WorldWideScience

Sample records for aquatic risk assessment

  1. Aquatic Macrophyte Risk Assessment for Pesticides

    NARCIS (Netherlands)

    Maltby, L.; Arnold, D.; Arts, G.H.P.; Davies, J.; Heimbach, F.; Pickl, C.; Poulsen, V.

    2009-01-01

    Given the essential role that primary producers play in aquatic ecosystems, it is imperative that the potential risk of pesticides to the structure and functioning of aquatic plants is adequately assessed. This book discusses the assessment of the risk of pesticides with herbicidal activity to

  2. Risk Assessment Considerations for Veterinary Medicines in Aquatic Ecosystems

    Science.gov (United States)

    This chapter provides a critical evaluation of prospective and retrospective risk assessment approaches for veterinary medicines in aquatic ecosystems and provides recommendations for possible alternative approaches for hazard characterization.

  3. Haloacetic acids in the aquatic environment. Part II: ecological risk assessment

    International Nuclear Information System (INIS)

    Hanson, Mark L.; Solomon, Keith R.

    2004-01-01

    Haloacetic acids (HAAs) are environmental contaminants found in aquatic ecosystems throughout the world as a result of both anthropogenic and natural production. The ecological risk posed by these compounds to organisms in freshwater environments, with a specific focus on aquatic macrophytes, was characterized. The plants evaluated were Lemna gibba, Myriophyllum spicatum and M. sibiricum and the HAAs screened were monochloroacetic acid (MCA), dichloroacetic acid (DCA), trichloroacetic acid (TCA), trifluoroacetic acid (TFA) and chlorodifluoroacetic acid (CDFA). Laboratory toxicity data formed the basis of the risk assessment, but field studies were also utilized. The estimated risk was calculated using hazard quotients (HQ), as well as effect measure distributions (EMD) in a modified probabilistic ecological risk assessment. EMDs were used to estimate HAA thresholds of toxicity for use in HQ assessments. This threshold was found to be a more sensitive measure of low toxicity than the no observed effect concentrations (NOEC) or the effective concentration (EC 10 ). Using both deterministic and probabilistic methods, it was found that HAAs do not pose a significant risk to freshwater macrophytes at current environmental concentrations in Canada, Europe or Africa for both single compound and mixture exposures. Still, HAAs are generally found as mixtures and their potential interactions are not fully understood, rendering this phase of the assessment uncertain and justifying further effects characterization. TCA in some environments poses a slight risk to phytoplankton and future concentrations of TFA and CDFA are likely to increase due to their recalcitrant nature, warranting continued environmental surveillance of HAAs. - Current environmental concentrations of haloacetic acids do not pose a risk to aquatic macrophytes, but could impact plankton

  4. Fuzzy model for risk assessment of persistent organic pollutants in aquatic ecosystems

    International Nuclear Information System (INIS)

    Seguí, X.; Pujolasus, E.; Betrò, S.; Àgueda, A.; Casal, J.; Ocampo-Duque, W.; Rudolph, I.; Barra, R.; Páez, M.; Barón, E.; Eljarrat, E.; Barceló, D.; Darbra, R.M.

    2013-01-01

    We developed a model for evaluating the environmental risk of persistent organic pollutants (POPs) to aquatic organisms. The model is based on fuzzy theory and uses information provided by international experts through a questionnaire. It has been tested in two case studies for a particular type of POPs: brominated flame retardants (BFRs). The first case study is related to the EU-funded AQUATERRA project, with sampling campaigns carried out in two Ebro tributaries in Spain (the Cinca and Vero Rivers). The second one, named the BROMACUA project, assessed different aquatic ecosystems in Chile (San Vicente Bay) and Colombia (Santa Marta Marsh). In both projects, the BFRs under study were polybrominated diphenyl ethers (PBDEs) and hexabromocyclododecane (HBCD). However, the model can be extrapolated to other POPs and to different aquatic ecosystems to provide useful results for decision-makers. -- The risk of POPs for aquatic organisms was assessed at several sites around the world, using a fuzzy-based model to provide useful results for decision-makers

  5. Aquatic environmental risk assessment for human use of the old antibiotic sulfamethoxazole in Europe.

    Science.gov (United States)

    Straub, Jürg Oliver

    2016-04-01

    Sulfamethoxazole (SMX) is an old sulfonamide antibiotic that was launched first in combination with trimethoprim in 1969 by F.Hoffmann-La Roche. Although sales figures for SMX have been declining over the past 20 yr, the compound is still widely used; moreover, many measured environmental concentrations (MECs) are available from Europe, the United States, Asia, Australia, and Africa. To assess aquatic risks of SMX in Europe, the exposure of European surface waters was predicted based on actual sales figures from IMS Health, incorporating environmental fate data on one side, and based on collated MECs representing more than 5500 single measurements in Europe on the other. Environmental effects were assessed using chronic and subchronic ecotoxicity data for 16 groups of aquatic organisms, from periphyton communities to cyanobacteria, algae, higher plants, various invertebrates, and vertebrates. Predicted no-effect concentrations (PNECs) were derived using both deterministic and probabilistic methodology. The predicted environmental concentration (PEC)/PNEC and MEC/PNEC comparisons overall showed no appreciable risk, except in a low incidence (risk characterization ratios greater than 1. The PNECs derived in the present study can be used to extend aquatic environmental risk assessment for SMX to other continents. No risk appears for indirect human exposure to SMX via the environment. © 2015 SETAC.

  6. The use of aquatic bioconcentration factors in ecological risk assessments: Confounding issues, laboratory v/s modeled results

    International Nuclear Information System (INIS)

    Brandt, C.; Blanton, M.L.; Dirkes, R.

    1995-01-01

    Bioconcentration in aquatic systems is generally taken to refer to contaminant uptake through non-ingestion pathways (i.e., dermal and respiration uptake). Ecological risk assessments performed on aquatic systems often rely on published data on bioconcentration factors to calibrate models of exposure. However, many published BCFs, especially those from in situ studies, are confounded by uptake from ingestion of prey. As part of exposure assessment and risk analysis of the Columbia River's Hanford Reach, the authors tested a methodology to estimate radionuclide BCFs for several aquatic species in the Hanford Reach of the Columbia River. The iterative methodology solves for BCFs from known body burdens and environmental media concentrations. This paper provides BCF methodology description comparisons of BCF from literature and modeled values and how they were used in the exposure assessment and risk analysis of the Columbia River's Hanford Reach

  7. Weed risk assessment for aquatic plants: modification of a New Zealand system for the United States.

    Directory of Open Access Journals (Sweden)

    Doria R Gordon

    Full Text Available We tested the accuracy of an invasive aquatic plant risk assessment system in the United States that we modified from a system originally developed by New Zealand's Biosecurity Program. The US system is comprised of 38 questions that address biological, historical, and environmental tolerance traits. Values associated with each response are summed to produce a total score for each species that indicates its risk of invasion. To calibrate and test this risk assessment, we identified 39 aquatic plant species that are major invaders in the continental US, 31 species that have naturalized but have no documented impacts (minor invaders, and 60 that have been introduced but have not established. These species represent 55 families and span all aquatic plant growth forms. We found sufficient information to assess all but three of these species. When the results are compared to the known invasiveness of the species, major invaders are distinguished from minor and non-invaders with 91% accuracy. Using this approach, the US aquatic weed risk assessment correctly identifies major invaders 85%, and non-invaders 98%, of the time. Model validation using an additional 10 non-invaders and 10 invaders resulted in 100% accuracy for the former, and 80% accuracy for the latter group. Accuracy was further improved to an average of 91% for all groups when the 17% of species with scores of 31-39 required further evaluation prior to risk classification. The high accuracy with which we can distinguish non-invaders from harmful invaders suggests that this tool provides a feasible, pro-active system for pre-import screening of aquatic plants in the US, and may have additional utility for prioritizing management efforts of established species.

  8. Assessing exposure risks for aquatic organisms posed by Tamiflu use under seasonal influenza and pandemic conditions

    International Nuclear Information System (INIS)

    Chen, Wei-Yu; Lin, Chia-Jung; Liao, Chung-Min

    2014-01-01

    Environmental pollution by anti-influenza drugs is increasingly recognized as a threat to aquatic environments. However, little is known about empirical data on risk effects posed by environmentally relevant concentrations of anti-influenza drug based on recently published ecotoxicological researches in Taiwan. Here we linked ecotoxicology models with an epidemiological scheme to assess exposure risks of aquatic organisms and environmental hazards posed by antiviral oseltamivir (Tamiflu) use in Taiwan. Built on published bioassays, we used probabilistic risk assessment model to estimate potential threats of environmentally relevant hazards on algae, daphnid, and zerbrafish. We found that Tamiflu use was unlikely to pose a significant chronic environmental risk to daphnia and zebrafish during seasonal influenza. However, the chronic environmental risk posed by Tamiflu use during pandemic was alarming. We conclude that no significant risk to algal growth was found during seasonal influenza and high pandemic Tamiflu use. -- Highlights: • Environmentally relevant concentrations of anti-influenza drug have ecotoxicologically important effects. • Tamiflu is unlikely to pose a significant chronic environmental risk during seasonal influenza. • Chronic environmental risk posed by Tamiflu during pandemic is alarming. • Tertiary process in sewage treatment plants is crucial in mitigating Tamiflu exposure risk. -- A probabilistic framework can be used for assessing exposure risks posed by environmentally relevant concentrations of anti-influenza drug in aquatic ecosystems

  9. Procedure to select test organisms for environmental risk assessment of genetically modified crops in aquatic systems.

    Science.gov (United States)

    Hilbeck, Angelika; Bundschuh, Rebecca; Bundschuh, Mirco; Hofmann, Frieder; Oehen, Bernadette; Otto, Mathias; Schulz, Ralf; Trtikova, Miluse

    2017-11-01

    For a long time, the environmental risk assessment (ERA) of genetically modified (GM) crops focused mainly on terrestrial ecosystems. This changed when it was scientifically established that aquatic ecosystems are exposed to GM crop residues that may negatively affect aquatic species. To assist the risk assessment process, we present a tool to identify ecologically relevant species usable in tiered testing prior to authorization or for biological monitoring in the field. The tool is derived from a selection procedure for terrestrial ecosystems with substantial but necessary changes to adequately consider the differences in the type of ecosystems. By using available information from the Water Framework Directive (2000/60/EC), the procedure can draw upon existing biological data on aquatic systems. The proposed procedure for aquatic ecosystems was tested for the first time during an expert workshop in 2013, using the cultivation of Bacillus thuringiensis (Bt) maize as the GM crop and 1 stream type as the receiving environment in the model system. During this workshop, species executing important ecological functions in aquatic environments were identified in a stepwise procedure according to predefined ecological criteria. By doing so, we demonstrated that the procedure is practicable with regard to its goal: From the initial long list of 141 potentially exposed aquatic species, 7 species and 1 genus were identified as the most suitable candidates for nontarget testing programs. Integr Environ Assess Manag 2017;13:974-979. © 2017 SETAC. © 2017 SETAC.

  10. The occurrence and ecological risk assessment of phthalate esters (PAEs) in urban aquatic environments of China.

    Science.gov (United States)

    Zhang, Lulu; Liu, Jingling; Liu, Huayong; Wan, Guisheng; Zhang, Shaowei

    2015-07-01

    Phthalate esters (PAEs) are widely used in the manufacturing of plastics, and the demand for PAEs has grown rapidly, especially in China. This trend will lead to much more environmental PAE contamination. PAEs are listed as priority substances in the European Union and are therefore subject to ecological risk assessments. This paper reviews the literature concerning the pollution status of PAEs and their ecological risk to aquatic environments. Risk quotients (RQs) based on the predicted no effect concentration and PAE concentrations in aquatic environments demonstrated significant (10 ≤ RQ plastics are produced.

  11. Risk assessment of lambda-cyhalothrin on aquatic organisms in paddy field in China.

    Science.gov (United States)

    Gu, Bao G; Wang, Hui M; Chen, William L; Cai, Dao J; Shan, Zheng J

    2007-06-01

    This study was carried out to assess the risk of lambda-cyhalothrin to aquatic organisms used in paddy field, and to provide assistance in the ecological risk management of lambda-cyhalothrin. The acute toxicities of five individual formulations of lambda-cyhalothrin to four aquatic species were investigated in the laboratory, as well as in a simulated paddy field-pond ecosystem, and the results implicated that lambda-cyhalothrin is highly toxic to fish, and to a greater extent to shrimp. There were differences in the toxicities to each aquatic organisms among different formulations. lambda-Cyhalothrin degraded rapidly in the environment, with half-lives of different formulations in paddy field water (0.23-0.53 days), pond water (0.38-0.63 days), and paddy field soil (0.96-7.35 days), respectively. The water overflow from the paddy field following a simulated rainstorm 12h after application of lambda-cyhalothrin did not cause injury to fish, clam or crab, but was severely hazardous to shrimp. Additionally, no injury to shrimp was found when simulated overflow occurred 4 days after application. These results suggest that the environmental risk of lambda-cyhalothrin to aquatic organisms can be reduced by (1) developing a relatively safe formulation such as a suspension concentrate, and/or (2) controlling the drainage time of the paddy field.

  12. Environmental Risk Assessment Caused by Selected Pollutants to Aquatic Environment on the Example of the Klodnica River

    Directory of Open Access Journals (Sweden)

    Marta Wiesner-Sękala

    2017-12-01

    Full Text Available The waterbody Kłodnica to Promna as was analysed an example of watercourse located in the densely populated and highly urbanized area of the Upper Silesian Industrial Region. The aim of the study was to assess the risk posed to the aquatic ecosystem by priority substances (Ni, Pb, Cd, Hg and specific non-synthetic pollutants (Cu, Zn, which are released to Kłodnica river. The analysis of the risk assessment was carried out by comparing the concentration of metals in the aquatic environment to the environmental quality standards and by using M-BAT and Pb Screening Tool which are user-friendly simplified BLM models (Biotic Ligand Model. These tools allowed to assess the potential risks posed by metals such as Cu, Ni, Zn, and Pb for the aquatic environment, taking into account the physicochemical parameters of water that affect the bioavailability of metals in the aquatic environment (DOC, Ca, pH. The results obtained by means of these tools showed that the risk caused by the toxicity of Cu, Ni and Pb has not occurred in any of the analyzed samples. On the other hand, high probability of risk due to the presence of Zn in surface water has been identified in all sampling points. The results of the analysis confirmed that the local conditions in terms of physicochemical water parameters have a significant impact on the risk assessment. The results of this study confirmed that the tools which are simplified version of complex BLM are an important element supporting the monitoring process in urbanized river catchment in the context of the Water Framework Directive requirements.

  13. Assessment of risk to aquatic biota from elevated salinity -- a case study from the Hunter River, Australia.

    Science.gov (United States)

    Muschal, Monika

    2006-05-01

    An ecological risk assessment was performed on salinity levels of the Hunter River and its tributaries to respond to concerns that high salinity may be damaging aquatic ecosystems. Probabilistic techniques were used to assess likelihood and consequence, and hence the risk to aquatic biota from salinity. Continuous electrical conductivity distributions were used to describe the likelihood that high salinity would occur (exposure dataset) and toxicity values were compiled from the limited literature sources available to describe the consequence of high salinity (effects dataset). The assessment was preliminary in the sense that it modelled risk on the basis of existing data and did not undertake site-specific toxicity testing. Some sections of the Hunter River catchment have geologies that are saline because of their marine origins. Catchment development has increased the liberation rates of salts into surface-waters. Such modifying activities include coal-mining, power generation and land clearing. The aquatic biota of tributaries had a greater risk of impairment from high salinity than that of the Hunter River. High salinities in the tributaries were attributed to the combined factors of naturally saline geologies, increased liberation of salts due to modification of the landscape, and reduced dilution by flushing flows. A salinity guideline trigger value of 1100 mg L(-1) was recommended.

  14. Impact of genetically modified organisms on aquatic environments: Review of available data for the risk assessment.

    Science.gov (United States)

    Pott, Antonia; Otto, Mathias; Schulz, Ralf

    2018-09-01

    The aquatic environment is strongly connected to the surrounding agricultural landscapes, which regularly serve as sources of stressors such as agrochemicals. Genetically modified crops, which are cultivated on a large scale in many countries, may also act as stressors. Despite the commercial use of genetically modified organisms (GMOs) for over 20years, their impact on the aquatic environment came into focus only 10years ago. We present the status quo of the available scientific data in order to provide an input for informed aquatic risk assessment of GMOs. We could identify only 39 publications, including 84 studies, dealing with GMOs in the aquatic environment, and our analysis shows substantial knowledge gaps. The available information is restricted to a small number of crop plants, traits, events, and test organisms. The analysis of effect studies reveals that only a narrow range of organisms has been tested and that studies on combinatorial actions of stressors are virtually absent. The analysis of fate studies shows that many aspects, such as the fate of leached toxins, degradation of plant material, and distribution of crop residues in the aquatic habitat, are insufficiently investigated. Together with these research needs, we identify standardization of test methods as an issue of high priority, both for research and risk assessment needed for GMO regulation. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Risk screening of pharmaceutical compounds in Romanian aquatic environment.

    Science.gov (United States)

    Gheorghe, Stefania; Petre, Jana; Lucaciu, Irina; Stoica, Catalina; Nita-Lazar, Mihai

    2016-06-01

    The aquatic environment is under increased pressure by pharmaceutically active compounds (PhACs) due to anthropogenic activities. In spite of being found at very low concentrations (ng/L to μg/L) in the environment, PhACs represent a real danger to aquatic ecosystems due to their bioaccumulation and long-term effects. In this study, the presence in the aquatic environment of six non-steroidal anti-inflammatory drugs (ibuprofen, diclofenac, acetaminophen, naproxen, indomethacin, and ketoprofen), caffeine, and carbamazepine were monitored. Moreover, their aquatic risk and ecotoxicity by three biological models were evaluated. The monitoring studies performed in Romania showed that all studied PhACs were naturally present at concentrations >0.01 μg/L, pointing out the necessity to perform further toxicity tests for environmental risk assessment. The toxicity studies were carried out on aquatic organisms or bacteria and they indicated, for most of the tested PhACs, an insignificant or low toxicity effects: lethal concentrations (LC50) on fish Cyprinus carpio ranged from 42.60 mg/L to more than 100 mg/L; effective concentrations (EC50) on planktonic crustacean Daphnia magna ranged from 11.02 mg/L to more than 100 mg/L; inhibitory concentrations (IC50)/microbial toxic concentrations (MTC) on Vibrio fischeri and other bacterial strains ranged from 7.02 mg/L to more than 100 mg/L. The PhAC aquatic risk was assessed by using the ratio between measured environmental concentration (MEC) and predicted no effect concentration (PNEC) calculated for each type of organism. The average of quotient risks (RQs) revealed that the presence of these compounds in Romania's aquatic environment induced a lower or moderate aquatic risk.

  16. Caffeine and paraxanthine in aquatic systems: Global exposure distributions and probabilistic risk assessment.

    Science.gov (United States)

    Rodríguez-Gil, J L; Cáceres, N; Dafouz, R; Valcárcel, Y

    2018-01-15

    This study presents one of the most complete applications of probabilistic methodologies to the risk assessment of emerging contaminants. Perhaps the most data-rich of these compounds, caffeine, as well as its main metabolite (paraxanthine), were selected for this study. Information for a total of 29,132 individual caffeine and 7442 paraxanthine samples was compiled, including samples where the compounds were not detected. The inclusion of non-detect samples (as censored data) in the estimation of environmental exposure distributions (EEDs) allowed for a realistic characterization of the global presence of these compounds in aquatic systems. EEDs were compared to species sensitivity distributions (SSDs), when possible, in order to calculate joint probability curves (JPCs) to describe the risk to aquatic organisms. This way, it was determined that unacceptable environmental risk (defined as 5% of the species being potentially exposed to concentrations able to cause effects in>5% of the cases) could be expected from chronic exposure to caffeine from effluent (28.4% of the cases), surface water (6.7% of the cases) and estuary water (5.4% of the cases). Probability of exceedance of acute predicted no-effect concentrations (PNECs) for paraxanthine were higher than 5% for all assessed matrices except for drinking water and ground water, however no experimental effects data was available for paraxanthine, resulting in a precautionary deterministic hazard assessment for this compound. Given the chemical similarities between both compounds, real effect thresholds, and thus risk, for paraxanthine, would be expected to be close to those observed for caffeine. Negligible Human health risk from exposure to caffeine via drinking or groundwater is expected from the compiled data. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Aquatic environmental risk assessment of manganese processing industries.

    Science.gov (United States)

    Marks, Becky; Peters, Adam; McGough, Doreen

    2017-01-01

    An environmental risk assessment (ERA) has been conducted for sites producing and processing manganese and its inorganic compounds, focussing on potential risks to freshwater. A site specific questionnaire was used to collect information. Sites fall into three broad categories: mining sites, refining sites, and sites producing chemicals and pigments. Waste disposal is principally carried out by the treatment of liquid wastes to separate solids for disposal off-site with a consented wastewater discharge, or disposal on-site using evaporation or settlement ponds in order to maintain the waste materials in a suitable manner following site closure. The main source of emissions from refining and alloying sites is from the treatment of emissions to air using wet scrubber air filters. There is also the potential for fugitive environmental emissions of manganese from stockpiles of raw material held on-site. Data provided from the questionnaires were both site-specific and also commercially sensitive. Therefore, this paper has undertaken the manganese exposure assessment, using a probabilistic approach to reflect the distribution of emissions of manganese and also to maintain the confidentiality of site specific data. An inverse correlation was observed between the total annual tonnage of manganese processed at the site and the emission factor, such that sites processing larger quantities resulted in lower emissions of manganese per tonne processed. The hazard assessment determined a Predicted No Effect Concentration (PNEC) for freshwater using a species sensitivity distribution approach, resulting in a freshwater PNEC of 0.075mgL -1 for soluble manganese. Based on the exposure data and the freshwater PNEC derived for this study, the distributions of risk characterisation ratios using the probabilistic approach indicates that two thirds of manganese processing sites would not be expected to pose a potential risk to the local aquatic environment due to wastewater emissions

  18. Genetically modified crops and aquatic ecosystems: considerations for environmental risk assessment and non-target organism testing.

    Science.gov (United States)

    Carstens, Keri; Anderson, Jennifer; Bachman, Pamela; De Schrijver, Adinda; Dively, Galen; Federici, Brian; Hamer, Mick; Gielkens, Marco; Jensen, Peter; Lamp, William; Rauschen, Stefan; Ridley, Geoff; Romeis, Jörg; Waggoner, Annabel

    2012-08-01

    Environmental risk assessments (ERA) support regulatory decisions for the commercial cultivation of genetically modified (GM) crops. The ERA for terrestrial agroecosystems is well-developed, whereas guidance for ERA of GM crops in aquatic ecosystems is not as well-defined. The purpose of this document is to demonstrate how comprehensive problem formulation can be used to develop a conceptual model and to identify potential exposure pathways, using Bacillus thuringiensis (Bt) maize as a case study. Within problem formulation, the insecticidal trait, the crop, the receiving environment, and protection goals were characterized, and a conceptual model was developed to identify routes through which aquatic organisms may be exposed to insecticidal proteins in maize tissue. Following a tiered approach for exposure assessment, worst-case exposures were estimated using standardized models, and factors mitigating exposure were described. Based on exposure estimates, shredders were identified as the functional group most likely to be exposed to insecticidal proteins. However, even using worst-case assumptions, the exposure of shredders to Bt maize was low and studies supporting the current risk assessments were deemed adequate. Determining if early tier toxicity studies are necessary to inform the risk assessment for a specific GM crop should be done on a case by case basis, and should be guided by thorough problem formulation and exposure assessment. The processes used to develop the Bt maize case study are intended to serve as a model for performing risk assessments on future traits and crops.

  19. Risk assessment of imidacloprid use in forest settings on the aquatic macroinvertebrate community.

    Science.gov (United States)

    Benton, Elizabeth P; Grant, Jerome F; Nichols, Rebecca J; Webster, R Jesse; Schwartz, John S; Bailey, Joseph K

    2017-11-01

    The isolated effects of a single insecticide can be difficult to assess in natural settings because of the presence of numerous pollutants in many watersheds. Imidacloprid use for suppressing hemlock woolly adelgid, Adelges tsugae (Annand) (Hemiptera: Adelgidae), in forests offers a rare opportunity to assess potential impacts on aquatic macroinvertebrates in relatively pristine landscapes. Aquatic macroinvertebrate communities were assessed in 9 streams in Great Smoky Mountains National Park (southern Appalachian Mountains, USA). The streams flow through hemlock conservation areas where imidacloprid soil drench treatments were applied for hemlock woolly adelgid suppression. Sites were located upstream and downstream of the imidacloprid treatments. Baseline species presence data (pre-imidacloprid treatment) were available from previous sample collections at downstream sites. Downstream and upstream sites did not vary in numerous community measures. Although comparisons of paired upstream and downstream sites showed differences in diversity in 7 streams, higher diversity was found more often in downstream sites. Macroinvertebrate functional feeding groups and life habits were similar between downstream and upstream sites. Downstream and baseline stream samples were similar. While some functional feeding group and life habit species richness categories varied, variations did not indicate poorer quality downstream communities. Imidacloprid treatments applied according to US Environmental Protection Agency federal restrictions did not result in negative effects to aquatic macroinvertebrate communities, which indicates that risks of imidacloprid use in forest settings are low. Environ Toxicol Chem 2017;36:3108-3119. © 2017 SETAC. © 2017 SETAC.

  20. Are we going about chemical risk assessment for the aquatic environment the wrong way?

    Science.gov (United States)

    Johnson, Andrew C; Sumpter, John P

    2016-07-01

    The goal of protecting the aquatic environment through testing thousands of chemicals against hundreds of aquatic species with thousands of endpoints while also considering mixtures is impossible given the present resources. Much of the impetus for studies on micropollutants, such as pharmaceuticals, came from the topic of endocrine disruption in wild fish. But despite concern over reductions in fish fertility, there is little evidence that fish populations are in peril. Indeed, fish biologists suggest that many cyprinid populations have been recovering for the past 30 to 40 yr. The central assumption, key to current risk assessment, that effects observed in the laboratory or predicted by models are readily transferrable to the population level, is therefore questionable. The neglect in monitoring wildlife populations is the key weakness in environmental protection strategies. If we do not know whether aquatic wildlife species are declining or increasing, how valuable are our other ecotoxicological activities? Environ Toxicol Chem 2016;35:1609-1616. © 2016 SETAC. © 2016 SETAC.

  1. Dietary risk ranking for residual antibiotics in cultured aquatic products around Tai Lake, China.

    Science.gov (United States)

    Song, Chao; Li, Le; Zhang, Cong; Qiu, Liping; Fan, Limin; Wu, Wei; Meng, Shunlong; Hu, Gengdong; Chen, Jiazhang; Liu, Ying; Mao, Aimin

    2017-10-01

    Antibiotics are widely used in aquaculture and therefore may be present as a dietary risk in cultured aquatic products. Using the Tai Lake Basin as a study area, we assessed the presence of 15 antibiotics in 5 widely cultured aquatic species using a newly developed dietary risk ranking approach. By assigning scores to each factor involved in the ranking matrices, the scores of dietary risks per antibiotic and per aquatic species were calculated. The results indicated that fluoroquinolone antibiotics posed the highest dietary risk in all aquatic species. Then, the total scores per aquatic species were summed by all 15 antibiotic scores of antibiotics, it was found that Crab (Eriocheir sinensis) had the highest dietary risks. Finally, the most concerned antibiotic category and aquatic species were selected. This study highlighted the importance of dietary risk ranking in the production and consumption of cultured aquatic products around Tai Lake. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Occurrence of anionic surfactants in treated sewage: Risk assessment to aquatic environment

    International Nuclear Information System (INIS)

    Mungray, Arvind Kumar; Kumar, Pradeep

    2008-01-01

    A comparative evaluation of occurrence of and risk to aquatic environment due to anionic surfactants (AS) in treated effluents from three main treatment processes, i.e. activated sludge process (ASP), oxidation pond (OP), and upflow anaerobic sludge blanket reactor (UASBR) is presented. UASBR effluents contained substantial concentrations of AS (4.25-5.91 mg/L as average AS removal was not found to exceed 18%). Post-treatment of UASBR effluent using 1-1.6 days detention, anaerobic polishing ponds (PP) was also found quite ineffective. In UASBR-PP combine, AS reduced only up to 30%. Effluents from OP based sewage treatment plants (STPs) also contained significant concentrations of AS. On the contrary, effluent AS or linear alkylbenzene sulfonate (LAS) concentrations recorded in ASP effluents were quite low (less than 0.2 mg/L). Unlike UASBR, LAS or AS removals greater than 99% are achieved in ASP. Treated effluents from UASBR and OP based STPs when discharged to aquatic ecosystems are likely to cause substantial risk to aquatic environment due to the presence of AS while effluents from ASP are not supposed to pose risk. Need to find an effective aerobic post-treatment unit to UASBR for desired removal of AS is emphasized

  3. Flow cytometry of nucleated red blood cells used as monitoring technique for aquatic risk assessment. A review.

    Directory of Open Access Journals (Sweden)

    Bratosin D.

    2016-05-01

    Full Text Available During the last decades anthropogenic factors led to a significant enhancement of pollutants in aquatic environment and for several years, chemicals analysis has been commonly employed. These techniques cannot detect and quantify many environmental phenomena such as bioavailability, bioaccumulation and synergistic effects. For these reasons, many investigations for evaluating the effects of xenobiotic on organisms use in vitro or in vivo bioassays. The bioassays give a global response for all chemicals present in the environment and these represent one of the best ways to estimate the risk assessment of pollutants in environment for monitoring. For assessing cytotoxicity or ecotoxicity of pollutants (heavy metals, nanoparticles, etc. and to assess aquatic pollution degree and biomonitoring of Danube River and Danube Delta, we developed a new experimental cell system based on the apoptosis of nucleated erythrocytes from fishes and batrachians which are directly exposed to pollutants absorbed by different ways. Despite their structural simplicity, the erythrocytes of lower vertebrates preserve nucleus and mitochondria, both the sensors of the programmed cell death (PCD machinery to develop an apoptosis phenomenon. Our proposed bioassays which are based on the apoptosis phenomenon as induced biomarker by pollutants on fish or amphibians erythrocytes, evidenced by flow cytometry (apoptosis/necrosis discriminated by FITC-annexin-V labeling/PI and cellular viability measured with calcein-AM method could be rapid and very sensitive tests for in laboratory aquatic risk assessment and biomonitoring. Standardization and application of these tests will surely provide the opportunity of their use easily in ecotoxicological laboratories, biomonitoring of large river basins such as the Danube River Basin and will be also able deliver information on fish as a food product.

  4. Assessing effects of the fungicide tebuconazole to heterotrophic microbes in aquatic microcosms

    NARCIS (Netherlands)

    Dimitrov, M.R.; Kosol, Sujitra; Smidt, H.; Brink, van den P.J.; Wijngaarden, van R.P.A.; Brock, T.C.M.; Maltby, L.

    2014-01-01

    Aquatic ecological risk assessment of fungicides in Europe under Regulation 1107/2009/EC does not currently assess risk to non-target bacteria and fungi. Rather, regulatory acceptable concentrations based on ecotoxicological data obtained from studies with fish, invertebrates and primary producers

  5. Assessment of the safety of aquatic animal commodities for international trade: the OIE Aquatic Animal Health code.

    Science.gov (United States)

    Oidtmann, B; Johnston, C; Klotins, K; Mylrea, G; Van, P T; Cabot, S; Martin, P Rosado; Ababouch, L; Berthe, F

    2013-02-01

    Trading of aquatic animals and aquatic animal products has become increasingly globalized during the last couple of decades. This commodity trade has increased the risk for the spread of aquatic animal pathogens. The World Organisation for Animal Health (OIE) is recognized as the international standard-setting organization for measures relating to international trade in animals and animal products. In this role, OIE has developed the Aquatic Animal Health Code, which provides health measures to be used by competent authorities of importing and exporting countries to avoid the transfer of agents pathogenic for animals or humans, whilst avoiding unjustified sanitary barriers. An OIE ad hoc group developed criteria for assessing the safety of aquatic animals or aquatic animal products for any purpose from a country, zone or compartment not declared free from a given disease 'X'. The criteria were based on the absence of the pathogenic agent in the traded commodity or inactivation of the pathogenic agent by the commercial processing used to produce the commodity. The group also developed criteria to assess the safety of aquatic animals or aquatic animal products for retail trade for human consumption from potentially infected areas. Such commodities were assessed considering the form and presentation of the product, the expected volume of waste tissues generated by the consumer and the likely presence of viable pathogenic agent in the waste. The ad hoc group applied the criteria to commodities listed in the individual disease chapters of the Aquatic Animal Health Code (2008 edition). Revised lists of commodities for which no additional measures should be required by the importing countries regardless of the status for disease X of the exporting country were developed and adopted by the OIE World Assembly of Delegates in May 2011. The rationale of the criteria and their application will be explained and demonstrated using examples. © 2012 Crown Copyright. Reproduced

  6. Environmental risk and toxicology of human and veterinary waste pharmaceutical exposure to wild aquatic host-parasite relationships.

    Science.gov (United States)

    Morley, Neil J

    2009-03-01

    Pollution of the aquatic environment by human and veterinary waste pharmaceuticals is an increasing area of concern but little is known about their ecotoxicological effects on wildlife. In particular the interactions between pharmaceuticals and natural stressors of aquatic communities remains to be elucidated. A common natural stressor of freshwater and marine organisms are protozoan and metazoan parasites, which can have significant effects on host physiology and population structure, especially under the influence of many traditional kinds of toxic pollutants. However, little is known about the effects of waste pharmaceuticals to host-parasite dynamics. In order to assess the risk waste pharmaceuticals pose to aquatic wildlife it has been suggested the use of toxicological data derived from mammals during the product development of pharmaceuticals may be useful for predicting toxic effects. An additional similar source of information is the extensive clinical studies undertaken with numerous classes of drugs against parasites of human and veterinary importance. These studies may form the basis of preliminary risk assessments to aquatic populations and their interactions with parasitic diseases in pharmaceutical-exposed habitats. The present article reviews the effects of the most common classes of pharmaceutical medicines to host-parasite relationships and assesses the risk they may pose to wild aquatic organisms. In addition the effects of pharmaceutical mixtures, the importance of sewage treatment, and the risk of developing resistant strains of parasites are also assessed. Copyright © 2008 Elsevier B.V. All rights reserved.

  7. [Ecological risk assessment of hydropower dam construction on aquatic species in middle reaches of Lancang River, Southwest China based on ESHIPPO model].

    Science.gov (United States)

    Li, Xiao-Yan; Peng, Ming-Chun; Dong, Shi-Kui; Liu, Shi-Liang; Li, Jin-Peng; Yang, Zhi-Feng

    2013-02-01

    An investigation was conducted on the phytoplankton, zooplankton, and fish at 8 sampling sections in the Manwan Reservoir before and after the construction of Xiaowan Hydropower Dam. The modified ESHIPPO model was applied to study the changes of the featured aquatic species, including endangered species, endemic specie, peis resource species, and native fish, aimed to make an ecological risk assessment of the dam construction on the aquatic species. The dam construction had definite ecological risk on the aquatic species, especially the endemic fish, in Langcang River, due to the changes of hydrological conditions. The endemic species including Bangia atropurpurea, Lemanea sinica, Prasiola sp., Attheyella yunnanensis, and Neutrodiaptomus mariadvigae were at high ecological risk, and thus, besides monitoring, protection measures were needed to be taken to lower the possibility of the species extinction. The widely distributed species of phytoplankton and zooplankton were at medium ecological risk, and protection measures besides monitoring should be prepared. Twelve kinds of native fish, including Barbodes huangchuchieni, Sinilabeo laticeps, Racoma lantsangensis, Racoma lissolabiatus, Paracobitis anguillioides, Schistura latifasciata, Botia nigrolineata, Vanmanenia striata, Homaloptera yunnanensis, Platytropius longianlis, Glyptothorax zanaensis, and Pseudecheneis immaculate, were at high ecological risk, and protection measures needed to be developed to prevent the possibility of the species loss and extinction.

  8. Is there a risk associated with the insect repellent DEET (N,N-diethyl-m-toluamide) commonly found in aquatic environments?

    Science.gov (United States)

    Costanzo, S.D.; Watkinson, A.J.; Murby, E.J.; Kolpin, D.W.; Sandstrom, M.W.

    2007-01-01

    DEET (N,N-diethyl-m-toluamide) is the active ingredient of most commercial insect repellents. This compound has commonly been detected in aquatic water samples from around the world indicating that DEET is both mobile and persistent, despite earlier assumptions that DEET was unlikely to enter aquatic ecosystems. DEET's registration category does not require an ecological risk assessment, thus information on the ecological toxicity of DEET is sparse. This paper reviews the presence of DEET in aqueous samples from around the world (e.g. drinking water, streams, open seawater, groundwater and treated effluent) with reported DEET concentrations ranging from 40–3000 ng L− 1. In addition, new DEET data collected from 36 sites in coastal waterways from eastern Australia (detections ranging from 8 to 1500 ng L− 1) are examined. A summary of new and existing toxicity data are discussed with an emphasis on preparing a preliminary risk assessment for DEET in the aquatic environment. Collated information on DEET in the aquatic environment suggests risk to aquatic biota at observed environmental concentrations is minimal. However, the information available was not sufficient to conduct a full risk assessment due to data deficiencies in source characterisation, transport mechanisms, fate, and ecotoxicity studies. These risks warrant further investigation due to the high frequency that this organic contaminant is detected in aquatic environments around the world.

  9. Applying adverse outcome pathways and species sensitivity-weighted distribution to predicted-no-effect concentration derivation and quantitative ecological risk assessment for bisphenol A and 4-nonylphenol in aquatic environments: A case study on Tianjin City, China.

    Science.gov (United States)

    Wang, Ying; Na, Guangshui; Zong, Humin; Ma, Xindong; Yang, Xianhai; Mu, Jingli; Wang, Lijun; Lin, Zhongsheng; Zhang, Zhifeng; Wang, Juying; Zhao, Jinsong

    2018-02-01

    Adverse outcome pathways (AOPs) are a novel concept that effectively considers the toxic modes of action and guides the ecological risk assessment of chemicals. To better use toxicity data including biochemical or molecular responses and mechanistic data, we further developed a species sensitivity-weighted distribution (SSWD) method for bisphenol A and 4-nonylphenol. Their aquatic predicted-no-effect concentrations (PNECs) were derived using the log-normal statistical extrapolation method. We calculated aquatic PNECs of bisphenol A and 4-nonylphenol with values of 4.01 and 0.721 µg/L, respectively. The ecological risk of each chemical in different aquatic environments near Tianjin, China, a coastal municipality along the Bohai Sea, was characterized by hazard quotient and probabilistic risk quotient assessment techniques. Hazard quotients of 7.02 and 5.99 at 2 municipal sewage sites using all of the endpoints were observed for 4-nonylphenol, which indicated high ecological risks posed by 4-nonylphenol to aquatic organisms, especially endocrine-disrupting effects. Moreover, a high ecological risk of 4-nonylphenol was indicated based on the probabilistic risk quotient method. The present results show that combining the SSWD method and the AOP concept could better protect aquatic organisms from adverse effects such as endocrine disruption and could decrease uncertainty in ecological risk assessment. Environ Toxicol Chem 2018;37:551-562. © 2017 SETAC. © 2017 SETAC.

  10. A framework for ecological risk assessment of metal mixtures in aquatic systems.

    Science.gov (United States)

    Nys, Charlotte; Van Regenmortel, Tina; Janssen, Colin R; Oorts, Koen; Smolders, Erik; De Schamphelaere, Karel A C

    2018-03-01

    Although metal mixture toxicity has been studied relatively intensely, there is no general consensus yet on how to incorporate metal mixture toxicity into aquatic risk assessment. We combined existing data on chronic metal mixture toxicity at the species level with species sensitivity distribution (SSD)-based in silico metal mixture risk predictions at the community level for mixtures of Ni, Zn, Cu, Cd, and Pb, to develop a tiered risk assessment scheme for metal mixtures in freshwater. Generally, independent action (IA) predicts chronic metal mixture toxicity at the species level most accurately, whereas concentration addition (CA) is the most conservative model. Mixture effects are noninteractive in 69% (IA) and 44% (CA) and antagonistic in 15% (IA) and 51% (CA) of the experiments, whereas synergisms are only observed in 15% (IA) and 5% (CA) of the experiments. At low effect sizes (∼ 10% mixture effect), CA overestimates metal mixture toxicity at the species level by 1.2-fold (i.e., the mixture interaction factor [MIF]; median). Species, metal presence, or number of metals does not significantly affect the MIF. To predict metal mixture risk at the community level, bioavailability-normalization procedures were combined with CA or IA using SSD techniques in 4 different methods, which were compared using environmental monitoring data of a European river basin (the Dommel, The Netherlands). We found that the simplest method, in which CA is directly applied to the SSD (CA SSD ), is also the most conservative method. The CA SSD has median margins of safety (MoS) of 1.1 and 1.2 respectively for binary mixtures compared with the theoretically more consistent methods of applying CA or IA to the dose-response curve of each species individually prior to estimating the fraction of affected species (CA DRC or IA DRC ). The MoS increases linearly with an increasing number of metals, up to 1.4 and 1.7 for quinary mixtures (median) compared with CA DRC and IA DRC

  11. AMEG: the new SETAC advisory group on aquatic macrophyte ecotoxicology.

    Science.gov (United States)

    Arts, Gertie; Davies, Jo; Dobbs, Michael; Ebke, Peter; Hanson, Mark; Hommen, Udo; Knauer, Katja; Loutseti, Stefania; Maltby, Lorraine; Mohr, Silvia; Poovey, Angela; Poulsen, Véronique

    2010-05-01

    Primary producers play critical structural and functional roles in aquatic ecosystems; therefore, it is imperative that the potential risks of toxicants to aquatic plants are adequately assessed in the risk assessment of chemicals. The standard required macrophyte test species is the floating (non-sediment-rooted) duckweed Lemna spp. This macrophyte species might not be representative of all floating, rooted, emergent, and submerged macrophyte species because of differences in the duration and mode of exposure; sensitivity to the specific toxic mode of action of the chemical; and species-specific traits (e.g., duckweed's very short generation time). These topics were addressed during the workshop entitled "Aquatic Macrophyte Risk Assessment for Pesticides" (AMRAP) where a risk assessment scheme for aquatic macrophytes was proposed. Four working groups evolved from this workshop and were charged with the task of developing Tier 1 and higher-tier aquatic macrophyte risk assessment procedures. Subsequently, a SETAC Advisory Group, the Macrophyte Ecotoxicology Group (AMEG) was formed as an umbrella organization for various macrophyte working groups. The purpose of AMEG is to provide scientifically based guidance in all aspects of aquatic macrophyte testing in the laboratory and field, including prospective as well as retrospective risk assessments for chemicals. As AMEG expands, it will begin to address new topics including bioremediation and sustainable management of aquatic macrophytes in the context of ecosystem services.

  12. Ecotoxicological Assessment of Aquatic Genotoxicity Using the Comet Assay

    Directory of Open Access Journals (Sweden)

    KHUSNUL YAQIN

    2006-09-01

    Full Text Available Comet assay is a novel biological analysis, which is a sensitive, flexible, simple, rapid, and inexpensive method to assess aquatic genotoxicant. Since Singh and co-workers developed the method in 1988, its use has increased exponentially in various fields. This review discourses on the application of this assay in aquatic ecosystems. Various types of cells from various aquatic organisms have been tested by various genotoxicant both direct- and indirect-acting using the comet assay. The applications of this assay suggest that it is a useful assay to assess aquatic genotoxicants. However, there are some factors, which should be taken into account when using this assay as aquatic ecotoxicological assessment device such as inter-animal and cell variability.

  13. Endosulfan and its metabolite, endosulfan sulfate, in freshwater ecosystems of South Florida: a probabilistic aquatic ecological risk assessment.

    Science.gov (United States)

    Rand, Gary M; Carriger, John F; Gardinali, Piero R; Castro, Joffre

    2010-06-01

    Endosulfan is an insecticide-acaricide used in South Florida and is one of the remaining organochlorine insecticides registered under the Federal Insecticide Fungicide and Rodenticide Act by the U.S.EPA. The technical grade material consists of two isomers (alpha-, beta-) and the main environmental metabolite in water, sediment and tissue is endosulfan sulfate through oxidation. A comprehensive probabilistic aquatic ecological risk assessment was conducted to determine the potential risks of existing exposures to endosulfan and endosulfan sulfate in freshwaters of South Florida based on historical data (1992-2007). The assessment included hazard assessment (Tier 1) followed by probabilistic risk assessment (Tier 2). Tier 1 compared actual measured concentrations in surface freshwaters of 47 sites in South Florida from historical data to U.S.EPA numerical water quality criteria. Based on results of Tier 1, Tier 2 focused on the acute and chronic risks of endosulfan at nine sites by comparing distributions of surface water exposure concentrations of endosulfan [i.e., for total endosulfan (summation of concentrations of alpha- and beta-isomers plus the sulfate), alpha- plus beta-endosulfan, and endosulfan sulfate (alone)] with distributions of species effects from laboratory toxicity data. In Tier 2 the distribution of total endosulfan in fish tissue (whole body) from South Florida freshwaters was also used to determine the probability of exceeding a distribution of whole body residues of endosulfan producing mortality (critical lethal residues). Tier 1 showed the majority of endosulfan water quality violations in South Florida were at locations S-178 followed by S-177 in the C-111 system (southeastern boundary of Everglades National Park (ENP)). Nine surface water sampling sites were chosen for Tier 2. Tier 2 showed the highest potentially affected fraction of toxicity values (>10%) by the estimated 90th centile exposure concentration (total endosulfan) was at S-178

  14. Occurrence and ecological risk assessment of emerging organic chemicals in urban rivers

    DEFF Research Database (Denmark)

    Peng, Fengjiao; Pan, Chang Gui; Zhang, Min

    2017-01-01

    at the suburb area. A screening-level risk assessment showed that 4-nonylphenol and triclosan (TCS) pose potential risks to aquatic organisms in most sampling sites. For individual taxa, 4-NP may pose risks to various groups of aquatic organisms, while TCS only might pose high risks to algae....

  15. Preliminary risk assessment database and risk ranking of pharmaceuticals in the environment

    International Nuclear Information System (INIS)

    Cooper, Emily R.; Siewicki, Thomas C.; Phillips, Karl

    2008-01-01

    There is increasing concern about pharmaceuticals entering surface waters and the impacts these compounds may have on aquatic organisms. Many contaminants, including pharmaceuticals, are not completely removed by wastewater treatment. Discharge of effluent into surface waters results in chronic low-concentration exposure of aquatic organisms to these compounds, with unknown impacts. Exposure of virulent bacteria in wastewater to antibiotic residues may also induce resistance, which could threaten human health. The purpose of this study was to provide information on pharmaceutical threats to the environment. A preliminary risk assessment database for common pharmaceuticals was created and put into a web-accessible database named 'Pharmaceuticals in the Environment, Information for Assessing Risk' (PEIAR) to help others evaluate potential risks of pharmaceutical contaminants in the environment. Information from PEIAR was used to prioritize compounds that may threaten the environment, with a focus on marine and estuarine environments. The pharmaceuticals were ranked using five different combinations of physical-chemical and toxicological data, which emphasized different risks. The results of the ranking methods differed in the compounds identified as high risk; however, drugs from the central nervous system, cardiovascular, and anti-infective classes were heavily represented within the top 100 drugs in all rankings. Anti-infectives may pose the greatest overall risk based upon our results using a combination of factors that measure environmental transport, fate, and aquatic toxicity. The dataset is also useful for highlighting information that is still needed to assuredly assess risk

  16. Comparison between three different LCIA methods for aquatic ecotoxicity and a product Environmental Risk Assessment – Insights from a Detergent Case Study within OMNIITOX

    DEFF Research Database (Denmark)

    Pant, Rana; Van Hoof, Geert; Feijtel, Tom

    2004-01-01

    set of physico-chemical and toxicological effect data to enable a better comparison of the methodological differences. For the same reason, the system boundaries were kept the same in all cases, focusing on emissions into water at the disposal stage. Results and Discussion. Significant differences...... ecotoxicity is not satisfactory, unless explicit reasons for the differences are identifiable. This can hamper practical decision support, as LCA practitioners usually will not be in a position to choose the 'right' LCIA method for their specific case. This puts a challenge to the entire OMNIITOX project......) with results from an Environmental Risk Assessment (ERA). Material and Methods. The LCIA has been conducted with EDIP97 (chronic aquatic ecotoxicity) [1], USES-LCA (freshwater and marine water aquatic ecotoxicity, sometimes referred to as CML2001) [2, 3] and IMPACT 2002 (covering freshwater aquatic ecotoxicity...

  17. Aquatic risk assessment of pesticides in Latin America

    NARCIS (Netherlands)

    Carriquiriborde, P.; Mirabella, P.; Waichman, A.; Solomon, K.; Brink, van den P.J.; Maund, S.J.

    2014-01-01

    Latin America is anticipated to be a major growth market for agriculture and production is increasing with use of technologies such as pesticides. Reports of contamination of aquatic ecosystems by pesticides in Latin America have raised concerns about potential for adverse ecological effects. In the

  18. Bioaccumulation in aquatic systems: methodological approaches, monitoring and assessment

    DEFF Research Database (Denmark)

    Schäfer, Sabine; Buchmeier, Georgia; Claus, Evelyn

    2015-01-01

    , various scientific and regulatory aspects of bioaccumulation in aquatic systems and the relevant critical issues are discussed. Monitoring chemical concentrations in biota can be used for compliance checking with regulatory directives, for identification of chemical sources or event-related environmental...... temporal and geographical range. Bioaccumulation is also assessed for regulation of chemicals of environmental concern whereby mainly data from laboratory studies on fish bioaccumulation are used. Field data can, however, provide additional important information for regulators. Strategies...... for bioaccumulation assessment still need to be harmonised for different regulations and groups of chemicals. To create awareness for critical issues and to mutually benefit from technical expertise and scientific findings, communication between risk assessment and monitoring communities needs to be improved...

  19. Aquatic risk assessment of the new rice herbicide profoxydim

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, Paloma [Laboratory for Ecotoxicology, Department of the Environment, INIA, Crta De La Coruna Km 7, 28040 Madrid (Spain)]. E-mail: arguello@inia.es; Kubitza, Johanna [BASF-AG, Agricultural Center Limburgerhof, P.O. Box 120, D-67114 Limburgerhof (Germany); Peter Dohmen, G. [BASF-AG, Agricultural Center Limburgerhof, P.O. Box 120, D-67114 Limburgerhof (Germany); Tarazona, Jose V. [Laboratory for Ecotoxicology, Department of the Environment, INIA, Crta De La Coruna Km 7, 28040 Madrid (Spain)

    2006-07-15

    A tiered protocol for assessing ecological risks has been applied to the rice pesticide profoxydim. The initial assessment (Tier I) was based on toxicity exposure ratio (TER) calculations based on laboratory data using a worst-case rice scenario. The first refinement (Tier II) was based on direct toxicity assessment (DTA) of water samples collected during a field-mesocosm study. Finally, a higher-tier assessment on the in situ assessment of paddy community responses (field-mesocosm-Tier III) was performed. A successive application of three pesticides, the herbicides azimsulfuron, propanil and the insecticide malathion, was used as reference controls. The refined assessments indicated a lower risk than that predicted from TER estimations. DTA-based Tier II showed toxicity effects only for concentrations above the recommended dose of profoxydim. Effects for reference controls were observed in DTA which were not expected from Tier I. The field-mesocosm study confirmed these effects but also showed that they were transient and of low relevance. - Risk refinement assessment of rice pesticides starting with DTA and moving to community studies is a cost-effective approach, only if required.

  20. Aquatic risk assessment of the new rice herbicide profoxydim

    International Nuclear Information System (INIS)

    Sanchez, Paloma; Kubitza, Johanna; Peter Dohmen, G.; Tarazona, Jose V.

    2006-01-01

    A tiered protocol for assessing ecological risks has been applied to the rice pesticide profoxydim. The initial assessment (Tier I) was based on toxicity exposure ratio (TER) calculations based on laboratory data using a worst-case rice scenario. The first refinement (Tier II) was based on direct toxicity assessment (DTA) of water samples collected during a field-mesocosm study. Finally, a higher-tier assessment on the in situ assessment of paddy community responses (field-mesocosm-Tier III) was performed. A successive application of three pesticides, the herbicides azimsulfuron, propanil and the insecticide malathion, was used as reference controls. The refined assessments indicated a lower risk than that predicted from TER estimations. DTA-based Tier II showed toxicity effects only for concentrations above the recommended dose of profoxydim. Effects for reference controls were observed in DTA which were not expected from Tier I. The field-mesocosm study confirmed these effects but also showed that they were transient and of low relevance. - Risk refinement assessment of rice pesticides starting with DTA and moving to community studies is a cost-effective approach, only if required

  1. How TK-TD and population models for aquatic macrophytes could support the risk assessment for plant protection products.

    Science.gov (United States)

    Hommen, Udo; Schmitt, Walter; Heine, Simon; Brock, Theo Cm; Duquesne, Sabine; Manson, Phil; Meregalli, Giovanna; Ochoa-Acuña, Hugo; van Vliet, Peter; Arts, Gertie

    2016-01-01

    This case study of the Society of Environmental Toxicology and Chemistry (SETAC) workshop MODELINK demonstrates the potential use of mechanistic effects models for macrophytes to extrapolate from effects of a plant protection product observed in laboratory tests to effects resulting from dynamic exposure on macrophyte populations in edge-of-field water bodies. A standard European Union (EU) risk assessment for an example herbicide based on macrophyte laboratory tests indicated risks for several exposure scenarios. Three of these scenarios are further analyzed using effect models for 2 aquatic macrophytes, the free-floating standard test species Lemna sp., and the sediment-rooted submerged additional standard test species Myriophyllum spicatum. Both models include a toxicokinetic (TK) part, describing uptake and elimination of the toxicant, a toxicodynamic (TD) part, describing the internal concentration-response function for growth inhibition, and a description of biomass growth as a function of environmental factors to allow simulating seasonal dynamics. The TK-TD models are calibrated and tested using laboratory tests, whereas the growth models were assumed to be fit for purpose based on comparisons of predictions with typical growth patterns observed in the field. For the risk assessment, biomass dynamics are predicted for the control situation and for several exposure levels. Based on specific protection goals for macrophytes, preliminary example decision criteria are suggested for evaluating the model outputs. The models refined the risk indicated by lower tier testing for 2 exposure scenarios, while confirming the risk associated for the third. Uncertainties related to the experimental and the modeling approaches and their application in the risk assessment are discussed. Based on this case study and the assumption that the models prove suitable for risk assessment once fully evaluated, we recommend that 1) ecological scenarios be developed that are also

  2. Ecological risk assessment of depleted uranium in the environment at Aberdeen Proving Ground

    International Nuclear Information System (INIS)

    Clements, W.H.; Kennedy, P.L.; Myers, O.B.

    1993-01-01

    A preliminary ecological risk assessment was conducted to evaluate the effects of depleted uranium (DU) in the Aberdeen Proving Ground (APG) ecosystem and its potential for human health effects. An ecological risk assessment of DU should include the processes of hazard identification, dose-response assessment, exposure assessment, and risk characterization. Ecological risk assessments also should explicitly examine risks incurred by nonhuman as well as human populations, because risk assessments based only on human health do not always protect other species. To begin to assess the potential ecological risk of DU release to the environment we modeled DU transport through the principal components of the aquatic ecosystem at APG. We focused on the APG aquatic system because of the close proximity of the Chesapeake Bay and concerns about potential impacts on this ecosystem. Our objective in using a model to estimate environmental fate of DU is to ultimately reduce the uncertainty about predicted ecological risks due to DU from APG. The model functions to summarize information on the structure and functional properties of the APG aquatic system, to provide an exposure assessment by estimating the fate of DU in the environment, and to evaluate the sources of uncertainty about DU transport

  3. Environmental risk assessment of pesticides in Ethiopia

    NARCIS (Netherlands)

    Teklu, B.M.

    2016-01-01

    The current increase in application rate and usage frequency of application of pesticides in Ethiopia pose direct risks to surface water aquatic organisms and humans and cattle using surface water as a source of drinking water in rural parts of the country. A model based risk assessment as

  4. Exposure assessment of metal-based nanoparticles in aquatic environments: interactive influence of water chemistry and nanopaticle characteristics

    CSIR Research Space (South Africa)

    Thwala, Melusi

    2014-09-01

    Full Text Available Transformation and bioavailability information of engineered nanoparticles (ENPs) in environmental systems impedes assessment of their potential risks to aquatic environments. In aqueous environments ENPs undergo numerous transformation processes...

  5. Ecological risk assessment for radiological and chemical contaminants at a site with historical contamination

    International Nuclear Information System (INIS)

    Garisto, N.C.; Janes, A.; Peters, R.

    2010-01-01

    An Ecological Risk Assessment was carried out for a uranium conversion facility in Ontario, located on a site with a history of contamination. The ERA assessed risk to aquatic and terrestrial biota from exposure to radionuclides and non-radionuclides in soil and groundwater associated with the site. The results indicated no undue risk to aquatic biota from radionuclides. Small potential risks were identified for terrestrial biota at limited locations associated with this industrial site. Recommendations are provided for follow-up risk-informed activities. (author)

  6. DNA barcodes for assessment of the biological integrity of aquatic ecosystems

    Science.gov (United States)

    Water quality regulations and aquatic ecosystem monitoring increasingly rely on direct assessments of biological integrity. Because these aquatic “bioassessments” evaluate the incidence and abundance of sensitive aquatic species, they are able to measure cumulative ecosystem eff...

  7. Spatial differentiated effect assessment for aquatic eutrophication in Life Cycle Assessment.

    NARCIS (Netherlands)

    Penailillo, Reinaldo

    2005-01-01

    The conventional evaluation of aquatic eutrophication in Life Cycle Assessment (LCA) expresses the contribution of nitrogen and/or phosphorus emissions to biomass production in terms of the equivalent emission of a reference substance. This assessment doe

  8. Methodology for the assessment of human health risks associated ...

    African Journals Online (AJOL)

    Studies have shown that the aquatic environment can be polluted by contaminates that are accumulated by freshwater fish and this may pose a health risk to the ... bioaccumulation potential and health risks of analytes, sound sampling design, risk assessment procedures and performing monitoring at different scales and ...

  9. Ecological risk assessment of radionuclides in the Columbia River System ''a historical assessment''

    International Nuclear Information System (INIS)

    Friant, S.L.; Brandt, C.A.; Probasco, K.M.

    1993-01-01

    The US Department of Energy's (DOE) Hanford Site in southcentral Washington State has been the location of nuclear production activities since 1943. Radioactive effluents were discharged to the Columbia River, which runs through the northern portion of the Site and borders it on the east (the Hanford Reach). The assessment was conducted using historical Hanford Site monitoring data for the aquatic environment of the Columbia River over the time period from 1963 to 1964. The time period was chosen because it was then that peak production of nuclear material was occurring and the maximum number of reactors were operational. Exposure characterization consisted of measured radioactivity in water, sediments, and biota. Two approaches were used in assessing ecological risk to Columbia River organisms. In the first approach, environmental exposure data were used to calculate internal dose to a variety of aquatic organisms, including the most sensitive receptors (fish). In the second approach, measured tissue concentrations were used for selected aquatic organisms to calculate organism internal dose directly. Organism dose was used to assess potential toxic effects and assess regulatory compliance. Risk characterization was developed by comparing dose levels in fish and other organisms found in the Columbia River to known concentrations through a hazard quotient for acute dose and developmental effects

  10. Biochemical markers for the assessment of aquatic environment contamination

    Science.gov (United States)

    Havelková, Marcela; Randák, Tomáš; Blahová, Jana; Slatinská, Iveta; Svobodová, Zdeňka

    2008-01-01

    The need for assessment of aquatic ecosystem contamination and of its impact on water dwelling organisms was developed in response to rising aquatic environmental pollution. In this field study, liver enzymes of phase I and phase II of xenobiotic transformation, namely cytochrome P450, ethoxyresorufin-O-deethylase, glutathione-S-transferase and tripeptide glutathione were used to assess the contamination of the aquatic environment at different rivers in the Czech Republic. The indicator species selected was the male chub (Leuciscus cephalus L.) and male brown trout (Salmo trutta fario). Chemical analyses included also the assessment of the most important inductors of previously mentioned biochemical markers. The major inductors of monitored biomarkers are industrial contaminants which belong to a large group of organic pollutants (PCB, PAH, PCDD/F, DDT, HCH, HCB and OCS), persistent in the environment. Four different groups of river basins were assessed: the River Tichá Orlice and its tributary the Kralický brook; important tributaries of the River Elbe (the rivers Orlice, Chrudimka, Cidlina, Jizera, Vltava, Ohře and Bílina); major rivers in the Czech Republic (the rivers Lužnice, Otava, Sázava, Berounka, Vltava, Labe, Ohře, Svratka, Dyje, Morava and Odra) and the River Vltava. The use of the biochemical markers together with chemical analyses seems to be an effective way to monitor the quality of aquatic environment. PMID:21218108

  11. Tulane/Xavier Center for Bioenvironmental Research; project: hazardous materials in aquatic environments; subproject: biomarkers and risk assessment in Bayou Trepagnier, LA

    International Nuclear Information System (INIS)

    Ide, C.

    1996-01-01

    Tulane and Xavier Universities have singled out the environment as a major strategic focus for research and training for now and beyond the year 2000. the Tulane/Xavier Center for Bioenvironmental Research (CBR) was established in 1989 as the umbrella organization to coordinate environmental research at both universities. CBR projects funded by the DOE under the Hazardous Materials in Aquatic Environments grant are defining the following: (1) the complex interactions that occur during the transport of contaminants through wetlands environments, (2) the actual and potential impact of contaminants on ecological systems and health, (3) the mechanisms and new technologies through which these impacts might be remediated, and (4) new programs aimed at educating and training environmental workers of the future. The subproject described in this report, 'Biomarkers and Risk Assessment in Bayou Trepagnier, LN', is particularly relevant to the US Department of Energy's Environmental Restoration and Waste Management program aimed at solving problems related to hazard monitoring and clean-up prioritization at sites with aquatic pollution problems in the DOE complex

  12. AMEG: the new SETAC advisory group on aquatic macrophyte ecotoxicology

    OpenAIRE

    Arts, G.; Davies, J.; Dobbs, M.; Ebke, P.; Hanson, M.; Hommen, U.; Knauer, K.; Loutseti, S.; Maltby, L.; Mohr, S.; Poovey, A.; Poulsen, V.

    2010-01-01

    \\ud Introduction and background\\ud \\ud Primary producers play critical structural and functional roles in aquatic ecosystems; therefore, it is imperative that the potential risks of toxicants to aquatic plants are adequately assessed in the risk assessment of chemicals. The standard required macrophyte test species is the floating (non-sediment-rooted) duckweed Lemna spp. This macrophyte species might not be representative of all floating, rooted, emergent, and submerged macrophyte species be...

  13. Life stage-specific effects of the fungicide pyrimethanil and temperature on the snail Physella acuta (Draparnaud, 1805) disclose the pitfalls for the aquatic risk assessment under global climate change

    International Nuclear Information System (INIS)

    Seeland, Anne; Albrand, Jennifer; Oehlmann, Jörg; Müller, Ruth

    2013-01-01

    It can be suggested that the combined stress of pesticide pollution and suboptimal temperature influences the sensitivity of life stages of aquatic invertebrates differently. The embryo, juvenile, half- and full-life-cycle toxicity tests performed with the snail Physella acuta at different concentrations (0.06–0.5 or 1.0 mg L −1 ) of the model fungicide pyrimethanil at 15, 20 and 25 °C revealed, that pyrimethanil caused concentration-dependent effects at all test temperatures. Interestingly, the ecotoxicity of pyrimethanil was higher at lower (suboptimal) temperature for embryo hatching and F 1 reproduction, but its ecotoxicity for juvenile growth and F 0 reproduction increased with increasing temperature. The life-stage specific temperature-dependent ecotoxicity of pyrimethanil and the high fungicide susceptibility of the invasive snail clearly demonstrate the complexity of pesticide–temperature interactions and the challenge to draw conclusions for the risk of pesticides under the impact of global climate change. -- Highlights: ► Physella acuta reacts highly sensitively to exposure to pyrimethanil. ► The ecotoxicity of pyrimethanil is life-stage specific. ► Pyrimethanil and temperature stress influenced the development interactively. -- The aquatic risk of pesticides under climate change cannot be adequately assessed by recent strategies for the regular risk assessment of agrochemicals

  14. Assessing Environmental Impact on Aquatic Macrophyte Species ...

    African Journals Online (AJOL)

    Impact of environmental variables on distribution and composition of aquatic macrophyte community in a tropical river was assessed for one year (March 2009 to February 2010). Hypothesis tested was that the spatial variation in environmental variables on the river's longitudinal gradient affects macrophyte species ...

  15. Environmental risk assessment of pesticides: state of the art and prospective improvement from science.

    Science.gov (United States)

    Boivin, Arnaud; Poulsen, Véronique

    2017-03-01

    Pesticide risk assessment in the European regulatory framework is mandatory performed for active substances (pesticides) and the plant protection products they are constituents of. The aim is to guarantee that safe use can be achieved for the intended use of the product. This paper provides a feedback on the regulatory environmental risk assessment performed for pesticide registration at the EU and member state levels. The different steps of pesticide registration are addressed considering both exposure and hazard. In this paper, we focus on the environmental fate and behaviour in surface water together with the aquatic ecotoxicity of the substances to illustrate pesticide regulatory risk assessment performed for aquatic organisms. Current methodologies are presented along with highlights on potential improvements. For instance, as regards exposure aspects, moving from field based to landscape risk assessments is promising. Regarding ecotoxicology, ecological models may be valuable tools when applied to chemical risk assessment. In addition, interest and further developments to better take into account mitigation measures in risk assessment and management are also presented.

  16. Use-exposure relationships of pesticides for aquatic risk assessment.

    Directory of Open Access Journals (Sweden)

    Yuzhou Luo

    2011-04-01

    Full Text Available Field-scale environmental models have been widely used in aquatic exposure assessments of pesticides. Those models usually require a large set of input parameters and separate simulations for each pesticide in evaluation. In this study, a simple use-exposure relationship is developed based on regression analysis of stochastic simulation results generated from the Pesticide Root-Zone Model (PRZM. The developed mathematical relationship estimates edge-of-field peak concentrations of pesticides from aerobic soil metabolism half-life (AERO, organic carbon-normalized soil sorption coefficient (KOC, and application rate (RATE. In a case study of California crop scenarios, the relationships explained 90-95% of the variances in the peak concentrations of dissolved pesticides as predicted by PRZM simulations for a 30-year period. KOC was identified as the governing parameter in determining the relative magnitudes of pesticide exposures in a given crop scenario. The results of model application also indicated that the effects of chemical fate processes such as partitioning and degradation on pesticide exposure were similar among crop scenarios, while the cross-scenario variations were mainly associated with the landscape characteristics, such as organic carbon contents and curve numbers. With a minimum set of input data, the use-exposure relationships proposed in this study could be used in screening procedures for potential water quality impacts from the off-site movement of pesticides.

  17. Proactive aquatic ecotoxicological assessment of room-temperature ionic liquids

    Science.gov (United States)

    Kulacki, K.J.; Chaloner, D.T.; Larson, J.H.; Costello, D.M.; Evans-White, M. A.; Docherty, K.M.; Bernot, R.J.; Brueseke, M.A.; Kulpa, C.F.; Lamberti, G.A.

    2011-01-01

    Aquatic environments are being contaminated with a myriad of anthropogenic chemicals, a problem likely to continue due to both unintentional and intentional releases. To protect valuable natural resources, novel chemicals should be shown to be environmentally safe prior to use and potential release into the environment. Such proactive assessment is currently being applied to room-temperature ionic liquids (ILs). Because most ILs are water-soluble, their effects are likely to manifest in aquatic ecosystems. Information on the impacts of ILs on numerous aquatic organisms, focused primarily on acute LC50 and EC50 endpoints, is now available, and trends in toxicity are emerging. Cation structure tends to influence IL toxicity more so than anion structure, and within a cation class, the length of alkyl chain substituents is positively correlated with toxicity. While the effects of ILs on several aquatic organisms have been studied, the challenge for aquatic toxicology is now to predict the effects of ILs in complex natural environments that often include diverse mixtures of organisms, abiotic conditions, and additional stressors. To make robust predictions about ILs will require coupling of ecologically realistic laboratory and field experiments with standard toxicity bioassays and models. Such assessments would likely discourage the development of especially toxic ILs while shifting focus to those that are more environmentally benign. Understanding the broader ecological effects of emerging chemicals, incorporating that information into predictive models, and conveying the conclusions to those who develop, regulate, and use those chemicals, should help avoid future environmental degradation. ?? 2011 Bentham Science Publishers Ltd.

  18. Is the aquatic environment sufficiently protected from chemicals discharged with treated ballast water from vessels worldwide? - A decadal environmental perspective and risk assessment.

    Science.gov (United States)

    David, Matej; Linders, Jan; Gollasch, Stephan; David, Jan

    2018-05-24

    Ballast water managements systems (BWMS) installed on vessels may use active substances to inactivate or kill organisms in the ballast water. This paper provides new insights in this global issue - discharge of hazardous disinfection by-products with ballast water and related risk assessment for the environment. Considering the possible extent of this issue, the International Maritime Organization (IMO) engaged the Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection (GESAMP)-Ballast Water Working Group (BWWG) to oversee the evaluation process of BWMS that make use of active substances to prevent negative effects. We analysed all BWMS that received IMO final approval over a decade until 2017 and provide an overview of active substances used for ballast water treatment and disinfection by-products in the discharged ballast water. A risk assessment was conducted using the GESAMP-BWWG methodology for two very different commercial ports (Koper, Slovenia and Hamburg, Germany). Some relevant chemicals (chloropicrin, monochloroacetic acid, and dibromoacetonitrile) and other chemicals (isocyanuric acid and sodium thiosulphate) reached levels of concern, indicating a risk for aquatic organisms after discharge of that ballast water. From this analysis, it became clear GESAMP-BWWG worst-case scenario assumptions do not fully account for the potential environmental risks. We provide recommendations how to make this risk assessment more robust, recommend further research, and urge for policy as well as regulatory responses. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Assessing off-site impacts of wildfires on aquatic organisms using in-situ assays

    Science.gov (United States)

    Ré, Ana; Saraiva, MariaJoão; Puga, João; Campos, Isabel; Pereira, Joana; Keizer, Jacob; Goncalves, Fernando; Abrantes, Nelson

    2017-04-01

    in situ bioassays were a suitable tool to assess the risks of wildfire to aquatic species and that the post-fire runoff rich in concerning substances as PAHs and metals can sub-lethally impair the aquatic organisms in water bodies located within or downstream the burnt area.

  20. Ecological risk assessment of substances with suspected estrogenic activity using standard laboratory fish tests

    NARCIS (Netherlands)

    Gimeno, S.; Bowmer, C.T.

    1999-01-01

    The assessment of risks to the aquatic environment in the European Union is generally based on a comparison of Predicted Environmental Concentrations (PEC) with Predicted No Effect Concentrations (PNEC) for surrogate, or `representative', organisms of the receiving waters. Such risk assessments are

  1. Priorities to improve the ecological risk assessment and management for pesticides in surface water

    NARCIS (Netherlands)

    Brock, T.C.M.

    2013-01-01

    This article deals with prospective and retrospective ecological risk assessment (ERA) procedures for pesticides in surface waters as carried out under European legislation (Regulation 1107/2009/EC; Directive 2009/128/EC; Directive 2000/60/EC). Priorities to improve the aquatic risk assessment and

  2. An Environmental Risk Assessment for Human-Use Trimethoprim in European Surface Waters

    Science.gov (United States)

    Straub, Jürg Oliver

    2013-01-01

    An environmental risk assessment (ERA) for the aquatic compartment in Europe from human use was developed for the old antibiotic Trimethoprim (TMP), comparing exposure and effects. The exposure assessment is based on European risk assessment default values on one hand and is refined with documented human use figures in Western Europe from IMS Health and measured removal in wastewater treatment on the other. The resulting predicted environmental concentrations (PECs) are compared with measured environmental concentrations (MECs) from Europe, based on a large dataset incorporating more than 1800 single MECs. On the effects side, available chronic ecotoxicity data from the literature were complemented by additional, new chronic results for fish and other organisms. Based on these data, chronic-based deterministic predicted no effect concentrations (PNECs) were derived as well as two different probabilistic PNEC ranges. The ERA compares surface water PECs and MECs with aquatic PNECs for TMP. Based on all the risk characterization ratios (PEC÷PNEC as well as MEC÷PNEC) and risk graphs, there is no significant risk to surface waters. PMID:27029296

  3. An Environmental Risk Assessment for Human-Use Trimethoprim in European Surface Waters

    Directory of Open Access Journals (Sweden)

    Jürg Oliver Straub

    2013-03-01

    Full Text Available An environmental risk assessment (ERA for the aquatic compartment in Europe from human use was developed for the old antibiotic Trimethoprim (TMP, comparing exposure and effects. The exposure assessment is based on European risk assessment default values on one hand and is refined with documented human use figures in Western Europe from IMS Health and measured removal in wastewater treatment on the other. The resulting predicted environmental concentrations (PECs are compared with measured environmental concentrations (MECs from Europe, based on a large dataset incorporating more than 1800 single MECs. On the effects side, available chronic ecotoxicity data from the literature were complemented by additional, new chronic results for fish and other organisms. Based on these data, chronic-based deterministic predicted no effect concentrations (PNECs were derived as well as two different probabilistic PNEC ranges. The ERA compares surface water PECs and MECs with aquatic PNECs for TMP. Based on all the risk characterization ratios (PEC÷PNEC as well as MEC÷PNEC and risk graphs, there is no significant risk to surface waters.

  4. Monitoring and risk assessment of pesticides in irrigation systems in Debra Zeit, Ethiopia.

    Science.gov (United States)

    Teklu, Berhan M; Adriaanse, Paulien I; Van den Brink, Paul J

    2016-10-01

    Since Ethiopia is going through a rapid transformation of its agricultural sector, we assessed the human health and environmental risks due to the past use of organochlorine pesticides (OCPs) as well as the risks of the current pesticide use by farmers. A monitoring programme and risk assessment was carried out for the Wedecha-Belbela irrigation system in the Debra Zeit area. The Wedecha and Belbela rivers and adjacent temporary ponds were sampled and examined for the presence of OCPs between August and October 2014, while data on the current pesticide use by small- and large-scale farmers was collected by interviews. The usage patterns were evaluated for risks of using the river or temporary ponds as source of drinking water and for risks for the aquatic ecosystems in the river and ponds with the aid of the PRIMET_Registration_Ethiopa_1.1 model. The samples were collected in five sampling periods, and results indicate that most of the 18 target OCPs were not detected above the detection limit, while g-chlordane may pose chronic risks when surface water is used as drinking water. Endosulfan and heptachlor pose risks to aquatic organisms at second-tier level, while for heptachlor-epoxide B, g-chlordane and b-BHC only risks could be determined at the first tier due to a lack of data. For all nine pesticides used by small-scale farmers the calculated acute risks to humans were low. Second tier risk assessment for the aquatic ecosystem indicated that lambda-cyhalothrin, endosulfan, profenofos, and diazinon may pose high risks. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Improving aquatic warbler population assessments by accounting for imperfect detection.

