900, Rio Grande, RS (Brazil); Calvete, Tatiana [Universitary Center La Salle (UNILASALLE), Av. Victor Barreto 2288, 92010-000, Canoas, RS (Brazil)

    2012-11-30

    Highlights: Black-Right-Pointing-Pointer Spirulina platensis (SP) and activated carbon (AC) were used to remove RR-120 dye. Black-Right-Pointing-Pointer The maximum adsorption capacities were found at pH 2 and 298 K. Black-Right-Pointing-Pointer The values were 482.2 and 267.2 mg g{sup -1} for SP and AC, respectively. Black-Right-Pointing-Pointer Adsorption was exothermic, spontaneous and favorable. Black-Right-Pointing-Pointer SP and AC were effective to treat a simulated dye-house effluent. - Abstract: Spirulina platensis microalgae (SP) and commercial activated carbon (AC) were compared as adsorbents to remove Reactive Red 120 (RR-120) textile dye from aqueous effluents. The batch adsorption system was evaluated in relation to the initial pH, contact time, initial dye concentration and temperature. An alternative kinetic model (general order kinetic model) was compared with the traditional pseudo-first order and pseudo-second order kinetic models. The equilibrium data were fitted to the Langmuir, Freundlich and Liu isotherm models, and the thermodynamic parameters were also estimated. Finally, the adsorbents were employed to treat a simulated dye-house effluent. The general order kinetic model was more appropriate to explain RR-120 adsorption by SP and AC. The equilibrium data were best fitted to the Liu isotherm model. The maximum adsorption capacities of RR-120 dye were found at pH 2 and 298 K, and the values were 482.2 and 267.2 mg g{sup -1} for the SP and AC adsorbents, respectively. The thermodynamic study showed that the adsorption was exothermic, spontaneous and favourable. The SP and AC adsorbents presented good performance for the treatment of simulated industrial textile effluents, removing 94.4-99.0% and 93.6-97.7%, respectively, of the dye mixtures containing high saline concentrations.

  16. Development and assessment of two decontamination processes: closed electropolishing system for decontamination of underwater surfaces -vibratory decontamination with abrasives

    International Nuclear Information System (INIS)

    Benavides, E.; Fajardo, M.

    1992-01-01

    Two decontamination processes have been developed to decontaminate the stainless steel components of nuclear power plants. The first process uses an underwater closed electropolishing system for the decontamination of large stainless steel surfaces in flooded systems without loss of electrolyte. Large underwater contaminated areas can be treated with an electropolishing head covering an area of 2 m 2 in one step. The decontamination factors achieved with this technique range between 100 and 1000. The second process consists in the decontamination of nuclear components using vibratory equipment with self-cleaning abrasives generating a minimum quantity of waste. This technique may reach contamination factors similar to those obtained with other abrasive methods (brush abrasion, abrasive blasting, etc...). The obtained decontamination factors range between 5 and 50. Only a small quantity of waste is generated, which is treated and reduced in volume by filtration and evaporation

  17. Effect of the ODS-4 surfactant and its components on the efficiency of decontamination of solid surfaces

    International Nuclear Information System (INIS)

    Dvorak, J.; Duris, P.

    1994-01-01

    The efficiency was examined of the desorption of carrier-free traces of 147 Pm adsorbed from an acid aqueous solution at pH 2.6 in static conditions on a paint routinely applied to military facilities. The desorption was performed by using the ODS-4 decontamination and deactivation mixture and its components at various concentrations. It is concluded that the surfactant is not very well suited to the decontamination of solid surfaces contaminated with radionuclides which form the water-soluble component of radioactive contamination (in dependence on pH). This is due to the composition and the associated high alkalinity of the ODS-4 agent, which, however, is necessary if detoxication of toxic agents is required. In practice, however, the efficiency of decontamination will be appreciably higher because the military decontamination procedures involve dynamic (mechanical) treatment of the surfaces using brushes with flowing liquid, pressure application of the surfactant and water, moving baths, etc. (P.A.). 7 tabs., 2 figs., 10 refs

  18. Coolant system decontamination

    International Nuclear Information System (INIS)

    Anstine, L.D.; James, D.B.; Melaika, E.A.; Peterson, J.P.

    1981-01-01

    An improved method for decontaminating the coolant system of water cooled nuclear power reactors and for regenerating the decontamination solution is described. A small amount of one or more weak-acid organic complexing agents is added to the reactor coolant, and the pH is adjusted to form a decontamination solution which is circulated throughout the coolant system to dissolve metal oxides from the interior surfaces and complex the resulting metal ions and radionuclide ions. The coolant containing the complexed metal ions and radionuclide ions is passed through a strong-base anion exchange resin bed which has been presaturated with a solution containing the complexing agents in the same ratio and having the same pH as the decontamination solution. As the decontamination solution passes through the resin bed, metal-complexed anions are exchanged for the metal-ion-free anions on the bed, while metal-ion-free anions in the solution pass through the bed, thus removing the metal ions and regenerating the decontamination solution. (author)

  19. New treatment facility for low level process effluents at the Savannah River site

    International Nuclear Information System (INIS)

    Ebra, M.A.; Bibler, J.P.; Johnston, B.S.; Kilpatrick, L.L.; Poy, F.L.; Wallace, R.M.

    1987-01-01

    A new facility, the F/H Effluent Treatment Facility (F/H ETF) is under construction at the Savannah River site. It will decontaminate process effluents containing low levels of radionuclides and hazardous chemicals prior to discharge to a surface stream. These effluents, which are currently discharged to seepage basins, originate in the chemical separations and high-level radioactive waste processing areas, known as F-Area and H-Area. The new facility will allow closure of the basins in order to meet the provisions of the Resource Conservation and Recovery Act by November 1988. A high degree of reliability is expected from this design as a result of extensive process development work that has been conducted at the Savannah River Laboratory. This work has included both bench scale testing of individual unit operations and pilot scale testing of an integrated facility, 150 to 285 L/min (40 to 75 gpm), that contains the major operations

  20. Decontamination of radioruthenium from TRUEX Solvent

    International Nuclear Information System (INIS)

    Kumaresan, R.; Nayak, Prasant; Venkatesan, K.A.; Antony, M.P.; Rao, P.R. Vasudeva

    2012-01-01

    A procedure has been developed for the decontamination of radioruthenium from the lean organic phase composed of a solution 0.2 M n-octyl(phenyl)-N,N-diisobutylcarbamoylmethylyphosphineoxide (CMPO) and 1.2 M tri-n-butylphosphate (TBP) in n-dodecane (n-DD), which was used for the partitioning of minor actinides from actual high active waste solution (155 GWd/Te). For this purpose, the stripping behavior of radioruthenium from 0.2 M CMPO-1.2 M TBP in n-DD was studied at 298 K by using various aqueous reagents and adsorbents. Among the different reagents investigated, the aqueous solution of sodium hydroxide and sodium carbonate and adsorbents such as neutral alumina and anion exchange resin (OH - form) were identified as the promising candidates. Nearly 90-95% of radioruthenium was removed from the lean organic phase in seven contacts using sodium carbonate or sodium hydroxide solution. The residual radioactivity in the organic phase was removed by treatment with neutral alumina or anion exchange resin. The quality of the organic phase was ascertained by 241 Am(III) retention test. (orig.)

  1. A decontamination system for chemical weapons agents using a liquid solution on a solid sorbent

    International Nuclear Information System (INIS)

    Waysbort, Daniel; McGarvey, David J.; Creasy, William R.; Morrissey, Kevin M.; Hendrickson, David M.; Durst, H. Dupont

    2009-01-01

    A decontamination system for chemical warfare agents was developed and tested that combines a liquid decontamination reagent solution with solid sorbent particles. The components have fewer safety and environmental concerns than traditional chlorine bleach-based products or highly caustic solutions. The liquid solution, based on Decon Green TM , has hydrogen peroxide and a carbonate buffer as active ingredients. The best solid sorbents were found to be a copolymer of ethylene glycol dimethacrylate and n-lauryl methacrylate (Polytrap 6603 Adsorber); or an allyl methacrylate cross-linked polymer (Poly-Pore E200 Adsorber). These solids are human and environmentally friendly and are commonly used in cosmetics. The decontaminant system was tested for reactivity with pinacolyl methylphosphonofluoridate (Soman, GD), bis(2-chloroethyl)sulfide (Mustard, HD), and S-(2-diisopropylaminoethyl) O-ethyl methylphosphonothioate (VX) by using NMR Spectroscopy. Molybdate ion (MoO 4 -2 ) was added to the decontaminant to catalyze the oxidation of HD. The molybdate ion provided a color change from pink to white when the oxidizing capacity of the system was exhausted. The decontaminant was effective for ratios of agent to decontaminant of up to 1:50 for VX (t 1/2 ≤ 4 min), 1:10 for HD (t 1/2 1/2 < 2 min). The vapor concentrations of GD above the dry sorbent and the sorbent with decontamination solution were measured to show that the sorbent decreased the vapor concentration of GD. The E200 sorbent had the additional advantage of absorbing aqueous decontamination solution without the addition of an organic co-solvent such as isopropanol, but the rate depended strongly on mixing for HD

  2. A decontamination technique for decommissioning waste

    International Nuclear Information System (INIS)

    Heki, H.; Hosaka, K.; Kuribayashi, N.; Ishikura, T.

    1993-01-01

    A large amount of radioactive metallic waste is generated from decommissioned commercial nuclear reactors. It is necessary from the point of environmental protection and resource utilization to decontaminate the contaminated metallic waste. A decommissioning waste processing system has been previously proposed considering such decommissioning waste characteristics as its large quantity, large radioactivity range, and various shapes and materials. The decontamination process in this system was carried out by abrasive blasting as pretreatment, electrochemical decontamination as the main process, and ultrasonic cleaning in water as post-treatment. For electrochemical decontamination, electrolytic decontamination for simple shaped waste and REDOX decontamination for complicated shaped waste were used as effective decontamination processing. This time, various kinds of actual radioactive contaminated samples were taken from operating power plants to simulate the decontamination of decommissioning waste. After analyzing the composition, morphogenesis and surface observation, electrolytic decontamination, REDOX decontamination, and ultrasonic cleaning experiments were carried out by using these samples. As a result, all the samples were decontaminated below the assumed exemption level(=4 x 10 -2 Bq/g). A maximum decontamination factor of over 104 was obtained by both electrolytic and REDOX decontamination. The stainless steel sample was easy to decontaminate in both electrochemical decontaminations because of its thin oxidized layer. The ultrasonic cleaning process after electrochemical decontamination worked effectively for removing adhesive sludge and the contaminated liquid. It has been concluded from the results mentioned above that electrolytic decontamination and REDOX decontamination are effective decontamination process for decontaminating decommissioning waste

  3. Oxidative decontamination of chemical and biological warfare agents using L-Gel.

    Science.gov (United States)

    Raber, Ellen; McGuire, Raymond

    2002-08-05

    A decontamination method has been developed using a single reagent that is effective both against chemical warfare (CW) and biological warfare (BW) agents. The new reagent, "L-Gel", consists of an aqueous solution of a mild commercial oxidizer, Oxone, together with a commercial fumed silica gelling agent, Cab-O-Sil EH-5. L-Gel is non-toxic, environmentally friendly, relatively non-corrosive, maximizes contact time because of its thixotropic nature, clings to walls and ceilings, and does not harm carpets or painted surfaces. The new reagent also addresses the most demanding requirements for decontamination in the civilian sector, including availability, low maintenance, ease of application and deployment by a variety of dispersal mechanisms, minimal training and acceptable expense. Experiments to test the effectiveness of L-Gel were conducted at Lawrence Livermore National Laboratory and independently at four other locations. L-Gel was tested against all classes of chemical warfare agents and against various biological warfare agent surrogates, including spore-forming bacteria and non-virulent strains of real biological agents. Testing showed that L-Gel is as effective against chemical agents and biological materials, including spores, as the best military decontaminants.

  4. Decontaminating agents and decontamination processes for nuclear industry and for plant demolition

    International Nuclear Information System (INIS)

    Henning, Klaus; Gojowczyk, Peter

    2012-01-01

    Decontamination of surfaces of materials in nuclear facilities or in nuclear power plants under demolition can be carried out successfully if surface treatment is performed by dipping or in an ultrasonic bath by alternating between alkaline and acid baths with intermediate rinsing in demineralized water. Decontaminating aluminium surfaces sensitive to corrosion requires further treatment in an ultrasonic bath, after the first 2 ultrasonic baths, with a weak alkaline decontaminating agent. This applies alike to components to be decontaminated for re-use and parts of materials to be disposed of. The decontamination action depends on the surfaces either being free from corrosion or else showing pronounced corrosion. (orig.)

  5. IRSN's opinion on the 300-AQ-061 specification for packaging intermediate-activity effluents by vitrification

    International Nuclear Information System (INIS)

    2009-07-01

    This document comments a specification submitted by AREVA for the vitrification of rinsing effluents produced by shutting-down operations of the UP2-400 plant. After a description of the context created by the dismantling of this plant (decontamination operations, project of packaging effluents in an alumino-borosilicate matrix, contaminated compounds), this report discusses the assessment of the 300 AQ 61 specification proposed by AREVA. The quality of the process is related to the incorporation and to the homogeneous distribution of the radioactive material in a vitreous network. The report comments the specification with respect to the content assessed values for the different compounds and species, and with respect to the vitrification process parameters

  6. Solubility studies of oxovanadium(V) formate and vanadyl formate in aqueous medium

    International Nuclear Information System (INIS)

    Tripathi, V.S.; Bairwa, K.K.; Naik, D.B.; Raje, N.H.; Bera, S.

    2014-01-01

    The solubility of oxovanadium(V) formate and vanadyl formate in aqueous medium has been determined. These compounds are important for preparation of strong reducing V(II) compounds which are used in stainless steel based nuclear power plants for decontamination

  7. Lessons Learned from Decontamination Experiences

    Energy Technology Data Exchange (ETDEWEB)

    Sorensen, JH

    2000-11-16

    This interim report describes a DOE project currently underway to establish what is known about decontamination of buildings and people and the procedures and protocols used to determine when and how people or buildings are considered ''clean'' following decontamination. To fulfill this objective, the study systematically examined reported decontamination experiences to determine what procedures and protocols are currently employed for decontamination, the timeframe involved to initiate and complete the decontamination process, how the contaminants were identified, the problems encountered during the decontamination process, how response efforts of agencies were coordinated, and the perceived social psychological effects on people who were decontaminated or who participated in the decontamination process. Findings and recommendations from the study are intended to aid decision-making and to improve the basis for determining appropriate decontamination protocols for recovery planners and policy makers for responding to chemical and biological events.

  8. Decontamination of body surface

    International Nuclear Information System (INIS)

    Harase, Chieko.

    1989-01-01

    There are two important points for an effective application of decontamination procedures. One is the organizing method of responsible decontamination teams. The team should be directed by medical doctor with the knowledge of decontamination of radionuclides. The other point is the place of application of the decontamination. Hospitals and clinics, especially with a department of nuclear medicine, or specialized units such as an emergency medical center are preferable. Before decontamination procedures are initiated, adequate monitoring of the body surface should be undertaken by a competent person in order to demarcate the areas which are contaminated. There are fundamental principles which are applicable to all decontamination procedures. (1) Precautions must always be taken to prevent further spread of contamination during decontamination operations. (2) Mild decontamination methods should be tried before resorting to treatment which can damage the body surface. The specific feature of each contamination varies widely in radionuclides involved, place and area of the contamination, condition of the contaminated skin such as whether the skin is wounded or not, and others. Soap and water are usually good detergents in most cases. If they fail, orange oil cream (SUPERDECONCREAM, available from Tokyo Engineering Co.) specially prepared for decontamination of radionuclides of most fission and corrosion products may be used. Contaminated hair should be washed several times with an efficient shampoo. (author)

  9. Preliminary findings of the effect of surface finish and coatings on PuO2 contamination hold-up and ease of decontamination in aqueous and non-aqueous media

    International Nuclear Information System (INIS)

    Dalton, J.T.; Chamberlain, H.E.; Turner, A.D.; Dawson, R.K.

    1984-11-01

    The application of temporary and permanent coatings for the reduction of α-activity hold-up and increased ease of decontamination has been reviewed and a variety of surface treatments and coatings identified as being worthy of investigation. A range of specimens have been prepared with hard coatings and smooth surfaces. A number of adhesive films, paints and lacquers have been applied to mild and stainless steel substrates. In order to compare the different surfaces, a standard contamination technique using a mechanical wiper has been developed to reproducibly contaminate the materials with PuO 2 . A standard decontamination test using water/Decon 75 or Arklone X is being used to compare the ease of decontamination. Preliminary experiments have shown that the smoothest surface finishes have the lowest activity hold-up and are more easily cleaned. Due to the superior level of micro-smoothness attainable on metals, these showed a significantly lower activity retention than the organic coatings examined to date. A comparison of the relative efficiency of cleaning in Decon 75 and Arklone X showed that generally speaking metal surfaces were cleaned equally well by both media, while the unaged organic surfaces were decontaminated more thoroughly in Arklone X, though the differences were somewhat marginal. (author)

  10. A Simple Decontamination Approach Using Hydrogen ...

    Science.gov (United States)

    Journal article To evaluate the use of relatively low levels of hydrogen peroxide vapor (HPV) for the inactivation of Bacillus anthracis spores within an indoor environment. Methods and Results: Laboratory-scale decontamination tests were conducted using bacterial spores of both B. anthracis Ames and Bacillus atrophaeus inoculated onto several types of materials. Pilot-scale tests were also conducted using a larger chamber furnished as an indoor office. Commercial off-the-shelf (COTS) humidifiers filled with aqueous solutions of 3% or 8% hydrogen peroxide were used to generate the HPV inside the mock office. The spores were exposed to the HPV for periods ranging from 8 hours up to one week. Conclusions: Four to seven day exposures to low levels of HPV (average air concentrations of approximately 5-10 parts per million) were effective in inactivating B. anthracis spores on multiple materials. The HPV can be generated with COTS humidifiers and household H2O2 solutions. With the exception of one test/material, B. atrophaeus spores were equally or more resistant to HPV inactivation compared to those from B. anthracis Ames. Significance and Impact of Study: This simple and effective decontamination method is another option that could be widely applied in the event of a B. anthracis spore release.

  11. Advanced Aqueous Phase Catalyst Development using Combinatorial Methods, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Combinatorial methods are proposed to develop advanced Aqueous Oxidation Catalysts (AOCs) with the capability to mineralize organic contaminants present in effluents...

  12. Dry decontamination for tritiated wastes

    International Nuclear Information System (INIS)

    Shi Zhengkun; Wu Tao; Dan Guiping; Xie Yun

    2009-01-01

    To aim at decontamination of tritiated wastes, we have developed and fabricated a dry tritium decontamination system, which is designed to reduce tritium surface contamination of various alloy by UV, ozone and heating. The result indicates that the elevation of temperature can obviously improve decontamination effect. With 3 h irradiation by 365 nm UV at 220 degree C, it has a decontamination rate of 99% to stainless steel surface. Ozone can more obviously improve decontamination effect when metal was heated. Ozone has a decontamination effect beyond 95% to stainless steel, aluminum and brass at 220 degree C. Tritium surface concentration of metal has a little increase after decontamination. (authors)

  13. Ontario Hydro decontamination experience

    Energy Technology Data Exchange (ETDEWEB)

    Lacy, C S; Patterson, R W; Upton, M S [Chemistry and Metallurgy Department, Central Production Services, Ontario Hydro, ON (Canada)

    1991-04-01

    Ontario Hydro currently operates 18 nuclear electric generating units of the CANDU design with a net capacity of 12,402 MW(e). An additional 1,762 MW(e) is under construction. The operation of these facilities has underlined the need to have decontamination capability both to reduce radiation fields, as well as to control and reduce contamination during component maintenance. This paper presents Ontario Hydro decontamination experience in two key areas - full heat transport decontamination to reduce system radiation fields, and component decontamination to reduce loose contamination particularly as practised in maintenance and decontamination centres. (author)

  14. Ontario Hydro decontamination experience

    International Nuclear Information System (INIS)

    Lacy, C.S.; Patterson, R.W.; Upton, M.S.

    1991-01-01

    Ontario Hydro currently operates 18 nuclear electric generating units of the CANDU design with a net capacity of 12,402 MW(e). An additional 1,762 MW(e) is under construction. The operation of these facilities has underlined the need to have decontamination capability both to reduce radiation fields, as well as to control and reduce contamination during component maintenance. This paper presents Ontario Hydro decontamination experience in two key areas - full heat transport decontamination to reduce system radiation fields, and component decontamination to reduce loose contamination particularly as practised in maintenance and decontamination centres. (author)

  15. Development and use of thin film composite based positively charged nanofiltration membranes in separation of aqueous streams and nuclear effluents

    International Nuclear Information System (INIS)

    Dey, T.K.; Bindal, R.C.; Prabhakar, S.; Tewari, P.K.

    2010-01-01

    A new, positively charged, thin film composite (TFC) type nanofiltration membrane has been developed and studied for its use in various aqueous stream separations. The membrane, containing fixed quaternary ammonium moieties, was developed by insitu interfacial polymerization of a functionalized amine (polyethyleneimine) and terephthaloyl chloride on a suitable base membrane. The nature of the charge on the membrane was established by ATR FT IR spectroscopy and was estimated by determination of its ion exchange capacity. The membrane was tested for its performance in single solute feed systems containing salts of various combinations of univalent and bivalent ions (NaCl, Na 2 SO 4 , CaCl 2 and MgSO 4 ) in test cell as well as in 2512 spiral modules. The membrane gave differential separation profile for these solutes with high rejection for CaCl 2 and low rejection for Na 2 SO 4 due to positive charge on the membrane and the type of charge constituting the salts. The membrane was also used for separation of simulated effluent solution containing uranyl nitrate in combination with ammonium nitrate which is a common effluent generated in nuclear industry. Here also the membrane gave differential separation profile for uranyl nitrate and ammonium nitrate in their mixture by concentrating the former salt and passing the later. This helped separation of these two solutes in the mixture into two different streams. (author)

  16. Gross decontamination experiment report

    International Nuclear Information System (INIS)

    Mason, R.; Kinney, K.; Dettorre, J.; Gilbert, V.

    1983-07-01

    A Gross Decontamination Experiment was conducted on various levels and surfaces of the TMI - Unit 2 reactor building in March 1982. The polar crane, D-rings, missile shields, refueling canals, refueling bridges, equipment, and elevations 305' and 347'-6'' were flushed with low pressure water. Additionally, floor surfaces on elevation 305' and floor surfaces and major pieces of equipment on elevation 347'-6'' were sprayed with high pressure water. Selective surfaces were decontaminated with a mechanical scrubber and chemicals. Strippable coating was tested and evaluated on equipment and floor surfaces. The effectiveness, efficiency, and safety of several decontamination techniques were established for the large, complex decontamination effort. Various decontamination equipment was evaluated and its effectiveness was documented. Decontamination training and procedures were documented and evaluated, as were the support system and organization for the experiment

  17. Gross decontamination experiment report

    Energy Technology Data Exchange (ETDEWEB)

    Mason, R.; Kinney, K.; Dettorre, J.; Gilbert, V.

    1983-07-01

    A Gross Decontamination Experiment was conducted on various levels and surfaces of the TMI - Unit 2 reactor building in March 1982. The polar crane, D-rings, missile shields, refueling canals, refueling bridges, equipment, and elevations 305' and 347'-6'' were flushed with low pressure water. Additionally, floor surfaces on elevation 305' and floor surfaces and major pieces of equipment on elevation 347'-6'' were sprayed with high pressure water. Selective surfaces were decontaminated with a mechanical scrubber and chemicals. Strippable coating was tested and evaluated on equipment and floor surfaces. The effectiveness, efficiency, and safety of several decontamination techniques were established for the large, complex decontamination effort. Various decontamination equipment was evaluated and its effectiveness was documented. Decontamination training and procedures were documented and evaluated, as were the support system and organization for the experiment.

  18. Production of Plutonium Metal from Aqueous Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Orth, D.A.

    2003-01-16

    The primary separation of plutonium from irradiated uranium by the Purex solvent extraction process at the Savannah River Plant produces a dilute plutonium solution containing residual fission products and uranium. A cation exchange process is used for concentration and further decontamination of the plutonium, as the first step in the final preparation of metal. This paper discusses the production of plutonium metal from the aqueous solutions.

  19. Toshiba's decontamination technologies for the decommissioning

    International Nuclear Information System (INIS)

    Inoue, Yuki; Yaita, Yumi; Sakai, Hitoshi

    2011-01-01

    For the decommissioning, two types of decontamination process are necessary, 1) system decontamination before dismantling and 2) decontamination of dismantling waste. Toshiba has been developing the decontamination technologies for the both purposes from the viewpoint of minimizing the secondary waste. For the system decontamination before dismantling, chemical decontamination process, such as T-OZON, can be applicable for stainless steel or carbon steel piping. For the decontamination of dismantling waste, several types of process have been developed to apply variety of shapes and materials. For the simple shape materials, physical decontamination process, such as blast decontamination, is effective. We have developed new blast decontamination process with highly durable zirconia particle. It can be used repeatedly and secondary waste can be reduced compared with conventional blast particle. For the complex shape materials, chemical decontamination process can be applied that formic acid decontamination process for carbon steel and electrolytic reduction decontamination process with organic acid for stainless steel. These chemicals can be decomposed to carbon dioxide and water and amount of secondary waste can be small. (author)

  20. Decontamination sheet

    International Nuclear Information System (INIS)

    Hirose, Emiko; Kanesaki, Ken.

    1995-01-01

    The decontamination sheet of the present invention is formed by applying an adhesive on one surface of a polymer sheet and releasably appending a plurality of curing sheets. In addition, perforated lines are formed on the sheet, and a decontaminating agent is incorporated in the adhesive. This can reduce the number of curing operation steps when a plurality steps of operations for radiation decontamination equipments are performed, and further, the amount of wastes of the cured sheets, and operator's exposure are reduced, as well as an efficiency of the curing operation can be improved, and propagation of contamination can be prevented. (T.M.)

  1. A decontamination system for chemical weapons agents using a liquid solution on a solid sorbent

    Energy Technology Data Exchange (ETDEWEB)

    Waysbort, Daniel [Israel Institute for Biological Research, PO Box 19, Ness-Ziona 74100 (Israel); McGarvey, David J. [R and T Directorate, Edgewood Chemical and Biological Center (ECBC), Aberdeen Proving Ground-Edgewood Area, MD 21010 (United States)], E-mail: david.mcgarvey@us.army.mil; Creasy, William R.; Morrissey, Kevin M.; Hendrickson, David M. [SAIC, P.O. Box 68, Gunpowder Branch, Aberdeen Proving Ground, MD 21010 (United States); Durst, H. Dupont [R and T Directorate, Edgewood Chemical and Biological Center (ECBC), Aberdeen Proving Ground-Edgewood Area, MD 21010 (United States)

    2009-01-30

    A decontamination system for chemical warfare agents was developed and tested that combines a liquid decontamination reagent solution with solid sorbent particles. The components have fewer safety and environmental concerns than traditional chlorine bleach-based products or highly caustic solutions. The liquid solution, based on Decon Green{sup TM}, has hydrogen peroxide and a carbonate buffer as active ingredients. The best solid sorbents were found to be a copolymer of ethylene glycol dimethacrylate and n-lauryl methacrylate (Polytrap 6603 Adsorber); or an allyl methacrylate cross-linked polymer (Poly-Pore E200 Adsorber). These solids are human and environmentally friendly and are commonly used in cosmetics. The decontaminant system was tested for reactivity with pinacolyl methylphosphonofluoridate (Soman, GD), bis(2-chloroethyl)sulfide (Mustard, HD), and S-(2-diisopropylaminoethyl) O-ethyl methylphosphonothioate (VX) by using NMR Spectroscopy. Molybdate ion (MoO{sub 4}{sup -2}) was added to the decontaminant to catalyze the oxidation of HD. The molybdate ion provided a color change from pink to white when the oxidizing capacity of the system was exhausted. The decontaminant was effective for ratios of agent to decontaminant of up to 1:50 for VX (t{sub 1/2} {<=} 4 min), 1:10 for HD (t{sub 1/2} < 2 min with molybdate), and 1:10 for GD (t{sub 1/2} < 2 min). The vapor concentrations of GD above the dry sorbent and the sorbent with decontamination solution were measured to show that the sorbent decreased the vapor concentration of GD. The E200 sorbent had the additional advantage of absorbing aqueous decontamination solution without the addition of an organic co-solvent such as isopropanol, but the rate depended strongly on mixing for HD.

  2. Development of decontamination methods

    International Nuclear Information System (INIS)

    Kunze, S.; Dippel, T.; Hentschel, D.

    1976-01-01

    PVC floorings, fabricated by mixing of the basic components, showed no relation between content of fillers and decontamination results. Decontamination results are partly poorer, if the flooring contains a high concentration of the filler, especially if the latter consists mainly of hydrophilic materials. The coloring of the floorings seems to have no influence on the decontamination. Rubber floorings, fabricated by chemical reactions between polymers, vulcanization materials and fillers, show decontamination results depending definitely from the proper choice of the filler. Flooring types, containing lampblack, graphite, kaoline, barium sulfate and titanium oxide are easy to decontaminate. Increasing contents of hydrophilic filler cause a fall off in the decontamination results. The decontamination effectiveness and the homogenity of cleaning pastes based on hydrochloric acid, nitric acid, titanium oxide and polyethylene powders is strongly depended on the content of hydrochloric acid. Reduction of the content of this component to less than 2 w/O remains the effectiveness unchanged only if the titanium oxide-polyethylene powder mixture is substituted by a high density, highly surface active powder material. This type of paste containing no hydrochloric acid shows nearly the same decontamination effectiveness as standard pickling pastes containing about 30% hydrochlorid acid. Properly prepared salt powder turn out to be easily and successfully applied to metal surfaces by a flame spray technique. The thin layer of molten salts is a very effective decontamination to samples contaminated in the primary loop of a PWR. (orig.) [de

  3. Decontamination method

    International Nuclear Information System (INIS)

    Tsujimura, Hiroshi; Ono, Shigeki; Tada, Nobuo; Tamai, Yasumasa; Okada, Masaya; Kurihara, Masayuki; Onuki, Toyomitsu; Toyota, Seiichi

    1998-01-01

    Before contamination of materials to be decontaminated, a surface of a region where a strippable paint is to be coated is smoothed by an epoxy resin previously. Then, a waterproof sheet is extended to the material to be decontaminated, and the strippable paint is applied to the periphery or the entire surface of the sheet. In order to facilitate peeling, the strippable paint is not applied to a portion of the outer circumference of the sheet. Even if the contaminating circumstance is an air atmosphere or a liquid such as reactor water, since the sheet itself has waterproofness and the strippable paint excellent in gas and water tightness is applied to the periphery, contamination is eliminated. When decontaminating the material to be decontaminated having contaminated surfaces, if the sheet for the start of peeling is picked up and the sheet is peeled, the strippable paint at the periphery thereof can be peeled off together with the sheet. (N.H.)

  4. Decontamination method

    Energy Technology Data Exchange (ETDEWEB)

    Tsujimura, Hiroshi; Ono, Shigeki; Tada, Nobuo; Tamai, Yasumasa; Okada, Masaya; Kurihara, Masayuki [Hitachi Ltd., Tokyo (Japan); Onuki, Toyomitsu; Toyota, Seiichi

    1998-10-27

    Before contamination of materials to be decontaminated, a surface of a region where a strippable paint is to be coated is smoothed by an epoxy resin previously. Then, a waterproof sheet is extended to the material to be decontaminated, and the strippable paint is applied to the periphery or the entire surface of the sheet. In order to facilitate peeling, the strippable paint is not applied to a portion of the outer circumference of the sheet. Even if the contaminating circumstance is an air atmosphere or a liquid such as reactor water, since the sheet itself has waterproofness and the strippable paint excellent in gas and water tightness is applied to the periphery, contamination is eliminated. When decontaminating the material to be decontaminated having contaminated surfaces, if the sheet for the start of peeling is picked up and the sheet is peeled, the strippable paint at the periphery thereof can be peeled off together with the sheet. (N.H.)

  5. Influence of Decontamination

    International Nuclear Information System (INIS)

    Knaack, Michael

    2016-01-01

    This paper describes the influence of several decontamination techniques on the decommissioning of nuclear facilities. There are different kinds of decontamination methods like mechanical and chemical processes. The techniques specified, and their potential to change measured characteristics like the isotope vector of the contamination is demonstrated. It is common for all these processes, that the contamination is removed from the surface. Slightly adhered nuclides can be removed more effectively than strongly sticking nuclides. Usually a mixture of these nuclides forms the contamination. Problematically any kind of decontamination will influence the nuclide distribution and the isotope vector. On the one hand it is helpful to know the nuclide distribution and the isotope vector for the radiological characterization of the nuclear facility and on the other hand this information will be changed in the decontamination process. This is important especially for free release procedures, radiation protection and waste management. Some questions on the need of decontamination have been discussed. (authors)

  6. Studies on the reverse osmosis treatment of uranyl nitrate solution

    International Nuclear Information System (INIS)

    Prabhakar, S.; Panicker, S.T.; Misra, B.M.; Ramani, P.S.

    1992-01-01

    The aqueous effluent generated in uranium processing, particularly in the nuclear fuel fabrication step, contains mainly uranium nitrate. This requires treatment before discharge into the environment to meet stringent standards. This paper presents the performance of cellulose acetate membranes with regard to rejection of uranium under reverse osmotic conditions for feed concentrations up to 200 mg/l of uranium, which corresponds to the levels normally prevalent in the effluents. The use of additives like the disodium salt of ethylenediaminetetraacetic acid and sodium sulfate for the improvement of reverse osmosis performance of the above membranes was also investigated. In the light of the experimental results, the suitability of reverse osmosis for the decontamination of uranium effluents is discussed

  7. Decontamination device for pipeline

    International Nuclear Information System (INIS)

    Harashina, Heihachi.

    1994-01-01

    Pipelines to be decontaminated are parts of pipelines contaminated with radioactive materials, and they are connected to a fluid transfer means (for example, a bladeless pump) and a ball collector by way of a connector. The fluid of a mixture of chemical decontaminating liquid and spheres is sent into pipelines to be decontaminated. The spheres are, for example, heat resistant porous hard or soft rubber spheres. The fluid discharged from the pipelines to be decontaminated are circulated by way of bypassing means. The inner surface of the pipelines is decontaminated by the circulation of the fluid. When the bypass means is closed, the fluid discharged from the pipelines to be decontaminated is sent to the ball collector, and the spheres are captured by a hopper. Further, the liquid is sent to the filtrating means to filter the chemical contaminating liquid, and sludges contained in the liquid are captured. (I.N.)

  8. Theoretical approach to the destruction or sterilization of drugs in aqueous solution

    International Nuclear Information System (INIS)

    Slegers, Catherine; Tilquin, Bernard

    2005-01-01

    Two novel applications in the radiation processing of aqueous solutions of drugs are the sterilization of injectable drugs and the decontamination of hospital wastewaters by ionizing radiation. The parameters influencing the destruction of the drug in aqueous solutions are studied with a computer simulation program. This theoretical approach has revealed that the dose rate is the most important parameter that can be easily varied in order to optimize the destruction or the protection of the drug

  9. Decontamination of radioactive isotopes

    International Nuclear Information System (INIS)

    Despotovic, R.; Music, S.; Subotic, B.; Wolf, R.H.H.

    1979-01-01

    Removal of radioactive isotopes under controlled conditions is determined by a number of physical and chemical properties considered radiocontaminating and by the characteristics of the contaminated object. Determination of quantitative and qualitative factors for equilibrium in a contamination-decontamination system provides the basis for rational and successful decontamination. The decontamination of various ''solid/liquid'' systems is interesting from the scientific and technological point of view. These systems are of great importance in radiation protection (decontamination of various surfaces, liquids, drinking water, fixation or collection of radiocontaminants). Different types of decontamination systems are discussed. The dependence of rate and efficiency of the preparation conditions and on the ageing of the scavenger is described. The influence of coagulating electrolyte on radioactive isotope fixation efficiency was also determined. The fixation of fission radionuclide on oxide scavengers has been studied. The connection between fundamental investigations and practical decontamination of the ''solid/liquid'' systems is discussed. (author)

  10. Electrolytic treatment of liquid effluents: decontamination by electro coagulation of release water of a petroleum platform; Traitement electrolytique des effluents liquides: decontamination par electrocoagulation des eaux de rejet d'une plate forme petroliere

    Energy Technology Data Exchange (ETDEWEB)

    Nanseu-Njiki, Ch.P.; Ngameni, E.; Poumiba, S. [Yaounde Univ., Laboratoire de Chimie Analytique, Dept. de Chimie Inorganique, Faculte des Sciences (Cameroon); Darchen, A. [Ecole Nationale Superieure de Chimie de Rennes, Laboratoire d' Electrochimie, 35 - Rennes (France)

    2005-07-01

    The water releases of petroleum platforms present lots of pollutants; Usually, these waters are reinjected in ground water when it is possible. In the other cases they are released at the surface and need then a treatment. The electro-coagulation is a suitable method often used. The authors propose to study the optimum conditions of decontamination by this method, by a parametric evaluation (water flow, charge density, ph). Experiments used iron and aluminium electrodes. (A.L.B.)

  11. Separations canyon decontamination facilities

    International Nuclear Information System (INIS)

    Hershey, J.H.

    1975-01-01

    Highly radioactive process equipment is decontaminated at the Savannah River Plant in specially equipped areas of the separations canyon building so that direct mechanical repairs or alterations can be made. Using these facilities it is possible to decontaminate and repair equipment such as 10- x 11-ft storage tanks, 8- x 8-ft batch evaporator pots and columns, 40-in. Bird centrifuges, canyon pumps and agitators, and various canyon piping systems or ''jumpers.'' For example, centrifuge or evaporator pots can be decontaminated and rebuilt for about 60 percent of the 1974 replacement cost. The combined facilities can decontaminate and repair 6 to 10 pieces of major equipment per year. Decontamination time varies with type of equipment and radioactivity levels encountered

  12. Separations canyon decontamination facilities

    International Nuclear Information System (INIS)

    Hershey, J.H.

    1975-05-01

    Highly radioactive process equipment is decontaminated at the Savannah River Plant in specially equipped areas of the separations canyon buildings so that direct mechanical repairs or alterations can be made. Using these facilities it is possible to decontaminate and repair equipment such as 10- x 11-ft storage tanks, 8- x 8-ft batch evaporator pots and columns, 40-in. Bird centrifuges, canyon pumps and agitators, and various canyon piping systems or ''jumpers.'' For example, centrifuge or evaporator pots can be decontaminated and rebuilt for about 60 percent of the 1974 replacement cost. The combined facilities can decontaminate and repair 6 to 10 pieces of major equipment per year. Decontamination time varies with type of equipment and radioactivity levels encountered. (U.S.)

  13. Chemical decontamination method in nuclear facility system

    International Nuclear Information System (INIS)

    Takahashi, Ryota; Sakai, Hitoshi; Oka, Shigehiro.

    1996-01-01

    Pumps and valves in a closed recycling loop system incorporating materials to be chemically decontaminated are decomposed, a guide plate having the decomposed parts as an exit/inlet of a decontaminating liquid is formed, and a decontaminating liquid recycling loop comprising a recycling pump and a heater is connected to the guide plate. Decontaminating liquid from a decontaminating liquid storage tank is supplied to the decontaminating liquid recycling loop. With such constitutions, the decontaminating liquid is filled in the recycling closed loop system incorporating materials to be decontaminated, and the materials to be decontaminated are chemically decontaminated. The decontaminating liquid after the decontamination is discharged and flows, if necessary, in a recycling system channel for repeating supply and discharge. After the decontamination, the guide plate is removed and returned to the original recycling loop. When pipelines of a reactor recycling system are decontaminated, the amount of decontaminations can be decreased, and reforming construction for assembling the recycling loop again, which requires cutting for pipelines in the system is no more necessary. Accordingly, the amount of wastes can be decreased, and therefore, the decontamination operation is facilitated and radiation dose can be reduced. (T.M.)

  14. Radiation protection at the RA Reactor in 1993, Part II, Decontamination and actions, collection of liquid effluents and solid radioactive waste

    International Nuclear Information System (INIS)

    Mandic, M.; Vukovic, Z.; Lazic, S.; Plecas, I.; Voko, A.

    1993-01-01

    Certain amount of solid waste results from RA reactor operation, the mean quantity of which depends on the duration of reactor operation and related activities. During repair, when reactor is not operated as well under accidental conditions, the quantity of waste is higher, dependent on the type of repair and comprehensiveness of decontamination of the working surface, contaminated tools and components. The waste is sorted and packed on the spot where they appeared according to the existing regulations and principles of radiation protection with aim to minimize unnecessary exposure of the radiation protection personnel who deals with control, transport, radioactive waste treatment and decontamination. During exceptional operations (decontamination, repair, bigger volume of contaminated material, etc.) professional staff of the Radiation protection department gives recommendations and helps in planning the actions related to repair, sorting and packaging of radioactive waste in special containers, identification of the contaminants, etc. [sr

  15. Decontamination of radioisotope production facility

    International Nuclear Information System (INIS)

    Daryoko, M.; Yatim, S.; Suseno, H.; Wiratmo, M.

    1998-01-01

    The strippable coating method use phosphoric glycerol and irradiated latex as supporting agents have been investigated. The investigation used some decontaminating agents: EDTA, citric acid, oxalic acid and potassium permanganate were combined with phosphoric glycerol supporting agent, then EDTA Na 2 , sodium citric, sodium oxalic and potassium permanganate were combined with irradiated latex supporting agent. The study was needed to obtain the representative operating data, will be implemented to decontamination the Hot Cell for radioisotope production. The experiment used 50x50x1 mm stainless steel samples and contaminated by Cs-137 about 1.1x10 -3 μCi/cm 2 . This samples according to inner cover of Hot Cell material, and Hot Cell activities. The decontamination factor results of the investigation were: phosphoric glycerol as supporting agent, about 20 (EDTA as decontaminating agent) to 47 (oxalic acid as decontaminating agent), and irradiated latex as supporting agent, about 11.5 (without decontamination agent) to 27 (KMnO 4 as decontaminating agent). All composition of the investigation have been obtained the good results, and can be implemented for decontamination of Hot Cell for radioisotope production. The irradiated latex could be recommended as supporting agent without decontaminating agent, because it is very easy to operate and very cheap cost. (author)

  16. Decontamination of TRU glove boxes

    International Nuclear Information System (INIS)

    Crawford, J.H.

    1978-03-01

    Two glove boxes that had been used for work with transuranic nuclides (TRU) for about 12 years were decontaminated in a test program to collect data for developing a decontamination facility for large equipment highly contaminated with alpha emitters. A simple chemical technique consisting of a cycle of water flushes and alkaline permanganate and oxalic acid washes was used for both boxes. The test showed that glove boxes and similar equipment that are grossly contaminated with transuranic nuclides can be decontaminated to the current DIE nonretrievable disposal guide of <10 nCi TRU/g with a moderate amount of decontamination solution and manpower. Decontamination of the first box from an estimated 1.3 Ci to about 5 mCi (6 nCi/g) required 1.3 gallons of decontamination solution and 0.03 man-hour of work for each square foot of surface area. The second box was decontaminated from an estimated 3.4 Ci to about 2.8 mCi (4.2 nCi/g) using 0.9 gallon of decontamination solution and 0.02 man-hour for each square foot of surface area. Further reductions in contamination were achieved by repetitive decontamination cycles, but the effectiveness of the technique decreased sharply after the initial cycle

  17. Processing radioactive effluents with ion-exchanging resins: study of result extrapolation; Traitement des effluents radioactifs par resines echangeuses d'ions: etude de l'extrapolation des resultats

    Energy Technology Data Exchange (ETDEWEB)

    Wormser, G.

