WorldWideScience

Sample records for aquatic pathogen viral

  1. Distribution of an invasive aquatic pathogen (viral hemorrhagic septicemia virus) in the Great Lakes and its relationship to shipping

    Science.gov (United States)

    Bain, Mark B.; Cornwell, Emily R.; Hope, Kristine M.; Eckerlin, Geofrey E.; Casey, Rufina N.; Groocock, Geoffrey H.; Getchell, Rodman G.; Bowser, Paul R.; Winton, James R.; Batts, William N.; Cangelosi, Allegra; Casey, James W.

    2010-01-01

    Viral hemorrhagic septicemia virus (VHSV) is a rhabdovirus found in fish from oceans of the northern hemisphere and freshwaters of Europe. It has caused extensive losses of cultured and wild fish and has become established in the North American Great Lakes. Large die-offs of wild fish in the Great Lakes due to VHSV have alarmed the public and provoked government attention on the introduction and spread of aquatic animal pathogens in freshwaters. We investigated the relations between VHSV dispersion and shipping and boating activity in the Great Lakes by sampling fish and water at sites that were commercial shipping harbors, recreational boating centers, and open shorelines. Fish and water samples were individually analyzed for VHSV using quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and cell culture assays. Of 1,221 fish of 17 species, 55 were VHSV positive with highly varied qRT-PCR titers (1 to 5,950,000 N gene copies). The detections of VHSV in fish and water samples were closely associated and the virus was detected in 21 of 30 sites sampled. The occurrence of VHSV was not related to type of site or shipping related invasion hotspots. Our results indicate that VHSV is widely dispersed in the Great Lakes and is both an enzootic and epizootic pathogen. We demonstrate that pathogen distribution information could be developed quickly and is clearly needed for aquatic ecosystem conservation, management of affected populations, and informed regulation of the worldwide trade of aquatic organisms.

  2. Molecular Tracing of Viral Pathogen in Aquaculture (MOLTRAQ): a new EMIDA project

    DEFF Research Database (Denmark)

    Jensen, B. Bang; Aldrin, M.; Avarre, M. C.

    2012-01-01

    a generic approach to viral disease control by using information on epidemiological and phylogenetic attributes from several important aquatic animal viruses. The project will i) generate and use spatio-temporal epidemiological data, phylogeographic data and gene expression data for important host......-viral pathogen systems to identify important factors affecting the spread of diseases in aquaculture, and ii) integrate these in scenario simulation models to assess effects of various control strategies for selected host-pathogen systems. The project consists of six workpackages: WP 1: Project co...

  3. Highly pathogenic influenza A(H5N1 virus survival in complex artificial aquatic biotopes.

    Directory of Open Access Journals (Sweden)

    Viseth Srey Horm

    Full Text Available BACKGROUND: Very little is known regarding the persistence of Highly Pathogenic Avian Influenza (HPAI H5N1 viruses in aquatic environments in tropical countries, although environmental materials have been suggested to play a role as reservoirs and sources of transmission for H5N1 viruses. METHODOLOGY/PRINCIPAL FINDINGS: The survival of HPAI H5N1 viruses in experimental aquatic biotopes (water, mud, aquatic flora and fauna relevant to field conditions in Cambodia was investigated. Artificial aquatic biotopes, including simple ones containing only mud and water, and complex biotopes involving the presence of aquatic flora and fauna, were set up. They were experimentally contaminated with H5N1 virus. The persistence of HPAI H5N1 virus (local avian and human isolates was determined by virus isolation in embryonated chicken eggs and by real-time reverse-polymerase chain reaction. Persistence of infectious virus did not exceed 4 days, and was only identified in rain water. No infectious virus particles were detected in pond and lake water or mud even when high inoculum doses were used. However, viral RNA persisted up to 20 days in rain water and 7 days in pond or lake water. Viral RNA was also detected in mud samples, up to 14 days post-contamination in several cases. Infectious virus and viral RNA was detected in few cases in the aquatic fauna and flora, especially in bivalves and labyrinth fish, although these organisms seemed to be mostly passive carriers of the virus rather than host allowing virus replication. CONCLUSIONS/SIGNIFICANCE: Although several factors for the survival and persistence of HPAI viruses in the environment are still to be elucidated, and are particularly hard to control in laboratory conditions, our results, along with previous data, support the idea that environmental surveillance is of major relevance for avian influenza control programs.

  4. The application of bacteriophages as novel indicators of viral pathogens in wastewater treatment systems.

    Science.gov (United States)

    Dias, Edgard; Ebdon, James; Taylor, Huw

    2018-02-01

    Many wastewater treatment technologies have been shown to remove bacterial pathogens more effectively than viral pathogens and, in aquatic environments, levels of traditional faecal indicator bacteria (FIB) do not appear to correlate consistently with levels of human viral pathogens. There is, therefore, a need for novel viral indicators of faecal pollution and surrogates of viral pathogens, especially given the increasing importance of indirect and direct wastewater reuse. Potential candidates include bacteriophages (phages) and the study described here sought to elucidate the relationship between three groups of phages (somatic coliphages (SOMPH), F-RNA coliphages (F-RNAPH) and human-specific phages infecting B. fragilis (Bf124PH) - enumeration using double layer agar technique) and viral pathogens (human adenovirus (HuAdV) and norovirus (NoV) - enumeration using molecular methods) through full-scale municipal wastewater treatment processes. FIB (faecal coliforms (FC) and intestinal enterococci (ENT) - enumeration using membrane filtration) were also monitored. Samples were collected every fortnight, during a twelve-month period, at each stage of four full-scale wastewater treatment plants (WWTP) in southern England (two activated sludge (AS) and two trickling filter (TF) plants) (n = 360 samples). FIB and SOMPH were consistently found in all samples tested, whereas F-RNAPH, Bf124PH and HuAdV were less frequently detected, especially following AS treatment. The detection rate of NoV was low and consequently discussion of this group of viruses is limited. Concentrations of SOMPH and FIB were statistically higher (p value F-RNAPH, Bf124PH and HuAdV in raw wastewater. FIB were more effectively removed than phages in both systems. Removal rates of HuAdV were similar to those of phages at the secondary treatment stage of both systems. In TF systems, HuAdV were removed at the same rate as F-RNAPH, but at lower rates than SOMPH and Bf124PH. The findings suggest that

  5. Viral pathogen discovery

    Science.gov (United States)

    Chiu, Charles Y

    2015-01-01

    Viral pathogen discovery is of critical importance to clinical microbiology, infectious diseases, and public health. Genomic approaches for pathogen discovery, including consensus polymerase chain reaction (PCR), microarrays, and unbiased next-generation sequencing (NGS), have the capacity to comprehensively identify novel microbes present in clinical samples. Although numerous challenges remain to be addressed, including the bioinformatics analysis and interpretation of large datasets, these technologies have been successful in rapidly identifying emerging outbreak threats, screening vaccines and other biological products for microbial contamination, and discovering novel viruses associated with both acute and chronic illnesses. Downstream studies such as genome assembly, epidemiologic screening, and a culture system or animal model of infection are necessary to establish an association of a candidate pathogen with disease. PMID:23725672

  6. UGGT1 enhances enterovirus 71 pathogenicity by promoting viral RNA synthesis and viral replication.

    Directory of Open Access Journals (Sweden)

    Peng-Nien Huang

    2017-05-01

    Full Text Available Positive-strand RNA virus infections can induce the stress-related unfolded protein response (UPR in host cells. This study found that enterovirus A71 (EVA71 utilizes host UDP-glucose glycoprotein glucosyltransferase 1 (UGGT1, a key endoplasmic reticulum protein (ER involved in UPR, to enhance viral replication and virulence. EVA71 forms replication complexes (RCs on cellular membranes that contain a mix of host and viral proteins to facilitate viral replication, but the components and processes involved in the assembly and function of RCs are not fully understood. Using EVA71 as a model, this study found that host UGGT1 and viral 3D polymerase co-precipitate along with other factors on membranous replication complexes to enhance viral replication. Increased UGGT1 levels elevated viral growth rates, while viral pathogenicity was observed to be lower in heterozygous knockout mice (Uggt1 +/- mice. These findings provide important insight on the role of UPR and host UGGT1 in regulating RNA virus replication and pathogenicity.

  7. Insect symbiotic bacteria harbour viral pathogens for transovarial transmission.

    Science.gov (United States)

    Jia, Dongsheng; Mao, Qianzhuo; Chen, Yong; Liu, Yuyan; Chen, Qian; Wu, Wei; Zhang, Xiaofeng; Chen, Hongyan; Li, Yi; Wei, Taiyun

    2017-03-06

    Many insects, including mosquitoes, planthoppers, aphids and leafhoppers, are the hosts of bacterial symbionts and the vectors for transmitting viral pathogens 1-3 . In general, symbiotic bacteria can indirectly affect viral transmission by enhancing immunity and resistance to viruses in insects 3-5 . Whether symbiotic bacteria can directly interact with the virus and mediate its transmission has been unknown. Here, we show that an insect symbiotic bacterium directly harbours a viral pathogen and mediates its transovarial transmission to offspring. We observe rice dwarf virus (a plant reovirus) binding to the envelopes of the bacterium Sulcia, a common obligate symbiont of leafhoppers 6-8 , allowing the virus to exploit the ancient oocyte entry path of Sulcia in rice leafhopper vectors. Such virus-bacterium binding is mediated by the specific interaction of the viral capsid protein and the Sulcia outer membrane protein. Treatment with antibiotics or antibodies against Sulcia outer membrane protein interferes with this interaction and strongly prevents viral transmission to insect offspring. This newly discovered virus-bacterium interaction represents the first evidence that a viral pathogen can directly exploit a symbiotic bacterium for its transmission. We believe that such a model of virus-bacterium communication is a common phenomenon in nature.

  8. Secondary metabolites of Antarctic fungi antagonistic to aquatic pathogenic bacteria

    Directory of Open Access Journals (Sweden)

    Zhao Huibin

    2018-03-01

    Full Text Available Polar microbial derived antibiotics have potential as alternatives to traditional antibiotics in treating fish against pathogenic bacteria. In this paper, 23 strains of polar fungi were fermented to detect bacteriostatic products on three aquatic pathogenic bacteria, subsequently the active fungus was identified. It was indicated that secondary metabolites of 23 strains weredistinct; of these, the extract of strain B-7 (belonging to Bjerkandera according to molecular identification demonstrated a strong antibacterial activity to Streptococcus agalactiae, Vibrio anguillarum and Aeromonas hydrophila ATCC7966 by Kirby-Bauerpaper strip method. During one fermentation cycle, the pH curve of the fermentation liquor became lowest (4.0 on the 4th day and rose back to 7.6 finally after 5 days, The residual sugar curve was decreased before stablising on the 6th day. It is presumed that a large amount of alkaline secondary metabolites might have been produced during fermentation. This study focuses on antagonism between aquatic pathogenic bacteria and fermentation metabolites from Antarctic fungi for the first time, which may provide data on research of antibiotics against aquatic pathogenic bacteria.

  9. The public health implications of pathogens in polluted aquatic ...

    African Journals Online (AJOL)

    The public health implications of pathogens in polluted aquatic ecosystems: a review. ... Pathogen contamination in water sources and related diseases constitute ... of public water supply and most importantly, increased rate of human mortality. ... illnesses related to respiratory, gastrointestinal and dermatological systems, ...

  10. Torque teno virus: an improved indicator for viral pathogens in drinking waters.

    Science.gov (United States)

    Griffin, Jennifer S; Plummer, Jeanine D; Long, Sharon C

    2008-10-03

    Currently applied indicator organism systems, such as coliforms, are not fully protective of public health from enteric viruses in water sources. Waterborne disease outbreaks have occurred in systems that tested negative for coliforms, and positive coliform results do not necessarily correlate with viral risk. It is widely recognized that bacterial indicators do not co-occur exclusively with infectious viruses, nor do they respond in the same manner to environmental or engineered stressors. Thus, a more appropriate indicator of health risks from infectious enteric viruses is needed. Torque teno virus is a small, non-enveloped DNA virus that likely exhibits similar transport characteristics to pathogenic enteric viruses. Torque teno virus is unique among enteric viral pathogens in that it appears to be ubiquitous in humans, elicits seemingly innocuous infections, and does not exhibit seasonal fluctuations or epidemic spikes. Torque teno virus is transmitted primarily via the fecal-oral route and can be assayed using rapid molecular techniques. We hypothesize that Torque teno virus is a more appropriate indicator of viral pathogens in drinking waters than currently used indicator systems based solely on bacteria. To test the hypothesis, a multi-phased research approach is needed. First, a reliable Torque teno virus assay must be developed. A rapid, sensitive, and specific PCR method using established nested primer sets would be most appropriate for routine monitoring of waters. Because PCR detects both infectious and inactivated virus, an in vitro method to assess infectivity also is needed. The density and occurrence of Torque teno virus in feces, wastewater, and source waters must be established to define spatial and temporal stability of this potential indicator. Finally, Torque teno virus behavior through drinking water treatment plants must be determined with co-assessment of traditional indicators and enteric viral pathogens to assess whether correlations exist

  11. Transmission routes maintaining a viral pathogen of steelhead trout within a complex multi-host assemblage

    Science.gov (United States)

    Breyta, Rachel; Brito, Ilana L.; Ferguson, Paige; Kurath, Gael; Naish, Kerry A.; Purcell, Maureen; Wargo, Andrew R.; LaDeau, Shannon L.

    2017-01-01

    This is the first comprehensive region wide, spatially explicit epidemiologic analysis of surveillance data of the aquatic viral pathogen infectious hematopoietic necrosis virus (IHNV) infecting native salmonid fish. The pathogen has been documented in the freshwater ecosystem of the Pacific Northwest of North America since the 1950s, and the current report describes the disease ecology of IHNV during 2000–2012. Prevalence of IHNV infection in monitored salmonid host cohorts ranged from 8% to 30%, with the highest levels observed in juvenile steelhead trout. The spatial distribution of all IHNV-infected cohorts was concentrated in two sub-regions of the study area, where historic burden of the viral disease has been high. During the study period, prevalence levels fluctuated with a temporal peak in 2002. Virologic and genetic surveillance data were analyzed for evidence of three separate but not mutually exclusive transmission routes hypothesized to be maintaining IHNV in the freshwater ecosystem. Transmission between year classes of juvenile fish at individual sites (route 1) was supported at varying levels of certainty in 10%–55% of candidate cases, transmission between neighboring juvenile cohorts (route 2) was supported in 31%–78% of candidate cases, and transmission from adult fish returning to the same site as an infected juvenile cohort was supported in 26%–74% of candidate cases. The results of this study indicate that multiple specific transmission routes are acting to maintain IHNV in juvenile fish, providing concrete evidence that can be used to improve resource management. Furthermore, these results demonstrate that more sophisticated analysis of available spatio-temporal and genetic data is likely to yield greater insight in future studies.

  12. Screening of Viral Pathogens from Pediatric Ileal Tissue Samples after Vaccination

    Directory of Open Access Journals (Sweden)

    Laura Hewitson

    2014-01-01

    Full Text Available In 2010, researchers reported that the two US-licensed rotavirus vaccines contained DNA or DNA fragments from porcine circovirus (PCV. Although PCV, a common virus among pigs, is not thought to cause illness in humans, these findings raised several safety concerns. In this study, we sought to determine whether viruses, including PCV, could be detected in ileal tissue samples of children vaccinated with one of the two rotavirus vaccines. A broad spectrum, novel DNA detection technology, the Lawrence Livermore Microbial Detection Array (LLMDA, was utilized, and confirmation of viral pathogens using the polymerase chain reaction (PCR was conducted. The LLMDA technology was recently used to identify PCV from one rotavirus vaccine. Ileal tissue samples were analyzed from 21 subjects, aged 15–62 months. PCV was not detected in any ileal tissue samples by the LLMDA or PCR. LLMDA identified a human rotavirus A from one of the vaccinated subjects, which is likely due to a recent infection from a wild type rotavirus. LLMDA also identified human parechovirus, a common gastroenteritis viral infection, from two subjects. Additionally, LLMDA detected common gastrointestinal bacterial organisms from the Enterobacteriaceae, Bacteroidaceae, and Streptococcaceae families from several subjects. This study provides a survey of viral and bacterial pathogens from pediatric ileal samples, and may shed light on future studies to identify pathogen associations with pediatric vaccinations.

  13. Occurrence of viral pathogens in Penaeus monodon post-larvae from aquaculture hatcheries

    Directory of Open Access Journals (Sweden)

    Toms C. Joseph

    2015-09-01

    Full Text Available Viral pathogens appear to exert the most significant constraints on the growth and survival of crustaceans under culture conditions. The prevalence of viral pathogens White Spot Syndrome Virus (WSSV, Hepatopancreatic Parvo Virus (HPV, Monodon Baculo Virus (MBV and Infectious Hypodermal and Hematopoietic Necrosis Virus (IHHNV in Penaeus monodon post-larvae was studied. Samples collected from different hatcheries and also samples submitted by farmers from Kerala were analyzed. Out of 104 samples collected, WSSV was detected in 12.5% of the post-larvae samples. Prevalence of concurrent infections by HPV, MBV and WSSV (either dual or triple infection was present in 60.6% of the total post-larvae tested. Out of the 51 double positives, 98% showed either HPV or IHHNV infection. HPV or IHHNV was detected in 11 post-larval samples showing triple viral infection. This is the first report of IHHNV from India. Result of this study reveals the lack of efficient screening strategies to eradicate viruses in hatchery reared post-larvae.

  14. Porcine semen as a vector for transmission of viral pathogens.

    Science.gov (United States)

    Maes, Dominiek; Van Soom, Ann; Appeltant, Ruth; Arsenakis, Ioannis; Nauwynck, Hans

    2016-01-01

    Different viruses have been detected in porcine semen. Some of them are on the list of the World Organization for Animal Health (OIE), and consequently, these pathogens are of socioeconomic and/or public health importance and are of major importance in the international trade of animals and animal products. Artificial insemination (AI) is one of the most commonly used assisted reproductive technologies in pig production worldwide. This extensive use has enabled pig producers to benefit from superior genetics at a lower cost compared to natural breeding. However, the broad distribution of processed semen doses for field AI has increased the risk of widespread transmission of swine viral pathogens. Contamination of semen can be due to infections of the boar or can occur during semen collection, processing, and storage. It can result in reduced semen quality, embryonic mortality, endometritis, and systemic infection and/or disease in the recipient female. The presence of viral pathogens in semen can be assessed by demonstration of viable virus, nucleic acid of virus, or indirectly by measuring serum antibodies in the boar. The best way to prevent disease transmission via the semen is to assure that the boars in AI centers are free from the disease, to enforce very strict biosecurity protocols, and to perform routine health monitoring of boars. Prevention of viral semen contamination should be the primary focus because it is easier to prevent contamination than to eliminate viruses once present in semen. Nevertheless, research and development of novel semen processing treatments such as single-layer centrifugation is ongoing and may allow in the future to decontaminate semen. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Dissecting HIV Virulence: Heritability of Setpoint Viral Load, CD4+ T-Cell Decline, and Per-Parasite Pathogenicity.

    Science.gov (United States)

    Bertels, Frederic; Marzel, Alex; Leventhal, Gabriel; Mitov, Venelin; Fellay, Jacques; Günthard, Huldrych F; Böni, Jürg; Yerly, Sabine; Klimkait, Thomas; Aubert, Vincent; Battegay, Manuel; Rauch, Andri; Cavassini, Matthias; Calmy, Alexandra; Bernasconi, Enos; Schmid, Patrick; Scherrer, Alexandra U; Müller, Viktor; Bonhoeffer, Sebastian; Kouyos, Roger; Regoes, Roland R

    2018-01-01

    Pathogen strains may differ in virulence because they attain different loads in their hosts, or because they induce different disease-causing mechanisms independent of their load. In evolutionary ecology, the latter is referred to as "per-parasite pathogenicity". Using viral load and CD4+ T-cell measures from 2014 HIV-1 subtype B-infected individuals enrolled in the Swiss HIV Cohort Study, we investigated if virulence-measured as the rate of decline of CD4+ T cells-and per-parasite pathogenicity are heritable from donor to recipient. We estimated heritability by donor-recipient regressions applied to 196 previously identified transmission pairs, and by phylogenetic mixed models applied to a phylogenetic tree inferred from HIV pol sequences. Regressing the CD4+ T-cell declines and per-parasite pathogenicities of the transmission pairs did not yield heritability estimates significantly different from zero. With the phylogenetic mixed model, however, our best estimate for the heritability of the CD4+ T-cell decline is 17% (5-30%), and that of the per-parasite pathogenicity is 17% (4-29%). Further, we confirm that the set-point viral load is heritable, and estimate a heritability of 29% (12-46%). Interestingly, the pattern of evolution of all these traits differs significantly from neutrality, and is most consistent with stabilizing selection for the set-point viral load, and with directional selection for the CD4+ T-cell decline and the per-parasite pathogenicity. Our analysis shows that the viral genotype affects virulence mainly by modulating the per-parasite pathogenicity, while the indirect effect via the set-point viral load is minor. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  16. Viral pathogen production in a wild grass host driven by host growth and soil nitrogen.

    Science.gov (United States)

    Whitaker, Briana K; Rúa, Megan A; Mitchell, Charles E

    2015-08-01

    Nutrient limitation is a basic ecological constraint that has received little attention in studies on virus production and disease dynamics. Nutrient availability could directly limit the production of viral nucleic acids and proteins, or alternatively limit host growth and thus indirectly limit metabolic pathways necessary for viral replication. In order to compare direct and indirect effects of nutrient limitation on virus production within hosts, we manipulated soil nitrogen (N) and phosphorus (P) availability in a glasshouse for the wild grass host Bromus hordeaceus and the viral pathogen Barley yellow dwarf virus-PAV. We found that soil N additions increased viral concentrations within host tissues, and the effect was mediated by host growth. Specifically, in statistical models evaluating the roles of host biomass production, leaf N and leaf P, viral production depended most strongly on host biomass, rather than the concentration of either nutrient. Furthermore, at low soil N, larger plants supported greater viral concentrations than smaller ones, whereas at high N, smaller plants supported greater viral concentrations. Our results suggest that enhanced viral productivity under N enrichment is an indirect consequence of nutrient stimulation to host growth rate. Heightened pathogen production in plants has important implications for a world facing increasing rates of nutrient deposition. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  17. Human viral pathogens are pervasive in wastewater treatment center aerosols.

    Science.gov (United States)

    Brisebois, Evelyne; Veillette, Marc; Dion-Dupont, Vanessa; Lavoie, Jacques; Corbeil, Jacques; Culley, Alexander; Duchaine, Caroline

    2018-05-01

    Wastewater treatment center (WTC) workers may be vulnerable to diseases caused by viruses, such as the common cold, influenza and gastro-intestinal infections. Although there is a substantial body of literature characterizing the microbial community found in wastewater, only a few studies have characterized the viral component of WTC aerosols, despite the fact that most diseases affecting WTC workers are of viral origin and that some of these viruses are transmitted through the air. In this study, we evaluated in four WTCs the presence of 11 viral pathogens of particular concern in this milieu and used a metagenomic approach to characterize the total viral community in the air of one of those WTCs. The presence of viruses in aerosols in different locations of individual WTCs was evaluated and the results obtained with four commonly used air samplers were compared. We detected four of the eleven viruses tested, including human adenovirus (hAdV), rotavirus, hepatitis A virus (HAV) and Herpes Simplex virus type 1 (HSV1). The results of the metagenomic assay uncovered very few viral RNA sequences in WTC aerosols, however sequences from human DNA viruses were in much greater relative abundance. Copyright © 2017. Published by Elsevier B.V.

  18. Science to support aquatic animal health

    Science.gov (United States)

    Purcell, Maureen K.; Harris, M. Camille

    2016-10-18

    Healthy aquatic ecosystems are home to a diversity of plants, invertebrates, fish and wildlife. Aquatic animal populations face unprecedented threats to their health and survival from climate change, water shortages, habitat alteration, invasive species and environmental contaminants. These environmental stressors can directly impact the prevalence and severity of disease in aquatic populations. For example, periodic fish kills in the upper Chesapeake Bay Watershed are associated with many different opportunistic pathogens that proliferate in stressed fish populations. An estimated 80 percent of endangered juvenile Puget Sound steelhead trout die within two weeks of entering the marine environment, and a role for disease in these losses is being investigated. The introduction of viral hemorrhagic septicemia virus (VHSV) into the Great Lakes—a fishery worth an estimated 7 billion dollars annually—resulted in widespread fish die-offs and virus detections in 28 different fish species. Millions of dying sea stars along the west coast of North America have led to investigations into sea star wasting disease. U.S. Geological Survey (USGS) scientists are assisting managers with these issues through ecological investigations of aquatic animal diseases, field surveillance, and research to promote the development of mitigation strategies.

  19. Equivalence of self- and staff-collected nasal swabs for the detection of viral respiratory pathogens.

    Directory of Open Access Journals (Sweden)

    Manas K Akmatov

    Full Text Available BACKGROUND: The need for the timely collection of diagnostic biosamples during symptomatic episodes represents a major obstacle to large-scale studies on acute respiratory infection (ARI epidemiology. This may be circumvented by having the participants collect their own nasal swabs. We compared self- and staff-collected swabs in terms of swabbing quality and detection of viral respiratory pathogens. METHODOLOGY/PRINCIPAL FINDINGS: We conducted a prospective study among employees of our institution during the ARI season 2010/2011 (December-March. Weekly emails were sent to the participants (n = 84, reminding them to come to the study center in case of new symptoms. The participants self-collected an anterior nasal swab from one nostril, and trained study personnel collected one from the other nostril. The participants self-collected another two swabs (one from each nostril on a subsequent day. Human β-actin DNA concentration was determined in the swabs as a quality control. Viral respiratory pathogens were detected by multiplex RT-PCR (Seeplex RV15 kit, Seegene, Eschborn, Germany. Of 84 participants, 56 (67% reported at least one ARI episode, 18 participants two, and one participant three. Self-swabbing was highly accepted by the participants. The amount of β-actin DNA per swab was higher in the self- than in the staff-collected swabs (p = 0.008. β-actin concentration was lower in the self-swabs collected on day 1 than in those collected on a subsequent day (p<0.0001. A respiratory viral pathogen was detected in 31% (23/75 of staff- and in 35% (26/75 of self-collected swabs (p = 0.36. With both approaches, the most frequently identified pathogens were human rhinoviruses A/B/C (12/75 swabs, 16% and human coronavirus OC43 (4/75 swabs, 5%. There was almost perfect agreement between self- and staff-collected swabs in terms of pathogen detection (agreement = 93%, kappa = 0.85, p<0.0001. CONCLUSIONS/SIGNIFICANCE: Nasal self

  20. A Review of Eight High-Priority, Economically Important Viral Pathogens of Poultry within the Caribbean Region

    Science.gov (United States)

    Gongora, Victor; Hartley, Dane; Oura, Christopher

    2018-01-01

    Viral pathogens cause devastating economic losses in poultry industries worldwide. The Caribbean region, which boasts some of the highest rates of poultry consumption in the world, is no exception. This review summarizes evidence for the circulation and spread of eight high-priority, economically important poultry viruses across the Caribbean region. Avian influenza virus (AIV), infectious bronchitis virus (IBV), Newcastle disease virus (NDV), infectious laryngotracheitis virus (ILTV), avian metapneumovirus (aMPV), infectious bursal disease virus (IBDV), fowl adenovirus group 1 (FADV Gp1), and egg drop syndrome virus (EDSV) were selected for review. This review of serological, molecular, and phylogenetic studies across Caribbean countries reveals evidence for sporadic outbreaks of respiratory disease caused by notifiable viral pathogens (AIV, IBV, NDV, and ILTV), as well as outbreaks of diseases caused by immunosuppressive viral pathogens (IBDV and FADV Gp1). This review highlights the need to strengthen current levels of surveillance and reporting for poultry diseases in domestic and wild bird populations across the Caribbean, as well as the need to strengthen the diagnostic capacity and capability of Caribbean national veterinary diagnostic laboratories. PMID:29373488

  1. A Review of Eight High-Priority, Economically Important Viral Pathogens of Poultry within the Caribbean Region

    Directory of Open Access Journals (Sweden)

    Arianne Brown Jordan

    2018-01-01

    Full Text Available Viral pathogens cause devastating economic losses in poultry industries worldwide. The Caribbean region, which boasts some of the highest rates of poultry consumption in the world, is no exception. This review summarizes evidence for the circulation and spread of eight high-priority, economically important poultry viruses across the Caribbean region. Avian influenza virus (AIV, infectious bronchitis virus (IBV, Newcastle disease virus (NDV, infectious laryngotracheitis virus (ILTV, avian metapneumovirus (aMPV, infectious bursal disease virus (IBDV, fowl adenovirus group 1 (FADV Gp1, and egg drop syndrome virus (EDSV were selected for review. This review of serological, molecular, and phylogenetic studies across Caribbean countries reveals evidence for sporadic outbreaks of respiratory disease caused by notifiable viral pathogens (AIV, IBV, NDV, and ILTV, as well as outbreaks of diseases caused by immunosuppressive viral pathogens (IBDV and FADV Gp1. This review highlights the need to strengthen current levels of surveillance and reporting for poultry diseases in domestic and wild bird populations across the Caribbean, as well as the need to strengthen the diagnostic capacity and capability of Caribbean national veterinary diagnostic laboratories.

  2. Analysis of host genetic diversity and viral entry as sources of between-host variation in viral load

    Science.gov (United States)

    Wargo, Andrew R.; Kell, Alison M.; Scott, Robert J.; Thorgaard, Gary H.; Kurath, Gael

    2012-01-01

    Little is known about the factors that drive the high levels of between-host variation in pathogen burden that are frequently observed in viral infections. Here, two factors thought to impact viral load variability, host genetic diversity and stochastic processes linked with viral entry into the host, were examined. This work was conducted with the aquatic vertebrate virus, Infectious hematopoietic necrosis virus (IHNV), in its natural host, rainbow trout. It was found that in controlled in vivo infections of IHNV, a suggestive trend of reduced between-fish viral load variation was observed in a clonal population of isogenic trout compared to a genetically diverse population of out-bred trout. However, this trend was not statistically significant for any of the four viral genotypes examined, and high levels of fish-to-fish variation persisted even in the isogenic trout population. A decrease in fish-to-fish viral load variation was also observed in virus injection challenges that bypassed the host entry step, compared to fish exposed to the virus through the natural water-borne immersion route of infection. This trend was significant for three of the four virus genotypes examined and suggests host entry may play a role in viral load variability. However, high levels of viral load variation also remained in the injection challenges. Together, these results indicate that although host genetic diversity and viral entry may play some role in between-fish viral load variation, they are not major factors. Other biological and non-biological parameters that may influence viral load variation are discussed.

  3. Microbial and viral pathogens in colorectal cancer.

    LENUS (Irish Health Repository)

    Collins, Danielle

    2011-05-01

    The heterogenetic and sporadic nature of colorectal cancer has led to many epidemiological associations with causes of this disease. As our understanding of the underlying molecular processes in colorectal-cancer develops, the concept of microbial-epithelial interactions as an oncogenic trigger might provide a plausible hypothesis for the pathogenesis of colorectal cancer. By contrast with other cancers of the gastrointestinal tract (gastric carcinoma, mucosa-associated lymphoid-tissue lymphoma), a direct causal link between microbial infection (bacteria and viruses) and colorectal carcinoma has not been established. Studies support the involvement of these organisms in oncogenesis, however, in colorectal cancer, clinical data are lacking. Here, we discuss current evidence (both in vitro and clinical studies), and focus on a putative role for bacterial and viral pathogens as a cause of colorectal cancer.

  4. Microbial and viral pathogens in colorectal cancer.

    LENUS (Irish Health Repository)

    Collins, Danielle

    2012-02-01

    The heterogenetic and sporadic nature of colorectal cancer has led to many epidemiological associations with causes of this disease. As our understanding of the underlying molecular processes in colorectal-cancer develops, the concept of microbial-epithelial interactions as an oncogenic trigger might provide a plausible hypothesis for the pathogenesis of colorectal cancer. By contrast with other cancers of the gastrointestinal tract (gastric carcinoma, mucosa-associated lymphoid-tissue lymphoma), a direct causal link between microbial infection (bacteria and viruses) and colorectal carcinoma has not been established. Studies support the involvement of these organisms in oncogenesis, however, in colorectal cancer, clinical data are lacking. Here, we discuss current evidence (both in vitro and clinical studies), and focus on a putative role for bacterial and viral pathogens as a cause of colorectal cancer.

  5. Development of a chick bioassay for determination of infectivity of viral pathogens in poultry litter.

    Science.gov (United States)

    Islam, A F M F; Walkden-Brown, S W; Groves, P J; Wells, B

    2013-01-01

    To develop a chicken bioassay to detect infective viral pathogens in poultry litter and to determine the effects of type of chicken and age of exposure, as well as the effect of simulated litter transportation, on the level of viral infectivity detected. A 5 × 2 × 2 factorial design, plus negative controls. Five chicken litters, including two with deliberate contamination (one transported and one not), two chicken types (specific-pathogen-free (SPF) Leghorns and Cobb broilers) and two ages at initial exposure (days 1 and 8). Two replicates of each treatment combination. The 10 chickens in each of 22 isolators were either exposed (20 isolators) or not (2 isolators) to 8 L of previously used or deliberately contaminated poultry litter in two deep scratch trays. At day 35 post-exposure, sera were assayed for antibodies against chicken anaemia virus (CAV), infectious bronchitis virus (IBV), infectious bursal disease virus (IBDV), Newcastle disease virus (NDV) and fowl adenovirus (FAV). Spleen samples were tested for Marek's disease virus (MDV) using real-time polymerase chain reaction. The bioassay detected CAV, IBDV and FAV, but not NDV, IBV or MDV, in chickens exposed to infected litters. Infection in SPF chickens was detected with greater sensitivity than in the broiler chickens. Sensitivity increased with age at exposure in broiler but not SPF chickens. Simulated transportation for 24 h had little effect on pathogen detection. A bioassay based on the exposure of day-old SPF chickens to poultry litter and measurement of seroconversion at day 35 post-exposure is a useful semi-quantitative assay for viral infectivity in poultry litter, with overnight transportation of litter having little effect on the level of viral infectivity detected. This bioassay has applications in research on litter treatment protocols. © 2013 The Authors. Australian Veterinary Journal © 2013 Australian Veterinary Association.

  6. Antimicrobial effect of Calotropis procera active principles against aquatic microbial pathogens isolated from shrimp and fishes

    Institute of Scientific and Technical Information of China (English)

    Subramanian Velmurugan; Vijayaragavan Thanga Viji; Mariavincent Michael Babu; Mary Josephine Punitha; Thavasimuthu Citarasu

    2012-01-01

    Objective: To study the influence of Calotropis procera (C. procera) active principles against aquatic microbial pathogens isolated from shrimp and fishes. Methods: C. procera leaf powder was serially extracted with hexane, ethyl acetate and methanol and screened by antibacterial, antifungal and antiviral activity against aquatic pathogens which isolated from shrimp/fish. After initial screening, the active extract was purified through column chromatography and again screened. Finally the active fractions were characterized by phytochemical analysis and GC-MS analysis. Results: In vitro antibacterial, antifungal and antiviral screening revealed that, the ethyl acetate extracts were effectively suppressed the bacterial pathogens Pseudomonas aeruginosa (P. aeruginosa), Vibrio harveyi (V. harveyi) and Aeromons hydrophila (A. hydrophila) of more than 20 mm zone of inhibition; the fungi Fusarium sp and the killer virus WSSV. The ethyl acetate extracts of C. procera incubated WSSV was failed to multiply its progeny in the in vivo system of shrimp P. monodon. The shrimp had 80% survival after WSSV challenge from the control group significantly (P<0.001) and also PCR detection confirmed that no WSSV transcription found in shrimp haemolymph. After purified the ethyl acetate extracts again antimicrobial screening performed and it concluded that the fraction namely F-II was effectively suppressed the bacterial growth and WSSV due to its enriched active principles such as cardiac glycosides, Phenols, alkaloids, Tannin and quinines. Surprisingly this fraction, F-II was effectively controlled the WSSV at 90% level at a highest significant level (P<0.001). Finally the structural characterization by GC-MS analysis revealed that, the F-II fraction contained Phenols including several other compounds such as 2,4-bis(1,1-dimethylethyl)-, Methyl tetradecanoate, Bicyclo[3.1.1] heptane, 2,6,6-trimethyl-, (1α,2β,5α)-and Hexadecanoic acid etc. Conclusions: The present study revealed

  7. Emerging viral diseases of fish and shrimp

    Science.gov (United States)

    Winton, James R.; Walker, Peter J.

    2010-01-01

    The rise of aquaculture has been one of the most profound changes in global food production of the past 100 years. Driven by population growth, rising demand for seafood and a levelling of production from capture fisheries, the practice of farming aquatic animals has expanded rapidly to become a major global industry. Aquaculture is now integral to the economies of many countries. It has provided employment and been a major driver of socio-economic development in poor rural and coastal communities, particularly in Asia, and has relieved pressure on the sustainability of the natural harvest from our rivers, lakes and oceans. However, the rapid growth of aquaculture has also been the source of anthropogenic change on a massive scale. Aquatic animals have been displaced from their natural environment, cultured in high density, exposed to environmental stress, provided artificial or unnatural feeds, and a prolific global trade has developed in both live aquatic animals and their products. At the same time, over-exploitation of fisheries and anthropogenic stress on aquatic ecosystems has placed pressure on wild fish populations. Not surprisingly, the consequence has been the emergence and spread of an increasing array of new diseases. This review examines the rise and characteristics of aquaculture, the major viral pathogens of fish and shrimp and their impacts, and the particular characteristics of disease emergence in an aquatic, rather than terrestrial, context. It also considers the potential for future disease emergence in aquatic animals as aquaculture continues to expand and faces the challenges presented by climate change.

  8. Viral Small-RNA Analysis of Bombyx mori Larval Midgut during Persistent and Pathogenic Cytoplasmic Polyhedrosis Virus Infection

    OpenAIRE

    Zografidis, Aris; Van Nieuwerburgh, Filip; Kolliopoulou, Anna; Apostolou-Karampelis, Konstantinos; Head, Steven R.; Deforce, Dieter; Smagghe, Guy; Swevers, Luc

    2015-01-01

    The lepidopteran innate immune response against RNA viruses remains poorly understood, while in other insects several studies have highlighted an essential role for the exo-RNAi pathway in combating viral infection. Here, by using deep-sequencing technology for viral small-RNA (vsRNA) assessment, we provide evidence that exo-RNAi is operative in the silkworm Bombyx mori against both persistent and pathogenic infection of B. mori cytoplasmic polyhedrosis virus (BmCPV) which is characterized by...

  9. Assessment of the safety of aquatic animal commodities for international trade: the OIE Aquatic Animal Health code.

    Science.gov (United States)

    Oidtmann, B; Johnston, C; Klotins, K; Mylrea, G; Van, P T; Cabot, S; Martin, P Rosado; Ababouch, L; Berthe, F

    2013-02-01

    Trading of aquatic animals and aquatic animal products has become increasingly globalized during the last couple of decades. This commodity trade has increased the risk for the spread of aquatic animal pathogens. The World Organisation for Animal Health (OIE) is recognized as the international standard-setting organization for measures relating to international trade in animals and animal products. In this role, OIE has developed the Aquatic Animal Health Code, which provides health measures to be used by competent authorities of importing and exporting countries to avoid the transfer of agents pathogenic for animals or humans, whilst avoiding unjustified sanitary barriers. An OIE ad hoc group developed criteria for assessing the safety of aquatic animals or aquatic animal products for any purpose from a country, zone or compartment not declared free from a given disease 'X'. The criteria were based on the absence of the pathogenic agent in the traded commodity or inactivation of the pathogenic agent by the commercial processing used to produce the commodity. The group also developed criteria to assess the safety of aquatic animals or aquatic animal products for retail trade for human consumption from potentially infected areas. Such commodities were assessed considering the form and presentation of the product, the expected volume of waste tissues generated by the consumer and the likely presence of viable pathogenic agent in the waste. The ad hoc group applied the criteria to commodities listed in the individual disease chapters of the Aquatic Animal Health Code (2008 edition). Revised lists of commodities for which no additional measures should be required by the importing countries regardless of the status for disease X of the exporting country were developed and adopted by the OIE World Assembly of Delegates in May 2011. The rationale of the criteria and their application will be explained and demonstrated using examples. © 2012 Crown Copyright. Reproduced

  10. Survival of viral pathogens in animal feed ingredients under transboundary shipping models

    Science.gov (United States)

    Bauermann, Fernando V.; Niederwerder, Megan C.; Singrey, Aaron; Clement, Travis; de Lima, Marcelo; Long, Craig; Patterson, Gilbert; Sheahan, Maureen A.; Stoian, Ana M. M.; Petrovan, Vlad; Jones, Cassandra K.; De Jong, Jon; Ji, Ju; Spronk, Gordon D.; Minion, Luke; Christopher-Hennings, Jane; Zimmerman, Jeff J.; Rowland, Raymond R. R.; Nelson, Eric; Sundberg, Paul; Diel, Diego G.

    2018-01-01

    The goal of this study was to evaluate survival of important viral pathogens of livestock in animal feed ingredients imported daily into the United States under simulated transboundary conditions. Eleven viruses were selected based on global significance and impact to the livestock industry, including Foot and Mouth Disease Virus (FMDV), Classical Swine Fever Virus (CSFV), African Swine Fever Virus (ASFV), Influenza A Virus of Swine (IAV-S), Pseudorabies virus (PRV), Nipah Virus (NiV), Porcine Reproductive and Respiratory Syndrome Virus (PRRSV), Swine Vesicular Disease Virus (SVDV), Vesicular Stomatitis Virus (VSV), Porcine Circovirus Type 2 (PCV2) and Vesicular Exanthema of Swine Virus (VESV). Surrogate viruses with similar genetic and physical properties were used for 6 viruses. Surrogates belonged to the same virus families as target pathogens, and included Senecavirus A (SVA) for FMDV, Bovine Viral Diarrhea Virus (BVDV) for CSFV, Bovine Herpesvirus Type 1 (BHV-1) for PRV, Canine Distemper Virus (CDV) for NiV, Porcine Sapelovirus (PSV) for SVDV and Feline Calicivirus (FCV) for VESV. For the remaining target viruses, actual pathogens were used. Virus survival was evaluated using Trans-Pacific or Trans-Atlantic transboundary models involving representative feed ingredients, transport times and environmental conditions, with samples tested by PCR, VI and/or swine bioassay. SVA (representing FMDV), FCV (representing VESV), BHV-1 (representing PRV), PRRSV, PSV (representing SVDV), ASFV and PCV2 maintained infectivity during transport, while BVDV (representing CSFV), VSV, CDV (representing NiV) and IAV-S did not. Notably, more viruses survived in conventional soybean meal, lysine hydrochloride, choline chloride, vitamin D and pork sausage casings. These results support published data on transboundary risk of PEDV in feed, demonstrate survival of certain viruses in specific feed ingredients (“high-risk combinations”) under conditions simulating transport between

  11. De novo identification of viral pathogens from cell culture hologenomes

    Directory of Open Access Journals (Sweden)

    Patowary Ashok

    2012-01-01

    Full Text Available Abstract Background Fast, specific identification and surveillance of pathogens is the cornerstone of any outbreak response system, especially in the case of emerging infectious diseases and viral epidemics. This process is generally tedious and time-consuming thus making it ineffective in traditional settings. The added complexity in these situations is the non-availability of pure isolates of pathogens as they are present as mixed genomes or hologenomes. Next-generation sequencing approaches offer an attractive solution in this scenario as it provides adequate depth of sequencing at fast and affordable costs, apart from making it possible to decipher complex interactions between genomes at a scale that was not possible before. The widespread application of next-generation sequencing in this field has been limited by the non-availability of an efficient computational pipeline to systematically analyze data to delineate pathogen genomes from mixed population of genomes or hologenomes. Findings We applied next-generation sequencing on a sample containing mixed population of genomes from an epidemic with appropriate processing and enrichment. The data was analyzed using an extensive computational pipeline involving mapping to reference genome sets and de-novo assembly. In depth analysis of the data generated revealed the presence of sequences corresponding to Japanese encephalitis virus. The genome of the virus was also independently de-novo assembled. The presence of the virus was in addition, verified using standard molecular biology techniques. Conclusions Our approach can accurately identify causative pathogens from cell culture hologenome samples containing mixed population of genomes and in principle can be applied to patient hologenome samples without any background information. This methodology could be widely applied to identify and isolate pathogen genomes and understand their genomic variability during outbreaks.

  12. 454-Pyrosequencing: A Molecular Battiscope for Freshwater Viral Ecology

    Directory of Open Access Journals (Sweden)

    David J. Rooks

    2010-07-01

    Full Text Available Viruses, the most abundant biological entities on the planet, are capable of infecting organisms from all three branches of life, although the majority infect bacteria where the greatest degree of cellular diversity lies. However, the characterization and assessment of viral diversity in natural environments is only beginning to become a possibility. Through the development of a novel technique for the harvest of viral DNA and the application of 454 pyrosequencing, a snapshot of the diversity of the DNA viruses harvested from a standing pond on a cattle farm has been obtained. A high abundance of viral genotypes (785 were present within the virome. The absolute numbers of lambdoid and Shiga toxin (Stx encoding phages detected suggested that the depth of sequencing had enabled recovery of only ca. 8% of the total virus population, numbers that agreed within less than an order of magnitude with predictions made by rarefaction analysis. The most abundant viral genotypes in the pond were bacteriophages (93.7%. The predominant viral genotypes infecting higher life forms found in association with the farm were pathogens that cause disease in cattle and humans, e.g. members of the Herpesviridae. The techniques and analysis described here provide a fresh approach to the monitoring of viral populations in the aquatic environment, with the potential to become integral to the development of risk analysis tools for monitoring the dissemination of viral agents of animal, plant and human diseases.

  13. Application of FTA technology for sampling, recovery and molecular characterization of viral pathogens and virus-derived transgenes from plant tissues

    Science.gov (United States)

    Ndunguru, Joseph; Taylor, Nigel J; Yadav, Jitender; Aly, Haytham; Legg, James P; Aveling, Terry; Thompson, Graham; Fauquet, Claude M

    2005-01-01

    Background Plant viral diseases present major constraints to crop production. Effective sampling of the viruses infecting plants is required to facilitate their molecular study and is essential for the development of crop protection and improvement programs. Retaining integrity of viral pathogens within sampled plant tissues is often a limiting factor in this process, most especially when sample sizes are large and when operating in developing counties and regions remote from laboratory facilities. FTA is a paper-based system designed to fix and store nucleic acids directly from fresh tissues pressed into the treated paper. We report here the use of FTA as an effective technology for sampling and retrieval of DNA and RNA viruses from plant tissues and their subsequent molecular analysis. Results DNA and RNA viruses were successfully recovered from leaf tissues of maize, cassava, tomato and tobacco pressed into FTA® Classic Cards. Viral nucleic acids eluted from FTA cards were found to be suitable for diagnostic molecular analysis by PCR-based techniques and restriction analysis, and for cloning and nucleotide sequencing in a manner equivalent to that offered by tradition isolation methods. Efficacy of the technology was demonstrated both from sampled greenhouse-grown plants and from leaf presses taken from crop plants growing in farmer's fields in East Africa. In addition, FTA technology was shown to be suitable for recovery of viral-derived transgene sequences integrated into the plant genome. Conclusion Results demonstrate that FTA is a practical, economical and sensitive method for sampling, storage and retrieval of viral pathogens and plant genomic sequences, when working under controlled conditions and in the field. Application of this technology has the potential to significantly increase ability to bring modern analytical techniques to bear on the viral pathogens infecting crop plants. PMID:15904535

  14. Application of FTA technology for sampling, recovery and molecular characterization of viral pathogens and virus-derived transgenes from plant tissues.

    Science.gov (United States)

    Ndunguru, Joseph; Taylor, Nigel J; Yadav, Jitender; Aly, Haytham; Legg, James P; Aveling, Terry; Thompson, Graham; Fauquet, Claude M

    2005-05-18

    Plant viral diseases present major constraints to crop production. Effective sampling of the viruses infecting plants is required to facilitate their molecular study and is essential for the development of crop protection and improvement programs. Retaining integrity of viral pathogens within sampled plant tissues is often a limiting factor in this process, most especially when sample sizes are large and when operating in developing counties and regions remote from laboratory facilities. FTA is a paper-based system designed to fix and store nucleic acids directly from fresh tissues pressed into the treated paper. We report here the use of FTA as an effective technology for sampling and retrieval of DNA and RNA viruses from plant tissues and their subsequent molecular analysis. DNA and RNA viruses were successfully recovered from leaf tissues of maize, cassava, tomato and tobacco pressed into FTA Classic Cards. Viral nucleic acids eluted from FTA cards were found to be suitable for diagnostic molecular analysis by PCR-based techniques and restriction analysis, and for cloning and nucleotide sequencing in a manner equivalent to that offered by tradition isolation methods. Efficacy of the technology was demonstrated both from sampled greenhouse-grown plants and from leaf presses taken from crop plants growing in farmer's fields in East Africa. In addition, FTA technology was shown to be suitable for recovery of viral-derived transgene sequences integrated into the plant genome. Results demonstrate that FTA is a practical, economical and sensitive method for sampling, storage and retrieval of viral pathogens and plant genomic sequences, when working under controlled conditions and in the field. Application of this technology has the potential to significantly increase ability to bring modern analytical techniques to bear on the viral pathogens infecting crop plants.

  15. Application of FTA technology for sampling, recovery and molecular characterization of viral pathogens and virus-derived transgenes from plant tissues

    Directory of Open Access Journals (Sweden)

    Aveling Terry

    2005-05-01

    Full Text Available Abstract Background Plant viral diseases present major constraints to crop production. Effective sampling of the viruses infecting plants is required to facilitate their molecular study and is essential for the development of crop protection and improvement programs. Retaining integrity of viral pathogens within sampled plant tissues is often a limiting factor in this process, most especially when sample sizes are large and when operating in developing counties and regions remote from laboratory facilities. FTA is a paper-based system designed to fix and store nucleic acids directly from fresh tissues pressed into the treated paper. We report here the use of FTA as an effective technology for sampling and retrieval of DNA and RNA viruses from plant tissues and their subsequent molecular analysis. Results DNA and RNA viruses were successfully recovered from leaf tissues of maize, cassava, tomato and tobacco pressed into FTA® Classic Cards. Viral nucleic acids eluted from FTA cards were found to be suitable for diagnostic molecular analysis by PCR-based techniques and restriction analysis, and for cloning and nucleotide sequencing in a manner equivalent to that offered by tradition isolation methods. Efficacy of the technology was demonstrated both from sampled greenhouse-grown plants and from leaf presses taken from crop plants growing in farmer's fields in East Africa. In addition, FTA technology was shown to be suitable for recovery of viral-derived transgene sequences integrated into the plant genome. Conclusion Results demonstrate that FTA is a practical, economical and sensitive method for sampling, storage and retrieval of viral pathogens and plant genomic sequences, when working under controlled conditions and in the field. Application of this technology has the potential to significantly increase ability to bring modern analytical techniques to bear on the viral pathogens infecting crop plants.

  16. Interferon Induction by RNA Viruses and Antagonism by Viral Pathogens

    Directory of Open Access Journals (Sweden)

    Yuchen Nan

    2014-12-01

    Full Text Available Interferons are a group of small proteins that play key roles in host antiviral innate immunity. Their induction mainly relies on host pattern recognition receptors (PRR. Host PRR for RNA viruses include Toll-like receptors (TLR and retinoic acid-inducible gene I (RIG-I like receptors (RLR. Activation of both TLR and RLR pathways can eventually lead to the secretion of type I IFNs, which can modulate both innate and adaptive immune responses against viral pathogens. Because of the important roles of interferons, viruses have evolved multiple strategies to evade host TLR and RLR mediated signaling. This review focuses on the mechanisms of interferon induction and antagonism of the antiviral strategy by RNA viruses.

  17. Bloodborne Viral Pathogen Contamination in the Era of Laboratory Automation.

    Science.gov (United States)

    Bryan, Andrew; Cook, Linda; Atienza, Ederlyn E; Kuypers, Jane; Cent, Anne; Baird, Geoffrey S; Coombs, Robert W; Jerome, Keith R; Wener, Mark H; Butler-Wu, Susan M

    2016-07-01

    The CDC states that laboratory testing for persons under investigation for Ebola virus disease can be safely performed using automated laboratory instruments by adhering to bloodborne pathogen practices. We therefore sought to investigate the levels of viral contamination of a total laboratory automation (TLA) system to guide risk mitigation strategies for handling infectious agents. Environmental swabs followed by PCR for hepatitis B (HBV) and hepatitis C (HCV) viruses were taken from a chemistry TLA system during routine clinical use and after running a small number of high-titer HCV samples. Control experiments were performed to ensure the recovery of DNA and RNA viruses by swabs from a representative nonporous surface. Of 79 baseline swabs for nucleic acids performed on the TLA system, 10 were positive for HBV and 8 for HCV. Viral nucleic acid was consistently detected from swabs taken from the distal inside surface of the decapper discharge chute, with areas adjacent to the decapper instrument and the centrifuge rotor also positive for HBV or HCV nucleic acid. Contamination was occasionally detected on exposed surfaces in areas without protective barriers between samples and personnel. After running known HCV-positive samples, at least one additional site of contamination was detected on an exposed area of the line. A low level of viral contamination of automated clinical laboratory equipment occurs in clinical use. Given the risks associated with highly infectious agents, there is a need for risk-mitigation procedures when handling all samples. © 2016 American Association for Clinical Chemistry.

  18. Aquatic biology studies

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    Aquatic biology studies focused on studying the hydrothermal effects of Par Pond reservoir on periphyton, plankton, zooplankton, macrophytes, human pathogens, and microbial activity; the variability between the artificial streams of the Flowing Streams Laboratory and Upper Three Runs Creek; and the bacterial production of methane in Savannah River Plant aquatic systems

  19. Viral Small-RNA Analysis of Bombyx mori Larval Midgut during Persistent and Pathogenic Cytoplasmic Polyhedrosis Virus Infection.

    Science.gov (United States)

    Zografidis, Aris; Van Nieuwerburgh, Filip; Kolliopoulou, Anna; Apostolou-Karampelis, Konstantinos; Head, Steven R; Deforce, Dieter; Smagghe, Guy; Swevers, Luc

    2015-11-01

    The lepidopteran innate immune response against RNA viruses remains poorly understood, while in other insects several studies have highlighted an essential role for the exo-RNAi pathway in combating viral infection. Here, by using deep-sequencing technology for viral small-RNA (vsRNA) assessment, we provide evidence that exo-RNAi is operative in the silkworm Bombyx mori against both persistent and pathogenic infection of B. mori cytoplasmic polyhedrosis virus (BmCPV) which is characterized by a segmented double-stranded RNA (dsRNA) genome. Further, we show that Dicer-2 predominantly targets viral dsRNA and produces 20-nucleotide (nt) vsRNAs, whereas an additional pathway is responsive to viral mRNA derived from segment 10. Importantly, vsRNA distributions, which define specific hot and cold spot profiles for each viral segment, to a considerable degree overlap between Dicer-2-related (19 to 21 nt) and Dicer-2-unrelated vsRNAs, suggesting a common origin for these profiles. We found a degenerate motif significantly enriched at the cut sites of vsRNAs of various lengths which link an unknown RNase to the origins of vsRNAs biogenesis and distribution. Accordingly, the indicated RNase activity may be an important early factor for the host's antiviral defense in Lepidoptera. This work contributes to the elucidation of the lepidopteran antiviral response against infection of segmented double-stranded RNA (dsRNA) virus (CPV; Reoviridae) and highlights the importance of viral small-RNA (vsRNA) analysis for getting insights into host-pathogen interactions. Three vsRNA pathways are implicated in antiviral defense. For dsRNA, two pathways are proposed, either based on Dicer-2 cleavage to generate 20-nucleotide vsRNAs or based on the activity of an uncharacterized endo-RNase that cleaves the viral RNA substrate at a degenerate motif. The analysis also indicates the existence of a degradation pathway that targets the positive strand of segment 10. Copyright © 2015, American

  20. FishPathogens.eu/vhsv: a user-friendly viral haemorrhagic septicaemia virus isolate and sequence database

    DEFF Research Database (Denmark)

    Jonstrup, Søren Peter; Gray, Tanya; Kahns, Søren

    2009-01-01

    A database has been created, http://www.Fish Pathogens.eu, with the aim of providing a single repository for collating important information on significant pathogens of aquaculture, relevant to their control and management. This database will be developed, maintained and managed as part of the Eu......A database has been created, http://www.Fish Pathogens.eu, with the aim of providing a single repository for collating important information on significant pathogens of aquaculture, relevant to their control and management. This database will be developed, maintained and managed as part...... of the European Community Reference Laboratory for Fish Diseases function. This concept has been initially developed for viral haemorrhagic septicaemia virus and will be extended in future to include information on other significant aquaculture pathogens. Information included for each isolate comprises sequence...... to obtain data from any selected part of the genome of interest. The output of the sequence search can be readily retrieved as a FASTA file ready to be imported into a sequence alignment tool of choice, facilitating further molecular epidemiological study....