    Directory of Open Access Journals (Sweden)

    Steffen Oppel

    Full Text Available Monitoring programs designed to assess changes in population size over time need to account for imperfect detection and provide estimates of precision around annual abundance estimates. Especially for species dependent on conservation management, robust monitoring is essential to evaluate the effectiveness of management. Many bird species of temperate grasslands depend on specific conservation management to maintain suitable breeding habitat. One such species is the Aquatic Warbler (Acrocephalus paludicola, which breeds in open fen mires in Central Europe. Aquatic Warbler populations have so far been assessed using a complete survey that aims to enumerate all singing males over a large area. Because this approach provides no estimate of precision and does not account for observation error, detecting moderate population changes is challenging. From 2011 to 2013 we trialled a new line transect sampling monitoring design in the Biebrza valley, Poland, to estimate abundance of singing male Aquatic Warblers. We surveyed Aquatic Warblers repeatedly along 50 randomly placed 1-km transects, and used binomial mixture models to estimate abundances per transect. The repeated line transect sampling required 150 observer days, and thus less effort than the traditional 'full count' approach (175 observer days. Aquatic Warbler abundance was highest at intermediate water levels, and detection probability varied between years and was influenced by vegetation height. A power analysis indicated that our line transect sampling design had a power of 68% to detect a 20% population change over 10 years, whereas raw count data had a 9% power to detect the same trend. Thus, by accounting for imperfect detection we increased the power to detect population changes. We recommend to adopt the repeated line transect sampling approach for monitoring Aquatic Warblers in Poland and in other important breeding areas to monitor changes in population size and the effects of

  6. Cumulative effect assessment in Canada: a regional framework for aquatic ecosystems

    International Nuclear Information System (INIS)

    Dube, Monique G.

    2003-01-01

    Sustainable development of the aquatic environment depends upon routine and defensible cumulative effects assessment (CEA). CEA is the process of predicting the consequences of development relative to an assessment of existing environmental quality. Theoretically, it provides an on-going mechanism to evaluate if levels of development exceed the environment's assimilative capacity; i.e., its ability to sustain itself. In practice, the link between CEA and sustainable development has not been realized because CEA concepts and methods have developed along two dichotomous tracks. One track views CEA as an extension of the environmental assessment (EA) process for project developments. Under this track, stressor-based (S-B) methods have been developed where the emphasis is on local, project-related stressors, their link with aquatic indicators, and the potential for environmental effects through stressor-indicator interactions. S-B methods focus on the proposed development and prediction of project-related effects. They lack a mechanism to quantify existing aquatic quality especially at scales broader than an isolated development. This limitation results in the prediction of potential effects relative to a poorly defined baseline state. The other track views CEA as a broader, regional assessment tool where effects-based (E-B) methods specialize in quantification of existing aquatic effects over broad spatial scales. However, the predictive capabilities of E-B methods are limited because they are retrospective, i.e., the stressor causing the effect is identified after the effect has been measured. When used in isolation, S-B and E-B methods do not address CEA in the context necessary for sustainable development. However, if the strengths of these approaches were integrated into a holistic framework for CEA, an operational mechanism would exist to better monitor and assess sustainable development of our aquatic resources. This paper reviews the existing conceptual basis

  7. An Environmental Risk Assessment for Human-Use Trimethoprim in European Surface Waters

    OpenAIRE

    Straub, J?rg Oliver

    2013-01-01

    An environmental risk assessment (ERA) for the aquatic compartment in Europe from human use was developed for the old antibiotic Trimethoprim (TMP), comparing exposure and effects. The exposure assessment is based on European risk assessment default values on one hand and is refined with documented human use figures in Western Europe from IMS Health and measured removal in wastewater treatment on the other. The resulting predicted environmental concentrations (PECs) are compared with measured...

  8. Abstracts of the 31. annual aquatic toxicity workshop

    International Nuclear Information System (INIS)

    Burridge, L.E.; Haya, K.; Niimi, A.J.

    2004-01-01

    This conference provided an opportunity for an informal exchange of recent research information and knowledge on aquatic and environmental toxicology. Topics ranged from basic aquatic toxicology to applications in environmental monitoring, setting regulations and developing criteria for sediment and water quality. The workshops were attended by representatives from industry, governments and universities. The current challenges and approaches to deal with aquatic toxicology and their biological effect on aquatic biota were discussed. The sessions were entitled as follows: environmental effects monitoring; pesticides; ecological risk assessment; sediment disposal at sea; oil and gas; pharmaceuticals; artifactual toxicity in municipal waste water; sediment and soil toxicity; contaminants in aquatic systems; biological effects; and discoveries in aquatic sciences. The conference included 4 plenary sessions and 119 platform papers, of which 24 papers have been indexed separately for inclusion in this database. refs., tabs., figs

  9. NOVANA. National Monitering and Assessment Programme for the Aquatic and Terrestrial Environments

    DEFF Research Database (Denmark)

    Svendsen, L. M.; Bijl, L. van der; Boutrup, S.

    This report is Part 2 of the Programme Description of NOVANA - the National Monitoring and Assessment Programme for the Aquatic and Terrestrial Environments. Part 2 comprises a de-tailed description of the nine NOVANA subprogrammes: Background monitoring of air......This report is Part 2 of the Programme Description of NOVANA - the National Monitoring and Assessment Programme for the Aquatic and Terrestrial Environments. Part 2 comprises a de-tailed description of the nine NOVANA subprogrammes: Background monitoring of air...

  10. Assessing and Managing the Current and Future Pest Risk from Water Hyacinth, (Eichhornia crassipes), an Invasive Aquatic Plant Threatening the Environment and Water Security.

    Science.gov (United States)

    Kriticos, Darren J; Brunel, Sarah

    2016-01-01

    Understanding and managing the biological invasion threats posed by aquatic plants under current and future climates is a growing challenge for biosecurity and land management agencies worldwide. Eichhornia crassipes is one of the world's worst aquatic weeds. Presently, it threatens aquatic ecosystems, and hinders the management and delivery of freshwater services in both developed and developing parts of the world. A niche model was fitted using CLIMEX, to estimate the potential distribution of E. crassipes under historical and future climate scenarios. Under two future greenhouse gas emission scenarios for 2080 simulated with three Global Climate Models, the area with a favourable temperature regime appears set to shift polewards. The greatest potential for future range expansion lies in Europe. Elsewhere in the northern hemisphere temperature gradients are too steep for significant geographical range expansion under the climate scenarios explored here. In the Southern Hemisphere, the southern range boundary for E. crassipes is set to expand southwards in Argentina, Australia and New Zealand; under current climate conditions it is already able to invade the southern limits of Africa. The opportunity exists to prevent its spread into the islands of Tasmania in Australia and the South Island of New Zealand, both of which depend upon hydroelectric facilities that would be threatened by the presence of E. crassipes. In Europe, efforts to slow or stop the spread of E. crassipes will face the challenge of limited internal biosecurity capacity. The modelling technique demonstrated here is the first application of niche modelling for an aquatic weed under historical and projected future climates. It provides biosecurity agencies with a spatial tool to foresee and manage the emerging invasion threats in a manner that can be included in the international standard for pest risk assessments. It should also support more detailed local and regional management.

  11. Assessing and Managing the Current and Future Pest Risk from Water Hyacinth, (Eichhornia crassipes, an Invasive Aquatic Plant Threatening the Environment and Water Security.

    Directory of Open Access Journals (Sweden)

    Darren J Kriticos

    Full Text Available Understanding and managing the biological invasion threats posed by aquatic plants under current and future climates is a growing challenge for biosecurity and land management agencies worldwide. Eichhornia crassipes is one of the world's worst aquatic weeds. Presently, it threatens aquatic ecosystems, and hinders the management and delivery of freshwater services in both developed and developing parts of the world. A niche model was fitted using CLIMEX, to estimate the potential distribution of E. crassipes under historical and future climate scenarios. Under two future greenhouse gas emission scenarios for 2080 simulated with three Global Climate Models, the area with a favourable temperature regime appears set to shift polewards. The greatest potential for future range expansion lies in Europe. Elsewhere in the northern hemisphere temperature gradients are too steep for significant geographical range expansion under the climate scenarios explored here. In the Southern Hemisphere, the southern range boundary for E. crassipes is set to expand southwards in Argentina, Australia and New Zealand; under current climate conditions it is already able to invade the southern limits of Africa. The opportunity exists to prevent its spread into the islands of Tasmania in Australia and the South Island of New Zealand, both of which depend upon hydroelectric facilities that would be threatened by the presence of E. crassipes. In Europe, efforts to slow or stop the spread of E. crassipes will face the challenge of limited internal biosecurity capacity. The modelling technique demonstrated here is the first application of niche modelling for an aquatic weed under historical and projected future climates. It provides biosecurity agencies with a spatial tool to foresee and manage the emerging invasion threats in a manner that can be included in the international standard for pest risk assessments. It should also support more detailed local and regional

  12. Presence, fate and effects of the intense sweetener sucralose in the aquatic environment

    International Nuclear Information System (INIS)

    Tollefsen, Knut Erik; Nizzetto, Luca; Huggett, Duane B.

    2012-01-01

    Sucralose (1,6-dichloro-1,6-dideoxy-b-D-fructo-furanosyl 4-chloro-4-deoxy-a-D-galactopyranoside), sold under the trade name Splenda®, has been detected in municipal effluents and surface waters in the United States and Europe. The environmental presence of sucralose has led to interest in the possibility of toxic effects in non-target species. This review presents an environmental risk assessment of sucralose based on available data concerning its presence, fate and effects in the environment. Sucralose, which is made by selective chlorination of sucrose, is a highly stable compound, which undergoes negligible metabolism in mammals, including humans, and displays a low biodegradation potential in the environment. This intense sweetener is highly soluble in water, displays a low bioaccumulation potential and a low sorption potential to soil and organic matter, and thus is predominantly present in the water column. The predicted environmental concentration (PEC) for sucralose, based on measured data in surface waters, was determined to be 10 μg/L. Aquatic toxicity studies using standardized, validated protocols used in regulatory decision making indicate that sucralose does not alter survival, growth and reproduction of aquatic organisms (such as plants, algae, crustaceans and fish) at concentrations > 9000 times higher than those detected in the environment. Some studies, using non-standardized protocols, have reported behavioral and other non-traditional responses in aquatic organisms, but the relevance of these findings for assessing adverse effects on individuals and populations will require further investigation. In terms of traditional risk assessment, the proposed predicted no effect concentration for aquatic organisms (PNEC) was determined to be 0.93 mg/L, based on the lowest no effect concentration (NOEC) from a validated chronic study with mysid shrimp and an application factor of 100. The resultant PEC/PNEC quotient was determined to be well below 1 (PEC

  13. Presence, fate and effects of the intense sweetener sucralose in the aquatic environment

    Energy Technology Data Exchange (ETDEWEB)

    Tollefsen, Knut Erik, E-mail: ket@niva.no [Norwegian Institute for Water Research (NIVA), Gaustadalleen 21, N-0349 Oslo (Norway); Nizzetto, Luca [Norwegian Institute for Water Research (NIVA), Gaustadalleen 21, N-0349 Oslo (Norway); Huggett, Duane B. [Department of Biological Sciences, University of North Texas, P.O. Box 310559, Denton, TX 76203 (United States)

    2012-11-01

    Sucralose (1,6-dichloro-1,6-dideoxy-b-D-fructo-furanosyl 4-chloro-4-deoxy-a-D-galactopyranoside), sold under the trade name Splenda Registered-Sign , has been detected in municipal effluents and surface waters in the United States and Europe. The environmental presence of sucralose has led to interest in the possibility of toxic effects in non-target species. This review presents an environmental risk assessment of sucralose based on available data concerning its presence, fate and effects in the environment. Sucralose, which is made by selective chlorination of sucrose, is a highly stable compound, which undergoes negligible metabolism in mammals, including humans, and displays a low biodegradation potential in the environment. This intense sweetener is highly soluble in water, displays a low bioaccumulation potential and a low sorption potential to soil and organic matter, and thus is predominantly present in the water column. The predicted environmental concentration (PEC) for sucralose, based on measured data in surface waters, was determined to be 10 {mu}g/L. Aquatic toxicity studies using standardized, validated protocols used in regulatory decision making indicate that sucralose does not alter survival, growth and reproduction of aquatic organisms (such as plants, algae, crustaceans and fish) at concentrations > 9000 times higher than those detected in the environment. Some studies, using non-standardized protocols, have reported behavioral and other non-traditional responses in aquatic organisms, but the relevance of these findings for assessing adverse effects on individuals and populations will require further investigation. In terms of traditional risk assessment, the proposed predicted no effect concentration for aquatic organisms (PNEC) was determined to be 0.93 mg/L, based on the lowest no effect concentration (NOEC) from a validated chronic study with mysid shrimp and an application factor of 100. The resultant PEC/PNEC quotient was determined to be

  14. 75 FR 74007 - Federal Aquatic Nuisance Species Research Risk Analysis Protocol

    Science.gov (United States)

    2010-11-30

    ... site, http://anstaskforce.gov/documents.php . To obtain a hard copy of the Protocol, see Document... aquatic species that are the target of this risk analysis. Language used in the NANPCA differentiates...: http://anstaskforce.gov/documents.php Write: Susan Pasko, National Oceanic and Atmospheric...

  15. Metal bioavailability in ecological risk assessment of freshwater ecosystems: From science to environmental management.

    Science.gov (United States)

    Väänänen, Kristiina; Leppänen, Matti T; Chen, XuePing; Akkanen, Jarkko

    2018-01-01

    Metal contamination in freshwater ecosystems is a global issue and metal discharges to aquatic environments are monitored in order to protect aquatic life and human health. Bioavailability is an important factor determining metal toxicity. In aquatic systems, metal bioavailability depends on local water and sediment characteristics, and therefore, the risks are site-specific. Environmental quality standards (EQS) are used to manage the risks of metals in aquatic environments. In the simplest form of EQSs, total concentrations of metals in water or sediment are compared against pre-set acceptable threshold levels. Now, however, the environmental administration bodies have stated the need to incorporate metal bioavailability assessment tools into environmental regulation. Scientific advances have been made in metal bioavailability assessment, including passive samplers and computational models, such as biotic ligand models (BLM). However, the cutting-edge methods tend to be too elaborate or laborious for standard environmental monitoring. We review the commonly used metal bioavailability assessment methods and introduce the latest scientific advances that might be applied to environmental management in the future. We present the current practices in environmental management in North America, Europe and China, highlighting the good practices and the needs for improvement. Environmental management has met these new challenges with varying degrees of success: the USA has implemented site-specific environmental risk assessment for water and sediment phases, and they have already implemented metal mixture toxicity evaluation. The European Union is promoting the use of bioavailability and BLMs in ecological risk assessment (ERA), but metal mixture toxicity and sediment phase are still mostly neglected. China has regulation only for total concentrations of metals in surface water. We conclude that there is a need for (1) Advanced and up-to-date guidelines and legislation

  16. A closer look at bioaccumulation of petroleum hydrocarbon mixtures in aquatic worms.

    NARCIS (Netherlands)

    Muijs, B.; Jonker, M.T.O.

    2010-01-01

    Petroleum hydrocarbons (oils) are ubiquitous in the aquatic environment, and adequate risk assessment is thus essential. Bioaccumulation plays a key role in risk assessment, but the current knowledge on bioaccumulation of oils is limited. Therefore, this process was studied in detail, using the

  17. 75 FR 53273 - Federal Aquatic Nuisance Species Research Risk Analysis Protocol

    Science.gov (United States)

    2010-08-31

    ... Aquatic Nuisance Species Task Force (ANSTF). The Protocol is available for public review and comment... the draft revised Protocol are available on the ANSTF website, http://anstaskforce.gov/documents.php... nonindigenous species (ANS) and is designed to reduce the risk that research activities may cause introduction...

  18. Modeling Aquatic Toxicity through Chromatographic Systems.

    Science.gov (United States)

    Fernández-Pumarega, Alejandro; Amézqueta, Susana; Farré, Sandra; Muñoz-Pascual, Laura; Abraham, Michael H; Fuguet, Elisabet; Rosés, Martí

    2017-08-01

    Environmental risk assessment requires information about the toxicity of the growing number of chemical products coming from different origins that can contaminate water and become toxicants to aquatic species or other living beings via the trophic chain. Direct toxicity measurements using sensitive aquatic species can be carried out but they may become expensive and ethically questionable. Literature refers to the use of chromatographic measurements that correlate to the toxic effect of a compound over a specific aquatic species as an alternative to get toxicity information. In this work, we have studied the similarity in the response of the toxicity to different species and we have selected eight representative aquatic species (including tadpoles, fish, water fleas, protozoan, and bacteria) with known nonspecific toxicity to chemical substances. Next, we have selected four chromatographic systems offering good perspectives for surrogation of the eight selected aquatic systems, and thus prediction of toxicity from the chromatographic measurement. Then toxicity has been correlated to the chromatographic retention factor. Satisfactory correlation results have been obtained to emulate toxicity in five of the selected aquatic species through some of the chromatographic systems. Other aquatic species with similar characteristics to these five representative ones could also be emulated by using the same chromatographic systems. The final aim of this study is to model chemical products toxicity to aquatic species by means of chromatographic systems to reduce in vivo testing.

  19. Radium concentration factors and their use in health and environmental risk assessment

    International Nuclear Information System (INIS)

    Meinhold, A.F.; Hamilton, L.D.

    1991-01-01

    Radium is known to be taken up by aquatic animals, and tends to accumulate in bone, shell and exoskeleton. The most common approach to estimating the uptake of a radionuclide by aquatic animals for use in health and environmental risk assessments is the concentration factor method. The concentration factor method relates the concentration of a contaminant in an organism to the concentration in the surrounding water. Site specific data are not usually available, and generic, default values are often used in risk assessment studies. This paper describes the concentration factor method, summarizes some of the variables which may influence the concentration factor for radium, reviews reported concentration factors measured in marine environments and presents concentration factors derived from data collected in a study in coastal Louisiana. The use of generic default values for the concentration factor is also discussed

  20. Produced water radionuclide hazard/risk assessment, Phase 1

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, L.D.; Meinhold, A.F.; Nagy, J.

    1991-06-01

    Petroleum production may be accompanied by the production of saline water, called produced water.'' Produced water discharged into freshwater streams, estuaries, coastal and outer continental shelf waters can contained enhanced levels of radium isotopes. This document reports on the first phase of a study to estimate the risk to human health and the environment from radium discharged in produced water. The study involved five major steps: (1) evaluate the usefulness of available produced water outfall data for developing estimates of radium environmental concentrations; (2) review the literature on the bioaccumulation of radium by aquatic organism; (3) review the literature on the effects of radiation on aquatic organisms; (4) review the information available concerning the human health risks associated with exposure to Ra-226 and Ra-228 and (5) perform a conservative, screening-level assessment of the health and environmental risks posed by Ra-226 and Ra-228 discharged in produced waters. A screening-level analysis was performed to determine whether radium discharged to coastal Louisiana in produced waters presents potential health or environmental risks requiring further study. This conservative assessment suggested that no detectable impact on populations of fish, molluscs or crustaceans from radium discharged in produced waters is likely. The analysis also suggested that there is a potential for risk were an individual to ingest a large amount of seafood harvested near a produced water discharge point over a lifetime. The number of excess cancers predicted per year under a conservative scenario is comparable to those expected to result from background concentrations of radium.

  1. Produced water radionuclide hazard/risk assessment, Phase 1

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, L.D.; Meinhold, A.F.; Nagy, J.

    1991-06-01

    Petroleum production may be accompanied by the production of saline water, called ``produced water.`` Produced water discharged into freshwater streams, estuaries, coastal and outer continental shelf waters can contained enhanced levels of radium isotopes. This document reports on the first phase of a study to estimate the risk to human health and the environment from radium discharged in produced water. The study involved five major steps: (1) evaluate the usefulness of available produced water outfall data for developing estimates of radium environmental concentrations; (2) review the literature on the bioaccumulation of radium by aquatic organism; (3) review the literature on the effects of radiation on aquatic organisms; (4) review the information available concerning the human health risks associated with exposure to Ra-226 and Ra-228 and (5) perform a conservative, screening-level assessment of the health and environmental risks posed by Ra-226 and Ra-228 discharged in produced waters. A screening-level analysis was performed to determine whether radium discharged to coastal Louisiana in produced waters presents potential health or environmental risks requiring further study. This conservative assessment suggested that no detectable impact on populations of fish, molluscs or crustaceans from radium discharged in produced waters is likely. The analysis also suggested that there is a potential for risk were an individual to ingest a large amount of seafood harvested near a produced water discharge point over a lifetime. The number of excess cancers predicted per year under a conservative scenario is comparable to those expected to result from background concentrations of radium.

  2. Produced water radionuclide hazard/risk assessment, Phase 1

    International Nuclear Information System (INIS)

    Hamilton, L.D.; Meinhold, A.F.; Nagy, J.

    1991-06-01

    Petroleum production may be accompanied by the production of saline water, called ''produced water.'' Produced water discharged into freshwater streams, estuaries, coastal and outer continental shelf waters can contained enhanced levels of radium isotopes. This document reports on the first phase of a study to estimate the risk to human health and the environment from radium discharged in produced water. The study involved five major steps: (1) evaluate the usefulness of available produced water outfall data for developing estimates of radium environmental concentrations; (2) review the literature on the bioaccumulation of radium by aquatic organism; (3) review the literature on the effects of radiation on aquatic organisms; (4) review the information available concerning the human health risks associated with exposure to Ra-226 and Ra-228 and (5) perform a conservative, screening-level assessment of the health and environmental risks posed by Ra-226 and Ra-228 discharged in produced waters. A screening-level analysis was performed to determine whether radium discharged to coastal Louisiana in produced waters presents potential health or environmental risks requiring further study. This conservative assessment suggested that no detectable impact on populations of fish, molluscs or crustaceans from radium discharged in produced waters is likely. The analysis also suggested that there is a potential for risk were an individual to ingest a large amount of seafood harvested near a produced water discharge point over a lifetime. The number of excess cancers predicted per year under a conservative scenario is comparable to those expected to result from background concentrations of radium

  3. An assessment of pollution in aquatic environment using bioindicators

    African Journals Online (AJOL)

    This review highlights the importance of biological indicators in monitoring presence of pollution in aquatic environment. This assessment involves the use of living organisms (macro or microorganisms and plants or animals) as bioindicators of pollution in water bodies. These organisms are believed to show higher ...

  4. Improving ecological risk assessment of persistent, bioaccumulative, and toxic (PBT) chemicals by using an integrated modeling system - An example assessing chloroparaffins in riverine environments.

    Science.gov (United States)

    Chemical risk assessment (CRA) is primarily carried out at the screening level relying on empirical relationships between chemical properties and tested toxicity effects. Ultimately, risk to aquatic ecosystems is strongly dependent on actual exposure, which depends on chemical pr...

  5. A standardized tritrophic small-scale system (TriCosm) for the assessment of stressor-induced effects on aquatic community dynamics.

    Science.gov (United States)

    Riedl, Verena; Agatz, Annika; Benstead, Rachel; Ashauer, Roman

    2018-04-01

    Chemical impacts on the environment are routinely assessed in single-species tests. They are employed to measure direct effects on nontarget organisms, but indirect effects on ecological interactions can only be detected in multispecies tests. Micro- and mesocosms are more complex and environmentally realistic, yet they are less frequently used for environmental risk assessment because resource demand is high, whereas repeatability and statistical power are often low. Test systems fulfilling regulatory needs (i.e., standardization, repeatability, and replication) and the assessment of impacts on species interactions and indirect effects are lacking. In the present study we describe the development of the TriCosm, a repeatable aquatic multispecies test with 3 trophic levels and increased statistical power. High repeatability of community dynamics of 3 interacting aquatic populations (algae, Ceriodaphnia, and Hydra) was found with an average coefficient of variation of 19.5% and the ability to determine small effect sizes. The TriCosm combines benefits of both single-species tests (fulfillment of regulatory requirements) and complex multispecies tests (ecological relevance) and can be used, for instance, at an intermediate tier in environmental risk assessment. Furthermore, comparatively quickly generated population and community toxicity data can be useful for the development and testing of mechanistic effect models. Environ Toxicol Chem 2018;37:1051-1060. © 2017 SETAC. © 2017 SETAC.

  6. Qualitative risk assessment for the 100-HR-3 groundwater operable unit

    Energy Technology Data Exchange (ETDEWEB)

    Vukelich, S.E. [Golder Associates, Inc., Richland, WA (United States)

    1994-09-22

    This report provides the qualitative risk assessment for the 100-HR-3 operable unit on the Hanford Reservation. 100-HR-3 is a ground water unit. The purpose of the QRA at the 100-HR-3 operable unit is to focus on a predefined set of human and environmental exposure scenarios in order to provides sufficient information that will assist the Tri-Party signatories (Washington State Department of Ecology, EPA and US DOE) in making defensible decisions on the necessity of Interim Remedial Measures. Frequent- and occasional-use exposure scenarios are evaluated in the human health risk assessment to provide bounding estimates of risk. The ecological risk assessment consists of an evaluation of the risks to riparian and aquatic receptors which live in or near the Columbia River.

  7. Qualitative risk assessment for the 100-HR-3 groundwater operable unit

    International Nuclear Information System (INIS)

    Vukelich, S.E.

    1994-01-01

    This report provides the qualitative risk assessment for the 100-HR-3 operable unit on the Hanford Reservation. 100-HR-3 is a ground water unit. The purpose of the QRA at the 100-HR-3 operable unit is to focus on a predefined set of human and environmental exposure scenarios in order to provides sufficient information that will assist the Tri-Party signatories (Washington State Department of Ecology, EPA and US DOE) in making defensible decisions on the necessity of Interim Remedial Measures. Frequent- and occasional-use exposure scenarios are evaluated in the human health risk assessment to provide bounding estimates of risk. The ecological risk assessment consists of an evaluation of the risks to riparian and aquatic receptors which live in or near the Columbia River

  8. Risk perception of aquatic pollution originated from chemical industry clusters in the coastal area of Jiangsu province, China.

    Science.gov (United States)

    Yao, Hong; Liu, Bo; You, Zhen; Zhao, Li

    2018-02-01

    According to "the Layout Scheme of the Chemical Industry in Jiangsu Province From 2016 to 2030" and "the Development Planning in the Coastal Area of Jiangsu Province, China," several chemical industry clusters will be located in the coastal area of Jiangsu province, China, and the risk of surface water pollution will be inevitably higher in the densely populated region. To get to know the risk acceptance level of the residents near the clusters, public perception was analyzed from the five risk factors: the basic knowledge about the pollution, the negative effects on aquatic environment imposed by the clusters, the positive effects brought by the clusters, the trust of controlling aquatic pollution, and the acceptance of the clusters. Twenty-four statements were screened out to describe the five factors, and about 600 residents were covered in three typical clusters surveyed. On the whole, the youth showed a higher interest on the survey, and middle-aged people were likely to be more concerned about aquatic pollution incident. There was no significant difference on risk perception of the three clusters. The respondents investigated had good knowledge background on aquatic pollution and the residents identified with the benefits brought by the clusters. They were weak in risk awareness of pollution originated from the chemical enterprises' groups. Although the respondents regarded that chemical industry clusters did not expose all points of pollutants' generation to the public, they inclined to trust the administration agencies on controlling the pollution and welcome the construction of chemical clusters in their dwelling cities. Besides, risk perception showed obvious spatial distribution. The closer were the samples' sites to the clusters and the rivers receiving pollutants, the higher were the residents' perceived risk, benefit, and trust. However, there was no identical spatial difference on risk acceptance, which might be comprehensively influenced by various

  9. Case study of ecological risk assessment at an Alaska airport

    International Nuclear Information System (INIS)

    Peterson, J.A.; Foster, T.L.; Zieber, P.A.

    1995-01-01

    An ecological risk assessment was conducted for 10 sites at a remote location that has unique biological resources. Chemicals of concern included petroleum, metals, polychlorinated biphenyls, and dioxins and furans. Risks to 23 species of mammals and birds were evaluated by using toxicity reference values and a hazard quotient approach analogous to the US Environmental Protection Agency's (USEPA's) approach for evaluating noncarcinogenic human health effects. Risks to fish and aquatic invertebrates were evaluated using risk-based concentrations for water analogous to the USEPA's water quality criteria. Risks to plants were evaluated using risk-based concentrations for soil. Toxicity reference values and risk-based concentrations were developed by applying uncertainty factors to the highest quality toxicity data available in the literature. Intake rates for wildlife were obtained from the USEPA's wildlife exposure factors handbook, or were estimated using allometric equations. The sizes of wildlife home ranges were compared with the size of each site to determine species- and site-specific exposure frequencies. Indicator chemicals were selected to represent the chemical and toxicological characteristics of petroleum fractions. The species most often at risk were found to be fish and aquatic invertebrates, as well as small-bodied, ground-dwelling or ground-feeding wildlife

  10. Hazard identification and risk characterization of bisphenols A, F and AF to aquatic organisms.

    Science.gov (United States)

    Tišler, Tatjana; Krel, Alja; Gerželj, Urška; Erjavec, Boštjan; Dolenc, Marija Sollner; Pintar, Albin

    2016-05-01

    Production of bisphenol A (BPA) analogues such as bisphenol F (BPF) and bisphenol AF (BPAF) has recently increased, due to clear evidence of adverse effects of BPA on humans and wildlife. Bisphenols (BPs) have already been released into aquatic environment without previous available information about potential adverse effects of BPs and their potential risk to aquatic ecosystems. In this study, lethal and sublethal effects of BPF and BPAF to bacteria, algae, crustacea and fish embryos were investigated and the results were compared to the adverse effects obtained for BPA. We found that BPAF was the most toxic compound to Daphnia magna, Danio rerio and Desmodesmus subspicatus; the lowest 72 h EC50 (median effective concentration) and 21 d NOEC (no observed effect concentration) values were determined at 2.2 mg/L regarding zebrafish hatching success and 0.23 mg/L of BPAF obtained for growth and reproduction of water fleas, respectively. In most cases, BPA was more toxic to D. magna, D. rerio and D. subspicatus in comparison to BPF, but pigmentation of zebrafish embryos after 48 h of exposure and reproduction of water fleas after 21-day D. magna reproductive test exposure to BPF were much more impaired. Risk quotients (measured environmental concentration/21 d NOEC) showed that BPA, BPF and BPAF are recently not chronically hazardous to the survival, reproduction and growth of water fleas in surface waters. On the other hand, we importantly show that currently present BPAF concentrations in surface waters could cause a potential ecological risk to aquatic organisms. In the near future, higher concentrations of BPF and BPAF in surface waters are anticipated and for this reason further testing using test systems with various aquatic species and endpoints are needed to provide additional information about toxic impacts of BPF and BPAF on aquatic biota. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Aquatic exercise training for fibromyalgia.

    Science.gov (United States)

    Bidonde, Julia; Busch, Angela J; Webber, Sandra C; Schachter, Candice L; Danyliw, Adrienne; Overend, Tom J; Richards, Rachel S; Rader, Tamara

    2014-10-28

    Exercise training is commonly recommended for individuals with fibromyalgia. This review examined the effects of supervised group aquatic training programs (led by an instructor). We defined aquatic training as exercising in a pool while standing at waist, chest, or shoulder depth. This review is part of the update of the 'Exercise for treating fibromyalgia syndrome' review first published in 2002, and previously updated in 2007. The objective of this systematic review was to evaluate the benefits and harms of aquatic exercise training in adults with fibromyalgia. We searched The Cochrane Library 2013, Issue 2 (Cochrane Database of Systematic Reviews, Database of Abstracts of Reviews of Effects, Cochrane Central Register of Controlled Trials, Health Technology Assessment Database, NHS Economic Evaluation Database), MEDLINE, EMBASE, CINAHL, PEDro, Dissertation Abstracts, WHO international Clinical Trials Registry Platform, and AMED, as well as other sources (i.e., reference lists from key journals, identified articles, meta-analyses, and reviews of all types of treatment for fibromyalgia) from inception to October 2013. Using Cochrane methods, we screened citations, abstracts, and full-text articles. Subsequently, we identified aquatic exercise training studies. Selection criteria were: a) full-text publication of a randomized controlled trial (RCT) in adults diagnosed with fibromyalgia based on published criteria, and b) between-group data for an aquatic intervention and a control or other intervention. We excluded studies if exercise in water was less than 50% of the full intervention. We independently assessed risk of bias and extracted data (24 outcomes), of which we designated seven as major outcomes: multidimensional function, self reported physical function, pain, stiffness, muscle strength, submaximal cardiorespiratory function, withdrawal rates and adverse effects. We resolved discordance through discussion. We evaluated interventions using mean differences

  12. Ethinyl estradiol and other human pharmaceutical estrogens in the aquatic environment: a review of recent risk assessment data.

    Science.gov (United States)

    Laurenson, James P; Bloom, Raanan A; Page, Stephen; Sadrieh, Nakissa

    2014-03-01

    Interest in pharmaceuticals in the environment has increased substantially in recent years. Several studies in particular have assessed human and ecological risks from human pharmaceutical estrogens, such as 17α-ethinyl estradiol (EE2). Regulatory action also has increased, with the USA and other countries developing rules to address estrogens and other pharmaceuticals in the environment. Accordingly, the Center for Drug Evaluation and Research at the US Food and Drug Administration has conducted a review and analysis of current data on the long-term ecological exposure and effects of EE2 and other estrogens. The results indicate that mean-flow long-term predicted environmental concentrations (PECs) of EE2 in approximately 99% or more of US surface water segments downstream of wastewater treatment plants are lower than a predicted no-effect concentration (PNEC) for aquatic chronic toxicity of 0.1 ng/L. Exceedances are expected to be primarily in localized, effluent-dominated water segments. The median mean-flow PEC is more than two orders of magnitude lower than this PNEC. Similar results exist for other pharmaceutical estrogens. Data also suggest that the contribution of EE2 more broadly to total estrogenic load in the environment from all sources (including other human pharmaceutical estrogens, endogenous estrogens, natural environmental estrogens, and industrial chemicals), while highly uncertain and variable, appears to be relatively low overall. Additional data and a more comprehensive approach for data collection and analysis for estrogenic substances in the environment, especially in effluent-dominated water segments in sensitive environments, would more fully characterize the risks.

  13. The application of epidemiology in aquatic animal health -opportunities and challenges

    Science.gov (United States)

    2011-01-01

    Over recent years the growth in aquaculture, accompanied by the emergence of new and transboundary diseases, has stimulated epidemiological studies of aquatic animal diseases. Great potential exists for both observational and theoretical approaches to investigate the processes driving emergence but, to date, compared to terrestrial systems, relatively few studies exist in aquatic animals. Research using risk methods has assessed routes of introduction of aquatic animal pathogens to facilitate safe trade (e.g. import risk analyses) and support biosecurity. Epidemiological studies of risk factors for disease in aquaculture (most notably Atlantic salmon farming) have effectively supported control measures. Methods developed for terrestrial livestock diseases (e.g. risk-based surveillance) could improve the capacity of aquatic animal surveillance systems to detect disease incursions and emergence. The study of disease in wild populations presents many challenges and the judicious use of theoretical models offers some solutions. Models, parameterised from observational studies of host pathogen interactions, have been used to extrapolate estimates of impacts on the individual to the population level. These have proved effective in estimating the likely impact of parasite infections on wild salmonid populations in Switzerland and Canada (where the importance of farmed salmon as a reservoir of infection was investigated). A lack of data is often the key constraint in the application of new approaches to surveillance and modelling. The need for epidemiological approaches to protect aquatic animal health will inevitably increase in the face of the combined challenges of climate change, increasing anthropogenic pressures, limited water sources and the growth in aquaculture. Table of contents 1 Introduction 4 2 The development of aquatic epidemiology 7 3 Transboundary and emerging diseases 9 3.1 Import risk analysis (IRA) 10 3.2 Aquaculture and disease emergence 11 3.3 Climate

  14. Aquatic exposures of chemical mixtures in urban environments: Approaches to impact assessment.

    Science.gov (United States)

    de Zwart, Dick; Adams, William; Galay Burgos, Malyka; Hollender, Juliane; Junghans, Marion; Merrington, Graham; Muir, Derek; Parkerton, Thomas; De Schamphelaere, Karel A C; Whale, Graham; Williams, Richard

    2018-03-01

    Urban regions of the world are expanding rapidly, placing additional stress on water resources. Urban water bodies serve many purposes, from washing and sources of drinking water to transport and conduits for storm drainage and effluent discharge. These water bodies receive chemical emissions arising from either single or multiple point sources, diffuse sources which can be continuous, intermittent, or seasonal. Thus, aquatic organisms in these water bodies are exposed to temporally and compositionally variable mixtures. We have delineated source-specific signatures of these mixtures for diffuse urban runoff and urban point source exposure scenarios to support risk assessment and management of these mixtures. The first step in a tiered approach to assessing chemical exposure has been developed based on the event mean concentration concept, with chemical concentrations in runoff defined by volumes of water leaving each surface and the chemical exposure mixture profiles for different urban scenarios. Although generalizations can be made about the chemical composition of urban sources and event mean exposure predictions for initial prioritization, such modeling needs to be complemented with biological monitoring data. It is highly unlikely that the current paradigm of routine regulatory chemical monitoring alone will provide a realistic appraisal of urban aquatic chemical mixture exposures. Future consideration is also needed of the role of nonchemical stressors in such highly modified urban water bodies. Environ Toxicol Chem 2018;37:703-714. © 2017 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC. © 2017 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.

  15. Civil migration and risk assessment methodology

    International Nuclear Information System (INIS)

    Onishi, Y.; Brown, S.M.; Olsen, A.R.; Parkhurst, M.A.

    1981-01-01

    To provide a scientific basis for risk assessment and decision making, the Chemical Migration and Risk Assessment (CMRA) Methodology was developed to simulate overland and instream toxic containment migration and fate, and to predict the probability of acute and chronic impacts on aquatic biota. The simulation results indicated that the time between the pesticide application and the subsequent runoff producing event was the most important factor determining the amount of the alachlor. The study also revealed that sediment transport has important effects on contaminant migration when sediment concentrations in receiving streams are high or contaminants are highly susceptible to adsorption by sediment. Although the capabilities of the CMRA methodology were only partially tested in this study, the results demonstrate that methodology can be used as a scientific decision-making tool for toxic chemical regulations, a research tool to evaluate the relative significance of various transport and degradation phenomena, as well as a tool to examine the effectiveness of toxic chemical control practice

  16. Pesticide runoff from energy crops: A threat to aquatic invertebrates?

    Science.gov (United States)

    Bunzel, Katja; Schäfer, Ralf B; Thrän, Daniela; Kattwinkel, Mira

    2015-12-15

    The European Union aims to reach a 10% share of biofuels in the transport sector by 2020. The major burden is most likely to fall on already established annual energy crops such as rapeseed and cereals for the production of biodiesel and bioethanol, respectively. Annual energy crops are typically cultivated in intensive agricultural production systems, which require the application of pesticides. Agricultural pesticides can have adverse effects on aquatic invertebrates in adjacent streams. We assessed the relative ecological risk to aquatic invertebrates associated with the chemical pest management from six energy crops (maize, potato, sugar beet, winter barley, winter rapeseed, and winter wheat) as well as from mixed cultivation scenarios. The pesticide exposure related to energy crops and cultivation scenarios was estimated as surface runoff for 253 small stream sites in Central Germany using a GIS-based runoff potential model. The ecological risk for aquatic invertebrates, an important organism group for the functioning of stream ecosystems, was assessed using acute toxicity data (48-h LC50 values) of the crustacean Daphnia magna. We calculated the Ecological Risk from potential Pesticide Runoff (ERPR) for all three main groups of pesticides (herbicides, fungicides, and insecticides). Our findings suggest that the crops potato, sugar beet, and rapeseed pose a higher ecological risk to aquatic invertebrates than maize, barley, and wheat. As maize had by far the lowest ERPR values, from the perspective of pesticide pollution, its cultivation as substrate for the production of the gaseous biofuel biomethane may be preferable compared to the production of, for example, biodiesel from rapeseed. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Occurrence of β-N-methylamino-l-alanine (BMAA and Isomers in Aquatic Environments and Aquatic Food Sources for Humans

    Directory of Open Access Journals (Sweden)

    Emilie Lance

    2018-02-01

    Full Text Available The neurotoxin β-N-methylamino-l-alanine (BMAA, a non-protein amino acid produced by terrestrial and aquatic cyanobacteria and by micro-algae, has been suggested to play a role as an environmental factor in the neurodegenerative disease Amyotrophic Lateral Sclerosis-Parkinsonism-Dementia complex (ALS-PDC. The ubiquitous presence of BMAA in aquatic environments and organisms along the food chain potentially makes it public health concerns. However, the BMAA-associated human health risk remains difficult to rigorously assess due to analytical challenges associated with the detection and quantification of BMAA and its natural isomers, 2,4-diamino butyric acid (DAB, β-amino-N-methyl-alanine (BAMA and N-(2-aminoethyl glycine (AEG. This systematic review, reporting the current knowledge on the presence of BMAA and isomers in aquatic environments and human food sources, was based on a selection and a score numbering of the scientific literature according to various qualitative and quantitative criteria concerning the chemical analytical methods used. Results from the best-graded studies show that marine bivalves are to date the matrix containing the higher amount of BMAA, far more than most fish muscles, but with an exception for shark cartilage. This review discusses the available data in terms of their use for human health risk assessment and identifies knowledge gaps requiring further investigations.

  18. Occurrence of β-N-methylamino-l-alanine (BMAA) and Isomers in Aquatic Environments and Aquatic Food Sources for Humans.

    Science.gov (United States)

    Lance, Emilie; Arnich, Nathalie; Maignien, Thomas; Biré, Ronel

    2018-02-14

    The neurotoxin β- N -methylamino-l-alanine (BMAA), a non-protein amino acid produced by terrestrial and aquatic cyanobacteria and by micro-algae, has been suggested to play a role as an environmental factor in the neurodegenerative disease Amyotrophic Lateral Sclerosis-Parkinsonism-Dementia complex (ALS-PDC). The ubiquitous presence of BMAA in aquatic environments and organisms along the food chain potentially makes it public health concerns. However, the BMAA-associated human health risk remains difficult to rigorously assess due to analytical challenges associated with the detection and quantification of BMAA and its natural isomers, 2,4-diamino butyric acid (DAB), β-amino- N -methyl-alanine (BAMA) and N -(2-aminoethyl) glycine (AEG). This systematic review, reporting the current knowledge on the presence of BMAA and isomers in aquatic environments and human food sources, was based on a selection and a score numbering of the scientific literature according to various qualitative and quantitative criteria concerning the chemical analytical methods used. Results from the best-graded studies show that marine bivalves are to date the matrix containing the higher amount of BMAA, far more than most fish muscles, but with an exception for shark cartilage. This review discusses the available data in terms of their use for human health risk assessment and identifies knowledge gaps requiring further investigations.

  19. Environmental Risk Assessment of Selected Antibiotics in Iran

    Directory of Open Access Journals (Sweden)

    A Alighardashi

    2014-08-01

    Full Text Available In recent years the increasing use of pharmaceuticals and personal-care products (PPCPs, especially antibiotics, has become a particular concern because of their undesirable potential ecological and human health effects. This study presents an environmental risk assessment for the aquatic environment of some frequently used antibiotics in Iran in three stages including; a short literature review about antibiotic consumption in Iran, a comprehensive estimation regarding acute toxicity of selected antibiotics and finally calculation of Risk Quotient (RQ using the predicted environmental concentration (PEC and the predicted no-effect concentration (PNEC. According to recently published data, the consumption of antibiotics in Iran is several times greater than European countries and in case of antibiotics (e.g. Penicillin is approximately 10 times greater than Scandinavian region. The calculated PECs were ranged from 0.0071 to 0.8570 and the PNECs value based on ecotoxicity data was found for all studied antibiotics (varied from 0.0037 to 177. The RQ exceeded one for Amoxicillin, Penicillin G, Sulfamethoxazole, and Erythromycin. Amoxicillin has the highest risk to aquatic organisms based on this study. With respect to the emergence of microbial resistance, it is important to begin monitoring the most frequently used antibiotics

  20. Population-level ecological risk assessment

    National Research Council Canada - National Science Library

    Barnthouse, L. W. (Lawrence W.); Sorensen, Mary T; Munns, Wayne R

    2008-01-01

    ... and Effect Assessment Vethaak, Schrap, de Voogt, editors 2006 Assessing the Hazard of Metals and Inorganic Metal Substances in Aquatic and Terrestrial Systems Adams and Chapman, editors 2006 Pe...

  1. Relating metal bioavailability to risk assessment for aquatic species: Daliao River watershed, China

    International Nuclear Information System (INIS)

    Han, Shuping; Zhang, Ying; Masunaga, Shigeki; Zhou, Siyun; Naito, Wataru

    2014-01-01

    The spatial distribution of metal bioavailability (Ni, Cu, Zn, and Pb) was first evaluated within the waters of Daliao River watershed, using the diffusive gradient in thin films (DGT) and chemical equilibrium models. To assess potential risks associated with metal bioavailability, site-specific 95% protection levels (HC5), risk characterizations ratios (RCR) and ratios of DGT-labile/HC5 were derived, using species sensitivity distribution (SSD). The highest bioavailability values for metals were recorded in the main channel of the Daliao River, followed by the Taizi River. Dynamic concentrations predicted by WHAM 7.0 and NICA-Donnan for Cu and Zn agreed well with DGT results. The estuary of the Daliao River was found to have the highest risks related to Ni, Cu, and Zn. The number of sites at risk increased when considering the total toxicity of Ni, Cu, and Zn. - Highlights: • Spatial variation in metal bioavailability within Daliao River watershed was studied. • WHAM 7.0 and NICA-Donnan examined the differences in predicting metal speciation. • Bioavailability values of metals were highest in main channel of the Daliao River. • Site-specific 95% protection levels (HC5)/risk variations were assessed using SSD. • Maximum risks from Ni, Cu, and Zn occurred in the estuary of the Daliao River. - The highest bioavailability values and the highest risks of metals were found in the estuary of the Daliao River

  2. Development of freshwater aquatic life criteria for Tetrabromobisphenol A in China

    International Nuclear Information System (INIS)

    Yang Suwen; Yan Zhenguang; Xu Fanfan; Wang Shengrui; Wu Fengchang

    2012-01-01

    Tetrabromobisphenol A (TBBPA) is the most widely used brominated flame retardant. It has been detected in the environment and has shown to high toxicity to aquatic organisms. To date no aquatic life criteria for TBBPA have been proposed. This work compiled all literature toxicity data of TBBPA on Chinese aquatic species. Eight resident Chinese aquatic organisms were used in toxicity tests to supplement the existing toxicity data for TBBPA. Ten genera mean acute values and three genera mean chronic values to freshwater aquatic animals, as well as two genera toxicity values to aquatic plants were collected. A criterion maximum concentration of 0.1475 mg/L and a criterion continuous concentration of 0.0126 mg/L were derived based on these data, according to the U.S. Environmental Protection Agency guidelines. These criteria may be useful in risk assessment of TBBPA in the ambient water environment. - Highlights: ► We collected all the published toxicity data of TBBPA to aquatic organisms. ► We performed acute and chronic toxicity testes with eight Chinese resident aquatic species. ► The acute and chronic water quality criteria of TBBPA were developed and validated. ► This work is valuable to predict the risks posed by TBBPA in ambient water environment. - An acute water quality criterion of 0.1475 mg/L and a chronic water quality criterion of 0.0126 mg/L for TBBPA in China were developed according to USEPA guidelines.

  3. Assessing the suitability of stream water for five different uses and its aquatic environment.

    Science.gov (United States)

    Fulazzaky, Mohamad Ali

    2013-01-01

    Surface water is one of the essential resources for supporting sustainable development. The suitability of such water for a given use depends both on the available quantity and tolerable quality. Temporary status for a surface water quality has been identified extensively. Still the suitability of the water for different purposes needs to be verified. This study proposes a water quality evaluation system to assess the aptitude of the Selangor River water for aquatic biota, drinking water production, leisure and aquatic sport, irrigation use, livestock watering, and aquaculture use. Aptitude of the water has been classified in many parts of the river segment as unsuitable for aquatic biota, drinking water production, leisure and aquatic sport as well as aquaculture use. The water quality aptitude classes of the stream water for nine locations along the river are evaluated to contribute to decision support system. The suitability of the water for five different uses and its aquatic ecosystem are verified.

  4. Aquatic Ecotoxicity Testing of Nanoparticles—The Quest To Disclose Nanoparticle Effects

    DEFF Research Database (Denmark)

    Skjolding, Lars Michael; Sørensen, Sara Nørgaard; Hartmann, Nanna B.

    2016-01-01

    The number of products on the market containing engineered nanoparticles (ENPs) has increased significantly, and concerns have been raised regarding their ecotoxicological effects. Environmental safety assessments as well as relevant and reliable ecotoxicological data are required for the safe...... to ENPs in aquatic test systems. Filling this gap is not straightforward, because of the broad range of ENPs and the different behavior of ENPs compared to “ordinary” (dissolved) chemicals in the ecotoxicity test systems. The risk of generating false negatives, and false positives, in the currently used...... tests is high, and in most cases difficult to assess. This Review outlines some of the pitfalls in the aquatic toxicity testing of ENPs which may lead to misinterpretation of test results. Response types are also proposed to reveal potential nanoparticle effects in the aquatic test organisms....

  5. Risk assessment considerations for plant protection products and terrestrial life-stages of amphibians.

    Science.gov (United States)

    Weltje, Lennart; Ufer, Andreas; Hamer, Mick; Sowig, Peter; Demmig, Sandra; Dechet, Friedrich

    2018-04-28

    Some amphibians occur in agricultural landscapes during certain periods of their life cycle and consequently might be exposed to plant protection products (PPPs). While the sensitivity of aquatic life-stages is considered to be covered by the standard assessment for aquatic organisms (especially fish), the situation is less clear for terrestrial amphibian life-stages. In this paper, considerations are presented on how a risk assessment for PPPs and terrestrial life-stages of amphibians could be conducted. It discusses available information concerning the toxicity of PPPs to terrestrial amphibians, and their potential exposure to PPPs in consideration of aspects of amphibian biology. The emphasis is on avoiding additional vertebrate testing as much as possible by using exposure-driven approaches and by making use of existing vertebrate toxicity data, where appropriate. Options for toxicity testing and risk assessment are presented in a flowchart as a tiered approach, progressing from a non-testing approach, to simple worst-case laboratory testing, to extended laboratory testing, to semi-field enclosure tests and ultimately to full-scale field testing and monitoring. Suggestions are made for triggers to progress to higher tiers. Also, mitigation options to reduce the potential for exposure of terrestrial life-stages of amphibians to PPPs, if a risk were identified, are discussed. Finally, remaining uncertainties and research needs are considered by proposing a way forward (road map) for generating additional information to inform terrestrial amphibian risk assessment. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Assessing Risks to Wildlife Populations from Multiple Stressors: Overview of the Problem and Research Needs.

    Directory of Open Access Journals (Sweden)

    Wayne R. Munns, Jr.

    2006-06-01

    Full Text Available Wildlife populations are experiencing increasing pressure from human-induced changes in the landscape. Stressors including agricultural and urban land use, introduced invasive and exotic species, nutrient enrichment, direct human disturbance, and toxic chemicals directly or indirectly influence the quality and quantity of habitat used by terrestrial and aquatic wildlife. Governmental agencies such as the U.S. Environmental Protection Agency are required to assess risks to wildlife populations, in its broadest definition, that result from exposure to these stressors, yet considerable uncertainty exists with respect to how such assessments should be conducted. This uncertainty is compounded by questions concerning the interactive effects of co-occurring stressors, appropriate spatial scales of analysis, extrapolation of response data among species and from organisms to populations, and imperfect knowledge and use of limited data sets. Further, different risk problems require varying degrees of sophistication, methodological refinement, and data quality. These issues suggest a number of research needs to improve methods for wildlife risk assessments, including continued development of population dynamics models to evaluate the effects of multiple stressors at varying spatial scales, methods for extrapolating across endpoints and species with reasonable confidence, stressor-response relations and methods for combining them in predictive and diagnostic assessments, and accessible data sets describing the ecology of terrestrial and aquatic species. Case study application of models and methods for assessing wildlife risk will help to demonstrate their strengths and limitations for solving particular risk problems.

  7. A refined ecological risk assessment for California red-legged frog, Delta smelt, and California tiger salamander exposed to malathion.

    Science.gov (United States)

    Clemow, Yvonne H; Manning, Gillian E; Breton, Roger L; Winchell, Michael F; Padilla, Lauren; Rodney, Sara I; Hanzas, John P; Estes, Tammara L; Budreski, Katherine; Toth, Brent N; Hill, Katie L; Priest, Colleen D; Teed, R Scott; Knopper, Loren D; Moore, Dwayne Rj; Stone, Christopher T; Whatling, Paul

    2018-03-01

    The California red-legged frog (CRLF), Delta smelt (DS), and California tiger salamander (CTS) are 3 species listed under the United States Federal Endangered Species Act (ESA), all of which inhabit aquatic ecosystems in California. The US Environmental Protection Agency (USEPA) has conducted deterministic screening-level risk assessments for these species potentially exposed to malathion, an organophosphorus insecticide and acaricide. Results from our screening-level analyses identified potential risk of direct effects to DS as well as indirect effects to all 3 species via reduction in prey. Accordingly, for those species and scenarios in which risk was identified at the screening level, we conducted a refined probabilistic risk assessment for CRLF, DS, and CTS. The refined ecological risk assessment (ERA) was conducted using best available data and approaches, as recommended by the 2013 National Research Council (NRC) report "Assessing Risks to Endangered and Threatened Species from Pesticides." Refined aquatic exposure models including the Pesticide Root Zone Model (PRZM), the Vegetative Filter Strip Modeling System (VFSMOD), the Variable Volume Water Model (VVWM), the Exposure Analysis Modeling System (EXAMS), and the Soil and Water Assessment Tool (SWAT) were used to generate estimated exposure concentrations (EECs) for malathion based on worst-case scenarios in California. Refined effects analyses involved developing concentration-response curves for fish and species sensitivity distributions (SSDs) for fish and aquatic invertebrates. Quantitative risk curves, field and mesocosm studies, surface-water monitoring data, and incident reports were considered in a weight-of-evidence approach. Currently, labeled uses of malathion are not expected to result in direct effects to CRLF, DS or CTS, or indirect effects due to effects on fish and invertebrate prey. Integr Environ Assess Manag 2018;14:224-239. © 2017 The Authors. Integrated Environmental Assessment and

  8. Dynamic speciation analysis and bioavailability of metals in aquatic systems

    NARCIS (Netherlands)

    Leeuwen, van H.P.; Town, R.M.; Buffle, J.; Cleven, R.F.M.J.; Davison, W.; Puy, J.; Riemsdijk, van W.H.; Sigg, L.

    2005-01-01

    Dynamic metal speciation analysis in aquatic ecosystems is emerging as a powerful basis for development of predictions of bioavailability and reliable risk assessment strategies. A given speciation sensor is characterized by an effective time scale or kinetic window that defines the measurable metal

  9. An assessment of the long-term persistence of prion infectivity in aquatic environments

    International Nuclear Information System (INIS)

    Marín-Moreno, Alba; Espinosa, Juan-Carlos; Fernández-Borges, Natalia; Píquer, Juan; Girones, Rosina; Andreoletti, Olivier; Torres, Juan-María

    2016-01-01

    The environment plays a key role in horizontal transmission of prion diseases, since prions are extremely resistant to classical inactivation procedures. In prior work, we observed the high stability of bovine spongiform encephalopathy (BSE) infectivity when these prions were incubated in aqueous media such as phosphate-buffered saline (PBS) or wastewater for nearly nine months. As a continuation of this experiment, the same samples were maintained in PBS or wastewater for five additional years and residual BSE infectivity was assessed in bovine PrP C transgenic mice. Over this long time period (more than six years), BSE infectivity was reduced by three and one orders of magnitude in wastewater and PBS respectively. To rule out a possible agent specific effect, sheep scrapie prions were subjected to the same experimental protocol, using eight years as the experimental end-point. No significant reduction in scrapie infectivity was observed over the first nine months of wastewater incubation while PBS incubation for eight years only produced a two logarithmic unit reduction in infectivity. By contrast, the dynamics of PrP Res persistence was different, disappearing progressively over the first year. The long persistence of prion infectivity observed in this study for two different agents provides supporting evidence of the assumed high stability of these agents in aquatic environments and that environmental processes or conventional wastewater treatments with low retention times would have little impact on prion infectivity. These results could have great repercussions in terms of risk assessment and safety for animals and human populations. - Highlights: • Prion infectivity resists long term incubations in aquatic environments. • Infectivity persistence in wastewater is reduced when compared to PBS. • In this study PrPRes fails as a marker for prion detection. • Mice bioassay is the most powerful tool for assessing prion presence. • Wastewater conventional

  10. An assessment of the long-term persistence of prion infectivity in aquatic environments

    Energy Technology Data Exchange (ETDEWEB)

    Marín-Moreno, Alba; Espinosa, Juan-Carlos; Fernández-Borges, Natalia; Píquer, Juan [Centro de Investigación en Sanidad Animal, CISA-INIA, Carretera Algete-El Casar S/n, Valdeolmos, 28130 Madrid (Spain); Girones, Rosina [Department of Microbiology, University of Barcelona, Diagonal 643, 08028 Barcelona (Spain); Andreoletti, Olivier [UMR INRA-ENVT 1225, Interactions Hôte Agent Pathogène, Ecole Nationale Vétérinaire de Toulouse, Toulouse (France); Torres, Juan-María, E-mail: jmtorres@inia.es [Centro de Investigación en Sanidad Animal, CISA-INIA, Carretera Algete-El Casar S/n, Valdeolmos, 28130 Madrid (Spain)

    2016-11-15

    The environment plays a key role in horizontal transmission of prion diseases, since prions are extremely resistant to classical inactivation procedures. In prior work, we observed the high stability of bovine spongiform encephalopathy (BSE) infectivity when these prions were incubated in aqueous media such as phosphate-buffered saline (PBS) or wastewater for nearly nine months. As a continuation of this experiment, the same samples were maintained in PBS or wastewater for five additional years and residual BSE infectivity was assessed in bovine PrP{sup C} transgenic mice. Over this long time period (more than six years), BSE infectivity was reduced by three and one orders of magnitude in wastewater and PBS respectively. To rule out a possible agent specific effect, sheep scrapie prions were subjected to the same experimental protocol, using eight years as the experimental end-point. No significant reduction in scrapie infectivity was observed over the first nine months of wastewater incubation while PBS incubation for eight years only produced a two logarithmic unit reduction in infectivity. By contrast, the dynamics of PrP{sup Res} persistence was different, disappearing progressively over the first year. The long persistence of prion infectivity observed in this study for two different agents provides supporting evidence of the assumed high stability of these agents in aquatic environments and that environmental processes or conventional wastewater treatments with low retention times would have little impact on prion infectivity. These results could have great repercussions in terms of risk assessment and safety for animals and human populations. - Highlights: • Prion infectivity resists long term incubations in aquatic environments. • Infectivity persistence in wastewater is reduced when compared to PBS. • In this study PrPRes fails as a marker for prion detection. • Mice bioassay is the most powerful tool for assessing prion presence. • Wastewater

  11. Proceedings of the 36. annual aquatic toxicity workshop

    International Nuclear Information System (INIS)

    Martel, L.; Triffault-Bouchet, G.; Fournier, M.; Campbell, P.G.C.; Pellerin, J.; Lacroix, E.; Burridge, L.E.

    2010-01-01

    This workshop was held to discuss topics related to aquatic and environmental toxicology. Principles, issues, and recent innovations in aquatic toxicology were reviewed. New developments in environmental monitoring were discussed, as well as issues related to environmental regulation. The workshop was attended by a range of stakeholders from governments, universities, and industry. The sessions were entitled: legacy contaminants 1 organics; nanotoxicology; environmental effects monitoring; oil sands; BFR and other emerging contaminants; biomarkers; neuro and endocrine disrupting compounds; remediation of degraded aquatic environments; legacy contaminants 2 hydrocarbons; waterborne and diet-borne metals; water and sediment standards and criteria; pesticides; amphibians and wildlife toxicology; cyanobacteria; amphibians and wildlife toxicology 2; environmental risk assessment; genomics, protemics, and metabolomics; contamination in the Saguenay-St. Lawrence Marine park; legacy contaminants 3 organics and metals; community level indicators; toxicity tests; toxicity mechanisms; areas of concern; general aquatic toxicology; general legacy contaminants; emerging contaminants; cyanobacteria; amphibians and wildlife toxicology 1; omics in aquatic ecotoxicology; organism or population level indicators; and toxicity tests. The workshop featured 250 presentations, of which 24 have been catalogued separately for inclusion in this database. tabs., figs.

  12. Evaluation of a new method for assessing resilience in urban aquatic social-ecological systems

    Directory of Open Access Journals (Sweden)

    Jonathan P. Moores

    2017-12-01

    Full Text Available Urban aquatic social-ecological systems (SESs comprise socio-technical elements, the built environment and its management, and natural elements (water bodies that provide ecosystem services. Changed hydrology, poor stormwater quality, and the modification of water bodies associated with urban development brings challenges for maintaining ecosystem services provision in an urban aquatic SES. Water sensitive urban design (WSUD has emerged as a form of development that aims to better support the provision of ecosystem services. Resilience concepts provide a basis for discriminating between WSUD and conventional development approaches. Building on an existing decision support system, a new, preliminary method for assessing resilience based on the combination of the socio-technical capacity (STC and natural capacity (NC of urban aquatic SESs has been developed. The STC score reflects a multicriteria assessment of the characteristics of stormwater infrastructure and management. The NC score reflects an assessment of the state and trajectory of biophysical attributes of the system associated with the provision of ecosystem services. By modeling a series of future urban development scenarios in Auckland, New Zealand, the method has been shown to discriminate between scenario outcomes within constraints associated with the biophysical and built characteristics modeled. Results are consistent with key concepts of resilience theory: outcomes are grouped in regimes and exhibit hysteresis, with the ability of WSUD to improve the state of the system strongly influenced by the presence of legacy effects. The method provides a source of additional, valuable information that complements other indicators by providing a snapshot of the interaction of catchment management effort and outcomes and indicating the likely future state of the SES. Recognizing that the method is limited to providing a relative assessment of resilience and adopts certain simplistic

  13. Integrating remote sensing approach with pollution monitoring tools for aquatic ecosystem risk assessment and management: a case study of Lake Victoria (Uganda).

    Science.gov (United States)

    Focardi, Silvia; Corsi, Ilaria; Mazzuoli, Stefania; Vignoli, Leonardo; Loiselle, Steven A; Focardi, Silvano

    2006-11-01

    Aquatic ecosystems around the world, lake, estuaries and coastal areas are increasingly impacted by anthropogenic pollutants through different sources such as agricultural, industrial and urban discharges, atmospheric deposition and terrestrial drainage. Lake Victoria is the second largest lake in the world and the largest tropical lake. Bordered by Tanzania, Uganda, and Kenya, it provides a livelihood for millions of Africans in the region. However, the lake is under threat from eutrophication, a huge decline in the number of native fish species caused by several factors including loss of biodiversity, over fishing and pollution has been recently documented. Increasing usage of pesticides and insecticides in the adjacent agricultural areas as well as mercury contamination from processing of gold ore on the southern shores are currently considered among the most emergent phenomena of chemical contamination in the lake. By the application of globally consistent and comprehensive geospatial data-sets based on remote sensing integrated with information on heavy metals accumulation and insecticides exposure in native and alien fish populations, the present study aims at assessing the environmental risk associated to the contamination of the Lake Victoria water body on fish health, land cover distribution, biodiversity and the agricultural area surrounding the lake. By the elaboration of Landsat 7 TM data of November 2002 and Landsat 7 TM 1986 we have calculated the agriculture area which borders the Lake Victoria bay, which is an upland plain. The resulting enhanced nutrient loading to the soil is subsequently transported to the lake by rain or as dry fall. The data has been inserted in a Geographical information System (ARCGIS) to be upgraded and consulted. Heavy metals in fish fillets showed concentrations rather low except for mercury being higher than others as already described in previous investigations. In the same tissue, cholinesterases activity (ChE) as an

  14. Matrix Population Model for Estimating Effects from Time-Varying Aquatic Exposures: Technical Documentation

    Science.gov (United States)

    The Office of Pesticide Programs models daily aquatic pesticide exposure values for 30 years in its risk assessments. However, only a fraction of that information is typically used in these assessments. The population model employed herein is a deterministic, density-dependent pe...

  15. An integrated approach to aquatic health assessment: water quality index and multibiomarker response

    International Nuclear Information System (INIS)

    Sedeno-Diaz, J. E.; Lopez-Lopez, E.; Jimenez-Trujillo, P.; Tejeda-Vera, R.; Espainal Carrion, T.

    2009-01-01

    The pollution of water bodies reduces their quality and is stressful to their biota. In a river, water usually is of the high-est quality in its headwaters reaches, becoming dirtier along its length as it passes through different land uses. Therefore, the aquatic environment should be assessed using physicochemical and biological features in order to provide a full spectrum of aquatic ecosystem health. Water Quality Indexes can be used to aggregate data on water quality parameters and to translate this information into a single value. The use of bio markers as indicators of toxicity delineates the effects of xenobiotics before the appearance of diseases in aquatic organism. The use of a battery bio markers may be useful to evaluate the various response to mixtures of pollutants. (Author)

  16. Proceedings of the 22nd annual aquatic toxicity workshop: October 2-4, 1995, St. Andrews, New Brunswick

    Energy Technology Data Exchange (ETDEWEB)

    Haya, K.; Niimi, A.J. [eds.

    1996-02-01

    The proceedings contain copies (in many cases in abstract form only) of the 4 plenary, 87 platform, and 28 poster presentations. The sessions are: working with industry; toxicology and chemistry in watershed management; bioassay: ecological risk assessment; toxicity identification and reduction; fate and effects of PAHs in the aquatic environment; PCBs in waterways: transport and toxicity; mercury in aquatic ecosystems; sediment toxicity; bio-markers of pollution; statistics for estimating potency from non-quantal data; advances in micro-scale aquatic toxicity; aquatic toxicity of water birds; and aquatic pathology and its role in forensic science. One paper is abstracted separately.

  17. A universal method to assess the potential of phosphorus loss from soil to aquatic ecosystems.

    Science.gov (United States)

    Pöthig, Rosemarie; Behrendt, Horst; Opitz, Dieter; Furrer, Gerhard

    2010-02-01

    Phosphorus loss from terrestrial to the aquatic ecosystems contributes to eutrophication of surface waters. To maintain the world's vital freshwater ecosystems, the reduction of eutrophication is crucial. This needs the prevention of overfertilization of agricultural soils with phosphorus. However, the methods of risk assessment for the P loss potential from soils lack uniformity and are difficult for routine analysis. Therefore, the efficient detection of areas with a high risk of P loss requires a simple and universal soil test method that is cost effective and applicable in both industrialized and developing countries. Soils from areas which varied highly in land use and soil type were investigated regarding the degree of P saturation (DPS) as well as the equilibrium P concentration (EPC(0)) and water-soluble P (WSP) as indicators for the potential of P loss. The parameters DPS and EPC(0) were determined from P sorption isotherms. Our investigation of more than 400 soil samples revealed coherent relationships between DPS and EPC(0) as well as WSP. The complex parameter DPS, characterizing the actual P status of soil, is accessible from a simple standard measurement of WSP based on the equation [Formula: see text]. The parameter WSP in this equation is a function of remaining phosphorous sorption capacity/total accumulated phosphorous (SP/TP). This quotient is independent of soil type due to the mutual compensation of the factors SP and TP. Thus, the relationship between DPS and WSP is also independent of soil type. The degree of P saturation, which reflects the actual state of P fertilization of soil, can be calculated from the easily accessible parameter WSP. Due to the independence from soil type and land use, the relation is valid for all soils. Values of WSP, which exceed 5 mg P/kg soil, signalize a P saturation between 70% and 80% and thus a high risk of P loss from soil. These results reveal a new approach of risk assessment for P loss from soils to

  18. Microplastics in aquatic environments: Implications for Canadian ecosystems.

    Science.gov (United States)

    Anderson, Julie C; Park, Bradley J; Palace, Vince P

    2016-11-01

    Microplastics have been increasingly detected and quantified in marine and freshwater environments, and there are growing concerns about potential effects in biota. A literature review was conducted to summarize the current state of knowledge of microplastics in Canadian aquatic environments; specifically, the sources, environmental fate, behaviour, abundance, and toxicological effects in aquatic organisms. While we found that research and publications on these topics have increased dramatically since 2010, relatively few studies have assessed the presence, fate, and effects of microplastics in Canadian water bodies. We suggest that efforts to determine aquatic receptors at greatest risk of detrimental effects due to microplastic exposure, and their associated contaminants, are particularly warranted. There is also a need to address the gaps identified, with a particular focus on the species and conditions found in Canadian aquatic systems. These gaps include characterization of the presence of microplastics in Canadian freshwater ecosystems, identifying key sources of microplastics to these systems, and evaluating the presence of microplastics in Arctic waters and biota. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  19. Ecological and human health sediment risk assessment for a hydrocarbon-impacted site in Lake Athabasca

    International Nuclear Information System (INIS)

    Mcdonald, B.; Wagenaar, A.; LaPorte, J.; Misfeldt, G.; Chatwell, I.

    2009-01-01

    The operation of a public port facility near Uranium City, Saskatchewan has resulted in elevated levels of hydrocarbons in soil, groundwater and sediment. Remedial action in the uplands portion of the site was successful and a risk management approach was initiated for the aquatic portion of the site in order to resolve human health and ecological issues. Ecological risks were assessed using a sediment weight-of-evidence approach involving chemistry, toxicity, bioaccumulation and benthic community structure. Human health risks were assessed via fish consumption, water ingestion and direct contact according to Health Canada guidance. This presentation included an overview of the general risk assessment approach as well as site-specific data and findings. The primary focus was on the challenges confronted during the risk assessment process, such as the need to include alkylated PAHs as a COPC in the human health risk assessment and to evaluate ongoing propeller wash and sediment resuspension for sediment risk management, even though the facility is no longer operational.

  20. Australia's pesticide environmental risk assessment failure: the case of diuron and sugarcane.

    Science.gov (United States)

    Holmes, Glen

    2014-11-15

    In November 2012, the Australian Pesticide and Veterinary Medicines Authority (APVMA) concluded a 12 year review of the PSII herbicide diuron. One of the primary concerns raised during the review was the potential impact on aquatic ecosystems, particularly in the catchments draining to the Great Barrier Reef. The environmental risk assessment process used by the APVMA utilised a runoff risk model developed and validated under European farming conditions. However, the farming conditions in the sugarcane regions of the Great Barrier Reef catchments have environmental parameters beyond the currently validated bounds of the model. The use of the model to assess environmental risk in these regions is therefore highly inappropriate, demonstrating the pitfalls of a one size fits all approach. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Aquatic plants: Test species sensitivity and minimum data requirement evaluations for chemical risk assessments and aquatic life criteria development for the USA

    Science.gov (United States)

    Phytotoxicity results from the publicly-available ECOTOX database were summarized for 20 chemicals and 188 aquatic plants to determine species sensitivities and the ability of a species-limited toxicity data set to serve as a surrogate for a larger data set. The lowest effect con...

  2. Polycyclic aromatic hydrocarbons (PAH) in superficial water from a tropical estuarine system: Distribution, seasonal variations, sources and ecological risk assessment.

    Science.gov (United States)

    Santos, Ewerton; Souza, Michel R R; Vilela Junior, Antônio R; Soares, Laiane S; Frena, Morgana; Alexandre, Marcelo R

    2018-02-01

    This study aimed to evaluate the PAH distribution, sources, seasonal variations and ecological risk assessment in superficial water from the Japaratuba River, Brazil. PAH concentrations ranged from 4 to 119ngL -1 . It was observed that the PAH total concentrations and profiles showed significant differences when comparing the dry season (summer) with the rainy season (winter). Furthermore, most of the PAH originated from pyrogenic sources in the winter, whereas a mixture of sources was observed in the summer. PAH concentration levels found in this study were considered lower than those obtained in other estuarine systems. Ecological risk assessment was determined for individual PAH, based on the risk quotient (RQ) to evaluate the risk of aquatic biota's exposure to PAH. Results suggested that the Japaratuba River has achieved a moderate degree of ecological risk for high molecular weight, showing the importance of identifying these carcinogenic and mutagenic compounds in aquatic systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Phase two of Site 300's ecological risk assessment: Model verification and risk management

    International Nuclear Information System (INIS)

    Carlson, T.M.; Gregory, S.D.

    1995-01-01

    The authors completed the baseline ecological risk assessment (ERA) for Lawrence Livermore National Laboratory's Site 300 in 1993. Using data collection and modeling techniques adapted from the human health risk assessment (HRA), they evaluated the potential hazard of contaminants in environmental media to ecological receptors. They identified potential hazards to (1) aquatic invertebrates from heavy metal contaminants in surface water, (2) burrowing vertebrates from contaminants volatilizing from subsurface soil into burrow air, and (3) grazing deer and burrowing vertebrates from cadmium contamination in surface soil. They recently began collecting data to refine the estimates of potential hazard to these ecological receptors. Bioassay results form the surface water failed to verify a hazard to aquatic invertebrates. Soil vapor surveys of subsurface burrows did verify the presence of high concentrations of volatile organic compounds (VOCs). However, they have not yet verified a true impact on the burrowing populations. The authors also completed an extensive surface soil sampling program, which identified local hot spots of cadmium contamination. In addition, they have been collecting data on the land use patterns of the deer population. Their data indicate that deer do not typically use those areas with cadmium surface soil contamination. Information from this phase of the ERA, along with the results of the HRA, will direct the selection of remedial alternatives for the site. For the ecological receptors, remedial alternatives include developing a risk management program which includes ensuring that (1) sensitive burrowing species (such as rare or endangered species) do not use areas of surface or subsurface contamination, and (2) deer populations do not use areas of surface soil contamination

  4. Haloacetic acids in the aquatic environment. Part I: macrophyte toxicity

    International Nuclear Information System (INIS)

    Hanson, Mark L.; Solomon, Keith R.