    1960-05-03

    As a previous study showed the ion-exchanging resins could be used in Saclay for the treatment of radioactive effluents, the author reports a study which aimed at investigating to which extent thus obtained results could be extrapolated to the case of higher industrial columns. The author reports experiments which aimed at determining extrapolation modes which could be used for columns of organic resin used for radioactive effluent decontamination. He notably studied whether the Hiester and Vermeulen extrapolation law could be applied. Experiments are performed at constant percolation flow rate, at varying flow rate, and at constant flow rate [French] Plusieurs etudes ont ete faites dans le but d'examiner les possibilites d'emploi des resines echangeuses d'ions pour le traitement des effluents radioactifs. Dans un rapport preliminaire, nous avons montre dans quelles limites un tel procede pouvait etre utilise au Centre d'Etudes Nucleaires de Saclay. Les essais ont ete effectues sur des petites colonnes de resine au laboratoire; il est apparu ensuite necessaire de prevoir dans quelle mesure les resultats ainsi obtenus peuvent etre extrapoles a des colonnes industrielles, de plus grande hauteur. Les experiences dont les resultats sont exposes dans ce rapport, ont pour but de determiner les modes d'extrapolation qui pourraient etre employes pour des colonnes de resine organique utilisees pour la decontamination d'effluents radioactifs. Nous avons en particulier recherche si la loi d'extrapolation de Hiester et Vermeulen qui donne de bons resultats dans le cas de fixation d'ions radioactifs en presence d'un ion macrocomposant sur des terres, pouvait etre appliquee. Les experiences, en nombre limite, ont montre que la loi d'extrapolation de Hiester et Vermeulen pouvait s'appliquer dans le cas de l'effluent considere quand les debits de percolation sont tres faibles; quand ils sont plus forts, les volumes de liquide percoles, a fixation egale, sont proportionnels aux

  18. Study of Thorium Phosphate Diphosphate (TPD) formation in nitric medium for the decontamination of high activity actinides bearing effluents

    International Nuclear Information System (INIS)

    Rousselle, Jerome

    2004-01-01

    Considering several activities in the nuclear industry and research, several low-level liquids wastes (LLLW) containing actinides in nitric medium must be decontaminated before being released in the environment. These liquid wastes mainly contain significant amounts of uranium(VI), neptunium(V) and plutonium(IV). In this work, two chemical ways were studied to decontaminate LLLW then to incorporate simultaneously uranium, neptunium and plutonium in the Thorium Phosphate Diphosphate (TPD). Both ways started from a nitric solution containing thorium and the actinides considered, present at their lower stable oxidation state. The first way consisted in the initial precipitation of actinide and thorium mixed oxalate. After drying the mixture containing the powder and phosphoric acid under dried argon, a poly-phase system was obtained. It was mainly composed by a thorium-actinide oxalate-phosphate. This mixture was transformed into a TPDAn solid solution (An = U, Np and/or Pu) by heating treatment at 1200 deg. C under inert atmosphere. The second way consisted in the precipitation of a precursor of TPD, identified as the Thorium Phosphate Hydrogen Phosphate loaded with the actinides considered. The gel initially formed by mixing concentrated phosphoric acid solution with the nitric actinide solution was heated at 90 - 160 deg. C in a closed PTFE container for several weeks. It led to the TPDAn solid solutions after heating at 1100 deg. C in air or under inert argon. The efficiency of both processes was evaluated through the determination of the decontamination for each actinide considered. Considering the encouraging results obtained for both kinds of processes, some complementary studies are now required before performing the effective decontamination of real Low-Level Liquid Waste using one of the methods proposed. (author) [fr

  19. Decontamination of medical radioisotopes from hard surfaces using peelable polymer-based decontamination agents

    International Nuclear Information System (INIS)

    Draine, Amanda E.; Walter, Ken J.; Johnson, Thomas E.

    2008-01-01

    Full text: Medical radioisotopes used to treat and diagnose patients often contaminate surfaces in patient treatment rooms. They are typically short-lived and decay within a matter of days or weeks. However, down time in a medical facility related to radioisotope contamination is costly and can impact patient care. Most liquid or solid spills can be contained and disposed in radioactive wastes fairly completely and quickly; however residual contamination may remain on the contacted surface. Although liquid decontamination agents can be used to address the issue of residual contamination, they often require multiple applications with attendant scrubbing and wiping. Liquid decontamination can also produce large volumes of low-level radioactive waste. To look at reducing radioactive waste volumes, research was conducted on the efficacy of three low-volume peel able decontamination agents. Testing was performed on hard surfaces, such as vinyl composition floor tiles and stainless steel, which are found in many hospitals, research laboratories, and universities. The tiles were contaminated with the medical use isotopes of 99m Tc, Tl-201, and I-131 and subsequently decontaminated with one of the three decontamination agents. Quantitative and qualitative data were obtained for each of three different peel able decontamination agent formulations. Quantitative data included environmental temperature and relative humidity, application thickness, dry time, contact time, and decontamination efficacy of the agents on the tested surfaces. Qualitative factors included ease of application and pee lability, as well as sag resistance and odor of each agent. Initial studies showed that under standard conditions there were reproducible differences in the decontamination efficacies among the three different decontamination formulations. (author)

  20. Radiological characterization of liquid effluent hold up tank for generating data base for future decommissioning

    International Nuclear Information System (INIS)

    Sapkal, Jyotsna A.; Singh, Pratap; Verma, Amit; Yadav, R.K.B.; Thakare, S.V.

    2018-01-01

    Operations at Radiological laboratory facilities are involved in fabrication of high activity radioactive sources like 60 Co, 192 1r and 137 Cs, handling of long lived radionuclides like 137 Cs/ 90 Sr, radiochemical processing and production of short-lived radioisotopes for medical diagnosis and treatment of patients. Typical liquid waste management feature at any Radiological Laboratory facility primarily consists of effluent tanks which store the liquid effluent wastes generated during radiochemical processing and fabrication of reactor produced radioisotopes. The liquid waste generated from various laboratories are collected to low level sump tanks from where it is transferred to hold up tanks. The liquid waste is transferred to centralized effluent treatment plant, analysis and characterization of the same is carried out. This paper explains the characterization study of samples drawn from the liquid effluent tank which would be helpful for planning for decontamination as well as for decommissioning and in management of radioactive wastes. In this study the crud deposited at the bottom of tank was collected for gamma spectrometry analysis. Radiation field was measured, at the bottom of the tank for correlating the activity present and the radiation field

  1. Bioinspired Surface Treatments for Improved Decontamination: Handling andDecontamination Considerations

    Science.gov (United States)

    2018-03-16

    and Decontamination Considerations Brandy J. White Martin H. Moore Brian J. Melde Laboratory for the Study of Molecular Interfacial Interactions...Decontamination Considerations Brandy J. White, Martin H. Moore, Brian J. Melde, Anthony P. Malanoksi, and Chanté Campbell1 Center for Bio/Molecular

  2. Decontamination flowsheet development for a waste oil containing mixed radioactive contaminants

    International Nuclear Information System (INIS)

    Vijayan, S.; Buckley, L.P.

    1993-01-01

    The majority of waste oils contaminated with both radioactive and hazardous components are generated in nuclear power plant, research lab. and uranium-refinery operations. The waste oils are complex, requiring a detailed examination of the waste management strategies and technology options. It may appear that incineration offers a total solution, but this may not be true in all cases. An alternative approach is to decontaminate the waste oils to very low contaminant levels, so that the treated oils can be reused, burned as fuel in boilers, or disposed of by commercial incineration. This paper presents selected experimental data and evaluation results gathered during the development of a decontamination flowsheet for a specific waste oil stores at Chalk River Labs. (CRL). The waste oil contains varying amounts of lube oils, grease, paint, water, particulates, sludge, light chloro- and fluoro-solvents, polychlorinated biphenyls (PCB), complexing chemicals, uranium, chromium, iron, arsenic and manganese. To achieve safe management of this radioactive and hazardous waste, several treatment and disposal methods were screened. Key experiments were performed at the laboratory-scale to confirm and select the most appropriate waste-management scheme based on technical, environmental and economic criteria. The waste-oil-decontamination flowsheet uses a combination of unit operations, including prefiltration, acid scrubbing, and aqueous-leachage treatment by precipitation, microfiltration, filter pressing and carbon adsorption. The decontaminated oil containing open-quotes de minimisclose quotes levels of contaminants will undergo chemical destruction of PCBs and final disposal by incineration. The recovered uranium will be recycled to a uranium milling process

  3. Overview of nonchemical decontamination techniques

    International Nuclear Information System (INIS)

    Allen, R.P.

    1984-09-01

    The decontamination techniques summarized in this paper represent a variety of surface cleaning methods developed or adapted for component and facility-type decontamination applications ranging from small hand tools to reactor cavities and other large surface areas. The major conclusion is that decontamination is a complex, demanding technical discipline. It requires knowledgeable, experienced and well-trained personnel to select proper techniques and combinations of techniques for the varied plant applications and to realize their full performance potential. Unfortunately, decontamination in many plants has the lowest priority of almost any activity. Operators are unskilled and turnover is so frequent that expensive decontamination capabilities remain unused while decontamination operations revert to the most rudimentary type of hand scrubbing and water spray cleaning

  4. Tests for improvement of decontamination factors on RWTP technological line of precipitation

    International Nuclear Information System (INIS)

    Popovici, C.

    1998-01-01

    Low and intermediate level radioactive wastes are produced from diverse applications of radionuclides and radioactive materials in industry, medicine, agriculture and research. Many of the liquid wastes need treatment for safe management. Chemical precipitation process is well established for the removal of radioactive from LLW and ILW. The precipitation of insoluble compounds is one of the oldest and most used process for the treatment of aqueous waste. The precipitation can be performed either in a simple step or by combined chemical treatment which mainly includes as radioactive carries iron oxo-hydroxides, iron phosphate, calcium phosphate and cooper ferrocyanide. The contaminants are removed from LLW and ILW during precipitation by different mechanisms such as: coagulation and flocculation process, precipitation and co-precipitation, adsorption on the coagulant aid, ion exchange and physical enmeshment by coagulant aid. All these processes are directly dependent on the precipitate properties and its structure which are connected with the initial system composition and the precipitation procedure. Chemical precipitation method for treatment of LLW and ILW by co-precipitation of caesium with cooper ferrocyanide was employed on the real radioactive wastes where the volumes were 3 m 3 , 24 m 3 and 30 m 3 . The percentage removals of Cs-137 from 2285 Bq, 1310 Bq and 1232 Bq per litre of real effluents were 98.8%, 98.9% and 99.1%, respectively. Test runs for removal of Cs-137 from the wastes varied from 90% to 95%. High decontamination factors were observed in the pH range of 9 to 10.5. (author)

  5. Method for decontaminating radiation metal waste

    International Nuclear Information System (INIS)

    Onuma, Tsutomu; Tanaka, Akio; Akimoto, Hidetoshi

    1991-01-01

    This report describes a method for decontaminating radiation metal waste characterized by the following properties: in order to decontaminate radiation metal waste of various shapes produced by facilities involved with radioactive substances, non-complex shapes are decontaminated by electropolishing the materials in a neutral saline solution. Complex shapes are chemically decontaminated by means of an acid solution containing permanganic acid or an alkaline solution and a mineral acid solution. After neutralizing the solutions used for chemical decontamination, the radioactive material is separated and removed. Further, in the decontamination method for radioactive metal waste, a supernatant liquid is reused as the electrolyte in electropolishing decontamination. Permanganic ions (MnO 4 - ) are reduced to manganese dioxide (MnO 2 ) and deposited prior to neutralizing the solution used for chemical decontamination. Once manganese dioxide (MnO 2 ) has been separated and removed, it is re-used as the electrolyte in electropolishing decontamination by means of a process identical to the separation process for radioactive substances. 3 figs

  6. Decontamination of some liquid wastes of medium activity with a new solvent type

    International Nuclear Information System (INIS)

    Gasparini, G.

    1986-01-01

    The decontamination of a reference MAWsub(s) (an alkaline solution coming from the solvent washing and an acidic solution consisting of the mixture of aqueous raffinates deriving from uranium and plutonium purification cycles) by hydroxamic acid is reported. The results of the ''in batch'' decontamination tests, using extraction chromatography techniques, are given. The extraction chromatography techniques do not give the expected performances for the tests in column. Discontinuous liquid extraction tests using traced solutions show that Pu, Am, Zr, Nb are extracted but not U and Ru. The strip of Pu, Am and Zr with an oxalic acid solution is quantitative. Continuous tests using mixer settler batteries, and a simulated alkaline solution and complete extraction-reextraction runs using a simulated solution are conducted. The results of a discontinuous conclusive experiments using a true alkaline solution coming from a reprocessing plant are given

  7. Verification of wet blasting decontamination technology

    International Nuclear Information System (INIS)

    Matsubara, Sachito; Murayama, Kazunari; Yoshida, Hirohisa; Igei, Shigemitsu; Izumida, Tatsuo

    2013-01-01

    Macoho Co., Ltd. participated in the projects of 'Decontamination Verification Test FY 2011 by the Ministry of the Environment' and 'Decontamination Verification Test FY 2011 by the Cabinet Office.' And we tested verification to use a wet blasting technology for decontamination of rubble and roads contaminated by the accident of Fukushima Daiichi Nuclear Power Plant of the Tokyo Electric Power Company. As a results of the verification test, the wet blasting decontamination technology showed that a decontamination rate became 60-80% for concrete paving, interlocking, dense-grated asphalt pavement when applied to the decontamination of the road. When it was applied to rubble decontamination, a decontamination rate was 50-60% for gravel and approximately 90% for concrete and wood. It was thought that Cs-134 and Cs-137 attached to the fine sludge scraped off from a decontamination object and the sludge was found to be separated from abrasives by wet cyclene classification: the activity concentration of the abrasives is 1/30 or less than the sludge. The result shows that the abrasives can be reused without problems when the wet blasting decontamination technology is used. (author)

  8. New decontamination technologies for environmental applications

    International Nuclear Information System (INIS)

    Allen, R.P.; Arrowsmith, H.W.; McCoy, M.W.

    1981-01-01

    The technologies discussed represent a versatile collection of tools and approaches for environmental decontamination applications. The fixatives provide a means for gaining and maintaining control of large contaminated areas, for decontaminating large surface areas, and for protecting equipment and supplies used in decontamination operations. The other decontamination techniques together provide a method for removing loose surface contamination from almost all classes of materials and surfaces. These techniques should have wide application both as direct decontamination processes and for the cleaning of tools and equipment used in the decontamination operations

  9. Bioremediation of trace cobalt from simulated spent decontamination solutions of nuclear power reactors using E. coli expressing NiCoT genes

    International Nuclear Information System (INIS)

    Raghu, G.; Maruthi Mohan, P.; Balaji, V.; Venkateswaran, G.; Rodrigue, A.; Lyon 1 Univ., 69

    2008-01-01

    Removal of radioactive cobalt at trace levels (∼nM) in the presence of large excess (10 6 -fold) of corrosion product ions of complexed Fe, Cr, and Ni in spent chemical decontamination formulations (simulated effluent) of nuclear reactors is currently done by using synthetic organic ion exchangers. A large volume of solid waste is generated due to the nonspecific nature of ion sorption. Our earlier work using various fungi and bacteria, with the aim of nuclear waste volume reduction, realized up to 30% of Co removal with specific capacities calculated up to 1 μg/g in 6-24 h. In the present study using engineered Escherichia coli expressing NiCoT genes from Rhodopseudomonas palustris CGA009 (RP) and Novosphingobium aromaticivorans F-199 (NA), we report a significant increase in the specific capacity for Co removal (12 μg/g) in 1-h exposure to simulated effluent. About 85% of Co removal was achieved in a two-cycle treatment with the cloned bacteria. Expression of NiCoT genes in the E. coli knockout mutant of NiCoT efflux gene (rcnA) was more efficient as compared to expression in wild-type E. coli MC4100, JM109 and BL21 (DE3) hosts. The viability of the E. coli strains in the formulation as well as at different doses of gamma rays exposure and the effect of gamma dose on their cobalt removal capacity are determined. The potential application scheme of the above process of bioremediation of cobalt from nuclear power reactor chemical decontamination effluents is discussed. (orig.)

  10. Non-destructive decontamination of building materials

    Science.gov (United States)

    Holecek, Josef; Otahal, Petr

    2015-11-01

    For nondestructive radiation decontamination of surfaces it is necessary to use varnishes, such as ARGONNE, DG1101, DG1108, etc. This text evaluates the use of manufactured strippable coatings for radiation decontamination. To evaluate decontamination capability of such coatings the following varnishes were selected and subsequently used: AZ 1-700 and AXAL 1807S. The varnishes were tested on different building materials surfaces contaminated by short-term radioisotopes of Na-24 or La-140, in water soluble or water insoluble forms. Decontamination quality was assessed by the decontamination efficiency value, defined as the proportion of removed activity to the applied activity. It was found that decontamination efficiency of both used varnishes depends not only on the form of contaminant, but in the case of application of AXAL 1807S varnish it also depends on the method of its application on the contaminated surface. The values of the decontamination efficiency for AZ1-700 varnish range from 46% for decontamination of a soluble form of the radioisotope from concrete surface to 98% for the decontamination of a soluble form of the radioisotope from ceramic tile surface. The decontamination efficiency values determined for AXAL 1807S varnish range from 48% for decontamination of a soluble form of the radioisotope from concrete surface to 96% for decontamination of an insoluble form of the radioisotope from ceramic tile surface. Comparing these values to the values given for the decontaminating varnishes we can conclude that AXAL 1807S varnish is possible to use on all materials, except highly porous materials, such as plasterboard or breeze blocks, or plastic materials. AZ 1-700 varnish can be used for all dry materials except plasterboard.

  11. Assessment of the impact of textile effluents on microbial diversity in Tirupur district, Tamil Nadu

    Science.gov (United States)

    Prabha, Shashi; Gogoi, Anindita; Mazumder, Payal; Ramanathan, AL.; Kumar, Manish

    2017-09-01

    The expedited advent of urbanization and industrialization for economic growth has adversely affected the biological diversity, which is one of the major concerns of the developing countries. Microbes play a crucial role in decontaminating polluted sites and degrades pollution load of textile effluent. The present study was based on identification of microbial diversity along the Noyaal river of Tirupur area. River water samples from industrial and non-industrial sites and effluent samples of before and after treatment were tested and it was found that microbial diversity was higher in the river water at the industrial site (Kasipalayam) as compared to the non-industrial site (Perur). Similarly, the microbial populations were found to be high in the untreated effluent as compared to the treated one by conventional treatment systems. Similar trends were observed for MBR treatment systems as well. Pseudomonas sp ., Achromobacter sp. (bacterial species) and Aspergillus fumigates (fungal species), found exclusively at the industrial site have been reported to possess decolorization potential of dye effluent, thus can be used for treatment of dye effluent. The comparison of different microbial communities from different dye wastewater sources and textile effluents was done, which showed that the microbes degrade dyestuffs, reduce toxicity of wastewaters, etc. From the study, it can be concluded that the microbial community helps to check on the pollutants and minimize their affect. Therefore, there is a need to understand the systematic variation in microbial diversity with the accumulation of pollution load through monitoring.

  12. Large-bore pipe decontamination

    International Nuclear Information System (INIS)

    Ebadian, M.A.

    1998-01-01

    The decontamination and decommissioning (D and D) of 1200 buildings within the US Department of Energy-Office of Environmental Management (DOE-EM) Complex will require the disposition of miles of pipe. The disposition of large-bore pipe, in particular, presents difficulties in the area of decontamination and characterization. The pipe is potentially contaminated internally as well as externally. This situation requires a system capable of decontaminating and characterizing both the inside and outside of the pipe. Current decontamination and characterization systems are not designed for application to this geometry, making the direct disposal of piping systems necessary in many cases. The pipe often creates voids in the disposal cell, which requires the pipe to be cut in half or filled with a grout material. These methods are labor intensive and costly to perform on large volumes of pipe. Direct disposal does not take advantage of recycling, which could provide monetary dividends. To facilitate the decontamination and characterization of large-bore piping and thereby reduce the volume of piping required for disposal, a detailed analysis will be conducted to document the pipe remediation problem set; determine potential technologies to solve this remediation problem set; design and laboratory test potential decontamination and characterization technologies; fabricate a prototype system; provide a cost-benefit analysis of the proposed system; and transfer the technology to industry. This report summarizes the activities performed during fiscal year 1997 and describes the planned activities for fiscal year 1998. Accomplishments for FY97 include the development of the applicable and relevant and appropriate regulations, the screening of decontamination and characterization technologies, and the selection and initial design of the decontamination system

  13. Removal of Hexavalent Chromium from Aqueous Solutions using ...

    African Journals Online (AJOL)

    The hexavalent chromium exists in aquatic media as water soluble complex anions and persist. These are concentrated in industrial waste water especially from the tannery industries and release of effluents from industries adversely affects the environment. The removal of heavy metals from aqueous solutions is carried ...

  14. Application of biomass in oil and fat reduction content in aqueous effluent; Aplicacao de biomassa na reducao do teor de oleos e graxas presentes em efluentes aquosos

    Energy Technology Data Exchange (ETDEWEB)

    Boni, Hevelin Tabata; Souza, Antonio Augusto Ulson de; Souza, Selene Maria de Arruda Guelli Ulson de [Universidade Federal de Santa Catarina (UFSC), SC (Brazil)

    2012-07-01

    In this work, we have studied the bagasse from sugarcane as an alternative bioadsorbent in the treatment to oils and greases contaminated waters. The synthetic effluent was simulated by a distilled water and decahydronaphthalene dispersion, with initial concentration of 8900 mg . L {sup -1}. Gas chromatography was the analytical operation chosen to quantify the oil residual after the adsorption. The biomass was characterized by moisture analysis, CHNS and SEM. The experiments were carried out in batch process with agitation of 120 rpm, evaluating the equilibrium time of adsorptive process and the influence of pH of aqueous level. Results showed that the adsorption process achieved equilibrium quickly, in just 5 minutes of contact between the dispersion and biomass. No significant influence was noticed in the removal of hydrocarbon with the change in pH. The adsorption isotherm was developed changing by the mass of bioadsorbent, at 25 deg C, pH 6 and 120 rpm of agitation. The experimental results were fitted by Langmuir and Langmuir- Freundlich models. The best fit was obtained with Langmuir-Freundlich, providing a maximum adsorption capacity of 6,65 g hydrocarbon / g biomass. The experiments showed the great potential of the sugarcane bagasse to be used as bioadsorbent in reducing the oil and grease levels in industrial effluents. This alternative presents itself as a sustainable route due to the abundance of sugar cane bagasse in the sugar and alcohol industry, avoided the impact of aqueous sources contamination coming from oil and petrochemical industry. (author)

  15. Decontamination processes for waste glass canisters

    International Nuclear Information System (INIS)

    Rankin, W.N.

    1981-06-01

    The process which will be used to decontaminate waste glass canisters at the Savannah River Plant consists of: decontamination (slurry blasting); rinse (high-pressure water); and spot decontamination (high-pressure water plus slurry). No additional waste will be produced by this process because glass frit used in decontamination will be mixed with the radioactive waste and fed into the glass melter. Decontamination of waste glass canisters with chemical and abrasive blasting techniques was investigated. The ability of a chemical technique with HNO 3 -HF and H 2 C 2 O 4 to remove baked-on contamination was demonstrated. A correlation between oxide removal and decontamination was observed. Oxide removal and, thus, decontamination by abrasive blasting techniques with glass frit as the abrasive was proposed and demonstrated

  16. Decontamination processes for waste glass canisters

    International Nuclear Information System (INIS)

    Rankin, W.N.

    1981-01-01

    The process which will be used to decontaminate waste glass canisters at the Savannah River Plant consists of: decontamination (slurry blasting); rinse (high-pressure water); and spot decontamination (high-pressure water plus slurry). No additional waste will be produced by this process because glass frit used in decontamination will be mixed with the radioactive waste and fed into the glass melter. Decontamination of waste glass canisters with chemical and abrasive blasting techniques was investigated. The ability of a chemical technique with HNO 3 -HF and H 2 C 2 O 4 to remove baked-on contamination was demonstrated. A correlation between oxide removal and decontamination was observed. Oxide removal and, thus, decontamination by abrasive blasting techniques with glass frit as the abrasive was proposed and demonstrated

  17. Evaluation of the phytotoxicity of polycontaminated industrial effluents using the lettuce plant (Lactuca sativa) as a bioindicator.

    Science.gov (United States)

    Charles, Jérémie; Sancey, Bertrand; Morin-Crini, Nadia; Badot, Pierre-Marie; Degiorgi, François; Trunfio, Giuseppe; Crini, Grégorio

    2011-10-01

    Industrial wastewater containing heavy metals is generally decontaminated by physicochemical treatment consisting in insolublizing the contaminants and separating the two phases, water and sludge, by a physical process (filtration, settling or flotation). However, chemical precipitation does not usually remove the whole pollution load and the effluent discharged into the environment can be toxic even if it comes up to regulatory standards. To assess the impact of industrial effluent from 4 different surface treatment companies, we performed standardized bioassays using seeds of the lettuce Lactuca sativa. We measured the rate of germination, and the length and mass of the lettuce plantlet. The results were used to compare the overall toxicity of the different effluents: effluents containing copper and nickel had a much higher impact than those containing zinc or aluminum. In addition, germination tests conducted using synthetic solutions confirmed that mixtures of metals have higher toxicity than the sum of their separate constituents. These biological tests are cheap, easy to implement, reproducible and highlight the effects caused by effluent treated with the methods commonly applied in industry today. They could be routinely used to check the impact of industrial discharges, even when they meet regulatory requirements for the individual metals. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Decontamination of main coolant pumps

    International Nuclear Information System (INIS)

    Roofthooft, R.

    1988-01-01

    Last year a number of main coolant pumps in Belgian nuclear power plants were decontaminated. A new method has been developed to reduce the time taken for decontamination and the volume of waste to be treated. The method comprises two phases: Oxidation with permanganate in nitric acid and dissolution in oxalic acid. The decontamination of main coolant pumps can now be achieved in less than one day. The decontamination factors attained range between 15 and 150. (orig.) [de

  19. Gentilly 1: decontamination program

    International Nuclear Information System (INIS)

    Le, H.; Denault, P.

    1985-01-01

    The Gentilly 1 station, a 250-MW(e) light-water-cooled and heavy-water-moderated nuclear reactor, is being decommissioned to a static state (variant of stage 1) condition by Atomic Energy of Canada Limited (AECL). The scope of the decontamination program at the Gentilly 1 site includes the fuel pool and associated systems, the decontamination center, the laundry, the feedwater pumps and piping systems, the service building ventilation and drainage systems, and miscellaneous floor and wall areas. After an extensive literature review for acceptable decontamination methods, it was decided that the decontamination equipment used at Gentilly 1 during the program would include a hydrolaser, a scarifier, chipping hammers, a steam cleaner, an ultrasonic bath, and cutting tools. In addition, various foams, acids, detergents, surfactants, and abrasives are used alone and in tandem with the above equipment. This paper highlights the result of these decontaminations, their effectiveness, and the recommendation for future application. The methodology in performing these operations are also presented

  20. Decontaminating products for routine decontamination in nuclear power plants

    International Nuclear Information System (INIS)

    Henning, K.

    2001-01-01

    Routine decontamination work that has to be carried out in practical operation includes the cleaning of all kinds of surfaces such as floors, walls and apparatus, the decontamination of professional clothes and of the personnel. In order to ensure a trouble-free functioning of plants for the treatment of waste water and concentrate in nuclear power plants, radioactive liquid wastes appearing in the controlled area should be compatible with the treatment methods in practice. Radioactive concentrates and resides obtained from the treatment methods are mixed with matrix materials like cement or bitumen or treated by roller frame drying and thus are conditioned for intermediate or final storage. Several requirements should be made on decontaminating agents used in the controlled area. Some of these physical-chemical criteria will be described in detail. (R.P.)

  1. Recommendations for skin decontamination

    International Nuclear Information System (INIS)

    1989-01-01

    Further to the reecommendations for determining the surface contamination of the skin and estimating the radiation exposure of the skin after contamination (SAAS-Mitt--89-16), measures for skin decontamination are recommended. They are necessary if (1) after simple decontamination by means of water, soap and brush without damaging the skin the surface contamination limits are exceeded and the radiation exposure to be expected for the undamaged healthy skin is estimated as to high, and if (2) a wound is contaminated. To remove skin contaminations, in general universally applicable, non-aggressive decontamination means and methods are sufficient. In special cases, nuclide-specific decontamination is required taking into account the properties of the radioactive substance

  2. Decontamination Data - Blister Agents

    Data.gov (United States)

    U.S. Environmental Protection Agency — Decontamination efficacy data for blister agents on various building materials using various decontamination solutions. This dataset is associated with the following...

  3. Feasibility study of micro-filtration for algae separation in an innovative nuclear effluents decontamination process

    International Nuclear Information System (INIS)

    Gouvion Saint Cyr, D. de; Wisniewski, C.; Schrive, L.; Farhi, E.; Rivasseau, C.

    2014-01-01

    Bio-remediation technologies often offer efficiency, cost and environmental impact benefits against physico-chemical technologies. Concerning the remediation of radionuclide-containing water, a few bio-based technologies have been proposed but none is currently operational in highly radioactive environments. A new radio-tolerant micro-alga, isolated from a nuclear facility, possesses properties that offer new decontamination prospects for the nuclear industry or for the clean-up of environmental water. A pilot-scale treatment unit based on this alga is currently under development for the decontamination of radioactive water. It includes separation and/or concentration steps relying on membrane filtration. This work aims at verifying the feasibility of micro-filtration as separation step for the targeted algae separation. Recommendations about the choice of operating conditions limiting and/or controlling the membrane fouling are provided with the objective to enhance the separation efficiency. Lab-scale dead-end filtration tests were implemented and the key factors involved in the separation performances were investigated. Membrane characteristics, biomass composition, and hydrodynamic conditions were considered. Organic membranes provided adequate filtration performance. Membrane fouling was essentially induced by a rapid reversible algae deposit and to a lesser extent by irreversible pore blockage caused by smaller particles and dissolved organic matter. To cancel the reversible fouling, hydrodynamic actions such as stirring and back-flush efficiently prevented algae deposit, allowing higher filtration productivity. This study demonstrates the feasibility of membrane separation for micro-algae harvesting at laboratory-scale and specifies the suitable working conditions. (authors)

  4. Treatment of Acute Periodontal Abscesses Using the Biofilm Decontamination Approach: A Case Report Study.

    Science.gov (United States)

    Pini-Prato, Giovanpaolo; Magnani, Cristina; Rotundo, Roberto

    2016-01-01

    The aim of this preliminary study was to show the treatment effect of the biofilm decontamination approach on acute periodontal abscesses. Clinical cases showing acute periodontitis were treated using an oral tissue decontaminant material that contains a concentrated aqueous mixture of hydroxybenzenesulfonic and hydroxymethoxybenzene acids and sulfuric acid. The material was positioned into the pocket on the root surface and left in the site for 30 seconds. No instrumentation was performed before the treatment. No systemic or local antibiotics were used in any of the cases. A questionnaire was used for each patient to record the pain/discomfort felt when the material was administered. All of the treated cases healed well and very rapidly. The infections were quickly resolved without complications, and the pockets associated with marginal tissue recession were also reduced. The momentary pain upon introduction of the material was generally well tolerated in the nonsurgically treated cases, and it completely disappeared after a few seconds. The biofilm decontamination approach seems to be a very promising technique for the treatment of acute periodontal abscess. The local application of this material avoids the use of systemic or local antibiotics.

  5. Degradation of phthalate in aqueous solution by advanced oxidation process, photo-fenton

    International Nuclear Information System (INIS)

    Trabelsi, S.; Bellakhal, N.; Oturan, N.; Oturan, M.A.

    2009-01-01

    A photochemical method for degradation of persistent organic pollutants present in liquid effluents from the plastic industry and in the leaching described. This method, called P hoto-Fenton i nvolves the generation of radicals hydroxyl coupling between the Fenton reaction and photochemistry, OH radicals. Thus formed react with very high speeds, organic substances pollutants leading to their oxidation to total mineralization. In this study, we applied the process photo-Fenton treatment Plasticizers, Phthalates. For this, optimization of experimental parameters (namely the relationship between the concentrations of hydrogen peroxide and iron concentration catalyst) was performed. Under optimal conditions and determined the kinetics mineralization of phthalic anhydride by OH was studied. The overall results confirm the effectiveness of photo-Fenton process for the decontamination of liquid effluents responsible for persistent organic pollutants (Pop's).

  6. Properties and solidification of decontamination wastes

    International Nuclear Information System (INIS)

    Davis, M.S.; Piciulo, P.L.; Bowerman, B.S.; Adams, J.W.; Milian, L.

    1983-01-01

    LWRs will require one or more chemical decontaminations to achieve their designed lifetimes. Primary system decontamination is designed to lower radiation fields in areas where plant maintenance personnel must work. Chemical decontamination methods are either hard (concentrated chemicals, approximately 5 to 25 weight percent) or soft (dilute chemicals less than 1 percent by weight). These methods may have different chemical reagents, some tailor-made to the crud composition and many methods are and will be proprietary. One factor common to most commercially available processes is the presence of organic acids and chelates. These types of organic reagents are known to enhance the migration of radionuclides after disposal in a shallow land burial site. The NRC sponsors two programs at Brookhaven National Laboratory that are concerned with the management of decontamination wastes which will be generated by the full system decontamination of LWRs. These two programs focus on potential methods for degrading or converting decontamination wastes to more acceptable forms prior to disposal and the impact of disposing of solidified decontamination wastes. The results of the solidification of simulated decontamination resin wastes will be presented. Recent results on combustion of simulated decontamintion wastes will be described and procedures for evaluating the release of decontamination reagents from solidified wastes will be summarized

  7. Some remarks about decontamination

    International Nuclear Information System (INIS)

    Bertini, A.

    1990-01-01

    Decontamination in itself is not the elimination of a problem, but corresponds to move that problem from one place to another. It is beneficial only if the contamination is less of a nuisance when moved to the ''other place''. Therefore any prospective decontamination process is to be considered essentially in terms of cost-benefit, and in particular in terms of reducing the burden on the waste management systems. The paper is not intended to deal with and to review critically the technical aspects of the various decontamination processes which are currently available. Its aim is to call the attention of those who may be faced with the problem of large-scale decontamination, so that this operation is carried out after all practical aspects have been examined. (author)

  8. Decontamination in the Republic of Belarus

    International Nuclear Information System (INIS)

    Antsipov, G.V.; Matveenko, S.A.; Mirkhaidarov, A.Kh.

    2002-01-01

    To continue the decontamination work in the Republic of Belarus, which was carried out by the military troops, the state specialized enterprises were formed in Gomel and Mogilev in 1991. The organization and regulations were developed inside the country: instructions, rules, radiological and hygienic criteria and norms. The enterprises concentrated on decontamination of the most socially significant facilities: kindergartens, schools, medical institutions and industrial enterprises. During 9 years Gomel State Specialized Enterprise 'Polessje' decontaminated 130 kindergartens, schools and hospitals. The total decontaminated area was 450 000 m 2 . The ventilation systems and equipment at 27 industrial enterprises in Gomel were decontaminated. The practical decontamination methods for areas, buildings, roofs, industrial equipment, ventilation systems were developed and tested. The special rules for handling wastes contaminated with Cs were elaborated. The paper analyzes and sums up the acquired experience which is important for implementation of rehabilitation programs and improvement of decontamination methods. (author)

  9. Aqueous radioactive waste bituminization

    International Nuclear Information System (INIS)

    Williamson, A.S.

    1980-08-01

    The bituminzation of decontamination and ion exchange resin stripping wastes with four grades of asphalt was investigated to determine the effects of asphalt type on the properties of the final products. All waste forms deformed readily under light loads indicating they would flow if not restrained. It was observed in all cases that product leaching rates increased as the hardness of the asphalt used to treat the waste increased. If bituminization is adopted for any Ontario Hydro aqueous radioactive wastes they should be treated with soft asphalt to obtain optimum leaching resistance and mechanical stability during interim storage should be provided by a corrosion resistant container

  10. Electrolytic treatment of liquid effluents: decontamination by electro coagulation of release water of a petroleum platform

    International Nuclear Information System (INIS)

    Nanseu-Njiki, Ch.P.; Ngameni, E.; Poumiba, S.; Darchen, A.

    2005-01-01

    The water releases of petroleum platforms present lots of pollutants; Usually, these waters are reinjected in ground water when it is possible. In the other cases they are released at the surface and need then a treatment. The electro-coagulation is a suitable method often used. The authors propose to study the optimum conditions of decontamination by this method, by a parametric evaluation (water flow, charge density, ph). Experiments used iron and aluminium electrodes. (A.L.B.)

  11. Long lasting decontamination foam

    Science.gov (United States)

    Demmer, Ricky L.; Peterman, Dean R.; Tripp, Julia L.; Cooper, David C.; Wright, Karen E.

    2010-12-07

    Compositions and methods for decontaminating surfaces are disclosed. More specifically, compositions and methods for decontamination using a composition capable of generating a long lasting foam are disclosed. Compositions may include a surfactant and gelatin and have a pH of less than about 6. Such compositions may further include affinity-shifting chemicals. Methods may include decontaminating a contaminated surface with a composition or a foam that may include a surfactant and gelatin and have a pH of less than about 6.

  12. Chemical Gel for Surface Decontamination

    International Nuclear Information System (INIS)

    Jung, Chong Hun; Moon, J. K.; Won, H. J.; Lee, K. W.; Kim, C. K.

    2010-01-01

    Many chemical decontamination processes operate by immersing components in aggressive chemical solutions. In these applications chemical decontamination technique produce large amounts of radioactive liquid waste. Therefore it is necessary to develop processes using chemical gels instead of chemical solutions, to avoid the well-known disadvantages of chemical decontamination techniques while retaining their high efficiency. Chemical gels decontamination process consists of applying the gel by spraying it onto the surface of large area components (floors, walls, etc) to be decontaminated. The gel adheres to any vertical or complex surface due to their thixotropic properties and operates by dissolving the radioactive deposit, along with a thin layer of the gel support, so that the radioactivity trapped at the surface can be removed. Important aspects of the gels are that small quantities can be used and they show thixitropic properties : liquid during spraying, and solid when stationary, allowing for strong adherence to surfaces. This work investigates the decontamination behaviors of organic-based chemical gel for SS 304 metallic surfaces contaminated with radioactive materials

  13. Decontamination manual of RI handling laboratory

    International Nuclear Information System (INIS)

    Wadachi, Yoshiki

    2004-01-01

    Based on experiences in Japan Atomic Energy Research Institute (JAERI), the essential and practical knowledge of radioactive contamination and its decontamination, and the method and procedure of floor decontamination are described for researcher and managing person in charge of handling radioisotopes (RI) in RI handling laboratories. Essential knowledge concerns the uniqueness of solid surface contamination derived from RI half lives and quantities, surface contamination density limit, and mode/mechanism of contamination. The principle of decontamination is a single conduct with recognition of chemical form of the RI under use. As the practical knowledge, there are physical and chemical methods of solid surface decontamination. The latter involves use of inorganic acids, chelaters and surfactants. Removal and replacement of contaminated solid like floor material are often effective. Distribution mapping of surface contamination can be done by measuring the radioactivity in possibly contaminated areas, and is useful for planning of effective decontamination. Floor surface decontamination is for the partial and spread areas of the floor. It is essential to conduct the decontamination with reagent from the highly to less contaminated areas. Skin decontamination with either neutral detergent or titanium oxide is also described. (N.I.)

  14. Chemical decontamination: an overview

    International Nuclear Information System (INIS)

    Shaw, R.A.; Wood, C.J.

    1985-01-01

    The source of radioactive contamination in various types of power reactors is discussed. The methods of chemical decontamination vary with the manner in which the radioactive contaminants are deposited on the surface. Two types of dilute decontamination systems are available. One system uses organic acids and chelating agents, which are mildly reducing in nature. In this process, the oxide contaminants are removed by simple acidic dissolution and reductive dissolution. The second type of decontamination process is based on low oxidation state metal ions, which are more strongly reducing and do not require a corrosion inhibitor. All processes commercially available for decontamination of power reactors are not detailed here, but a few key issues to be considered in the selection of a process are highlighted. 2 figures, 2 tables

  15. Preliminary Evaluation of Cesium Distribution for Wet Sieving Process Planned for Soil Decontamination in Japan - 13104

    Energy Technology Data Exchange (ETDEWEB)

    Enokida, Y.; Tanada, Y.; Hirabayashi, D. [Graduate School of Engineering, 1 Furo-cho Nagoya-shi, Aichi-ken, 4648603 (Japan); Sawada, K. [EcoTopia Science Institute, Nagoya University, 1 Furo-cho Nagoya-shi, Aichi-ken, 4648603 (Japan)

    2013-07-01

    For the purpose of decontaminating radioactive cesium from a huge amount of soil, which has been estimated to be 1.2x10{sup 8} m{sup 3} by excavating to a 5-cm depth from the surface of Fukushima Prefecture where a severe nuclear accident occurred at TEPCO's power generating site and has emitted a significant amount of radioactive materials, mainly radioactive cesium, a wet sieving process was selected as one of effective methods available in Japan. Some private companies have demonstrated this process for soil treatment in the Fukushima area by testing at their plants. The results were very promising, and a full-fledged application is expected to follow. In the present study, we spiked several aqueous samples containing soil collected from an industrial wet sieving plant located near our university for the recycling of construction wastes with non-radioactive cesium hydroxide. The present study provides scientific data concerning the effectiveness in volume reduction of the contaminated soil by a wet sieving process as well as the cesium distribution between the liquid phase and clay minerals for each sub-process of the full-scale one, but a simulating plant equipped with a process of coagulating sedimentation and operational safety fundamentals for the plant. Especially for the latter aspect, the study showed that clay minerals of submicron size strongly bind a high content of cesium, which was only slightly removed by coagulation with natural sedimentation (1 G) nor centrifugal sedimentation (3,700 G) and some of the cesium may be transferred to the effluent or recycled water. By applying ultracentrifugation (257,000 G), most of submicron clay minerals containing cesium was removed, and the cesium amount which might be transferred to the effluent or recycled water, could be reduced to less than 2.3 % of the original design by the addition of a cesium barrier consisting of ultracentrifugation or a hollow fiber membrane. (authors)

  16. Situations of decontamination promotion activities. Efforts by Tokyo Electric Power Company, Fukushima Revitalization Headquarters, Decontamination Promotion Office

    International Nuclear Information System (INIS)

    Takano, Takahiko; Ito, Kei; Takizawa, Koichi

    2015-01-01

    As for the decontamination of the soil contaminated with radioactive materials, decontamination is on the way in compliance with the 'Act on Special Measures Concerning the Handling of Environmental Pollution by Radioactive Materials by the NPS Accident Associated with the Tohoku District - Off the Pacific Ocean' (hereinafter, the Act on Special Measures). Tokyo Electric Power Company (TEPCO), as the party concerned to the accident, is cooperating with decontamination activities conducted by countries and municipalities under the Act on Special Measures. Total number of people cooperated by the Decontamination Promotion Office amounts to about 120,000 people. The cooperation to the decontamination by countries and municipalities covers the following fields: provision of knowledge of radiation, training of site management and supervisors, and proposal such as the decontamination method suitable for the site. As cooperation to various monitoring, there is a traveling monitoring that performs radiation measurement from the vehicles. As cooperation in the farming and industrial resumption toward the reconstruction, the group has implemented support for the distribution promotion of the holdup that was stuck in distribution due to contamination with radioactive substances. As decontamination related technology, the following are performed: (1) preparation of radiation understanding promotion tool, (2) development of precise individual dose measurement technology, and (3) development and utilization of decontamination effect analysis program. In the future, this group will perform the follow-up for decontamination, and measures toward the lifting of evacuation order. It will install the basis to perform various technical analyses on decontamination, and will further intensify technical cooperation. (A.O.)

  17. Decontamination formulation with additive for enhanced mold remediation

    Science.gov (United States)

    Tucker, Mark D [Albuquerque, NM; Irvine, Kevin [Huntsville, AL; Berger, Paul [Rome, NY; Comstock, Robert [Bel Air, MD

    2010-02-16

    Decontamination formulations with an additive for enhancing mold remediation. The formulations include a solubilizing agent (e.g., a cationic surfactant), a reactive compound (e.g., hydrogen peroxide), a carbonate or bicarbonate salt, a water-soluble bleaching activator (e.g., propylene glycol diacetate or glycerol diacetate), a mold remediation enhancer containing Fe or Mn, and water. The concentration of Fe.sup.2+ or Mn.sup.2+ ions in the aqueous mixture is in the range of about 0.0001% to about 0.001%. The enhanced formulations can be delivered, for example, as a foam, spray, liquid, fog, mist, or aerosol for neutralization of chemical compounds, and for killing certain biological compounds or agents and mold spores, on contaminated surfaces and materials.

  18. Radiation protection at the RA Reactor in 1995, Part -2, Annex 2, Decontamination and actions, collection of liquid effluents and solid radioactive waste

    International Nuclear Information System (INIS)

    Mandic, M.; Vukovic, Z.; Lazic, S.; Plecas, I.; Voko, A.

    1995-01-01

    Certain amount of solid waste results from RA reactor operation, the mean quantity of which depends on the duration of reactor operation and related activities. During repair, when reactor is not operated as well under accidental conditions, the quantity of waste is higher, dependent on the type of repair and comprehensiveness of decontamination of the working surface, contaminated tools and components. The waste is sorted and packed on the spot where they appeared according to the existing regulations and principles of radiation protection with aim to minimize unnecessary exposure of the radiation protection personnel who deals with control, transport, radioactive waste treatment and decontamination. During exceptional operations (decontamination, repair, bigger volume of contaminated material, etc.) professional staff of the Radiation protection department gives recommendations and helps in planning the actions related to repair, sorting and packaging of radioactive waste in special containers, identification of the contaminants, etc. [sr

  19. Radiation protection at the RA Reactor in 1998, Part 2, Annex 2, Decontamination and actions, collection of liquid effluents and solid radioactive waste

    International Nuclear Information System (INIS)

    Mandic, M.; Vukovic, Z.; Bacic, S.; Plecas, I.

    1998-01-01

    Certain amount of solid waste results from RA reactor operation, the mean quantity of which depends on the duration of reactor operation and related activities. During repair, when reactor is not operated as well under accidental conditions, the quantity of waste is higher, dependent on the type of repair and comprehensiveness of decontamination of the working surface, contaminated tools and components. The waste is sorted and packed on the spot where they appeared according to the existing regulations and principles of radiation protection with aim to minimize unnecessary exposure of the radiation protection personnel who deals with control, transport, radioactive waste treatment and decontamination. During exceptional operations (decontamination, repair, bigger volume of contaminated material, etc.) professional staff of the Radiation protection department gives recommendations and helps in planning the actions related to repair, sorting and packaging of radioactive waste in special containers, identification of the contaminants, etc. [sr

  20. A Polyoxoniobate-Polyoxovanadate Double-Anion Catalyst for Simultaneous Oxidative and Hydrolytic Decontamination of Chemical Warfare Agent Simulants.