  1. Removal of phages and viral pathogens in a full-scale MBR: Implications for wastewater reuse and potable water.

    Science.gov (United States)

    Purnell, Sarah; Ebdon, James; Buck, Austen; Tupper, Martyn; Taylor, Huw

    2016-09-01

    The aim of this study was to demonstrate how seasonal variability in the removal efficacy of enteric viral pathogens from an MBR-based water recycling system might affect risks to human health if the treated product were to be used for the augmentation of potable water supplies. Samples were taken over a twelve month period (March 2014-February 2015), from nine locations throughout a water recycling plant situated in East London and tested for faecal indicator bacteria (thermotolerant coliforms, intestinal enterococci n = 108), phages (somatic coliphage, F-specific RNA phage and Bacteroides phage (GB-124) n = 108), pathogenic viruses (adenovirus, hepatitis A, norovirus GI/GII n = 48) and a range of physico-chemical parameters (suspended solids, DO, BOD, COD). Thermotolerant coliforms and intestinal enterococci were removed effectively by the water recycling plant throughout the study period. Significant mean log reductions of 3.9-5.6 were also observed for all three phage groups monitored. Concentrations of bacteria and phages did not vary significantly according to season (P < 0.05; Kruskal-Wallis), though recorded levels of norovirus (GI) were significantly higher during autumn/winter months (P = 0.027; Kruskal-Wallis). Log reduction values for norovirus and adenovirus following MBR treatment were 2.3 and 4.4, respectively. However, both adenovirus and norovirus were detected at low levels (2000 and 3240 gene copies/L, respectively) post chlorination in single samples. Whilst phage concentrations did correlate with viral pathogens, the results of this study suggest that phages may not be suitable surrogates, as viral pathogen concentrations varied to a greater degree seasonally than did the phage indicators and were detected on a number of occasions on which phages were not detected (false negative sample results). Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Genomic segments RNA1 and RNA2 of Prunus necrotic ringspot virus codetermine viral pathogenicity to adapt to alternating natural Prunus hosts.

    Science.gov (United States)

    Cui, Hongguang; Hong, Ni; Wang, Guoping; Wang, Aiming

    2013-05-01

    Prunus necrotic ringspot virus (PNRSV) affects Prunus fruit production worldwide. To date, numerous PNRSV isolates with diverse pathological properties have been documented. To study the pathogenicity of PNRSV, which directly or indirectly determines the economic losses of infected fruit trees, we have recently sequenced the complete genome of peach isolate Pch12 and cherry isolate Chr3, belonging to the pathogenically aggressive PV32 group and mild PV96 group, respectively. Here, we constructed the Chr3- and Pch12-derived full-length cDNA clones that were infectious in the experimental host cucumber and their respective natural Prunus hosts. Pch12-derived clones induced much more severe symptoms than Chr3 in cucumber, and the pathogenicity discrepancy between Chr3 and Pch12 was associated with virus accumulation. By reassortment of genomic segments, swapping of partial genomic segments, and site-directed mutagenesis, we identified the 3' terminal nucleotide sequence (1C region) in RNA1 and amino acid K at residue 279 in RNA2-encoded P2 as the severe virulence determinants in Pch12. Gain-of-function experiments demonstrated that both the 1C region and K279 of Pch12 were required for severe virulence and high levels of viral accumulation. Our results suggest that PNRSV RNA1 and RNA2 codetermine viral pathogenicity to adapt to alternating natural Prunus hosts, likely through mediating viral accumulation.

  3. Bacterial and viral pathogens detected in sea turtles stranded along the coast of Tuscany, Italy.

    Science.gov (United States)

    Fichi, G; Cardeti, G; Cersini, A; Mancusi, C; Guarducci, M; Di Guardo, G; Terracciano, G

    2016-03-15

    During 2014, six loggerhead turtles, Caretta caretta and one green turtle, Chelonia mydas, found stranded on the Tuscany coast of Italy, were examined for the presence of specific bacterial and viral agents, along with their role as carriers of fish and human pathogens. Thirteen different species of bacteria, 10 Gram negative and 3 Gram positive, were identified. Among them, two strains of Vibrio parahaemolyticus and one strain of Lactococcus garviae were recovered and confirmed by specific PCR protocols. No trh and tdh genes were detected in V. parahaemolyticus. The first isolation of L. garviae and the first detection of Betanodavirus in sea turtles indicate the possibility for sea turtles to act as carriers of fish pathogens. Furthermore, the isolation of two strains of V. parahaemolyticus highlights the possible role of these animals in human pathogens' diffusion. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Comparison of the disinfection efficacy of chlorine-based products for inactivation of viral indicators and pathogenic bacteria in produce wash water.

    Science.gov (United States)

    Chaidez, Cristobal; Moreno, Maria; Rubio, Werner; Angulo, Miguel; Valdez, Benigno

    2003-09-01

    Outbreaks of pathogenic bacteria infections associated with the consumption of fresh produce has occurred with increased frequency in recent years. This study was undertaken to determine the efficacy of three commonly used disinfectants in packing-houses of Culiacan, Mexico (sodium hypochlorite [NaOCl], trichlor-s-triazinetrione [TST] and thrichlormelamine [TCM]) for inactivation of viral indicators and pathogenic bacteria inoculated onto produce wash water. Each microbial challenge consisted of 2 L of water containing approximately 8 log10 bacterial CFU ml(-1), and 8 log10 viral PFU ml(-1) treated with 100 and 300 mg l(-1) of total chlorine with modified turbidity. Water samples were taken after 2 min of contact with chlorine-based products and assayed for the particular microorganisms. TST and NaOCl were found to effectively reduce for bacterial pathogens and viral indicators 8 log10 and 7 log10, respectively (alpha=0.05). The highest inactivation rate was observed when the turbidity was low and the disinfectant was applied at 300 mg l(-1). TCM did not show effective results when compared with the TST and NaOCl (Pturbidity created by the organic and inorganic material present in the water tanks carried by the fresh produce may affect the efficacy of the chlorine-based products.

  5. Assembly of viral genomes from metagenomes

    NARCIS (Netherlands)

    S.L. Smits (Saskia); R. Bodewes (Rogier); A. Ruiz-Gonzalez (Aritz); V. Baumgärtner (Volkmar); M.P.G. Koopmans D.V.M. (Marion); A.D.M.E. Osterhaus (Albert); A. Schürch (Anita)

    2014-01-01

    textabstractViral infections remain a serious global health issue. Metagenomic approaches are increasingly used in the detection of novel viral pathogens but also to generate complete genomes of uncultivated viruses. In silico identification of complete viral genomes from sequence data would allow

  6. Viral Infection in Renal Transplant Recipients

    Directory of Open Access Journals (Sweden)

    Jovana Cukuranovic

    2012-01-01

    Full Text Available Viruses are among the most common causes of opportunistic infection after transplantation. The risk for viral infection is a function of the specific virus encountered, the intensity of immune suppression used to prevent graft rejection, and other host factors governing susceptibility. Although cytomegalovirus is the most common opportunistic pathogen seen in transplant recipients, numerous other viruses have also affected outcomes. In some cases, preventive measures such as pretransplant screening, prophylactic antiviral therapy, or posttransplant viral monitoring may limit the impact of these infections. Recent advances in laboratory monitoring and antiviral therapy have improved outcomes. Studies of viral latency, reactivation, and the cellular effects of viral infection will provide clues for future strategies in prevention and treatment of viral infections. This paper will summarize the major viral infections seen following transplant and discuss strategies for prevention and management of these potential pathogens.

  7. Immune Evasion Strategies of Pathogens in Macrophages: the Potential for Limiting Pathogen Transmission.

    Science.gov (United States)

    Ren, Yuwei; Khan, Faheem Ahmed; Pandupuspitasari, Nuruliarizki Shinta; Zhang, Shujun

    2017-01-01

    Preventing pathogen transmission to a new host is of major interest to the immunologist and could benefit from a detailed investigation of pathogen immune evasion strategies. The first line of defense against pathogen invasion is provided by macrophages. When they sense pathogens, macrophages initiate signals to inflammatory and pro-inflammatory cytokines through pattern recognition receptors (PRRs) subsequently mediating phagocytosis and inflammation. The macrophage immune machinery classically includes two subsets: the activated M1 and the activated M2 that respond accordingly in diverse immune challenges. The lipid and glycogen metabolic pathways work together with the lysosome to help the mature phagosome to degrade and eliminate intracellular pathogens in macrophages. The viral evasion strategies are even more complex due to the interplay between autophagy and apoptosis. However, pathogens evolve several strategies to camouflage themselves against immune responses in order to ensure their survival, replication and transmission. These strategies include the muting of PRRs initiated inflammatory responses, attenuation of M1 and/or induction of M2 macrophages, suppression of autophago-lysosomal formation, interference with lipid and glycogen metabolism, and viral mediation of autophagy and apoptosis cross-talk to enhance viral replication. This review focuses on pathogen immune evasion methods and on the strategies used by the host against camouflaged pathogens.

  8. Endogenous MMTV proviruses induce susceptibility to both viral and bacterial pathogens.

    Directory of Open Access Journals (Sweden)

    Sanchita Bhadra

    2006-12-01

    Full Text Available Most inbred mice carry germline proviruses of the retrovirus, mouse mammary tumor virus (MMTV (called Mtvs, which have multiple replication defects. A BALB/c congenic mouse strain lacking all endogenous Mtvs (Mtv-null was resistant to MMTV oral and intraperitoneal infection and tumorigenesis compared to wild-type BALB/c mice. Infection of Mtv-null mice with an MMTV-related retrovirus, type B leukemogenic virus, also resulted in severely reduced viral loads and failure to induce T-cell lymphomas, indicating that resistance is not dependent on expression of a superantigen (Sag encoded by exogenous MMTV. Resistance to MMTV in Mtv-null animals was not due to neutralizing antibodies. Further, Mtv-null mice were resistant to rapid mortality induced by intragastric inoculation of the Gram-negative bacterium, Vibrio cholerae, but susceptibility to Salmonella typhimurium was not significantly different from BALB/c mice. Susceptibility to both MMTV and V. cholerae was reconstituted by the presence of any one of three endogenous Mtvs located on different chromosomes and was associated with increased pathogen load. One of these endogenous proviruses is known to encode only Sag. Therefore, Mtv-encoded Sag appears to provide a unique genetic susceptibility to specific viruses and bacteria. Since human endogenous retroviruses also encode Sags, these studies have broad implications for pathogen-induced responses in mice and humans.

  9. Extended viral shedding of a low pathogenic avian influenza virus by striped skunks (Mephitis mephitis.

    Directory of Open Access Journals (Sweden)

    J Jeffrey Root

    Full Text Available BACKGROUND: Striped skunks (Mephitis mephitis are susceptible to infection with some influenza A viruses. However, the viral shedding capability of this peri-domestic mammal and its potential role in influenza A virus ecology are largely undetermined. METHODOLOGY/PRINCIPAL FINDINGS: Striped skunks were experimentally infected with a low pathogenic (LP H4N6 avian influenza virus (AIV and monitored for 20 days post infection (DPI. All of the skunks exposed to H4N6 AIV shed large quantities of viral RNA, as detected by real-time RT-PCR and confirmed for live virus with virus isolation, from nasal washes and oral swabs (maximum ≤ 10(6.02 PCR EID50 equivalent/mL and ≤ 10(5.19 PCR EID50 equivalent/mL, respectively. Some evidence of potential fecal shedding was also noted. Following necropsy on 20 DPI, viral RNA was detected in the nasal turbinates of one individual. All treatment animals yielded evidence of a serological response by 20 DPI. CONCLUSIONS/SIGNIFICANCE: These results indicate that striped skunks have the potential to shed large quantities of viral RNA through the oral and nasal routes following exposure to a LP AIV. Considering the peri-domestic nature of these animals, along with the duration of shedding observed in this species, their presence on poultry and waterfowl operations could influence influenza A virus epidemiology. For example, this species could introduce a virus to a naive poultry flock or act as a trafficking mechanism of AIV to and from an infected poultry flock to naive flocks or wild bird populations.

  10. ZOONOSIS OF AQUATICAL ORGANISMS

    Directory of Open Access Journals (Sweden)

    Božidar Kurtović

    2001-12-01

    Full Text Available Aquatic organisms play a very important role in human nutrition. They also pose a real threat for human health by causing various diseases. Parasites, bacteria and viruses may either directly or indirectly be carried from aquatic organisms to humans. Disease outbreaks are influenced by many factors among which decreased immune response and feeding habits and higyene are most important. More frequent occuence of foodborne diseases has a number of reasons, including international travel and trade, microbial adaptation and changes in the food production system. Parasitic diseases occur most frequently as a result of human role in parasites life cycles. The prevalence is further increased by consuming raw fish and shellfish. The main feature of bacterial infections is facultative pathogenicity of most ethiological agents. In most cases disease occures as a result of decreased immunoreactivity. Several bacteria are, however, hightly pathogenic and capable of causing high morbidity and mortality in human. To date it has not been reported the case of human infection with viruses specific for aquatic organisms. Human infections are caused with human viruses and aquatic organisms play role only as vechicles. The greatest risk in that respect present shellfish. Fish and particularly shellfish are likely to cause food poisoning in humans. In most cases the cause are toxins of phithoplancton origins accumulating in shellfish and fish.

  11. Effects of TLR agonists and viral infection on cytokine and TLR expression in Atlantic salmon (Salmo salar).

    Science.gov (United States)

    Arnemo, Marianne; Kavaliauskis, Arturas; Gjøen, Tor

    2014-10-01

    The development of efficient and cheap vaccines against several aquatic viruses is necessary for a sustainable fish farming industry. Toll-like receptor (TLR) ligands have already been used as good adjuvants in human vaccines. With more understanding of TLR expression, function, and ligand specificity in fish, more efficient adjuvants for fish viral vaccines can be developed. In this paper, we examine all known TLRs in Atlantic salmon (Salmo salar) and demonstrate that head kidney and spleen are the main organs expressing TLRs in salmon. We also show that adherent head kidney leucocytes from salmon are able to respond to many of the known agonists for human TLRs, and that viral infection can induce up-regulation of several TLRs. These findings substantiate these receptors' role in immune responses to pathogens in salmonids making their ligands attractive as vaccine adjuvant candidates. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Aquatic Plant Control Research Program

    National Research Council Canada - National Science Library

    Cofrancesco, Alfred

    1998-01-01

    .... This search for natural plant enemies (insects and fungal pathogens) has led researchers to the native ranges of noxious aquatic plants, located throughout the continents of Africa, Asia, Europe, and Australia...

  13. Viral agents that cause infection through the consumption and handling of food

    International Nuclear Information System (INIS)

    Gomez Murillo, Ileana

    2014-01-01

    Viral agents: Norovirus, Rotavirus, Hepatitis A and E, Nipah virus, highly pathogenic avian influenza and coronavirus that cause the SARS are studied as protagonists in the production of food-borne infectious processes. The most common sources of pollution, viral characteristics that influence the control, routes, methods of detection and prevention of pathogens in food are analyzed. Methodological techniques are investigated to improve early detection of viral pathogens in food, control measures and prevention of food contamination [es

  14. Viral evasion of intracellular DNA and RNA sensing

    Science.gov (United States)

    Chan, Ying Kai; Gack, Michaela U.

    2016-01-01

    The co-evolution of viruses with their hosts has led to the emergence of viral pathogens that are adept at evading or actively suppressing host immunity. Pattern recognition receptors (PRRs) are key components of antiviral immunity that detect conserved molecular features of viral pathogens and initiate signalling that results in the expression of antiviral genes. In this Review, we discuss the strategies that viruses use to escape immune surveillance by key intracellular sensors of viral RNA or DNA, with a focus on RIG-I-like receptors (RLRs), cyclic GMP–AMP synthase (cGAS) and interferon-γ (IFNγ)-inducible protein 16 (IFI16). Such viral strategies include the sequestration or modification of viral nucleic acids, interference with specific post-translational modifications of PRRs or their adaptor proteins, the degradation or cleavage of PRRs or their adaptors, and the sequestration or relocalization of PRRs. An understanding of viral immune-evasion mechanisms at the molecular level may guide the development of vaccines and antivirals. PMID:27174148

  15. Aquatic plants as potential sources of antimicrobial compounds ...

    African Journals Online (AJOL)

    Resistance of pathogens to common veterinary antibiotics hampers mastitis treatment and motivates the discovery of new antimicrobials. In this study, extracts from two aquatic plants, Salvinia auriculata and Hydrocleys nymphoides, were assayed against bovine mastitis pathogens. Selected parts of plants were extracted ...

  16. Incidence of Norovirus and Other Viral Pathogens That Cause Acute Gastroenteritis (AGE) among Kaiser Permanente Member Populations in the United States, 2012-2013.

    Science.gov (United States)

    Grytdal, Scott P; DeBess, Emilio; Lee, Lore E; Blythe, David; Ryan, Patricia; Biggs, Christianne; Cameron, Miriam; Schmidt, Mark; Parashar, Umesh D; Hall, Aron J

    2016-01-01

    Noroviruses and other viral pathogens are increasingly recognized as frequent causes of acute gastroenteritis (AGE). However, few laboratory-based data are available on the incidence of AGE caused by viral pathogens in the U.S. This study examined stool specimens submitted for routine clinical diagnostics from patients enrolled in Kaiser Permanente (KP) health plans in metro Portland, OR, and the Maryland, District of Columbia, and northern Virginia geographic areas to estimate the incidence of viral enteropathogens in these populations. Over a one-year study period, participating laboratories randomly selected stools submitted for routine clinical diagnostics for inclusion in the study along with accompanying demographic and clinical data. Selected stools were tested for norovirus, rotavirus, sapovirus, and astrovirus using standardized real-time RT-PCR protocols. Each KP site provided administrative data which were used in conjunction with previously published data on healthcare utilization to extrapolate pathogen detection rates into population-based incidence rates. A total of 1,099 specimens collected during August 2012 to September 2013 were included. Mean age of patients providing stool specimens was 46 years (range: 0-98 years). Noroviruses were the most common viral pathogen identified among patients with AGE (n = 63 specimens, 6% of specimens tested). In addition, 22 (2%) of specimens were positive for rotavirus; 19 (2%) were positive for sapovirus; and 7 (1%) were positive for astrovirus. Incidence of norovirus-associated outpatient visits was 5.6 per 1,000 person-years; incidence of norovirus disease in the community was estimated to be 69.5 per 1,000 person-years. Norovirus incidence was highest among children age (outpatient incidence = 25.6 per 1,000 person-years; community incidence = 152.2 per 1,000 person-years), followed by older adults aged >65 years (outpatient incidence = 7.8 per 1,000 person-years; community incidence = 75.8 per 1,000 person

  17. Incidence of Norovirus and Other Viral Pathogens That Cause Acute Gastroenteritis (AGE among Kaiser Permanente Member Populations in the United States, 2012-2013.

    Directory of Open Access Journals (Sweden)

    Scott P Grytdal

    Full Text Available Noroviruses and other viral pathogens are increasingly recognized as frequent causes of acute gastroenteritis (AGE. However, few laboratory-based data are available on the incidence of AGE caused by viral pathogens in the U.S. This study examined stool specimens submitted for routine clinical diagnostics from patients enrolled in Kaiser Permanente (KP health plans in metro Portland, OR, and the Maryland, District of Columbia, and northern Virginia geographic areas to estimate the incidence of viral enteropathogens in these populations. Over a one-year study period, participating laboratories randomly selected stools submitted for routine clinical diagnostics for inclusion in the study along with accompanying demographic and clinical data. Selected stools were tested for norovirus, rotavirus, sapovirus, and astrovirus using standardized real-time RT-PCR protocols. Each KP site provided administrative data which were used in conjunction with previously published data on healthcare utilization to extrapolate pathogen detection rates into population-based incidence rates. A total of 1,099 specimens collected during August 2012 to September 2013 were included. Mean age of patients providing stool specimens was 46 years (range: 0-98 years. Noroviruses were the most common viral pathogen identified among patients with AGE (n = 63 specimens, 6% of specimens tested. In addition, 22 (2% of specimens were positive for rotavirus; 19 (2% were positive for sapovirus; and 7 (1% were positive for astrovirus. Incidence of norovirus-associated outpatient visits was 5.6 per 1,000 person-years; incidence of norovirus disease in the community was estimated to be 69.5 per 1,000 person-years. Norovirus incidence was highest among children 65 years (outpatient incidence = 7.8 per 1,000 person-years; community incidence = 75.8 per 1,000 person-years. Outpatient incidence rates of rotavirus, sapovirus, and astrovirus were 2.0, 1.6, 0.6 per 1,000 person

  18. Human Lectins and Their Roles in Viral Infections

    Directory of Open Access Journals (Sweden)

    Christopher P. Mason

    2015-01-01

    Full Text Available Innate recognition of virus proteins is an important component of the immune response to viral pathogens. A component of this immune recognition is the family of lectins; pattern recognition receptors (PRRs that recognise viral pathogen-associated molecular patterns (PAMPs including viral glycoproteins. In this review we discuss the contribution of soluble and membrane-associated PRRs to immunity against virus pathogens, and the potential role of these molecules in facilitating virus replication. These processes are illustrated with examples of viruses including human immunodeficiency virus (HIV, hepatitis C virus (HCV and Ebola virus (EBOV. We focus on the structure, function and genetics of the well-characterised C-type lectin mannose-binding lectin, the ficolins, and the membrane-bound CD209 proteins expressed on dendritic cells. The potential for lectin-based antiviral therapies is also discussed.

  19. Comparison of pathogenic domains of rabies and African rabies-related lyssaviruses and pathogenicity observed in mice

    Directory of Open Access Journals (Sweden)

    Joe Kgaladi

    2013-03-01

    Full Text Available Several lyssavirus species occur in Africa (Rabies virus, Lagos bat virus, Mokola virus, Duvenhage virus, Shimoni bat virus and Ikoma lyssavirus, displaying a high sequence diversity between isolates belonging to the same species. There is limited information about comparative pathogenesis of these African lyssaviruses and this precludes authoritative opinion on the potential public and veterinary health impact. In this study, an analysis of representative African lyssaviruses attempted to correlate viral genomic sequence similarities and differences with the corresponding pathogenic profiles observed in mice. The study demonstrated that the virus isolates evaluated could be lethal to mice when introduced intramuscularly and that different isolates of the same lyssavirus species differ in their virulence. Using real-time polymerase chain reaction (PCR, viral RNA was detected in brain tissue, but no viral RNA was detected in the salivary glands or blood of mice that succumbed to infection. Comparison of known pathogenic domains indicated that pathogenicity is likely to be dependent on multiple domains. Cumulatively, our results re-emphasised the realisation that the pathogenicity of a lyssavirus species cannot be deduced based on studies of only a single isolate of the species or a single pathogenic domain.

  20. Incidence of Norovirus and Other Viral Pathogens That Cause Acute Gastroenteritis (AGE) among Kaiser Permanente Member Populations in the United States, 2012–2013

    Science.gov (United States)

    Grytdal, Scott P.; Biggs, Christianne; Cameron, Miriam; Schmidt, Mark; Parashar, Umesh D.; Hall, Aron J.

    2016-01-01

    Noroviruses and other viral pathogens are increasingly recognized as frequent causes of acute gastroenteritis (AGE). However, few laboratory-based data are available on the incidence of AGE caused by viral pathogens in the U.S. This study examined stool specimens submitted for routine clinical diagnostics from patients enrolled in Kaiser Permanente (KP) health plans in metro Portland, OR, and the Maryland, District of Columbia, and northern Virginia geographic areas to estimate the incidence of viral enteropathogens in these populations. Over a one-year study period, participating laboratories randomly selected stools submitted for routine clinical diagnostics for inclusion in the study along with accompanying demographic and clinical data. Selected stools were tested for norovirus, rotavirus, sapovirus, and astrovirus using standardized real-time RT-PCR protocols. Each KP site provided administrative data which were used in conjunction with previously published data on healthcare utilization to extrapolate pathogen detection rates into population-based incidence rates. A total of 1,099 specimens collected during August 2012 to September 2013 were included. Mean age of patients providing stool specimens was 46 years (range: 0–98 years). Noroviruses were the most common viral pathogen identified among patients with AGE (n = 63 specimens, 6% of specimens tested). In addition, 22 (2%) of specimens were positive for rotavirus; 19 (2%) were positive for sapovirus; and 7 (1%) were positive for astrovirus. Incidence of norovirus-associated outpatient visits was 5.6 per 1,000 person-years; incidence of norovirus disease in the community was estimated to be 69.5 per 1,000 person-years. Norovirus incidence was highest among children incidence = 25.6 per 1,000 person-years; community incidence = 152.2 per 1,000 person-years), followed by older adults aged >65 years (outpatient incidence = 7.8 per 1,000 person-years; community incidence = 75.8 per 1,000 person

  1. Epidemiology of avian influenza in wild aquatic birds in a biosecurity hotspot, North Queensland, Australia.

    Science.gov (United States)

    Hoque, Md Ahasanul; Burgess, Graham William; Cheam, Ai Lee; Skerratt, Lee Francis

    2015-01-01

    Migratory birds may introduce highly pathogenic H5N1 avian influenza from Southeast Asia into Australia via North Queensland, a key stopover along the East Asian-Australasian Flyway, with severe consequences for trade and human health. A 3-year repeated cross sectional study on the epidemiology of avian influenza in Australian nomadic wild aquatic birds was conducted in this potential biosecurity hotspot using molecular and serological techniques. Avian influenza virus subtypes H6 and H9 were commonly present in the studied population. It is likely that one of the H6 viruses was newly introduced through migratory birds confirming the perceived biosecurity risk. The matrix gene of another H6 virus was similar to the Australian H7 subtypes, which suggests the reassortment of a previously introduced H6 and local viruses. Similarly, a H9 subtype had a matrix gene similar to that found in Asian H9 viruses suggesting reassortment of viruses originated from Australia and Asia. Whilst H5N1 was not found, the serological study demonstrated a constant circulation of the H5 subtype in the sampled birds. The odds of being reactive for avian influenza viral antibodies were 13.1(95% CI: 5.9-28.9) for Pacific Black Ducks over Plumed Whistling Ducks, highlighting that some species of waterfowl pose a greater biosecurity risk. Antibody titres were slightly higher during warm wet compared with warm dry weather. Routine surveillance programmes should be established to monitor the introduction of avian influenza viruses from Asia and the interactions of the introduced viruses with resident viruses in order to better detect emerging pathogens in aquatic birds of North Queensland. Surveillance should be targeted towards highly susceptible species such as the Pacific Black Duck and carried out during favourable environmental conditions for viral transmission such as the wet season in northern Australia. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Viral capsid is a pathogen-associated molecular pattern in adenovirus keratitis.

    Directory of Open Access Journals (Sweden)

    Ashish V Chintakuntlawar

    2010-04-01

    Full Text Available Human adenovirus (HAdV infection of the human eye, in particular serotypes 8, 19 and 37, induces the formation of corneal subepithelial leukocytic infiltrates. Using a unique mouse model of adenovirus keratitis, we studied the role of various virus-associated molecular patterns in subsequent innate immune responses of resident corneal cells to HAdV-37 infection. We found that neither viral DNA, viral gene expression, or viral replication was necessary for the development of keratitis. In contrast, empty viral capsid induced keratitis and a chemokine profile similar to intact virus. Transfected viral DNA did not induce leukocyte infiltration despite CCL2 expression similar to levels in virus infected corneas. Mice without toll-like receptor 9 (Tlr9 signaling developed clinical keratitis upon HAdV-37 infection similar to wild type mice, although the absolute numbers of activated monocytes in the cornea were less in Tlr9(-/- mice. Virus induced leukocytic infiltrates and chemokine expression in mouse cornea could be blocked by treatment with a peptide containing arginine glycine aspartic acid (RGD. These results demonstrate that adenovirus infection of the cornea induces chemokine expression and subsequent infiltration by leukocytes principally through RGD contact between viral capsid and the host cell, possibly through direct interaction between the viral capsid penton base and host cell integrins.

  3. TLR3 signaling is either protective or pathogenic for the development of Theiler's virus-induced demyelinating disease depending on the time of viral infection

    Directory of Open Access Journals (Sweden)

    Jin Young-Hee

    2011-12-01

    Full Text Available Abstract Background We have previously shown that toll-like receptor 3 (TLR3-mediated signaling plays an important role in the induction of innate cytokine responses to Theiler's murine encephalomyelitis virus (TMEV infection. In addition, cytokine levels produced after TMEV infection are significantly higher in the glial cells of susceptible SJL mice compared to those of resistant C57BL/6 mice. However, it is not known whether TLR3-mediated signaling plays a protective or pathogenic role in the development of demyelinating disease. Methods SJL/J and B6;129S-Tlr3tm1Flv/J (TLR3KO-B6 mice, and TLR3KO-SJL mice that TLR3KO-B6 mice were backcrossed to SJL/J mice for 6 generations were infected with Theiler's murine encephalomyelitis virus (2 × 105 PFU with or without treatment with 50 μg of poly IC. Cytokine production and immune responses in the CNS and periphery of infected mice were analyzed. Results We investigated the role of TLR3-mediated signaling in the protection and pathogenesis of TMEV-induced demyelinating disease. TLR3KO-B6 mice did not develop demyelinating disease although they displayed elevated viral loads in the CNS. However, TLR3KO-SJL mice displayed increased viral loads and cellular infiltration in the CNS, accompanied by exacerbated development of demyelinating disease, compared to the normal littermate mice. Late, but not early, anti-viral CD4+ and CD8+ T cell responses in the CNS were compromised in TLR3KO-SJL mice. However, activation of TLR3 with poly IC prior to viral infection also exacerbated disease development, whereas such activation after viral infection restrained disease development. Activation of TLR3 signaling prior to viral infection hindered the induction of protective IFN-γ-producing CD4+ and CD8+ T cell populations. In contrast, activation of these signals after viral infection improved the induction of IFN-γ-producing CD4+ and CD8+ T cells. In addition, poly IC-pretreated mice displayed elevated PDL-1 and

  4. Apoptosis, Toll-like, RIG-I-like and NOD-like Receptors Are Pathways Jointly Induced by Diverse Respiratory Bacterial and Viral Pathogens

    Science.gov (United States)

    Martínez, Isidoro; Oliveros, Juan C.; Cuesta, Isabel; de la Barrera, Jorge; Ausina, Vicente; Casals, Cristina; de Lorenzo, Alba; García, Ernesto; García-Fojeda, Belén; Garmendia, Junkal; González-Nicolau, Mar; Lacoma, Alicia; Menéndez, Margarita; Moranta, David; Nieto, Amelia; Ortín, Juan; Pérez-González, Alicia; Prat, Cristina; Ramos-Sevillano, Elisa; Regueiro, Verónica; Rodriguez-Frandsen, Ariel; Solís, Dolores; Yuste, José; Bengoechea, José A.; Melero, José A.

    2017-01-01

    Lower respiratory tract infections are among the top five leading causes of human death. Fighting these infections is therefore a world health priority. Searching for induced alterations in host gene expression shared by several relevant respiratory pathogens represents an alternative to identify new targets for wide-range host-oriented therapeutics. With this aim, alveolar macrophages were independently infected with three unrelated bacterial (Streptococcus pneumoniae, Klebsiella pneumoniae, and Staphylococcus aureus) and two dissimilar viral (respiratory syncytial virus and influenza A virus) respiratory pathogens, all of them highly relevant for human health. Cells were also activated with bacterial lipopolysaccharide (LPS) as a prototypical pathogen-associated molecular pattern. Patterns of differentially expressed cellular genes shared by the indicated pathogens were searched by microarray analysis. Most of the commonly up-regulated host genes were related to the innate immune response and/or apoptosis, with Toll-like, RIG-I-like and NOD-like receptors among the top 10 signaling pathways with over-expressed genes. These results identify new potential broad-spectrum targets to fight the important human infections caused by the bacteria and viruses studied here. PMID:28298903

  5. Experimentally infected domestic ducks show efficient transmission of Indonesian H5N1 highly pathogenic avian influenza virus, but lack persistent viral shedding.

    Science.gov (United States)

    Wibawa, Hendra; Bingham, John; Nuradji, Harimurti; Lowther, Sue; Payne, Jean; Harper, Jenni; Junaidi, Akhmad; Middleton, Deborah; Meers, Joanne

    2014-01-01

    Ducks are important maintenance hosts for avian influenza, including H5N1 highly pathogenic avian influenza viruses. A previous study indicated that persistence of H5N1 viruses in ducks after the development of humoral immunity may drive viral evolution following immune selection. As H5N1 HPAI is endemic in Indonesia, this mechanism may be important in understanding H5N1 evolution in that region. To determine the capability of domestic ducks to maintain prolonged shedding of Indonesian clade 2.1 H5N1 virus, two groups of Pekin ducks were inoculated through the eyes, nostrils and oropharynx and viral shedding and transmission investigated. Inoculated ducks (n = 15), which were mostly asymptomatic, shed infectious virus from the oral route from 1 to 8 days post inoculation, and from the cloacal route from 2-8 dpi. Viral ribonucleic acid was detected from 1-15 days post inoculation from the oral route and 1-24 days post inoculation from the cloacal route (cycle threshold ducks seroconverted in a range of serological tests by 15 days post inoculation. Virus was efficiently transmitted during acute infection (5 inoculation-infected to all 5 contact ducks). However, no evidence for transmission, as determined by seroconversion and viral shedding, was found between an inoculation-infected group (n = 10) and contact ducks (n = 9) when the two groups only had contact after 10 days post inoculation. Clinical disease was more frequent and more severe in contact-infected (2 of 5) than inoculation-infected ducks (1 of 15). We conclude that Indonesian clade 2.1 H5N1 highly pathogenic avian influenza virus does not persist in individual ducks after acute infection.

  6. [Immunotherapy for refractory viral infections].

    Science.gov (United States)

    Morio, Tomohiro; Fujita, Yuriko; Takahashi, Satoshi

    Various antiviral agents have been developed, which are sometimes associated with toxicity, development of virus-resistant strain, and high cost. Virus-specific T-cell (VST) therapy provides an alternative curative therapy that can be effective for a prolonged time without eliciting drug resistance. VSTs can be directly separated using several types of capture devices and can be obtained by stimulating peripheral blood mononuclear cells with viral antigens (virus, protein, or peptide) loaded on antigen-presenting cells (APC). APC can be transduced with virus-antigen coding plasmid or pulsed with overlapping peptides. VST therapy has been studied in drug non-responsive viral infections after hematopoietic cell transplantation (HCT). Several previous studies have demonstrated the efficacy of VST therapy without significant severe GVHD. In addition, VSTs from a third-party donor have been prepared and administered for post-HCT viral infection. Although target viruses of VSTs include herpes virus species and polyomavirus species, a wide variety of pathogens, such as papillomavirus, intracellular bacteria, and fungi, can be treated by pathogen-specific T-cells. Perhaps, these specific T-cells could be used for opportunistic infections in other immunocompromised hosts in the near future.

  7. Viral indicators for fecal contamination - a one-year viral metagenomic study of treatment efficiency in danish waste water treatment plants

    DEFF Research Database (Denmark)

    Hellmér, Maria; Stranddorf, Kasper; Seidel, Michael

    2017-01-01

    from two urban waste water treatment plants in Copenhagen. All samples are investigated for their viral content and the presence of pathogens by metagenomic sequencing and analyzed specifically for HAdV, JCPyV, norovirus GI and GII (NoV GI and GII) using quantitative (q)PCR. Preliminary qPCR results......, the number of identified pathogenic viral species decreases with treatment of the waste water. Further bioinformatic analyses will investigate the seasonal variations of viral composition within a sample as well as the effect of the treatment system. Updated qPCR and metagenomics data will be presented....... are therefore using metagenomics sequencing with the aim to map the viriome in different water sources. In addition we investigate the possibility to use Human Adenovirus (HAdV) or JC Polyomavirus (JCPyV) as indicator for human fecal contamination. Water has been sampled monthly throughout the treatment process...

  8. From orphan virus to pathogen: the path to the clinical lab.

    Science.gov (United States)

    Li, Linlin; Delwart, Eric

    2011-10-01

    Viral metagenomics has recently yielded numerous previously uncharacterized viral genomes from human and animal samples. We review some of the metagenomics tools and strategies to determine which orphan viruses are likely pathogens. Disease association studies compare viral prevalence in patients with unexplained symptoms versus healthy individuals but require these case and control groups to be closely matched epidemiologically. The development of an antibody response in convalescent serum can temporarily link symptoms with a recent infection. Neutralizing antibody detection require often difficult cell culture virus amplification. Antibody binding assays require proper antigen synthesis and positive control sera to set assay thresholds. High levels of viral genetic diversity within orphan viral groups, frequent co-infections, low or rare pathogenicity, and chronic virus shedding, can all complicate disease association studies. The limited availability of matched cases and controls sample sets from different age groups and geographic origins is a major block for estimating the pathogenic potential of recently characterized orphan viruses. Current limitations on the practical use of deep sequencing for viral diagnostics are listed.

  9. Pathogenic human viruses in coastal waters

    Science.gov (United States)

    Griffin, Dale W.; Donaldson, Kim A.; Paul, J.H.; Rose, Joan B.

    2003-01-01

    This review addresses both historical and recent investigations into viral contamination of marine waters. With the relatively recent emergence of molecular biology-based assays, a number of investigations have shown that pathogenic viruses are prevalent in marine waters being impacted by sewage. Research has shown that this group of fecal-oral viral pathogens (enteroviruses, hepatitis A viruses, Norwalk viruses, reoviruses, adenoviruses, rotaviruses, etc.) can cause a broad range of asymptomatic to severe gastrointestinal, respiratory, and eye, nose, ear, and skin infections in people exposed through recreational use of the water. The viruses and the nucleic acid signature survive for an extended period in the marine environment. One of the primary concerns of public health officials is the relationship between the presence of pathogens and the recreational risk to human health in polluted marine environments. While a number of studies have attempted to address this issue, the relationship is still poorly understood. A contributing factor to our lack of progress in the field has been the lack of sensitive methods to detect the broad range of both bacterial and viral pathogens. The application of new and advanced molecular methods will continue to contribute to our current state of knowledge in this emerging and

  10. Viral impacts on microbial carbon cycling in thawing permafrost soils

    Science.gov (United States)

    Trubl, G. G.; Roux, S.; Bolduc, B.; Jang, H. B.; Emerson, J. B.; Solonenko, N.; Li, F.; Solden, L. M.; Vik, D. R.; Wrighton, K. C.; Saleska, S. R.; Sullivan, M. B.; Rich, V. I.

    2017-12-01

    Permafrost contains 30-50% of global soil carbon (C) and is rapidly thawing. While the fate of this C is unknown, it will be shaped in part by microbes and their associated viruses, which modulate host activities via mortality and metabolic control. To date, viral research in soils has been outpaced by that in aquatic environments, due to the technical challenges of accessing viruses as well as the dramatic physicochemical heterogeneity in soils. Here, we describe advances in soil viromics from our research on permafrost-associated soils, and their implications for associated terrestrial C cycling. First, we optimized viral resuspension-DNA extraction methods for a range of soil types. Second, we applied cutting-edge viral-specific informatics methods to recover viral populations, define their gene content, connect them to potential hosts, and analyze their relationships to environmental parameters. A total of 781 viral populations were recovered from size-fractionated virus samples of three soils along a permafrost thaw gradient. Ecological analyses revealed endemism as recovered viral populations were largely unique to each habitat and unlike those in aquatic communities. Genome- and network-based classification assigned these viruses into 226 viral clusters (VCs; genus-level taxonomy), 55% of which were novel. This increases the number of VCs by a third and triples the number of soil viral populations in the RefSeq database (currently contains 256 VCs and 316 soil viral populations). Genomic analyses revealed 85% of the genes were functionally unknown, though 5% of the annotatable genes contained C-related auxiliary metabolic genes (AMGs; e.g. glycoside hydrolases). Using sequence-based features and microbial population genomes, we were able to in silico predict hosts for 30% of the viral populations. The identified hosts spanned 3 phyla and 6 genera but suggested these viruses have species-specific host ranges as >80% of hosts for a given virus were in the same

  11. Viral Inhibition of PRR-Mediated Innate Immune Response: Learning from KSHV Evasion Strategies.

    Science.gov (United States)

    Lee, Hye-Ra; Choi, Un Yung; Hwang, Sung-Woo; Kim, Stephanie; Jung, Jae U

    2016-11-30

    The innate immune system has evolved to detect and destroy invading pathogens before they can establish systemic infection. To successfully eradicate pathogens, including viruses, host innate immunity is activated through diverse pattern recognition receptors (PRRs) which detect conserved viral signatures and trigger the production of type I interferon (IFN) and pro-inflammatory cytokines to mediate viral clearance. Viral persistence requires that viruses co-opt cellular pathways and activities for their benefit. In particular, due to the potent antiviral activities of IFN and cytokines, viruses have developed various strategies to meticulously modulate intracellular innate immune sensing mechanisms to facilitate efficient viral replication and persistence. In this review, we highlight recent advances in the study of viral immune evasion strategies with a specific focus on how Kaposi's sarcoma-associated herpesvirus (KSHV) effectively targets host PRR signaling pathways.

  12. DEVELOPMENT OF BIOMARKER OF EXPOSURE TO VIRAL PATHOGENS

    Science.gov (United States)

    Interferon gamma (IFN-γ) was selected as a biomarker for a viral exposure study. Twelve-week-old BALB/c mice were intraperitoneally injected with 0.2ml of 104 PFU/ml of coxsackievirus B3 or B4 diluted in phosphate-buffered saline (PBS). Control mice were injected with PBS on...

  13. Sensitive detection of viral transcripts in human tumor transcriptomes.

    Directory of Open Access Journals (Sweden)

    Sven-Eric Schelhorn

    Full Text Available In excess of 12% of human cancer incidents have a viral cofactor. Epidemiological studies of idiopathic human cancers indicate that additional tumor viruses remain to be discovered. Recent advances in sequencing technology have enabled systematic screenings of human tumor transcriptomes for viral transcripts. However, technical problems such as low abundances of viral transcripts in large volumes of sequencing data, viral sequence divergence, and homology between viral and human factors significantly confound identification of tumor viruses. We have developed a novel computational approach for detecting viral transcripts in human cancers that takes the aforementioned confounding factors into account and is applicable to a wide variety of viruses and tumors. We apply the approach to conducting the first systematic search for viruses in neuroblastoma, the most common cancer in infancy. The diverse clinical progression of this disease as well as related epidemiological and virological findings are highly suggestive of a pathogenic cofactor. However, a viral etiology of neuroblastoma is currently contested. We mapped 14 transcriptomes of neuroblastoma as well as positive and negative controls to the human and all known viral genomes in order to detect both known and unknown viruses. Analysis of controls, comparisons with related methods, and statistical estimates demonstrate the high sensitivity of our approach. Detailed investigation of putative viral transcripts within neuroblastoma samples did not provide evidence for the existence of any known human viruses. Likewise, de-novo assembly and analysis of chimeric transcripts did not result in expression signatures associated with novel human pathogens. While confounding factors such as sample dilution or viral clearance in progressed tumors may mask viral cofactors in the data, in principle, this is rendered less likely by the high sensitivity of our approach and the number of biological replicates

  14. A reverse genetics system for the Great Lakes strain of viral hemorrhagic septicemia virus: the NV gene is required for pathogenicity

    Science.gov (United States)

    Ammayappan, Arun; Kurath, Gael; Thompson, Tarin M.; Vakharia, Vikram N.

    2011-01-01

    Viral hemorrhagic septicemia virus (VHSV), belonging to the genus Novirhabdovirus in the family of Rhabdoviridae, causes a highly contagious disease of fresh and saltwater fish worldwide. Recently, a novel genotype of VHSV, designated IVb, has invaded the Great Lakes in North America, causing large-scale epidemics in wild fish. An efficient reverse genetics system was developed to generate a recombinant VHSV of genotype IVb from cloned cDNA. The recombinant VHSV (rVHSV) was comparable to the parental wild-type strain both in vitro and in vivo, causing high mortality in yellow perch (Perca flavescens). A modified recombinant VHSV was generated in which the NV gene was substituted with an enhanced green fluorescent protein gene (rVHSV-ΔNV-EGFP), and another recombinant was made by inserting the EGFP gene into the full-length viral clone between the P and M genes (rVHSV-EGFP). The in vitro replication kinetics of rVHSV-EGFP was similar to rVHSV; however, the rVHSV-ΔNV-EGFP grew 2 logs lower. In yellow perch challenges, wtVHSV and rVHSV induced 82-100% cumulative per cent mortality (CPM), respectively, whereas rVHSV-EGFP produced 62% CPM and rVHSV-ΔNV-EGFP caused only 15% CPM. No reversion of mutation was detected in the recovered viruses and the recombinant viruses stably maintained the foreign gene after several passages. These results indicate that the NV gene of VHSV is not essential for viral replication in vitro and in vivo, but it plays an important role in viral replication efficiency and pathogenicity. This system will facilitate studies of VHSV replication, virulence, and production of viral vectored vaccines.

  15. Influenza A Virus-Host Protein Interactions Control Viral Pathogenesis.

    Science.gov (United States)

    Zhao, Mengmeng; Wang, Lingyan; Li, Shitao

    2017-08-01

    The influenza A virus (IAV), a member of the Orthomyxoviridae family, is a highly transmissible respiratory pathogen and represents a continued threat to global health with considerable economic and social impact. IAV is a zoonotic virus that comprises a plethora of strains with different pathogenic profiles. The different outcomes of viral pathogenesis are dependent on the engagement between the virus and the host cellular protein interaction network. The interactions may facilitate virus hijacking of host molecular machinery to fulfill the viral life cycle or trigger host immune defense to eliminate the virus. In recent years, much effort has been made to discover the virus-host protein interactions and understand the underlying mechanisms. In this paper, we review the recent advances in our understanding of IAV-host interactions and how these interactions contribute to host defense and viral pathogenesis.

  16. Diversity of Aquatic Pseudomonas Species and Their Activity against the Fish Pathogenic Oomycete Saprolegnia.

    Directory of Open Access Journals (Sweden)

    Yiying Liu

    Full Text Available Emerging fungal and oomycete pathogens are increasingly threatening animals and plants globally. Amongst oomycetes, Saprolegnia species adversely affect wild and cultivated populations of amphibians and fish, leading to substantial reductions in biodiversity and food productivity. With the ban of several chemical control measures, new sustainable methods are needed to mitigate Saprolegnia infections in aquaculture. Here, PhyloChip-based community analyses showed that the Pseudomonadales, particularly Pseudomonas species, represent one of the largest bacterial orders associated with salmon eggs from a commercial hatchery. Among the Pseudomonas species isolated from salmon eggs, significantly more biosurfactant producers were retrieved from healthy salmon eggs than from Saprolegnia-infected eggs. Subsequent in vivo activity bioassays showed that Pseudomonas isolate H6 significantly reduced salmon egg mortality caused by Saprolegnia diclina. Live colony mass spectrometry showed that strain H6 produces a viscosin-like lipopeptide surfactant. This biosurfactant inhibited growth of Saprolegnia in vitro, but no significant protection of salmon eggs against Saprolegniosis was observed. These results indicate that live inocula of aquatic Pseudomonas strains, instead of their bioactive compound, can provide new (microbiological and sustainable means to mitigate oomycete diseases in aquaculture.

  17. Diversity of Aquatic Pseudomonas Species and Their Activity against the Fish Pathogenic Oomycete Saprolegnia

    Science.gov (United States)

    Liu, Yiying; Rzeszutek, Elzbieta; van der Voort, Menno; Wu, Cheng-Hsuan; Thoen, Even; Skaar, Ida; Bulone, Vincent; Dorrestein, Pieter C.; Raaijmakers, Jos M.; de Bruijn, Irene

    2015-01-01

    Emerging fungal and oomycete pathogens are increasingly threatening animals and plants globally. Amongst oomycetes, Saprolegnia species adversely affect wild and cultivated populations of amphibians and fish, leading to substantial reductions in biodiversity and food productivity. With the ban of several chemical control measures, new sustainable methods are needed to mitigate Saprolegnia infections in aquaculture. Here, PhyloChip-based community analyses showed that the Pseudomonadales, particularly Pseudomonas species, represent one of the largest bacterial orders associated with salmon eggs from a commercial hatchery. Among the Pseudomonas species isolated from salmon eggs, significantly more biosurfactant producers were retrieved from healthy salmon eggs than from Saprolegnia-infected eggs. Subsequent in vivo activity bioassays showed that Pseudomonas isolate H6 significantly reduced salmon egg mortality caused by Saprolegnia diclina. Live colony mass spectrometry showed that strain H6 produces a viscosin-like lipopeptide surfactant. This biosurfactant inhibited growth of Saprolegnia in vitro, but no significant protection of salmon eggs against Saprolegniosis was observed. These results indicate that live inocula of aquatic Pseudomonas strains, instead of their bioactive compound, can provide new (micro)biological and sustainable means to mitigate oomycete diseases in aquaculture. PMID:26317985

  18. Effectiveness of irradiation in killing pathogens

    International Nuclear Information System (INIS)

    Yeager, J.G.; Ward, R.L.

    1980-01-01

    United States Environmental Protection Agency regulations include gamma ray irradiation of sludge as an approved Process to Further Reduce Pathogens (PFRP) prior to land application. Research at Sandia National Laboratories on pathogen inactivation in sludge by gamma irradiation has demonstrated that the 1 Mrad PFRP dose is capable, by itself, of eliminating bacterial, fungal, and parasitic pathogens from sludge. Gamma irradiation of sludge in conjunction with the required Processes to Significantly Reduce Pathogens (PSRP) should also eliminate the viral hazard from wastewater sludges

  19. Natural aquatic insect carriers of Macrobrachium rosenbergii nodavirus (MrNV) and extra small virus (XSV).

    Science.gov (United States)

    Sudhakaran, R; Haribabu, P; Kumar, S Rajesh; Sarathi, M; Ahmed, V P Ishaq; Babu, V Sarath; Venkatesan, C; Hameedl, A S Sahul

    2008-04-01

    Five different species of aquatic insects were collected from nursery ponds containing the freshwater prawn Macrobrachium rosenbergii infected with Macrobrachium rosenbergii nodavirus (MrNV) and extra small virus (XSV). The insects were screened as potential natural carriers of MrNV and XSV. RT-PCR (reverse transcription polymerase chain reaction) analysis gave positive results for MrNV and XSV in Belostoma sp., Aesohna sp., Cybister sp. and Notonecta sp., and negative results for Nepa sp. An Aedes albopictus mosquito cell line (C6/36) was used for infectivity assays, with viral inoculum prepared from the aquatic insects, since C6/36 cells have recently been shown to be susceptible to infection with MrNV and XSV. The C6/36 cells were harvested 4 d post-challenge for examination by electron microscopy. This revealed aggregation of viral particles throughout the cytoplasm for cells challenged with inocula from all the insect species except Nepa sp. Our results indicate that several aquatic insect species may present a risk for MrNV and XSV transmission to M. rosenbergii.

  20. Recombinant viruses as vaccines against viral diseases

    Directory of Open Access Journals (Sweden)

    A.P.D. Souza

    2005-04-01

    Full Text Available Vaccine approaches to infectious diseases are widely applied and appreciated. Amongst them, vectors based on recombinant viruses have shown great promise and play an important role in the development of new vaccines. Many viruses have been investigated for their ability to express proteins from foreign pathogens and induce specific immunological responses against these antigens in vivo. Generally, gene-based vaccines can stimulate potent humoral and cellular immune responses and viral vectors might be an effective strategy for both the delivery of antigen-encoding genes and the facilitation and enhancement of antigen presentation. In order to be utilized as a vaccine carrier, the ideal viral vector should be safe and enable efficient presentation of required pathogen-specific antigens to the immune system. It should also exhibit low intrinsic immunogenicity to allow for its re-administration in order to boost relevant specific immune responses. Furthermore, the vector system must meet criteria that enable its production on a large-scale basis. Several viral vaccine vectors have thus emerged to date, all of them having relative advantages and limits depending on the proposed application, and thus far none of them have proven to be ideal vaccine carriers. In this review we describe the potential, as well as some of the foreseeable obstacles associated with viral vaccine vectors and their use in preventive medicine.

  1. Assembly of viral genomes from metagenomes

    Directory of Open Access Journals (Sweden)

    Saskia L Smits

    2014-12-01

    Full Text Available Viral infections remain a serious global health issue. Metagenomic approaches are increasingly used in the detection of novel viral pathogens but also to generate complete genomes of uncultivated viruses. In silico identification of complete viral genomes from sequence data would allow rapid phylogenetic characterization of these new viruses. Often, however, complete viral genomes are not recovered, but rather several distinct contigs derived from a single entity, some of which have no sequence homology to any known proteins. De novo assembly of single viruses from a metagenome is challenging, not only because of the lack of a reference genome, but also because of intrapopulation variation and uneven or insufficient coverage. Here we explored different assembly algorithms, remote homology searches, genome-specific sequence motifs, k-mer frequency ranking, and coverage profile binning to detect and obtain viral target genomes from metagenomes. All methods were tested on 454-generated sequencing datasets containing three recently described RNA viruses with a relatively large genome which were divergent to previously known viruses from the viral families Rhabdoviridae and Coronaviridae. Depending on specific characteristics of the target virus and the metagenomic community, different assembly and in silico gap closure strategies were successful in obtaining near complete viral genomes.

  2. High frequency of parasitic and viral stool pathogens in patients with active ulcerative colitis: report from a tropical country.

    Science.gov (United States)

    Banerjee, Debabrata; Deb, Rachana; Dar, Lalit; Mirdha, Bijay R; Pati, Sunil K; Thareja, Sandeep; Falodia, Sushil; Ahuja, Vineet

    2009-01-01

    Diarrhoeal relapses in patients with ulcerative colitis (UC) may be associated with enteric infections and its diagnosis may lessen avoidable exposure to corticosteroids and/or immunosuppressants. The purpose of this study was to assess the frequency of stool pathogens (parasitic and viral) in patients with active UC. This prospective cross-sectional study included 49 consecutive patients (32 M, 17 F, mean age 35.8+/-12 years) with active UC. Three stool samples were collected from each patient and examined for parasitic infection. Rectal biopsies were obtained during sigmoidoscopy to demonstrate cytomegalovirus (CMV) inclusion bodies and to conduct qualitative polymerase chain reaction (PCR) for CMV and herpes simplex virus (HSV) DNA detection. Median duration of illness was 3.9+/-3.7 years and 83.7% of the patients had moderate to severe disease. The prevalence of parasitic infections in UC was 12%. The organisms isolated were Strongyloides stercoralis in 4%, Ankylostoma duodenale in 4%, Cryptosporidium in 2% and Entamoeba histolytica in 2% of the patients. The prevalence of CMV and HSV in rectal biopsies using qualitative PCR was 8% and 10%, respectively. No predictive factor was identified with CMV superinfection in patients with active UC. In India there is a high prevalence of parasitic and viral infections in patients with active UC. The results of the study suggest that, in tropical countries with a known high prevalence of parasitic diseases, aggressive evaluation for parasitic and viral infections should be carried out, as early identification and prompt treatment of such infections can improve the clinical course of patients with active UC.