    2004-01-01

    Haloacetic acids (HAAs) are contaminants of aquatic ecosystems with numerous sources, both anthropogenic and natural. The toxicity of HAAs to aquatic plants is generally uncharacterized. Laboratory tests were conducted with three macrophytes (Lemna gibba, Myriophyllum sibiricum and Myriophyllum spicatum) to assess the toxicity of five HAAs. Myriophyllum spp. has been proposed as required test species for pesticide registration in North America, but few studies have been conducted under standard test conditions. The HAAs in the present experiments were monochloroacetic acid (MCA), dichloroacetic acid (DCA), trichloroacetic acid (TCA), trifluoroacetic acid (TFA) and chlorodifluoroacetic acid (CDFA). MCA was the most toxic to Myriophyllum spp. with EC 50 values ranging from 8 to 12.4 mg/l depending on the endpoint, followed by DCA (EC 50 range 62-722.5 mg/l), TCA (EC 50 range 49.5-1702.6 mg/l), CDFA (EC 50 range 105.3 to >10,000 mg/l) and with TFA (EC 50 range 222.1 to 10,000 mg/l) the least toxic. Generally, L. gibba was less sensitive to HAA toxicity than Myriophyllum spp., with the difference in toxicity between them approximately threefold. The range of toxicity within Myriophyllum spp. was normally less than twofold. Statistically, plant length and node number were the most sensitive endpoints as they had the lowest observed coefficients of variation, but they were not the most sensitive to HAA toxicity. Toxicological sensitivity of endpoints varied depending on the measure of effect chosen and the HAA, with morphological endpoints usually an order of magnitude more sensitive than pigments for all plant species. Overall, mass and root measures tended to be the most sensitive indicators of HAA toxicity. The data from this paper were subsequently used in an ecological risk assessment for HAAs and aquatic plants. The assessment found HAAs to be of low risk to aquatic macrophytes and the results are described in the second manuscript of this series

  5. AQUATOX coupled foodweb model for ecosystem risk assessment of Polybrominated diphenyl ethers (PBDEs) in lake ecosystems

    International Nuclear Information System (INIS)

    Zhang, Lulu; Liu, Jingling

    2014-01-01

    The AQUATOX model considers the direct toxic effects of chemicals and their indirect effects through foodwebs. For this study, the AQUATOX model was applied to evaluating the ecological risk of Polybrominated diphenyl ethers (PBDEs) in a highly anthropogenically disturbed lake-Baiyangdian Lake. Calibration and validation results indicated that the model can adequately describe the dynamics of 18 biological populations. Sensitivity analysis results suggested that the model is highly sensitive to temperature limitation. PBDEs risk estimate results demonstrate that estimated risk for natural ecosystems cannot be fully explained by single species toxicity data alone. The AQUATOX model could provide a good basis in ascertaining ecological protection levels of “chemicals of concern” for aquatic ecosystems. Therefore, AQUATOX can potentially be used to provide necessary information corresponding to early warning and rapid forecasting of pollutant transport and fate in the management of chemicals that put aquatic ecosystems at risk. - Highlights: • AQUATOX model incorporates direct toxic effects and indirect ecological effects. • Ecological risk of PBDEs was assessed by the AQUATOX model. • The model could help determine ecological threshold of “chemicals of concern”. - Capsule abstract: Application of the AQUATOX model to assess the direct and indirect ecological risk of PBDEs

  6. Non-use Economic Values for Little-Known Aquatic Species at Risk: Comparing Choice Experiment Results from Surveys Focused on Species, Guilds, and Ecosystems

    Science.gov (United States)

    Rudd, Murray A.; Andres, Sheri; Kilfoil, Mary

    2016-09-01

    Accounting for non-market economic values of biological diversity is important to fully assess the benefits of environmental policies and regulations. This study used three choice experiments (species-, guild-, and ecosystem-based surveys) in parallel to quantify non-use values for little-known aquatic species at risk in southern Ontario. Mean willingness-to-pay (WTP) ranged from 9.45 to 21.41 per listing status increment under Canada's Species at Risk Act for both named and unnamed little-known species. Given the broad range of valuable ecosystem services likely to accrue to residents from substantial increases in water quality and the rehabilitation of coastal wetlands, the difference in WTP between species- and ecosystem-based surveys seemed implausibly small. It appeared that naming species—the `iconization' of species in two of the three surveys—had an important effect on WTP. The results suggest that reasonable annual household-level WTP values for little-known aquatic species may be 10 to 25 per species or 10 to 20 per listing status increment. The results highlighted the utility of using parallel surveys to triangulate on non-use economic values for little-known species at risk.

  7. The use of aquatic macrophytes in monitoring and in assessment of biological integrity

    Science.gov (United States)

    Stewart, P.M.; Scribailo, R.W.; Simon, T.P.; Gerhardt, A.

    1999-01-01

    Aquatic plant species, populations, and communities should be used as indicators of the aquatic environment, allowing detection of ecosystem response to different stressors. Plant tissues bioaccumulate and concentrate toxin levels higher than what is present in the sediments; and this appears to be related to organic matter content, acidification, and buffering capacity. The majority of toxicity studies, most of these with heavy metals, have been done with several Lemna species and Vallisneria americana. Organic chemicals reviewed include pesticides and herbicides, polycyclic aromatic hydrocarbons, polychlorinated biphenyls, and other industrial contaminants. The use of aquatic plant communities as bioindicators of environmental quality was evaluated for specific characteristics and indices that may assess biological integrity. Indices such as the floristic quality index (FQI) and coefficient of conservatism (C) are pioneering efforts to describe the quality of natural areas and protect native biodiversity. Our case study in the Grand Calumet Lagoons found that 'least-impacted' sites had the greatest aquatic plant species richness, highest FQI and C values, and highest relative abundance. Lastly, we introduce the concepts necessary for the development of a plant index of biotic integrity. Development of reference conditions is essential to understanding aquatic plant community structure, function, individual health, condition, and abundance. Information on guild development and tolerance definition are also integral to the development of a multi-metric index.

  8. Occurrence of antibiotics in water, sediments, aquatic plants, and animals from Baiyangdian Lake in North China.

    Science.gov (United States)

    Li, Wenhui; Shi, Yali; Gao, Lihong; Liu, Jiemin; Cai, Yaqi

    2012-11-01

    This study investigated the presence and distribution of 22 antibiotics, including eight quinolones, nine sulfonamides and five macrolides, in the water, sediments, and biota samples from Baiyangdian Lake, China. A total of 132 samples were collected in 2008 and 2010, and laboratory analyses revealed that antibiotics were widely distributed in the lake. Sulfonamides were the dominant antibiotics in the water (0.86-1563 ng L(-1)), while quinolones were prominent in sediments (65.5-1166 μg kg(-1)) and aquatic plants (8.37-6532 μg kg(-1)). Quinolones (17.8-167 μg kg(-1)) and macrolides [from below detection limit (BDL) to 182 μg kg(-1)] were often found in aquatic animals and birds. Salvinia natans exhibited the highest bioaccumulation capability for quinolones among three species of aquatic plants. Geographical differences of antibiotic concentrations were greatly due to anthropogenic activities. Sewage discharged from Baoding City was likely the main source of antibiotics in the lake. Risk assessment of antibiotics on aquatic organisms suggested that algae and aquatic plants might be at risk in surface water, while animals were likely not at risk. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Transport of Aquatic Contaminant and Assessment of Radioecological Exposure with Spatial and Temporal Effects

    Science.gov (United States)

    Feng, Ying

    1995-01-01

    A comprehensive study of the radioecological exposure assessment for a contaminated aquatic ecosystem has been performed in this dissertation. The primary objectives of this research were to advance the understanding of radiation exposure in nature and to increase current capabilities for estimating aquatic radiation exposure with the consideration of spatial and temporal effect in nature. This was accomplished through the development of a two-dimensional aquatic exposure assessment framework and by applying the framework to the contaminated Chernobyl cooling lake (pond). This framework integrated spatial and temporal heterogeneity effects of contaminant concentration, abundance and distribution of ecosystem populations, spatial- and temporal-dependent (or density-dependent) radionuclide ingestion, and alternative food web structures. The exposure model was built on the population level to allow for the integration of density dependent population regulation into the exposure assessment. Plankton population dynamics have been integrated into the hydrodynamic-transport model to determine plankton biomass density changes and distributions. The distribution of contaminant in water was also calculated using a hydrodynamic-transport model. The significance of adding spatial and temporal effects, spatial and temporal related ecological functions, and hydrodynamics in the exposure assessment was illustrated through a series of case studies. The results suggested that the spatial and temporal heterogeneity effects of radioactive environments were substantial. Among the ecological functions considered, the food web structure was the most important contributor to the variations of fish exposure. The results obtained using a multiple prey food web structure differed by a factor of 20 from the equilibrium concentration, and by a factor of 2.5 from the concentration obtained using a single-prey food web. Impacts of changes in abundance and distribution of biomass on contaminant

  10. Final Report: Synthesis of aquatic climate change vulnerability assessments for the Interior West

    Science.gov (United States)

    Megan M. Friggens; Carly K. Woodlief

    2015-01-01

    Water is a critical resource for humans and ecological systems in the western United States. Aquatic ecosystems including lakes, rivers, riparian areas and wetlands, are at high risk of climate impacts because they experience relatively high exposure to climate fluctuations and extremes. In turn, impacts arising from climate change are far reaching because these...

  11. Analysis, occurrence, fate and risks of proton pump inhibitors, their metabolites and transformation products in aquatic environment: A review

    International Nuclear Information System (INIS)

    Kosma, Christina I.; Lambropoulou, Dimitra A.; Albanis, Triantafyllos A.

    2016-01-01

    Proton pump inhibitors (PPIs) which include omeprazole, esomeprazole, lansoprazole, pantoprazole and rabeprazole, are extensively used for the relief of gastro-intestinal disorders. Despite their high worldwide consumption, PPIs are extensively metabolized in human bodies and therefore are not regularly detected in monitoring studies. Very recently, however, it has been shown that some omeprazole metabolites may enter and are likely to persist in aquatic environment. Hence, to fully assess the environmental exposures and risks associated with PPIs, it is important to better understand and evaluate the fate and behavior not only of the parent compound but also of their metabolites and their transformation products arising from biotic and abiotic processes (hydrolysis, photodegradation, biodegradation etc.) in the environment. In this light, the purpose of this review is to summarize the present state of knowledge on the introduction and behavior of these chemicals in natural and engineering systems and highlight research needs and gaps. It draws attention to their transformation, the increase contamination by their metabolites/TPs in different environmental matrices and their potential adverse effects in the environment. Furthermore, existing research on analytical developments with respect to sample treatment, separation and detection of PPIs and their metabolites/TPs is provided. - Highlights: • Occurrence and fate of PPIs and their metabolites/TPs in the aquatic environment • Overview of the analytical methods applied, using LC-MS techniques • Omeprazole attended the most frequent analysis • Determination and behavior of omeprazole's metabolites/TPs in the environment • More ecotoxicological research is needed to assess the risks of PPIs.

  12. Analysis, occurrence, fate and risks of proton pump inhibitors, their metabolites and transformation products in aquatic environment: A review

    Energy Technology Data Exchange (ETDEWEB)

    Kosma, Christina I. [Department of Chemistry, University of Ioannina, Ioannina, 45110 (Greece); Lambropoulou, Dimitra A., E-mail: dlambro@chem.auth.gr [Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124 (Greece); Albanis, Triantafyllos A. [Department of Chemistry, University of Ioannina, Ioannina, 45110 (Greece)

    2016-11-01

    Proton pump inhibitors (PPIs) which include omeprazole, esomeprazole, lansoprazole, pantoprazole and rabeprazole, are extensively used for the relief of gastro-intestinal disorders. Despite their high worldwide consumption, PPIs are extensively metabolized in human bodies and therefore are not regularly detected in monitoring studies. Very recently, however, it has been shown that some omeprazole metabolites may enter and are likely to persist in aquatic environment. Hence, to fully assess the environmental exposures and risks associated with PPIs, it is important to better understand and evaluate the fate and behavior not only of the parent compound but also of their metabolites and their transformation products arising from biotic and abiotic processes (hydrolysis, photodegradation, biodegradation etc.) in the environment. In this light, the purpose of this review is to summarize the present state of knowledge on the introduction and behavior of these chemicals in natural and engineering systems and highlight research needs and gaps. It draws attention to their transformation, the increase contamination by their metabolites/TPs in different environmental matrices and their potential adverse effects in the environment. Furthermore, existing research on analytical developments with respect to sample treatment, separation and detection of PPIs and their metabolites/TPs is provided. - Highlights: • Occurrence and fate of PPIs and their metabolites/TPs in the aquatic environment • Overview of the analytical methods applied, using LC-MS techniques • Omeprazole attended the most frequent analysis • Determination and behavior of omeprazole's metabolites/TPs in the environment • More ecotoxicological research is needed to assess the risks of PPIs.

  13. Approach on environmental risk assessment of nanosilver released from textiles

    Energy Technology Data Exchange (ETDEWEB)

    Voelker, Doris, E-mail: doris.voelker@uba.de [Federal Environment Agency Germany, Section IV 2.2, Wörlitzer Platz 1, 06844 Dessau-Rosslau (Germany); Schlich, Karsten [Fraunhofer Institute for Molecular Biology and Applied Ecology, Department of Ecotoxicology, Auf dem Aberg 1, 57392 Schmallenberg (Germany); Hohndorf, Lars; Koch, Wolfgang; Kuehnen, Ute [Federal Environment Agency Germany, Section IV 2.2, Wörlitzer Platz 1, 06844 Dessau-Rosslau (Germany); Polleichtner, Christian; Kussatz, Carola [Federal Environment Agency Germany, Section IV 2.4, Schichauweg 58, 12307 Berlin (Germany); Hund-Rinke, Kerstin [Fraunhofer Institute for Molecular Biology and Applied Ecology, Department of Ecotoxicology, Auf dem Aberg 1, 57392 Schmallenberg (Germany)

    2015-07-15

    Based on the increased utilization of nanosilver (silver nanomaterials=AgNM) as antibacterial agent, there is the strong need to assess the potential environmental implication associated with its new application areas. In this study an exemplary environmental risk assessment (ERA) of AgNM applied in textiles was performed. Environmental exposure scenarios (via municipal sewage treatment plant (STP)) with wastewater supply from domestic homes) were developed for three different types of textiles equipped with AgNM. Based on these scenarios predicted environmental concentrations (PECs) were deduced for STPs and for the environmental compartments surface water, sediment as well as soil. These PECs were related to PNECs (predicted no effect concentrations). PNECs were deduced from results of ecotoxicity tests of a selected AgNM (NM-300K). Data on ecotoxicology were derived from various tests with activated sludge, cyanobacteria, algae, daphnids, fish, duckweed, macrophytes, chironomids, earthworms, terrestrial plants as well as soil microorganisms. Emission data for the AgNM NM-300K from textiles were derived from washing experiments. The performed ERA was based on the specifications defined in the ECHA Guidances on information requirements and chemical safety assessment. Based on the chosen scenarios and preconditions, no environmental risk of the AgNM NM-300K released from textiles was detected. Under conservative assumptions a risk quotient for surface water close to 1 indicated that the aquatic compartment may be affected by an increased emission of AgNM to the environment due to the high sensitivity of aquatic organisms to silver. Based on the successful retention of AgNM in the sewage sludge and the still ongoing continual application of sewage sludge on farmland it is recommended to introduce a threshold for total silver content in sewage sludge into the respective regulations. Regarding potential risk mitigation measures, it is emphasized to preferably directly

  14. Approach on environmental risk assessment of nanosilver released from textiles

    International Nuclear Information System (INIS)

    Voelker, Doris; Schlich, Karsten; Hohndorf, Lars; Koch, Wolfgang; Kuehnen, Ute; Polleichtner, Christian; Kussatz, Carola; Hund-Rinke, Kerstin

    2015-01-01

    Based on the increased utilization of nanosilver (silver nanomaterials=AgNM) as antibacterial agent, there is the strong need to assess the potential environmental implication associated with its new application areas. In this study an exemplary environmental risk assessment (ERA) of AgNM applied in textiles was performed. Environmental exposure scenarios (via municipal sewage treatment plant (STP)) with wastewater supply from domestic homes) were developed for three different types of textiles equipped with AgNM. Based on these scenarios predicted environmental concentrations (PECs) were deduced for STPs and for the environmental compartments surface water, sediment as well as soil. These PECs were related to PNECs (predicted no effect concentrations). PNECs were deduced from results of ecotoxicity tests of a selected AgNM (NM-300K). Data on ecotoxicology were derived from various tests with activated sludge, cyanobacteria, algae, daphnids, fish, duckweed, macrophytes, chironomids, earthworms, terrestrial plants as well as soil microorganisms. Emission data for the AgNM NM-300K from textiles were derived from washing experiments. The performed ERA was based on the specifications defined in the ECHA Guidances on information requirements and chemical safety assessment. Based on the chosen scenarios and preconditions, no environmental risk of the AgNM NM-300K released from textiles was detected. Under conservative assumptions a risk quotient for surface water close to 1 indicated that the aquatic compartment may be affected by an increased emission of AgNM to the environment due to the high sensitivity of aquatic organisms to silver. Based on the successful retention of AgNM in the sewage sludge and the still ongoing continual application of sewage sludge on farmland it is recommended to introduce a threshold for total silver content in sewage sludge into the respective regulations. Regarding potential risk mitigation measures, it is emphasized to preferably directly

  15. Quantitative assessment of aquatic impacts of power plants

    Energy Technology Data Exchange (ETDEWEB)

    McKenzie, D.H.; Arnold, E.M.; Skalski, J.R.; Fickeisen, D.H.; Baker, K.S.

    1979-08-01

    Progress is reported in a continuing study of the design and analysis of aquatic environmental monitoring programs for assessing the impacts of nuclear power plants. Analysis of data from Calvert Cliffs, Pilgrim, and San Onofre nuclear power plants confirmed the generic applicability of the control-treatment pairing design suggested by McKenzie et al. (1977). Substantial progress was made on the simulation model evaluation task. A process notebook was compiled in which each model equation was translated into a standardized notation. Individual model testing and evaluating was started. The Aquatic Generalized Environmental Impact Simulator (AGEIS) was developed and will be tested using data from Lake Keowee, South Carolina. Further work is required to test the various models and perfect AGEIS for impact analyses at actual power plant sites. Efforts on the hydrologic modeling task resulted in a compendium of models commonly applied to nuclear power plants and the application of two well-received hydrodynamic models to data from the Surry Nuclear Power Plant in Virginia. Conclusions from the study of these models indicate that slight inaccuracies of boundary data have little influence on mass conservation and accurate bathymetry data are necessary for conservation of mass through the model calculations. The hydrologic modeling task provides valuable reference information for model users and monitoring program designers.

  16. Quantitative assessment of aquatic impacts of power plants

    International Nuclear Information System (INIS)

    McKenzie, D.H.; Arnold, E.M.; Skalski, J.R.; Fickeisen, D.H.; Baker, K.S.

    1979-08-01

    Progress is reported in a continuing study of the design and analysis of aquatic environmental monitoring programs for assessing the impacts of nuclear power plants. Analysis of data from Calvert Cliffs, Pilgrim, and San Onofre nuclear power plants confirmed the generic applicability of the control-treatment pairing design suggested by McKenzie et al. (1977). Substantial progress was made on the simulation model evaluation task. A process notebook was compiled in which each model equation was translated into a standardized notation. Individual model testing and evaluating was started. The Aquatic Generalized Environmental Impact Simulator (AGEIS) was developed and will be tested using data from Lake Keowee, South Carolina. Further work is required to test the various models and perfect AGEIS for impact analyses at actual power plant sites. Efforts on the hydrologic modeling task resulted in a compendium of models commonly applied to nuclear power plants and the application of two well-received hydrodynamic models to data from the Surry Nuclear Power Plant in Virginia. Conclusions from the study of these models indicate that slight inaccuracies of boundary data have little influence on mass conservation and accurate bathymetry data are necessary for conservation of mass through the model calculations. The hydrologic modeling task provides valuable reference information for model users and monitoring program designers

  17. Ecological risk assessment of the antibiotic enrofloxacin applied to Pangasius catfish farms in the Mekong delta, Vietnam

    NARCIS (Netherlands)

    Rico Artero, A.; Phu, T.M.; Huong, D.T.T.; Phuong, N.T.; Brink, van den P.J.

    2015-01-01

    Antibiotics applied in aquaculture production may be released into the environment and contribute to the deterioration of surrounding aquatic ecosystems. In the present study, we assessed the ecological risks posed by the use of the antibiotic enrofloxacin (ENR), and its main metabolite

  18. Prioritization of chemicals in the aquatic environment based on risk assessment: analytical, modeling and regulatory perspective.

    Science.gov (United States)

    Guillén, D; Ginebreda, A; Farré, M; Darbra, R M; Petrovic, M; Gros, M; Barceló, D

    2012-12-01

    The extensive and intensive use of chemicals in our developed, highly technological society includes more than 100,000 chemical substances. Significant scientific evidence has lead to the recognition that their improper use and release may result in undesirable and harmful side-effects on both the human and ecosystem health. To cope with them, appropriate risk assessment processes and related prioritization schemes have been developed in order to provide the necessary scientific support for regulatory procedures. In the present paper, two of the elements that constitute the core of risk assessment, namely occurrence and hazard effects, have been discussed. Recent advances in analytical chemistry (sample pre-treatment and instrumental equipment, etc.) have allowed for more comprehensive monitoring of environmental pollution reaching limits of detection up to sub ng L(-1). Alternative to analytical measurements, occurrence models can provide risk managers with a very interesting approach for estimating environmental concentrations from real or hypothetical scenarios. The most representative prioritization schemes used for issuing lists of concerning chemicals have also been examined and put in the context of existing environmental policies for protection strategies and regulations. Finally, new challenges in the field of risk-assessment have been outlined, including those posed by new materials (i.e., nanomaterials), transformation products, multi-chemical exposure, or extension of the risk assessment process to the whole ecosystem. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Radioecology of the aquatic environment

    International Nuclear Information System (INIS)

    Amiard-Triquet, C.; Amiard, J.C.

    1980-01-01

    This book is divided into nine parts as follows: origin of radionuclides in the aquatic environment; assessment of radioactive contamination of the aquatic environment; evolution of radionuclides in waters; behaviour of radionuclides in sediments; quantitative data on accumulation, distribution and biological release of radioactive pollutants; mechanisms of the biological accumulation; influence of ecological factors on radioactive contamination of ecosystems; effects of irradiation on aquatic organisms. The last part is devoted to general conclusions on sanitary and ecological consequences of radioactive pollution of the aquatic environment [fr

  20. Assessment of chevron dikes for the enhancement of physical-aquatic habitat within the Middle Mississippi River, USA

    Science.gov (United States)

    Remo, Jonathan W. F.; Khanal, Anish; Pinter, Nicholas

    2013-09-01

    Blunt-nosed chevron dikes, a new invention now being widely constructed on the Middle Mississippi River (MMR), have been justified as a tool for enhancing physical-aquatic habitat. Chevron dikes were initially designed to concentrate flow, induce channel scour, and thus facilitate river navigation. More recently, these structures have been justified, in part, for promoting habitat heterogeneity. The ability of chevrons to create and diversify physical-aquatic habitat, however, has not been empirically evaluated. To assess the ability of chevrons to create and diversify physical-aquatic habitat, we compiled hydrologic and geospatial data for three channel reference conditions along a 2.0 km (∼140 ha) reach of the MMR where three chevrons were constructed in late 2007. We used the hydrologic and hydraulic data to construct detailed 2-D hydrodynamic models for three reference condition: historic (circa 1890), pre-chevron, and post-chevron channel conditions. These models documented changes in depths and flow dynamics for a wide range of in-channel discharges. Depth-velocity habitat classes were used to assess change in physical-aquatic habitat patches and spatial statistical tools in order to evaluate the reach-scale habitat patch diversity. Comparisons of pre- and post-chevron conditions revealed increases in deep to very deep (>3.0 m) areas of slow moving (3.0 m], low velocity [<0.6 m/s]). Chevron construction also created some (0.8-3.8 ha) shallow-water habitat (0-1.5 m depth with a 0-0.6 m/s velocity) for flows ⩽2.0 × MAF and contributed to an 8-35% increase in physical-aquatic-habitat diversity compared to pre-chevron channel conditions. However, modeling of the historic reference condition (less engineered channel, circa 1890) revealed that the historical physical-aquatic-habitat mosaic consisted of a wider and shallower channel with: 45-390% more shallow-water habitat (2.4-11.0 ha) and 22-83% more physical-aquatic-habitat diversity, but little over

  1. Revisiting restored river reaches - Assessing change of aquatic and riparian communities after five years.

    Science.gov (United States)

    Lorenz, Armin W; Haase, Peter; Januschke, Kathrin; Sundermann, Andrea; Hering, Daniel

    2018-02-01

    Hydromorphological restructuring of river sections, i.e. river restoration measures, often has little effects on aquatic biota, even in case of strong habitat alterations. It is often supposed that the biotic response is simply delayed as species require additional time to recolonize the newly generated habitats and to establish populations. To identify and specify the supposed lag time between restoration and biotic response, we investigated 19 restored river reaches twice in a five-year interval. The sites were restored one to ten years prior to the first sampling. We sampled three aquatic (fish, benthic invertebrates, macrophytes) and two riparian organism groups (ground beetles and riparian vegetation) and analyzed changes in assemblage composition and biotic metrics. With the exception of ground beetle assemblages, we observed no significant changes in richness and abundance metrics or metrics used for biological assessment. However, indicator taxa for near-natural habitat conditions in the riparian zone (indicators for regular inundation in plants and river bank specialists in beetles) improved significantly in the five-year interval. Contrary to general expectations in river restoration planning, we neither observed a distinct succession of aquatic communities nor a general trend towards "good ecological status" over time. Furthermore, multiple linear regression models revealed that neither the time since restoration nor the morphological status had a significant effect on the biological metrics and the assessment results. Thus, the stability of aquatic assemblages is strong, slowing down restoration effects in the aquatic zone, while riparian assemblages improve more rapidly. When defining restoration targets, the different timelines for ecological recovery after restoration should be taken into account. Furthermore, restoration measures should not solely focus on local habitat conditions but also target stressors acting on larger spatial scales and take

  2. Guide for developing conceptual models for ecological risk assessments

    International Nuclear Information System (INIS)

    Suter, G.W., II.

    1996-05-01

    Ecological conceptual models are the result of the problem formulation phase of an ecological risk assessment, which is an important component of the Remedial Investigation process. They present hypotheses of how the site contaminants might affect the site ecology. The contaminant sources, routes, media, routes, and endpoint receptors are presented in the form of a flow chart. This guide is for preparing the conceptual models; use of this guide will standardize the models so that they will be of high quality, useful to the assessment process, and sufficiently consistent so that connections between sources of exposure and receptors can be extended across operable units (OU). Generic conceptual models are presented for source, aquatic integrator, groundwater integrator, and terrestrial OUs

  3. Assessment of the consequences of the radioactive contamination of aquatic media and biota. Model testing using Chernobyl data

    International Nuclear Information System (INIS)

    Kryshev, I.; Sazykina, T.; Hoffman, O.; Thiessen, K.

    1996-09-01

    The 'Cooling Pond' scenario was designed to test models for radioactive contamination of aquatic ecosystems, based on data for contamination of different aquatic media and biota due to fallout of radionuclides into the cooling pond of the Chernobyl Nuclear Power Plant. Input data included characteristics of the cooling pond ecosystem (hydrological, hydrochemical, and hydro biological conditions) and estimates of the amounts of 137 Cs in the cooling pond. Predictions were requested in two stages: (1) Calculations of 137 Cs concentrations for comparison against actual measurements, including activities of 137 Cs in the cooling pond water, in layers of sediment, and in fish; (2) Calculations for which actual measurements are not available, including dose and risk estimates for aquatic biota and for humans following hypothetical consumption of contaminated biota. Calculations were performed with the following models: LAKECO (Netherlands), POSOD (USA), LAKEPOND (Romania), WATER (Russia), GIDRO (Russia), and ECOMOD-W (Russia). The total number of scenario calculations was 18. In general, the models tended to overestimate the total doses to fish (as compared to to independent dose estimates made from measured concentrations by the scenario authors) for internal and external exposure, while a number of predictions with different models for the effective dose and risk to humans from fish consumption were in good agreement with independent test estimates. The differences among model predictions were somewhat smaller for the total doses to fish than for the environmental concentrations used in the model testing. The differences among model predictions were very great for the effective doses and risk to humans from fish consumption. This is related to distinct errors in assessments of 137 Cs concentrations in fish. Very few participants obtained good agreement with respect to all criteria of the model testing, i.e., 137 Cs concentrations in the aquatic ecosystem components and

  4. Assessment of the consequences of the radioactive contamination of aquatic media and biota. Model testing using Chernobyl data

    Energy Technology Data Exchange (ETDEWEB)

    Kryshev, I.; Sazykina, T. [SPA Typhoon, Obninsk (Russian Federation); Hoffman, O.; Thiessen, K. [SENES, Oak Ridge, TN (United States)] [and others

    1996-09-01

    The 'Cooling Pond' scenario was designed to test models for radioactive contamination of aquatic ecosystems, based on data for contamination of different aquatic media and biota due to fallout of radionuclides into the cooling pond of the Chernobyl Nuclear Power Plant. Input data included characteristics of the cooling pond ecosystem (hydrological, hydrochemical, and hydro biological conditions) and estimates of the amounts of 137 Cs in the cooling pond. Predictions were requested in two stages: (1) Calculations of 137 Cs concentrations for comparison against actual measurements, including activities of 137 Cs in the cooling pond water, in layers of sediment, and in fish; (2) Calculations for which actual measurements are not available, including dose and risk estimates for aquatic biota and for humans following hypothetical consumption of contaminated biota. Calculations were performed with the following models: LAKECO (Netherlands), POSOD (USA), LAKEPOND (Romania), WATER (Russia), GIDRO (Russia), and ECOMOD-W (Russia). The total number of scenario calculations was 18. In general, the models tended to overestimate the total doses to fish (as compared to to independent dose estimates made from measured concentrations by the scenario authors) for internal and external exposure, while a number of predictions with different models for the effective dose and risk to humans from fish consumption were in good agreement with independent test estimates. The differences among model predictions were somewhat smaller for the total doses to fish than for the environmental concentrations used in the model testing. The differences among model predictions were very great for the effective doses and risk to humans from fish consumption. This is related to distinct errors in assessments of 137 Cs concentrations in fish. Very few participants obtained good agreement with respect to all criteria of the model testing, i.e., 137 Cs concentrations in the aquatic ecosystem

  5. Fisheries and Oceans Canada climate change risk assessment initiative

    Energy Technology Data Exchange (ETDEWEB)

    Dalpe, R. [Fisheries and Oceans, Ottawa, ON (Canada)

    2005-07-01

    This paper provided an overview of an initiative undertaken by the Department of Fisheries and Oceans (DFO) Canada to assess the risks associated with climate change on Canada's waterways and aquatic resources over the next 10 to 20 years. It discussed the risk associated with changes in water temperature and level in increasing the vulnerability of fish stocks and ecosystems. A decrease in water levels is also an issue as it will render current infrastructure ineffective. Storm surges can also have an impact on coastal community infrastructure. The purpose of the assessment was to provide DFO management with a structured understanding of the major climate change factors that pose risks to DFO's operations and to establish priorities in identifying appropriate risk mitigation responses. The presentation discussed the different stages of the initiative (planning, identification and evaluation of risk, validation, and reporting), its' challenges and benefits, as well as lessons learned from this exercises. Lessons learned from the project are as follows: get senior level buy-in from the outset; engage the right people; make it easy for others to be engaged; validate results and risk management response; be ready for surprises; and build in some flexibility to the process. figs.

  6. Ecotoxicological risk assessment linked to infilling quarries with treated dredged seaport sediments

    Energy Technology Data Exchange (ETDEWEB)

    Perrodin, Yves, E-mail: perrodin@entpe.fr [Universite de Lyon, ENTPE, CNRS, UMR 5023 LEHNA, 2 rue Maurice Audin, 69518 Vaulx-en-Velin (France); Donguy, Gilles [Universite de Lyon, ENTPE, CNRS, UMR 5023 LEHNA, 2 rue Maurice Audin, 69518 Vaulx-en-Velin (France); Bazin, Christine [INSAVALOR, 20 avenue Albert Einstein, 69621 Villeurbanne Cedex (France); Volatier, Laurence; Durrieu, Claude [Universite de Lyon, ENTPE, CNRS, UMR 5023 LEHNA, 2 rue Maurice Audin, 69518 Vaulx-en-Velin (France); Bony, Sylvie; Devaux, Alain [Universite de Lyon, ENTPE, CNRS, UMR 5023 LEHNA, 2 rue Maurice Audin, 69518 Vaulx-en-Velin (France); INRA, USC IGH, UMR LEHNA, 2, rue Maurice Audin, 69518 Vaulx-en-Velin (France); Abdelghafour, Mohammed; Moretto, Robert [INSAVALOR, 20 avenue Albert Einstein, 69621 Villeurbanne Cedex (France)

    2012-08-01

    the peripheral aquatic ecosystems while sediment '3' presented a high risk. - Highlights: Black-Right-Pointing-Pointer Filling quarries with dredged seaport sediments represents an interesting alternative for these materials. Black-Right-Pointing-Pointer A specific ecotoxicological risk assessment methodology has been formulated in order to validate this potential solution. Black-Right-Pointing-Pointer This methodology has been tested on 3 sediments. Black-Right-Pointing-Pointer The study concludes that the landfilling of sediments '1' and '2' presents a low risk for the aquatic ecosystems. Black-Right-Pointing-Pointer At the opposite, sediment '3' presents a high ecotoxicological risk.

  7. Ecotoxicological risk assessment linked to infilling quarries with treated dredged seaport sediments

    International Nuclear Information System (INIS)

    Perrodin, Yves; Donguy, Gilles; Bazin, Christine; Volatier, Laurence; Durrieu, Claude; Bony, Sylvie; Devaux, Alain; Abdelghafour, Mohammed; Moretto, Robert

    2012-01-01

    The dredged sediments of polluted seaports now raise complex management problems since it is no longer possible to discharge them into the sea. This results in the need to manage them on land, raising other types of technical, economic and environmental problems. Regarding the technical and economic dimensions, traditional waste treatment methods have proved to be poorly adapted, due to very high costs and low absorbable volumes. In this context, filling quarries in coastal areas with treated sediments could represent an interesting alternative for these materials. Nevertheless, for the environmental dimension, it is necessary to demonstrate that this possibility is harmless to inland ecosystems. Consequently, a specific ecotoxicological risk assessment methodology has been formulated and tested on three sediments taken from seaboards of France, in view to providing an operational and usable tool for the prior validation of any operation to fill quarries with treated seaport sediments. This method incorporates the formulation of a global conceptual model of the scenario studied and the definition of protocols for each of its steps: the characterisation of exposures (based on a simulation of sediment deposit), the characterisation of effects (via the study of sediments ecotoxicity), and the final ecotoxicological risk assessment performed as a calculation of a risk quotient. It includes the implementation in parallel of two types of complementary approach: the “substances” approach derived from the European methodology for assessing new substances placed on the market, and the “matrix” approach which is similar to methods developed in France to assess ecological risks in other domains (waste management, polluted site management, …). The application of this dual approach to the three sediments tested led to conclude with reliability that the project to deposit sediments “1” and “2” presented a low risk for the peripheral aquatic ecosystems while

  8. Screening level dose assessment of aquatic biota downstream of the Marcoule nuclear complex in southern France.

    Science.gov (United States)

    St-Pierre, S; Chambers, D B; Lowe, L M; Bontoux, J G

    1999-09-01

    Aquatic biota in the Rhone River downstream of the Marcoule nuclear complex in France are exposed to natural sources of radiation and to radioactivity released from the Marcoule complex. A simple conservative screening level model was used to estimate the range of concentrations in aquatic media (water, sediments, and aquatic organisms) of both artificial and natural radionuclides and the consequent absorbed (whole body) dose rates for aquatic organisms. Five categories of aquatic organisms were studied, namely, submerged aquatic plants (phanerogam), non-bottom-feeding fish, bottom-feeding fish, mollusca, and fish-eating birds. The analysis was based on the radionuclide concentrations reported in four consecutive annual radioecological monitoring reports published by French agencies with nuclear regulatory responsibilities. The results of this assessment were used to determine, qualitatively, the magnitude of any potential health impacts on each of the five categories of aquatic organisms studied. The range of dose rate estimates ranged over three orders of magnitude, with maximum dose rates estimated to be in the order of 1 to 10 microGy h(-1). These maximum dose rates are a factor 40 or more below the international guideline intended to ensure the protection of aquatic populations (about 400 microGy h(-1)), and a factor ten or more below the level which may trigger the need for a more detailed evaluation of potential ecological consequences to the exposed populations (about 100 microGy h(-1)). As a result, chronic levels of radioactivity, artificial and natural, measured in aquatic media downstream of Marcoule are unlikely to result in adverse health impacts on the categories and species of aquatic organisms studied. Thus, based on the screening level analysis discussed in this paper, a more detailed evaluation of the dose rates does not appear to be warranted.

  9. Chapter 5. Assessing the Aquatic Hazards of Veterinary Medicines

    Science.gov (United States)

    In recent years, there has been increasing awareness of the widespread distribution of low concentrations of veterinary medicine products and other pharmaceuticals in the aquatic environment. While aquatic hazard for a select group of veterinary medicines has received previous s...

  10. Distribution, speciation, environmental risk, and source identification of heavy metals in surface sediments from the karst aquatic environment of the Lijiang River, Southwest China.

    Science.gov (United States)

    Xu, Daoquan; Wang, Yinghui; Zhang, Ruijie; Guo, Jing; Zhang, Wei; Yu, Kefu

    2016-05-01

    The distribution and speciation of several heavy metals, i.e., As, Cd, Cr, Cu, Hg, Pb, and Zn, in surface sediments from the karst aquatic environment of the Lijiang River, Southwest China, were studied comparatively. The mean contents of Cd, Cu, Hg, Pb, and Zn were 1.72, 38.07, 0.18, 51.54, and 142.16 mg/kg, respectively, which were about 1.5-6 times higher than their corresponding regional sediment background values. Metal speciation obtained by the optimized BCR protocol highlighted the bioavailable threats of Cd, Cu, and Zn, which were highly associated with the exchangeable fraction (the labile phase). Hierarchical cluster analysis indicated that in sediments, As and Cr were mainly derived from natural and industrial sources, whereas fertilizer application might lead to the elevated level of Cd. Besides, Cu, Hg, Pb, and Zn were related to traffic activities. The effects-based sediment quality guidelines (SQGs) showed that Hg, Pb, and Zn could pose occasional adverse effects on sediment-dwelling organisms. However, based on the potential ecological risk assessment (PER) and risk assessment code (RAC), Cd was the most outstanding pollutant and posed the highest ecological hazard and bioavailable risk among the selected metals. Moreover, the metal partitioning between water and sediments was quantified through the calculation of the pseudo-partitioning coefficient (K P), and result implied that the sediments in this karst aquatic environment cannot be used as stable repositories for the metal pollutants.

  11. The effect of aquatic intervention on the gross motor function and aquatic skills in children with cerebral palsy.

    Science.gov (United States)

    Dimitrijević, Lidija; Aleksandrović, Marko; Madić, Dejan; Okičić, Tomislav; Radovanović, Dragan; Daly, Daniel

    2012-05-01

    The objective of this study was to investigate the effect of an aquatic intervention on the gross motor function and aquatic skills of children with cerebral palsy (CP). Twenty-nine children with CP, aged 5 to 14, were recruited. Fourteen children completed an aquatic intervention (EG), and 13 children served as controls (CG). Two participants dropped out due to events (illness) unrelated to the intervention. The aquatic intervention lasted 6 weeks (2 sessions per week at 55 minutes per session) with a follow-up period of 3 weeks. The outcome measures were the Gross Motor Function Measure (GMFM) for motor function and the Water Orientation Test Alyn 2 (WOTA 2) for aquatic skills assessment. A significant improvement was observed in the secondary assessment of GMFM and WOTA 2. In contrast to the aquatic skills improvement, the GMFM change was not maintained at follow-up. Our results indicate that children with CP can improve gross motor function on dry land and aquatic skills with a 6-week water intervention. The intervention period was too short for sustainable improvement in dry-land motor skills after intervention (follow-up), but time was sufficient to achieve sustainable improvements in aquatic skills.

  12. Mercury in aquatic forage of large herbivores: impact of environmental conditions, assessment of health threats, and implications for transfer across ecosystem compartments.

    Science.gov (United States)

    Bergman, Brenda Gail; Bump, Joseph K

    2014-05-01

    Mercury (Hg) is a leading contaminant across U.S. water bodies, warranting concern for wildlife species that depend upon food from aquatic systems. The risk of Hg toxicity to large herbivores is little understood, even though some large herbivores consume aquatic vascular plants (macrophytes) that may hyper-accumulate Hg. We investigated whether total Hg and methylmercury (MeHg) in aquatic forage may be of concern to moose (Alces alces) and beaver (Castor canadensis) by measuring total Hg and MeHg concentrations, calculating sediment-water bioconcentration factors for macrophyte species these herbivores consume, and estimating herbivore daily Hg consumption. Abiotic factors impacting macrophyte Hg were assessed, as was the difference in Hg concentrations of macrophytes from glacial lakes and those created or expanded by beaver damming. The amount of aquatic-derived Hg that moose move from aquatic to terrestrial systems was calculated, in order to investigate the potential for movement of Hg across ecosystem compartments by large herbivores. Results indicate that the Hg exposure of generalist herbivores may be affected by macrophyte community composition more so than by many abiotic factors in the aquatic environment. Mercury concentrations varied greatly between macrophyte species, with relatively high concentrations in Utricularia vulgaris (>80 ng g(-1) in some sites), and negligible concentrations in Nuphar variegata (~6 ng g(-1)). Macrophyte total Hg concentration was correlated with water pH in predictable ways, but not with other variables generally associated with aquatic Hg concentrations, such as dissolved organic carbon. Moose estimated daily consumption of MeHg is equivalent to or below human reference levels, and far below wildlife reference levels. However, estimated beaver Hg consumption exceeds reference doses for humans, indicating the potential for sub-lethal nervous impairment. In regions of high moose density, moose may be ecologically important

  13. Occurrence, Distribution, and Risk Assessment of Antibiotics in a Subtropical River-Reservoir System

    Directory of Open Access Journals (Sweden)

    Yihan Chen

    2018-01-01

    Full Text Available Antibiotic pollutions in the aquatic environment have attracted widespread attention due to their ubiquitous distribution and antibacterial properties. The occurrence, distribution, and ecological risk assessment of 17 common antibiotics in this study were preformed in a vital drinking water source represented as a river-reservoir system in South China. In general, 15 antibiotics were detected at least once in the watershed, with the total concentrations of antibiotics in the water samples ranging from 193.6 to 863.3 ng/L and 115.1 to 278.2 μg/kg in the sediment samples. For the water samples, higher rain runoff may contribute to the levels of total concentration in the river system, while perennial anthropic activity associated with the usage pattern of antibiotics may be an important factor determining similar sources and release mechanisms of antibiotics in the riparian environment. Meanwhile, the reservoir system could act as a stable reactor to influence the level and composition of antibiotics exported from the river system. For the sediment samples, hydrological factor in the reservoir may influence the antibiotic distributions along with seasonal variation. Ecological risk assessment revealed that tetracycline and ciprofloxacin could pose high risks in the aquatic environment. Taken together, further investigations should be performed to elaborate the environmental behaviors of antibiotics in the river-reservoir system, especially in drinking water sources.

  14. Bioconcentration, bioaccumulation, and metabolism of pesticides in aquatic organisms.

    Science.gov (United States)

    Katagi, Toshiyuki

    2010-01-01

    information on aquatic species, other than fish, that pertains to bioconcentration factors, metabolism, and elimination is rather limited in the literature. The kinds of basic information that is unavailable but is needed on important aquatic species includes biochemistry, physiology, position in food web, habitat, life cycle, etc. such information is very important to obtaining improved ecotoxicology risk assessments for many pesticides and other chemicals. More research attention on the behavior of pesticides in, and affect on many standard aquatic test species (e.g., daphnids, chironomids, oligochaetes and some bivalves) would particularly be welcome. In addition to improving ecotoxicology risk assessments on target species, such information would also assist in better delineating affects on species at higher trophic levels that are predaceous on the target species. There is also need for designing and employing more realistic approaches to measure bioconcentration and bioaccumulation, and ecotoxicology effects of pesticides in natural environment. The currently employed steady-state laboratory exposure studies are insufficient to deal with the complexity of parameters that control the contrasts to the abiotic processes of pesticide investigated under the strictly controlled conditions, each process is significantly affected in the natural environment not only by the site-specific chemistry of water and sediment but also by climate. From this viewpoint, ecotoxicological assessment should be conducted, together with the detailed analyses of abiotic processes, when higher-tier mesocosm studies are performed. Moreover, in-depth investigation is needed to better understand the relationship between pesticide residues in organisms and associated ecotoxicological endpoints. The usual exposure assessment is based on apparent (nominal) concentrations fo pesticides, and the residues of pesticides or their metabolites in the organisms are not considered in to the context of

  15. Heavy metal pollution characteristics of surface sediments in different aquatic ecosystems in eastern China: a comprehensive understanding.

    Directory of Open Access Journals (Sweden)

    Wenzhong Tang

    Full Text Available Aquatic ecosystems in eastern China are suffering threats from heavy metal pollution because of rapid economic development and urbanization. Heavy metals in surface sediments were determined in five different aquatic ecosystems (river, reservoir, estuary, lake, and wetland ecosystems. The average Cd, Cr, Cu, Ni, Pb, and Zn concentrations were 0.716, 118, 37.3, 32.7, 56.6, and 204 mg/kg, respectively, and the higher concentrations were mainly found in sediment samples from river ecosystems. Cd was the most anthropogenically enriched pollutant, followed by Zn and Pb, indicated by enrichment factors >1.5. According to consensus-based sediment quality guidelines, potential ecological risk indices, and risk assessment codes, all five types of aquatic ecosystems were found to be polluted with heavy metals, and the most polluted ecosystems were mainly rivers. Cd was the most serious pollutant in all five aquatic ecosystems, and it was mainly found in the exchangeable fraction (about 30% of the total Cd concentration, on average. The results indicate that heavy metal contamination, especially of Cd, in aquatic ecosystems in eastern China should be taken into account in the development of management strategies for protecting the aquatic environment.

  16. Toxicokinetic modeling challenges for aquatic nanotoxicology

    Directory of Open Access Journals (Sweden)

    Wei-Yu eChen

    2016-01-01

    Full Text Available Nanotoxicity has become of increasing concern since the rapid development of metal nanoparticles (NPs. Aquatic nanotoxicity depends on crucial qualitative and quantitative properties of nanomaterials that induce adverse effects on subcellular, tissue, and organ level. The dose-response effects of size-dependent metal NPs, however, are not well investigated in aquatic organisms. In order to determine the uptake and elimination rate constants for metal NPs in the metabolically active/ detoxified pool of tissues, a one-compartmental toxicokinetic model can be applied when subcellular partitioning of metal NPs data would be available. The present review is an attempt to describe the nano-characteristics of toxicokinetics and subcellular partitioning on aquatic organisms with the help of the mechanistic modeling for NP size-dependent physiochemical properties and parameters. Physiologically-based pharmacokinetic (PBPK models can provide an effective tool to estimate the time course of NP accumulation in target organs and is useful in quantitative risk assessments. NP accumulation in fish should take into account different effects of different NP sizes to better understand tissue accumulative capacities and dynamics. The size-dependent NP partition coefficient is a crucial parameter that influences tissue accumulation levels in PBPK modeling. Further research is needed to construct the effective systems-level oriented toxicokinetic model that can provide a useful tool to develop quantitatively the robustly approximate relations that convey a better insight into the impacts of environmental metal NPs on subcellular and tissue/organ responses in aquatic organisms.

  17. Ecotoxicological risk assessment of hospital wastewater: a proposed framework for raw effluents discharging into urban sewer network

    International Nuclear Information System (INIS)

    Emmanuel, E.; Perrodin, Y.; Keck, G.; Blanchard, J.-M.; Vermande, P.

    2005-01-01

    In hospitals a large variety of substances are in use for medical purposes such as diagnostics and research. After application, diagnostic agents, disinfectants and excreted non-metabolized pharmaceuticals by patients, reach the wastewater. This form of elimination may generate risks for aquatic organisms. The aim of this study was to present: (i) the steps of an ecological risk assessment and management framework related to hospital effluents evacuating into wastewater treatment plant (WWTP) without preliminary treatment; and (ii) the results of its application on wastewater from an infectious and tropical diseases department of a hospital of a large city in southeastern France. The characterization of effects has been made under two assumptions, which were related to: (a) the effects of hospital wastewater on biological treatment process of WWTP, particularly on the community of organisms in charge of the biological decomposition of the organic matter; (b) the effects on aquatic organisms. COD and BOD 5 have been measured for studying global organic pollution. Assessment of halogenated organic compounds was made using halogenated organic compounds absorbable on activated carbon (AOX) concentrations. Heavy metals (arsenic, cadmium, chrome, copper, mercury, nickel, lead and zinc) were measured. Low most probable number (MPP) for faecal coliforms has been considered as an indirect detection of antibiotics and disinfectants presence. For toxicity assessment, bioluminescence assay using Vibrio fischeri photobacteria, 72-h EC 50 algae growth Pseudokirchneriella subcapitata and 24-h EC 50 on Daphnia magna were used. The scenario allows to a semi-quantitative risk characterization. It needs to be improved on some aspects, particularly those linked to: long term toxicity assessment on target organisms (bioaccumulation of pollutants, genotoxicity, etc.); ecotoxicological interactions between pharmaceuticals, disinfectants used both in diagnostics and in cleaning of

  18. Sources and remediation for mercury contamination in aquatic systems--a literature review

    International Nuclear Information System (INIS)

    Wang, Qianrui; Kim, Daekeun; Dionysiou, Dionysios D.; Sorial, George A.; Timberlake, Dennis

    2004-01-01

    Sources of mercury contamination in aquatic systems were studied in a comprehensive literature review. The results show that the most important anthropogenic sources of mercury pollution in aquatic systems are: (1) atmospheric deposition, (2) erosion, (3) urban discharges, (4) agricultural materials, (5) mining, and (6) combustion and industrial discharges. Capping and dredging are two possible remedial approaches to mercury contamination in aquatic systems, and natural attenuation is a passive decontamination alternative. Capping seems to be an economical and effective remedial approach to mercury-contaminated aquatic systems. Dredging is an expensive remedial approach. However, for heavily polluted systems, dredging may be more effective. Natural attenuation, involving little or no cost, is a possible and very economical choice for less contaminated sites. Proper risk assessment is necessary to evaluate the effectiveness of remedial and passive decontamination methods as well as their potential adverse environmental effects. Modeling tools have a bright future in the remediation and passive decontamination of mercury contamination in aquatic systems. Existing mercury transport and transformation models were reviewed and compared

  19. Preliminary risk assessment of common-use pesticides using ...

    African Journals Online (AJOL)

    of PESTicides) models to predict pesticide exposure and effects on aquatic ecosystems due to spray drift. Vaalharts Irrigation. Scheme is ... to note that PRIMET only accounts for risk due to spray drift and therefore the risk might be ...... Environmental Effects Research Laboratory, Mid-Continent. Ecological Division, Duluth ...

  20. Principles and issues in radiological ecological risk assessment.

    Science.gov (United States)

    Jones, Daniel; Domotor, Stephen; Higley, Kathryn; Kocher, David; Bilyard, Gordon

    2003-01-01

    This paper provides a bridge between the fields of ecological risk assessment (ERA) and radioecology by presenting key biota dose assessment issues identified in the US Department of Energy's Graded Approach for Evaluating Radiation Doses to Aquatic and Terrestrial Biota in a manner consistent with the US Environmental Protection Agency's framework for ERA. Current radiological ERA methods and data are intended for use in protecting natural populations of biota, rather than individual members of a population. Potentially susceptible receptors include vertebrates and terrestrial plants. One must ensure that all media, radionuclides (including short-lived radioactive decay products), types of radiations (i.e., alpha particles, electrons, and photons), and pathways (i.e., internal and external contamination) are combined in each exposure scenario. The relative biological effectiveness of alpha particles with respect to deterministic effects must also be considered. Expected safe levels of exposure are available for the protection of natural populations of aquatic biota (10 mGy d(-1)) and terrestrial plants (10 mGy d(-1)) and animals (1 mGy d(-1)) and are appropriate for use in all radiological ERA tiers, provided that appropriate exposure assumptions are used. Caution must be exercised (and a thorough justification provided) if more restrictive limits are selected, to ensure that the supporting data are of high quality, reproducible, and clearly relevant to the protection of natural populations.

  1. An invasion risk map for non-native aquatic macrophytes of the Iberian Peninsula

    Directory of Open Access Journals (Sweden)

    Argantonio Rodríguez-Merino

    2017-05-01

    Full Text Available Freshwater systems are particularly susceptible to non-native organisms, owing to their high sensitivity to the impacts that are caused by these organisms. Species distribution models, which are based on both environmental and socio-economic variables, facilitate the identification of the most vulnerable areas for the spread of non-native species. We used MaxEnt to predict the potential distribution of 20 non-native aquatic macrophytes in the Iberian Peninsula. Some selected variables, such as the temperature seasonality and the precipitation in the driest quarter, highlight the importance of the climate on their distribution. Notably, the human influence in the territory appears as a key variable in the distribution of studied species. The model discriminated between favorable and unfavorable areas with high accuracy. We used the model to build an invasion risk map of aquatic macrophytes for the Iberian Peninsula that included results from 20 individual models. It showed that the most vulnerable areas are located near to the sea, the major rivers basins, and the high population density areas. These facts suggest the importance of the human impact on the colonization and distribution of non-native aquatic macrophytes in the Iberian Peninsula, and more precisely agricultural development during the Green Revolution at the end of the 70’s. Our work also emphasizes the utility of species distribution models for the prevention and management of biological invasions.

  2. Challenges in Risk Assessment: Quantitative Risk Assessment

    OpenAIRE

    Jacxsens, Liesbeth; Uyttendaele, Mieke; De Meulenaer, Bruno

    2016-01-01

    The process of risk analysis consists out of three components, risk assessment, risk management and risk communication. These components are internationally well spread by Codex Alimentarius Commission as being the basis for setting science based standards, criteria on food safety hazards, e.g. setting maximum limits of mycotoxins in foodstuffs. However, the technical component risk assessment is hard to elaborate and to understand. Key in a risk assessment is the translation of biological or...

  3. Toxicological assessment of aquatic ecosystems: application to watercraft contaminants in shallow water environments

    Science.gov (United States)

    Winger, P.V.; Kemmish, Michael J.

    2002-01-01

    -species and/or various life stages with different sensitivities to contaminants may offer a more conservative assessment of toxicity than single species testing. Using a ?weight of evidence? approach, the Sediment Quality Trial produces a robust evaluation of habitat quality and includes a measure of contaminant concentrations in the sediment, an assessment of sediment/pore-water toxicity to laboratory animals, and an evaluation of in situ biological assemblages. Field and laboratory procedures are available that can be used to ascertain habitat quality, identify contaminants causing environmental degradation and delineate aquatic systems requiring mitigation of protective efforts. These studies provide the scientific data that are integral to developing an environmental risk assessment of contaminants from watercraft use in shallow water systems.

  4. Influences of aquatic plants on the fate of the pyrethroid insecticide lambda-cyhalothrin in aquatic environments.

    Science.gov (United States)

    Hand, L H; Kuet, S F; Lane, M C; Maund, S J; Warinton, J S; Hill, I R

    2001-08-01

    Aquatic exposure assessments for pesticides are generally based on laboratory studies performed in water alone or water sediment systems. Although aquatic macrophytes, which include a variety of bryophytes, macroalgae, and angiosperms, can be a significant component of many aquatic ecosystems, their impact on pesticide fate is generally not included in exposure assessments. To investigate the influence of aquatic plants on the fate and behavior of the pyrethroid insecticide lambda (lambda)-cyhalothrin, two laboratory experiments (to assess adsorption and degradation) and an indoor microcosm study (to assess fate under semirealistic conditions) were conducted. In the laboratory studies, adsorption to macrophytes was extensive and essentially irreversible, and degradation occurred rapidly by cleavage of the ester bond. In the indoor microcosm, which contained water, sediment, and macrophytes from a pond, degradation was also rapid, with DT50 and DT90 values of less than 3 and 19 h, respectively, for dissipation from the water column and of less than 3 and 56 h, respectively, for the whole system. For adsorptive and readily degraded pesticides like lambda-cyhalothrin, we conclude that macrophytes have considerable influence on fate and behavior in surface waters.

  5. Prioritizing stream types according to their potential risk to receive crop plant material--A GIS-based procedure to assist in the risk assessment of genetically modified crops and systemic insecticide residues.

    Science.gov (United States)

    Bundschuh, Rebecca; Kuhn, Ulrike; Bundschuh, Mirco; Naegele, Caroline; Elsaesser, David; Schlechtriemen, Ulrich; Oehen, Bernadette; Hilbeck, Angelika; Otto, Mathias; Schulz, Ralf; Hofmann, Frieder

    2016-03-15

    Crop plant residues may enter aquatic ecosystems via wind deposition or surface runoff. In the case of genetically modified crops or crops treated with systemic pesticides, these materials may contain insecticidal Bt toxins or pesticides that potentially affect aquatic life. However, the particular exposure pattern of aquatic ecosystems (i.e., via plant material) is not properly reflected in current risk assessment schemes, which primarily focus on waterborne toxicity and not on plant material as the route of uptake. To assist in risk assessment, the present study proposes a prioritization procedure of stream types based on the freshwater network and crop-specific cultivation data using maize in Germany as a model system. To identify stream types with a high probability of receiving crop materials, we developed a formalized, criteria-based and thus transparent procedure that considers the exposure-related parameters, ecological status--an estimate of the diversity and potential vulnerability of local communities towards anthropogenic stress--and availability of uncontaminated reference sections. By applying the procedure to maize, ten stream types out of 38 are expected to be the most relevant if the ecological effects from plant-incorporated pesticides need to be evaluated. This information is an important first step to identifying habitats within these stream types with a high probability of receiving crop plant material at a more local scale, including accumulation areas. Moreover, the prioritization procedure developed in the present study may support the selection of aquatic species for ecotoxicological testing based on their probability of occurrence in stream types having a higher chance of exposure. Finally, this procedure can be adapted to any geographical region or crop of interest and is, therefore, a valuable tool for a site-specific risk assessment of crop plants carrying systemic pesticides or novel proteins, such as insecticidal Bt toxins, expressed

  6. Biological assessment of aquatic pollution: a review, with emphasis on plants as biomonitors.

    Science.gov (United States)

    Doust, J L; Schmidt, M; Doust, L L

    1994-05-01

    In a number of disciplines including ecology, ecotoxicology, water quality management, water resource management, fishery biology etc., there is significant interest in the testing of new materials, environmental samples (of water or sediments) and specific sites, in terms of their effects on biota. In the first instance, we consider various sources of aquatic pollution, sources typically associated with developed areas of the world. Historically, much water quality assessment has been performed by researchers with a background in chemistry or engineering, thus chemical analysis was a dominant form of assessment. However, chemical analyses, particularly of such materials as organochlorines and polyaromatic hydrocarbons can be expensive, and local environmental factors may cause the actual exposure of an organism to be little correlated with chemical concentrations in the surrounding water or sediments. To a large extent toxicity testing has proceeded independently of environmental quality assessment in situ, and the work has been done by different, and differently-trained researchers. Here we attempt to bring together the various forms of biological assessment of aquatic pollution, because in our opinion it is worth developing a coherent framework for the application of this powerful tool. Biotic assessment in its most primitive form involves the simple tracking of mortality in exposed organisms. However, in most natural environments it is extended, chronic exposure to contaminants that has the most wide-ranging and irreversible repercussions--thus measures of sub-lethal impairment are favoured. From an ecological standpoint, it is most valuable to assess ecological effects by direct study of in situ contaminant body burdens and impairment of growth and reproduction compared with 'clean' sites. A distinction is made here between bioindication and biomonitoring, and a case is made for including aquatic macrophytes (angiosperms) in studies of contaminant levels and

  7. Pre-operational monitoring and assessment of aquatic biota in environmental impact assessment studies

    International Nuclear Information System (INIS)

    Ghosh, T.K.

    2001-01-01

    Environmental Impact Assessment (EIA) is an ideal anticipatory mechanism which establishes quantitative values for parameters indicating the quality of the environment before, during and after the proposed developmental activity, thus allowing measures that ensure environmental compatibility in developmental process. EIA studies have been made mandatory in India by MoEF, GOI for expansion/modernization of any activity or development of new project. Biological assessment, under aquatic environment, is one of the major components of EIA and it requires systematic way of data collection. Generation of substantial baseline data can then be used for formulation of subsequent stages of EIA, viz. prediction, evaluation, impact statements and environmental management plan (EMP). However, a definite approach towards biological studies under EIA during pre-operational stage has not been outlined in available guidelines. (author)

  8. Pre-operational monitoring and assessment of aquatic biota in environmental impact assessment studies

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, T K [Ecotechnology Division, National Environmental Engineering Research Inst., Nagpur (India)

    2001-06-01

    Environmental Impact Assessment (EIA) is an ideal anticipatory mechanism which establishes quantitative values for parameters indicating the quality of the environment before, during and after the proposed developmental activity, thus allowing measures that ensure environmental compatibility in developmental process. EIA studies have been made mandatory in India by MoEF, GOI for expansion/modernization of any activity or development of new project. Biological assessment, under aquatic environment, is one of the major components of EIA and it requires systematic way of data collection. Generation of substantial baseline data can then be used for formulation of subsequent stages of EIA, viz. prediction, evaluation, impact statements and environmental management plan (EMP). However, a definite approach towards biological studies under EIA during pre-operational stage has not been outlined in available guidelines. (author)

  9. Nutrition, Illness, and Injury in Aquatic Sports

    NARCIS (Netherlands)

    Pyne, D.B.; Verhagen, E.A.L.M.; Mountjoy, M.

    2014-01-01

    In this review, we outline key principles for prevention of injury and illness in aquatic sports, detail the epidemiology of injury and illness in aquatic athletes at major international competitions and in training, and examine the relevant scientific evidence on nutrients for reducing the risk of

  10. An alternative approach to risk rank chemicals on the threat they pose to the aquatic environment.

    Science.gov (United States)

    Johnson, Andrew C; Donnachie, Rachel L; Sumpter, John P; Jürgens, Monika D; Moeckel, Claudia; Pereira, M Gloria

    2017-12-01

    This work presents a new and unbiased method of risk ranking chemicals based on the threat they pose to the aquatic environment. The study ranked 12 metals, 23 pesticides, 11 other persistent organic pollutants (POPs), 13 pharmaceuticals, 10 surfactants and similar compounds and 2 nanoparticles (total of 71) of concern against one another by comparing their median UK river water and median ecotoxicity effect concentrations. To complement this, by giving an assessment on potential wildlife impacts, risk ranking was also carried out by comparing the lowest 10th percentile of the effects data with the highest 90th percentile of the exposure data. In other words, risk was pared down to just toxicity versus exposure. Further modifications included incorporating bioconcentration factors, using only recent water measurements and excluding either lethal or sub-lethal effects. The top ten chemicals, based on the medians, which emerged as having the highest risk to organisms in UK surface waters using all the ecotoxicity data were copper, aluminium, zinc, ethinylestradiol (EE2), linear alkylbenzene sulfonate (LAS), triclosan, manganese, iron, methomyl and chlorpyrifos. By way of contrast, using current UK environmental quality standards as the comparator to median UK river water concentrations would have selected 6 different chemicals in the top ten. This approach revealed big differences in relative risk; for example, zinc presented a million times greater risk then metoprolol and LAS 550 times greater risk than nanosilver. With the exception of EE2, most pharmaceuticals were ranked as having a relatively low risk. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. The use of terrestrial and aquatic microcosms and mesocosms for the ecological risk assessment of veterinary medicinal products

    NARCIS (Netherlands)

    Brink, van den P.J.; Tarzona, J.V.; Solomon, K.R.; Knacker, T.; Brink, van den N.W.; Brock, T.C.M.; Hoogland, J.P.

    2005-01-01

    In this paper, we investigate the applicability of experimental model ecosystems (microcosms and mesocosms) for the ecological risk assessment of veterinary medicinal products (VMPs). VMPs are used in large quantities, but the assessment of associated risks to the environment is limited, although

  12. Combining exposure and effect modeling into an integrated probabilistic environmental risk assessment for nanoparticles.

    Science.gov (United States)

    Jacobs, Rianne; Meesters, Johannes A J; Ter Braak, Cajo J F; van de Meent, Dik; van der Voet, Hilko

    2016-12-01

    There is a growing need for good environmental risk assessment of engineered nanoparticles (ENPs). Environmental risk assessment of ENPs has been hampered by lack of data and knowledge about ENPs, their environmental fate, and their toxicity. This leads to uncertainty in the risk assessment. To deal with uncertainty in the risk assessment effectively, probabilistic methods are advantageous. In the present study, the authors developed a method to model both the variability and the uncertainty in environmental risk assessment of ENPs. This method is based on the concentration ratio and the ratio of the exposure concentration to the critical effect concentration, both considered to be random. In this method, variability and uncertainty are modeled separately so as to allow the user to see which part of the total variation in the concentration ratio is attributable to uncertainty and which part is attributable to variability. The authors illustrate the use of the method with a simplified aquatic risk assessment of nano-titanium dioxide. The authors' method allows a more transparent risk assessment and can also direct further environmental and toxicological research to the areas in which it is most needed. Environ Toxicol Chem 2016;35:2958-2967. © 2016 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC. © 2016 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.

  13. Bioindication in natural-like aquatic ecosystems: endocrine disruptors in outdoor microcosms. Status-report

    Energy Technology Data Exchange (ETDEWEB)

    Schramm, K.W.; Severin, G.F.

    2002-07-01

    Over the past few decades scientists have shown that the hormone system of a wide range of organisms can be affected by numerous environmental chemicals. Society strongly demands studies about the fate and effects of such endocrine disruptors on the aquatic environment. It has been scientifically accepted that risk assessment studies done in aquatic microcosms can be used to extrapolate the potential impact of the tested compound on natural ecosystems. Realistic exposure situations were simulated and screening methods as well as analytical methods with high accuracy were applied on water and sediment. For the comprehensive risk assessment as many trophic levels as possible have to be investigated. Changes in the population dynamics and the community structure serve as ecotoxicological endpoints. Modelling the concentrations of the chemicals in the different aquatic compartments complements and confirms the analytical diagnostics. A directed design of the analytical procedures according to amount of sample and limits of determination becomes possible. Bridging acute and chronic time scales in effect diagnostics the 'area under the curve' - approach has been followed in combination with multivariate statistics. Haber's rule have been applied to the results about complex effect- and exposure-conditions. In some cases the interpretation of results becomes more easy and clear by this approach. (orig.)

  14. Assessing the risk associated with the presence of emerging organic contaminants in sludge-amended soil: A country-level analysis.

    Science.gov (United States)

    Thomaidi, Vasiliki S; Stasinakis, Athanasios S; Borova, Viola L; Thomaidis, Nikolaos S

    2016-04-01

    Greece was used as case study and the environmental risk associated with the existence of 99 emerging organic contaminants (EOCs) in sludge-amended soil was estimated using risk quotient (RQ) approach. Data on the concentration levels of EOCs in sewage sludge was collected after literature review. Chemical analyses were also conducted for 50 pharmaceuticals and illicit drugs in sludge samples from Athens Sewage Treatment Plant. Risk assessment was based on both terrestrial and aquatic acute toxicity data, using both the maximum and the average measured concentrations of the target compounds. EC50/LC50 values were collected through literature review or using the ECOSAR program in cases that experimental values were not available. Triclosan seems to pose an environmental risk on the soil environment, as its RQ values exceeded 1, both in terrestrial and aquatic toxicity data based risk assessment. Calculations based on aquatic toxicity data showed that another eleven compounds had RQs higher than 1, most of them belonging to the classes of synthetic phenolic compounds and siloxanes. Tetradecamethylhexasiloxane presented the highest RQ, while high RQs were also calculated for decamethylcyclopentasiloxane and caffeine. No environmental risk for the terrestrial environment is expected due to the individual action of illicit drugs, perfluorinated compounds and benzotriazoles. The sludge source and the day of sampling affected the estimated threat due to nonylphenolic compounds; however these factors did not affect the estimated risk for siloxanes, caffeine and ofloxacin. Calculation of RQ values for the mixture of EOCs, using either the maximum or the average concentrations, far exceeded 1 (253 and 209, respectively), indicating a presumable threat for the terrestrial environment due to the baseline toxicity of these compounds. Countries that reuse sludge for agricultural purposes should include specific EOCs in national monitoring campaigns and study more thoroughly on

  15. Development of aquatic plant bioassays for rapid screening and interpretive risk assessments of metal mining liquid waste waters

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, H G [Saskatchewan Research Council, Saskatoon, SK (Canada); Nyholm, N [Technical Univ. of Denmark, Lyngby (Denmark). Lab. of Environmental Science and Ecology; Huang, P M [Saskatchewan Univ., Saskatoon (Canada). Saskatchewan Inst. of Pedology

    1996-12-31

    The use of non-photosynthetic organisms alone to describe environmental impact has been recognized by regulatory agencies, industry and academia as being totally inadequate both in Europe and North America. Lack of adequate testing methods for photosynthetic aquatic organisms has been recognized as a major impediment to the successful regulation and safe use of pesticides and waste water discharges and is of even more concern to the metal mining industry due to the non-biodegradable nature of its waste streams. This work shows that the chemical effluent limits set in the `Metal mining liquid effluent regulations and guidelines` provide variable protection of aquatic photosynthetic organisms and aquatic effects of the more toxic metals (e.g., copper, nickel, and zinc) may occur at levels that are one to two orders of magnitude lower than present limits. To establish adequate protection of receiving water bodies it may be necessary to establish site-specific criteria taking into consideration toxicity modifying factors of individual sites. If the establishment of such criteria is determined with a host of ecologically relevant organisms, it will be possible to design effective environmental protection at the least possible cost. (author). 17 refs., 2 tabs.

  16. Development of aquatic plant bioassays for rapid screening and interpretive risk assessments of metal mining liquid waste waters

    International Nuclear Information System (INIS)

    Peterson, H.G.; Nyholm, N.; Huang, P.M.

    1995-01-01

    The use of non-photosynthetic organisms alone to describe environmental impact has been recognized by regulatory agencies, industry and academia as being totally inadequate both in Europe and North America. Lack of adequate testing methods for photosynthetic aquatic organisms has been recognized as a major impediment to the successful regulation and safe use of pesticides and waste water discharges and is of even more concern to the metal mining industry due to the non-biodegradable nature of its waste streams. This work shows that the chemical effluent limits set in the 'Metal mining liquid effluent regulations and guidelines' provide variable protection of aquatic photosynthetic organisms and aquatic effects of the more toxic metals (e.g., copper, nickel, and zinc) may occur at levels that are one to two orders of magnitude lower than present limits. To establish adequate protection of receiving water bodies it may be necessary to establish site-specific criteria taking into consideration toxicity modifying factors of individual sites. If the establishment of such criteria is determined with a host of ecologically relevant organisms, it will be possible to design effective environmental protection at the least possible cost. (author). 17 refs., 2 tabs

  17. Contribution o the assessment of the environmental risk associated with uranium releases in the Ritord drainage basin

    International Nuclear Information System (INIS)

    Beaugelin-Seiller, K.; Garnier-Laplace, J.; Gilbin, R.; Della-Vedova, C.

    2008-01-01

    This document reports the application to aquatic environments and more particularly to the case of a drainage basin of methods of assessment of the environmental risk presented in another report. The objective is to determine the environmental risk related to releases of uranium from ancient mining sites. The method is applied to available data to diagnose a possible chemical and/or radiological risk due to these releases. Should the occasion occurs, probabilistic approaches are used to refine the assessment of the possible risk identified by the screening. After a presentation of the context, the different screening steps are reported: methodology (exposure analysis, effect analysis, and risk characterization), deterministic characterization of the chronic radiological risk, deterministic characterization of the chronic chemical risk. The next part reports the probabilistic assessment of the chemical or radiological risk. In conclusion, the authors indicate actions to be performed to better analyse exposures, and desirable actions to better analyse effects

  18. Site remediation guided by risk assessment

    International Nuclear Information System (INIS)

    McBean, E.A.; Gowing, A.; Pieczonka, G.

    2002-01-01

    'Full text:' Risk assessment (RA) provides an effective tool for identifying hazards with respect to human health and ecological receptors, hazards that arise from contaminants in the environment. Risk assessment relies upon: hazard identification/problem formulation; toxicity assessment; exposure assessment; and risk characterization. Hence, risk assessment provides an effective guide for site remediation through the identification of the associated risks arising from pre- and potential post-remediation activities. As a demonstration of this decision-making process, a site-specific risk assessment (SSRA) was performed on a chemical producing facility. Historical waste practices during the production of DDT compounds resulted in impacted site soils and sediment and soils of the creek passing through the facility. The purpose of the SSRA was to derive site-specific cleanup values for the impacted on-site soils, creek sediments, and embankment soils, incorporating human and ecological receptors associated with the environmental media. The human exposure pathways considered were dermal contact, incidental ingestion, and inhalation of the various soils. The potential human receptors were industrial workers, construction workers, trespassers, and off-site residents. Ingestion of fish from the creek by residents was also evaluated in the human health risk assessment (HHRA). Food web analyses were used to evaluate the impact of exposure to chemical compounds in aquatic sediments and related soils by ecological receptors such as the great blue heron, raccoon, and mink. The SSRA involved modelling the daily chemical intake by receptors and the transfer of chemicals to identified secondary media (e.g., ambient air or animal tissues) that are also potential exposure media. These models, while using the site-specific chemical data in the source media, possess uncertainties associated with default parameters that are only approximations and not site-specific (e.g., soil

  19. Effects of fishing technique on assessing species composition in aquatic systems in semi-arid Brazil

    Directory of Open Access Journals (Sweden)

    ESF Medeiros

    Full Text Available In most ecological field research, appropriate sampling is critical for the understanding of processes underlying fish populations and communities, and is even more important in heterogeneous environments such as the aquatic systems of the semi-arid region of Brazil. This study intends to make a contribution to the development of sampling programs and gear selection in aquatic systems of semi-arid Brazil by evaluating the effects of different fishing techniques on the assessment of richness and composition of the fish fauna in selected aquatic environments. Six sites were selected to represent typical artificial (reservoirs and natural (intermittent streams environments and four different types of sampling gear were applied to each site during four occasions. The present study shows that when selecting sampling techniques to be used in aquatic systems in semi-arid Brazil, one must consider the objectives of the study, e.g. ecological or taxonomic, in order to decide on inclusion of rare species in the sampling population. Also, the effect of the sampling gear on natural abundances of fish must be considered given that some sampling techniques are highly detrimental to fish population numbers.