    Science.gov (United States)

    Dong, Jing; Hu, Jufang; Chi, Yingnan; Lin, Zhengguo; Zou, Bo; Yang, Song; Hill, Craig L; Hu, Changwen

    2017-04-10

    A novel double-anion complex, H 13 [(CH 3 ) 4 N] 12 [PNb 12 O 40 (V V O) 2 ⋅(V IV 4 O 12 ) 2 ]⋅22 H 2 O (1), based on bicapped polyoxoniobate and tetranuclear polyoxovanadate was synthesized, characterized by routine techniques and used in the catalytic decontamination of chemical warfare agents. Under mild conditions, 1 catalyzes both hydrolysis of the nerve agent simulant, diethyl cyanophosphonate (DECP) and selective oxidation of the sulfur mustard simulant, 2-chloroethyl ethyl sulfide (CEES). In the oxidative decontamination system 100 % CEES was transformed selectively to nontoxic 2-chloroethyl ethyl sulfoxide and vinyl ethyl sulfoxide using nearly stoichiometric 3 % aqueous H 2 O 2 with a turnover frequency (TOF) of 16 000 h -1 . Importantly, the catalytic activity is maintained even after ten recycles and CEES is completely decontaminated in 3 mins without formation of the highly toxic sulfone by-product. A three-step oxidative mechanism is proposed. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Microwave-assisted activated carbon from cocoa shell as adsorbent for removal of sodium diclofenac and nimesulide from aqueous effluents

    International Nuclear Information System (INIS)

    Saucier, Caroline; Adebayo, Matthew A.; Lima, Eder C.; Cataluña, Renato; Thue, Pascal S.; Prola, Lizie D.T.; Puchana-Rosero, M.J.; Machado, Fernando M.; Pavan, Flavio A.; Dotto, G.L.

    2015-01-01

    Highlights: • Microwave-assisted cocoa shell activated carbon was prepared and characterized. • The anti-inflammatories, diclofenac and nimesulide, were adsorbed onto MWCS-1.0. • Adsorption maximum values are 63.47 (diclofenac) and 74.81 mg g −1 (nimesulide). • General order kinetic model suitably explained the adsorption process. • MWCS-1.0 was effectively used for treatment of simulated hospital effluents. - Abstract: Microwave-induced chemical activation process was used to prepare an activated carbon from cocoa shell for efficient removal of two anti-inflammatories, sodium diclofenac (DFC) and nimesulide (NM), from aqueous solutions. A paste was obtained from a mixture of cocoa shell and inorganic components; with a ratio of inorganic: organic of 1 (CSC-1.0). The mixture was pyrolyzed in a microwave oven in less than 10 min. The CSC-1.0 was acidified with a 6 mol L −1 HCl under reflux to produce MWCS-1.0. The CSC-1.0 and MWCS-1.0 were characterized using FTIR, SEM, N 2 adsorption/desorption curves, X-ray diffraction, and point of zero charge (pH pzc ). Experimental variables such as initial pH of the adsorbate solutions and contact time were optimized for adsorptive characteristics of MWCS-1.0. The optimum pH for removal of anti-inflammatories ranged between 7.0 and 8.0. The kinetic of adsorption was investigated using general order, pseudo first-order and pseu do-second order kinetic models. The maximum amounts of DCF and NM adsorbed onto MWCS-1.0 at 25 °C are 63.47 and 74.81 mg g −1 , respectively. The adsorbent was tested on two simulated hospital effluents. MWCS-1.0 is capable of efficient removal of DCF and NM from a medium that contains high sugar and salt concentrations

  2. Microwave-assisted activated carbon from cocoa shell as adsorbent for removal of sodium diclofenac and nimesulide from aqueous effluents

    Energy Technology Data Exchange (ETDEWEB)

    Saucier, Caroline [Institute of Chemistry, Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 9500, P.O. Box 15003, 91501-970 Porto Alegre, RS (Brazil); Adebayo, Matthew A. [Department of Chemical Sciences, Ajayi Crowther University, Oyo, Oyo State (Nigeria); Lima, Eder C., E-mail: eder.lima@ufrgs.br [Institute of Chemistry, Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 9500, P.O. Box 15003, 91501-970 Porto Alegre, RS (Brazil); Cataluña, Renato [Institute of Chemistry, Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 9500, P.O. Box 15003, 91501-970 Porto Alegre, RS (Brazil); Thue, Pascal S. [Institute of Chemistry, Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 9500, P.O. Box 15003, 91501-970 Porto Alegre, RS (Brazil); Department of Applied Chemistry, University of Ngaoundere, P.O. Box 455, Ngaoundere (Cameroon); Prola, Lizie D.T.; Puchana-Rosero, M.J. [Institute of Chemistry, Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 9500, P.O. Box 15003, 91501-970 Porto Alegre, RS (Brazil); Machado, Fernando M. [Technology Development Center, Federal University of Pelotas (UFPEL), Pelotas (Brazil); Pavan, Flavio A. [Institute of Chemistry, Federal University of Pampa (UNIPAMPA), Bagé, RS (Brazil); Dotto, G.L. [Chemical Engineering Department, Federal University of Santa Maria (UFSM), Santa Maria, RS (Brazil)

    2015-05-30

    Highlights: • Microwave-assisted cocoa shell activated carbon was prepared and characterized. • The anti-inflammatories, diclofenac and nimesulide, were adsorbed onto MWCS-1.0. • Adsorption maximum values are 63.47 (diclofenac) and 74.81 mg g{sup −1} (nimesulide). • General order kinetic model suitably explained the adsorption process. • MWCS-1.0 was effectively used for treatment of simulated hospital effluents. - Abstract: Microwave-induced chemical activation process was used to prepare an activated carbon from cocoa shell for efficient removal of two anti-inflammatories, sodium diclofenac (DFC) and nimesulide (NM), from aqueous solutions. A paste was obtained from a mixture of cocoa shell and inorganic components; with a ratio of inorganic: organic of 1 (CSC-1.0). The mixture was pyrolyzed in a microwave oven in less than 10 min. The CSC-1.0 was acidified with a 6 mol L{sup −1} HCl under reflux to produce MWCS-1.0. The CSC-1.0 and MWCS-1.0 were characterized using FTIR, SEM, N{sub 2} adsorption/desorption curves, X-ray diffraction, and point of zero charge (pH{sub pzc}). Experimental variables such as initial pH of the adsorbate solutions and contact time were optimized for adsorptive characteristics of MWCS-1.0. The optimum pH for removal of anti-inflammatories ranged between 7.0 and 8.0. The kinetic of adsorption was investigated using general order, pseudo first-order and pseu do-second order kinetic models. The maximum amounts of DCF and NM adsorbed onto MWCS-1.0 at 25 °C are 63.47 and 74.81 mg g{sup −1}, respectively. The adsorbent was tested on two simulated hospital effluents. MWCS-1.0 is capable of efficient removal of DCF and NM from a medium that contains high sugar and salt concentrations.

  3. PWR decontamination feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Silliman, P.L.

    1978-12-18

    The decontamination work which has been accomplished is reviewed and it is concluded that it is worthwhile to investigate further four methods for decontamination for future demonstration. These are: dilute chemical; single stage strong chemical; redox processes; and redox/chemical in combination. Laboratory work is recommended to define the agents and processes for demonstration and to determine the effect of the solvents on PWR materials. The feasibility of Indian Point 1 for decontamination demonstrations is discussed, and it is shown that the system components of Indian Point 1 are well suited for use in demonstrations.

  4. PWR decontamination feasibility study

    International Nuclear Information System (INIS)

    Silliman, P.L.

    1978-01-01

    The decontamination work which has been accomplished is reviewed and it is concluded that it is worthwhile to investigate further four methods for decontamination for future demonstration. These are: dilute chemical; single stage strong chemical; redox processes; and redox/chemical in combination. Laboratory work is recommended to define the agents and processes for demonstration and to determine the effect of the solvents on PWR materials. The feasibility of Indian Point 1 for decontamination demonstrations is discussed, and it is shown that the system components of Indian Point 1 are well suited for use in demonstrations

  5. Dilute chemical decontamination program review

    International Nuclear Information System (INIS)

    Anstine, L.D.; Blomgren, J.C.; Pettit, P.J.

    1980-01-01

    The objective of the Dilute Chemical Decontamination Program is to develop and evaluate a process which utilizes reagents in dilute concentrations for the decontamination of BWR primary systems and for the maintenance of dose rates on the out-of-core surfaces at acceptable levels. A discussion is presented of the process concept, solvent development, advantages and disadvantages of reagent systems, and VNC loop tests. Based on the work completed to date it is concluded that (1) rapid decontamination of BWRs using dilute reagents is feasible; (2) reasonable reagent conditions for rapid chemical decontamination are: 0.01M oxalic acid + 0.005M citric acid, pH3.0, 90/degree/C, 0.5 to 1.0 ppm dissolved oxygen; (3) control of dissolved oxygen concentration is important, since high levels suppress the rate of decontamination and low levels allow precipitation of ferrous oxalate. 4 refs

  6. Study on LOMI decontamination technology

    International Nuclear Information System (INIS)

    Huang Fuduan; Yu Degui; Lu Jingju; Xie Yinyan

    1993-10-01

    The results of decontamination technique of Low-Oxidation-State Metal-Ion (LOMI) reagents developed from 1986 to 1991 in the laboratory are introduced. The experiments included preparation of LOMI reagents, de-filming efficiency, corrosion behavior of typical alloys, decontamination factors of reagents for contaminated materials and components have proved that the NP/LOMI decontamination method and treatment technique of waste water are feasible and have some advantages. The preparation of LOMI reagent with low concentration of formic acid by reduced pressure distilling technique and the utilization ratio of vanadium reached to 95% by second electrolysis are the main contributions of the study to the decontamination technique

  7. Manual on decontamination of surfaces

    International Nuclear Information System (INIS)

    1979-01-01

    The manual is intended for those who are responsible for the organization and implementation of decontamination programmes for facilities where radioactive materials are handled mainly on a laboratory scale. It contains information and guidelines on practical methods for decontaminating working spaces, equipment, laboratory benches and protective clothing. Useful information is also provided on the removal of loose skin contamination from personnel by mild, non-medical processes. Methods of removing skin contamination needing medical supervision, or of internal decontamination, which is entirely a medical process, are not covered in this manual. Large-scale decontamination of big nuclear facilities is also considered as outside its scope

  8. Decontamination tests on cotton materials; Essais de decontamination sur tissus de coton

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, P; Pelletier, C [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    It is shown that versene gives the best decontamination results on cotton materials soiled by a mixture of fission products. (author) [French] On a montre que le versene donne les meilleurs resultats de decontamination sur des tissus de coton souilles par un melange de produits de fission. (auteur)

  9. Decontamination of floor surfaces

    International Nuclear Information System (INIS)

    Smirous, F.

    1983-01-01

    Requirements are presented put on the surfaces of floors of radiochemical workplaces. The mechanism is described of retaining the contaminant in the surface of the flooring, ways of reducing the hazards of floor surface contamination, decontamination techniques and used decontamination agents. (J.P.)

  10. Reactive skin decontamination lotion (RSDL) for the decontamination of chemical warfare agent (CWA) dermal exposure.

    Science.gov (United States)

    Schwartz, M D; Hurst, C G; Kirk, M A; Reedy, S J D; Braue, E H

    2012-08-01

    Rapid decontamination of the skin is the single most important action to prevent dermal absorption of chemical contaminants in persons exposed to chemical warfare agents (CWA) and toxic industrial chemicals (TICs) as a result of accidental or intentional release. Chemicals on the skin may be removed by mechanical means through the use of dry sorbents or water. Recent interest in decontamination systems which both partition contaminants away from the skin and actively neutralize the chemical has led to the development of several reactive decontamination solutions. This article will review the recently FDA-approved Reactive Skin Decontamination Lotion (RSDL) and will summarize the toxicity and efficacy studies conducted to date. Evidence of RSDL's superior performance against vesicant and organophosphorus chemical warfare agents compared to water, bleach, and dry sorbents, suggests that RSDL may have a role in mass human exposure chemical decontamination in both the military and civilian arenas.

  11. Decontamination measures for Fukushima prefecture. Fukushima prefecture measures for promoting decontamination

    International Nuclear Information System (INIS)

    Endo, Kouzou

    2013-01-01

    For Fukushima prefecture having suffered from significant damage associated with the Great East Japan Earthquake and the nuclear power plant accident, the decontamination work is the most urgent issue. The paper reports the present situation of the remediation acts of Fukushima Government done since the accident, particular emphasis on the removal of radioactive substances due to cesium 137 in the residential area. Government supports to promote the decontamination work and its operators, and encourages employers and employees in their efforts, to set up temporary storages of the produced radioactive wastes, to cultivate and improve technical supports for decontamination work and strengthen understanding and support of the local resident, thus providing the training course for the site supervisors, the person engaged in the work and management. (S. Ohno)

  12. Summary of decontamination cover manufacturing experience

    International Nuclear Information System (INIS)

    Ulrich, G.B.; Berry, H.W.

    1995-02-01

    Decontamination cover forming cracks and vent cup assembly leaks through the decontamination covers were early manufacturing problems. The decontamination cover total manufacturing process yield was as low as 55%. Applicable tooling and procedures were examined. All manufacturing steps from foil fabrication to final assembly leak testing were considered as possible causes or contributing factors to these problems. The following principal changes were made to correct these problems: (1) the foil annealing temperature was reduced from 1375 degrees to 1250 degrees C, (2) the decontamination cover fabrication procedure (including visual inspection for surface imperfections and elimination of superfluous operations) was improved, (3) the postforming dye penetrant inspection procedure was revised for increased sensitivity, (4) a postforming (prewelding) 1250 degrees C/1 h vacuum stress-relief operation was added, (5) a poststress relief (prewelding) decontamination cover piece-part leak test was implemented, (6) the hold-down fixture used during the decontamination cover-to-cup weld was modified, and concomitantly, and (7) the foil fabrication process was changed from the extruding and rolling of 63-mm-diam vacuum arc-remelted ingots (extrusion process) to the rolling of 19-mm-square arc-melted drop castings (drop cast process). Since these changes were incorporated, the decontamination cover total manufacturing process yield has been 91 %. Most importantly, more than 99% of the decontamination covers welded onto vent cup assemblies were acceptable. The drastic yield improvement is attributed primarily to the change in the foil annealing temperature from 1375 degrees to 1250 degrees C and secondarily to the improvements in the decontamination cover fabrication procedure

  13. Role of alkyl alcohol on viscosity of silica-based chemical gels for decontamination of highly radioactive nuclear facilities

    International Nuclear Information System (INIS)

    Choi, B. S.; Yoon, S. B.; Jung, C. H.; Lee, K. W.; Moon, J. K.

    2012-01-01

    Silica-based chemical gel for the decontamination of nuclear facilities was prepared by using fumed silica as a viscosifier, a 0.5 M Ce (IV) solution dissolved in concentrated nitric acid as a chemical decontamination agent, and tripropylene glycol butyl ether (TPGBE) as a co-viscosifier. A new effective strategy for the preparation of the chemical gel was investigated by introducing the alkyl alcohols as organic solvents to effectively dissolve the co-viscosifier. The mixture solution of the co-viscosifier and alkyl alcohols was more effective in the control of viscosity than that of the co-viscosifier only in gel. Here, the alkyl alcohols played a key role as an effective dissolution solvent for the co-viscosifier in the preparation of the chemical gel, resulting in a reducing of the amount of the co-viscosifier and gel time compared with that of the chemical gel prepared without the alkyl alcohols. It was considered that the alkyl alcohols contributed to the effective dissolution of the co-viscosifier as well as the homogeneous mixing in the formation of the gel, while the co-viscosifier in an aqueous media of the chemical decontamination agent solution showed a lower solubility. The decontamination efficiency of the chemical gels prepared in this work using a multi-channel analyzer (MCA) showed a high decontamination efficiency of over ca. 94% and ca. 92% for Co-60 and Cs-137 contaminated on surface of the stainless steel 304, respectively. (authors)

  14. Study of the synthesis of TiO2 layers on macroporous ceramic supports in supercritical (SC) CO2 for processing radioactive aqueous effluents in dynamic mode

    International Nuclear Information System (INIS)

    Duchateau, Maxime

    2014-01-01

    Public and military nuclear industry generates a significant amount of radioactive liquid waste which must be treated before being released into the environment. Decontamination methods alternative to the industrial techniques (evaporation, chemical treatment) are being developed, such as column treatments or coupled filtration/sorption processes. Current researches mainly focus on the development and shaping of specific sorbents. In this context, the objectives of this thesis were first to study the synthesis of TiO 2 layers on macroporous ceramic supports in supercritical (SC) CO 2 and then to evaluate their potential for radionuclide extraction in these alternative processes. A robust synthesis method has been developed, based on the thermal decomposition of titanium isopropoxide in SC CO 2 in the temperature range between 150 C and 350 C. Nano-structured TiO 2 films were formed on the macroporous supports (ceramic foams, tubular α-alumina supports) with good adhesion, already at 150 C. The effect of the synthesis temperature on sorbents physico-chemical characteristics and sorption properties has been studied with TiO 2 powders prepared under the same conditions as the supported films. The best sorption performance were observed for the powder prepared at 150 C, owing to its higher density of surface sites in comparison with powders prepared at either 250 C or 350 C. Consequently, this synthesis temperature (150 C) was selected for a detailed study of the composite sorbents (TiO 2 /support), in order to assess their sorption performance in continuous treatment processes. The sorption experiments have shown that a column of alumina macroporous foam (Φpore = 400μm) coated with TiO 2 was suitable for processing effluents in dynamic mode with high throughputs. Both macro-pore sizes and column height were revealed as important parameters to be controlled. For the coupled filtration/sorption treatment, TiO 2 membranes exhibit good mechanical strength and are able

  15. Full system decontamination feasibility studies

    International Nuclear Information System (INIS)

    Denault, R.P.; LeSurf, J.E.; Walschot, F.W.

    1988-01-01

    Many chemical decontaminations have been performed on subsystems in light water reactors (BWRs and PWRs) but none on the full system (including the fuel) of large, (>500 MWe) investor owned reactors. Full system decontaminations on pressure-tubed reactors have been shown to facilitate maintenance, inspection, repair and replacement of reactor components. Further advantages are increased reactor availability and plant life extension. A conceptual study has been performed for EPRI (for PWRs) and Commonwealth Edison Co (for BWRs) into the applicability and cost benefit of full system decontaminations (FSD). The joint study showed that FSDs in both PWRs and BWRs, with or without the fuel included in the decontamination, are feasible and cost beneficial provided a large amount of work is to be done following the decontamination. The large amounts of radioactive waste generated can be managed using current technologies. Considerable improvements in waste handling, and consequent cost savings, can be obtained if new techniques which are now reaching commercial application are used. (author)

  16. Fuel decontamination at Ringhals 1 with the new decontamination process IcedecTM

    International Nuclear Information System (INIS)

    Fredriksson, E.; Ivars, R.; Rosengren, A.; Granath, G.

    2003-01-01

    The new fuel decontamination technique ICEDEC TM , which has been developed by Westinghouse, is based on abrasion of fuel crud with ice particles. A mixture of ice and water is led continuously through the fuel assembly, which is placed in a specially designed fuel decontamination container connected to a closed loop recirculation system. The ice particles scrape off the loose crud from the fuel surfaces and a mixture of crud and water from the melted ice is then led to a filter unit were the crud is separated from the water. In this paper results of fuel decontamination tests of two-year-old and spent fuel assemblies during spring 2001 at Ringhals 1 are presented. The fuel crud was only released when ice particles passed through the fuel assembly and stopped within ten seconds after the feeding of ice particles had ceased. The activity release from the fuel could thus be performed in a controlled way making the process easy to manage and survey. Activity measurements confirmed that about 50% of the loose crud was removed from the fuel surfaces of the two-year-old assembly. Fuel inspection after the decontamination process showed no influence on the fuel integrity. Furthermore, no enhanced personnel radiation dose was involved with the fuel decontamination compared to normal fuel services. (authors)

  17. Decontamination Technology Development for Nuclear Research Facilities

    International Nuclear Information System (INIS)

    Oh, Won Zin; Jung, Chong Hun; Choi, Wang Kyu; Won, Hui Jun; Kim, Gye Nam

    2004-02-01

    Technology development of surface decontamination in the uranium conversion facility before decommissioning, technology development of component decontamination in the uranium conversion facility after decommissioning, uranium sludge treatment technology development, radioactive waste soil decontamination technology development at the aim of the temporary storage soil of KAERI, Optimum fixation methodology derivation on the soil and uranium waste, and safety assessment methodology development of self disposal of the soil and uranium waste after decontamination have been performed in this study. The unique decontamination technology applicable to the component of the nuclear facility at room temperature was developed. Low concentration chemical decontamination technology which is very powerful so as to decrease the radioactivity of specimen surface under the self disposal level was developed. The component decontamination technology applicable to the nuclear facility after decommissioning by neutral salt electro-polishing was also developed. The volume of the sludge waste could be decreased over 80% by the sludge waste separation method by water. The electrosorption method on selective removal of U(VI) to 1 ppm of unrestricted release level using the uranium-containing lagoon sludge waste was tested and identified. Soil decontamination process and equipment which can reduce the soil volume over 90% were developed. A pilot size of soil decontamination equipment which will be used to development of real scale soil decontamination equipment was designed, fabricated and demonstrated. Optimized fixation methodology on soil and uranium sludge was derived from tests and evaluation of the results. Safety scenario and safety evaluation model were development on soil and uranium sludge aiming at self disposal after decontamination

  18. Decontamination around the site of Chernobylsk; Decontamination autour du site de Tchernobyl

    Energy Technology Data Exchange (ETDEWEB)

    Manesse, D; Rzepka, J P; Maubert, H

    1990-12-01

    This report describes the decontamination of the site around the nuclear plant of Chernobylsk after the reactor accident of 1986. The work of decontamination in urban areas, buildings, fields and vegetation are detailed. The interventions to reduce the contamination of surface waters and to protect ground waters are also given. (N.C.).

  19. Detritiation of Tritiated Effluent Gas and Water

    International Nuclear Information System (INIS)

    Ahn, Do Hee; Kim, Kwang Rag; Paek, Seung Woo; Lee, Min Soo; Yim, Sung Paal; Chung Hong Suk

    2007-06-01

    In a demonstration scale equipment for treatment of tritium in off-gas, Pt/SDBC as oxidation catalyst and Zeolite 13X as adsorbent was charged in the beds, respectively. It was confirmed from the performance test that decontamination factor of the equipment showed more than 100 under the flow rate of off-gas of 90 l/hr and at the temperature of 65 ∼ 80 .deg. C. A small scale CECE process has been developed combining LPCE catalytic column with SPE (solid polymer electrolyte) electrolysis. The catalytic column was a trickle-bed type packed with the mixture of 1 wt% Pt/SDBC catalyst and 4 mm Dixon wire-mesh ring. The experimental results of the CECE process proved that the decontamination factor of 13 ∼ 20 under the operating conditions of the water of the 4 l/day and the effluent hydrogen gas of 16.2 mol/h. A design code of CECE process also developed which will be applied the tritium industry. An experimental method for the reduction of tritiated organic waste by using catalytic oxidation was tested in a heated catalytic reactor of 0.5 wt% Pd/Al 2 O 3 . The simulated organic liquid was converted to water over 99%. A gas chromatographic column material was developed for the separation of mixed hydrogen isotopes. 17 wt% Pd-Pt on alumina showed 90% separation efficiency at 77 % yield for the separation of 29.2 % D 2 -H 2 gas mixture

  20. Detritiation of Tritiated Effluent Gas and Water

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Do Hee; Kim, Kwang Rag; Paek, Seung Woo; Lee, Min Soo; Yim, Sung Paal; Chung Hong Suk

    2007-06-15

    In a demonstration scale equipment for treatment of tritium in off-gas, Pt/SDBC as oxidation catalyst and Zeolite 13X as adsorbent was charged in the beds, respectively. It was confirmed from the performance test that decontamination factor of the equipment showed more than 100 under the flow rate of off-gas of 90 l/hr and at the temperature of 65 {approx} 80 .deg. C. A small scale CECE process has been developed combining LPCE catalytic column with SPE (solid polymer electrolyte) electrolysis. The catalytic column was a trickle-bed type packed with the mixture of 1 wt% Pt/SDBC catalyst and 4 mm Dixon wire-mesh ring. The experimental results of the CECE process proved that the decontamination factor of 13 {approx} 20 under the operating conditions of the water of the 4 l/day and the effluent hydrogen gas of 16.2 mol/h. A design code of CECE process also developed which will be applied the tritium industry. An experimental method for the reduction of tritiated organic waste by using catalytic oxidation was tested in a heated catalytic reactor of 0.5 wt% Pd/Al{sub 2}O{sub 3}. The simulated organic liquid was converted to water over 99%. A gas chromatographic column material was developed for the separation of mixed hydrogen isotopes. 17 wt% Pd-Pt on alumina showed 90% separation efficiency at 77 % yield for the separation of 29.2 % D{sub 2}-H{sub 2} gas mixture.

  1. Development of strippable gel for surface decontamination applications

    International Nuclear Information System (INIS)

    Banerjee, D.; Sandhya, U.; Khot, S.A.; Srinivas, C.

    2015-07-01

    Strippable gels are an attractive option for decontamination of surfaces particularly when materials are to be reused after decontamination. The process in general results in good decontamination performance with minimal secondary waste generation. This paper reports on development of strippable gel formulation using polyvinyl alcohol as the gel former. Peeling behavior of the gel film improved when glycerol was used as plasticizer. Incorporation of decontaminating agents is essential for the gel to be effective, so a number of decontaminating agents were screened based on their miscibility with the gel, smooth peeling, and good decontamination performance. Based on this study, a strippable gel, ‘INDIGEL’ was formulated as a potential candidate for surface decontamination applications. Extensive trials on evaluation of decontamination performance of Indigel were done on simulated surfaces like stainless steel tray, stainless steel fume hood, PVC floor, granite and ceramic table tops. Results show that Indigel is highly effective for decontamination of surfaces contaminated with all types of radionuclides. Simplicity of its use coupled with good decontamination ability will find application in nuclear and other chemical industries. (author)

  2. Decontaminating method

    International Nuclear Information System (INIS)

    Furukawa, Toshiharu; Shibuya, Kiichiro.

    1985-01-01

    Purpose: To provide a method of eliminating radioactive contaminations capable of ease treatment for decontaminated liquid wastes and grinding materials. Method: Those organic grinding materials such as fine wall nuts shell pieces cause no secondary contaminations since they are softer as compared with inorganic grinding materials, less pulverizable upon collision against the surface to be treated, being capable of reusing and producing no fine scattering powder. In addition, they can be treated by burning. The organic grinding material and water are sprayed by a nozzle to the surface to be treated, and decontaminated liquid wastes are separated into solid components mainly composed of organic grinding materials and liquid components mainly composed of water by filtering. The thus separated solid components are recovered in a storage tank for reuse as the grinding material and, after repeating use, subjected to burning treatment. While on the other hand, water is recovered into a storage tank and, after repeating use, purified by passing through an ion exchange resin-packed column and decontaminated to discharge. (Horiuchi, T.)

  3. Preparation of hydrophobic Pt-catalysts for decontamination of nuclear effluents

    International Nuclear Information System (INIS)

    Ionita, Gh.; Popescu, I.; Retegan, T.; Stefanescu, I.

    2005-01-01

    Based on the long experience of the authors, in the preparation, testing and evaluation of the performances of hydrophobic catalysts, and based on the reviewed references, this paper presents up-to-date R and D activities on the preparation methods and applications of the hydrophobic catalysts, in deuterium and tritium separation. The objectives of the paper are: (1) to provide a database for selection of the most appropriate catalyst and catalytic packing for above mentioned processes, (2) to evaluate the potentiality of hydrophobic Pt-catalysts in the deuterium and tritium separation (3) to asses and to find a new procedure for preparation a new improved hydrophobic catalyst. The merits of the hydrophobic catalysts are shown in comparison to hydrophilic catalysts. As results of the review some general conclusions about the applications of hydrophobic catalysts in environmental field are as follow: (1) the hydrophobic Pt-catalysts packed in the trickle bed reactors showed a high catalytic activity and long stability; (2) the utilization of the hydrophobic Pt-catalysts for tritium removal from liquid and gaseous effluent in nuclear field was entirely confirmed on industrial scale; (3) the extension of the utilization of the hydrophobic Pt-catalysts in other new processes, which take place in presence of liquid water or high humidity are subjected to testing. (author)

  4. Preparation of hydrophobic Pt-catalysts for decontamination of nuclear effluents

    International Nuclear Information System (INIS)

    Ionita, Gh.; Popescu, I.; Retegan, T.; Stefanescu, I.

    2004-01-01

    Based on the long experience of the authors, in the preparation, testing and evaluation of the performances of hydrophobic catalysts, and based on the reviewed references, this paper presents up-to-date R and D activities on the preparation methods and applications of the hydrophobic catalysts, in deuterium and tritium separation. The objectives of the paper are: - to provide a database for selection of the most appropriate catalyst and catalytic packing for above mentioned processes; - to evaluate the potentiality of hydrophobic Pt-catalysts in the deuterium and tritium separation; - to assess and to find a new procedure for preparation a new improved hydrophobic catalyst. The merits of the hydrophobic catalysts are shown in comparison to hydrophilic catalysts. As results of the review some general conclusions about the applications of hydrophobic catalysts in environmental field are as follows: - the hydrophobic Pt-catalysts packed in the trickle bed reactors showed a high catalytic activity and long stability; - the utilization of the hydrophobic Pt-catalysts for tritium removal from liquid and gaseous effluent in nuclear field was entirely confirmed on industrial scale; - the extension of the utilization of the hydrophobic Pt-catalysts in other new processes, which take place in presence of liquid water or high humidity are subject to testing. (authors)

  5. F and H Area Effluent Treatment Facility (F/H ETF): ultrafiltration and hyperfiltration systems testing at Carre, Inc. with simulated F and H area effluents

    International Nuclear Information System (INIS)

    Ryan, J.P.

    1984-01-01

    The F and H Area Effluent Treatment Facility is essentially a four-stage process that will decontaminate the waste water that is currently being discharged to seepage basins in the Separations Areas. The stages include pretreatment, reverse osmosis, ion exchange, and evaporation. A series of tests were performed at Carre, Inc. (Seneca, SC) from March 5 through March 13, to determine the usefulness of ultrafiltration (UF) in the pretreatment stage of the ETF. The results of that testing program indicate that UF would be an excellent means of removing entrained activity from the 200 Area process effluents. Hyperfiltration (HF) was also tested as a means of providing an improved concentration factor from the reverse osmosis stage. The results show that the membranes that were tested would not reject salt well enough at high salt concentrations to be useful in the final reverse osmosis stage. However, there are several membranes which are commercially available that would provide the needed rejection if they could be applied (dynamically) on the Carre support structure. This avenue is still being explored, as theoretically, it could eliminate the need for the F/H ETF evaporator

  6. Advance in radioactive decontamination

    International Nuclear Information System (INIS)

    Basteris M, J. A.; Farrera V, R.

    2010-09-01

    The objective of the present work was to determine if the application of the Na hypochlorite has some utility in the radioactive decontamination, in comparison with the water, detergent and alcohol. Several methods were compared for decontaminate the iodine 131 and technetium 99, the work table and the skin it was carried out an initial count with the Geiger Muller. Later on, in a single occasion, the areas were washed with abundant water, alcohol, clothes detergent and sodium hypochlorite (used commercially as domestic bleacher) without diluting. Observing that the percentage in the decrease of the counted radioactivity by the Geiger Muller, decreased in the following way: It was demonstrated that the Na hypochlorite presents the highest index of radioactive decontamination with 100% of effectiveness. The Na hypochlorite is an excellent substance that can be used with effectiveness and efficiency like decontamination element in the accident cases of radioactive contamination in the clinical laboratories of nuclear medicine. (Author)

  7. Final product analysis in the e-beam and gamma radiolysis of aqueous solutions of metoprolol tartrate

    Energy Technology Data Exchange (ETDEWEB)

    Slegers, Catherine [Universite Catholique de Louvain, Unite d' Analyse Chimique et Physico-chimique des Medicaments, CHAM 72.30, Avenue E. Mounier, 72, B-1200 Brussels (Belgium)]. E-mail: catherine.slegers@cham.ucl.ac.be; Tilquin, Bernard [Universite Catholique de Louvain, Unite d' Analyse Chimique et Physico-chimique des Medicaments, CHAM 72.30, Avenue E. Mounier, 72, B-1200 Brussels (Belgium)

    2006-09-15

    The radiostability of metoprolol tartrate aqueous solutions and the influence of the absorbed dose (0-50 kGy), dose rate (e-beam (EB) vs. gamma ({gamma})) and radioprotectors (pharmaceutical excipients) are investigated by HPLC-UV analyses and through computer simulations. The use of radioprotecting excipients is more promising than an increase in the dose rate to lower the degradation of metoprolol tartrate aqueous solutions for applications such as radiosterilization. The decontamination of metoprolol tartrate from waste waters by EB processing appears highly feasible.

  8. Soil decontamination criteria report, November 1980

    International Nuclear Information System (INIS)

    Riordan, G.A.

    1980-01-01

    A program to access the extent of transuranic soil contamination at DOE sites and to develop methods for their decontamination is underway at Rocky Flats. As part of this program, acceptable soil contamination levels for plutonium proposed by a number of authorities over the past couple of decades were reviewed. From this review, goals for soil decontamination work are proposed. These goals, which relate to the disposition of the products of a decontamination process, are summarized as follows (dpm/g will refer to disintegrations per minute of transuranic nuclides per gram of soil): soil fractions having less than 30 dpm can be disposed of as surface soil with unrestricted usage. Fine soil fractions (less than 100 μm) that have less than 500 dpm and coarse soil fractions that have less than 1000 dpm can be disposed of as subsurface soil as long as usage is controlled to ensure compliance with EPA dosage guidance. Soil concentrates that have an activity greater than the above values but less than 22,000 dpm should be interred in an approved, low level waste burial site. Soil concentrates that are greater than 22,000 dpm should be stored as retrievable waste. Changes in the technical and legal areas of soil decontamination are rapid. Permissible soil decontamination levels will change as will decontamination technology and the ability to monitor the effectiveness of the decontamination processes. As a result, annual updates of decontamination criteria, goals, and monitoring are expected

  9. Radiation treatment of surface and sewage waters and decontamination of effluents from livestock farms

    International Nuclear Information System (INIS)

    Brusentseva, S.A.; Dolin, P.I.; Fel', N.S.

    1983-01-01

    The report deals with the use of high level radiation for treatment of surface and sewage waters. The surface water radiation treatment at the dose of 0,1 Mrad produces a complex effect of color, taste and odor control and desinfection of water. In order to reduce the cost of radiation it is necessary to use the synergistic effect and optimization of treatment. Sewage from animal breeding complexes was studied during the introduction of air and ammonia. E. coli, salmonellum and staphylloccocus aureus were used as test microorganisms (10 4 -10 6 cell/ml). The sources of radiation-accelerators (energy 8 and 0.4 MeV, dose rates 0.1-10 2 Krad/s). When air and ammonia are introduced into the sewage the adequate decontamination dose is 4-5 times reduced. (author)

  10. Decontamination of polyvinylchloride- and rubber type flooring

    International Nuclear Information System (INIS)

    Kunze, S.

    1975-01-01

    These types, fabricated by mixing of the basic components, showed no relation between content of fillers and decontamination results. Decontamination results are partly poorer, if the flooring contains a high concentration of the filler, especially if the latter consists mainly of hydrophilic materials. The coloring of the floorings seems to have no influence on the decontamination but floorings with clearly separated patterns can not be recommended for nuclear facilities. Fabricated by chemical reactions between polymeres, vulcanization materials and fillers, the decontamination results depend definitely from the proper choice of the filler. Flooring types, containing lampblack, graphite, kaoline, barium sulfate and titanium oxide are easy to decontamine. Again, increasing contents of hydrophilic filler cause a fall off in the decontamination results. (orig.) [de

  11. Contamination and decontamination of skin

    International Nuclear Information System (INIS)

    Severa, J.; Knajfl, J.

    1983-01-01

    In external contamination the beta radiation dose is the prevalent component of the total dose absorbed by the skin. There exist four types of radionUclide bonds to the skin: mechanical retention of solid particles or solution on the surface and in the pores, physical adsorption of nondissociated molecules or colloids, the ion exchange effect, and chemisorption. Radionuclides then penetrate the skin by transfollicular transfer. The total amount of radioactive substances absorbed into the skin depends on the condition of the skin. Skin is decontaminated by washing with lukewarm water and soap or with special decontamination solutions. The most widely used components of decontamination solutions are detergents, chelaton, sodium hexametaphosphate, oxalic acid, citric acid. The main principles of the decontamination of persons are given. (M.D.)

  12. Long-term decontamination engineering study. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Geuther, W.J.

    1995-04-03

    This report was prepared by Westinghouse Hanford Company (WHC) with technical and cost estimating support from Pacific Northwest Laboratories (PNL) and Parsons Environmental Services, Inc. (Parsons). This engineering study evaluates the requirements and alternatives for decontamination/treatment of contaminated equipment at the Hanford Site. The purpose of this study is to determine the decontamination/treatment strategy that best supports the Hanford Site environmental restoration mission. It describes the potential waste streams requiring treatment or decontamination, develops the alternatives under consideration establishes the criteria for comparison, evaluates the alternatives, and draws conclusions (i.e., the optimum strategy for decontamination). Although two primary alternatives are discussed, this study does identify other alternatives that may warrant additional study. hanford Site solid waste management program activities include storage, special processing, decontamination/treatment, and disposal facilities. This study focuses on the decontamination/treatment processes (e.g., waste decontamination, size reduction, immobilization, and packaging) that support the environmental restoration mission at the Hanford Site.

  13. Long-term decontamination engineering study. Volume 1

    International Nuclear Information System (INIS)

    Geuther, W.J.

    1995-01-01

    This report was prepared by Westinghouse Hanford Company (WHC) with technical and cost estimating support from Pacific Northwest Laboratories (PNL) and Parsons Environmental Services, Inc. (Parsons). This engineering study evaluates the requirements and alternatives for decontamination/treatment of contaminated equipment at the Hanford Site. The purpose of this study is to determine the decontamination/treatment strategy that best supports the Hanford Site environmental restoration mission. It describes the potential waste streams requiring treatment or decontamination, develops the alternatives under consideration establishes the criteria for comparison, evaluates the alternatives, and draws conclusions (i.e., the optimum strategy for decontamination). Although two primary alternatives are discussed, this study does identify other alternatives that may warrant additional study. hanford Site solid waste management program activities include storage, special processing, decontamination/treatment, and disposal facilities. This study focuses on the decontamination/treatment processes (e.g., waste decontamination, size reduction, immobilization, and packaging) that support the environmental restoration mission at the Hanford Site

  14. EDF/CIDEN - ONECTRA: PWR decontamination

    International Nuclear Information System (INIS)

    Fayolle, P.; Orcel, H.; Wertz, L.

    2010-01-01

    In the context of PWR circuit renewal (expected in 2011) and their decontamination, an analysis of data coming from cartography and on site decontamination measurements as well as from premise modelling by means of the PANTHERE radioprotection code, is presented. Several French PWRs have been studied. After a presentation of code principles and operation, the authors discuss the radiological context of a workstation, and give an assessment of the annual dose associated with maintenance operations with or without decontamination

  15. TMI-2 containment decontamination plans

    International Nuclear Information System (INIS)

    McDougall, F.

    1980-01-01

    Because of other priorities such as reentry, purging, and recovery, containment decontamination is only in the preliminary planning stages. This paper summarizes the study with emphasis on the remote decontamination techniques

  16. Waste Management Effluent Treatment Facility: Phase I. CAC basic data

    International Nuclear Information System (INIS)

    Gemar, D.W.; O'Leary, C.D.

    1984-01-01

    In order to expedite design and construction of the Waste Management Effluent Treatment Facility (WMETF), the project has been divided into two phases. Phase I consists of four storage basins and the associated transfer lines, diversion boxes, and control rooms. The design data pertaining to Phase I of the WMETF project are presented together with general background information and objectives for both phases. The project will provide means to store and decontaminate wastewater streams that are currently discharged to the seepage basins in F Area and H Area. This currently includes both routine process flows sent directly to the seepage basins and diversions of contaminated cooling water or storm water runoff that are stored in the retention basins before being pumped to the seepage basins

  17. Chemically reducing decontamination method for radioactive metal

    International Nuclear Information System (INIS)

    Tanaka, Akio; Onuma, Tsutomu; Sato, Hitoshi.

    1994-01-01

    The present invention concerns a decontamination method of electrolytically reducing radioactive metal wastes, then chemically dissolving the surface thereof with a strong acid decontaminating solution. This method utilizes dissolving characteristics of stainless steels in the strong acid solution. That is, in the electrolytic reduction operation, a portion of the metal wastes is brought into contact with a strong acid decontaminating solution, and voltage and current are applied to the portion and keep it for a long period of time so as to make the potential of the immersed portion of the metal wastes to an active soluble region. Then, the electrolytic reduction operation is stopped, and the metal wastes are entirely immersed in the decontaminating solution to decontaminate by chemical dissolution. As the decontaminating solution, strong acid such as sulfuric acid, nitric acid is used. Since DC current power source capacity required for causing reaction in the active soluble region can be decreased, the decontamination facility can be minimized and simplified, and necessary electric power can be saved even upon decontamination of radioactive metal wastes made of stainless steels and having a great area. Further, chemical dissolution can be conducted without adding an expensive oxidizing agent. (N.H.)

  18. Corrective Action Investigation Plan for Corrective Action Unit 252: Area 25 Engine Test Stand 1 Decontamination Pad, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    U.S. Department of Energy, Nevada Operations Office

    1999-08-20

    This Corrective Action Investigation Plan contains the U.S. Department of Energy, Nevada Operations Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit 252 under the Federal Facility Agreement and Consent Order. Corrective Action Unit 252 consists of Corrective Action Site (CAS) 25-07-02, Engine Test Stand-1 (ETS-1) Decontamination Pad. Located in Area 25 at the intersection of Road H and Road K at the Nevada Test Site, ETS-1 was designed for use as a mobile radiation checkpoint and for vehicle decontamination. The CAS consists of a concrete decontamination pad with a drain, a gravel-filled sump, two concrete trailer pads, and utility boxes. Constructed in 1966, the ETS-1 facility was part of the Nuclear Rocket Development Station (NRDS) complex and used to test nuclear rockets. The ETS-1 Decontamination Pad and mobile radiation check point was built in 1968. The NRDS complex ceased primary operations in 1973. Based on site history, the focus of the field investigation activities will be to determine if any primary contaminants of potential concern (COPCs) (including radionuclides, total volatile organic compounds, total semivolatile organic compounds, total petroleum hydrocarbons as diesel-range organics, Resource Conservation and Recovery Act metals, total pesticides, and polychlorinated biphenyls) are present at this site. Vertical extent of migration of suspected vehicle decontamination effluent COPCs is expected to be less than 12 feet below ground surface. Lateral extent of migration of COPCs is expected to be limited to the sump area or near the northeast corner of the decontamination pad. Using a biased sampling approach, near-surface and subsurface sampling will be conducted at the suspected worst-case areas including the sump and soil near the northeast corner of the decontamination pad. The results of this field investigation will support a defensible e

  19. Effects of aqueous effluents from in situ fossil fuel processing technologies on aquatic systems. Annual progress report, January 1-December 31, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Bergman, H.L.

    1980-01-04

    This is the third annual progress report for a continuing EPA-DOE jointly funded project to evaluate the effects of aqueous effluents from in situ fossil-fuel processing technologies on aquatic biota. The project is organized into four project tasks: (1) literature review; (2) process water screening; (3) methods development; and (4) recommendations. Our Bibliography of aquatic ecosystem effects, analytical methods and treatment technologies for organic compounds in advanced fossil-fuel processing effluents was submitted to the EPA for publication. The bibliography contains 1314 citations indexed by chemicals, keywords, taxa and authors. We estimate that the second bibliography volume will contain approximately 1500 citations and be completed in February. We compiled results from several laboratories of inorganic characterizations of 19 process waters: 55 simulated in situ oil-shale retort waters; and Hanna-3, Hanna-4B 01W and Lawrence Livermore Hoe Creek underground coal gasification condenser waters. These process waters were then compared to a published summary of the analyses from 18 simulated in situ oil-shale retort waters. We completed this year 96-h flow-through toxicity bioassays with fathead minnows and rainbow trout and 48-h flow-through bioassays with Daphnia pulicaria exposed to 5 oil-shale process waters, 1 tar-sand process water, 2 underground coal gasification condenser waters, 1 post-gasification backflood condenser water, as well as 2 bioassays with fossil-fuel process water constituents. The LC/sub 50/ toxicity values for these respective species when exposed to these waters are given in detail. (LTN)

  20. Decontamination Technology Development for Nuclear Research Facilities

    International Nuclear Information System (INIS)

    Choi, W. K.; Jung, C. H.; Oh, W. Z.