  3. [Investigation of RNA viral genome amplification by multiple displacement amplification technique].

    Science.gov (United States)

    Pang, Zheng; Li, Jian-Dong; Li, Chuan; Liang, Mi-Fang; Li, De-Xin

    2013-06-01

    In order to facilitate the detection of newly emerging or rare viral infectious diseases, a negative-strand RNA virus-severe fever with thrombocytopenia syndrome bunyavirus, and a positive-strand RNA virus-dengue virus, were used to investigate RNA viral genome unspecific amplification by multiple displacement amplification technique from clinical samples. Series of 10-fold diluted purified viral RNA were utilized as analog samples with different pathogen loads, after a series of reactions were sequentially processed, single-strand cDNA, double-strand cDNA, double-strand cDNA treated with ligation without or with supplemental RNA were generated, then a Phi29 DNA polymerase depended isothermal amplification was employed, and finally the target gene copies were detected by real time PCR assays to evaluate the amplification efficiencies of various methods. The results showed that multiple displacement amplification effects of single-strand or double-strand cDNA templates were limited, while the fold increases of double-strand cDNA templates treated with ligation could be up to 6 X 10(3), even 2 X 10(5) when supplemental RNA existed, and better results were obtained when viral RNA loads were lower. A RNA viral genome amplification system using multiple displacement amplification technique was established in this study and effective amplification of RNA viral genome with low load was achieved, which could provide a tool to synthesize adequate viral genome for multiplex pathogens detection.

  4. Environmental bacteriophages : viruses of microbes in aquatic ecosystems

    Directory of Open Access Journals (Sweden)

    Télesphore eSIME - NGANDO

    2014-07-01

    Full Text Available Since the discovery 2-3 decades ago that viruses of microbes are abundant in marine ecosystems, viral ecology has grown increasingly to reach the status of a full scientific discipline in environmental sciences. A dedicated ISVM society, the International Society for Viruses of Microorganisms (http://www.isvm.org/, was recently launched. Increasing studies in viral ecology are sources of novel knowledge related to the biodiversity of living things, the functioning of ecosystems, and the evolution of the cellular world. This is because viruses are perhaps the most diverse, abundant, and ubiquitous biological entities in the biosphere, although local environmental conditions enrich for certain viral types through selective pressure. They exhibit various lifestyles that intimately depend on the deep-cellular mechanisms, and are ultimately replicated by members of all three domains of cellular life (Bacteria, Eukarya, Archaea, as well as by giant viruses of some eukaryotic cells. This establishes viral parasites as microbial killers but also as cell partners or metabolic manipulators in microbial ecology. The present chapter sought to review the literature on the diversity and functional roles of viruses of microbes in environmental microbiology, focusing primarily on prokaryotic viruses (i.e. phages in aquatic ecosystems, which form the bulk of our knowledge in modern environmental viral ecology.

  5. A Systematic Approach to Elucidate Causes of Gastroenteritis Outbreaks of Suspected Viral Etiology

    NARCIS (Netherlands)

    S. Svraka-Latifovic (Sanela)

    2011-01-01

    textabstractThe main objective of this thesis was to investigate the etiology of outbreaks of viral gastroenteritis that remained without diagnosis after testing for common viral pathogens causing gastroenteritis, e.g. noroviruses, rotaviruses, sapoviruses, adenoviruses, and astroviruses. No

  6. [Micronecta sp (Corixidae) and Diplonychus sp (Belostomatidae), two aquatic Hemiptera hosts and/or potential vectors of Mycobacterium ulcerans (pathogenic agent of Buruli ulcer) in Cote d'Ivoire].

    Science.gov (United States)

    Doannio, J M C; Konan, K L; Dosso, F N; Koné, A B; Konan, Y L; Sankaré, Y; Ekaza, E; Coulibaly, N D; Odéhouri, K P; Dosso, M; Sess, E D; Marsollier, L; Aubry, J

    2011-02-01

    Buruli ulcer is currently a major public health problem in Côte d'Ivoire. It is a neglected tropical disease closely associated with aquatic environments. Aquatic insects of the Hemiptera order have been implicated in human transmission of Mycobacterium ulcerans, the pathogenic agent of Buruli ulcer. The purpose of this preliminary study using the polymerase chain reaction (PCR) method was to evaluate aquatic insects in Sokrogbo, a village in the Tiassalé sanitary district where Buruli ulcer is endemic. Findings identified two water bugs hosting Mycobacterium ulcerans, i.e., one of the Micronecta genus in the Corixidae family and another of the Diplonychus genus in the Belostomatidae family. The PCR technique used revealed the molecular signatures of M. ulcerans in tissue from these two insects. Based on these findings, these two water bugs can be considered as potential hosts and/or vectors of M. ulcerans in the study zone. Unlike Diplonychus sp., this is the first report to describe Micronecta sp as a host of M. ulcerans. Further investigation will be needed to assess the role of these two water bugs in human transmission of M. ulcerans in Côte d'Ivoire.

  7. Viral findings in adult hematological patients with neutropenia.

    Directory of Open Access Journals (Sweden)

    Lars Ohrmalm

    Full Text Available BACKGROUND: Until recently, viral infections in patients with hematological malignancies were concerns primarily in allogeneic hematopoietic stem cell transplant (HSCT recipients. During the last years, changed treatment regimens for non-transplanted patients with hematological malignancies have had potential to increase the incidence of viral infections in this group. In this study, we have prospectively investigated the prevalence of a broad range of respiratory viruses in nasopharyngeal aspirate (NPA as well as viruses that commonly reactivate after allogeneic HSCT. METHODOLOGY/PRINCIPAL FINDINGS: Patients with hematological malignancies and therapy induced neutropenia (n = 159 were screened regarding a broad range of common respiratory viruses in the nasopharynx and for viruses commonly detected in severely immunosuppressed patients in peripheral blood. Quantitative PCR was used for detection of viruses. A viral pathogen was detected in 35% of the patients. The detection rate was rather similar in blood (22% and NPA (18% with polyoma BK virus and rhinovirus as dominating pathogens in blood and NPA, respectively. Patients with chronic lymphocytic leukemia (CLL (p<0.01 and patients with fever (p<0.001 were overrepresented in the virus-positive group. Furthermore, viral findings in NPA were associated with upper respiratory symptoms (URTS (p<0.0001. CONCLUSIONS/SIGNIFICANCE: Both respiratory viral infections and low titers of viruses in blood from patients with neutropenia were common. Patients with CLL and patients with fever were independently associated to these infections, and viral findings in NPA were associated to URTS indicating active infection. These findings motivate further studies on viruses' impact on this patient category and their potential role as causative agents of fever during neutropenia.

  8. Viral infections in transplant recipients.

    Science.gov (United States)

    Razonable, R R; Eid, A J

    2009-12-01

    Solid organ and hematopoietic stem cell transplant recipients are uniquely predisposed to develop clinical illness, often with increased severity, due to a variety of common and opportunistic viruses. Patients may acquire viral infections from the donor (donor-derived infections), from reactivation of endogenous latent virus, or from the community. Herpes viruses, most notably cytomegalovirus and Epstein Barr virus, are the most common among opportunistic viral pathogens that cause infection after solid organ and hematopoietic stem cell transplantation. The polyoma BK virus causes opportunistic clinical syndromes predominantly in kidney and allogeneic hematopoietic stem cell transplant recipients. The agents of viral hepatitis B and C present unique challenges particularly among liver transplant recipients. Respiratory viral illnesses due to influenza, respiratory syncytial virus, and parainfluenza virus may affect all types of transplant recipients, although severe clinical disease is observed more commonly among lung and allogeneic hematopoietic stem cell transplant recipients. Less common viral infections affecting transplant recipients include those caused by adenoviruses, parvovirus B19, and West Nile virus. Treatment for viruses with proven effective antiviral drug therapies should be complemented by reduction in the degree of immunosuppression. For others with no proven antiviral drugs for therapy, reduction in the degree of immunosuppression remains as the sole effective strategy for management. Prevention of viral infections is therefore of utmost importance, and this may be accomplished through vaccination, antiviral strategies, and aggressive infection control measures.

  9. Vibrio Pathogens: A Public Health Concern in Rural Water Resources in Sub-Saharan Africa

    Directory of Open Access Journals (Sweden)

    Charles A. Osunla

    2017-10-01

    Full Text Available Members of the Vibrio genus are autochthonous inhabitants of aquatic environments and play vital roles in sustaining the aquatic milieu. The genus comprises about 100 species, which are mostly of marine or freshwater origin, and their classification is frequently updated due to the continuous discovery of novel species. The main route of transmission of Vibrio pathogens to man is through drinking of contaminated water and consumption inadequately cooked aquatic food products. In sub-Saharan Africa and much of the developing world, some rural dwellers use freshwater resources such as rivers for domestic activities, bathing, and cultural and religious purposes. This review describes the impact of inadequately treated sewage effluents on the receiving freshwater resources and the associated risk to the rural dwellers that depends on the water. Vibrio infections remain a threat to public health. In the last decade, Vibrio disease outbreaks have created alertness on the personal, economic, and public health uncertainties associated with the impact of contaminated water in the aquatic environment of sub-Saharan Africa. In this review, we carried out an overview of Vibrio pathogens in rural water resources in Sub-Saharan Africa and the implication of Vibrio pathogens on public health. Continuous monitoring of Vibrio pathogens among environmental freshwater and treated effluents is expected to help reduce the risk associated with the early detection of sources of infection, and also aid our understanding of the natural ecology and evolution of Vibrio pathogens.

  10. Vibrio Pathogens: A Public Health Concern in Rural Water Resources in Sub-Saharan Africa.

    Science.gov (United States)

    Osunla, Charles A; Okoh, Anthony I

    2017-10-07

    Members of the Vibrio genus are autochthonous inhabitants of aquatic environments and play vital roles in sustaining the aquatic milieu. The genus comprises about 100 species, which are mostly of marine or freshwater origin, and their classification is frequently updated due to the continuous discovery of novel species. The main route of transmission of Vibrio pathogens to man is through drinking of contaminated water and consumption inadequately cooked aquatic food products. In sub-Saharan Africa and much of the developing world, some rural dwellers use freshwater resources such as rivers for domestic activities, bathing, and cultural and religious purposes. This review describes the impact of inadequately treated sewage effluents on the receiving freshwater resources and the associated risk to the rural dwellers that depends on the water. Vibrio infections remain a threat to public health. In the last decade, Vibrio disease outbreaks have created alertness on the personal, economic, and public health uncertainties associated with the impact of contaminated water in the aquatic environment of sub-Saharan Africa. In this review, we carried out an overview of Vibrio pathogens in rural water resources in Sub-Saharan Africa and the implication of Vibrio pathogens on public health. Continuous monitoring of Vibrio pathogens among environmental freshwater and treated effluents is expected to help reduce the risk associated with the early detection of sources of infection, and also aid our understanding of the natural ecology and evolution of Vibrio pathogens.

  11. Vibrio Pathogens: A Public Health Concern in Rural Water Resources in Sub-Saharan Africa

    Science.gov (United States)

    Osunla, Charles A.

    2017-01-01

    Members of the Vibrio genus are autochthonous inhabitants of aquatic environments and play vital roles in sustaining the aquatic milieu. The genus comprises about 100 species, which are mostly of marine or freshwater origin, and their classification is frequently updated due to the continuous discovery of novel species. The main route of transmission of Vibrio pathogens to man is through drinking of contaminated water and consumption inadequately cooked aquatic food products. In sub-Saharan Africa and much of the developing world, some rural dwellers use freshwater resources such as rivers for domestic activities, bathing, and cultural and religious purposes. This review describes the impact of inadequately treated sewage effluents on the receiving freshwater resources and the associated risk to the rural dwellers that depends on the water. Vibrio infections remain a threat to public health. In the last decade, Vibrio disease outbreaks have created alertness on the personal, economic, and public health uncertainties associated with the impact of contaminated water in the aquatic environment of sub-Saharan Africa. In this review, we carried out an overview of Vibrio pathogens in rural water resources in Sub-Saharan Africa and the implication of Vibrio pathogens on public health. Continuous monitoring of Vibrio pathogens among environmental freshwater and treated effluents is expected to help reduce the risk associated with the early detection of sources of infection, and also aid our understanding of the natural ecology and evolution of Vibrio pathogens. PMID:28991153

  12. Correlations between Microbial Indicators, Pathogens, and Environmental Factors in a Subtropical Estuary

    Science.gov (United States)

    Ortega, Cristina; Solo-Gabriele, Helena M.; Abdelzaher, Amir; Wright, Mary; Deng, Yang; Stark, Lillian M.

    2009-01-01

    The objective of this study was to evaluate whether indicator microbes and physical-chemical parameters were correlated with pathogens within a tidally influenced estuary. Measurements included the analysis of physical-chemical parameters (pH, salinity, temperature, and turbidity), measurements of bacterial indicators (enterococci, fecal coliform, E. coli, and total coliform), viral indicators (somatic and MS2 coliphage), viral pathogens (enterovirus by culture), and protozoan pathogens (Cryptosporidium and Giardia). All pathogen results were negative with the exception of one sample which tested positive for culturable reovirus (8.5 MPN/100 L).. Notable physical-chemical parameters for this sample included low salinity (<1 ppt) and high water temperature (31 °C). Indicator bacteria and indicator virus levels for this sample were within average values typically measured within the study site and were low in comparison with levels observed in other freshwater environments. Overall results suggest that high levels of bacterial and viral indicators were associated with low salinity sites. PMID:19464704

  13. Comparative study of CXC chemokines modulation in brown trout (Salmo trutta) following infection with a bacterial or viral pathogen.

    Science.gov (United States)

    Gorgoglione, Bartolomeo; Zahran, Eman; Taylor, Nick G H; Feist, Stephen W; Zou, Jun; Secombes, Christopher J

    2016-03-01

    Chemokine modulation in response to pathogens still needs to be fully characterised in fish, in view of the recently described novel chemokines present. This paper reports the first comparative study of CXC chemokine genes transcription in salmonids (brown trout), with a particular focus on the fish specific CXC chemokines (CXCL_F). Adopting new primer sets, optimised to specifically target mRNA, a RT-qPCR gene screening was carried out. Constitutive gene expression was assessed first in six tissues from SPF brown trout. Transcription modulation was next investigated in kidney and spleen during septicaemic infection induced by a RNA virus (Viral Haemorrhagic Septicaemia virus, genotype Ia) or by a Gram negative bacterium (Yersinia ruckeri, ser. O1/biot. 2). From each target organ specific pathogen burden, measured detecting VHSV-glycoprotein or Y. ruckeri 16S rRNA, and IFN-γ gene expression were analysed for their correlation to chemokine transcription. Both pathogens modulated CXC chemokine gene transcript levels, with marked up-regulation seen in some cases, and with both temporal and tissue specific effects apparent. For example, Y. ruckeri strongly induced chemokine transcription in spleen within 24h, whilst VHS generally induced the largest increases at 3d.p.i. in both tissues. This study gives clues to the role of the novel CXC chemokines, in comparison to the other known CXC chemokines in salmonids. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Human Streptococcus agalactiae strains in aquatic mammals and fish

    Science.gov (United States)

    2013-01-01

    Background In humans, Streptococcus agalactiae or group B streptococcus (GBS) is a frequent coloniser of the rectovaginal tract, a major cause of neonatal infectious disease and an emerging cause of disease in non-pregnant adults. In addition, Streptococcus agalactiae causes invasive disease in fish, compromising food security and posing a zoonotic hazard. We studied the molecular epidemiology of S. agalactiae in fish and other aquatic species to assess potential for pathogen transmission between aquatic species and humans. Methods Isolates from fish (n = 26), seals (n = 6), a dolphin and a frog were characterized by pulsed-field gel electrophoresis, multilocus sequence typing and standardized 3-set genotyping, i.e. molecular serotyping and profiling of surface protein genes and mobile genetic elements. Results Four subpopulations of S. agalactiae were identified among aquatic isolates. Sequence type (ST) 283 serotype III-4 and its novel single locus variant ST491 were detected in fish from Southeast Asia and shared a 3-set genotype identical to that of an emerging ST283 clone associated with invasive disease of adult humans in Asia. The human pathogenic strain ST7 serotype Ia was also detected in fish from Asia. ST23 serotype Ia, a subpopulation that is normally associated with human carriage, was found in all grey seals, suggesting that human effluent may contribute to microbial pollution of surface water and exposure of sea mammals to human pathogens. The final subpopulation consisted of non-haemolytic ST260 and ST261 serotype Ib isolates, which belong to a fish-associated clonal complex that has never been reported from humans. Conclusions The apparent association of the four subpopulations of S. agalactiae with specific groups of host species suggests that some strains of aquatic S. agalactiae may present a zoonotic or anthroponotic hazard. Furthermore, it provides a rational framework for exploration of pathogenesis and host-associated genome content of S

  15. Ecological theory as a foundation to control pathogenic invasion in aquaculture

    Science.gov (United States)

    De Schryver, Peter; Vadstein, Olav

    2014-01-01

    Detrimental host–pathogen interactions are a normal phenomenon in aquaculture animal production, and have been counteracted by prophylactic use of antibiotics. Especially, the youngest life stages of cultivated aquatic animals are susceptible to pathogen invasion, resulting in disease and mortality. To establish a more sustainable aquatic food production, there is a need for new microbial management strategies that focus on ‘join them' and not the traditional ‘beat them' approaches. We argue that ecological theory could serve as a foundation for developing sustainable microbial management methods that prevent pathogenic disease in larviculture. Management of the water microbiota in aquaculture systems according to ecological selection principles has been shown to decrease opportunistic pathogen pressure and to result in an improved performance of the cultured animals. We hypothesize that manipulation of the biodiversity of the gut microbiota can increase the host's resistance against pathogenic invasion and infection. However, substantial barriers need to be overcome before active management of the intestinal microbiota can effectively be applied in larviculture. PMID:24892581

  16. Viral Organization of Human Proteins

    Science.gov (United States)

    Wuchty, Stefan; Siwo, Geoffrey; Ferdig, Michael T.

    2010-01-01

    Although maps of intracellular interactions are increasingly well characterized, little is known about large-scale maps of host-pathogen protein interactions. The investigation of host-pathogen interactions can reveal features of pathogenesis and provide a foundation for the development of drugs and disease prevention strategies. A compilation of experimentally verified interactions between HIV-1 and human proteins and a set of HIV-dependency factors (HDF) allowed insights into the topology and intricate interplay between viral and host proteins on a large scale. We found that targeted and HDF proteins appear predominantly in rich-clubs, groups of human proteins that are strongly intertwined among each other. These assemblies of proteins may serve as an infection gateway, allowing the virus to take control of the human host by reaching protein pathways and diversified cellular functions in a pronounced and focused way. Particular transcription factors and protein kinases facilitate indirect interactions between HDFs and viral proteins. Discerning the entanglement of directly targeted and indirectly interacting proteins may uncover molecular and functional sites that can provide novel perspectives on the progression of HIV infection and highlight new avenues to fight this virus. PMID:20827298

  17. Inferring epidemiologic dynamics from viral evolution: 2014–2015 Eurasian/North American highly pathogenic avian influenza viruses exceed transmission threshold, R0 = 1, in wild birds and poultry in North America

    Science.gov (United States)

    Grear, Daniel R.; Hall, Jeffrey S.; Dusek, Robert; Ip, Hon S.

    2018-01-01

    Highly pathogenic avian influenza virus (HPAIV) is a multihost pathogen with lineages that pose health risks for domestic birds, wild birds, and humans. One mechanism of intercontinental HPAIV spread is through wild bird reservoirs, and wild birds were the likely sources of a Eurasian (EA) lineage HPAIV into North America in 2014. The introduction resulted in several reassortment events with North American (NA) lineage low-pathogenic avian influenza viruses and the reassortant EA/NA H5N2 went on to cause one of the largest HPAIV poultry outbreaks in North America. We evaluated three hypotheses about novel HPAIV introduced into wild and domestic bird hosts: (i) transmission of novel HPAIVs in wild birds was restricted by mechanisms associated with highly pathogenic phenotypes; (ii) the HPAIV poultry outbreak was not self-sustaining and required viral input from wild birds; and (iii) reassortment of the EA H5N8 generated reassortant EA/NA AIVs with a fitness advantage over fully Eurasian lineages in North American wild birds. We used a time-rooted phylodynamic model that explicitly incorporated viral population dynamics with evolutionary dynamics to estimate the basic reproductive number (R0) and viral migration among host types in domestic and wild birds, as well as between the EA H5N8 and EA/NA H5N2 in wild birds. We did not find evidence to support hypothesis (i) or (ii) as our estimates of the transmission parameters suggested that the HPAIV outbreak met or exceeded the threshold for persistence in wild birds (R0 > 1) and poultry (R0 ≈ 1) with minimal estimated transmission among host types. There was also no evidence to support hypothesis (iii) because R0 values were similar among EA H5N8 and EA/NA H5N2 in wild birds. Our results suggest that this novel HPAIV and reassortments did not encounter any transmission barriers sufficient to prevent persistence when introduced to wild or domestic birds.

  18. Neonicotinoid clothianidin adversely affects insect immunity and promotes replication of a viral pathogen in honey bees.

    Science.gov (United States)

    Di Prisco, Gennaro; Cavaliere, Valeria; Annoscia, Desiderato; Varricchio, Paola; Caprio, Emilio; Nazzi, Francesco; Gargiulo, Giuseppe; Pennacchio, Francesco

    2013-11-12

    Large-scale losses of honey bee colonies represent a poorly understood problem of global importance. Both biotic and abiotic factors are involved in this phenomenon that is often associated with high loads of parasites and pathogens. A stronger impact of pathogens in honey bees exposed to neonicotinoid insecticides has been reported, but the causal link between insecticide exposure and the possible immune alteration of honey bees remains elusive. Here, we demonstrate that the neonicotinoid insecticide clothianidin negatively modulates NF-κB immune signaling in insects and adversely affects honey bee antiviral defenses controlled by this transcription factor. We have identified in insects a negative modulator of NF-κB activation, which is a leucine-rich repeat protein. Exposure to clothianidin, by enhancing the transcription of the gene encoding this inhibitor, reduces immune defenses and promotes the replication of the deformed wing virus in honey bees bearing covert infections. This honey bee immunosuppression is similarly induced by a different neonicotinoid, imidacloprid, but not by the organophosphate chlorpyriphos, which does not affect NF-κB signaling. The occurrence at sublethal doses of this insecticide-induced viral proliferation suggests that the studied neonicotinoids might have a negative effect at the field level. Our experiments uncover a further level of regulation of the immune response in insects and set the stage for studies on neural modulation of immunity in animals. Furthermore, this study has implications for the conservation of bees, as it will contribute to the definition of more appropriate guidelines for testing chronic or sublethal effects of pesticides used in agriculture.

  19. Aquatic bird disease and mortality as an indicator of changing ecosystem health

    Science.gov (United States)

    Newman, Scott H.; Chmura, Aleksei; Converse, Kathy; Kilpatrick, A. Marm; Patel, Nikkita; Lammers, Emily; Daszak, Peter

    2007-01-01

    We analyzed data from pathologic investigations in the United States, collected by the USGS National Wildlife Health Center between 1971 and 2005, into aquatic bird mortality events. A total of 3619 mortality events was documented for aquatic birds, involving at least 633 708 dead birds from 158 species belonging to 23 families. Environmental causes accounted for the largest proportion of mortality events (1737 or 48%) and dead birds (437 258 or 69%); these numbers increased between 1971 and 2000, with biotoxin mortalities due to botulinum intoxication (Types C and E) being the leading cause of death. Infectious diseases were the second leading cause of mortality events (20%) and dead birds (20%), with both viral diseases, including duck plague (Herpes virus), paramyxovirus of cormorants (Paramyxovirus PMV1) and West Nile virus (Flavivirus), and bacterial diseases, including avian cholera (Pasteurella multocida), chlamydiosis (Chalmydia psittici), and salmonellosis (Salmonella sp.), contributing. Pelagic, coastal marine birds and species that use marine and freshwater habitats were impacted most frequently by environmental causes of death, with biotoxin exposure, primarily botulinum toxin, resulting in mortalities of both coastal and freshwater species. Pelagic birds were impacted most severely by emaciation and starvation, which may reflect increased anthropogenic pressure on the marine habitat from over-fishing, pollution, and other factors. Our study provides important information on broad trends in aquatic bird mortality and highlights how long-term wildlife disease studies can be used to identify anthropogenic threats to wildlife conservation and ecosystem health. In particular, mortality data for the past 30 yr suggest that biotoxins, viral, and bacterial diseases could have impacted >5 million aquatic birds.

  20. Management of Viral Central Nervous System Infections: A Primer for Clinicians

    Directory of Open Access Journals (Sweden)

    P Brandon Bookstaver

    2017-04-01

    Full Text Available Viruses are a common cause of central nervous system (CNS infections with many host, agent, and environmental factors influencing the expression of viral diseases. Viruses can be responsible for CNS disease through a variety of mechanisms including direct infection and replication within the CNS resulting in encephalitis, infection limited to the meninges, or immune-related processes such as acute disseminated encephalomyelitis. Common pathogens including herpes simplex virus, varicella zoster, and enterovirus are responsible for the greatest number of cases in immunocompetent hosts. Other herpes viruses (eg, cytomegalovirus, John Cunningham virus are more common in immunocompromised hosts. Arboviruses such as Japanese encephalitis virus and Zika virus are important pathogens globally, but the prevalence varies significantly by geographic region and often season. Early diagnosis from radiographic evidence and molecular (eg, rapid diagnostics is important for targeted therapy. Antivirals may be used effectively against some pathogens, although several viruses have no effective treatment. This article provides a review of epidemiology, diagnostics, and management of common viral pathogens in CNS disease.

  1. Detection of the antiviral drug oseltamivir in aquatic environments.

    Directory of Open Access Journals (Sweden)

    Hanna Söderström

    Full Text Available Oseltamivir (Tamiflu is the most important antiviral drug available and a cornerstone in the defence against a future influenza pandemic. Recent publications have shown that the active metabolite, oseltamivir carboxylate (OC, is not degraded in sewage treatment plants and is also persistent in aquatic environments. This implies that OC will be present in aquatic environments in areas where oseltamivir is prescribed to patients for therapeutic use. The country where oseltamivir is used most is Japan, where it is used to treat seasonal flu. We measured the levels of OC in water samples from the Yodo River system in the Kyoto and Osaka prefectures, Japan, taken before and during the flu-season 2007/8. No OC was detected before the flu-season but 2-58 ng L(-1 was detected in the samples taken during the flu season. This study shows, for the first time, that low levels of oseltamivir can be found in the aquatic environment. Therefore the natural reservoir of influenza virus, dabbling ducks, is exposed to oseltamivir, which could promote the evolution of viral resistance.

  2. Legionella - (re-)awakening to the Amoeba-based Pathogens of Distribution System Biofilm

    Science.gov (United States)

    Fecal pathogens have long been the focus of concern in the distribution of drinking waters. Yet today, with distribution system ‘failures’ accounting for the majority of waterborne outbreaks in the USA, there is growing realization that pathogens endemic to aquatic biofilms may a...

  3. Pathogenicity of Highly Pathogenic Avian Influenza Virus H5N1 in Naturally Infected Poultry in Egypt.

    Directory of Open Access Journals (Sweden)

    Ibrahim Thabet Hagag

    Full Text Available Highly pathogenic avian influenza virus (HPAIV H5N1 has been endemic in Egypt since 2006, and there is increasing concern for its potential to become highly transmissible among humans. Infection by HPAIV H5N1 has been described in experimentally challenged birds. However, the pathogenicity of the H5N1 isolated in Egypt has never been reported in naturally infected chickens and ducks. Here we report a 2013 outbreak of HPAIV H5N1 in commercial poultry farms and backyards in Sharkia Province, Egypt. The main symptoms were ecchymosis on the shanks and feet, cyanosis of the comb and wattles, subcutaneous edema of the head and neck for chickens, and nervous signs (torticollis for ducks. Within 48-72 hrs of the onset of illness, the average mortality rates were 22.8-30% and 28.5-40% in vaccinated chickens and non-vaccinated ducks, respectively. Tissue samples of chickens and ducks were collected for analyses with cross-section immunohistochemistry and real-time RT-PCR for specific viral RNA transcripts. While viral RNA was detected in nearly all tissues and sera collected, viral nucleoprotein was detected almost ubiquitously in all tissues, including testis. Interestingly, viral antigen was also observed in endothelial cells of most organs in chickens, and clearly detected in the trachea and brain in particular. Viral nucleoprotein was also detected in mononuclear cells of various organs, especially pulmonary tissue. We performed phylogenetic analyses and compared the genomic sequences of the hemagglutinin (HA and nonstructural proteins (NS among the isolated viruses, the HPAIV circulated in Egypt in the past and currently, and some available vaccine strains. Further analysis of deduced amino acids of both HA and NS1 revealed that our isolates carried molecular determinants of HPAIV, including the multibasic amino acids (PQGERRRK/KR*GLF in the cleavage site in HA and glutamate at position 92 (D92E in NS1. This is the first report of the pathogenicity

  4. Viral Pneumonia in Patients with Hematologic Malignancy or Hematopoietic Stem Cell Transplantation.

    Science.gov (United States)

    Vakil, Erik; Evans, Scott E

    2017-03-01

    Viral pneumonias in patients with hematologic malignancies and recipients of hematopoietic stem cell transplantation cause significant morbidity and mortality. Advances in diagnostic techniques have enabled rapid identification of respiratory viral pathogens from upper and lower respiratory tract samples. Lymphopenia, myeloablative and T-cell depleting chemotherapy, graft-versus-host disease, and other factors increase the risk of developing life-threatening viral pneumonia. Chest imaging is often nonspecific but may aid in diagnoses. Bronchoscopy with bronchoalveolar lavage is recommended in those at high risk for viral pneumonia who have new infiltrates on chest imaging. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Bacteriophages as indicators of faecal pollution and enteric virus removal.

    Science.gov (United States)

    McMinn, B R; Ashbolt, N J; Korajkic, A

    2017-07-01

    Bacteriophages are an attractive alternative to faecal indicator bacteria (FIB), particularly as surrogates of enteric virus fate and transport, due to their closer morphological and biological properties. Based on a review of published data, we summarize densities of coliphages (F+ and somatic), Bacteroides spp. and enterococci bacteriophages (phages) in individual human waste, raw wastewater, ambient fresh and marine waters and removal through wastewater treatment processes utilizing traditional treatments. We also provide comparisons with FIB and enteric viruses whenever possible. Lastly, we examine fate and transport characteristics in the aquatic environment and provide an overview of the environmental factors affecting their survival. In summary, concentrations of bacteriophages in various sources were consistently lower than FIB, but more reflective of infectious enteric virus levels. Overall, our investigation indicates that bacteriophages may be adequate viral surrogates, especially in built systems, such as wastewater treatment plants. Bacteriophage are alternative fecal indicators that may be better surrogates for viral pathogens than fecal indicator bacteria (FIB). This report offers a summary of the existing literature concerning the utility of bacteriophage as indicators of viral presence (fecal sources and surface waters) and persistence (in built infrastructure and aquatic environments). Our findings indicate that bacteriophage levels in all matrices examined are consistently lower than FIB, but similar to viral pathogens. Furthermore, in built infrastructure (e.g. wastewater treatment systems) bacteriophage closely mimic viral pathogen persistence suggesting they may be adequate sentinels of enteric virus removal. © 2017 The Society for Applied Microbiology.

  6. Control of indigenous pathogenic bacteria in seafood

    DEFF Research Database (Denmark)

    Huss, Hans Henrik

    1997-01-01

    The pathogenic bacteria indigenous to the aquatic and general environment are listed. Their distribution in nature, prevalence in seafood and the possibilities for growth of these organisms in various types of products are outlined These data, combined with what is known regarding the epidemiology...

  7. View and review on viral oncology research

    Directory of Open Access Journals (Sweden)

    Parolin Cristina

    2010-05-01

    Full Text Available Abstract To date, almost one and a half million cases of cancer are diagnosed every year in the US and nearly 560,000 Americans are expected to die of cancer in the current year, more than 1,500 people a day (data from the American Cancer Society at http://www.cancer.org/. According to the World Health Organization (WHO, roughly 20% of all cancers worldwide results from chronic infections; in particular, up to 15% of human cancers is characterized by a viral aetiology with higher incidence in Developing Countries. The link between viruses and cancer was one of the pivotal discoveries in cancer research during the past Century. Indeed, the infectious nature of specific tumors has important implications in terms of their prevention, diagnosis, and therapy. In the 21st Century, the research on viral oncology field continues to be vigorous, with new significant and original studies on viral oncogenesis and translational research from basic virology to treatment of cancer. This review will cover different viral oncology aspects, starting from the history of viral oncology and moving to the peculiar features of oncogenic RNA and DNA viruses, with a special focus on human pathogens.

  8. Recycling Endosomes and Viral Infection.

    Science.gov (United States)

    Vale-Costa, Sílvia; Amorim, Maria João

    2016-03-08

    Many viruses exploit specific arms of the endomembrane system. The unique composition of each arm prompts the development of remarkably specific interactions between viruses and sub-organelles. This review focuses on the viral-host interactions occurring on the endocytic recycling compartment (ERC), and mediated by its regulatory Ras-related in brain (Rab) GTPase Rab11. This protein regulates trafficking from the ERC and the trans-Golgi network to the plasma membrane. Such transport comprises intricate networks of proteins/lipids operating sequentially from the membrane of origin up to the cell surface. Rab11 is also emerging as a critical factor in an increasing number of infections by major animal viruses, including pathogens that provoke human disease. Understanding the interplay between the ERC and viruses is a milestone in human health. Rab11 has been associated with several steps of the viral lifecycles by unclear processes that use sophisticated diversified host machinery. For this reason, we first explore the state-of-the-art on processes regulating membrane composition and trafficking. Subsequently, this review outlines viral interactions with the ERC, highlighting current knowledge on viral-host binding partners. Finally, using examples from the few mechanistic studies available we emphasize how ERC functions are adjusted during infection to remodel cytoskeleton dynamics, innate immunity and membrane composition.

  9. The potyviral suppressor of RNA silencing confers enhanced resistance to multiple pathogens

    International Nuclear Information System (INIS)

    Pruss, Gail J.; Lawrence, Christopher B.; Bass, Troy; Li Qingshun Q.; Bowman, Lewis H.; Vance, Vicki

    2004-01-01

    Helper component-protease (HC-Pro) is a plant viral suppressor of RNA silencing, and transgenic tobacco expressing HC-Pro has increased susceptibility to a broad range of viral pathogens. Here we report that these plants also exhibit enhanced resistance to unrelated heterologous pathogens. Tobacco mosaic virus (TMV) infection of HC-Pro-expressing plants carrying the N resistance gene results in fewer and smaller lesions compared to controls without HC-Pro. The resistance to TMV is compromised but not eliminated by expression of nahG, which prevents accumulation of salicylic acid (SA), an important defense signaling molecule. HC-Pro-expressing plants are also more resistant to tomato black ring nepovirus (TBRV) and to the oomycete Peronospora tabacina. Enhanced TBRV resistance is SA-independent, whereas the response to P. tabacina is associated with early induction of markers characteristic of SA-dependent defense. Thus, a plant viral suppressor of RNA silencing enhances resistance to multiple pathogens via both SA-dependent and SA-independent mechanisms

  10. The potyviral suppressor of RNA silencing confers enhanced resistance to multiple pathogens.

    Science.gov (United States)

    Pruss, Gail J; Lawrence, Christopher B; Bass, Troy; Li, Qingshun Q; Bowman, Lewis H; Vance, Vicki

    2004-03-01

    Helper component-protease (HC-Pro) is a plant viral suppressor of RNA silencing, and transgenic tobacco expressing HC-Pro has increased susceptibility to a broad range of viral pathogens. Here we report that these plants also exhibit enhanced resistance to unrelated heterologous pathogens. Tobacco mosaic virus (TMV) infection of HC-Pro-expressing plants carrying the N resistance gene results in fewer and smaller lesions compared to controls without HC-Pro. The resistance to TMV is compromised but not eliminated by expression of nahG, which prevents accumulation of salicylic acid (SA), an important defense signaling molecule. HC-Pro-expressing plants are also more resistant to tomato black ring nepovirus (TBRV) and to the oomycete Peronospora tabacina. Enhanced TBRV resistance is SA-independent, whereas the response to P. tabacina is associated with early induction of markers characteristic of SA-dependent defense. Thus, a plant viral suppressor of RNA silencing enhances resistance to multiple pathogens via both SA-dependent and SA-independent mechanisms.

  11. Putative prophages related to lytic tailless marine dsDNA phage PM2 are widespread in the genomes of aquatic bacteria

    Directory of Open Access Journals (Sweden)

    Bamford Dennis H

    2007-07-01

    Full Text Available Abstract Background The origin and evolution of viruses is currently a heavily discussed issue. One element in this discussion is the innate viral "self" concept, which suggests that viral structures and functions can be divided into two categories. The first category consists of genetic determinants that are inherited from a viral ancestor and encode the viral "self". The second group consists of another set of structures and functions, the "nonself", which is interchangeable between different viruses and can be obtained via lateral gene transfer. Comparing the structures and sequences of the "self" elements, we have proposed that viruses can be grouped into lineages regardless of which domain of life (bacteria, archaea, eukarya they infect. It has also been suggested that viruses are ancient and possibly predate modern cells. Results Here we identified thirteen putative prophages (viral genomes integrated into bacterial chromosome closely related to the virulent icosahedral tailless lipid-containing bacteriophage PM2. Using the comparative genomics approach, we present evidence to support the viral "self" hypothesis and divide genes of the bacteriophage PM2 and related prophages into "self" and "nonself" categories. Conclusion We show here that the previously proposed most conserved viral "self" determinants, the major coat protein and the packaging ATPase, were the only proteins that could be recognized in all detected corticoviral elements. We also argue here that the genes needed for viral genome replication, as well as for host cell lysis, belong to the "nonself" category of genes. Furthermore, we suggest that abundance of PM2-like viruses in the aquatic environment as well as their importance in the ecology of aquatic microorganisms might have been underestimated.

  12. CT images of infantile viral encephalitis

    International Nuclear Information System (INIS)

    Sugimoto, Tateo; Okazaki, Hitoshi; Woo, Man

    1985-01-01

    Cranial CT scanning was undertaken in 40 patients with infantile viral encephalitis seen from 1977 to 1983. According to the pathogenic viruses, abnormal CT findings were detected most frequently in cases of herpes simplex encephalitis (HSE), followed by non-eruptive viral encephalitis, measles encephalitis, and rubella encephalitis in that order, which coincided well with neurological prognosis. Although CT findings lay within a normal range in cases of measles encephalitis, except a case in which cerebral ventricle was slightly dilated, the degree of consciousness disturbance was unfavorable and it persisted long. This revealed that there is no distinct correlation between the degree of consciousness disturbance and CT findings. Normal CT findings were detected in 13% of patients aged less than 5 years and 76.5% of patients aged 5 years or more. In many patients who had an attack of viral encephalitis at the age of 5 years or more, epileptic seizures occurred frequently, even though CT findings were normal. (Namekawa, K.)

  13. IPNV with high and low virulence: host immune responses and viral mutations during infection

    Directory of Open Access Journals (Sweden)

    Skjesol Astrid

    2011-08-01

    Full Text Available Abstract Background Infectious pancreatic necrosis virus (IPNV is an aquatic member of the Birnaviridae family that causes widespread disease in salmonids. IPNV is represented by multiple strains with markedly different virulence. Comparison of isolates reveals hyper variable regions (HVR, which are presumably associated with pathogenicity. However little is known about the rates and modes of sequence divergence and molecular mechanisms that determine virulence. Also how the host response may influence IPNV virulence is poorly described. Methods In this study we compared two field isolates of IPNV (NFH-Ar and NFH-El. The sequence changes, replication and mortality were assessed following experimental challenge of Atlantic salmon. Gene expression analyses with qPCR and microarray were applied to examine the immune responses in head kidney. Results Significant differences in mortality were observed between the two isolates, and viral load in the pancreas at 13 days post infection (d p.i. was more than 4 orders of magnitude greater for NFH-Ar in comparison with NFH-El. Sequence comparison of five viral genes from the IPNV isolates revealed different mutation rates and Ka/Ks ratios. A strong tendency towards non-synonymous mutations was found in the HRV of VP2 and in VP3. All mutations in VP5 produced precocious stop codons. Prior to the challenge, NFH-Ar and NFH-El possessed high and low virulence motifs in VP2, respectively. Nucleotide substitutions were noticed already during passage of viruses in CHSE-214 cells and their accumulation continued in the challenged fish. The sequence changes were notably directed towards low virulence. Co-ordinated activation of anti-viral genes with diverse functions (IFN-a1 and c, sensors - Rig-I, MDA-5, TLR8 and 9, signal transducers - Srk2, MyD88, effectors - Mx, galectin 9, galectin binding protein, antigen presentation - b2-microglobulin was observed at 13 d p.i. (NFH-Ar and 29 d p.i. (both isolates

  14. From orphan virus to pathogen: the path to the clinical lab

    OpenAIRE

    Li, Linlin; Delwart, Eric

    2011-01-01

    Viral metagenomics has recently yielded numerous previously uncharacterized viral genomes from human and animal samples. We review some of the metagenomics tools and strategies to determine which orphan viruses are likely pathogens. Disease association studies compare viral prevalence in patients with unexplained symptoms versus healthy individuals but require these case and control groups to be closely matched epidemiologically. The development of an antibody response in convalescent serum c...

  15. Viral prevalence increases with regional colony abundance in honey bee drones (Apis mellifera L).

    Science.gov (United States)

    Forfert, Nadège; Natsopoulou, Myrsini E; Paxton, Robert J; Moritz, Robin F A

    2016-10-01

    Transmission among colonies is a central feature for the epidemiology of honey bee pathogens. High colony abundance may promote transmission among colonies independently of apiary layout, making colony abundance a potentially important parameter determining pathogen prevalence in populations of honey bees. To test this idea, we sampled male honey bees (drones) from seven distinct drone congregation areas (DCA), and used their genotypes to estimate colony abundance at each site. A multiplex ligation dependent probe amplification assay (MLPA) was used to assess the prevalence of ten viruses, using five common viral targets, in individual drones. There was a significant positive association between colony abundance and number of viral infections. This result highlights the potential importance of high colony abundance for pathogen prevalence, possibly because high population density facilitates pathogen transmission. Pathogen prevalence in drones collected from DCAs may be a useful means of estimating the disease status of a population of honey bees during the mating season, especially for localities with a large number of wild or feral colonies. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Direct metagenomic detection of viral pathogens in nasal and fecal specimens using an unbiased high-throughput sequencing approach.

    Directory of Open Access Journals (Sweden)

    Shota Nakamura

    Full Text Available With the severe acute respiratory syndrome epidemic of 2003 and renewed attention on avian influenza viral pandemics, new surveillance systems are needed for the earlier detection of emerging infectious diseases. We applied a "next-generation" parallel sequencing platform for viral detection in nasopharyngeal and fecal samples collected during seasonal influenza virus (Flu infections and norovirus outbreaks from 2005 to 2007 in Osaka, Japan. Random RT-PCR was performed to amplify RNA extracted from 0.1-0.25 ml of nasopharyngeal aspirates (N = 3 and fecal specimens (N = 5, and more than 10 microg of cDNA was synthesized. Unbiased high-throughput sequencing of these 8 samples yielded 15,298-32,335 (average 24,738 reads in a single 7.5 h run. In nasopharyngeal samples, although whole genome analysis was not available because the majority (>90% of reads were host genome-derived, 20-460 Flu-reads were detected, which was sufficient for subtype identification. In fecal samples, bacteria and host cells were removed by centrifugation, resulting in gain of 484-15,260 reads of norovirus sequence (78-98% of the whole genome was covered, except for one specimen that was under-detectable by RT-PCR. These results suggest that our unbiased high-throughput sequencing approach is useful for directly detecting pathogenic viruses without advance genetic information. Although its cost and technological availability make it unlikely that this system will very soon be the diagnostic standard worldwide, this system could be useful for the earlier discovery of novel emerging viruses and bioterrorism, which are difficult to detect with conventional procedures.

  17. Host and viral ecology determine bat rabies seasonality and maintenance

    Science.gov (United States)

    George, D.B.; Webb, C.T.; Farnsworth, Matthew L.; O'Shea, T.J.; Bowen, R.A.; Smith, D.L.; Stanley, T.R.; Ellison, L.E.; Rupprecht, C.E.

    2011-01-01

    Rabies is an acute viral infection that is typically fatal. Most rabies modeling has focused on disease dynamics and control within terrestrial mammals (e.g., raccoons and foxes). As such, rabies in bats has been largely neglected until recently. Because bats have been implicated as natural reservoirs for several emerging zoonotic viruses, including SARS-like corona viruses, henipaviruses, and lyssaviruses, understanding how pathogens are maintained within a population becomes vital. Unfortunately, little is known about maintenance mechanisms for any pathogen in bat populations. We present a mathematical model parameterized with unique data from an extensive study of rabies in a Colorado population of big brown bats (Eptesicus fuscus) to elucidate general maintenance mechanisms. We propose that life history patterns of many species of temperate-zone bats, coupled with sufficiently long incubation periods, allows for rabies virus maintenance. Seasonal variability in bat mortality rates, specifically low mortality during hibernation, allows long-term bat population viability. Within viable bat populations, sufficiently long incubation periods allow enough infected individuals to enter hibernation and survive until the following year, and hence avoid an epizootic fadeout of rabies virus. We hypothesize that the slowing effects of hibernation on metabolic and viral activity maintains infected individuals and their pathogens until susceptibles from the annual birth pulse become infected and continue the cycle. This research provides a context to explore similar host ecology and viral dynamics that may explain seasonal patterns and maintenance of other bat-borne diseases.

  18. Recent insights into host-pathogen interaction in white spot syndrome virus infected penaeid shrimp.

    Science.gov (United States)

    Shekhar, M S; Ponniah, A G

    2015-07-01

    Viral disease outbreaks are a major concern impeding the development of the shrimp aquaculture industry. The viral disease due to white spot syndrome virus (WSSV) observed in early 1990s still continues unabated affecting the shrimp farms and cause huge economic loss to the shrimp aquaculture industry. In the absence of effective therapeutics to control WSSV, it is important to understand viral pathogenesis and shrimp response to WSSV at the molecular level. Identification and molecular characterization of WSSV proteins and receptors may facilitate in designing and development of novel therapeutics and antiviral drugs that may inhibit viral replication. Investigations into host-pathogen interactions might give new insights to viral infectivity, tissue tropism and defence mechanism elicited in response to WSSV infection. However, due to the limited information on WSSV gene function and host immune response, the signalling pathways which are associated in shrimp pathogen interaction have also not been elucidated completely. In the present review, the focus is on those shrimp proteins and receptors that are potentially involved in virus infection or in the defence mechanism against WSSV. In addition, the major signalling pathways involved in the innate immune response and the role of apoptosis in host-pathogen interaction is discussed. © 2014 John Wiley & Sons Ltd.

  19. Compartmentalization of the gut viral reservoir in HIV-1 infected patients

    Directory of Open Access Journals (Sweden)

    Grant Tannika

    2007-12-01

    Full Text Available Abstract Background Recently there has been an increasing interest and appreciation for the gut as both a viral reservoir as well as an important host-pathogen interface in human immunodefiency virus type 1 (HIV-1 infection. The gut associated lymphoid tissue (GALT is the largest lymphoid organ infected by HIV-1. In this study we examined if different HIV-1 quasispecies are found in different parts of the gut of HIV-1 infected individuals. Results Gut biopsies (esophagus, stomach, duodenum and colorectum were obtained from eight HIV-1 infected preHAART (highly active antiretroviral therapy patients. HIV-1 Nef and Reverse transcriptase (RT encoding sequences were obtained through nested PCR amplification from DNA isolated from the gut biopsy tissues. The PCR fragments were cloned and sequenced. The resulting sequences were subjected to various phylogenetic analyses. Expression of the nef gene and viral RNA in the different gut tissues was determined using real-time RT-PCR. Phylogenetic analysis of the Nef protein-encoding region revealed compartmentalization of viral replication in the gut within patients. Viral diversity in both the Nef and RT encoding region varied in different parts of the gut. Moreover, increased nef gene expression (p Conclusion Our results indicated that different HIV-1 quasispecies populate different parts of the gut, and that viral replication in the gut is compartmentalized. These observations underscore the importance of the gut as a host-pathogen interface in HIV-1 infection.

  20. The application of epidemiology in aquatic animal health -opportunities and challenges

    Science.gov (United States)

    2011-01-01

    Over recent years the growth in aquaculture, accompanied by the emergence of new and transboundary diseases, has stimulated epidemiological studies of aquatic animal diseases. Great potential exists for both observational and theoretical approaches to investigate the processes driving emergence but, to date, compared to terrestrial systems, relatively few studies exist in aquatic animals. Research using risk methods has assessed routes of introduction of aquatic animal pathogens to facilitate safe trade (e.g. import risk analyses) and support biosecurity. Epidemiological studies of risk factors for disease in aquaculture (most notably Atlantic salmon farming) have effectively supported control measures. Methods developed for terrestrial livestock diseases (e.g. risk-based surveillance) could improve the capacity of aquatic animal surveillance systems to detect disease incursions and emergence. The study of disease in wild populations presents many challenges and the judicious use of theoretical models offers some solutions. Models, parameterised from observational studies of host pathogen interactions, have been used to extrapolate estimates of impacts on the individual to the population level. These have proved effective in estimating the likely impact of parasite infections on wild salmonid populations in Switzerland and Canada (where the importance of farmed salmon as a reservoir of infection was investigated). A lack of data is often the key constraint in the application of new approaches to surveillance and modelling. The need for epidemiological approaches to protect aquatic animal health will inevitably increase in the face of the combined challenges of climate change, increasing anthropogenic pressures, limited water sources and the growth in aquaculture. Table of contents 1 Introduction 4 2 The development of aquatic epidemiology 7 3 Transboundary and emerging diseases 9 3.1 Import risk analysis (IRA) 10 3.2 Aquaculture and disease emergence 11 3.3 Climate

  1. Pathogen Presence in European Starlings Inhabiting Commercial Piggeries in South Australia.

    Science.gov (United States)

    Pearson, Hayley E; Lapidge, Steven J; Hernández-Jover, Marta; Toribio, Jenny-Ann L M L

    2016-06-01

    The majority of bacterial diarrhea-causing illnesses in domestic pigs result from infection with Escherichia coli, Salmonella spp., or Campylobacter spp. These bacterial enteropathogens also correspond with the most-common bacteria isolated from wild birds. Additionally, viral pathogens such as avian influenza virus (AIV), West Nile virus (WNV, including Kunjin disease), and Newcastle disease virus (NDV) may also be carried and transmitted by birds in Australia. Introduced European starlings (Sturnus vulgarus) are one of the most-frequently reported birds on piggeries in Australia. The presence of the three bacterial pathogens, Salmonella spp., Campylobacter spp., and Escherichia coli , as well as the three viral pathogens AIV, WNV, and NDV, were evaluated in starlings captured on four commercial piggeries in South Australia. A total of 473 starlings were captured on the four piggeries in 2008 and 2009. A cloacal swab was taken from each bird and cultured for bacterial identification, with follow-up serotyping of any positives, whilst fifty samples were analyzed by PCR for the three target viral pathogens. There was no AIV, WNV, or NDV detected in the 50 starlings sampled. Escherichia coli was found to be present in the starling populations on all four piggeries whilst Salmonella spp. and Campylobacter jejuni were found to be present only in the starling population sampled on one piggery. Serotyping identified pig-pathogenic strains of the bacteria. The prevalence of these production-limiting bacterial pathogens in starlings, coupled with the large starling populations often found inside piggeries during daylight hours in the summer months, presents a disease transmission risk and jeopardizes piggery disease management. Removal of starlings from agricultural enterprises (as shown by international studies), or prevention of starling access to animal feed and water, could substantially reduce the risk of transmission of enterobacterial pathogens from starlings to

  2. Geochemical Interactions and Viral-Prokaryote Relationships in Freshwater Environments

    Science.gov (United States)

    Kyle, J. E.; Ferris, G.

    2009-05-01

    Viral and prokaryotic abundances were surveyed throughout southern Ontario aquatic habitats to determine relationships with geochemical parameters in the natural environment. Surface water samples were collected from acid mine drainage in summer of 2007 and 2008 and from circum-neutral pH environments in October to November 2008. Site determination was based on collecting samples from various aquatic habitats (acid mine drainage, lakes, rivers, tributaries, wetlands) with differing bedrock geology (limestone and shale dominated vs granitic Canadian Shield) to obtain a range of geochemical conditions. At each site, measurements of temperature, pH, and Eh were conducted. Samples collected for microbial counts and electron imaging were preserved to a final concentration of 2.5 % (v/v) glutaraldehyde. Additional sample were filtered into 60 mL nalgene bottles and amber EPA certified 40 mL glass vials to determine chemical constituents and dissolved organic carbon (DOC), respectively. Water was also collected to determine additional physiochemical parameters (dissolved total iron, ferric iron, nitrate, sulfate, phosphate, alkalinity, and turbidity). All samples were stored at 4 °C until analysis. Viral and prokaryotic abundance was determined by staining samples with SYBR Green I and examining with a epifluorescence microscope under blue excitation. Multiple regression analysis using stepwise backwards regression and general linear models revealed that viral abundance was the most influential predictor of prokaryotic abundance. Additional predictors include pH, sulfate, phosphate, and magnesium. The strength of the model was very strong with 90 % of the variability explained (R2 = 0.90, p < 0.007). This is the first report, to our knowledge, of viruses exhibiting such strong controls over prokaryotic abundance in the natural environment. All relationships are positively correlated with the exception of Mg, which is negatively correlated. Iron was also noted as a

  3. A novel host-proteome signature for distinguishing between acute bacterial and viral infections.

    Directory of Open Access Journals (Sweden)

    Kfir Oved

    Full Text Available Bacterial and viral infections are often clinically indistinguishable, leading to inappropriate patient management and antibiotic misuse. Bacterial-induced host proteins such as procalcitonin, C-reactive protein (CRP, and Interleukin-6, are routinely used to support diagnosis of infection. However, their performance is negatively affected by inter-patient variability, including time from symptom onset, clinical syndrome, and pathogens. Our aim was to identify novel viral-induced host proteins that can complement bacterial-induced proteins to increase diagnostic accuracy. Initially, we conducted a bioinformatic screen to identify putative circulating host immune response proteins. The resulting 600 candidates were then quantitatively screened for diagnostic potential using blood samples from 1002 prospectively recruited patients with suspected acute infectious disease and controls with no apparent infection. For each patient, three independent physicians assigned a diagnosis based on comprehensive clinical and laboratory investigation including PCR for 21 pathogens yielding 319 bacterial, 334 viral, 112 control and 98 indeterminate diagnoses; 139 patients were excluded based on predetermined criteria. The best performing host-protein was TNF-related apoptosis-inducing ligand (TRAIL (area under the curve [AUC] of 0.89; 95% confidence interval [CI], 0.86 to 0.91, which was consistently up-regulated in viral infected patients. We further developed a multi-protein signature using logistic-regression on half of the patients and validated it on the remaining half. The signature with the highest precision included both viral- and bacterial-induced proteins: TRAIL, Interferon gamma-induced protein-10, and CRP (AUC of 0.94; 95% CI, 0.92 to 0.96. The signature was superior to any of the individual proteins (P<0.001, as well as routinely used clinical parameters and their combinations (P<0.001. It remained robust across different physiological systems

  4. Gamma irradiation inactivates honey bee fungal, microsporidian, and viral pathogens and parasites

    Science.gov (United States)

    Managed honey bee (Apis mellifera) populations are currently facing unsustainable losses due to a variety of factors. Colonies are challenged with brood pathogens, such as the fungal agent of chalkbrood disease, the microsporidian gut parasite Nosema sp., and several viruses. These pathogens may be ...