  20. Toxic potential of the emerging contaminant nicotine to the aquatic ecosystem.

    Science.gov (United States)

    Oropesa, Ana Lourdes; Floro, António Miguel; Palma, Patrícia

    2017-07-01

    Nicotine is a "life-style compound" widely consumed by human populations and, consequently, often found in surface waters. This fact presents a concern for possible effects in the aquatic ecosystems. The objective of this study was to assess the potential lethal and sublethal toxicity of nicotine in aquatic organisms from different trophic levels (Vibrio fischeri, Pseudokirchneriella subcapitata, Thamnocephalus platyurus, and Daphnia magna). The bioassays were performed by exposing the organisms to concentrations of nicotine in a range of 0.5-1000 μg/L. Results showed that nicotine, at tested concentration, was not acutely toxic to V. fischeri and T. platyurus. On the contrary, this substance exhibited toxicity to P. subcapitata and Daphnia magna. Thus, concentrations of nicotine of 100 and 200 μg/L promoted an inhibition in the growth of P. subcapitata. In addition, a concentration of 100 μg/L nicotine acted on the reproduction of the crustacean D. magna, by decreasing the number of juveniles produced by female. On the other hand, the results showed that concentrations equal to or greater than 10 μg/L induced the production of daphnids male offspring, which may indicate that nicotine is a weak juvenoid compound of the D. magna endocrine system. Furthermore, the result showed that concentrations tested of this chemical have the capacity to revert the effect of fenoxycarb, a strong juvenoid chemical insecticide. The results of the study revealed that nicotine can induce several changes in some of the most important key groups of the aquatic compartment, which can compromise, in a short time, the balance of aquatic ecosystem. Finally, a preliminary environmental risk assessment of this stimulant was performed from the highest measured concentration in surface water and the no observable effect concentration value in the most sensitive species, i.e., D. magna. This process revealed that nicotine can produce an important risk to aquatic organisms.

  1. Supplementary guidance for the investigation and risk-assessment of potentially contaminated sediments

    Energy Technology Data Exchange (ETDEWEB)

    Baker, K.; Spadaro, P.; Starr, J.; Thomas, J. [Arcadis, Arnhem (Netherlands); Hildenbrand, B. [Energy Institute, London (United Kingdom); Smith, J.W.N.; Dunk, M.; Grosjean, T.; De Ibarra, M.; Medve, A.; Den Haan, K.

    2013-11-15

    This report provides guidance on the investigation and assessment of potentially contaminated sediments, focusing on the inland, estuarine and coastal environments. It is designed as a complementary, technical companion document to Energy Institute and CONCAWE (2013) report 'Guidance on characterising, assessing and managing risks associated with potentially contaminated sediments' (Report E1001). It highlights a number of significant challenges associated with assessing the aquatic and water bottom environment, which means that a sediment assessment should not be undertaken lightly. Where a decision is taken to undertake a site assessment, this report promotes the use of an iterative process of Conceptual Site Model (CSM) development, data collection, data evaluation and a continuous CSM refinement, taking into account the results obtained. Risk-based assessment is described throughout the report, entailing four tiers of assessment, which progress from a qualitative assessment (Tier 0) through to a detailed cause-attribution assessment (Tier 3), in which the decrease in uncertainty in the assessment process is balanced against the increased costs and timescales with progress to a higher tier assessment. The application of this evidence-driven risk-based approach to sediment site management, including remedial control measures, should help to overcome at least some of the challenges associated with contaminants in sediment sites in Europe, and promote a sustainable approach to sediment management on a case-by-case basis.

  2. Predicting the environmental risks of radioactive discharges from Belgian nuclear power plants

    International Nuclear Information System (INIS)

    Vandenhove, H.; Sweeck, L.; Vives i Batlle, J.; Wannijn, J.; Van Hees, M.; Camps, J.; Olyslaegers, G.; Miliche, C.; Lance, B.

    2013-01-01

    An environmental risk assessment (ERA) was performed to evaluate the impact on non-human biota from liquid and atmospheric radioactive discharges by the Belgian Nuclear Power Plants (NPP) of Doel and Tihange. For both sites, characterisation of the source term and wildlife population around the NPPs was provided, whereupon the selection of reference organisms and the general approach taken for the environmental risk assessment was established. A deterministic risk assessment for aquatic and terrestrial ecosystems was performed using the ERICA assessment tool and applying the ERICA screening value of 10 μGy h −1 . The study was performed for the radioactive discharge limits and for the actual releases (maxima and averages over the period 1999–2008 or 2000–2009). It is concluded that the current discharge limits for the Belgian NPPs considered do not result in significant risks to the aquatic and terrestrial environment and that the actual discharges, which are a fraction of the release limits, are unlikely to harm the environment. -- Highlights: • Impact of radioactive discharges by the Belgian NPPs of Doel and Tihange on wildlife was evaluated. • Deterministic risk assessment for aquatic and terrestrial ecosystems performed with the ERICA tool. • NPP discharge limits do not result in significant risks to the aquatic and terrestrial environment. • Actual discharges, a fraction of the release limits, are unlikely to harm the environment

  3. Environmental assessment of surfactant using aquatic microcosm system; Konuma no suiken seitaikei ni oyobosu kaimen kasseizai no microcosm system wo mochiita hyoka

    Energy Technology Data Exchange (ETDEWEB)

    Takamatsu, Y.; Matsumura, M. [University of Tsukuba, Tsukuba (Japan); Inamori, Y. [National Institute for Environmental Studies, Tsukuba (Japan); Sudo, R. [Tohoku University, Sendai (Japan). Faculty of Engineering

    1995-10-10

    Microcosm system was applied to assess effect of surfactants on aquatic ecosystem. Surfactants such as LAS and Soap were added to an aquatic flask-size microcosm consisting of four species of bacteria as decomposer, one species of ciliate protozoa (Cyclidium glaucoma), two rotifers (Philodina sp. and Lepadella sp.) and one aquatic oligochaete (Aeolosoma hemprichi) as predator, and a green alga (Chlorella sp.) and a filamentous blue-green alga (Tolypothrix sp.) as producer. In the system, NOEC (no observed effect concentration) of LAS was below 1.5mg{center_dot}l{sup -1}, whereas soap was below 30mg{center_dot}l{sup -1}. Microcosm test is a pertinent tool to assess the effect of surfactant on ecosystem because microcosm test makes it possible to evaluate the effect of surfactant from a viewpoint of the interaction of microorganisms, material cycle and energy flow. With these respects, microcosm test is useful environmental assessment method which can reflect aquatic ecosystem. 10 refs., 6 figs., 1 tab.

  4. Uranium in Aquatic Sediments; Where are the Guidelines?

    Energy Technology Data Exchange (ETDEWEB)

    Iles, M., E-mail: michelle.iles@ewlsciences.com.au [Earth, Water and Life Sciences Pty Ltd, Darwin (Australia)

    2014-05-15

    Sediment data has been collected on and around the Ranger uranium mine for over 20 years. This included studies such as annual routine monitoring of metal concentrations, adsorption-desorption conditions, phase associations, transport mechanism, release potential, bioaccumulation and bioconcentration etc. Building on this, performance-based monitoring of the sediments from on-site water bodies was undertaken to ascertain the spatial and temporal distribution of contaminants as a basis to determine ecological risks associated with the sediments which in turn underpins closure planning. Highlights of these studies are interpreted using an ecological risk assessment approach. Ideally interpretation of aquatic sediment contamination in Australia is guided by the national guidelines for water quality and a weighted multiple lines of evidence approach whereby the chemistry of sediments is compared with reference and guideline values and predictions of bio-availability, and biological effects data allows cause and effect relationships to be derived. However, where uranium in aquatic sediments is concerned there is a lack of national (Australian) and international guidelines that are applicable to tropical sediments and the biological effects data available are limited or confounded by other variables. In the absence of clear uranium guidelines for sediments an internationally reported “Predicted No Effect Concentration” (PNEC) for uranium in temperate sediments was used as a “pseudo-guideline” value to identify sites with concentrations that might present an environmental risk and that should be further investigated. The applicability of the PNEC to the tropical Ranger site was understandably questioned by stakeholders and peers. The issues raised highlighted the need for international guidelines for uranium in aquatic sediments for tropical and temperate climates and an internationally accepted approach for deriving same. (author)

  5. An assessment of aquatic radiation pathways in Ireland, 2008 Environment Report RL 16/08

    International Nuclear Information System (INIS)

    Clyne, F.J.; Garrod, C.J.; Jeffs, T.M; Jenkinson, S.B

    2009-05-01

    This report provides an assessment of aquatic radiation exposure pathways in Ireland relating to anthropogenic radioactivity in the Irish Sea. It comprises the results of a habits survey undertaken on the north east coast of Ireland; a dose assessment using the habits survey data; 2007 monitoring data provided by the RPII; and recommendations for changes to the 2007 east coast of Ireland marine monitoring programme conducted by the RPII

  6. Ozark-Ouachita Highlands Assessment: Aquatic Conditions

    Science.gov (United States)

    Forest Service U.S. Department of Agriculture

    1999-01-01

    This publication provides citizens, private and public organizations, scientists, and others with information about the aquatic conditions in or near national forests in the Ozark-Ouachita Highlands: the Mark Twain in Missouri, the Ouachita in Arkansas and Oklahoma, and the Ozark-St. Francis National Forests in Arkansas. This report includes water quality analyses,...

  7. Risk assessment of hazardous impacts on urbanization and industrialization activities based upon toxic substances

    Directory of Open Access Journals (Sweden)

    T. Salem

    2016-03-01

    Full Text Available A risk assessment study was conducted to predict the expected hazardous influence on the ecosystem resulted from urbanization and industrialization activities at Helwan area, Egypt. To achieve these goals, soils, plants and water samples were collected from Helwan area, and their total concentrations of inorganic contaminants (Cd, Cr, Co, Cu, Fe, Mn, Ni, Pb, and Zn and organic pollutants; such as Phenol and hydrocarbons were measured. The obtained results showed that, the concentrations of organic contaminants in water streams and surrounding soils recorded high concentration values than the permissible limits, while inorganic elements were within the safe limits for irrigation. In addition, soils irrigated with the effluents of industrial units recorded high values of inorganic and organic contaminants. Consequently, the levels of these contaminants were high in plant tissues grown thereon; especially the edible parts. Risk assessment based on available Predicted No Effect Concentration values for the aquatic and terrestrial environment was performed. Inorganic elements were expected to cause serious hazard problems for both aquatic organisms and soil microorganisms. The impact of these pollutants on human health was calculated using daily metals intake of inorganic metals via consumption of edible plants. Hazard index values proved that concentrations of Cr may cause serious hazard problems for humans in this area; especially, children.

  8. Microencapsulated bio-markers for assessment of stress conditions in aquatic organisms in vivo

    International Nuclear Information System (INIS)

    Sadovoy, A; Teh, C; Korzh, V; Escobar, M; Meglinski, I

    2012-01-01

    Bio-compatible polyelectrolyte sub-micron micro-capsules have been developed and applied to deliver fluorescent dyes into zebrafish larvae heart via direct injection in pericardium in vivo. The capsules shell performed as a membrane is impermeable for florescence dyes suspended within the capsules and is permeable for the external environment. Thus, the direct contact of fluorescence dyes with cells/tissues is excluded and the issues associated with the toxicity of fluorescence dyes and their bio-compatibility can be omitted. The hybrid laser-scanning imaging system combined with the fluorescent microscope has been used to monitor the paths of micro-capsules within zebrafish circulation system. We demonstrate that micro-capsules circulate in tissues, including brain and trunk, with no blood flow disruptions or any other deleterious effect on its cardiac function. The developed approach has a great potential to use of encapsulated bio-markers as a diagnostic tool in vascular biology and medicine as well as for monitoring of aquatic pollution and ecological risk assessment in eco-toxicological studies

  9. Providing Aquatic Organism Passage in Vertically Unstable Streams

    Directory of Open Access Journals (Sweden)

    JanineM Castro

    2016-04-01

    Full Text Available Aquatic organism passage barriers have been identified as one of the key impediments to recovery of salmonids and other migratory aquatic organisms in the Pacific Northwest of the United States. As such, state and federal agencies invest millions of dollars annually to address passage barriers. Because many barriers function as ad hoc grade control structures, their removal and/or replacement can unwittingly set off a cascade of effects that can negatively impact the very habitat and passage that project proponents seek to improve. The resultant vertical instability can result in a suite of effects that range from floodplain disconnection and loss of backwater and side channel habitat, to increased levels of turbidity. Risk assessment, including an evaluation of both the stage of stream evolution and a longitudinal profile analysis, provides a framework for determining if grade control is warranted, and if so, what type of structure is most geomorphically appropriate. Potential structures include placement of large wood and roughness elements, and constructed riffles, step-pools, and cascades. The use of structure types that mimic natural reach scale geomorphic analogues should result in improved aquatic organism passage, increased structural resilience, and reduced maintenance.

  10. Wastewater treatment plant effluent as a source of microplastics: review of the fate, chemical interactions and potential risks to aquatic organisms.

    Science.gov (United States)

    Ziajahromi, Shima; Neale, Peta A; Leusch, Frederic D L

    2016-11-01

    Wastewater treatment plant (WWTP) effluent has been identified as a potential source of microplastics in the aquatic environment. Microplastics have recently been detected in wastewater effluent in Western Europe, Russia and the USA. As there are only a handful of studies on microplastics in wastewater, it is difficult to accurately determine the contribution of wastewater effluent as a source of microplastics. However, even the small amounts of microplastics detected in wastewater effluent may be a remarkable source given the large volumes of wastewater treatment effluent discharged to the aquatic environment annually. Further, there is strong evidence that microplastics can interact with wastewater-associated contaminants, which has the potential to transport chemicals to aquatic organisms after exposure to contaminated microplastics. In this review we apply lessons learned from the literature on microplastics in the aquatic environment and knowledge on current wastewater treatment technologies, with the aim of identifying the research gaps in terms of (i) the fate of microplastics in WWTPs, (ii) the potential interaction of wastewater-based microplastics with trace organic contaminants and metals, and (iii) the risk for aquatic organisms.

  11. Ecological risk assessment of a site contaminated with petroleum hydrocarbons

    International Nuclear Information System (INIS)

    Starodub, M.E.; Feniak, N.A.; Willes, R.F.; Moore, C.E.; Mucklow, L.

    1995-01-01

    The aquatic and terrestrial health risks associated with petroleum contamination on a decommissioned military base, contaminated with products ranging from Bunker C oil to aviation fuel, were assessed using a methodology whereby an analytical measurement of total petroleum hydrocarbons (TPH) could be correlated with compositional characterization and thus with toxicity. The constituents of petroleum hydrocarbon contamination represent wide ranges of physical-chemical properties, environmental fate, and toxicity. The composition of TPH can vary greatly, dependent on the sources or fuel types and the interaction of age as well as site- and chemical-specific characteristics in determining the impact of weathering processes. Therefore, a bulk sum analysis of TPH cannot be related to toxicity without characterization of its composition and association of the constituents, and therefore composition, with actual toxicity data. To address this need, the constituents of TPH were represented by surrogate chemicals, with selection based on structure-activity relationships and available toxicity data. Toxicological profiles were developed from governmental regulations and on the published literature for both the aquatic and terrestrial media. Risk characterization consisted of a comparison of water concentration limits and exposure limits, developed for each surrogate, to estimated surrogate concentrations throughout the site. The concentrations of surrogates were extrapolated from TPH composition characterization analyses, conducted at a select number of sampling locations, to bulk sum analyses of TPH at related sampling locations

  12. Mercury bioaccumulation along food webs in temperate aquatic ecosystems colonized by aquatic macrophytes in south western France.

    Science.gov (United States)

    Gentès, Sophie; Maury-Brachet, Régine; Guyoneaud, Rémy; Monperrus, Mathilde; André, Jean-Marc; Davail, Stéphane; Legeay, Alexia

    2013-05-01

    Mercury (Hg) is considered as an important pollutant for aquatic systems as its organic form, methylmercury (MeHg), is easily bioaccumulated and bioamplified along food webs. In various ecosystems, aquatic periphyton associated with macrophyte was identified as an important place for Hg storage and methylation by microorganisms. Our study concerns temperate aquatic ecosystems (South Western France) colonized by invasive macrophytes and characterized by high mercury methylation potentials. This work establishes original data concerning Hg bioaccumulation in organisms (plants, crustaceans, molluscs and fish) from five contrasting ecosystems. For low trophic level species, total Hg (THg) concentrations were low (from 27±2ngTHgg(-1)dw in asiatic clam Corbicula fluminea to 418±114ngTHgg(-1)dw in crayfish Procambarus clarkii). THg concentrations in some carnivorous fish (high trophic level) were close to or exceeded the International Marketing Level (IML) with values ranging from 1049±220ngTHgg(-1)dw in pike perch muscle (Sander lucioperca) to 3910±1307ngTHgg(-1)dw in eel muscle (Anguilla Anguilla). Trophic levels for the individuals were also evaluated through stable isotope analysis, and linked to Hg concentrations of organisms. A significant Hg biomagnification (r(2)= 0.9) was observed in the Aureilhan lake, despite the absence of top predator fish. For this site, Ludwigia sp. periphyton, as an entry point of Hg into food webs, is a serious hypothesis which remains to be confirmed. This study provides a first investigation of Hg transfer in the ecosystems of south western France and allows the assessment of the risk associated with the presence of Hg in aquatic food webs. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Environmental risk assessment of pesticides in the River Madre de Dios, Costa Rica using PERPEST, SSD, and msPAF models

    NARCIS (Netherlands)

    Ramo, R.; Brink, van den P.J.; Ruepert, C.; Castillo, L.; Gunnarsson, J.S.

    2016-01-01

    This study assesses the ecological risks (ERA) of pesticides to aquatic organisms in the River Madre de Dios (RMD), which receives surface runoff water from banana, pineapple, and rice plantations on the Caribbean coast of Costa Rica. Water samples collected over 2 years at five sites in the RMD

  14. Chapter 6: Selenium Toxicity to Aquatic Organisms

    Science.gov (United States)

    This chapter addresses the characteristics and nature of organic selenium (Se) toxicity to aquatic organisms, based on the most current state of scientific knowledge. As such, the information contained in this chapter relates to the 'toxicity assessment' phase of aquatic ecologi...

  15. Transcriptomic resources for environmental risk assessment: a case study in the Venice lagoon

    International Nuclear Information System (INIS)

    Milan, M.; Pauletto, M.; Boffo, L.; Carrer, C.; Sorrentino, F.; Ferrari, G.; Pavan, L.; Patarnello, T.; Bargelloni, L.

    2015-01-01

    The development of new resources to evaluate the environmental status is becoming increasingly important representing a key challenge for ocean and coastal management. Recently, the employment of transcriptomics in aquatic toxicology has led to increasing initiatives proposing to integrate eco-toxicogenomics in the evaluation of marine ecosystem health. However, several technical issues need to be addressed before introducing genomics as a reliable tool in regulatory ecotoxicology. The Venice lagoon constitutes an excellent case, in which the assessment of environmental risks derived from the nearby industrial activities represents a crucial task. In this context, the potential role of genomics to assist environmental monitoring was investigated through the definition of reliable gene expression markers associated to chemical contamination in Manila clams, and their subsequent employment for the classification of Venice lagoon areas. Overall, the present study addresses key issues to evaluate the future outlooks of genomics in the environmental monitoring and risk assessment. - Highlights: • Growing need to develop new resources for the evaluation of the environmental status. • Identification of gene expression markers associated to chemical contamination. • Employment of genomics to evaluate the environmental status of Venice lagoon areas. • Hurdles and future outlooks of genomic tools in environmental risk assessment. - Genomics in risk assessment of Venice lagoon

  16. Potential human health risks from metals and As via Odontesthes bonariensis consumption and ecological risk assessments in a eutrophic lake.

    Science.gov (United States)

    Monferran, Magdalena V; Garnero, Paola Lorena; Wunderlin, Daniel A; Bistoni, María de los Angeles

    2016-07-01

    The concentration of Al, Cr, Fe, Mn, Ni, Cu, Zn, Hg, Sr, Mo, Ag, Cd, Pb and As was analyzed in water, sediment, and muscle of Odontesthes bonariensis from the eutrophic San Roque Lake (Córdoba-Argentina). The monitoring campaign was performed during the wet, dry and intermediate season. The concentration of Cr, Fe, Pb, Zn, Al and Cd in water exceeded the limits considered as hazardous for aquatic life. The highest metal concentrations were observed in sediment, intermediate concentrations, in fish muscle, and the lowest in water, with the exception of Cr, Zn, As and Hg, which were the highest in fish muscle. Potential ecological risk analysis of heavy metal concentrations in sediment indicated that the San Roque Lake posed a low ecological risk in all sampling periods. The target hazard quotients (THQs) and carcinogenic risk (CR) for individual metals showed that As in muscle was particularly hazardous, posing a potential risk for fishermen and the general population during all sampling periods. Hg poses a potential risk for fishermen only in the intermediate season. It is important to highlight that none of these two elements exceeded the limits considered as hazardous for aquatic life in water and sediment. This result proves the importance of performing measurements of contaminants, in both abiotic and biotic compartments, to assess the quality of food resources. These results suggest that the consumption of this fish species from this reservoir is not completely safe for human health. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Assessment of heavy metal pollution risks in Yonki Reservoir environmental matrices affected by gold mining activity.

    Science.gov (United States)

    Kapia, Samuel; Rao, B K Rajashekhar; Sakulas, Harry

    2016-10-01

    This study reports the heavy metal (Hg, Cd, Cr, Cu, and Pb) contamination risks to and safety of two species of fresh water fish (tilapia, Oreochromis mossambicus and carp, Cyprinus carpio) that are farmed in the Yonki Reservoir in the Eastern Highlands of Papua New Guinea (PNG). The upper reaches of the reservoir are affected by alluvial and large-scale gold mining activities. We also assessed heavy metal levels in the surface waters and sediments and in selected aquatic plant species from the reservoir and streams that intersect the gold mining areas. The water quality was acceptable, except for the Cr concentration, which exceeded the World Health Organization (WHO) standard for water contamination. The sediments were contaminated with Cd and Cu in most of the sampling stations along the upstream waters and the reservoir. The Cd concentration in the sediments exceeded the US Environmental Protection Agency's Sediment Quality Guideline (SQG) values, and the geoaccumulation index (Igeo) values indicated heavy to extreme pollution. In addition, the Cd, Cu, and Pb concentrations in aquatic plants exceeded the WHO guidelines for these contaminants. Between the fish species, tilapia accumulated significantly higher (P < 0.05) Cu in their organ tissues than carp, confirming the bioaccumulation of some metals in the aquatic fauna. The edible muscles of the fish specimens had metal concentrations below the maximum permissible levels established by statutory guidelines. In addition, a human health risk assessment, performed using the estimated weekly intake (EWI) values, indicated that farmed fish from the Yonki Reservoir are safe for human consumption.

  18. Comparative assessment of phthalate removal and risk in biological wastewater treatment systems of developing countries and small communities

    Energy Technology Data Exchange (ETDEWEB)

    Gani, Khalid Muzamil, E-mail: khalidmzml@gmail.com; Kazmi, Absar Ahmad, E-mail: absarakazmi@yahoo.com

    2016-11-01

    Phthalates are widely used in plastic and personnel care products. Being non-steroid endocrine disrupting compounds, their exposure have toxic effects on aquatic life and human health. The aim of this study was a comparative assessment of their fate and risk in full scale wastewater treatment along with influence of seasonal variations. Four priority phthalates, Diethylphthalate (DEP), Dibutylphthalate (DBP), Benzylbutyl phthalate (BBP) and Diethylhexyl phthalate (DEHP) were chosen for this study and wastewater treatment plants investigated were designed as nutrient removal based sequencing batch reactor (SBR), conventional activated sludge process (ASP) and up flow anaerobic sludge blanket (UASB) with polishing pond. Results showed that the main removal mechanism of phthalates was biotransformation with removal contribution of 74% in SBR, 65% in conventional ASP and 37% in UASB. Overall removal of phthalates was maximum in the treatment combination of UASB and pond (83%) followed by SBR (80%) and conventional ASP (74%). Seasonal influences on occurrence, removal and risk of these phthalates were also studied. The concentration of DEP, DBP and DEHP in untreated wastewater increased by 2, 7 and 2 μg/L, respectively in summer. However in sludge, only large molecular weight phthalates BBP and DEHP increased in winter by 3 mg/kg and 12 mg/kg, respectively. Seasonal variations in removal of phthalates were discrepant in each process with better removal during summer. Risk assessment of phthalates to aquatic life showed that there is no potential risk of DEP, DBP and BBP from effluents of treatment plants however risk quotient of DEHP was in the range of 27–73 in both seasons which indicate probable risk to aquatic organisms. Phthalate risk to human beings estimated by daily intake of phthalates was in the range of 0.3 ± 0.1 to 20 ± 0.7 ng/kg/d and far below their respective reference dosages, demonstrating the potential of these treatment plants to reduce the risk

  19. Comparative assessment of phthalate removal and risk in biological wastewater treatment systems of developing countries and small communities

    International Nuclear Information System (INIS)

    Gani, Khalid Muzamil; Kazmi, Absar Ahmad

    2016-01-01

    Phthalates are widely used in plastic and personnel care products. Being non-steroid endocrine disrupting compounds, their exposure have toxic effects on aquatic life and human health. The aim of this study was a comparative assessment of their fate and risk in full scale wastewater treatment along with influence of seasonal variations. Four priority phthalates, Diethylphthalate (DEP), Dibutylphthalate (DBP), Benzylbutyl phthalate (BBP) and Diethylhexyl phthalate (DEHP) were chosen for this study and wastewater treatment plants investigated were designed as nutrient removal based sequencing batch reactor (SBR), conventional activated sludge process (ASP) and up flow anaerobic sludge blanket (UASB) with polishing pond. Results showed that the main removal mechanism of phthalates was biotransformation with removal contribution of 74% in SBR, 65% in conventional ASP and 37% in UASB. Overall removal of phthalates was maximum in the treatment combination of UASB and pond (83%) followed by SBR (80%) and conventional ASP (74%). Seasonal influences on occurrence, removal and risk of these phthalates were also studied. The concentration of DEP, DBP and DEHP in untreated wastewater increased by 2, 7 and 2 μg/L, respectively in summer. However in sludge, only large molecular weight phthalates BBP and DEHP increased in winter by 3 mg/kg and 12 mg/kg, respectively. Seasonal variations in removal of phthalates were discrepant in each process with better removal during summer. Risk assessment of phthalates to aquatic life showed that there is no potential risk of DEP, DBP and BBP from effluents of treatment plants however risk quotient of DEHP was in the range of 27–73 in both seasons which indicate probable risk to aquatic organisms. Phthalate risk to human beings estimated by daily intake of phthalates was in the range of 0.3 ± 0.1 to 20 ± 0.7 ng/kg/d and far below their respective reference dosages, demonstrating the potential of these treatment plants to reduce the risk

  20. Ecological risk assessments for the baseline condition for the Port Hope and Port Granby Projects

    International Nuclear Information System (INIS)

    Hart, D.R.; Kleb, H.

    2006-01-01

    Baseline ecological risk assessments were completed in and around the areas where cleanup of low-level radioactive waste (LLRW) and marginally contaminated soil (MCS) is planned under the Port Hope Area Initiative (PHAI). Both aquatic and terrestrial environments were assessed, in the vicinity of the proposed waste management facilities near Welcome and Port Granby, in locations potentially influenced by LLRW and MCS that will be cleaned up in future, and in reference locations that are not potentially influenced. The calculated doses and risk quotients suggest potential radiation effects for pre-cleanup benthic invertebrates in Port Hope Harbour, for any ducks feeding exclusively in this area, and for soil invertebrates in some other waste sites. In addition, risk quotients suggest potential baseline effects from some elements, particularly uranium and arsenic, in localized areas that are influenced by LLRW and MCS. (author)

  1. Environmental occurrence and ecological risk assessment of organic UV filters in marine organisms from Hong Kong coastal waters.

    Science.gov (United States)

    Sang, Ziye; Leung, Kelvin Sze-Yin

    2016-10-01

    Organic UV filters, now considered to be emerging contaminants in aquatic ecosystems, are being intensively tracked in environmental waters worldwide. However, their environmental fate and impact of these contaminants on marine organisms remains largely unknown, especially in Asia. This work elucidates the occurrence and the ecological risks of seven UV filters detected in farmed fish, wild mussels and some other wild organisms collected from local mariculture farms in Hong Kong. For all of the organisms, ethylhexyl methoxycinnamate (EHMC) and octyl dimethyl p-aminobenzoic acid (OD-PABA) were the predominant contaminants with the highest concentrations up to 51.3 and 24.1ng/g (dw), respectively; lower levels were found for benzophenone-8 (BP-8), octocrylene (OC) and benzophenone-3 (BP-3) from risk assessment specific to the marine aquatic environment was carried out. The risk quotient (RQ) values of EHMC and BP-3 were calculated as 3.29 and 2.60, respectively, indicating these two UV filters may pose significant risks to the marine aquatic environment. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Disordered eating and eating disorders in aquatic sports.

    Science.gov (United States)

    Melin, Anna; Torstveit, Monica Klungland; Burke, Louise; Marks, Saul; Sundgot-Borgen, Jorunn

    2014-08-01

    Disordered eating behavior (DE) and eating disorders (EDs) are of great concern because of their associations with physical and mental health risks and, in the case of athletes, impaired performance. The syndrome originally known as the Female Athlete Triad, which focused on the interaction of energy availability, reproductive function, and bone health in female athletes, has recently been expanded to recognize that Relative Energy Deficiency in Sport (RED-S) has a broader range of negative effects on body systems with functional impairments in both male and female athletes. Athletes in leanness-demanding sports have an increased risk for RED-S and for developing EDs/DE. Special risk factors in aquatic sports related to weight and body composition management include the wearing of skimpy and tight-fitting bathing suits, and in the case of diving and synchronized swimming, the involvement of subjective judgments of performance. The reported prevalence of DE and EDs in athletic populations, including athletes from aquatic sports, ranges from 18 to 45% in female athletes and from 0 to 28% in male athletes. To prevent EDs, aquatic athletes should practice healthy eating behavior at all periods of development pathway, and coaches and members of the athletes' health care team should be able to recognize early symptoms indicating risk for energy deficiency, DE, and EDs. Coaches and leaders must accept that DE/EDs can be a problem in aquatic disciplines and that openness regarding this challenge is important.

  3. [Uncertainty characterization approaches for ecological risk assessment of polycyclic aromatic hydrocarbon in Taihu Lake].

    Science.gov (United States)

    Guo, Guang-Hui; Wu, Feng-Chang; He, Hong-Ping; Feng, Cheng-Lian; Zhang, Rui-Qing; Li, Hui-Xian

    2012-04-01

    Probabilistic approaches, such as Monte Carlo Sampling (MCS) and Latin Hypercube Sampling (LHS), and non-probabilistic approaches, such as interval analysis, fuzzy set theory and variance propagation, were used to characterize uncertainties associated with risk assessment of sigma PAH8 in surface water of Taihu Lake. The results from MCS and LHS were represented by probability distributions of hazard quotients of sigma PAH8 in surface waters of Taihu Lake. The probabilistic distribution of hazard quotient were obtained from the results of MCS and LHS based on probabilistic theory, which indicated that the confidence intervals of hazard quotient at 90% confidence level were in the range of 0.000 18-0.89 and 0.000 17-0.92, with the mean of 0.37 and 0.35, respectively. In addition, the probabilities that the hazard quotients from MCS and LHS exceed the threshold of 1 were 9.71% and 9.68%, respectively. The sensitivity analysis suggested the toxicity data contributed the most to the resulting distribution of quotients. The hazard quotient of sigma PAH8 to aquatic organisms ranged from 0.000 17 to 0.99 using interval analysis. The confidence interval was (0.001 5, 0.016 3) at the 90% confidence level calculated using fuzzy set theory, and the confidence interval was (0.000 16, 0.88) at the 90% confidence level based on the variance propagation. These results indicated that the ecological risk of sigma PAH8 to aquatic organisms were low. Each method has its own set of advantages and limitations, which was based on different theory; therefore, the appropriate method should be selected on a case-by-case to quantify the effects of uncertainties on the ecological risk assessment. Approach based on the probabilistic theory was selected as the most appropriate method to assess the risk of sigma PAH8 in surface water of Taihu Lake, which provided an important scientific foundation of risk management and control for organic pollutants in water.

  4. Pharmaceuticals and personal care products in waters: occurrence, toxicity, and risk.

    Science.gov (United States)

    Cizmas, Leslie; Sharma, Virender K; Gray, Cole M; McDonald, Thomas J

    2015-12-01

    Pharmaceuticals and personal care products (PPCP) are compounds with special physical and chemical properties that address the care of animal and human health. PPCP have been detected in surface water and wastewater in the ng/L to µg/L concentration range worldwide. PPCP ecotoxicity has been studied in a variety of organisms, and multiple methods have been used to assess the risk of PPCP in the environment to ecological health. Here we review the occurrence, effects, and risk assessment of PPCP in aquatic systems, as well as the sustainability of current methods for managing PPCP contamination in aquatic systems. The major points are the following: (1) a number of PPCP present potential concerns at environmentally relevant concentrations. PPCP mixtures may produce synergistic toxicity. (2) Various methods have been used for the ecological risk assessment of PPCP in aquatic systems. There are similarities in these methods, but no consensus has emerged regarding best practices for the ecological risk assessment of these compounds. (3) Human health risk assessments of PPCP contamination in aquatic systems have generally indicated little cause for concern. However, there is a lack of information regarding whether antibiotic contamination in wastewater and aquatic systems could lead to an increase in clinically relevant antibiotic-resistant bacteria and antibiotic-resistant genes. (4) Over the next century, the combination of increasing global population size and potential droughts may result in reduced water availability, increased need for water reuse, and increasing concentrations of PPCP in wastewaters. The current wastewater treatment methods do not remove all PPCP effectively. This, coupled with the possibility that antibiotics may promote the development of antibiotic-resistant bacteria and antibiotic-resistant genes, leads to concerns about the sustainability of global water supplies.

  5. Parametric estimation of P(X > Y) for normal distributions in the context of probabilistic environmental risk assessment.

    Science.gov (United States)

    Jacobs, Rianne; Bekker, Andriëtte A; van der Voet, Hilko; Ter Braak, Cajo J F

    2015-01-01

    Estimating the risk, P(X > Y), in probabilistic environmental risk assessment of nanoparticles is a problem when confronted by potentially small risks and small sample sizes of the exposure concentration X and/or the effect concentration Y. This is illustrated in the motivating case study of aquatic risk assessment of nano-Ag. A non-parametric estimator based on data alone is not sufficient as it is limited by sample size. In this paper, we investigate the maximum gain possible when making strong parametric assumptions as opposed to making no parametric assumptions at all. We compare maximum likelihood and Bayesian estimators with the non-parametric estimator and study the influence of sample size and risk on the (interval) estimators via simulation. We found that the parametric estimators enable us to estimate and bound the risk for smaller sample sizes and small risks. Also, the Bayesian estimator outperforms the maximum likelihood estimators in terms of coverage and interval lengths and is, therefore, preferred in our motivating case study.

  6. The challenges of good governance in the aquatic animal health sector.

    Science.gov (United States)

    Kahn, S; Mylrea, G; Yaacov, K Bar

    2012-08-01

    Animal health is fundamental to efficient animal production and, therefore, to food security and human health. This holds true for both terrestrial and aquatic animals. Although partnership between producers and governmental services is vital for effective animal health programmes, many key activities are directly carried out by governmental services. Noting the need to improve the governance of such services in many developing countries, the World Organisation for Animal Health (OIE), using the OIE Tool for the Evaluation of Performance of Veterinary Services, conducts assessments of Veterinary Services and Aquatic Animal Health Services (AAHS) to help strengthen governance and support more effective delivery of animal health programmes. While good governance and the tools to improve governance in the aquatic animal sector are largely based on the same principles as those that apply in the terrestrial animal sector, there are some specific challenges in the aquatic sector that have a bearing on the governance of services in this area. For example, the aquaculture industry has experienced rapid growth and the use of novel species is increasing; there are important gaps in scientific knowledge on diseases of aquatic animals; there is a need for more information on sustainable production; the level of participation of the veterinary profession in aquatic animal health is low; and there is a lack of standardisation in the training of aquatic animal health professionals. Aquaculture development can be a means of alleviating poverty and hunger in developing countries. However, animal diseases, adverse environmental impacts and food safety risks threaten to limit this development. Strengthening AAHS governance and, in consequence, aquatic animal health programmes, is the best way to ensure a dynamic and sustainable aquaculture sector in future. This paper discusses the specific challenges to AAHS governance and some OIE initiatives to help Member Countries to address

  7. Is the tier-1 effect assessment for herbicides protective for aquatic algae and vascular plant communities?

    Science.gov (United States)

    van Wijngaarden, René P A; Arts, Gertie H P

    2018-01-01

    In the aquatic tier-1 effect assessment for plant protection products with an herbicidal mode of action in Europe, it is usually algae and/or vascular plants that determine the environmental risks. This tier includes tests with at least 2 algae and 1 macrophyte (Lemna). Although such tests are considered to be of a chronic nature (based on the duration of the test in relation to the life cycle of the organism), the measurement endpoints derived from the laboratory tests with plants (including algae) and used in the first-tier effect assessment for herbicides are acute effect concentrations affecting 50% of the test organisms (EC50 values) and not no-observed-effect concentrations (NOECs) or effect concentrations affecting 10% of the test organisms (EC10) values. Other European legislative frameworks (e.g., the Water Framework Directive) use EC10 values. The present study contributes to a validation of the tiered herbicide risk assessment approach by comparing the standard first-tier effect assessment with results of microcosm and mesocosm studies. We evaluated EC50 and EC10 values for standard test algae and macrophytes based on either the growth rate endpoint (E r C50) or the lowest available endpoint for growth rate or biomass/yield (E r /E y C50). These values were compared with the regulatory acceptable concentrations for the threshold option as derived from microcosm and mesocosm studies. For these studies, protection is maintained if growth rate is taken as the regulatory endpoint instead of the lowest value of either growth rate or biomass/yield in conjunction with the standard assessment factor of 10. Based on a limited data set of 14 herbicides, we did not identify a need to change the current practice. Environ Toxicol Chem 2018;37:175-183. © 2017 SETAC. © 2017 SETAC.

  8. Biocides in the Yangtze River of China: Spatiotemporal distribution, mass load and risk assessment

    International Nuclear Information System (INIS)

    Liu, Wang-Rong; Zhao, Jian-Liang; Liu, You-Sheng; Chen, Zhi-Feng; Yang, Yuan-Yuan; Zhang, Qian-Qian; Ying, Guang-Guo

    2015-01-01

    Nineteen biocides were investigated in the Yangtze River to understand their spatiotemporal distribution, mass loads and ecological risks. Fourteen biocides were detected, with the highest concentrations up to 166 ng/L for DEET in surface water, and 54.3 ng/g dry weight (dw) for triclocarban in sediment. The dominant biocides were DEET and methylparaben, with their detection frequencies of 100% in both phases. An estimate of 152 t/y of 14 biocides was carried by the Yangtze River to the East China Sea. The distribution of biocides in the aquatic environments was significantly correlated to Gross Domestic Product (GDP), total phosphorus (TP) and total nitrogen (TN), suggesting dominant input sources from domestic wastewater of the cities along the river. Risk assessment showed high ecological risks posed by carbendazim in both phases and by triclosan in sediment. Therefore, proper measures should be taken to reduce the input of biocides into the river systems. - Highlights: • Biocides were ubiquitous in the surface water and sediment of the Yangtze River. • The dominant biocides in the Yangtze River were DEET and methylparaben. • Annual flux of biocides was 152 tons from the Yangtze River to the East China Sea. • Domestic wastewater was the main source of the biocides. • Carbendazim and triclosan posed high ecological risks. - Biocides showed wide presence in the Yangtze River and some of them could pose high ecological risks to aquatic organisms

  9. Satellite-Based Assessment of the spatial extent of Aquatic Vegetation in Lake Victoria

    Science.gov (United States)

    Clark, W.; Aligeti, N.; Jeyaprakash, T.; Martins, M.; Stodghill, J.; Winstanley, H.

    2011-12-01

    Lake Victoria in Africa is the second largest freshwater lake in the world and is known for its abundance of aquatic wildlife. In particular over 200 different fish species are caught and sold by local fisherman. The lake is a major contributor to the local economy as a corridor of transportation, source of drinking water, and source of hydropower. However, the invasion of aquatic vegetation such as water hyacinth in the lake has disrupted each of these markets. Aquatic vegetation now covers a substantial area of the coastline blocking waterways, disrupting hydropower, hindering the collection of drinking water and decreasing the profitability of fishing. The vegetation serves as a habitat for disease carrying mosquitoes as well as snakes and snails that spread the parasitic disease bilharzia. The current control measures of invasive aquatic vegetation rely on biological, chemical and mechanical control. The objective of this study was to utilize remote sensing to map aquatic vegetation within Lake Victoria from 2000 to 2011. MODIS, Landsat 4-5TM, and Landsat 7-ETM imagery was employed to perform change detections in vegetation and identify the extent of aquatic vegetation throughout the years. The efficiency of containment efforts were evaluated and ideal time for application of such efforts were suggested. A methodology for aquatic vegetation surveillance was created. The results of this project were presented as a workshop to the Lake Victoria Fisheries Organization, SERVIR, and other partner organizations. The workshop provided instruction into the use of NASA and other satellite derived products. Time series animations of the spatial extent of aquatic vegetation within the lake were created. By identifying seasons of decreased aquatic vegetation, ideal times to employ control efforts were identified. SERVIR will subsequently utilize the methodologies and mapping results of this study to develop operational aquatic vegetation surveillance for Lake Victoria.

  10. Prospective environmental risk assessment of mixtures in wastewater treatment plant effluents - Theoretical considerations and experimental verification.

    Science.gov (United States)

    Coors, Anja; Vollmar, Pia; Sacher, Frank; Polleichtner, Christian; Hassold, Enken; Gildemeister, Daniela; Kühnen, Ute

    2018-04-14

    The aquatic environment is continually exposed to a complex mixture of chemicals, whereby effluents of wastewater treatment plants (WWTPs) are one key source. The aim of the present study was to investigate whether environmental risk assessments (ERAs) addressing individual substances are sufficiently protective for such coincidental mixtures. Based on a literature review of chemicals reported to occur in municipal WWTP effluents and mode-of-action considerations, four different types of mixtures were composed containing human pharmaceuticals, pesticides, and chemicals regulated under REACH. The experimentally determined chronic aquatic toxicity of these mixtures towards primary producers and the invertebrate Daphnia magna could be adequately predicted by the concept of concentration addition, with up to 5-fold overestimation and less than 3-fold underestimation of mixture toxicity. Effluents of a municipal WWTP had no impact on the predictability of mixture toxicity and showed no adverse effects on the test organisms. Predictive ERAs for the individual mixture components based on here derived predicted no effect concentrations (PNECs) and median measured concentrations in WWTP effluents (MC eff ) indicated no unacceptable risk for any of the individual chemicals, while MC eff /PNEC summation indicated a possible risk for multi-component mixtures. However, a refined mixture assessment based on the sum of toxic units at species level indicated no unacceptable risks, and allowed for a safety margin of more than factor 10, not taking into account any dilution of WWTP effluents by surface waters. Individual substances, namely climbazole, fenofibric acid and fluoxetine, were dominating the risks of the investigated mixtures, while added risk due to the mixture was found to be low with the risk quotient being increased by less than factor 2. Yet, uncertainty remains regarding chronic mixture toxicity in fish, which was not included in the present study. The number and

  11. Approach on environmental risk assessment of nanosilver released from textiles.

    Science.gov (United States)

    Voelker, Doris; Schlich, Karsten; Hohndorf, Lars; Koch, Wolfgang; Kuehnen, Ute; Polleichtner, Christian; Kussatz, Carola; Hund-Rinke, Kerstin

    2015-07-01

    Based on the increased utilization of nanosilver (silver nanomaterials=AgNM) as antibacterial agent, there is the strong need to assess the potential environmental implication associated with its new application areas. In this study an exemplary environmental risk assessment (ERA) of AgNM applied in textiles was performed. Environmental exposure scenarios (via municipal sewage treatment plant (STP)) with wastewater supply from domestic homes) were developed for three different types of textiles equipped with AgNM. Based on these scenarios predicted environmental concentrations (PECs) were deduced for STPs and for the environmental compartments surface water, sediment as well as soil. These PECs were related to PNECs (predicted no effect concentrations). PNECs were deduced from results of ecotoxicity tests of a selected AgNM (NM-300K). Data on ecotoxicology were derived from various tests with activated sludge, cyanobacteria, algae, daphnids, fish, duckweed, macrophytes, chironomids, earthworms, terrestrial plants as well as soil microorganisms. Emission data for the AgNM NM-300K from textiles were derived from washing experiments. The performed ERA was based on the specifications defined in the ECHA Guidances on information requirements and chemical safety assessment. Based on the chosen scenarios and preconditions, no environmental risk of the AgNM NM-300K released from textiles was detected. Under conservative assumptions a risk quotient for surface water close to 1 indicated that the aquatic compartment may be affected by an increased emission of AgNM to the environment due to the high sensitivity of aquatic organisms to silver. Based on the successful retention of AgNM in the sewage sludge and the still ongoing continual application of sewage sludge on farmland it is recommended to introduce a threshold for total silver content in sewage sludge into the respective regulations. Regarding potential risk mitigation measures, it is emphasized to preferably directly

  12. Disordered eating and eating disorders in aquatic sports

    DEFF Research Database (Denmark)

    Melin, Anna; Torstveit, Monica Klungland; Burke, Louise

    2014-01-01

    availability, reproductive function and bone health in female athletes, has recently been expanded to recognise that Relative Energy Deficiency in Sport (RED-S) has a broader range of negative effects on body systems with functional impairments in both male and female athletes. Athletes in leanness......-demanding sports have an increased risk for RED-S and for developing EDs/DE. Special risk factors in aquatic sports related to weight and body composition management include the wearing of skimpy and tight-fitting bathing suits, and in the case of diving and synchronized swimming, the involvement of subjective...... judgements of performance. The reported prevalence of DE and EDs in athletic populations including athletes from aquatic sports ranges from 18-45 % in female athletes and 0-28 % in male athletes. To prevent EDs, aquatic athletes should practice healthy eating behaviour at all periods of development pathway...

  13. Assessing Freshwater Ecosystem Service Risk over Ecological, Socioeconomic, and Cultural Gradients: Problem Space Characterization and Methodology

    Science.gov (United States)

    Harmon, T. C.; Villamizar, S. R.; Conde, D.; Rusak, J.; Reid, B.; Astorga, A.; Perillo, G. M.; Piccolo, M. C.; Zilio, M.; London, S.; Velez, M.; Hoyos, N.; Escobar, J.

    2014-12-01

    Freshwater ecosystems and the services they provide are under increasing anthropogenic pressure at local (e.g., irrigation diversions, wastewater discharge) and global scales (e.g., climate change, global trading). The impact depends on an ecosystem's sensitivity, which is determined by its geophysical and ecological settings, and the population and activities in its surrounding watershed. Given the importance of ecosystem services, it is critical that we improve our ability to identify and understand changes in aquatic ecosystems, and translate them to risk of service loss. Furthermore, to inspire changes in human behavior, it is equally critical that we learn to communicate risk, and pose risk mitigation strategies, in a manner acceptable to a broad spectrum of stakeholders. Quantifying the nature and timing of the risk is difficult because (1) we often fail to understand the connection between anthropogenic pressures and the timing and extent of ecosystem changes; and (2) the concept of risk is inherently coupled to human perception, which generally differs with cultural and socio-economic conditions. In this study, we endeavor to assess aquatic ecosystem risks across an international array of six study sites. The challenge is to construct a methodology capable of capturing the marked biogeographical, socioeconomic, and cultural differences among the sites, which include: (1) Muskoka River watershed in humid continental Ontario, Canada; (2) Lower San Joaquin River, an impounded snow-fed river in semi-arid Central California; (3) Ciénaga Grande de Santa Marta, a tropical coastal lagoon in Colombia; (4) Senguer River basin in the semi-arid part of Argentina; (5) Laguna de Rocha watershed in humid subtropical Uruguay; and (6) Palomas Lake complex in oceanic Chilean Patagonia. Results will include a characterization of the experimental gradient over the six sites, an overview of the risk assessment methodology, and preliminary findings for several of the sites.

  14. Parameters for assessing the aquatic environmental impact of cosmetic products.

    Science.gov (United States)

    Vita, N A; Brohem, C A; Canavez, A D P M; Oliveira, C F S; Kruger, O; Lorencini, M; Carvalho, C M

    2018-05-01

    The cosmetic industry's growing concern about the impact of its supply chain on the environment, sustainability of raw materials, and biodiversity increases the need to ensure that the final product has a lower environmental impact. The objective of this review is to summarize and compare the information available from international organizations and legislation regarding the main criteria used to assess raw materials for aquatic toxicity, as well as the most suitable alternative methods for obtaining assessment parameters. Using the literature available in databases, a review of the scientific literature and international legislation, this work discusses and compares the parameters established by international organizations such as the Environmental Protection Agency (EPA) and Cradle to Cradle (C2C), as well as European legislation, namely, European Regulation 1272/2008, for assessing environmental impact. Defining the ecotoxicity parameters of the main classes of raw materials in rinse-off cosmetic products can enable the development of products that are more environmentally sustainable, prioritizing substances with less environmental impact. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Ecotoxicological assessments show sucralose and fluoxetine affect the aquatic plant, Lemna minor.

    Science.gov (United States)

    Amy-Sagers, Cherisse; Reinhardt, Keith; Larson, Danelle M

    2017-04-01

    Pharmaceuticals and personal care products (PPCP) are prevalent in aquatic systems, yet the fate and impacts on aquatic plants needs quantification for many compounds. We measured and detected sucralose (an artificial sweetener), fluoxetine (an antidepressant), and other PPCP in the Portneuf River in Idaho, USA, where Lemna minor (an aquatic plant in the environment and used in ecotoxicology studies) naturally occurs. Sucralose was hypothesized to negatively affect photosynthesis and growth of L. minor because sucralose is a chlorinated molecule that may be toxic or unusable for plant metabolism. A priori hypotheses were not created for fluoxetine due to lack of previous studies examining its impacts on plants. We conducted laboratory ecotoxicological assessments for a large range of concentrations of sucralose and fluoxetine on L. minor physiology and photosynthetic function. Frond green leaf area, root length, growth rate, photosynthetic capacity, and plant carbon isotopic composition (discrimination relative to a standard; δ 13 C) were measured among treatments ranging from 0 to 15000nmol/L-sucralose and 0-323nmol/L-fluoxetine. Contrary to our predictions, sucralose significantly increased green leaf area, photosynthetic capacity, and δ 13 C of L. minor at environmentally relevant concentrations. The increase of δ 13 C from sucralose amendments and an isotope-mixing model indicated substantial sucralose uptake and assimilation within the plant. Unlike humans who cannot break down and utilize sucralose, we documented that L. minor-a mixotrophic plant-can use sucralose as a sugar substitute to increase its green leaf area and photosynthetic capacity. Fluoxetine significantly decreased L. minor root growth, daily growth rate, and asexual reproduction at 323nmol/L-fluoxetine; however, ambiguity remains regarding the mechanisms responsible and the applicability of these extreme concentrations unprecedented in the natural environment. To our knowledge, this was the

  16. Fish bioaccumulation and biomarkers in environmental risk assessment: a review.

    Science.gov (United States)

    van der Oost, Ron; Beyer, Jonny; Vermeulen, Nico P E

    2003-02-01

    In this review, a wide array of bioaccumulation markers and biomarkers, used to demonstrate exposure to and effects of environmental contaminants, has been discussed in relation to their feasibility in environmental risk assessment (ERA). Fish bioaccumulation markers may be applied in order to elucidate the aquatic behavior of environmental contaminants, as bioconcentrators to identify certain substances with low water levels and to assess exposure of aquatic organisms. Since it is virtually impossible to predict the fate of xenobiotic substances with simple partitioning models, the complexity of bioaccumulation should be considered, including toxicokinetics, metabolism, biota-sediment accumulation factors (BSAFs), organ-specific bioaccumulation and bound residues. Since it remains hard to accurately predict bioaccumulation in fish, even with highly sophisticated models, analyses of tissue levels are required. The most promising fish bioaccumulation markers are body burdens of persistent organic pollutants, like PCBs and DDTs. Since PCDD and PCDF levels in fish tissues are very low as compared with the sediment levels, their value as bioaccumulation markers remains questionable. Easily biodegradable compounds, such as PAHs and chlorinated phenols, do not tend to accumulate in fish tissues in quantities that reflect the exposure. Semipermeable membrane devices (SPMDs) have been successfully used to mimic bioaccumulation of hydrophobic organic substances in aquatic organisms. In order to assess exposure to or effects of environmental pollutants on aquatic ecosystems, the following suite of fish biomarkers may be examined: biotransformation enzymes (phase I and II), oxidative stress parameters, biotransformation products, stress proteins, metallothioneins (MTs), MXR proteins, hematological parameters, immunological parameters, reproductive and endocrine parameters, genotoxic parameters, neuromuscular parameters, physiological, histological and morphological parameters

  17. Assessment of the consequences of the radioactive contamination of aquatic media and biota for the Chernobyl NPP cooling pond: model testing using Chernobyl data

    International Nuclear Information System (INIS)

    Kryshev, I.I.; Sazykina, T.G.; Hoffman, F.O.; Thiessen, K.M.; Blaylock, B.G.; Feng, Y.; Galeriu, D.; Heling, R.; Kryshev, A.I.; Kononovich, A.L.; Watkins, B.

    1998-01-01

    The 'Cooling Pond' scenario was designed to test models for radioactive contamination of aquatic ecosystems, based on data from the Chernobyl Nuclear Power Plant cooling pond, which was heavily contaminated in 1986 as a result of the reactor accident. The calculation tasks include (a) reconstruction of the dynamics of radionuclide transfer and bioaccumulation in aquatic media and biota following the accident; (b) assessment of doses to aquatic biota; and (c) assessment of potential doses and radiation risks to humans from consumption of contaminated fish. Calculations for the Scenario were performed by 19 participants using 6 different models: LAKECO-B (Netherlands); LAKEPOND (Romania); POSOD (USA); WATER, GIDRO and ECOMOD-W (Russia). For all endpoints, model predictions were compared with the test data, which were derived from the results of direct measurements and independent dose estimates based on measurements. Most of the models gave satisfactory agreement for some portions of the test data, although very few participants obtained good agreement with all criteria for model testing. The greatest level of difficulty was with the prediction of non-equilibrium radioecological processes in the first year after the accident (1986). The calculations 5 for this scenario gave modellers a unique opportunity to test their models using an independent data base and to analyse the advantages and weaknesses of different model approaches. The use of post-Chernobyl data in such a scenario is also recommended for use in training students in the field of radioecology and environmental protection. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  18. Aquatic Rational Threshold Value (RTV) Concepts for Army Environmental Impact Assessment.

    Science.gov (United States)

    1979-07-01

    rreversible impacts. In aquatic impacts. Examination of the etymology of “ration al systems, bot h the possible cause-effect relationships threshold value...namics, aqueous chemistry . toxicology, a driving function. 30 3’ The shading effects of ripar- and aquatic ecology. In addition , when man ’s use ian

  19. [The criteria of identification of "critical" populations in aquatic radiochemoecology].

    Science.gov (United States)

    Tsytsugina, B G; Polikarpov, G G

    2006-01-01

    Data on chromosome mutagenesis levels in populations of aquatic organisms in the Black and the Aegean Seas, the Danube and the Dnieper Rivers, the 30-km zone of ChNPP are presented. The highest level of mutagenesis was observed in hydrobionts populations in the 10-km zone of the ChNPP. The obvious damaged effects of ionizing radiation were noted only in these populations. The comparison of the adaptation rate of aquatic crustaceans and worms populations with different reproduction modes was made. It is found that the studied species with sexual reproduction have higher rate of adaptation to the pollution in comparison with species with prevalent asexual reproduction. Hypothetic mechanisms of population adaptation are discussed. On the basis of species and populations characteristics, the criteria for the identification of "critical" populations (species) and an algoritm of ecological risk assessment for them are proposed.

  20. Increasing Potential Risk of a Global Aquatic Invader in Europe in Contrast to Other Continents under Future Climate Change

    Science.gov (United States)

    Liu, Xuan; Guo, Zhongwei; Ke, Zunwei; Wang, Supen; Li, Yiming

    2011-01-01

    Background Anthropogenically-induced climate change can alter the current climatic habitat of non-native species and can have complex effects on potentially invasive species. Predictions of the potential distributions of invasive species under climate change will provide critical information for future conservation and management strategies. Aquatic ecosystems are particularly vulnerable to invasive species and climate change, but the effect of climate change on invasive species distributions has been rather neglected, especially for notorious global invaders. Methodology/Principal Findings We used ecological niche models (ENMs) to assess the risks and opportunities that climate change presents for the red swamp crayfish (Procambarus clarkii), which is a worldwide aquatic invasive species. Linking the factors of climate, topography, habitat and human influence, we developed predictive models incorporating both native and non-native distribution data of the crayfish to identify present areas of potential distribution and project the effects of future climate change based on a consensus-forecast approach combining the CCCMA and HADCM3 climate models under two emission scenarios (A2a and B2a) by 2050. The minimum temperature from the coldest month, the human footprint and precipitation of the driest quarter contributed most to the species distribution models. Under both the A2a and B2a scenarios, P. clarkii shifted to higher latitudes in continents of both the northern and southern hemispheres. However, the effect of climate change varied considerately among continents with an expanding potential in Europe and contracting changes in others. Conclusions/Significance Our findings are the first to predict the impact of climate change on the future distribution of a globally invasive aquatic species. We confirmed the complexities of the likely effects of climate change on the potential distribution of globally invasive species, and it is extremely important to develop

  1. Global searches for microalgae and aquatic plants that can eliminate radioactive cesium, iodine and strontium from the radio-polluted aquatic environment: a bioremediation strategy.

    Science.gov (United States)

    Fukuda, Shin-Ya; Iwamoto, Koji; Atsumi, Mika; Yokoyama, Akiko; Nakayama, Takeshi; Ishida, Ken-Ichiro; Inouye, Isao; Shiraiwa, Yoshihiro

    2014-01-01

    The Fukushima 1 Nuclear Power Plant accident in March 2011 released an enormously high level of radionuclides into the environment, a total estimation of 6.3 × 10¹⁷ Bq represented by mainly radioactive Cs, Sr, and I. Because these radionuclides are biophilic, an urgent risk has arisen due to biological intake and subsequent food web contamination in the ecosystem. Thus, urgent elimination of radionuclides from the environment is necessary to prevent substantial radiopollution of organisms. In this study, we selected microalgae and aquatic plants that can efficiently eliminate these radionuclides from the environment. The ability of aquatic plants and algae was assessed by determining the elimination rate of radioactive Cs, Sr and I from culture medium and the accumulation capacity of radionuclides into single cells or whole bodies. Among 188 strains examined from microalgae, aquatic plants and unidentified algal species, we identified six, three and eight strains that can accumulate high levels of radioactive Cs, Sr and I from the medium, respectively. Notably, a novel eustigmatophycean unicellular algal strain, nak 9, showed the highest ability to eliminate radioactive Cs from the medium by cellular accumulation. Our results provide an important strategy for decreasing radiopollution in Fukushima area.

  2. Fish as bioindicators in aquatic environmental pollution assessment: A case study in Lake Victoria wetlands, Uganda

    Science.gov (United States)

    Naigaga, I.; Kaiser, H.; Muller, W. J.; Ojok, L.; Mbabazi, D.; Magezi, G.; Muhumuza, E.

    Growing human population and industrialization have led to the pollution of most aquatic ecosystems and consequent deterioration in environmental water quality. Indicator organisms are needed to improve assessment programmes on the ecological impacts of anthropogenic activities on the aquatic environment. Fish have been widely documented as useful indicators of environmental water quality because of their differential sensitivity to pollution. This study investigated the environmental water quality of selected wetland ecosystems using fish as biological indicators. Fish community structure in relation to water quality was assessed in five wetlands along the shoreline of Lake Victoria from August 2006 to June 2008. Four urban wetlands were variedly impacted by anthropogenic activities while one rural wetland was less impacted, and served as a reference site. Fish species diversity, abundance and richness were assessed, and canonical correspondence analysis (CCA) was used to evaluate the relationship between the fish communities and environmental variables. Results revealed that urban effluent impacted negatively on water quality and consequently the fish community structure. A total of 29 fish species were recorded throughout the study with the lowest number of 15 species recorded in the most impacted site. Shannon diversity and Margalef species richness indices were highest at the references site and lowest at the most impacted site. Wetland haplochromis species dominated the reference site, while oreochromis species dominated the most impacted site. The inshore locations registered higher species diversity and low species richness than the offshore locations. Low dissolved oxygen, pH, secchi depth and high electrical conductivity, total phosphorous, and total nitrogen were strongly associated with the effluent-impacted sites and greatly influenced the fish community structure. This study recommends the use of fish as valuable biological indicators in aquatic

  3. Review and Synthesis of Evidence Regarding Environmental Risks Posed by Munitions Constituents (MC) in Aquatic Systems

    Science.gov (United States)

    2017-10-31

    the ingestion of contaminated sediment and food items that have accumulated MC in their tissues. Because MCs are poorly accumulated in fish and...explosives have been extensively used by the DoD. Contamination of terrestrial sites by MC has occurred largely due to (1) explosive manufacturing ...varied widely across a diversity of MC and species. For most aquatic sites, MC contamination in sediment and in the water- column presents low risk to

  4. Saponins in the aquatic environment

    DEFF Research Database (Denmark)

    Jiang, Xiaogang

    -like structure, saponins have a lot of applications, e.g. as foaming agents in consumer products, as adjuvants in the vaccine, as biosurfactants in soil washing and as biopesticides in crop protection. Hence, they may leach into the aquatic environment due to their low octanol/water partition coefficient......This PhD thesis consists of three parts to illustrate the goal of getting a better understanding of the fate and toxicity of saponins in the aquatic environment. It includes an introduction to the general aspects of saponins, their chemistry and the ecotoxicology concepts, and a second part...... and poor binding to organic matter. They may therefore also pose a risk to the aquatic organisms. Since saponins are efficient against pests, they are most likely also toxic to the non-target organisms. However, their fate and toxicity in the environment are not fully understood. There are two main...

  5. Risk assessment

    International Nuclear Information System (INIS)

    Kinchin, G.H.

    1983-01-01

    After defining risk and introducing the concept of individual and societal risk, the author considers each of these, restricting considerations to risk of death. Some probabilities of death arising from various causes are quoted, and attention drawn to the care necessary in making comparisons between sets of data and to the distinction between voluntary and involuntary categories and between early and delayed deaths. The presentation of information on societal risk is discussed and examples given. The history of quantified risk assessment is outlined, particularly related to the nuclear industry, the process of assessing risk discussed: identification of hazard causes, the development of accident chains and the use of event trees, the evaluation of probability through the collection of data and their use with fault trees, and the assessment of consequences of hazards in terms of fatalities. Reference is made to the human element and common-made failures, and to studies supporting the development of reliability assessment techniques. Acceptance criteria are discussed for individual and societal risk in the nuclear field, and it is shown that proposed criteria lead to risks conservative by comparison with risks from day-to-day accidents and other potentially hazardous industries. (U.K.)

  6. Risk Assessment Overview

    Science.gov (United States)

    Prassinos, Peter G.; Lyver, John W., IV; Bui, Chinh T.

    2011-01-01

    Risk assessment is used in many industries to identify and manage risks. Initially developed for use on aeronautical and nuclear systems, risk assessment has been applied to transportation, chemical, computer, financial, and security systems among others. It is used to gain an understanding of the weaknesses or vulnerabilities in a system so modification can be made to increase operability, efficiency, and safety and to reduce failure and down-time. Risk assessment results are primary inputs to risk-informed decision making; where risk information including uncertainty is used along with other pertinent information to assist management in the decision-making process. Therefore, to be useful, a risk assessment must be directed at specific objectives. As the world embraces the globalization of trade and manufacturing, understanding the associated risk become important to decision making. Applying risk assessment techniques to a global system of development, manufacturing, and transportation can provide insight into how the system can fail, the likelihood of system failure and the consequences of system failure. The risk assessment can identify those elements that contribute most to risk and identify measures to prevent and mitigate failures, disruptions, and damaging outcomes. In addition, risk associated with public and environment impact can be identified. The risk insights gained can be applied to making decisions concerning suitable development and manufacturing locations, supply chains, and transportation strategies. While risk assessment has been mostly applied to mechanical and electrical systems, the concepts and techniques can be applied across other systems and activities. This paper provides a basic overview of the development of a risk assessment.

  7. Optimization of analytical techniques to characterize antibiotics in aquatic systems

    International Nuclear Information System (INIS)

    Al Mokh, S.

    2013-01-01

    Antibiotics are considered as pollutants when they are present in aquatic ecosystems, ultimate receptacles of anthropogenic substances. These compounds are studied as their persistence in the environment or their effects on natural organisms. Numerous efforts have been made worldwide to assess the environmental quality of different water resources for the survival of aquatic species, but also for human consumption and health risk related. Towards goal, the optimization of analytical techniques for these compounds in aquatic systems remains a necessity. Our objective is to develop extraction and detection methods for 12 molecules of aminoglycosides and colistin in sewage treatment plants and hospitals waters. The lack of analytical methods for analysis of these compounds and the deficiency of studies for their detection in water is the reason for their study. Solid Phase Extraction (SPE) in classic mode (offline) or online followed by Liquid Chromatography analysis coupled with Mass Spectrometry (LC/MS/MS) is the most method commonly used for this type of analysis. The parameters are optimized and validated to ensure the best conditions for the environmental analysis. This technique was applied to real samples of wastewater treatment plants in Bordeaux and Lebanon. (author)

  8. NOVANA - National Monitoring and Assessment Programme for the Aquatic and Terrestrial Environment

    DEFF Research Database (Denmark)

    Svendsen, L. M.

    This report is Part 1 of the Programme Description of NOVANA - the Nationwide Monitoring and Assessment Programme for the Aquatic and Terrestrial Environments. Part 1 comprises a general description of the background for the programme, including the international obliga-tions and requirements...... for monitoring of nature and the environment. The overall objective and the scientific and strategic background for the priorities upon which NOVANA pro-gramme is based are described, as are the organization of the programme, the overall economy and the technical assumptions made. Finally the scientific content...

  9. Introduction to risk assessment

    International Nuclear Information System (INIS)

    Raina, V.M.

    2002-01-01

    This paper gives an introduction to risk assessment. It discusses the basic concepts of risk assessment, nuclear risk assessment process and products, the role of risk assessment products in nuclear safety assurance, the relationship between risk assessment and other safety analysis and risk assessment and safe operating envelope

  10. Diets and abundances of aquatic and semi-aquatic reptiles in the Alligator Rivers Region

    International Nuclear Information System (INIS)

    Shine, R.

    1986-01-01

    The mining and milling of uranium in the Alligator River Region in the Northern Territory has raised the possibility that heavy metals and radionuclides might escape into the aquatic system and be accumulated by the reptilian fauna. Aquatic and semi-aquatic reptiles are regularly eaten by Aboriginal people of the region, and data on diets and reproduction of these species, as well as on their dispersion and abundance, are essential before the possibility that reptiles might act as pathways for these contaminants to Aboriginals can be assessed. The objectives of this study were to provide quantitative data on the diets of filesnakes, sand goannas and water goannas, to provide information on seasonal changes in their abundance and distribution within the Magela Creek system; and to describe their reproductive cycles

  11. The Chemical Aquatic Fate and Effects database (CAFE), a tool that supports assessments of chemical spills in aquatic environments.

    Science.gov (United States)

    Bejarano, Adriana C; Farr, James K; Jenne, Polly; Chu, Valerie; Hielscher, Al

    2016-06-01

    The Chemical Aquatic Fate and Effects (CAFE) database is a centralized repository that allows for rapid and unrestricted access to data. Information in CAFE is integrated into a user-friendly tool with modules containing fate and effects data for 32 377 and 4498 chemicals, respectively. Toxicity data are summarized in the form of species sensitivity distributions (SSDs) with associated 1st and 5th percentile hazard concentrations (HCs). An assessment of data availability relative to reported chemical incidents showed that CAFE had fate and toxicity data for 32 and 20 chemicals, respectively, of 55 chemicals reported in the US National Response Center database (2000-2014), and fate and toxicity data for 86 and 103, respectively, of 205 chemicals reported by the National Oceanic and Atmospheric Administration (2003-2014). Modeled environmental concentrations of 2 hypothetical spills (acrylonitrile, 625 barrels; and denatured ethanol, 857 barrels) were used to demonstrate CAFE's practical application. Most species in the 24-h SSD could be potentially impacted by acrylonitrile and denatured ethanol during the first 35 min and 15 h post spill, respectively, with concentrations falling below their HC5s (17 mg/L and 2676 mg/L) at 45 min and 60 h post spill, respectively. Comparisons of CAFE-based versus published HC5 values for 100 chemicals showed that nearly half of values were within a 2-fold difference, with a relatively small number of comparisons exceeding a 10-fold difference. The development of CAFE facilitates access to relevant environmental information, with potential uses likely expanding beyond those related to assessment of spills in aquatic environments. Environ Toxicol Chem 2016;35:1576-1586. © 2015 SETAC. © 2015 SETAC.

  12. Water-sensitivity assessment of regional spatial plan based on the relation between watershed imperviousness and aquatic ecosystem health

    Science.gov (United States)

    Sutjiningsih, D.; Soeryantono, H.; Anggraheni, E.

    2018-04-01

    Upper Ciliwung watershed in the JABODETABEKPUNJUR area experiencing rapid population growth, which in turn promotes the pace of infrastructure development especially increasing impervious land cover. This will trigger various stressors to the abiotic and biotic elements in the aquatic ecosystem. This study aims to examine whether the relationship between imperviousness in the subwatersheds in Upper Ciliwung and abiotic/biotic elements of its aquatic ecosystems can be used to assess the degree of water-sensitivity of the related regional spatial plan. Two scenarios of impervious cover changes have been assessed, scenario 1 using constant growth of 7.56% per annum, while scenario 2 refers to regional spatial plan of Bogor Regency. Although there are inconsistencies in four (out of 13) subwatersheds, the tests proved that the procedure is succesful to be applied in Upper Ciliwung.

  13. ZOONOSIS OF AQUATICAL ORGANISMS

    Directory of Open Access Journals (Sweden)

    Božidar Kurtović

    2001-12-01

    Full Text Available Aquatic organisms play a very important role in human nutrition. They also pose a real threat for human health by causing various diseases. Parasites, bacteria and viruses may either directly or indirectly be carried from aquatic organisms to humans. Disease outbreaks are influenced by many factors among which decreased immune response and feeding habits and higyene are most important. More frequent occuence of foodborne diseases has a number of reasons, including international travel and trade, microbial adaptation and changes in the food production system. Parasitic diseases occur most frequently as a result of human role in parasites life cycles. The prevalence is further increased by consuming raw fish and shellfish. The main feature of bacterial infections is facultative pathogenicity of most ethiological agents. In most cases disease occures as a result of decreased immunoreactivity. Several bacteria are, however, hightly pathogenic and capable of causing high morbidity and mortality in human. To date it has not been reported the case of human infection with viruses specific for aquatic organisms. Human infections are caused with human viruses and aquatic organisms play role only as vechicles. The greatest risk in that respect present shellfish. Fish and particularly shellfish are likely to cause food poisoning in humans. In most cases the cause are toxins of phithoplancton origins accumulating in shellfish and fish.

  14. Aquatic Environment 2000

    DEFF Research Database (Denmark)

    Svendsen, L. M.; Bijl, L. van der; Boutrup, S.

    The report summarizes the results of the Danish Aquatic Monitoring and Assessment Programme 1998-2003. Danish Environmental Protection Agency 2000: NOVA-2003. Programbeskrivelse for det nationale program for overvågning af vandmiljøet 1998-2003. 397 pp. - Redegørelse fra Miljøstyrelsen nr. 1 (in...

  15. Cumulative Risk Assessment (CRA): transforming the way we assess health risks.

    Science.gov (United States)

    Williams, Pamela R D; Dotson, G Scott; Maier, Andrew

    2012-10-16

    Human health risk assessments continue to evolve and now focus on the need for cumulative risk assessment (CRA). CRA involves assessing the combined risk from coexposure to multiple chemical and nonchemical stressors for varying health effects. CRAs are broader in scope than traditional chemical risk assessments because they allow for a more comprehensive evaluation of the interaction between different stressors and their combined impact on human health. Future directions of CRA include greater emphasis on local-level community-based assessments; integrating environmental, occupational, community, and individual risk factors; and identifying and implementing common frameworks and risk metrics for incorporating multiple stressors.

  16. Using data from drug discovery and development to aid the aquatic environmental risk assessment of human pharmaceuticals: concepts, considerations, and challenges.

    Science.gov (United States)

    Winter, Matthew J; Owen, Stewart F; Murray-Smith, Richard; Panter, Grace H; Hetheridge, Malcolm J; Kinter, Lewis B

    2010-01-01

    Over recent years, human pharmaceuticals have been detected in the aquatic environment. This, combined with the fact that many are (by design) biologically active compounds, has raised concern about potential impacts in wildlife species. This concern was realized with two high-profile cases of unforeseen environmental impact (i.e., estrogens and diclofenac), which have led to a flurry of work addressing how best to predict such effects in the future. One area in which considerable research effort has been made, partially in response to regulatory requirements, has been on the potential use of preclinical and clinical pharmacological and toxicological data (generated during drug development from nonhuman mammals and humans) to predict possible effects in nontarget, environmentally relevant species: so-called read across. This approach is strengthened by the fact that many physiological systems are conserved between mammals and certain environmentally relevant species. Consequently, knowledge of how a pharmaceutical works (the “mode-of-action,” or MoA) in nonclinical species and humans could assist in the selection of appropriate test species, study designs, and endpoints, in an approach referred to as “intelligent testing.” Here we outline the data available from the human drug development process and suggest how this might be used to design a testing strategy best suited to the specific characteristics of the drug in question. In addition, we review published data that support this type of approach, discuss the potential pitfalls associated with read across, and identify knowledge gaps that require filling to ensure accuracy in the extrapolation of data from preclinical and clinical studies, for use in the environmental risk assessment of human pharmaceuticals.