    2007-06-01

    The originative CO 2 pellet blasting equipment was developed by improving additional components such as feed screw, idle roller and air-lock feeder to clear up the problems of freezing and discontinuity of blasting and by adopting pneumatically operated vacuum suction head and vacuum cup to prevent recontamination by collecting contaminant particulates simultaneously with the decontamination. The optimum decontamination process was established according to the kind of materials such as metal, concrete and plastic and the type of contaminants such as particulate, fixed chemical compound and oil. An excellent decontamination performances were verified by means of the lab-scale hot test with radioactive specimen and the technology demonstration in IMEF hot cell. The PFC dry decontamination equipment applicable to the surface contaminated with high radioactive particulate was developed. This equipment consists of the unit processes such as spray, collection, filtration and dry distillation designed originatively applicable to inside of dry hot cell. Through the demonstration of PFC spray decontamination process in IMEF hot cell, we secured on-site applicability and the decontamination efficiency more than 90 %. We investigated the characteristics of dismantled metal waste melting and the radionuclide(Co, Cs, U) distribution into ingot and slag by melting decontamination experiments using electric arc melter. We obtained the decontamination factors greater than 100 for Cs and of 10∼100 for uranium. The pilot scale(200 kg/batch) demonstration for melting decontamination was carried out successfully using high temperature melting facility at KAERI. The volume reduction factor of 1/7 and the economical feasibility of the melting decontamination were verified.

  1. Decontaminating lead bricks and shielding

    International Nuclear Information System (INIS)

    Lussiez, G.W.

    1993-01-01

    Lead used for shielding is often surface contaminated with radioisotopes and is therefore a RCRA D008 mixed waste. The technology-based standard for treatment is macroencapsulation. However, decontaminating and recycling the clean lead is a more attractive solution. Los Alamos National Laboratory decontaminates material and equipment contaminated with radioisotopes. Decontaminating lead poses special problems because of the RCRA hazard classification and the size of the inventory, now about 50 tons and likely to grow substantially because of planned decommissioning operations. This lead, in the form of bricks and other shield shapes, is surface contaminated with fission products. One of the best methods for decontaminating lead is removing the thin superficial layer of contamination with an abrasive medium trader pressure. For lead, a mixture of alumina with water and air at about 40 psig rapidly and effectively decontaminates the lead. The abrasive medium is sprayed onto the lead in a sealed-off area. The slurry of abrasive and particles of lead falls through a floor grating and is collected in a sump. A pump sends the slurry mixture back to the spray gun, creating a continuous process. The process generates small volumes of contaminated lead slurry that can be solidified and, because it passes the TCLP, is not a mixed waste. The decontaminated lead can be released for recycling

  2. Application of gamma irradiation in ginseng for both photodegradation of pesticide pentachloronitrobenzene and microbial decontamination

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Hsiao-Wei [Department of Food Science and Biotechnology, National Chung Hsing University, 250, Kuo Kuang Road, Taichung 402, Taiwan (China); Hsieh, Ming-Fa [Department of Biomedical Engineering, Chung Yuan Christian University, 200, Chung Pei Road, Chungli 320, Taiwan (China); Wang, Ya-Ting; Chung, Hsiao-Ping [Nuclear Science and Technology Development Center, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu 300, Taiwan (China); Hsieh, Po-Chow; Lin, I-Hsin [Committee on Chinese Medicine and Pharmacy, Department of Health, Executive Yuan, Taipei 104, Taiwan (China); Chou, Fong-In, E-mail: fichou@mx.nthu.edu.tw [Nuclear Science and Technology Development Center, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu 300, Taiwan (China); Institute of Nuclear Engineering and Science, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu 300, Taiwan (China)

    2010-04-15

    This study investigates the feasibility of using gamma irradiation for photodegradation of a common residual fungicide, pentachloronitrobenzene (PCNB), in ginseng, and for microbial decontamination. American ginseng, Panax quinquefolius, was subjected to gamma irradiation. PCNB residues were analyzed by gas chromatography with electron capture detection and mass spectrometry. Eighty percent of PCNB (100 ppm) in a methanol aqueous solution was degraded by 5 kGy irradiation, and the primary degradation product was pentachloroaniline. Furthermore, contaminated PCNB (3.7 ppm) in ginseng were reduced to 0.2 ppm after 20 kGy irradiation. The IC{sub 50} for treatment of Sclerotium rolfsii with 20 kGy irradiated PCNB was about 2.7 times higher than that for treatment with unirradiated PCNB. The survival rate of mouse fibroblast L929 cells treated with 20 kGy irradiated PCNB was about 12.9% higher than that of L929 cells treated with unirradiated PCNB. Additionally, after 20 kGy irradiation, less than 5% reduction of contents of ginsenoside Rb1 and Re were observed, and amounts of ginsenosides Rc, Rd, and Rg1 were not reduced significantly. The minimal gamma dose for microbial decontamination was 10 kGy. Therefore, gamma irradiation can be used for both PCNB photodegradation and microbial decontamination of ginseng without obvious loses of ginsenoside contents.

  3. Application of the photo-fenton process to the mineralization of phthalic anhydride in aqueous medium

    International Nuclear Information System (INIS)

    Trabelsi Souissi, Souhaila; Oturan, N.; Oturan, M. A; Bellakhal, N.

    2009-01-01

    A photochemical method for the oxidation of persistent organic pollutants (POPs) present in liquid effluents of plastic industry is described. This method, called p hoto-Fenton , involves the generation of hydroxyl radicals by coupling the Fenton reaction and photochemistry, .OH radicals thus formed react rapidly with organic pollutants leading to their oxidation until their total mineralization. In this study, we applied the photo-Fenton process for the removal of phthalic anhydride (plasticizer). In this way, an optimization of experimental parameters (namely the ratio R = [H 2 O 2 ]/[Fe 3+ ] and Fe 3+ initial concentration) was performed. Under optimal conditions, the kinetic of mineralization of phthalic anhydride by .OH has been studied. All results confirm the efficiency of photo-Fenton process for the decontamination of liquid effluents loaded with plasticizers.

  4. Decontaminating method for radioactive contaminant

    International Nuclear Information System (INIS)

    Suzuki, Ken-ichi.

    1994-01-01

    After decontamination of radioactive contaminates with d-limonene, a radioactive material separating agent not compatible with liquid wastes caused by decontamination is added to the liquid wastes. Then after stirring, they are stood still to be separated into two phases, and the radioactive materials in the liquid waste phase caused by decontamination are transferred to the phase of the radioactive material separating agent. With such procedures, they can satisfactorily be separated into two phases of d-limonene and the radioactive material separating agent. Further, d-limonene remaining after the separation can be used again as a decontaminating agent for radioactive contaminates. Therefore, the amount of d-limonene to be used can be reduced, to lower the cost for cleaning, thereby enabling to reduce the amount of radioactive wastes formed. (T.M.)

  5. Green methodology for the recovery of Cr (VI from tannery effluent using newly synthesized quaternary ammonium salt

    Directory of Open Access Journals (Sweden)

    K.S. Yoganand

    2017-02-01

    Full Text Available Leather tanning industries release effluents into the river through various canals. These effluents contain chromium (VI contaminating the river and the ground water as well. To fix a solution for this issue a simple and selective solvent extraction method has been applied by using a newly synthesized quaternary ammonium salt viz 2-benzoylethylheptyldimethylammonium bromide. By varying the parameters such as quaternary ammonium salts, sulfuric acid, pH, solvents, equilibration time and aqueous organic ratio the extraction efficiency has been determined.

  6. Site decontamination

    International Nuclear Information System (INIS)

    Bicker, A.E.

    1981-01-01

    Among the several DOE sites that have been radiologically decontaminated under the auspices of the Nevada Operations Office are three whose physical characteristics are unique. These are the Tatum Dome Test Site (TDTS) near Hattiesburg, Mississippi; a location of mountainous terrain (Pahute Mesa) on the Nevada Test Site; and the GNOME site near Carlsbad, New Mexico. In each case the contamination, the terrain, and the climate conditions were different. This presentation includes a brief description of each site, the methods used to perform radiological surveys, the logistics required to support the decontamination (including health physics and sample analysis), and the specific techniques used to reduce or remove the contamination

  7. De-contamination of pesticide residues in food by ionizing radiation

    International Nuclear Information System (INIS)

    Basfar, Ahmed A.; Mohamed, Khaled A.; Al-Saqer, Omar A.

    2012-01-01

    The role of gamma irradiation on removal of pesticides in aqueous solutions or in vegetables and fruits was investigated. Radiation - induced decontamination of pesticides is generally greater in aqueous solutions than in selected vegetables and fruits. Residues of malathion (0.5 ppm in potatoes, 8 ppm in onions and dates), pirimiphos-methyl (1 ppm in onions and grapes) and cypermethrin (0.05 ppm in potatoes and 0.1 ppm in onions) were not reduced to below maximum residue limits (MRLs) for irradiation doses up to 1 kGy. The same trend was observed when irradiation was performed for grapes fortified with malathion (8 ppm) and cypermethrin (2 ppm) for absorbed doses up to 2 kGy. Ionizing radiation reduced the residues of pirimiphos-methyl (0.05 ppm in potatoes at1 kGy, 1 ppm in grapes at 2 kGy and 0.1 ppm in dates at1 kGy), malathion (8 ppm in grapes at 7 kGy) and cypermethrin (2 ppm in grapes at 7 kGy) to below maximum residue limits (MRLs). - Highlights: ► The role of irradiation on removal of pesticides in aqueous solutions or in food products was investigated. ► Radiation-induced removal of pesticides is generally greater in aqueous solutions than in food products. ► Radiation can reduce the pirimiphos-methyl in potatoes, grapes and dates to below MRLs. ► Radiation can reduce the malathion and cypermethrin in grapes to below MRLs. ► Radiation is used for dual objectives of reducing pesticide residues and improving food safety.

  8. Treatment of wastes arising from decontamination process using citric acid as a decontaminate agent

    International Nuclear Information System (INIS)

    Mierzwa, J.C.; Riella, H.G.; Carvalho, E.U. de

    1993-01-01

    Wastes arising from equipment decontamination processes from nuclear fuel cycle facilities at Coordenacao de Projetos Especiais - Comissao Nacional de Energia Nuclear, Sao Paulo (COPESP-CNEN/SP) has been studied after using citric acid as a decontaminate agent. Precipitation of uranium and metallic impurities resulted from use of sodium hydroxide or calcium oxide plus a flocculation agent. The removal efficient of uranium was 95% and 99% for sodium hydroxide and calcium oxide respectively. The results shows that this process can be used to test wastes from decontamination processes which use citric acid. (B.C.A.). 03 refs, 08 figs, 04 tabs

  9. CB decontamination for first responders

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, M.D.G.; Purdon, J.G.; Burczyk, A. [Defence Research and Development Canada Suffield, Ralston, AB (Canada)

    2006-07-01

    The Universal Containment System (UCS) is designed to contain, mitigate and decontaminate chemical, biological and radiological warfare agents. The UCS consists of a lightweight, tent-like enclosure filled with a water-based surface decontaminating foam (SDF). The Canadian government funded a project to advance the understanding of the behaviour of the UCS. This paper described the success of the project as well as the technological advances in the UCS formulation and equipment. Vapour desorption experiments were conducted in which SDF was applied onto 12 surfaces found in a typical office environment. Both mustard and nerve agent were studied on the test surfaces. Both scrubbing and non-scrubbing decontamination methods were tested. SDF effectively decontaminated the non-porous substances, particularly when the scrubbing procedure was used. Results were more complicated for the non-porous samples. A dye added to the agent was useful for determining the fate of the agent. Liquid phase studies were conducted in which the reaction between SDF and various agents were studied in the liquid phase in order to estimate the rate of reaction, the stoichiometry and the reaction products formed. Both SDF and the commercial decontamination agent CASCAD were found to effectively kill 100 per cent of anthrax spores. The significance of this project to first responders was considerable. Changes to the formulation and equipment of UCS will increase its usefulness and safety. Users will also have a better knowledge of the amount of decontamination needed for complete effectiveness in specific situations. Recommendations have been made for use of the product on a range of indoor surfaces. Field trials have shown the blast mitigation and agent decontamination ability of the foam under explosive situations. 15 refs., 4 tabs.

  10. Decontaminating lead bricks and shielding

    International Nuclear Information System (INIS)

    Lussiez, G.W.

    1993-01-01

    Lead used for shielding is often surface contaminated with radionuclides and is therefore a Resource Conservation and Recovery Act (RCRA) D008 mixed waste. The technology-based standard for treatment is macroencapsulation. However, decontaminating and recycling the clean lead is a more attractive solution. Los Alamos National Lab. decontaminates material and equipment contaminated with radioisotopes. Decontaminating lead poses special problems because of the RCRA hazard classification and the size of the inventory, now about 100 metric tons and likely to grow substantially because of planned decommissioning operations. This lead, in the form of bricks and other shield shapes, is surface contaminated with fission products. One of the best methods for decontaminating lead is removing the thin superficial layer of contamination with an abrasive medium under pressure. For lead, a mixture of alumina with water and air at about 280 kPa (40 psig) rapidly and effectively decontaminates the lead. The abrasive medium is sprayed onto the lead in a sealed-off area. The slurry of abrasive and particles of lead falls through a floor grating and is collected in a pump. A pump sends the slurry mixture back to the spray gun, creating a continuous process

  11. DECONTAMINATION TECHNOLOGIES FOR FACILITY REUSE

    International Nuclear Information System (INIS)

    Bossart, Steven J.; Blair, Danielle M.

    2003-01-01

    As nuclear research and production facilities across the U.S. Department of Energy (DOE) nuclear weapons complex are slated for deactivation and decommissioning (D and D), there is a need to decontaminate some facilities for reuse for another mission or continued use for the same mission. Improved technologies available in the commercial sector and tested by the DOE can help solve the DOE's decontamination problems. Decontamination technologies include mechanical methods, such as shaving, scabbling, and blasting; application of chemicals; biological methods; and electrochemical techniques. Materials to be decontaminated are primarily concrete or metal. Concrete materials include walls, floors, ceilings, bio-shields, and fuel pools. Metallic materials include structural steel, valves, pipes, gloveboxes, reactors, and other equipment. Porous materials such as concrete can be contaminated throughout their structure, although contamination in concrete normally resides in the top quarter-inch below the surface. Metals are normally only contaminated on the surface. Contamination includes a variety of alpha, beta, and gamma-emitting radionuclides and can sometimes include heavy metals and organic contamination regulated by the Resource Conservation and Recovery Act (RCRA). This paper describes several advanced mechanical, chemical, and other methods to decontaminate structures, equipment, and materials

  12. Liquid decontaminants for nuclear applications

    International Nuclear Information System (INIS)

    Henning, Klaus; Gojowczyk, Peter

    2011-01-01

    Decontaminants used in the nuclear field must meet a variety of requirements. On the one hand, the washing process must remove radioactive contamination and conventional dirt from the items washed. On the other hand, subsequent disposal of the washing water arisings must be feasible by the usual waste disposal pathway. One aspect of particular importance is unproblematic treatment of the radioactively contaminated waste water, as a rule low to medium active, whose final storage must be ensured. Decontaminants must not impair waste treatment processes, such as evaporation, filtration, and centrifuging, as well as further treatment of the concentrates and residues arising which are worked into matrix materials (cementation, bituminization), in drum drying or roller mill drying. For reasons of safety at work and environmental quality, also aspects of human toxicology and ecotoxicology must be taken into account. In this way, handling decontaminants will not jeopardize the health of personnel or cause potential long-term environmental damage. Liquid decontaminants, compared to powders, offer the advantage of automatic dosage. The liquid product is dosed accurately as a function of the washing program used. Liquid decontaminants can be handled safely in hot laundries without causing skin and eye contacts. (orig.)

  13. Decontamination of skin in emergency situation

    International Nuclear Information System (INIS)

    Harase, Chieko

    1988-01-01

    The report briefly discusses the organization of decontamination personnel and facilities to be used for decontamination in the event of an emergency, and outlines the author's experience in carrying out decontamination of the skin of tourists who came back to Japan after staying in Kiev at the time of the accident at Chernobyl (about 150 km away from Kiev). In Japan at present, no nuclear facilities seem to have sufficient personnel who are in charge of skin decontamination activities required in the event of an emergency, and emergency measures are generally limited to the development of emergency plans and implementation of drills. It is necessary to establish training courses for medical doctors and other medical personnel. Each plant has plans for skin decontamination procedures designed for professional workers in the plant. Plans should also be established for general people who might suffer skin decontamination in the event of an accident. What is the most important is to ease their anxiety about the contamination of their skin. The procedures, including washing and shampooing, used for the tourist returning from Kiev are described, and some problems encountered or expected to occur in similar cases are outlined and discussed. (Nogami, K.)

  14. Decontamination strategies in contaminated settlement

    International Nuclear Information System (INIS)

    Hubert, P.; Jouve, A.; Tallec, V. Le

    1996-01-01

    Six years after the Chernobyl accident, decontamination actions had been completed in many places, the contamination could be considered as fixed, especially on urban surfaces and the social situation was felt to be stabilized. Under those conditions the efficiency of the 'classical' decontamination techniques was under question, it was worthwhile to look at new specific techniques. Besides it was necessary to discuss the interest of new decontamination actions in settlements. The European Union (EU) sponsored a project ECP 4 in order to look at the opportunities for further dose reduction actions in the contaminated territories of the three republics affected by the accident. The objective was to provide a local decision maker, faced with many alternatives for decontamination, with all the elements for determining what to do according to the various objectives he might pursue. The main results are presented here. (author)

  15. Random Vibration Analysis of the XM2l Decontaminant Pumper Module of the Modular Decontamination System

    National Research Council Canada - National Science Library

    Colclough, Stephen

    1998-01-01

    The XM21 Decontaminant Pumper module of the Modular Decontamination System was analyzed using finite element analysis techniques to show why the first design iteration passed transportation vibration...

  16. Decommissioning and Decontamination

    International Nuclear Information System (INIS)

    Massaut, V.

    2000-01-01

    The objectives of SCK-CEN's decommissioning and decontamination programme are (1) to develop, test and optimise the technologies and procedures for decommissioning and decontamination of nuclear installations in order to minimise the waste arising and the distributed dose; (2) to optimise the environmental impact; (3) to reduce the cost of the end-of-life of the installation; (4) to make these new techniques available to the industry; (5) to share skills and competences. The programme and achievements in 1999 are summarised

  17. Nova target chamber decontamination study

    International Nuclear Information System (INIS)

    1979-05-01

    An engineering study was performed to determine the most effective method for decontamination of the Nova target chamber. Manual and remote decontamination methods currently being used were surveyed. In addition, a concept that may not require in-situ decontamination was investigated. Based on the presently available information concerning material and system compatibility and particle penetration, it is recommended that a system of removable aluminum shields be considered. It is also recommended that a series of tests be performed to more precisely determine the vacuum compatibility and penetrability of other materials discussed in this report

  18. Skin decontamination: principles and perspectives.

    Science.gov (United States)

    Chan, Heidi P; Zhai, Hongbo; Hui, Xiaoying; Maibach, Howard I

    2013-11-01

    Skin decontamination is the primary intervention needed in chemical, biological and radiological exposures, involving immediate removal of the contaminant from the skin performed in the most efficient way. The most readily available decontamination system on a practical basis is washing with soap and water or water only. Timely use of flushing with copious amounts of water may physically remove the contaminant. However, this traditional method may not be completely effective, and contaminants left on the skin after traditional washing procedures can have toxic consequences. This article focuses on the principles and practices of skin decontamination.

  19. Iron-montmorillonite clays as active sorbents for the decontamination of hazardous chemical warfare agents.

    Science.gov (United States)

    Carniato, F; Bisio, C; Evangelisti, C; Psaro, R; Dal Santo, V; Costenaro, D; Marchese, L; Guidotti, M

    2018-02-27

    A class of heterogeneous catalysts based on commercial bentonite from natural origin, containing at least 80 wt% of montmorillonite clay, was designed to transform selectively and under mild conditions toxic organosulfur and organophosphorus chemical warfare agents into non-noxious products with a reduced impact on health and environment. The bentonite from the natural origin was modified by introducing iron species and acid sites in the interlayer space, aiming to obtain a sorbent with strong catalytic oxidising and hydrolytic properties. The catalytic performance of these materials was evaluated in the oxidative abatement of (2-chloroethyl)ethyl sulfide (CEES), a simulant of sulfur mustard, in the presence of aqueous hydrogen peroxide as an oxidant. A new decontamination formulation was, moreover, proposed and obtained by mixing sodium perborate, as a solid oxidant, to iron-bentonite catalysts. Solid-phase decontamination tests, performed on a cotton textile support contaminated with organosulfide and organophosphonate simulant agents revealed the good activity of the solid formulation, especially in the in situ detoxification of blistering agents. Tests carried out on the real blistering warfare agent, sulfur mustard (HD agent), showed that, thanks to the co-presence of the iron-based clay together with the solid oxidant component, a good decontamination of the test surface from the real warfare agent could be achieved (80% contaminant degradation, under ambient conditions, in 24 h).

  20. Building surface decontamination for chemical counter-terrorism

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, S.; Thouin, G.; Kuang, W. [SAIC Canada, Ottawa, ON (Canada); Volchek, K.; Fingas, M.; Li, K. [Environment Canada, Ottawa, ON (Canada). Emergencies Science and Technology Division, Environmental Technology Centre, Science and Technology Branch

    2006-07-01

    A test method to compare and evaluate surface decontamination methods for buildings affected by chemical attacks was developed. Decontamination techniques generally depend on the nature and quantity of the weapon agent, the type of construction material and the location. Cleanup methods can be either physical, chemical or biological. This paper addressed chemical decontamination methods which use reactants to change the molecular structure of the contaminant. Peroxycarboxylic and peroxyacetic acids (PAA) are being used increasingly for both disinfection and environmental protection. In this study, 4 materials were chosen to represent common building materials. Samples were spiked with 10 mg of pesticides such as malathion and diazinon. Decontamination agents included the commercial decontamination agent CASCAD prepared in liquid form, a chemical preparation of PAA, and reagent grade peroxypropionic acid (PPA). The newly developed surface decontamination procedure can evaluate and compare the effectiveness of different chemical decontamination agents. The procedures were used on porous ceiling tile and carpet as well as on non-porous floor tile and painted steel surfaces. Rinse water was collected and analyzed in order to determine if decontamination was a result of chemical destruction or mechanical removal. The extraction efficiencies were found to be acceptable for all materials, with the exception of the highly porous ceiling tile. The extraction of diazinon from all surfaces was less efficient than the extraction of malathion. Results suggest that the performance of decontamination agents can be improved by repeated application of the decontamination agent, along with greater volumes and a combination of chemical and mechanical actions. It was also suggested that breakdown methods and wastewater treatment procedures should be developed because hazardous byproducts were detected in many samples. 18 refs., 1 tab., 17 figs.

  1. Decontamination of radioactive cesium in soil using nano-size metallic calcium dispersing

    International Nuclear Information System (INIS)

    Mitoma, Yoshiharu; Fukuoka, Takezo; Matsue, Hideaki; Kobayashi, Hidemasa; Shiraishi, Hiroaki; Kajitani, Mikio

    2013-01-01

    In Japan, the major concern on radioactive cesium ( 134 Cs and 137 Cs) deposition and soil contamination due to the emission form the Fukushima Dai-ichi nuclear power plant showed up after a massive quake on March 11, 2011. Soil contamination with radioactive cesium has a long-term radiological impact due to its long half-life (30 years for 137 Cs) and its high biological hazard. Therefore, much attention has been paid to decontaminate Cs-contaminated soil with washing and/or extraction by adopting solvents. However, such wet methods have some disadvantages, i.e. forming of secondary effluents and additional cost for their treatment. We have recently shown that the nano-size metallic calcium/calcium oxide/iron dispersing mixture (Fe-nCa) is most effective for heavy metals immobilization and volume reduction method under dry condition. Thus, we applied this method to treat real radioactive cesium contaminated soils in dry condition. Simple stirring of the contaminated soil with Fe-nCa achieved about above 90% of radioactive Cs decontamination rate and the volume reduction level also reached around 50-60%. In this paper, we showed the effectiveness of a Fe-nCa method for the rapid remediation and volume reduction method of real radioactive cesium contaminated soils under dry conditions and our challenges for sophistication applying machine and reagents. (author)

  2. Activated sludge respirometry to assess solar detoxification of a metal finishing effluent

    International Nuclear Information System (INIS)

    Santos-Juanes, L.; Amat, A.M.; Arques, A.; Bernabeu, A.; Silvestre, M.; Vicente, R.; Ano, E.

    2008-01-01

    Inhibition of the respiration of activated sludge has been tested as a convenient method to estimate toxicity of aqueous solutions containing copper and cyanide, such as metal finishing effluents; according to this method, an EC 50 of 0.5 mg/l was determined for CN - and 3.0 mg/l for copper. Solar detoxification of cyanide-containing solutions was studied using TiO 2 , but this process was unfavourable because of the inhibitory role that plays the copper ions present in real effluents on the oxidation of cyanide. On the other hand, the oxidative effect of hydrogen peroxide was greatly enhanced by Cu 2+ and solar irradiation, as complete elimination of free and complexed cyanide could be accomplished, together with precipitation of copper, in experiments carried out at pilot plant scale with real metal finishing effluents. Under these conditions, total detoxification was achieved according to respirometric measurements although some remaining toxicity was determined by more sensitive Vibrio fischeri luminescent assay

  3. Activated sludge respirometry to assess solar detoxification of a metal finishing effluent

    Energy Technology Data Exchange (ETDEWEB)

    Santos-Juanes, L.; Amat, A.M. [Departamento de Ingenieria Textil y Papelera, Escuela Politecnica Superior de Alcoy, Universidad Politecnica de Valencia, Plaza Ferrandiz y Carbonell s/n, E-03801 Alcoy (Spain); Arques, A. [Departamento de Ingenieria Textil y Papelera, Escuela Politecnica Superior de Alcoy, Universidad Politecnica de Valencia, Plaza Ferrandiz y Carbonell s/n, E-03801 Alcoy (Spain)], E-mail: aarques@txp.upv.es; Bernabeu, A.; Silvestre, M.; Vicente, R. [Departamento de Ingenieria Textil y Papelera, Escuela Politecnica Superior de Alcoy, Universidad Politecnica de Valencia, Plaza Ferrandiz y Carbonell s/n, E-03801 Alcoy (Spain); Ano, E. [Departamento de Gestion e Innovacion, Area de producto y desarrollo sostenible, Asociacion de Investigacion de la Industria del Juguete, Conexas y Afines (AIJU), Avda. de la industria, 23, 03440 Ibi (Spain)], E-mail: m.ambiente@aiju.info

    2008-05-30

    Inhibition of the respiration of activated sludge has been tested as a convenient method to estimate toxicity of aqueous solutions containing copper and cyanide, such as metal finishing effluents; according to this method, an EC{sub 50} of 0.5 mg/l was determined for CN{sup -} and 3.0 mg/l for copper. Solar detoxification of cyanide-containing solutions was studied using TiO{sub 2}, but this process was unfavourable because of the inhibitory role that plays the copper ions present in real effluents on the oxidation of cyanide. On the other hand, the oxidative effect of hydrogen peroxide was greatly enhanced by Cu{sup 2+} and solar irradiation, as complete elimination of free and complexed cyanide could be accomplished, together with precipitation of copper, in experiments carried out at pilot plant scale with real metal finishing effluents. Under these conditions, total detoxification was achieved according to respirometric measurements although some remaining toxicity was determined by more sensitive Vibrio fischeri luminescent assay.

  4. Excimer laser decontamination

    Science.gov (United States)

    Sentis, Marc L.; Delaporte, Philippe C.; Marine, Wladimir; Uteza, Olivier P.

    2000-04-01

    The application of excimer laser ablation process to the decontamination of radioactive surfaces is discussed. This technology is very attractive because it allows to efficiently remove the contaminated particles without secondary waste production. To demonstrate the capability of such technology to efficiently decontaminate large area, we studied and developed a prototype which include a XeCl laser, an optical fiber delivery system and an ablated particles collection cell. The main physical processes taking place during UV laser ablation will be explained. The influence of laser wavelength, pulse duration and absorption coefficient of material will be discussed. Special studies have been performed to understand the processes which limit the transmission of high average power excimer laser through optical fiber, and to determine the laser conditions to optimize the value of this transmission. An in-situ spectroscopic analysis of laser ablation plasma allows the real time control of the decontamination. The results obtained for painting or metallic oxides removal from stainless steel surfaces will be presented.

  5. Analysis of waste management issues arising from a field study evaluating decontamination of a biological agent from a building.

    Science.gov (United States)

    Lemieux, P; Wood, J; Drake, J; Minamyer, S; Silvestri, E; Yund, C; Nichols, T; Ierardi, M; Amidan, B

    2016-01-01

    The Bio-response Operational Testing and Evaluation (BOTE) Project was a cross-government effort designed to operationally test and evaluate a response to a biological incident (release of Bacillus anthracis [Ba] spores, the causative agent for anthrax) from initial public health and law enforcement response through environmental remediation. The BOTE Project was designed to address site remediation after the release of a Ba simulant, Bacillus atrophaeus spp. globigii (Bg), within a facility, drawing upon recent advances in the biological sampling and decontamination areas. A key component of response to a biological contamination incident is the proper management of wastes and residues, which is woven throughout all response activities. Waste is generated throughout the response and includes items like sampling media packaging materials, discarded personal protective equipment, items removed from the facility either prior to or following decontamination, aqueous waste streams, and materials generated through the application of decontamination technologies. The amount of residual contaminating agent will impact the available disposal pathways and waste management costs. Waste management is an integral part of the decontamination process and should be included through "Pre-Incident" response planning. Overall, the pH-adjusted bleach decontamination process generated the most waste from the decontamination efforts, and fumigation with chlorine dioxide generated the least waste. A majority of the solid waste generated during pH-adjusted bleach decontamination was the nonporous surfaces that were removed, bagged, decontaminated ex situ, and treated as waste. The waste during the two fumigation rounds of the BOTE Project was associated mainly with sampling activities. Waste management activities may represent a significant contribution to the overall cost of the response/recovery operation. This paper addresses the waste management activities for the BOTE field test

  6. Testing and evaluation of eight decontamination chemicals

    International Nuclear Information System (INIS)

    Demmer, R.

    1994-09-01

    This report covers experimental work comparing eight different decontamination chemicals. Seven of these chemicals have some novelty, or are not currently in use at the ICPP. The eighth is a common ICPP decontamination reagent used as a baseline for effective comparison. Decontamination factors, waste generation values, and corrosion rates are tabulated for these chemicals. Recommendations are given for effective methods of non-sodium or low-sodium decontamination chemicals. The two most effective chemical for decontamination found in these test were a dilute hydrofluoric and nitric acid (HF/HNO 3 ) mixture and a fluoroboric acid solution. The fluoroboric acid solution (1 molar) was by far the most effective decontamination reagent, but suffered the problem of generating significant final calcine volume. The HF/HNO 3 solution performed a very good decontamination of the SIMCON coupons while generating only small amounts of calcine volume. Concentration variables were also tested, and optimized for these two solutions. Several oxidation/reduction decon chemical systems were also tested. These systems were similar to the TURCO 4502 and TURCO 4521 solutions used for general decontamination at the ICPP. A low sodium alternative, nitric acid/potassium permanganate, to the ''high sodium'' TURCO 4502 was tested extensively, optimized and recommended for general ICPP use. A reductive chemical solution, oxalic acid/nitric acid was also shown to have significant advantages

  7. New quaternary ammonium salts based decontaminants

    Directory of Open Access Journals (Sweden)

    Diana M. Popescu

    2014-06-01

    Full Text Available Decontamination after terrorist attacks or industrial accidents with biological and/or chemical agents („bio-chem“ must be fast and efficient, in order to reduce the number of victims and to eliminate the consequent damages. The decontamination of living biological agents (bacteria, viruses or nonliving ones (toxins, regulators and toxic chemicals could be accomplished by reactions of hydrolysis in various experimental conditions, in particular in alkaline medium, reactions with amines or ammonia, alcohols, phenols etc. and by their transformation into less toxic degradation products. “Bio-chem” intentional or unintentional contamination is a real risk, towards which an effective management must be available to prevent and control it. Decontamination is an essential measure to protect the personnel and the environment. Synthesis and testing of new „bio-chem“ decontaminants, based on quaternary ammonium salts, complete the arsenal of protection against chemical and biological agents. The most effective selected substances could be produced and used for decontamination in accordance with legal procedures

  8. NRC regulations and positions concerning decontamination

    International Nuclear Information System (INIS)

    McCracken, C.

    1982-09-01

    The U.S. Nuclear Regulatory Commission encourages the use of decontamination to reduce man-rem exposure. The Commission feels that there are several processes developed to the point where soft decontamination can be applied to an entire plant in the near future. A utility can do a decontamination under its own licence without coming in for regulatory review if the process does not involve a change in technical specifications for the plant or does not involve unreviewed safety questions. Prior verbal notification is required for some steam generator secondary side cleaning or for decontamination of individual components that have not been removed from the reactor using chemicals not normally added to the reactor coolant. Prior written notification is required for steam generator secondary side crevice cleaning or sludge removal at a dented unit, or for chemical decontamination of reactor coolant systems or safety-related systems using chemicals not normally added to the coolant

  9. Anthrax Sampling and Decontamination: Technology Trade-Offs

    Energy Technology Data Exchange (ETDEWEB)

    Price, Phillip N.; Hamachi, Kristina; McWilliams, Jennifer; Sohn, Michael D.

    2008-09-12

    The goal of this project was to answer the following questions concerning response to a future anthrax release (or suspected release) in a building: 1. Based on past experience, what rules of thumb can be determined concerning: (a) the amount of sampling that may be needed to determine the extent of contamination within a given building; (b) what portions of a building should be sampled; (c) the cost per square foot to decontaminate a given type of building using a given method; (d) the time required to prepare for, and perform, decontamination; (e) the effectiveness of a given decontamination method in a given type of building? 2. Based on past experience, what resources will be spent on evaluating the extent of contamination, performing decontamination, and assessing the effectiveness of the decontamination in abuilding of a given type and size? 3. What are the trade-offs between cost, time, and effectiveness for the various sampling plans, sampling methods, and decontamination methods that have been used in the past?

  10. Effect of Organic Solvents in Preparation of Silica-Based Chemical Gel Decontaminates for Decontamination of Nuclear Facilities

    International Nuclear Information System (INIS)

    Yoon, Suk Bon; Jung, Chong Hun; Kim, Chang Ki; Choi, Byung Seon; Lee, Kune Woo; Moon, Jei Kwon

    2011-01-01

    Decontamination of nuclear facilities is necessary to reduce the radiation field during normal operations and decommissioning of complex equipment such as stainless steel components, other iron-based steel and alloys, metal surfaces, structural materials and so on. Chemical decontamination technology in particular is a highly effective method to remove the radioactive contamination through a chemical dissolution or a redox reaction. However, this method has the serious drawback due to the generation of large amounts of the radioactive liquid wastes. Recently, a few literatures have been reported for the preparation of the chemical gel decontaminants to reduce the amount of the radioactive liquid wastes and to enhance the decontamination efficiency through increasing the contact time between the gels and the radioactive contaminants. In the preparation of the chemical gels, the control of the viscosity highly depends on the amount of a coviscosifier used among the components of the chemical gels consisted of a viscosifier, a coviscosifier, and a chemical decontaminant. In this works, a new effective method for the preparation of the chemical gel was investigated by introducing the organic solvents. The mixture solution of the coviscosifier and organic solvent was more effective in the control of the viscosity compared with that of the coviscosifier only in gels. Furthermore, the decontamination efficiency of the chemical gels measured by using the multi-channel analyzer (MCA) showed the high decontamination factor for Co-60 and Cs-137 contaminated on the surface of the stainless steel 304

  11. An experimental study on decontamination by surface condition

    International Nuclear Information System (INIS)

    Lee, Young Hae

    1974-01-01

    Surface decontamination is one of the very important problem to be completely solved in the isotope laboratory where there is always the possibility of radioactive contamination, i.e., on the floors, walls, working tables and benches etc., Isotope laboratories require surface covering of material which can be easily and effectively decontaminated. These experiment were done to find an effective decontamination procedure for kind of surfaces which usually are found in radioisotope laboratories and the best type of surface material, that is, one which is easily decontaminated from the point of view of radiation health and safely. This study is presented to guide radioisotope laboratories in Korea which may need to renovate existing unsafe facilities. In some contaminated facilities entirely new installations may be required. Twelve types of surface material are used for study in this experiment. These include 10 cm square of stainless steel, aluminum, ceramic and mosaic tiles, glass, acrylic, formica board, asphalt tile and coated wood with 4 kinds of paints. Stepwise decontamination was performed with various decontamination procedures following a spill of I 1 31 on the center of the surface material being tested. Twelve different decontamination procedures were tested. These included wet wiping with water and detergent, or dry wiping, or removing with gummed paper. Additional chemical procedures used 10% solution of hydrochloric acid, or surface acid, or ammonium citrate, or potassium iodide, or acetone or carbon tetrachloride. The final testing method was abrasion of the test surfaces. Brief analysis of experimental results on the decontaminability on the tested surface showed: 1. Metallic surfaces such as stainless steel or aluminum, or glass, or a piece of ceramic tile or acrylic are recommended as the surface materials for isotope laboratories because these are easily decontaminated by wet wiping only. 2. Formica board, asphalt tile and wood are not easily

  12. Decontamination and decommissioning techniques for research reactors

    International Nuclear Information System (INIS)

    Oh, Won Zin; Won, H. J.; Jung, C. H.; Choi, W. K.; Kim, G. N.; Lee, K. W.

    2002-05-01

    Evaluation of soil decontamination process and the liquid decontamination waste treatment technology are investigation of organic acid as a decontamination agent, investigation of the liquid waste purification process and identification of recycling the decontamination agents. Participation on IAEA CRP meeting are preparation of IAEA technical report on 'studies on decommissioning of TRIGA reactors and site restoration technologies' and exchange the research result, technology, experience and safety regulation of the research reactor D and D of USA, Great Britain, Canada, Belgium, Italy, India and so forth

  13. Theory of soil decontamination in mixing liquid

    International Nuclear Information System (INIS)

    Polyakov, A.S.; Emets, E.P.; Poluehktov, P.P.; Rybakov, K.A.

    1997-01-01

    The theory of soil decontamination from radioactive pollution in mixing liquid flow is described. It is shown that there exists the threshold intensity of liquid mixing up to which there is no decontamination. Beyond the threshold and by increasing the mixing intensity the decontamination of large soil fractions is allowable whereby the higher is the mixing intensity and lower is the soil contamination, the laser is the characteristic decontamination time. The above theory is related to cases of uniform pollution of the particles surface

  14. Organic decontamination by ion exchange

    International Nuclear Information System (INIS)

    Wilson, T.R.

    1994-01-01

    This study has successfully identified ion exchanger media suitable for decontaminating the 5500-gallon organic layer in Tank 241-C-103. Decontamination of radionuclides is necessary to meet shipping, incinerator site storage, and incineration feed requirements. The exchanger media were identified through a literature search and experiments at the Russian Institute for Physical Chemistry. The principal radionuclides addressed are Cs-137 and Sr-90. Recommendations for an experimental program plan conclude the discussion. The experimental program would provide the data necessary for plant design specifications for a column and for ion exchange media to be used in decontaminating the organic layer

  15. Decontaminating lead bricks and shielding

    International Nuclear Information System (INIS)

    Lussiez, G.

    1994-01-01

    Lead used for shielding is often surface contaminated with radioisotopes and is therefore a RCRA D008 mixed waste. The technology-based standard for treatment is macroencapsulation. However, decontaminating and recycling the clean lead is a more attractive solution. Los Alamos National Laboratory decontaminates material and equipment contaminated with radioisotopes. Decontaminating lead poses special problems because of the RCRA hazard classification and the size of the inventory, now about 50 tons and likely to grow substantially of planned decommissioning operations. Thus lead, in the form of bricks and other shield shapes, is surface contaminated with fission products. One of the best methods for contaminated lead is removing the superficial layer of contamination with an abrasive medium under pressure. For lead, a mixture of alumina with water and air at about 40 psig rapidly and effectively decontaminates the lead. The abrasive medium is sprayed onto the lead in a scaled-off area. The slurry of abrasive and particles of lead falls through a floor and is collected in a sump. A pump sends the slurry mixture back to the spray gun, creating a continuous process. The process generates small volumes of lead slurry that can be solidified and, because it passes the TCLP, is not a mixed waste. The decontaminated lead can be released for recycling

  16. Stabilization of Savannah River National Laboratory (SRNL) Aqueous Waste by Fluidized Bed Steam Reforming (FBSR)

    International Nuclear Information System (INIS)

    Jantzen, C

    2004-01-01

    The Savannah River National Laboratory (SRNL) is a multidisciplinary laboratory operated by Westinghouse Savannah River Company (WSRC) in Aiken, South Carolina. Research and development programs have been conducted at SRNL for ∼50 years generating non-radioactive (hazardous and non-hazardous) and radioactive aqueous wastes. Typically the aqueous effluents from the R and D activities are disposed of from each laboratory module via the High Activity Drains (HAD) or the Low Activity Drains (LAD) depending on whether they are radioactive or not. The aqueous effluents are collected in holding tanks, analyzed and shipped to either H-Area (HAD waste) or the F/H Area Effluent Treatment Facility (ETF) (LAD waste) for volume reduction. Because collection, analysis, and transport of LAD and HAD waste is cumbersome and since future treatment of this waste may be curtailed as the F/H-Area evaporators and waste tanks are decommissioned, SRNL laboratory operations requested several proof of principle demonstrations of alternate technologies that would define an alternative disposal path for the aqueous wastes. Proof of principle for the disposal of SRNL HAD waste using a technology known as Fluidized Bed Steam Reforming (FBSR) is the focus of the current study. The FBSR technology can be performed either as a batch process, e.g. in each laboratory module in small furnaces with an 8'' by 8'' footprint, or in a semi-continuous Bench Scale Reformer (BSR). The proof of principle experiments described in this study cover the use of the FBSR technology at any scale (pilot or full scale). The proof of principle experiments described in this study used a non-radioactive HAD simulant

  17. Studies on residue-free decontaminants for chemical warfare agents.

    Science.gov (United States)

    Wagner, George W

    2015-03-17

    Residue-free decontaminants based on hydrogen peroxide, which decomposes to water and oxygen in the environment, are examined as decontaminants for chemical warfare agents (CWA). For the apparent special case of CWA on concrete, H2O2 alone, without any additives, effectively decontaminates S-2-(diisopropylamino)ethyl O-ethyl methylphosphonothioate (VX), pinacolyl methylphosphorofluoridate (GD), and bis(2-choroethyl) sulfide (HD) in a process thought to involve H2O2 activation by surface-bound carbonates/bicarbonates (known H2O2 activators for CWA decontamination). A plethora of products are formed during the H2O2 decontamination of HD on concrete, and these are characterized by comparison to synthesized authentic compounds. As a potential residue-free decontaminant for surfaces other than concrete (or those lacking adsorbed carbonate/bicarbonate) H2O2 activation for CWA decontamination is feasible using residue-free NH3 and CO2 as demonstrated by reaction studies for VX, GD, and HD in homogeneous solution. Although H2O2/NH3/CO2 ("HPAC") decontaminants are active for CWA decontamination in solution, they require testing on actual surfaces of interest to assess their true efficacy for surface decontamination.

  18. Electrochemical decontamination system for actinide processing gloveboxes

    International Nuclear Information System (INIS)

    Wedman, D.E.; Lugo, J.L.; Ford, D.K.; Nelson, T.O.; Trujillo, V.L.; Martinez, H.E.

    1998-03-01

    An electrolytic decontamination technology has been developed and successfully demonstrated at Los Alamos National Laboratory (LANL) for the decontamination of actinide processing gloveboxes. The technique decontaminates the interior surfaces of stainless steel gloveboxes utilizing a process similar to electropolishing. The decontamination device is compact and transportable allowing it to be placed entirely within the glovebox line. In this way, decontamination does not require the operator to wear any additional personal protective equipment and there is no need for additional air handling or containment systems. Decontamination prior to glovebox decommissioning reduces the potential for worker exposure and environmental releases during the decommissioning, transport, and size reduction procedures which follow. The goal of this effort is to reduce contamination levels of alpha emitting nuclides for a resultant reduction in waste level category from High Level Transuranic (TRU) to low Specific Activity (LSA, less than or equal 100 nCi/g). This reduction in category results in a 95% reduction in disposal and disposition costs for the decontaminated gloveboxes. The resulting contamination levels following decontamination by this method are generally five orders of magnitude below the LSA specification. Additionally, the sodium sulfate based electrolyte utilized in the process is fully recyclable which results in the minimum of secondary waste. The process bas been implemented on seven gloveboxes within LANL's Plutonium Facility at Technical Area 55. Of these gloveboxes, two have been discarded as low level waste items and the remaining five have been reused

  19. New decontamination techniques: chemical gels, electropolishing and abrasives

    International Nuclear Information System (INIS)

    Brunel, G.; Gauchon, J.P.; Kervegant, Y.; Josso, F.