  5. Viral etiology, seasonality and severity of hospitalized patients with severe acute respiratory infections in the Eastern Mediterranean Region, 2007-2014.

    Science.gov (United States)

    Horton, Katherine C; Dueger, Erica L; Kandeel, Amr; Abdallat, Mohamed; El-Kholy, Amani; Al-Awaidy, Salah; Kohlani, Abdul Hakim; Amer, Hanaa; El-Khal, Abel Latif; Said, Mayar; House, Brent; Pimentel, Guillermo; Talaat, Maha

    2017-01-01

    Little is known about the role of viral respiratory pathogens in the etiology, seasonality or severity of severe acute respiratory infections (SARI) in the Eastern Mediterranean Region. Sentinel surveillance for SARI was conducted from December 2007 through February 2014 at 20 hospitals in Egypt, Jordan, Oman, Qatar and Yemen. Nasopharyngeal and oropharyngeal swabs were collected from hospitalized patients meeting SARI case definitions and were analyzed for infection with influenza, respiratory syncytial virus (RSV), adenovirus (AdV), human metapneumovirus (hMPV) and human parainfluenza virus types 1-3 (hPIV1-3). We analyzed surveillance data to calculate positivity rates for viral respiratory pathogens, describe the seasonality of those pathogens and determine which pathogens were responsible for more severe outcomes requiring ventilation and/or intensive care and/or resulting in death. At least one viral respiratory pathogen was detected in 8,753/28,508 (30.7%) samples tested for at least one pathogen and 3,497/9,315 (37.5%) of samples tested for all pathogens-influenza in 3,345/28,438 (11.8%), RSV in 3,942/24,503 (16.1%), AdV in 923/9,402 (9.8%), hMPV in 617/9,384 (6.6%), hPIV1 in 159/9,402 (1.7%), hPIV2 in 85/9,402 (0.9%) and hPIV3 in 365/9,402 (3.9%). Multiple pathogens were identified in 501/9,316 (5.4%) participants tested for all pathogens. Monthly variation, indicating seasonal differences in levels of infection, was observed for all pathogens. Participants with hMPV infections and participants less than five years of age were significantly less likely than participants not infected with hMPV and those older than five years of age, respectively, to experience a severe outcome, while participants with a pre-existing chronic disease were at increased risk of a severe outcome, compared to those with no reported pre-existing chronic disease. Viral respiratory pathogens are common among SARI patients in the Eastern Mediterranean Region. Ongoing surveillance is

  6. ASTHMA AND VIRAL INFECTIONS IN CHILDREN

    Directory of Open Access Journals (Sweden)

    D. Sh. Macharadze

    2014-01-01

    Full Text Available Viruses are the most common pathogens of acute respiratory diseases — most often causing mild symptoms of common cold: cough, runny nose, temperature increases. At the same time, 1/3 of children have the following symptoms of lower respiratory tract disorders: shortness of breath, wheezing, coughing, respiratory failure. Virus-induced wheezing are risk factors for development of asthma in childhood. Recent clinical and scientific data suggest: the more difficult are viral respiratory infections in young children, the higher their risk of asthma later on. Another feature is that children with allergic diseases are much more likely to have viral respiratory infections(and with longer clinical course, compared with children without atopy. The use of ibuprofen is safe for children over 3 months, including suffering from bronchial asthma.

  7. A Viral RNA Structural Element Alters Host Recognition of Nonself RNA

    Energy Technology Data Exchange (ETDEWEB)

    Hyde, J. L.; Gardner, C. L.; Kimura, T.; White, J. P.; Liu, G.; Trobaugh, D. W.; Huang, C.; Tonelli, M.; Paessler, S.; Takeda, K.; Klimstra, W. B.; Amarasinghe, G. K.; Diamond, M. S.

    2014-01-30

    Although interferon (IFN) signaling induces genes that limit viral infection, many pathogenic viruses overcome this host response. As an example, 2'-O methylation of the 5' cap of viral RNA subverts mammalian antiviral responses by evading restriction of Ifit1, an IFN-stimulated gene that regulates protein synthesis. However, alphaviruses replicate efficiently in cells expressing Ifit1 even though their genomic RNA has a 5' cap lacking 2'-O methylation. We show that pathogenic alphaviruses use secondary structural motifs within the 5' untranslated region (UTR) of their RNA to alter Ifit1 binding and function. Mutations within the 5'-UTR affecting RNA structural elements enabled restriction by or antagonism of Ifit1 in vitro and in vivo. These results identify an evasion mechanism by which viruses use RNA structural motifs to avoid immune restriction.

  8. Hypothesis for heritable, anti-viral immunity in crustaceans and insects

    Directory of Open Access Journals (Sweden)

    Flegel Timothy W

    2009-09-01

    Full Text Available Abstract Background It is known that crustaceans and insects can persistently carry one or more viral pathogens at low levels, without signs of disease. They may transmit them to their offspring or to naïve individuals, often with lethal consequences. The underlying molecular mechanisms have not been elucidated, but the process has been called viral accommodation. Since tolerance to one virus does not confer tolerance to another, tolerance is pathogen-specific, so the requirement for a specific pathogen response mechanism (memory was included in the original viral accommodation concept. Later, it was hypothesized that specific responses were based on the presence of viruses in persistent infections. However, recent developments suggest that specific responses may be based on viral sequences inserted into the host genome. Presentation of the hypothesis Non-retroviral fragments of both RNA and DNA viruses have been found in insect and crustacean genomes. In addition, reverse-transcriptase (RT and integrase (IN sequences are also common in their genomes. It is hypothesized that shrimp and other arthropods use these RT to recognize "foreign" mRNA of both RNA and DNA viruses and use the integrases (IN to randomly insert short cDNA sequences into their genomes. By chance, some of these sequences result in production of immunospecific RNA (imRNA capable of stimulating RNAi that suppresses viral propagation. Individuals with protective inserts would pass these on to the next generation, together with similar protective inserts for other viruses that could be amalgamated rapidly in individual offspring by random assortment of chromosomes. The most successful individuals would be environmentally selected from billions of offspring. Conclusion This hypothesis for immunity based on an imRNA generation mechanism fits with the general principle of invertebrate immunity based on a non-host, "pattern recognition" process. If proven correct, understanding the

  9. Gravimetric Viral Diagnostics: : QCM Based Biosensors for Early Detection of Viruses

    NARCIS (Netherlands)

    Afzal, Adeel; Mujahid, Adnan; Schirhagl, Romana; Bajwa, Sadia Z.; Latif, Usman; Feroz, Saima

    2017-01-01

    Viruses are pathogenic microorganisms that can inhabit and replicate in human bodies causing a number of widespread infectious diseases such as influenza, gastroenteritis, hepatitis, meningitis, pneumonia, acquired immune deficiency syndrome (AIDS) etc. A majority of these viral diseases are

  10. Zika Fetal Neuropathogenesis: Etiology of a Viral Syndrome.

    Directory of Open Access Journals (Sweden)

    Zachary A Klase

    2016-08-01

    Full Text Available The ongoing Zika virus epidemic in the Americas and the observed association with both fetal abnormalities (primary microcephaly and adult autoimmune pathology (Guillain-Barré syndrome has brought attention to this neglected pathogen. While initial case studies generated significant interest in the Zika virus outbreak, larger prospective epidemiology and basic virology studies examining the mechanisms of Zika viral infection and associated pathophysiology are only now starting to be published. In this review, we analyze Zika fetal neuropathogenesis from a comparative pathology perspective, using the historic metaphor of "TORCH" viral pathogenesis to provide context. By drawing parallels to other viral infections of the fetus, we identify common themes and mechanisms that may illuminate the observed pathology. The existing data on the susceptibility of various cells to both Zika and other flavivirus infections are summarized. Finally, we highlight relevant aspects of the known molecular mechanisms of flavivirus replication.

  11. Zika Fetal Neuropathogenesis: Etiology of a Viral Syndrome

    Science.gov (United States)

    Klase, Zachary A.; Khakhina, Svetlana; Schneider, Adriano De Bernardi; Callahan, Michael V.; Glasspool-Malone, Jill

    2016-01-01

    The ongoing Zika virus epidemic in the Americas and the observed association with both fetal abnormalities (primary microcephaly) and adult autoimmune pathology (Guillain–Barré syndrome) has brought attention to this neglected pathogen. While initial case studies generated significant interest in the Zika virus outbreak, larger prospective epidemiology and basic virology studies examining the mechanisms of Zika viral infection and associated pathophysiology are only now starting to be published. In this review, we analyze Zika fetal neuropathogenesis from a comparative pathology perspective, using the historic metaphor of “TORCH” viral pathogenesis to provide context. By drawing parallels to other viral infections of the fetus, we identify common themes and mechanisms that may illuminate the observed pathology. The existing data on the susceptibility of various cells to both Zika and other flavivirus infections are summarized. Finally, we highlight relevant aspects of the known molecular mechanisms of flavivirus replication. PMID:27560129

  12. Healthcare workers mobile phone usage: A potential risk for viral contamination. Surveillance pilot study.

    Science.gov (United States)

    Cavari, Yuval; Kaplan, Or; Zander, Aviva; Hazan, Guy; Shemer-Avni, Yonat; Borer, Abraham

    2016-01-01

    Mobile phones are commonly used by healthcare workers (HCW) in the working environment, as they allow instant communication and endless resource utilisation. Studies suggest that mobile phones have been implicated as reservoirs of bacterial pathogens, with the potential to cause nosocomial infection. This study aimed to investigate the presence of Respiratory Syncytial Virus, Adenovirus and Influenza Virus on HCWs mobile phones and to identify risk factors implied by HCWs practice of mobile phones in a clinical paediatric environment. Fifty HCWs' mobile phones were swabbed over both sides of the mobile phone, for testing of viral contamination during 8 days in January 2015. During the same period, a questionnaire investigating usage of mobile phones was given to 101 HCWs. Ten per cent of sampled phones were contaminated with viral pathogens tested for. A total of 91% of sampled individuals by questionnaire used their mobile phone within the workplace, where 37% used their phone at least every hour. Eighty-nine (88%) responders were aware that mobile phones could be a source of contamination, yet only 13 (13%) disinfect their cell phone regularly. Mobile phones in clinical practice may be contaminated with viral pathogenic viruses. HCWs use their mobile phone regularly while working and, although the majority are aware of contamination, they do not disinfect their phones.

  13. Gamma irradiation inactivates honey bee fungal, microsporidian, and viral pathogens and parasites.

    Science.gov (United States)

    Simone-Finstrom, Michael; Aronstein, Kate; Goblirsch, Michael; Rinkevich, Frank; de Guzman, Lilia

    2018-03-01

    Managed honey bee (Apis mellifera) populations are currently facing unsustainable losses due to a variety of factors. Colonies are challenged with brood pathogens, such as the fungal agent of chalkbrood disease, the microsporidian gut parasite Nosema spp., and several viruses. These pathogens may be transmitted horizontally from worker to worker, vertically from queen to egg and via vectors like the parasitic mite, Varroa destructor. Despite the fact that these pathogens are widespread and often harbored in wax comb that is reused from year to year and transferred across beekeeping operations, few, if any, universal treatments exist for their control. In order to mitigate some of these biological threats to honey bees and to allow for more sustainable reuse of equipment, investigations into techniques for the sterilization of hive equipment and comb are of particular significance. Here, we investigated the potential of gamma irradiation for inactivation of the fungal pathogen Ascosphaera apis, the microsporidian Nosema ceranae and three honey bee viruses (Deformed wing virus [DWV], Black queen cell virus [BQCV], and Chronic bee paralysis virus [CBPV]), focusing on the infectivity of these pathogens post-irradiation. Results indicate that gamma irradiation can effectively inactivate A. apis, N. ceranae, and DWV. Partial inactivation was noted for BQCV and CBPV, but this did not reduce effects on mortality at the tested, relatively high doses. These findings highlight the importance of studying infection rate and symptom development post-treatment and not simply rate or quantity detected. These findings suggest that gamma irradiation may function as a broad treatment to help mitigate colony losses and the spread of pathogens through the exchange of comb across colonies, but raises the question why some viruses appear to be unaffected. These results provide the basis for subsequent studies on benefits of irradiation of used comb for colony health and productivity

  14. Are Aquatic Viruses a Biological Archive of Genetic Information from Universe?

    Science.gov (United States)

    Toparceanu, F.; Negoita, Gh. T.; Nita, I. I.; Sava, D.

    2009-04-01

    After 1990, when the viruses were admited as the most abundant lifeforms from aquatic environments, it became obvious that viral lysis had an essential role on release and recycling of nutrients. Studies on cellular cultures and modeling suggest that this is an important quantitative process. The viruses from oceans represent the widest source of genetic diversity on the Earth, uncharacterized yet. The ancient lifeforms records stretching back a million years are locked in ice caps. The trend of glaciers melting as effect of actual climate change will promote the release of ancient viruses from ice caps. The increasing of the freshwater layer led to the replace of some algae species by others. Law-Racovitza Station (69o23'S 76o23'E) from East Antarctica (Larsemann Hills Oasis) offers opportunities to study the Antarctic marine ecosystem, as well as archaic aquatic ecosystems from this area ( 150 lakes and waterways resulted from ice and snow melting during the austral summer). According to Law-Racovitza Station Scientific Program, we are performing studies regarding the effect of climate changes on virus-algae host relationship in these aquatic ecosystems. Phycodnaviruses, that infect the eukaryote algae, are comprised of ancient genes and they are considered a "peek" of genetic diversity useful in biological studies and exobiology regarding the evolution of genetic sequencing. The latest discoveries of the giant aquatic viruses open the unexpected perspectives for understanding the role of viral infection in global ecosystem; beyond the old concept which considered that the viruses were only etiological agents of human, animals and plants illnesses. The aquatic viruses which infect microalgae contain similar genes of other viruses, bacteria, arhebacteria and eukaryotes, all of them being on the same genome. Which is the signification of enormous abundance of viruses and excessive diversity of genetic information encoded by viruses? There is the possibility that

  15. A Homolog Pentameric Complex Dictates Viral Epithelial Tropism, Pathogenicity and Congenital Infection Rate in Guinea Pig Cytomegalovirus.

    Science.gov (United States)

    Coleman, Stewart; Choi, K Yeon; Root, Matthew; McGregor, Alistair

    2016-07-01

    In human cytomegalovirus (HCMV), tropism to epithelial and endothelial cells is dependent upon a pentameric complex (PC). Given the structure of the placenta, the PC is potentially an important neutralizing antibody target antigen against congenital infection. The guinea pig is the only small animal model for congenital CMV. Guinea pig cytomegalovirus (GPCMV) potentially encodes a UL128-131 HCMV PC homolog locus (GP128-GP133). In transient expression studies, GPCMV gH and gL glycoproteins interacted with UL128, UL130 and UL131 homolog proteins (designated GP129 and GP131 and GP133 respectively) to form PC or subcomplexes which were determined by immunoprecipitation reactions directed to gH or gL. A natural GP129 C-terminal deletion mutant (aa 107-179) and a chimeric HCMV UL128 C-terminal domain swap GP129 mutant failed to form PC with other components. GPCMV infection of a newly established guinea pig epithelial cell line required a complete PC and a GP129 mutant virus lacked epithelial tropism and was attenuated in the guinea pig for pathogenicity and had a low congenital transmission rate. Individual knockout of GP131 or 133 genes resulted in loss of viral epithelial tropism. A GP128 mutant virus retained epithelial tropism and GP128 was determined not to be a PC component. A series of GPCMV mutants demonstrated that gO was not strictly essential for epithelial infection whereas gB and the PC were essential. Ectopic expression of a GP129 cDNA in a GP129 mutant virus restored epithelial tropism, pathogenicity and congenital infection. Overall, GPCMV forms a PC similar to HCMV which enables evaluation of PC based vaccine strategies in the guinea pig model.

  16. The secreted fructose 1,6-bisphosphate aldolase as a broad spectrum vaccine candidate against pathogenic bacteria in aquaculture.

    Science.gov (United States)

    Sun, Zhongyang; Shen, Binbing; Wu, Haizhen; Zhou, Xiangyu; Wang, Qiyao; Xiao, Jingfan; Zhang, Yuanxing

    2015-10-01

    The development of aquaculture has been hampered by different aquatic pathogens that can cause edwardsiellosis, vibriosis, or other diseases. Therefore, developing a broad spectrum vaccine against different fish diseases is necessary. In this study, fructose 1,6-bisphosphate aldolase (FBA), a conserved enzyme in the glycolytic pathway, was demonstrated to be located in the non-cytoplasmic components of five aquatic pathogenic bacteria and exhibited remarkable protection and cross-protection against these pathogens in turbot and zebrafish. Further analysis revealed that sera sampled from vaccinated turbot had a high level of specific antibody and bactericidal activity against these pathogens. Meanwhile, the increased expressions of immune response-related genes associated with antigen recognition and presentation indicated that the adaptive immune response was effectively aroused. Taken together, our results suggest that FBA can be utilized as a broad-spectrum vaccine against various pathogenic bacteria of aquaculture in the future. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Stormwater runoff drives viral community composition changes in inland freshwaters

    Science.gov (United States)

    Williamson, Kurt E.; Harris, Jamie V.; Green, Jasmin C.; Rahman, Faraz; Chambers, Randolph M.

    2014-01-01

    Storm events impact freshwater microbial communities by transporting terrestrial viruses and other microbes to freshwater systems, and by potentially resuspending microbes from bottom sediments. The magnitude of these impacts on freshwater ecosystems is unknown and largely unexplored. Field studies carried out at two discrete sites in coastal Virginia (USA) were used to characterize the viral load carried by runoff and to test the hypothesis that terrestrial viruses introduced through stormwater runoff change the composition of freshwater microbial communities. Field data gathered from an agricultural watershed indicated that primary runoff can contain viral densities approximating those of receiving waters. Furthermore, viruses attached to suspended colloids made up a large fraction of the total load, particularly in early stages of the storm. At a second field site (stormwater retention pond), RAPD-PCR profiling showed that the viral community of the pond changed dramatically over the course of two intense storms while relatively little change was observed over similar time scales in the absence of disturbance. Comparisons of planktonic and particle-associated viral communities revealed two completely distinct communities, suggesting that particle-associated viruses represent a potentially large and overlooked portion of aquatic viral abundance and diversity. Our findings show that stormwater runoff can quickly change the composition of freshwater microbial communities. Based on these findings, increased storms in the coastal mid-Atlantic region predicted by most climate change models will likely have important impacts on the structure and function of local freshwater microbial communities. PMID:24672520

  18. Innate immune restriction and antagonism of viral RNA lacking 2'-O methylation

    Energy Technology Data Exchange (ETDEWEB)

    Hyde, Jennifer L. [Departments of Medicine, Washington University School of Medicine, St Louis., MO 63110 (United States); Diamond, Michael S., E-mail: diamond@borcim.wustl.edu [Departments of Medicine, Washington University School of Medicine, St Louis., MO 63110 (United States); Molecular Microbiology, Washington University School of Medicine, St Louis., MO 63110 (United States); Pathology & Immunology, Washington University School of Medicine, St Louis., MO 63110 (United States); The Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St Louis., MO 63110 (United States)

    2015-05-15

    N-7 and 2′-O methylation of host cell mRNA occurs in the nucleus and results in the generation of cap structures (cap 0, m{sup 7}GpppN; cap 1, m{sup 7}GpppNm) that control gene expression by modulating nuclear export, splicing, turnover, and protein synthesis. Remarkably, RNA cap modification also contributes to mammalian cell host defense as viral RNA lacking 2′-O methylation is sensed and inhibited by IFIT1, an interferon (IFN) stimulated gene (ISG). Accordingly, pathogenic viruses that replicate in the cytoplasm have evolved mechanisms to circumvent IFIT1 restriction and facilitate infection of mammalian cells. These include: (a) generating cap 1 structures on their RNA through cap-snatching or virally-encoded 2′-O methyltransferases, (b) using cap-independent means of translation, or (c) using RNA secondary structural motifs to antagonize IFIT1 binding. This review will discuss new insights as to how specific modifications at the 5′-end of viral RNA modulate host pathogen recognition responses to promote infection and disease.

  19. Viral etiology of bronchiolitis among pediatric inpatients in northern Taiwan with emphasis on newly identified respiratory viruses.

    Science.gov (United States)

    Chen, Yu-Wen; Huang, Yhu-Chering; Ho, Tai-Hua; Huang, Chung-Guei; Tsao, Kuo-Chien; Lin, Tzou-Yien

    2014-04-01

    Viral etiology of bronchiolitis in children in Taiwan has been fragmentary. We conducted a prospective study to figure out the viral epidemiology of bronchiolitis in Taiwan. From January 2009 to March 2011, a total of 113 children with bronchiolitis, aged culture, antigen test, and polymerase chain reaction. A total of 120 viruses were detected from 113 children. Positive viral etiology was identified in 86 (76%) children. Mixed viral pathogens were found in 28 cases (25%). Respiratory syncytial virus (RSV) was the most common pathogen and was identified in 43.4% of the cases. Human bocavirus (hBoV) was the second most common identified virus (in 19.5%), followed by human metapneumovirus (hMPV), rhinovirus, influenza viruses, and coronavirus OC43. In terms of clinical characteristics, no significant difference was found among the children with bronchiolitis either caused by different single or mixed viral infection. RSV was the most common etiologic agent for children with bronchiolitis in Taiwan. Newly identified viruses, including hMPV and hBoV, were also among the common causative agents. Clinical characteristics were not significantly different among the children with bronchiolitis caused by different viruses. Copyright © 2012. Published by Elsevier B.V.

  20. A Brief Review of Viral and Bacterial Sexually Transmitted Diseases in Colorectal Practice

    Directory of Open Access Journals (Sweden)

    Nabi

    2015-12-01

    Full Text Available Context Sexually transmitted diseases (STDs are a common source of presentation to colorectal surgeons. Clinicians need to remain mindful of the possibility of STDs when faced with atypical clinical presentations. This article aims to provide surgeons with a synopsis of common pathogens, their clinical presentations, diagnostic investigations and treatment regimens. Evidence Acquisition The most common bacterial pathogens include Chlamydia trachomatis and Neisseria gonorrhea with synchronous infections at presentation occurring frequently. Patients often present with proctitis. Gonorrhea patients can also experience bloody purulent perianal discharge. Less common bacterial pathogens include syphilis, chancroid and donovanosis. The commonest STD worldwide remains human papillomavirus. Given its vast array of subtypes its manifestations include benign hyperproliferative lesions like perianal warts and extend to anal intraepithelial neoplasia and squamous cell carcinoma. Other important viral infections of the anorectum include human immunodeficiency virus and subsequent acquired immune deficiency disease as well as herpes simplex virus and molluscum contangiosum. Results Debate exists whether the increasing incidence of STDs affecting the anorectum reported in western literature represents a real increase or a reflection of greater patient and clinician recognition and reporting. Conclusions Regardless, a broad understanding of common bacterial and viral pathogens remains important part of modern colorectal practice. Remaining mindful of the manifestations of these common pathogens, options for diagnosis and management are important in disease control to limit the impact of these pathogens across the wider community.

  1. Viral Interference and Persistence in Mosquito-Borne Flaviviruses

    Directory of Open Access Journals (Sweden)

    Juan Santiago Salas-Benito

    2015-01-01

    Full Text Available Mosquito-borne flaviviruses are important pathogens for humans, and the detection of two or more flaviviruses cocirculating in the same geographic area has often been reported. However, the epidemiological impact remains to be determined. Mosquito-borne flaviviruses are primarily transmitted through Aedes and Culex mosquitoes; these viruses establish a life-long or persistent infection without apparent pathological effects. This establishment requires a balance between virus replication and the antiviral host response. Viral interference is a phenomenon whereby one virus inhibits the replication of other viruses, and this condition is frequently associated with persistent infections. Viral interference and persistent infection are determined by several factors, such as defective interfering particles, competition for cellular factors required for translation/replication, and the host antiviral response. The interaction between two flaviviruses typically results in viral interference, indicating that these viruses share common features during the replicative cycle in the vector. The potential mechanisms involved in these processes are reviewed here.

  2. Processes for managing pathogens.

    Science.gov (United States)

    Godfree, Alan; Farrell, Joseph

    2005-01-01

    Wastewater contains human, animal, and plant pathogens capable of causing viral, bacterial, or parasitic infections. There are several routes whereby sewage pathogens may affect human health, including direct contact, contamination of food crops, zoonoses, and vectors. The range and numbers of pathogens in municipal wastewater vary with the level of endemic disease in the community, discharges from commercial activities, and seasonal factors. Regulations to control pathogen risk in the United States and Europe arising from land application of biosolids are based on the concept of multiple barriers to the prevention of transmission. The barriers are (i) treatment to reduce pathogen content and vector attraction, (ii) restrictions on crops grown on land to which biosolids have been applied, and (iii) minimum intervals following application and grazing or harvesting. Wastewater treatment reduces number of pathogens in the wastewater by concentrating them with the solids in the sludge. Although some treatment processes are designed specifically to inactivate pathogens, many are not, and the actual mechanisms of microbial inactivation are not fully understood for all processes. Vector attraction is reduced by stabilization (reduction of readily biodegradable material) and/or incorporation immediately following application. Concerns about health risks have renewed interest in the effects of treatment (on pathogens) and advanced treatment methods, and work performed in the United States suggests that Class A pathogen reduction can be achieved less expensively than previously thought. Effective pathogen risk management requires control to the complete chain of sludge treatment, biosolids handling and application, and post-application activities. This may be achieved by adherence to quality management systems based on hazard analysis critical control point (HACCP) principles.

  3. Cytokine expression in three chicken host systems infected with H9N2 influenza viruses with different pathogenicities.

    Science.gov (United States)

    Wang, Jianlin; Cao, Zhiwei; Guo, Xuejin; Zhang, Yi; Wang, Dongdong; Xu, Shouzheng; Yin, Yanbo

    2016-12-01

    SD/818 and SD/196 are H9N2 influenza virus strains isolated from chickens from the same farm at different times that exhibited similar genetic evolution. However, strain SD/818 exhibited higher pathogenicity in chickens than strain SD/196 and other H9N2 influenza virus epidemic strains from China. The expression of cytokines is an important host defence mechanism following viral infection and their intensity is a major determinant of viral pathogenicity. To elucidate the mechanism underlying the increased pathogenicity of strain SD/818 from the host's perspective, viral replication and cytokine expression were dynamically studied using real-time quantitative reverse transcription PCR in chickens infected with strain SD/818 compared with chickens infected with strain SD/196 in this study. The results showed that the replication of strain SD/818 and the expressions of IL-1β, IL-6, TNF-α, IFN-α and IFN-β induced by strain SD/818 were higher than those induced by strain SD/196 in the chicken host system. Expression of these cytokines in chickens coincided with or followed virus replication. These results suggested that high-level viral replication and pro-inflammatory cytokine expression (but not decreased type I IFN expression) were associated with the higher pathogenicity of strain SD/818 in chickens.

  4. Mast cells in viral infections

    Directory of Open Access Journals (Sweden)

    Piotr Witczak

    2012-04-01

    Full Text Available  There are some premises suggesting that mast cells are involved in the mechanisms of anti-virus defense and in viral disease pathomechanisms. Mast cells are particularly numerous at the portals of infections and thus may have immediate and easy contact with the external environment and invading pathogens. These cells express receptors responsible for recognition of virus-derived PAMP molecules, mainly Toll-like receptors (TLR3, TLR7/8 and TLR9, but also RIG-I-like and NOD-like molecules. Furthermore, mast cells generate various mediators, cytokines and chemokines which modulate the intensity of inflammation and regulate the course of innate and adaptive anti-viral immunity. Indirect evidence for the role of mast cells in viral infections is also provided by clinical observations and results of animal studies. Currently, more and more data indicate that mast cells can be infected by some viruses (dengue virus, adenoviruses, hantaviruses, cytomegaloviruses, reoviruses, HIV-1 virus. It is also demonstrated that mast cells can release pre formed mediators as well as synthesize de novo eicosanoids in response to stimulation by viruses. Several data indicate that virus-stimulated mast cells secrete cytokines and chemokines, including interferons as well as chemokines with a key role in NK and Tc lymphocyte influx. Moreover, some information indicates that mast cell stimulation via TLR3, TLR7/8 and TLR9 can affect their adhesion to extracellular matrix proteins and chemotaxis, and influence expression of some membrane molecules. Critical analysis of current data leads to the conclusion that it is not yet possible to make definitive statements about the role of mast cells in innate and acquired defense mechanisms developing in the course of viral infection and/or pathomechanisms of viral diseases.

  5. NaVirCept - Nucleic Acid-Based Anti-Viral Project

    International Nuclear Information System (INIS)

    Stephen, E. R.; Wong, J.; Van Loon, D.

    2007-01-01

    Vaccines are generally considered to be the most effective countermeasures to bacterial and viral diseases, however, licensed vaccines against many disease agents are either not available or their efficacies have not been demonstrated. Vaccines are generally agent specific in terms of treatment spectrum and are subject to defeat through natural mutation or through directed efforts. With respect to viral therapeutics, one of the major limitations associated with antiviral drugs is acquired drug resistance caused by antigenic shift or drift. A number of next-generation prophylactic and/or therapeutic measures are on the horizon. Of these, nucleic acid-based drugs are showing great antiviral potential. These drugs elicit long-lasting, broad spectrum protective immune responses, especially to respiratory viral pathogens. The Nucleic Acid-Based Antiviral (NaVirCept) project provides the opportunity to demonstrate the effectiveness of novel medical countermeasures against military-significant endemic and other viral threat agents. This project expands existing DRDC drug delivery capability development, in the form of proprietary liposome intellectual property, by coupling it with leading-edge nucleic acid-based technology to deliver effective medical countermeasures that will protect deployed personnel and the warfighter against a spectrum of viral disease agents. The technology pathway will offer a means to combat emerging viral diseases or modified threat agents such as the bird flu or reconstructed Spanish flu without going down the laborious, time-consuming and expensive paths to develop countermeasures for each new and/or emerging viral disease organism.(author)

  6. Acute viral infections of the central nervous system, 2014-2016, Greece.

    Science.gov (United States)

    Papa, Anna; Papadopoulou, Elpida

    2018-04-01

    In order to investigate the viral etiology of acute infections of central nervous system (CNS), multiplex and single PCRs combined with serology for arboviruses were applied on samples from 132 hospitalized patients in Greece during May 2014-December 2016. A viral pathogen was detected in 52 of 132 (39.4%) cases with acute CNS infection. Enteroviruses predominated (15/52, 28.8%), followed by West Nile virus (9/52, 17.3%). Phleboviruses, varicella-zoster virus, and Epstein-Barr virus accounted for 15.4%, 13.5%, and 11.5% of the cases, respectively. The study gives an insight into the etiology of viral CNS infections in a Mediterranean country, where arboviruses should be included in the differential diagnosis of acute CNS infections. © 2017 Wiley Periodicals, Inc.

  7. Viral Infections in Pregnancy: A Focus on Ebola Virus.

    Science.gov (United States)

    Olgun, Nicole S

    2018-01-30

    During gestation, the immune response of the placenta to viruses and other pathogens plays an important role in determining a pregnant woman's vulnerability toward infectious diseases. Located at the maternal- fetal interface, trophoblast cells serve to minimize the spread of viruses between the host and developing fetus through an intricate system of innate antiviral immune signaling. Adverse pregnancy outcomes, ranging from learning disabilities to preterm birth and fetal death, are all documented results of a viral breach in the placental barrier. Viral infections during pregnancy can also be spread through blood and vaginal secretions, and during the post-natal period, via breast milk. Thus, even in the absence of vertical transmission of viral infection to the fetus, maternal health can still be compromised and threaten the pregnancy. The most common viral DNA isolates found in gestation are adenovirus, cytomegalovirus, and enterovirus. However, with the recent pandemic of Ebola virus, and the first documented case of a neonate to survive due to experimental therapies in 2017, it is becoming increasingly apparent that the changing roles and impacts of viral infection during pregnancy needs to be better understood, while strategies to minimize adverse pregnancy outcomes need to be identified. This review focuses on the adverse impacts of viral infection during gestation, with an emphasis on Ebola virus. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. Transmission Bottleneck Size Estimation from Pathogen Deep-Sequencing Data, with an Application to Human Influenza A Virus.

    Science.gov (United States)

    Sobel Leonard, Ashley; Weissman, Daniel B; Greenbaum, Benjamin; Ghedin, Elodie; Koelle, Katia

    2017-07-15

    The bottleneck governing infectious disease transmission describes the size of the pathogen population transferred from the donor to the recipient host. Accurate quantification of the bottleneck size is particularly important for rapidly evolving pathogens such as influenza virus, as narrow bottlenecks reduce the amount of transferred viral genetic diversity and, thus, may decrease the rate of viral adaptation. Previous studies have estimated bottleneck sizes governing viral transmission by using statistical analyses of variants identified in pathogen sequencing data. These analyses, however, did not account for variant calling thresholds and stochastic viral replication dynamics within recipient hosts. Because these factors can skew bottleneck size estimates, we introduce a new method for inferring bottleneck sizes that accounts for these factors. Through the use of a simulated data set, we first show that our method, based on beta-binomial sampling, accurately recovers transmission bottleneck sizes, whereas other methods fail to do so. We then apply our method to a data set of influenza A virus (IAV) infections for which viral deep-sequencing data from transmission pairs are available. We find that the IAV transmission bottleneck size estimates in this study are highly variable across transmission pairs, while the mean bottleneck size of 196 virions is consistent with a previous estimate for this data set. Furthermore, regression analysis shows a positive association between estimated bottleneck size and donor infection severity, as measured by temperature. These results support findings from experimental transmission studies showing that bottleneck sizes across transmission events can be variable and influenced in part by epidemiological factors. IMPORTANCE The transmission bottleneck size describes the size of the pathogen population transferred from the donor to the recipient host and may affect the rate of pathogen adaptation within host populations. Recent

  9. Raw Sewage Harbors Diverse Viral Populations

    Science.gov (United States)

    Cantalupo, Paul G.; Calgua, Byron; Zhao, Guoyan; Hundesa, Ayalkibet; Wier, Adam D.; Katz, Josh P.; Grabe, Michael; Hendrix, Roger W.; Girones, Rosina; Wang, David; Pipas, James M.

    2011-01-01

    ABSTRACT At this time, about 3,000 different viruses are recognized, but metagenomic studies suggest that these viruses are a small fraction of the viruses that exist in nature. We have explored viral diversity by deep sequencing nucleic acids obtained from virion populations enriched from raw sewage. We identified 234 known viruses, including 17 that infect humans. Plant, insect, and algal viruses as well as bacteriophages were also present. These viruses represented 26 taxonomic families and included viruses with single-stranded DNA (ssDNA), double-stranded DNA (dsDNA), positive-sense ssRNA [ssRNA(+)], and dsRNA genomes. Novel viruses that could be placed in specific taxa represented 51 different families, making untreated wastewater the most diverse viral metagenome (genetic material recovered directly from environmental samples) examined thus far. However, the vast majority of sequence reads bore little or no sequence relation to known viruses and thus could not be placed into specific taxa. These results show that the vast majority of the viruses on Earth have not yet been characterized. Untreated wastewater provides a rich matrix for identifying novel viruses and for studying virus diversity. Importance At this time, virology is focused on the study of a relatively small number of viral species. Specific viruses are studied either because they are easily propagated in the laboratory or because they are associated with disease. The lack of knowledge of the size and characteristics of the viral universe and the diversity of viral genomes is a roadblock to understanding important issues, such as the origin of emerging pathogens and the extent of gene exchange among viruses. Untreated wastewater is an ideal system for assessing viral diversity because virion populations from large numbers of individuals are deposited and because raw sewage itself provides a rich environment for the growth of diverse host species and thus their viruses. These studies suggest that

  10. A Multiplex PCR/LDR Assay for the Simultaneous Identification of Category A Infectious Pathogens: Agents of Viral Hemorrhagic Fever and Variola Virus.

    Directory of Open Access Journals (Sweden)

    Sanchita Das

    Full Text Available CDC designated category A infectious agents pose a major risk to national security and require special action for public health preparedness. They include viruses that cause viral hemorrhagic fever (VHF syndrome as well as variola virus, the agent of smallpox. VHF is characterized by hemorrhage and fever with multi-organ failure leading to high morbidity and mortality. Smallpox, a prior scourge, has been eradicated for decades, making it a particularly serious threat if released nefariously in the essentially non-immune world population. Early detection of the causative agents, and the ability to distinguish them from other pathogens, is essential to contain outbreaks, implement proper control measures, and prevent morbidity and mortality. We have developed a multiplex detection assay that uses several species-specific PCR primers to generate amplicons from multiple pathogens; these are then targeted in a ligase detection reaction (LDR. The resultant fluorescently-labeled ligation products are detected on a universal array enabling simultaneous identification of the pathogens. The assay was evaluated on 32 different isolates associated with VHF (ebolavirus, marburgvirus, Crimean Congo hemorrhagic fever virus, Lassa fever virus, Rift Valley fever virus, Dengue virus, and Yellow fever virus as well as variola virus and vaccinia virus (the agent of smallpox and its vaccine strain, respectively. The assay was able to detect all viruses tested, including 8 sequences representative of different variola virus strains from the CDC repository. It does not cross react with other emerging zoonoses such as monkeypox virus or cowpox virus, or six flaviviruses tested (St. Louis encephalitis virus, Murray Valley encephalitis virus, Powassan virus, Tick-borne encephalitis virus, West Nile virus and Japanese encephalitis virus.

  11. A Multiplex PCR/LDR Assay for the Simultaneous Identification of Category A Infectious Pathogens: Agents of Viral Hemorrhagic Fever and Variola Virus.

    Science.gov (United States)

    Das, Sanchita; Rundell, Mark S; Mirza, Aashiq H; Pingle, Maneesh R; Shigyo, Kristi; Garrison, Aura R; Paragas, Jason; Smith, Scott K; Olson, Victoria A; Larone, Davise H; Spitzer, Eric D; Barany, Francis; Golightly, Linnie M

    2015-01-01

    CDC designated category A infectious agents pose a major risk to national security and require special action for public health preparedness. They include viruses that cause viral hemorrhagic fever (VHF) syndrome as well as variola virus, the agent of smallpox. VHF is characterized by hemorrhage and fever with multi-organ failure leading to high morbidity and mortality. Smallpox, a prior scourge, has been eradicated for decades, making it a particularly serious threat if released nefariously in the essentially non-immune world population. Early detection of the causative agents, and the ability to distinguish them from other pathogens, is essential to contain outbreaks, implement proper control measures, and prevent morbidity and mortality. We have developed a multiplex detection assay that uses several species-specific PCR primers to generate amplicons from multiple pathogens; these are then targeted in a ligase detection reaction (LDR). The resultant fluorescently-labeled ligation products are detected on a universal array enabling simultaneous identification of the pathogens. The assay was evaluated on 32 different isolates associated with VHF (ebolavirus, marburgvirus, Crimean Congo hemorrhagic fever virus, Lassa fever virus, Rift Valley fever virus, Dengue virus, and Yellow fever virus) as well as variola virus and vaccinia virus (the agent of smallpox and its vaccine strain, respectively). The assay was able to detect all viruses tested, including 8 sequences representative of different variola virus strains from the CDC repository. It does not cross react with other emerging zoonoses such as monkeypox virus or cowpox virus, or six flaviviruses tested (St. Louis encephalitis virus, Murray Valley encephalitis virus, Powassan virus, Tick-borne encephalitis virus, West Nile virus and Japanese encephalitis virus).

  12. Highly pathogenic avian influenza.

    Science.gov (United States)

    Swayne, D E; Suarez, D L

    2000-08-01

    Highly pathogenic (HP) avian influenza (AI) (HPAI) is an extremely contagious, multi-organ systemic disease of poultry leading to high mortality, and caused by some H5 and H7 subtypes of type A influenza virus, family Orthomyxoviridae. However, most AI virus strains are mildly pathogenic (MP) and produce either subclinical infections or respiratory and/or reproductive diseases in a variety of domestic and wild bird species. Highly pathogenic avian influenza is a List A disease of the Office International des Epizooties, while MPAI is neither a List A nor List B disease. Eighteen outbreaks of HPAI have been documented since the identification of AI virus as the cause of fowl plague in 1955. Mildly pathogenic avian influenza viruses are maintained in wild aquatic bird reservoirs, occasionally crossing over to domestic poultry and causing outbreaks of mild disease. Highly pathogenic avian influenza viruses do not have a recognised wild bird reservoir, but can occasionally be isolated from wild birds during outbreaks in domestic poultry. Highly pathogenic avian influenza viruses have been documented to arise from MPAI viruses through mutations in the haemagglutinin surface protein. Prevention of exposure to the virus and eradication are the accepted methods for dealing with HPAI. Control programmes, which imply allowing a low incidence of infection, are not an acceptable method for managing HPAI, but have been used during some outbreaks of MPAI. The components of a strategy to deal with MPAI or HPAI include surveillance and diagnosis, biosecurity, education, quarantine and depopulation. Vaccination has been used in some control and eradication programmes for AI.

  13. Modulation of pathogen recognition by autophagy

    Directory of Open Access Journals (Sweden)

    Ji Eun eOh

    2012-03-01

    Full Text Available Autophagy is an ancient biological process for maintaining cellular homeostasis by degradation of long-lived cytosolic proteins and organelles. Recent studies demonstrated that autophagy is availed by immune cells to regulate innate immunity. On the one hand, cells exert direct effector function by degrading intracellular pathogens; on the other hand, autophagy modulates pathogen recognition and downstream signaling for innate immune responses. Pathogen recognition via pattern recognition receptors induces autophagy. The function of phagocytic cells is enhanced by recruitment of autophagy-related proteins. Moreover, autophagy acts as a delivery system for viral replication complexes to migrate to the endosomal compartments where virus sensing occurs. In another case, key molecules of the autophagic pathway have been found to negatively regulate immune signaling, thus preventing aberrant activation of cytokine production and consequent immune responses. In this review, we focus on the recent advances in the role of autophagy in pathogen recognition and modulation of innate immune responses.

  14. FishPathogens.eu a new database in the research of aquatic animal diseases

    DEFF Research Database (Denmark)

    Jonstrup, Søren Peter; Gray, T.; Olesen, Niels Jørgen

    Virus (KHV). The database design is based on freeware and could easily be implemented to include pathogens relevant for other species than fish. We present the database using the data on the different fish pathogens as example. However if some are interested in the platform we are happy to cooperate...... and share the database structure with other Epizone members....

  15. The Unstructured Paramyxovirus Nucleocapsid Protein Tail Domain Modulates Viral Pathogenesis through Regulation of Transcriptase Activity.

    Science.gov (United States)

    Thakkar, Vidhi D; Cox, Robert M; Sawatsky, Bevan; da Fontoura Budaszewski, Renata; Sourimant, Julien; Wabbel, Katrin; Makhsous, Negar; Greninger, Alexander L; von Messling, Veronika; Plemper, Richard K

    2018-04-15

    The paramyxovirus replication machinery comprises the viral large (L) protein and phosphoprotein (P-protein) in addition to the nucleocapsid (N) protein, which encapsidates the single-stranded RNA genome. Common to paramyxovirus N proteins is a C-terminal tail (Ntail). The mechanistic role and relevance for virus replication of the structurally disordered central Ntail section are unknown. Focusing initially on members of the Morbillivirus genus, a series of measles virus (MeV) and canine distemper virus (CDV) N proteins were generated with internal deletions in the unstructured tail section. N proteins with large tail truncations remained bioactive in mono- and polycistronic minireplicon assays and supported efficient replication of recombinant viruses. Bioactivity of Ntail mutants extended to N proteins derived from highly pathogenic Nipah virus. To probe an effect of Ntail truncations on viral pathogenesis, recombinant CDVs were analyzed in a lethal CDV/ferret model of morbillivirus disease. The recombinant viruses displayed different stages of attenuation ranging from ameliorated clinical symptoms to complete survival of infected animals, depending on the molecular nature of the Ntail truncation. Reinfection of surviving animals with pathogenic CDV revealed robust protection against a lethal challenge. The highly attenuated virus was genetically stable after ex vivo passaging and recovery from infected animals. Mechanistically, gradual viral attenuation coincided with stepwise altered viral transcriptase activity in infected cells. These results identify the central Ntail section as a determinant for viral pathogenesis and establish a novel platform to engineer gradual virus attenuation for next-generation paramyxovirus vaccine design. IMPORTANCE Investigating the role of the paramyxovirus N protein tail domain (Ntail) in virus replication, we demonstrated in this study that the structurally disordered central Ntail region is a determinant for viral

  16. Emerging zoonotic viral diseases.

    Science.gov (United States)

    Wang, L-F; Crameri, G

    2014-08-01

    Zoonotic diseases are infectious diseases that are naturally transmitted from vertebrate animals to humans and vice versa. They are caused by all types of pathogenic agents, including bacteria, parasites, fungi, viruses and prions. Although they have been recognised for many centuries, their impact on public health has increased in the last few decades due to a combination of the success in reducing the spread of human infectious diseases through vaccination and effective therapies and the emergence of novel zoonotic diseases. It is being increasingly recognised that a One Health approach at the human-animal-ecosystem interface is needed for effective investigation, prevention and control of any emerging zoonotic disease. Here, the authors will review the drivers for emergence, highlight some of the high-impact emerging zoonotic diseases of the last two decades and provide examples of novel One Health approaches for disease investigation, prevention and control. Although this review focuses on emerging zoonotic viral diseases, the authors consider that the discussions presented in this paper will be equally applicable to emerging zoonotic diseases of other pathogen types.

  17. Vaginal microbiota and viral sexually transmitted diseases.

    Science.gov (United States)

    Nardis, C; Mosca, L; Mastromarino, P

    2013-01-01

    Healthy vaginal microbiota is an important biological barrier to pathogenic microorganisms. When this predominantly Lactobacillus community is disrupted, decreased in abundance and replaced by different anaerobes, bacterial vaginosis (BV) may occur. BV is associated with prevalence and incidence of several sexually transmitted infections. This review provides background on BV, discusses the epidemiologic data to support a role of altered vaginal microbiota for acquisition of sexually transmitted diseases and analyzes mechanisms by which lactobacilli could counteract sexually transmitted viral infections.

  18. Importin α5 negatively regulates importin β1-mediated nuclear import of Newcastle disease virus matrix protein and viral replication and pathogenicity in chicken fibroblasts.

    Science.gov (United States)

    Duan, Zhiqiang; Xu, Haixu; Ji, Xinqin; Zhao, Jiafu; Xu, Houqiang; Hu, Yan; Deng, Shanshan; Hu, Shunlin; Liu, Xiufan

    2018-12-31

    The matrix (M) protein of Newcastle disease virus (NDV) is demonstrated to localize in the nucleus via intrinsic nuclear localization signal (NLS), but cellular proteins involved in the nuclear import of NDV M protein and the role of M's nuclear localization in the replication and pathogenicity of NDV remain unclear. In this study, importin β1 was screened to interact with NDV M protein by yeast two-hybrid screening. This interaction was subsequently confirmed by co-immunoprecipitation and pull-down assays. In vitro binding studies indicated that the NLS region of M protein and the amino acids 336-433 of importin β1 that belonged to the RanGTP binding region were important for binding. Importantly, a recombinant virus with M/NLS mutation resulted in a pathotype change of NDV and attenuated viral replication and pathogenicity in chicken fibroblasts and SPF chickens. In agreement with the binding data, nuclear import of NDV M protein in digitonin-permeabilized HeLa cells required both importin β1 and RanGTP. Interestingly, importin α5 was verified to interact with M protein through binding importin β1. However, importin β1 or importin α5 depletion by siRNA resulted in different results, which showed the obviously cytoplasmic or nuclear accumulation of M protein and the remarkably decreased or increased replication ability and pathogenicity of NDV in chicken fibroblasts, respectively. Our findings therefore demonstrate for the first time the nuclear import mechanism of NDV M protein and the negative regulation role of importin α5 in importin β1-mediated nuclear import of M protein and the replication and pathogenicity of a paramyxovirus.

  19. The origin of the PB1 segment of swine influenza A virus subtype H1N2 determines viral pathogenicity in mice.

    Science.gov (United States)

    Metreveli, Giorgi; Gao, Qinshan; Mena, Ignacio; Schmolke, Mirco; Berg, Mikael; Albrecht, Randy A; García-Sastre, Adolfo

    2014-08-08

    Swine appear to be a key species in the generation of novel human influenza pandemics. Previous pandemic viruses are postulated to have evolved in swine by reassortment of avian, human, and swine influenza viruses. The human pandemic influenza viruses that emerged in 1957 and 1968 as well as swine viruses circulating since 1998 encode PB1 segments derived from avian influenza viruses. Here we investigate the possible role in viral replication and virulence of the PB1 gene segments present in two swine H1N2 influenza A viruses, A/swine/Sweden/1021/2009(H1N2) (sw 1021) and A/swine/Sweden/9706/2010(H1N2) (sw 9706), where the sw 1021 virus has shown to be more pathogenic in mice. By using reverse genetics, we swapped the PB1 genes of these two viruses. Similar to the sw 9706 virus, chimeric sw 1021 virus carrying the sw 9706 PB1 gene was not virulent in mice. In contrast, replacement of the PB1 gene of the sw 9706 virus by that from sw 1021 virus resulted in increased pathogenicity. Our study demonstrated that differences in virulence of swine influenza virus subtype H1N2 are attributed at least in part to the PB1 segment. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Viral (hepatitis C virus, hepatitis B virus, HIV) persistence and immune homeostasis

    Science.gov (United States)

    Zhou, Yun; Zhang, Ying; Moorman, Jonathan P; Yao, Zhi Q; Jia, Zhan S

    2014-01-01

    Immune homeostasis is a host characteristic that maintains biological balance within a host. Humans have evolved many host defence mechanisms that ensure the survival of individuals upon encountering a pathogenic infection, with recovery or persistence from a viral infection being determined by both viral factors and host immunity. Chronic viral infections, such as hepatitis B virus, hepatitis C virus and HIV, often result in chronic fluctuating viraemia in the face of host cellular and humoral immune responses, which are dysregulated by multi-faceted mechanisms that are incompletely understood. This review attempts to illuminate the mechanisms involved in this process, focusing on immune homeostasis in the setting of persistent viral infection from the aspects of host defence mechanism, including interferon-stimulated genes, apolipoprotein B mRNA editing enzyme catalytic polypeptide 3 (APOBEC3), autophagy and interactions of various immune cells, cytokines and regulatory molecules. PMID:24965611

  1. Comparative pathology of chickens experimentally inoculated with avian influenza viruses of low and high pathogenicity.

    Science.gov (United States)

    Mo, I P; Brugh, M; Fletcher, O J; Rowland, G N; Swayne, D E

    1997-01-01

    Pathologic changes and distribution of viral antigen as determined by immunohistochemistry were compared among 4-wk-old specific-pathogen-free chickens inoculated intratracheally with avian influenza virus (AIV) isolates of either low or high pathogenicity. Viruses of low pathogenicity, previously characterized as mildly pathogenic (MP), included A/chicken/Pennsylvania/21525/83 (H5N2) (MP-Penn) and A/chicken/Alabama/7395/75 (H4N8) (MP-Alab). Viruses of high pathogenicity included A/chicken/Pennsylvania/1370/83 (H5N2), A/chicken/Victoria/A185/85 (H7N7), and A/turkey/Ontario/7732/66 (H5N9). Extremely variable clinical signs ranging from mild respiratory distress to high mortality were present among chickens inoculated with these viruses. Chickens inoculated with highly pathogenic (HP) virus had histologic lesions of necrosis and inflammation in cloacal bursa, thymus, spleen, heart, pancreas, kidney, brain, trachea, lung, and skeletal muscle, whereas chickens inoculated with MP virus had histologic lesions most frequently in lung and trachea or lacked histologic lesions. Immunospecific staining for avian influenza viral proteins was most common in cells within heart, lung, kidney, brain, and pancreas of chicken inoculated with HP viruses, but immunospecific staining was present only and infrequently in trachea and lung of chickens inoculated with MP-Penn AIV. MP-Alab did not produce lesions nor have viral antigen in inoculated chickens but did produce serologic evidence of infection. The pattern of organ involvement and viral antigen distribution in chickens intratracheally inoculated with HP AIV isolates indicates a common capability to spread beyond the respiratory tract and confirms the pantrophic replicative, pathobiologic, and lethal nature of the viruses. However, variability in severity and lesion distribution exists between different HP AIVs. By contrast, MP viruses had the ability to replicate in respiratory or enteric tracts or both and produce lesions

  2. Aquatic plants

    DEFF Research Database (Denmark)

    Madsen, T. V.; Sand-Jensen, K.

    2006-01-01

    Aquatic fl owering plants form a relatively young plant group on an evolutionary timescale. The group has developed over the past 80 million years from terrestrial fl owering plants that re-colonised the aquatic environment after 60-100 million years on land. The exchange of species between terre...... terrestrial and aquatic environments continues today and is very intensive along stream banks. In this chapter we describe the physical and chemical barriers to the exchange of plants between land and water.......Aquatic fl owering plants form a relatively young plant group on an evolutionary timescale. The group has developed over the past 80 million years from terrestrial fl owering plants that re-colonised the aquatic environment after 60-100 million years on land. The exchange of species between...

  3. Serologic Survey for Selected Viral and Bacterial Swine Pathogens in Colombian Collared Peccaries ( Pecari tajacu) and Feral Pigs ( Sus scrofa).

    Science.gov (United States)

    Montenegro, Olga L; Roncancio, Nestor; Soler-Tovar, Diego; Cortés-Duque, Jimena; Contreras-Herrera, Jorge; Sabogal, Sandra; Acevedo, Luz Dary; Navas-Suárez, Pedro Enrique

    2018-06-14

    In South America, wild populations of peccaries coexist with domestic and feral pigs, with poorly understood consequences. We captured 58 collared peccaries ( Pecari tajacu) and 15 feral pigs ( Sus scrofa) in locations of Colombia where coexistence of these species is known. Blood samples were tested for antibodies against four viral agents, classical swine fever virus (CSFV), Aujeszky's disease virus (ADV), porcine circovirus (PCV-2), and vesicular stomatitis virus (New Jersey and Indiana subtypes) and two bacterial agents, Brucella spp. and six serovars of Leptospira interrogans. The prevalence of CSFV was 5% (3/58) in collared peccaries and 7% (1/15) in feral pigs. The prevalence of PCV-2 was 7% (1/15) in collared peccaries and 67% (2/3) in feral pigs. Vesicular stomatitis prevalence was 33% (8/24) in collared peccaries and 67% (4/6) in feral pigs. Leptospira prevalence was 78% (39/50) in collared peccary and 100% (8/8) in feral pigs; bratislava, grippotyphosa, icterohaemorrhagiae, and pomona were the most frequent serovars. Also, the only white-lipped peccary ( Tayassu pecari) sampled was positive for L. interrogans serovar bratislava and for vesicular stomatitis virus, New Jersey strain. No samples were positive for ADV or Brucella. The seroprevalence of antibodies against L. interrogans was similar to that observed in other studies. Icterohaemorrhagiae appears to be a common serovar among in situ and ex situ peccary populations. Positive antibodies against PVC-2 represent a novel report of exposure to this pathogen in Colombian peccaries. Our results indicate the possible transmission of various pathogens, important for pig farms, in the studied pig and peccaries.

  4. Uncovering Viral Protein-Protein Interactions and their Role in Arenavirus Life Cycle

    Directory of Open Access Journals (Sweden)

    Nora López

    2012-09-01

    Full Text Available The Arenaviridae family includes widely distributed pathogens that cause severe hemorrhagic fever in humans. Replication and packaging of their single-stranded RNA genome involve RNA recognition by viral proteins and a number of key protein-protein interactions. Viral RNA synthesis is directed by the virus-encoded RNA dependent-RNA polymerase (L protein and requires viral RNA encapsidation by the Nucleoprotein. In addition to the role that the interaction between L and the Nucleoprotein may have in the replication process, polymerase activity appears to be modulated by the association between L and the small multifunctional Z protein. Z is also a structural component of the virions that plays an essential role in viral morphogenesis. Indeed, interaction of the Z protein with the Nucleoprotein is critical for genome packaging. Furthermore, current evidence suggests that binding between Z and the viral envelope glycoprotein complex is required for virion infectivity, and that Z homo-oligomerization is an essential step for particle assembly and budding. Efforts to understand the molecular basis of arenavirus life cycle have revealed important details on these viral protein-protein interactions that will be reviewed in this article.