  17. Transcriptomic resources for environmental risk assessment: a case study in the Venice lagoon.

    Science.gov (United States)

    Milan, M; Pauletto, M; Boffo, L; Carrer, C; Sorrentino, F; Ferrari, G; Pavan, L; Patarnello, T; Bargelloni, L

    2015-02-01

    The development of new resources to evaluate the environmental status is becoming increasingly important representing a key challenge for ocean and coastal management. Recently, the employment of transcriptomics in aquatic toxicology has led to increasing initiatives proposing to integrate eco-toxicogenomics in the evaluation of marine ecosystem health. However, several technical issues need to be addressed before introducing genomics as a reliable tool in regulatory ecotoxicology. The Venice lagoon constitutes an excellent case, in which the assessment of environmental risks derived from the nearby industrial activities represents a crucial task. In this context, the potential role of genomics to assist environmental monitoring was investigated through the definition of reliable gene expression markers associated to chemical contamination in Manila clams, and their subsequent employment for the classification of Venice lagoon areas. Overall, the present study addresses key issues to evaluate the future outlooks of genomics in the environmental monitoring and risk assessment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Ecotoxicological assessments show sucralose and fluoxetine affect the aquatic plant, Lemna minor

    Energy Technology Data Exchange (ETDEWEB)

    Amy-Sagers, Cherisse; Reinhardt, Keith; Larson, Danelle M., E-mail: danellelarson77@gmail.com

    2017-04-15

    Highlights: • Sucralose increased leaf area and photosynthetic capacity of Lemna minor. • Sucralose increased δ {sup 13}C of Lemna, indicating substantial uptake and assimilation. • 100 μg/L-fluoxetine decreased Lemna minor growth and asexual reproduction. - Abstract: Pharmaceuticals and personal care products (PPCP) are prevalent in aquatic systems, yet the fate and impacts on aquatic plants needs quantification for many compounds. We measured and detected sucralose (an artificial sweetener), fluoxetine (an antidepressant), and other PPCP in the Portneuf River in Idaho, USA, where Lemna minor (an aquatic plant in the environment and used in ecotoxicology studies) naturally occurs. Sucralose was hypothesized to negatively affect photosynthesis and growth of L. minor because sucralose is a chlorinated molecule that may be toxic or unusable for plant metabolism. A priori hypotheses were not created for fluoxetine due to lack of previous studies examining its impacts on plants. We conducted laboratory ecotoxicological assessments for a large range of concentrations of sucralose and fluoxetine on L. minor physiology and photosynthetic function. Frond green leaf area, root length, growth rate, photosynthetic capacity, and plant carbon isotopic composition (discrimination relative to a standard; δ{sup 13}C) were measured among treatments ranging from 0 to 15000 nmol/L-sucralose and 0–323 nmol/L-fluoxetine. Contrary to our predictions, sucralose significantly increased green leaf area, photosynthetic capacity, and δ {sup 13}C of L. minor at environmentally relevant concentrations. The increase of δ {sup 13}C from sucralose amendments and an isotope-mixing model indicated substantial sucralose uptake and assimilation within the plant. Unlike humans who cannot break down and utilize sucralose, we documented that L. minor—a mixotrophic plant—can use sucralose as a sugar substitute to increase its green leaf area and photosynthetic capacity. Fluoxetine

  19. Ecotoxicological assessments show sucralose and fluoxetine affect the aquatic plant, Lemna minor

    International Nuclear Information System (INIS)

    Amy-Sagers, Cherisse; Reinhardt, Keith; Larson, Danelle M.

    2017-01-01

    Highlights: • Sucralose increased leaf area and photosynthetic capacity of Lemna minor. • Sucralose increased δ "1"3C of Lemna, indicating substantial uptake and assimilation. • 100 μg/L-fluoxetine decreased Lemna minor growth and asexual reproduction. - Abstract: Pharmaceuticals and personal care products (PPCP) are prevalent in aquatic systems, yet the fate and impacts on aquatic plants needs quantification for many compounds. We measured and detected sucralose (an artificial sweetener), fluoxetine (an antidepressant), and other PPCP in the Portneuf River in Idaho, USA, where Lemna minor (an aquatic plant in the environment and used in ecotoxicology studies) naturally occurs. Sucralose was hypothesized to negatively affect photosynthesis and growth of L. minor because sucralose is a chlorinated molecule that may be toxic or unusable for plant metabolism. A priori hypotheses were not created for fluoxetine due to lack of previous studies examining its impacts on plants. We conducted laboratory ecotoxicological assessments for a large range of concentrations of sucralose and fluoxetine on L. minor physiology and photosynthetic function. Frond green leaf area, root length, growth rate, photosynthetic capacity, and plant carbon isotopic composition (discrimination relative to a standard; δ"1"3C) were measured among treatments ranging from 0 to 15000 nmol/L-sucralose and 0–323 nmol/L-fluoxetine. Contrary to our predictions, sucralose significantly increased green leaf area, photosynthetic capacity, and δ "1"3C of L. minor at environmentally relevant concentrations. The increase of δ "1"3C from sucralose amendments and an isotope-mixing model indicated substantial sucralose uptake and assimilation within the plant. Unlike humans who cannot break down and utilize sucralose, we documented that L. minor—a mixotrophic plant—can use sucralose as a sugar substitute to increase its green leaf area and photosynthetic capacity. Fluoxetine significantly

  20. Remote in vivo stress assessment of aquatic animals with microencapsulated biomarkers for environmental monitoring

    Science.gov (United States)

    Gurkov, Anton; Shchapova, Ekaterina; Bedulina, Daria; Baduev, Boris; Borvinskaya, Ekaterina; Meglinski, Igor; Timofeyev, Maxim

    2016-11-01

    Remote in vivo scanning of physiological parameters is a major trend in the development of new tools for the fields of medicine and animal physiology. For this purpose, a variety of implantable optical micro- and nanosensors have been designed for potential medical applications. At the same time, the important area of environmental sciences has been neglected in the development of techniques for remote physiological measurements. In the field of environmental monitoring and related research, there is a constant demand for new effective and quick techniques for the stress assessment of aquatic animals, and the development of proper methods for remote physiological measurements in vivo may significantly increase the precision and throughput of analyses in this field. In the present study, we apply pH-sensitive microencapsulated biomarkers to remotely monitor the pH of haemolymph in vivo in endemic amphipods from Lake Baikal, and we compare the suitability of this technique for stress assessment with that of common biochemical methods. For the first time, we demonstrate the possibility of remotely detecting a change in a physiological parameter in an aquatic organism under ecologically relevant stressful conditions and show the applicability of techniques using microencapsulated biomarkers for remote physiological measurements in environmental monitoring.

  1. Why Care About Aquatic Insects: Uses, Benefits, and Services

    Science.gov (United States)

    Mayflies and other aquatic insects are common subjects of ecological research, and environmental monitoring and assessment. However, their important role in protecting and restoring aquatic ecosystems is often challenged, because their benefits and services to humans are not obv...

  2. Acute effects of TiO2 nanomaterials on the viability and taxonomic composition of aquatic bacterial communities assessed via high-throughput screening and next generation sequencing.

    Directory of Open Access Journals (Sweden)

    Chu Thi Thanh Binh

    Full Text Available The nanotechnology industry is growing rapidly, leading to concerns about the potential ecological consequences of the release of engineered nanomaterials (ENMs to the environment. One challenge of assessing the ecological risks of ENMs is the incredible diversity of ENMs currently available and the rapid pace at which new ENMs are being developed. High-throughput screening (HTS is a popular approach to assessing ENM cytotoxicity that offers the opportunity to rapidly test in parallel a wide range of ENMs at multiple concentrations. However, current HTS approaches generally test one cell type at a time, which limits their ability to predict responses of complex microbial communities. In this study toxicity screening via a HTS platform was used in combination with next generation sequencing (NGS to assess responses of bacterial communities from two aquatic habitats, Lake Michigan (LM and the Chicago River (CR, to short-term exposure in their native waters to several commercial TiO2 nanomaterials under simulated solar irradiation. Results demonstrate that bacterial communities from LM and CR differed in their sensitivity to nano-TiO2, with the community from CR being more resistant. NGS analysis revealed that the composition of the bacterial communities from LM and CR were significantly altered by exposure to nano-TiO2, including decreases in overall bacterial diversity, decreases in the relative abundance of Actinomycetales, Sphingobacteriales, Limnohabitans, and Flavobacterium, and a significant increase in Limnobacter. These results suggest that the release of nano-TiO2 to the environment has the potential to alter the composition of aquatic bacterial communities, which could have implications for the stability and function of aquatic ecosystems. The novel combination of HTS and NGS described in this study represents a major advance over current methods for assessing ENM ecotoxicity because the relative toxicities of multiple ENMs to thousands

  3. Acute effects of TiO2 nanomaterials on the viability and taxonomic composition of aquatic bacterial communities assessed via high-throughput screening and next generation sequencing.

    Science.gov (United States)

    Binh, Chu Thi Thanh; Tong, Tiezheng; Gaillard, Jean-François; Gray, Kimberly A; Kelly, John J

    2014-01-01

    The nanotechnology industry is growing rapidly, leading to concerns about the potential ecological consequences of the release of engineered nanomaterials (ENMs) to the environment. One challenge of assessing the ecological risks of ENMs is the incredible diversity of ENMs currently available and the rapid pace at which new ENMs are being developed. High-throughput screening (HTS) is a popular approach to assessing ENM cytotoxicity that offers the opportunity to rapidly test in parallel a wide range of ENMs at multiple concentrations. However, current HTS approaches generally test one cell type at a time, which limits their ability to predict responses of complex microbial communities. In this study toxicity screening via a HTS platform was used in combination with next generation sequencing (NGS) to assess responses of bacterial communities from two aquatic habitats, Lake Michigan (LM) and the Chicago River (CR), to short-term exposure in their native waters to several commercial TiO2 nanomaterials under simulated solar irradiation. Results demonstrate that bacterial communities from LM and CR differed in their sensitivity to nano-TiO2, with the community from CR being more resistant. NGS analysis revealed that the composition of the bacterial communities from LM and CR were significantly altered by exposure to nano-TiO2, including decreases in overall bacterial diversity, decreases in the relative abundance of Actinomycetales, Sphingobacteriales, Limnohabitans, and Flavobacterium, and a significant increase in Limnobacter. These results suggest that the release of nano-TiO2 to the environment has the potential to alter the composition of aquatic bacterial communities, which could have implications for the stability and function of aquatic ecosystems. The novel combination of HTS and NGS described in this study represents a major advance over current methods for assessing ENM ecotoxicity because the relative toxicities of multiple ENMs to thousands of naturally

  4. Operational risk assessment.

    Science.gov (United States)

    McKim, Vicky L

    2017-06-01

    In the world of risk management, which encompasses the business continuity disciplines, many types of risk require evaluation. Financial risk is most often the primary focus, followed by product and market risks. Another critical area, which typically lacks a thorough review or may be overlooked, is operational risk. This category encompasses many risk exposure types including those around building structures and systems, environmental issues, nature, neighbours, clients, regulatory compliance, network, data security and so on. At times, insurance carriers will assess internal hazards, but seldom do these assessments include more than a cursory look at other types of operational risk. In heavily regulated environments, risk assessments are required but may not always include thorough assessments of operational exposures. Vulnerabilities may linger or go unnoticed, only to become the catalyst for a business disruption at a later time, some of which are so severe that business recovery becomes nearly impossible. Businesses may suffer loss of clients as the result of a prolonged disruption of services. Comprehensive operational risk assessments can assist in identifying such vulnerabilities, exposures and threats so that the risk can be minimised or removed. This paper lays out how an assessment of this type can be successfully conducted.

  5. Improving Aquatic Plant Management in the California Sacramento-San Joaquin Delta

    Science.gov (United States)

    Bubenheim, David L.; Potter, Chris

    2018-01-01

    Management of aquatic weeds in complex watersheds and river systems present many challenges to assessment, planning and implementation of management practices for floating and submerged aquatic invasive plants. The Delta Region Areawide Aquatic Weed Project (DRAAWP), a USDA sponsored area-wide project, is working to enhance planning, decision-making and operational efficiency in the California Sacramento-San Joaquin Delta. Satellite and airborne remote sensing are used map (area coverage and biomass), direct operations, and assess management impacts on plant communities. Archived satellite records going are used to review results from previous climate and management events and aide in developing long-term strategies. Modeling at local and watershed scales provides insight into land-use effects on water quality. Plant growth models informed by remote sensing are being applied spatially across the Delta to balance location and type of aquatic plant, growth response to altered environments, phenology, environmental regulations, and economics in selection of management practices. Initial utilization of remote sensing tools developed for mapping of aquatic invasive weeds improved operational efficiency by focusing limited chemical use to strategic areas with high plant-control impact and incorporating mechanical harvesting when chemical use is restricted. These assessment methods provide a comprehensive and quantitative view of aquatic invasive plants communities in the California Delta, both spatial and temporal, informed by ecological understanding with the objective of improving management and assessment effectiveness.

  6. Wastewater treatment and public health in Nunavut: a microbial risk assessment framework for the Canadian Arctic

    DEFF Research Database (Denmark)

    Daley, Kiley; Jamieson, Rob; Rainham, Daniel

    2017-01-01

    into the terrestrial and aquatic environment at random times. Northern communities rely heavily on their local surroundings as a source of food, drinking water, and recreation, thus creating the possibility of human exposure to wastewater effluent. Human exposure to microbial hazards present in municipal wastewater....... This review offers a conceptual framework and evaluation of current knowledge to enable the first microbial risk assessment of exposure scenarios associated with food-harvesting and recreational activities in Arctic communities, where simplified wastewater systems are being operated....

  7. Hydrologic analysis for ecological risk assessment of watersheds with abandoned mine lands

    International Nuclear Information System (INIS)

    Gallagher, D.; Babendreier, J.; Cherry, D.

    1999-01-01

    As part of on-going study of acid mine drainage (AMD), a comprehensive ecological risk assessment was conducted in the Leading Creek Watershed in southeast Ohio. The watershed is influenced by agriculture and active and abandoned coal-mining operations. This work presents a broad overview of several quantitative measures of hydrology and hydraulic watershed properties available for in risk assessment and evaluates their relation to metrics of ecology. Data analysis included statistical comparisons of metrics of ecology, ecotoxicology, water quality, and physically based parameters describing land use, geomorphology, flow, velocity, and particle size. A multiple regression analysis indicated that abandoned mining operations dominated impacts upon aquatic ecology. It also indicated low flow velocity measurements and a ratio of maximum velocity to average velocity at low flow where helpful in describing variation in macroinvertebrate Total Taxa scores. Other key parameters also identified strong impact relationships with biodiversity trends and included pH, simple knowledge of any mining upstream, calculated % of the subshed covered by strip mines, and the measured depth of streambed sediments from site to site

  8. Ecotoxicological risk assessment linked to infilling quarries with treated dredged seaport sediments.

    Science.gov (United States)

    Perrodin, Yves; Donguy, Gilles; Bazin, Christine; Volatier, Laurence; Durrieu, Claude; Bony, Sylvie; Devaux, Alain; Abdelghafour, Mohammed; Moretto, Robert

    2012-08-01

    The dredged sediments of polluted seaports now raise complex management problems since it is no longer possible to discharge them into the sea. This results in the need to manage them on land, raising other types of technical, economic and environmental problems. Regarding the technical and economic dimensions, traditional waste treatment methods have proved to be poorly adapted, due to very high costs and low absorbable volumes. In this context, filling quarries in coastal areas with treated sediments could represent an interesting alternative for these materials. Nevertheless, for the environmental dimension, it is necessary to demonstrate that this possibility is harmless to inland ecosystems. Consequently, a specific ecotoxicological risk assessment methodology has been formulated and tested on three sediments taken from seaboards of France, in view to providing an operational and usable tool for the prior validation of any operation to fill quarries with treated seaport sediments. This method incorporates the formulation of a global conceptual model of the scenario studied and the definition of protocols for each of its steps: the characterisation of exposures (based on a simulation of sediment deposit), the characterisation of effects (via the study of sediments ecotoxicity), and the final ecotoxicological risk assessment performed as a calculation of a risk quotient. It includes the implementation in parallel of two types of complementary approach: the "substances" approach derived from the European methodology for assessing new substances placed on the market, and the "matrix" approach which is similar to methods developed in France to assess ecological risks in other domains (waste management, polluted site management, …). The application of this dual approach to the three sediments tested led to conclude with reliability that the project to deposit sediments "1" and "2" presented a low risk for the peripheral aquatic ecosystems while sediment "3

  9. Hepatitis Risk Assessment

    Science.gov (United States)

    ... please visit this page: About CDC.gov . Hepatitis Risk Assessment Recommend on Facebook Tweet Share Compartir Viral Hepatitis. Are you at risk? Take this 5 minute Hepatitis Risk Assessment developed ...

  10. On the necessity of ecotoxicological assessments of aquatic sediments

    International Nuclear Information System (INIS)

    Krebs, F.

    1992-01-01

    The guidelines for dredged material adopted by the Oslo Commission in June 1991 impose stricter obligations on its member states regarding the management of dredged material in the marine environment. It can be assumed that the basic ideas of these guidelines will become the model for inland waterways as well. For an environmentally acceptable management of dredging operations and the collection of evidence against polluters, ecotoxicological investigations on the behaviour of contaminants in waters are required in addition to chemical analyses. The practical application of these guidelines is hampered by the fact that no standardized biotests for sediments exist in Germany to date. The paper describes situations in which standardized biotest methods of aquatic ecotoxicology can already be used. A concept for the biological assessment of sediments is still lacking. It is necessary to define quality objectives for the evaluation of chemical and ecotoxicological data with a view to ecologically acceptable management of dredged material. (orig.) [de

  11. GM Risk Assessment

    Science.gov (United States)

    Sparrow, Penny A. C.

    GM risk assessments play an important role in the decision-making process surrounding the regulation, notification and permission to handle Genetically Modified Organisms (GMOs). Ultimately the role of a GM risk assessment will be to ensure the safe handling and containment of the GMO; and to assess any potential impacts on the environment and human health. A risk assessment should answer all ‘what if’ scenarios, based on scientific evidence.

  12. Aquatic plants

    DEFF Research Database (Denmark)

    Madsen, T. V.; Sand-Jensen, K.

    2006-01-01

    Aquatic fl owering plants form a relatively young plant group on an evolutionary timescale. The group has developed over the past 80 million years from terrestrial fl owering plants that re-colonised the aquatic environment after 60-100 million years on land. The exchange of species between terre...... terrestrial and aquatic environments continues today and is very intensive along stream banks. In this chapter we describe the physical and chemical barriers to the exchange of plants between land and water.......Aquatic fl owering plants form a relatively young plant group on an evolutionary timescale. The group has developed over the past 80 million years from terrestrial fl owering plants that re-colonised the aquatic environment after 60-100 million years on land. The exchange of species between...

  13. Use of screening techniques to reduce uncertainty in risk assessment at a former manufactured gas plant site

    International Nuclear Information System (INIS)

    Logan, C.M.; Walden, R.H.; Baker, S.R.; Pekar, Z.; LaKind, J.S.; MacFarlane, I.D.

    1995-01-01

    Preliminary analysis of risks from a former manufactured gas plant (MGP) site revealed six media associated with potential exposure pathways: soils, air, surface water, groundwater, estuarine sediments, and aquatic biota. Contaminants of concern (COCs) include polycyclic aromatic hydrocarbons, volatile organic hydrocarbons, metals, cyanide, and PCBs. Available chemical data, including site-specific measurements and existing data from other sources (e.g., agency monitoring programs, Chesapeake Bay Program), were evaluated for potential utility in risk assessment. Where sufficient data existed, risk calculations were performed using central tendency and reasonable maximum exposure estimates. Where site-specific data were not available, risks were estimated using conservatively high default assumptions for dose and/or exposure duration. Because of the large number of potential exposure pathways and COCs, a sensitivity analysis was conducted to determine which information most influences risk assessment outcome so that any additional data collection to reduce uncertainty can be cost-effectively targeted. The sensitivity analysis utilized two types of information: (1) the impact that uncertainty in risk input values has on output risk estimates, and (2) the potential improvement in key risk input values, and consequently output values, if better site-specific data were available. A decision matrix using both quantitative and qualitative information was developed to prioritize sampling strategies to minimize uncertainty in the final risk assessment

  14. Aquatic assessment of the Pike Hill Copper Mine Superfund site, Corinth, Vermont

    Science.gov (United States)

    Piatak, Nadine M.; Argue, Denise M.; Seal, Robert R.; Kiah, Richard G.; Besser, John M.; Coles, James F.; Hammarstrom, Jane M.; Levitan, Denise M.; Deacon, Jeffrey R.; Ingersoll, Christopher G.

    2013-01-01

    The Pike Hill Copper Mine Superfund site in Corinth, Orange County, Vermont, includes the Eureka, Union, and Smith mines along with areas of downstream aquatic ecosystem impairment. The site was placed on the U.S. Environmental Protection Agency (USEPA) National Priorities List in 2004. The mines, which operated from about 1847 to 1919, contain underground workings, foundations from historical structures, several waste-rock piles, and some flotation tailings. The mine site is drained to the northeast by Pike Hill Brook, which includes several wetland areas, and to the southeast by an unnamed tributary that flows to the south and enters Cookville Brook. Both brooks eventually drain into the Waits River, which flows into the Connecticut River. The aquatic ecosystem at the site was assessed using a variety of approaches that investigated surface-water quality, sediment quality, and various ecological indicators of stream-ecosystem health. The degradation of surface-water quality is caused by elevated concentrations of copper, and to a lesser extent cadmium, with localized effects caused by aluminum, iron, and zinc. Copper concentrations in surface waters reached or exceeded the USEPA national recommended chronic water-quality criteria for the protection of aquatic life in all of the Pike Hill Brook sampling locations except for the location farthest downstream, in half of the locations sampled in the tributary to Cookville Brook, and in about half of the locations in one wetland area located in Pike Hill Brook. Most of these same locations also contained concentrations of cadmium that exceeded the chronic water-quality criteria. In contrast, surface waters at background sampling locations were below these criteria for copper and cadmium. Comparison of hardness-based and Biotic Ligand Model (BLM)-based criteria for copper yields similar results with respect to the extent or number of stations impaired for surface waters in the affected area. However, the BLM

  15. Occurrence and effects of tire wear particles in the environment - A critical review and an initial risk assessment

    International Nuclear Information System (INIS)

    Wik, Anna; Dave, Goeran

    2009-01-01

    This review summarizes the existing knowledge on the occurrence of tire wear particles in the environment, and their ecotoxicological effects. A meta-analysis on tire components in the environment revealed that tire wear particles are present in all environmental compartments, including air, water, soils/sediments, and biota. The maximum Predicted Environmental Concentrations (PECs) of tire wear particles in surface waters range from 0.03 to 56 mg l -1 and the maximum PECs in sediments range from 0.3 to 155 g kg -1 d.w. The results from our previous long-term studies with Ceriodaphnia dubia and Pseudokirchneriella subcapitata were used to derive Predicted No Effect Concentrations (PNECs). The upper ranges for PEC/PNEC ratios in water and sediment were >1, meaning that tire wear particles present potential risks for aquatic organisms. We suggest that management should be directed towards development and production of more environmentally friendly tires and improved road runoff treatment. - The literature on the occurrence and effects of tire wear particles in the environment is critically reviewed, and the risks to the aquatic environment are assessed

  16. Amphibians at risk? Susceptibility of terrestrial amphibian life stages to pesticides.

    Science.gov (United States)

    Brühl, Carsten A; Pieper, Silvia; Weber, Brigitte

    2011-11-01

    Current pesticide risk assessment does not specifically consider amphibians. Amphibians in the aquatic environment (aquatic life stages or postmetamorphic aquatic amphibians) and terrestrial living juvenile or adult amphibians are assumed to be covered by the risk assessment for aquatic invertebrates and fish, or mammals and birds, respectively. This procedure has been evaluated as being sufficiently protective regarding the acute risk posed by a number of pesticides to aquatic amphibian life stages (eggs, larvae). However, it is unknown whether the exposure and sensitivity of terrestrial living amphibians are comparable to mammalian and avian exposure and sensitivity. We reviewed the literature on dermal pesticide absorption and toxicity studies for terrestrial life stages of amphibians, focusing on the dermal exposure pathway, that is, through treated soil or direct overspray. In vitro studies demonstrated that cutaneous absorption of chemicals is significant and that chemical percutaneous passage, P (cm/h), is higher in amphibians than in mammals. In vivo, the rapid and substantial uptake of the herbicide atrazine from treated soil by toads (Bufo americanus) has been described. Severe toxic effects on various amphibian species have been reported for field-relevant application rates of different pesticides. In general, exposure and toxicity studies for terrestrial amphibian life stages are scarce, and the reported data indicate the need for further research, especially in light of the global amphibian decline. Copyright © 2011 SETAC.

  17. Colloids as a sink for certain pharmaceuticals in the aquatic environment.

    Science.gov (United States)

    Maskaoui, Khalid; Zhou, John L

    2010-05-01

    chemicals by aquatic organisms. It is therefore critical for colloids to be incorporated into water quality models for prediction and risk assessment purposes.

  18. Offshore risk assessment

    CERN Document Server

    Vinnem, Jan-Erik

    2014-01-01

      Offshore Risk Assessment was the first book to deal with quantified risk assessment (QRA) as applied specifically to offshore installations and operations. Risk assessment techniques have been used for more than three decades in the offshore oil and gas industry, and their use is set to expand increasingly as the industry moves into new areas and faces new challenges in older regions.   This updated and expanded third edition has been informed by a major R&D program on offshore risk assessment in Norway and summarizes research from 2006 to the present day. Rooted with a thorough discussion of risk metrics and risk analysis methodology,  subsequent chapters are devoted to analytical approaches to escalation, escape, evacuation and rescue analysis of safety and emergency systems.   Separate chapters analyze the main hazards of offshore structures: fire, explosion, collision, and falling objects as well as structural and marine hazards. Risk mitigation and control are discussed, as well as an illustrat...

  19. Environmental study of some metals on several aquatic macrophytes

    African Journals Online (AJOL)

    Aquatic macrophytes can be used in the study of quality of water ecosystems and in monitoring of metals and other pollutants. This study was focused on assessment of metals accumulation in certain aquatic macrophytes (biomonitors), in comparison with water and sediment (abiotic monitors) of the lake. Concentrations of ...

  20. Assessment of mechanisms of metal-induced reproductive toxicity in aquatic species as a biomarker of exposure

    International Nuclear Information System (INIS)

    Anderson, M.; George, W.; Sikka, S.; Kamath, B.; Preslan, J.; Agrawal, K.; Rege, A.

    1993-01-01

    This project is designed to identify heavy metals and organic contaminants of concern which could impact on the biota in the Louisiana wetlands by assessment of uptake and bioaccumulation of contaminants and their effects on reproductive processes as biomarkers of exposure. Heavy metals (lead, cadmium, cobalt, and mercury) have been demonstrated to have toxic effects on reproduction in mammals and several aquatic species. Hexachlorobenzene (HCB) is an persistent environmental contaminant which has been measured in human serum, fat, semen, and follicular fluid. HCB has been shown to be a reproductive toxin in rats and primates. Polychlorinated biphenyls (PCBs) are prevalent chlorinated hydrocarbons currently contaminating our environment. PCBs resist degradation and are insoluble in water; however, they bioaccumulate in aquatic species. Disturbances of the reproductive systems are not only sensitive indicators of toxicity but threatens the propagation of a species

  1. Derivation of Ecological Protective Concentration using the Probabilistic Ecological Risk Assessment applicable for Korean Water Environment: (I) Cadmium.

    Science.gov (United States)

    Nam, Sun-Hwa; Lee, Woo-Mi; An, Youn-Joo

    2012-06-01

    Probabilistic ecological risk assessment (PERA) for deriving ecological protective concentration (EPC) was previously suggested in USA, Australia, New Zealand, Canada, and Netherland. This study suggested the EPC of cadmium (Cd) based on the PERA to be suitable to Korean aquatic ecosystem. First, we collected reliable ecotoxicity data from reliable data without restriction and reliable data with restrictions. Next, we sorted the ecotoxicity data based on the site-specific locations, exposure duration, and water hardness. To correct toxicity by the water hardness, EU's hardness corrected algorithm was used with slope factor 0.89 and a benchmark of water hardness 100. EPC was calculated according to statistical extrapolation method (SEM), statistical extrapolation methodAcute to chronic ratio (SEMACR), and assessment factor method (AFM). As a result, aquatic toxicity data of Cd were collected from 43 acute toxicity data (4 Actinopterygill, 29 Branchiopoda, 1 Polychaeta, 2 Bryozoa, 6 Chlorophyceae, 1 Chanophyceae) and 40 chronic toxicity data (2 Actinopterygill, 23 Branchiopoda, 9 Chlorophyceae, 6 Macrophytes). Because toxicity data of Cd belongs to 4 classes in taxonomical classification, acute and chronic EPC (11.07 μg/l and 0.034 μg/l, respectively) was calculated according to SEM technique. These values were included in the range of international EPCs. This study would be useful to establish the ecological standard for the protection of aquatic ecosystem in Korea.

  2. A systems approach to risk assessment: Application to methylmercury from coal combustion

    Energy Technology Data Exchange (ETDEWEB)

    Saroff, L. [Dept. of Energy, Washington, DC (United States); Lipfert, F.W.; Moskowitz, P.D. [Brookhaven National Lab., Upton, NY (United States)

    1995-01-01

    The Department of Energy (DOE) asked Brookhaven National Laboratory (BNL) to perform a probabilistic assessment of the health risks associated with Hg from coal-fired power plants. The objective of the assessment is to estimate the incremental health risks that might ensue from a typical coal-fired power plant, together with their uncertainties, taking into account existing background levels and the actual adverse health effects that have previously been associated with exposure to various Hg species. Mercury has a long history of association with adverse neurological effects at high exposure levels. The most important current exposure pathway has been found to be ingestion of fish containing methylmercury (MeHg), which is the end product of bioconcentration moving up the aquatic food chain. Mercury can enter natural waters from either industrial discharges or from atmospheric deposition of various inorganic Ho. compounds. Because of the worldwide background and the existence of local emissions sources, Hg deposition must be considered on local, regional and global scales. The regulatory technical challenge presented by methy1mercury is to protect public health without foreclosing an appreciable a portion of the food supply or impacting on the lifestyles of North American native populations. This paper presents an abbreviated account of the DOE/BNL risk assessment, as viewed from a systems perspective. We review the structure of the model, the sources of data used, the assumptions that were made, and the interpretation of the findings. Since publication of the first risk assessment report, we have refined our estimates of local atmospheric dispersion and deposition and {open_quotes}calibrated{close_quotes} the pharmacokinetic portion of the model against observations.

  3. Tire wear particles in the aquatic environment - A review on generation, analysis, occurrence, fate and effects.

    Science.gov (United States)

    Wagner, Stephan; Hüffer, Thorsten; Klöckner, Philipp; Wehrhahn, Maren; Hofmann, Thilo; Reemtsma, Thorsten

    2018-08-01

    Tire wear particles (TWP), generated from tire material during use on roads have gained increasing attention as part of organic particulate contaminants, such as microplastic, in aquatic environments. The available information on properties and generation of TWP, analytical techniques to determine TWP, emissions, occurrence and behavior and ecotoxicological effects of TWP are reviewed with a focus on surface water as a potential receptor. TWP emissions are traffic related and contribute 5-30% to non-exhaust emissions from traffic. The mass of TWP generated is estimated at 1,327,000 t/a for the European Union, 1,120,000 t/a for the United States and 133,000 t/a for Germany. For Germany, this is equivalent to four times the amount of pesticides used. The mass of TWP ultimately entering the aquatic environment strongly depends on the extent of collection and treatment of road runoff, which is highly variable. For the German highways it is estimated that up to 11,000 t/a of TWP reach surface waters. Data on TWP concentrations in the environment, including surface waters are fragmentary, which is also due to the lack of suitable analytical methods for their determination. Information on TWP properties such as density and size distribution are missing; this hampers assessing the fate of TWP in the aquatic environment. Effects in the aquatic environment may stem from TWP itself or from compounds released from TWP. It is concluded that reliable knowledge on transport mechanism to surface waters, concentrations in surface waters and sediments, effects of aging, environmental half-lives of TWP as well as effects on aquatic organisms are missing. These aspects need to be addressed to allow for the assessment of risk of TWP in an aquatic environment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Development of a framework based on an ecosystem services approach for deriving specific protection goals for environmental risk assessment of pesticides

    International Nuclear Information System (INIS)

    Nienstedt, Karin M.; Brock, Theo C.M.; Wensem, Joke van; Montforts, Mark; Hart, Andy; Aagaard, Alf; Alix, Anne; Boesten, Jos; Bopp, Stephanie K.; Brown, Colin; Capri, Ettore; Forbes, Valery; Köpp, Herbert; Liess, Matthias; Luttik, Robert; Maltby, Lorraine

    2012-01-01

    General protection goals for the environmental risk assessment (ERA) of plant protection products are stated in European legislation but specific protection goals (SPGs) are often not precisely defined. These are however crucial for designing appropriate risk assessment schemes. The process followed by the Panel on Plant Protection Products and their Residues (PPR) of the European Food Safety Authority (EFSA) as well as examples of resulting SPGs obtained so far for environmental risk assessment (ERA) of pesticides is presented. The ecosystem services approach was used as an overarching concept for the development of SPGs, which will likely facilitate communication with stakeholders in general and risk managers in particular. It is proposed to develop SPG options for 7 key drivers for ecosystem services (microbes, algae, non target plants (aquatic and terrestrial), aquatic invertebrates, terrestrial non target arthropods including honeybees, terrestrial non-arthropod invertebrates, and vertebrates), covering the ecosystem services that could potentially be affected by the use of pesticides. These SPGs need to be defined in 6 dimensions: biological entity, attribute, magnitude, temporal and geographical scale of the effect, and the degree of certainty that the specified level of effect will not be exceeded. In general, to ensure ecosystem services, taxa representative for the key drivers identified need to be protected at the population level. However, for some vertebrates and species that have a protection status in legislation, protection may be at the individual level. To protect the provisioning and supporting services provided by microbes it may be sufficient to protect them at the functional group level. To protect biodiversity impacts need to be assessed at least at the scale of the watershed/landscape. - Research highlights: ► How to define specific protection goals (SPGs) for environmental risk assessment? ► The process uses the ecosystem services (ES

  5. Linking Resilience of Aquatic Species to Watershed Condition

    Science.gov (United States)

    Flitcroft, R. L.

    2017-12-01

    Watershed condition means different things to different people. From the perspective of aquatic ecology, watershed condition may be interpreted to mean the capacity of a watershed to support life history diversity of native species. Diversity in expression of life history is thought to confer resilience allowing portions of the broader population to survive stressful conditions. Different species have different life history strategies, many of which were developed through adaptation to regional or local environmental conditions and natural disturbance regimes. By reviewing adaptation strategies for species of interest at regional scales, characteristics of watersheds that confer resilience may be determined. Such assessments must be completed at multiple levels of spatial organization (i.e. sub-watershed, watershed, region) allowing assessments to be inferred across broad spatial extents. In a project on the Wenatchee River watershed, we guided models of wildfire effects on bull trout and spring Chinook from a meta-population perspective to determine risks to survival at local and population scales over multiple extents of spatial organization. In other work in the Oregon Coast Range, we found that historic landslides continue to exert habitat-forming pressure at local scales, leading to patchiness in distribution of habitats for different life stages of coho salmon. Further, climate change work in Oregon estuaries identified different vulnerabilities in terms of juvenile rearing habitat depending on the species of interest and the intensity of future changes in climate. All of these studies point to the importance of considering physical conditions in watersheds at multiple spatial extents from the perspective of native aquatic species in order to understand risks to long-term survival. The broader implications of watershed condition, from this perspective, is the determination of physical attributes that confer resilience to native biota. This may require

  6. Incorporating climate science in applications of the US endangered species act for aquatic species.

    Science.gov (United States)

    McClure, Michelle M; Alexander, Michael; Borggaard, Diane; Boughton, David; Crozier, Lisa; Griffis, Roger; Jorgensen, Jeffrey C; Lindley, Steven T; Nye, Janet; Rowland, Melanie J; Seney, Erin E; Snover, Amy; Toole, Christopher; VAN Houtan, Kyle

    2013-12-01

    Aquatic species are threatened by climate change but have received comparatively less attention than terrestrial species. We gleaned key strategies for scientists and managers seeking to address climate change in aquatic conservation planning from the literature and existing knowledge. We address 3 categories of conservation effort that rely on scientific analysis and have particular application under the U.S. Endangered Species Act (ESA): assessment of overall risk to a species; long-term recovery planning; and evaluation of effects of specific actions or perturbations. Fewer data are available for aquatic species to support these analyses, and climate effects on aquatic systems are poorly characterized. Thus, we recommend scientists conducting analyses supporting ESA decisions develop a conceptual model that links climate, habitat, ecosystem, and species response to changing conditions and use this model to organize analyses and future research. We recommend that current climate conditions are not appropriate for projections used in ESA analyses and that long-term projections of climate-change effects provide temporal context as a species-wide assessment provides spatial context. In these projections, climate change should not be discounted solely because the magnitude of projected change at a particular time is uncertain when directionality of climate change is clear. Identifying likely future habitat at the species scale will indicate key refuges and potential range shifts. However, the risks and benefits associated with errors in modeling future habitat are not equivalent. The ESA offers mechanisms for increasing the overall resilience and resistance of species to climate changes, including establishing recovery goals requiring increased genetic and phenotypic diversity, specifying critical habitat in areas not currently occupied but likely to become important, and using adaptive management. Incorporación de las Ciencias Climáticas en las Aplicaciones del

  7. Predicting the aquatic risk of realistic pesticide mixtures to species assemblages in Portuguese river basins.

    Science.gov (United States)

    Silva, Emília; Daam, Michiel A; Cerejeira, Maria José

    2015-05-01

    Although pesticide regulatory tools are mainly based on individual substances, aquatic ecosystems are usually exposed to multiple pesticides from their use on the variety of crops within the catchment of a river. This study estimated the impact of measured pesticide mixtures in surface waters from 2002 and 2008 within three important Portuguese river basins ('Mondego', 'Sado' and 'Tejo') on primary producers, arthropods and fish by toxic pressure calculation. Species sensitivity distributions (SSDs), in combination with mixture toxicity models, were applied. Considering the differences in the responses of the taxonomic groups as well as in the pesticide exposures that these organisms experience, variable acute multi-substance potentially affected fractions (msPAFs) were obtained. The median msPAF for primary producers and arthropods in surface waters of all river basins exceeded 5%, the cut-off value used in the prospective SSD approach for deriving individual environmental quality standards. A ranking procedure identified various photosystem II inhibiting herbicides, with oxadiazon having the relatively largest toxic effects on primary producers, while the organophosphorus insecticides, chlorfenvinphos and chlorpyrifos, and the organochloride endosulfan had the largest effects on arthropods and fish, respectively. These results ensure compliance with European legislation with regard to ecological risk assessment and management of pesticides in surface waters. Copyright © 2015. Published by Elsevier B.V.

  8. Concept of risk: risk assessment and nuclear safety

    International Nuclear Information System (INIS)

    Thompson, P.B.

    1980-01-01

    The dissertation is a critical examination of risk assessment and its role in public policy. Nuclear power safety safety issues are selected as the primary source of illustrations and examples. The dissertation examines how risk assessment studies develop a concept of risk which becomes decisive for policy choices. Risk-assessment techniques are interpreted as instruments which secure an evaluation of risk which, in turn, figures prominently in technical reports on nuclear power. The philosophical critique is mounted on two levels. First, an epistemological critique surveys distinctions between the technical concept of risk and more familiar senses of risk. The critique shows that utilization of risk assessment re-structures the concept of risk. The technical concept is contrasted to the function of risk within a decision-maker's conceptual agenda and hierarchy of values. Second, an ethical critique exposes the value commitments of risk assessment recommendations. Although some of these values might be defended for policy decisions, the technical character of risk assessment obfuscates normative issues. Risk assessment is shown to be a form of factual enquiry which, nonetheless, represents a commitment to a specific selection of ethical and social values. Risk assessment should not be interpreted as a primary guide to decision unless the specific values incorporated into its concept of risk are stated explicitly and justified philosophically. Such a statement would allow value questions which have been sublimated by the factual tone of the analytic techniques to be debated on clear, social and ethical grounds

  9. Assessing the impact of waterborne and dietborne cadmium toxicity on susceptibility risk for rainbow trout

    International Nuclear Information System (INIS)

    Liao, Chung-Min; Ju, Yun-Ru; Chen, Wei-Yu; Chen, Bo-Ching

    2011-01-01

    The purpose of this study was to use a risk-based integrated-scale toxicological model to examine the impact of waterborne and dietborne cadmium (Cd) toxicity on rainbow trout (Oncorhynchus mykiss) susceptibility appraised with recent published data. A probabilistic assessment model was performed to estimate Cd susceptibility risk. The dose-response models were constructed based on two endpoints of % Cd in metabolically active pool (MAP) and susceptibility time that causes 50% effect (ST50). We further constructed an elimination-detoxification-recovery scheme to enhance the model predictive ability. We found a 95% probability of % Cd in gill and liver MAP exceeding 47-49% and it was likely (70% probability) to have exceeded 52-55%, but it was unlikely (30% probability) to have exceeded 56-60%. In contrast to gill and liver, gut had a relative lower Cd susceptibility risk (15-17% Cd in MAP) with a longer ST50. We suggested that the proposed probabilistic risk assessment framework can incorporate the elimination-detoxification-recovery scheme to help government based biomonitoring and bioassessment programs to prevent potential aquatic ecosystems and human health consequences. - Research Highlights: → An integrated-scale toxicological model was used to examine the impact of Cd on rainbow trout. → A probabilistic assessment model was performed to estimate Cd susceptibility risk. → An elimination-detoxification-recovery scheme was constructed to enhance the model predictive ability. → Gut had a relative lower Cd susceptibility risk than that in gill and liver.

  10. Assessing the impact of waterborne and dietborne cadmium toxicity on susceptibility risk for rainbow trout

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Chung-Min, E-mail: cmliao@ntu.edu.tw [Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, 10617, Taiwan (China); Ju, Yun-Ru; Chen, Wei-Yu [Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, 10617, Taiwan (China); Chen, Bo-Ching [Department of Post-Modern Agriculture, Mingdao University, Changhua, 52345, Taiwan (China)

    2011-01-01

    The purpose of this study was to use a risk-based integrated-scale toxicological model to examine the impact of waterborne and dietborne cadmium (Cd) toxicity on rainbow trout (Oncorhynchus mykiss) susceptibility appraised with recent published data. A probabilistic assessment model was performed to estimate Cd susceptibility risk. The dose-response models were constructed based on two endpoints of % Cd in metabolically active pool (MAP) and susceptibility time that causes 50% effect (ST50). We further constructed an elimination-detoxification-recovery scheme to enhance the model predictive ability. We found a 95% probability of % Cd in gill and liver MAP exceeding 47-49% and it was likely (70% probability) to have exceeded 52-55%, but it was unlikely (30% probability) to have exceeded 56-60%. In contrast to gill and liver, gut had a relative lower Cd susceptibility risk (15-17% Cd in MAP) with a longer ST50. We suggested that the proposed probabilistic risk assessment framework can incorporate the elimination-detoxification-recovery scheme to help government based biomonitoring and bioassessment programs to prevent potential aquatic ecosystems and human health consequences. - Research Highlights: {yields} An integrated-scale toxicological model was used to examine the impact of Cd on rainbow trout. {yields} A probabilistic assessment model was performed to estimate Cd susceptibility risk. {yields} An elimination-detoxification-recovery scheme was constructed to enhance the model predictive ability. {yields} Gut had a relative lower Cd susceptibility risk than that in gill and liver.

  11. Dutch Risk Assessment tools

    NARCIS (Netherlands)

    Venema, A.

    2015-01-01

    The ‘Risico- Inventarisatie- en Evaluatie-instrumenten’ is the name for the Dutch risk assessment (RA) tools. A RA tool can be used to perform a risk assessment including an evaluation of the identified risks. These tools were among the first online risk assessment tools developed in Europe. The

  12. Reducing aquatic hazards of industrial chemicals: probabilistic assessment of sustainable molecular design guidelines.

    Science.gov (United States)

    Connors, Kristin A; Voutchkova-Kostal, Adelina M; Kostal, Jakub; Anastas, Paul; Zimmerman, Julie B; Brooks, Bryan W

    2014-08-01

    Basic toxicological information is lacking for the majority of industrial chemicals. In addition to increasing empirical toxicity data through additional testing, prospective computational approaches to drug development aim to serve as a rational basis for the design of chemicals with reduced toxicity. Recent work has resulted in the derivation of a "rule of 2," wherein chemicals with an octanol-water partition coefficient (log P) less than 2 and a difference between the lowest unoccupied molecular orbital and the highest occupied molecular orbital (ΔE) greater than 9 (log P9 eV) are predicted to be 4 to 5 times less likely to elicit acute or chronic toxicity to model aquatic organisms. The present study examines potential reduction of aquatic toxicity hazards from industrial chemicals if these 2 molecular design guidelines were employed. Probabilistic hazard assessment approaches were used to model the likelihood of encountering industrial chemicals exceeding toxicological categories of concern both with and without the rule of 2. Modeling predicted that utilization of these molecular design guidelines for log P and ΔE would appreciably decrease the number of chemicals that would be designated to be of "high" and "very high" concern for acute and chronic toxicity to standard model aquatic organisms and end points as defined by the US Environmental Protection Agency. For example, 14.5% of chemicals were categorized as having high and very high acute toxicity to the fathead minnow model, whereas only 3.3% of chemicals conforming to the design guidelines were predicted to be in these categories. Considerations of specific chemical classes (e.g., aldehydes), chemical attributes (e.g., ionization), and adverse outcome pathways in representative species (e.g., receptor-mediated responses) could be used to derive future property guidelines for broader classes of contaminants. © 2014 SETAC.

  13. Characterization factors for thermal pollution in freshwater aquatic environments.

    Science.gov (United States)

    Verones, Francesca; Hanafiah, Marlia Mohd; Pfister, Stephan; Huijbregts, Mark A J; Pelletier, Gregory J; Koehler, Annette

    2010-12-15

    To date the impact of thermal emissions has not been addressed in life cycle assessment despite the narrow thermal tolerance of most aquatic species. A method to derive characterization factors for the impact of cooling water discharges on aquatic ecosystems was developed which uses space and time explicit integration of fate and effects of water temperature changes. The fate factor is calculated with a 1-dimensional steady-state model and reflects the residence time of heat emissions in the river. The effect factor specifies the loss of species diversity per unit of temperature increase and is based on a species sensitivity distribution of temperature tolerance intervals for various aquatic species. As an example, time explicit characterization factors were calculated for the cooling water discharge of a nuclear power plant in Switzerland, quantifying the impact on aquatic ecosystems of the rivers Aare and Rhine. The relative importance of the impact of these cooling water discharges was compared with other impacts in life cycle assessment. We found that thermal emissions are relevant for aquatic ecosystems compared to other stressors, such as chemicals and nutrients. For the case of nuclear electricity investigated, thermal emissions contribute between 3% and over 90% to Ecosystem Quality damage.

  14. State of risk assessment

    International Nuclear Information System (INIS)

    Conrad, J.

    1978-03-01

    In view of the growing importance assumed in recent years by scientific work on the calculation, quantification, evaluation and acceptance as well as behavior in the face of risks in general and more specifically, the risks of large industrial plants, the report attempts to provide a survey of the current situation, results and evaluation of this new branch of research, risk assessment. The emphasis of the report is on the basic discussion and criticism of the theoretical and methodological approaches used in the field of risk assessment (section 3). It is concerned above all with - methodical problems of determining and quantifying risks (3.1) - questions of the possibility of risk evaluation and comp arison (3.1, 3.2) - the premises of normative and empirical studies on decision making under risk (3.2, 3.3) - investigations into society's acceptance of risks involved in the introduction of new technologies (3.4) - attempts to combine various aspects of the field of risk assessment in a unified concept (3.5, 3.6, 3.7). Because risk assessment is embedded in the framework of decision theory and technology assessment, it can be implicitly evaluated at a more general level within this framework, as far as its possibilities and weaknesses of method and application are concerned (section 4). Sections 2 and 5 deal with the social context of origin and utilization of risk assessment. Finally, an attempt is made at a summary indicating the possible future development of risk assessment. (orig./HP) [de

  15. Dynamics and ecological risk assessment of chromophoric dissolved organic matter in the Yinma River Watershed: Rivers, reservoirs, and urban waters.

    Science.gov (United States)

    Li, Sijia; Zhang, Jiquan; Guo, Enliang; Zhang, Feng; Ma, Qiyun; Mu, Guangyi

    2017-10-01

    The extensive use of a geographic information system (GIS) and remote sensing in ecological risk assessment from a spatiotemporal perspective complements ecological environment management. Chromophoric dissolved organic matter (CDOM), which is a complex mixture of organic matter that can be estimated via remote sensing, carries and produces carcinogenic disinfection by-products and organic pollutants in various aquatic environments. This paper reports the first ecological risk assessment, which was conducted in 2016, of CDOM in the Yinma River watershed including riverine waters, reservoir waters, and urban waters. Referring to the risk formation theory of natural disaster, the entropy evaluation method and DPSIR (driving force-pressure-state-impact-response) framework were coupled to establish a hazard and vulnerability index with multisource data, i.e., meteorological, remote sensing, experimental, and socioeconomic data, of this watershed. This ecological vulnerability assessment indicator system contains 23 indicators with respect to ecological sensitivity, ecological pressure, and self-resilience. The characteristics of CDOM absorption parameters from different waters showed higher aromatic content and molecular weights in May because of increased terrestrial inputs. The assessment results indicated that the overall ecosystem risk in the study area was focused in the extremely, heavily, and moderately vulnerable regions. The ecological risk assessment results objectively reflect the regional ecological environment and demonstrate the potential of ecological risk assessment of pollutants over traditional chemical measurements. Copyright © 2017. Published by Elsevier Inc.

  16. Effect of aquatic exercise training on lipids profile and glycaemia: A systematic review

    Directory of Open Access Journals (Sweden)

    R. Delevatti

    2015-12-01

    Full Text Available The objective of this study was to investigate the acute and chronic effects of aquatic exercise training on glycaemia and lipids profile. A systematic review of clinical trials was performed assessing the effects of aquatic exercise and/or training in upright position on lipids profile and glycaemic index. Two raters independently assessed the eligibility criteria and the methodological quality of the studies using the PEDro scale. Average and standard deviation of all variables significantly altered by the interventions were extracted for calculating percentage alterations. Three studies involving the acute effect of aquatic aerobic exercise on the variables of interest were analysed, with two of them demonstrating the efficacy of this type of training in improving lipids profile. Nine studies involving the chronic effects of aquatic training on the same variables were also analysed; eight of them, which assessed different training interventions for different populations, reported benefits of exercise regarding these variables. In conclusion, the improvements found in response to aquatic exercise training in upright position in glycaemia and lipids profile indicate the aquatic environment as a favourable environment for conducting exercise programmes.

  17. Risk assessment and risk management of mycotoxins.

    Science.gov (United States)

    2012-01-01

    Risk assessment is the process of quantifying the magnitude and exposure, or probability, of a harmful effect to individuals or populations from certain agents or activities. Here, we summarize the four steps of risk assessment: hazard identification, dose-response assessment, exposure assessment, and risk characterization. Risk assessments using these principles have been conducted on the major mycotoxins (aflatoxins, fumonisins, ochratoxin A, deoxynivalenol, and zearalenone) by various regulatory agencies for the purpose of setting food safety guidelines. We critically evaluate the impact of these risk assessment parameters on the estimated global burden of the associated diseases as well as the impact of regulatory measures on food supply and international trade. Apart from the well-established risk posed by aflatoxins, many uncertainties still exist about risk assessments for the other major mycotoxins, often reflecting a lack of epidemiological data. Differences exist in the risk management strategies and in the ways different governments impose regulations and technologies to reduce levels of mycotoxins in the food-chain. Regulatory measures have very little impact on remote rural and subsistence farming communities in developing countries, in contrast to developed countries, where regulations are strictly enforced to reduce and/or remove mycotoxin contamination. However, in the absence of the relevant technologies or the necessary infrastructure, we highlight simple intervention practices to reduce mycotoxin contamination in the field and/or prevent mycotoxin formation during storage.

  18. Assessing the fate and toxicity of Thallium I and Thallium III to three aquatic organisms.

    Science.gov (United States)

    Rickwood, C J; King, M; Huntsman-Mapila, P

    2015-05-01

    Thallium has been shown to significantly increase in both water and aquatic biota after exposure to metal mine effluent, however, there is a lack of knowledge as to its fate and effect in the aquatic environment. The objectives of this project were to assess (1) fate of thallium by conducting speciation analysis and determining the influence of water quality on toxicity and (2) effects of thallium (I) and (III) on three aquatic species; the algae, Pseudokirchneriella subcapitata, the invertebrate Ceriodaphnia dubia and the vertebrate Pimephales promelas. Speciation analysis proved challenging with poor recovery of thallium (I), however analysis with solutions >125μg/L revealed that over a 7-d period, recovery of thallium (III) was less than 15%, suggesting that the majority of thallium (III) was converted to Thallium (I). It was only in fresh solutions where recovery of Thallium (III) was greater than 80%. The lowest IC25s generated during our effects assessment for both Thallium (I) and (III) were more than 10-fold greater than the highest concentration recorded in receiving environments (8μg/L) and more than 100-fold greater than the current guideline (0.8μg/L). To assess the influence of water quality on thallium toxicity, the concentrations of both potassium and calcium were reduced in dilution water. When potassium was reduced for both C. dubia and P. subcapitata tests, the lowest IC25 generated was 5-fold higher than the current guideline, but within the range of concentrations reported in receiving environments for both Thallium (I) and (III). When calcium was reduced in dilution water, toxicity only increased in the Tl (III) tests with C. dubia; the IC25 for Tl(III), similar to the exposures conducted with reduced potassium, was within the range of total thallium concentrations reported in the receiving environment. Without an accurate, repeatable method to assess thallium speciation at low concentrations it is not possible to draw any firm conclusions

  19. Biosafety Risk Assessment Methodology

    Energy Technology Data Exchange (ETDEWEB)

    Caskey, Susan Adele [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). International Biological Threat Reduction Program; Gaudioso, Jennifer M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). International Biological Threat Reduction Program; Salerno, Reynolds Mathewson [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). International Biological Threat Reduction Program; Wagner, Stefan M. [Public Health Agency of Canada, Winnipeg, MB (Canada). Canadian Science Centre for Human and Animal Health (CSCHAH); Shigematsu, Mika [National Inst. of Infectious Diseases (NIID), Tokyo (Japan); Risi, George [Infectious Disease Specialists, P.C, Missoula, MT (United States); Kozlovac, Joe [US Dept. of Agriculture (USDA)., Beltsville, MD (United States); Halkjaer-Knudsen, Vibeke [Statens Serum Inst., Copenhagen (Denmark); Prat, Esmeralda [Bayer CropScience, Monheim am Rhein (Germany)

    2010-10-01

    Laboratories that work with biological agents need to manage their safety risks to persons working the laboratories and the human and animal community in the surrounding areas. Biosafety guidance defines a wide variety of biosafety risk mitigation measures, which include measures which fall under the following categories: engineering controls, procedural and administrative controls, and the use of personal protective equipment; the determination of which mitigation measures should be used to address the specific laboratory risks are dependent upon a risk assessment. Ideally, a risk assessment should be conducted in a manner which is standardized and systematic which allows it to be repeatable and comparable. A risk assessment should clearly define the risk being assessed and avoid over complication.

  20. Assessment of the environmental status of the coastal and marine aquatic environment in Europe: A plea for adaptive management

    NARCIS (Netherlands)

    Laane, R.W.P.M.; Slijkerman, D.M.E.; Vethaak, A.D.; Schobben, J.H.M.

    2012-01-01

    Policymakers and managers have a very different philosophy and approach to achieving healthy coastal and marine ecosystems than scientists. In this paper we discuss the evolution of the assessment of the chemical status in the aquatic environment and the growing rift between the political intention

  1. Early Pleistocene aquatic resource use in the Turkana Basin.

    Science.gov (United States)

    Archer, Will; Braun, David R; Harris, Jack W K; McCoy, Jack T; Richmond, Brian G

    2014-12-01

    Evidence for the acquisition of nutritionally dense food resources by early Pleistocene hominins has implications for both hominin biology and behavior. Aquatic fauna may have comprised a source of highly nutritious resources to hominins in the Turkana Basin at ∼1.95 Ma. Here we employ multiple datasets to examine the issue of aquatic resource use in the early Pleistocene. This study focuses on four components of aquatic faunal assemblages (1) taxonomic diversity, (2) skeletal element proportion, (3) bone fragmentation and (4) bone surface modification. These components are used to identify associations between early Pleistocene aquatic remains and hominin behavior at the site of FwJj20 in the Koobi Fora Fm. (Kenya). We focus on two dominant aquatic species: catfish and turtles. Further we suggest that data on aquatic resource availability as well as ethnographic examples of aquatic resource use complement our observations on the archaeological remains from FwJj20. Aquatic food items provided hominins with a valuable nutritional alternative to an exclusively terrestrial resource base. We argue that specific advantages afforded by an aquatic alternative to terrestrial resources include (1) a probable reduction in required investment of energy relative to economic return in the form of nutritionally dense food items, (2) a decrease in the technological costs of resource acquisition, and (3) a reduced level of inter-specific competition associated with carcass access and an associated reduction of predation risk relative to terrestrial sources of food. The combined evidence from FwJj20 suggests that aquatic resources may have played a substantial role in early Pleistocene diets and these resources may have been overlooked in previous interpretations of hominin behavior. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Resource Assessment for Microalgal/Emergent Aquatic Biomass Systems in the Arid Southwest: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Vigon, B. W.; Arthur, M. F.; Taft, L. G.; Wagner, C. K.; Lipinsky, E. S.; Litchfield, J. H.; McCandlish, C. D.; Clark, R.

    1982-12-23

    This research project has been designed to facilitate the eventual selection of biomass production systems using aquatic species (microalgal and emergent aquatic plant species (MEAP) which effectively exploit the potentially available resources of the Southwest.

  3. RBCA-based approaches to ecological risk assessment for TPH-contaminated areas

    International Nuclear Information System (INIS)

    Hummell, R.; Vedagiri, U.

    1995-01-01

    The RBCA guidelines proposed by ASTM form an evaluation and decision-making framework for sites potentially contaminated by petroleum releases. They present a three-tiered approach of decreasing conservatism and increasing site-specificity that primarily evaluates risks to human health. While RBCA includes consideration of environmental impacts, there are no specific recommendations on how this is to be achieved. A RBCA-based ecological risk assessment approach was developed for TPH-contaminated areas in Alaska. The approach presents a habitat-based selection process for surrogate chemicals and indicator chemicals of ecological relevance, evaluation of ecotoxicity, derivation of matrix-specific Tier 1 RBSLs (including soils) and determination of Tier 2 and 3 SSTLS. Chemicals are considered by class, aquatic (freshwater and saltwater) and terrestrial habitats are evaluated independently, and chemical concentrations are screened in all media of concern (air, soil, water, sediment). Data needs and decision points specific to ecological receptors are identified for each tier of the approach. Other aspects of the approach include consideration of contaminant migration pathways and habitats that are typical of Arctic conditions. Areas where ecological and human risk concerns may overlap are identified

  4. High production volume chemical Amine Oxide [C8-C20] category environmental risk assessment

    DEFF Research Database (Denmark)

    Sanderson, Hans; Tibazarwa, Caritas; Greggs, William

    2009-01-01

    and personal care products. Given the lack of persistence or bioaccumulation, and the low likelihood of these chemicals partitioning to soil, the focus of the environmental assessment is on the aquatic environment. In the United States, the E-FAST model is used to estimate effluent concentrations in the United......An environmental assessment of amine oxides has been conducted under the OECD SIDS High Production Volume (HPV) Program via the Global International Council of Chemical Associations (ICCA) Amine Oxides Consortium. Amine oxides are primarily used in conjunction with surfactants in cleaning...... States from manufacturing facilities and from municipal facilities resulting from consumer product uses. Reasonable worst-case ratios of predicted environmental concentration (PEC) to predicted no effect concentration (PNEC) range from 0.04 to 0.003, demonstrating that these chemicals are a low risk...

  5. Sustaining America's Aquatic Biodiversity. Aquatic Insect Biodiversity and Conservation

    OpenAIRE

    Voshell, J. Reese

    2005-01-01

    Provides a description of the structure and appearance of aquatic insects, how they live and reproduce, the habitats they live in, how to collect them, why they are of importance, and threats to their survival; document also includes a brief illustrated summary of the eight major groups of aquatic insects and web links to more information. Part of a 12 part series on sustaining aquatic biodiversity in America.

  6. 2007 TOXICOLOGY AND RISK ASSESSMENT ...

    Science.gov (United States)

    EPA has announced The 2007 Toxicology and Risk Assessment Conference Cincinnati Marriott North, West Chester (Cincinnati), OHApril 23- 26, 2007 - Click to register!The Annual Toxicology and Risk Assessment Conference is a unique meeting where several Government Agencies come together to discuss toxicology and risk assessment issues that are not only of concern to the government, but also to a broader audience including academia and industry. The theme of this year's conference is Emerging Issues and Challenges in Risk Assessment and the preliminary agenda includes: Plenary Sessions and prominent speakers (tentative) include: Issues of Emerging Chemical ContaminantsUncertainty and Variability in Risk Assessment Use of Mechanistic data in IARC evaluationsParallel Sessions:Uncertainty and Variability in Dose-Response Assessment Recent Advances in Toxicity and Risk Assessment of RDX The Use of Epidemiologic Data for Risk Assessment Applications Cumulative Health Risk Assessment:

  7. Assessment of integrated watershed health based on the natural environment, hydrology, water quality, and aquatic ecology

    Directory of Open Access Journals (Sweden)

    S. R. Ahn

    2017-11-01

    Full Text Available Watershed health, including the natural environment, hydrology, water quality, and aquatic ecology, is assessed for the Han River basin (34 148 km2 in South Korea by using the Soil and Water Assessment Tool (SWAT. The evaluation procedures follow those of the Healthy Watersheds Assessment by the U.S. Environmental Protection Agency (EPA. Six components of the watershed landscape are examined to evaluate the watershed health (basin natural capacity: stream geomorphology, hydrology, water quality, aquatic habitat condition, and biological condition. In particular, the SWAT is applied to the study basin for the hydrology and water-quality components, including 237 sub-watersheds (within a standard watershed on the Korea Hydrologic Unit Map along with three multipurpose dams, one hydroelectric dam, and three multifunction weirs. The SWAT is calibrated (2005–2009 and validated (2010–2014 by using each dam and weir operation, the flux-tower evapotranspiration, the time-domain reflectometry (TDR soil moisture, and groundwater-level data for the hydrology assessment, and by using sediment, total phosphorus, and total nitrogen data for the water-quality assessment. The water balance, which considers the surface–groundwater interactions and variations in the stream-water quality, is quantified according to the sub-watershed-scale relationship between the watershed hydrologic cycle and stream-water quality. We assess the integrated watershed health according to the U.S. EPA evaluation process based on the vulnerability levels of the natural environment, water resources, water quality, and ecosystem components. The results indicate that the watershed's health declined during the most recent 10-year period of 2005–2014, as indicated by the worse results for the surface process metric and soil water dynamics compared to those of the 1995–2004 period. The integrated watershed health tended to decrease farther downstream within the watershed.

  8. Evaluation and Use of Water Monitoring Data in Pesticide Aquatic Exposure Assessments

    Science.gov (United States)

    The EPA Office of Pesticide Programs uses a tiered approach to risk assessment. The tiered approach screens out low-risk pesticides and focuses refined assessments and resources on pesticides most likely to pose a risk of concern.

  9. Estimation of the Risks of Collision or Strike to Freshwater Aquatic Organisms Resulting from Operation of Instream Hydrokinetic Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Schweizer, Peter E [ORNL; Cada, Glenn F [ORNL; Bevelhimer, Mark S [ORNL

    2010-05-01

    Hydrokinetic energy technologies have been proposed as renewable, environmentally preferable alternatives to fossil fuels for generation of electricity. Hydrokinetic technologies harness the energy of water in motion, either from waves, tides or from river currents. For energy capture from free-flowing rivers, arrays of rotating devices are most commonly proposed. The placement of hydrokinetic devices in large rivers is expected to increase the underwater structural complexity of river landscapes. Moore and Gregory (1988) found that structural complexity increased local fish populations because fish and other aquatic biota are attracted to structural complexity that provides microhabitats with steep flow velocity gradients (Liao 2007). However, hydrokinetic devices have mechanical parts, blades, wings or bars that move through the water column, posing a potential strike or collision risk to fish and other aquatic biota. Furthermore, in a setting with arrays of hydrokinetic turbines the cumulative effects of multiple encounters may increase the risk of strike. Submerged structures associated with a hydrokinetic (HK) project present a collision risk to aquatic organisms and diving birds (Cada et al. 2007). Collision is physical contact between a device or its pressure field and an organism that may result in an injury to that organism (Wilson et al. 2007). Collisions can occur between animals and fixed submerged structures, mooring equipment, horizontal or vertical axis turbine rotors, and structures that, by their individual design or in combination, may form traps. This report defines strike as a special case of collision where a moving part, such as a rotor blade of a HK turbine intercepts the path of an organism of interest, resulting in physical contact with the organism. The severity of a strike incidence may range from minor physical contact with no adverse effects to the organism to severe strike resulting in injury or death of the organism. Harmful effects

  10. Risk Assessment

    Science.gov (United States)

    How the EPA conducts risk assessment to protect human health and the environment. Several assessments are included with the guidelines, models, databases, state-based RSL Tables, local contacts and framework documents used to perform these assessments.

  11. The use of remote sensing and GIS data in the NW Forest Plan aquatic assessment

    Science.gov (United States)

    Hirsch, C.; Gordon, S. N.; Eldred, P.

    2017-12-01

    The NW Forest Plan is an integrated set of standards and guidelines covering 24 m ac of federal lands on the west side of Washington, Oregon, and northern California. The associated the Aquatic and Riparian Effectiveness Monitoring Program (AREMP) assesses watershed condition and trend on these lands at two levels: upslope/riparian based on GIS and remote sensing data, and inchannel, based on field data collection. AREMP uses a multicriteria evaluation approach similar to WCF, but upslope attributes are restricted to roads and vegetation because these are the only ones which can be reliably backcasted to estimate trend since the start of the Plan in 1994. AREMP has developed a context-sensitive road evaluation system in response to studies showing that a large percentage of road sediment delivery to streams comes from a small percentage of the overall road network, and we are currently testing integration with the GRAIP-lite road sediment tool. AREMP's evaluation of vegetation data, based on Landsat imagery, also uses context derived from the distributions of least-human-disturbed conditions by 16 major forest types. A major question remains in how to evaluate vegetation given the importance of natural disturbances in renewing aquatic habitat. A common challenge across all of our data sources is how to assess uncertainty in data values and locational accuracy.

  12. Exploration Health Risks: Probabilistic Risk Assessment

    Science.gov (United States)

    Rhatigan, Jennifer; Charles, John; Hayes, Judith; Wren, Kiley

    2006-01-01

    Maintenance of human health on long-duration exploration missions is a primary challenge to mission designers. Indeed, human health risks are currently the largest risk contributors to the risks of evacuation or loss of the crew on long-duration International Space Station missions. We describe a quantitative assessment of the relative probabilities of occurrence of the individual risks to human safety and efficiency during space flight to augment qualitative assessments used in this field to date. Quantitative probabilistic risk assessments will allow program managers to focus resources on those human health risks most likely to occur with undesirable consequences. Truly quantitative assessments are common, even expected, in the engineering and actuarial spheres, but that capability is just emerging in some arenas of life sciences research, such as identifying and minimize the hazards to astronauts during future space exploration missions. Our expectation is that these results can be used to inform NASA mission design trade studies in the near future with the objective of preventing the higher among the human health risks. We identify and discuss statistical techniques to provide this risk quantification based on relevant sets of astronaut biomedical data from short and long duration space flights as well as relevant analog populations. We outline critical assumptions made in the calculations and discuss the rationale for these. Our efforts to date have focussed on quantifying the probabilities of medical risks that are qualitatively perceived as relatively high risks of radiation sickness, cardiac dysrhythmias, medically significant renal stone formation due to increased calcium mobilization, decompression sickness as a result of EVA (extravehicular activity), and bone fracture due to loss of bone mineral density. We present these quantitative probabilities in order-of-magnitude comparison format so that relative risk can be gauged. We address the effects of

  13. Probabilistic Ecological Risk Assessment of OCPs, PCBs, and DLCs in the Haihe River, China

    Directory of Open Access Journals (Sweden)

    Bin Wang

    2010-01-01

    Full Text Available The Haihe River is the most seriously polluted river among the seven largest rivers in China. Dichloro-diphenyl-trichloroethanes (DDTs, hexachlorocyclohexanes (HCHs, and PCBs (noncoplanar polychlorinated biphenyls in the Haihe River, Tianjin were determined using a gas chromatograph – electron capture detector (GC-ECD. Dioxin-like compounds (DLCs were determined using Chemically Activated LUciferase gene eXpression (CALUX bioassay. HCH and DDT levels were, respectively, 0.06–6.07 μg/L and ND (not detected to 1.21 μg/L; PCB levels ranged from 0.12 to 5.29 μg/L; and the total DLCs in sediment were 4.78–343 pg TEQ (toxic equivalency/g. Aquatic ecological risk assessment was performed using the joint probability curve method and the Monte Carlo-based HQ (hazard quotient distribution method. The combined risks of similar chemicals and the total risk of dissimilar categories of chemicals were assessed based on the principles of joint toxicity. Due to the adjacent industrial activities, the risk levels of PCBs, DDTs, and HCHs were relatively high. The risk order was as follows: PCBs > DDTs ≈ HCHs > DLCs. The risk of HCHs approximated that of DDTs, which is different from the fact that risk of HCHs is usually much lower in the other Chinese rivers. The total risk caused by these pollutants was very high. Due to their high persistence and potential source from land, the high risks of such pollutants are likely to last for a long period of time.

  14. Occurrence and ecological risk assessment of emerging organic chemicals in urban rivers: Guangzhou as a case study in China.

    Science.gov (United States)

    Peng, Feng-Jiao; Pan, Chang-Gui; Zhang, Min; Zhang, Nai-Sheng; Windfeld, Ronja; Salvito, Daniel; Selck, Henriette; Van den Brink, Paul J; Ying, Guang-Guo

    2017-07-01

    Urban rivers may receive contamination from various sources including point sources like domestic sewage and nonpoint sources (e.g., runoff), resulting in contamination with various chemicals. This study investigated the occurrence of emerging organic contaminants (3 endocrine disrupting compounds (EDCs), and 17 pharmaceuticals and personal care products (PPCPs)) in six urban rivers of a representative subtropical city, Guangzhou (southern China). Our results showed that EDCs and personal care products were frequently detected in the water phase and sediment phase. 4-nonylphenol (4-NP) was the most predominant compound with the highest concentration of 5050ng/L in the water phase and 14,400ng/g dry weight (dw) in the sediment. Generally, higher total concentrations of EDCs and PPCPs were detected in the four urban streams compared to the main stream Zhujiang River and the Liuxi River at the suburb area. A screening-level risk assessment showed that 4-nonylphenol and triclosan (TCS) pose potential risks to aquatic organisms in most sampling sites. For individual taxa, 4-NP may pose risks to various groups of aquatic organisms, while TCS only might pose high risks to algae. Higher contamination of EDCs and PPCPs was observed in rivers in urban area; 4-nonylphenol and triclosan showed RQs>1 in >70% of the reported area. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Comparison of metal toxic impacts between aquatic and terrestrial organisms: is the free ion concentration a sufficient descriptor?

    DEFF Research Database (Denmark)

    Owsianiak, Mikolaj; Rosenbaum, Ralph K.; Larsen, Henrik Fred

    2011-01-01

    Characterization of metal toxic impacts in comparative risk assessment and life cycle impact assessment (LCIA) should take into account metal speciation and interactions with soil/water organic constituents, because these mechanisms control metal bioavailability and may influence their toxic...... that the free metal ion is an appropriate “general”descriptor of metal toxicity. Results for 128 laboratory tests on Daphnia magna exposed to copper ions (Cu2+) in water show that variation of several orders of magnitude are observed between the toxicity tests. These variations may be a result of the inability...... of magnitude difference occur for the extreme case of barley (Hordeum vulgare). Given the scarcity of terrestrial effect data compared to aquatic data, reliable and transparent, mechanistic-based predictions of terrestrial toxic impacts from aquatic effect data would be an important step ahead in the context...

  16. Aquatic Nuisance Species Locator

    Science.gov (United States)

    Data in this map has been collected by the United States Geological Survey's Nonindigenous Aquatic Species program located in Gainesville, Florida (http://nas.er.usgs.gov/default.aspx). This dataset may have some inaccuracies and is only current to June 15, 2012. The species identified in this dataset are not inclusive of all aquatic nuisance species, but rather a subset identified to be at risk for transport by recreational activities such as boating and angling. Additionally, the locations where organisims have been identified are also not inclusive and should be treated as a guide. Organisms are limited to the following: American bullfrog, Asian clam, Asian shore crab, Asian tunicate, Australian spotted jellyfish, Chinese mitten crab, New Zealand mudsnail, Colonial sea squirt, Alewife, Bighead carp, Black carp, Flathead catfish, Grass carp, Green crab, Lionfish, Northern snakehead, Quagga mussel, Round Goby, Ruffe, Rusty crayfish, Sea lamprey, Silver carp, Spiny water flea, Veined rapa whelk, Zebra mussel

  17. Assessing exposure risks for freshwater tilapia species posed by mercury and methylmercury.

    Science.gov (United States)

    Cheng, Yi-Hsien; Lin, Yi-Jun; You, Shu-Han; Yang, Ying-Fei; How, Chun Ming; Tseng, Yi-Ting; Chen, Wei-Yu; Liao, Chung-Min

    2016-08-01

    Waterborne and dietborne exposures of freshwater fish to mercury (Hg) in the forms of inorganic (Hg(II)) and organic (methylmercury or MeHg) affect their growth, development, and reproduction. However, an integrated mechanistic risk model framework to predict the impact of Hg(II)/MeHg on freshwater fish is lacking. Here, we integrated biokinetic, physiological and biogeographic data to calibrate and then establish key risk indices-hazardous quotient and exceedance risk-for freshwater tilapia species across geographic ranges of several major rivers in Taiwan. We found that Hg(II) burden was highest in kidney followed by gill, intestine, liver, blood, and muscle. Our results showed that Hg was less likely to pose mortality risk (mortality rate less than 5 %) for freshwater tilapia species. However, Hg is likely to pose the potential hazard to aquatic environments constrained by safety levels for aquatic organisms. Sensitivity analysis showed that amount of Hg accumulated in tilapia was most influenced by sediment uptake rate. Our approach opens up new possibilities for predicting future fish population health with the impacts of continued Hg exposure to provide information on which fish are deemed safe for human consumption.

  18. Report on Stakeholder Evaluation of Aquatic Resources. Deliverable 5.2

    DEFF Research Database (Denmark)

    Nguyen, Thi Dieu Phuong; Lund, Søren; Banta, Gary Thomas

    The present report on stakeholder evaluation of highland aquatic resources provides an overview of completed research activities undertaken within the HighARCS project on the value ascribed by users, local communities and stakeholders to functions, goods and services (including non-use values......) derived from the aquatic resources in the Northern and Central of Vietnam. The perceived impact of factors such as environmental degradation, changing demand for goods and services and modified highland aquatic resources management practices on these values has also been assessed....