    1991-01-01

    The decommissioning of nuclear installations requires decontamination techniques that are efficient, simple to apply and producing a small amount of wastes, which are easy to process. With a view to this, three decontamination methods, which appear to be particularly suited to decommissioning, have been studied. These three methods are: - spraying of gels carrying chemical decontaminating agents, - electropolishing with a swab device, - abrasives blasting. After parametric tests on non-radioactive and active samples, the industrial application of these methods in the dismantling of installations was studied. These industrial applications concern: - decontamination of pieces coming from the German BWR ISAR by immersion and gel spraying, - decontamination, mainly by gel spraying, and dismantling of the BRENNILIS bituminisation plant, - decontamination of part of the cooling circuit of the graphite gas reactor G2 by gel spraying, - decontamination of a component of the FBR SuperPhenix, using dry abrasives blasting. During the first three applications, generated secondary wastes volume and form were determined. 33 tabs., 16 figs., 12 refs

  20. Decontamination method for radiation contaminated metal

    International Nuclear Information System (INIS)

    Enda, Masami; Hosaka, Katsumi; Sakai, Hitoshi.

    1997-01-01

    An organic acid solution is used as a decontamination liquid, and base materials of radiation contaminated metals are dissolved in the solution. The concentration of the organic acid is measured, and the organic acid is supplied by an amount corresponding to the lowering of the concentration. The decontamination liquid wastes generated during the decontamination step are decomposed, and metals leached in the organic acid solution are separated. With such procedures, contamination intruded into the inside of the mother materials of the metals can be removed, and radioactivity of the contaminated metals such as stainless steels and carbon steels can be eliminated, or the radiation level thereof can be reduced. In addition, the amount of secondary wastes generated along with the decontamination can be suppressed. (T.M.)

  1. Behavior and removal of organic species in the Savannah River Plant effluent treatment facility

    International Nuclear Information System (INIS)

    Oblath, S.B.; Georgeton, G.K.

    1988-01-01

    The effluent treatment facility (ETF) at the Savannah River Plant (SRP) is a new facility designed to treat and decontaminate low-level radioactive wastewater prior to release to the environment. The wastewater is primarily composed of evaporator overheads from the chemical separations and waste handling facilities at SRP. Primarily a 2000 mg/L NaNO 3 solution, the wastewater also contains microcurie-per-liter quantities of radionuclides and milligram-per-liter concentrations of heavy metals and organic components. This paper shows a block diagram of the major process steps. The pH adjustment, filtration, mercury removal, reverse osmosis, and cation-exchange polishing steps give a significant reduction of inorganic species and radionuclide (except trittium) concentrations. The activated carbon removal step was recently added to remove organic species to ensure that the effluent discharge permit limits for oil and grease and biochemical oxygen demand are met. The concentrates and regenerates from each of the treatment steps are further concentrated by evaporation to reduce the volume sufficiently for incorporation into and disposal as a grout

  2. Research program on development of advanced treatment technology for americium-containing aqueous waste in NUCEF

    Energy Technology Data Exchange (ETDEWEB)

    Mineo, Hideaki; Matsumura, Tatsuro; Tsubata, Yasuhiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1996-10-01

    A research program was prepared on the development of an advanced treatment process for the americium-containing concentrated aqueous waste in NUCEF, than allows americium recovery for the reuse and the reduction of TRU waste generation. A preliminary analysis was conducted on the separation requirements based on the components estimated for the waste. An R and D strategy was proposed from the view to reduce TRU waste generated in the processing that the highest priority is given on the control of TRU leakage such as americium into the effluent stream after americium recovery and the minimization of salt used in the separation over the decontamination of impurities from americium. The extraction chromatographic method was selected as a candidate technology for americium separation under the principle to use reagents that are functional in acidic conditions such as bidentate extractants of DHEDECMP, CMPO or diamides, considering the larger flexibilities in process modification and possible multi-component separation with compact equipment and the past achievements on the recovery of kg quantities of americium. Major R and D items extracted are screening and evaluation of extractants for americium and plutonium, optimization of separation conditions, selection of denitration method, equipment developments and development of solidification methods of discarded americium after reuse and of various kinds of separation residues. In order to cope these items, four steps of R and D program were proposed, i.e., fundamental experiment in beaker-scale on screening and evaluation of extractants, flowsheet study in bench-scale using simulated and small amount of americium aqueous waste solution to evaluate candidate process, americium recovery test in iron-shielded cell to be installed in NUCEF. It is objected to make recovery of 100g orders of americium used for research on fundamental TRU fuel properties. (J.P.N.)

  3. Geographic assistance of decontamination strategy elaboration

    International Nuclear Information System (INIS)

    Davydchuk, V.; Arapis, G.

    1996-01-01

    Those who elaborates the strategy of decontamination of vast territories is to take into consideration the heterogeneity of such elements of landscape as relief, lithology, humidity and types of soils and, vegetation, both on local and regional level. Geographic assistance includes evaluation of efficacy of decontamination technologies in different natural conditions, identification of areas of their effective application and definition of ecological damage, estimation of balances of the radionuclides in the landscapes to create background of the decontamination strategy

  4. Facility decontamination technology workshop

    International Nuclear Information System (INIS)

    1980-10-01

    Purpose of the meeting was to provide a record of experience at nuclear facilities, other than TMI-2, of events and incidents which have required decontamination and dose reduction activities, and to furnish GPU and others involved in the TMI-2 cleanup with the results of that decontamination and dose reduction technology. Separate abstracts were prepared for 24 of the 25 papers; the remaining paper had been previously abstracted

  5. Special zone territory decontamination

    International Nuclear Information System (INIS)

    Samojlenko, Yu.N.; Golubev, V.V.

    1989-01-01

    Special zone is the Chernobyl' NPP operating site (OS). OS decontamination is described including reactor ruins from the accident moment. The process was begun from reactor bombardment with absorbing and filtering materials (sand, clay, lead, boron compounds). Then were produced soil shovelling, territory filling by dry concrete and laying concrete layer with thickness up to 300 mm. NPP room and equipment decontamination is described. 3 figs.; 3 tabs

  6. Facility decontamination technology workshop

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-10-01

    Purpose of the meeting was to provide a record of experience at nuclear facilities, other than TMI-2, of events and incidents which have required decontamination and dose reduction activities, and to furnish GPU and others involved in the TMI-2 cleanup with the results of that decontamination and dose reduction technology. Separate abstracts were prepared for 24 of the 25 papers; the remaining paper had been previously abstracted. (DLC)

  7. Criteria and evaluation of three decontamination techniques

    Energy Technology Data Exchange (ETDEWEB)

    Tripp, J.L.

    1994-01-01

    Past decontamination and solvent recovery activities at the Idaho Chemical Processing Plant (ICPP), which is part of the Idaho National Engineering Laboratory (INEL), have resulted in the accumulation of 1.5 million gallons of radioactively contaminated sodium-bearing liquid waste. Future decontamination activities at the ICPP could result in the production of 5 million gallons or more of sodium-bearing waste using the current decontamination techniques of chemical/water flushes and steam jet cleaning. This waste requires a large amount of cold chemical additive to process because the low melting temperatures of sodium and potassium salts cause agglomeration in the bed of the calciner vessel. Criteria have been established for evaluating methods and technologies available for decontaminating equipment and facilities. The criteria were weighted according to their relative importance using a Kepner-Tregoe Problem Solving process. These criteria were used to rank three decontamination techniques new to the ICPP: laser ablation, liquid abrasive blasting and CO{sub 2} pellet blasting, against the standard decontamination techniques of sodium-based chemical cleaning and water/steam jets used.

  8. Criteria and evaluation of three decontamination techniques

    International Nuclear Information System (INIS)

    Tripp, J.L.

    1994-01-01

    Past decontamination and solvent recovery activities at the Idaho Chemical Processing Plant (ICPP), which is part of the Idaho National Engineering Laboratory (INEL), have resulted in the accumulation of 1.5 million gallons of radioactively contaminated sodium-bearing liquid waste. Future decontamination activities at the ICPP could result in the production of 5 million gallons or more of sodium-bearing waste using the current decontamination techniques of chemical/water flushes and steam jet cleaning. This waste requires a large amount of cold chemical additive to process because the low melting temperatures of sodium and potassium salts cause agglomeration in the bed of the calciner vessel. Criteria have been established for evaluating methods and technologies available for decontaminating equipment and facilities. The criteria were weighted according to their relative importance using a Kepner-Tregoe Problem Solving process. These criteria were used to rank three decontamination techniques new to the ICPP: laser ablation, liquid abrasive blasting and CO 2 pellet blasting, against the standard decontamination techniques of sodium-based chemical cleaning and water/steam jets used

  9. Chemical decontamination for decommissioning purposes. (Vigorous decontamination tests of steel samples in a special test loop)

    International Nuclear Information System (INIS)

    Bregani, F.; Pascali, R.; Rizzi, R.

    1984-01-01

    The aim of the research activities described was to develop vigorous decontamination techniques for decommissioning purposes, taking into account the cost of treatment of the radwaste, to achieve possibly unrestricted release of the treated components, and to obtain know-how for in situ hard decontamination. The decontamination procedures for strong decontamination have been optimized in static and dynamic tests (DECO-loop). The best values have been found for: (i) hydrochloric acid: 4 to 5% vol. at low temperature, 0.7 to 1% vol. at high temperature (80 0 C); (ii) hydrofluoric plus nitric acid: 1.5% vol. HF + 5% vol. HNO 3 at low temperature; 0.3 to 0.5% vol. HF + 2.5 to 5% vol. HNO 3 at high temperature. High flow rates are not necessary, but a good re-circulation of the solution is needed. The final contamination levels, after total oxide removal, are in accordance with limits indicated for unrestricted release of materials in some countries. The arising of the secondary waste is estimated. Decontamination of a 10 m 2 surface would typically produce 0.5 to 3.0 kg of dry waste, corresponding to 1.6 to 10 kg of concrete conditioned waste

  10. Fiber-Optic Chemiluminescent Biosensors for Monitoring Aqueous Alcohols and Other Water Quality Parameters

    Science.gov (United States)

    Verostko, Charles E. (Inventor); Atwater, James E. (Inventor); Akse, James R. (Inventor); DeHart, Jeffrey L. (Inventor); Wheeler, Richard R. (Inventor)

    1998-01-01

    A "reagentless" chemiluminescent biosensor and method for the determination of hydrogen peroxide, ethanol and D-glucose in water is disclosed. An aqueous stream is basified by passing it through a solid phase base bed. Luminol is then dissolved in the basified effluent at a controlled rate. Oxidation of the luminol is catalyzed by the target chemical to produce emitted light. The intensity of the emitted light is detected as a measure of the target chemical concentration in the aqueous stream. The emitted light can be transmitted by a fiber optic bundle to a remote location from the aqueous stream for a remote reading of the target chemical concentration.

  11. Pilot-scale ultrafiltration testing for the F and H area effluent treatment facility

    International Nuclear Information System (INIS)

    Kessler, J.L.

    1984-01-01

    An F and H Area Effluent Treatment Facility (F/H ETF) is being designed to treat low activity aqueous effluents which are produced from F and H Area daily operations. The treatment scheme for the F/H ETF will include pretreatment (pH adjustment and filtration) followed by Reverse Osmosis and/or Ion Exchange to remove dissolved species. Several alternative treatment processes are being considered for the F/H ETF. One of the alternatives in the pretreatment step is tubular Ultrafiltration (UF), using a dynamically formed zirconium oxide membrane supported on a porous stainless steel backing. Pilot-scale testing with a single membrane module (13 ft 2 area) and 200-Area effluent simulant has demonstrated that UF is a viable filtration option for the F/H ETF. UF testing at TNX has defined the operating conditions necessary for extended operation and also demonstrated excellent filtration performance (filtrate SDI 2 /day) flux and will provide excellent pretreatment for both reverse osmosis and ion exchange. 2 refs

  12. [Decontamination of chemical and biological warfare agents].

    Science.gov (United States)

    Seto, Yasuo

    2009-01-01

    Chemical and biological warfare agents (CBWA's) are diverse in nature; volatile acute low-molecular-weight toxic compounds, chemical warfare agents (CWA's, gaseous choking and blood agents, volatile nerve gases and blister agents, nonvolatile vomit agents and lacrymators), biological toxins (nonvolatile low-molecular-weight toxins, proteinous toxins) and microbes (bacteria, viruses, rickettsiae). In the consequence management against chemical and biological terrorism, speedy decontamination of victims, facilities and equipment is required for the minimization of the damage. In the present situation, washing victims and contaminated materials with large volumes of water is the basic way, and additionally hypochlorite salt solution is used for decomposition of CWA's. However, it still remains unsolved how to dispose large volumes of waste water, and the decontamination reagents have serious limitation of high toxicity, despoiling nature against the environments, long finishing time and non-durability in effective decontamination. Namely, the existing decontamination system is not effective, nonspecifically affecting the surrounding non-target materials. Therefore, it is the urgent matter to build up the usable decontamination system surpassing the present technologies. The symposiast presents the on-going joint project of research and development of the novel decontamination system against CBWA's, in the purpose of realizing nontoxic, fast, specific, effective and economical terrorism on-site decontamination. The projects consists of (1) establishment of the decontamination evaluation methods and verification of the existing technologies and adaptation of bacterial organophosphorus hydrolase, (2) development of adsorptive elimination technologies using molecular recognition tools, and (4) development of deactivation technologies using photocatalysis.

  13. Decontamination of some urban surfaces

    International Nuclear Information System (INIS)

    Thornton, E.W.

    1988-04-01

    The long-term consequences of external radiation dose to the public could be a cause for concern in the event of a severe accident at a nuclear power plant leading to the release of fission products to the atmosphere and subsequent contamination of buildings, roads and other components of the urban environment. This study has concentrated on the decontamination of building materials contaminated under wet conditions with soluble, ionic radiocaesium. Results are given on the decontamination of building materials contaminated without run-off, on the effects of waiting between contamination and decontamination and on the effect of pre-treatment with an ammonium salt solution. (author)

  14. Decontamination and coating of lead

    International Nuclear Information System (INIS)

    Rankin, W.N.; Bush, S.P.; Lyon, C.E.; Walker, V.

    1988-01-01

    Technology is being developed to decontaminate lead used in shielding applications in contaminated environments for recycle as shieldings. Technology is also being developed to coat either decontaminated lead or new lead before it is used in contaminated environments. The surface of the coating is expected to be much easier to decontaminate than the original lead surface. If contamination becomes severely embedded in the coating and cannot be removed, it can be easily cut with a knife and removed from the lead. The used coating can be disposed of as radioactive (hot hazardous) waste. The lead can then be recoated for further use as a shielding material

  15. Fate of the chemical warfare agent O-ethyl S-2-diisopropylaminoethyl methylphosphonothiolate (VX) on soil following accelerant-based fire and liquid decontamination.

    Science.gov (United States)

    Gravett, M R; Hopkins, F B; Self, A J; Webb, A J; Timperley, C M; Riches, J R

    2014-08-01

    In the event of alleged use of organophosphorus nerve agents, all kinds of environmental samples can be received for analysis. These might include decontaminated and charred matter collected from the site of a suspected chemical attack. In other scenarios, such matter might be sampled to confirm the site of a chemical weapon test or clandestine laboratory decontaminated and burned to prevent discovery. To provide an analytical capability for these contingencies, we present a preliminary investigation of the effect of accelerant-based fire and liquid decontamination on soil contaminated with the nerve agent O-ethyl S-2-diisopropylaminoethyl methylphosphonothiolate (VX). The objectives were (a) to determine if VX or its degradation products were detectable in soil after an accelerant-based fire promoted by aviation fuel, including following decontamination with Decontamination Solution 2 (DS2) or aqueous sodium hypochlorite, (b) to develop analytical methods to support forensic analysis of accelerant-soaked, decontaminated and charred soil and (c) to inform the design of future experiments of this type to improve analytical fidelity. Our results show for the first time that modern analytical techniques can be used to identify residual VX and its degradation products in contaminated soil after an accelerant-based fire and after chemical decontamination and then fire. Comparison of the gas chromatography-mass spectrometry (GC-MS) profiles of VX and its impurities/degradation products from contaminated burnt soil, and burnt soil spiked with VX, indicated that the fire resulted in the production of diethyl methylphosphonate and O,S-diethyl methylphosphonothiolate (by an unknown mechanism). Other products identified were indicative of chemical decontamination, and some of these provided evidence of the decontaminant used, for example, ethyl 2-methoxyethyl methylphosphonate and bis(2-methoxyethyl) methylphosphonate following decontamination with DS2. Sample preparation

  16. Extraction of metals from liquid effluent using modified inorganic ion exchangers

    International Nuclear Information System (INIS)

    Hudson, M.J.

    1993-01-01

    Inorganic ion exchangers such as goethite, titanium (IV) oxide; silica and zeolites have been modified to examine the extraction of ruthenium; technetium and cobalt from liquid effluent. In addition, tin (IV) hydrogenphosphate and antimony hydrogenphosphate have been also examined in the modified and unmodified forms. It has been shown that some of the above reagents are able to remove the required metal ions from aqueous solution at the trace and mg L -1 levels. (author)

  17. Decontamination of radionuclides on construction materials

    International Nuclear Information System (INIS)

    Samuleev, P.V.; Andrews, W.S.; Creber, K.A.M.; Velicogna, D.

    2013-01-01

    A wide variety of materials can become contaminated by radionuclides, either from a terrorist attack or an industrial or nuclear accident. The final disposition of these materials depends, in large part, on the effectiveness of decontamination measures. This study reports on investigations into the decontamination of a selection of building materials. The aim has been to find an effective, easy-to-use and inexpensive decontamination system for radionuclides of cesium and cobalt, considering both the chemical and physical nature of these potential contaminants. The basic method investigated was surface washing, due to its ease and simplicity. In the present study, a basic decontamination formulation was modified by adding isotope-specific sequestering agents, to enhance the removal of cesium(I) and cobalt(II) from such construction materials as concrete, marble, aluminum and painted steel. Spiking solutions contained 134 Cs or 60 Co, which were prepared by neutron activation in the SLOWPOKE-2 nuclear reactor facility at the Royal Military College of Canada. Gamma spectroscopy was used to determine the decontamination efficiency. The results showed that the addition of sequestering agents generally improved the radiological decontamination. Although the washing of both cesium and cobalt from non-porous materials, such as aluminum and painted steel, achieved a 90-95 % removal, the decontamination of concrete and marble was more challenging, due to the porous nature of the materials. Nevertheless, the removal efficiency from 6-year-old concrete increased from 10 % to approximately 50 % for cobalt(II), and from 18 to 55 % for cesium(I), with the use of isotope binding agents, as opposed to a simple water wash. (author)

  18. Study of the physicochemical properties of the interface between titanium dioxide and various aqueous solutions

    International Nuclear Information System (INIS)

    Mazilier, C.

    1988-01-01

    The aim of this work is the study of ion exchange capacity of titanium dioxide in view of high temperature water purification and radioactive effluent processing because of its resistance to heat and radiations. Titanium dioxide is obtained by alkaline hydrolysis of an aqueous solution of Ti (IV) and is characterized by analytical physical chemistry methods. Interface between Ti0 2 and simple aqueous solutions (electrolytes) is more particularly studied by potentiometry [fr

  19. Municipalities' opinions about decontamination in special decontamination area. Records from four and a half years after the Fukushima Daiichi Nuclear Power Plant accident

    International Nuclear Information System (INIS)

    Kawasaki, Kota

    2016-01-01

    This study discusses opinions of 11 municipalities in Fukushima Prefecture designated as Special Decontamination Area as of the end of September 2015, about four and a half years afters the Fukushima Daiichi Nuclear Power Plant accident. This study shows that (1) more than half of the municipalities recognize that decontamination activities of the national government which is responsible for decontamination in Special Decontamination Area are inadequate, (2) most municipalities recognize that residents cannot live their lives with a sense of safety and security unless air radiation dose is reduced to the level before the accident or less than 0.23 μSv/h, (3) many municipalities recognize that residents will not be able to live their lives with a sense of safety and security even if the national government implements decontamination, (4) municipalities points out 'decontamination of forests or rivers and reconsideration of decontamination methods of forests or rivers', 'securement and maintenance of temporary storage site' and 'setting forth a numeric target concerning decontamination and implementation of additional decontamination after the first decontamination' as issues for the promotion of decontamination, and (5) all the municipalities recognize that that there are a lot of problems concerning the installation of interim storage facilities by the national government. (author)

  20. System for chemical decontamination of nuclear reactor primary systems

    International Nuclear Information System (INIS)

    Schlonski, J.S.; McGiure, M.F.; Corpora, G.J.

    1992-01-01

    This patent describes a method of chemically decontaminating a nuclear reactor primary system, having a residual heat removal system with one or more residual heat removal heat exchangers, each having an upstream and a downstream side, at or above ambient pressure. It comprises: injecting decontamination chemicals using an injection means; circulating the injected decontamination chemicals throughout the primary system; directing the circulated decontamination chemicals and process fluids to a means for removing suspended solids and dissolved materials after the circulated chemicals and process fluids have passed through the residual heat removal heat exchanger; decontaminating the process fluids; and feeding the decontaminated process fluids to the injection means. This patent also describes a chemical decontamination system for use at, or above, ambient pressure in a nuclear reactor primary system having a residual heat removal system. It comprises: means for injecting decontamination chemicals into the primary system; means for removing dissolved and suspended materials and decontamination chemicals from the primary system; one or more residual heat removal pumps; means located downstream of one of the residual heat removal heat exchangers; and a return line connecting the means

  1. Method of decontaminating primary coolant circuits

    International Nuclear Information System (INIS)

    Ishibashi, Masaru; Sumi, Masao.

    1981-01-01

    Purpose: To eliminate hard contaminated layers as well as soft contaminated layers without injuring substrate materials, upon decontamination of radiation contaminated portions in equipments and pipeways constituting primary coolant circuits. Constitution: High pressure water from a high pressure pump is jetted out from the nozzle of a spray gun to the radiation contaminated portions in equipments, for example, to the surface of water chamber in a vapor evaporator. High pressure pure water or aqueous boric acid is jetted out from the periphery and boric oxide particles (of about 1 - 100 μ particle size) are jetted out from the center of the nozzle of the spray gun. The particles (blasting material) jetted out together with the high pressure water impinge on the contaminated surfaces to remove the contaminated layers. Upon impingement, the high pressure water acts as the shock absorber for the blasting material and, after the impingement, it flows down to the bottom of the water chamber, and the blasting material is dissolved in the high pressure water. (Horiuchi, T.)

  2. A study on implementation plan of decontamination and decommissioning R and D and evaluation of KAERI soil decontamination process

    International Nuclear Information System (INIS)

    Oh, Won Zin; Lee, K. W.; Won, H. J.; Jung, C. H.; Choi, W. K.; Kim, G. N.

    2001-08-01

    A. Decontamination Technology Development of Uranium Conversion Facility. Understanding of uranium conversion facility and related decontamination technologies, and analysis of current status of decontamination technologies. Establishment of the objective and research items of the middle and long term R and D project. Discussion of the erformance plan and about the methodology for connection with the project of environmental restoration of uranium conversion facility B. Treatment Technology Development of Uranium Sludge Analysis of the domestic and overseas research development status. Suggestion of treatment methodology of uranium slurry and cooperative R and D among industries, universities and research institute. Establishment of the objective and research items of the middle and long term R and D project. Discussion about the performance plan and about the methodology for connection with the project of environmental restoration of uranium conversion facility C. Decommissioning Technology Development Analysis of the domestic and overseas research development status and the overview of decommissioning technologies. Establishment of the objective and research items of the middle and long term R and D project. Discussion about the performance plan and about the methodology for connection with the project of TRIGA decommissioning D. Evaluation of KAERI Soil Decontamination Technology. Evaluation of soil decontamination process and the liquid decontamination waste treatment technology. Performance of soil decontamination test using solvent flushing test equipment for evaluation of residual radioactivity after decontami- nation and modeling of the results

  3. A study on implementation plan of decontamination and decommissioning R and D and evaluation of KAERI soil decontamination process

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Won Zin; Lee, K. W.; Won, H. J.; Jung, C. H.; Choi, W. K.; Kim, G. N

    2001-08-01

    A. Decontamination Technology Development of Uranium Conversion Facility. Understanding of uranium conversion facility and related decontamination technologies, and analysis of current status of decontamination technologies. Establishment of the objective and research items of the middle and long term R and D project. Discussion of the erformance plan and about the methodology for connection with the project of environmental restoration of uranium conversion facility B. Treatment Technology Development of Uranium Sludge Analysis of the domestic and overseas research development status. Suggestion of treatment methodology of uranium slurry and cooperative R and D among industries, universities and research institute. Establishment of the objective and research items of the middle and long term R and D project. Discussion about the performance plan and about the methodology for connection with the project of environmental restoration of uranium conversion facility C. Decommissioning Technology Development Analysis of the domestic and overseas research development status and the overview of decommissioning technologies. Establishment of the objective and research items of the middle and long term R and D project. Discussion about the performance plan and about the methodology for connection with the project of TRIGA decommissioning D. Evaluation of KAERI Soil Decontamination Technology. Evaluation of soil decontamination process and the liquid decontamination waste treatment technology. Performance of soil decontamination test using solvent flushing test equipment for evaluation of residual radioactivity after decontami- nation and modeling of the results.

  4. Nuclear reactor vessel decontamination systems

    International Nuclear Information System (INIS)

    McGuire, P. J.

    1985-01-01

    There is disclosed in the present application, a decontamination system for reactor vessels. The system is operatable without entry by personnel into the contaminated vessel before the decontamination operation is carried out and comprises an assembly which is introduced into the vertical cylindrical vessel of the typical boiling water reactor through the open top. The assembly includes a circular track which is centered by guideways permanently installed in the reactor vessel and the track guides opposed pairs of nozzles through which water under very high pressure is directed at the wall for progressively cutting and sweeping a tenacious radioactive coating as the nozzles are driven around the track in close proximity to the vessel wall. The whole assembly is hoisted to a level above the top of the vessel by a crane, outboard slides on the assembly brought into engagement with the permanent guideways and the assembly progressively lowered in the vessel as the decontamination operation progresses. The assembly also includes a low pressure nozzle which forms a spray umbrella above the high pressure nozzles to contain radioactive particles dislodged during the decontamination

  5. Radioactive decontamination through UV laser

    International Nuclear Information System (INIS)

    Delaporte, Ph.; Gastaud, M.; Sentis, M.; Uteza, O.; Marine, W.; Thouvenot, P.; Alcaraz, J.L.; Le Samedy, J.M.; Blin, D.

    2003-01-01

    A device allowing the radioactive decontamination of metal surfaces through the use of a pulsed UV laser has been designed and tested. This device is composed of a 1 kW excimer laser linked to a bundle of optic fibers and of a system to recover particles and can operate in active zones. Metal surfaces have the peculiarities to trap radio-elements in a superficial layer of oxide that can be eaten away by laser radiation. Different contaminated metals (stainless steels, INCONEL and aluminium) issued from the nuclear industry have been used for the testing. The most important contaminants were 60 Co, 137 Cs, 154-155 Eu and 125 Sb. The ratio of decontamination was generally of 10 and the volume of secondary wastes generating during the process was very low compared with other decontamination techniques. A decontamination speed of 1 m 2 /h has been reached for aluminium. The state of the surface is an important parameter because radio-elements trapped in micro-cracks are very difficult to remove. (A.C.)

  6. Experiment on electrolysis decontamination of stainless steel pipes

    International Nuclear Information System (INIS)

    Wang Dongwen; Dou Tianjun; Zhao Yujie

    2004-01-01

    A new electrolytic decontamination method used metal balls as conducting anode was investigated. The influences of current density, solution property and diameter of pipes on efficiency of electrolytic decontamination were examined and the efficiency of this method was compared with that of common electrolytic method under the same experimental conditions. Decontamination of samples of stainless steel pipes contaminated by plutonium was performed. Experimental results indicate that decontamination of stainless steel pipes contaminated by plutonium can be achieved at the optimum conditions of greater than 0.2 A·cm -2 current density, 5% sulfuric acid electrolyte and 5 min electrolysis. This method can be used in the decontamination of a wide variety of decommissioned metal materials. (author)

  7. Loop cleanup with redox decontamination technique

    International Nuclear Information System (INIS)

    Ren Xian Wen; Zhang Yuan

    1998-01-01

    The corrosion rate of stainless steel in nitric acid solution will be enhanced by existence of Ce 4+ . The goal of this study is to develop a circular decontamination process in medium of nitric acid, in order to use it in a loop clean up. That needs a specially designed electrolytic cell to oxidize the Ce 3+ into Ce 4+ . This regenerator's structure should be simple and easy to operate, and can meet the requirements of practical decontamination operation. The concentration of Ce 4+ in the nitric acid solution was selected to provide a suitable corrosion rate to contaminated stainless steel. The total concentration of cerium (III+IV) was also optimized to ensure that the regeneration rate of Ce 4+ could satisfy the consumption rate of Ce 4+ during decontaminating process. The operation parameters were selected strictly on the basis of our experimental results, so that the regeneration rate of Ce 4+ can be higher reasonably in proper operation conditions and not arise any problem related to safety of operation and nuclear aspects. It is considered that this decontamination process could be applied into either decommissioning or maintenance stage of nuclear facilities. The concentration of Ce 4+ and temperature are the main factors for corrosion rate, other factors should also be considered during decision of decontamination process. With the regenerator developed under contract No 7959/RB could obtain sufficient decontamination factors, when use following conditions: concentration of Ce 4+ is higher than 0.2 mol/1, the total concentration of cerium (III+IV) is higher than 0.4 mol/1, concentration of nitric acid is higher than 2 mol/1, temperature of decontamination operation is within 25 deg. C - 40 deg. C and temperature of regeneration is within 40 deg C - 50 deg.C

  8. Biological processes for environmental control of effluent streams in the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Shumate, S.E. II; Hancher, C.W.; Strandberg, G.W.; Scott, C.D.

    1978-01-01

    Nitrates and radioactive heavy metals need to be removed from aqueous effluent streams in the fuel cycle. Biological methods are being developed for reducing nitrate or nitrite to N 2 gas and for decreasing dissolved metal concentration to less than 1 g/m 3 . Fluidized-bed denitrification bioreactors are being tested. Removal of uranium from solution by Saccharomyces cerevisiae and Pseudomonas aeruginosa was studied

  9. Effect of surfactant-coated iron oxide nanoparticles on the effluent water quality from a simulated sequencing batch reactor treating domestic wastewater

    International Nuclear Information System (INIS)

    Hwang, Sangchul; Martinez, Diana; Perez, Priscilla; Rinaldi, Carlos

    2011-01-01

    This study was conducted to evaluate the effect of commercially available engineered iron oxide nanoparticles coated with a surfactant (ENP Fe-surf ) on effluent water quality from a lab-scale sequencing batch reactor as a model secondary biological wastewater treatment. Results showed that ∼8.7% of ENP Fe-surf applied were present in the effluent stream. The stable presence of ENP Fe-surf was confirmed by analyzing the mean particle diameter and iron concentration in the effluent. Consequently, aqueous ENP Fe-surf deteriorated the effluent water quality at a statistically significant level (p Fe-surf would be introduced into environmental receptors through the treated effluent and could potentially impact them. - Highlights: → Surfactant-coated engineered iron oxide nanoparticles (ENP Fe-surf ) were assessed. → Effluent quality was analyzed from a sequencing batch reactor with ENP Fe-surf . → ∼8.7% of ENP Fe-surf applied was present in the effluent. → ENP Fe-surf significantly (p Fe-surf will be introduced into environmental receptors. - Stable presence of surfactant-coated engineered iron oxides nanoparticles deteriorated the effluent water quality at a statistically significant level (p < 0.05).

  10. Method of decontaminating radioactive-contaminated instruments

    Energy Technology Data Exchange (ETDEWEB)

    Urata, M; Fujii, M; Kitaguchi, H

    1982-03-29

    Purpose: To enable safety processing of liquid wastes by recovering radioactive metal ions remaining in the electrolytes after the decontamination procedure thereby decreasing the radioactivity. Method: In a decontamination tank containing electrolytes consisting of diluted hydrochloric acid and diluted sulfuric acid, are provided a radioactive contaminated instrument connected to an anode and a collector electrode made of stainless steel connected to a cathode respectively. Upon applying electrical current, the portion of the mother material to be decontaminated is polished electrolytically into metal ions and they are deposited as metal on the collection electrode. After completion of the decontamination, an ultrasonic wave generator is operated to strip and remove the oxide films. Thereafter, the anode is replaced with the carbon electrode and electrical current is supplied continuously, whereby the remaining metal ions are deposited and recovered as the metal on the collection electrode.

  11. Deactivation, Decontamination and Decommissioning Project Summaries

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, David Shane; Webber, Frank Laverne

    2001-07-01

    This report is a compilation of summary descriptions of Deactivation, Decontamination and Decommissioning, and Surveillance and Maintenance projects planned for inactive facilities and sites at the INEEL from FY-2002 through FY-2010. Deactivations of contaminated facilities will produce safe and stable facilities requiring minimal surveillance and maintenance pending further decontamination and decommissioning. Decontamination and decommissioning actions remove contaminated facilities, thus eliminating long-term surveillance and maintenance. The projects are prioritized based on risk to DOE-ID, the public, and the environment, and the reduction of DOE-ID mortgage costs and liability at the INEEL.

  12. Salt decontamination demonstration test results

    International Nuclear Information System (INIS)

    Snell, E.B.; Heng, C.J.

    1983-06-01

    The Salt Decontamination Demonstration confirmed that the precipitation process could be used for large-scale decontamination of radioactive waste sale solution. Although a number of refinements are necessary to safely process the long-term requirement of 5 million gallons of waste salt solution per year, there were no observations to suggest that any fundamentals of the process require re-evaluation. Major accomplishments were: (1) 518,000 gallons of decontaminated filtrate were produced from 427,000 gallons of waste salt solution from tank 24H. The demonstration goal was to produce a minimum of 200,000 gallons of decontaminated salt solution; (2) cesium activity in the filtrate was reduced by a factor of 43,000 below the cesium activity in the tank 24 solution. This decontamination factor (DF) exceeded the demonstration goal of a DF greater than 10,000; (3) average strontium-90 activity in the filtrate was reduced by a factor of 26 to less than 10 3 d/m/ml versus a goal of less than 10 4 d/m/ml; and (4) the concentrated precipitate was washed to a final sodium ion concentration of 0.15 M, well below the 0.225 M upper limit for DWPF feed. These accomplishments were achieved on schedule and without incident. Total radiation exposure to personnel was less than 350 mrem and resulted primarily from sampling precipitate slurry inside tank 48. 3 references, 6 figures, 2 tables

  13. Radioactive Decontamination by Strippable Paint

    International Nuclear Information System (INIS)

    Chantaraparprachoom, N.; Mishima, K.

    1998-01-01

    The strippable paint, one of the adhesion method, is to decontaminate solid surface of materials or/and a large area. Two kinds of specimen planchet, SUS 304 stainless steel and polycarbonate plastic, contaminated with radioactive 137 Cs were studied under various conditions. It included surface bottom types, the flat and convex concentric circle type, normal condition at room temperature and overheat condition (∼80 degree celsius). This method used coating paints which contains some elements to have a reaction with radioactive materials selectively. ALARA-Decon clear, Rempack-X200 clear, JD-P5-Mrs.Coat and Pro-Blue-color guard were selected to use as the coating paints. The contaminated surface was coated by the strippable paint under the optimum time, followed by peeling the paint seal. The Rempack-X200 showed the best result, the highest decontamination efficiency which are about 99-100% for all conditions of specimens. The JD-P5 and ALARA-Decon showed good results, which are 98-99% decontamination efficiency for the normal condition set of specimens and about 94-97% for the overheat set of specimens. They can decontaminate polycarbonate specimens better than stainless steel specimens. The Pro-Blue-color guard showed the lowest decontamination efficiency of which 60% for polycarbonate specimens at normal condition and 40%, 30% for stainless steel specimens at normal and overheat conditions respectively. There was no effects of surface bottom types significantly

  14. Decontamination of lead by fusion (1962); Decontamination du plomb par fusion (1962)

    Energy Technology Data Exchange (ETDEWEB)

    Boutot, P; Giachetto, L; Capitaine, A [Commissariat a l' Energie Atomique, Centre de Production de Plutonium, Marcoule (France). Centre d' Etudes Nucleaires

    1962-07-01

    Various attempts to decontaminate using mechanical and chemical methods having given questionable results, a fusion method has been developed. The apparatus consists of a propane-heated oven fitted with a steel crucible of 1 400 kg capacity, with two ventilation systems, and with a vacuum gauge for preventing the diffusion of toxic gases. There are three operational controls : 1. On the samples taken before during and after the operation, 2. On the plugs taken from the ingots, 3. On the ingot itself. The continuous sanitary control is done by a radioactive aerosol recorder and by periodic sampling. This decontamination process will be improved, especially as far as the productivity and the safety precautions are concerned. (authors) [French] Divers essais de decontamination par voies mecaniques et chimiques ayant donne des resultats discutables, un procede par fusion a ete mis au point. L'appareil se compose d'un four, chauffe au propane, muni d'un creuset en acier d'une capacite de 1 400 kg, de deux systemes de ventilation et d'un deprimometre afin d'eviter la diffusion de vapeurs nocives. Trois controles d'activite sont effectues: 1. sur des echantillons preleves avant, pendant et apres l'operation, 2. sur des carottages realises sur les lingots, 3. sur le lingot lui-meme. Le controle sanitaire permanent est assure par un enregistreur d'aerosols radioactifs et par des prelevements periodiques. Ce procede de decontamination doit encore etre ameliore, principalement en ce qui concerne la productivite et la securite. (auteurs)

  15. Investigation of electro-kinetic methods for soil decontamination

    International Nuclear Information System (INIS)

    Shabanova, A.N.

    2000-01-01

    The choices of effective methods for ecological system decontamination, their perfection and introduction into practical use have been actual tasks for the Ural region. The objective of this work has been to study the potentials of electrical kinetics method of ISOTRON Corporation (US) for decontamination of the Urals soils. Results obtained have shown the method proposed to be usable for decontaminating some types of soils from strontium and plutonium; it is low effective for decontamination in the area of South-Urals radioactive plume. Thus, a low effectiveness can be expected in podsolic and leached laterite characterized by a high content of loamy sand and sandy soils, as well as for sobby-podsolic ones. The method can be promising for decontamination of soils and wastes from chemical contaminants, such as Zn, Ni, Cu, Pb, Hg, and others. Important advantages of this method compared to others have been its simplicity, small amount of wastes, and feasibility of decontamination in areas difficult to access. (authors)

  16. A study on dry decontamination using ion exchange polymer

    International Nuclear Information System (INIS)

    Jung, Ki Jung; Ahn, Byung Gil

    1997-12-01

    Through the project of A study on dry decontamination using ion exchange polymer , the followings were investigated. 1. Highly probable decontamination technologies for the decontamination were investigated. 2. Development of gel type decontamination agent using ion-exchange resin powder (mixed type) as an ion exchanger. 3. Manufacturing of contaminated specimens (5 kinds) with Cs-137 solution and dust / Cs-137 solution. 4. Decontamination performance evaluation of the manufactured agent. 5. Analysis of composition (XRF) and the structure of surface of specimens (optic micrography). (author). 20 refs., 11 figs

  17. Decontamination of 125I in Medical Laboratory

    International Nuclear Information System (INIS)

    Abdel Geleel, M.; Tawfeek, A.A.

    2009-01-01

    A radiological laboratory for diagnoses was contaminated by 125 I. A large-scale survey of gamma-radiation has been made in different locations of the floors and walls of the lab to determine the contaminated area and its activity. The activity level before decontamination for the wall and floor was 1400 and 2000 Bq/cm 2 respectively. Decontamination was carried out by using ethyl alcohol, potassium permanganate, ethylene diamine tetracetic acid and tissue papers. Decontamination factor has been calculated and it was 175 and 200 for the wall and floor respectively. D and D computer code has been used to calculate Total Effective Dose Equivalent (TEDE). TEDE from the wall and floor before decontamination were 3.05 and 4.35 ( mSv/yr ) while after decontamination were 18 and 23μSv/yr respectively. These results are lower than the Egyptian and the international regulations (10 mSv/y for the public ) according to International Atomic Energy agency, IAEA, Safety Series, SS, no. 115 (1994).

  18. EDF guide book for decontamination at power plant

    International Nuclear Information System (INIS)

    Glorennec, C.; Bemer, J.P.

    1988-01-01

    Nuclear Power Plant components or equipment often need to be more or less decontaminated before undergoing maintenance. In order to coordinate the activities of the different maintenance specialists belonging to the corporate or site organizations, the management of EDF/Nuclear and Fossil Division has created a decontamination task force. One of the objectives of this task force was to elaborate the present Guide Book for Decontamination at Power Plants. This paper provides assistance to nuclear plants operators in the very specific field of decontamination

  19. Impact of decontamination on LWR radioactive waste treatment systems

    International Nuclear Information System (INIS)

    Hoenes, G.R.; Perrigo, L.D.; Divine, J.R.; Faust, L.G.

    1979-01-01

    Only at N-Reactor is there a means to accommodate radwaste produced during decontamination. The Dresden system is expected to be ready to accommodate such solutions by the summer of 1979. Solidification of the processed decontamination waste may be a significant problem. There is doubt that the materials in current radwaste treatment systems can handle chemicals from a concentrated process. The total storage volume, for concentrated decontamination, is not sufficient in existing radwaste treatment systems. Greater attention should be placed on designing reactors and radwaste treatment systems for decontamination. A means of handling waste material resulting from leaks in the primary system during the decontamination must be developed. On-site storage of solidified decontamination wastes may be a viable option, but license amendments will be necessary

  20. Decontamination of Soil Contaminated with Bacillus anthracis ...

    Science.gov (United States)

    Technical Brief This technical summary will provide decontamination personnel rapid access to information on which decontamination approaches are most effective for soils contaminated with B anthracis.

  1. Health physics challenges during decontamination for safe disposal of low level liquid effluent tank as inactive scrap

    International Nuclear Information System (INIS)

    Akila, R.; Sultan, Bajeer; Sarangapani, R.; Jose, M.T.

    2018-01-01

    The Low-level Liquid waste (LLW) generated during the regeneration of mixed bed column of KAMINI reactor is collected in the SS Delay Tanks located on the western side of RML building. It was proposed to dismantle and dispose the tank as solid waste. The tank weighs about 2 ton. An attempt was made to decontaminate the tank to levels below the exempt quantity so as to qualify it as scrap of unrestricted release. This is first time in IGCAR wherein a material used in a radioactive facility for storing LLW is being released as scrap of unrestricted release and this paper discusses about the same

  2. Method of processing decontaminating liquid waste

    International Nuclear Information System (INIS)

    Kusaka, Ken-ichi

    1989-01-01

    When decontaminating liquid wastes are processed by ion exchange resins, radioactive nuclides, metals, decontaminating agents in the liquid wastes are captured in the ion exchange resins. When the exchange resins are oxidatively deomposed, most of the ingredients are decomposed into water and gaseous carbonic acid and discharged, while sulfur ingredient in the resins is converted into sulfuric acid. In this case, even less oxidizable ingredients in the decontaminating agent made easily decomposable by oxidative decomposition together with the resins. The radioactive nuclides and a great amount of iron dissolved upon decontamination in the liquid wastes are dissolved in sulfuric acid formed. When the sulfuric acid wastes are nuetralized with sodium hydroxide, since they are formed into sodium sulfate, which is most popular as wastes from nuclear facilities, they can be condensated and solidified by existent waste processing systms to thereby facilitate the waste processing. (K.M.)

  3. Method of decontaminating radioactive-contaminated instruments

    International Nuclear Information System (INIS)

    Urata, Megumu; Fujii, Masaaki; Kitaguchi, Hiroshi.

    1982-01-01

    Purpose: To enable safety processing of liquid wastes by recovering radioactive metal ions remaining in the electrolytes after the decontamination procedure thereby decreasing the radioactivity. Method: In a decontamination tank containing electrolytes consisting of diluted hydrochloric acid and diluted sulfuric acid, are provided a radioactive contaminated instrument connected to an anode and a collector electrode made of stainless steel connected to a cathode respectively. Upon applying electrical current, the portion of the mother material to be decontaminated is polished electrolytically into metal ions and they are deposited as metal on the collection electrode. After completion of the decontamination, an ultrasonic wave generator is operated to strip and remove the oxide films. Thereafter, the anode is replaced with the carbon electrode and electrical current is supplied continuously, whereby the remaining metal ions are deposited and recovered as the metal on the collection electrode. (Yoshino, Y.)

  4. Precipitation process for supernate decontamination

    International Nuclear Information System (INIS)

    Lee, L.M.; Kilpatrick, L.L.