  5. Prospects for a novel ultrashort pulsed laser technology for pathogen inactivation

    Directory of Open Access Journals (Sweden)

    Tsen Shaw-Wei D

    2012-07-01

    Full Text Available Abstract The threat of emerging pathogens and microbial drug resistance has spurred tremendous efforts to develop new and more effective antimicrobial strategies. Recently, a novel ultrashort pulsed (USP laser technology has been developed that enables efficient and chemical-free inactivation of a wide spectrum of viral and bacterial pathogens. Such a technology circumvents the need to introduce potentially toxic chemicals and could permit safe and environmentally friendly pathogen reduction, with a multitude of possible applications including the sterilization of pharmaceuticals and blood products, and the generation of attenuated or inactivated vaccines.

  6. Baculovirus enhancins and their role in viral pathogenicity. Chapter 9

    Science.gov (United States)

    James M. Slavicek

    2012-01-01

    Baculoviruses are a large group of viruses pathogenic to arthropods, primarily insects from the order Lepidoptera and also insects in the orders Hymenoptera and Diptera. Baculoviruses have been used to control insect pests on agricultural crops and forests around the world. Efforts have been ongoing for the last two decades to develop strains of baculoviruses with...

  7. Responses of a bacterial pathogen to phosphorus limitation of its aquatic invertebrate host

    OpenAIRE

    Frost, P. C.; Ebert, D.; Smith, V. H.

    2008-01-01

    Host nutrition is thought to affect the establishment, persistence, and severity of pathogenic infections. Nutrient-deficient foods possibly benefit pathogens by constraining host immune function or benefit hosts by limiting parasite growth and reproduction. However, the effects of poor elemental food quality on a host's susceptibility to infection and disease have received little study. Here we show that the bacterial microparasite Pasteuria ramosa is affected by the elemental nutrition of i...

  8. Viral etiology and clinical profiles of children with severe acute respiratory infections in China.

    Directory of Open Access Journals (Sweden)

    Chen Zhang

    Full Text Available No comprehensive analysis is available on the viral etiology and clinical characterization among children with severe acute respiratory infection (SARI in China during 2009 H1N1 pandemic and post-pandemic period.Cohort of 370 hospitalized children (1 to 72 months with SARI from May 2008 to March 2010 was enrolled in this study. Nasopharyngeal aspirate (NPA specimens were tested by a commercial assay for 18 respiratory viral targets. The viral distribution and its association with clinical character were statistically analyzed.Viral pathogen was detected in 350 (94.29% of children with SARI. Overall, the most popular viruses were: enterovirus/rhinovirus (EV/RV (54.05%, respiratory syncytial virus (RSV (51.08%, human bocavirus (BoCA (33.78%, human parainfluenzaviruse type 3 (PIV3 (15.41%, and adenovirus (ADV (12.97%. Pandemic H1N1 was the dominant influenza virus (IFV but was only detected in 20 (5.41% of children. Moreover, detection rate of RSV and human metapneumovirus (hMPV among suburb participants were significantly higher than that of urban area (P<0.05. Incidence of VSARI among suburb participants was also significant higher, especially among those of 24 to 59 months group (P<0.05.Piconaviruses (EV/RV and paramyxoviruses are the most popular viral pathogens among children with SARI in this study. RSV and hMPV significantly increase the risk of SARI, especially in children younger than 24 months. Higher incidence of VSARI and more susceptibilities to RSV and hMPV infections were found in suburban patients.

  9. Potential Use of Native and Naturalized Insect Herbivores and Fungal Pathogens of Aquatic and Wetland Plants

    National Research Council Canada - National Science Library

    Freedman, Jan E; Grodowitz, Michael J; Swindle, Robin; Nachtrieb, Julie G

    2007-01-01

    ...) scientists to identify naturalized and/or native herbivores of aquatic plants in an effort to develop alternative management strategies through an understanding of the agents' biology and ecology...

  10. TIA-1 and TIAR interact with 5'-UTR of enterovirus 71 genome and facilitate viral replication.

    Science.gov (United States)

    Wang, Xiaohui; Wang, Huanru; Li, Yixuan; Jin, Yu; Chu, Ying; Su, Airong; Wu, Zhiwei

    2015-10-16

    Enterovirus 71 is one of the major causative pathogens of HFMD in children. Upon infection, the viral RNA is translated in an IRES-dependent manner and requires several host factors for effective replication. Here, we found that T-cell-restricted intracellular antigen 1 (TIA-1), and TIA-1 related protein (TIAR) were translocated from nucleus to cytoplasm after EV71 infection and localized to the sites of viral replication. We found that TIA-1 and TIAR can facilitate EV71 replication by enhancing the viral genome synthesis in host cells. We demonstrated that both proteins bound to the stem-loop I of 5'-UTR of viral genome and improved the stability of viral genomic RNA. Our results suggest that TIA-1 and TIAR are two new host factors that interact with 5-UTR of EV71 genome and positively regulate viral replication. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Mechanism of action and application of virocids in health care-associated viral infections

    Directory of Open Access Journals (Sweden)

    Babak Shahbaz

    2016-03-01

    Full Text Available Viruses are important causes of acute and chronic diseases in humans. Newer viruses are still being discovered. Apart from frequently causing infections in the general community, many types of viruses are significant nosocomial pathogens that with emerging viruses has become a real issue in medical field. There are specific treatments, vaccine and physical barrier to fight some of these infections. Health care-associated viral infections are an important source of patient’s morbidity and mortality. The method of sterilization or disinfection depends on the intended use of the medical devices (comprising critical, semicritical and noncritical items and failure to perform proper sterilization or disinfection of these items may leads to introduction of viruses, resulting in infection. Disinfection is an essential way in reducing or disruption of transmission of viruses by environmental surfaces, instruments and hands which achieves by chemical disinfectants and antiseptics, respectively. This review discusses about chemical agents with virocids properties (e.g. alcohols, chlorine compounds, formaldehyde, phenolic compounds, glutaraldehyde, ortho-phthaldehyde, hydrogen peroxide, peracetic acid, iodophor, ammonium compounds quaternary, bigunides and so on., mechanisms of action and their applications in health care-associated viral infection control. As well as, we described an overview for hierarchy of viruses in challenge with disinfantans, effective agents on viral inactivation, i.e.targect viruses, viral stability or survival duration time in enviromental surfaces and hands. We explained disinfection of surfaces, challenges in emerging viral pathogens inactivation, viral resistance to chemical disinfectants and antiseptics. Because, there are laboratory studies and clinical evidences for some viruses which viral resistance to biocide or failure to perform proper disinfection can lead to infection outbreaks. Also, we described virucidal

  12. Human Milk Blocks DC-SIGN-Pathogen Interaction via MUC1

    NARCIS (Netherlands)

    Koning, Nathalie; Kessen, Sabine F M; Van Der Voorn, J Patrick; Appelmelk, Ben J; Jeurink, Prescilla V; Knippels, Leon M J; Garssen, Johan; Van Kooyk, Yvette

    2015-01-01

    Beneficial effects of breastfeeding are well-recognized and include both immediate neonatal protection against pathogens and long-term protection against allergies and autoimmune diseases. Although several proteins have been identified to have anti-viral or anti-bacterial effects like secretory IgA

  13. Hantaviruses in the Americas and Their Role as Emerging Pathogens

    Directory of Open Access Journals (Sweden)

    Fernando Torres-Pérez

    2010-11-01

    Full Text Available The continued emergence and re-emergence of pathogens represent an ongoing, sometimes major, threat to populations. Hantaviruses (family Bunyaviridae and their associated human diseases were considered to be confined to Eurasia, but the occurrence of an outbreak in 1993–94 in the southwestern United States led to a great increase in their study among virologists worldwide. Well over 40 hantaviral genotypes have been described, the large majority since 1993, and nearly half of them pathogenic for humans. Hantaviruses cause persistent infections in their reservoir hosts, and in the Americas, human disease is manifest as a cardiopulmonary compromise, hantavirus cardiopulmonary syndrome (HCPS, with case-fatality ratios, for the most common viral serotypes, between 30% and 40%. Habitat disturbance and larger-scale ecological disturbances, perhaps including climate change, are among the factors that may have increased the human caseload of HCPS between 1993 and the present. We consider here the features that influence the structure of host population dynamics that may lead to viral outbreaks, as well as the macromolecular determinants of hantaviruses that have been regarded as having potential contribution to pathogenicity.

  14. Enteric Pathogen Survival Varies Substantially in Irrigation Water from Belgian Lettuce Producers

    Science.gov (United States)

    Van Der Linden, Inge; Cottyn, Bart; Uyttendaele, Mieke; Berkvens, Nick; Vlaemynck, Geertrui; Heyndrickx, Marc; Maes, Martine

    2014-01-01

    It is accepted that irrigation water is a potential carrier of enteric pathogens, such as Salmonella and E. coli O157:H7 and, therefore, a source for contamination of fresh produce. We tested this by comparing irrigation water samples taken from five different greenhouses in Belgium. The water samples were inoculated with four zoonotic strains, two Salmonella and two E. coli O157:H7 strains, and pathogen survival and growth in the water were monitored up till 14 days. The influence of water temperature and chemical water quality was evaluated, and the survival tests were also performed in water samples from which the resident aquatic microbiota had previously been eliminated by filter sterilization. The pathogen’s survival differed greatly in the different irrigation waters. Three water samples contained nutrients to support important growth of the pathogens, and another enabled weaker growth. However, for all, growth was only observed in the samples that did not contain the resident aquatic microbiota. In the original waters with their specific water biota, pathogen levels declined. The same survival tendencies existed in water of 4 °C and 20 °C, although always more expressed at 20 °C. Low water temperatures resulted in longer pathogen survival. Remarkably, the survival capacity of two E. coli 0157:H7 strains differed, while Salmonella Thompson and Salmonella Typhimurium behaved similarly. The pathogens were also transferred to detached lettuce leaves, while suspended in two of the water samples or in a buffer. The effect of the water sample on the pathogen’s fitness was also reproduced on the leaves when stored at 100% relative humidity. Inoculation of the suspension in buffer or in one of the water samples enabled epiphytic growth and survival, while the pathogen level in the other water sample decreased once loaded on the leaves. Our results show that irrigation waters from different origin may have a different capacity to transmit enteric pathogens and

  15. Viral pneumonia in adults in sub-Saharan Africa – epidemiology, aetiology, diagnosis and management

    Directory of Open Access Journals (Sweden)

    Antonia Ho

    2014-06-01

    Full Text Available Community-acquired pneumonia causes substantial morbidity and mortality in sub-Saharan Africa with an estimated 131 million new cases each year. Viruses – such as influenza virus, respiratory syncytial virus and parainfluenza virus – are now recognised as important causes of respiratory disease in older children and adults in the developed world following the emergence of sensitive molecular diagnostic tests, recent severe viral epidemics, and the discovery of novel viruses. Few studies have comprehensively evaluated the viral aetiology of adult pneumonia in Africa, but it is likely to differ from Western settings due to varying seasonality and the high proportion of patients with immunosuppression and co-morbidities. Emerging data suggest a high prevalence of viral pathogens, as well as multiple viral and viral/bacterial infections in African adults with pneumonia. However, the interpretation of positive results from highly sensitive polymerase chain reaction tests can be challenging. Therapeutic and preventative options against viral respiratory infections are currently limited in the African setting. This review summarises the current state of the epidemiology, aetiology, diagnosis and management of viral pneumonia in sub-Saharan Africa.

  16. Standard Guide for Irradiation of Finfish and Aquatic Invertebrates Used as Food to Control Pathogens and Spoilage Microorganisms

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 This guide outlines procedures and operations for the irradiation of raw, untreated, fresh (chilled), or frozen finfish and aquatic invertebrates, while ensuring that the irradiated product is safe and wholesome. 1.1.1 Aquatic invertebrates include molluscs, crustacea, echinoderms, etc. 1.1.1.1 Molluscs include bivalve shellfish, such as clams, mussels, and oysters; snails; and cephalopods, such as squid and octopus. 1.1.1.2 Crustacea include shellfish such as shrimp, lobster, crabs, prawns and crayfish. 1.1.1.3 Echinoderms include sea urchins and sea cucumbers. 1.2 This guide covers absorbed doses used to reduce the microbial and parasite populations in aquatic invertebrates and finfish. Such doses typically are below 10 kGy (1). 1.3 The use of reduced-oxygen packaging (vacuum or modified atmosphere, and including products packed in oil) with irradiated, raw product is not covered by this guide. The anaerobic environment created by reduced-oxygen packaging provides the potential for outgrowth o...

  17. Viral and vector zoonotic exploitation of a homo-sociome memetic complex.

    Science.gov (United States)

    Rupprecht, C E; Burgess, G W

    2015-05-01

    As most newly characterized emerging infectious diseases are considered to be zoonotic, a modern pre-eminence ascribed within this classification lies clearly within the viral taxonomic realm. In particular, RNA viruses deserve special concern given their documented impact on conservation biology, veterinary medicine and public health, with an unprecedented ability to promote an evolutionary host-pathogen arms race from the ultimate infection and immunity perspective. However, besides the requisite molecular/gross anatomical and physiological bases for infectious diseases to transmit from one host to another, both viral pathogens and their reservoirs/vectors exploit a complex anthropological, cultural, historical, psychological and social suite that specifically defines the phylodynamics within Homo sapiens, unlike any other species. Some of these variables include the ecological benefits of living in groups, decisions on hunting and foraging behaviours and dietary preferences, myths and religious doctrines, health economics, travel destinations, population planning, political decisions on agricultural product bans and many others, in a homo-sociome memetic complex. Taken to an extreme, such complexities elucidate the underpinnings of explanations as to why certain viral zoonoses reside in neglected people, places and things, whereas others are chosen selectively and prioritized for active mitigation. Canine-transmitted rabies serves as one prime example of how a neglected viral zoonosis may transition to greater attention on the basis of renewed advocacy, social media, local champions and vested international community engagement. In contrast, certain bat-associated and arboviral diseases suffer from basic ignorance and perpetuated misunderstanding of fundamental reservoir and vector ecology tenets, translated into failed control policies that only exacerbate the underlying environmental conditions of concern. Beyond applied biomedical knowledge, epidemiological

  18. Identification and Characterization of Bovine Viral Diarrhea Virus from Indonesian Cattle (IDENTIFIKASI DAN KARAKTERISASI VIRUS BOVINE VIRAL DIARRHEA DARI SAPI INDONESIA

    Directory of Open Access Journals (Sweden)

    Muharam Saepulloh

    2015-05-01

    Full Text Available Bovine viral diarrhea virus (BVDV is an important viral disease, which a ubiquitous pathogen ofcattle with worldwide economic importance and due to its misdiagnose with other viruses. The goal of thecurrent study was to identify and characterize of BVDV by reverse transcriptase polymerase chainreaction (RT-PCR and followed by sequence genome analyses. Blood, feces, and semen samples werecollected from 588 selected cattle from animals suffering from diarrhea and respiratory manifestation. RTPCRresults showed that the 69 (11.74% samples were positive to BVDV. Further molecularcharacterization was conducted only with 17 PCR positive samples. The results indicated the 17 IndonesianBVD virus isolates were belonging to the genotype-1 of BVDV (BVDV-1 based on sequence analysis anda phylogenetic relationship between Indonesian BVDV isolates and BVDV in the world. This finding is thefirst report of BVD-1 circulated in Indonesian cattle.

  19. Xenosurveillance: a novel mosquito-based approach for examining the human-pathogen landscape.

    Directory of Open Access Journals (Sweden)

    Nathan D Grubaugh

    2015-03-01

    Full Text Available Globally, regions at the highest risk for emerging infectious diseases are often the ones with the fewest resources. As a result, implementing sustainable infectious disease surveillance systems in these regions is challenging. The cost of these programs and difficulties associated with collecting, storing and transporting relevant samples have hindered them in the regions where they are most needed. Therefore, we tested the sensitivity and feasibility of a novel surveillance technique called xenosurveillance. This approach utilizes the host feeding preferences and behaviors of Anopheles gambiae, which are highly anthropophilic and rest indoors after feeding, to sample viruses in human beings. We hypothesized that mosquito bloodmeals could be used to detect vertebrate viral pathogens within realistic field collection timeframes and clinically relevant concentrations.To validate this approach, we examined variables influencing virus detection such as the duration between mosquito blood feeding and mosquito processing, the pathogen nucleic acid stability in the mosquito gut and the pathogen load present in the host's blood at the time of bloodmeal ingestion using our laboratory model. Our findings revealed that viral nucleic acids, at clinically relevant concentrations, could be detected from engorged mosquitoes for up to 24 hours post feeding by qRT-PCR. Subsequently, we tested this approach in the field by examining blood from engorged mosquitoes from two field sites in Liberia. Using next-generation sequencing and PCR we were able to detect the genetic signatures of multiple viral pathogens including Epstein-Barr virus and canine distemper virus.Together, these data demonstrate the feasibility of xenosurveillance and in doing so validated a simple and non-invasive surveillance tool that could be used to complement current biosurveillance efforts.

  20. Bacterial and viral pathogens in live oysters: 2007 United States market survey.

    Science.gov (United States)

    DePaola, Angelo; Jones, Jessica L; Woods, Jacquelina; Burkhardt, William; Calci, Kevin R; Krantz, Jeffrey A; Bowers, John C; Kasturi, Kuppuswamy; Byars, Robin H; Jacobs, Emily; Williams-Hill, Donna; Nabe, Khamphet

    2010-05-01

    Two samples of market oysters, primarily from retail establishments, were collected twice each month in each of nine states during 2007. Samples were shipped refrigerated overnight to five U.S. Food and Drug Administration laboratories on a rotating basis and analyzed by most probable number (MPN) for total and pathogenic Vibrio parahaemolyticus and V. vulnificus numbers and for the presence of toxigenic V. cholerae, Salmonella spp., norovirus (NoV), and hepatitis A virus (HAV). Levels of indicator organisms, including fecal coliforms (MPN), Escherichia coli (MPN), male-specific bacteriophage, and aerobic plate counts, were also determined. V. parahaemolyticus and V. vulnificus levels were distributed seasonally and geographically by harvest region and were similar to levels observed in a previous study conducted in 1998-1999. Levels of pathogenic V. parahaemolyticus were typically several logs lower than total V. parahaemolyticus levels regardless of season or region. Pathogenic V. parahaemolyticus levels in the Gulf and Mid-Atlantic regions were about two logs greater than the levels observed in the Pacific and North Atlantic regions. Pathogens generally associated with fecal pollution were detected sporadically or not at all (toxigenic V. cholerae, 0%; Salmonella, 1.5%; NoV, 3.9%; HAV, 4.4%). While seasonal prevalences of NoV and HAV were generally greater in oysters harvested from December to March, the low detection frequency obscured any apparent seasonal effects. Overall, there was no relationship between the levels of indicator microorganisms and the presence of enteric viruses. These data provide a baseline that can be used to further validate risk assessment predictions, determine the effectiveness of new control measures, and compare the level of protection provided by the U.S. shellfish sanitation system to those in other countries.

  1. [Prevalence and risk factors of respiratory viral infection in acute exacerbation of chronic obstructive pulmonary disease].

    Science.gov (United States)

    Du, X B; Ma, X; Gao, Y; Wen, L F; Li, J; Wang, Z Z; Liu, S

    2017-04-12

    Objective: To study the prevalence of respiratory viral infection in chronic obstructive pulmonary disease(COPD) exacerbations and to find the factors associated with susceptibility to viral infections. Methods: Eighty patients with exacerbations of COPD and 50 stable COPD patients were recruited. Nasopharyngeal swabs were tested for a range of 18 different respiratory viruses using PCR. Results: Among the COPD exacerbations, viral infection was detected in 18 episodes (22.5%) . The most common virus was rhinovirus (33.3%), followed by coronavirus(27.8%), parainfluenza(22.2%), metapneumovirus(11.1%) and influenza virus B(5.6%). The prevalence of viral infection was 8% in the stable COPD patients. In multivariate regression analysis fever was found to be significantly associated with viral infections in COPD exacerbations (Odds ratio 4.99, 95% CI 1.51-16.48, P =0.008). Conclusion: Viral respiratory pathogens were more often detected in respiratory specimens from hospitalized patients with AECOPD than those with stable COPD. Rhinovirus was the most common infecting agent identified. The symptom of fever was associated with viral detection.

  2. Sustaining America's Aquatic Biodiversity. Aquatic Insect Biodiversity and Conservation

    OpenAIRE

    Voshell, J. Reese

    2005-01-01

    Provides a description of the structure and appearance of aquatic insects, how they live and reproduce, the habitats they live in, how to collect them, why they are of importance, and threats to their survival; document also includes a brief illustrated summary of the eight major groups of aquatic insects and web links to more information. Part of a 12 part series on sustaining aquatic biodiversity in America.

  3. Prospecting for viral natural enemies of the fire ant Solenopsis invicta in Argentina

    Science.gov (United States)

    Metagenomics and next generation sequencing were employed to discover new virus natural enemies of the fire ant, Solenopsis invicta Buren in its native range (i.e., Formosa, Argentina) with the ultimate goal of testing and releasing new viral pathogens into U.S. S. invicta populations to provide nat...

  4. [Viral encephalitis virus, a new bioterrorist menace].

    Science.gov (United States)

    Rigaudeau, Sophie; Micol, Romain; Bricaire, François; Bossi, Philippe

    2005-01-29

    Often responsible for little known infections, today viral encephalitis viruses appear as a new bioterrorist menace, because of their easy production and their great pathogenic potential. Spraying is the best way to permit the rapid diffusion of certain encephalitis viruses. Diagnosis of viral encephalitis, predominating in tropical surroundings, is difficult. In the majority of cases, symptoms differ little from those of common flu. With supplementary examinations, the biological abnormalities are usually non-specific. There are no characteristic images on scans or MRI. Identification of the virus in the nasopharynx, blood or cerebrospinal fluid, in serology, PCR or RT-PCR permits confirmation of the virus. Treatment is essentially symptomatic and relies on appropriate reanimation measures. Ribavirin can be indicated in some cases such as the Rift Valley fever, but is formally contraindicated in West Nile encephalitis. The aim of terrorist groups who would use this type of weapon is more to provoke panic and disorganisation than to kill as many people as possible.

  5. Avian influenza H5N1 viral and bird migration networks in Asia

    Science.gov (United States)

    Tian, Huaivu; Zhou, Sen; Dong, Lu; Van Boeckel, Thomas P.; Cui, Yujun; Newman, Scott H.; Takekawa, John Y.; Prosser, Diann J.; Xiao, Xiangming; Wu, Yarong; Cazelles, Bernard; Huang, Shanqian; Yang, Ruifu; Grenfell, Bryan T.; Xu, Bing

    2015-01-01

    The spatial spread of the highly pathogenic avian influenza virus H5N1 and its long-term persistence in Asia have resulted in avian influenza panzootics and enormous economic losses in the poultry sector. However, an understanding of the regional long-distance transmission and seasonal patterns of the virus is still lacking. In this study, we present a phylogeographic approach to reconstruct the viral migration network. We show that within each wild fowl migratory flyway, the timing of H5N1 outbreaks and viral migrations are closely associated, but little viral transmission was observed between the flyways. The bird migration network is shown to better reflect the observed viral gene sequence data than other networks and contributes to seasonal H5N1 epidemics in local regions and its large-scale transmission along flyways. These findings have potentially far-reaching consequences, improving our understanding of how bird migration drives the periodic reemergence of H5N1 in Asia.

  6. Maize-Pathogen Interactions: An Ongoing Combat from a Proteomics Perspective

    Directory of Open Access Journals (Sweden)

    Olga Pechanova

    2015-11-01

    Full Text Available Maize (Zea mays L. is a host to numerous pathogenic species that impose serious diseases to its ear and foliage, negatively affecting the yield and the quality of the maize crop. A considerable amount of research has been carried out to elucidate mechanisms of maize-pathogen interactions with a major goal to identify defense-associated proteins. In this review, we summarize interactions of maize with its agriculturally important pathogens that were assessed at the proteome level. Employing differential analyses, such as the comparison of pathogen-resistant and susceptible maize varieties, as well as changes in maize proteomes after pathogen challenge, numerous proteins were identified as possible candidates in maize resistance. We describe findings of various research groups that used mainly mass spectrometry-based, high through-put proteomic tools to investigate maize interactions with fungal pathogens Aspergillus flavus, Fusarium spp., and Curvularia lunata, and viral agents Rice Black-streaked Dwarf Virus and Sugarcane Mosaic Virus.

  7. Maize-Pathogen Interactions: An Ongoing Combat from a Proteomics Perspective.

    Science.gov (United States)

    Pechanova, Olga; Pechan, Tibor

    2015-11-30

    Maize (Zea mays L.) is a host to numerous pathogenic species that impose serious diseases to its ear and foliage, negatively affecting the yield and the quality of the maize crop. A considerable amount of research has been carried out to elucidate mechanisms of maize-pathogen interactions with a major goal to identify defense-associated proteins. In this review, we summarize interactions of maize with its agriculturally important pathogens that were assessed at the proteome level. Employing differential analyses, such as the comparison of pathogen-resistant and susceptible maize varieties, as well as changes in maize proteomes after pathogen challenge, numerous proteins were identified as possible candidates in maize resistance. We describe findings of various research groups that used mainly mass spectrometry-based, high through-put proteomic tools to investigate maize interactions with fungal pathogens Aspergillus flavus, Fusarium spp., and Curvularia lunata, and viral agents Rice Black-streaked Dwarf Virus and Sugarcane Mosaic Virus.

  8. The effect of interferons and viral proteins on antigen-presenting cells in chronic hepatitis B

    NARCIS (Netherlands)

    A. Boltjes (Arjan)

    2014-01-01

    markdownabstract__Abstract__ The innate immune system forms the so-called first line of defense against invading pathogens like viruses. Innate immune cells include phagocytes like monocytes, macrophages and dendritic cells (DC). Phagocytes sample their environments, binding and taking up viral

  9. Aptamers: Novel Molecules as Diagnostic Markers in Bacterial and Viral Infections?

    Directory of Open Access Journals (Sweden)

    Flávia M. Zimbres

    2013-01-01

    Full Text Available Worldwide the entire human population is at risk of infectious diseases of which a high degree is caused by pathogenic protozoans, worms, bacteria, and virus infections. Moreover the current medications against pathogenic agents are losing their efficacy due to increasing and even further spreading drug resistance. Therefore, there is an urgent need to discover novel diagnostic as well as therapeutic tools against infectious agents. In view of that, the Systematic Evolution of Ligands by Exponential Enrichment (SELEX represents a powerful technology to target selectively pathogenic factors as well as entire bacteria or viruses. SELEX uses a large combinatorial oligonucleic acid library (DNA or RNA which is processed a by high-flux in vitro screen of iterative cycles. The selected ligands, termed aptamers, are characterized by high specificity and affinity to their target molecule, which are already exploited in diagnostic and therapeutic applications. In this minireview we will discuss the current status of the SELEX technique applied on bacterial and viral pathogens.

  10. Viral-Associated GN: Hepatitis C and HIV.

    Science.gov (United States)

    Kupin, Warren L

    2017-08-07

    Viruses are capable of inducing a wide spectrum of glomerular disorders that can be categorized on the basis of the duration of active viremia: acute, subacute, or chronic. The variable responses of the adaptive immune system to each time period of viral infection results mechanistically in different histologic forms of glomerular injury. The unique presence of a chronic viremic carrier state with either hepatitis C (HCV) or HIV has led to the opportunity to study in detail various pathogenic mechanisms of viral-induced glomerular injury, including direct viral infection of renal tissue and the development of circulating immune complexes composed of viral antigens that deposit along the glomerular basement membrane. Epidemiologic data show that approximately 25%-30% of all HIV patients are coinfected with HCV and 5%-10% of all HCV patients are coinfected with HIV. This situation can often lead to a challenging differential diagnosis when glomerular disease occurs in this dual-infected population and requires the clinician to be familiar with the clinical presentation, laboratory workup, and pathophysiology behind the development of renal disease for both HCV and HIV. Both of these viruses can be categorized under the new classification of infection-associated GN as opposed to being listed as causes of postinfectious GN as has previously been applied to them. Neither of these viruses lead to renal injury after a latent period of controlled and inactive viremia. The geneses of HCV- and HIV-associated glomerular diseases share a total dependence on the presence of active viral replication to sustain renal injury so the renal disease cannot be listed under "postinfectious" GN. With the new availability of direct-acting antivirals for HCV and more effective combined antiretroviral therapy for HIV, successful remission and even regression of glomerular lesions can be achieved if initiated at an early stage. Copyright © 2017 by the American Society of Nephrology.

  11. KSHV Rta promoter specification and viral reactivation

    Directory of Open Access Journals (Sweden)

    Jonathan eGuito

    2012-02-01

    Full Text Available Viruses are obligate intracellular pathogens whose biological success depends upon replication and packaging of viral genomes, and transmission of progeny viruses to new hosts. The biological success of herpesviruses is enhanced by their ability to reproduce their genomes without producing progeny viruses or killing the host cells, a process called latency. Latency permits a herpesvirus to remain undetected in its animal host for decades while maintaining the potential to reactivate, or switch, to a productive life cycle when host conditions are conducive to generating viral progeny. Direct interactions between many host and viral molecules are implicated in controlling herpesviral reactivation, suggesting complex biological networks that control the decision. One viral protein that is necessary and sufficient to switch latent KSHV into the lytic infection cycle is called K-Rta. Rta is a transcriptional activator that specifies promoters by binding direct DNA directly and interacting with cellular proteins. Among these cellular proteins, binding of K-Rta to RBP-Jk is essential for viral reactivation.. In contrast to the canonical model for Notch signaling, RBP-Jk is not uniformly and constitutively bound to the latent KSHV genome, but rather is recruited to DNA by interactions with K-Rta. Stimulation of RBP-Jk DNA binding requires high affinity binding of Rta to repetitive and palindromic CANT DNA repeats in promoters, and formation of ternary complexes with RBP-Jk. However, while K-Rta expression is necessary for initiating KSHV reactivation, K-Rta’s role as the switch is inefficient. Many factors modulate K-Rta’s function, suggesting that KSHV reactivation can be significantly regulated post-Rta expression and challenging the notion that herpesviral reactivation is bistable. This review analyzes rapidly evolving research on KSHV K-Rta to consider the role of K-Rta promoter specification in regulating the progression of KSHV reactivation.

  12. Viral-bacterial associations in acute apical abscesses.

    Science.gov (United States)

    Ferreira, Dennis C; Rôças, Isabela N; Paiva, Simone S M; Carmo, Flávia L; Cavalcante, Fernanda S; Rosado, Alexandre S; Santos, Kátia R N; Siqueira, José F

    2011-08-01

    Viral-bacterial and bacterial synergism have been suggested to contribute to the pathogenesis of several human diseases. This study sought to investigate the possible associations between 9 candidate endodontic bacterial pathogens and 9 human viruses in samples from acute apical abscesses. DNA extracts from purulent exudate aspirates of 33 cases of acute apical abscess were surveyed for the presence of 9 selected bacterial species using a 16S ribosomal RNA gene-based nested polymerase chain reaction (PCR) approach. Single or nested PCR assays were used for detection of the human papillomavirus (HPV) and herpesviruses types 1 to 8. Two-thirds of the abscess samples were positive for at least one of the target viruses. Specifically, the most frequently detected viruses were HHV-8 (54.5%); HPV (9%); and varicella zoster virus (VZV), Epstein-Barr virus (EBV), and HHV-6 (6%). Bacterial DNA was present in all cases and the most prevalent bacterial species were Treponema denticola (70%), Tannerella forsythia (67%), Porphyromonas endodontalis (67%), Dialister invisus (61%), and Dialister pneumosintes (57.5%). HHV-8 was positively associated with 7 of the target bacterial species and HPV with 4, but all these associations were weak. Several bacterial pairs showed a moderate positive association. Viral coinfection was found in 6 abscess cases, but no significant viral association could be determined. Findings demonstrated that bacterial and viral DNA occurred concomitantly in two-thirds of the samples from endodontic abscesses. Although this may suggest a role for viruses in the etiology of apical abscesses, the possibility also exists that the presence of viruses in abscess samples is merely a consequence of the bacterially induced disease process. Further studies are necessary to clarify the role of these viral-bacterial interactions, if any, in the pathogenesis of acute apical abscesses. Copyright © 2011 Mosby, Inc. All rights reserved.

  13. Metabolic investigation of host/pathogen interaction using MS2-infected Escherichia coli

    Directory of Open Access Journals (Sweden)

    Jain Rishi

    2009-12-01

    Full Text Available Abstract Background RNA viruses are responsible for a variety of illnesses among people, including but not limited to the common cold, the flu, HIV, and ebola. Developing new drugs and new strategies for treating diseases caused by these viruses can be an expensive and time-consuming process. Mathematical modeling may be used to elucidate host-pathogen interactions and highlight potential targets for drug development, as well providing the basis for optimizing patient treatment strategies. The purpose of this work was to determine whether a genome-scale modeling approach could be used to understand how metabolism is impacted by the host-pathogen interaction during a viral infection. Escherichia coli/MS2 was used as the host-pathogen model system as MS2 is easy to work with, harmless to humans, but shares many features with eukaryotic viruses. In addition, the genome-scale metabolic model of E. coli is the most comprehensive model at this time. Results Employing a metabolic modeling strategy known as "flux balance analysis" coupled with experimental studies, we were able to predict how viral infection would alter bacterial metabolism. Based on our simulations, we predicted that cell growth and biosynthesis of the cell wall would be halted. Furthermore, we predicted a substantial increase in metabolic activity of the pentose phosphate pathway as a means to enhance viral biosynthesis, while a break down in the citric acid cycle was predicted. Also, no changes were predicted in the glycolytic pathway. Conclusions Through our approach, we have developed a technique of modeling virus-infected host metabolism and have investigated the metabolic effects of viral infection. These studies may provide insight into how to design better drugs. They also illustrate the potential of extending such metabolic analysis to higher order organisms, including humans.

  14. Eicosanoids and Respiratory Viral Infection: Coordinators of Inflammation and Potential Therapeutic Targets

    Directory of Open Access Journals (Sweden)

    Mary K. McCarthy

    2012-01-01

    Full Text Available Viruses are frequent causes of respiratory infection, and viral respiratory infections are significant causes of hospitalization, morbidity, and sometimes mortality in a variety of patient populations. Lung inflammation induced by infection with common respiratory pathogens such as influenza and respiratory syncytial virus is accompanied by increased lung production of prostaglandins and leukotrienes, lipid mediators with a wide range of effects on host immune function. Deficiency or pharmacologic inhibition of prostaglandin and leukotriene production often results in a dampened inflammatory response to acute infection with a respiratory virus. These mediators may, therefore, serve as appealing therapeutic targets for disease caused by respiratory viral infection.

  15. Circulating microRNAs in serum from cattle challenged with Bovine Viral Diarrhea Virus

    Science.gov (United States)

    Bovine viral diarrhea virus (BVDV) is an RNA virus that is often associated with respiratory disease in cattle. MicroRNAs have been proposed as indicators of exposure to respiratory pathogens. The objective of this study was to identify microRNAs in cattle that had been challenged with a non-cytopat...

  16. (Highly pathogenic) Avian Influenza as a zoonotic agent

    OpenAIRE

    Kalthoff , Donata; Globig , Anja; Beer , Martin

    2010-01-01

    Summary Zoonotic agents challenging the world every year afresh are influenza A viruses. In the past, human pandemics caused by influenza A viruses had been occurring periodically. Wild aquatic birds are carriers of the full variety of influenza virus A subtypes, and thus, most probably constitute the natural reservoir of all influenza A viruses. Whereas avian influenza viruses in their natural avian reservoir are generally of low pathogenicity (LPAIV), some have gained virulence b...

  17. MicroRNAs in the host response to viral infections of veterinary importance

    Directory of Open Access Journals (Sweden)

    Mohamed Samir Ahmed

    2016-10-01

    Full Text Available The discovery of small regulatory non-coding RNAs has been an exciting advance in the field of genomics. MicroRNAs (miRNAs are endogenous RNA molecules, approximately 22 nucleotides in length that regulate gene expression, mostly at the post-transcriptional level. MiRNA profiling technologies have made it possible to identify and quantify novel miRNAs and to study their regulation and potential roles in disease pathogenesis. Although miRNAs have been extensively investigated in viral infections of humans, their implications in viral diseases affecting animals of veterinary importance are much less understood. The number of annotated miRNAs in different animal species is growing continuously, and novel roles in regulating host-pathogen interactions are being discovered, for instance miRNA-mediated augmentation of viral transcription and replication. In this review, we present an overview of synthesis and function of miRNAs and an update on the current state of research on host-encoded miRNAs in the genesis of viral infectious diseases in their natural animal host as well as in selected in vivo and in vitro laboratory models.

  18. Reverse transcriptase directs viral evolution in a deep ocean methane seep

    Science.gov (United States)

    Paul, B. G.; Bagby, S. C.

    2013-12-01

    Deep ocean methane seeps are sites of intense microbial activity, with complex communities fueled by aerobic and anaerobic methanotrophy. Methane consumption in these communities has a substantial impact on the global carbon cycle, yet little is known about their evolutionary history or their likely evolutionary trajectories in a warming ocean. As in other marine systems, viral predation and virally mediated horizontal gene transfer are expected to be major drivers of evolutionary change in these communities; however, the host cells' resistance to cultivation has impeded direct study of the viral population. We conducted a metagenomic study of viruses in the anoxic sediments of a deep methane seep in the Santa Monica Basin in the Southern California Bight. We retrieved 1660 partial viral genomes, tentatively assigning 1232 to bacterial hosts and 428 to archaea. One abundant viral genome, likely hosted by Clostridia species present in the sediment, was found to encode a diversity-generating retroelement (DGR), a module for reverse transcriptase-mediated directed mutagenesis of a distal tail fiber protein. While DGRs have previously been described in the viruses of human pathogens, where diversification of viral tail fibers permits infection of a range of host cell types, to our knowledge this is the first description of such an element in a marine virus. By providing a mechanism for massively broadening potential host range, the presence of DGRs in these systems may have a major impact on the prevalence of virally mediated horizontal gene transfer, and even on the phylogenetic distances across which genes are moved.

  19. Molecular and Genomic Characterization of Enteric Pathogens Circulating during Hajj

    KAUST Repository

    Alsomali, Mona

    2016-05-01

    Hajj, the annual Muslim pilgrimage to Mecca, Saudi Arabia is a unique mass gathering event that attracts approximately 3 million pilgrims from around the globe. This diverse pilgrim population coupled with the nature of the performed activities raise major public health concerns in the host country with potential global implications. Although gastroenteritis and diarrhea are common among the pilgrims performing Hajj, the microbial etiologies of these infections are still unknown. We used molecular and antigenic approaches to identify the main pathogens associated with Hajj diarrhea. 544 fecal samples from pilgrims suffering from diarrhea whilst performing Hajj during three consecutive seasons (2011-2013) and 99 control samples from 2011 were screened for 16 pathogens that include bacterial, parasitic and viral etiologies that are commonly associated with diarrheal infections. At least one of the screened pathogens could be detected in 42% (n=228) of the samples from the diarrheal cases. Bacteria were the main agents detected in 83% (n=189) of the positive samples, followed by viral and parasitic agents detected in 6% (n=14) and 5% (n=12) respectively. We have also standardized a 16S-based metagenomic approach to identify the gut microbiome in diarrheal cases and non-diarrheal controls in 76 samples. Also, we have standardized a shotgun metagenomics protocol for the direct characterization (diagnosis) of enteric pathogens without cultivation. This approach was used successfully to identify viral (adenovirus) and bacterial causes of Enterotoxigenic E. coli diarrhea from Hajj samples. The findings in this study fill in clear gaps in our knowledge of the etiologies associated with diarrheal infections during Hajj. Foodborne bacteria were the major contributors to Hajj-diarrheal infections. This was coupled with the increased incidences of antimicrobial resistance loci associated with the identified bacteria. These findings would help the public health policy makers to

  20. P53-mediated rapid induction of apoptosis conveys resistance to viral infection in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Bo Liu

    2013-02-01

    Full Text Available Arthropod-borne pathogens account for millions of deaths each year. Understanding the genetic mechanisms controlling vector susceptibility to pathogens has profound implications for developing novel strategies for controlling insect-transmitted infectious diseases. The fact that many viruses carry genes that have anti-apoptotic activity has long led to the hypothesis that induction of apoptosis could be a fundamental innate immune response. However, the cellular mechanisms mediating the induction of apoptosis following viral infection remained enigmatic, which has prevented experimental verification of the functional significance of apoptosis in limiting viral infection in insects. In addition, studies with cultured insect cells have shown that there is sometimes a lack of apoptosis, or the pro-apoptotic response happens relatively late, thus casting doubt on the functional significance of apoptosis as an innate immunity. Using in vivo mosquito models and the native route of infection, we found that there is a rapid induction of reaper-like pro-apoptotic genes within a few hours following exposure to DNA or RNA viruses. Recapitulating a similar response in Drosophila, we found that this rapid induction of apoptosis requires the function of P53 and is mediated by a stress-responsive regulatory region upstream of reaper. More importantly, we showed that the rapid induction of apoptosis is responsible for preventing the expression of viral genes and blocking the infection. Genetic changes influencing this rapid induction of reaper-like pro-apoptotic genes led to significant differences in susceptibility to viral infection.

  1. SURVEILLANCE FOR VIRAL AND PARASITIC PATHOGENS IN A VULNERABLE AFRICAN LION (PANTHERA LEO) POPULATION IN THE NORTHERN TULI GAME RESERVE, BOTSWANA.

    Science.gov (United States)

    McDermid, Kimberly R; Snyman, Andrei; Verreynne, Frederick J; Carroll, John P; Penzhorn, Banie L; Yabsley, Michael J

    2017-01-01

    African lion ( Panthera leo ) numbers are decreasing rapidly and populations are becoming smaller and more fragmented. Infectious diseases are one of numerous issues threatening free-ranging lion populations, and low-density populations are particularly at risk. We collected data on the prevalence and diversity of viral and parasitic pathogens in a small lion population in eastern Botswana. During 2012 and 2014, blood samples were collected from 59% (n=13) of the adult-subadult lions in the Northern Tuli Game Reserve in eastern Botswana. One lion had antibodies to feline panleukopenia virus, two had antibodies to canine distemper virus, and two had feline calicivirus antibodies. Ten of the 13 had antibodies to feline immunodeficiency virus and 11 had feline herpesvirus antibodies. All lions were negative for antibodies to feline coronavirus. Blood samples from all lions were negative for Trypanosoma, Anaplasma, Theileria, and Ehrlichia spp. by molecular testing; however, all lions were positive for Babesia spp. by reverse line blot hybridization assay. Sequencing of amplicons from four lions revealed four groups of Babesia spp. including several genetic variants of Babesia felis , Babesia lengau, and Babesia canis and a group of novel Babesia sequences which were only 96% similar to other Babesia spp. Six lions were infested with four species of ticks (Rhipicentor nuttalli, Rhipicephalus simus, Rhipicephalus sulcatus, and Rhipicephalus appendiculatus). These data provide the first health assessment of this population and can be used to identify management and conservation strategies to decrease the impact of pathogens on this population. This is particularly important as there is an initiative to incorporate this population into a larger metapopulation of lions from adjacent South Africa and Zimbabwe.

  2. Targeting of the hydrophobic metabolome by pathogens.

    Science.gov (United States)

    Helms, J Bernd; Kaloyanova, Dora V; Strating, Jeroen R P; van Hellemond, Jaap J; van der Schaar, Hilde M; Tielens, Aloysius G M; van Kuppeveld, Frank J M; Brouwers, Jos F

    2015-05-01

    The hydrophobic molecules of the metabolome - also named the lipidome - constitute a major part of the entire metabolome. Novel technologies show the existence of a staggering number of individual lipid species, the biological functions of which are, with the exception of only a few lipid species, unknown. Much can be learned from pathogens that have evolved to take advantage of the complexity of the lipidome to escape the immune system of the host organism and to allow their survival and replication. Different types of pathogens target different lipids as shown in interaction maps, allowing visualization of differences between different types of pathogens. Bacterial and viral pathogens target predominantly structural and signaling lipids to alter the cellular phenotype of the host cell. Fungal and parasitic pathogens have complex lipidomes themselves and target predominantly the release of polyunsaturated fatty acids from the host cell lipidome, resulting in the generation of eicosanoids by either the host cell or the pathogen. Thus, whereas viruses and bacteria induce predominantly alterations in lipid metabolites at the host cell level, eukaryotic pathogens focus on interference with lipid metabolites affecting systemic inflammatory reactions that are part of the immune system. A better understanding of the interplay between host-pathogen interactions will not only help elucidate the fundamental role of lipid species in cellular physiology, but will also aid in the generation of novel therapeutic drugs. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Dengue virus genomic variation associated with mosquito adaptation defines the pattern of viral non-coding RNAs and fitness in human cells.

    Directory of Open Access Journals (Sweden)

    Claudia V Filomatori

    2017-03-01

    Full Text Available The Flavivirus genus includes a large number of medically relevant pathogens that cycle between humans and arthropods. This host alternation imposes a selective pressure on the viral population. Here, we found that dengue virus, the most important viral human pathogen transmitted by insects, evolved a mechanism to differentially regulate the production of viral non-coding RNAs in mosquitos and humans, with a significant impact on viral fitness in each host. Flavivirus infections accumulate non-coding RNAs derived from the viral 3'UTRs (known as sfRNAs, relevant in viral pathogenesis and immune evasion. We found that dengue virus host adaptation leads to the accumulation of different species of sfRNAs in vertebrate and invertebrate cells. This process does not depend on differences in the host machinery; but it was found to be dependent on the selection of specific mutations in the viral 3'UTR. Dissecting the viral population and studying phenotypes of cloned variants, the molecular determinants for the switch in the sfRNA pattern during host change were mapped to a single RNA structure. Point mutations selected in mosquito cells were sufficient to change the pattern of sfRNAs, induce higher type I interferon responses and reduce viral fitness in human cells, explaining the rapid clearance of certain viral variants after host change. In addition, using epidemic and pre-epidemic Zika viruses, similar patterns of sfRNAs were observed in mosquito and human infected cells, but they were different from those observed during dengue virus infections, indicating that distinct selective pressures act on the 3'UTR of these closely related viruses. In summary, we present a novel mechanism by which dengue virus evolved an RNA structure that is under strong selective pressure in the two hosts, as regulator of non-coding RNA accumulation and viral fitness. This work provides new ideas about the impact of host adaptation on the variability and evolution of

  4. Seroprevalences to viral pathogens in free-ranging and captive cheetahs (Acinonyx jubatus) on Namibian Farmland.

    Science.gov (United States)

    Thalwitzer, Susanne; Wachter, Bettina; Robert, Nadia; Wibbelt, Gudrun; Müller, Thomas; Lonzer, Johann; Meli, Marina L; Bay, Gert; Hofer, Heribert; Lutz, Hans

    2010-02-01

    Cheetah populations are diminishing rapidly in their natural habitat. One reason for their decline is thought to be a high susceptibility to (infectious) diseases because cheetahs in zoos suffer from high disease-induced mortality. Data on the health status of free-ranging cheetahs are scarce, and little is known about their exposure and susceptibility to infectious diseases. We determined seroprevalences to nine key viruses (feline herpesvirus 1, feline calicivirus, feline parvovirus, feline coronavirus, canine distemper virus, feline immunodeficiency virus [FIV], puma lentivirus, feline leukemia virus, and rabies virus) in 68 free-ranging cheetahs on east-central Namibian farmland, 24 nonvaccinated Namibian captive cheetahs, and several other wild carnivore species and conducted necropsies of cheetahs and other wild carnivores. Eight of 11 other wild carnivores were seropositive for at least one of the viruses, including the first record of an FIV-like infection in a wild felid west of the Kalahari, the caracal (Felis caracal). Seroprevalences of the free-ranging cheetahs were below 5% for all nine viruses, which is significantly lower than seroprevalences in nonvaccinated captive cheetahs and those for five of seven viruses in previously studied free-ranging cheetahs from north-central Namibia (L. Munson, L. Marker, E. Dubovi, J. A. Spencer, J. F. Evermann, and S. J. O'Brien, J. Wildl. Dis. 40:23-31, 2004). There was no clinical or pathological evidence of infectious diseases in living or dead cheetahs. The results suggest that while free-ranging wild carnivores may be a source of pathogens, the distribution of seroprevalences across studies mirrored local human population density and factors associated with human habitation, probably reflecting contact opportunities with (nonvaccinated) domestic and feral cats and dogs. They also suggest that Namibian cheetahs respond effectively to viral challenges, encouraging consistent and sustainable conservation efforts.

  5. Seroprevalences to Viral Pathogens in Free-Ranging and Captive Cheetahs (Acinonyx jubatus) on Namibian Farmland▿

    Science.gov (United States)

    Thalwitzer, Susanne; Wachter, Bettina; Robert, Nadia; Wibbelt, Gudrun; Müller, Thomas; Lonzer, Johann; Meli, Marina L.; Bay, Gert; Hofer, Heribert; Lutz, Hans

    2010-01-01

    Cheetah populations are diminishing rapidly in their natural habitat. One reason for their decline is thought to be a high susceptibility to (infectious) diseases because cheetahs in zoos suffer from high disease-induced mortality. Data on the health status of free-ranging cheetahs are scarce, and little is known about their exposure and susceptibility to infectious diseases. We determined seroprevalences to nine key viruses (feline herpesvirus 1, feline calicivirus, feline parvovirus, feline coronavirus, canine distemper virus, feline immunodeficiency virus [FIV], puma lentivirus, feline leukemia virus, and rabies virus) in 68 free-ranging cheetahs on east-central Namibian farmland, 24 nonvaccinated Namibian captive cheetahs, and several other wild carnivore species and conducted necropsies of cheetahs and other wild carnivores. Eight of 11 other wild carnivores were seropositive for at least one of the viruses, including the first record of an FIV-like infection in a wild felid west of the Kalahari, the caracal (Felis caracal). Seroprevalences of the free-ranging cheetahs were below 5% for all nine viruses, which is significantly lower than seroprevalences in nonvaccinated captive cheetahs and those for five of seven viruses in previously studied free-ranging cheetahs from north-central Namibia (L. Munson, L. Marker, E. Dubovi, J. A. Spencer, J. F. Evermann, and S. J. O'Brien, J. Wildl. Dis. 40:23-31, 2004). There was no clinical or pathological evidence of infectious diseases in living or dead cheetahs. The results suggest that while free-ranging wild carnivores may be a source of pathogens, the distribution of seroprevalences across studies mirrored local human population density and factors associated with human habitation, probably reflecting contact opportunities with (nonvaccinated) domestic and feral cats and dogs. They also suggest that Namibian cheetahs respond effectively to viral challenges, encouraging consistent and sustainable conservation efforts

  6. Development and evaluation of a replicon particle vaccine expressing the E2 glycoprotein of bovine viral diarrhea virus (BVDV in cattle

    Directory of Open Access Journals (Sweden)

    Loy John Dustin

    2013-01-01

    Full Text Available Abstract Background Bovine viral diarrhea virus is one of the most significant and costly viral pathogens of cattle worldwide. Alphavirus-derived replicon particles have been shown to be safe and highly effective vaccine vectors against a variety of human and veterinary pathogens. Replicon particles are non-propagating, DIVA compatible, and can induce both humoral and cell mediated immune responses. This is the first experiment to demonstrate that Alphavirus-based replicon particles can be utilized in a standard prime/boost vaccination strategy in calves against a commercially significant bovine pathogen. Findings Replicon particles that express bovine viral diarrhea virus sub-genotype 1b E2 glycoprotein were generated and expression was confirmed in vitro using polyclonal and monoclonal antibodies specific to E2. Vaccine made from particles was generated in Vero cells and administered to BVDV free calves in a prime/boost regimen at two dosage levels. Vaccination resulted in neutralizing antibody titers that cross-neutralized both type 1 and type 2 BVD genotypes following booster vaccination. Additionally, high dose vaccine administration demonstrated some protection from clinical disease and significantly reduced the degree of leukopenia caused by viral infection. Conclusions Replicon particle vaccines administered in a prime/boost regimen expressing BVDV E2 glycoprotein can induce cross-neutralizing titers, reduce leukopenia post challenge, and mitigate clinical disease in calves. This strategy holds promise for a safe and effective vaccine to BVDV.

  7. Nucleocapsid-Independent Specific Viral RNA Packaging via Viral Envelope Protein and Viral RNA Signal

    OpenAIRE

    Narayanan, Krishna; Chen, Chun-Jen; Maeda, Junko; Makino, Shinji

    2003-01-01

    For any of the enveloped RNA viruses studied to date, recognition of a specific RNA packaging signal by the virus's nucleocapsid (N) protein is the first step described in the process of viral RNA packaging. In the murine coronavirus a selective interaction between the viral transmembrane envelope protein M and the viral ribonucleoprotein complex, composed of N protein and viral RNA containing a short cis-acting RNA element, the packaging signal, determines the selective RNA packaging into vi...

  8. Immunity induced shortly after DNA vaccination of rainbow trout against rhabdoviruses protects against heterologous virus but not against bacterial pathogens

    DEFF Research Database (Denmark)

    Lorenzen, Niels; Lorenzen, Ellen; Einer-Jensen, Katja

    2002-01-01

    whereas no increased survival was found upon challenge with bacterial pathogens. Within two months after vaccination, the cross-protection disappeared while the specific immunity to homologous virus remained high. The early immunity induced by the DNA vaccines thus appeared to involve short-lived non......It was recently reported that DNA vaccination of rainbow trout fingerlings against viral hemorrhagic septicaemia virus (VHSV) induced protection within 8 days after intramuscular injection of plasmid DNA. In order to analyse the specificity of this early immunity, fish were vaccinated with plasmid...... DNA encoding the VHSV or the infectious haematopoietic necrosis virus (IHNV) glycoprotein genes and later challenged with homologous or heterologous pathogens. Challenge experiments revealed that immunity established shortly after vaccination was cross-protective between the two viral pathogens...

  9. Replicative homeostasis II: Influence of polymerase fidelity on RNA virus quasispecies biology: Implications for immune recognition, viral autoimmunity and other "virus receptor" diseases

    Directory of Open Access Journals (Sweden)

    Sallie Richard

    2005-08-01

    Full Text Available Abstract Much of the worlds' population is in active or imminent danger from established infectious pathogens, while sporadic and pandemic infections by these and emerging agents threaten everyone. RNA polymerases (RNApol generate enormous genetic and consequent antigenic heterogeneity permitting both viruses and cellular pathogens to evade host defences. Thus, RNApol causes more morbidity and premature mortality than any other molecule. The extraordinary genetic heterogeneity defining viral quasispecies results from RNApol infidelity causing rapid cumulative genomic RNA mutation a process that, if uncontrolled, would cause catastrophic loss of sequence integrity and inexorable quasispecies extinction. Selective replication and replicative homeostasis, an epicyclical regulatory mechanism dynamically linking RNApol fidelity and processivity with quasispecies phenotypic diversity, modulating polymerase fidelity and, hence, controlling quasispecies behaviour, prevents this happening and also mediates immune escape. Perhaps more importantly, ineluctable generation of broad phenotypic diversity after viral RNA is translated to protein quasispecies suggests a mechanism of disease that specifically targets, and functionally disrupts, the host cell surface molecules – including hormone, lipid, cell signalling or neurotransmitter receptors – that viruses co-opt for cell entry. This mechanism – "Viral Receptor Disease (VRD" – may explain so-called "viral autoimmunity", some classical autoimmune disorders and other diseases, including type II diabetes mellitus, and some forms of obesity. Viral receptor disease is a unifying hypothesis that may also explain some diseases with well-established, but multi-factorial and apparently unrelated aetiologies – like coronary artery and other vascular diseases – in addition to diseases like schizophrenia that are poorly understood and lack plausible, coherent, pathogenic explanations.