  19. Spatial and temporal ecological risk assessment of unionized ammonia nitrogen in Tai Lake, China (2004-2015).

    Science.gov (United States)

    Li, Yabing; Xu, Elvis Genbo; Liu, Wei; Chen, Yi; Liu, Hongling; Li, Di; Liu, Zhengtao; Giesy, John P; Yu, Hongxia

    2017-06-01

    Ammonia toxicity varies largely due to its pH- and temperature-dependent speciation (unionized ammonia nitrogen, NH 3 -N). The seasonal and long-term trend of ammonia risk in ecologically significant sections of Tai Lake, China was unknown. In this study, a two-level (deterministic and quantitative) method was developed to assess the special ecological risks posed by NH 3 -N at 37 sites during two seasons (February and September) of 2014 in Tai Lake. The long-term temporal (2004-2015) risk posed by NH 3 -N was also assessed by comparing annual quantitative risk values (probability of exceeding acute or chronic threshold values) in three key sections of Tai Lake. The results indicated the species living in the Tai Lake were at a 0.04% and 32.45% chance of risk due to acute exposure, and a 1.97% and 92.05% chance of risk due to chronic exposure in February and September of 2014, respectively. Alarmingly, the chronic ecological risks of NH 3 -N in the Lanshanzui section of the Tai Lake remained >30% from 2004 to 2011. The chronic risk of NH 3 -N in all three key sections of Tai Lake started to decrease in 2011. This was likely the consequence of the control practice of eutrophication implemented in the Tai Lake. A significant decline in diversity of the benthic invertebrate community of the Tai Lake could be associated with continuous exposure to ammonia over decades given different sensitivity of taxa to ammonia. The results laid a scientific foundation for risk assessment and management of ammonia in Tai Lake, China, and the developed two-level risk assessment approach can also be applied to other similar aquatic regions. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Nutrition, illness, and injury in aquatic sports.

    Science.gov (United States)

    Pyne, David B; Verhagen, Evert A; Mountjoy, Margo

    2014-08-01

    In this review, we outline key principles for prevention of injury and illness in aquatic sports, detail the epidemiology of injury and illness in aquatic athletes at major international competitions and in training, and examine the relevant scientific evidence on nutrients for reducing the risk of illness and injury. Aquatic athletes are encouraged to consume a well-planned diet with sufficient calories, macronutrients (particularly carbohydrate and protein), and micronutrients (particularly iron, zinc, and vitamins A, D, E, B6, and B12) to maintain health and performance. Ingesting carbohydrate via sports drinks, gels, or sports foods during prolonged training sessions is beneficial in maintaining energy availability. Studies of foods or supplements containing plant polyphenols and selected strains of probiotic species are promising, but further research is required. In terms of injury, intake of vitamin D, protein, and total caloric intake, in combination with treatment and resistance training, promotes recovery back to full health and training.

  1. A novel tool for the communication of ecological risk assessment information in an urbanized watershed

    International Nuclear Information System (INIS)

    Zandbergen, P.

    1995-01-01

    A tool was developed for the communication of ecological risk assessment information on various types of point and nonpoint source pollution in the Brunette River watershed, an urbanized watershed in the Lower Mainland of British Columbia. The communication of ecological risks is a complex task, since the outcomes of quantitative ecological risk assessments are often not well understood by interested parties, and the results of the scientific analysis are generally quite different from the public perception of risk. Scientists should try to assist in the effective communication of their analysis by presenting it in a form more accessible to a variety of stakeholders, exposing the assessment process itself and the uncertainties in the analysis. This was attempted in developing a tool for the effective communication of ecological risk assessment information and management alternatives to the community in the watershed. Longstanding concerns over various forms of point and non-point sources of pollution in the watershed have resulted in a major effort to document the releases of pollutants, the exposure pathways, and the consequences for aquatic life. Extensive monitoring of ecosystem parameters, data-integration by means of a Geographic Information System, and the use of numerous databases and sub-models have resulted in the ecological risk assessment of four types of pollution in the watershed: petroleum fuels, metals, pesticides and basic industrial chemicals. Results will be presented of the attempts to integrate this information into a communication tool, which will demonstrate the principles, values and assumptions underlying the scientific analysis, as well as the quantitative end results and inherent uncertainties. The tool has been developed in close cooperation with several scientists who did most of the original data collection and with the feedback from some of the stakeholders in the community

  2. Assessment of the physico-chemical behavior of titanium dioxide nanoparticles in aquatic environments using multi-dimensional parameter testing

    International Nuclear Information System (INIS)

    Kammer, Frank von der; Ottofuelling, Stephanie; Hofmann, Thilo

    2010-01-01

    Assessment of the behavior and fate of engineered nanoparticles (ENPs) in natural aquatic media is crucial for the identification of environmentally critical properties of the ENPs. Here we present a methodology for testing the dispersion stability, ζ-potential and particle size of engineered nanoparticles as a function of pH and water composition. The results obtained from already widely used titanium dioxide nanoparticles (Evonik P25 and Hombikat UV-100) serve as a proof-of-concept for the proposed testing scheme. In most cases the behavior of the particles in the tested settings follows the expectations derived from classical DLVO theory for metal oxide particles with variable charge and an isoelectric point at around pH 5, but deviations also occur. Regardless of a 5-fold difference in BET specific surface area particles composed of the same core material behave in an overall comparable manner. The presented methodology can act as a basis for the development of standardised methods for comparing the behavior of different nanoparticles within aquatic systems. - The behavior of engineered nanoparticles in the aquatic environment can be elucidated using a multi-dimensional parameter set acquired by a semi automated experimental set-up.

  3. Bioavailability and bioaccumulation of metal-based engineered nanomaterials in aquatic environments: concepts and processes: chapter 5

    Science.gov (United States)

    Luoma, Samuel N.; Khan, Farhan R.; Croteau, Marie-Noële

    2014-01-01

    Bioavailability of Me-ENMs to aquatic organisms links their release into the environment to ecological implications. Close examination shows some important differences in the conceptual models that define bioavailability for metals and Me-ENMs. Metals are delivered to aquatic animals from Me-ENMs via water, ingestion, and incidental surface exposure. Both metal released from the Me-ENM and uptake of the nanoparticle itself contribute to bioaccumulation. Some mechanisms of toxicity and some of the metrics describing exposure may differ from metals alone. Bioavailability is driven by complex interaction of particle attributes, environmental transformations, and biological traits. Characterization of Me-ENMs is an essential part of understanding bioavailability and requires novel methodologies. The relative importance of the array of processes that could affect Me-ENM bioavailability remains poorly known, but new approaches and models are developing rapidly. Enough is known, however, to conclude that traditional approaches to exposure assessment for metals would not be adequate to assess risks from Me-ENMs.

  4. Distribution and ecological risk assessment of cadmium in water and sediment in Longjiang River, China: Implication on water quality management after pollution accident.

    Science.gov (United States)

    Zhao, Xue-Min; Yao, Ling-Ai; Ma, Qian-Li; Zhou, Guang-Jie; Wang, Li; Fang, Qiao-Li; Xu, Zhen-Cheng

    2018-03-01

    In early January 2012, the Longjiang River was subjected to a serious cadmium (Cd) pollution accident, which led to negatively environmental and social impacts. A series of measures of emergency treatment were subsequently taken to reduce water Cd level. However, little information was available about the change of Cd level in environmental matrices and long-term effect of this pollution accident to aquatic ecosystem. Thus, this study investigated the distribution of Cd in water and sediment of this river for two years since pollution accident, as well as assessed its ecological risk to aquatic ecosystem of Longjiang River. The results showed that it was efficient for taking emergency treatment measures to decrease water Cd concentration to below the threshold value of national drinking water quality standard of China. There was high risk (HQ > 1) to aquatic ecosystem in some of reaches between February and July 2012, but low or no risk (HQ polluted reaches increased after pollution accident and emergency treatments in 2012, but decreased in 2013. During flood period, the sediment containing high concentration of Cd in Longjiang River was migrated to downstream Liujiang River. Cd content in sediment was reduced to background level after two years of the pollution accident occurrence. The study provides basic information about Cd levels in different media after pollution accident, which is helpful in evaluating the effectiveness of emergency treatments and the variation of ecological risk, as well as in conducting water management and conservation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Aquatic ecosystem characterisation strategy at a repository site

    Energy Technology Data Exchange (ETDEWEB)

    Kangasniemi, Ville; Ikonen, Ari T.K. [Environmental Research and Assessment EnviroCase, Ltd., Hallituskatu 1 D 4, 28100 Pori (Finland); Lahdenperae, Anne-Maj [Saanio and Riekkola Oy, Laulukuja 4, 00420 Helsinki (Finland); Kirkkala, Teija [Pyhaejaervi Institute, Sepaentie 7, 27500 Kauttua (Finland); Koivunen, Sari [Water and Environment Research of South-West Finland, Telekatu 16, 20360 Turku (Finland)

    2014-07-01

    Olkiluoto Island on the western coast of Finland has been selected as a repository site for spent nuclear fuel disposal. According to regulatory requirements, the safety assessment for the repository should have an assessment timeframe of several millennia. Due to the post-glacial land uplift, the relatively shallow sea areas around Olkiluoto Island will change gradually to lakes, rivers and terrestrial areas. As there are no limnic systems at present Olkiluoto site, the reference area was delineated and reference lakes and rivers were selected as an analogue. For the modelling of the transport and accumulation of possible radionuclide releases in the surface environment, aquatic ecosystems were identified and divided into biotopes. Despite the number of available templates, the division of aquatic environment for the biosphere assessment of the Olkiluoto spent fuel repository was necessary to made separately. In this contribution, the processes behind the identification of aquatic ecosystems (e.g. legislation, physical and chemical properties) together with the biotope selection methodology (e.g. light and bottom conditions) and the challenges related to the amount of variable input parameters for each biotope in the modelling are presented. (authors)

  6. Hanford Site's Integrated Risk Assessment Program: No-intervention risk assessment

    International Nuclear Information System (INIS)

    Mahaffey, J.A.; Dukelow, J.S. Jr.; Stenner, R.D.

    1994-08-01

    The long-term goal of the Integrated Risk Assessment program (IRAP) is to estimate risks to workers, the public, organizations, and groups with reserved rights to Site access, the ecosystem, and natural resources to aid in managing environmental restoration and waste management at the Hanford Site. For each of these, information is needed about current risks, risks during cleanup, and endstate risks. The objective is three-fold: to determine if and when to remediate, and to what extent; to identify information unavailable but needed to make better cleanup decisions; to establish technology performance criteria for achieving desired cleanup levels; to understand costs and benefits of activities from a Site-wide perspective. The no-intervention risk, assessment is the initial evaluation of public health risks conducted under IRAP. The objective is to identify types of activities that the US Department of Energy (DOE) must accomplish for closure of the Hanford Site, defined as no further DOE intervention. There are two primary conclusions from the no-intervention risk assessment. First, some maintenance and operations activities at Hanford must be continued to protect the public from grave risks. However, when large Hanford expenditures are compared to cleanup progress, funds expended for maintenance and operations must be put in proper perspective. Second, stakeholder's emphasis on public risks at Hanford, as indicated by remediation priorities, are not in line with those estimated. The focus currently is on compliance with regulations, and on dealing with issues which are visible to stakeholders

  7. Occurrence, Seasonal Variation and Risk Assessment of Antibiotics in Qingcaosha Reservoir

    Directory of Open Access Journals (Sweden)

    Yue Jiang

    2018-01-01

    Full Text Available Qingcaosha Reservoir is an important drinking water source in Shanghai. The occurrence of five groups of antibiotics was investigated in the surface water of this reservoir over a one-year period. Seventeen antibiotics were selected in this study based on their significant usage in China. Of these antibiotics, 16 were detected, while oxytetracycline was not detected in any sampling site. The detected frequency of tylosin was only 47.92% while the other 15 antibiotics were above 81.25%. The dominant antibiotic was different in four seasons: norfloxacin was dominant in spring, and penicillinV was dominant in summer, autumn and winter, with medium concentrations of 124.10 ng/L, 89.91 ng/L, 180.28 ng/L, and 216.43 ng/L, respectively. The concentrations and detection frequencies of antibiotics were notably higher in winter than in other seasons, demonstrating that low temperature and low flow may result in the persistence of antibiotics in the aquatic environment. Risk assessment suggested that norfloxacin, ciprofloxacin, penicillinV, and doxycycline in the surface water presented high ecological risks.

  8. Predicting the environmental risks of radioactive discharges from Belgian nuclear power plants.

    Science.gov (United States)

    Vandenhove, H; Sweeck, L; Vives I Batlle, J; Wannijn, J; Van Hees, M; Camps, J; Olyslaegers, G; Miliche, C; Lance, B

    2013-12-01

    An environmental risk assessment (ERA) was performed to evaluate the impact on non-human biota from liquid and atmospheric radioactive discharges by the Belgian Nuclear Power Plants (NPP) of Doel and Tihange. For both sites, characterisation of the source term and wildlife population around the NPPs was provided, whereupon the selection of reference organisms and the general approach taken for the environmental risk assessment was established. A deterministic risk assessment for aquatic and terrestrial ecosystems was performed using the ERICA assessment tool and applying the ERICA screening value of 10 μGy h(-1). The study was performed for the radioactive discharge limits and for the actual releases (maxima and averages over the period 1999-2008 or 2000-2009). It is concluded that the current discharge limits for the Belgian NPPs considered do not result in significant risks to the aquatic and terrestrial environment and that the actual discharges, which are a fraction of the release limits, are unlikely to harm the environment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Chemical Risk Assessment

    Science.gov (United States)

    This course is aimed at providing an overview of the fundamental guiding principles and general methods used in chemical risk assessment. Chemical risk assessment is a complex and ever-evolving process. These principles and methods have been organized by the National Research Cou...

  10. The use of biomarkers to assess the health of aquatic ecosystems in Brazil: a review

    Directory of Open Access Journals (Sweden)

    Thaís Dalzochio

    2016-11-01

    Full Text Available Abstract Organisms in polluted environments are typically exposed to a complex mixture of chemical contaminants. The great concern about the health of aquatic ecosystems has led to the increased use of biomarkers over the past years. The aim of this work was to review the papers published from 2000 to 2015, which used biomarkers to assess the health of aquatic ecosystems in Brazil. A research resulted in 99 eligible papers. More than 80% of studies were conducted in the states of São Paulo and Rio Grande do Sul. Approximately 63% of studies used fish as bioindicator, whereas the micronucleus test and biochemical analyses were the most used biomarkers. A multibiomarker approach was used by 60.6% of studies, while 39.4% used one single biomarker. Furthermore, 68% were field studies and more than 75% of these used control animals sampled at reference sites. A relationship between the biomarker responses and pollution was reported by 87% of studies; however, 43.4% of studies analyzed only one sampling period, limiting comparisons and comprehension about possible seasonal variations. This review evidenced some weak points in studies using biomarkers in Brazil, especially related to the lack of studies in two important biomes (the Pantanal and the Amazon Rainforest and experimental designs (small sample size, sampling in one single period, use of one single biomarker. Thus, future studies should consider mainly the use of multiple biomarkers, greater sample size, seasonal sampling and water physicochemical parameters to better diagnose the health of aquatic ecosystems.

  11. Aquatic predicted no-effect concentration for three polycyclic aromatic hydrocarbons and probabilistic ecological risk assessment in Liaodong Bay of the Bohai Sea, China.

    Science.gov (United States)

    Wang, Ying; Wang, Juying; Mu, Jingli; Wang, Zhen; Yao, Ziwei; Lin, Zhongsheng

    2014-01-01

    Predicted no-effect concentration (PNEC) is often used in ecological risk assessment to determine low-risk concentrations for chemicals. In the present study, native marine species were selected for toxicity testing. The PNECs for three polycyclic aromatic hydrocarbons (PAHs), specifically phenanthrene (Phe), pyrene (Pyr), and benzo[a]pyrene (BaP), were derived from chronic and acute toxicity data with log-normal statistical methods. The achieved PNECs for Phe, Pyr, and BaP were 2.33, 1.09, and 0.011 μg/L, respectively. In Jinzhou Bay and the Shuangtaizi River Estuary of Liaodong Bay in the Bohai Sea, China, the surface water concentrations of the three PAHs were analyzed by gas chromatography-mass spectrometry. Based on two probabilistic ecological risk assessment (PERA) methods, namely probabilistic risk quotient and joint probability curve, the potential risk of Phe, Pyr, and BaP in Jinzhou Bay and Shuangtaizi River Estuary was assessed. The same order of ecological risk (BaP > Phe > Pyr) was found by both models. Our study considered regional characteristics of marine biota during the calculation of PNECs, and the PERA methods provided probabilities of potential ecological risks of chemicals. Within the study area, further research on BaP is required due to its high potential ecological risk.

  12. An integrated risk assessment approach: Risk assessment in the programmatic environmental impact statement

    International Nuclear Information System (INIS)

    Morris, J.M.

    1994-01-01

    The following paper is an informal summary of salient points made in the presentation entitled open-quotes An Integrated Risk Assessment Approach: Risk Assessment in the Programmatic Environmental Impact Statement (PEIS).close quotes. This presentation was given at the U.S. DOE Integrated Planning Workshop in Denver, Colorado on June 2, 1994. Integrated decision analysis is very important in environmental restoration and waste management in the evaluation of such things as land use planning, waste load forecasting, cost analyses, and technology development activities. Integrated risk assessment is an approach that addresses multiple components of risk, including: risks from surplus facilities as well as typical environmental restoration sites, risks to the public, risks to workers, ecological risk, risks before, during and after remediation activities, and others

  13. The relation of risk assessment and health impact assessment

    DEFF Research Database (Denmark)

    Ádám, Balázs; Gulis, Gabriel

    2013-01-01

    than assessing a present situation. As part of this process, however, methods applied in risk assessment are used. Risk assessment typically characterises relation of a well-defined risk factor to a well-defined health outcome. Within HIA usually several individual risk assessments are needed...... of the causal chain from the proposal through related health determinants and risk factors to health outcomes. The stepwise analysis, systematic prioritization and consideration of horizontal interactions between the causal pathways make it feasible to use widely recognized risk assessment methods in the HIA......The level and distribution of health risks in a society is substantially influenced by measures of various policies, programmes or projects. Risk assessment can evaluate the nature, likelihood and severity of an adverse effect. Health impact assessment (HIA) provides similar function when used...

  14. Assessment of cardiovascular risk.

    LENUS (Irish Health Repository)

    Cooney, Marie Therese

    2010-10-01

    Atherosclerotic cardiovascular disease (CVD) is the most common cause of death worldwide. Usually atherosclerosis is caused by the combined effects of multiple risk factors. For this reason, most guidelines on the prevention of CVD stress the assessment of total CVD risk. The most intensive risk factor modification can then be directed towards the individuals who will derive the greatest benefit. To assist the clinician in calculating the effects of these multiple interacting risk factors, a number of risk estimation systems have been developed. This review address several issues regarding total CVD risk assessment: Why should total CVD risk be assessed? What risk estimation systems are available? How well do these systems estimate risk? What are the advantages and disadvantages of the current systems? What are the current limitations of risk estimation systems and how can they be resolved? What new developments have occurred in CVD risk estimation?

  15. Pesticides in stream sediment and aquatic biota: distribution, trends, and governing factors

    Science.gov (United States)

    Nowell, Lisa H.; Capel, Peter D.

    1999-01-01

    More than 20 years after the ban of DDT and other organochlorine pesticides, pesticides continue to be detected in air, rain, soil, surface water, bed sediment, and aquatic and terrestrial biota throughout the world. Recent research suggests that low levels of some of these pesticides may have the potential to affect the development, reproduction, and behavior of fish and wildlife, and possibly humans. Pesticides in Stream Sediment and Aquatic Biota: Distribution, Trends, and Governing Factors assesses the occurrence and behavior of pesticides in bed sediment and aquatic biota-the two major compartments of the hydrologic system where organochlorine pesticides are most likely to accumulate. This book collects, for the first time, results from several hundred monitoring studies and field experiments, ranging in scope from individual sites to the entire nation. Comprehensive tables provide concise summaries of study locations, pesticides analyzed, and study outcomes. Comprehensive and extensively illustrated, Pesticides in Stream Sediment and Aquatic Biota: Distribution, Trends, and Governing Factors evaluates the sources, environmental fate, geographic distribution, and long-term trends of pesticides in bed sediment and aquatic biota. The book focuses on organochlorine pesticides, but also assesses the potential for currently used pesticides to be found in bed sediment and aquatic biota. Topics covered in depth include the effect of land use on pesticide occurrence, mechanisms of pesticide uptake and accumulation by aquatic biota, and the environmental significance of observed levels of pesticides in stream sediment and aquatic biota.

  16. Nominal radio ecological benchmarks for the ecological risk assessment of radioactive waste management facilities

    International Nuclear Information System (INIS)

    Garisto, N.C.

    2006-01-01

    Ecological risk assessments are used to assess potential ecological impacts from contaminated sites, such as radioactive waste management and disposal facilities. These assessments determine the overall significance of the impact of such facilities on non-human biota. Specific indicator species are selected as representative non-human biota at the study sites for the purposes of these risk assessments. Potential environmental impacts are generally assessed in terms of 'screening indices'. In simple terms, a screening index is the ratio of an estimated exposure level of the indicator species (or environmental concentration) divided by a level or concentration deemed unlikely to have a significant ecological effect. These latter levels or concentrations are referred to as 'estimated no effect value' or ENEVs. Nominal ENEV values for chronic radiation effects based on our current interpretation of literature data are presented in this paper. They are: 5 mGy/d for fish and amphibians; 2.4 mGy/d for aquatic plants; 2 mGy/d for reptiles; 5 mGy/d for benthic and terrestrial invertebrates; 1 mGy/d for slow-growing terrestrial animals that reproduce late in life; 10 mGy/d for short-lived prolific terrestrial animals; 2.4 mGy/d for terrestrial plants; 5 mGy/d for birds. The paper identifies major areas of uncertainty regarding the selection of these nominal ENEVs for practical applications. (author)

  17. Behavior of sartans (antihypertensive drugs) in wastewater treatment plants, their occurrence and risk for the aquatic environment.

    Science.gov (United States)

    Bayer, Anne; Asner, Robert; Schüssler, Walter; Kopf, Willi; Weiß, Klaus; Sengl, Manfred; Letzel, Marion

    2014-09-01

    Pharmaceuticals and other anthropogenic trace contaminants reach wastewaters and are often not satisfactorily eliminated in sewage treatment plants. These contaminants and/or their degradation products may reach surface waters, thus influencing aquatic life. In this study, the behavior of five different antihypertonic pharmaceuticals from the sartan group (candesartan, eprosartan, irbesartan, olmesartan and valsartan) is investigated in lab-scale sewage plants. The elimination of the substances with related structures varied broadly from 17 % for olmesartan up to 96 % for valsartan. Monitoring data for these drugs in wastewater effluents of six different sewage treatment plants (STPs) in Bavaria, and at eight rivers, showed median concentrations for, e.g. valsartan of 1.1 and 0.13 μg L(-1), respectively. Predicted environmental concentrations (PEC) were calculated and are mostly consistent with the measured environmental concentrations (MEC). The selected sartans and the mixture of the five sartans showed no ecotoxic effects on aquatic organisms in relevant concentrations. Nevertheless, the occurrence of pharmaceuticals in the environment should be reduced to minimize the risk of their distribution in surface waters, ground waters and bank filtrates used for drinking water.

  18. Preliminary assessment of the ecological risks to wide-ranging wildlife species on the Oak Ridge Reservation. 1996 update

    Energy Technology Data Exchange (ETDEWEB)

    Sample, B.E.; Hinzman, R.L.; Jackson, B.L.; Baron, L.

    1996-09-01

    More than approximately 50 years of operations, storage, and disposal of wastes generated by the three facilities on the Oak Ridge Reservation (ORR) (the Oak Ridge K-25 Site, Oak Ridge National Laboratory, and the Oak Ridge Y-12 Plant) has resulted in a mosaic of uncontaminated property and lands that are contaminated to varying degrees. This contaminated property includes source areas and the terrestrial and aquatic habitats down gradient from these source areas. Although the integrator OUs generally contain considerable habitat for biota, the source OUs provide little or no suitable habitat. Historically, ecological risk assessment at Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) sites has focused on species that may be definitively associated with a contaminated area or source OU. Endpoints considered in source OUs include plants, soil/litter invertebrates and processes, aquatic biota found in on-OU sediments and surface waters, and small herbivorous, omnivorous, and vermivorous (i.e., feeding on ground, litter, or soil invertebrates) wildlife. All of these endpoints have limited spatial distributions or home ranges such that numerous individuals or a distinct population can be expected to reside within the boundaries of the source OU. Most analyses are not adequate for large sites with multiple, spatially separated contaminated areas such as the ORR that provide habitat for wide-ranging wildlife species. This report is a preliminary response to a plan for assessing risks to wide-ranging species.

  19. Preliminary assessment of the ecological risks to wide-ranging wildlife species on the Oak Ridge Reservation. 1996 update

    International Nuclear Information System (INIS)

    Sample, B.E.; Hinzman, R.L.; Jackson, B.L.; Baron, L.

    1996-09-01

    More than approximately 50 years of operations, storage, and disposal of wastes generated by the three facilities on the Oak Ridge Reservation (ORR) (the Oak Ridge K-25 Site, Oak Ridge National Laboratory, and the Oak Ridge Y-12 Plant) has resulted in a mosaic of uncontaminated property and lands that are contaminated to varying degrees. This contaminated property includes source areas and the terrestrial and aquatic habitats down gradient from these source areas. Although the integrator OUs generally contain considerable habitat for biota, the source OUs provide little or no suitable habitat. Historically, ecological risk assessment at Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) sites has focused on species that may be definitively associated with a contaminated area or source OU. Endpoints considered in source OUs include plants, soil/litter invertebrates and processes, aquatic biota found in on-OU sediments and surface waters, and small herbivorous, omnivorous, and vermivorous (i.e., feeding on ground, litter, or soil invertebrates) wildlife. All of these endpoints have limited spatial distributions or home ranges such that numerous individuals or a distinct population can be expected to reside within the boundaries of the source OU. Most analyses are not adequate for large sites with multiple, spatially separated contaminated areas such as the ORR that provide habitat for wide-ranging wildlife species. This report is a preliminary response to a plan for assessing risks to wide-ranging species

  20. Effects of clothianidin on aquatic communities: Evaluating the impacts of lethal and sublethal exposure to neonicotinoids

    OpenAIRE

    Miles, Jesse C.; Hua, Jessica; Sepulveda, Maria S.; Krupke, Christian H.; Hoverman, Jason T.

    2017-01-01

    The widespread usage of neonicotinoid insecticides has sparked concern over their effects on non-target organisms. While research has largely focused on terrestrial systems, the low soil binding and high water solubility of neonicotinoids, paired with their extensive use on the landscape, puts aquatic environments at high risk for contamination via runoff events. We assessed the potential threat of these compounds to wetland communities using a combination of field surveys and experimental ex...

  1. Ecological effects assessment of anionic surfactant on aquatic ecosystem using microcosm system; Microcosm wo mochiita in ion kaimen kasseizai no suiken seitaikei ni oyobosu eikyo hyoka

    Energy Technology Data Exchange (ETDEWEB)

    Takamatsu, Y. [University of Tsukuba, Tsukuba (Japan); Inamori, Y. [National Institute for Environmental Studies, Tsukuba (Japan); Sudo, R. [Tohoku University, Sendai (Japan). Faculty of Engineering; Kurihara, Y. [Ou Univ., Fukushima (Japan). Faculty of Engineering; Matsumura, M. [University of Tsukuba, Tsukuba (Japan). Institute of Applied Biochemical

    1997-11-10

    Microcosm system was applied to assess effect of anionic surfactant (LAS) on aquatic ecosystem. Anionic surfactant such as LAS was added to an flask microcosm consisting of four species of bacteria as decomposer, one species of ciliate protozoa (Cyclidium glaucoma), two rotifers (Philodina sp. and Lepadella sp.) and one aquatic oligochaete (Aeolosoma hemprichi) as predator, and a green alga (Chlorella sp.) and a filamentous blue-green alga (Tolypothrix sp.) as producer, comparing with that of an natural lake model ecosystem derived from natural lake water. In the flask microcosm system and the natural lake model ecosystem, biodegradation rates of LAS were almost same and NOECs (no observed effect concentration) of LAS were also below 1.5 mg{center_dot} l{sup -1}. It was found that flask microcosm test could provide precise ecological effect assessment of LAS on number of microorganisms because the system showed higher reproducibility and stability than natural take model ecosystem. It was suggested that flask microcosm test was useful ecological effect assessment method which can reflect natural aquatic ecosystem. 10 refs., 4 figs., 2 tabs.

  2. Two prototype tools for assessing good environmental/ecological status (GES) in aquatic ecosystems – DEVOTES and WATERS

    DEFF Research Database (Denmark)

    Murray, Ciarán; Carstensen, Jacob; Andersen, Jesper

    2015-01-01

    -based tools, which classify ecological/environmental status in two classes (good or not good) and five classes (High, Good, Moderate, Poor or Bad) by comparing observed indicator values with specified status classification boundaries. Assessments are made for geographical entities (“sectors” in DEVOTES......We present two prototype tools for assessment of GES (good ecological status and good environmental status) in aquatic ecosystems: the DEVOTES biodiversity assessment tool (for the MSFD) and the WATERS ecological status assessment tool (for the WFD). Both tools are multi-metric indicator...... for sub-division of sectors and habitat types into hierarchical structures. The DEVOTES tool weights indicator results from different sectors according to their geographical extent and/or assigned quantitative value scores. The DEVOTES tool allows the assessment to be targeted to a particular ecosystem...

  3. Distribution and Risk Assessment of Antibiotics in a Typical River in North China Plain.

    Science.gov (United States)

    Li, Qingzhao; Gao, Junxia; Zhang, Qiuling; Liang, Lizhen; Tao, He

    2017-04-01

    We evaluated the occurrence and distribution of 12 antibiotics from the sulfonamide (SAs), fluoroquinolone (FQs) and tetracycline (TCs) groups in the Weihe River, North China. The total antibiotic concentrations in surface water, pore water, and sediment samples ranged from 11.1 to 173.1 ng/L, 5.8 to 103.9 ng/L, and 9.5 to 153.4 μg/kg, respectively. The values of the sediment-water partitioning coefficient in the Weihe River varied widely, from not detected to 943, 2213, and 2405 L/kg for SAs, FQs, and TCs, respectively. The values of the partitioning coefficients between sediment and surface water were generally lower than those between sediment and pore water, which indicated ongoing inputs to the water. The risk assessment showed that there were relatively high ecological risks to aquatic algae in this area from sulfamethoxazole, norfloxacin, tetracycline, ofloxacin, and ciprofloxacin.

  4. Aquatic organism passage at road-stream crossings—synthesis and guidelines for effectiveness monitoring

    Science.gov (United States)

    Hoffman, Robert L.; Dunham, Jason B.; Hansen, Bruce P.

    2012-01-01

    involving aquatic organism passage as a useful context for the issues covered herein. 2. Importance of connectivity for aquatic organisms: In this section, we provide background information regarding the movement characteristics of aquatic organisms and their vulnerability to passage impairment, and the importance of connectivity for a broad diversity of aquatic vertebrates and invertebrates. This section should be useful for practitioners in selecting what species to monitor in relation to aquatic organism passage. 3. Methods for evaluating aquatic organism passage: In this section, we present a range of perspectives on alternatives for assessing and monitoring aquatic organism passage impairment and the effectiveness of passage restoration actions, including the following methods: Individual Movement, Occupancy Models, Abundance (Demography), and Molecular Genetic Markers. 4. Relevance, strengths, and limitations of the four methods: In this section, we discuss the utility of each of the methods as a tool for assessing and quantifying passage impairment and restoration effectiveness. 5. Guidelines for selecting a method: In this section, we review some fundamental criteria and guidelines to consider when selecting a method for monitoring in the context of answering three important questions that should be addressed when developing a plan for evaluating aquatic organism passage. 6. Study and monitoring design considerations: In this section, we discuss four key design elements that need to be considered when developing a monitoring design for assessing passage impairment and restoration. The basic objectives of the report are to: 1. Review the movement characteristics of five groups of aquatic organisms that inhabit streams and to assess their general vulnerability to passage impairment at road-stream crossings; 2. Review four methods for monitoring aquatic organism passage impairment and the effectiveness of actions to restore passage at road-stream crossing structures; 3

  5. Mass separation and risk assessment of commingled contamination in soil and ground water

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Q.L.; Chau, T.S. [Alberta Environment, Red Deer, AB (Canada)

    2008-07-01

    Gasoline service stations in urban areas may be sources of groundwater pollution if petroleum hydrocarbons (PHCs) were to leak from underground storage tanks. Depending on the site-specific hydrogeologic conditions, the PHC could be retained in the soil, float on top of the groundwater table, dissolve in the groundwater or partition into soil vapour. This study focused on risk assessment and and management of soil and groundwater pollution caused by PHC releases from multiple sources which lead to commingling of subsurface plumes that require identification, assessment and control. Risk management decisions are made according to the different protection zones corresponding to different exposure pathways into which the commingled groundwater plume is divided, such as inhalation, ingestion and freshwater aquatic life. In order to effectively evaluate and manage commingled plumes, responsible parties must cooperate in sharing information on contaminated sites and developing joint programs for investigation, monitoring, remediation and risk management. This study proposed methodologies for determining mass contribution to a commingled plume from multiple contaminant sources. It was concluded that the levels of risk to human and environmental health can be determined by considering contaminant sources, migration pathways and potential receptors. Migration of PHCs in the subsurface is influenced by several uncertainties such as pollutant release and remediation histories, preferential pathways and hydrogeologic boundary conditions. Proper site characterization is necessary for reliable mass separation and to delineate contaminant plumes. Mathematical models can be used to simulate subsurface flow and transport processes. 5 refs., 4 figs.

  6. A methodology for assessing the impact of mutagens on aquatic ecosystems. Final report

    International Nuclear Information System (INIS)

    Knezovich, J.P.; Martinelli, R.E.

    1995-03-01

    Assessments of impacts of hazardous agents (i.e., chemical and physical mutagens) on human health have focused on defining the effects of chronic exposure on individuals, with cancer being the main effect of concern. In contrast, impacts on ecosystems have traditionally been gauged by the assessment of near-term organism mortality, which is clearly not a useful endpoint for assessing the long-term effects of chronic exposures. Impacts on individual organisms that affect the long-term survival of populations are much more important but are also more difficult to define. Therefore, methods that provide accurate measures of sub-lethal effects that are linked to population survival are required so that accurate assessments of environmental damage can be made and remediation efforts, if required, can be initiated. Radioactive substances have entered aquatic environments as a result of research and production activities, intentional disposal, and accidental discharges. At several DOE sites, surface waters and sediments are contaminated with radioactive and mutagenic materials. The accident at the Chernobyl power station in the former Soviet Union (FSU) has resulted in the contamination of biota present in the Kiev Reservoir. This documents presents a methodology which addresses the effects of a direct-acting mutagen (radiation) on aquantic organisms by applying sensitive techniques for assessing damage to genetic material

  7. Phenol toxicity to the aquatic macrophyte Lemna paucicostata

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ji-Sook [Division of Life Science, University of Incheon, Incheon 406-840 (Korea, Republic of); Brown, Murray T. [School of Marine Science and Engineering, University of Plymouth, Plymouth, Devon PL4 8AA (United Kingdom); Han, Taejun, E-mail: hanalgae@hanmail.net [Division of Life Science, University of Incheon, Incheon 406-840 (Korea, Republic of); Institute of Green Environmental Research, University of Incheon, Incheon 406-840 (Korea, Republic of)

    2012-01-15

    Phenol is a ubiquitous environmental pollutant and a widely used reference toxicant for many bioassays. However, little information is available regarding the toxic effects of phenol on aquatic macrophytes. Seventy-two hour bioassays, with different end-points, were carried out to assess phenol toxicity in Lemna paucicostata. A concentration-dependent decline in frond multiplication and colony disintegration was observed, with 11.38 and 22.76 {mu}M phenol resulting in browning of fronds and colony disintegration, respectively. Growth of fronds, as measured by changes in surface area, was significantly inhibited with EC{sub 50} value of 2.70 {mu}M. When pulse amplitude modulated chlorophyll a (Chl a) fluorescence imaging (i-PAM) was employed, the maximum quantum yield of PS II (F{sub v}/F{sub m}) significantly declined with increasing phenol concentrations with resultant EC{sub 50} of 1.91 {mu}M and coefficients of variation (CVs) generated for the EC{sub 50} values of less than 4.7%. A gradual increase in fluorescence emissions from chlorophylls a and b and pheophytin up to a concentration of 2.85 {mu}M was found but declined markedly at higher concentrations. The significant correlation between the F{sub v}/F{sub m} and surface growth rate data implies that the former is an appropriate biomarker of whole plant toxicity. Using imaging Chl a fluorescence on L. paucicostata provides a rapid, sensitive and reliable method for assessing the toxic risks posed by phenol to aquatic ecosystems and has practical applications for municipal and industrial waste water management.

  8. Phenol toxicity to the aquatic macrophyte Lemna paucicostata

    International Nuclear Information System (INIS)

    Park, Ji-Sook; Brown, Murray T.; Han, Taejun

    2012-01-01

    Phenol is a ubiquitous environmental pollutant and a widely used reference toxicant for many bioassays. However, little information is available regarding the toxic effects of phenol on aquatic macrophytes. Seventy-two hour bioassays, with different end-points, were carried out to assess phenol toxicity in Lemna paucicostata. A concentration-dependent decline in frond multiplication and colony disintegration was observed, with 11.38 and 22.76 μM phenol resulting in browning of fronds and colony disintegration, respectively. Growth of fronds, as measured by changes in surface area, was significantly inhibited with EC 50 value of 2.70 μM. When pulse amplitude modulated chlorophyll a (Chl a) fluorescence imaging (i-PAM) was employed, the maximum quantum yield of PS II (F v /F m ) significantly declined with increasing phenol concentrations with resultant EC 50 of 1.91 μM and coefficients of variation (CVs) generated for the EC 50 values of less than 4.7%. A gradual increase in fluorescence emissions from chlorophylls a and b and pheophytin up to a concentration of 2.85 μM was found but declined markedly at higher concentrations. The significant correlation between the F v /F m and surface growth rate data implies that the former is an appropriate biomarker of whole plant toxicity. Using imaging Chl a fluorescence on L. paucicostata provides a rapid, sensitive and reliable method for assessing the toxic risks posed by phenol to aquatic ecosystems and has practical applications for municipal and industrial waste water management.

  9. Information needs for risk assessment

    Energy Technology Data Exchange (ETDEWEB)

    DeRosa, C.T.; Choudhury, H.; Schoeny, R.S.

    1990-12-31

    Risk assessment can be thought of as a conceptual approach to bridge the gap between the available data and the ultimate goal of characterizing the risk or hazard associated with a particular environmental problem. To lend consistency to and to promote quality in the process, the US Environmental Protection Agency (EPA) published Guidelines for Risk Assessment of Carcinogenicity, Developmental Toxicity, Germ Cell Mutagenicity and Exposure Assessment, and Risk Assessment of Chemical Mixtures. The guidelines provide a framework for organizing the information, evaluating data, and for carrying out the risk assessment in a scientifically plausible manner. In the absence of sufficient scientific information or when abundant data are available, the guidelines provide alternative methodologies that can be employed in the risk assessment. 4 refs., 3 figs., 2 tabs.

  10. Challenges in Aquatic Physical Habitat Assessment: Improving Conservation and Restoration Decisions for Contemporary Watersheds

    Directory of Open Access Journals (Sweden)

    Jason A. Hubbart

    2017-12-01

    Full Text Available Attribution of in-stream biological impairment to anthropogenic activities and prioritization for restoration and/or conservation can be challenging in contemporary mixed-land-use watersheds. Critical information necessary to improve decision making can be costly and labor intensive, and thus unobtainable for many municipalities. A reduced cost, rapid stream physical habitat assessment (rPHA can yield information that, when paired with land use data may reveal causal patterns in aquatic physical habitat degradation, and thus assist targeting sites for restoration. However, a great deal of work is needed to reduce associated costs, and validate the potential of rPHA for documenting fine-scale incremental change in physical habitat conditions in complex contemporary watersheds. The following commentary serves to draw attention to rPHA challenges and research needs including (but not limited to field-based validation and optimization of new remote sensing technologies, evaluation of the accuracy and representativeness of rapid vegetation survey methods, refinement of analytical methods, and consideration of legacy land use impacts and hydrologic system evolution in rPHA results interpretation. Considering the value of rPHA-generated data for improvement of watershed resource management, such challenges constitute timely, high-impact research opportunities for investigators wishing to advance complex, contemporary aquatic ecosystem management.

  11. Probabilistic risk assessment as an aid to risk management

    International Nuclear Information System (INIS)

    Garrick, B.J.

    1982-01-01

    Probabilistic risk assessments are providing important insights into nuclear power plant safety. Their value is two-fold: first as a means of quantifying nuclear plant risk including contributors to risk, and second as an aid to risk management. A risk assessment provides an analytical plant model that can be the basis for performing meaningful decision analyses for controlling safety. It is the aspect of quantitative risk management that makes probabilistic risk assessment an important technical discipline of the future

  12. Expert geographical information system for assessing hazardous materials in aquatic environments

    International Nuclear Information System (INIS)

    Regens, J.L.; White, L.; Wright, J.D.; Rene, A.; Mielke, H.; Bakeer, R.; Belkhouche, B.; Barber, M.

    1993-01-01

    Hazardous substances, including radionuclides, heavy metals, chlorinated hydrocarbons, and industrial solvents, pose unique challenges in terms of environmental restoration and waste management, especially in aquatic environments. When stored, used or disposed of improperly, hazardous materials including transuranic wastes, high level wastes, low level wastes, greater than class C wastes, mixed wastes or chemical wastes can contaminate an array of environmental receptors ranging from soils, sediments, groundwater to surface water. Depending on the specific hazardous substance and site attributes, environmental restoration and waste management can be a complex, problematic activity. This is particularly true for the major Defense Programs facilities managed by the Department of Energy (DOE). This research cluster consists of two discrete elements. Project Element No. 1 develops and applies GIS-based approaches to decision support for environmental restoration by delineating potential exposures and health risks at the Rocky Flats Plant and profiling contemporary and historical demographic/land use patterns at Sandia National Laboratories. Project Element No. 2 develops ESS software for surface water and ground water contaminants in the Mississippi River Basin

  13. Antibacterial drugs in products originating from aquaculture: assessing the risks to public welfare

    Directory of Open Access Journals (Sweden)

    G. RIGOS

    2010-02-01

    Full Text Available As aquaculture expands to meet human demand and compensate for pessimistic forecasts of fisheries catches, usage of antibacterial agents to combat or forestall bacterial diseases is still a necessity, although effective vaccines and improved hygiene have aided drastically to this battle. The hazards for the consumer perspective arising from the imprudent use of such chemicals can be detrimental especially if the residues persist above legal tolerance. These may include selection and dissemination of resistant bacteria, disruption of the colonization barrier in the human intestinal flora and allergic reactions. In cases that unlawful drugs reached the consumer via consumption of aquatic products, human health may be jeopardized even further. The present review article assesses these risks on human health.

  14. E-waste disposal effects on the aquatic environment: Accra, Ghana.

    Science.gov (United States)

    Huang, Jingyu; Nkrumah, Philip Nti; Anim, Desmond Ofosu; Mensah, Ebenezer

    2014-01-01

    The volume of e-waste is growing around the world, and, increasingly, it is being disposed of by export from developed to developing countries. This is the situation in Ghana, and, in this paper we address the potential consequences of such e-waste disposal. Herein, we describe how e-waste is processed in Ghana, and what the fate is of e-waste-chemical contaminants during recycling and storage. Finally, to the extent it is known, we address the prospective adverse effects of e-waste-related contaminants on health and aquatic life downstream from a large e-waste disposal facility in Accra, Ghana.In developing countries, including Ghana, e-waste is routinely disassembled by unprotected workers that utilize rudimentary methods and tools. Once disassembled,e-waste components are often stored in large piles outdoors. These processing and storage methods expose workers and local residents to several heavy metals and organic chemicals that exist in e-waste components. The amount of e-waste dumped in Ghana is increasing annually by about 20,000 t. The local aquatic environment is at a potential high risk, because the piles of e-waste components stored outside are routinely drenched or flooded by rainfall, producing run-off from storage sites to local waterways. Both water and sediment samples show that e-waste-related contaminant shave entered Ghana's water ways.The extent of pollution produced in key water bodies of Ghana (Odaw River and the Korle Lagoon) underscores the need for aquatic risk assessments of the many contaminants released during e-waste processing. Notwithstanding the fact that pollutants from other sources reach the water bodies, it is clear that these water bodies are also heavily impacted by contaminants that are found in e-waste. Our concern is that such exposures have limited and will continue to limit the diversity of aquatic organisms.There have also been changes in the abundance and biomass of surviving species and changes in food chains. Therefore

  15. Detection of endocrine active substances in the aquatic environment in southern Taiwan using bioassays and LC-MS/MS.

    Science.gov (United States)

    Chen, Kuang-Yu; Chou, Pei-Hsin

    2016-06-01

    Endocrine active substances, including naturally occurring hormones and various synthetic chemicals have received much concern owing to their endocrine disrupting potencies. It is essential to monitor their environmental occurrence since these compounds may pose potential threats to biota and human health. In this study, yeast-based reporter assays were carried out to investigate the presence of (anti-)androgenic, (anti-)estrogenic, and (anti-)thyroid compounds in the aquatic environment in southern Taiwan. Liquid chromatography tandem mass spectrometry (LC-MS/MS) was also used to measure the environmental concentrations of selected endocrine active substances for assessing potential ecological risks and characterizing contributions to the endocrine disrupting activities. Bioassay results showed that anti-androgenic (ND-7489 μg L(-1) flutamide equivalent), estrogenic (ND-347 ng L(-1) 17β-estradiol equivalent), and anti-thyroid activities were detected in the dissolved and particulate phases of river water samples, while anti-estrogenic activities (ND-10 μg L(-1) 4-hydroxytamoxifen equivalent) were less often found. LC-MS/MS analysis revealed that anti-androgenic and estrogenic contaminants, such as bisphenol A, triclosan, and estrone were frequently detected in Taiwanese rivers. In addition, their risk quotient values were often higher than 1, suggesting that they may pose an ecological risk to the aquatic biota. Further identification of unknown anti-androgenic and estrogenic contaminants in Taiwanese rivers may be necessary to protect Taiwan's aquatic environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Measuring ecological change of aquatic macrophytes in Mediterranean rivers

    OpenAIRE

    Dodkins, Ian; Aguiar, Francisca; Rivaes, Rui; Albuquerque, António; Rodriguez-Gonzalez, Patricia; Ferreira, Maria Teresa

    2012-01-01

    A metric was developed for assessing anthropogenic impacts on aquatic macrophyte ecology by scoring macrophyte species along the main gradient of community change. A measure of ecological quality was then calculated by Weighted Averaging (WA) of these species scores at a monitoring site, and comparison to a reference condition score. This metric was used to illustrate the difficulties of developing aquatic macrophyte indices based on indicator species in Mediterranean rivers. The ...

  17. Aquatic Toxic Analysis by Monitoring Fish Behavior Using Computer Vision: A Recent Progress

    Directory of Open Access Journals (Sweden)

    Chunlei Xia

    2018-01-01

    Full Text Available Video tracking based biological early warning system achieved a great progress with advanced computer vision and machine learning methods. Ability of video tracking of multiple biological organisms has been largely improved in recent years. Video based behavioral monitoring has become a common tool for acquiring quantified behavioral data for aquatic risk assessment. Investigation of behavioral responses under chemical and environmental stress has been boosted by rapidly developed machine learning and artificial intelligence. In this paper, we introduce the fundamental of video tracking and present the pioneer works in precise tracking of a group of individuals in 2D and 3D space. Technical and practical issues suffered in video tracking are explained. Subsequently, the toxic analysis based on fish behavioral data is summarized. Frequently used computational methods and machine learning are explained with their applications in aquatic toxicity detection and abnormal pattern analysis. Finally, advantages of recent developed deep learning approach in toxic prediction are presented.

  18. Methodology of environmental risk assessment management

    Directory of Open Access Journals (Sweden)

    Saša T. Bakrač

    2012-04-01

    Full Text Available Successful protection of environment is mostly based on high-quality assessment of potential and present risks. Environmental risk management is a complex process which includes: identification, assessment and control of risk, namely taking measures in order to minimize the risk to an acceptable level. Environmental risk management methodology: In addition to these phases in the management of environmental risk, appropriate measures that affect the reduction of risk occurrence should be implemented: - normative and legal regulations (laws and regulations, - appropriate organizational structures in society, and - establishing quality monitoring of environment. The emphasis is placed on the application of assessment methodologies (three-model concept, as the most important aspect of successful management of environmental risk. Risk assessment methodology - European concept: The first concept of ecological risk assessment methodology is based on the so-called European model-concept. In order to better understand this ecological risk assessment methodology, two concepts - hazard and risk - are introduced. The European concept of environmental risk assessment has the following phases in its implementation: identification of hazard (danger, identification of consequences (if there is hazard, estimate of the scale of consequences, estimate of consequence probability and risk assessment (also called risk characterization. The European concept is often used to assess risk in the environment as a model for addressing the distribution of stressors along the source - path - receptor line. Risk assessment methodology - Canadian concept: The second concept of the methodology of environmental risk assessment is based on the so-called Canadian model-concept. The assessment of ecological risk includes risk arising from natural events (floods, extreme weather conditions, etc., technological processes and products, agents (chemical, biological, radiological, etc

  19. Temporal constraints on predation risk assessment in a changing world

    International Nuclear Information System (INIS)

    Chivers, Douglas P.; Ramasamy, Ryan A.; McCormick, Mark I.; Watson, Sue-Ann; Siebeck, Ulrike E.; Ferrari, Maud C.O.

    2014-01-01

    Habitat degradation takes various forms and likely represents the most significant threat to our global biodiversity. Recently, we have seen considerable attention paid to increasing global CO 2 emissions which lead to ocean acidification (OA). Other stressors, such as changing levels of ultraviolet radiation (UVR), also impact biodiversity but have received much less attention in the recent past. Here we examine fundamental questions about temporal aspects of risk assessment by coral reef damselfish and provide critical insights into how OA and UVR influence this assessment. Chemical cues released during a predator attack provide a rich source of information that other prey animals use to mediate their risk of predation and are the basis of the majority of trait-mediated indirect interactions in aquatic communities. However, we have surprisingly limited information about temporal aspects of risk assessment because we lack knowledge about how long chemical cues persist after they are released into the environment. Here, we showed that under ambient CO 2 conditions (∼ 385 μatm), alarm cues of ambon damselfish (Pomacentrus amboinensis) did not degrade within 30 min in the absence of ultraviolet radiation (UVR), but were degraded within 15 min when the CO 2 was increased to ∼ 905 μatm. In experiments that used filters to eliminate UVR, we found minimal degradation of alarm cues within 30 min, whereas under ambient UVR conditions, alarm cues were completely degraded within 15 min. Moreover, in the presence of both UVR and elevated CO 2 , alarm cues were broken down within 5 min. Our results highlight that alarm cues degrade surprisingly quickly under natural conditions and that anthropogenic changes have the potential to dramatically change rates of cue degradation in the wild. This has considerable implications for risk assessment and consequently the importance of trait-mediated indirect interactions in coral-reef communities. - Highlights: • We have limited

  20. Environmental Risk Assessment of dredging processes – application to Marin harbour (NW Spain)

    OpenAIRE

    A. G. Gómez; J. García Alba; A. Puente; J. A. Juanes

    2014-01-01

    ABSTRACT. A methodological procedure to estimate the environmental risk of dredging operations in aquatic systems has been developed. Environmental risk estimations are based on numerical models results, which provide an appropriated spatio-temporal framework analysis to guarantee an effective decision-making process. The methodological procedure has been applied on a real dredging operation in the port of Marin (NW Spain). Results from Marin harbour confirmed the suitabi...

  1. Aquatic ecosystem protection and restoration: Advances in methods for assessment and evaluation

    Science.gov (United States)

    Bain, M.B.; Harig, A.L.; Loucks, D.P.; Goforth, R.R.; Mills, K.E.

    2000-01-01

    Many methods and criteria are available to assess aquatic ecosystems, and this review focuses on a set that demonstrates advancements from community analyses to methods spanning large spatial and temporal scales. Basic methods have been extended by incorporating taxa sensitivity to different forms of stress, adding measures linked to system function, synthesizing multiple faunal groups, integrating biological and physical attributes, spanning large spatial scales, and enabling simulations through time. These tools can be customized to meet the needs of a particular assessment and ecosystem. Two case studies are presented to show how new methods were applied at the ecosystem scale for achieving practical management goals. One case used an assessment of biotic structure to demonstrate how enhanced river flows can improve habitat conditions and restore a diverse fish fauna reflective of a healthy riverine ecosystem. In the second case, multitaxonomic integrity indicators were successful in distinguishing lake ecosystems that were disturbed, healthy, and in the process of restoration. Most methods strive to address the concept of biological integrity and assessment effectiveness often can be impeded by the lack of more specific ecosystem management objectives. Scientific and policy explorations are needed to define new ways for designating a healthy system so as to allow specification of precise quality criteria that will promote further development of ecosystem analysis tools.

  2. Strategic Risk Assessment

    Science.gov (United States)

    Derleth, Jason; Lobia, Marcus

    2009-01-01

    This slide presentation provides an overview of the attempt to develop and demonstrate a methodology for the comparative assessment of risks across the entire portfolio of NASA projects and assets. It includes information about strategic risk identification, normalizing strategic risks, calculation of relative risk score, and implementation options.

  3. Overview of risk assessment

    International Nuclear Information System (INIS)

    Rimington, J.D.

    1992-01-01

    The paper begins by defining some terms, and then refer to a number of technical and other difficulties. Finally it attempts to set out why risk assessment is important and what its purposes are. 2) First, risk and risk assessment - what are they?. 3) Risk is a subject of universal significance. Life is very uncertain, and we can achieve no object or benefit in it except by approaching nearer to particular hazards which lie between us and our objects. That approach represents acceptance of risk. 4) Risk assessment is a way of systematising our approach to hazard with a view to determining what is more and what is less risky. It helps us in the end to diminish our exposure while obtaining whatever benefits we have in mind, or to optimise the risks and the benefits

  4. Overview of risk assessment

    Energy Technology Data Exchange (ETDEWEB)

    Rimington, J D [Health and Safety Executive (United Kingdom)

    1992-07-01

    The paper begins by defining some terms, and then refer to a number of technical and other difficulties. Finally it attempts to set out why risk assessment is important and what its purposes are. 2) First, risk and risk assessment - what are they?. 3) Risk is a subject of universal significance. Life is very uncertain, and we can achieve no object or benefit in it except by approaching nearer to particular hazards which lie between us and our objects. That approach represents acceptance of risk. 4) Risk assessment is a way of systematising our approach to hazard with a view to determining what is more and what is less risky. It helps us in the end to diminish our exposure while obtaining whatever benefits we have in mind, or to optimise the risks and the benefits.

  5. [Urban ecological risk assessment: a review].

    Science.gov (United States)

    Wang, Mei-E; Chen, Wei-Ping; Peng, Chi

    2014-03-01

    With the development of urbanization and the degradation of urban living environment, urban ecological risks caused by urbanization have attracted more and more attentions. Based on urban ecology principles and ecological risk assessment frameworks, contents of urban ecological risk assessment were reviewed in terms of driven forces, risk resources, risk receptors, endpoints and integrated approaches for risk assessment. It was suggested that types and degrees of urban economical and social activities were the driven forces for urban ecological risks. Ecological functional components at different levels in urban ecosystems as well as the urban system as a whole were the risk receptors. Assessment endpoints involved in changes of urban ecological structures, processes, functional components and the integrity of characteristic and function. Social-ecological models should be the major approaches for urban ecological risk assessment. Trends for urban ecological risk assessment study should focus on setting a definite protection target and criteria corresponding to assessment endpoints, establishing a multiple-parameter assessment system and integrative assessment approaches.

  6. Occurrence, distribution and ecological risk assessment of multiple classes of UV filters in surface waters from different countries.

    Science.gov (United States)

    Tsui, Mirabelle M P; Leung, H W; Wai, Tak-Cheung; Yamashita, Nobuyoshi; Taniyasu, Sachi; Liu, Wenhua; Lam, Paul K S; Murphy, Margaret B

    2014-12-15

    Organic UV filters are common ingredients of personal care products (PCPs), but little is known about their distribution in and potential impacts to the marine environment. This study reports the occurrence and risk assessment of twelve widely used organic UV filters in surface water collected in eight cities in four countries (China, the United States, Japan, and Thailand) and the North American Arctic. The number of compounds detected, Hong Kong (12), Tokyo (9), Bangkok (9), New York (8), Los Angeles (8), Arctic (6), Shantou (5) and Chaozhou (5), generally increased with population density. Median concentrations of all detectable UV filters were ethylhexyl methoxycinnamate (EHMC) were more likely to pose a risk to fishes and also posed high risk of bleaching in hard corals in aquatic recreational areas in Hong Kong. This study is the first to report the occurrence of organic UV filters in the Arctic and provides a wider assessment of their potential negative impacts in the marine environment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. [Forensic assessment of violence risk].

    Science.gov (United States)

    Pujol Robinat, Amadeo; Mohíno Justes, Susana; Gómez-Durán, Esperanza L

    2014-03-01

    Over the last 20 years there have been steps forward in the field of scientific research on prediction and handling different violent behaviors. In this work we go over the classic concept of "criminal dangerousness" and the more current of "violence risk assessment". We analyze the evolution of such assessment from the practice of non-structured clinical expert opinion to current actuarial methods and structured clinical expert opinion. Next we approach the problem of assessing physical violence risk analyzing the HCR-20 (Assessing Risk for Violence) and we also review the classic and complex subject of the relation between mental disease and violence. One of the most problematic types of violence, difficult to assess and predict, is sexual violence. We study the different actuarial and sexual violence risk prediction instruments and in the end we advise an integral approach to the problem. We also go through partner violence risk assessment, describing the most frequently used scales, especially SARA (Spouse Assault Risk Assessment) and EPV-R. Finally we give practical advice on risk assessment, emphasizing the importance of having maximum information about the case, carrying out a clinical examination, psychopathologic exploration and the application of one of the described risk assessment scales. We'll have to express an opinion about the dangerousness/risk of future violence from the subject and some recommendations on the conduct to follow and the most advisable treatment. Copyright © 2014 Elsevier España, S.L. All rights reserved.

  8. Risk Assessment and Integration Team (RAIT) Portfolio Risk Analysis Strategy

    Science.gov (United States)

    Edwards, Michelle

    2010-01-01

    Impact at management level: Qualitative assessment of risk criticality in conjunction with risk consequence, likelihood, and severity enable development of an "investment policy" towards managing a portfolio of risks. Impact at research level: Quantitative risk assessments enable researchers to develop risk mitigation strategies with meaningful risk reduction results. Quantitative assessment approach provides useful risk mitigation information.

  9. Contamination and Risk Assessment of Heavy Metals in Lake Bed Sediment of a Large Lake Scenic Area in China

    Science.gov (United States)

    Wan, Li; Xu, Liang; Fu, Yongsheng

    2016-01-01

    The exposure of heavy metals to lake bed sediment of scenic areas may pose risks on aquatic ecosystems and human health, however very few studies on risk assessment have been reported for scenic areas. Accordingly, this study determined concentration levels, and assessed contamination characteristics and risks, of heavy metals in lake bed sediment of National Scenic Areas Songhuahu (NSAS) in China. The concentrations of Zn, Cr, Pb, Ni, and Cu were determined in 29 bed sediment samples. Results showed that the mean values of Zn, Cr, Pb, Ni, and Cu were 92.69, 90.73, 38.29, 46.77, and 49.44 mg/kg, respectively. Pearson correlation coefficients indicated that organic matter was a major factor influencing distribution of heavy metals. The results for enrichment factors indicated that contamination rates and anthropogenic inputs of single heavy metals decreased in the order Cu > Ni > Pb > Cr > Zn; results of Nemerow integrated pollution index suggested that 72.41% of sampling sites were exposed to low to moderately integrated pollution, and 27.59% of sampling sites were exposed to strongly integrated pollution. According to results for potential ecological risk index, ecological risks of single and all the heavy metals in bed sediment from all the sampling sites were low. Human risks were assessed with hazardous quotients, and the results suggested that exposure of heavy metals to bed sediment posed no or little risk to human health, and the pathway of ingestion significantly contributed to human health risks. PMID:27455296

  10. [Risk Assessment and Risk Management of Chemicals in China].

    Science.gov (United States)

    Wang, Tie-yu; Zhou, Yun-qiao; Li, Qi-feng; Lü, Yong-long

    2016-02-15

    Risk assessment and risk management have been increasingly approved as an effective approach for appropriate disposal and scientific management of chemicals. This study systematically analyzed the risk assessment methods of chemicals from three aspects including health risk, ecological risk and regional risk. Based on the current situation of classification and management towards chemicals in China, a specific framework of risk management on chemicals was proposed by selecting target chemicals, predominant industries and related stakeholders as the objects. The results of the present study will provide scientific support for improving risk assessment and reasonable management of chemicals in China.

  11. Prioritizing veterinary pharmaceuticals for aquatic environment in Korea.

    Science.gov (United States)

    Kim, Younghee; Jung, Jinyong; Kim, Myunghyun; Park, Jeongim; Boxall, Alistair B A; Choi, Kyungho

    2008-09-01

    Pharmaceutical residues may have serious impacts on nontarget biological organisms in aquatic ecosystems, and have therefore precipitated numerous investigations worldwide. Many pharmaceutical compounds available on the market need to be prioritized based on their potential ecological and human health risks in order to develop sound management decisions. We prioritized veterinary pharmaceuticals in Korea by their usage, potential to enter the environment, and toxicological hazard. Twenty compounds were identified in the top priority class, most of which were antibiotics. Among these compounds, 8 were identified as deserving more immediate attention: amoxicillin, enramycin, fenbendazole, florfenicol, ivermectin, oxytetracycline, tylosin, and virginiamycin. A limitation of this study is that we initially screened veterinary pharmaceuticals by sales tonnage for veterinary use only. However, this is the first attempt to prioritize veterinary pharmaceuticals in Korea, and it provides important concepts for developing environmental risk management plans for such contaminants in aquatic systems. Copyright © 2008 Elsevier B.V. All rights reserved.

  12. Assessment of variables controlling nitrate dynamics in groundwater: is it a threat to surface aquatic ecosystems?

    Science.gov (United States)

    Rasiah, V; Armour, J D; Cogle, A L

    2005-01-01

    The impact of fertilised cropping on nitrate-N dynamics in groundwater (GW) was assessed in a catchment from piezometers installed: (i) to different depths, (ii) in different soil types, (iii) on different positions on landscape, and (iv) compared with the Australian and New Zealand Environmental and Conservation Council guideline values provided for different aquatic ecosystems. The GW and NO(3)-N concentration dynamics were monitored in 39 piezometer wells, installed to 5-90 m depth, under fertilized sugarcane (Saccharum officinarum-S) in the Johnstone River Catchment, Australia, from 1999 January through September 2002. The median nitrate-N concentration ranged from 14 to 1511 microg L(-1), and the 80th percentile from 0 to 1341 microg L(-1). In 34 out of the 39 piezometer wells the 80th percentile or 80% of the nitrate-N values were higher than 30 microg L(-1), which is the maximum trigger value provided in the ANZECC table for sustainable health of different aquatic ecosystems. Nitrate-N concentration decreased with increasing well depth, increasing depth of water in wells, and with decreasing relief on landscape. Nitrate-N was higher in alluvial soil profiles than on those formed in-situ. Nitrate-N increased with increasing rainfall at the beginning of the rainy season, fluctuated during the peak rainy period, and then decreased when the rain ceased. The rapid decrease in GW after the rains ceased suggested potential existed for nitrate-N to be discharged as lateral-flow into streams. This may contribute towards the deterioration in the health of down-stream aquatic ecosystems.

  13. Report on stakeholder evaluation of highland aquatic resources

    DEFF Research Database (Denmark)

    Lund, Søren

    This report gives an overview of completed research activities on the value ascribed by users, local communities and stakeholders to functions, goods and services (including non‐use values) derived from the aquatic resources in the study areas. The perceived impact of factors such as environmental...... degradation, changing demand for goods and services and modified highland aquatic resources management practices on these values has also been assessed. To help structure this analysis stakeholder Delphi studies have been undertaken in each country involving representatives from all stakeholder groups...

  14. Community-Based Progressive Aquatic Exercise for the Management of Knee Osteoarthritis

    Directory of Open Access Journals (Sweden)

    Dayle Maryanna Masslon

    2016-10-01

    Full Text Available Background We examined the feasibility and effectiveness of a community-based progressive aquatic exercise program for community dwelling older adults, with moderate to severe knee osteoarthritis (OA. Objectives The purposes of this study were to 1, assess the effects of a progressive aquatic exercise program on the walking ability, stair climbing ability, quadriceps muscle strength, as well as self-reported symptoms, function, and quality of life in community dwelling adults with moderate to severe knee OA and; 2, assess the feasibility of a community-based aquatic program for community dwelling adults with knee OA. Methods Seventeen volunteers (12 women (x = 61.1 years and 5 men (x = 69.0 years participated in a progressive 8 - 10 week aquatic exercise program, consisting of 20 - 24, 1-hour sessions. Outcome measures, acquired twice before beginning the exercise protocol as well as after 4 and 8 weeks of exercise, included the Knee Injury and Osteoarthritis outcome score (KOOS instrument, a 2 minute walk test (2MWT, a 10 step stair climb for time, and an isometric knee extension strength assessment. Results Significant improvements were detected in 2 MWT, 10 step stair climb, right quadriceps isometric force development, and the KOOS symptoms and stiffness subscale. Significant improvement was found on KOOS function subscales between baseline testing sessions and maintained at follow-up. Non-significant improvements were identified in left quadriceps isometric force development, KOOS pain, and KOOS quality of life. Conclusions These data suggest that a community-based, progressive aquatic exercise program is feasible and results in measurable improvements in function without worsening symptoms. Further study is warranted to investigate the impact of a longer program and the role of aquatic exercise in the long-term management of patients with knee OA.

  15. Using Remote Sensing Mapping and Growth Response to Environmental Variability to Aide Aquatic Invasive Plant Management

    Science.gov (United States)

    Bubenheim, David L.; Schlick, Greg; Genovese, Vanessa; Wilson, Kenneth D.

    2018-01-01

    Management of aquatic weeds in complex watersheds and river systems present many challenges to assessment, planning and implementation of management practices for floating and submerged aquatic invasive plants. The Delta Region Areawide Aquatic Weed Project (DRAAWP), a USDA sponsored area-wide project, is working to enhance planning, decision-making and operational efficiency in the California Sacramento-San Joaquin Delta. Satellite and airborne remote sensing are used map (area coverage and biomass density), direct operations, and assess management impacts on plant communities. Archived satellite records enable review of results following previous climate and management events and aide in developing long-term strategies. Examples of remote sensing aiding effectiveness of aquatic weed management will be discussed as well as areas for potential technological improvement. Modeling at local and watershed scales using the SWAT modeling tool provides insight into land-use effects on water quality (described by Zhang in same Symposium). Controlled environment growth studies have been conducted to quantify the growth response of invasive aquatic plants to water quality and other environmental factors. Environmental variability occurs across a range of time scales from long-term climate and seasonal trends to short-term water flow mediated variations. Response time for invasive species response are examined at time scales of weeks, day, and hours using a combination of study duration and growth assessment techniques to assess water quality, temperature (air and water), nitrogen, phosphorus, and light effects. These provide response parameters for plant growth models in response to the variation and interact with management and economic models associated with aquatic weed management. Plant growth models are to be informed by remote sensing and applied spatially across the Delta to balance location and type of aquatic plant, growth response to altered environments and

  16. Patient caries risk assessment

    DEFF Research Database (Denmark)

    Twetman, Svante; Fontana, Margherita

    2009-01-01

    Risk assessment is an essential component in the decision-making process for the correct prevention and management of dental caries. Multiple risk factors and indicators have been proposed as targets in the assessment of risk of future disease, varying sometimes based on the age group at which...... they are targeted. Multiple reviews and systematic reviews are available in the literature on this topic. This chapter focusses primarily on results of reviews based on longitudinal studies required to establish the accuracy of caries risk assessment. These findings demonstrate that there is a strong body...... of evidence to support that caries experience is still, unfortunately, the single best predictor for future caries development. In young children, prediction models which include a variety of risk factors seem to increase the accuracy of the prediction, while the usefulness of additional risk factors...

  17. Nominal radio ecological benchmarks for the ecological risk assessment of radioactive waste management facilities

    Energy Technology Data Exchange (ETDEWEB)

    Garisto, N.C. [SENES Consultants Ltd., Richmond Hill, Ontario (Canada)]. E-mail: ngaristo@senes.ca

    2006-07-01

    Ecological risk assessments are used to assess potential ecological impacts from contaminated sites, such as radioactive waste management and disposal facilities. These assessments determine the overall significance of the impact of such facilities on non-human biota. Specific indicator species are selected as representative non-human biota at the study sites for the purposes of these risk assessments. Potential environmental impacts are generally assessed in terms of 'screening indices'. In simple terms, a screening index is the ratio of an estimated exposure level of the indicator species (or environmental concentration) divided by a level or concentration deemed unlikely to have a significant ecological effect. These latter levels or concentrations are referred to as 'estimated no effect value' or ENEVs. Nominal ENEV values for chronic radiation effects based on our current interpretation of literature data are presented in this paper. They are: 5 mGy/d for fish and amphibians; 2.4 mGy/d for aquatic plants; 2 mGy/d for reptiles; 5 mGy/d for benthic and terrestrial invertebrates; 1 mGy/d for slow-growing terrestrial animals that reproduce late in life; 10 mGy/d for short-lived prolific terrestrial animals; 2.4 mGy/d for terrestrial plants; 5 mGy/d for birds. The paper identifies major areas of uncertainty regarding the selection of these nominal ENEVs for practical applications. (author)

  18. Assessment of metal sorption mechanisms by aquatic macrophytes using PIXE analysis

    Energy Technology Data Exchange (ETDEWEB)

    Módenes, A.N., E-mail: anmodenes@yahoo.com.br [Department of Chemical Engineering-Postgraduate Program, West Parana State University, Campus of Toledo, rua da Faculdade 645, Jd. La Salle, 85903-000 Toledo, PR (Brazil); Espinoza-Quiñones, F.R.; Santos, G.H.F.; Borba, C.E. [Department of Chemical Engineering-Postgraduate Program, West Parana State University, Campus of Toledo, rua da Faculdade 645, Jd. La Salle, 85903-000 Toledo, PR (Brazil); Rizzutto, M.A. [Physics Institute, University of São Paulo, Rua do Matão s/n, Travessa R 187, 05508-900 São Paulo, SP (Brazil)

    2013-10-15

    Highlights: • Divalent metal ion removals by Egeria densa biosorbent. • Multielements concentrations in biosorbent samples by PIXE analysis. • Elements mass balance in liquid and solid phase before and after metal removals. • Assessment of the mechanisms involved in Cd{sup 2+} and Zn{sup 2+} removal by biosorbent. • Confirmation of the signature of ion exchange process in metal removal. -- Abstract: In this work, a study of the metal sorption mechanism by dead biomass has been performed. All batch metal biosorption experiments were performed using the aquatic macrophyte Egeria densa as biosorbent. Divalent cadmium and zinc solutions were used to assess the sorption mechanisms involved. Using a suitable equilibrium time of 2 h and a mixture of 300 mg biosorbent and 50 mL metal solution at pH 5, monocomponent sorption experiments were performed. In order to determine the residual amounts of metals in the aqueous solutions and the concentrations of removed metals in the dry biomass, Particle Induced X-ray Emission (PIXE) measurements in thin and thick target samples were carried out. Based on the strong experimental evidence from the mass balance among the major elements participating in the sorption processes, an ion exchange process was identified as the mechanism responsible for metal removal by the dry biomass.

  19. Building better environmental risk assessments

    Directory of Open Access Journals (Sweden)

    Raymond eLayton

    2015-08-01

    Full Text Available Risk assessment is a reasoned, structured approach to address uncertainty based on scientific and technical evidence. It forms the foundation for regulatory decision making, which is bound by legislative and policy requirements, as well as the need for making timely decisions using available resources. In order to be most useful, environmental risk assessments (ERA for genetically modified (GM crops should provide consistent, reliable, and transparent results across all types of GM crops, traits, and environments. The assessments must also separate essential information from scientific or agronomic data of marginal relevance or value for evaluating risk and complete the assessment in a timely fashion. Challenges in conducting ERAs differ across regulatory systems – examples are presented from Canada, Malaysia, and Argentina. One challenge faced across the globe is the conduct of risk assessments with limited resources. This challenge can be overcome by clarifying risk concepts, placing greater emphasis on data critical to assess environmental risk (for example, phenotypic and plant performance data rather than molecular data, and adapting advances in risk analysis from other relevant disciplines.

  20. Building Better Environmental Risk Assessments

    Science.gov (United States)

    Layton, Raymond; Smith, Joe; Macdonald, Phil; Letchumanan, Ramatha; Keese, Paul; Lema, Martin

    2015-01-01

    Risk assessment is a reasoned, structured approach to address uncertainty based on scientific and technical evidence. It forms the foundation for regulatory decision-making, which is bound by legislative and policy requirements, as well as the need for making timely decisions using available resources. In order to be most useful, environmental risk assessments (ERAs) for genetically modified (GM) crops should provide consistent, reliable, and transparent results across all types of GM crops, traits, and environments. The assessments must also separate essential information from scientific or agronomic data of marginal relevance or value for evaluating risk and complete the assessment in a timely fashion. Challenges in conducting ERAs differ across regulatory systems – examples are presented from Canada, Malaysia, and Argentina. One challenge faced across the globe is the conduct of risk assessments with limited resources. This challenge can be overcome by clarifying risk concepts, placing greater emphasis on data critical to assess environmental risk (for example, phenotypic and plant performance data rather than molecular data), and adapting advances in risk analysis from other relevant disciplines. PMID:26301217

  1. Building Better Environmental Risk Assessments.

    Science.gov (United States)

    Layton, Raymond; Smith, Joe; Macdonald, Phil; Letchumanan, Ramatha; Keese, Paul; Lema, Martin

    2015-01-01

    Risk assessment is a reasoned, structured approach to address uncertainty based on scientific and technical evidence. It forms the foundation for regulatory decision-making, which is bound by legislative and policy requirements, as well as the need for making timely decisions using available resources. In order to be most useful, environmental risk assessments (ERAs) for genetically modified (GM) crops should provide consistent, reliable, and transparent results across all types of GM crops, traits, and environments. The assessments must also separate essential information from scientific or agronomic data of marginal relevance or value for evaluating risk and complete the assessment in a timely fashion. Challenges in conducting ERAs differ across regulatory systems - examples are presented from Canada, Malaysia, and Argentina. One challenge faced across the globe is the conduct of risk assessments with limited resources. This challenge can be overcome by clarifying risk concepts, placing greater emphasis on data critical to assess environmental risk (for example, phenotypic and plant performance data rather than molecular data), and adapting advances in risk analysis from other relevant disciplines.

  2. Risk Assessment Stability: A Revalidation Study of the Arizona Risk/Needs Assessment Instrument

    Science.gov (United States)

    Schwalbe, Craig S.