    1982-11-01

    A precipitation and adsorption process has been developed to remove cesium, strontium, and plutonium from water-soluble, high-level radioactive waste. An existing waste tank serves as the reaction vessel and the process begins with the addition of a solution of sodium tetraphenylborate and a slurry of sodium titanate to the contained waste salt solution. Sodium tetraphenylborate precipitates the cesium and sodium titanate adsorbs the strontium and plutonium. The precipitate/adsorbate is then separated from the decontaminated salt solution by crossflow filtration. This new process offers significant capital savings over an earlier ion exchange process for salt decontamination. Chemical and small-scale engineering studies with actual waste are reported. The effect of many variables on the decontamination factors and filter performance are defined

  5. Radioactive decontamination of equipment

    International Nuclear Information System (INIS)

    1982-03-01

    After a recall of some definitions relating to decontamination techniques and of the regulation into effect, the principles to be respected to arrange rationally work zones are quoted while insisting more particularly on the types of coatings which facilitate maintenance operations and the dismantling of these installations. Then, the processes and equipments to use in decontamination units for routine or particular operations are described; the list of recommended chemical products to decontaminate the equipment is given. The influence of these treatments on the state and the duration of life of equipments is studied, and some perfectible methods are quoted. In the appendix, are given: the limits of surface contamination accepted in the centers; a standard project which defines the criteria of admissible residual contamination in wastes considered as cold wastes; some remarks on the interest that certain special ventilation and air curtain devices for the protection of operators working on apparatus generating contaminated dusts [fr

  6. Decontamination and materials corrosion concerns in the BWR

    International Nuclear Information System (INIS)

    Gordon, B.M.; Gordon, G.M.

    1988-01-01

    The qualification of chemical decontamination processes to decontaminate complete systems or individual components in essential if effective inspection, maintenance, repair or replacement of plant components is to be achieved with minimum exposure of workers to ionizing radiation. However, it is critical that the benefits of decontamination processes are not overshadowed by deleterious materials/ corrosion side effects during the application of the process or during subsequent operation. This paper discusses such potential corrosion/materials problems in the BWR and presents relevant available corrosion data for the various commercial decontamination processes. (author)

  7. Use of citric acid for large parts decontamination

    International Nuclear Information System (INIS)

    Holland, M.E.

    1979-01-01

    Laboratory and field studies have been performed to identify and evaluate chemical decontamination agents to replace ammonium carbonate, an environmentally unacceptable compound, in the decontamination facility for large process equipment at the Portsmouth Gaseous Diffusion Plant. Preliminary screening of over 40 possible decontamination agents on the basis of efficiency, availability, toxicity, cost, corrosiveness, and practicality indicated sodium carbonate and citric acid to be the most promising. Extensive laboratory studies were performed with these two reagents. Corrosion rates, decontamination factors, uranium recovery efficiencies, technetium ( 99 Tc)/ion exchange removal effects, and possible environmental impacts were determined or investigated. Favorable results were found in all areas. Detailed monitoring and analysis during two-week trial periods in which sodium carbonate and citric acid were used in the large parts decontamination facility resulted in similar evaluation and conclusions. Because it has cleaning properties not possessed by sodium carbonate, and because it eliminated several operational problems by incorporating two acidic decontamination reagents (citric and nitric acids) instead of one basic reagent (sodium or ammonium carbonate) and one acidic reagent (nitric acid), citric acid was selected for one-year field testing. On the basis of its excellent performance in the field tests, citric acid is recommended as a permanent replacement for ammonium carbonate in the decontamination facility for large process equipment

  8. Development of calculation system for decontamination effect, CDE

    International Nuclear Information System (INIS)

    Satoh, Daiki; Kojima, Kensuke; Oizumi, Akito; Matsuda, Norihiro; Kugo, Teruhiko; Sakamoto, Yukio; Endo, Akira; Okajima, Shigeaki

    2012-08-01

    Large amount of radionuclides had been discharged to environment in the accident of the Tokyo Electric Power Company Fukushima Daiichi Nuclear Power Plant caused by the 2011 off the Pacific coast of Tohoku Earthquake. The radionuclides deposited on the ground elevate dose rates in large area around the Fukushima site. For the reduction of the dose rate and recovery of the environment, decontamination based on a rational plan is an important and urgent subject. A computer software, named CDE (Calculation system for Decontamination Effect), has been developed to support planning the decontamination. CDE calculates the dose rates before the decontamination by using a database of dose contributions by radioactive cesium. The decontamination factor is utilized in the prediction of the dose rates after the decontamination, and dose rate reduction factor is evaluated to express the decontamination effect. The results are visualized on the image of a target zone with color map. In this paper, the overview of the software and the dose calculation method are reported. The comparison with the calculation results by a three-dimensional radiation transport code PHITS is also presented. In addition, the source code of the dose calculation program and user's manual of CDE are attached as appendices. (author)

  9. Mechanical and chemical decontamination of surfaces

    International Nuclear Information System (INIS)

    Kienhoefer, M.

    1982-01-01

    Decontamination does not mean more than a special technique of cleaning surfaces by methods well known in the industry. The main difference consists in the facts that more than just the visible dirt is to be removed and that radioactive contamination cannot be seen. Especially, intensive mechanical and chemical carry-off methods are applied to attack the surfaces. In order to minimize damages caused to the surfaces, the decontamination method is to adapt to the material and the required degree of decontamination. The various methods, their advantages and disadvantages are described, and the best known chemical solutions are shown. (orig./RW)

  10. Decontamination of CANDU primary coolant system

    International Nuclear Information System (INIS)

    Pettit, P.J.

    1975-01-01

    Decontamination of radioactive systems is necessary to reduce personnel radiation exposures and also to reduce exposure during special work. Mechanical decontamination methods are sometimes useful, but most contaminated surfaces are inaccessible, so chemical decontamination often is preferred. The A-P Citrox method will remove most contaminants from CANDU systems, but is costly and long, damages components, and produces large quantities of radioactive liquid waste. The Redox cycling process is fast and inexpensive, produces only solid wastes, but removes small quantities of deposit from Monel only. The CAN-DECON process removes deposits from most materials including fuel cladding and has many other advantages. (author)

  11. Decontamination system study for the Tank Waste Retrieval System

    International Nuclear Information System (INIS)

    Reutzel, T.; Manhardt, J.

    1994-05-01

    This report summarizes the findings of the Idaho National Engineering Laboratory's decontamination study in support of the Tank Waste Retrieval System (TWRS) development program. Problems associated with waste stored in existing single shell tanks are discussed as well as the justification for the TWRS program. The TWRS requires a decontamination system. The subsystems of the TWRS are discussed, and a list of assumptions pertinent to the TWRS decontamination system were developed. This information was used to develop the functional and operational requirements of the TWRS decontamination system. The requirements were combined with a comprehensive review of currently available decontamination techniques to produced a set of evaluation criteria. The cleaning technologies and techniques were evaluated, and the CO 2 blasting decontamination technique was chosen as the best technology for the TWRS

  12. Equipment decontamination: A brief survey of the DOE complex

    International Nuclear Information System (INIS)

    Conner, C.; Chamberlain, D.B.; Chen, L.; Vandegrift, G.F.

    1995-03-01

    Deactivation at DOE facilities has left a tremendous amount of contaminated equipment behind. In-situ methods are needed to decontaminate the interiors of the equipment sufficiently to allow either free release or land disposal. A brief survey was completed of the DOE complex on their needs for equipment decontamination with in-situ technology to determine (1) the types of contamination problems within the DOE complex, (2) decontamination processes that are being used or are being developed within the DOE, and (3) the methods that are available to dispose of spent decontamination solutions. In addition, potential sites for testing decontamination methods were located. Based on the information obtained from these surveys, the Rocky Flats Plant and the Idaho National Engineering Laboratory appear to be best suited to complete the initial testing of the decontamination processes

  13. Pipe and hose decontamination apparatus

    International Nuclear Information System (INIS)

    Fowler, D.E.

    1985-01-01

    A pipe and hose decontamination apparatus is disclosed using freshly filtered high pressure Freon solvent in an integrated closed loop to remove radioactive particles or other contaminants from items having a long cylindrical geometry such as hoses, pipes, cables and the like. The pipe and hose decontamination apparatus comprises a chamber capable of accomodating a long cylindrical work piece to be decontaminated. The chamber has a downward sloped bottom draining to a solvent holding tank. An entrance zone, a cleaning zone and an exit drying zone are defined within the chamber by removable partitions having slotted rubber gaskets in their centers. The entrance and exit drying zones contain a horizontally mounted cylindrical housing which supports in combination a plurality of slotted rubber gaskets and circular brushes to initiate mechanical decontamination. Solvent is delivered at high pressure to a spray ring located in the cleaning zone having a plurality of nozzles surrounding the work piece. The solvent drains into a solvent holding tank located below the nozzles and means are provided for circulating the solvent to and from a solvent cleaning, distilling and filter unit

  14. Development of a surfactant liquid membrane extraction process for the cleansing of industrial aqueous effluents containing metallic cation traces

    International Nuclear Information System (INIS)

    Rapaumbya Akaye, Guy-Roland

    1994-01-01

    The purpose of this work was to develop a process of surfactant liquid membrane extraction to purify industrial waste solution containing Cu(II), Fe(III), and Zn(II) (about 0,1 g/L). The extractant is the ammonium salt of Cyanex 306 and Aliquat 336. The first part of this work deals with the study of the liquid-liquid extraction of the metals. The efficiency of the extractant has been shown for the extraction of each metal alone and for Cu(II) and Zn(II) in the case of a mixture of the three metals. During this study we have observed that Fe(III) is reduced to Fe(II) (which is not extracted by the salt of Cyanex 301) in presence of Cu(II) and the quaternary ammonium salt (Aliquat 336). The optimisation of the experimental conditions for the discontinuous surfactant liquid membrane process led us to choose the following composition of the emulsion: 1,5 % of Cyanex 301 salt, 2,5 % of ECA 4360, dodecan. The internal phase is an aqueous solution containing 3,5 mol/L of NaOH and 0,5 mol/L tri-ethanolamin The residual concentration of Cu(II) and Zn(II) in the external phase is very low. In the case of iron, only 60 % are extracted because of the reduction phenomenon (10 % in liquid-liquid extraction). The realisation of the continuous process in pulsed column, after optimisation of hydrodynamics conditions, leads to similar results. In stationary conditions, we obtain a raffinate containing less than 0,5 mg/L of Cu(II) and Zn(II) and 36 mg/L of iron. The internal phase contains about 2 g/L of Cu(II) an Zn(II). We tried and minimize the reduction of Fe(III) in surfactant liquid membrane process. Less than 16 % of iron cannot be reduced. This leads to a purification of only 84 % In the basis of these results, processes of purification have been proposed for effluents of various composition. They enable to purify the effluent and besides to concentrate the pollutants about twenty times. (author) [fr

  15. Experience Practices on Decontamination Activity in NPP Decommissioning

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Suk Bon; Kim, Jeongju; Sohn, Wook [Korea Hydro and Nuclear Power Co., Daejeon (Korea, Republic of)

    2016-10-15

    Decommissioning of a nuclear power plant (NPP) involves various technical and administrative activities for a utility to terminate its license, which allows the plant site to be released from the regulatory control (site release). Decontamination activity in NPP decommissioning is one of the main technical activities to be performed during the decommissioning. The decontamination at decommissioning sites is usually performed due to several reasons such as reducing personnel dose and disposal costs, and cleanup to meet license termination requirements by using physical or chemical removal techniques proven through the previous experience practices. This paper introduces the best and worst practices for the decontamination activities collected from the decommissioning operational experiences through the implementation of nuclear decommissioning projects around the world. Review of the experiences of decontamination shows that it is important to conduct an advanced planning for optimized implementation of decontamination taking into considering site specific conditions such as operating time, reactor type, system, and so on. Also, a review of newer decontamination methods is necessary to safely and economically decommission the nuclear facility.

  16. Atmospheric-pressure plasma decontamination/sterilization chamber

    Science.gov (United States)

    Herrmann, Hans W.; Selwyn, Gary S.

    2001-01-01

    An atmospheric-pressure plasma decontamination/sterilization chamber is described. The apparatus is useful for decontaminating sensitive equipment and materials, such as electronics, optics and national treasures, which have been contaminated with chemical and/or biological warfare agents, such as anthrax, mustard blistering agent, VX nerve gas, and the like. There is currently no acceptable procedure for decontaminating such equipment. The apparatus may also be used for sterilization in the medical and food industries. Items to be decontaminated or sterilized are supported inside the chamber. Reactive gases containing atomic and metastable oxygen species are generated by an atmospheric-pressure plasma discharge in a He/O.sub.2 mixture and directed into the region of these items resulting in chemical reaction between the reactive species and organic substances. This reaction typically kills and/or neutralizes the contamination without damaging most equipment and materials. The plasma gases are recirculated through a closed-loop system to minimize the loss of helium and the possibility of escape of aerosolized harmful substances.

  17. Decontamination Efficacy Testing of COTS SteriFx Prodcuts for Mass Personnel and Casualty Decontamination

    Science.gov (United States)

    2011-09-01

    amounts of water for at least 15 min. Ingestion : If alert give several glasses of water or milk . Do not induce vomiting. Contact poison control center...strong oxidants that can harm skin and eyes. A safe, easily disseminated and effective alternative biological decontamination agent is needed to address...outlined in our preliminary work, shows that the technology has a very low risk of doing harm to personnel in decontamination scenarios, or that

  18. Road surface washing system for decontaminating radioactive substances. Experiment of radioactive decontamination

    International Nuclear Information System (INIS)

    Endo, Mitsuru; Endo, Mai; Kakizaki, Takao

    2015-01-01

    The Great East Japan Earthquake that occurred on March 11, 2011 resulted in the explosion of the TEPCO Fukushima 1st Nuclear Power Plant and the global dispersion of a large quantity of radioactive substances. A high radiation dose was particularly recorded in Fukushima prefecture several weeks after the accident, although the level is presently sufficiently low. However, considering that the adverse effects of low but extended exposure to radiation are yet to be negated, there is the urgent need for further decontamination. In our study, we focused on the efficient decontamination of radioactive substances in residential areas, for which we propose a high-pressure water jet system for washing road surfaces. The system differs from conventional systems of its type that were initially designed for use in the immediate environment of the nuclear reactors of the TEPCO Fukushima 1st Nuclear Power Plant. The proposed system consists of multiple washing, transporter, and server robots. The washing robots decontaminate the road surface using high-pressure water jets and are transported between washed and unwashed areas by the transporter robots. The server robots supply the water used for washing and absorb the polluted water together with ground dust. In this paper, we describe the concept of the system and present the results of decontamination experiments. Particular attention is given to the washing robot and its mechanism and control method. The results of the integration of the washing robot in an experimental system confirmed the feasibility of the proposed system. (author)

  19. Treatment of radioactive liquid effluents by reverse osmosis membranes: From lab-scale to pilot-scale.

    Science.gov (United States)

    Combernoux, Nicolas; Schrive, Luc; Labed, Véronique; Wyart, Yvan; Carretier, Emilie; Moulin, Philippe

    2017-10-15

    The recent use of the reverse osmosis (RO) process at the damaged Fukushima-Daiichi nuclear power plant generated a growing interest in the application of this process for decontamination purposes. This study focused on the development of a robust RO process for decontamination of two kinds of liquid effluents: a contaminated groundwater after a nuclear disaster and a contaminated seawater during a nuclear accident. The SW30 HR membrane was selected among other in this study due to higher retentions (96% for Cs and 98% for Sr) in a true groundwater. Significant fouling and scaling phenomenon, attributed to calcium and strontium precipitation, were evidenced in this work: this underscored the importance of the lab scale experiment in the process. Validation of the separation performances on trace radionuclides concentration was performed with similar retention around 96% between surrogates Cs (inactive) and 137 Cs (radioactive). The scale up to a 2.6 m 2 spiral wound membrane led to equivalent retentions (around 96% for Cs and 99% for Sr) but lower flux values: this underlined that the hydrodynamic parameters (flowrate/cross-flow velocity) should be optimized. This methodology was also applied on the reconstituted seawater effluent: retentions were slightly lower than for the groundwater and the same hydrodynamic effects were observed on the pilot scale. Then, ageing of the membrane through irradiation experiments were performed. Results showed that the membrane active layer composition influenced the membrane resistance towards γ irradiation: the SW30 HR membrane performances (retention and permeability) were better than the Osmonics SE at 1 MGy. Finally, to supplement the scale up approach, the irradiation of a spiral wound membrane revealed a limited effect on the permeability and retention. This indicated that irradiation conditions need to be controlled for a further development of the process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Decontamination of the Douglas Point reactor, May 1983

    International Nuclear Information System (INIS)

    Lesurf, J.E.; Stepaniak, R.; Broad, L.G.; Barber, W.G.

    1983-01-01

    The Douglas Point reactor primary heat transport system including the fuel, was successfully decontaminated by the CAN-DECON process in 1975. A second decontamination, also using the CAN-DECON process, was successfully performed in May 1983. This paper outlines the need for the decontamination, the process used, the results obtained, and the benefits to the station maintenance and operation

  1. Effect of Cerium(IV)-Surfactant Reaction in Foam Decontamination

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Han Beom; Jung, Chong-Hun; Yoon, In-Ho; Kim, Chorong; Choi, Wang-Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    Using foams allows the decommissioning of complex shaped facilities. The decontamination foam comprises at least one surfactant to generate the foam and one or more chemical reactants to achieve the dissolution of the contaminants at the solid surface. In order to improve the efficiency of decontamination foam, the present study attempts to find the optimum condition of chemical reagents to the foaming solution. The corrosion rate of radioactive nuclides contaminated stainless steel metal is very important factor for the foam decontamination process. The goal of this study is to develop the decontamination process for contaminated stainless steel in medium of nitric acid. Stainless steel needs a strong oxidizing agent such as Ce(IV) ion and the effects of cerium(IV). Surfactant interaction involved in foam decontamination and finally the improvement brought by formulation science. The formulation of foams loaded with strong oxidizing reagents such as Ce(IV) is an important factor. The enhanced decontamination properties of nitric acid with Ce(IV) additive on stainless steel is well known in liquid mediums. stainless steel metal is an important aspect in the foam decontamination process.

  2. Effect of Cerium(IV)-Surfactant Reaction in Foam Decontamination

    International Nuclear Information System (INIS)

    Yang, Han Beom; Jung, Chong-Hun; Yoon, In-Ho; Kim, Chorong; Choi, Wang-Kyu

    2015-01-01

    Using foams allows the decommissioning of complex shaped facilities. The decontamination foam comprises at least one surfactant to generate the foam and one or more chemical reactants to achieve the dissolution of the contaminants at the solid surface. In order to improve the efficiency of decontamination foam, the present study attempts to find the optimum condition of chemical reagents to the foaming solution. The corrosion rate of radioactive nuclides contaminated stainless steel metal is very important factor for the foam decontamination process. The goal of this study is to develop the decontamination process for contaminated stainless steel in medium of nitric acid. Stainless steel needs a strong oxidizing agent such as Ce(IV) ion and the effects of cerium(IV). Surfactant interaction involved in foam decontamination and finally the improvement brought by formulation science. The formulation of foams loaded with strong oxidizing reagents such as Ce(IV) is an important factor. The enhanced decontamination properties of nitric acid with Ce(IV) additive on stainless steel is well known in liquid mediums. stainless steel metal is an important aspect in the foam decontamination process

  3. A scaffold easy to decontaminate

    International Nuclear Information System (INIS)

    Mourek, D.

    1992-01-01

    The conventional scaffold used in the assembling work and in revisions of technological facilities at nuclear power plants has many drawbacks. The most serious of them are a high amount of radioactive waste arising from the decontamination (planing) of the floor timber and from the discarding of damaged irreparable parts, and a considerable corrosion of the carbon steel supporting structure after the decontamination. A detailed description is given of a novel scaffold assembly which can be decontaminated and which exhibits many assets, in particular a good mechanical resistance (also to bad weather), a lower weight, and the use of prepreg floor girders for the construction of service platforms or scaffold bridges which can readily be assembled from the pressed pieces in a modular way. (Z.S.). 4 figs., 4 refs

  4. Decontamination using the high-pressure wet jet system

    International Nuclear Information System (INIS)

    Brandt, D.

    1985-01-01

    For decontaminating machine components, tools, instruments and scrap in nuclear plants the most varying decontamination procedures are used. At the nuclear power plant Wuergassen a mobile high-pressure wet jet unit, developed by Ernst Schmutz GmbH, was successfully used for the first time in extensive decontamination work. The recycling system integrated in the decontamination unit substantially reduces secondary waste, which is usually produced in large quantities by the dry jet method, and continually extracts the contaminated dirt thus guaranteeing full utilisation of the jet agent while preventing secondary contamination of the components to be treated. (orig.) [de

  5. Los Alamos DP West Plutonium Facility decontamination project

    International Nuclear Information System (INIS)

    Garde, R.; Cox, E.J.; Valentine, A.M.

    1982-01-01

    The DP West Plutonium Facility operated by the Los Alamos National Laboratory, Los Alamos, New Mexico, was decontaminated between April 1978 and April 1981. The facility was constructed in 1944 to 1945 to produce plutonium metal and fabricate parts for nuclear weapons. It was continually used as a plutonium processing and research facility until mid-1978. Decontamination operations included dismantling and removing gloveboxes and conveyor tunnels; removing process systems, utilities, and exhaust ducts; and decontaminating all remaining surfaces. This report describes glovebox and conveyor tunnel separations, decontamination techniques, health and safety considerations, waste management procedures, and costs of the operation

  6. Treatment of liquid wastes from decontamination of nuclear power plants by heterogeneous photocatalysis

    International Nuclear Information System (INIS)

    Morgada, Maria Eugenia

    2002-01-01

    In nuclear power plants high radiation fields are produced, not only in the core but also in the auxiliary systems, due, mainly, to the activation of corrosion products by means of a mechanism known as 'Activity Transport'.With the purpose of reducing at minimum values the intensity of radiation fields and of avoiding the operative problems generated by the deposition of oxides in tanks and pipelines, it is necessary to remove the oxide films, carriers of activity, from the components in auxiliary systems in nuclear power plants and this is usually carried on by chemical cleaning.This process, known as decontamination, is done employing mixtures of oligocarboxilic acids such as NTA, EDTA, oxalic acid, citric acid, etc., at concentration nearly 1% and pH 3-4.The resulting liquid wastes of this process cannot be discharged directly to the environment but must be properly treated.Conventional treatments such as thermolysis, chemical oxidation and others show some problems and, in addition, some of these substances are resistant to degradation.Previous work done in the Unidad de Actividad Quimica del Centro Atomico Constituyentes (UAQ-CAC) indicated that Heterogeneous Photocatalysis, belonging to the Advanced Oxidation Technologies (AOTs), could be a useful procedure for the treatment of liquid decontamination wastes. This method consists on the irradiation of an aqueous suspension of a semiconductor, generally TiO 2 , containing the substrate to be degraded, employing wavelengths shorter than the semiconductor's 'band-gap'.In this way, oxidant and reducing molecules are generated.The advantages compared to other AOTs are its low cost, the ability to work at room temperature and pressure, it uses only oxygen as oxidizing agent and can be operated in 'batch' and continuum.In the present work we employed a recycling system, with a black-light tubular UV lamp (366nm) installed inside as the source of illumination, to study the degradation of oxalic and citric acid by

  7. Radiation decontamination of spices

    International Nuclear Information System (INIS)

    Jan, M.; Sattar, A.; Ahmad, W.A.; Khan, I.

    1990-06-01

    In this report radiation decontamination was initiated to investigate the red pepper, which is widely consumed in all parts of Pakistan. The samples were collected from local market and prepared for gamma radiation at dose level of 0, 2.5, 5.0, 7.5, and 10.0 kGy. The measurement of total fungal count was carried out immediately after irradiation and the at two months storage interval. It was reported that radiation dose 10.0 kGy is suitable for complete decontamination of red pepper. (A.B.)

  8. Some analytical methods used by the Marcoule Centre for the control of radioactive effluents; Quelques methodes analytiques, utilisees sur le centre de Marcoule pour le controle radioactif des effluents

    Energy Technology Data Exchange (ETDEWEB)

    Scheidhauer, J.; Messainguiral, L.; Drogue, N.; Meiranesio, A. M.

    1962-07-09

    After three years of operation, the authors propose a review of the various methods used to determine the radioactivity of wastewaters released by the Marcoule Centre Laboratory. They describe the three main steps of this control: firstly, measurements of the global alpha radioactivity and beta radioactivity (principle and measurement method), secondly, dosing of strontium 89 and strontium 90 (principle, used reactants, operation mode for nitric compound precipitation, ferric decontamination, separation of barium 140, oxalic precipitation, precipitate counting, exploitation of counting results), and thirdly, the possible dosing of other fission products present in the effluents: cerium 144, plutonium (by two different methods), natural uranium, caesium 137, zirconium 95, niobium 95, ruthenium 103 and 106, iodine 131. The principle, reactants, operational mode with different precipitations, measurement devices are indicated for each of these radio-elements.

  9. Chemical Decontamination at Browns Ferry Unit 1

    International Nuclear Information System (INIS)

    Hartwig, Ed; Reid, Richard

    2003-01-01

    In May, 2002, the Tennessee Valley Authority's (TVA) Board of Directors approved the recovery and restart of Unit 1 at Browns Ferry Nuclear Station. As an initial step in the site characterization and restart feasibility review, a majority of the primary reactor circuit was chemically decontaminated. Close cooperation between TVA and vendor personnel resulted in project completion ahead of schedule with outstanding results. The final average decontamination factors were excellent, and the final dose rates were very low, with contact readings on most points between one and three mRem/hr. In addition to allowing TVA to do a complete and thorough job of determining the feasibility of the Unit 1 restart, the decontamination effort will greatly reduce personnel exposure during plant recovery, both whole body exposure to gamma radiation and airborne exposure during pipe replacement efforts. The implementation of lessons learned from previous decontamination work performed at Browns Ferry, as well as decontamination efforts at other plants aided greatly in the success. Specific items of note are: (1) The initial leak check of the temporary decontamination system should include ancillary systems such as the spent resin system, as well as the main circulation loop. This could save time and dose exposure if leaks are discovered before the use of such systems is required. (2) Due to the quick turnaround time from the award of contract, a vendor representative was onsite early in the project to help with engineering efforts and procedures. This aided greatly in completing preparations for the decontamination. (3) The work was performed under a single maintenance activity. This resulted in great craft and plant support. (4) The constant coverage by the site's decontamination flush directors provided timely plant support and interface. (5) The FPC system isolation and back flushing to prevent residual chemicals from being left in the FPC system should have been addressed in more

  10. Presolidification treatment of decontamination wastes

    International Nuclear Information System (INIS)

    Habayeb, M.A.

    1982-02-01

    Unsatisfactory leaching performance of several solidified decontamination solutions indicated a need for presolidification treatments to reduce the water sensitivity of the active chemicals. Chemical treatments examined in this work include pH adjustment, precipitation and oxidation-reduction reactions. The reactions involved in these treatments are discussed. The most suitable presolidification treatment for each decontamination solution has been identified. Further research is needed to test the effectivenss of these treatments

  11. Decontamination of radioactively contaminated surfaces

    International Nuclear Information System (INIS)

    1986-10-01

    By this standard objective conditions to evaluate and test the ease of decontamination of surfaces under laboratory conditions are to be laid down. Ease of decontamination in this context denotes the summed-up effect of two material properties: a) the capacity of the material for retaining radioactive substances at its surface; b) the ease with which these substances are given off again in the course of cleaning processes. (orig./HP) [de

  12. Studies of decontamination using easy removable coatings technique

    International Nuclear Information System (INIS)

    Oglaza, J.; Nowak, Z.

    1991-01-01

    The usefulness of removable coatings for decontamination of steel and epoxy-resin painted surfaces was examined. Natural latex, Revultex, butadiene-styrene latex as well as mixtures of latex with complexing agents and surfactants were used as decontaminating coats. The best decontamination was obtained by removable coatings of natural latex with EDTA additive for all surfaces and radionuclides tested. (author). 16 refs, 5 tabs

  13. Non-aqueous removal of sodium from reactor components

    Energy Technology Data Exchange (ETDEWEB)

    Welch, F H; Steele, O P [Rockwell International, Atomics International Division, Canoga Park (United States)

    1978-08-01

    Reactor components from sodium-cooled systems. whether radioactive or not, must have the sodium removed before they can be safely handled for 1) disposal, 2) examination and test, or 3) decontamination, repair, and requalification. In the latter two cases, the sodium must be removed in a manner which will not harm the component. and prevent future use. Two methods for sodium removal using non-aqueous techniques have been studied extensively in the U.S.A. in the past few years: the Alcohol Process, which uses a fully denatured ethanol to react away the sodium; and the Evaporative Process, which uses heat and vacuum to evaporate the sodium from the component.

  14. Non-aqueous removal of sodium from reactor components

    International Nuclear Information System (INIS)

    Welch, F.H.; Steele, O.P.

    1978-01-01

    Reactor components from sodium-cooled systems. whether radioactive or not, must have the sodium removed before they can be safely handled for 1) disposal, 2) examination and test, or 3) decontamination, repair, and requalification. In the latter two cases, the sodium must be removed in a manner which will not harm the component. and prevent future use. Two methods for sodium removal using non-aqueous techniques have been studied extensively in the U.S.A. in the past few years: the Alcohol Process, which uses a fully denatured ethanol to react away the sodium; and the Evaporative Process, which uses heat and vacuum to evaporate the sodium from the component

  15. Prevalence and sunlight photolysis of controlled and chemotherapeutic drugs in aqueous environments

    International Nuclear Information System (INIS)

    Lin, Angela Yu-Chen; Lin, Yen-Ching; Lee, Wan-Ning

    2014-01-01

    This study addresses the occurrences and natural fates of chemotherapeutics and controlled drugs when found together in hospital effluents and surface waters. The results revealed the presence of 11 out of 16 drugs in hospital effluents, and the maximum detected concentrations were at the μg L −1 level in the hospital effluents and the ng L −1 level in surface waters. The highest concentrations corresponded to meperidine, morphine, 5-fluorouracil and cyclophosphamide. The sunlight photolysis of the target compounds was investigated, and the results indicated that morphine and codeine can be significantly attenuated, with half-lives of 0.27 and 2.5 h, respectively, in natural waters. Photolysis can lower the detected environmental concentrations, also lowering the estimated environmental risks of the target drugs to human health. Nevertheless, 5-fluorouracil and codeine were found to have a high risk quotient (RQ), demonstrating the high risks of directly releasing hospital wastewater into the environment. - Highlights: • High occurrence of chemotherapeutics and controlled substances in aqueous systems. • Photolysis lowers the detected concentrations of morphine and codeine. • 5-fluorouracil and codeine in hospital effluents have high risk quotients. - Chemotherapeutics and controlled drugs occur at significant levels in hospital effluents and surface waters. Natural sunlight photolysis reduces their environmental occurrence

  16. Magnetite Dissolution Performance of HYBRID-II Decontamination Process

    International Nuclear Information System (INIS)

    Kim, Seonbyeong; Lee, Woosung; Won, Huijun; Moon, Jeikwon; Choi, Wangkyu

    2014-01-01

    In this study, we conducted the magnetite dissolution performance test of HYBRID-II (Hydrazine Based Reductive metal Ion Decontamination with sulfuric acid) as a part of decontamination process development. Decontamination performance of HYBRID process was successfully tested with the results of the acceptable decontamination factor (DF) in the previous study. While following-up studies such as the decomposition of the post-decontamination HYBRID solution and corrosion compatibility on the substrate metals of the target reactor coolant system have been continued, we also seek for an alternate version of HYBRID process suitable especially for decommissioning. Inspired by the relationship between the radius of reacting ion and the reactivity, we replaced the nitrate ion in HYBRID with bigger sulfate ion to accommodate the dissolution reaction and named HYBRID-II process. As a preliminary step for the decontamination performance, we tested the magnetite dissolution performance of developing HYBRID-II process and compared the results with those of HYBRID process. HYBRID process developed previously is known have the acceptable decontamination performance, but the relatively larger volume of secondary waste induced by anion exchange resin to treat nitrate ion is the one of the problems related in the development of HYBRID process to be applicable. Therefore we alternatively devised HYBRID-II process using sulfuric acid and tested its dissolution of magnetite in numerous conditions. From the results shown in this study, we can conclude that HYBRID-II process improves the decontamination performance and potentially reduces the volume of secondary waste. Rigorous tests with metal oxide coupons obtained from reactor coolant system will be followed to prove the robustness of HYBRID-II process in the future

  17. Decontamination around the site of Chernobylsk

    International Nuclear Information System (INIS)

    Manesse, D.; Rzepka, J.P.; Maubert, H.

    1990-12-01

    This report describes the decontamination of the site around the nuclear plant of Chernobylsk after the reactor accident of 1986. The work of decontamination in urban areas, buildings, fields and vegetation are detailed. The interventions to reduce the contamination of surface waters and to protect ground waters are also given. (N.C.)

  18. INTEGRATED VERTICAL AND OVERHEAD DECONTAMINATION SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    M.A. Ebadian, Ph.D.

    1999-01-01

    This report summarizes the activities performed during FY98 and describes the planned activities for FY99. Accomplishments for FY98 include identifying and selecting decontamination, the screening of potential characterization technologies, development of minimum performance factors for the decontamination technology, and development and identification of Applicable, Relevant and Appropriate Regulations (ARARs).

  19. INTEGRATED VERTICAL AND OVERHEAD DECONTAMINATION SYSTEM

    International Nuclear Information System (INIS)

    Ebadian, M.A.

    1999-01-01

    This report summarizes the activities performed during FY98 and describes the planned activities for FY99. Accomplishments for FY98 include identifying and selecting decontamination, the screening of potential characterization technologies, development of minimum performance factors for the decontamination technology, and development and identification of Applicable, Relevant and Appropriate Regulations (ARARs)

  20. Recent developments in chemical decontamination technology

    Energy Technology Data Exchange (ETDEWEB)

    Wood, C.J. [Electric Power Research Institute, Palo Alto, CA (United States)

    1995-03-01

    Chemical decontamination of parts of reactor coolant systems is a mature technology, used routinely in many BWR plants, but less frequently in PWRs. This paper reviews recent developments in the technology - corrosion minimization, waste processing and full system decontamination, including the fuel. Earlier work was described in an extensive review published in 1990.

  1. Decontamination impacts on solidification

    International Nuclear Information System (INIS)

    Piciulo, P.L.; Davis, M.S.

    1985-01-01

    The increased occupational exposure resulting from the accumulation of activated corrosion products in the primary system of LWRs has led to the development of chemical methods to remove the contamination. In the past, the problem of enhanced migration of radionuclides away from trenches used to dispose of low-level radioactive waste, has been linked to the presence, at the disposal unit, of chelating or complexing agents such as those used in decontamination processes. These agents have further been found to reduce the normal sorptive capacity of soils for radionuclides. The degree to which these agents inhibit the normal sorptive processes is dependent on the type of complexing agent, the radionuclide of concern, the soil properties and whether the nuclide is present as a complex or is already sorbed to the soil. Since the quantity of reagent employed in a full system decontamination is large (200 to 25,000 kg), the potential for enhanced migration of radionuclides from a site used to dispose of the decontamination wastes should be addressed and guidelines established for the safe disposal of these wastes

  2. Performance test of wet type decontamination device

    International Nuclear Information System (INIS)

    Lee, E. P.; Kim, E. G.; Min, D. K.; Jun, Y. B.; Lee, H. K.; Seu, H. S.; Kwon, H. M.; Hong, K.P.

    2003-01-01

    The intervention area located at rear hot cell can be contaminated by hot cell maintenance work. For effective decontamination of the intervention floor a wet type decontamination device was developed. The device was assembled with a brush rotating part, a washing liquid supplying part, an intake part for recovering contaminated liquid and a device moving cart part. The device was made of stainless steel for easy decontamination and corrosion resistance. The function test carried out at intervention area of the PIE facility showed good performance

  3. Foam process for application of decontamination agents

    International Nuclear Information System (INIS)

    Harris, J.M.; Miller, J.R.; Frazier, R.S.; Walter, J.H.

    1982-01-01

    This paper presents the results and observations of a study performed by the authors to parametrically evaluate the performance characteristics of a foam process for application of decontamination agents. The initial tests were established to assess foam quality. Subsequent tests determined the ability of the foam as a carrier of chemical systems, and established system operating parameters. The technique was then applied in an actual decontamination task to verify effectiveness of these established parameters and to determine decontamination reduction factors. 4 figures, 5 tables

  4. Decontamination of a canyon crane at the Savannah River Plant

    International Nuclear Information System (INIS)

    Stevenson, D.A.; Moore, D.B.; Bowers, J.W.; Brown, D.L.

    1985-01-01

    Decontamination of the crane is reviewed in terms of the health physics aspects, controls during decontamination efforts, and the resultant radiation exposure rates for decontamination efforts. 17 figs.,

  5. Intervention and decontamination of hardware contaminated by tritium

    International Nuclear Information System (INIS)

    Cerre, Pierre; Mestre, Emile

    1964-10-01

    This report first describes the intervention process for teams intervening, either in case of accident or to modify or repair installations in which tritium is handled, i.e. in both cases in a contaminated atmosphere. Three main aspects are addressed: how to prepare and insulate the work place from the rest of the installation, how to protect the intervening personnel, and how to perform decontamination. The authors then present the various available decontamination techniques: decontamination bath at different temperatures and use of different chemical solutions at different temperatures, the degassing technique (temperature increase and vacuum, temperature hold during 30 to 45 minutes, return to atmospheric pressure), and mercury-based decontamination

  6. Effluent standards

    Energy Technology Data Exchange (ETDEWEB)

    Geisler, G C [Pennsylvania State University (United States)

    1974-07-01

    At the conference there was a considerable interest in research reactor standards and effluent standards in particular. On the program, this is demonstrated by the panel discussion on effluents, the paper on argon 41 measured by Sims, and the summary paper by Ringle, et al. on the activities of ANS research reactor standards committee (ANS-15). As a result, a meeting was organized to discuss the proposed ANS standard on research reactor effluents (15.9). This was held on Tuesday evening, was attended by members of the ANS-15 committee who were present at the conference, participants in the panel discussion on the subject, and others interested. Out of this meeting came a number of excellent suggestions for changes which will increase the utility of the standard, and a strong recommendation that the effluent standard (15.9) be combined with the effluent monitoring standard. It is expected that these suggestions and recommendations will be incorporated and a revised draft issued for comment early this summer. (author)

  7. Developments in Decontamination Technologies of Military Personnel and Equipment

    Science.gov (United States)

    Sata, Utkarsh R.; Ramkumar, Seshadri S.

    Individual protection is important for warfighters, first responders and civilians to meet the current threat of toxic chemicals and chemical warfare (CW) agents. Within the realm of individual protection, decontamination of warfare agents is not only required on the battlefield but also in laboratory, pilot plants, production and agent destruction sites. It is of high importance to evaluate various decontaminants and decontamination techniques for implementing the best practices in varying scenarios such as decontamination of personnel, sites and sensitive equipment.

  8. Decontamination of CAGR gas circulator components

    International Nuclear Information System (INIS)

    Rogers, L.N.; Hooper, A.J.

    1985-01-01

    This paper describes the development and full-scale trial of two methods for removal of radioactive contamination on the surfaces of CAGR gas circulator components. The two methods described are a particle impact cleaning (PIC) decontamination technique and an electrochemical technique, 'electro-swabbing', which is based on the principle of decontamination by electro-polishing. In developing these techniques it was necessary to take account of the physical and chemical nature of the surface deposits on the gas circulator components; these were shown to consist of magnetite-type oxide and carbonaceous material. In order to follow the progress of the decontamination it was also necessary to develop a surface sampling technique which was effective and precise under these conditions; an electrochemical technique, employing similar principles to the electro-swabbing process, was developed for this purpose. The full-scale trial of the PIC decontamination technique was carried out on an inlet guide vane (IGV) assembly, this having been identified as the component from the gas circulator which contributes most to the radiation dose accumulated during routine circulator maintenance. The technique was shown to be practically viable and some 99% of the radioactive contamination was readily removed from the treated surfaces with only negligible surface damage being caused. The full-scale trial of the electro-swabbing decontamination technique was carried out on a gas circulator impeller. High decontamination factors were again achieved with ≥ 99% of the radioactive contamination being removed from the treated surfaces. The technique has practical limitations in terms of handling and treatment of waste-arisings. However, the use of specially-designed swabbing electrodes may allow the treatment of constricted geometries inaccessible to techniques such as PIC. The technique is also highly suitable for the treatment of soft-finish materials and of components fabricated from a

  9. Application of Ultrasonic for Decontamination of Contaminated Soil - 13142

    International Nuclear Information System (INIS)

    Vasilyev, A.P.; Lebedev, N.M.; Savkin, A.E.

    2013-01-01

    The trials of soil decontamination were carried out with the help of a pilot ultrasonic installation in different modes. The installation included a decontamination bath equipped with ultrasonic sources, a precipitator for solution purification from small particles (less than 80 micrometer), sorption filter for solution purification from radionuclides washing out from soil, a tank for decontamination solution, a pump for decontamination solution supply. The trials were carried out on artificially contaminated sand with specific activity of 4.5 10 5 Bk/kg and really contaminated soil from Russian Scientific Center 'Kurchatovsky Institute' (RSC'KI') with specific activity of 2.9 10 4 Bk/kg. It was established that application of ultrasonic intensify the process of soil reagent decontamination and increase its efficiency. The decontamination factor for the artificially contaminated soil was ∼200 and for soil from RSC'KI' ∼30. The flow-sheet diagram has been developed for the new installation as well as determined the main technological characteristics of the equipment. (authors)

  10. General recommendations for decontamination procedures to individuals

    International Nuclear Information System (INIS)

    Ohlenschlaeger, L.; Messerschmidt, J.P.

    1989-04-01

    The fundamental criteria in handling radioactive contaminated persons are discussed and methods of monitoring, including monitoring of contaminated wounds, as well as decontamination measures with reference to particularly exposed regions of the body are described. Each decontamination procedure has to be carried out cautiously and has to be stopped as soon as skin lesion would be ensured from too strong mechanical cleansing, in order to avoid any additional incorporation by an injured skin. As a rule, any residual radioactivity still adherent to the skin surface can be neglected as soon as avoidance of spreading of the contamination to surrounding areas is assured. Experience showed that contaminations with radioactive dust can be removed from the skin surface quite easily by such simple means like water and soap. Radioisotopes, however, as used in nuclear medicine, usually are having a higher adhesive effect to the skin surface, thus making conditions for decontamination more difficult. Measures related to the decontamination procedure such as monitoring, mode of sampling for bioassay in case of incidents, handling of waste resulting from decontamination, as well as self-protective aspects are discussed in the annex. (orig.) [de

  11. Assessing cost and effectiveness of radiation decontamination in Fukushima Prefecture, Japan

    International Nuclear Information System (INIS)

    Yasutaka, Tetsuo; Naito, Wataru

    2016-01-01

    Despite the enormous cost of radiation decontamination in Fukushima Prefecture, it is not clear what levels of reduction in external radiation exposure are possible in the Special Decontamination Area, the Intensive Contamination Survey Areas and the whole of Fukushima. The objective of this study was to evaluate the cost and effectiveness of radiation decontamination in Fukushima Prefecture in its entirety. Using a geographic information system, we calculated the costs of removal, storage containers, transport, and temporary and interim storage facilities as well as the reduction in air dose rate for a cumulative external exposure for 9000 1 km × 1 km mesh units incorporating 51 municipalities. The decontamination cost for the basic scenario, for which forested areas within 20 m of habitation areas were decontaminated, was JPY2.53–5.12 trillion; the resulting reduction in annual external dose was about 2500 person-Sv. The transport, storage, and administrative costs of decontamination waste and removed soil reached JPY1.55–2.12 trillion under this scenario. Although implementing decontamination of all forested areas provides some major reductions in the external radiation dose for the average inhabitant, decontamination costs could potentially exceed JPY16 trillion. These results indicate that technologies for reducing the volume of decontamination waste and removed soil should be considered to reduce storage costs and that further discussions about forest decontamination policies are needed. - Highlights: • Evaluation of cost and effectiveness of decontaminating Fukushima Prefecture. • Reductions in external exposure under various decontamination scenarios were similar. • Decontamination costs for the basic scenario were estimated at JPY2.53–5.12 trillion.

  12. Pipe Decontamination Involving String-Foam Circulation

    International Nuclear Information System (INIS)

    Turchet, J.P.; Estienne, G.; Fournel, B.

    2002-01-01

    Foam applications number for nuclear decontamination purposes has recently increased. The major advantage of foam decontamination is the reduction of secondary liquid wastes volumes. Among foam applications, we focus on foam circulation in contaminated equipment. Dynamic properties of the system ensures an homogeneous and rapid effect of the foam bed-drifted chemical reagents present in the liquid phase. This paper describes a new approach of foam decontamination for pipes. It is based on an alternated air and foam injections. We called it 'string-foam circulation'. A further reduction of liquid wastes is achieved compared to continuous foam. Secondly, total pressure loss along the pipe is controlled by the total foam length in the pipe. It is thus possible to clean longer pipes keeping the pressure under atmospheric pressure value. This ensures the non dispersion of contamination. This study describes experimental results obtained with a neutral foam as well with an acid foam on a 130 m long loop. Finally, the decontamination of a 44 meters pipe is presented. (authors)

  13. Experiences with decontaminating tritium-handling apparatus

    International Nuclear Information System (INIS)

    Maienschein, J.L.; Garcia, F.; Garza, R.G.; Kanna, R.L.; Mayhugh, S.R.; Taylor, D.T.