  10. Antimicrobial activity and identification of potential antimicrobial compounds from aquatic pteridophyte, Azolla microphylla Kaulf.

    Science.gov (United States)

    Abraham, G; Yadav, R K; Kaushik, G K

    2015-04-01

    Azolla microphylla Kaulf. is an aquatic nitrogen fixing pteridophyte commonly found in aquatic habitats including paddy fields. Methanolic extract of the fronds of A. microphylla was subjected to partial purification by solvent partitioning with diethyl ether and ethyl acetate followed by hydrolysis, and further partitioning with ethyl acetate. The two fractions, thus obtained were tested for antibacterial activity. It was observed that the ethyl acetate fraction inhibited the growth of the pathogenic bacterium Xanthomonas oryzae. The GC-MS analysis of the ethyl acetate fraction showed several prominent peaks with retention time ranging from 8.83 to 45.54 min. A comparison of these peaks with the GC-MS libraries revealed that it could be eicosenes and heptadecanes with potential of antimicrobial activity.

  11. Ecobiophysical Aspects on Nanosilver Biogenerated from Citrus reticulata Peels, as Potential Biopesticide for Controlling Pathogens and Wetland Plants in Aquatic Media

    Directory of Open Access Journals (Sweden)

    Marcela Elisabeta Barbinta-Patrascu

    2017-01-01

    Full Text Available In recent years, a considerable interest was paid to ecological strategies in management of plant diseases and plant growth. Metallic nanoparticles (MNPs gained considerable interest as alternative to pesticides due to their interesting properties. Green synthesis of MNPs using plant extracts is very advantageous taking into account the fact that plants are easily available and eco-friendly and possess many phytocompounds that help in bioreduction of metal ions. In this research work, we phytosynthesized AgNPs from aqueous extract of Citrus reticulata peels, with high antioxidant, antibacterial, and antifungal potential. These “green” AgNPs were characterized by modern biophysical methods (absorption and FTIR spectroscopy, AFM, and zeta potential measurements. The nanobioimpact of Citrus-based AgNPs on four invasive wetland plants, Cattail (Typha latifolia, Flowering-rush (Butomus umbellatus, Duckweed (Lemna minor, and Water-pepper (Polygonum hydropiper, was studied by absorption spectroscopy, by monitoring the spectral signature of chlorophyll. The invasive plants exhibited different behavior under AgNP stress. Deep insights were obtained from experiments conducted on biomimetic membranes marked with chlorophyll a. Our results pointed out the potential use of Citrus-based AgNPs as alternative in controlling pathogens in aqueous media and in management of aquatic weeds growth.

  12. Integrated oxide graphene based device for laser inactivation of pathogenic microorganisms

    Science.gov (United States)

    Grishkanich, Alexsandr; Ruzankina, Julia; Afanasyev, Mikhail; Paklinov, Nikita; Hafizov, Nail

    2018-02-01

    We develop device for virus disinfection of pathogenic microorganisms. Viral decontamination can be carried out due to hard ultraviolet irradiation and singlet oxygen destroying the genetic material of a virus capsid. UV rays can destroy DNA, leading to the formation of dimers of nucleic acids. This practically does not occur in tissues, tk. UV rays penetrate badly through them, however, the viral particles are small and UV can destroy their genetic material, RNA / DNA and the virus can not replicate. It is with the construction of the ultraviolet laser water disinfection system (UFLOV) based on the continuous and periodic pulsed ultraviolet laser sources (pump) binds to solve sterility and depyrogenation of water. It has been established that small doses of UV irradiation stimulate reproduction, and large doses cause the death of pathogenic microorganisms. The effect of a dose of ultraviolet is the result of photochemical action on the substance of a living bacterial cell or virion. Also complex photodynamic laser inactivation on graphene oxide is realized.

  13. A bio-synthetic interface for discovery of viral entry mechanisms.

    Energy Technology Data Exchange (ETDEWEB)

    Gutzler, Mike; Maar, Dianna; Negrete, Oscar; Hayden, Carl C.; Sasaki, Darryl Yoshio; Stachowiak, Jeanne C.; Wang, Julia

    2010-09-01

    Understanding and defending against pathogenic viruses is an important public health and biodefense challenge. The focus of our LDRD project has been to uncover the mechanisms enveloped viruses use to identify and invade host cells. We have constructed interfaces between viral particles and synthetic lipid bilayers. This approach provides a minimal setting for investigating the initial events of host-virus interaction - (i) recognition of, and (ii) entry into the host via membrane fusion. This understanding could enable rational design of therapeutics that block viral entry as well as future construction of synthetic, non-proliferating sensors that detect live virus in the environment. We have observed fusion between synthetic lipid vesicles and Vesicular Stomatitis virus particles, and we have observed interactions between Nipah virus-like particles and supported lipid bilayers and giant unilamellar vesicles.

  14. A historical review of the key bacterial and viral pathogens of Scottish wild fish.

    Science.gov (United States)

    Wallace, I S; McKay, P; Murray, A G

    2017-12-01

    Thousands of Scottish wild fish were screened for pathogens by Marine Scotland Science. A systematic review of published and unpublished data on six key pathogens (Renibacterium salmoninarum, Aeromonas salmonicida, IPNV, ISAV, SAV and VHSV) found in Scottish wild and farmed fish was undertaken. Despite many reported cases in farmed fish, there was a limited number of positive samples from Scottish wild fish, however, there was evidence for interactions between wild and farmed fish. A slightly elevated IPNV prevalence was reported in wild marine fish caught close to Atlantic salmon, Salmo salar L., farms that had undergone clinical IPN. Salmonid alphavirus was isolated from wild marine fish caught near Atlantic salmon farms with a SAV infection history. Isolations of VHSV were made from cleaner wrasse (Labridae) used on Scottish Atlantic salmon farms and VHSV was detected in local wild marine fish. However, these pathogens have been detected in wild marine fish caught remotely from aquaculture sites. These data suggest that despite the large number of samples taken, there is limited evidence for clinical disease in wild fish due to these pathogens (although BKD and furunculosis historically occurred) and they are likely to have had a minimal impact on Scottish wild fish. © 2017 Crown Copyright. Journal of Fish Diseases © 2017 John Wiley & Sons Ltd.

  15. HTLV Tax: a fascinating multifunctional co-regulator of viral and cellular pathways

    Directory of Open Access Journals (Sweden)

    Robert eCurrer

    2012-11-01

    Full Text Available Human T cell lymphotropic virus type 1 (HTLV-1 has been identified as the causative agent of adult T cell leukemia (ATL and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP. The virus infects between 15 and 20 million people worldwide of which approximately 2 to 5% develop ATL. The past 35 years of research have yielded significant insight into the pathogenesis of HTLV-1, including the molecular characterization of Tax, the viral transactivator and oncoprotein. In spite of these efforts, the mechanisms of oncogenesis of this pleiotropic protein remain to be fully elucidated. In this review, we illustrate the multiple oncogenic roles of Tax by summarizing a recent body of literature that refines our understanding of cellular transformation. A focused range of topics are discussed in this review including Tax-mediated regulation of the viral promoter and other cellular pathways, particularly the connection of the NF-κB pathway to both post-translational modifications of Tax and sub-cellular localization. Specifically, recent research on polyubiquitination of Tax as it relates to the activation of the IkappaB kinase (IKK complex is highlighted. Regulation of the cell cycle and DNA damage responses due to Tax are also discussed, including Tax interaction with minichromosome maintenance proteins and the role of Tax in chromatin remodeling. The recent identification of HTLV-3 has amplified the importance of the characterization of emerging viral pathogens. The challenge of the molecular determination of pathogenicity and malignant disease of this virus lies in the comparison of the viral transactivators of HTLV-1, -2, and -3 in terms of transformation and immortalization. Consequently, differences between the three proteins are currently being studied to determine what factors are required for the differences in tumorogenesis.

  16. HTLV Tax: A Fascinating Multifunctional Co-Regulator of Viral and Cellular Pathways

    Science.gov (United States)

    Currer, Robert; Van Duyne, Rachel; Jaworski, Elizabeth; Guendel, Irene; Sampey, Gavin; Das, Ravi; Narayanan, Aarthi; Kashanchi, Fatah

    2012-01-01

    Human T-cell lymphotropic virus type 1 (HTLV-1) has been identified as the causative agent of adult T-cell leukemia (ATL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). The virus infects between 15 and 20 million people worldwide of which approximately 2–5% develop ATL. The past 35 years of research have yielded significant insight into the pathogenesis of HTLV-1, including the molecular characterization of Tax, the viral transactivator, and oncoprotein. In spite of these efforts, the mechanisms of oncogenesis of this pleiotropic protein remain to be fully elucidated. In this review, we illustrate the multiple oncogenic roles of Tax by summarizing a recent body of literature that refines our understanding of cellular transformation. A focused range of topics are discussed in this review including Tax-mediated regulation of the viral promoter and other cellular pathways, particularly the connection of the NF-κB pathway to both post-translational modifications (PTMs) of Tax and subcellular localization. Specifically, recent research on polyubiquitination of Tax as it relates to the activation of the IkappaB kinase (IKK) complex is highlighted. Regulation of the cell cycle and DNA damage responses due to Tax are also discussed, including Tax interaction with minichromosome maintenance proteins and the role of Tax in chromatin remodeling. The recent identification of HTLV-3 has amplified the importance of the characterization of emerging viral pathogens. The challenge of the molecular determination of pathogenicity and malignant disease of this virus lies in the comparison of the viral transactivators of HTLV-1, -2, and -3 in terms of transformation and immortalization. Consequently, differences between the three proteins are currently being studied to determine what factors are required for the differences in tumorogenesis. PMID:23226145

  17. Evaluation of the Universal Viral Transport system for long-term storage of virus specimens for microbial forensics.

    Science.gov (United States)

    Hosokawa-Muto, Junji; Fujinami, Yoshihito; Mizuno, Natsuko

    2015-08-01

    Forensic microbial specimens, including bacteria and viruses, are collected at biocrime and bioterrorism scenes. Although it is preferable that the pathogens in these samples are alive and kept in a steady state, the samples may be stored for prolonged periods before analysis. Therefore, it is important to understand the effects of storage conditions on the pathogens contained within such samples. To evaluate the capacity to preserve viable virus and the viral genome, influenza virus was added to the transport medium of the Universal Viral Transport system and stored for over 3 months at various temperatures, after which virus titrations and quantitative analysis of the influenza hemagglutinin gene were performed. Although viable viruses became undetectable 29 days after the medium was stored at room temperature, viruses in the medium stored at 4°C were viable even after 99 days. A quantitative PCR analysis indicated that the hemagglutinin gene was maintained for 99 days at both 4°C and room temperature. Therefore, long-term storage at 4°C has little effect on viable virus and viral genes, so the Universal Viral Transport system can be useful for microbial forensics. This study provides important information for the handling of forensic virus specimens. Copyright © 2015 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  18. Experimental infection studies demonstrating Atlantic salmon as a host and reservoir of viral hemorrhagic septicemia virus type IVa with insights into pathology and host immunity

    Science.gov (United States)

    Lovy, Jan; Piesik, P.; Hershberger, P.K.; Garver, K.A.

    2013-01-01

    In British Columbia, Canada (BC), aquaculture of finfish in ocean netpens has the potential for pathogen transmission between wild and farmed species due to the sharing of an aquatic environment. Viral hemorrhagic septicemia virus (VHSV) is enzootic in BC and causes serious disease in wild Pacific herring, Clupea pallasii, which often enter and remain in Atlantic salmon, Salmo salar, netpens. Isolation of VHSV from farmed Atlantic salmon has been previously documented, but the effects on the health of farmed salmon and the wild fish sharing the environment are unknown. To determine their susceptibility, Atlantic salmon were exposed to a pool of 9 isolates of VHSV obtained from farmed Atlantic salmon in BC by IP-injection or by waterborne exposure and cohabitation with diseased Pacific herring. Disease intensity was quantified by recording mortality, clinical signs, histopathological changes, cellular sites of viral replication, expression of interferon-related genes, and viral tissue titers. Disease ensued in Atlantic salmon after both VHSV exposure methods. Fish demonstrated gross disease signs including darkening of the dorsal skin, bilateral exophthalmia, light cutaneous hemorrhage, and lethargy. The virus replicated within endothelial cells causing endothelial cell necrosis and extensive hemorrhage in anterior kidney. Infected fish demonstrated a type I interferon response as seen by up-regulation of genes for IFNα, Mx, and ISG15. In a separate trial infected salmon transmitted the virus to sympatric Pacific herring. The results demonstrate that farmed Atlantic salmon can develop clinical VHS and virus can persist in the tissues for at least 10 weeks. Avoiding VHS epizootics in Atlantic salmon farms would limit the potential of VHS in farmed Atlantic salmon, the possibility for further host adaptation in this species, and virus spillback to sympatric wild fishes.

  19. Viral Richness is Positively Related to Group Size, but Not Mating System, in Bats.

    Science.gov (United States)

    Webber, Quinn M R; Fletcher, Quinn E; Willis, Craig K R

    2017-12-01

    Characterizing host traits that influence viral richness and diversification is important for understanding wildlife pathogens affecting conservation and/or human health. Behaviors that affect contact rates among hosts could be important for viral diversification because more frequent intra- and inter-specific contacts among hosts should increase the potential for viral diversification within host populations. We used published data on bats to test the contact-rate hypothesis. We predicted that species forming large conspecific groups, that share their range with more heterospecifics (i.e., sympatry), and with mating systems characterized by high contact rates (polygynandry: multi-male/multi-female), would host higher viral richness than species with small group sizes, lower sympatry, or low contact-rate mating systems (polygyny: single male/multi-female). Consistent with our hypothesis and previous research, viral richness was positively correlated with conspecific group size although the relationship plateaued at group sizes of approximately several hundred thousand bats. This pattern supports epidemiological theory that, up to a point, larger groups have higher contact rates, greater likelihood of acquiring and transmitting viruses, and ultimately greater potential for viral diversification. However, contrary to our hypothesis, there was no effect of sympatry on viral richness and no difference in viral richness between mating systems. We also found no residual effect of host phylogeny on viral richness, suggesting that closely related species do not necessarily host similar numbers of viruses. Our results support the contact-rate hypothesis that intra-specific viral transmission can enhance viral diversification within species and highlight the influence of host group size on the potential of viruses to propagate within host populations.

  20. Senescence as a Factor in Latent Pathogen Infection in Eurasian Watermilfoil

    Science.gov (United States)

    2009-09-01

    organisms that colonize plant tissues at some time in their life without causing harm to their host (Petrini 1991). They include micro - organisms...declines including nutrient depletion, shading by phytoplankton and algae , attack by parasites and pathogens, long-term effects of harvesting and/or...Center (ERDC), Environmental Laboratory, Vicksburg, MS. Endophyte-infected plants were collected from a culture pond at the Lewisville Aquatic

  1. Recommended reporting standards for test accuracy studies of infectious diseases of finfish, amphibians, molluscs and crustaceans: the STRADAS-aquatic checklist

    DEFF Research Database (Denmark)

    Gardner, Ian A.; Whittington, Richard J.; Caraguel, Charles G. B.

    2016-01-01

    Complete and transparent reporting of key elements of diagnostic accuracy studies for infectious diseases in cultured and wild aquatic animals benefits end-users of these tests, enabling the rational design of surveillance programs, the assessment of test results from clinical cases and comparisons...... studies using field and experimental samples, in operation of reference laboratories for aquatic animal pathogens, and in development of international aquatic animal health policy. The main changes to the STRADAS-paraTB checklist were to nomenclature related to the species, the addition of guidelines......-for-purpose. Given the importance of diagnostic tests to underpin the Sanitary and Phytosanitary agreement of the World Trade Organization, the principles outlined in this paper should be applied to other World Organisation for Animal Health (OIE)-relevant species....

  2. Roles of the Picornaviral 3C Proteinase in the Viral Life Cycle and Host Cells

    Directory of Open Access Journals (Sweden)

    Di Sun

    2016-03-01

    Full Text Available The Picornaviridae family comprises a large group of non-enveloped viruses that have a major impact on human and veterinary health. The viral genome contains one open reading frame encoding a single polyprotein that can be processed by viral proteinases. The crucial 3C proteinases (3Cpros of picornaviruses share similar spatial structures and it is becoming apparent that 3Cpro plays a significant role in the viral life cycle and virus host interaction. Importantly, the proteinase and RNA-binding activity of 3Cpro are involved in viral polyprotein processing and the initiation of viral RNA synthesis. In addition, 3Cpro can induce the cleavage of certain cellular factors required for transcription, translation and nucleocytoplasmic trafficking to modulate cell physiology for viral replication. Due to interactions between 3Cpro and these essential factors, 3Cpro is also involved in viral pathogenesis to support efficient infection. Furthermore, based on the structural conservation, the development of irreversible inhibitors and discovery of non-covalent inhibitors for 3Cpro are ongoing and a better understanding of the roles played by 3Cpro may provide insights into the development of potential antiviral treatments. In this review, the current knowledge regarding the structural features, multiple functions in the viral life cycle, pathogen host interaction, and development of antiviral compounds for 3Cpro is summarized.

  3. Detection of Pathogen Exposure in African Buffalo Using Non-Specific Markers of Inflammation

    Directory of Open Access Journals (Sweden)

    Caroline K. Glidden

    2018-01-01

    Full Text Available Detecting exposure to new or emerging pathogens is a critical challenge to protecting human, domestic animal, and wildlife health. Yet, current techniques to detect infections typically target known pathogens of humans or economically important animals. In the face of the current surge in infectious disease emergence, non-specific disease surveillance tools are urgently needed. Tracking common host immune responses indicative of recent infection may have potential as a non-specific diagnostic approach for disease surveillance. The challenge to immunologists is to identify the most promising markers, which ideally should be highly conserved across pathogens and host species, become upregulated rapidly and consistently in response to pathogen invasion, and remain elevated beyond clearance of infection. This study combined an infection experiment and a longitudinal observational study to evaluate the utility of non-specific markers of inflammation [NSMI; two acute phase proteins (haptoglobin and serum amyloid A, two pro-inflammatory cytokines (IFNγ and TNF-α] as indicators of pathogen exposure in a wild mammalian species, African buffalo (Syncerus caffer. Specifically, in the experimental study, we asked (1 How quickly do buffalo mount NSMI responses upon challenge with an endemic pathogen, foot-and-mouth disease virus; (2 for how long do NSMI remain elevated after viral clearance and; (3 how pronounced is the difference between peak NSMI concentration and baseline NSMI concentration? In the longitudinal study, we asked (4 Are elevated NSMI associated with recent exposure to a suite of bacterial and viral respiratory pathogens in a wild population? Among the four NSMI that we tested, haptoglobin showed the strongest potential as a surveillance marker in African buffalo: concentrations quickly and consistently reached high levels in response to experimental infection, remaining elevated for almost a month. Moreover, elevated haptoglobin was

  4. Viral Hepatitis

    Science.gov (United States)

    ... Home A-Z Health Topics Viral hepatitis Viral hepatitis > A-Z Health Topics Viral hepatitis (PDF, 90 ... liver. Source: National Cancer Institute Learn more about hepatitis Watch a video. Learn who is at risk ...

  5. Application of qPCR assays for diagnosing causes of viral mink diarrhea. Preliminary results

    DEFF Research Database (Denmark)

    Hartby, Christina Marie; Kvisgaard, Lise Kirstine; Larsen, Lars Erik

    to diarrhea in mink. Rotavirus is poorly described in mink, but has previously been demonstrated in feces from mink pups with and without clinical signs (Jorgensen et al. 1996). The pathogenicity of these viruses could be related to viral load, virulence and the age of the mink. Therefore, there is a need...

  6. Bacterial and Viral Pathogens in Live Oysters: 2007 United States Market Survey ▿

    Science.gov (United States)

    DePaola, Angelo; Jones, Jessica L.; Woods, Jacquelina; Burkhardt, William; Calci, Kevin R.; Krantz, Jeffrey A.; Bowers, John C.; Kasturi, Kuppuswamy; Byars, Robin H.; Jacobs, Emily; Williams-Hill, Donna; Nabe, Khamphet

    2010-01-01

    Two samples of market oysters, primarily from retail establishments, were collected twice each month in each of nine states during 2007. Samples were shipped refrigerated overnight to five U.S. Food and Drug Administration laboratories on a rotating basis and analyzed by most probable number (MPN) for total and pathogenic Vibrio parahaemolyticus and V. vulnificus numbers and for the presence of toxigenic V. cholerae, Salmonella spp., norovirus (NoV), and hepatitis A virus (HAV). Levels of indicator organisms, including fecal coliforms (MPN), Escherichia coli (MPN), male-specific bacteriophage, and aerobic plate counts, were also determined. V. parahaemolyticus and V. vulnificus levels were distributed seasonally and geographically by harvest region and were similar to levels observed in a previous study conducted in 1998-1999. Levels of pathogenic V. parahaemolyticus were typically several logs lower than total V. parahaemolyticus levels regardless of season or region. Pathogenic V. parahaemolyticus levels in the Gulf and Mid-Atlantic regions were about two logs greater than the levels observed in the Pacific and North Atlantic regions. Pathogens generally associated with fecal pollution were detected sporadically or not at all (toxigenic V. cholerae, 0%; Salmonella, 1.5%; NoV, 3.9%; HAV, 4.4%). While seasonal prevalences of NoV and HAV were generally greater in oysters harvested from December to March, the low detection frequency obscured any apparent seasonal effects. Overall, there was no relationship between the levels of indicator microorganisms and the presence of enteric viruses. These data provide a baseline that can be used to further validate risk assessment predictions, determine the effectiveness of new control measures, and compare the level of protection provided by the U.S. shellfish sanitation system to those in other countries. PMID:20190085

  7. Hospital preparations for viral hemorrhagic fever patients and experience gained from admission of an Ebola patient

    NARCIS (Netherlands)

    Haverkort, J. J Mark; Minderhoud, A.L.C (Ben); Wind, Jelte D D; Leenen, Luke P H; Hoepelman, Andy I M; Ellerbroek, Pauline M.

    2016-01-01

    The Major Incident Hospital of the University Medical Centre of Utrecht has a longstanding history of preparing for the management of highly pathogenic and infectious organisms. An assessment of the hospital’s preparations for an outbreak of viral hemorrhagic fever and its experience during

  8. Modeling Viral Infectious Diseases and Development of Antiviral Therapies Using Human Induced Pluripotent Stem Cell-Derived Systems.

    Science.gov (United States)

    Trevisan, Marta; Sinigaglia, Alessandro; Desole, Giovanna; Berto, Alessandro; Pacenti, Monia; Palù, Giorgio; Barzon, Luisa

    2015-07-13

    The recent biotechnology breakthrough of cell reprogramming and generation of induced pluripotent stem cells (iPSCs), which has revolutionized the approaches to study the mechanisms of human diseases and to test new drugs, can be exploited to generate patient-specific models for the investigation of host-pathogen interactions and to develop new antimicrobial and antiviral therapies. Applications of iPSC technology to the study of viral infections in humans have included in vitro modeling of viral infections of neural, liver, and cardiac cells; modeling of human genetic susceptibility to severe viral infectious diseases, such as encephalitis and severe influenza; genetic engineering and genome editing of patient-specific iPSC-derived cells to confer antiviral resistance.

  9. Modeling Viral Infectious Diseases and Development of Antiviral Therapies Using Human Induced Pluripotent Stem Cell-Derived Systems

    Directory of Open Access Journals (Sweden)

    Marta Trevisan

    2015-07-01

    Full Text Available The recent biotechnology breakthrough of cell reprogramming and generation of induced pluripotent stem cells (iPSCs, which has revolutionized the approaches to study the mechanisms of human diseases and to test new drugs, can be exploited to generate patient-specific models for the investigation of host–pathogen interactions and to develop new antimicrobial and antiviral therapies. Applications of iPSC technology to the study of viral infections in humans have included in vitro modeling of viral infections of neural, liver, and cardiac cells; modeling of human genetic susceptibility to severe viral infectious diseases, such as encephalitis and severe influenza; genetic engineering and genome editing of patient-specific iPSC-derived cells to confer antiviral resistance.

  10. Convergent evolution and mimicry of protein linear motifs in host-pathogen interactions.

    Science.gov (United States)

    Chemes, Lucía Beatriz; de Prat-Gay, Gonzalo; Sánchez, Ignacio Enrique

    2015-06-01

    Pathogen linear motif mimics are highly evolvable elements that facilitate rewiring of host protein interaction networks. Host linear motifs and pathogen mimics differ in sequence, leading to thermodynamic and structural differences in the resulting protein-protein interactions. Moreover, the functional output of a mimic depends on the motif and domain repertoire of the pathogen protein. Regulatory evolution mediated by linear motifs can be understood by measuring evolutionary rates, quantifying positive and negative selection and performing phylogenetic reconstructions of linear motif natural history. Convergent evolution of linear motif mimics is widespread among unrelated proteins from viral, prokaryotic and eukaryotic pathogens and can also take place within individual protein phylogenies. Statistics, biochemistry and laboratory models of infection link pathogen linear motifs to phenotypic traits such as tropism, virulence and oncogenicity. In vitro evolution experiments and analysis of natural sequences suggest that changes in linear motif composition underlie pathogen adaptation to a changing environment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Environmental survey to assess viral contamination of air and surfaces in hospital settings.

    Science.gov (United States)

    Carducci, A; Verani, M; Lombardi, R; Casini, B; Privitera, G

    2011-03-01

    The presence of pathogenic viruses in healthcare settings represents a serious risk for both staff and patients. Direct viral detection in the environment poses significant technical problems and the indirect indicators currently in use suffer from serious limitations. The aim of this study was to monitor surfaces and air in hospital settings to reveal the presence of hepatitis C virus, human adenovirus, norovirus, human rotavirus and torque teno virus by nucleic acid assays, in parallel with measurements of total bacterial count and haemoglobin presence. In total, 114 surface and 62 air samples were collected. Bacterial contamination was very low (air was 282 cfu/m(3). Overall, 19 (16.7%) surface samples tested positive for viral nucleic acids: one for norovirus, one for human adenovirus and 17 (14.9%) for torque teno virus (TTV). Only this latter virus was directly detected in 10 air samples (16.1%). Haemoglobin was found on two surfaces. No relationship was found between viral, biochemical or bacterial indicators. The data obtained confirm the difficulty of assessing viral contamination using bacterial indicators. The frequent detection of TTV suggests its possible use as an indicator for general viral contamination of the environment. Copyright © 2010 The Hospital Infection Society. Published by Elsevier Ltd. All rights reserved.

  12. Parvovirus b19 DNA CpG dinucleotide methylation and epigenetic regulation of viral expression.

    Directory of Open Access Journals (Sweden)

    Francesca Bonvicini

    Full Text Available CpG DNA methylation is one of the main epigenetic modifications playing a role in the control of gene expression. For DNA viruses whose genome has the ability to integrate in the host genome or to maintain as a latent episome, a correlation has been found between the extent of DNA methylation and viral quiescence. No information is available for Parvovirus B19, a human pathogenic virus, which is capable of both lytic and persistent infections. Within Parvovirus B19 genome, the inverted terminal regions display all the characteristic signatures of a genomic CpG island; therefore we hypothesised a role of CpG dinucleotide methylation in the regulation of viral genome expression.The analysis of CpG dinucleotide methylation of Parvovirus B19 DNA was carried out by an aptly designed quantitative real-time PCR assay on bisulfite-modified DNA. The effects of CpG methylation on the regulation of viral genome expression were first investigated by transfection of either unmethylated or in vitro methylated viral DNA in a model cell line, showing that methylation of viral DNA was correlated to lower expression levels of the viral genome. Then, in the course of in vitro infections in different cellular environments, it was observed that absence of viral expression and genome replication were both correlated to increasing levels of CpG methylation of viral DNA. Finally, the presence of CpG methylation was documented in viral DNA present in bioptic samples, indicating the occurrence and a possible role of this epigenetic modification in the course of natural infections.The presence of an epigenetic level of regulation of viral genome expression, possibly correlated to the silencing of the viral genome and contributing to the maintenance of the virus in tissues, can be relevant to the balance and outcome of the different types of infection associated to Parvovirus B19.

  13. Parvovirus B19 DNA CpG Dinucleotide Methylation and Epigenetic Regulation of Viral Expression

    Science.gov (United States)

    Bonvicini, Francesca; Manaresi, Elisabetta; Di Furio, Francesca; De Falco, Luisa; Gallinella, Giorgio

    2012-01-01

    CpG DNA methylation is one of the main epigenetic modifications playing a role in the control of gene expression. For DNA viruses whose genome has the ability to integrate in the host genome or to maintain as a latent episome, a correlation has been found between the extent of DNA methylation and viral quiescence. No information is available for Parvovirus B19, a human pathogenic virus, which is capable of both lytic and persistent infections. Within Parvovirus B19 genome, the inverted terminal regions display all the characteristic signatures of a genomic CpG island; therefore we hypothesised a role of CpG dinucleotide methylation in the regulation of viral genome expression. The analysis of CpG dinucleotide methylation of Parvovirus B19 DNA was carried out by an aptly designed quantitative real-time PCR assay on bisulfite-modified DNA. The effects of CpG methylation on the regulation of viral genome expression were first investigated by transfection of either unmethylated or in vitro methylated viral DNA in a model cell line, showing that methylation of viral DNA was correlated to lower expression levels of the viral genome. Then, in the course of in vitro infections in different cellular environments, it was observed that absence of viral expression and genome replication were both correlated to increasing levels of CpG methylation of viral DNA. Finally, the presence of CpG methylation was documented in viral DNA present in bioptic samples, indicating the occurrence and a possible role of this epigenetic modification in the course of natural infections. The presence of an epigenetic level of regulation of viral genome expression, possibly correlated to the silencing of the viral genome and contributing to the maintenance of the virus in tissues, can be relevant to the balance and outcome of the different types of infection associated to Parvovirus B19. PMID:22413013

  14. Promising approaches for the treatment and prevention of viral respiratory illnesses.

    Science.gov (United States)

    Papadopoulos, Nikolaos G; Megremis, Spyridon; Kitsioulis, Nikolaos A; Vangelatou, Olympia; West, Peter; Xepapadaki, Paraskevi

    2017-10-01

    Viral respiratory tract infections are the most common human ailments, leading to enormous health and economic burden. Hundreds of viral species and subtypes have been associated with these conditions, with influenza viruses, respiratory syncytial virus, and rhinoviruses being the most frequent and with the highest burden. When considering prevention or treatment of viral respiratory tract infections, potential targets include the causative pathogens themselves but also the immune response, disease transmission, or even just the symptoms. Strategies targeting all these aspects are developing concurrently, and several novel and promising approaches are emerging. In this perspective we overview the entire range of options and highlight some of the most promising approaches, including new antiviral agents, symptomatic or immunomodulatory drugs, the re-emergence of natural remedies, and vaccines and public health policies toward prevention. Wide-scale prevention through immunization appears to be within reach for respiratory syncytial virus and promising for influenza virus, whereas additional effort is needed in regard to rhinovirus, as well as other respiratory tract viruses. Copyright © 2017 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  15. Experimentally-induced immune activation in natural hosts of SIV induces significant increases in viral replication and CD4+ T cell depletion

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Ruy M [Los Alamos National Laboratory

    2008-01-01

    Chronically SIVagm-infected African green monkeys (AGMs) have a remarkably stable non-pathogenic disease course, with levels of immune activation in chronic SIVagm infection similar to those observed in uninfected monkeys and stable viral loads (VLs) for long periods of time. In vivo administration of lipopolysaccharide (LPS) or an IL-2/diphtheria toxin fusion protein (Ontak) to chronically SIVagm-infected AGMs triggered increases in immune activation and subsequently of viral replication and depletion of intestinal CD4{sup +} T cells. Our study indicates that circulating microbial products can increase viral replication by inducing immune activation and increasing the number of viral target cells, thus demonstrating that immune activation and T cell prolifeation are key factors in AIDS pathogenesis.

  16. Using AquaticHealth.net to Detect Emerging Trends in Aquatic Animal Health

    Directory of Open Access Journals (Sweden)

    Geoff Grossel

    2013-05-01

    Full Text Available AquaticHealth.net is an open-source aquatic biosecurity intelligence application. By combining automated data collection and human analysis, AquaticHealth.net provides fast and accurate disease outbreak detection and forecasts, accompanied with nuanced explanations. The system has been online and open to the public since 1 January 2010, it has over 200 registered expert users around the world, and it typically publishes about seven daily reports and two weekly disease alerts. We document the major trends in aquatic animal health that the system has detected over these two years, and conclude with some forecasts for the future.

  17. Method of inhibiting plant virus pathogen infections by crispr/cas9-mediated interference

    KAUST Repository

    Mahfouz, Magdy Mahmoud

    2016-11-24

    A genetically modified tobacco plant or tomato plant resistant to at least one pathogenic geminiviridae virus species is provided. The plant comprises a heterologous CRISPR/Cas9 system and at least one heterologous nucleotide sequence that is capable of hybridizing to a nucleotide sequence of the pathogenic virus and that directs inactivation of the pathogenic virus species or plurality of viral species by the CRISPR/Cas9 system. The heterologous nucleotide sequence can be complementary to, but not limited to an Intergenic Region (IR) of the Tomato Yellow Leaf Curl Virus (TYLCV), Further provided are methods of generating a genetically modified plant that is resistant to a virus pathogen by a heterologous CRISPR/Cas9 system and expression of a gRNA specifically targeting the virus.

  18. Tenacity of low-pathogenic avian influenza viruses in different types of poultry litter.

    Science.gov (United States)

    Reis, A; Stallknecht, D; Ritz, C; García, M

    2012-08-01

    To determine the risk of infection associated with exposure to low-pathogenic avian influenza (AI) virus-contaminated poultry litter, the tenacity of low pathogenic A/Ck/CA/431/00(H6N2), A/Mallard/MN/355779/00(H5N2), and A/turkey/Ohio/313053/04(H3N2) was evaluated. Viral stocks were incubated with poultry litter from commercial flocks at 25°C. Three types of poultry litter, wood shavings, shavings plus gypsum, and shavings plus peanut hulls, from commercial broiler flocks were used. The 3 low-pathogenic avian influenza viruses retained infectivity for one day in wood shavings and shavings plus peanut hulls litter types, whereas in wood shavings plus gypsum, litter viruses remained infective for up to 3 d. In contrast to the survivability in litter, all the viruses maintained infectivity in water for 4 d at titers of log(10)4.5. The infectivity of A/Ck/CA/431/00(H6N2) shed by experimentally infected layers, broilers, and turkeys was retained for one day, independently of the type of litter. In commercial production where a high density of birds are housed, the viral load shed by an infected flock will be significantly higher than the viral load shed 3 d postinfection obtained under the experimental conditions used in this study. Therefore proper management and disposal of poultry by products, such as windrow composting of litter and the composting of carcasses during an AI outbreak should be implemented.

  19. Control strategy for viral diseases of salmonid fish, flounders and shrimp at hatchery and seed production facility in Japan

    OpenAIRE

    Yoshimizu, Mamoru

    2009-01-01

    Salmonid fish are important species for hatchery reared and released fish. Flounders and shrimp are also important species for seed production and sea-farming in Japan. Viral disease is one of the limitations of successful propagation of these species. Methods currently used to control viral diseases are 1) hygiene and sanitation in facilities, 2) disinfection of rearing and waste water using U. V. irradiation, ozonization and electrolyzation, 3) selection of pathogen-free brood stock by cell...

  20. Host Phylogeny Determines Viral Persistence and Replication in Novel Hosts

    Science.gov (United States)

    Longdon, Ben; Hadfield, Jarrod D.; Webster, Claire L.

    2011-01-01

    Pathogens switching to new hosts can result in the emergence of new infectious diseases, and determining which species are likely to be sources of such host shifts is essential to understanding disease threats to both humans and wildlife. However, the factors that determine whether a pathogen can infect a novel host are poorly understood. We have examined the ability of three host-specific RNA-viruses (Drosophila sigma viruses from the family Rhabdoviridae) to persist and replicate in 51 different species of Drosophilidae. Using a novel analytical approach we found that the host phylogeny could explain most of the variation in viral replication and persistence between different host species. This effect is partly driven by viruses reaching a higher titre in those novel hosts most closely related to the original host. However, there is also a strong effect of host phylogeny that is independent of the distance from the original host, with viral titres being similar in groups of related hosts. Most of this effect could be explained by variation in general susceptibility to all three sigma viruses, as there is a strong phylogenetic correlation in the titres of the three viruses. These results suggest that the source of new emerging diseases may often be predictable from the host phylogeny, but that the effect may be more complex than simply causing most host shifts to occur between closely related hosts. PMID:21966271

  1. A meta-analysis of the effects of exposure to microplastics on fish and aquatic invertebrates.

    Science.gov (United States)

    Foley, Carolyn J; Feiner, Zachary S; Malinich, Timothy D; Höök, Tomas O

    2018-08-01

    Microplastics are present in aquatic ecosystems the world over and may influence the feeding, growth, reproduction, and survival of freshwater and marine biota; however, the extent and magnitude of potential effects of microplastics on aquatic organisms is poorly understood. In the current study, we conducted a meta-analysis of published literature to examine impacts of exposure to microplastics on consumption (and feeding), growth, reproduction, and survival of fish and aquatic invertebrates. While we did observe within-taxa negative effects for all four categories of responses, many of the effects summarized in our study were neutral, indicating that the effects of exposure to microplastics are highly variable across taxa. The most consistent effect was a reduction in consumption of natural prey when microplastics were present. For some taxa, negative effects on growth, reproduction and even survival were also evident. Organisms that serve as prey to larger predators, e.g., zooplankton, may be particularly susceptible to negative impacts of exposure to microplastic pollution, with potential for ramifications throughout the food web. Future work should focus on whether microplastics may be affecting aquatic organisms more subtly, e.g., by influencing exposure to contaminants and pathogens, or by acting at a molecular level. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Molecular ecology of aquatic microbes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    Abstracts of reports are presented from a meeting on Molecular Ecology of Aquatic Microbes. Topics included: opportunities offered to aquatic ecology by molecular biology; the role of aquatic microbes in biogeochemical cycles; characterization of the microbial community; the effect of the environment on aquatic microbes; and the targeting of specific biological processes.

  3. Autophagy pathway induced by a plant virus facilitates viral spread and transmission by its insect vector.

    Directory of Open Access Journals (Sweden)

    Yong Chen

    2017-11-01

    Full Text Available Many viral pathogens are persistently transmitted by insect vectors and cause agricultural or health problems. Generally, an insect vector can use autophagy as an intrinsic antiviral defense mechanism against viral infection. Whether viruses can evolve to exploit autophagy to promote their transmission by insect vectors is still unknown. Here, we show that the autophagic process is triggered by the persistent replication of a plant reovirus, rice gall dwarf virus (RGDV in cultured leafhopper vector cells and in intact insects, as demonstrated by the appearance of obvious virus-containing double-membrane autophagosomes, conversion of ATG8-I to ATG8-II and increased level of autophagic flux. Such virus-containing autophagosomes seem able to mediate nonlytic viral release from cultured cells or facilitate viral spread in the leafhopper intestine. Applying the autophagy inhibitor 3-methyladenine or silencing the expression of Atg5 significantly decrease viral spread in vitro and in vivo, whereas applying the autophagy inducer rapamycin or silencing the expression of Torc1 facilitate such viral spread. Furthermore, we find that activation of autophagy facilitates efficient viral transmission, whereas inhibiting autophagy blocks viral transmission by its insect vector. Together, these results indicate a plant virus can induce the formation of autophagosomes for carrying virions, thus facilitating viral spread and transmission by its insect vector. We believe that such a role for virus-induced autophagy is common for vector-borne persistent viruses during their transmission by insect vectors.

  4. Heterogeneous nuclear ribonuclear protein K interacts with Sindbis virus nonstructural proteins and viral subgenomic mRNA

    International Nuclear Information System (INIS)

    Burnham, Andrew J.; Gong, Lei; Hardy, Richard W.

    2007-01-01

    Alphaviruses are a group of arthropod-borne human and animal pathogens that can cause epidemics of significant public health and economic consequence. Alphavirus RNA synthesis requires four virally encoded nonstructural proteins and probably a number of cellular proteins. Using comparative two-dimensional electrophoresis we were able to identify proteins enriched in cytoplasmic membrane fractions containing viral RNA synthetic complexes following infection with Sindbis virus. Our studies demonstrated the following: (i) the host protein hnRNP K is enriched in cytoplasmic membrane fractions following Sindbis virus infection, (ii) viral nonstructural proteins co-immunoprecipitate with hnRNP K, (iii) nsP2 and hnRNP K co-localize in the cytoplasm of Sindbis virus infected cells, (iv) Sindbis virus subgenomic mRNA, but not genomic RNA co-immunoprecipitates with hnRNP K, (v) viral RNA does not appear to be required for the interaction of hnRNP K with the nonstructural proteins. Potential functions of hnRNP K during virus replication are discussed

  5. FishPathogens.eu/vhsv: A user-friendly Viral Haemorrhagic Septicaemia Virus (VHSV) isolate and sequence database

    DEFF Research Database (Denmark)

    Jonstrup, Søren Peter; Gray, Tanya; Kahns, Søren

    A database has been created, www.FishPathogens.eu, with the aim of providing a single repository for collating important information on significant pathogens of aquaculture, relevant to their control and management. This database will be developed, maintained and managed as part of the European...

  6. Viral recombination blurs taxonomic lines: examination of single-stranded DNA viruses in a wastewater treatment plant

    Directory of Open Access Journals (Sweden)

    Victoria M. Pearson

    2016-10-01

    Full Text Available Understanding the structure and dynamics of microbial communities, especially those of economic concern, is of paramount importance to maintaining healthy and efficient microbial communities at agricultural sites and large industrial cultures, including bioprocessors. Wastewater treatment plants are large bioprocessors which receive water from multiple sources, becoming reservoirs for the collection of many viral families that infect a broad range of hosts. To examine this complex collection of viruses, full-length genomes of circular ssDNA viruses were isolated from a wastewater treatment facility using a combination of sucrose-gradient size selection and rolling-circle amplification and sequenced on an Illumina MiSeq. Single-stranded DNA viruses are among the least understood groups of microbial pathogens due to genomic biases and culturing difficulties, particularly compared to the larger, more often studied dsDNA viruses. However, the group contains several notable well-studied examples, including agricultural pathogens which infect both livestock and crops (Circoviridae and Geminiviridae, and model organisms for genetics and evolution studies (Microviridae. Examination of the collected viral DNA provided evidence for 83 unique genotypic groupings, which were genetically dissimilar to known viral types and exhibited broad diversity within the community. Furthermore, although these genomes express similarities to known viral families, such as Circoviridae, Geminiviridae, and Microviridae, many are so divergent that they may represent new taxonomic groups. This study demonstrated the efficacy of the protocol for separating bacteria and large viruses from the sought after ssDNA viruses and the ability to use this protocol to obtain an in-depth analysis of the diversity within this group.

  7. Pathogenesis and transmissibility of highly (H7N1) and low (H7N9) pathogenic avian influenza virus infection in red-legged partridge (Alectoris rufa)

    OpenAIRE

    Bertran, Kateri; Pérez-Ramírez, Elisa; Busquets, Núria; Dolz, Roser; Ramis, Antoni; Abad, Francesc Xavier; Chaves, Aida; Vergara-Alert, Júlia; Barral, Marta; Höfle, Ursula; Majó, Natàlia

    2011-01-01

    Abstract An experimental infection with highly pathogenic avian influenza virus (HPAIV) and low pathogenic avian influenza virus (LPAIV) was carried out in red-legged partridges (Alectoris rufa) in order to study clinical signs, gross and microscopic lesions, and viral distribution in tissues and viral shedding. Birds were infected with a HPAIV subtype H7N1 (A/Chicken/Italy/5093/1999) and a LPAIV subtype H7N9 (A/Anas crecca/Spain/1460/2008). Uninoculated birds were included as contacts in bot...

  8. Highly Pathogenic H5N1 Avian Influenza Viruses Exhibit Few Barriers to Gene Flow in Vietnam

    Science.gov (United States)

    Carrel, Margaret; Wan, Xiu-Feng; Nguyen, Tung; Emch, Michael

    2013-01-01

    Locating areas where genetic change is inhibited can illuminate underlying processes that drive evolution of pathogens. The persistence of highly pathogenic H5N1 avian influenza in Vietnam since 2003, and the continuous molecular evolution of Vietnamese avian influenza viruses, indicates that local environmental factors are supportive not only of incidence but also of viral adaptation. This article explores whether gene flow is constant across Vietnam, or whether there exist boundary areas where gene flow exhibits discontinuity. Using a dataset of 125 highly pathogenic H5N1 avian influenza viruses, principal components analysis and wombling analysis are used to indicate the location, magnitude, and statistical significance of genetic boundaries. Results show that a small number of geographically minor boundaries to gene flow in highly pathogenic H5N1 avian influenza viruses exist in Vietnam, but that overall there is little division in genetic exchange. This suggests that differences in genetic characteristics of viruses from one region to another are not the result of barriers to H5N1 viral exchange in Vietnam, and that H5N1 avian influenza is able to spread relatively unimpeded across the country. PMID:22350419

  9. Neuropathogenesis of a highly pathogenic avian influenza virus (H7N1 in experimentally infected chickens

    Directory of Open Access Journals (Sweden)

    Chaves Aida J

    2011-10-01

    Full Text Available Abstract In order to understand the mechanism of neuroinvasion of a highly pathogenic avian influenza virus (HPAIV into the central nervous system (CNS of chickens, specific pathogen free chickens were inoculated with a H7N1 HPAIV. Blood, cerebrospinal fluid (CSF, nasal cavity and brain tissue samples were obtained from 1 to 4 days post-inoculation (dpi of infected and control chickens. Viral antigen topographical distribution, presence of influenza A virus receptors in the brain, as well as, the role of the olfactory route in virus CNS invasion were studied using different immunohistochemistry techniques. Besides, viral RNA load in CSF and blood was quantified by means of a quantitative real-time reverse transcription-polymerase chain reaction. Viral antigen was observed widely distributed in the CNS, showing bilateral and symmetrical distribution in the nuclei of the diencephalon, mesencephalon and rhombencephalon. Viral RNA was detected in blood and CSF at one dpi, indicating that the virus crosses the blood-CSF-barrier early during infection. This early dissemination is possibly favoured by the presence of Siaα2,3 Gal and Siaα2,6 Gal receptors in brain vascular endothelial cells, and Siaα2,3 Gal receptors in ependymal and choroid plexus cells. No viral antigen was observed in olfactory sensory neurons, while the olfactory bulb showed only weak staining, suggesting that the virus did not use this pathway to enter into the brain. The sequence of virus appearance and the topographical distribution of this H7N1 HPAIV indicate that the viral entry occurs via the haematogenous route, with early and generalized spreading through the CSF.

  10. Neuropathogenesis of a highly pathogenic avian influenza virus (H7N1) in experimentally infected chickens.

    Science.gov (United States)

    Chaves, Aida J; Busquets, Núria; Valle, Rosa; Rivas, Raquel; Vergara-Alert, Júlia; Dolz, Roser; Ramis, Antonio; Darji, Ayub; Majó, Natàlia

    2011-10-07

    In order to understand the mechanism of neuroinvasion of a highly pathogenic avian influenza virus (HPAIV) into the central nervous system (CNS) of chickens, specific pathogen free chickens were inoculated with a H7N1 HPAIV. Blood, cerebrospinal fluid (CSF), nasal cavity and brain tissue samples were obtained from 1 to 4 days post-inoculation (dpi) of infected and control chickens. Viral antigen topographical distribution, presence of influenza A virus receptors in the brain, as well as, the role of the olfactory route in virus CNS invasion were studied using different immunohistochemistry techniques. Besides, viral RNA load in CSF and blood was quantified by means of a quantitative real-time reverse transcription-polymerase chain reaction. Viral antigen was observed widely distributed in the CNS, showing bilateral and symmetrical distribution in the nuclei of the diencephalon, mesencephalon and rhombencephalon. Viral RNA was detected in blood and CSF at one dpi, indicating that the virus crosses the blood-CSF-barrier early during infection. This early dissemination is possibly favoured by the presence of Siaα2,3 Gal and Siaα2,6 Gal receptors in brain vascular endothelial cells, and Siaα2,3 Gal receptors in ependymal and choroid plexus cells. No viral antigen was observed in olfactory sensory neurons, while the olfactory bulb showed only weak staining, suggesting that the virus did not use this pathway to enter into the brain. The sequence of virus appearance and the topographical distribution of this H7N1 HPAIV indicate that the viral entry occurs via the haematogenous route, with early and generalized spreading through the CSF.

  11. Elucidating the diversity of aquatic Microdochium and Trichoderma species and their activity against the fish pathogen Saprolegnia diclina

    NARCIS (Netherlands)

    Liu, Yiying; Zachow, Christin; Raaijmakers, J.M.; De Bruijn, I.

    2016-01-01

    Animals and plants are increasingly threatened by emerging fungal and oomycete diseases. Amongst oomycetes, Saprolegnia species cause population declines in aquatic animals, especially fish and amphibians, resulting in significant perturbation in biodiversity, ecological balance and food security.

  12. Elucidating the diversity of aquatic microdochium and trichoderma species and their activity against the fish pathogen Saprolegnia diclina

    NARCIS (Netherlands)

    Liu, Yiying; Zachow, Christin; Raaijmakers, J.M.; Bruijn, De Irene

    2016-01-01

    Animals and plants are increasingly threatened by emerging fungal and oomycete diseases. Amongst oomycetes, Saprolegnia species cause population declines in aquatic animals, especially fish and amphibians, resulting in significant perturbation in biodiversity, ecological balance and food

  13. Viral diseases of marine invertebrates

    Science.gov (United States)

    Johnson, P. T.

    1984-03-01

    Penaeus and causes catastrophic mortalities in P. stylirostris, but usually exhibits only inapparent infection in P. vannamei. Some shrimp viruses apparently are latent in larvae, causing disease only when shrimp have reached the postlarval or juvenile stages. Others are equally or more pathogenic in larvae. Studies of shrimp viruses and iridovirus-associated disease in cultured oysters point up the need for rapid and accurate diagnostic methods. Until appropriate cell cultures from marine invertebrates are devised, the viral identifications necessary for understanding of epizootiology, rapid containment of epizootics in cultured animals, and decisions regarding introductions of exotic species will be difficult or impossible.

  14. Both cis and trans Activities of Foot-and-Mouth Disease Virus 3D Polymerase Are Essential for Viral RNA Replication.

    Science.gov (United States)

    Herod, Morgan R; Ferrer-Orta, Cristina; Loundras, Eleni-Anna; Ward, Joseph C; Verdaguer, Nuria; Rowlands, David J; Stonehouse, Nicola J

    2016-08-01

    The Picornaviridae is a large family of positive-sense RNA viruses that contains numerous human and animal pathogens, including foot-and-mouth disease virus (FMDV). The picornavirus replication complex comprises a coordinated network of protein-protein and protein-RNA interactions involving multiple viral and host-cellular factors. Many of the proteins within the complex possess multiple roles in viral RNA replication, some of which can be provided in trans (i.e., via expression from a separate RNA molecule), while others are required in cis (i.e., expressed from the template RNA molecule). In vitro studies have suggested that multiple copies of the RNA-dependent RNA polymerase (RdRp) 3D are involved in the viral replication complex. However, it is not clear whether all these molecules are catalytically active or what other function(s) they provide. In this study, we aimed to distinguish between catalytically active 3D molecules and those that build a replication complex. We report a novel nonenzymatic cis-acting function of 3D that is essential for viral-genome replication. Using an FMDV replicon in complementation experiments, our data demonstrate that this cis-acting role of 3D is distinct from the catalytic activity, which is predominantly trans acting. Immunofluorescence studies suggest that both cis- and trans-acting 3D molecules localize to the same cellular compartment. However, our genetic and structural data suggest that 3D interacts in cis with RNA stem-loops that are essential for viral RNA replication. This study identifies a previously undescribed aspect of picornavirus replication complex structure-function and an important methodology for probing such interactions further. Foot-and-mouth disease virus (FMDV) is an important animal pathogen responsible for foot-and-mouth disease. The disease is endemic in many parts of the world with outbreaks within livestock resulting in major economic losses. Propagation of the viral genome occurs within

  15. Impact of the Respiratory Microbiome on Host Responses to Respiratory Viral Infection

    Directory of Open Access Journals (Sweden)

    Maxime Pichon

    2017-11-01

    Full Text Available Viruses are responsible for most of both upper and lower acute respiratory infections (ARIs. The microbiome—the ecological community of microorganisms sharing the body space, which has gained considerable interest over the last decade—is modified in health and disease states. Even if most of these disturbances have been previously described in relation to chronic disorders of the gastrointestinal microbiome, after a short reminder of microbiome characteristics and methods of characterization, this review will describe the impact of the microbiome (mainly respiratory on host responses to viral ARIs. The microbiome has a direct environmental impact on the host cells but also an indirect impact on the immune system, by enhancing innate or adaptive immune responses. In microbial infections, especially in viral infections, these dramatic modifications could lead to a dramatic impact responsible for severe clinical outcomes. Studies focusing on the microbiome associated with transcriptomic analyses of the host response and deep characterization of the pathogen would lead to a better understanding of viral pathogenesis and open avenues for biomarker development and innovative therapeutics.

  16. Portrait of a viral infection: The infection cycle of Vibrio vulnificus phage VvAW1 visualized through plaque assay, electron microscopy, and proteomics

    Science.gov (United States)

    Clah, K. E. Y.; Nigro, O. D.; Miranda, J.; Schvarcz, C.; Culley, A.; Saito, M. A.; Steward, G.

    2016-02-01

    The bacterium Vibrio vulnificus is an opportunistic human pathogen that thrives in warm brackish waters. Viral infection is one of several mechanisms influencing the population dynamics of this bacterium in the natural environment. V. vulnificus-specific viruses have been isolated; however, the details of their infection cycle have not been reported. As a result, our current understanding of the interaction between the bacterium and its viruses in the environment is limited. To better understand the infection process, a strain of V. vulnificus (V93D1V) and its bacteriophage, Vibrio phage VvAW1, were isolated from the estuarine waters of the Ala Wai Canal, HI. A time-series infection experiment was conducted with the virus-host pair in which samples were collected every ten minutes for eighty minutes post-infection for analysis by plaque assay, electron microscopy, and proteomics. Using electron microscopy, visibly infected bacteria were observed forty minutes after the introduction of the virus, signaling the end of the eclipse period. The peak of infection occurred at seventy minutes with an average viral load of 78 viruses per bacterium. The percentage of visibly infected bacteria reached a maximum just prior to a rise in free viruses in the culture, indicating the end of the latent period. The percentage of infected cells that lysed was low and there was little effect on the bacterial population growth rate. Analysis of the proteome revealed that protein expression patterns, in particular capsid and other structural proteins, closely follow the timing of the observed infection cycle. Together, these analyses provided the first detailed view of a viral infection in a highly lethal aquatic bacterium. The apparent temperate nature of this virus suggests that it can be a source of mortality to V. vulnificus, but has evolved to avoid total destruction of its host by complete lysis, a characteristic that helps ensure its replication in subsequent generations.