    2009-01-01

    The actuarial method is the gold standard for risk assessment in child welfare, juvenile justice, and criminal justice. It produces risk classifications that are highly predictive and that may be robust to sampling error. This article reports a revalidation study of the Arizona Risk/Needs Assessment instrument, an actuarial instrument for juvenile…

  3. Environmental risk assessment of water quality in harbor areas: a new methodology applied to European ports.

    Science.gov (United States)

    Gómez, Aina G; Ondiviela, Bárbara; Puente, Araceli; Juanes, José A

    2015-05-15

    This work presents a standard and unified procedure for assessment of environmental risks at the contaminant source level in port aquatic systems. Using this method, port managers and local authorities will be able to hierarchically classify environmental hazards and proceed with the most suitable management actions. This procedure combines rigorously selected parameters and indicators to estimate the environmental risk of each contaminant source based on its probability, consequences and vulnerability. The spatio-temporal variability of multiple stressors (agents) and receptors (endpoints) is taken into account to provide accurate estimations for application of precisely defined measures. The developed methodology is tested on a wide range of different scenarios via application in six European ports. The validation process confirms its usefulness, versatility and adaptability as a management tool for port water quality in Europe and worldwide. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Remote sensing of aquatic plants. [New York, Florida, Texas, Louisiana, Mississippi, South Carolina

    Science.gov (United States)

    Long, K. S.; Link, L. E., Jr.

    1977-01-01

    Various sensors were tested in terms of their ability to detect and discriminate among noxious aquatic macrophytes. A survey of researchers currently studying the problem and a brief summary of their work is included. Results indicated that the sensor types best suited to assessment of the aquatic environment are color, color infrared, and black-and-white infrared film, which furnish consistently high contrasts between aquatic plants and their surroundings.

  5. Heavy metal contamination in the muscle of Aegean chub (Squalius fellowesii) and potential risk assessment.

    Science.gov (United States)

    Şaşi, Hüseyin; Yozukmaz, Aykut; Yabanli, Murat

    2018-03-01

    Especially after the industrial revolution, the amount of contaminants released in aquatic ecosystems has considerably increased. For this reason, the necessity to carry on research on the existence of contaminants, specifically heavy metals, has emerged. In this study, heavy metal concentrations in muscle tissues of Aegean chub, which was an endemic species of south western part of Turkey, gathered from Tersakan River were examined. Heavy metal concentrations of the samples were analyzed with ICP-MS. Estimated daily intakes (EDI), target hazard quotient (THQ), and carcinogenic risk (CR) of elements were calculated. The heavy metals detected in muscle tissues were Zn > Cu > Cr > Mn > Pb > Cd, consecutively. According to the results of the applied health risk assessment (EDI, THQ and CR) for heavy metal exposure from fish consumption in children and adults, it was determined that there was no any significant threat to human health.

  6. Using AquaticHealth.net to Detect Emerging Trends in Aquatic Animal Health

    Directory of Open Access Journals (Sweden)

    Geoff Grossel

    2013-05-01

    Full Text Available AquaticHealth.net is an open-source aquatic biosecurity intelligence application. By combining automated data collection and human analysis, AquaticHealth.net provides fast and accurate disease outbreak detection and forecasts, accompanied with nuanced explanations. The system has been online and open to the public since 1 January 2010, it has over 200 registered expert users around the world, and it typically publishes about seven daily reports and two weekly disease alerts. We document the major trends in aquatic animal health that the system has detected over these two years, and conclude with some forecasts for the future.

  7. Toxicological assessment of indium nitrate on aquatic organisms and investigation of the effects on the PLHC-1 fish cell line

    Energy Technology Data Exchange (ETDEWEB)

    Zurita, Jorge L. [National Institute of Toxicology and Forensic Sciences, Av. Dr Fedriani s/n, 41009, Seville (Spain); Jos, Angeles [Area of Toxicology, University of Seville, Prof. Garcia Gonzalez 2, 41012, Seville (Spain); Peso, Ana del; Salguero, Manuel [National Institute of Toxicology and Forensic Sciences, Av. Dr Fedriani s/n, 41009, Seville (Spain); Camean, Ana M. [Area of Toxicology, University of Seville, Prof. Garcia Gonzalez 2, 41012, Seville (Spain); Lopez-Artiguez, Miguel [National Institute of Toxicology and Forensic Sciences, Av. Dr Fedriani s/n, 41009, Seville (Spain); Repetto, Guillermo [National Institute of Toxicology and Forensic Sciences, Av. Dr Fedriani s/n, 41009, Seville (Spain); Area of Toxicology, University of Seville, Prof. Garcia Gonzalez 2, 41012, Seville (Spain)], E-mail: repetto@us.es

    2007-11-15

    Indium nitrate is mainly used as a semiconductor in batteries, for plating and other chemical and medical applications. There is a lack of available information about the adverse effects of indium compounds on aquatic organisms. Therefore, the toxic effects on systems from four trophic levels of the aquatic ecosystem were investigated. Firstly, the bacterium Vibrio fischeri, the alga Chlorella vulgaris and the cladoceran Daphnia magna were used in the toxicological evaluation of indium nitrate. The most sensitive model was V. fischeri, with a NOAEL of 0.02 and an EC{sub 50} of 0.04 mM at 15 min. Although indium nitrate should be classified as harmful to aquatic organisms, it is not expected to represent acute risk to the aquatic biota. Secondly, PLHC-1 fish cell line was employed to investigate the effects and mechanisms of toxicity. Although protein content, neutral red uptake, methylthiazol metabolization, lysosomal function and acetylcholinesterase activity were reduced in cells, stimulations were observed for metallothionein levels and succinate dehydrogenase and glucose-6-phosphate dehydrogenase activities. No changes were observed in ethoxyresorufin-O-deethylase activity. To clarify the main events in PLHC-1 cell death induced by indium nitrate, nine modulators were applied. They were related to oxidative stress ({alpha}-tocopherol succinate, mannitol and sodium benzoate), disruption of calcium homeostasis (BAPTA-AM and EGTA), thiol protection (1,4-dithiotreitol), iron chelation (deferoxiamine) or regulation of glutathione levels (2-oxothiazolidine-4-carboxylic acid and malic acid diethyl ester). The main morphological alterations were hydropic degeneration and loss of cells. At least, in partly, toxicity seems to be mediated by oxidative stress, and particularly by NADPH-dependent lipid peroxidation.

  8. Toxicological assessment of indium nitrate on aquatic organisms and investigation of the effects on the PLHC-1 fish cell line

    International Nuclear Information System (INIS)

    Zurita, Jorge L.; Jos, Angeles; Peso, Ana del; Salguero, Manuel; Camean, Ana M.; Lopez-Artiguez, Miguel; Repetto, Guillermo

    2007-01-01

    Indium nitrate is mainly used as a semiconductor in batteries, for plating and other chemical and medical applications. There is a lack of available information about the adverse effects of indium compounds on aquatic organisms. Therefore, the toxic effects on systems from four trophic levels of the aquatic ecosystem were investigated. Firstly, the bacterium Vibrio fischeri, the alga Chlorella vulgaris and the cladoceran Daphnia magna were used in the toxicological evaluation of indium nitrate. The most sensitive model was V. fischeri, with a NOAEL of 0.02 and an EC 50 of 0.04 mM at 15 min. Although indium nitrate should be classified as harmful to aquatic organisms, it is not expected to represent acute risk to the aquatic biota. Secondly, PLHC-1 fish cell line was employed to investigate the effects and mechanisms of toxicity. Although protein content, neutral red uptake, methylthiazol metabolization, lysosomal function and acetylcholinesterase activity were reduced in cells, stimulations were observed for metallothionein levels and succinate dehydrogenase and glucose-6-phosphate dehydrogenase activities. No changes were observed in ethoxyresorufin-O-deethylase activity. To clarify the main events in PLHC-1 cell death induced by indium nitrate, nine modulators were applied. They were related to oxidative stress (α-tocopherol succinate, mannitol and sodium benzoate), disruption of calcium homeostasis (BAPTA-AM and EGTA), thiol protection (1,4-dithiotreitol), iron chelation (deferoxiamine) or regulation of glutathione levels (2-oxothiazolidine-4-carboxylic acid and malic acid diethyl ester). The main morphological alterations were hydropic degeneration and loss of cells. At least, in partly, toxicity seems to be mediated by oxidative stress, and particularly by NADPH-dependent lipid peroxidation

  9. Multiresidue determination and potential risks of emerging pesticides in aquatic products from Northeast China by LC-MS/MS.

    Science.gov (United States)

    Fu, Lei; Lu, Xianbo; Tan, Jun; Wang, Longxing; Chen, Jiping

    2018-01-01

    A simple method for determining 33 pesticides with a wide polarity range (logK ow 0.6-4.5) in aquatic products was developed based on LC-MS/MS. The target analytes included three types of widely used pesticides: insecticides, fungicides and herbicides. Based on the optimization of ultrasonic assisted extraction and GPC clean-up procedures, the matrix effect, extraction recoveries and LOD were improved distinctively. LOQ of this method was below 0.5ng/g for all pesticides, which is superior to values in the literature, and the matrix effect was reduced effectively (-14.7% to 7.5%). The method was successfully applied to investigate the pesticide residue levels of twenty-five samples including seven common kinds of fishes from Northeast China. The results showed that all targeted pesticides were present in the fish samples; however, their levels were low, except for atrazine, linuron, ethoprophos, tetrachlorvinphos, acetochlor and fenthion. Atrazine and linuron caught our attention because the concentrations of atrazine in fish samples from Liaoning province were in the range of 0.5-8ng/g (w/w) with mean concentration of 2.3ng/g, which were far above those of other pesticides. The levels of linuron were in the range of 0.6-6ng/g (mean concentration 2.8ng/g), which were the highest among all targeted pesticides in the Inner Mongolia. This is the first systematic investigation on the characteristics and levels of these pesticides in aquatic products from northeast China. Considering their toxicity and bioaccumulation, the potential risk of atrazine and linuron from consuming aquatic products should be paid more attention. Copyright © 2017. Published by Elsevier B.V.

  10. RISK MANAGEMENT: AN INTEGRATED APPROACH TO RISK MANAGEMENT AND ASSESSMENT

    Directory of Open Access Journals (Sweden)

    Szabo Alina

    2012-12-01

    Full Text Available Purpose: The objective of this paper is to offer an overview over risk management cycle by focusing on prioritization and treatment, in order to ensure an integrated approach to risk management and assessment, and establish the ‘top 8-12’ risks report within the organization. The interface with Internal Audit is ensured by the implementation of the scoring method to prioritize risks collected from previous generated risk report. Methodology/approach: Using evidence from other research in the area and the professional expertise, this article outlines an integrated approach to risk assessment and risk management reporting processes, by separating the risk in two main categories: strategic and operational risks. The focus is on risk prioritization and scoring; the final output will comprise a mix of strategic and operational (‘top 8-12’ risks, which should be used to establish the annual Internal Audit plan. Originality/value: By using an integrated approach to risk assessment and risk management will eliminate the need for a separate Internal Audit risk assessment over prevailing risks. It will reduce the level of risk assessment overlap by different functions (Tax, Treasury, Information System over the same risk categories as a single methodology, is used and will align timings of risk assessment exercises. The risk prioritization by usage of risk and control scoring criteria highlights the combination between financial and non-financial impact criteria allowing risks that do not naturally lend themselves to a financial amount to be also assessed consistently. It is emphasized the usage of score method to prioritize the risks included in the annual audit plan in order to increase accuracy and timelines.

  11. Molecular ecology of aquatic microbes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    Abstracts of reports are presented from a meeting on Molecular Ecology of Aquatic Microbes. Topics included: opportunities offered to aquatic ecology by molecular biology; the role of aquatic microbes in biogeochemical cycles; characterization of the microbial community; the effect of the environment on aquatic microbes; and the targeting of specific biological processes.

  12. Pharmaceuticals and personal care products (PPCPs in the freshwater aquatic environment

    Directory of Open Access Journals (Sweden)

    Anekwe Jennifer Ebele

    2017-03-01

    Full Text Available Pharmaceuticals and personal care products (PPCPs are a unique group of emerging environmental contaminants, due to their inherent ability to induce physiological effects in human at low doses. An increasing number of studies has confirmed the presence of various PPCPs in different environmental compartments, which raises concerns about the potential adverse effects to humans and wildlife. Therefore, this article reviews the current state-of-knowledge on PPCPs in the freshwater aquatic environment. The environmental risk posed by these contaminants is evaluated in light of the persistence, bioaccumulation and toxicity criteria. Available literature on the sources, transport and degradation of PPCPs in the aquatic environment are evaluated, followed by a comprehensive review of the reported concentrations of different PPCP groups in the freshwater aquatic environment (water, sediment and biota of the five continents. Finally, future perspectives for research on PPCPs in the freshwater aquatic environment are discussed in light of the identified research gaps in current knowledge.

  13. Journal Articles Applying National Aquatic Resource Survey Data

    Science.gov (United States)

    The National Aquatic Resource Surveys (NARS) data are being used and applied above and beyond the regional and national assessments. This page includes a list of recent journal articles that reference NARS data.

  14. Environmental Risk Assessment of dredging processes - application to Marin harbour (NW Spain)

    Science.gov (United States)

    Gómez, A. G.; García Alba, J.; Puente, A.; Juanes, J. A.

    2014-04-01

    A methodological procedure to estimate the environmental risk of dredging operations in aquatic systems has been developed. Environmental risk estimations are based on numerical models results, which provide an appropriated spatio-temporal framework analysis to guarantee an effective decision-making process. The methodological procedure has been applied on a real dredging operation in the port of Marin (NW Spain). Results from Marin harbour confirmed the suitability of the developed methodology and the conceptual approaches as a comprehensive and practical management tool.

  15. Risk assessment: 'A consumer's perspective'

    International Nuclear Information System (INIS)

    Waterhouse, Rachel

    1992-01-01

    The paper assesses the concept of risk, risk assessment and tolerability of risk from consumer point of view. Review of existing UK and EC directives on certain products and appliances is also covered

  16. Risk assessment: 'A consumer's perspective'

    Energy Technology Data Exchange (ETDEWEB)

    Waterhouse, Rachel [Consumer' s Association, Health and Safety Commission (United Kingdom)

    1992-07-01

    The paper assesses the concept of risk, risk assessment and tolerability of risk from consumer point of view. Review of existing UK and EC directives on certain products and appliances is also covered.

  17. Using risk assessment in periodontics.

    Science.gov (United States)

    Woodman, Alan J

    2014-08-01

    Risk assessment has become a regular feature in both dental practice and society as a whole, and principles used to assess risk in society are similar to those used in a clinical setting. Although the concept of risk assessment as a prognostic indicator for periodontal disease incidence and activity is well established in the management of periodontitis, the use of risk assessment to manage the practical treatment of periodontitis and its sequelae appears to have less foundation. A simple system of initial risk assessment - building on the use of the Basic Periodontal Examination (BPE), clinical, medical and social factors - is described, linked to protocols for delivering care suited to general dental practice and stressing the role of long-term supportive care. The risks of not treating the patient are considered, together with the possible causes of failure, and the problems of successful treatment are illustrated by the practical management of post-treatment recession.

  18. 烟台市生食水产品中副溶血弧菌污染调查及风险评价%Research of contamination ofVibrio parahaemolyticus and risk assessment on eating raw aquatic products in Yantai

    Institute of Scientific and Technical Information of China (English)

    宫春波; 王朝霞; 刘磊; 孙月琳; 董峰光

    2014-01-01

    目的:了解烟台市可生食水产品副溶血弧菌(Vibrio parahaemolyticus, VP)的污染水平,分析摄食可生食水产品后 VP 致病风险概率,为强化监督和监管以及指导消费者理性消费,提供科学依据。方法按照 GB 4789.7-2013的要求,对分层随机抽样的样本进行VP的检测,采用Beta-Poisson模型拟合量化评价每次摄食可生食水产品导致的VP发病概率。结果可生食水品中VP总体污染率为16.89%。甲壳类最高达到22.22%,鱼类、贝壳类、头足类和其他类(海参、海蜇)的VP污染率分别为17.39%、17.19%、5.88%、16.67%,类别间无显著性差异(X2=2.028, P=0.731)。餐饮环节的生食水产品中VP污染高于零售环节,小型餐饮店高于中型和大型餐饮店,分别为33.33%、19.35%、15.15%。7~9月份是可生食水产品中VP高污染的时间节点,也是食用可生食水产品平均每次的VP发病概率最高的时间段,达到1.57×10-4,而5~6月份、10~12月份VP发病概率较低分别为9.09×10-5、3.75×10-5。结论可生食水品中VP的污染相对较高,7~9月份为VP高污染和VP高发病概率的月份。同类水产品中VP污染率低于可生食水产品,表明生产加工是可生食水产品中VP污染主要因素之一,餐饮环节的可生食水产品污染率高于零售环节。建议主管部门强化可生食水品加工环节的卫生监督,规范其加工生产工艺;建议食品企业实施HACCP安全保证体系。消费者尽量少食或不食可生食水产品,对于水产品尽量加热熟透食用。%Objective To evaluate the contamination level ofVibio parahamolylicus (VP) in edible raw aquatic products and assess the risk value of VP by single ingesting of raw aquatic products.Methods The VP infection of stratified random sample was detected by GB 4789.7-2013. The probability of VP morbidity for single eating of edible raw aquatic product was calculated by Beta-Poisson model, and the risk value was ana-lyzed by crystal

  19. Fear and loathing in the benthos: Responses of aquatic insect larvae to the pesticide imidacloprid in the presence of chemical signals of predation risk.

    Science.gov (United States)

    Pestana, João L T; Loureiro, Susana; Baird, Donald J; Soares, Amadeu M V M

    2009-06-28

    The influence of interactions between pesticide exposure and perceived predation risk on the lethal and sub-lethal responses of two aquatic insects was investigated using the pesticide imidacloprid, and a combination of predator-release kairomones from trout and alarm substances from conspecifics. Laboratory experiments examined feeding and respiration rates of the caddisfly Sericostoma vittatum as well as the growth, emergence and respiration rates of the midge Chironomus riparius, exposed to sub-lethal concentrations of imidacloprid. The effects of the two stressors on burrowing behaviour of both species were also assessed. The results show significant effects of environmentally relevant concentrations of imidacloprid on all endpoints studied. Perceived predation risk also elicited sub-lethal effects in C. riparius and S. vittatum, the latter species being less responsive to predation cues. The effects of simultaneous exposure to both types of stressors were assessed using two different approaches: analysis of variance and conceptual models [concentration addition (CA) and independent action (IA)] normally used for the evaluation of contaminant mixture exposure. Both statistical approaches showed no significant interactions on responses in simultaneous exposures in the majority of parameters assessed with only a signification deviation from the reference CA and IA models being found for C. riparius respiration data contrary to the ANOVA results. Exposure to imidacloprid also compromised antipredator behavioural responses of both insect species, with potential negative consequences in terms of mortality from predation in the field. The results obtained demonstrate that natural and anthropogenic stressors can be treated within the same framework providing compatible data for modelling. For an improved interpretation of ecological effects it will be important to expand the mechanistic study of effects of combined exposure to pesticides and perceived predation risk

  20. A total risk assessment methodology for security assessment

    International Nuclear Information System (INIS)

    Auilar, Richard; Pless, Daniel J.; Kaplan, Paul Garry; Silva, Consuelo Juanita; Rhea, Ronald Edward; Wyss, Gregory Dane; Conrad, Stephen Hamilton

    2009-01-01

    Sandia National Laboratories performed a two-year Laboratory Directed Research and Development project to develop a new collaborative risk assessment method to enable decision makers to fully consider the interrelationships between threat, vulnerability, and consequence. A five-step Total Risk Assessment Methodology was developed to enable interdisciplinary collaborative risk assessment by experts from these disciplines. The objective of this process is promote effective risk management by enabling analysts to identify scenarios that are simultaneously achievable by an adversary, desirable to the adversary, and of concern to the system owner or to society. The basic steps are risk identification, collaborative scenario refinement and evaluation, scenario cohort identification and risk ranking, threat chain mitigation analysis, and residual risk assessment. The method is highly iterative, especially with regard to scenario refinement and evaluation. The Total Risk Assessment Methodology includes objective consideration of relative attack likelihood instead of subjective expert judgment. The 'probability of attack' is not computed, but the relative likelihood for each scenario is assessed through identifying and analyzing scenario cohort groups, which are groups of scenarios with comparable qualities to the scenario being analyzed at both this and other targets. Scenarios for the target under consideration and other targets are placed into cohort groups under an established ranking process that reflects the following three factors: known targeting, achievable consequences, and the resources required for an adversary to have a high likelihood of success. The development of these target cohort groups implements, mathematically, the idea that adversaries are actively choosing among possible attack scenarios and avoiding scenarios that would be significantly suboptimal to their objectives. An adversary who can choose among only a few comparable targets and scenarios (a

  1. How to use mechanistic effect models in environmental risk assessment of pesticides: Case studies and recommendations from the SETAC workshop MODELINK.

    Science.gov (United States)

    Hommen, Udo; Forbes, Valery; Grimm, Volker; Preuss, Thomas G; Thorbek, Pernille; Ducrot, Virginie

    2016-01-01

    Mechanistic effect models (MEMs) are useful tools for ecological risk assessment of chemicals to complement experimentation. However, currently no recommendations exist for how to use them in risk assessments. Therefore, the Society of Environmental Toxicology and Chemistry (SETAC) MODELINK workshop aimed at providing guidance for when and how to apply MEMs in regulatory risk assessments. The workshop focused on risk assessment of plant protection products under Regulation (EC) No 1107/2009 using MEMs at the organism and population levels. Realistic applications of MEMs were demonstrated in 6 case studies covering assessments for plants, invertebrates, and vertebrates in aquatic and terrestrial habitats. From the case studies and their evaluation, 12 recommendations on the future use of MEMs were formulated, addressing the issues of how to translate specific protection goals into workable questions, how to select species and scenarios to be modeled, and where and how to fit MEMs into current and future risk assessment schemes. The most important recommendations are that protection goals should be made more quantitative; the species to be modeled must be vulnerable not only regarding toxic effects but also regarding their life history and dispersal traits; the models should be as realistic as possible for a specific risk assessment question, and the level of conservatism required for a specific risk assessment should be reached by designing appropriately conservative environmental and exposure scenarios; scenarios should include different regions of the European Union (EU) and different crops; in the long run, generic MEMs covering relevant species based on representative scenarios should be developed, which will require EU-level joint initiatives of all stakeholders involved. The main conclusion from the MODELINK workshop is that the considerable effort required for making MEMs an integral part of environmental risk assessment of pesticides is worthwhile, because

  2. Supporting Risk Assessment: Accounting for Indirect Risk to Ecosystem Components.

    Directory of Open Access Journals (Sweden)

    Cathryn Clarke Murray

    Full Text Available The multi-scalar complexity of social-ecological systems makes it challenging to quantify impacts from human activities on ecosystems, inspiring risk-based approaches to assessments of potential effects of human activities on valued ecosystem components. Risk assessments do not commonly include the risk from indirect effects as mediated via habitat and prey. In this case study from British Columbia, Canada, we illustrate how such "indirect risks" can be incorporated into risk assessments for seventeen ecosystem components. We ask whether (i the addition of indirect risk changes the at-risk ranking of the seventeen ecosystem components and if (ii risk scores correlate with trophic prey and habitat linkages in the food web. Even with conservative assumptions about the transfer of impacts or risks from prey species and habitats, the addition of indirect risks in the cumulative risk score changes the ranking of priorities for management. In particular, resident orca, Steller sea lion, and Pacific herring all increase in relative risk, more closely aligning these species with their "at-risk status" designations. Risk assessments are not a replacement for impact assessments, but-by considering the potential for indirect risks as we demonstrate here-they offer a crucial complementary perspective for the management of ecosystems and the organisms within.

  3. Contamination of the Aquatic Environment with Neonicotinoids and its Implication for Ecosystems

    Directory of Open Access Journals (Sweden)

    Francisco Sánchez-Bayo

    2016-11-01

    Full Text Available The widespread use of systemic neonicotinoid insecticides in agriculture results first in contamination of the soil of the treated crops, and secondly in the transfer of residues to the aquatic environment. The high toxicity of these insecticides to aquatic insects and other arthropods has been recognized, but there is little awareness of the impacts these chemicals have on aquatic environments and the ecosystem at large. Recent monitoring studies in several countries, however, have revealed a world-wide contamination of creeks, rivers and lakes with these insecticides, with residue levels in the low μg/L (ppb range. The current extent of aquatic contamination by neonicotinoids is reviewed first, and the findings contrasted with the known acute and chronic toxicity of neonicotinoids to various aquatic organisms. Impacts on populations and aquatic communities, mostly using mesocosms, are reviewed next to identify the communities most at risk from those that undergo little or no impact. Finally, the ecological links between aquatic and terrestrial organisms are considered. The consequences for terrestrial vertebrate species that depend mainly on this food source are discussed together with impacts on ecosystem function. Gaps in knowledge stem from difficulties in obtaining long-term experimental data that relates the effects on individual organisms to impacts on populations and ecosystems. The paper concludes with a summary of findings and the implications they have for the larger ecosystem.

  4. 24 CFR 35.315 - Risk assessment.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 1 2010-04-01 2010-04-01 false Risk assessment. 35.315 Section 35... Provided by a Federal Agency Other Than HUD § 35.315 Risk assessment. Each owner shall complete a risk assessment in accordance with 40 CFR 745.227(d). Each risk assessment shall be completed in accordance with...

  5. Aquatic and Terrestrial Environment 2004

    DEFF Research Database (Denmark)

    Andersen, J. M.; Boutrup, S.; Bijl, L. van der

    This report presents the 2004 results of the Danish National Monitoring and Assess-ment Programme for the Aquatic and Terrestrial Environments (NOVANA). 2004 was the first year in which terrestrial nature was included in the monitoring pro-gramme. The report reviews the state of the groundwater......, watercourses, lakes and marine waters and the pressures upon them and reviews the monitoring of terrestrial natural habitats and selected plants and animals. The report is based on the annual reports prepared for each subprogramme by the Topic Centres. The latter reports are mainly based on data collected...

  6. Prioritising chemicals used in personal care products in China for environmental risk assessment: Application of the RAIDAR model

    International Nuclear Information System (INIS)

    Gouin, Todd; Egmond, Roger van; Price, Oliver R.; Hodges, Juliet E.N.

    2012-01-01

    China represents a significant market for the sale of personal care products (PCPs). Given the continuous emission of hundreds of chemicals used in PCPs to waste water and the aquatic environment after regular use, methods for prioritising the environmental risk assessment for China are needed. In an effort to assess the prioritisation of chemicals used in PCPs in China, we have identified the chemical ingredients used in 2500 PCPs released to the Chinese market in 2009, and estimated the annual emission of these chemicals. The physical-chemical property data for these substances have been estimated and used as model inputs in the RAIDAR model. In general, the RAIDAR model provides an overall assessment of the multimedia fate of chemicals, and provides a holistic approach for prioritising chemical ingredients. The prioritisation exercise conducted in this study is shown to be strongly influenced by loss processes, such as the removal efficiencies of WWT plants and biotransformation. - Highlights: ► Chemicals used in PCPs in China are prioritised using the RAIDAR model. ► Chemicals used in PCPs are estimated to have Risk assessment factors <<1. ► Loss processes strongly influence how chemicals are prioritised. - The application of the Risk IDentification And Ranking (RAIDAR) model is shown to be a potentially effective tool for prioritising chemicals used in personal care products in China.

  7. Oil Sands Regional Aquatics Monitoring Program (RAMP) 5 year report

    International Nuclear Information System (INIS)

    Fawcett, K.

    2003-05-01

    This 5 year report outlined and examined the activities of the Regional Aquatics Monitoring Program (RAMP) from its introduction in 1997 up to 2001. The RAMP is a multi-stakeholder program comprised of industry and government representatives as well as members of aboriginal groups and environmental organizations. The objectives of RAMP are to monitor aquatic environments in the oil sands region in order to allow for assessment of regional trends and cumulative effects, as well as to provide baseline data against which impact predictions of recent environmental impact assessments can be verified. Scientific programs conducted as part of RAMP during the 5-year period included water quality and sediment quality analyses; fish monitoring; benthic communities monitoring; water quality and aquatic vegetation analyses of wetlands; and hydrology and climate monitoring. RAMP's programs have expanded annually in scope as a result of increased oil sands development in the region. This report provided outlines of RAMP's individual program objectives and organizational structures, as well as details of all studies conducted for each year. Data were collected for all major study areas were presented, and program methodologies for assessing and identifying trends were outlined. refs., tabs., figs

  8. Exploring the uncertainties in cancer risk assessment using the integrated probabilistic risk assessment (IPRA) approach.

    Science.gov (United States)

    Slob, Wout; Bakker, Martine I; Biesebeek, Jan Dirk Te; Bokkers, Bas G H

    2014-08-01

    Current methods for cancer risk assessment result in single values, without any quantitative information on the uncertainties in these values. Therefore, single risk values could easily be overinterpreted. In this study, we discuss a full probabilistic cancer risk assessment approach in which all the generally recognized uncertainties in both exposure and hazard assessment are quantitatively characterized and probabilistically evaluated, resulting in a confidence interval for the final risk estimate. The methodology is applied to three example chemicals (aflatoxin, N-nitrosodimethylamine, and methyleugenol). These examples illustrate that the uncertainty in a cancer risk estimate may be huge, making single value estimates of cancer risk meaningless. Further, a risk based on linear extrapolation tends to be lower than the upper 95% confidence limit of a probabilistic risk estimate, and in that sense it is not conservative. Our conceptual analysis showed that there are two possible basic approaches for cancer risk assessment, depending on the interpretation of the dose-incidence data measured in animals. However, it remains unclear which of the two interpretations is the more adequate one, adding an additional uncertainty to the already huge confidence intervals for cancer risk estimates. © 2014 Society for Risk Analysis.

  9. Supporting Risk Assessment: Accounting for Indirect Risk to Ecosystem Components

    Science.gov (United States)

    Mach, Megan E.; Martone, Rebecca G.; Singh, Gerald G.; O, Miriam; Chan, Kai M. A.

    2016-01-01

    The multi-scalar complexity of social-ecological systems makes it challenging to quantify impacts from human activities on ecosystems, inspiring risk-based approaches to assessments of potential effects of human activities on valued ecosystem components. Risk assessments do not commonly include the risk from indirect effects as mediated via habitat and prey. In this case study from British Columbia, Canada, we illustrate how such “indirect risks” can be incorporated into risk assessments for seventeen ecosystem components. We ask whether (i) the addition of indirect risk changes the at-risk ranking of the seventeen ecosystem components and if (ii) risk scores correlate with trophic prey and habitat linkages in the food web. Even with conservative assumptions about the transfer of impacts or risks from prey species and habitats, the addition of indirect risks in the cumulative risk score changes the ranking of priorities for management. In particular, resident orca, Steller sea lion, and Pacific herring all increase in relative risk, more closely aligning these species with their “at-risk status” designations. Risk assessments are not a replacement for impact assessments, but—by considering the potential for indirect risks as we demonstrate here—they offer a crucial complementary perspective for the management of ecosystems and the organisms within. PMID:27632287

  10. Avalanche risk assessment in Russia

    Science.gov (United States)

    Komarov, Anton; Seliverstov, Yury; Sokratov, Sergey; Glazovskaya, Tatiana; Turchaniniva, Alla

    2017-04-01

    The avalanche prone area covers about 3 million square kilometers or 18% of total area of Russia and pose a significant problem in most mountain regions of the country. The constant growth of economic activity, especially in the North Caucasus region and therefore the increased avalanche hazard lead to the demand of the large-scale avalanche risk assessment methods development. Such methods are needed for the determination of appropriate avalanche protection measures as well as for economic assessments during all stages of spatial planning of the territory. The requirement of natural hazard risk assessments is determined by the Federal Law of Russian Federation. However, Russian Guidelines (SP 11-103-97; SP 47.13330.2012) are not clearly presented concerning avalanche risk assessment calculations. A great size of Russia territory, vast diversity of natural conditions and large variations in type and level of economic development of different regions cause significant variations in avalanche risk values. At the first stage of research the small scale avalanche risk assessment was performed in order to identify the most common patterns of risk situations and to calculate full social risk and individual risk. The full social avalanche risk for the territory of country was estimated at 91 victims. The area of territory with individual risk values lesser then 1×10(-6) covers more than 92 % of mountain areas of the country. Within these territories the safety of population can be achieved mainly by organizational activities. Approximately 7% of mountain areas have 1×10(-6) - 1×10(-4) individual risk values and require specific mitigation measures to protect people and infrastructure. Territories with individual risk values 1×10(-4) and above covers about 0,1 % of the territory and include the most severe and hazardous mountain areas. The whole specter of mitigation measures is required in order to minimize risk. The future development of such areas is not recommended

  11. Risk assessment in international operations

    International Nuclear Information System (INIS)

    Stricklin, Daniela L.

    2008-01-01

    During international peace-keeping missions, a diverse number of non-battle hazards may be encountered, which range from heavily polluted areas, endemic disease, toxic industrial materials, local violence, traffic, and even psychological factors. Hence, elevated risk levels from a variety of sources are encountered during deployments. With the emphasis within the Swedish military moving from national defense towards prioritization of international missions in atypical environments, the risk of health consequences, including long term health effects, has received greater consideration. The Swedish military is interested in designing an optimal approach for assessment of health threats during deployments. The Medical Intelligence group at FOI CBRN Security and Defence in Umea has, on request from and in collaboration with the Swedish Armed Forces, reviewed a variety of international health threat and risk assessment models for military operations. Application of risk assessment methods used in different phases of military operations will be reviewed. An overview of different international approaches used in operational risk management (ORM) will be presented as well as a discussion of the specific needs and constraints for health risk assessment in military operations. This work highlights the specific challenges of risk assessment that are unique to the deployment setting such as the assessment of exposures to a variety of diverse hazards concurrently

  12. Implications of probabilistic risk assessment

    International Nuclear Information System (INIS)

    Cullingford, M.C.; Shah, S.M.; Gittus, J.H.

    1987-01-01

    Probabilistic risk assessment (PRA) is an analytical process that quantifies the likelihoods, consequences and associated uncertainties of the potential outcomes of postulated events. Starting with planned or normal operation, probabilistic risk assessment covers a wide range of potential accidents and considers the whole plant and the interactions of systems and human actions. Probabilistic risk assessment can be applied in safety decisions in design, licensing and operation of industrial facilities, particularly nuclear power plants. The proceedings include a review of PRA procedures, methods and technical issues in treating uncertainties, operating and licensing issues and future trends. Risk assessment for specific reactor types or components and specific risks (eg aircraft crashing onto a reactor) are used to illustrate the points raised. All 52 articles are indexed separately. (U.K.)

  13. Use of micronucleus test in the assessment of radiation effects in aquatic environments

    International Nuclear Information System (INIS)

    Araujo, Edvaldo F. de; Silva, Luanna R.S.; Lima, Pedro A. de S.; Amancio, Francisco F.; Melo, Ana Maria M. de A.; Silva, Edvane B. da; Silva, Ronaldo C. da

    2011-01-01

    The study of the effects of radioactive substances on the environment is accomplished by radioecology. This science has played an important role in combating all forms of pollution. The uncontrolled use of physical and chemical agents has been a concern for environmental regulatory agencies, due to the serious damage to ecosystems. Aquatic organisms are exposed to a variety of pollutants harmful to aquatic systems. The mollusks Biomphalaria glabrata has been featured as a bioindicator to possess characteristics such as short reproductive cycle ease of maintenance in the laboratory and low maintenance cost. The micronucleus assay has been shown to be a great test to identify mutagenic effects caused by physical and chemical agents. In this study the frequency of micronuclei in haemocytes of Biomphalaria glabrata exposed to high doses of 60 Co gamma radiation contributing to a further standardization of this test as an indicator of the presence of radioactive contamination in aquatic environments. The young adult snails of Biomphalaria glabrata were divided into groups and subjected to a dose of 0 (control), 40 and 60 Gy of gamma radiation. The results showed that snails irradiated with 40 Gy showed a smaller number of haemocytes, whereas those exposed to 60 Gy had a greater quantity of these cells compared to control group. It can be concluded that the morphological analysis and the frequency of micronuclei in haemocytes of Biomphalaria glabrata exposed to 60 Co gamma radiation may be used in studies of the action of high doses of radiation in aquatic environments (author)

  14. Uncertainties in risk assessment at USDOE facilities

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, L.D.; Holtzman, S.; Meinhold, A.F.; Morris, S.C.; Rowe, M.D.

    1994-01-01

    The United States Department of Energy (USDOE) has embarked on an ambitious program to remediate environmental contamination at its facilities. Decisions concerning cleanup goals, choices among cleanup technologies, and funding prioritization should be largely risk-based. Risk assessments will be used more extensively by the USDOE in the future. USDOE needs to develop and refine risk assessment methods and fund research to reduce major sources of uncertainty in risk assessments at USDOE facilities. The terms{open_quote} risk assessment{close_quote} and{open_quote} risk management{close_quote} are frequently confused. The National Research Council (1983) and the United States Environmental Protection Agency (USEPA, 1991a) described risk assessment as a scientific process that contributes to risk management. Risk assessment is the process of collecting, analyzing and integrating data and information to identify hazards, assess exposures and dose responses, and characterize risks. Risk characterization must include a clear presentation of {open_quotes}... the most significant data and uncertainties...{close_quotes} in an assessment. Significant data and uncertainties are {open_quotes}...those that define and explain the main risk conclusions{close_quotes}. Risk management integrates risk assessment information with other considerations, such as risk perceptions, socioeconomic and political factors, and statutes, to make and justify decisions. Risk assessments, as scientific processes, should be made independently of the other aspects of risk management (USEPA, 1991a), but current methods for assessing health risks are based on conservative regulatory principles, causing unnecessary public concern and misallocation of funds for remediation.

  15. Uncertainties in risk assessment at USDOE facilities

    International Nuclear Information System (INIS)

    Hamilton, L.D.; Holtzman, S.; Meinhold, A.F.; Morris, S.C.; Rowe, M.D.

    1994-01-01

    The United States Department of Energy (USDOE) has embarked on an ambitious program to remediate environmental contamination at its facilities. Decisions concerning cleanup goals, choices among cleanup technologies, and funding prioritization should be largely risk-based. Risk assessments will be used more extensively by the USDOE in the future. USDOE needs to develop and refine risk assessment methods and fund research to reduce major sources of uncertainty in risk assessments at USDOE facilities. The terms open-quote risk assessment close-quote and open-quote risk management close-quote are frequently confused. The National Research Council (1983) and the United States Environmental Protection Agency (USEPA, 1991a) described risk assessment as a scientific process that contributes to risk management. Risk assessment is the process of collecting, analyzing and integrating data and information to identify hazards, assess exposures and dose responses, and characterize risks. Risk characterization must include a clear presentation of open-quotes... the most significant data and uncertainties...close quotes in an assessment. Significant data and uncertainties are open-quotes...those that define and explain the main risk conclusionsclose quotes. Risk management integrates risk assessment information with other considerations, such as risk perceptions, socioeconomic and political factors, and statutes, to make and justify decisions. Risk assessments, as scientific processes, should be made independently of the other aspects of risk management (USEPA, 1991a), but current methods for assessing health risks are based on conservative regulatory principles, causing unnecessary public concern and misallocation of funds for remediation

  16. Advanced Test Reactor outage risk assessment

    International Nuclear Information System (INIS)

    Thatcher, T.A.; Atkinson, S.A.

    1997-01-01

    Beginning in 1997, risk assessment was performed for each Advanced Test Reactor (ATR) outage aiding the coordination of plant configuration and work activities (maintenance, construction projects, etc.) to minimize the risk of reactor fuel damage and to improve defense-in-depth. The risk assessment activities move beyond simply meeting Technical Safety Requirements to increase the awareness of risk sensitive configurations, to focus increased attention on the higher risk activities, and to seek cost-effective design or operational changes that reduce risk. A detailed probabilistic risk assessment (PRA) had been performed to assess the risk of fuel damage during shutdown operations including heavy load handling. This resulted in several design changes to improve safety; however, evaluation of individual outages had not been performed previously and many risk insights were not being utilized in outage planning. The shutdown PRA provided the necessary framework for assessing relative and absolute risk levels and assessing defense-in-depth. Guidelines were written identifying combinations of equipment outages to avoid. Screening criteria were developed for the selection of work activities to receive review. Tabulation of inherent and work-related initiating events and their relative risk level versus plant mode has aided identification of the risk level the scheduled work involves. Preoutage reviews are conducted and post-outage risk assessment is documented to summarize the positive and negative aspects of the outage with regard to risk. The risk for the outage is compared to the risk level that would result from optimal scheduling of the work to be performed and to baseline or average past performance

  17. Design standards for experimental and field studies to evaluate diagnostic accuracy of tests for infectious diseases in aquatic animals.

    Science.gov (United States)

    Laurin, E; Thakur, K K; Gardner, I A; Hick, P; Moody, N J G; Crane, M S J; Ernst, I

    2018-05-01

    Design and reporting quality of diagnostic accuracy studies (DAS) are important metrics for assessing utility of tests used in animal and human health. Following standards for designing DAS will assist in appropriate test selection for specific testing purposes and minimize the risk of reporting biased sensitivity and specificity estimates. To examine the benefits of recommending standards, design information from published DAS literature was assessed for 10 finfish, seven mollusc, nine crustacean and two amphibian diseases listed in the 2017 OIE Manual of Diagnostic Tests for Aquatic Animals. Of the 56 DAS identified, 41 were based on field testing, eight on experimental challenge studies and seven on both. Also, we adapted human and terrestrial-animal standards and guidelines for DAS structure for use in aquatic animal diagnostic research. Through this process, we identified and addressed important metrics for consideration at the design phase: study purpose, targeted disease state, selection of appropriate samples and specimens, laboratory analytical methods, statistical methods and data interpretation. These recommended design standards for DAS are presented as a checklist including risk-of-failure points and actions to mitigate bias at each critical step. Adherence to standards when designing DAS will also facilitate future systematic review and meta-analyses of DAS research literature. © 2018 John Wiley & Sons Ltd.

  18. Aquatic macrophytes in the large, sub-tropical Itaipu Reservoir, Brazil

    OpenAIRE

    Roger Paulo Mormul; Fernando Alves Ferreira; Thaisa Sala Michelan; Priscilla Carvalho; Marcio José Silveira; Sidinei Magela Thomaz

    2010-01-01

    In the last three decades, rapid assessment surveys have become an important approach for measuring aquatic ecosystem biodiversity. These methods can be used to detect anthropogenic impacts and recognize local or global species extinctions. We present a floristic survey of the aquatic macrophytes along the Brazilian margin of the Itaipu Reservoir conducted in 2008 and compare this with a floristic survey conducted ten years earlier. We used ordination analysis to determine whether assemblage ...

  19. GAR Global Risk Assessment

    Science.gov (United States)

    Maskrey, Andrew; Safaie, Sahar

    2015-04-01

    Disaster risk management strategies, policies and actions need to be based on evidence of current disaster loss and risk patterns, past trends and future projections, and underlying risk factors. Faced with competing demands for resources, at any level it is only possible to priorities a range of disaster risk management strategies and investments with adequate understanding of realised losses, current and future risk levels and impacts on economic growth and social wellbeing as well as cost and impact of the strategy. The mapping and understanding of the global risk landscape has been greatly enhanced by the latest iteration of the GAR Global Risk Assessment and the objective of this submission is to present the GAR global risk assessment which contributed to Global Assessment Report (GAR) 2015. This initiative which has been led by UNISDR, was conducted by a consortium of technical institutions from around the world and has covered earthquake, cyclone, riverine flood, and tsunami probabilistic risk for all countries of the world. In addition, the risks associated with volcanic ash in the Asia-Pacific region, drought in various countries in sub-Saharan Africa and climate change in a number of countries have been calculated. The presentation will share thee results as well as the experience including the challenges faced in technical elements as well as the process and recommendations for the future of such endeavour.

  20. Deterministic quantitative risk assessment development

    Energy Technology Data Exchange (ETDEWEB)

    Dawson, Jane; Colquhoun, Iain [PII Pipeline Solutions Business of GE Oil and Gas, Cramlington Northumberland (United Kingdom)

    2009-07-01

    Current risk assessment practice in pipeline integrity management is to use a semi-quantitative index-based or model based methodology. This approach has been found to be very flexible and provide useful results for identifying high risk areas and for prioritizing physical integrity assessments. However, as pipeline operators progressively adopt an operating strategy of continual risk reduction with a view to minimizing total expenditures within safety, environmental, and reliability constraints, the need for quantitative assessments of risk levels is becoming evident. Whereas reliability based quantitative risk assessments can be and are routinely carried out on a site-specific basis, they require significant amounts of quantitative data for the results to be meaningful. This need for detailed and reliable data tends to make these methods unwieldy for system-wide risk k assessment applications. This paper describes methods for estimating risk quantitatively through the calibration of semi-quantitative estimates to failure rates for peer pipeline systems. The methods involve the analysis of the failure rate distribution, and techniques for mapping the rate to the distribution of likelihoods available from currently available semi-quantitative programs. By applying point value probabilities to the failure rates, deterministic quantitative risk assessment (QRA) provides greater rigor and objectivity than can usually be achieved through the implementation of semi-quantitative risk assessment results. The method permits a fully quantitative approach or a mixture of QRA and semi-QRA to suit the operator's data availability and quality, and analysis needs. For example, consequence analysis can be quantitative or can address qualitative ranges for consequence categories. Likewise, failure likelihoods can be output as classical probabilities or as expected failure frequencies as required. (author)

  1. Inter-compartmental transport of organophosphate and pyrethroid pesticides in South China: Implications for a regional risk assessment

    International Nuclear Information System (INIS)

    Li, Huizhen; Wei, Yanli; Lydy, Michael J.; You, Jing

    2014-01-01

    The dynamic flux of an organophosphate and four pyrethroid pesticides was determined in an air-(soil)-water-sediment system based on monitoring data from Guangzhou, China. The total air–water flux, including air–water gaseous exchange and atmospheric deposition, showed deposition from air to water for chlorpyrifos, bifenthrin and cypermethrin, but volatilization for lambda-cyhalothrin and permethrin. The transport of the pesticides from overlying water to sediment suggested that sediment acted as a sink for the pesticides. Additionally, distinct annual atmospheric depositional fluxes between legacy and current-use pesticides suggested the role of consumer usage in their transport throughout the system. Finally, pesticide toxicity was estimated from annual air–water-sediment flux within an urban stream in Guangzhou. A dynamic flux-based risk assessment indicated that inter-compartmental transport of chlorpyrifos decreased its atmospheric exposure, but had little influence on its aquatic toxicity. Instead, water-to-sediment transport of pyrethroids increased their sediment toxicity, which was supported by previously reported toxicity data. - Highlights: • Transport fluxes of chlorpyrifos and pyrethroids were assessed in Guangzhou, China. • Sediment acted as a sink for chlorpyrifos and pyrethroids. • Air-to-water transport decreased the exposure risk of atmospheric chlorpyrifos. • Dynamic transport might increase the risk of pyrethroids in air and sediment. • Flux-based pesticide concentrations provide a way to estimate sediment toxicity. - Regional risk assessment could be improved by integrating dynamic flux information derived from inter-compartmental models

  2. Evaluation of thermal risk assessment

    International Nuclear Information System (INIS)

    Loos, J.J.; Perry, E.S.

    1993-01-01

    Risk assessment was done in 1983 to estimate the ecological hazard of increasing the generating load and thermal output of an electric generating station. Subsequently, long-term monitoring in the vicinity of the station allowed verification of the predictions made in the risk assessment. This presentation will review the efficacy of early risk assessment methods in producing useful predictions from a resource management point of view. In 1984, the Chalk Point Generating facility of the Potomac Electric Power Company increased it's median generating load by 100%. Prior to this operational change, the Academy of Natural Sciences of Philadelphia synthesized site specific data, model predictions, and results from literature to assess the risk of additional waste heat to the Patuxent River subestuary of Chesapeake Bay. Risk was expressed as the number of days per year that various species of fish and the blue crab would be expected to avoid the discharge vicinity. Accuracy of these predictions is assessed by comparing observed fish and crab distributions and their observed frequencies of avoidance to those predicted. It is concluded that the predictions of this early risk assessment were sufficiently accurate to produce a reliable resource management decision

  3. A combined QSAR and partial order ranking approach to risk assessment.

    Science.gov (United States)

    Carlsen, L

    2006-04-01

    QSAR generated data appear as an attractive alternative to experimental data as foreseen in the proposed new chemicals legislation REACH. A preliminary risk assessment for the aquatic environment can be based on few factors, i.e. the octanol-water partition coefficient (Kow), the vapour pressure (VP) and the potential biodegradability of the compound in combination with the predicted no-effect concentration (PNEC) and the actual tonnage in which the substance is produced. Application of partial order ranking, allowing simultaneous inclusion of several parameters leads to a mutual prioritisation of the investigated substances, the prioritisation possibly being further analysed through the concept of linear extensions and average ranks. The ranking uses endpoint values (log Kow and log VP) derived from strictly linear 'noise-deficient' QSAR models as input parameters. Biodegradation estimates were adopted from the BioWin module of the EPI Suite. The population growth impairment of Tetrahymena pyriformis was used as a surrogate for fish lethality.

  4. On risk assessment of energy production

    International Nuclear Information System (INIS)

    Kunii, Katsuhiko

    2005-07-01

    Today we cannot ignore the risk of health and/or environment by energy production such as power generation since the risk has been made large enough. In this report an information survey has been done in order to know the outline and points of risk assessment. Based on the information of reports and literature about risk assessment, have been surveyed mainly the external cost assessment of power generation (in which quantification of health and/or environment risk has been done), in addition, risks of disasters, accidents, investments, finance etc. and impacts of those risks on social activities. The remarks obtained by the survey are as follows: 1) Some of external cost assessment of power generation show different results even if the assessment conditions of technology, site, etc. are mostly the same. It is necessary to remark on the information such as basic data, model, background, application limit of assessment considering the reliability. 2) Especially it is considered that the reliability of risk assessment is not enough at present because of the lack of basic data. (author)

  5. Pollution characteristics and environmental risk assessment of typical veterinary antibiotics in livestock farms in Southeastern China.

    Science.gov (United States)

    Wang, Na; Guo, Xinyan; Xu, Jing; Kong, Xiangji; Gao, Shixiang; Shan, Zhengjun

    2014-01-01

    Scientific interest in pollution from antibiotics in animal husbandry has increased during recent years. However, there have been few studies on the vertical exposure characteristics of typical veterinary antibiotics in different exposure matrices from different livestock farms. This study explores the distribution and migration of antibiotics from feed to manure, from manure to soil, and from soil to vegetables, by investigating the exposure level of typical antibiotics in feed, manure, soil, vegetables, water, fish, and pork in livestock farms. A screening environmental risk assessment was conducted to identify the hazardous potential of veterinary antibiotics from livestock farms in southeast China. The results show that adding antibiotics to drinking water as well as the excessive use of antibiotic feed additives may become the major source of antibiotics pollution in livestock farms. Physical and chemical properties significantly affect the distribution and migration of various antibiotics from manure to soil and from soil to plant. Simple migration models can predict the accumulation of antibiotics in soil and plants. The environmental risk assessment results show that more attention should be paid to the terrestrial eco-risk of sulfadiazine, sulfamethazine, sulfamethoxazole, tetracycline, oxytetracycline, chlorotetracycline, ciprofloxacin, and enrofloxacin, and to the aquatic eco-risk of chlorotetracycline, ciprofloxacin, and enrofloxacin. This is the first systematic analysis of the vertical pollution characteristics of typical veterinary antibiotics in livestock farms in southeast China. It also identifies the ecological and human health risk of veterinary antibiotics.

  6. Pharmaceuticals and personal care products in the aquatic environment in China: a review.

    Science.gov (United States)

    Bu, Qingwei; Wang, Bin; Huang, Jun; Deng, Shubo; Yu, Gang

    2013-11-15

    Pharmaceuticals and personal care products (PPCPs) have been detected as contaminants of emerging concern ubiquitously in the aquatic environment in China and worldwide. A clear picture of PPCP contamination in the Chinese aquatic environment is needed to gain insight for both research and regulatory needs (e.g. monitoring, control and management). The occurrence data of 112 PPCPs in waters and sediments in China has been reviewed. In most cases, the detected concentration of these PPCPs in waters and sediments were at ng/L and ng/g levels, which were lower than or comparable to those reported worldwide. A screening level risk assessment (SLERA) identified six priority PPCPs in surface waters, namely erythromycin, roxithromycin, diclofenac, ibuprofen, salicylic acid and sulfamethoxazole. The results of SLERA also revealed that the hot spots for PPCP pollution were those river waters affected by the megacities with high density of population, such as Beijing, Tianjin, Guangzhou and Shanghai. Limitations of current researches and implications for future research in China were discussed. Some regulatory issues were also addressed. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Defense Programs Transportation Risk Assessment

    International Nuclear Information System (INIS)

    Clauss, D.B.

    1994-01-01

    This paper provides an overview of the methodology used in a probabilistic transportation risk assessment conducted to assess the probabilities and consequences of inadvertent dispersal of radioactive materials arising from severe transportation accidents. The model was developed for the Defense Program Transportation Risk Assessment (DPTRA) study. The analysis incorporates several enhancements relative to previous risk assessments of hazardous materials transportation including newly-developed statistics on the frequencies and severities of tractor semitrailer accidents and detailed route characterization using the 1990 Census data

  8. Risk Factor Assessment Branch (RFAB)

    Science.gov (United States)

    The Risk Factor Assessment Branch (RFAB) focuses on the development, evaluation, and dissemination of high-quality risk factor metrics, methods, tools, technologies, and resources for use across the cancer research continuum, and the assessment of cancer-related risk factors in the population.

  9. Risk assessments ensure safer power

    Energy Technology Data Exchange (ETDEWEB)

    1982-02-19

    A growth industry is emerging devoted to the study and comparison of the economic, social and health risks posed by large industrial installations. Electricity generation is one area coming under particularly close scrutiny. Types of risk, ways of assessing risk and the difference between experts' analyses and the public perception of risk are given. An example of improved risk assessment helping to reduce deaths and injuries in coal mining is included.

  10. Temporal constraints on predation risk assessment in a changing world

    Energy Technology Data Exchange (ETDEWEB)

    Chivers, Douglas P., E-mail: doug.chivers@usask.ca [Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2 (Canada); Ramasamy, Ryan A.; McCormick, Mark I.; Watson, Sue-Ann [ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville Qld4811 (Australia); School of Marine and Tropical Biology, James Cook University, Townsville Qld4811 (Australia); Siebeck, Ulrike E. [School of Biomedical Sciences, University of Queensland, Brisbane Qld4072 (Australia); Ferrari, Maud C.O. [Department of Biomedical Sciences, WCVM, University of Saskatchewan, Saskatoon, SK S7W 5B4 (Canada)

    2014-12-01

    Habitat degradation takes various forms and likely represents the most significant threat to our global biodiversity. Recently, we have seen considerable attention paid to increasing global CO{sub 2} emissions which lead to ocean acidification (OA). Other stressors, such as changing levels of ultraviolet radiation (UVR), also impact biodiversity but have received much less attention in the recent past. Here we examine fundamental questions about temporal aspects of risk assessment by coral reef damselfish and provide critical insights into how OA and UVR influence this assessment. Chemical cues released during a predator attack provide a rich source of information that other prey animals use to mediate their risk of predation and are the basis of the majority of trait-mediated indirect interactions in aquatic communities. However, we have surprisingly limited information about temporal aspects of risk assessment because we lack knowledge about how long chemical cues persist after they are released into the environment. Here, we showed that under ambient CO{sub 2} conditions (∼ 385 μatm), alarm cues of ambon damselfish (Pomacentrus amboinensis) did not degrade within 30 min in the absence of ultraviolet radiation (UVR), but were degraded within 15 min when the CO{sub 2} was increased to ∼ 905 μatm. In experiments that used filters to eliminate UVR, we found minimal degradation of alarm cues within 30 min, whereas under ambient UVR conditions, alarm cues were completely degraded within 15 min. Moreover, in the presence of both UVR and elevated CO{sub 2}, alarm cues were broken down within 5 min. Our results highlight that alarm cues degrade surprisingly quickly under natural conditions and that anthropogenic changes have the potential to dramatically change rates of cue degradation in the wild. This has considerable implications for risk assessment and consequently the importance of trait-mediated indirect interactions in coral-reef communities. - Highlights:

  11. Ecological risk assessment of cheese whey effluents along a medium-sized river in southwest Greece.

    Science.gov (United States)

    Karadima, Constantina; Theodoropoulos, Chris; Rouvalis, Angela; Iliopoulou-Georgudaki, Joan

    2010-01-01

    An ecological risk assessment of cheese whey effluents was applied in three critical sampling sites located in Vouraikos river (southwest Greece), while ecological classification using Water Framework Directive 2000/60/EU criteria allowed a direct comparison of toxicological and ecological data. Two invertebrates (Daphnia magna and Thamnocephalus platyurus) and the zebra fish Danio rerio were used for toxicological analyses, while the aquatic risk was calculated on the basis of the risk quotient (RQ = PEC/PNEC). Chemical classification of sites was carried out using the Nutrient Classification System, while benthic invertebrates were collected and analyzed for biological classification. Toxicological results revealed the heavy pollution load of the two sites, nearest to the point pollution source, as the PEC/PNEC ratio exceeded 1.0, while unexpectedly, no risk was detected for the most downstream site, due to the consequent interference of the riparian flora. These toxicological results were in agreement with the ecological analysis: the ecological quality of the two heavily impacted sites ranged from moderate to bad, whereas it was found good for the most downstream site. The results of the study indicate major ecological risk for almost 15 km downstream of the point pollution source and the potentiality of the water quality remediation by the riparian vegetation, proving the significance of its maintenance.

  12. Fish and other aquatic resource trends in the United States: a technical document supporting the Forest Service 2010 RPA Assessment

    Science.gov (United States)

    Andrew J. Loftus; Curtis H. Flather

    2012-01-01

    The Forest and Rangeland Renewable Resources Planning Act (RPA) of 1974 requires periodic assessments of the status and trends in the Nation's renewable natural resources including fish and other aquatic species and their habitats. Data from a number of sources are used to document trends in habitat quality, populations, resource use, and patterns of imperilment...

  13. Risk assessment

    DEFF Research Database (Denmark)

    Pedersen, Liselotte; Rasmussen, Kirsten; Elsass, Peter

    2010-01-01

    International research suggests that using formalized risk assessment methods may improve the predictive validity of professionals' predictions of risk of future violence. This study presents data on forensic psychiatric patients discharged from a forensic unit in Denmark in year 2001-2002 (n=107...... and the individual dynamic items strengthen the use of this scheme in clinical practice. (PsycINFO Database Record (c) 2010 APA, all rights reserved) (journal abstract)...

  14. Use, fate and ecological risks of antibiotics applied in tilapia cage farming in Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Rico, Andreu [Department of Aquatic Ecology and Water Quality Management, Wageningen University, Wageningen University and Research Centre, P.O. Box 47, 6700 AA Wageningen (Netherlands); Oliveira, Rhaul [Department of Biology and CESAM, University of Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro (Portugal); McDonough, Sakchai [Aquaculture and Aquatic Resources Management, Asian Institute of Technology, P.O. Box 4, Klong Luang, Pathumthani 12120 (Thailand); Matser, Arrienne [Alterra, Wageningen University and Research Centre, P.O. Box 47, 6700 AA Wageningen (Netherlands); Khatikarn, Jidapa [Department of Aquatic Ecology and Water Quality Management, Wageningen University, Wageningen University and Research Centre, P.O. Box 47, 6700 AA Wageningen (Netherlands); Department of Fishery Biology, Faculty of Fisheries, Kasetsart University, Chatuchak 10900, Bangkok (Thailand); Satapornvanit, Kriengkrai [Department of Fishery Biology, Faculty of Fisheries, Kasetsart University, Chatuchak 10900, Bangkok (Thailand); Nogueira, António J.A.; Soares, Amadeu M.V.M.; Domingues, Inês [Department of Biology and CESAM, University of Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro (Portugal); Van den Brink, Paul J. [Department of Aquatic Ecology and Water Quality Management, Wageningen University, Wageningen University and Research Centre, P.O. Box 47, 6700 AA Wageningen (Netherlands); Alterra, Wageningen University and Research Centre, P.O. Box 47, 6700 AA Wageningen (Netherlands)

    2014-08-01

    The use, environmental fate and ecological risks of antibiotics applied in tilapia cage farming were investigated in the Tha Chin and Mun rivers in Thailand. Information on antibiotic use was collected through interviewing 29 farmers, and the concentrations of the most commonly used antibiotics, oxytetracycline (OTC) and enrofloxacin (ENR), were monitored in river water and sediment samples. Moreover, we assessed the toxicity of OTC and ENR on tropical freshwater invertebrates and performed a risk assessment for aquatic ecosystems. All interviewed tilapia farmers reported to routinely use antibiotics. Peak water concentrations for OTC and ENR were 49 and 1.6 μg/L, respectively. Antibiotics were most frequently detected in sediments with concentrations up to 6908 μg/kg d.w. for OTC, and 2339 μg/kg d.w. for ENR. The results of this study indicate insignificant short-term risks for primary producers and invertebrates, but suggest that the studied aquaculture farms constitute an important source of antibiotic pollution. - Highlights: • First study assessing the risks of antibiotics applied in freshwater tilapia cages. • Ten antibiotics were reported to be used by tilapia cage farmers in two Thai rivers. • Peak oxytetracycline and enrofloxacin concentrations were in the order of μg/L. • Antibiotic concentrations in river sediments next to cages were up to several mg/kg. • Antibiotics are not posing a short-term risk for pelagic aquatic organisms. - Antibiotics applied in tilapia cage farming in Thailand are released into surrounding aquatic ecosystems and constitute an important source of environmental pollution.

  15. Use, fate and ecological risks of antibiotics applied in tilapia cage farming in Thailand

    International Nuclear Information System (INIS)

    Rico, Andreu; Oliveira, Rhaul; McDonough, Sakchai; Matser, Arrienne; Khatikarn, Jidapa; Satapornvanit, Kriengkrai; Nogueira, António J.A.; Soares, Amadeu M.V.M.; Domingues, Inês; Van den Brink, Paul J.

    2014-01-01

    The use, environmental fate and ecological risks of antibiotics applied in tilapia cage farming were investigated in the Tha Chin and Mun rivers in Thailand. Information on antibiotic use was collected through interviewing 29 farmers, and the concentrations of the most commonly used antibiotics, oxytetracycline (OTC) and enrofloxacin (ENR), were monitored in river water and sediment samples. Moreover, we assessed the toxicity of OTC and ENR on tropical freshwater invertebrates and performed a risk assessment for aquatic ecosystems. All interviewed tilapia farmers reported to routinely use antibiotics. Peak water concentrations for OTC and ENR were 49 and 1.6 μg/L, respectively. Antibiotics were most frequently detected in sediments with concentrations up to 6908 μg/kg d.w. for OTC, and 2339 μg/kg d.w. for ENR. The results of this study indicate insignificant short-term risks for primary producers and invertebrates, but suggest that the studied aquaculture farms constitute an important source of antibiotic pollution. - Highlights: • First study assessing the risks of antibiotics applied in freshwater tilapia cages. • Ten antibiotics were reported to be used by tilapia cage farmers in two Thai rivers. • Peak oxytetracycline and enrofloxacin concentrations were in the order of μg/L. • Antibiotic concentrations in river sediments next to cages were up to several mg/kg. • Antibiotics are not posing a short-term risk for pelagic aquatic organisms. - Antibiotics applied in tilapia cage farming in Thailand are released into surrounding aquatic ecosystems and constitute an important source of environmental pollution

  16. A study of chemical speciation of metals in aquatic bottom sediment ...

    African Journals Online (AJOL)

    Dele Olutona

    African Journal of Environmental Science and Technology Vol. 6(8), pp. 312-321, August .... each chemical fraction and potential risk of sediment- bound metals to the aquatic ..... Water chemistry of the Amazon River. Geochim. Cosmochim.

  17. Assessment of mobility and bioavailability of contaminants in MSW incineration ash with aquatic and terrestrial bioassays.

    Science.gov (United States)

    Ribé, V; Nehrenheim, E; Odlare, M

    2014-10-01

    Incineration of municipal solid waste (MSW) is a waste treatment method which can be sustainable in terms of waste volume reduction as well as a source of renewable energy. In the process fly and bottom ash is generated as a waste material. The ash residue may vary greatly in composition depending on the type of waste incinerated and it can contain elevated levels of harmful contaminants such as heavy metals. In this study, the ecotoxicity of a weathered, untreated incineration bottom ash was characterized as defined by the H14 criterion of the EU Waste Framework Directive by means of an elemental analysis, leaching tests followed by a chemical analysis and a combination of aquatic and solid-phase bioassays. The experiments were conducted to assess the mobility and bioavailability of ash contaminants. A combination of aquatic and terrestrial bioassays was used to determine potentially adverse acute effects of exposure to the solid ash and aqueous ash leachates. The results from the study showed that the bottom ash from a municipal waste incineration plant in mid-Sweden contained levels of metals such as Cu, Pb and Zn, which exceeded the Swedish EPA limit values for inert wastes. The chemical analysis of the ash leachates showed high concentrations of particularly Cr. The leachate concentration of Cr exceeded the limit value for L/S 10 leaching for inert wastes. Filtration of leachates prior to analysis may have underestimated the leachability of complex-forming metals such as Cu and Pb. The germination test of solid ash and ash leachates using T. repens showed a higher inhibition of seedling emergence of seeds exposed to the solid ash than the seeds exposed to ash leachates. This indicated a relatively low mobility of toxicants from the solid ash into the leachates, although some metals exceeded the L/S 10 leaching limit values for inert wastes. The Microtox® toxicity test showed only a very low toxic response to the ash leachate exposure, while the D. magna

  18. Sudden Cardiac Arrest (SCA) Risk Assessment

    Science.gov (United States)

    ... HRS Find a Specialist Share Twitter Facebook SCA Risk Assessment Sudden Cardiac Arrest (SCA) occurs abruptly and without ... people of all ages and health conditions. Start Risk Assessment The Sudden Cardiac Arrest (SCA) Risk Assessment Tool ...

  19. Integrated climate change risk assessment:

    DEFF Research Database (Denmark)

    Kaspersen, Per Skougaard; Halsnæs, Kirsten

    2017-01-01

    Risk assessments of flooding in urban areas during extreme precipitation for use in, for example, decision-making regarding climate adaptation, are surrounded by great uncertainties stemming from climate model projections, methods of downscaling and the assumptions of socioeconomic impact models...... to address the complex linkages between the different kinds of data required in assessing climate adaptation. It emphasizes that the availability of spatially explicit data can reduce the overall uncertainty of the risk assessment and assist in identifying key vulnerable assets. The usefulness...... of such a framework is demonstrated by means of a risk assessment of flooding from extreme precipitation for the city of Odense, Denmark. A sensitivity analysis shows how the presence of particularly important assets, such as cultural and historical heritage, may be addressed in assessing such risks. The output...

  20. Cernavoda NPP impact study on terrestrial and aquatic biota. Preliminary results

    International Nuclear Information System (INIS)

    Bobric, Elena; Bucur, Cristina; Popescu, Ion; Simionov, Vasile; Titescu, Gheorghe; Varlam, Carmen

    2010-01-01

    Recently, the awareness of the vulnerability of the environment has increased and the need to protect it against industrial pollutants has been recognized. The concept of sustainable development, requires new and developing international policies for environmental protection. See 'Protection of the environment from the effects of ionizing radiation' IAEA-TECDOC-1091, International Atomic Energy Agency, Vienna. As it is recommended in 'Cernavoda Unit No. 2 NPP Environmental Impact Assessment CES-03702-IAD-006', it is Cernavoda NPP responsibility to conduct an Ecological Risk Assessment study, mainly to assess the impact of nuclear power plant operation on terrestrial and aquatic biota. Long records from normal operation of Cernavoda Unit 1, wind pattern, meteorological conditions, and source terms data were used to evaluate areas of interest for environmental impact, conducting to a circle of 20 km radius around mentioned nuclear objective. The screening campaign established tritium level (because Cernavoda NPP is a CANDU type reactor, and tritium is the most important radioisotope evacuated in the environment) in air, water, soil and vegetation, focusing the interest area on particular ecosystem. Using these primary data it was evaluated which are the monitored ecological receptors and which are the measurement endpoints.This paper presents the Ecological Risk Assessment at Cernavoda NPP technical requirements, and the preliminary results of evaluating criteria for representative ecosystem components at Cernavoda NPP. (authors)

  1. Using the weight-of-evidence approach for ecological risk assessment at a DOE facility

    International Nuclear Information System (INIS)

    Hull, R.N.; Suter, G.W.

    1994-01-01

    The Portsmouth Gaseous Diffusion Plant (PORTS), an uranium enrichment plant, has released various contaminants into the environment. An ecological risk assessment is underway for the site, which includes an evaluation of Little Beaver Creek, which flows along the eastern and northern sides of PORTS. For this assessment, the creek was divided into reaches which were defined in terms of contaminant sources. This creek receives contaminants from permitted outfalls, groundwater discharge, non-point sources, and accidental releases. Metal contamination is the major concern at the site. Receptors include the fish and benthic communities in the creek, and soil invertebrates and plants in the floodplain. A weight-of-evidence approach was used to evaluate risks to those receptors, based on chemical analyses, toxicity tests and field surveys. The fish and benthic communities are impacted on Little Beaver Creek in a reach near a permitted discharge, with improvements seen downstream of this location. Ambient water, sediment and soil samples were not toxic to laboratory organisms. Either these toxicity tests were not sufficiently sensitive to detect toxicity, or the observed changes in the aquatic communities did not result from toxicity. Because conditions improved downstream from the permitted discharge, it was concluded that this is the major source of toxicity in the creek

  2. Bisphenol A in the aquatic environment and its endocrine-disruptive effects on aquatic organisms.

    Science.gov (United States)

    Kang, Jeong-Hun; Asai, Daisuke; Aasi, Daisuke; Katayama, Yoshiki

    2007-01-01

    Bisphenol A [BPA; 2,2-bis(4-hydroxyphenyl)propane], which is mainly used in the production of epoxy resins and polycarbonate plastics, is a known endocrine disruptor and is acutely toxic to aquatic organisms. Due to intensified usage of these products, exposure of organisms to BPA via several routes, such as the environment and food, has increased. The aquatic environment is an important area for the study of BPA. This report reviews the literature concerning contamination routes and degradation of BPA in the aquatic environment and its endocrine-disruptive effects on aquatic organisms.

  3. Assessing Your Weight and Health Risk

    Science.gov (United States)

    ... Health Professional Resources Assessing Your Weight and Health Risk Assessment of weight and health risk involves using ... risk for developing obesity-associated diseases or conditions. Risk Factors for Health Topics Associated With Obesity Along ...

  4. Method for assessment and classification of water courses by using the community of aquatic macrophytes

    International Nuclear Information System (INIS)

    Minciardi, M.R.; Spada, C.D.; Rossi, G.L.; Angius, R.; Orru, G.; Mancini, L.; Pace, G.; Mercheggiani, S.; Puccinelli, C.

    2009-01-01

    Studies about aquatic macrophytes as bio indicator community in Europe have been carried out since 70s. Efficient macrophytes indices, mainly for the assessment of trophic state, have been defined in nineties. In 2000, WFD includes macrophytes among the ecological quality elements for running waters. To implement Directive 2000/60/C E, European countries had to define methodologies to evaluate the ecological status of water bodies by macrophytes assessment, but almost all Member States continue to use trophic indexes. Researches carried out in Italy during last 10 years confirm the presence and the evaluability in all river types, and the efficiency of macrophytes community as bio indicator. Besides, many European indices have been tested to assess their applicability throughout the country. Particularly, the Index Macrofitique Biologique en Riviere (IBMR), formalized in France in 2003 as trophic index and currently used as french national method, is applicable in Italy. This index not only allows to evaluate the trophic level metric, but can also be used, as proposed in France, as index of ecological status, expressed as distance from the expected trophic state. [it

  5. Work plan for the Oak Ridge Reservation ecological monitoring and assessment program

    International Nuclear Information System (INIS)

    Ashwood, T.L.; Sample, B.E.; Suter, G.W. II; Turner, M.G.; Loar, J.M.; Barnthouse, L.W.

    1994-08-01

    This plan describes an approach for developing an ecological monitoring and assessment program (EMAP) for the US Department of Energy's (DOE's) Oak Ridge Reservation (ORR). Such a program is required to assess existing ecological risks, to predict changes in those ecological risks from proposed remedial actions, and to monitor the effectiveness of remedial actions in reducing ecological risks. Ecological risk assessments must be based on Reservation-level data for those widespread or wide-ranging plant and animal species that occupy the entire ORR. In recognition of this need, Region 4 of the US Environmental Protection Agency has specifically requested that DOE develop a Reservation-wide monitoring and assessment program. The current strategy distinguishes four types of potentially contaminated areas: (1) source operable units (OUs), which may contain waste disposal areas, (2) groundwater aquifers that are potentially contaminated by source OUs, (3) aquatic integrator OUs which are streams and associated floodplains that drain source OUs, and (4) the terrestrial integrator, which encompasses the Reservation. Source OUs may contain sources of contamination that potentially impact local plant and animal population and communities that are restricted to the areal extent of the OU. Such local impacts must be assessed for each OU. However, these source OUs also contribute to risks within the aquatic OUs and within the Reservation-wide terrestrial ecosystem. Therefore, remedial investigations at source OUs must provide data necessary to support ecological risk assessments at the larger scales

  6. Structural and functional effects of herbicides on non-target organisms in aquatic ecosystems with an emphasis on atrazine

    Science.gov (United States)

    Fairchild, James; Kortekamp, Andreas

    2011-01-01

    for controlling nuisance aquatic vegetation. Although aquatic herbicide exposure has been widely documented, these exposures are not necessarily related to adverse non-target ecological effects on natural communities in aquatic environments. This chapter evaluates the potential for effects of herbicides on the structure and function of aquatic envrionments at the population, community, and ecosystem levels of biological organization. In this manuscript I examine several critical aspects of the subject matter area: primary herbicides in use and chemical modes of action; the regulatory process used for registration and risk assessment of herbicides; data regarding non-target risks and the relative sensitivity of aquatic plants, inveretebrates, and fish to herbicides; and emerging areas of science regarding the potential for endocrine-disrupting effects of herbicides on aquatic vertebrates. Much of the focus of this paper is on atrazine due to the extensive database which exists regarding its fate and effects. 

  7. Risk assessment theory, methods, and applications

    CERN Document Server

    Rausand, Marvin

    2011-01-01

    With its balanced coverage of theory and applications along with standards and regulations, Risk Assessment: Theory, Methods, and Applications serves as a comprehensive introduction to the topic. The book serves as a practical guide to current risk analysis and risk assessment, emphasizing the possibility of sudden, major accidents across various areas of practice from machinery and manufacturing processes to nuclear power plants and transportation systems. The author applies a uniform framework to the discussion of each method, setting forth clear objectives and descriptions, while also shedding light on applications, essential resources, and advantages and disadvantages. Following an introduction that provides an overview of risk assessment, the book is organized into two sections that outline key theory, methods, and applications. * Introduction to Risk Assessment defines key concepts and details the steps of a thorough risk assessment along with the necessary quantitative risk measures. Chapters outline...

  8. Aquatic biology studies

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    Aquatic biology studies focused on studying the hydrothermal effects of Par Pond reservoir on periphyton, plankton, zooplankton, macrophytes, human pathogens, and microbial activity; the variability between the artificial streams of the Flowing Streams Laboratory and Upper Three Runs Creek; and the bacterial production of methane in Savannah River Plant aquatic systems

  9. The issue of risk dilution in risk assessments

    International Nuclear Information System (INIS)

    Wilmot, R.; Robinson, P.