    1991-07-01

    Tritium-handling apparatus has been decontaminated as part of the shutdown of the LLNL Tritium Facility. Two stainless-steel gloveboxes that had been used to process lithium deuteride-tritide (LiDT) salt were decontaminated using the Portable Cleanup System so that they could be flushed with room air through the facility ventilation system. Further surface decontamination was performed by scrubbing the interior with paper towels and ethyl alcohol or Swish trademark. The surface contamination, as shown by swipe surveys, was reduced from 4x10 4 --10 6 disintegrations per minute (dpm)/cm 2 to 2x10 2 --4x10 4 dpm/cm 2 . Details on the decontamination operation are provided. A series of metal (palladium and vanadium) hydride storage beds have been drained of tritium and flushed with deuterium in order to remove as much tritium as possible. The bed draining and flushing procedure is described, and a calculational method is presented which allows estimation of the tritium remaining in a bed after it has been drained and flushed. Data on specific bed draining and flushing are given

  14. Decontamination and decorporation: the clinical experience

    International Nuclear Information System (INIS)

    Poda, G.A.

    1979-01-01

    Decontamination and decorporation are quite interrelated when dealing with a contaminated person. Some clinical experiences from a transuranium production facility are offered. Skin decontamination is accomplished by washing with detergent and water. Stubborn cases are treated with sodium hypochlorite followed by rinsing, and emery cloth is used on more stubborn nail or finger pad contamination. If inhaled, the usual skin cleansing followed by nasal douche with normal saline decontaminates reachable areas and one of the DTPA salts given via aerosol both decontaminates and decorporates the inner recesses. Saline laxative reduces the time inhaled, and ingested particles remain in the gastro-intestinal tract. Conservatism prevails in general, but most persons found to have inhaled contamination are given a single chelation within the hour of discovery and if subsequently found to have over 10% M.P.P.B. of a soluble actinide are offered further chelation. Single dose chelation has been found to be relatively innocuous and usually sufficient. The longest case of chelation therapy spanned 2-1/4 years and encompassed 123 doses of CaNa-DTPA

  15. Decontamination for radiators by friction effect

    International Nuclear Information System (INIS)

    Nojima, Takeshi; Yoshida, Yuji

    2016-01-01

    Radiators are equipped with cars, vending machines and outdoor units of air conditioners. Aluminum metal surfaces in their heat exchange part have been contaminated by radioactive material taking in dust after the nuclear accident. The dust adhering to the metal surface could be removed by flushing with water immediately after scattering radioactive material. But radioactive material such as cesium cannot be removed by water washing, because of growth of the oxide film and transfer of the nuclides in the metal surface due to aging. On the other hand, we have verified the effect of decontamination of radiators by friction cleaning using a cross flow shredder (CFS) and solvent washing of crushed metallic chips, as a different approach to high-pressure washing decontamination, and confirmed a certain decontamination effect. This paper describes the results of program, “Processing Technology of Radioactive Material Removal by Cross Flow Shredder,” in August to December 2015, on support of FY 2015 Demonstration Test Project for Decontamination and Volume Reduction of Ministry of the Environment. (author)

  16. Electrokinetic decontamination of concrete

    Energy Technology Data Exchange (ETDEWEB)

    Lomasney, H. [ISOTRON Corp., New Orleans, LA (United States)

    1995-10-01

    The U.S. Department of Energy has assigned a priority to the advancement of technology for decontaminating concrete surfaces which have become contaminated with radionuclides, heavy metals, and toxic organics. This agency is responsible for decontamination and decommissioning of thousands of buildings. Electrokinetic extraction is one of the several innovative technologies which emerged in response to this initiative. This technique utilizes an electropotential gradient and the subsequent electrical transport mechanism to cause the controlled movement of ionics species, whereby the contaminants exit the recesses deep within the concrete. This report discusses the technology and use at the Oak Ridge k-25 plant.

  17. Cost effectiveness of dilute chemical decontamination

    International Nuclear Information System (INIS)

    LeSurf, J.E.; Weyman, G.D.

    The basic principles of dilute chemical decontamination are described, as well as the method of application. Methods of computing savings in radiation dose and costs are presented, with results from actual experience and illustrative examples. It is concluded that dilute chemical decontamination is beneficial in many cases. It reduces radiation exposure of workers, saves money, and simplifies maintenance work

  18. Facility effluent monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Gleckler, B.P.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the facility effluent monitoring programs and provides an evaluation of effluent monitoring data. These evaluations are useful in assessing the effectiveness of effluent treatment and control systems, as well as management practices.

  19. Decontamination of process equipment using recyclable chelating solvent

    International Nuclear Information System (INIS)

    Jevec, J.; Lenore, C.; Ulbricht, S.

    1995-01-01

    The Department of Energy (DOE) is now faced with the task of meeting decontamination and decommissioning obligations at numerous facilities by the year 2019. Due to the tremendous volume of material involved, innovative decontamination technologies are being sought that can reduce the volumes of contaminated waste materials and secondary wastes requiring disposal. With sufficient decontamination, some of the material from DOE facilities could be released as scrap into the commercial sector for recycle, thereby reducing the volume of radioactive waste requiring disposal. Although recycling may initially prove to be more costly than current disposal practices, rapidly increasing disposal costs are expected to make recycling more and more cost effective. Additionally, recycling is now perceived as the ethical choice in a world where the consequences of replacing resources and throwing away reusable materials are impacting the well-being of the environment. Current approaches to the decontamination of metals most often involve one of four basic process types: (1) chemical, (2) manual and mechanical, (3) electrochemical, and (4) ultrasonic. open-quotes Hardclose quotes chemical decontamination solutions, capable of achieving decontamination factors (Df's) of 50 to 100, generally involve reagent concentrations in excess of 5%, tend to physically degrade the surface treated, and generate relatively large volumes of secondary waste. open-quotes Softclose quotes chemical decontamination solutions, capable of achieving Df's of 5 to 10, normally consist of reagents at concentrations of 0.1 to 1%, generally leave treated surfaces in a usable condition, and generate relatively low secondary waste volumes. Under contract to the Department of Energy, the Babcock ampersand Wilcox Company is developing a chemical decontamination process using chelating agents to remove uranium compounds and other actinide species from process equipment

  20. A study on Cs decontamination characterisitcs of radioactively contaminated soil using soil washing

    International Nuclear Information System (INIS)

    Lee, K. W.; Son, J. K.; Kim, K. D.; Kim, H. S.; Choi, Y. C.; Kang, K. D.; Sin, S. W.

    2002-01-01

    To decontaminate radioactively contaminated soil, various characteristics of soil were investigated, and applied for the best decontamination method and requirement. The effects of several conditions such as decontamination solutions, temperature and time was investigated. Na 2 CO 3 , which is not toxic to environment, was used as primary decontamination solution. The efficiency of decontamination was increased approximately 9% when decontamination time was increased from 30 min to 120 min. The efficiency of decontamination was increased approximately 10% when decontamination temperature was increased from 25 .deg. C to 70 .deg. C. The efficiency of decontamination was increased approximately 7% when the ratio of decontamination solution and soil was increased from 5:1 to 10:1

  1. Decontamination of the site of an army gasoline service station

    International Nuclear Information System (INIS)

    Hoffmann, J.; Katzer, W.; Scheidt, M.; Roll, S.

    1994-01-01

    This is a report on the decontamination of the site of a gasoline service station at the Fuchsberg barracks at Salzwedel. Albeit that the accident is not spectacular for its magnitude, this case is interesting and exemplary because of the combined use of the most diverse decontamination methods. Soi air removal by suction, ground water decontamination, and microbiological soil decontamination were successfully used in conjunction. (orig.) [de

  2. Initial decontamination of the equipment decontamination room at the West Valley Demonstration Project. Topical report, September 1983-May 1985

    International Nuclear Information System (INIS)

    Meigs, R.A.

    1985-12-01

    The purpose of this report is to document the initial decontamination of the Equipment Decontamination Room (EDR). The effort spanned a two-year period and included packaging and removal of waste; grinding away contaminated concrete floors; pump-out and spraydown of an equipment soaking pit; washing and painting of walls, equipment, and floors; refurbishment of utilities and various pieces of equipment; and load tests of EDR and Chemical Process Cell (CPC) cranes. After decontamination, the EDR was converted into a waste handling area for the decommissioning of the CPC

  3. W-12 valve pit decontamination demonstration

    International Nuclear Information System (INIS)

    Benson, C.E.; Parfitt, J.E.; Patton, B.D.

    1995-12-01

    Waste tank W-12 is a tank in the ORNL Low-Level Liquid Waste (LLLW) system that collected waste from Building 3525. Because of a leaking flange in the discharge line from W-12 to the evaporator service tank (W-22) and continual inleakage into the tank from an unknown source, W-12 was removed from service to comply with the Federal Facilities Agreement requirement. The initial response was to decontaminate the valve pit between tank W-12 and the evaporator service tank (W-22) to determine if personnel could enter the pit to attempt repair of the leaking flange. Preventing the spread of radioactive contamination from the pit to the environment and to other waste systems was of concern during the decontamination. The drain in the pit goes to the process waste system; therefore, if high-level liquid waste were generated during decontamination activities, it would have to be removed from the pit by means other than the available liquid waste connection. Remote decontamination of W-12 was conducted using the General Mills manipulator bridge and telescoping trolley and REMOTEC RM-10 manipulator. The initial objective of repairing the leaking flange was not conducted because of the repair uncertainty and the unknown tank inleakage. Rather, new piping was installed to empty the W-12 tank that would bypass the valve pit and eliminate the need to repair the flange. The radiological surveys indicated that a substantial decontamination factor was achieved

  4. Continuum Model for Decontamination of Chemical Warfare Agent from a Rubbery Polymer using the Maxwell-Stefan Formulation

    Science.gov (United States)

    Varady, Mark; Bringuier, Stefan; Pearl, Thomas; Stevenson, Shawn; Mantooth, Brent

    Decontamination of polymers exposed to chemical warfare agents (CWA) often proceeds by application of a liquid solution. Absorption of some decontaminant components proceed concurrently with extraction of the CWA, resulting in multicomponent diffusion in the polymer. In this work, the Maxwell-Stefan equations were used with the Flory-Huggins model of species activity to mathematically describe the transport of two species within a polymer. This model was used to predict the extraction of the nerve agent O-ethyl S-[2(diisopropylamino)ethyl] methylphosphonothioate (VX) from a silicone elastomer into both water and methanol. Comparisons with experimental results show good agreement with minimal fitting of model parameters from pure component uptake data. Reaction of the extracted VX with sodium hydroxide in the liquid-phase was also modeled and used to predict the overall rate of destruction of VX. Although the reaction proceeds more slowly in the methanol-based solution compared to the aqueous solution, the extraction rate is faster due to increasing VX mobility as methanol absorbs into the silicone, resulting in an overall faster rate of VX destruction.

  5. Particle Separation of Non-Decontamination Soil using Attrition and Washing

    International Nuclear Information System (INIS)

    Koo, Daeseo; Sung, Hyun-Hee; Kim, Seung-Soo; Hong, Sang Bum; Seo, Bum Kyoung; Choi, Jong-Won

    2017-01-01

    In this study, to improve the decontamination efficiency of uranium soil, a preliminary experiment on the particle separation of non-decontamination soil was carried out using attrition and washing. The characteristics of the attrition and washing system are investigated. A conditional experiment on particle separation of non-decontamination soil will be performed. A preliminary experiment on the particle separation of non-decontamination soil was carried out to improve the decontamination efficiency of uranium soil. This experiment was performed with the ratio of soil to water (1:4) for the particle separation of non-decontamination soil. The operations of all equipment such as attrition scrubber, ultrasonic reaction, vibrating screen, and hydro-cyclone were conducted and confirmed. In the future, the additional experiments will be conducted for optimal experimental condition.

  6. Development of peelable films for decontamination and their performances

    International Nuclear Information System (INIS)

    Yang Enbo; Xu Baolan; Zhao Xiuyan

    1990-01-01

    Two kinds of peelable films have been developed which can be coated on surface contaminated by radioactivity for decontamination purposes. Very high levels of radioactive decontamination, especially on smooth surface, are obtained after one application. 90-99% decontamination based on initial activity can be obtained for stainless steel, PVC floor and glass

  7. Method and device for processing aqueous effluents containing tritiated water, electrode used in that device and its fabrication process

    International Nuclear Information System (INIS)

    Bellanger, G.; Giroux, P.

    1983-01-01

    In this process an electrolyte, such as sodium hydroxide, is added to the effluent and the solution is electrolysed to obtain gaseous tritium. The electrolytic cell includes a cathode made with a metal facilitating tritium diffusion, e.g. Pd-Ag alloy. The cathode constitutes a separation wall between the electrolysed solution and a compartment where tritium is recovered after diffusion through the cathode. Application is made for tritium recovery in effluents coming from spent fuel reprocessing [fr

  8. The impact of different proportions of a treated effluent on the biotransformation of selected micro-contaminants in river water microcosms.

    Science.gov (United States)

    Nödler, Karsten; Tsakiri, Maria; Licha, Tobias

    2014-10-10

    Attenuation of micro-contaminants is a very complex field in environmental science and evidence suggests that biodegradation rates of micro-contaminants in the aqueous environment depend on the water matrix. The focus of the study presented here is the systematic comparison of biotransformation rates of caffeine, carbamazepine, metoprolol, paracetamol and valsartan in river water microcosms spiked with different proportions of treated effluent (0%, 0.1%, 1%, and 10%). Biotransformation was identified as the dominating attenuation process by the evolution of biotransformation products such as atenolol acid and valsartan acid. Significantly decreasing biotransformation rates of metoprolol were observed at treated effluent proportions ≥ 0.1% whereas significantly increasing biotransformation rates of caffeine and valsartan were observed in the presence of 10% treated effluent. Potential reasons for the observations are discussed and the addition of adapted microorganisms via the treated effluent was suggested as the most probable reason. The impact of additional phosphorus on the biodegradation rates was tested and the experiments revealed that phosphorus-limitation was not responsible.

  9. Development of acidic processes for decontaminating LMFBR components

    Energy Technology Data Exchange (ETDEWEB)

    Hill, E F [Rockwell International, Atomics International Division, Canoga Park (United States); Colburn, R P; Lutton, J M; Maffei, H P [Hanford Engineering Development Laboratory, Richland (United States)

    1978-08-01

    The objective of the DOE decontamination program is to develop a well characterized chemical decontamination process for application to LMFBR primary system components that subsequently permits contact maintenance and allows requalification of the components for reuse in reactors. The paper describes the subtasks of deposit characterization, development of requalification and process acceptance criteria, development of process evaluation techniques and studies which led to a new acidic process for decontaminating 304 stainless steel hot leg components.

  10. Development of acidic processes for decontaminating LMFBR components

    International Nuclear Information System (INIS)

    Hill, E.F.; Colburn, R.P.; Lutton, J.M.; Maffei, H.P.

    1978-01-01

    The objective of the DOE decontamination program is to develop a well characterized chemical decontamination process for application to LMFBR primary system components that subsequently permits contact maintenance and allows requalification of the components for reuse in reactors. The paper describes the subtasks of deposit characterization, development of requalification and process acceptance criteria, development of process evaluation techniques and studies which led to a new acidic process for decontaminating 304 stainless steel hot leg components

  11. Project gnome decontamination and decommissioning plan

    International Nuclear Information System (INIS)

    1979-04-01

    The document presents the operational plan for conducting the final decontamination and decommissioning work at the site of the first U.S. nuclear detonation designed specifically for peaceful purposes and the first underground event on the Plowshare Program to take place outside the Nevada Test Site. The plan includes decontamination and decommissioning procedures, radiological guidelines, and the NV concept of operations

  12. Application of Ultrasonic for Decontamination of Contaminated Soil - 13142

    Energy Technology Data Exchange (ETDEWEB)

    Vasilyev, A.P. [JRC ' NIKIET' , Moscow (Russian Federation); Lebedev, N.M. [LLC ' Aleksandra-Plus' , Vologda (Russian Federation); Savkin, A.E. [SUE SIA ' Radon' , Moscow (Russian Federation)

    2013-07-01

    The trials of soil decontamination were carried out with the help of a pilot ultrasonic installation in different modes. The installation included a decontamination bath equipped with ultrasonic sources, a precipitator for solution purification from small particles (less than 80 micrometer), sorption filter for solution purification from radionuclides washing out from soil, a tank for decontamination solution, a pump for decontamination solution supply. The trials were carried out on artificially contaminated sand with specific activity of 4.5 10{sup 5} Bk/kg and really contaminated soil from Russian Scientific Center 'Kurchatovsky Institute' (RSC'KI') with specific activity of 2.9 10{sup 4} Bk/kg. It was established that application of ultrasonic intensify the process of soil reagent decontamination and increase its efficiency. The decontamination factor for the artificially contaminated soil was ∼200 and for soil from RSC'KI' ∼30. The flow-sheet diagram has been developed for the new installation as well as determined the main technological characteristics of the equipment. (authors)

  13. Chemical decontamination of non-dismounted equipment of nuclear power stations

    International Nuclear Information System (INIS)

    Oertel, K.; Dietrich, P.; Hildebrandt, N.

    1979-01-01

    Reasons for performing system chemical decontaminations are considered, some cases of practical application to water cooled power reactors are discussed, radical and soft decontamination techniques are compared with each other, and evaluation criteria for decontaminations are studied. (author)

  14. Evaluation of a decontamination model

    International Nuclear Information System (INIS)

    Rippin, D.W.T.; Hanulik, J.; Schenker, E.; Ullrich, G.

    1981-02-01

    In the scale-up of a laboratory decontamination process difficulties arise due to the limited understanding of the mechanisms controlling the process. This paper contains some initial proposals which may contribute to the quantitative understanding of the chemical and physical factors which influence decontamination operations. General features required in a mathematical model to describe a fluid-solid reaction are discussed, and initial work is presented with a simple model which has had some success in describing the observed laboratory behaviour. (Auth.)

  15. Two-step chemical decontamination technology

    International Nuclear Information System (INIS)

    Rankin, W.N.

    1992-01-01

    An improved two-step chemical decontamination technique was recently developed at INEL. This memorandum documents the addition of this technology to the SRTC arsenal of decontamination technology. A two-step process using NAOH, KMnO 4 followed by HNO 3 was used for cleaning doorstops (small casks) in the SRTC High Level Caves in 1967. Subsequently, more aggressive chemical techniques have been found to be much more effective for our applications. No further work on two-step technology is planned

  16. Decontamination of large horizontal concrete surfaces outdoors

    International Nuclear Information System (INIS)

    Barbier, M.M.; Chester, C.V.

    1980-01-01

    A study is being conducted of the resources and planning that would be required to clean up an extensive contamination of the outdoor environment. As part of this study, an assessment of the fleet of machines needed for decontaminating large outdoor surfaces of horizontal concrete will be attempted. The operations required are described. The performance of applicable existing equipment is analyzed in terms of area cleaned per unit time, and the comprehensive cost of decontamination per unit area is derived. Shielded equipment for measuring directional radiation and continuously monitoring decontamination work are described. Shielding of drivers' cabs and remote control vehicles is addressed

  17. Municipalities' opinions about decontamination in special decontamination area. Records from three and a half years after the Fukushima Daiichi Nuclear Power Plant accident

    International Nuclear Information System (INIS)

    Kawasaki, Kota

    2015-01-01

    This study discusses opinions of 11 municipalities in Fukushima Prefecture designated as Special Decontamination Area as of the end of September 2014, about three and a half years after the Fukushima Daiichi Nuclear Power Plant accident. This study shows that (1) more than half of the municipalities recognize that decontamination activities of the national government which is responsible for decontamination in Special Decontamination Area are inadequate, (2) more than half of the municipalities recognize that residents cannot live their lives with a sense of safety and security unless air radiation dose is reduced to the level before the accident or less than 0.23 μSv/h, and (3) many municipalities recognize that residents will not be able to live their lives with a sense of safety and security even if the national government implements decontamination, (4) many municipalities points out 'Inability to secure enough temporary storage sites' and 'Inappropriateness of the decontamination policy and methods for forests or reservoir' as problems for the promotion of decontamination, and (5) almost all the municipalities recognize the necessity of the installation of interim storage facilities to accelerate the reconstruction of towns. (author)

  18. Reactivity of Dual-Use Decontaminants with Chemical Warfare Agents

    Science.gov (United States)

    2016-07-01

    REACTIVITY OF DUAL-USE DECONTAMINANTS WITH CHEMICAL WARFARE AGENTS ECBC-TR-1384... Decontaminants with Chemical Warfare Agents 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Willis, Matthew P...extraction) of chemical warfare agents from materials. 15. SUBJECT TERMS GD HD Decontamination Hazard mitigation VX Chemical warfare agent Liquid-phase

  19. Recent developments in collaborative CBRN decontamination science : a retrospective

    Energy Technology Data Exchange (ETDEWEB)

    Yanofsky, N. [Defence Research and Development Canada, Ottawa, ON (Canada); Volchek, K.; Fingas, M. [Environment Canada, Ottawa, ON (Canada). Emergencies Science and Technology Division, Environmental Technology Centre, Science and Technology Branch; Filatov, B. [Research Inst. of Hygiene, Toxicology and Occupational Pathology, Volgograd (Russian Federation)

    2006-07-01

    The importance of addressing the risk of chemical, biological and radiological/nuclear (CBRN) attacks was discussed with particular reference to recent developments in Canadian-led decontamination studies as part of the remediation response to a terrorist attack. Research efforts have been supported by government programs such as the CBRN Research and Technology Initiative of Defence Research and Development Canada and the Global Partnership Program of the Department of Foreign Affairs. In 2005, Environment Canada and Defence Research and Development Canada co-organized an international workshop with the Research Institute of Health, Toxicology and Occupational Pathology of Volgograd, Russia. The workshop brought together researchers from Canada, Russia, United States, United Kingdom, Netherlands, Poland and Bulgaria, with the view to eventually develop longer term collaborations. The theme focused on membrane technology and its application in CBRN decontamination. This paper reviewed these collaborative and international research efforts and identified areas in need of future work, such as bioremediation and radio-nuclear remediation. It addressed issues supporting a collaborative international research agenda in decontamination science; membrane filtration as a feasible approach to decontamination waste treatment; and possible areas of CBRN collaboration. It was suggested that the key to successful decontamination requires the creation of computer systems for the initial identification of chemical substances; complete toxicological characterization of the most dangerous agents; regulatory safety standards; quantitative determination of chemical substances; antidotes for most chemical threat agents; universal decontamination agents; and, validation of criteria for decontaminating buildings. The question of who pays for decontamination, be it the private or public sector, was also discussed.

  20. Decontamination of two filter boxes after a fire

    International Nuclear Information System (INIS)

    Cerre, P.; Mestre, E.; Lafitte, T.

    1961-01-01

    As a primary filter of the venting system caught fire in a hot cell of the Laboratory of Examination of Irradiated Fuels, this filter (as well as the secondary filter) has been removed, wrapped in polyvinyl sheets, and transported into the decontamination station. The authors report the details of the handling and decontamination operations: modifications to the station arrangement, measures of radiation protection, decontamination and measurements, observations made when disassembling the filter and filter-boxes [fr

  1. Decontamination and dismantlement of Plant 7 at Fernald

    International Nuclear Information System (INIS)

    Albertin, M.; Borgman, T.; Zebick, B.

    1994-01-01

    Decontamination and dismantlement (D ampersand D) tasks have been successfully completed on Plant 7 at the Fernald Environmental Management Project. The seven story facility was radiologically, chemically, and biologically contaminated. The work involved the D ampersand D work beginning with safe shutdown and gross decontamination, and ended with removal of the structural steel. A series of lessons learned were gained which include use of explosives, bidding tactics, safe shutdown, building decontamination and lockdown, use of seam climbers, etc

  2. Effluent Containment System for space thermal nuclear propulsion ground test facilities

    International Nuclear Information System (INIS)

    1995-08-01

    This report presents the research and development study work performed for the Space Reactor Power System Division of the U.S. Department of Energy on an innovative ECS that would be used during ground testing of a space nuclear thermal rocket engine. A significant portion of the ground test facilities for a space nuclear thermal propulsion engine are the effluent treatment and containment systems. The proposed ECS configuration developed recycles all engine coolant media and does not impact the environment by venting radioactive material. All coolant media, hydrogen and water, are collected, treated for removal of radioactive particulates, and recycled for use in subsequent tests until the end of the facility life. Radioactive materials removed by the treatment systems are recovered, stored for decay of short-lived isotopes, or packaged for disposal as waste. At the end of the useful life, the facility will be decontaminated and dismantled for disposal

  3. The separation of particulate within PFC decontamination wastewater generated by PFC decontamination

    International Nuclear Information System (INIS)

    Kim, Gye Nam; Lee, Sung Yeol; Won, Hui Jun; Jung, Chong Hun; Oh, Won Zin; Park, Jin Ho; Narayan, M.

    2005-01-01

    When PFC(Perfluoro carbonate) decontamination technology is applied to removal of radioactive contaminated particulate adhered at surface during the operation of nuclear research facilities, it is necessary to develop a filtration equipment to reuse of PFC solution due to high price, also to minimize the volume of second wastewater. Contaminated characteristics of hot particulate was investigated and a filtration process was presented to remove suspended radioactive particulate from PFC decontamination wastewater generated on PFC decontamination. The range of size of hot particulate adhered at the surface of research facilities measured by SEM was 0.1∼10μm. Hot particulate of more than 2μm in PFC contamination wastewater was removed by first filter and then hot particulate of more than 0.2μm was removed by second filter. Results of filter experiments showed that filtration efficiency of PVDF(Poly vinylidene fluoride), PP(Polypropylene), Ceramic filter was 95∼97%. A ceramic filter showed a higher filtration efficiency with a little low permeate volume. Also, a ceramic of inorganic compound could be broken easily on experiment and has a high price but was highly stable at radioactivity in comparison of PVDF and PP of a macromolecule which generate H 2 gas in alpha radioactivity environment

  4. Development of haemostatic decontaminants for the treatment of wounds contaminated with chemical warfare agents. 2: evaluation of in vitro topical decontamination efficacy using undamaged skin.

    Science.gov (United States)

    Dalton, Christopher H; Hall, Charlotte A; Lydon, Helen L; Chipman, J K; Graham, John S; Jenner, John; Chilcott, Robert P

    2015-05-01

    The risk of penetrating, traumatic injury occurring in a chemically contaminated environment cannot be discounted. Should a traumatic injury be contaminated with a chemical warfare (CW) agent, it is likely that standard haemostatic treatment options would be complicated by the need to decontaminate the wound milieu. Thus, there is a need to develop haemostatic products that can simultaneously arrest haemorrhage and decontaminate CW agents. The purpose of this study was to evaluate a number of candidate haemostats for efficacy as skin decontaminants against three CW agents (soman, VX and sulphur mustard) using an in vitro diffusion cell containing undamaged pig skin. One haemostatic product (WoundStat™) was shown to be as effective as the standard military decontaminants Fuller's earth and M291 for the decontamination of all three CW agents. The most effective haemostatic agents were powder-based and use fluid absorption as a mechanism of action to sequester CW agent (akin to the decontaminant Fuller's earth). The envisaged use of haemostatic decontaminants would be to decontaminate from within wounds and from damaged skin. Therefore, WoundStat™ should be subject to further evaluation using an in vitro model of damaged skin. Copyright © 2014 Crown copyright. Journal of Applied Toxicology © 2014 John Wiley & Sons, Ltd.

  5. Selective decontamination of the digestive tract and selective oropharyngeal decontamination in intensive care unit patients: a cost-effectiveness analysis

    NARCIS (Netherlands)

    Oostdijk, E.A.; Wit, G.A. de; Bakker, M; Smet, A.M. de; Bonten, M.J.; Hoeven, J.G. van der; Pickkers, P.; Sturm, P.D.J.; Voss, A.; et al.,

    2013-01-01

    OBJECTIVE: To determine costs and effects of selective digestive tract decontamination (SDD) and selective oropharyngeal decontamination (SOD) as compared with standard care (ie, no SDD/SOD (SC)) from a healthcare perspective in Dutch Intensive Care Units (ICUs). DESIGN: A post hoc analysis of a

  6. Selective decontamination of the digestive tract and selective oropharyngeal decontamination in intensive care unit patients : a cost-effectiveness analysis

    NARCIS (Netherlands)

    Oostdijk, Evelien A. N.; de Wit, G. A.; Bakker, Marina; de Smet, Anne-Marie; Bonten, M. J. M.

    2013-01-01

    Objective: To determine costs and effects of selective digestive tract decontamination (SDD) and selective oropharyngeal decontamination (SOD) as compared with standard care (ie, no SDD/SOD (SC)) from a healthcare perspective in Dutch Intensive Care Units (ICUs). Design: A post hoc analysis of a

  7. Decontamination Technologies, Task 3, Urban Remediation and Response Project

    International Nuclear Information System (INIS)

    Heiser, J.; Sullivan, T.

    2009-01-01

    In the aftermath of a Radiological Dispersal Device (RDD, also known as a dirty bomb) it will be necessary to remediate the site including building exteriors and interiors, equipment, pavement, vehicles, personal items etc. Remediation will remove or reduce radioactive contamination from the area using a combination of removing and disposing of many assets (including possible demolition of buildings), decontaminating and returning to service other assets, and fixing in place or leaving in place contamination that is deemed 'acceptable'. The later will require setting acceptable dose standards, which will require negotiation with all involved parties and a balance of risk and cost to benefit. To accomplish the first two, disposal or decontamination, a combination of technologies will be deployed that can be loosely classified as: Decontamination; Equipment removal and size reduction; and Demolition. This report will deal only with the decontamination technologies that will be used to return assets to service or to reduce waste disposal. It will not discuss demolition, size reduction or removal technologies or equipment (e.g., backhoe mounted rams, rock splitter, paving breakers and chipping hammers, etc.). As defined by the DOE (1994), decontamination is removal of radiological contamination from the surfaces of facilities and equipment. Expertise in this field comes primarily from the operation and decommissioning of DOE and commercial nuclear facilities as well as a small amount of ongoing research and development closely related to RDD decontamination. Information related to decontamination of fields, buildings, and public spaces resulting from the Goiania and Chernobyl incidents were also reviewed and provide some meaningful insight into decontamination at major urban areas. In order to proceed with decontamination, the item being processed needs to have an intrinsic value that exceeds the cost of the cleaning and justifies the exposure of any workers during the

  8. Decontamination Technologies, Task 3, Urban Remediation and Response Project

    Energy Technology Data Exchange (ETDEWEB)

    Heiser,J.; Sullivan, T.

    2009-06-30

    In the aftermath of a Radiological Dispersal Device (RDD, also known as a dirty bomb) it will be necessary to remediate the site including building exteriors and interiors, equipment, pavement, vehicles, personal items etc. Remediation will remove or reduce radioactive contamination from the area using a combination of removing and disposing of many assets (including possible demolition of buildings), decontaminating and returning to service other assets, and fixing in place or leaving in place contamination that is deemed 'acceptable'. The later will require setting acceptable dose standards, which will require negotiation with all involved parties and a balance of risk and cost to benefit. To accomplish the first two, disposal or decontamination, a combination of technologies will be deployed that can be loosely classified as: Decontamination; Equipment removal and size reduction; and Demolition. This report will deal only with the decontamination technologies that will be used to return assets to service or to reduce waste disposal. It will not discuss demolition, size reduction or removal technologies or equipment (e.g., backhoe mounted rams, rock splitter, paving breakers and chipping hammers, etc.). As defined by the DOE (1994), decontamination is removal of radiological contamination from the surfaces of facilities and equipment. Expertise in this field comes primarily from the operation and decommissioning of DOE and commercial nuclear facilities as well as a small amount of ongoing research and development closely related to RDD decontamination. Information related to decontamination of fields, buildings, and public spaces resulting from the Goiania and Chernobyl incidents were also reviewed and provide some meaningful insight into decontamination at major urban areas. In order to proceed with decontamination, the item being processed needs to have an intrinsic value that exceeds the cost of the cleaning and justifies the exposure of any workers

  9. Alpha Decontamination and Disassembly Pilot Facility. Final report

    International Nuclear Information System (INIS)

    Daugherty, B.A.; Clark, H.E.

    1985-04-01

    The Alpha Decontamination and Disassembly (AD and D) Pilot Facility was built to develop and demonstrate a reference process for the decontamination and size reduction of noncombustible transuranic (TRU) waste. The goals of the reference process were to remove >99% of the surface contamination to the high-level waste tanks, and to achieve volume reduction factors greater than 15:1. Preliminary bench-scale decontamination work was accomplished at Savannah River Laboratory (SRL), establishing a reference decontamination process. Initially, the pilot facility did not achieve the decontamination goals. As the program continued, and modifications to the process were made, coupon analysis idicated that 99% of the surface contamination was removed to the high-level drain system. Prior to the AD and D Pilot Facility, no size reduction work had been done at SRL. Several other Department of Energy (DOE) facilities were experimenting with plasma arc torches for size reduction work. Their methods were employed in the AD and D hot cell with moderate success. The experimental work concluded with recommendations for further testing of other size reduction techniques. 11 figs., 6 tabs

  10. Decontamination analysis of a radiologically contaminated site

    International Nuclear Information System (INIS)

    Tawil, J.J.; Strenge, D.L.

    1984-02-01

    This paper presents an analysis of decontamination options at the NUWAZX-83 exercise site. Held in May 1983, the purpose of the exercise was to evaluate the ability of federal, state and local officials to respond to a radiological accident involving nuclear weapons. A computer program developed by Pacific Northwest Laboratory was used to conduct the decontamination analysis. The program, called DECON, was designed to assist personnel engaged in the planning of decontamination activities. The many features of DECON that are demonstrated in this paper contribute to its potential usefulness as a planning tool for site restoration. Strategies that are analyzed with DECON include: (1) using a Quick-Vac option, under which exterior surfaces are vacuumed before it rains; (2) protecting surfaces against precipitation; (3) prohibiting specific operations on selected surfaces; (4) requiring that specific methods be used on selected surfaces; (5) evaluating the trade-off between cleanup standards and decontamination costs; and (6) varying clean-up standards according to expected human exposure to the surface

  11. Urban Decontamination Experience at Pripyat Ukraine - 13526

    Energy Technology Data Exchange (ETDEWEB)

    Paskevych, Sergiy [Institute for Safety Problems of Nuclear Power Plants, National Academy of Sciences of Ukraine, 36 a Kirova str. Chornobyl, Kiev region, 07200 (Ukraine); Voropay, Dmitry [Federal State Unitary Enterprise ' Russian State Center of Inventory and Registration and Real Estate - Federal Bureau of Technical Inventory' , 37-2 Bernadsky Prospekt, Moscow Russia 119415 (Russian Federation); Schmieman, Eric [Battelle Memorial Institute, PO Box 999 MSIN K6-90, Richland, WA 99352 (United States)

    2013-07-01

    This paper describes the efficiency of radioactive decontamination activities of the urban landscape in the town of Pripyat, Ukraine. Different methods of treatment for various urban infrastructure and different radioactive contaminants are assessed. Long term changes in the radiation condition of decontaminated urban landscapes are evaluated: 1. Decontamination of the urban system requires the simultaneous application of multiple methods including mechanical, chemical, and biological. 2. If a large area has been contaminated, decontamination of local areas of a temporary nature. Over time, there is a repeated contamination of these sites due to wind transport from neighboring areas. 3. Involvement of earth-moving equipment and removal of top soil by industrial method achieves 20-fold reduction in the level of contamination by radioactive substances, but it leads to large amounts of waste (up to 1500 tons per hectare), and leads to the re-contamination of treated areas due to scatter when loading, transport pollutants on the wheels of vehicles, etc.. (authors)

  12. Remote methods for decontamination and decommissioning operations

    International Nuclear Information System (INIS)

    DeVore, J.R.

    1986-01-01

    Three methods for the decontamination and decommissioning of nuclear facilities are described along with operational experience associated with each method. Each method described in some way reduces radiation exposure to the operating personnel involved. Electrochemical decontamination of process tanks is described using an in-situ method. Descriptions of two processes, electropolishing and cerium redox decontamination, are listed. A method of essentially smokeless cutting of process piping using a plasma-arc cutting torch is described. In one technique, piping is cut remotely from a distance using a specially modified torch holder. In another technique, cutting is done with master-slave manipulators inside a hot cell. Finally, a method for remote cutting and scarification of contaminated concrete is described. This system, which utilizes high-pressure water jets, is coupled to a cutting head or rotating scarification head. The system is suited for cutting contaminated concrete for removal or removing a thin layer in a controlled manner for decontamination. 4 refs., 6 figs

  13. Remote methods for decontamination and decommissioning operations

    International Nuclear Information System (INIS)

    DeVore, J.R.

    1986-01-01

    Three methods for the decontamination and decommissioning of nuclear facilities are described along with operational experience associated with each method. Each method described in some way reduces radiation exposure to the operating personnel involved. Electrochemical decontamination of process tanks is described using an in-situ method. Descriptions of two processes, electropolishing and cerium redox decontamination, are listed. A method of essentially smokeless cutting of process piping using a plasma-arc cutting torch is described. In one technique, piping is cut remotely from a distance using a specially modified torch holder. In another technique, cutting is done with master-slave manipulators inside a hot cell. Finally, a method for remote cutting and scarification of contaminated concrete is described. This system, which utilizes high-pressure water jets, is coupled to a cutting head or rotating scarification head. The system is suited for cutting contaminated concrete for removal or removing a thin layer in a controlled manner for decontamination

  14. Decontamination experiments for stainless steel decommissioned components

    International Nuclear Information System (INIS)

    Stefanescu, D.; Radulescu, M.; Dragomir, M.; Velciu, L.; Dinu, A.

    2001-01-01

    This paper presents the factors which influence the decontamination conditions using the steps of CONAP process. This four phases process (alkaline pre-treatment , an oxidation phase with potassium permanganate in acid environment, a dissolution phase using a complexing agent, a rinsing phase) has been used for decontamination to recycle the stainless steel 304 L and 403 m. The attraction of this process results from the following reasons: - the volume of radioactive sludge is low comparatively with the original volume of the solutions; - the separation of the activity from the solution is very effective; - time of exposure is reduced; - it is not necessary to process the solution through evaporators. During decommissioning decontamination is used to reduce radiation field by removing some of the fission and activation products contained in deposits and oxide films to minimize the radiation exposure of the personnel and public. In this context, this hard decontamination yields the materials at a radioactivity level fulfilling the repository requirements. (authors)

  15. Evaluation of arklone for the decontamination of non-combustible plutonium contaminated materials

    International Nuclear Information System (INIS)

    Gaudie, S.C.; Wilkins, J.D.; Turner, A.D.

    1986-04-01

    The use of Arklone (1,1,2 trichloro-, 1,2,2 trifluoroethane) as a decontamination reagent for plutonium contaminated non-combustible wastes has been investigated on a laboratory scale. Arklone has been found to be effective for the removal of loose Pu0 2 contamination - in particular from organic surfaces - from both synthetic and genuine waste. Of the range of contacting techniques investigated, ultrasonics was the best, though vibrocleaning and low pressure spraying performed well. For painted mild steel, paint stripping followed by treatment with Marshall's solution (an aqueous solution of oxalic acid and hydrogen peroxide) cleaned the surface to below 10 -4 μCi/cm 2 . Alternatively , electrochemical techniques could be used - particularly electrodissolution in nitric acid for stainless steel - to reduce contamination levels to 10 -5 μCi/cm 2 . (author)

  16. A Comparison of Electrokinetic Method and Electrokinetic-electrodialytic Method for Soil Decontamination

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Gyenam; Kim, Seungsoo; Park, Ukrang; Han, Gyuseong; Moon, Jeikwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    The electrokinetic decontamination equipment and electrokinetic-elctrodialytic decontamination equipment were manufactured to decontaminate the contaminated soil. The removal efficiency according to the lapsed time by the electrokinetic decontamination equipment and the electrokinetic-elctrodialytic decontamination equipment was investigated through several experiments. The difference between the removal efficiency of the electrokinetic-elctrodialytic decontamination without anion exchange membrane and that of with anion exchange membrane was investigated through several experiments. In addition, the removal efficiency trend according to different cesium radioactivity of soil was drawn out through several experiments.

  17. A Comparison of Electrokinetic Method and Electrokinetic-electrodialytic Method for Soil Decontamination

    International Nuclear Information System (INIS)

    Kim, Gyenam; Kim, Seungsoo; Park, Ukrang; Han, Gyuseong; Moon, Jeikwon

    2014-01-01

    The electrokinetic decontamination equipment and electrokinetic-elctrodialytic decontamination equipment were manufactured to decontaminate the contaminated soil. The removal efficiency according to the lapsed time by the electrokinetic decontamination equipment and the electrokinetic-elctrodialytic decontamination equipment was investigated through several experiments. The difference between the removal efficiency of the electrokinetic-elctrodialytic decontamination without anion exchange membrane and that of with anion exchange membrane was investigated through several experiments. In addition, the removal efficiency trend according to different cesium radioactivity of soil was drawn out through several experiments

  18. Development of Decontamination and Decommissioning Technologies for Nuclear Facilities

    International Nuclear Information System (INIS)

    Moon, Jei Kwon; Lee, Kune Woo; Won, Hui Jun

    2010-04-01

    A laser ablation decontamination technology which is reportedly effective for a removal of fixed contaminants has been developed for three years as the first stage of the development. Lab scale experimental equipment was fabricated and the process variables have been assessed for determination of appropriate decontamination conditions at the laser wave lengths of 1,064 nm and 532 nm, respectively. The decontamination tests using radioactive specimens showed that the decontamination efficiency was about 100 which is quite a high value. An electrokinetic-flushing, an agglomeration leaching and a supercritical CO 2 soil decontamination technology were development for a decontamination of radioactive soil wastes from the decommissioned sites of the TRIGA research reactor and the uranium conversion facilities. An electrokinetic-flushing process was found to be effective for soil wastes aged for a long time and an agglomeration leaching process was effective for soil wastes of surface contamination. On the other hand, a supercritical CO 2 soil decontamination technology was found to be applicable for U or TRU bearing soil wastes. The remediation monitoring key technologies such as a representative sample taking and a measurement concept for the vertical distribution of radionuclides were developed for an assessment of the site remediation. Also an One-Dimensional Water Flow and Contaminant Transport in Unsaturated Zone (FTUNS) code was developed to interpretate the radionuclide migration in the unsaturated zone

  19. Full system decontamination (FSD) at NPP Stade prior to dismantling activities

    International Nuclear Information System (INIS)

    Christoph Stiepani; Karl Seidelmann

    2006-01-01

    Full text of publication follows: Introduction: Minimization of personnel dose rates and generation of material free for release is of the highest priority and requires Full System Decontamination (FSD) as a first and important measure when decommissioning Nuclear Power Plants. Framatome ANP has many years experience with Full System Decontaminations for operating nuclear power plants in general and for decommissioning in particular. The latest decommissioning project was the FSD at the PWR Stade which was permanently shut down in November 2003 after 31 years of operation. FSD was scheduled within a short period after shutdown and prior to decommissioning activities. Full System Decontamination at Stade: The PWR Stade is a 4 loop design. FSD included the entire primary circuit with RPV and the auxiliary systems (RHR, VCS and RWCU). The decontamination circuit had a total volume of ∼310 m 3 and an overall surface of ∼17000 m 2 . The Framatome ANP decontamination process HP/CORD R UV was selected for application. The decontamination was performed by using NPP systems in combination with the Framatome mobile decontamination equipment AMDA R (Automated Mobile Decontamination Appliance). A total of 4 decontamination cycles were performed and excellent results were obtained. The average decontamination factor (DF) was 160 for the steam generators with an outstanding ambient dose reduction factor (DRF) of 75. Conclusions: FSD at the PWR Stade has shown that the HP/CORD UV process yields excellent results in primary and auxiliary systems. The significant ambient dose reduction factor of 75 is remarkable. This very high DRF, no other decontamination application came even close, will result in excellent cost-benefit ratios for additional decommissioning activities at Stade. The applied HP/CORD UV process is not a specific decontamination process for decommissioning. Therefore the obtained decontamination and dose reduction factors demonstrate the advantage/potential for

  20. The costs and effectiveness of various decontamination procedures

    International Nuclear Information System (INIS)

    Robinson, C.A.; Haywood, S.M.; Brown, J.