  17. Felis catus gammaherpesvirus 1 (FcaGHV1 and coinfections with feline viral pathogens in domestic cats in Brazil

    Directory of Open Access Journals (Sweden)

    Jacqueline Kazue Kurissio

    2018-03-01

    Full Text Available ABSTRACT: Felis catus gammaherpesvirus 1 (FcaGHV1 may causes an asymptomatic infection that result in an efficient transmission and subsequently dissemination of the virus in feline population. This study used molecular detection by qPCR (quantitative PCR based on DNA polymerase gene fragment amplification to evaluate the occurrence of FcaGHV1 and its correlation with other feline viral pathogens, such as Carnivore protoparvovirus 1 (CPPV-1, Felid alphaherpesvirus 1 (FeHV-1, and feline retroviruses such as feline immunodeficiency virus (FIV and feline leukemia virus (FeLV. Of the 182 blood samples evaluated 23.6% (43/182 were positives for FcaGHV1. Approximately 37.9% (33/87 of the samples that tested positive for retrovirus were also were positive for FcaGHV1 infection (P0.66 or CPPV-1 (P>0.46 coinfection. All samples were negative for FeHV-1. Male felines were significantly associated to FcaGHV1 (P<0.0001 and their risk of infection with FcaGHV1 was about of 7.74 times greater compared to females. Kittens (≤ 1year were the least affected by FcaGHV1 infection, being verified a rate of 7.7% (4/52. Therefore, male cats over one year old and infected with FIV were considerably more likely to be infected with FcaGHV1. To our knowledge, this is the first study to report the occurrence and molecular detection of FcaGHV1 infection in domestic cats in Brazil and in South America.

  18. Diagnosing norovirus-associated infectious intestinal disease using viral load

    Directory of Open Access Journals (Sweden)

    Tam Clarence C

    2009-05-01

    Full Text Available Abstract Background Reverse transcription-polymerase chain reaction (RT-PCR is the main method for laboratory diagnosis of norovirus-associated infectious intestinal disease (IID. However, up to 16% of healthy individuals in the community, with no recent history of IID, may be RT-PCR positive; so it is unclear whether norovirus is actually the cause of illness in an IID case when they are RT-PCR positive. It is important to identify the pathogen causing illness in sporadic IID cases, for clinical management and for community based incidence studies. The aim of this study was to investigate how faecal viral load can be used to determine when norovirus is the most likely cause of illness in an IID case. Methods Real-time RT-PCR was used to determine the viral load in faecal specimens collected from 589 IID cases and 159 healthy controls, who were infected with genogroup II noroviruses. Cycle threshold (Ct values from the real-time RT-PCR were used as a proxy measure of viral load. Receiver-operating characteristic (ROC analysis was used to identify a cut-off in viral load for attributing illness to norovirus in IID cases. Results One hundred and sixty-nine IID cases and 159 controls met the inclusion criteria for the ROC analysis. The optimal Ct value cut-off for attributing IID to norovirus was 31. The same cut-off was selected when using healthy controls, or IID cases who were positive by culture for bacterial pathogens, as the reference negative group. This alternative reference negative group can be identified amongst specimens routinely received in clinical virology laboratories. Conclusion We demonstrated that ROC analysis can be used to select a cut-off for a norovirus real time RT-PCR assay, to aid clinical interpretation and diagnose when norovirus is the cause of IID. Specimens routinely received for diagnosis in clinical virology laboratories can be used to select an appropriate cut-off. Individual laboratories can use this method to

  19. PA from an H5N1 highly pathogenic avian influenza virus activates viral transcription and replication and induces apoptosis and interferon expression at an early stage of infection

    Directory of Open Access Journals (Sweden)

    Wang Qiang

    2012-06-01

    Full Text Available Abstract Background Although gene exchange is not likely to occur freely, reassortment between the H5N1 highly pathogenic avian influenza virus (HPAIV and currently circulating human viruses is a serious concern. The PA polymerase subunit of H5N1 HPAIV was recently reported to activate the influenza replicon activity. Methods The replicon activities of PR8 and WSN strains (H1N1 of influenza containing PA from HPAIV A/Cambodia/P0322095/2005 (H5N1 and the activity of the chimeric RNA polymerase were analyzed. A reassortant WSN virus containing the H5N1 Cambodia PA (C-PA was then reconstituted and its growth in cells and pathogenicity in mice examined. The interferon promoter, TUNEL, and caspase 3, 8, and 9 activities of C-PA-infected cells were compared with those of WSN-infected cells. Results The activity of the chimeric RNA polymerase was slightly higher than that of WSN, and C-PA replicated better than WSN in cells. However, the multi-step growth of C-PA and its pathogenicity in mice were lower than those of WSN. The interferon promoter, TUNEL, and caspase 3, 8, and 9 activities were strongly induced in early infection in C-PA-infected cells but not in WSN-infected cells. Conclusions Apoptosis and interferon were strongly induced early in C-PA infection, which protected the uninfected cells from expansion of viral infection. In this case, these classical host-virus interactions contributed to the attenuation of this strongly replicating virus.

  20. Multi-layered control of Galectin-8 mediated autophagy during adenovirus cell entry through a conserved PPxY motif in the viral capsid.

    Directory of Open Access Journals (Sweden)

    Charlotte Montespan

    2017-02-01

    Full Text Available Cells employ active measures to restrict infection by pathogens, even prior to responses from the innate and humoral immune defenses. In this context selective autophagy is activated upon pathogen induced membrane rupture to sequester and deliver membrane fragments and their pathogen contents for lysosomal degradation. Adenoviruses, which breach the endosome upon entry, escape this fate by penetrating into the cytosol prior to autophagosome sequestration of the ruptured endosome. We show that virus induced membrane damage is recognized through Galectin-8 and sequesters the autophagy receptors NDP52 and p62. We further show that a conserved PPxY motif in the viral membrane lytic protein VI is critical for efficient viral evasion of autophagic sequestration after endosomal lysis. Comparing the wildtype with a PPxY-mutant virus we show that depletion of Galectin-8 or suppression of autophagy in ATG5-/- MEFs rescues infectivity of the PPxY-mutant virus while depletion of the autophagy receptors NDP52, p62 has only minor effects. Furthermore we show that wildtype viruses exploit the autophagic machinery for efficient nuclear genome delivery and control autophagosome formation via the cellular ubiquitin ligase Nedd4.2 resulting in reduced antigenic presentation. Our data thus demonstrate that a short PPxY-peptide motif in the adenoviral capsid permits multi-layered viral control of autophagic processes during entry.

  1. Suppression of Rac1 Signaling by Influenza A Virus NS1 Facilitates Viral Replication

    Science.gov (United States)

    Jiang, Wei; Sheng, Chunjie; Gu, Xiuling; Liu, Dong; Yao, Chen; Gao, Shijuan; Chen, Shuai; Huang, Yinghui; Huang, Wenlin; Fang, Min

    2016-01-01

    Influenza A virus (IAV) is a major human pathogen with the potential to become pandemic. IAV contains only eight RNA segments; thus, the virus must fully exploit the host cellular machinery to facilitate its own replication. In an effort to comprehensively characterize the host machinery taken over by IAV in mammalian cells, we generated stable A549 cell lines with over-expression of the viral non-structural protein (NS1) to investigate the potential host factors that might be modulated by the NS1 protein. We found that the viral NS1 protein directly interacted with cellular Rac1 and facilitated viral replication. Further research revealed that NS1 down-regulated Rac1 activity via post-translational modifications. Therefore, our results demonstrated that IAV blocked Rac1-mediated host cell signal transduction through the NS1 protein to facilitate its own replication. Our findings provide a novel insight into the mechanism of IAV replication and indicate new avenues for the development of potential therapeutic targets. PMID:27869202

  2. Host phylogeny determines viral persistence and replication in novel hosts.

    Directory of Open Access Journals (Sweden)

    Ben Longdon

    2011-09-01

    Full Text Available Pathogens switching to new hosts can result in the emergence of new infectious diseases, and determining which species are likely to be sources of such host shifts is essential to understanding disease threats to both humans and wildlife. However, the factors that determine whether a pathogen can infect a novel host are poorly understood. We have examined the ability of three host-specific RNA-viruses (Drosophila sigma viruses from the family Rhabdoviridae to persist and replicate in 51 different species of Drosophilidae. Using a novel analytical approach we found that the host phylogeny could explain most of the variation in viral replication and persistence between different host species. This effect is partly driven by viruses reaching a higher titre in those novel hosts most closely related to the original host. However, there is also a strong effect of host phylogeny that is independent of the distance from the original host, with viral titres being similar in groups of related hosts. Most of this effect could be explained by variation in general susceptibility to all three sigma viruses, as there is a strong phylogenetic correlation in the titres of the three viruses. These results suggest that the source of new emerging diseases may often be predictable from the host phylogeny, but that the effect may be more complex than simply causing most host shifts to occur between closely related hosts.

  3. Presencia de rotavirus durante un proceso de compostaje. Abonos como vectores de contaminación viral

    Directory of Open Access Journals (Sweden)

    María Mercedes Martínez

    2009-12-01

    Full Text Available Rotavirus presence in a waste composting process. Organic fertilizers as vehicles for viral contamination. Objective. To show thepresence of rotavirus in different stages of a composting process: matrices used as raw material, mixture to be composted and the finalproduct. Materials and methods. Immunochromatography, ELISA and RT-PCR were used for viral detection. Results. Rotavirus wasfound in the first composting step, no virus was found in the second step, and some inhibitory substances were found in the third step thatposed difficulties in interpreting the PCR results and therefore providing a concluding result on rotavirus presence in the final product.Conclusions. Organic fertilizers can be vectors of human pathogenic viruses; therefore quality control tests must be implemented to avoidfurther viral dissemination. There are inhibitory substances present in organic fertilizers capable of interfering with the detection tests.

  4. Bisphenol A in the aquatic environment and its endocrine-disruptive effects on aquatic organisms.

    Science.gov (United States)

    Kang, Jeong-Hun; Asai, Daisuke; Aasi, Daisuke; Katayama, Yoshiki

    2007-01-01

    Bisphenol A [BPA; 2,2-bis(4-hydroxyphenyl)propane], which is mainly used in the production of epoxy resins and polycarbonate plastics, is a known endocrine disruptor and is acutely toxic to aquatic organisms. Due to intensified usage of these products, exposure of organisms to BPA via several routes, such as the environment and food, has increased. The aquatic environment is an important area for the study of BPA. This report reviews the literature concerning contamination routes and degradation of BPA in the aquatic environment and its endocrine-disruptive effects on aquatic organisms.

  5. Nasopharyngeal polymicrobial colonization during health, viral upper respiratory infection and upper respiratory bacterial infection.

    Science.gov (United States)

    Xu, Qingfu; Wischmeyer, Jareth; Gonzalez, Eduardo; Pichichero, Michael E

    2017-07-01

    We sought to understand how polymicrobial colonization varies during health, viral upper respiratory infection (URI) and acute upper respiratory bacterial infection to understand differences in infection-prone vs. non-prone patients. Nasopharyngeal (NP) samples were collected from 74 acute otitis media (AOM) infection-prone and 754 non-prone children during 2094 healthy visits, 673 viral URI visits and 631 AOM visits. Three otopathogens Streptococcus pneumoniae (Spn), Nontypeable Haemophilus influenzae (NTHi), and Moraxella catarrhalis (Mcat) were identified by culture. NP colonization rates of multiple otopathogens during health were significantly lower than during viral URI, and during URI they were lower than at onset of upper respiratory bacterial infection in both AOM infection-prone and non-prone children. AOM infection-prone children had higher polymicrobial colonization rates than non-prone children during health, viral URI and AOM. Polymicrobial colonization rates of AOM infection-prone children during health were equivalent to that of non-prone children during viral URI, and during viral URI were equivalent to that of non-prone during AOM infection. Spn colonization was positively associated with NTHi and Mcat colonization during health, but negatively during AOM infection. The infection-prone patients more frequently have multiple potential bacterial pathogens in the NP than the non-prone patients. Polymicrobial interaction in the NP differs during health and at onset of infection. Copyright © 2017 The British Infection Association. Published by Elsevier Ltd. All rights reserved.

  6. Viral replication and lung lesions in BALB/c mice experimentally inoculated with avian metapneumovirus subgroup C isolated from chickens.

    Science.gov (United States)

    Wei, Li; Zhu, Shanshan; She, Ruiping; Hu, Fengjiao; Wang, Jing; Yan, Xu; Zhang, Chunyan; Liu, Shuhang; Quan, Rong; Li, Zixuan; Du, Fang; Wei, Ting; Liu, Jue

    2014-01-01

    Avian metapneumovirus (aMPV) emerged as an important respiratory pathogen causing acute respiratory tract infection in avian species. Here we used a chicken aMPV subgroup C (aMPV/C) isolate to inoculate experimentally BALB/c mice and found that the aMPV/C can efficiently replicate and persist in the lungs of mice for at least 21 days with a peak viral load at day 6 postinoculation. Lung pathological changes were characterized by increased inflammatory cells. Immunochemical assay showed the presence of viral antigens in the lungs and significant upregulation of pulmonary inflammatory cytokines and chemokines including MCP-1, MIP-1α, RANTES, IL-1β, IFN-γ, and TNF-α were detected following inoculation. These results indicate for the first time that chicken aMPV/C may replicate in the lung of mice. Whether aMPV/C has potential as zoonotic pathogen, further investigation will be required.

  7. Differential expression of miRNA-423-5p in serum from cattle challenged with bovine viral diarrhea virus

    Science.gov (United States)

    Bovine viral diarrhea virus (BVDV) is an RNA virus that causes respiratory disease in cattle. MicroRNAs have been proposed as indicators of exposure to respiratory pathogens. However, microRNA profiles in cattle exposed to BVDV are currently nonexistent and few studies have been reported; therefore,...

  8. Large Variations in HIV-1 Viral Load Explained by Shifting-Mosaic Metapopulation Dynamics

    Science.gov (United States)

    Lythgoe, Katrina A.; Blanquart, François

    2016-01-01

    The viral population of HIV-1, like many pathogens that cause systemic infection, is structured and differentiated within the body. The dynamics of cellular immune trafficking through the blood and within compartments of the body has also received wide attention. Despite these advances, mathematical models, which are widely used to interpret and predict viral and immune dynamics in infection, typically treat the infected host as a well-mixed homogeneous environment. Here, we present mathematical, analytical, and computational results that demonstrate that consideration of the spatial structure of the viral population within the host radically alters predictions of previous models. We study the dynamics of virus replication and cytotoxic T lymphocytes (CTLs) within a metapopulation of spatially segregated patches, representing T cell areas connected by circulating blood and lymph. The dynamics of the system depend critically on the interaction between CTLs and infected cells at the within-patch level. We show that for a wide range of parameters, the system admits an unexpected outcome called the shifting-mosaic steady state. In this state, the whole body’s viral population is stable over time, but the equilibrium results from an underlying, highly dynamic process of local infection and clearance within T-cell centers. Notably, and in contrast to previous models, this new model can explain the large differences in set-point viral load (SPVL) observed between patients and their distribution, as well as the relatively low proportion of cells infected at any one time, and alters the predicted determinants of viral load variation. PMID:27706164

  9. Pathogenicity and rapid growth kinetics of feline immunodeficiency virus are linked to 3' elements.

    Directory of Open Access Journals (Sweden)

    Jesse Thompson

    Full Text Available Chimeric viruses constructed between a highly pathogenic Feline Immunodeficiency Virus isolate (FIV-C36 and a less pathogenic but neurotropic strain (FIV-PPR have been used to map viral genetic determinants of in vivo pathogenicity. Chimeric virus FIV-PCenv, which contains FIV-C36 genome from the 3' region of pol to upstream of the 3'LTR on an FIV-PPR backbone, was previously shown to be replication-competent in vivo, inducing altered CD4(+ T-cell and neutrophil profiles intermediate between parental strains following a delay in viral replication during initial infection. Examination of FIV-PCenv proviral sequences recovered at week 11 post-infection revealed two changes compared to initial viral inoculum; the most significant being arginine to histidine in the integrase region of Pol at residue 813 (R813H. Pooled plasma from the initial in vivo study was used to inoculate a second cohort of cats to determine whether similar virulence and kinetics could be established following primary infection. Viral replication kinetics and immunocyte profiles were monitored in blood, bone marrow, and saliva over a one-year period. Passaged FIV-PCenv again displayed intermediate phenotype between parental strains, but unlike primary experiments, the onset of acute viremia was not delayed. CD4/8 alterations were noted in all groups of animals, though significant changes from controls were delayed in FIV-PPR infected animals compared to FIV-C36 and FIV-PCenv. In vivo passage of FIV-PCenv increased replication-competence relative to the initial molecularly-cloned chimera in association with one adaptive nucleotide change in the 5' end of the genome relative to primary tissue culture inoculum, while mutations in the 3' end of the genome were not detected. The results are consistent with the interpretation that 3' elements contribute to heightened virulence of FIV-C36, and that integrase residue 813 plays an important role in facilitating successful in vivo

  10. Presence of viral RNA and proteins in exosomes from the cellular clones resistant to Rift Valley Fever Virus infection.

    Directory of Open Access Journals (Sweden)

    Noor eAhsan

    2016-02-01

    Full Text Available Rift Valley Fever Virus (RVFV is a RNA virus that belongs to the genus Phlebovirus, family Bunyaviridae. It infects humans and livestock and causes Rift Valley fever. RVFV is considered an agricultural pathogen by the USDA, as it can cause up to 100% abortion in cattle and extensive death of newborns. In addition, it is designated as Category A pathogen by the CDC and the NIAID. In some human cases of RVFV infection, the virus causes fever, ocular damage, liver damage, hemorrhagic fever, and death. There are currently limited options for vaccine candidates, which include the MP-12 and clone 13 versions of RVFV. Viral infections often deregulate multiple cellular pathways that contribute to replication and host pathology. We have previously shown that latent HIV-1 and HTLV-1 infected cells secrete exosomes that contain short viral RNAs, limited number of genomic RNAs, and viral proteins. These exosomes largely target neighboring cells and activate the NF-кB pathway, leading to cell proliferation and overall better viral replication. In this manuscript, we studied the effects of exosome formation from RVFV infected cells and their function on recipient cells. We initially infected cells, isolated resistant clones, and further purified using dilution cloning. We then characterized these cells as resistant to new RVFV infection, but sensitive to other viral infections, including Venezuelan Equine Encephalitis Virus (VEEV. These clones contained normal markers (i.e. CD63 for exosomes and were able to activate the TLR pathway in recipient reporter cells. Interestingly, the exosome rich preparations, much like their host cell, contained viral RNA (L, M, and S genome. The RNAs were detected using qRT-PCR in both parental and exosomal preparations as well as in CD63 immunoprecipitates. Viral proteins such as N and a modified form of NSs were present in some of these exosomes. Finally, treatment of recipient cells (T- cells and monocytic cells showed

  11. Pathogenicity of the Korean H5N8 highly pathogenic avian influenza virus in commercial domestic poultry species.

    Science.gov (United States)

    Lee, Dong-Hun; Kwon, Jung-Hoon; Noh, Jin-Yong; Park, Jae-Keun; Yuk, Seong-Su; Erdene-Ochir, Tseren-Ochir; Lee, Joong-Bok; Park, Seung-Yong; Choi, In-Soo; Lee, Sang-Won; Song, Chang-Seon

    2016-01-01

    In 2014, the highly pathogenic avian influenza (HPAI) virus H5N8 triggered outbreaks in wild birds and poultry farms in South Korea. In the present study, we investigated the pathogenicity of the H5N8 HPAI virus, belonging to the clade 2.3.4.4, in different species of poultry. For this, we examined clinical signs and viral shedding levels following intranasal inoculation of the virus in 3-week-old commercial layer chickens and quails, 10-week-old Korean native chickens, and 8-week-old Muscovy ducks. Intranasal inoculation with 10(6.0) viruses at 50% egg-infective dose resulted in 100% mortality in the layer chickens (8/8) and quails (4/4), but 60% and 0% deaths in the Korean native chickens (3/5) and Muscovy ducks (0/4), respectively. In addition, transmission of the inoculated virus to contact-exposed birds was evident in all the species used in this study. Based on our results, we conclude that the H5N8 HPAI virus has lower pathogenicity and transmissibility in poultry species compared with previously reported H5N1 HPAI viruses.

  12. A Selective Bottleneck Shapes the Evolutionary Mutant Spectra of Enterovirus A71 during Viral Dissemination in Humans.

    Science.gov (United States)

    Huang, Sheng-Wen; Huang, Yi-Hui; Tsai, Huey-Pin; Kuo, Pin-Hwa; Wang, Shih-Min; Liu, Ching-Chuan; Wang, Jen-Ren

    2017-12-01

    RNA viruses accumulate mutations to rapidly adapt to environmental changes. Enterovirus A71 (EV-A71) causes various clinical manifestations with occasional severe neurological complications. However, the mechanism by which EV-A71 evolves within the human body is unclear. Utilizing deep sequencing and haplotype analyses of viruses from various tissues of an autopsy patient, we sought to define the evolutionary pathway by which enterovirus A71 evolves fitness for invading the central nervous system in humans. Broad mutant spectra with divergent mutations were observed at the initial infection sites in the respiratory and digestive systems. After viral invasion, we identified a haplotype switch and dominant haplotype, with glycine at VP1 residue 31 (VP1-31G) in viral particles disseminated into the integumentary and central nervous systems. In vitro viral growth and fitness analyses indicated that VP1-31G conferred growth and a fitness advantage in human neuronal cells, whereas VP1-31D conferred enhanced replication in human colorectal cells. A higher proportion of VP1-31G was also found among fatal cases, suggesting that it may facilitate central nervous system infection in humans. Our data provide the first glimpse of EV-A71 quasispecies from oral tissues to the central nervous system within humans, showing broad implications for the surveillance and pathogenesis of this reemerging viral pathogen. IMPORTANCE EV-A71 continues to be a worldwide burden to public health. Although EV-A71 is the major etiological agent of hand, foot, and mouth disease, it can also cause neurological pulmonary edema, encephalitis, and even death, especially in children. Understanding selection processes enabling dissemination and accurately estimating EV-A71 diversity during invasion in humans are critical for applications in viral pathogenesis and vaccine studies. Here, we define a selection bottleneck appearing in respiratory and digestive tissues. Glycine substitution at VP1 residue 31

  13. Remarkable sequence similarity between the dinoflagellate-infecting marine girus and the terrestrial pathogen African swine fever virus

    Directory of Open Access Journals (Sweden)

    Claverie Jean-Michel

    2009-10-01

    Full Text Available Abstract Heterocapsa circularisquama DNA virus (HcDNAV; previously designated as HcV is a giant virus (girus with a ~356-kbp double-stranded DNA (dsDNA genome. HcDNAV lytically infects the bivalve-killing marine dinoflagellate H. circularisquama, and currently represents the sole DNA virus isolated from dinoflagellates, one of the most abundant protists in marine ecosystems. Its morphological features, genome type, and host range previously suggested that HcDNAV might be a member of the family Phycodnaviridae of Nucleo-Cytoplasmic Large DNA Viruses (NCLDVs, though no supporting sequence data was available. NCLDVs currently include two families found in aquatic environments (Phycodnaviridae, Mimiviridae, one mostly infecting terrestrial animals (Poxviridae, another isolated from fish, amphibians and insects (Iridoviridae, and the last one (Asfarviridae exclusively represented by the animal pathogen African swine fever virus (ASFV, the agent of a fatal hemorrhagic disease in domestic swine. In this study, we determined the complete sequence of the type B DNA polymerase (PolB gene of HcDNAV. The viral PolB was transcribed at least from 6 h post inoculation (hpi, suggesting its crucial function for viral replication. Most unexpectedly, the HcDNAV PolB sequence was found to be closely related to the PolB sequence of ASFV. In addition, the amino acid sequence of HcDNAV PolB showed a rare amino acid substitution within a motif containing highly conserved motif: YSDTDS was found in HcDNAV PolB instead of YGDTDS in most dsDNA viruses. Together with the previous observation of ASFV-like sequences in the Sorcerer II Global Ocean Sampling metagenomic datasets, our results further reinforce the ideas that the terrestrial ASFV has its evolutionary origin in marine environments.

  14. Radioecology of the aquatic environment

    International Nuclear Information System (INIS)

    Amiard-Triquet, C.; Amiard, J.C.

    1980-01-01

    This book is divided into nine parts as follows: origin of radionuclides in the aquatic environment; assessment of radioactive contamination of the aquatic environment; evolution of radionuclides in waters; behaviour of radionuclides in sediments; quantitative data on accumulation, distribution and biological release of radioactive pollutants; mechanisms of the biological accumulation; influence of ecological factors on radioactive contamination of ecosystems; effects of irradiation on aquatic organisms. The last part is devoted to general conclusions on sanitary and ecological consequences of radioactive pollution of the aquatic environment [fr

  15. Development and evaluation of a real-time fluorogenic loop-mediated isothermal amplification assay integrated on a microfluidic disc chip (on-chip LAMP) for rapid and simultaneous detection of ten pathogenic bacteria in aquatic animals.

    Science.gov (United States)

    Zhou, Qian-Jin; Wang, Lei; Chen, Jiong; Wang, Rui-Na; Shi, Yu-Hong; Li, Chang-Hong; Zhang, De-Min; Yan, Xiao-Jun; Zhang, Yan-Jun

    2014-09-01

    Rapid, low-cost, and user-friendly strategies are urgently needed for early disease diagnosis and timely treatment, particularly for on-site screening of pathogens in aquaculture. In this study, we successfully developed a real-time fluorogenic loop-mediated isothermal amplification assay integrated on a microfluidic disc chip (on-chip LAMP), which was capable of simultaneously detecting 10 pathogenic bacteria in aquatic animals, i.e., Nocardia seriolae, Pseudomonas putida, Streptococcus iniae, Vibrio alginolyticus, Vibrio anguillarum, Vibrio fluvialis, Vibrio harveyi, Vibrio parahaemolyticus, Vibrio rotiferianus, and Vibrio vulnificus. The assay provided a nearly-automated approach, with only a single pipetting step per chip for sample dispensing. This technique could achieve limits of detection (LOD) ranging from 0.40 to 6.42pg per 1.414μL reaction in less than 30 min. The robust reproducibility was demonstrated by a little variation among duplications for each bacterium with the coefficient of variation (CV) for time to positive (Tp) value less than 0.10. The clinical sensitivity and specificity of this on-chip LAMP assay in detecting field samples were 96.2% and 93.8% by comparison with conventional microbiological methods. Compared with other well-known techniques, on-chip LAMP assay provides low sample and reagent consumption, ease-of-use, accelerated analysis, multiple bacteria and on-site detection, and high reproducibility, indicating that such a technique would be applicable for on-site detection and routine monitoring of multiple pathogens in aquaculture. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Modeling the intracellular pathogen-immune interaction with cure rate

    Science.gov (United States)

    Dubey, Balram; Dubey, Preeti; Dubey, Uma S.

    2016-09-01

    Many common and emergent infectious diseases like Influenza, SARS, Hepatitis, Ebola etc. are caused by viral pathogens. These infections can be controlled or prevented by understanding the dynamics of pathogen-immune interaction in vivo. In this paper, interaction of pathogens with uninfected and infected cells in presence or absence of immune response are considered in four different cases. In the first case, the model considers the saturated nonlinear infection rate and linear cure rate without absorption of pathogens into uninfected cells and without immune response. The next model considers the effect of absorption of pathogens into uninfected cells while all other terms are same as in the first case. The third model incorporates innate immune response, humoral immune response and Cytotoxic T lymphocytes (CTL) mediated immune response with cure rate and without absorption of pathogens into uninfected cells. The last model is an extension of the third model in which the effect of absorption of pathogens into uninfected cells has been considered. Positivity and boundedness of solutions are established to ensure the well-posedness of the problem. It has been found that all the four models have two equilibria, namely, pathogen-free equilibrium point and pathogen-present equilibrium point. In each case, stability analysis of each equilibrium point is investigated. Pathogen-free equilibrium is globally asymptotically stable when basic reproduction number is less or equal to unity. This implies that control or prevention of infection is independent of initial concentration of uninfected cells, infected cells, pathogens and immune responses in the body. The proposed models show that introduction of immune response and cure rate strongly affects the stability behavior of the system. Further, on computing basic reproduction number, it has been found to be minimum for the fourth model vis-a-vis other models. The analytical findings of each model have been exemplified by

  17. Differential Expression of Tomato Spotted Wilt Virus-Derived Viral Small RNAs in Infected Commercial and Experimental Host Plants

    Science.gov (United States)

    Mitter, Neena; Koundal, Vikas; Williams, Sarah; Pappu, Hanu

    2013-01-01

    Background Viral small RNAs (vsiRNAs) in the infected host can be generated from viral double-stranded RNA replicative intermediates, self-complementary regions of the viral genome or from the action of host RNA-dependent RNA polymerases on viral templates. The vsiRNA abundance and profile as well as the endogenous small RNA population can vary between different hosts infected by the same virus influencing viral pathogenicity and host response. There are no reports on the analysis of vsiRNAs of Tomato spotted wilt virus (TSWV), a segmented negative stranded RNA virus in the family Bunyaviridae, with two of its gene segments showing ambisense gene arrangement. The virus causes significant economic losses to numerous field and horticultural crops worldwide. Principal Findings Tomato spotted wilt virus (TSWV)-specific vsiRNAs were characterized by deep sequencing in virus-infected experimental host Nicotiana benthamiana and a commercial, susceptible host tomato. The total small (s) RNA reads in TSWV-infected tomato sample showed relatively equal distribution of 21, 22 and 24 nt, whereas N. benthamiana sample was dominated by 24 nt total sRNAs. The number of vsiRNA reads detected in tomato was many a magnitude (~350:1) higher than those found in N. benthamiana, however the profile of vsiRNAs in terms of relative abundance 21, 22 and 24 nt class size was similar in both the hosts. Maximum vsiRNA reads were obtained for the M RNA segment of TSWV while the largest L RNA segment had the least number of vsiRNAs in both tomato and N. benthamiana. Only the silencing suppressor, NSs, of TSWV recorded higher antisense vsiRNA with respect to the coding frame among all the genes of TSWV. Significance Details of the origin, distribution and abundance of TSWV vsiRNAs could be useful in designing efficient targets for exploiting RNA interference for virus resistance. It also has major implications toward our understanding of the differential processing of vsiRNAs in antiviral

  18. Differential expression of tomato spotted wilt virus-derived viral small RNAs in infected commercial and experimental host plants.

    Directory of Open Access Journals (Sweden)

    Neena Mitter

    Full Text Available BACKGROUND: Viral small RNAs (vsiRNAs in the infected host can be generated from viral double-stranded RNA replicative intermediates, self-complementary regions of the viral genome or from the action of host RNA-dependent RNA polymerases on viral templates. The vsiRNA abundance and profile as well as the endogenous small RNA population can vary between different hosts infected by the same virus influencing viral pathogenicity and host response. There are no reports on the analysis of vsiRNAs of Tomato spotted wilt virus (TSWV, a segmented negative stranded RNA virus in the family Bunyaviridae, with two of its gene segments showing ambisense gene arrangement. The virus causes significant economic losses to numerous field and horticultural crops worldwide. PRINCIPAL FINDINGS: Tomato spotted wilt virus (TSWV-specific vsiRNAs were characterized by deep sequencing in virus-infected experimental host Nicotiana benthamiana and a commercial, susceptible host tomato. The total small (s RNA reads in TSWV-infected tomato sample showed relatively equal distribution of 21, 22 and 24 nt, whereas N. benthamiana sample was dominated by 24 nt total sRNAs. The number of vsiRNA reads detected in tomato was many a magnitude (~350:1 higher than those found in N. benthamiana, however the profile of vsiRNAs in terms of relative abundance 21, 22 and 24 nt class size was similar in both the hosts. Maximum vsiRNA reads were obtained for the M RNA segment of TSWV while the largest L RNA segment had the least number of vsiRNAs in both tomato and N. benthamiana. Only the silencing suppressor, NSs, of TSWV recorded higher antisense vsiRNA with respect to the coding frame among all the genes of TSWV. SIGNIFICANCE: Details of the origin, distribution and abundance of TSWV vsiRNAs could be useful in designing efficient targets for exploiting RNA interference for virus resistance. It also has major implications toward our understanding of the differential processing of vsi

  19. Pharyngitis - viral

    Science.gov (United States)

    ... throat is due to a viral infection. The antibiotics will not help. Using them to treat viral infections helps bacteria become resistant to antibiotics. With some sore throats (such as those caused ...

  20. Archaeal Viruses Contribute to the Novel Viral Assemblage Inhabiting Oceanic, Basalt-Hosted Deep Subsurface Crustal Fluids

    Science.gov (United States)

    Nigro, O. D.; Rappe, M. S.; Jungbluth, S.; Lin, H. T.; Steward, G.

    2015-12-01

    Fluids contained in the basalt-hosted deep subsurface of the world's oceans represent one of the most inaccessible and understudied biospheres on earth. Recent improvements in sampling infrastructure have allowed us to collect large volumes of crustal fluids (~104 L) from Circulation Obviation Retrofit Kits (CORKs) placed in boreholes located on the eastern flank of the Juan de Fuca Ridge (JdFR). We detected viruses within these fluids by TEM and epifluorescence microscopy in samples collected from 2010 to 2014. Viral abundance, determined by epifluorescence counts, indicated that concentrations of viruses in subsurface basement fluids (~105 ml-1) are lower than the overlying seawater, but are higher in abundance than microbial cells in the same samples. Analysis of TEM images revealed distinct viral morphologies (rod and spindle-shaped) that resemble the morphologies of viral families infecting archaea. There are very few, if any, direct observations of these viral morphologies in marine samples, although they have been observed in enrichment cultures and their signature genes detected in metagenomic studies from hydrothermal vents and marine sediments. Analysis of metagenomes from the JdFR crustal fluids revealed sequences with homology to archaeal viruses from the rudiviridae, bicaudaviridae and fuselloviridae. Prokaryotic communities in fluids percolating through the basaltic basement rock of the JdFR flank are distinct from those inhabiting the overlying sediments and seawater. Similarly, our data support the idea that the viral assemblage in these fluids is distinct from viral assemblages in other marine and terrestrial aquatic environments. Our data also suggest that viruses contribute to the mortality of deep subsurface prokaryotes through cell lysis, and viruses may alter the genetic potential of their hosts through the processes of lysogenic conversion and horizontal gene transfer.

  1. Aquarium Viromes: Viromes of Human-Managed Aquatic Systems

    Science.gov (United States)

    Kim, Yiseul; Van Bonn, William; Aw, Tiong G.; Rose, Joan B.

    2017-01-01

    An aquarium ecosystem is home to many animal species providing conditions similar to native aquatic habitats but under highly controlled management. With a growing interest in understanding the interaction of microbiomes and resident animal health within aquarium environments, we undertook a metagenomic survey of viromes in seven aquarium systems with differing physicochemical and resident animal profiles. Our results show that a diverse array of viruses was represented in aquarium viromes, many of which were widespread in different aquarium systems (27 common viral families in all of the aquarium systems). Most viromes were dominated by DNA phages of the order Caudovirales as commonly found in other aquatic environments with average relative abundance greater than 64%. The composition and structure of aquarium viromes were associated with controlled system parameters, including nitrate, salinity, and temperature as well as resident animal profiles, indicating the close interaction of viromes with aquarium management practices. Furthermore, finding human associated viruses in a touch exhibit suggested that exposure of aquarium systems to human contact may lead to introduction of human cutaneous viruses into aquaria. This is consistent with the high abundance of skin microflora on the palms of healthy individuals and their detection in recreational waters, such as swimming pools. Lastly, assessment of antibiotic resistance genes (ARGs) in aquarium viromes revealed a unique signature of ARGs in different aquarium systems with trimethoprim being the most common. This is the first study to provide vital information on viromes and their unique relationships with management practices in a human-built and controlled aquarium environment. PMID:28713358

  2. Aquarium Viromes: Viromes of Human-Managed Aquatic Systems

    Directory of Open Access Journals (Sweden)

    Yiseul Kim

    2017-06-01

    Full Text Available An aquarium ecosystem is home to many animal species providing conditions similar to native aquatic habitats but under highly controlled management. With a growing interest in understanding the interaction of microbiomes and resident animal health within aquarium environments, we undertook a metagenomic survey of viromes in seven aquarium systems with differing physicochemical and resident animal profiles. Our results show that a diverse array of viruses was represented in aquarium viromes, many of which were widespread in different aquarium systems (27 common viral families in all of the aquarium systems. Most viromes were dominated by DNA phages of the order Caudovirales as commonly found in other aquatic environments with average relative abundance greater than 64%. The composition and structure of aquarium viromes were associated with controlled system parameters, including nitrate, salinity, and temperature as well as resident animal profiles, indicating the close interaction of viromes with aquarium management practices. Furthermore, finding human associated viruses in a touch exhibit suggested that exposure of aquarium systems to human contact may lead to introduction of human cutaneous viruses into aquaria. This is consistent with the high abundance of skin microflora on the palms of healthy individuals and their detection in recreational waters, such as swimming pools. Lastly, assessment of antibiotic resistance genes (ARGs in aquarium viromes revealed a unique signature of ARGs in different aquarium systems with trimethoprim being the most common. This is the first study to provide vital information on viromes and their unique relationships with management practices in a human-built and controlled aquarium environment.

  3. Journal of Aquatic Sciences

    African Journals Online (AJOL)

    The Journal of Aquatic Sciences publishes articles on problems and issues in Aquatic Sciences from all ... The journal accepts for publication manuscripts of very high international standard containing reports of original scientific research.

  4. Diversity of aquatic Pseudomonas species and their activity against the fish pathogenic oomycete Saprolegnia

    NARCIS (Netherlands)

    Liu, Y.; Rzeszutek, E.; Voort, van der M.; Wu, C.H.; Thoen, E.; Skaar, I.; Bulone, V.; Dorrestein, P.C.; Raaijmakers, J.M.; Bruijn, de I.

    2015-01-01

    Emerging fungal and oomycete pathogens are increasingly threatening animals and plants globally. Amongst oomycetes, Saprolegnia species adversely affect wild and cultivated populations of amphibians and fish, leading to substantial reductions in biodiversity and food productivity. With the ban of

  5. EPA Region 7 Aquatic Focus Areas (ECO_RES.R7_AQUATIC_FOCUS_AREAS)

    Data.gov (United States)

    U.S. Environmental Protection Agency — This shapefile consists of 347 individual Aquatic Ecological System (AES) polygons that are the Aquatic Conservation Focus Areas for EPA Region 7. The focus areas...

  6. Anti-viral properties and mode of action of standardized Echinacea purpurea extract against highly pathogenic avian Influenza virus (H5N1, H7N7 and swine-origin H1N1 (S-OIV

    Directory of Open Access Journals (Sweden)

    Schoop Roland

    2009-11-01

    Full Text Available Abstract Background Influenza virus (IV infections are a major threat to human welfare and animal health worldwide. Anti-viral therapy includes vaccines and a few anti-viral drugs. However vaccines are not always available in time, as demonstrated by the emergence of the new 2009 H1N1-type pandemic strain of swine origin (S-OIV in April 2009, and the acquisition of resistance to neuraminidase inhibitors such as Tamiflu® (oseltamivir is a potential problem. Therefore the prospects for the control of IV by existing anti-viral drugs are limited. As an alternative approach to the common anti-virals we studied in more detail a commercial standardized extract of the widely used herb Echinacea purpurea (Echinaforce®, EF in order to elucidate the nature of its anti-IV activity. Results Human H1N1-type IV, highly pathogenic avian IV (HPAIV of the H5- and H7-types, as well as swine origin IV (S-OIV, H1N1, were all inactivated in cell culture assays by the EF preparation at concentrations ranging from the recommended dose for oral consumption to several orders of magnitude lower. Detailed studies with the H5N1 HPAIV strain indicated that direct contact between EF and virus was required, prior to infection, in order to obtain maximum inhibition in virus replication. Hemagglutination assays showed that the extract inhibited the receptor binding activity of the virus, suggesting that the extract interferes with the viral entry into cells. In sequential passage studies under treatment in cell culture with the H5N1 virus no EF-resistant variants emerged, in contrast to Tamiflu®, which produced resistant viruses upon passaging. Furthermore, the Tamiflu®-resistant virus was just as susceptible to EF as the wild type virus. Conclusion As a result of these investigations, we believe that this standard Echinacea preparation, used at the recommended dose for oral consumption, could be a useful, readily available and affordable addition to existing control options

  7. Viral Meningitis

    Science.gov (United States)

    ... better from treatment such as an antiviral medicine. Antibiotics do not help viral infections, so they are not useful in the treatment of viral meningitis. However, antibiotics do fight bacteria, so they are very important ...

  8. Clinical and virological characteristics of calves experimentally infected with a Brazilian isolate of bovine viral diarrhea virus type 1a

    Directory of Open Access Journals (Sweden)

    Luana Marchi Quadros

    Full Text Available ABSTRACT: To study the pathogenicity of the Brazilian bovine viral diarrhea virus (BVDV type 1a 241.10 isolate, four calves were intranasally inoculated with a viral suspension containing 107.2 TCID50 mL-1. One calf was left uninoculated and kept in contact with the other calves to investigate viral transmissibility. After inoculation, the animals were monitored daily for clinical signs of infection. The presence of the virus in the blood and nasal secretions was confirmed by virus isolation in cell culture. White blood cells were quantified prior to and every 3 days after infection, and the presence of antibodies was checked every 7 days, starting at day 0 until day 42 post-inoculation (pi. After infection, nasal and ocular serous secretions were observed between days 1 and 5 pi, along with a mild cough from days 2 to 4 pi; however, no severe clinical signs were present. Body temperature was slightly elevated between days 4 and 6 pi. The control calf did not develop any of the signs observed in the infected animals. Cell culture-mediated virus isolation confirmed viremia between days 4 and 8 pi and the presence of the virus in the nasal secretions between days 1 and 10 pi. All infected animals showed a decrease in white blood cell count. Antibodies could be detected from day 14 pi, and these levels remained high until day 35 pi. The control calf had no viremia, viral presence in nasal secretions, or positive serology, indicating the absence of viral transmission. Thus, isolate BVDV 1a 241.10 has low pathogenicity and transmissibility but retains immunosuppressive capacity.

  9. Pathogens as Predictors of Honey Bee Colony Strength in England and Wales.

    Science.gov (United States)

    Budge, Giles E; Pietravalle, Stéphane; Brown, Mike; Laurenson, Lynn; Jones, Ben; Tomkies, Victoria; Delaplane, Keith S

    2015-01-01

    Inspectors with the UK National Bee Unit were asked for 2007-2008 to target problem apiaries in England and Wales for pathogen screening and colony strength measures. Healthy colonies were included in the sampling to provide a continuum of health conditions. A total of 406 adult bee samples was screened and yielded 7 viral, 1 bacterial, and 2 microsporidial pathogens and 1 ectoparasite (Acarapis woodi). In addition, 108 samples of brood were screened and yielded 4 honey bee viruses. Virus prevalence varied from common (deformed wing virus, black queen cell virus) to complete absence (Israeli acute paralysis virus). When colonies were forced into one of two classes, strong or weak, the weak colonies contained more pathogens in adult bees. Among observed pathogens, only deformed wing virus was able to predict colony strength. The effect was negative such that colonies testing positive for deformed wing virus were likely to have fewer combs of bees or brood. This study constitutes the first record for Nosema ceranae in Great Britain. These results contribute to the growing body of evidence linking pathogens to poor honey bee health.

  10. Detection of viral hemorrhagic septicemia virus

    Science.gov (United States)

    Winton, James; Kurath, Gael; Batts, William

    2007-01-01

    Viral hemorrhagic septicemia virus (VHSV) is considered to be one of the most important viral pathogens of finfish and is listed as reportable by many nations and international organizations (Office International des Epizooties 2006). Prior to 1988, VHSV was thought to be limited to Europe (Wolf 1988; Smail 1999). Subsequently, it was shown that the virus is endemic among many marine and anadromous fish species in both the Pacific and Atlantic Oceans (Meyers and Winton 1995; Skall et al. 2005). Genetic analysis reveals that isolates of VHSV can be divided into four genotypes that generally correlate with geographic location with the North American isolates generally falling into VHSV Genotype IV (Snow et al. 2004). In 2005-2006, reports from the Great Lakes region indicated that wild fish had experienced disease or, in some cases, very large die-offs from VHSV (Elsayed et al. 2006, Lumsden et al. 2007). The new strain from the Great Lakes, now identified as VHSV Genotype IVb, appears most closely related to isolates of VHSV from mortalities that occurred during 2000-2004 in rivers and near-shore areas of New Brunswick and Nova Scotia, Canada (Gagne et al. 2007). The type IVb isolate found in the Great Lakes region is the only strain outside of Europe that has been associated with significant mortality in freshwater species.

  11. Viral replication and lung lesions in BALB/c mice experimentally inoculated with avian metapneumovirus subgroup C isolated from chickens.

    Directory of Open Access Journals (Sweden)

    Li Wei

    Full Text Available Avian metapneumovirus (aMPV emerged as an important respiratory pathogen causing acute respiratory tract infection in avian species. Here we used a chicken aMPV subgroup C (aMPV/C isolate to inoculate experimentally BALB/c mice and found that the aMPV/C can efficiently replicate and persist in the lungs of mice for at least 21 days with a peak viral load at day 6 postinoculation. Lung pathological changes were characterized by increased inflammatory cells. Immunochemical assay showed the presence of viral antigens in the lungs and significant upregulation of pulmonary inflammatory cytokines and chemokines including MCP-1, MIP-1α, RANTES, IL-1β, IFN-γ, and TNF-α were detected following inoculation. These results indicate for the first time that chicken aMPV/C may replicate in the lung of mice. Whether aMPV/C has potential as zoonotic pathogen, further investigation will be required.

  12. Microbiome analysis and detection of pathogenic bacteria of Penaeus monodon from Jakarta Bay and Bali.

    Science.gov (United States)

    Oetama, Vincensius S P; Hennersdorf, Philipp; Abdul-Aziz, Muslihudeen A; Mrotzek, Grit; Haryanti, Haryanti; Saluz, Hans Peter

    2016-09-30

    Penaeus monodon, the Asian black tiger shrimp is one of the most widely consumed marine crustaceans worldwide. In this study, we examine and compare the fecal microbiota of P. monodon from highly polluted waters around Jakarta Bay, with those of less polluted waters of Bali. Using next generation sequencing techniques, we identified potential bacterial pathogens and common viral diseases of shrimp. Proteobacteria (96.08%) was found to be the most predominant phylum, followed by Bacteriodetes (2.32%), Fusobacteria (0.96%), and Firmicutes (0.53%). On the order level, Vibrionales (66.20%) and Pseudoaltermonadales (24.81%) were detected as predominant taxa. qPCR profiling was used as a confirmatory step and further revealed Vibrio alginolyticus and Photobacterium damselae as two potential pathogenic species present in most of the samples. In addition, viral diseases for shrimp were discovered among the samples, WSSV in Jakarta free-living samples, YHV in Bali free-living samples and IHHNV in both. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Features of Intestinal Microbiocenosis in Viral Hepatitis and Possibilities of Its Correction

    Directory of Open Access Journals (Sweden)

    I.B. Yershova

    2014-04-01

    Full Text Available The article deals with the correction of intestinal microbiocenosis in patients with viral hepatitis. There is presented a study on the state of the intestinal microflora in children who had hepatitis A virus (HAV, patients with chronic viral hepatitis B or C (HBV, HCV. Materials and Methods. The study involved 39 children: 12 persons who had HAV, 19 persons with chronic HCV, 8 persons with chronic HBV infection. All the children were randomized into two groups. The first group included 18 children who, along with basic therapy, received probiotic agent Subalin, the second group — 21 people who received only basic therapy. Results and Discussion. Inclusion in the complex treatment of probiotic agent Subalin allowed to stop such clinical symptoms as asthenovegetative syndrome, chronic intoxication syndrome, to reduce dyspeptic syndrome and hepatomegaly, as well as to restore intestinal microflora and to eliminate pathogenic and opportunistic microorganisms. We noted high tolerability of Subalin and no side effects. Conclusions. Application of Subalin in the complex therapy of children with viral hepatitis eliminates intoxication syndrome and contributes to the rapid regression of clinical symptoms, the recovery of the intestinal microflora, normalizes the immune status.

  14. Increased tolerance to two oomycete pathogens in transgenic tobacco expressing pathogenesis-related protein 1a.

    OpenAIRE

    Alexander, D; Goodman, R M; Gut-Rella, M; Glascock, C; Weymann, K; Friedrich, L; Maddox, D; Ahl-Goy, P; Luntz, T; Ward, E

    1993-01-01

    Expression of pathogenesis-related protein 1a (PR-1a), a protein of unknown biochemical function, is induced to high levels in tobacco in response to pathogen infection. The induction of PR-1a expression is tightly correlated with the onset of systemic acquired resistance (SAR), a defense response effective against a variety of fungal, viral, and bacterial pathogens. While PR-1a has been postulated to be involved in SAR, and is the most highly expressed of the PR proteins, evidence for its ro...

  15. Aquatic Plant Control Research Program. A Survey of the Continental United States for Pathogens of Eurasian Watermilfoil

    Science.gov (United States)

    1988-04-01

    Gleocladiwn sp . 440 Peniciltium sp . 464 Nonsporulating isolate 508 Penicilliwn sp . 520 Penicillium sp . 535 Curvularia lunata 559 Nonsporulating isolate 561... Penicillium sp . * Nonsporulating isolates could not be reliably identified. Fungal isolates 0 56. Mean damage index (MDI) values of the fungal isolates...1983) investigated the use of aquatic larvae of the European moth, Parapoynx sp ., as a biological agent for Eurasian watermilfoil and found the insect

  16. Human pathogenic bacteria, fungi, and viruses in Drosophila

    Science.gov (United States)

    Panayidou, Stavria; Ioannidou, Eleni; Apidianakis, Yiorgos

    2014-01-01

    Drosophila has been the invertebrate model organism of choice for the study of innate immune responses during the past few decades. Many Drosophila–microbe interaction studies have helped to define innate immunity pathways, and significant effort has been made lately to decipher mechanisms of microbial pathogenesis. Here we catalog 68 bacterial, fungal, and viral species studied in flies, 43 of which are relevant to human health. We discuss studies of human pathogens in flies revealing not only the elicitation and avoidance of immune response but also mechanisms of tolerance, host tissue homeostasis, regeneration, and predisposition to cancer. Prominent among those is the emerging pattern of intestinal regeneration as a defense response induced by pathogenic and innocuous bacteria. Immunopathology mechanisms and many microbial virulence factors have been elucidated, but their relevance to human health conventionally necessitates validation in mammalian models of infection. PMID:24398387

  17. VIRAL ETIOLOGY OF RECURRENT URINARY TRACT INFECTIONS

    Directory of Open Access Journals (Sweden)

    H. S. Ibishev

    2017-01-01

    Full Text Available Introduction. Recurrent urinary tract infection is an actual problem of modern urology.Objective. Complex investigation of urinary tract infections including viral etiology for chronic recurrent cystitis in womenMaterials and methods. The study included 31 women with recurrent infection of urinary tract. Inclusion criteria were the presence of lower urinary tract symptoms caused by infection, severe recurrent course, the lack of anatomical and functional disorders of the urinary tract, the absence of bacterial pathogens during the study, taking into account the culture of aerobic and anaerobic culturing techniques.Results. The analysis of the clinical manifestations, the dominant in the study group were pain and urgency to urinate at 100% and 90% of women surveyed, respectively, and less frequent urination were recorded in 16.1% of patients. In general clinical examination of urine in all cases identified leukocyturia and 90% of the hematuria. By using a polymerase chain reaction (PCR in midstream urine of all examined was verified 10 types of human papilloma virus (HPV with the predominance of 16 and 18 types . Considering the presence of recurrent infectious and inflammatory processes of the urinary tract, cystoscopy with bladder biopsy was performed for all patients. When histomorphological biopsies of all patients surveyed noted the presence of the specific characteristics of HPV: papillary hyperplasia with squamous koilocytosis, pale cytoplasm and shrunken kernels. When analyzing the results of PCR biopsy data corresponded with the results of PCR in midstream urine in all biopsies was detected HPV.Conclusions. Human papillomavirus infection may be involved in the development of viral cystitis. In the etiological structure of viral cystitis, both highly oncogenic and low oncogenic HPV types can act.

  18. Retrospective Analysis of Bacterial and Viral Co-Infections in Pneumocystis spp. Positive Lung Samples of Austrian Pigs with Pneumonia.

    Directory of Open Access Journals (Sweden)

    Christiane Weissenbacher-Lang

    Full Text Available Aim of this study was the retrospective investigation of viral (porcine circovirus type 2 (PCV2, porcine reproductive and respiratory syndrome virus (PRRSV, torque teno sus virus type 1 and 2 (TTSuV1, TTSuV2 and bacterial (Bordetella bronchiseptica (B. b., Mycoplasma hyopneumoniae (M. h., and Pasteurella multocida (P. m. co-infections in 110 Pneumocystis spp. positive lung samples of Austrian pigs with pneumonia. Fifty-one % were positive for PCV2, 7% for PRRSV, 22% for TTSuV1, 48% for TTSuV2, 6% for B. b., 29% for M. h., and 21% for P. m. In 38.2% only viral, in 3.6% only bacterial and in 40.0% both, viral and bacterial pathogens were detected. In 29.1% of the cases a co-infection with 1 pathogen, in 28.2% with 2, in 17.3% with 3, and in 7.3% with 4 different infectious agents were observed. The exposure to Pneumocystis significantly decreased the risk of a co-infection with PRRSV in weaning piglets; all other odds ratios were not significant. Four categories of results were compared: I = P. spp. + only viral co-infectants, II = P. spp. + both viral and bacterial co-infectants, III = P. spp. + only bacterial co-infectants, and IV = P. spp. single infection. The evaluation of all samples and the age class of the weaning piglets resulted in a predomination of the categories I and II. In contrast, the suckling piglets showed more samples of category I and IV. In the group of fattening pigs, category II predominated. Suckling piglets can be infected with P. spp. early in life. With increasing age this single infections can be complicated by co-infections with other respiratory diseases.

  19. Low pathogenic avian influenza isolates from wild birds replicate and transmit via contact in ferrets without prior adaptation.

    Science.gov (United States)

    Driskell, Elizabeth A; Pickens, Jennifer A; Humberd-Smith, Jennifer; Gordy, James T; Bradley, Konrad C; Steinhauer, David A; Berghaus, Roy D; Stallknecht, David E; Howerth, Elizabeth W; Tompkins, Stephen Mark

    2012-01-01

    Direct transmission of avian influenza viruses to mammals has become an increasingly investigated topic during the past decade; however, isolates that have been primarily investigated are typically ones originating from human or poultry outbreaks. Currently there is minimal comparative information on the behavior of the innumerable viruses that exist in the natural wild bird host. We have previously demonstrated the capacity of numerous North American avian influenza viruses isolated from wild birds to infect and induce lesions in the respiratory tract of mice. In this study, two isolates from shorebirds that were previously examined in mice (H1N9 and H6N1 subtypes) are further examined through experimental inoculations in the ferret with analysis of viral shedding, histopathology, and antigen localization via immunohistochemistry to elucidate pathogenicity and transmission of these viruses. Using sequence analysis and glycan binding analysis, we show that these avian viruses have the typical avian influenza binding pattern, with affinity for cell glycoproteins/glycolipids having terminal sialic acid (SA) residues with α 2,3 linkage [Neu5Ac(α2,3)Gal]. Despite the lack of α2,6 linked SA binding, these AIVs productively infected both the upper and lower respiratory tract of ferrets, resulting in nasal viral shedding and pulmonary lesions with minimal morbidity. Moreover, we show that one of the viruses is able to transmit to ferrets via direct contact, despite its binding affinity for α 2,3 linked SA residues. These results demonstrate that avian influenza viruses, which are endemic in aquatic birds, can potentially infect humans and other mammals without adaptation. Finally this work highlights the need for additional study of the wild bird subset of influenza viruses in regard to surveillance, transmission, and potential for reassortment, as they have zoonotic potential.

  20. 2.1 Natural History of Highly Pathogenic Avian Influenza H5N1

    Science.gov (United States)

    Sonnberg, Stephanie; Webby, Richard J.; Webster, Robert G.