    2004-01-01

    This paper explores an issue that was first highlighted more than 20 years ago during an inquiry concerning the Sizeweli B nuclear power station in the UK. In the probabilistic safety assessment for this plant, the proponent had apparently reduced its estimates of risk by admitting to increased uncertainty about the timing of certain events. This situation is counter-intuitive, since an increase in uncertainty about the factors contributing to safety would be expected to lead to less confidence and hence to greater risk. This paradoxical situation was termed 'risk dilution' and it has been a topic of interest to reviewers of safety cases since. The recent international peer review of the Yucca Mountain performance assessments concluded that there was a potential for risk dilution in the assumptions and calculations presented. The next section describes how assumptions about the timing of events and other aspects of an assessment may lead to risk dilution, and this is followed by two examples based on recent performance assessments. The final section discusses how potential problems can be identified in safety cases, and the types of response that a regulator might adopt as a result. (authors)

  10. Aquatic Plant Management Program current status and seasonal workplan

    Energy Technology Data Exchange (ETDEWEB)

    Burns, E.R.; Bates, A.L.; Webb, D.H.

    1993-07-01

    The objective of the TVA Aquatic Plant Management Program is to support in an environmentally and economically responsible manner, the balanced multiple uses of the water resource of the Tennessee Valley. This is accomplished by following an integrated approach to prevent introduction and spread of noxious species, documenting occurrence and spread of existing species, and suppressing or eliminating problems in designated high use areas. It is not the TVA objective, nor is it biologically feasible and prudent to eliminate all aquatic vegetation. Aerial photography, helicopter reconnaissance, and field surveys are used to assess distributions and abundance of various aquatic macrophytes. Water level fluctuations are supplemented by herbicide applications to control undesirable vegetation. Investigations are conducted to evaluate water level fluctuation schemes, as well as biological, mechanical, and alternative chemical control techniques which offer potential for more environmentally compatible and cost-effective management operations.

  11. Risk Assessment in the Maritime Industry

    Directory of Open Access Journals (Sweden)

    M. Mousavi

    2017-02-01

    Full Text Available Risk assessment is a well-developed field which many operators are currently applying to improve their operations and reduce their risk exposure. This paper is intended to provide an overview of the risk assessment for mariners in the Maritime transportation. The risks addressed are primarily those affecting the safety of a vessel, facility or operation. The concept of risk is defined, and the methods available to assess the risks associated with an operation are described. Regulatory requirements that have prompted the development of modern risk assessment practices are described, and future regulatory trends are discussed. There are many different analysis techniques and models that have been developed to aid in conducting risk assessments. A key to any successful risk analysis is choosing the right method (or combination of methods for the situation at hand. This is achieved through critical analysis of the available data concerning marine crises. This paper provides a brief introduction to some of the analysis methods available and suggests risk analysis approaches to support different types of decision making within the maritime transportation to cope with crises. Finally, as awareness of risk assessment increases, the benefits which can be realized through its application will continue to increase. Organizations in both the public and the private sector are becoming more and more familiar with the benefits associated with risk-based approaches to managing safety and consequently reducing crisis in maritime transportation.

  12. The MARINA Risk Assessment Strategy: A Flexible Strategy for Efficient Information Collection and Risk Assessment of Nanomaterials.

    Science.gov (United States)

    Bos, Peter M J; Gottardo, Stefania; Scott-Fordsmand, Janeck J; van Tongeren, Martie; Semenzin, Elena; Fernandes, Teresa F; Hristozov, Danail; Hund-Rinke, Kerstin; Hunt, Neil; Irfan, Muhammad-Adeel; Landsiedel, Robert; Peijnenburg, Willie J G M; Sánchez Jiménez, Araceli; van Kesteren, Petra C E; Oomen, Agnes G

    2015-11-27

    An engineered nanomaterial (ENM) may actually consist of a population of primary particles, aggregates and agglomerates of various sizes. Furthermore, their physico-chemical characteristics may change during the various life-cycle stages. It will probably not be feasible to test all varieties of all ENMs for possible health and environmental risks. There is therefore a need to further develop the approaches for risk assessment of ENMs. Within the EU FP7 project Managing Risks of Nanoparticles (MARINA) a two-phase risk assessment strategy has been developed. In Phase 1 (Problem framing) a base set of information is considered, relevant exposure scenarios (RESs) are identified and the scope for Phase 2 (Risk assessment) is established. The relevance of an RES is indicated by information on exposure, fate/kinetics and/or hazard; these three domains are included as separate pillars that contain specific tools. Phase 2 consists of an iterative process of risk characterization, identification of data needs and integrated collection and evaluation of data on the three domains, until sufficient information is obtained to conclude on possible risks in a RES. Only data are generated that are considered to be needed for the purpose of risk assessment. A fourth pillar, risk characterization, is defined and it contains risk assessment tools. This strategy describes a flexible and efficient approach for data collection and risk assessment which is essential to ensure safety of ENMs. Further developments are needed to provide guidance and make the MARINA Risk Assessment Strategy operational. Case studies will be needed to refine the strategy.

  13. The MARINA Risk Assessment Strategy: A Flexible Strategy for Efficient Information Collection and Risk Assessment of Nanomaterials

    Directory of Open Access Journals (Sweden)

    Peter M. J. Bos

    2015-11-01

    Full Text Available An engineered nanomaterial (ENM may actually consist of a population of primary particles, aggregates and agglomerates of various sizes. Furthermore, their physico-chemical characteristics may change during the various life-cycle stages. It will probably not be feasible to test all varieties of all ENMs for possible health and environmental risks. There is therefore a need to further develop the approaches for risk assessment of ENMs. Within the EU FP7 project Managing Risks of Nanoparticles (MARINA a two-phase risk assessment strategy has been developed. In Phase 1 (Problem framing a base set of information is considered, relevant exposure scenarios (RESs are identified and the scope for Phase 2 (Risk assessment is established. The relevance of an RES is indicated by information on exposure, fate/kinetics and/or hazard; these three domains are included as separate pillars that contain specific tools. Phase 2 consists of an iterative process of risk characterization, identification of data needs and integrated collection and evaluation of data on the three domains, until sufficient information is obtained to conclude on possible risks in a RES. Only data are generated that are considered to be needed for the purpose of risk assessment. A fourth pillar, risk characterization, is defined and it contains risk assessment tools. This strategy describes a flexible and efficient approach for data collection and risk assessment which is essential to ensure safety of ENMs. Further developments are needed to provide guidance and make the MARINA Risk Assessment Strategy operational. Case studies will be needed to refine the strategy.

  14. Effect of aquatic dual-task training on balance and gait in stroke patients.

    Science.gov (United States)

    Kim, Kyoung; Lee, Dong-Kyu; Kim, Eun-Kyung

    2016-07-01

    [Purpose] The purpose of this study was to determine the effect of aquatic dual-task training on balance and gait in stroke patients. [Subjects and Methods] Twenty stroke patients were divided into the experimental (n=10) and control (n=10) groups. Both groups underwent neurodevelopmental treatment. The experimental group additionally underwent aquatic dual-task training for 30 minutes a day, 5 days a week, for 6 weeks. Balance was measured using the Berg balance scale, Five Times Sit-to Stand Test, and Functional Reach Test. Gait was measured using the 10-Meter Walk Test, Timed Up and Go Test, and Functional Gait Assessment. [Results] For intragroup comparison, the experimental group showed a significant change after the experiment in all balance and gait assessment tests. For intergroup comparison, the experimental group showed relatively more significant change after the experiment in all balance and gait assessment tests. [Conclusion] Our results showed that aquatic dual-task training has a positive effect on balance and gait in stroke patients.

  15. Business risks, functions, methods of assessment and ways to reduce risk

    Directory of Open Access Journals (Sweden)

    A.V. Mihalchuk

    2015-06-01

    Full Text Available For successful existence in a market economy entrepreneur have to take bold actions, and this increases the risk. The article describes the concept of entrepreneurship and business risk, positive and negative aspects of functions of risk in business. Therefore, it is necessary to assess the risk properly and be able to manage it to achieve the most effective results in the market. In market conditions the problem of assessing and accounting market becomes independent theoretical and practical significance as an important component of the theory and practice of management. Risk - a key element of business activities. Development of risk situations can lead to both the occurrence of adverse effects (losses, lost profits, and positive results for a company in the form of increased profit. This article describes: the concept of entrepreneurship, risk and business risks, characteristic of positive and negative aspects of risk functions in business, methods of assessment and risk reduction, shows formulae and examples you can use to assess risk in an enterprise. Analyzing already established methods of risk assessment a number of rules were proposed in order to reduce business risk.

  16. Risk Assessment

    OpenAIRE

    Hrdová, Edita

    2012-01-01

    This diploma thesis is focused on companies risk evaluation before endorsement of Loan deriving from business relationships. The aim of this thesis is not only to describe individual steps of risk assessment, but also perfom analysis of particular companies based on available data, i.e. Balance sheet, Profit and Loss statement and external rating and after that propose solution for each company. My analysis will be based on theoretical knowledge, further on experience related to my job role a...

  17. Microplastics in aquatic food chain : sources, measurement, occurrence and potential health risks

    NARCIS (Netherlands)

    Hollman, P.C.H.; Bouwmeester, H.; Peters, R.J.B.

    2013-01-01

    Pollution of the environment with plastics is a growing problem, and is expected to persist for hundreds to thousands of years. As a result microplastics, plastic particles with size smaller than 5 mm, are ubiquitously present in the aquatic food chain. The present literature review shows that the

  18. HTGR accident and risk assessment

    International Nuclear Information System (INIS)

    Silady, F.A.; Everline, C.J.; Houghton, W.J.

    1982-01-01

    This paper is a synopsis of the high-temperature gas-cooled reactor probabilistic risk assessments (PRAs) performed by General Atomic Company. Principal topics presented include: HTGR safety assessments, peer interfaces, safety research, process gas explosions, quantitative safety goals, licensing applications of PRA, enhanced safety, investment risk assessments, and PRA design integration

  19. Anthropic Risk Assessment on Biodiversity

    Science.gov (United States)

    Piragnolo, M.; Pirotti, F.; Vettore, A.; Salogni, G.

    2013-01-01

    This paper presents a methodology for risk assessment of anthropic activities on habitats and species. The method has been developed for Veneto Region, in order to simplify and improve the quality of EIA procedure (VINCA). Habitats and species, animals and plants, are protected by European Directive 92/43/EEC and 2009/147/EC but they are subject at hazard due to pollution produced by human activities. Biodiversity risks may conduct to deterioration and disturbance in ecological niches, with consequence of loss of biodiversity. Ecological risk assessment applied on Natura 2000 network, is needed to best practice of management and monitoring of environment and natural resources. Threats, pressure and activities, stress and indicators may be managed by geodatabase and analysed using GIS technology. The method used is the classic risk assessment in ecological context, and it defines the natural hazard as influence, element of risk as interference and vulnerability. Also it defines a new parameter called pressure. It uses risk matrix for the risk analysis on spatial and temporal scale. The methodology is qualitative and applies the precautionary principle in environmental assessment. The final product is a matrix which excludes the risk and could find application in the development of a territorial information system.

  20. Aquatic pathways model to predict the fate of phenolic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Aaberg, R.L.; Peloquin, R.A.; Strenge, D.L.; Mellinger, P.J.

    1983-04-01

    Organic materials released from energy-related activities could affect human health and the environment. To better assess possible impacts, we developed a model to predict the fate of spills or discharges of pollutants into flowing or static bodies of fresh water. A computer code, Aquatic Pathways Model (APM), was written to implement the model. The computer programs use compartmental analysis to simulate aquatic ecosystems. The APM estimates the concentrations of chemicals in fish tissue, water and sediment, and is therefore useful for assessing exposure to humans through aquatic pathways. The APM will consider any aquatic pathway for which the user has transport data. Additionally, APM will estimate transport rates from physical and chemical properties of chemicals between several key compartments. The major pathways considered are biodegradation, fish and sediment uptake, photolysis, and evaporation. The model has been implemented with parameters for distribution of phenols, an important class of compounds found in the water-soluble fractions of coal liquids. Current modeling efforts show that, in comparison with many pesticides and polyaromatic hydrocarbons (PAH), the lighter phenolics (the cresols) are not persistent in the environment. The properties of heavier molecular weight phenolics (indanols, naphthols) are not well enough understood at this time to make similar judgements. For the twelve phenolics studied, biodegradation appears to be the major pathway for elimination from aquatic environments. A pond system simulation (using APM) of a spill of solvent refined coal (SRC-II) materials indicates that phenol, cresols, and other single cyclic phenolics are degraded to 16 to 25 percent of their original concentrations within 30 hours. Adsorption of these compounds into sediments and accumulation by fish was minor.

  1. Risk assessment and the environment

    International Nuclear Information System (INIS)

    Fisk, D.J.

    1992-01-01

    This paper reviews the use of risk assessment techniques in the field of environment protection. I will argue that in some important instances the development of environment policy has been a source of fruitful development of a risk based methodologies. In other cases the importation of risk assessment techniques has proved much more problematic. As the scope of environmental regulation increases so does the possibility of inconsistent and arbitrary solutions to problems. The need for a more systematic approach to the development of environmental regulation has never been stronger, so it is important to understand the reasons for the mixed success of risk assessment. This applies equally to those nations with long traditions of the regulation of private sector industry and those just beginning on this course. The way ahead may be to extend our ideas of how to express risk and uncertainty. Some of the recent cause celebres of environment policy show this challenge very clearly. As an example, this paper will look at the problem of assessing the risk of man-made climate change

  2. Risk assessment and the environment

    Energy Technology Data Exchange (ETDEWEB)

    Fisk, D J [Department of the Environment (United Kingdom)

    1992-07-01

    This paper reviews the use of risk assessment techniques in the field of environment protection. I will argue that in some important instances the development of environment policy has been a source of fruitful development of a risk based methodologies. In other cases the importation of risk assessment techniques has proved much more problematic. As the scope of environmental regulation increases so does the possibility of inconsistent and arbitrary solutions to problems. The need for a more systematic approach to the development of environmental regulation has never been stronger, so it is important to understand the reasons for the mixed success of risk assessment. This applies equally to those nations with long traditions of the regulation of private sector industry and those just beginning on this course. The way ahead may be to extend our ideas of how to express risk and uncertainty. Some of the recent cause celebres of environment policy show this challenge very clearly. As an example, this paper will look at the problem of assessing the risk of man-made climate change.

  3. Nuclear insurance risk assessment using risk-based methodology

    International Nuclear Information System (INIS)

    Wendland, W.G.

    1992-01-01

    This paper presents American Nuclear Insurers' (ANI's) and Mutual Atomic Energy Liability Underwriters' (MAELU's) process and experience for conducting nuclear insurance risk assessments using a risk-based methodology. The process is primarily qualitative and uses traditional insurance risk assessment methods and an approach developed under the auspices of the American Society of Mechanical Engineers (ASME) in which ANI/MAELU is an active sponsor. This process assists ANI's technical resources in identifying where to look for insurance risk in an industry in which insurance exposure tends to be dynamic and nonactuarial. The process is an evolving one that also seeks to minimize the impact on insureds while maintaining a mutually agreeable risk tolerance

  4. Integration of DNA barcoding approaches into aquatic bioassessments

    Science.gov (United States)

    The Clean Water Act directs states to protect water resources by developing criteria based in part on biological assessments of natural aquatic ecosystems. Current protocols can be limited by the availability of taxonomic expertise and concerns about precision and accuracy in mor...

  5. Risk assessment for halogenated solvents

    International Nuclear Information System (INIS)

    Travis, C.C.

    1988-01-01

    A recent development in the cancer risk area is the advent of biologically based pharmacokinetic and pharmacodynamic models. These models allow for the incorporation of biological and mechanistic data into the risk assessment process. These advances will not only improve the risk assessment process for halogenated solvents but will stimulate and guide basic research in the biological area

  6. How to assess exposure of aquatic organisms to manufactured nanoparticles?

    DEFF Research Database (Denmark)

    Quik, Joris T.K.; Vonk, Jan Arie; Hansen, Steffen Foss

    2011-01-01

    Ecological risk of chemicals is measured by the quotient of predicted no-effect concentrations and predicted exposure concentrations, which are hard to assess for manufactured nanomaterials (NMs). This paper proposes modifications to currently used models, in order to make them suitable for estim......Ecological risk of chemicals is measured by the quotient of predicted no-effect concentrations and predicted exposure concentrations, which are hard to assess for manufactured nanomaterials (NMs). This paper proposes modifications to currently used models, in order to make them suitable...... on sedimentation and dissolution of NMs in environmentally relevant systems. We deduce that the overall kinetics of water–sediment transport of NMs should be close to first order. The lack of data on dissolution of NMs under environmentally realistic conditions calls for a pragmatic decision on which rates...

  7. RESIDUAL RISK ASSESSMENT: ETHYLENE OXIDE ...

    Science.gov (United States)

    This document describes the residual risk assessment for the Ethylene Oxide Commercial Sterilization source category. For stationary sources, section 112 (f) of the Clean Air Act requires EPA to assess risks to human health and the environment following implementation of technology-based control standards. If these technology-based control standards do not provide an ample margin of safety, then EPA is required to promulgate addtional standards. This document describes the methodology and results of the residual risk assessment performed for the Ethylene Oxide Commercial Sterilization source category. The results of this analyiss will assist EPA in determining whether a residual risk rule for this source category is appropriate.

  8. Analysis, occurrence, fate and risks of proton pump inhibitors, their metabolites and transformation products in aquatic environment: A review.

    Science.gov (United States)

    Kosma, Christina I; Lambropoulou, Dimitra A; Albanis, Triantafyllos A

    2016-11-01

    Proton pump inhibitors (PPIs) which include omeprazole, esomeprazole, lansoprazole, pantoprazole and rabeprazole, are extensively used for the relief of gastro-intestinal disorders. Despite their high worldwide consumption, PPIs are extensively metabolized in human bodies and therefore are not regularly detected in monitoring studies. Very recently, however, it has been shown that some omeprazole metabolites may enter and are likely to persist in aquatic environment. Hence, to fully assess the environmental exposures and risks associated with PPIs, it is important to better understand and evaluate the fate and behavior not only of the parent compound but also of their metabolites and their transformation products arising from biotic and abiotic processes (hydrolysis, photodegradation, biodegradation etc.) in the environment. In this light, the purpose of this review is to summarize the present state of knowledge on the introduction and behavior of these chemicals in natural and engineering systems and highlight research needs and gaps. It draws attention to their transformation, the increase contamination by their metabolites/TPs in different environmental matrices and their potential adverse effects in the environment. Furthermore, existing research on analytical developments with respect to sample treatment, separation and detection of PPIs and their metabolites/TPs is provided. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Risk assessment: An employer's perspective

    International Nuclear Information System (INIS)

    Williams, K.C.

    1992-01-01

    There is no question that a careful assessment of risk is essential for safe industrial operations. For that reason, a thoughtful analysis of the effectiveness of available risk assessment technologies is prerequisite for responsible corporate decision making. An 'employer's' perspective on risk assessment cannot be constrained by any artificial restrictions which that term may imply. In reality, all those who are involved in the execution of an industrial enterprise: managers, regulators, the affected public, and especially those employees exposed to hazards, are necessarily partners in assessment of risk. The perspective of this paper is that of the oil and gas industry, in which the author's organization, Exxon Company, International, participates. The paper addresses what Exxon requires to assess and manage risk in its worldwide operations. The author is aware, however, through contacts with industry colleagues, that some of Exxon's initiatives are representative of similar actions being taken by others. 1992 is the European Year of Safety, Health and Hygiene, coinciding with the United Kingdom's Presidency of the European Council. It is also the year in which new 'goal-setting' regulations covering safety in the U.K. offshore oil industry were put forward by the Health and Safety Commission. These regulations, based largely on Lord Cullen's recommendations following the Piper Alpha tragedy, set the pace for safety in the British North Sea and will significantly impact the safety of offshore oil installations worldwide. The requirement for risk assessment, using a systematic process of analysing and evaluating risk, is a key component of this safety regime

  10. Risk assessment: An employer's perspective

    Energy Technology Data Exchange (ETDEWEB)

    Williams, K C [Exxon International (United States)

    1992-07-01

    There is no question that a careful assessment of risk is essential for safe industrial operations. For that reason, a thoughtful analysis of the effectiveness of available risk assessment technologies is prerequisite for responsible corporate decision making. An 'employer's' perspective on risk assessment cannot be constrained by any artificial restrictions which that term may imply. In reality, all those who are involved in the execution of an industrial enterprise: managers, regulators, the affected public, and especially those employees exposed to hazards, are necessarily partners in assessment of risk. The perspective of this paper is that of the oil and gas industry, in which the author's organization, Exxon Company, International, participates. The paper addresses what Exxon requires to assess and manage risk in its worldwide operations. The author is aware, however, through contacts with industry colleagues, that some of Exxon's initiatives are representative of similar actions being taken by others. 1992 is the European Year of Safety, Health and Hygiene, coinciding with the United Kingdom's Presidency of the European Council. It is also the year in which new 'goal-setting' regulations covering safety in the U.K. offshore oil industry were put forward by the Health and Safety Commission. These regulations, based largely on Lord Cullen's recommendations following the Piper Alpha tragedy, set the pace for safety in the British North Sea and will significantly impact the safety of offshore oil installations worldwide. The requirement for risk assessment, using a systematic process of analysing and evaluating risk, is a key component of this safety regime.

  11. Application of ecological risk assessment to establish nonhuman environmental protection at nuclear generating stations in Ontario, Canada

    International Nuclear Information System (INIS)

    Wismer, D.A.

    2004-01-01

    A screening ecological risk assessment was performed for regulatory compliance at three Ontario nuclear generating station sites to establish design requirements for a routine contaminant monitoring program and to address the need for non-contaminant stressor management. Site specific assessments went beyond traditional contaminant risk assessment to include stressors associated with land-use change, cooling water systems and site storm water runoff. Valued terrestrial and aquatic ecosystem components were selected from species lists after stakeholder consultation, and contaminants of concern were selected based on their relative loadings, and with respect to regulatory and literature-based benchmarks. Predictive modeling was used to estimate chemical and radionuclide exposures and likelihood of effects. Adverse effects on individual biota were predicted for aqueous emissions of chlorine and storm water but not for radionuclides. Retrospective analyses of past field monitoring were used to determine likelihood of effects from non-contaminant stressors. Individual-level adverse effects were observed for fish losses from cooling water withdrawal. Depending on the site and the biological species, either beneficial or adverse effects from thermal discharge and land-use change were observed. Followup studies include monitoring, laboratory study, computer modeling and mitigation. Field monitoring will generate more precise species-level estimates of intake fish losses, magnitude of fish response to thermal discharge and chlorine concentrations in near-field discharge waters. Laboratory study is determining the effectiveness of intake fish loss mitigation technology. Computer fish population models are being used to design field studies and interpret individual level effects. Mitigation includes storm water controls and habitat biodiversity management projects to offset past losses from site development and construction. Routine contaminant monitoring is planned to

  12. RELEVANCE OF PROCESS RISK ASSESSMENT IN AIRLINES

    OpenAIRE

    Oksana G. Feoktistova; Igor K. Turkin; Sergey V. Barinov

    2017-01-01

    The notion of “the concept on assumed risk” that took over from the outdated concept of absolute security is analyzed, the increasing significance of operating risk assessment at the present stage is noted. Some basic risk assessment techniques are considered. Matrix technique of risk assessment is considered more thoroughly, and it may be used in risk assessment of airlines in the context of labour protection management system.The ability to correctly assess risks and develop appropriate pre...

  13. Journal of Aquatic Sciences

    African Journals Online (AJOL)

    The Journal of Aquatic Sciences publishes articles on problems and issues in Aquatic Sciences from all ... The journal accepts for publication manuscripts of very high international standard containing reports of original scientific research.

  14. An abuse of risk assessment: how regulatory agencies improperly adopted LNT for cancer risk assessment.

    Science.gov (United States)

    Calabrese, Edward J

    2015-04-01

    The Genetics Panel of the National Academy of Sciences' Committee on Biological Effects of Atomic Radiation (BEAR) recommended the adoption of the linear dose-response model in 1956, abandoning the threshold dose-response for genetic risk assessments. This recommendation was quickly generalized to include somatic cells for cancer risk assessment and later was instrumental in the adoption of linearity for carcinogen risk assessment by the Environmental Protection Agency. The Genetics Panel failed to provide any scientific assessment to support this recommendation and refused to do so when later challenged by other leading scientists. Thus, the linearity model used in cancer risk assessment was based on ideology rather than science and originated with the recommendation of the NAS BEAR Committee Genetics Panel. Historical documentation in support of these conclusions is provided in the transcripts of the Panel meetings and in previously unexamined correspondence among Panel members.

  15. A framework for combining social impact assessment and risk assessment

    NARCIS (Netherlands)

    Mahmoudi, Hossein; Renn, Ortwin; Vanclay, Frank; Hoffmann, Volker; Karami, Ezatollah

    An increasing focus on integrative approaches is one of the current trends in impact assessment. There is potential to combine impact assessment with various other forms of assessment, such as risk assessment, to make impact assessment and the management of social risks more effective. We identify

  16. A framework for combining social impact assessment and risk assessment

    NARCIS (Netherlands)

    Mahmoudi, Hossein; Renn, Ortwin; Vanclay, Frank; Hoffmann, Volker; Karami, Ezatollah

    2013-01-01

    An increasing focus on integrative approaches is one of the current trends in impact assessment. There is potential to combine impact assessment with various other forms of assessment, such as risk assessment, to make impact assessment and the management of social risks more effective. We identify

  17. Risk indices in comparative risk assessment studies

    International Nuclear Information System (INIS)

    Hubert, P.

    1984-01-01

    More than a decade ago the development of comparative risk assessment studies aroused overwhelming interest. There was no doubt that data on the health and safety aspects of energy systems would greatly benefit, or even end, the debate on nuclear energy. Although such attempts are still strongly supported, the rose-coloured expectations of the early days have faded. The high uncertainties, and the contradictory aspect, of the first results might explain this evolution. The loose connection between the range of computed risk indices and the questions on which the debate was focused is another reason for this decline in interest. Important research work is being carried out aiming at reducing the different kinds of uncertainties. Rather than the uncertainties, the paper considers the meaning of available risk indices and proposes more significant indices with respect to the goals of risk assessment. First, the indices which are of frequent use in comparative studies are listed. The stress is put on a French comparative study from which most examples are drawn. Secondly, the increase in magnitude of the indices and the decrease in the attributability of the risk to a given system is shown to be a consequence of the trend towards more comprehensive analyses. Thirdly, the ambiguity of such indices as the collective occupational risk is underlined, and a possible solution is suggested. Whenever risk assessments are related to pragmatic decision making problems it is possible to find satisfactory risk indices. The development of cost-effectiveness analyses and the proposals for quantitative safety goals clearly demonstrate this point. In the field of comparison of social impacts some proposals are made, but there remain some gaps still to be filled. (author)

  18. Aspects regarding explosion risk assessment

    Directory of Open Access Journals (Sweden)

    Părăian Mihaela

    2017-01-01

    Full Text Available Explosive risk occurs in all activities involving flammable substances in the form of gases, vapors, mists or dusts which, in mixture with air, can generate an explosive atmosphere. As explosions can cause human losses and huge material damage, the assessment of the explosion risk and the establishment of appropriate measures to reduce it to acceptable levels according to the standards and standards in force is of particular importance for the safety and health of people and goods.There is no yet a recognized method of assessing the explosion risk, but regardless of the applied method, the likelihood of an explosive atmosphere occurrence has to be determined, together with the occurrence of an efficient ignition source and the magnitude of foreseeable consequences. In assessment processes, consequences analysis has a secondary importance since it’s likely that explosions would always involve considerable damage, starting from important material damages and up to human damages that could lead to death.The purpose of the work is to highlight the important principles and elements to be taken into account for a specific risk assessment. An essential element in assessing the risk of explosion in workplaces where explosive atmospheres may occur is technical installations and personal protective equipment (PPE that must be designed, manufactured, installed and maintained so that they cannot generate a source of ignition. Explosion prevention and protection requirements are governed by specific norms and standards, and a main part of the explosion risk assessment is related to the assessment of the compliance of the equipment / installation with these requirements.

  19. EPA Region 7 Aquatic Focus Areas (ECO_RES.R7_AQUATIC_FOCUS_AREAS)

    Data.gov (United States)

    U.S. Environmental Protection Agency — This shapefile consists of 347 individual Aquatic Ecological System (AES) polygons that are the Aquatic Conservation Focus Areas for EPA Region 7. The focus areas...

  20. Overview of representative ecological risk assessments conducted for sites with enhanced radioactivity

    International Nuclear Information System (INIS)

    Chambers, D.B; Fernandes, S.L.; Phillips, H.A.

    2008-01-01

    Ionizing radiation is ubiquitous and all living things are, and always have been, exposed to naturally occurring radiation and radioactivity. In addition, human activities have enhanced the natural background levels of radiation and radioactivity globally and, in some cases, locally. Over the past ten or so years, numerous ecological risk assessments (ERAs) have been carried out for a number of sites involving enhanced radiation and radioactivity. The ERAs have examined a range of ecological receptors and have been performed using a variety of approaches, using different assumptions and reference radiation dose rates. A review of representative ERAs selected to encompass a wide range of activities (e.g. uranium mining, nuclear generating stations, waste management sites), locations (e.g. Canada, France, UK, Russia, USA) and ecosystems (terrestrial, freshwater and marine aquatic environments), was completed. The wide range of sites considered in this review demonstrate that the current system of radiological protection has provided an adequate level of protection to populations of non-human biota. (author)

  1. Ecological risk assessment of microcystin-LR in the upstream section of the Haihe River based on a species sensitivity distribution model.

    Science.gov (United States)

    Niu, Zhiguang; Du, Lei; Li, Jiafu; Zhang, Ying; Lv, Zhiwei

    2018-02-01

    The eutrophication of surface water has been the main problem of water quality management in recent decades, and the ecological risk of microcystin-LR (MC-LR), which is the by-product of eutrophication, has drawn more attention worldwide. The aims of our study were to determine the predicted no effect concentration (PNEC) of MC-LR and to assess the ecological risk of MC-LR in the upstream section of the Haihe River. HC 5 (hazardous concentration for 5% of biological species) and PNEC were obtained from a species sensitivity distribution (SSD) model, which was constructed with the acute toxicity data of MC-LR on aquatic organisms. The concentrations of MC-LR in the upstream section of the Haihe River from April to August of 2015 were analysed, and the ecological risk characteristics of MC-LR were evaluated based on the SSD model. The results showed that the HC 5 of MC-LR in freshwater was 17.18 μg/L and PNEC was 5.73 μg/L. The concentrations of MC-LR ranged from 0.68 μg/L to 32.21 μg/L and were obviously higher in summer than in spring. The values of the risk quotient (RQ) ranged from 0.12 to 5.62, suggesting that the risk of MC-LR for aquatic organisms in the river was at a medium or high level during the study period. Compared with other waterbodies in the world, the pollution level of MC-LR in the Haihe River was at a moderate level. This research could promote the study of the ecological risk of MC-LR at the ecosystem level. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Bioaccumulation and trophic transfer of engineered nanoparticles in aquatic organisms

    DEFF Research Database (Denmark)

    Skjolding, Lars Michael

    chemicals. However, with fundamentally different chemical and physical properties of ENPs compared to soluble chemicals current TGs could be inadequate and possibly lead to wrong interpretation of results obtained. One of the key issues is the dual action of ENPs consisting both of a chemical identity...... and functionalizations with different aquatic organisms were investigated. Furthermore, multiple microscopy methods were used to assess internationalization in the aquatic organisms. Finally, different exposure routes were used to determine if it could affect localization in the aquatic organisms. The influence......O ENPs (-OH and -Octyl functionalization) it was found that large micron sized aggregates was also available for uptake in D. magna showing high uptake, possibly also associated with the carapace of the test organism. Functionalization with -Octyl increased the uptake compared to pristine ZnO ENPs while...

  3. Chlorine transportation risk assessment

    International Nuclear Information System (INIS)

    Lautkaski, Risto; Mankamo, Tuomas.

    1977-02-01

    An assessment has been made on the toxication risk of the population due to the bulk rail transportation of liquid chlorine in Finland. Fourteen typical rail accidents were selected and their probability was estimated using the accident file of the Finnish State Railways. The probability of a chlorine leak was assessed for each type of accident separately using four leak size categories. The assessed leakage probability was dominated by station accidents, especially by collisions of a chlorine tanker and a locomotive. Toxication hazard areas were estimated for the leak categories. A simple model was constructed to describe the centring of the densely populated areas along the railway line. A comparison was made between the obtained risk and some other risks including those due to nuclear reactor accidents. (author)

  4. Probabilistic risk assessment, Volume I

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    This book contains 158 papers presented at the International Topical Meeting on Probabilistic Risk Assessment held by the American Nuclear Society (ANS) and the European Nuclear Society (ENS) in Port Chester, New York in 1981. The meeting was second in a series of three. The main focus of the meeting was on the safety of light water reactors. The papers discuss safety goals and risk assessment. Quantitative safety goals, risk assessment in non-nuclear technologies, and operational experience and data base are also covered. Included is an address by Dr. Chauncey Starr

  5. Risk assessment in maritime transportation

    International Nuclear Information System (INIS)

    Soares, C. Guedes; Teixeira, A.P.

    2001-01-01

    A review is presented of different approaches to quantify the risk in maritime transportation. The discussion of several accident statistics provides a global assessment of the risk levels and its differentiation in ship types and main types of ship losses. Early studies in the probability of ship loss by foundering and capsizing are reviewed. The approaches used to assess the risk of structural design are addressed. Finally a brief account is given of recent development of using formal safety assessments to support decision making on legislation applicable internationally to maritime transportation

  6. Framework for ecological risk assessment

    International Nuclear Information System (INIS)

    Rodier, D.; Norton, S.

    1992-02-01

    Increased interest in ecological issues such as global climate change, habitat loss, acid deposition, reduced biological diversity, and the ecological impacts of pesticides and toxic chemicals prompts this U.S. Environmental Protection Agency (EPA) report, A Framework for Ecological Risk Assessment ('Framework Report'). The report describes basic elements, or a framework, for evaluating scientific information on the adverse effects of physical and chemical stressors on the environment. The framework offers starting principles and a simple structure as guidance for current ecological risk assessments and as a foundation for future EPA proposals for risk assessment guidelines

  7. Radiological assessment of long lived radionuclides transferred through aquatic pathways

    International Nuclear Information System (INIS)

    Florou, H.; Kritidis, P.; Polikarpov, G.G.; Triulzi, C.; Nonnis-Marzano, F.

    1997-01-01

    In this study the main routes of the late Chernobyl debris from the pollution source to the Mediterranean are evaluated, in relation to the long lived radionuclides 137 Cs mainly, while some data on 90 Sr dispersion are also given. The decrease trend of the Chernobyl impact on a closed aquatic system is also evacuated in relation to the 137 Cs deposition during May 1986 over Greece and following measurements during 1987 and 1989

  8. Geomatic techniques for assessing ecological and health risk at U.S. Department of Energy facilities

    International Nuclear Information System (INIS)

    Regens, J.L.; White, L.; Albers, B.J.; Purdy, C.

    1994-01-01

    Hazardous substances, including radionuclides, heavy metals, and chlorinated hydrocarbons, pose unique challenges in terms of environmental restoration and waste management, especially in aquatic environments. When stored, used or disposed of improperly, hazardous materials including transuranic wastes, high level wastes, low level wastes, greater than class C wastes, mixed wastes or chemical wastes can contaminate an array of environmental receptors ranging from soils, sediments, groundwater to surface water. Depending on the specific hazardous substance and site attributes, assessing ecological and health risk as a basis for environmental restoration and waste management can be a complex, problematic activity. This is basis for environmental restoration and waste management can be a complex, problematic activity. This is particularly true for the major Defense Programs facilities managed by the U.S. Department of Energy (DOE). The Environmental Restoration (ER) program of DOE was initiated in 1987 to consolidate and coordinate those regulatory activities designed to identify and remediate sites at installations contaminated with radioactive, chemical or mixed wastes. To supply the tools necessary for defining, describing, and characterizing the nature of contaminants within the DOE complex and identifying alternative post-remediation land use options, DOE has implemented a program for the research and development of spatial data technologies to aid in assessing ecological and health risk

  9. Arsenic accumulation by edible aquatic macrophytes.

    Science.gov (United States)

    Falinski, K A; Yost, R S; Sampaga, E; Peard, J

    2014-01-01

    Edible aquatic macrophytes grown in arsenic (As)-contaminated soil and sediment were investigated to determine the extent of As accumulation and potential risk to humans when consumed. Nasturtium officinale (watercress) and Diplazium esculentum (warabi) are two aquatic macrophytes grown and consumed in Hawaii. Neither has been assessed for potential to accumulate As when grown in As-contaminated soil. Some former sugarcane plantation soils in eastern Hawaii have been shown to have concentrations of total As over 500 mg kg(-1). It was hypothesized that both species will accumulate more As in contaminated soils than in non-contaminated soils. N. officinale and D. esculentum were collected in areas with and without As-contaminated soil and sediment. High soil As concentrations averaged 356 mg kg(-1), while low soil As concentrations were 0.75 mg kg(-1). Average N. officinale and D. esculentum total As concentrations were 0.572 mg kg(-1) and 0.075 mg kg(-1), respectively, corresponding to hazard indices of 0.12 and 0.03 for adults. Unlike previous studies where watercress was grown in As-contaminated water, N. officinale did not show properties of a hyperaccumulator, yet plant concentrations in high As areas were more than double those in low As areas. There was a slight correlation between high total As in sediment and soil and total As concentrations in watercress leaves and stems, resulting in a plant uptake factor of 0.010, an order of magnitude higher than previous studies. D. esculentum did not show signs of accumulating As in the edible fiddleheads. Hawaii is unique in having volcanic ash soils with extremely high sorption characteristics of As and P that limit release into groundwater. This study presents a case where soils and sediments were significantly enriched in total As concentration, but the water As concentration was below detection limits. © 2013 Published by Elsevier Inc.

  10. Risk assessment instruments in clinical practice.

    Science.gov (United States)

    Côté, Gilles; Crocker, Anne G; Nicholls, Tonia L; Seto, Michael C

    2012-04-01

    To determine whether the items in one of the most widely validated instruments of violence risk assessment, the Historical-Clinical-Risk Management-20 (HCR-20), are used in review board hearings to assess the risk of violence by people found Not Criminally Responsible on account of Mental Disorder (NCRMD). This study was conducted from October 2004 to August 2006 in Quebec's sole forensic psychiatric hospital and 2 large civil psychiatric hospitals designated for the care of people declared NCRMD in the Montreal metropolitan area. The risk assessments presented by clinicians at annual review board hearings and the boards' rationale for the release or detention of people found NCRMD were contrasted with the risk assessments conducted by the research team using the HCR-20. The final sample was comprised of 96 men. Very few of the risk factors identified by prior research (HCR-20 items) were mentioned in the hearing process, whether in clinical reports, discussions during the hearing, or in the disposition justification. The findings confirm that there remains a significant gap between research evidence and risk assessment practice.

  11. Reevaluating Interrater Reliability in Offender Risk Assessment

    NARCIS (Netherlands)

    van der Knaap, L.M.; Leenarts, L.E.W.; Born, M.P.; Oosterveld, P.

    2012-01-01

    Offender risk and needs assessment, one of the pillars of the risk-need-responsivity model of offender rehabilitation, usually depends on raters assessing offender risk and needs. The few available studies of interrater reliability in offender risk assessment are, however, limited in the

  12. Application of modeling tools for risk assessment of engineered nanomaterials in aquatic systems

    CSIR Research Space (South Africa)

    Ondiaka, M

    2012-04-01

    Full Text Available Globally, engineered nanomaterials (ENMs) are increasingly being used in nanoproducts to improve their performance. The multi-stage lifecycle of ENMs increases their potential risk profiles to different environmental systems, for example, due...

  13. Quantitative risk assessment system (QRAS)

    Science.gov (United States)

    Weinstock, Robert M (Inventor); Smidts, Carol S (Inventor); Mosleh, Ali (Inventor); Chang, Yung-Hsien (Inventor); Swaminathan, Sankaran (Inventor); Groen, Francisco J (Inventor); Tan, Zhibin (Inventor)

    2001-01-01

    A quantitative risk assessment system (QRAS) builds a risk model of a system for which risk of failure is being assessed, then analyzes the risk of the system corresponding to the risk model. The QRAS performs sensitivity analysis of the risk model by altering fundamental components and quantifications built into the risk model, then re-analyzes the risk of the system using the modifications. More particularly, the risk model is built by building a hierarchy, creating a mission timeline, quantifying failure modes, and building/editing event sequence diagrams. Multiplicities, dependencies, and redundancies of the system are included in the risk model. For analysis runs, a fixed baseline is first constructed and stored. This baseline contains the lowest level scenarios, preserved in event tree structure. The analysis runs, at any level of the hierarchy and below, access this baseline for risk quantitative computation as well as ranking of particular risks. A standalone Tool Box capability exists, allowing the user to store application programs within QRAS.

  14. Framework for Optimizing Selection of Interspecies Correlation Estimation Models to Address Species Diversity and Toxicity Gaps in an Aquatic Database

    Science.gov (United States)

    The Chemical Aquatic Fate and Effects (CAFE) database is a tool that facilitates assessments of accidental chemical releases into aquatic environments. CAFE contains aquatic toxicity data used in the development of species sensitivity distributions (SSDs) and the estimation of ha...

  15. National Aquatic Resource Surveys (NARS) N/P Values for Streams - Wadeable Streams Assessment

    Data.gov (United States)

    U.S. Environmental Protection Agency — The National Aquatic Resource Survey (NARS) findings for nutrients in streams and lakes highlight that nutrient pollution is widespread across the United States and...

  16. Ecosystem services as assessment endpoints for ecological risk assessment.

    Science.gov (United States)

    Munns, Wayne R; Rea, Anne W; Suter, Glenn W; Martin, Lawrence; Blake-Hedges, Lynne; Crk, Tanja; Davis, Christine; Ferreira, Gina; Jordan, Steve; Mahoney, Michele; Barron, Mace G

    2016-07-01

    Ecosystem services are defined as the outputs of ecological processes that contribute to human welfare or have the potential to do so in the future. Those outputs include food and drinking water, clean air and water, and pollinated crops. The need to protect the services provided by natural systems has been recognized previously, but ecosystem services have not been formally incorporated into ecological risk assessment practice in a general way in the United States. Endpoints used conventionally in ecological risk assessment, derived directly from the state of the ecosystem (e.g., biophysical structure and processes), and endpoints based on ecosystem services serve different purposes. Conventional endpoints are ecologically important and susceptible entities and attributes that are protected under US laws and regulations. Ecosystem service endpoints are a conceptual and analytical step beyond conventional endpoints and are intended to complement conventional endpoints by linking and extending endpoints to goods and services with more obvious benefit to humans. Conventional endpoints can be related to ecosystem services even when the latter are not considered explicitly during problem formulation. To advance the use of ecosystem service endpoints in ecological risk assessment, the US Environmental Protection Agency's Risk Assessment Forum has added generic endpoints based on ecosystem services (ES-GEAE) to the original 2003 set of generic ecological assessment endpoints (GEAEs). Like conventional GEAEs, ES-GEAEs are defined by an entity and an attribute. Also like conventional GEAEs, ES-GEAEs are broadly described and will need to be made specific when applied to individual assessments. Adoption of ecosystem services as a type of assessment endpoint is intended to improve the value of risk assessment to environmental decision making, linking ecological risk to human well-being, and providing an improved means of communicating those risks. Integr Environ Assess Manag

  17. Risk assessment through drinking water pathway via uncertainty modeling of contaminant transport using soft computing

    International Nuclear Information System (INIS)

    Datta, D.; Ranade, A.K.; Pandey, M.; Sathyabama, N.; Kumar, Brij

    2012-01-01

    The basic objective of an environmental impact assessment (EIA) is to build guidelines to reduce the associated risk or mitigate the consequences of the reactor accident at its source to prevent deterministic health effects, to reduce the risk of stochastic health effects (eg. cancer and severe hereditary effects) as much as reasonable achievable by implementing protective actions in accordance with IAEA guidance (IAEA Safety Series No. 115, 1996). The measure of exposure being the basic tool to take any appropriate decisions related to risk reduction, EIA is traditionally expressed in terms of radiation exposure to the member of the public. However, models used to estimate the exposure received by the member of the public are governed by parameters some of which are deterministic with relative uncertainty and some of which are stochastic as well as imprecise (insufficient knowledge). In an admixture environment of this type, it is essential to assess the uncertainty of a model to estimate the bounds of the exposure to the public to invoke a decision during an event of nuclear or radiological emergency. With a view to this soft computing technique such as evidence theory based assessment of model parameters is addressed to compute the risk or exposure to the member of the public. The possible pathway of exposure to the member of the public in the aquatic food stream is the drinking of water. Accordingly, this paper presents the uncertainty analysis of exposure via uncertainty analysis of the contaminated water. Evidence theory finally addresses the uncertainty in terms of lower bound as belief measure and upper bound of exposure as plausibility measure. In this work EIA is presented using evidence theory. Data fusion technique is used to aggregate the knowledge on the uncertain information. Uncertainty of concentration and exposure is expressed as an interval of belief, plausibility

  18. Using toxicokinetic-toxicodynamic modeling as an acute risk assessment refinement approach in vertebrate ecological risk assessment.

    Science.gov (United States)

    Ducrot, Virginie; Ashauer, Roman; Bednarska, Agnieszka J; Hinarejos, Silvia; Thorbek, Pernille; Weyman, Gabriel

    2016-01-01

    Recent guidance identified toxicokinetic-toxicodynamic (TK-TD) modeling as a relevant approach for risk assessment refinement. Yet, its added value compared to other refinement options is not detailed, and how to conduct the modeling appropriately is not explained. This case study addresses these issues through 2 examples of individual-level risk assessment for 2 hypothetical plant protection products: 1) evaluating the risk for small granivorous birds and small omnivorous mammals of a single application, as a seed treatment in winter cereals, and 2) evaluating the risk for fish after a pulsed treatment in the edge-of-field zone. Using acute test data, we conducted the first tier risk assessment as defined in the European Food Safety Authority (EFSA) guidance. When first tier risk assessment highlighted a concern, refinement options were discussed. Cases where the use of models should be preferred over other existing refinement approaches were highlighted. We then practically conducted the risk assessment refinement by using 2 different models as examples. In example 1, a TK model accounting for toxicokinetics and relevant feeding patterns in the skylark and in the wood mouse was used to predict internal doses of the hypothetical active ingredient in individuals, based on relevant feeding patterns in an in-crop situation, and identify the residue levels leading to mortality. In example 2, a TK-TD model accounting for toxicokinetics, toxicodynamics, and relevant exposure patterns in the fathead minnow was used to predict the time-course of fish survival for relevant FOCUS SW exposure scenarios and identify which scenarios might lead to mortality. Models were calibrated using available standard data and implemented to simulate the time-course of internal dose of active ingredient or survival for different exposure scenarios. Simulation results were discussed and used to derive the risk assessment refinement endpoints used for decision. Finally, we compared the

  19. Hanford Site baseline risk assessment methodology

    International Nuclear Information System (INIS)

    1993-03-01

    This methodology has been developed to prepare human health and environmental evaluations of risk as part of the Comprehensive Environmental Response, Compensation, and Liability Act remedial investigations (RIs) and the Resource Conservation and Recovery Act facility investigations (FIs) performed at the Hanford Site pursuant to the Hanford Federal Facility Agreement and Consent Order referred to as the Tri-Party Agreement. Development of the methodology has been undertaken so that Hanford Site risk assessments are consistent with current regulations and guidance, while providing direction on flexible, ambiguous, or undefined aspects of the guidance. The methodology identifies Site-specific risk assessment considerations and integrates them with approaches for evaluating human and environmental risk that can be factored into the risk assessment program supporting the Hanford Site cleanup mission. Consequently, the methodology will enhance the preparation and review of individual risk assessments at the Hanford Site

  20. Next-generation monitoring of aquatic biodiversity using environmental DNA metabarcoding

    DEFF Research Database (Denmark)

    Valentini, Alice; Taberlet, Pierre; Miaud, Claude

    2016-01-01

    for species detection from DNA present into the environment. In this study, we tested if an environmental DNA (eDNA) metabarcoding approach, using water samples, can be used for addressing significant questions in ecology and conservation. Two key aquatic vertebrate groups were targeted: amphibians and bony......Global biodiversity in freshwater and the oceans is declining at high rates. Reliable tools for assessing and monitoring aquatic biodiversity, especially for rare and secretive species, are important for efficient and timely management. Recent advances in DNA sequencing have provided a new tool...

  1. RELEVANCE OF PROCESS RISK ASSESSMENT IN AIRLINES

    Directory of Open Access Journals (Sweden)

    Oksana G. Feoktistova

    2017-01-01

    Full Text Available The notion of “the concept on assumed risk” that took over from the outdated concept of absolute security is analyzed, the increasing significance of operating risk assessment at the present stage is noted. Some basic risk assessment techniques are considered. Matrix technique of risk assessment is considered more thoroughly, and it may be used in risk assessment of airlines in the context of labour protection management system.The ability to correctly assess risks and develop appropriate precautionary measures will allow airlines to avoid incidents leading to drastic consequences for staff, as well as to direct and indirect costs for the enterprise among which there could be singled out both direct property damage and loss of profit and expenses connected to incident investigation, penalty and compensation payment, loss of business reputation and so on. To reduce the rate of accidents and to develop safe activities skills for airlines staff a risk assessment chart is supposed to be implemented, which will be an efficient accidents prevention involving the staff in the process and making them follow safe working conditions.Process risk assessment is an integral part of assessment of the whole enterprise activity and work efficiency of a department and particular workers evaluation system. Labour protection activity should be based on risk identification and its control. Risk assessment is a keystone of labour protection activity planning.

  2. Development of criteria for an ecotoxicological examination procedure by differentially high integrated parts of aquatic model ecosystems and mathematical models. Final report

    International Nuclear Information System (INIS)

    Huber, W.; Zieris, F.J.; Lay, J.P.; Weiss, K.; Brueggemann, R.; Benz, J.

    1994-01-01

    It is difficult to assess the risks of environmental toxicants, especially when they have to be extrapolated from laboratory datas. Therefore efforts are made to determine the potential hazards of chemicals with the help of artificial ecosystems or parts of them. These kinds of test systems are similar to the structure and function of natural ecosystems and therefore allow to make representative extrapolations to real nature. As a disadvantage they are expensive and not yet standardized. To be accepted for the risk assessment of chemicals it was attempted to standardize artificial aquatic ecosystems in this project. It was tried to minimize the costs of the testing procedures by using a mathematical model simulating artificial littoral ecosystems. With increasing complexity of the system a better description of expected effects caused by a substance in environment can be given. With the help of outdoor ecosystems the threshold concentration of a chemical could be determined that is not likely to affect an aquatic ecosystem. Further we succeeded in providing a prototype modeling the effects in the microcosms used in our experiments. This model is able to approximately describe the behavior of macrophytes, algae, and secondary consumers in uncontaminated and contaminated systems (with the test chemical atrazine). (orig.) [de

  3. Metal stress induces programmed cell death in aquatic fungi

    International Nuclear Information System (INIS)

    Azevedo, Maria-Manuel; Almeida, Bruno; Ludovico, Paula; Cassio, Fernanda

    2009-01-01

    Aquatic hyphomycetes are a group of fungi that play a key role in organic matter turnover in both clean and metal-polluted streams. We examined the ability of Cu or Zn to induce programmed cell death (PCD) in three aquatic hyphomycete species through the evaluation of typical apoptotic markers, namely reactive oxygen species (ROS) accumulation, caspase-like activity, nuclear morphological alterations, and the occurrence of DNA strand breaks assessed by TUNEL assay. The exposure to both metals induced apoptotic events in all tested aquatic fungi. The most tolerant fungi either to Zn (Varicosporium elodeae) or Cu (Heliscussubmersus) exhibited higher levels of PCD markers, suggesting that PCD processes might be linked to fungal resistance/tolerance to metal stress. Moreover, different patterns of apoptotic markers were found, namely a PCD process independent of ROS accumulation in V. elodeae exposed to Cu, or independent of caspase-like activity in Flagellospora curta exposed to Zn, or even without the occurrence of DNA strand breaks in F. curta exposed to Cu. This suggests that a multiplicity of PCD pathways might be operating in aquatic hyphomycetes. The occurrence of a tightly regulated cell death pathway, such as PCD, in aquatic hyphomycetes under metal stress might be a part of the mechanisms underlying fungal acclimation in metal-polluted streams, because it would allow the rapid removal of unwanted or damaged cells sparing nutrients and space for the fittest ones.

  4. Effects of ionizing radiation on aquatic organisms and ecosystems

    International Nuclear Information System (INIS)

    1976-01-01

    A panel of experts in November 1971 specifically considered the effects of ionizing radiation on aquatic organisms and ecosystems and formulated detailed suggestions for research in the area. A further panel meeting took place in April 1974. The results of the work are presented in this report which is divided into 3 chapters in the first chapter the concentrations of natural and artificial radionuclides in aquatic environments and the radiation dose rates received by aquatic organisms are discussed. In particular, simple dosimetry models for phytoplankton, zooplankton, mollusca, crustacea and fish are presented which permit the estimation of the dose rates from incorporated radionuclides and from radionuclides in the external environment. In the second chapter the somatic and genetic effects of ionizing radiation on aquatic organisms are reviewed. Somatic effects are discussed separately as effects due to short-term (acute) exposure to near-lethal doses of radiation. Great attention is paid to the effects due to long-term (chronic) exposure at lower doses rates. Consideration is given to behaviour, repair mechanisms and metabolic stimulation after exposure, and also the influence of environmental factors on radiation effects. In the third chapter the potential effects of low-level irradiation on aquatic populations are considered. First, the possible consequences of somatic effects on egg and larval mortality, stock-recruitment, fecundity and ecosystem stability are discussed. Subsequently, the assessment of genetic effects as they relate to population genetics and increased mutation rates are considered

  5. Uncertainty quantification in flood risk assessment

    Science.gov (United States)

    Blöschl, Günter; Hall, Julia; Kiss, Andrea; Parajka, Juraj; Perdigão, Rui A. P.; Rogger, Magdalena; Salinas, José Luis; Viglione, Alberto

    2017-04-01

    Uncertainty is inherent to flood risk assessments because of the complexity of the human-water system, which is characterised by nonlinearities and interdependencies, because of limited knowledge about system properties and because of cognitive biases in human perception and decision-making. On top of the uncertainty associated with the assessment of the existing risk to extreme events, additional uncertainty arises because of temporal changes in the system due to climate change, modifications of the environment, population growth and the associated increase in assets. Novel risk assessment concepts are needed that take into account all these sources of uncertainty. They should be based on the understanding of how flood extremes are generated and how they change over time. They should also account for the dynamics of risk perception of decision makers and population in the floodplains. In this talk we discuss these novel risk assessment concepts through examples from Flood Frequency Hydrology, Socio-Hydrology and Predictions Under Change. We believe that uncertainty quantification in flood risk assessment should lead to a robust approach of integrated flood risk management aiming at enhancing resilience rather than searching for optimal defense strategies.

  6. Reevaluating Interrater Reliability in Offender Risk Assessment

    Science.gov (United States)

    van der Knaap, Leontien M.; Leenarts, Laura E. W.; Born, Marise Ph.; Oosterveld, Paul

    2012-01-01

    Offender risk and needs assessment, one of the pillars of the risk-need-responsivity model of offender rehabilitation, usually depends on raters assessing offender risk and needs. The few available studies of interrater reliability in offender risk assessment are, however, limited in the generalizability of their results. The present study…

  7. Enhancing the ecological risk assessment process.

    Science.gov (United States)

    Dale, Virginia H; Biddinger, Gregory R; Newman, Michael C; Oris, James T; Suter, Glenn W; Thompson, Timothy; Armitage, Thomas M; Meyer, Judith L; Allen-King, Richelle M; Burton, G Allen; Chapman, Peter M; Conquest, Loveday L; Fernandez, Ivan J; Landis, Wayne G; Master, Lawrence L; Mitsch, William J; Mueller, Thomas C; Rabeni, Charles F; Rodewald, Amanda D; Sanders, James G; van Heerden, Ivor L

    2008-07-01

    The Ecological Processes and Effects Committee of the US Environmental Protection Agency Science Advisory Board conducted a self-initiated study and convened a public workshop to characterize the state of the ecological risk assessment (ERA), with a view toward advancing the science and application of the process. That survey and analysis of ERA in decision making shows that such assessments have been most effective when clear management goals were included in the problem formulation; translated into information needs; and developed in collaboration with decision makers, assessors, scientists, and stakeholders. This process is best facilitated when risk managers, risk assessors, and stakeholders are engaged in an ongoing dialogue about problem formulation. Identification and acknowledgment of uncertainties that have the potential to profoundly affect the results and outcome of risk assessments also improves assessment effectiveness. Thus we suggest 1) through peer review of ERAs be conducted at the problem formulation stage and 2) the predictive power of risk-based decision making be expanded to reduce uncertainties through analytical and methodological approaches like life cycle analysis. Risk assessment and monitoring programs need better integration to reduce uncertainty and to evaluate risk management decision outcomes. Postdecision audit programs should be initiated to evaluate the environmental outcomes of risk-based decisions. In addition, a process should be developed to demonstrate how monitoring data can be used to reduce uncertainties. Ecological risk assessments should include the effects of chemical and nonchemical stressors at multiple levels of biological organization and spatial scale, and the extent and resolution of the pertinent scales and levels of organization should be explicitly considered during problem formulation. An approach to interpreting lines of evidence and weight of evidence is critically needed for complex assessments, and it would

  8. Integrated assessment of river health based on the conditions of water quality,aquatic life and physical habitat

    Institute of Scientific and Technical Information of China (English)

    MENG Wei; ZHANG Nan; ZHANG Yuan; ZHENG Binghui

    2009-01-01

    The health conditions of Liao River were assessed using 25 sampling sites in April 2005, with water quality index, biotic index and physical habitat quality index.Based on the method of cluster analysis (CA) for water quality indices, it reveals that heavily polluted sites of Liao River are located at estuary and mainstream.The aquatic species surveyed were attached algae and benthic invertebrates.The result shows that the diversity and biomass of attached algae and benthic index of biotic integrity (B-IBI) are degrading as the chemical and physical quality of water bodies deteriorating.Physiochemical parameters, BOD5, CODCr, TN, TP, NH3-N, DO, petroleum hydrocarbon and conductivity, were statistically analyzed with principal component analysis and correlation analysis.The statistical results were incorporated into the integrated assessing water quality index, combining fecal coliform count, attached algae diversity, B-IBI and physical habitat quality score, a comprehensive integrated assessing system of river ecological health was established.Based on the systimetic assesment, the assessed sites are categorized into 9 "healthy" and "sub-healthy" sites and 8 "sub-sick" and "sick" sites.

  9. Effects of soil phosphorus status on environmental risk assessment of glyphosate and glufosinate-ammonium.

    Science.gov (United States)

    Laitinen, Pirkko; Siimes, Katri; Rämö, Sari; Jauhiainen, Lauri; Eronen, Liisa; Oinonen, Seija; Hartikainen, Helinä

    2008-01-01

    The increased use of herbicides poses a risk to the aquatic environment. Easy and economical methods are needed to identify the fields where specific environment protection measures are needed. Phosphorus (P) and organophosphorus herbicides compete for the same adsorption sites in soil. In this study the relationship between P obtained in routine Finnish agronomic tests (acid ammonium acetate [P(AC)]) and adsorption of glyphosate and glufosinate-ammonium was investigated to determine whether P(AC) values could be used in the risk assessment. The adsorption of glyphosate ((N-(phosphonomethyl)glycine) and glufosinate-ammonium (2-amino-4-(hydroxymethylphosphinyl)butanoic acid) was studied in a clay and a sandy loam soil enriched with increasing amounts of P added as potassium dihydrogen phosphate. Desorption was also determined for some P-enriched soil samples. The adsorption of both herbicides diminished with increasing P(AC) value. The correlations between Freundlich adsorption coefficients obtained in the adsorption tests and P(AC) were nonlinear but significant (r > 0.98) in both soils. The exponential models of the relationship between soil P(AC) values and glyphosate adsorption were found to fit well to an independent Finnish soil data set (P glufosinate-ammonium). The desorption results showed that glufosinate-ammonium sorption is not inversely related to soil P status, and the high correlation coefficients obtained in the test of the model were thus artifacts caused by an abnormal concentration of exchangeable potassium in soil. The solved equations are a useful tool in assessing the leaching risks of glyphosate, but their use for glufosinate-ammonium is questionable.

  10. Environmental risk assessment of the use of different organic wastes as soil amendments

    Science.gov (United States)

    Alvarenga, Paula; Palma, Patrícia; Mourinha, Clarisse; Farto, Márcia; Cunha-Queda, Ana Cristina; Natal-da-Luz, Tiago; Sousa, José Paulo

    2013-04-01

    The use of organic wastes in agriculture is considered a way of maintaining or restoring the quality of soils, enlarging the slow cycling soil organic carbon pool. However, a wide variety of undesired substances, such as potentially trace elements and organic contaminants, can have adverse effects on the environment. That fact was highlighted by the Proposal for a Soil Framework Directive, which recognized that "soil degradation or soil improvements have a major impact on other areas, (…) such as surface waters and groundwater, human health, climate change, protection of nature and biodiversity, and food safety". Taking that into account, the research project "ResOrgRisk" aims to assess the environmental risk involved in the use of different organic wastes as soil amendments, evidencing their benefits and constraints, and defining the most suitable tests to reach such assessment. The organic wastes selected for this purpose were: sewage sludge, limed, not limed, and co-composted with agricultural wastes, agro-industrial sludge, mixed municipal solid waste compost, compost produced from organic farming residues, and pig slurry digestate. Whereas threshold values for heavy metals in sludge used for agriculture have been set by the European Commission, actually there is no definitive European legislation for organic contaminants. Guide values for some organic contaminants (e.g. polychlorinated biphenyls - PCBs, and polycyclic aromatic hydrocarbons - PAHs) have been adopted at national level by many European countries, such as Portugal. These values should be taken into account when assessing the risk involved in the use of organic wastes as soil amendments. However, chemical analysis of organic waste often gives scarce information because it does not include possible interactions between chemicals. Furthermore, an exhaustive identification and quantification of all substances is impractical. In this study, ecotoxicological tests (comprising solid and aquatic phases

  11. A framework for combining social impact assessment and risk assessment

    Energy Technology Data Exchange (ETDEWEB)

    Mahmoudi, Hossein, E-mail: mahmoudi@uni-hohenheim.de [Department of Social Sciences in Agriculture, University of Hohenheim (Germany); Environmental Sciences Research Institute, Shahid Beheshti University, G.C. (Iran, Islamic Republic of); Renn, Ortwin [Department of Technology and Environmental Sociology (and DIALOGIK), University of Stuttgart (Germany); Vanclay, Frank [Department of Cultural Geography, Faculty of Spatial Sciences, University of Groningen, Groningen (Netherlands); Hoffmann, Volker [Department of Social Sciences in Agriculture, University of Hohenheim (Germany); Karami, Ezatollah [College of Agriculture, Shiraz University, Shiraz (Iran, Islamic Republic of)

    2013-11-15

    An increasing focus on integrative approaches is one of the current trends in impact assessment. There is potential to combine impact assessment with various other forms of assessment, such as risk assessment, to make impact assessment and the management of social risks more effective. We identify the common features of social impact assessment (SIA) and social risk assessment (SRA), and discuss the merits of a combined approach. A hybrid model combining SIA and SRA to form a new approach called, ‘risk and social impact assessment’ (RSIA) is introduced. RSIA expands the capacity of SIA to evaluate and manage the social impacts of risky projects such as nuclear energy as well as natural hazards and disasters such as droughts and floods. We outline the three stages of RSIA, namely: impact identification, impact assessment, and impact management. -- Highlights: • A hybrid model to combine SIA and SRA namely RSIA is proposed. • RSIA can provide the proper mechanism to assess social impacts of natural hazards. • RSIA can play the role of ex-post as well as ex-ante assessment. • For some complicated and sensitive cases like nuclear energy, conducting a RSIA is necessary.

  12. A framework for combining social impact assessment and risk assessment

    International Nuclear Information System (INIS)

    Mahmoudi, Hossein; Renn, Ortwin; Vanclay, Frank; Hoffmann, Volker; Karami, Ezatollah

    2013-01-01

    An increasing focus on integrative approaches is one of the current trends in impact assessment. There is potential to combine impact assessment with various other forms of assessment, such as risk assessment, to make impact assessment and the management of social risks more effective. We identify the common features of social impact assessment (SIA) and social risk assessment (SRA), and discuss the merits of a combined approach. A hybrid model combining SIA and SRA to form a new approach called, ‘risk and social impact assessment’ (RSIA) is introduced. RSIA expands the capacity of SIA to evaluate and manage the social impacts of risky projects such as nuclear energy as well as natural hazards and disasters such as droughts and floods. We outline the three stages of RSIA, namely: impact identification, impact assessment, and impact management. -- Highlights: • A hybrid model to combine SIA and SRA namely RSIA is proposed. • RSIA can provide the proper mechanism to assess social impacts of natural hazards. • RSIA can play the role of ex-post as well as ex-ante assessment. • For some complicated and sensitive cases like nuclear energy, conducting a RSIA is necessary

  13. The effects of aquatic therapy on mobility of individuals with neurological diseases: a systematic review.

    Science.gov (United States)

    Marinho-Buzelli, Andresa R; Bonnyman, Alison M; Verrier, Mary C

    2015-08-01

    To summarize evidence on the effects of aquatic therapy on mobility in individuals with neurological diseases. MEDLINE, EMBASE, PsycInfo, CENTRAL, CINAHL, SPORTDiscus, PEDro, PsycBITE and OT Seeker were searched from inception to 15 September 2014. Hand-searching of reference lists was performed in the selected studies. The search included randomized controlled trials and quasi-experimental studies that investigated the use of aquatic therapy and its effect on mobility of adults with neurological diseases. One reviewer screened titles and abstracts of retrieved studies from the search strategy. Two reviewers independently examined the full texts and conducted the study selection, data extraction and quality assessment. A narrative synthesis of data was applied to summarize information from included studies. The Downs and Black Scale was used to assess methodological quality. A total of 116 articles were obtained for full text eligibility. Twenty studies met the specified inclusion criteria: four Randomized Controlled Trials (RCTs), four non-randomized studies and 12 before-and-after tests. Two RCTs (30 patients with stroke in the aquatic therapy groups), three non-randomized studies and three before-and-after studies showed "fair" evidence that aquatic therapy increases dynamic balance in participants with some neurological disorders. One RCT (seven patients with stroke in the aquatic therapy group) and two before-and-after tests (20 patients with multiple sclerosis) demonstrated "fair" evidence on improvement of gait speed after aquatic therapy. Our synthesis showed "fair" evidence supporting the use of aquatic therapy to improve dynamic balance and gait speed in adults with certain neurological conditions. © The Author(s) 2014.

  14. Risk assessment [Chapter 9

    Science.gov (United States)

    Dennis S. Ojima; Louis R. Iverson; Brent L. Sohngen; James M. Vose; Christopher W. Woodall; Grant M. Domke; David L. Peterson; Jeremy S. Littell; Stephen N. Matthews; Anantha M. Prasad; Matthew P. Peters; Gary W. Yohe; Megan M. Friggens

    2014-01-01

    What is "risk" in the context of climate change? How can a "risk-based framework" help assess the effects of climate change and develop adaptation priorities? Risk can be described by the likelihood of an impact occurring and the magnitude of the consequences of the impact (Yohe 2010) (Fig. 9.1). High-magnitude impacts are always...

  15. Epidemiology of non-submersion injuries in aquatic sporting and recreational activities.

    Science.gov (United States)

    Chalmers, David; Morrison, Luke

    2003-01-01

    Although the issues of drowning and near-drowning in aquatic sporting and recreational activities receive considerable attention in the epidemiological literature, there is not a recognised literature on non-submersion injuries occurring in these activities. This review draws together the epidemiological literature on non-submersion injuries and describes the incidence, nature and causes of these injuries, common risk factors, and strategies for prevention. Activities covered by the review include swimming, diving, boating, surf sports, fishing, water polo and water sliding. For most activities there is a dearth of good quality descriptive studies, with most involving cases-series designs and few providing estimates of incidence. Inconsistencies in inclusion criteria and the reporting of incidence rates makes comparisons within and between activities difficult. Incidence rates were identified for most activities and in general the incidence of injury was low, especially for more serious injury. However, some activities were associated with severely disabling injury, such as spinal cord injury (diving) and amputation (from propeller strikes in water skiing and swimming). Only three studies reporting the significance of postulated risk factors were identified. Lack of knowledge about the water being entered and alcohol consumption are significant risk factors in recreational diving; increased blood alcohol concentrations were reported to increase the risk of death in boating; and obesity and tandem riding were reported to increase the risk of injury on public water slides. Few evaluations of preventive measures were identified. Two studies reported reductions in the incidence of water slide injuries following the introduction of design changes and supervision, but neither had a non-intervention comparison group. Improvements in swimming and diving skills were reported in three studies, but these were not designed to measure changes in the risk of injury.This review

  16. Risk assessment - black art or science?

    International Nuclear Information System (INIS)

    Moore, G.

    1988-01-01

    Measures of risk can be divided into two categories, those that observe or calculate the risk of a process or project, and those that rely on the level of risk as perceived by the people during the assessment. Collection of data of accidents (where cause and effect are obvious) and experiments on animals which can then be extrapolated to humans, are two ways of risk assessment. Mathematical models and computerized simulations, using either fault tree analysis or Monte Carlo methods are explained simply. Using these methods, experts are able to perceive risk fairly realistically. However, the general public's perception of risk is often quite different, as potential risk is assessed in different ways. The concept of tolerable risk is considered, particularly with reference to nuclear reactors such as Sizewell-B. The need to inform the public of safeguards and safety procedures so they have a better understanding of the risks of nuclear power is stressed. (U.K.)

  17. Acute toxicity of anionic and non-ionic surfactants to aquatic organisms.

    Science.gov (United States)

    Lechuga, M; Fernández-Serrano, M; Jurado, E; Núñez-Olea, J; Ríos, F

    2016-03-01

    The environmental risk of surfactants requires toxicity measurements. As different test organisms have different sensitivity to the toxics, it is necessary to establish the most appropriate organism to classify the surfactant as very toxic, toxic, harmful or safe, in order to establish the maximum permissible concentrations in aquatic ecosystems. We have determined the toxicity values of various anionic surfactants ether carboxylic derivatives using four test organisms: the freshwater crustacean Daphnia magna, the luminescent bacterium Vibrio fischeri, the microalgae Selenastrum capricornutum (freshwater algae) and Phaeodactylum tricornutum (seawater algae). In addition, in order to compare and classify the different families of surfactants, we have included a compilation of toxicity data of surfactants collected from literature. The results indicated that V. fischeri was more sensitive to the toxic effects of the surfactants than was D. magna or the microalgae, which was the least sensitive. This result shows that the most suitable toxicity assay for surfactants may be the one using V. fischeri. The toxicity data revealed considerable variation in toxicity responses with the structure of the surfactants regardless of the species tested. The toxicity data have been related to the structure of the surfactants, giving a mathematical relationship that helps to predict the toxic potential of a surfactant from its structure. Model-predicted toxicity agreed well with toxicity values reported in the literature for several surfactants previously studied. Predictive models of toxicity is a handy tool for providing a risk assessment that can be useful to establish the toxicity range for each surfactant and the different test organisms in order to select efficient surfactants with a lower impact on the aquatic environment. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. An Assessment of Cs-137, R-226 and Pa-239, 240 doses for aquatic and terrestrial reference organisms in Poland

    International Nuclear Information System (INIS)

    Krajewski, P.; Suplinska, M.; Rosiak, I.

    2004-01-01

    The doses assessment for aquatic and terrestrial reference organisms was performed, based on the methodology elaborated by U.S. Department of Energy. Four organism types and their corresponding dose limits were used, and the principal exposure pathways were considered for aquatic animal, riparian animal, terrestrial plant, and terrestrial animal organism types respectively. Terrestrial rodent (apodemus flavicollis), Baltic Sea fish (cod, sprat, herring, plaice) and crustaceans (Sanduria entomon and Mytilus edulis) were taken in to special consideration. In the first screening approach the annual doses from 137Cs and 239Pu (bomb-tests-fallout and Czarnobyl origin) and 226Ra (natural radionuclide) to biota were calculated at average, minimum and maximum concentrations of these radionuclides observed in soil, water, and sediment using the default bioaccumulation factors as well as lumped parameters values recommended by DOE Standard. The concentrations of 137Cs measured in the most contaminated region in Poland (Stare Olesno 380 Bqxkg-1 d.w.) and the concentrations of 226Ra for Southern regions of Poland with elevated levels of 226Ra in soil (100 B kg-1 d.w.) were taken in the dose assessment for terrestrial animals. The concentrations of 137Cs and 239Pu and 226Ra determined in see water and bottom sediments from two sub-areas (Gdansk Basin and Bornholm Basin) were used in the dose assessment for aquatic biota. In the second ''site specific'' approach the average empirically measured concentrations of radionuclides in animal tissues were used. At the first approach the total maximal annual doses for terrestrial plants were less then one percent of the recommended dose limits ( 3600 mGyxy-1 ) and items for seawater organisms did not exceed a 40% of this limit whereas the total maximal annual doses for terrestrial animal were close to the recommended dose limit (360 mGyxy-1). It prompted to start supplementary site-specific biota dose assessment through site

  19. Concerning ethical risk assessment

    International Nuclear Information System (INIS)

    Boeckle, F.

    1991-01-01

    After a fundamental consideration of the concept of responsibility and 'long-term responsibility' for late sequelae, the problems of an ehtical assessment of risks were illustrated: The concept of risk itself poses three problems - predicting the probability of occurrence, assessing the damage = subjective classification of the degree of damage, determining whether the advantages outweigh the risks. It is not possible to weigh the advantages and risks against each other without assessing the goals and the priorities which have been set. Here ethics is called for, because it concerns itself with the reasonableness of evaluative decisions. Its task is to enable us to become aware of and comprehend our system of values in all of its complexity in reference to real life. Ethics can only fulfill its task if it helps us to adopt an integral perspective, i.e. if it centers on the human being. 'One must assess all technical and economic innovations in terms of whether they are beneficial to the development of mankind on a long-term basis. They are only to be legitimized insofar as they prove themselves to be a means of liberating mankind and contributing to his sense of dignity and identity, as a means of bringing human beings together and encouraging them to care for one another, and as a means of protecting the natural basis of our existence. (orig./HSCH) [de

  20. Ecological risk assessment

    National Research Council Canada - National Science Library

    Suter, Glenn W; Barnthouse, L. W. (Lawrence W)

    2007-01-01

    Ecological risk assessment is commonly applied to the regulation of chemicals, the remediation of contaminated sites, the monitoring of importation of exotic organisms, the management of watersheds...