    1991-01-01

    Knowledge of the cost and effectiveness of decontamination techniques is necessary to optimise the implementation of this countermeasure. These factors vary depending upon the nature of the land affected. There is a great deal of data available on the cost and efficacy of specific decontamination techniques on particular surfaces, but little information for combinations of techniques in real environments. This paper describes the preliminary stages of a project, in progress at the National Radiological Protection Board (NRPB), aimed at providing this information, for inner city, residential and rural areas. The efficacies of individual decontamination processes on specific surfaces were from the available literature. The NRPB EXPURT (EXPosure from Urban Radionuclide Transfer) compartmental model was used to determine the effectiveness of a number of representative decontamination programmes; each programme represents a combination of common decontamination techniques which may be applied to the various surfaces comprising an inner-city, residential or rural environment, ie, paving, walls, roofs and soil. The effectiveness of each programme was measured in terms of the reduction in dose, or dose rate, to an individual in that environment, taking account of the building characteristics, and the occupancy of the population in these buildings. The costs of each programme were derived, based on data available in current literature on the cost of the constituent decontamination techniques. Representative cost and effectiveness data are presented and their application is discussed

  1. Biodegradation of concrete intended for their decontamination; Biodegradation de matrices cimentaires en vue de leur decontamination

    Energy Technology Data Exchange (ETDEWEB)

    Jestin, A

    2005-05-15

    The decontamination of sub-structural materials represents a stake of high importance because of the high volume generated. It is agreed then to propose efficient and effective processes. The process of bio-decontamination of the hydraulic binders leans on the mechanisms of biodegradation of concretes, phenomenon characterized in the 40's by an indirect attack of the material by acids stem from the microbial metabolism: sulphuric acid (produced by Thiobacillus), nitric acid (produced by Nitrosomonas and Nitrobacter) and organic acids (produced by fungi). The principle of the bio-decontamination process is to apply those microorganisms on the surface of the contaminated material, in order to damage its surface and to retrieve the radionuclides. One of the multiple approaches of the process is the use of a bio-gel that makes possible the micro-organisms application. (author)

  2. Extraction of americium from acid aqueous solutions by diethyl-2-hexyl-pyro-phosphoric acid

    International Nuclear Information System (INIS)

    Guillaume, Bernard

    1971-02-01

    After having outlined the interesting properties of americium and the difficulties of its recovery, the author reports the study of the mechanism of extraction of americium from acid aqueous solutions by using the diethyl-2hexyl-pyro-phosphoric acid. Several aspects are thus discussed: influence of concentration of H 2 DEHPP, influence of the acidity of the aqueous phase, saturation of extracting agent, influence of the diluting agent, complexing of americium, influence of other cations. In a second part, the author reports the application to the recovery of americium from effluents, and discusses the obtained results

  3. Electrochemical decontamination of metallic surfaces by means of a movable electrode

    International Nuclear Information System (INIS)

    Mihai, F.; Nicu, M.; Cazan, L.; Turcanu, C.

    1998-01-01

    Electrochemical decontamination can be considered to be a decontamination assisted by an electrochemical field. The method is applied to the metallic surface decontamination for contaminants of any physico-chemical nature. The physico-chemical phenomenon that is the basis for the electrochemical methods is the anodic layer dissolution. By dissolution of the superficial layer any radioactive contaminant on the surface or entrapped within the surface oxide is eliminated. Electrochemical decontamination, also known as electropolishing, involves the use of the object to be cleaned as an anode in an electrochemical cell. The passage of current results in anodic dissolution of the surface material. Generally, there are many methods of application for electropolishing. The most common method is immersing the object to be decontaminated in a tank filled with a suitable electrolyte. The electrochemical method with movable electrode involves the use of 'in situ' mobile devices that are able to electropolish punctual surfaces in places difficult to access. The advantages are the simplicity of the setup, short times of application and reduced waste volumes. Phosphoric and sulphuric acid mixture is used as the electrolyte in electropolishing because of its stability, safety and applicability to a variety of alloy systems. The method was applied to decontaminate carbon steel, aluminium and copper. Used contaminants are mixtures of 60 Co and 134 Cs; 60 Co and 65 Zn; 60 Co, 65 Zn and 134 Cs. After preparation, the samples were kept in laboratory conditions about one month, to simulate real conditions and to let the chemical reactions between contaminant and sample material constitution to complete. To calculate decontamination factor characteristic for each studied decontamination method the following radiometric measurements are necessary: - activity measurement after radioisotope solution contamination representing initial activity Λ in ; - activity measurement after

  4. Aggressive chemical decontamination tests on small valves from the Garigliano BWR

    International Nuclear Information System (INIS)

    Bregani, F.

    1990-01-01

    In order to check the effectiveness of direct chemical decontamination on small and complex components, usually considered for storage without decontamination because of the small amount, some tests were performed on the DECO experimental loop. Four small stainless steel valves from the primary system of the Garigliano BWR were decontaminated using mainly aggressive chemicals such as HC1, HF, HNO 3 and their mixtures. On two valves, before the treatment with aggressive chemicals, a step with soft chemical (oxalic and citric acid mixture) was performed in order to see whether a softening action enhances the following aggressive decontamination. Moreover, in order to increase as much as possible the decontamination effectiveness, a decontamination process using ultrasounds jointly with aggressive chemicals was investigated. After an intensive laboratory testing programme, two smaller stainless steel valves from the primary system of the Garigliano BWR were decontaminated using ultrasounds in aggressive chemical solutions

  5. Study and modelling of an innovative coprecipitation reactor for radioactive liquid wastes decontamination

    International Nuclear Information System (INIS)

    Flouret, Julie

    2013-01-01

    In order to decontaminate radioactive liquid wastes of low and intermediate levels, the coprecipitation is the process industrially used. The aim of this PhD work is to optimize the continuous process of coprecipitation. To do so, an innovative reactor is designed and modelled: the continuous reactor/classifier. Two model systems are studied: the coprecipitation of strontium by barium sulphate and the sorption of cesium by PPFeNi. The simulated effluent contains sodium nitrate in order to consider the high ionic strength of radioactive liquid wastes. First, each model system is studied on its own, and then a simultaneous treatment is performed. The kinetic laws of nucleation and crystal growth of barium sulphate are determined and incorporated into the coprecipitation model. Kinetic studies and sorption isotherms of cesium by PPFeNi are also performed in order to acquire the necessary data for process modelling. The modelling realised enables accurate prediction of the residual strontium and cesium concentrations according to the process used: it is a valuable tool for the optimization of existing units, but also the design of future units. The continuous reactor/classifier presents many advantages compared to the classical continuous process: the decontamination efficiency of strontium and cesium is highly improved while the volume of sludge generated by the process is reduced. A better liquid/solid separation is observed in the reactor/classifier and the global installation is significantly more compact. Thus, the radioactive liquid wastes treatment processes can be intensified by the continuous reactor/classifier, which represents a very promising technology for future industrial application. (author) [fr

  6. Chemical decontamination solutions: Effects on PWR equipment

    International Nuclear Information System (INIS)

    Pezze, C.M.; Colvin, E.R.; Aspden, R.G.

    1992-01-01

    A critical objective for the nuclear industry is the reduction of personnel exposure to radiation. Reductions have been achieved through industry's radiation management programs including training and radiation awareness concepts. Increased plant maintenance and higher radiation fields at many sites continue to raise concerns. To alleviate the radiation exposure problem, the sources of radiation which contribute to personnel exposure must be removed from the plant. A feasible was of significantly reducing these sources from a Pressurized Water Reactor (PWR) is to chemically decontaminate the entire reactor coolant system (RCS). A program was conducted to determine the technical acceptability of using certain dilute chemical solvent processes for full RCS chemical decontamination. The two processes evaluated were CAN-DEREM and LOMI. The purpose of the program was to define and complete a systematic evaluation of the major issues that need to be addressed for the successful decontamination of the entire RCS and affected portions of the auxiliary systems of a four-loop PWR system. A test program was designed to evaluate the corrosion effects of the two decontamination processes under expected plant conditions. Materials and sample configurations dictated by generic PWR components were evaluated. The testing also included many standard corrosion coupons. The test data were then used to assess the impact of chemical decontamination on the physical condition and operability of the components, equipment and mechanical systems that make up the RCS. An overview of the test program, sample configurations, data and engineering evaluations is presented. The data demonstrate that through detailed engineering evaluations of corrosion data and equipment function, the impact of full RCS chemical decontamination on plant equipment is established

  7. Assessing cost and effectiveness of radiation decontamination in Fukushima Prefecture, Japan.

    Science.gov (United States)

    Yasutaka, Tetsuo; Naito, Wataru

    2016-01-01

    Despite the enormous cost of radiation decontamination in Fukushima Prefecture, it is not clear what levels of reduction in external radiation exposure are possible in the Special Decontamination Area, the Intensive Contamination Survey Areas and the whole of Fukushima. The objective of this study was to evaluate the cost and effectiveness of radiation decontamination in Fukushima Prefecture in its entirety. Using a geographic information system, we calculated the costs of removal, storage containers, transport, and temporary and interim storage facilities as well as the reduction in air dose rate for a cumulative external exposure for 9000 1 km × 1 km mesh units incorporating 51 municipalities. The decontamination cost for the basic scenario, for which forested areas within 20 m of habitation areas were decontaminated, was JPY2.53-5.12 trillion; the resulting reduction in annual external dose was about 2500 person-Sv. The transport, storage, and administrative costs of decontamination waste and removed soil reached JPY1.55-2.12 trillion under this scenario. Although implementing decontamination of all forested areas provides some major reductions in the external radiation dose for the average inhabitant, decontamination costs could potentially exceed JPY16 trillion. These results indicate that technologies for reducing the volume of decontamination waste and removed soil should be considered to reduce storage costs and that further discussions about forest decontamination policies are needed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Experiences with decontaminating tritium-handling apparatus

    International Nuclear Information System (INIS)

    Maienschein, J.L.; Garcia, F.; Garza, R.G.; Kanna, R.L.; Mayhugh, S.R.; Taylor, D.T.

    1992-01-01

    Tritium-handling apparatus has been decontaminated as part of the downsizing of the LLNL Tritium Facility. Two stainless-steel glove boxes that had been used to process lithium deuteride-tritide (LiDT) slat were decontaminated using the Portable Cleanup System so that they could be flushed with room air through the facility ventilation system. In this paper the details on the decontamination operation are provided. A series of metal (palladium and vanadium) hydride storage beds have been drained of tritium and flushed with deuterium, in order to remove as much tritium as possible. The bed draining and flushing procedure is described, and a calculational method is presented which allows estimation of the tritium remaining in a bed after it has been drained and flushed. Data on specific bed draining and flushing are given

  9. RSDL decontamination of human skin contaminated with the nerve agent VX.

    Science.gov (United States)

    Thors, L; Lindberg, S; Johansson, S; Koch, B; Koch, M; Hägglund, L; Bucht, A

    2017-03-05

    Dermal exposure to low volatile organophosphorus compounds (OPC) may lead to penetration through the skin and uptake in the blood circulation. Skin decontamination of toxic OPCs, such as pesticides and chemical warfare nerve agents, might therefore be crucial for mitigating the systemic toxicity following dermal exposure. Reactive skin decontamination lotion (RSDL) has been shown to reduce toxic effects in animals dermally exposed to the nerve agent VX. In the present study, an in vitro flow-through diffusion cell was utilized to evaluate the efficacy of RSDL for decontamination of VX exposed to human epidermis. In particular, the impact of timing in the initiation of decontamination and agent dilution in water was studied. The impact of the lipophilic properties of VX in the RSDL decontamination was additionally addressed by comparing chemical degradation in RSDL and decontamination efficacy between the VX and the hydrophilic OPC triethyl phosphonoacetate (TEPA). The epidermal membrane was exposed to 20, 75 or 90% OPC diluted in deionized water and the decontamination was initiated 5, 10, 30, 60 or 120min post-exposure. Early decontamination of VX with RSDL, initiated 5-10min after skin exposure, was very effective. Delayed decontamination initiated 30-60min post-exposure was less effective but still the amount of penetrated agent was significantly reduced, while further delayed start of decontamination to 120min resulted in very low efficacy. Comparing RSDL decontamination of VX with that of TEPA showed that the decontamination efficacy at high agent concentrations was higher for VX. The degradation mechanism of VX and TEPA during decontamination was dissected by 31 P NMR spectroscopy of the OPCs following reactions with RSDL and its three nucleophile components. The degradation rate was clearly associated with the high pH of the specific solution investigated; i.e. increased pH resulted in a more rapid degradation. In addition, the solubility of the OPC in RSDL

  10. Japan, one year after. In Fukushima, a decontamination by forced march; Japon, un an apres. A Fukushima, une decontamination a marche forcee

    Energy Technology Data Exchange (ETDEWEB)

    Leglu, D.; Mulot, R.; Khalathari, A.; Lafon, B.; Stanley, T.; Linton, M.

    2012-03-15

    In a first part, the author describes how people living in the contaminated area around Fukushima try to deal with the difficult and almost impossible decontamination of their houses, gardens, schools, and so on. The destruction of forests is planned as they concentrate radioactivity. Thousands of inhabitants must wear dosimeters. An article comments the caesium activity measurements. Several data and figures are presented: evacuation areas, radioactive emissions and releases, doses received by emergency personnel, size of areas to be decontaminated, impact on the Japanese energy sector, contamination rates for soils and seawater, decontamination and dismantling costs, health impacts. An article proposes an overview of the different methods which are implemented and tested by the Japanese for large scale decontamination

  11. Guide for decontaminating swimming pool at schools

    International Nuclear Information System (INIS)

    Matsuhashi, Shimpei; Kurikami, Hiroshi; Yasuda, Ryo; Takano, Takao; Seko, Noriaki; Naganawa, Hirochika; Kuroki, Ryota; Saegusa, Jun

    2012-07-01

    Because of TEPCO Fukushima Dai-ichi Nuclear Power Plant accident due to the Great East Japan Earthquake, a huge amount of radioactive materials was widely dispersed and precipitated into the environment. Swimming pools in Fukushima prefectures were contaminated with the radioactives. We JAEA carried out several demonstration tests to decontaminate the radioactives and discharge the pool water safely. We concluded the results obtained from the tests as 'Guide for decontaminating Swimming Pool at School' and released it quickly. Following this, we also released the guide in English. This manuscript, as an experimental report of the swimming pool water decontamination, is consisted from the guide in Japanese and English prepared. (author)

  12. Guide for decontaminating swimming pool at schools

    Energy Technology Data Exchange (ETDEWEB)

    Matsuhashi, Shimpei; Kurikami, Hiroshi; Yasuda, Ryo; Takano, Takao; Seko, Noriaki; Naganawa, Hirochika; Kuroki, Ryota; Saegusa, Jun

    2012-07-15

    Because of TEPCO Fukushima Dai-ichi Nuclear Power Plant accident due to the Great East Japan Earthquake, a huge amount of radioactive materials was widely dispersed and precipitated into the environment. Swimming pools in Fukushima prefectures were contaminated with the radioactives. We JAEA carried out several demonstration tests to decontaminate the radioactives and discharge the pool water safely. We concluded the results obtained from the tests as 'Guide for decontaminating Swimming Pool at School' and released it quickly. Following this, we also released the guide in English. This manuscript, as an experimental report of the swimming pool water decontamination, is consisted from the guide in Japanese and English prepared. (author)

  13. Experimental studies on decontamination in first aid for contaminated wounds

    International Nuclear Information System (INIS)

    Kusama, Tomoko; Ogaki, Kazushi; Yoshizawa, Yasuo

    1982-01-01

    The present study was designed to investigate the decontamination procedures in first aid for wounds contaminated with radionuclides. Abrasion of mouse skin was contaminated with 58 CoCl 2 . Irrigation by decontamination fluids began at 2 min after administration of the radionuclide and continued for 14 min. Tap water, 0.5% Hyamine solution or 10% Ca-DTPA solution were used as the decontamination fluids. Radioactivities of whole body, wounded skin surface and washed solution were measured with an animal counter with 5 cm NaI(Tl) and a well-type auto-gamma-counter. Decontamination effectiveness were expressed as follows: (1) absorption rate of radionuclide through the wound and (2) residual rate of radionuclide on the wound. More than 20% of the radionuclide applied on the wounded skin was absorbed in 15 min after contamination. The absorption rate decreased to 2% by the decontamination procedures. The Ca-DTPA solution reduced the residual rate of radionuclide on the wounds. The results suggested that the decontamination for the contaminated wounds should begin as soon as possible. Irrigation with 0.5% Hyamine solution has been advocated for the decontamination in the first aid. (author)

  14. Demonstration recommendations for accelerated testing of concrete decontamination methods

    Energy Technology Data Exchange (ETDEWEB)

    Dickerson, K.S.; Ally, M.R.; Brown, C.H.; Morris, M.I.; Wilson-Nichols, M.J.

    1995-12-01

    A large number of aging US Department of Energy (DOE) surplus facilities located throughout the US require deactivation, decontamination, and decommissioning. Although several technologies are available commercially for concrete decontamination, emerging technologies with potential to reduce secondary waste and minimize the impact and risk to workers and the environment are needed. In response to these needs, the Accelerated Testing of Concrete Decontamination Methods project team described the nature and extent of contaminated concrete within the DOE complex and identified applicable emerging technologies. Existing information used to describe the nature and extent of contaminated concrete indicates that the most frequently occurring radiological contaminants are {sup 137}Cs, {sup 238}U (and its daughters), {sup 60}Co, {sup 90}Sr, and tritium. The total area of radionuclide-contaminated concrete within the DOE complex is estimated to be in the range of 7.9 {times} 10{sup 8} ft{sup 2}or approximately 18,000 acres. Concrete decontamination problems were matched with emerging technologies to recommend demonstrations considered to provide the most benefit to decontamination of concrete within the DOE complex. Emerging technologies with the most potential benefit were biological decontamination, electro-hydraulic scabbling, electrokinetics, and microwave scabbling.

  15. Demonstration recommendations for accelerated testing of concrete decontamination methods

    International Nuclear Information System (INIS)

    Dickerson, K.S.; Ally, M.R.; Brown, C.H.; Morris, M.I.; Wilson-Nichols, M.J.

    1995-12-01

    A large number of aging US Department of Energy (DOE) surplus facilities located throughout the US require deactivation, decontamination, and decommissioning. Although several technologies are available commercially for concrete decontamination, emerging technologies with potential to reduce secondary waste and minimize the impact and risk to workers and the environment are needed. In response to these needs, the Accelerated Testing of Concrete Decontamination Methods project team described the nature and extent of contaminated concrete within the DOE complex and identified applicable emerging technologies. Existing information used to describe the nature and extent of contaminated concrete indicates that the most frequently occurring radiological contaminants are 137 Cs, 238 U (and its daughters), 60 Co, 90 Sr, and tritium. The total area of radionuclide-contaminated concrete within the DOE complex is estimated to be in the range of 7.9 x 10 8 ft 2 or approximately 18,000 acres. Concrete decontamination problems were matched with emerging technologies to recommend demonstrations considered to provide the most benefit to decontamination of concrete within the DOE complex. Emerging technologies with the most potential benefit were biological decontamination, electro-hydraulic scabbling, electrokinetics, and microwave scabbling

  16. Studies for the use of water soluble chelating polymer in ultra-filtration technique for the removal of uranium from aqueous solutions

    International Nuclear Information System (INIS)

    Misra, S.K.; Mahatele, A.K.; Tripathi, S.C.; Vijayan, K.; Munshi, S.K.

    2005-01-01

    Studies were carried out for the removal of uranium from aqueous medium using water soluble chelating polymer by ultra-filtration technique. The water soluble polymers are the option for the surfactants used in the micellar enhanced ultra-filtration technique. More than 95% separation of uranium carried out under different experimental conditions, suggest that the technique can be effectively employed for the removal uranium from the aqueous effluent streams. (author)

  17. Model decontamination of PVC flooring specimens by wet method

    International Nuclear Information System (INIS)

    Severa, J.; Knajfl, J.; Bar, J.

    1981-01-01

    PVC flooring samples of 29 mm in diameter were used in experiments. The samples were degreased. Tested were the dependence of the degree of contamination on the duration of contact with the contaminant and the efficacy of decontamination by wiping with tampons and immersing in solutions. A mixture of fission products of 80 kBq/ml in specific activity was used for contamination. Higher decontamination efficacy was achieved by immersing the samples in decontamination solutions. Water was found to be the least efficacious medium; a high degree was only attained in the case when decontamination was effected within 1 minute after contamination. The highest decontamination values were achieved using solutions containing a chelating agent and a surfactant. The most efficacious solutions contained 0.5% of citric acid and 0.5% of detergents which are very potent at a concentration as low as 2 g/l. (J.P.)

  18. The 3rd power unit roofing decontamination

    International Nuclear Information System (INIS)

    Samojlenko, Yu.N.; Golubev, V.V.

    1989-01-01

    The most features of the 3rd power unit (PU) roofing decontamination are described: 1) the most active materials were thrown into the 4th PU ruins before the Ukrytie construction completion; 2) the decontamination was fulfilled using remote-controlled mechanisms and manual devices (the main part). 6 figs.; 1 tab

  19. Method of melting and decontaminating radioactive contaminated aluminum material

    International Nuclear Information System (INIS)

    Uda, Tatsuhiko; Miura, Noboru; Kawasaki, Katsuo; Iba, Hajime.

    1986-01-01

    Purpose: To improve the decontaminating efficiency upon melting decontamination of radioactive-contaminated aluminum materials. Method: This invention concerns an improvement for the method of melting decontamination by adding slug agent composed of organic compound to contaminated aluminum material and extracting the radioactive materials into the slug thereby decontaminating the aluminum material. Specifically metals effective for reducing the active amount of aluminum are added such that the content is greater than a predetermined value in the heat melting process. The metal comprises Mg, Cu or a mixture thereof and the content is more than 4 % including those previously contained in the aluminum material. (Ikeda, J.)

  20. In vitro determination of skin decontamination efficacy using a water shower

    International Nuclear Information System (INIS)

    Reifenrath, W.G.

    1990-01-01

    The ability of a water shower to remove radioactivity from excised pig skin exposed to radiolabeled diisopropyl fluorophosphate and n-butyl 2-chloroethyl sulfide was determined. Skin samples were decontaminated 15 minutes after chemical exposures (1 mg/cm 2 ) and the distribution of radioactivity was determined 1 hour after decontamination. Compared to controls (no decontamination), shower decontamination reduced the evaporative loss of radioactivity from the skin surface after decontamination or reduced radioactive residues on the skin surface. Shower decontamination of skin at 15 minutes could not prevent penetration of radiolabel into the viable layers of skin or into fluid bathing the dermal surface of the skin, but was beneficial in reducing skin surface concentrations, which may lead to further exposure or contamination

  1. Experience in decontamination of the equipment of NPP's with the WWER-440 reactors

    International Nuclear Information System (INIS)

    Balaban-Irmenin, Yu.V.

    1981-01-01

    Different methods of decontamination at NPPs are briefly characterized. Decontamination of the removable part of the main circulation pump (MCP) of the WWER-440 reactor is considered as an example of removable equipment decontamination. A design of the decontamination bath of the removable MCP elements and the applied chemical agents are described. A decontamination flowsheet of the Novovoronezh NPP steam generator (SG) is considered as an example of the autonomic decontamination system. The SG decontamination modes, principal flowsheets of a hydromonitor, steam-ejection sprayer and steam-emulsion device are described [ru

  2. Decontamination System Development of Radioative Activated Carbon using Micro-bubbles

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Jong seon; Kim, Wi soo [NESS, Daejeon (Korea, Republic of); Han, Byoung sub. [Enesys Co., Daejeon (Korea, Republic of)

    2016-10-15

    This study was aimed to develop a decontamination system by applying such technical characteristics that minimizes a generation of secondary wastes while decontaminating radiation wastes. The radioactive activated carbon is removed from the end-of-life air cleaning filter in replacement or decommission of nuclear power plant or nuclear facility. By removing radioactive activated carbon, the filter would be classified as a low radioactive contaminant. And thus the amount of radioactive wastes and the treatment cost would be decreased. We are in development of the activated carbon cleaning technique by utilizing micro-bubbles, which improve efficiency and minimize damage of activated carbon. The purpose of using micro-bubbles is to decontamination carbon micropore, which is difficult to access, by principle of cavitation phenomenon generated in collapse of micro-bubbles. In this study, we introduced the micro-bubble decontamination system developed to decontaminate activated carbon. For further researches, we will determine carbon weight change and the decontamination rate under the experimental conditions such as temperature and pH.

  3. Decontamination System Development of Radioative Activated Carbon using Micro-bubbles

    International Nuclear Information System (INIS)

    Jeon, Jong seon; Kim, Wi soo; Han, Byoung sub.

    2016-01-01

    This study was aimed to develop a decontamination system by applying such technical characteristics that minimizes a generation of secondary wastes while decontaminating radiation wastes. The radioactive activated carbon is removed from the end-of-life air cleaning filter in replacement or decommission of nuclear power plant or nuclear facility. By removing radioactive activated carbon, the filter would be classified as a low radioactive contaminant. And thus the amount of radioactive wastes and the treatment cost would be decreased. We are in development of the activated carbon cleaning technique by utilizing micro-bubbles, which improve efficiency and minimize damage of activated carbon. The purpose of using micro-bubbles is to decontamination carbon micropore, which is difficult to access, by principle of cavitation phenomenon generated in collapse of micro-bubbles. In this study, we introduced the micro-bubble decontamination system developed to decontaminate activated carbon. For further researches, we will determine carbon weight change and the decontamination rate under the experimental conditions such as temperature and pH

  4. Reactor component chemical decontamination-developments in waste handling and disposal

    International Nuclear Information System (INIS)

    Papesch, R.; Atwood, K.L.

    1989-01-01

    Because of restrictive limits on man-rem exposure in European nuclear plants, a company has developed and applied a number of chemical decontamination techniques for components that must be periodically maintained. These techniques are particularly effective for components that can be placed in a decontamination bath for dose reduction prior to performing maintenance. The cleaning technique has the ability to achieve decontamination factors of at least 20 and in some cases much greater. For components with before cleaning dose rates of between 1 to as high as 80 R/hr, significant man-rem reductions are achieved when hundreds of manhours may be required to complete required component maintenance. Transferring this solvent technology to the U.S. required a program to develop solidification formulas to allow the solvent wastes to be disposed of in accordance with regulations and in a cost effective manner. This paper demonstrates in chemical decontaminations with small liquid volume systems that concentrated decontamination solvents can be employed to achieve high decontamination factors

  5. Mechanical decontamination techniques for floor drain systems

    International Nuclear Information System (INIS)

    Palau, G.L.

    1987-01-01

    The unprecedented nature of cleanup activities at Three Mile Island Unit 2 (TMI-2) following the 1979 accident has necessitated the development of new techniques to deal with radiation and contamination in the plant. One of these problems was decontamination of floor drain systems, which had become highly contaminated with various forms of dirt and sludge containing high levels of fission products and fuel from the damaged reactor core. The bulk of this contamination is loosely adherent to the drain pipe walls; however, significant amounts of contamination have become incorporated into pipe wall oxide and corrosion layers and embedded in microscopic pits and fissures in the pipe wall material. The need to remove this contamination was recognized early in the TMI-2 cleanup effort. A program consisting of development and laboratory testing of floor drain decontamination techniques was undertaken early in the cleanup with support from the Electric Power Research Institute (EPRI). Based on this initial research, two techniques were judged to show promise for use at TMI-2: a rotating brush hone system and a high-pressure water mole nozzle system. Actual use of these devices to clean floor drains at TMI-2 has yielded mixed decontamination results. The decontamination effectiveness that has been obtained is highly dependent on the nature of the contamination in the drain pipe and the combination of decontamination techniques used

  6. Decontamination demonstration facility (D.D.F) modularization/mobility study

    International Nuclear Information System (INIS)

    FitzPatrick, V.F.; Butts, H.L.; Moles, R.G.; Lundgren, R.A.

    1980-11-01

    The component decontamination technology, developed under the DOE sponsored TRU Waste Decontamination Program, has potential benefits to nuclear utility owners in four strategic areas: (1) Meeting ALARA Criteria for Maintenance/Operations; (2) Management of wastes and waste forms; (3) Accident Response; (4) Decommissioning. The most significant step in transferring this technology directly to the nuclear industry is embodied in the TMI Decontamination Demonstration Facility

  7. Use of analcime zeolite from mineral coal fly ash in adsorption of Cu"+"2 and Cd"+"2 in aqueous solutions

    International Nuclear Information System (INIS)

    Rocha Junior, C.A.F.; Santos, S.C.A.; Angelica, R.S.; Neves, R.F.; Souza, C.A.G.

    2011-01-01

    The use of zeolite for removing heavy metals from contaminated effluents over the years has been widespread due to its high cation exchange capacity in aqueous solutions. Thus this study aims to use analcime zeolite for removal of Cu"+"2 and Cd"+"2 from aqueous solutions at different concentrations, and the zeolitic material synthesized from coal fly ash generated in an alumina plant in northern Brazil . The use of zeolite analcime proved quite satisfactory, since this product has removed almost entirely Cu"+"2 and Cd"+"2 solutions with concentrations up to 200ppm, and demonstrated an average capacity for solutions of 400ppm, which shows good applicability of this material for the treatment of effluent contamination in the ranges studied. The adsorption models of Langmuir and Freundlich showed a good fit to experimental data generated in this work. (author)

  8. Development of gamma camera and application to decontamination

    International Nuclear Information System (INIS)

    Yoshida, Akira; Moro, Eiji; Takahashi, Isao

    2013-01-01

    A gamma camera has been developed to support recovering from the contamination caused by the accident of Fukushima Dai-ichi Nuclear Power Plant of Tokyo Electric Power Company. The gamma camera enables recognition of the contamination by visualizing radioactivity. The gamma camera has been utilized for risk communication (explanation to community resident) at local governments in Fukushima. From now on, the gamma camera will be applied to solve decontaminations issues; improving efficiency of decontamination, visualizing the effect of decontamination work and reducing radioactive waste. (author)

  9. Decontamination of surfaces (1961); La decontamination des surfaces (1961)

    Energy Technology Data Exchange (ETDEWEB)

    Mestre, E [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1961-07-01

    The continued expansion of atomic Energy has led the S.C.R.G.R. to extend simultaneously the recovery of materials contaminated by use in radio-active media. The importance of this aspect of atomic Energy was not immediately obvious to those concerned but is now fully recognized due to the cost of the materials and installations, and also to the time required for the construction of special equipment for the C.E.A. Another very important reason is the dangers associated with the handling of contaminated material. The S.C.R.G.R. attacked this problem from the point of view of these dangers. It later became apparent to the users, once the decontamination methods had proved their worth, that the process presented advantages from the material and cost-saving point of view. (author) [French] Le developpement toujours croissant de l'Energie atomique a conduit le S.C.R.G.R. a developper parallelement la recuperation des materiels contamines par leur emploi en milieu radioactif. Cet aspect de l'Energie atomique n'est pas apparu des le debut aux utilisateurs mais s'est tres vite impose etant donne, d'une part, le cout des installations et du materiel, d'autre part le temps necessaire a la fabrication d'un materiel special aux travaux du C.E.A., enfin et surtout, les risques associes a la manipulation d'un materiel contamine. Les risques seuls ont ete pris comme point de depart a l'examen de ce probleme par le S.C.R.G.R. puis avec le temps, les methodes de decontamination ayant fait leur preuve, les utilisateurs ont alors apercu les aspects materiels et la rentabilite de la decontamination. (auteur)

  10. Inter-laboratory exercise on steroid estrogens in aqueous samples

    International Nuclear Information System (INIS)

    Heath, E.; Kosjek, T.; Andersen, H.R.; Holten Luetzhoft, H.-C.; Adolfson Erici, M.; Coquery, M.; Duering, R.-A.; Gans, O.; Guignard, C.; Karlsson, P.; Manciot, F.; Moldovan, Z.; Patureau, D.; Cruceru, L.; Sacher, F.; Ledin, A.

    2010-01-01

    An inter-laboratory comparison exercise was organized among European laboratories, under the aegis of EU COST Action 636: 'Xenobiotics in Urban Water Cycle'. The objective was to evaluate the performance of testing laboratories determining 'Endocrine Disrupting Compounds' (EDC) in various aqueous matrices. As the main task three steroid estrogens: 17α-ethinylestradiol, 17β-estradiol and estrone were determined in four spiked aqueous matrices: tap water, river water and wastewater treatment plant influent and effluent using GC-MS and LC-MS/MS. Results were compared and discussed according to the analytical techniques applied, the accuracy and reproducibility of the analytical methods and the nature of the sample matrices. Overall, the results obtained in this inter-laboratory exercise reveal a high level of competence among the participating laboratories for the detection of steroid estrogens in water samples indicating that GC-MS as well as LC-MS/MS can equally be employed for the analysis of natural and synthetic hormones. - Herein are presented the results of the first international inter-laboratory study on determination of selected steroid hormones in environmental aqueous samples.

  11. Preconceptual design of the gas-phase decontamination demonstration cart

    International Nuclear Information System (INIS)

    Munday, E.B.

    1993-12-01

    Removal of uranium deposits from the interior surfaces of gaseous diffusion equipment will be a major portion of the overall multibillion dollar effort to decontaminate and decommission the gaseous diffusion plants. Long-term low-temperature (LTLT) gas-phase decontamination is being developed at the K-25 Site as an in situ decontamination process that is expected to significantly lower the decontamination costs, reduce worker exposure to radioactive materials, and reduce safeguard concerns. This report documents the preconceptual design of the process equipment that is necessary to conduct a full-scale demonstration of the LTLT method in accordance with the process steps listed above. The process equipment and method proposed in this report are not intended to represent a full-scale production campaign design and operation, since the gas evacuation, gas charging, and off-gas handling systems that would be cost effective in a production campaign are not cost effective for a first-time demonstration. However, the design presented here is expected to be applicable to special decontamination projects beyond the demonstration, which could include the Deposit Recovery Program. The equipment will therefore be sized to a 200 ft size 1 converter (plus a substantial conservative design margin), which is the largest item of interest for gas phase decontamination in the Deposit Recovery Program. The decontamination equipment will allow recovery of the UF 6 , which is generated from the reaction of ClF 3 with the uranium deposits, by use of NaF traps

  12. Oxidation of Ce(III) in Foam Decontaminant by Ozone

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Chong Hun; Yoon, I. H.; Choi, W. K.; Moon, J. K.; Yang, H. B. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lee, J. S. [Gachon University, Seongnam (Korea, Republic of)

    2016-10-15

    A nanoparticle-based foam decontaminant is composed of a surfactant and nanoparticles for the generation and maintenance of foam, and a chemical decontamination agent made of Ce(IV) dissolved in nitric acid. Ce(IV) will be reduced to Ce(III) through the decontamination process. Oxidizing cerium(III) can be reused as a decontamination agent, Ce(IV). Oxidation treatment technology by ozone uses its strong oxidizing power. It can be regarded as an environmentally friendly process, because ozone cannot be stored and transported like other industrial gases (because it quickly decays into diatomic oxygen) and must therefore be produced on site, and used ozone can decompose immediately. The ozonation treatment of Ce(III) in foam decontaminant containing a surfactant is necessary for the effective regeneration of Ce(III). Thus, the present study was undertaken to determine the optimal conditions for ozonation treatment in the regeneration of Ce(III) into Ce(IV) in the nanoparticle-based foam decontaminant containing surfactant. This study was undertaken to determine the optimal conditions for ozonation treatment in the regeneration of Ce(III) to Ce(IV) in nanoparticle-based foam decontaminant containing a TBS surfactant. The oxidation conversion rate of Ce(III) was increased with an increase in the flow rate of the gas mixture and ozone injection amount. The oxidation time required for the 100% oxidation conversion of Ce(III) to Ce(IV) at a specific ozone injection amount can be predicted from these experimental data.

  13. Oxidation of Ce(III) in Foam Decontaminant by Ozone

    International Nuclear Information System (INIS)

    Jung, Chong Hun; Yoon, I. H.; Choi, W. K.; Moon, J. K.; Yang, H. B.; Lee, J. S.

    2016-01-01

    A nanoparticle-based foam decontaminant is composed of a surfactant and nanoparticles for the generation and maintenance of foam, and a chemical decontamination agent made of Ce(IV) dissolved in nitric acid. Ce(IV) will be reduced to Ce(III) through the decontamination process. Oxidizing cerium(III) can be reused as a decontamination agent, Ce(IV). Oxidation treatment technology by ozone uses its strong oxidizing power. It can be regarded as an environmentally friendly process, because ozone cannot be stored and transported like other industrial gases (because it quickly decays into diatomic oxygen) and must therefore be produced on site, and used ozone can decompose immediately. The ozonation treatment of Ce(III) in foam decontaminant containing a surfactant is necessary for the effective regeneration of Ce(III). Thus, the present study was undertaken to determine the optimal conditions for ozonation treatment in the regeneration of Ce(III) into Ce(IV) in the nanoparticle-based foam decontaminant containing surfactant. This study was undertaken to determine the optimal conditions for ozonation treatment in the regeneration of Ce(III) to Ce(IV) in nanoparticle-based foam decontaminant containing a TBS surfactant. The oxidation conversion rate of Ce(III) was increased with an increase in the flow rate of the gas mixture and ozone injection amount. The oxidation time required for the 100% oxidation conversion of Ce(III) to Ce(IV) at a specific ozone injection amount can be predicted from these experimental data

  14. Liquid abrasive grit blasting literature search and decontamination scoping tests report

    International Nuclear Information System (INIS)

    Ferguson, R.L.

    1993-10-01

    Past decontamination and solvent recovery activities at the Idaho Chemical Processing Plant (ICPP) have resulted in the accumulation of 1.5 million gallons of radioactively contaminated sodium-bearing liquid waste. Future decontamination activities at the ICPP could result in the production of 5 million gallons or more of sodium-bearing waste using the current decontamination techniques of chemical/water flushes and steam jet cleaning. With the curtailment of reprocessing at the ICPP, the focus of decontamination is shifting from maintenance for continued operation of the facilities to decommissioning. As decommissioning plans are developed, new decontamination methods must be used which result in higher decontamination factors and generate lower amounts of sodium-bearing secondary waste. The primary initiative of the WINCO Decontamination Development Program is the development of methods to eliminate/minimize the use of sodium-bearing decontamination chemicals. One method that was chosen for cold scoping studies during FY-93 was abrasive grit blasting. Abrasive grit blasting has been used in many industries and a vast amount of research and development has already been conducted. However, new grits, process improvements and ICPP applicability was investigated. This evaluation report is a summary of the research efforts and scoping tests using the liquid abrasive grit blasting decontamination technique. The purpose of these scoping tests was to determine the effectiveness of three different abrasive grits: plastic beads, glass beads and alumina oxide

  15. Evaluation of Cost and Effectiveness of Decontamination Scenarios on External Radiation Exposure in Fukushima

    Energy Technology Data Exchange (ETDEWEB)

    Yasutaka, T.; Naito, W. [National Institute of Advanced Industrial Science and Technology (Japan)

    2014-07-01

    Despite the enormous cost associated with radiation decontamination, almost no quantitative assessment has been performed on the relationship between the potential reduction in long-term radiation exposure and the costs of the various decontamination strategies considered for the decontamination areas in Fukushima. In order to establish effective and pragmatic decontamination strategies for use in the radiation contaminated areas in Fukushima, a holistic approach for assessing decontamination strategies, their costs, and long-term external radiation doses is needed. The objective of the present study is to evaluate the cost and effectiveness of decontamination scenarios in the decontamination areas in Fukushima in regard to external radiation exposure. The choice of decontamination strategies in the decontamination areas should be based on a comprehensive analysis of multiple attributes such as radiological, economic, and socio-psychological attributes. The cost and effectiveness of the different decontamination strategies is not sole determinant of the decontamination strategies of the special decontamination area but is one of the most important attributes when making the policy decision. In the current study, we focus on radiological and economic attributes in determining decontamination strategies. A geographical information system (GIS) was used to relate the predicted external dose in the affected areas to the number of potential inhabitants and the land use in the areas. A comprehensive review of the costs of various decontamination methods was conducted as part of the analysis. The results indicate that aerial decontamination in the special decontamination areas in Fukushima would be effective for reducing the air dose rate to the target level in a short period of time in some but not all of the areas. In a standard scenario, the analysis of cost suggests that decontamination costs of decontamination in Fukushima was estimated to be up to approximately 5

  16. Electrochemical Decontamination of Painted and Heavily Corroded Metals

    International Nuclear Information System (INIS)

    Marczak, S.; Anderson, J.; Dziewinski, J.

    1998-01-01

    The radioactive metal wastes that are generated from nuclear fuel plants and radiochemical laboratories are mainly contaminated by the surface deposition of radioactive isotopes. There are presently several techniques used in removing surface contamination involving physical and chemical processes. However, there has been very little research done in the area of soiled, heavily oxidized, and painted metals. Researchers at Los Alamos National Laboratory have been developing electrochemical procedures for the decontamination of bare and painted metal objects. These methods have been found to be effective on highly corroded as well as relatively new metals. This study has been successful in decontaminating projectiles and shrapnel excavated during environmental restoration projects after 40+ years of exposure to the elements. Heavily corroded augers used in sampling activities throughout the area were also successfully decontaminated. This process has demonstrated its effectiveness and offers several advantages over the present metal decontamination practices of media blasting and chemical solvents. These advantages include the addition of no toxic or hazardous chemicals, low operating temperature and pressure, and easily scaleable equipment. It is in their future plans to use this process in the decontamination of gloveboxes destined for disposal as TRU waste

  17. Decontamination of operational nuclear power plants

    International Nuclear Information System (INIS)

    1981-06-01

    In order to reduce the radiation fields around nuclear power plants, and, consequently, to limit the radiation exposure of and dose commitments to the operating and maintenance personnel, the contamination build-up should be kept to a minimum. The most fruitful approach, from the point of view of economics and efficiency, is to tackle the problems of contamination and decontamination in the design and construction phases of the reactor. To do this, knowledge gained from the operation of existing power reactors should be used to make improvements in new designs. New structural materials with low corrosion rates or whose constituents are not activated by neutrons should also be used. For older reactors, in most cases it is already too late to incorporate design changes without extensive and expensive modifications. For these plants, decontamination remains the most efficient way to reduce radiation fields. The aim of this report is to deal with the different decontamination methods that may be applied to nuclear power plant circuits and equipment during operation. The factors that have to be considered in determining the type and the extent of the methods used are the engineering and the planning of the decontamination operation and the treatment of the resulting waste generated during the process are also discussed

  18. Local strategies for decontamination

    Energy Technology Data Exchange (ETDEWEB)

    Hubert, P [Institut de Protection et de Surete Nucleaire, Fontenay-aux-Roses cedex (France); Ramzaev, V [Branch of Institute of Radiation Hygiene, Novozybkov, Bryansk region (Russian Federation); Antsypov, G [Chernnobyl State Committee of the Republic of Belarus, Minsk (Belarus); Sobotovich, E [Institute of Geochemistry, Mineralogy and Ore formation, Kiev (Ukraine); Anisimova, L [EMERCOM, Moscow (Russian Federation)

    1996-07-01

    The efficiencies of a great number of techniques for decontamination or dose reduction in contaminated areas have been investigated by several teams of E.C. and CIS scientists (ECP4 project). Modelling, laboratory and field experiments, t and return from experience allowed to assess radiological efficiencies (e.g. 'decontamination factor') and requirements for the operation of numerous practical solutions. Then, those data were supplemented with data on cost and waste generation in order to elaborate all the information for the optimization of decontamination strategies. Results will be presented for about 70 techniques. However, a technique cannot be compared to another from a generic point of view. Rather it is designed for a specific target and the best technology depends on the objectives. It has been decided to implement decision analyses on case studies, and the local conditions and objectives have been investigated. Individual doses ranged from 1 to 5 mSv, with contrasted contributions of internal and external doses. The desire to restore a normal activity in a partially depopulated settlement, and concerns about the recent increase in internal doses were typical incentives for action. The decision aiding analysis illustrated that actions can be usually recommended. Results are outlined here.

  19. Local strategies for decontamination

    International Nuclear Information System (INIS)

    Hubert, P.; Ramzaev, V.; Antsypov, G.; Sobotovich, E.; Anisimova, L.

    1996-01-01

    The efficiencies of a great number of techniques for decontamination or dose reduction in contaminated areas have been investigated by several teams of E.C. and CIS scientists (ECP4 project). Modelling, laboratory and field experiments, t and return from experience allowed to assess radiological efficiencies (e.g. 'decontamination factor') and requirements for the operation of numerous practical solutions. Then, those data were supplemented with data on cost and waste generation in order to elaborate all the information for the optimization of decontamination strategies. Results will be presented for about 70 techniques. However, a technique cannot be compared to another from a generic point of view. Rather it is designed for a specific target and the best technology depends on the objectives. It has been decided to implement decision analyses on case studies, and the local conditions and objectives have been investigated. Individual doses ranged from 1 to 5 mSv, with contrasted contributions of internal and external doses. The desire to restore a normal activity in a partially depopulated settlement, and concerns about the recent increase in internal doses were typical incentives for action. The decision aiding analysis illustrated that actions can be usually recommended. Results are outlined here

  20. Determination and behaviour of plutonium emitted with liquid effluents and exhaust air into the environment of the Nuclear Research Centre Karlsruhe

    International Nuclear Information System (INIS)

    Schuettelkopf, H.; Pimpl, M.

    1986-01-01

    The plutonium concentrations in the surroundings of the Karlsruhe Nuclear Research Centre (KfK) are in the range of variation of the global plutonium contamination caused by fallout of atmospheric nuclear tests. Exclusively in the sediments of the Old River Rhine, which serves as main canal for the liquid effluents, higher plutonium concentrations could be detected. The dose exposure of the population living in the environment of the KfK caused by the measured plutonium concentrations is negligible low. From the Karlsruhe Reprocessing Plant (WAK) and the facilities needed to decontaminate radioactive wastes 0.48 GBq (13 mCi) plutonium alpha activity has been emitted within 11 years of operation until 1982 - 1/3 with the liquid effluents and 2/3 with the exhaust air. Following the pathway with the exhaust air, plutonium concentrations in the environment of the Karlsruhe Reprocessing Plant were measured in groundlevel air, in soil, in plants, in food and in animal tissues. Radioecological parameters like dispersion factors, deposition velocities, migration velocities in soil and transfer soil-to-plant were investigated. Following the pathway with the liquid effluents, plutonium concentrations were measured in surface waters, sediments, water plants, plankton and animals. Dilution and sedimentation behaviour were studied as well as the transfer water-to-plant and water-to-animals. (orig.) [de