    2013-01-01

    The ecology of highly pathogenic avian influenza (HPAI) H5N1 has significantly changed from sporadic outbreaks in terrestrial poultry to persistent circulation in terrestrial and aquatic poultry and potentially in wild waterfowl. A novel genotype of HPAI H5N1 arose in 1996 in southern China and through ongoing mutation, reassortment, and natural selection, has diverged into distinct lineages and expanded into multiple reservoir hosts. The evolution of Goose/Guangdong-lineage highly pathogenic H5N1 viruses is ongoing: while stable interactions exist with some reservoir hosts, these viruses are continuing to evolve and adapt to others, and pose an un-calculable risk to sporadic hosts, including humans. PMID:23735535

  1. Zoosporic Tolerance to pH Stress and Its Implications for Phytophthora Species in Aquatic Ecosystems▿

    OpenAIRE

    Kong, Ping; Moorman, Gary W.; Lea-Cox, John D.; Ross, David S.; Richardson, Patricia A.; Hong, Chuanxue

    2009-01-01

    Phytophthora species, a group of destructive plant pathogens, are commonly referred to as water molds, but little is known about their aquatic ecology. Here we show the effect of pH on zoospore survival of seven Phytophthora species commonly isolated from irrigation reservoirs and natural waterways and dissect zoospore survival strategy. Zoospores were incubated in a basal salt liquid medium at pH 3 to 11 for up to 7 days and then plated on a selective medium to determine their survival. The ...

  2. Viral Diversity of House Mice in New York City.

    Science.gov (United States)

    Williams, Simon H; Che, Xiaoyu; Garcia, Joel A; Klena, John D; Lee, Bohyun; Muller, Dorothy; Ulrich, Werner; Corrigan, Robert M; Nichol, Stuart; Jain, Komal; Lipkin, W Ian

    2018-04-17

    The microbiome of wild Mus musculus (house mouse), a globally distributed invasive pest that resides in close contact with humans in urban centers, is largely unexplored. Here, we report analysis of the fecal virome of house mice in residential buildings in New York City, NY. Mice were collected at seven sites in Manhattan, Queens, Brooklyn, and the Bronx over a period of 1 year. Unbiased high-throughput sequencing of feces revealed 36 viruses from 18 families and 21 genera, including at least 6 novel viruses and 3 novel genera. A representative screen of 15 viruses by PCR confirmed the presence of 13 of these viruses in liver. We identified an uneven distribution of diversity, with several viruses being associated with specific locations. Higher mouse weight was associated with an increase in the number of viruses detected per mouse, after adjusting for site, sex, and length. We found neither genetic footprints to known human viral pathogens nor antibodies to lymphocytic choriomeningitis virus. IMPORTANCE Mice carry a wide range of infectious agents with zoonotic potential. Their proximity to humans in the built environment is therefore a concern for public health. Laboratory mice are also the most common experimental model for investigating the pathobiology of infectious diseases. In this survey of mice trapped in multiple locations within New York City over a period of 1 year, we found a diverse collection of viruses that includes some previously not associated with house mice and others that appear to be novel. Although we found no known human pathogens, our findings provide insights into viral ecology and may yield models that have utility for clinical microbiology. Copyright © 2018 Williams et al.

  3. Reverse Genetics System Demonstrates that Rotavirus Nonstructural Protein NSP6 Is Not Essential for Viral Replication in Cell Culture.

    Science.gov (United States)

    Komoto, Satoshi; Kanai, Yuta; Fukuda, Saori; Kugita, Masanori; Kawagishi, Takahiro; Ito, Naoto; Sugiyama, Makoto; Matsuura, Yoshiharu; Kobayashi, Takeshi; Taniguchi, Koki

    2017-11-01

    The use of overlapping open reading frames (ORFs) to synthesize more than one unique protein from a single mRNA has been described for several viruses. Segment 11 of the rotavirus genome encodes two nonstructural proteins, NSP5 and NSP6. The NSP6 ORF is present in the vast majority of rotavirus strains, and therefore the NSP6 protein would be expected to have a function in viral replication. However, there is no direct evidence of its function or requirement in the viral replication cycle yet. Here, taking advantage of a recently established plasmid-only-based reverse genetics system that allows rescue of recombinant rotaviruses entirely from cloned cDNAs, we generated NSP6-deficient viruses to directly address its significance in the viral replication cycle. Viable recombinant NSP6-deficient viruses could be engineered. Single-step growth curves and plaque formation of the NSP6-deficient viruses confirmed that NSP6 expression is of limited significance for RVA replication in cell culture, although the NSP6 protein seemed to promote efficient virus growth. IMPORTANCE Rotavirus is one of the most important pathogens of severe diarrhea in young children worldwide. The rotavirus genome, consisting of 11 segments of double-stranded RNA, encodes six structural proteins (VP1 to VP4, VP6, and VP7) and six nonstructural proteins (NSP1 to NSP6). Although specific functions have been ascribed to each of the 12 viral proteins, the role of NSP6 in the viral replication cycle remains unknown. In this study, we demonstrated that the NSP6 protein is not essential for viral replication in cell culture by using a recently developed plasmid-only-based reverse genetics system. This reverse genetics approach will be successfully applied to answer questions of great interest regarding the roles of rotaviral proteins in replication and pathogenicity, which can hardly be addressed by conventional approaches. Copyright © 2017 American Society for Microbiology.

  4. Resistance to Plum pox virus strain C in Arabidopsis thaliana and Chenopodium foetidum involves genome-linked viral protein and other viral determinants and might depend on compatibility with host translation initiation factors.

    Science.gov (United States)

    Calvo, María; Martínez-Turiño, Sandra; García, Juan Antonio

    2014-11-01

    Research performed on model herbaceous hosts has been useful to unravel the molecular mechanisms that control viral infections. The most common Plum pox virus (PPV) strains are able to infect Nicotiana species as well as Chenopodium and Arabidopsis species. However, isolates belonging to strain C (PPV-C) that have been adapted to Nicotiana spp. are not infectious either in Chenopodium foetidum or in Arabidopsis thaliana. In order to determine the mechanism underlying this interesting host-specific behavior, we have constructed chimerical clones derived from Nicotiana-adapted PPV isolates from the D and C strains, which differ in their capacity to infect A. thaliana and C. foetidum. With this approach, we have identified the nuclear inclusion a protein (VPg+Pro) as the major pathogenicity determinant that conditions resistance in the presence of additional secondary determinants, different for each host. Genome-linked viral protein (VPg) mutations similar to those involved in the breakdown of eIF4E-mediated resistance to other potyviruses allow some PPV chimeras to infect A. thaliana. These results point to defective interactions between a translation initiation factor and the viral VPg as the most probable cause of host-specific incompatibility, in which other viral factors also participate, and suggest that complex interactions between multiple viral proteins and translation initiation factors not only define resistance to potyviruses in particular varieties of susceptible hosts but also contribute to establish nonhost resistance.

  5. Mechanisms of Coronavirus Cell Entry Mediated by the Viral Spike Protein

    Directory of Open Access Journals (Sweden)

    Gary R. Whittaker

    2012-06-01

    Full Text Available Coronaviruses are enveloped positive-stranded RNA viruses that replicate in the cytoplasm. To deliver their nucleocapsid into the host cell, they rely on the fusion of their envelope with the host cell membrane. The spike glycoprotein (S mediates virus entry and is a primary determinant of cell tropism and pathogenesis. It is classified as a class I fusion protein, and is responsible for binding to the receptor on the host cell as well as mediating the fusion of host and viral membranes—A process driven by major conformational changes of the S protein. This review discusses coronavirus entry mechanisms focusing on the different triggers used by coronaviruses to initiate the conformational change of the S protein: receptor binding, low pH exposure and proteolytic activation. We also highlight commonalities between coronavirus S proteins and other class I viral fusion proteins, as well as distinctive features that confer distinct tropism, pathogenicity and host interspecies transmission characteristics to coronaviruses.

  6. Gravimetric Viral Diagnostics: QCM Based Biosensors for Early Detection of Viruses

    Directory of Open Access Journals (Sweden)

    Adeel Afzal

    2017-02-01

    Full Text Available Viruses are pathogenic microorganisms that can inhabit and replicate in human bodies causing a number of widespread infectious diseases such as influenza, gastroenteritis, hepatitis, meningitis, pneumonia, acquired immune deficiency syndrome (AIDS etc. A majority of these viral diseases are contagious and can spread from infected to healthy human beings. The most important step in the treatment of these contagious diseases and to prevent their unwanted spread is to timely detect the disease-causing viruses. Gravimetric viral diagnostics based on quartz crystal microbalance (QCM transducers and natural or synthetic receptors are miniaturized sensing platforms that can selectively recognize and quantify harmful virus species. Herein, a review of the label-free QCM virus sensors for clinical diagnostics and point of care (POC applications is presented with major emphasis on the nature and performance of different receptors ranging from the natural or synthetic antibodies to selective macromolecular materials such as DNA and aptamers. A performance comparison of different receptors is provided and their limitations are discussed.

  7. Schizophrenia: A Pathogenetic Autoimmune Disease Caused by Viruses and Pathogens and Dependent on Genes

    Directory of Open Access Journals (Sweden)

    C. J. Carter

    2011-01-01

    Full Text Available Many genes have been implicated in schizophrenia as have viral prenatal or adult infections and toxoplasmosis or Lyme disease. Several autoantigens also target key pathology-related proteins. These factors are interrelated. Susceptibility genes encode for proteins homologous to those of the pathogens while the autoantigens are homologous to pathogens' proteins, suggesting that the risk-promoting effects of genes and risk factors are conditional upon each other, and dependent upon protein matching between pathogen and susceptibility gene products. Pathogens' proteins may act as dummy ligands, decoy receptors, or via interactome interference. Many such proteins are immunogenic suggesting that antibody mediated knockdown of multiple schizophrenia gene products could contribute to the disease, explaining the immune activation in the brain and lymphocytes in schizophrenia, and the preponderance of immune-related gene variants in the schizophrenia genome. Schizophrenia may thus be a “pathogenetic” autoimmune disorder, caused by pathogens, genes, and the immune system acting together, and perhaps preventable by pathogen elimination, or curable by the removal of culpable antibodies and antigens.

  8. Age-Related Effect of Viral-Induced Wheezing in Severe Prematurity

    Directory of Open Access Journals (Sweden)

    Geovanny F. Perez

    2016-10-01

    Full Text Available Premature children are prone to severe viral respiratory infections in early life, but the age at which susceptibility peaks and disappears for each pathogen is unclear. Methods: A retrospective analysis was performed of the age distribution and clinical features of acute viral respiratory infections in full-term and premature children, aged zero to seven years. Results: The study comprised of a total of 630 hospitalizations (n = 580 children. Sixty-seven percent of these hospitalizations occurred in children born full-term (>37 weeks, 12% in preterm (32–37 weeks and 21% in severely premature children (<32 weeks. The most common viruses identified were rhinovirus (RV; 60% and respiratory syncytial virus (RSV; 17%. Age-distribution analysis of each virus identified that severely premature children had a higher relative frequency of RV and RSV in their first three years, relative to preterm or full-term children. Additionally, the probability of RV- or RSV-induced wheezing was higher overall in severely premature children less than three years old. Conclusions: Our results indicate that the vulnerability to viral infections in children born severely premature is more specific for RV and RSV and persists during the first three years of age. Further studies are needed to elucidate the age-dependent molecular mechanisms that underlie why premature infants develop RV- and RSV-induced wheezing in early life.

  9. Selective expansion of viral variants following experimental transmission of a reconstituted feline immunodeficiency virus quasispecies.

    Directory of Open Access Journals (Sweden)

    Brian J Willett

    Full Text Available Following long-term infection with virus derived from the pathogenic GL8 molecular clone of feline immunodeficiency virus (FIV, a range of viral variants emerged with distinct modes of interaction with the viral receptors CD134 and CXCR4, and sensitivities to neutralizing antibodies. In order to assess whether this viral diversity would be maintained following subsequent transmission, a synthetic quasispecies was reconstituted comprising molecular clones bearing envs from six viral variants and its replicative capacity compared in vivo with a clonal preparation of the parent virus. Infection with either clonal (Group 1 or diverse (Group 2 challenge viruses, resulted in a reduction in CD4+ lymphocytes and an increase in CD8+ lymphocytes. Proviral loads were similar in both study groups, peaking by 10 weeks post-infection, a higher plateau (set-point being achieved and maintained in study Group 1. Marked differences in the ability of individual viral variants to replicate were noted in Group 2; those most similar to GL8 achieved higher viral loads while variants such as the chimaeras bearing the B14 and B28 Envs grew less well. The defective replication of these variants was not due to suppression by the humoral immune response as virus neutralising antibodies were not elicited within the study period. Similarly, although potent cellular immune responses were detected against determinants in Env, no qualitative differences were revealed between animals infected with either the clonal or the diverse inocula. However, in vitro studies indicated that the reduced replicative capacity of variants B14 and B28 in vivo was associated with altered interactions between the viruses and the viral receptor and co-receptor. The data suggest that viral variants with GL8-like characteristics have an early, replicative advantage and should provide the focus for future vaccine development.

  10. Systems integration of biodefense omics data for analysis of pathogen-host interactions and identification of potential targets.

    Directory of Open Access Journals (Sweden)

    Peter B McGarvey

    2009-09-01

    Full Text Available The NIAID (National Institute for Allergy and Infectious Diseases Biodefense Proteomics program aims to identify targets for potential vaccines, therapeutics, and diagnostics for agents of concern in bioterrorism, including bacterial, parasitic, and viral pathogens. The program includes seven Proteomics Research Centers, generating diverse types of pathogen-host data, including mass spectrometry, microarray transcriptional profiles, protein interactions, protein structures and biological reagents. The Biodefense Resource Center (www.proteomicsresource.org has developed a bioinformatics framework, employing a protein-centric approach to integrate and support mining and analysis of the large and heterogeneous data. Underlying this approach is a data warehouse with comprehensive protein + gene identifier and name mappings and annotations extracted from over 100 molecular databases. Value-added annotations are provided for key proteins from experimental findings using controlled vocabulary. The availability of pathogen and host omics data in an integrated framework allows global analysis of the data and comparisons across different experiments and organisms, as illustrated in several case studies presented here. (1 The identification of a hypothetical protein with differential gene and protein expressions in two host systems (mouse macrophage and human HeLa cells infected by different bacterial (Bacillus anthracis and Salmonella typhimurium and viral (orthopox pathogens suggesting that this protein can be prioritized for additional analysis and functional characterization. (2 The analysis of a vaccinia-human protein interaction network supplemented with protein accumulation levels led to the identification of human Keratin, type II cytoskeletal 4 protein as a potential therapeutic target. (3 Comparison of complete genomes from pathogenic variants coupled with experimental information on complete proteomes allowed the identification and

  11. Gene flow and pathogen transmission among bobcats (Lynx rufus) in a fragmented urban landscape

    Science.gov (United States)

    Lee, Justin S.; Ruell, Emily W.; Boydston, Erin E.; Lyren, Lisa M.; Alonso, Robert S.; Troyer, Jennifer L.; Crooks, Kevin R.; VandeWoude, Sue

    2012-01-01

    Urbanization can result in the fragmentation of once contiguous natural landscapes into a patchy habitat interspersed within a growing urban matrix. Animals living in fragmented landscapes often have reduced movement among habitat patches because of avoidance of intervening human development, which potentially leads to both reduced gene flow and pathogen transmission between patches. Mammalian carnivores with large home ranges, such as bobcats (Lynx rufus), may be particularly sensitive to habitat fragmentation. We performed genetic analyses on bobcats and their directly transmitted viral pathogen, feline immunodeficiency virus (FIV), to investigate the effects of urbanization on bobcat movement. We predicted that urban development, including major freeways, would limit bobcat movement and result in genetically structured host and pathogen populations. We analysed molecular markers from 106 bobcats and 19 FIV isolates from seropositive animals in urban southern California. Our findings indicate that reduced gene flow between two primary habitat patches has resulted in genetically distinct bobcat subpopulations separated by urban development including a major highway. However, the distribution of genetic diversity among FIV isolates determined through phylogenetic analyses indicates that pathogen genotypes are less spatially structured--exhibiting a more even distribution between habitat fragments. We conclude that the types of movement and contact sufficient for disease transmission occur with enough frequency to preclude structuring among the viral population, but that the bobcat population is structured owing to low levels of effective bobcat migration resulting in gene flow. We illustrate the utility in using multiple molecular markers that differentially detect movement and gene flow between subpopulations when assessing connectivity.

  12. Vibrio parahaemolyticus- An emerging foodborne pathogen

    Directory of Open Access Journals (Sweden)

    S Nelapati

    2012-02-01

    Full Text Available Vibrio parahaemolyticus is a halophilic gram negative, motile, oxidase positive, straight or curved rod-shaped, facultative anaerobic bacteria that occur naturally in the marine environment. They form part of the indigenous microflora of aquatic habitats of various salinity and are the major causative agents for some of the most serious diseases in fish, shellfish and penacid shrimp. This human pathogen causes acute gastroenteritis characterized by diarrhea, vomiting and abdominal cramps through consumption of contaminated raw fish or shellfish. V. parahaemolyticus is the leading cause of gastroenteritis due to the consumption of seafood worldwide. The incidence of V. parahaemolyticus infection has been increasing in many parts of the world, due to the emergence of O3:K6 serotype carrying the tdh gene which is responsible for most outbreaks worldwide. The pathogenicity of this organism is closely correlated with the Kanagawa phenomenon (KP + due to production of Kanagawa hemolysin or the thermostable direct hemolysin (TDH. The TDH and TRH (TDH-related hemolysin encoded by tdh and trh genes are considered to be important virulence factors. [Vet. World 2012; 5(1.000: 48-63

  13. Hepatitis viral aguda

    Directory of Open Access Journals (Sweden)

    Héctor Rubén Hernández Garcés

    1998-10-01

    Full Text Available Se realizó una revisión bibliográfica de las hepatitis virales agudas sobre aspectos vinculados a su etiología. Se tuvieron en cuenta además algunos datos epidemiológicos, las formas clínicas más importantes, los exámenes complementarios con especial énfasis en los marcadores virales y el diagnóstico positivoA bibliographical review of acute viral hepatitis was made taking into account those aspects connected with its etiology. Some epidemiological markers, the most important clinical forms, and the complementary examinations with special emphasis on the viral markers and the positive diagnosis were also considered

  14. Virale commercials: de consument als marketeer. Onderzoek naar de redenen waarom consumenten virale commercials doorsturen: hun motieven, de inhoudskenmerken van viral commercials en de mediumcontext waarin virale commercials verschijnen

    NARCIS (Netherlands)

    Ketelaar, P.E.; Lucassen, P.; Kregting, G.H.J.

    2010-01-01

    Research into the reasons why consumers pass along viral commercials: their motives, the content characteristics of viral commercials and the medium context in which viral commercials appear. Based on the uses and gratifications perspective this study has determined which motives of consumers,

  15. Modeling Aquatic Toxicity through Chromatographic Systems.

    Science.gov (United States)

    Fernández-Pumarega, Alejandro; Amézqueta, Susana; Farré, Sandra; Muñoz-Pascual, Laura; Abraham, Michael H; Fuguet, Elisabet; Rosés, Martí

    2017-08-01

    Environmental risk assessment requires information about the toxicity of the growing number of chemical products coming from different origins that can contaminate water and become toxicants to aquatic species or other living beings via the trophic chain. Direct toxicity measurements using sensitive aquatic species can be carried out but they may become expensive and ethically questionable. Literature refers to the use of chromatographic measurements that correlate to the toxic effect of a compound over a specific aquatic species as an alternative to get toxicity information. In this work, we have studied the similarity in the response of the toxicity to different species and we have selected eight representative aquatic species (including tadpoles, fish, water fleas, protozoan, and bacteria) with known nonspecific toxicity to chemical substances. Next, we have selected four chromatographic systems offering good perspectives for surrogation of the eight selected aquatic systems, and thus prediction of toxicity from the chromatographic measurement. Then toxicity has been correlated to the chromatographic retention factor. Satisfactory correlation results have been obtained to emulate toxicity in five of the selected aquatic species through some of the chromatographic systems. Other aquatic species with similar characteristics to these five representative ones could also be emulated by using the same chromatographic systems. The final aim of this study is to model chemical products toxicity to aquatic species by means of chromatographic systems to reduce in vivo testing.

  16. Molecular basis of pathogenesis of emerging viruses infecting aquatic animals

    Directory of Open Access Journals (Sweden)

    Lang Gui

    2018-01-01

    Full Text Available Aquatic vertebrates are very abundant in the world, and they are of tremendous importance in providing global food security and nutrition. However, emergent and resurgent viruses, such as ranavirus (e.g., Rana grylio virus, RGV and Andriasd avidianus ranavirus, ADRV, herpesvirus (e.g., Carassius carassius herpesvirus, CaHV, reovirus (e.g., grass carp reovirus 109, GCRV-109, Scophthal musmaximus reovirus, SMReV and Micropterus salmoides reovirus, MsReV, and rhabdovirus (e.g., Siniper cachuatsi rhabdovirus, SCRV and Scophthal musmaximus rhabdovirus, SMRV can cause severe diseases in aquaculture animals and wild lower vertebrates, such as frogs, giant salamanders, fish, and so on. Here, we will briefly describe the symptoms produced by the aforementioned viruses and the molecular basis of the virus–host interactions. This manuscript aims to provide an overview of viral diseases in lower vertebrates with an emphasis on visible symptomatic manifestations and pathogenesis.

  17. Cytopathic bovine viral diarrhea viruses (BVDV): emerging pestiviruses doomed to extinction.

    Science.gov (United States)

    Peterhans, Ernst; Bachofen, Claudia; Stalder, Hanspeter; Schweizer, Matthias

    2010-01-01

    Bovine viral diarrhea virus (BVDV), a Flaviviridae pestivirus, is arguably one of the most widespread cattle pathogens worldwide. Each of its two genotypes has two biotypes, non-cytopathic (ncp) and cytopathic (cp). Only the ncp biotype of BVDV may establish persistent infection in the fetus when infecting a dam early in gestation, a time point which predates maturity of the adaptive immune system. Such fetuses may develop and be born healthy but remain infected for life. Due to this early initiation of fetal infection and to the expression of interferon antagonistic proteins, persistently infected (PI) animals remain immunotolerant to the infecting viral strain. Although only accounting for some 1% of all animals in regions where BVDV is endemic, PI animals ensure the viral persistence in the host population. These animals may, however, develop the fatal mucosal disease, which is characterized by widespread lesions in the gastrointestinal tract. Cp BVD virus, in addition to the persisting ncp biotype, can be isolated from such animals. The cp viruses are characterized by unrestrained genome replication, and their emergence from the persisting ncp ones is due to mutations that are unique in each virus analyzed. They include recombinations with host cell mRNA, gene translocations and duplications, and point mutations. Cytopathic BVD viruses fail to establish chains of infection and are unable to cause persistent infection. Hence, these viruses illustrate a case of "viral emergence to extinction" - irrelevant for BVDV evolution, but fatal for the PI host. © INRA, EDP Sciences, 2010.

  18. The effect of aquatic intervention on the gross motor function and aquatic skills in children with cerebral palsy.

    Science.gov (United States)

    Dimitrijević, Lidija; Aleksandrović, Marko; Madić, Dejan; Okičić, Tomislav; Radovanović, Dragan; Daly, Daniel

    2012-05-01

    The objective of this study was to investigate the effect of an aquatic intervention on the gross motor function and aquatic skills of children with cerebral palsy (CP). Twenty-nine children with CP, aged 5 to 14, were recruited. Fourteen children completed an aquatic intervention (EG), and 13 children served as controls (CG). Two participants dropped out due to events (illness) unrelated to the intervention. The aquatic intervention lasted 6 weeks (2 sessions per week at 55 minutes per session) with a follow-up period of 3 weeks. The outcome measures were the Gross Motor Function Measure (GMFM) for motor function and the Water Orientation Test Alyn 2 (WOTA 2) for aquatic skills assessment. A significant improvement was observed in the secondary assessment of GMFM and WOTA 2. In contrast to the aquatic skills improvement, the GMFM change was not maintained at follow-up. Our results indicate that children with CP can improve gross motor function on dry land and aquatic skills with a 6-week water intervention. The intervention period was too short for sustainable improvement in dry-land motor skills after intervention (follow-up), but time was sufficient to achieve sustainable improvements in aquatic skills.

  19. Premature activation of the paramyxovirus fusion protein before target cell attachment with corruption of the viral fusion machinery.

    Science.gov (United States)

    Farzan, Shohreh F; Palermo, Laura M; Yokoyama, Christine C; Orefice, Gianmarco; Fornabaio, Micaela; Sarkar, Aurijit; Kellogg, Glen E; Greengard, Olga; Porotto, Matteo; Moscona, Anne

    2011-11-04

    Paramyxoviruses, including the childhood pathogen human parainfluenza virus type 3, enter host cells by fusion of the viral and target cell membranes. This fusion results from the concerted action of its two envelope glycoproteins, the hemagglutinin-neuraminidase (HN) and the fusion protein (F). The receptor-bound HN triggers F to undergo conformational changes that render it competent to mediate fusion of the viral and cellular membranes. We proposed that, if the fusion process could be activated prematurely before the virion reaches the target host cell, infection could be prevented. We identified a small molecule that inhibits paramyxovirus entry into target cells and prevents infection. We show here that this compound works by an interaction with HN that results in F-activation prior to receptor binding. The fusion process is thereby prematurely activated, preventing fusion of the viral membrane with target cells and precluding viral entry. This first evidence that activation of a paramyxovirus F can be specifically induced before the virus contacts its target cell suggests a new strategy with broad implications for the design of antiviral agents.

  20. Viral Disease Networks?

    Science.gov (United States)

    Gulbahce, Natali; Yan, Han; Vidal, Marc; Barabasi, Albert-Laszlo

    2010-03-01

    Viral infections induce multiple perturbations that spread along the links of the biological networks of the host cells. Understanding the impact of these cascading perturbations requires an exhaustive knowledge of the cellular machinery as well as a systems biology approach that reveals how individual components of the cellular system function together. Here we describe an integrative method that provides a new approach to studying virus-human interactions and its correlations with diseases. Our method involves the combined utilization of protein - protein interactions, protein -- DNA interactions, metabolomics and gene - disease associations to build a ``viraldiseasome''. By solely using high-throughput data, we map well-known viral associated diseases and predict new candidate viral diseases. We use microarray data of virus-infected tissues and patient medical history data to further test the implications of the viral diseasome. We apply this method to Epstein-Barr virus and Human Papillomavirus and shed light into molecular development of viral diseases and disease pathways.

  1. Data Basin Aquatic Center: expanding access to aquatic conservation data, analysis tools, people and practical answers

    Science.gov (United States)

    Osborne-Gowey, J.; Strittholt, J.; Bergquist, J.; Ward, B. C.; Sheehan, T.; Comendant, T.; Bachelet, D. M.

    2009-12-01

    The world’s aquatic resources are experiencing anthropogenic pressures on an unprecedented scale and aquatic organisms are experiencing widespread population changes and ecosystem-scale habitat alterations. Climate change is likely to exacerbate these threats, in some cases reducing the range of native North American fishes by 20-100% (depending on the location of the population and the model assumptions). Scientists around the globe are generating large volumes of data that vary in quality, format, supporting documentation, and accessibility. Moreover, diverse models are being run at various temporal and spatial scales as scientists attempt to understand previous (and project future) human impacts to aquatic species and their habitats. Conservation scientists often struggle to synthesize this wealth of information for developing practical on-the-ground management strategies. As a result, the best available science is often not utilized in the decision-making and adaptive management processes. As aquatic conservation problems around the globe become more serious and the demand to solve them grows more urgent, scientists and land-use managers need a new way to bring strategic, science-based, and action-oriented approaches to aquatic conservation. The Conservation Biology Institute (CBI), with partners such as ESRI, is developing an Aquatic Center as part of a dynamic, web-based resource (Data Basin; http: databasin.org) that centralizes usable aquatic datasets and provides analytical tools to visualize, analyze, and communicate findings for practical applications. To illustrate its utility, we present example datasets of varying spatial scales and synthesize multiple studies to arrive at novel solutions to aquatic threats.

  2. Nanoscale organization of the pathogen receptor DC-SIGN mapped by single-molecule high-resolution fluorescence microscopy.

    NARCIS (Netherlands)

    Bakker, B.I. de; Lange, F. de; Cambi, A.; Korterik, J.P.; Dijk, E.M. van; Hulst, N.F. van; Figdor, C.G.; Garcia-Parajo, M.F.

    2007-01-01

    DC-SIGN, a C-type lectin exclusively expressed on dendritic cells (DCs), plays an important role in pathogen recognition by binding with high affinity to a large variety of microorganisms. Recent experimental evidence points to a direct relation between the function of DC-SIGN as a viral receptor

  3. Nanoscale organization of the pathogen receptor DC-SIGN mapped by single-molecule high-resolution flourescence microscopy

    NARCIS (Netherlands)

    de Bakker, B.I.; de Lange, Frank; Cambi, Alessandra; Cambi, A.; Korterik, Jeroen P.; van Dijk, E.M.H.P.; van Hulst, N.F.; Figdor, Carl; Garcia Parajo, M.F.

    2007-01-01

    DC-SIGN, a C-type lectin exclusively expressed on dendritic cells (DCs), plays an important role in pathogen recognition by binding with high affinity to a large variety of microorganisms. Recent experimental evidence points to a direct relation between the function of DC-SIGN as a viral receptor

  4. Evaluation of invasions and declines of submersed aquatic macrophytes

    Science.gov (United States)

    Chambers, P.A.; Barko, J.W.; Smith, C.S.

    1993-01-01

    During the past 60 yr, sightings of aquatic macrophyte species in geographic regions where they had previously not been found have occurred with increasing frequency, apparently due to both greater dispersal of the plants as a result of human activities as well as better documentation of plant distribution. Intercontinental invasions, such as Myriophyllum spicatum and Hydrilla into North America, Elodea canadensis into Europe and Elodea nuttallii, Egeria densa and Cabomba caroliniana into Japan, have generally been well documented. However, the spread of an exotic species across a continent after its initial introduction (e.g., Potamogeton crispus in North America) or the expansion of a species native to a continent into hitherto unexploited territory (e.g.,the expansion of the North American native Myriophyllum heterophyllum into New England) have received little attention. Natural declines in aquatic macrophyte communities have also received little scientific study although there are many accounts of macrophyte declines. The best-documented example comes from the marine literature where extensive declines of eelgrass (Zostera) occurred in the 1930s along the Atlantic coast due to a pathogenic marine slime mold (''wasting disease''). The aim of this workshop was to identify examples of invasions or natural declines of aquatic macrophyte species throughout the world and assess the importance of environmental factors in their control. Forty-five scientists and aquatic plant managers from ten countries participated in the workshop. Eleven of the participants contributed written evaluations of species invasions and declines in their geo-graphic region. These were distributed to registered participants prior to the meeting and served as the starting-point of workshop discussions. To address the topics raised in the working papers, the participants divided into four working groups to evaluate: 1. Environmental controls of species invasions. 2. Biotic controls of species

  5. Genetic Variability of Bovine Viral Diarrhea Virus and Evidence for a Possible Genetic Bottleneck during Vertical Transmission in Persistently Infected Cattle.

    Directory of Open Access Journals (Sweden)

    Natalie Dow

    Full Text Available Bovine viral diarrhea virus (BVDV, a Pestivirus in the family Flaviviridae, is an economically important pathogen of cattle worldwide. The primary propagators of the virus are immunotolerant persistently infected (PI cattle, which shed large quantities of virus throughout life. Despite the absence of an acquired immunity against BVDV in these PI cattle there are strong indications of viral variability that are of clinical and epidemiological importance. In this study the variability of E2 and NS5B sequences in multiple body compartments of PI cattle were characterized using clonal sequencing. Phylogenetic analyses revealed that BVDV exists as a quasispecies within PI cattle. Viral variants were clustered by tissue compartment significantly more often than expected by chance alone with the central nervous system appearing to be a particularly important viral reservoir. We also found strong indications for a genetic bottleneck during vertical transmission from PI animals to their offspring. These quasispecies analyses within PI cattle exemplify the role of the PI host in viral propagation and highlight the complex dynamics of BVDV pathogenesis, transmission and evolution.

  6. Aquatic species and habitats

    Science.gov (United States)

    Danny C. Lee; James R. Sedell; Bruce E. Rieman; Russell F. Thurow; Jack E. Williams

    1998-01-01

    Continuing human activities threaten the highly prized aquatic resources of the interior Columbia basin. Precipitous declines in native species, particularly Pacific salmon, and a large influx of introduced species have radically altered the composition and distribution of native fishes. Fortunately, areas of relatively high aquatic integrity remain, much of it on...

  7. Pathogens as Predictors of Honey Bee Colony Strength in England and Wales.

    Directory of Open Access Journals (Sweden)

    Giles E Budge

    Full Text Available Inspectors with the UK National Bee Unit were asked for 2007-2008 to target problem apiaries in England and Wales for pathogen screening and colony strength measures. Healthy colonies were included in the sampling to provide a continuum of health conditions. A total of 406 adult bee samples was screened and yielded 7 viral, 1 bacterial, and 2 microsporidial pathogens and 1 ectoparasite (Acarapis woodi. In addition, 108 samples of brood were screened and yielded 4 honey bee viruses. Virus prevalence varied from common (deformed wing virus, black queen cell virus to complete absence (Israeli acute paralysis virus. When colonies were forced into one of two classes, strong or weak, the weak colonies contained more pathogens in adult bees. Among observed pathogens, only deformed wing virus was able to predict colony strength. The effect was negative such that colonies testing positive for deformed wing virus were likely to have fewer combs of bees or brood. This study constitutes the first record for Nosema ceranae in Great Britain. These results contribute to the growing body of evidence linking pathogens to poor honey bee health.

  8. MODELING HOST-PATHOGEN INTERACTIONS: COMPUTATIONAL BIOLOGY AND BIOINFORMATICS FOR INFECTIOUS DISEASE RESEARCH (Session introduction)

    Energy Technology Data Exchange (ETDEWEB)

    McDermott, Jason E.; Braun, Pascal; Bonneau, Richard A.; Hyduke, Daniel R.

    2011-12-01

    Pathogenic infections are a major cause of both human disease and loss of crop yields and animal stocks and thus cause immense damage to the worldwide economy. The significance of infectious diseases is expected to increase in an ever more connected warming world, in which new viral, bacterial and fungal pathogens can find novel hosts and ecologic niches. At the same time, the complex and sophisticated mechanisms by which diverse pathogenic agents evade defense mechanisms and subvert their hosts networks to suit their lifestyle needs is still very incompletely understood especially from a systems perspective [1]. Thus, understanding host-pathogen interactions is both an important and a scientifically fascinating topic. Recently, technology has offered the opportunity to investigate host-pathogen interactions on a level of detail and scope that offers immense computational and analytical possibilities. Genome sequencing was pioneered on some of these pathogens, and the number of strains and variants of pathogens sequenced to date vastly outnumbers the number of host genomes available. At the same time, for both plant and human hosts more and more data on population level genomic variation becomes available and offers a rich field for analysis into the genetic interactions between host and pathogen.

  9. In Vitro and In Vivo Characterization of a Typical and a High Pathogenic Bovine Viral Diarrhea Virus Type II Strains

    Directory of Open Access Journals (Sweden)

    Dario Amilcar Malacari

    2018-04-01

    Full Text Available Non-cytopathic (ncp type 2 bovine viral diarrhea virus (BVDV-2 is widely prevalent in Argentina causing high mortality rates in cattle herds. In this study, we characterized an Argentinean ncp BVDV-2 field isolate (98-124 compared to a high-virulence reference strain (NY-93, using in silico analysis, in vitro assays, and in vivo infections of colostrum-deprived calves (CDC to compare pathogenic characters and virulence. In vitro infection of bovine peripheral blood mononuclear cells (PBMC with BVDV 98-124 induced necrosis shortly after infection while NY-93 strain increased the apoptotic rate in infected cells. Experimental infection of CDC (n = 4 each with these strains caused an enteric syndrome. High pyrexia was detected in both groups. Viremia and shedding were more prolonged in the CDC infected with the NY-93 strain. In addition, NY-93 infection elicited a severe lymphopenia that lasted for 14 days, whereas 98-124 strain reduced the leukocyte counts for 5 days. All infected animals had a diminished lymphoproliferation activity in response to a mitogen. Neutralizing and anti-NS3 antibodies were detected 3 weeks after infection in all infected calves. Virulence was associated with a more severe clinical score, prolonged immune-suppression, and a greater window for transmission. Studies of apoptosis/necrosis performed after in vitro PBMC infection also revealed differences between both strains that might be correlated to the in vivo pathogenesis. Our results identified 98-124 as a low-virulence strain.

  10. Pathobiology and transmission of highly and low pathogenic avian influenza viruses in European quail (Coturnix c. coturnix).

    Science.gov (United States)

    Bertran, Kateri; Dolz, Roser; Busquets, Núria; Gamino, Virginia; Vergara-Alert, Júlia; Chaves, Aida J; Ramis, Antonio; Abad, F Xavier; Höfle, Ursula; Majó, Natàlia

    2013-03-28

    European quail (Coturnix c. coturnix) may share with Japanese quail (Coturnix c. japonica) its potential as an intermediate host and reservoir of avian influenza viruses (AIV). To elucidate this question, European quail were experimentally challenged with two highly pathogenic AIV (HPAIV) (H7N1/HP and H5N1/HP) and one low pathogenic AIV (LPAIV) (H7N2/LP). Contact animals were also used to assess the viral transmission among birds. Severe neurological signs and mortality rates of 67% (H7N1/HP) and 92% (H5N1/HP) were observed. Although histopathological findings were present in both HPAIV-infected groups, H5N1/HP-quail displayed a broader viral antigen distribution and extent of microscopic lesions. Neither clinical nor pathological involvement was observed in LPAIV-infected quail. Consistent long-term viral shedding and effective transmission to naive quail was demonstrated for the three studied AIV. Drinking water arose as a possible transmission route and feathers as a potential origin of HPAIV dissemination. The present study demonstrates that European quail may play a major role in AI epidemiology, highlighting the need to further understand its putative role as an intermediate host for avian/mammalian reassortant viruses.

  11. Mobil Viral Pazarlama

    OpenAIRE

    Barutçu, Süleyman

    2011-01-01

    OBJECTIVE: Mobile Viral Marketing, with using mobile phones, is one of the most importantinnovations after Word of Mouth Marketing performed by face to face amongpeople and Viral Marketing performed in the İnternet. The main objective of thisstudy is to call marketing communicators’ and academicians’ attentions whowant to increase the recognition of companies’ products, services and brands tobecome a current issue in the marketplace using Mobile Viral Marketingapplications by reason of techno...

  12. Radioactivity in the Canadian aquatic environment

    International Nuclear Information System (INIS)

    1983-01-01

    Sources of radionuclides arising from natural anthropogenic processes as well as technologically enhanced natural radiation are discussed. Transport, distribution and behaviour of these radionuclides in aquatic systems are influenced by physical, chemical, biological and geological processes and conditions in freshwater and marine environments. Dosimetry of aquatic organisms, as well as various methods of measuring dose rate are presented. Effects of ionizing radiation (acute and chronic exposure) on aquatic organisms, populations and ecosystems are reviewed. This review covers the entire spectrum of the aquatic environment. Results of many studies are summarized. 300+ refs

  13. [Knowledge about viral hepatitis in a sample of Brazilian students from Vale do Araguaia, Legal Amazonia].

    Science.gov (United States)

    Ferrari, Carlos K B; Savazzi, Kamirri; Honorio-França, Adenilda C; Ferrari, Graziele S L; França, Eduardo L

    2012-06-01

    Viral and non-viral hepatitis are of great concern among developing nations because of their pathogenicity and virulence, and also their wide spreading by contaminated blood, food or water. The objective of this work was to evaluate the knowledge about hepatitis of academic students from three life/health sciences courses and also students from the last year of high school To measure the students' knowledge on hepatitis an instrument containing 22 questions was applied. Surprinsingly, it was verified that 41.9% of students had poor knowledge of viral hepatitis. Among the high school students, 31.8% ignored that viral hepatitis are infectious and transmissible diseases. Considering hepatitis symptomatology, just 18% of high school students declared knowledge of the symptons, but none of those cited the ictericia. Among the academic students, 75.9% of nursing students had adequate knowledge of hepatitis, followed by pharmacy (51.3%), and biology students (18.2%). Nursing students had also higher scores of right answers regarding viral hepatitis and chronic disease. On contrary, biology and high school students had poor knowledge of that matter (37% and 44.5%, respectively). Less than 15% of nursing and pharmacy students did not know that viral hepatitis are sexually transmissible, whereas 78.6% of the 3rd year and 52.4% of the 4th year biology course ignored the sexual transmission of viral hepatitis. Still considering the same question, 54.5% of the high school students also ignored that viral hepatitis are sexually transmitted diseases. Important conclusions can be drawn from this study, since the higher hepatitis knowledge scores were found among nursing students, followed by pharmacy academics. However, biology students, which will serve as high school teachers, had poor and insufficient knowledge on hepatitis. This finding could explain the same poor disease knowledge among high school pupils.

  14. Metagenomic approach for discovering new pathogens in infection disease outbreaks

    Directory of Open Access Journals (Sweden)

    Emanuela Giombini

    2011-09-01

    Full Text Available Viruses represent the most abundant biological components on earth.They can be found in every environment, from deep layers of oceans to animal bodies.Although several viruses have been isolated and sequenced, in each environment there are millions of different types of viruses that have not been identified yet.The advent of nextgeneration sequencing technologies with their high throughput capabilities make possible to study in a single experiment all the community of microorganisms present in a particular sample “microbioma”.They made more feasible the application of the metagenomic approach, by which it is also possible to discover and identify new pathogens, that may pose a threat to public health.This paper summarizes the most recent applications of nextgeneration sequencing to discover new viral pathogens during the occurrence of infection disease outbreaks.

  15. Aquatic exercise training for fibromyalgia.

    Science.gov (United States)

    Bidonde, Julia; Busch, Angela J; Webber, Sandra C; Schachter, Candice L; Danyliw, Adrienne; Overend, Tom J; Richards, Rachel S; Rader, Tamara

    2014-10-28

    Exercise training is commonly recommended for individuals with fibromyalgia. This review examined the effects of supervised group aquatic training programs (led by an instructor). We defined aquatic training as exercising in a pool while standing at waist, chest, or shoulder depth. This review is part of the update of the 'Exercise for treating fibromyalgia syndrome' review first published in 2002, and previously updated in 2007. The objective of this systematic review was to evaluate the benefits and harms of aquatic exercise training in adults with fibromyalgia. We searched The Cochrane Library 2013, Issue 2 (Cochrane Database of Systematic Reviews, Database of Abstracts of Reviews of Effects, Cochrane Central Register of Controlled Trials, Health Technology Assessment Database, NHS Economic Evaluation Database), MEDLINE, EMBASE, CINAHL, PEDro, Dissertation Abstracts, WHO international Clinical Trials Registry Platform, and AMED, as well as other sources (i.e., reference lists from key journals, identified articles, meta-analyses, and reviews of all types of treatment for fibromyalgia) from inception to October 2013. Using Cochrane methods, we screened citations, abstracts, and full-text articles. Subsequently, we identified aquatic exercise training studies. Selection criteria were: a) full-text publication of a randomized controlled trial (RCT) in adults diagnosed with fibromyalgia based on published criteria, and b) between-group data for an aquatic intervention and a control or other intervention. We excluded studies if exercise in water was less than 50% of the full intervention. We independently assessed risk of bias and extracted data (24 outcomes), of which we designated seven as major outcomes: multidimensional function, self reported physical function, pain, stiffness, muscle strength, submaximal cardiorespiratory function, withdrawal rates and adverse effects. We resolved discordance through discussion. We evaluated interventions using mean differences

  16. Next Generation Respiratory Viral Vaccine System: Advanced and Emerging Bioengineered Human Lung Epithelia Model (HLEM) Organoid Technology

    Science.gov (United States)

    Goodwin, Thomas J.; Schneider, Sandra L.; MacIntosh, Victor; Gibbons, Thomas F.

    2010-01-01

    Acute respiratory infections, including pneumonia and influenza, are the S t" leading cause of United States and worldwide deaths. Newly emerging pathogens signaled the need for an advanced generation of vaccine technology.. Human bronchial-tracheal epithelial tissue was bioengineered to detect, identify, host and study the pathogenesis of acute respiratory viral disease. The 3-dimensional (3D) human lung epithelio-mesechymal tissue-like assemblies (HLEM TLAs) share characteristics with human respiratory epithelium: tight junctions, desmosomes, microvilli, functional markers villin, keratins and production of tissue mucin. Respiratory Syntial Virus (RSV) studies demonstrate viral growth kinetics and membrane bound glycoproteins up to day 20 post infection in the human lung-orgainoid infected cell system. Peak replication of RSV occurred on day 10 at 7 log10 particles forming units per ml/day. HLEM is an advanced virus vaccine model and biosentinel system for emergent viral infectious diseases to support DoD global surveillance and military readiness.

  17. Prevalence and risk factors for viral exposure in rural dogs around protected areas of the Atlantic forest.

    Science.gov (United States)

    Curi, Nelson Henrique de Almeida; Massara, Rodrigo Lima; de Oliveira Paschoal, Ana Maria; Soriano-Araújo, Amanda; Lobato, Zélia Inês Portela; Demétrio, Guilherme Ramos; Chiarello, Adriano Garcia; Passamani, Marcelo

    2016-01-28

    Despite the crucial role of domestic dogs as reservoirs for zoonosis and some of the most threatening diseases for wild carnivores such as distemper and parvovirosis, little is known about the epidemiological features and the risk factors involved in pathogen exposure of dogs that live in human/wildlife interfaces and actually contacts wildlife. Through a cross-sectional serological approach and questionnaire survey, we assessed the prevalence along with individual and environment-associated risk factors for four important viral diseases of rural dogs living in households around six Atlantic Forest fragments in southeast Brazil. Widespread exposure to canine parvovirus (97%), canine distemper virus (15%) and canine adenovirus (27%) was detected, but none for canine coronavirus. Dogs from small private reserves were more exposed to parvovirus and canine distemper virus than those from larger state parks. Exposure was associated with dog sex and age, lack of health care and the number of people in the households. Remarkably, factors linked to free-ranging behaviour of dogs were associated with the exposure for all pathogens detected. According to identified associations, reducing viral pathogen exposure in dogs will require inhibiting dog's movements and access to nearby forests and villages and improving veterinary assistance. Promoting dog vaccination and population control through sterilization around protected areas is also necessary. The study provides support for preventive management actions aimed to protect the health of rural dogs, and consequently of Atlantic Forest's wild carnivores.

  18. Understanding Image Virality

    Science.gov (United States)

    2015-06-07

    Example non-viral images. Figure 1: Top: Images with high viral scores in our dataset depict internet “celebrity” memes ex. “Grumpy Cat”; Bottom: Images...of images that is most similar to ours is the concurrently introduced viral meme generator of Wang et al., that combines NLP and Computer Vision (low...doing any of our tasks. The test included questions about widely spread Reddit memes and jargon so that anyone familiar with Reddit can easily get a high

  19. Aquatic studies

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    Thermal stress to microorganisms was measured by the production of dissolved organic matter by algal communities and the mineralization of glucose by heterotrophic populations. Mutagenic activity as measured by the Ames/Salmonella/microsome assay indicate that such activity does not occur in Par Pond, although limited mutagenic activity does occur in a nearby canal system due to chlorination of cooling water. Sodium hypochlorite, used as an algicide in the reactor fuel storage basins, caused increased pitting corrosion to reactor fuel targets. Five other compounds selected for testing proved to be superior to sodium hypochlorite. Legionella pneumophila, the pathogen which causes Legionnaire's disease, was found to be a natural part of aquatic ecosystems. It occurs over a wide range of environments and is able to utilize nutrients provided by primary producers. Phytoplankton size classes of less than 3 μm (less than 5% of the total phytoplankton biomass) accounted for 15 to 40% of the total primary productivity in Par Pond, Pond C, and Clark Hill Reservoir. Three major biological data sets were compiled and are available in the SRL computer system for analysis: the SRP deer herd data; 20 years of Par Pond data; and 25 years of biological data on the Savannah River. Results of marine studies indicated that nearly all plutonium in the Savannah River and its estuary resulted from nuclear weapons fallout. The plutonium concentration in the Savannah River is about one fourth the concentration in the Newport River which has no nuclear operations associated with it

  20. Production in aquatic macrophyte communities

    DEFF Research Database (Denmark)

    Binzer, Thomas; Sand-Jensen, Kaj

    2002-01-01

    -dimensional structure because of the strong drag and shear forces of moving water. This difference in canopy structure has been suggested to account for the three- to fivefold higher gross production rates in terrestrial than aquatic communities. To evaluate the effect of community structure in aquatic habitats, we......Many terrestrial plant canopies regulate spatial patterns in leaf density and leaf inclination to distribute light evenly between the photosynthetic tissue and to optimize light utilization efficiency. Sessile aquatic macrophytes, however, cannot maintain the same well-defined three...... was markedly enhanced by a vertical orientation of thalli when absorptance and community density were both high. This result implies that aquatic macrophytes of high thallus absorptance and community density exposed to high light are limited in attaining high gross production rates because of their inability...

  1. Depletion of Human DNA in Spiked Clinical Specimens for Improvement of Sensitivity of Pathogen Detection by Next-Generation Sequencing

    OpenAIRE

    Hasan, Mohammad R.; Rawat, Arun; Tang, Patrick; Jithesh, Puthen V.; Thomas, Eva; Tan, Rusung; Tilley, Peter

    2016-01-01

    Next-generation sequencing (NGS) technology has shown promise for the detection of human pathogens from clinical samples. However, one of the major obstacles to the use of NGS in diagnostic microbiology is the low ratio of pathogen DNA to human DNA in most clinical specimens. In this study, we aimed to develop a specimen-processing protocol to remove human DNA and enrich specimens for bacterial and viral DNA for shotgun metagenomic sequencing. Cerebrospinal fluid (CSF) and nasopharyngeal aspi...

  2. PAR-1 contributes to the innate immune response during viral infection

    Science.gov (United States)

    Antoniak, Silvio; Owens, A. Phillip; Baunacke, Martin; Williams, Julie C.; Lee, Rebecca D.; Weithäuser, Alice; Sheridan, Patricia A.; Malz, Ronny; Luyendyk, James P.; Esserman, Denise A.; Trejo, JoAnn; Kirchhofer, Daniel; Blaxall, Burns C.; Pawlinski, Rafal; Beck, Melinda A.; Rauch, Ursula; Mackman, Nigel

    2013-01-01

    Coagulation is a host defense system that limits the spread of pathogens. Coagulation proteases, such as thrombin, also activate cells by cleaving PARs. In this study, we analyzed the role of PAR-1 in coxsackievirus B3–induced (CVB3-induced) myocarditis and influenza A infection. CVB3-infected Par1–/– mice expressed reduced levels of IFN-β and CXCL10 during the early phase of infection compared with Par1+/+ mice that resulted in higher viral loads and cardiac injury at day 8 after infection. Inhibition of either tissue factor or thrombin in WT mice also significantly increased CVB3 levels in the heart and cardiac injury compared with controls. BM transplantation experiments demonstrated that PAR-1 in nonhematopoietic cells protected mice from CVB3 infection. Transgenic mice overexpressing PAR-1 in cardiomyocytes had reduced CVB3-induced myocarditis. We found that cooperative signaling between PAR-1 and TLR3 in mouse cardiac fibroblasts enhanced activation of p38 and induction of IFN-β and CXCL10 expression. Par1–/– mice also had decreased CXCL10 expression and increased viral levels in the lung after influenza A infection compared with Par1+/+ mice. Our results indicate that the tissue factor/thrombin/PAR-1 pathway enhances IFN-β expression and contributes to the innate immune response during single-stranded RNA viral infection. PMID:23391721

  3. Occurrence of Antimicrobial Resistance in Fish-Pathogenic and Environmental Bacteria Associated with Four Danish Rainbow Trout Farms

    DEFF Research Database (Denmark)

    Schmidt, Anja S.; Bruun, Morten Sichlau; Dalsgaard, Inger

    2000-01-01

    in fish, water, and sediment samples, two major fish pathogens (88 Flavobacterium psychrophilum isolates and 134 Yersinia ruckeri isolates) and 313 motile Aeromonas isolates, representing a group of ubiquitous aquatic bacteria, were isolated from the same samples. MICs were obtained applying...... flavobacteria and aeromonads, thus indicating a substantial impact of fish farming on several groups of bacteria associated with aquacultural environments....

  4. The GAAS metagenomic tool and its estimations of viral and microbial average genome size in four major biomes.

    Science.gov (United States)

    Angly, Florent E; Willner, Dana; Prieto-Davó, Alejandra; Edwards, Robert A; Schmieder, Robert; Vega-Thurber, Rebecca; Antonopoulos, Dionysios A; Barott, Katie; Cottrell, Matthew T; Desnues, Christelle; Dinsdale, Elizabeth A; Furlan, Mike; Haynes, Matthew; Henn, Matthew R; Hu, Yongfei; Kirchman, David L; McDole, Tracey; McPherson, John D; Meyer, Folker; Miller, R Michael; Mundt, Egbert; Naviaux, Robert K; Rodriguez-Mueller, Beltran; Stevens, Rick; Wegley, Linda; Zhang, Lixin; Zhu, Baoli; Rohwer, Forest

    2009-12-01

    Metagenomic studies characterize both the composition and diversity of uncultured viral and microbial communities. BLAST-based comparisons have typically been used for such analyses; however, sampling biases, high percentages of unknown sequences, and the use of arbitrary thresholds to find significant similarities can decrease the accuracy and validity of estimates. Here, we present Genome relative Abundance and Average Size (GAAS), a complete software package that provides improved estimates of community composition and average genome length for metagenomes in both textual and graphical formats. GAAS implements a novel methodology to control for sampling bias via length normalization, to adjust for multiple BLAST similarities by similarity weighting, and to select significant similarities using relative alignment lengths. In benchmark tests, the GAAS method was robust to both high percentages of unknown sequences and to variations in metagenomic sequence read lengths. Re-analysis of the Sargasso Sea virome using GAAS indicated that standard methodologies for metagenomic analysis may dramatically underestimate the abundance and importance of organisms with small genomes in environmental systems. Using GAAS, we conducted a meta-analysis of microbial and viral average genome lengths in over 150 metagenomes from four biomes to determine whether genome lengths vary consistently between and within biomes, and between microbial and viral communities from the same environment. Significant differences between biomes and within aquatic sub-biomes (oceans, hypersaline systems, freshwater, and microbialites) suggested that average genome length is a fundamental property of environments driven by factors at the sub-biome level. The behavior of paired viral and microbial metagenomes from the same environment indicated that microbial and viral average genome sizes are independent of each other, but indicative of community responses to stressors and environmental conditions.

  5. African Journal of Aquatic Science

    African Journals Online (AJOL)

    AFRICAN JOURNALS ONLINE (AJOL) · Journals · Advanced Search · USING ... The African Journal of Aquatic Science is an international journal devoted to the ... papers and short articles in all the aquatic science fields including limnology, ...

  6. A 3-year prospective study of the epidemiology of acute respiratory viral infections in hospitalized children in Shenzhen, China.

    Science.gov (United States)

    He, Ying; Lin, Guang-Yu; Wang, Qiong; Cai, Xiao-Ying; Zhang, Yin-Hui; Lin, Chuang-Xing; Lu, Chang-Dong; Lu, Xue-Dong

    2014-07-01

    The epidemiology of local viral etiologies is essential for the management of viral respiratory tract infections. Limited data are available in China to describe the epidemiology of viral respiratory infections, especially in small-medium cities and rural areas. To determine the viral etiology and seasonality of acute respiratory infections in hospitalized children, a 3-year study was conducted in Shenzhen, China. Nasopharyngeal aspirates from eligible children were collected. Influenza and other respiratory viruses were tested by molecular assays simultaneously. Data were analyzed to describe the frequency and seasonality. Of the 2025 children enrolled in the study, 971 (48.0%) were positive for at least one viral pathogen, in which 890 (91.7%) were respiratory syncytial virus (RSV; 30.5%) and human rhinovirus (HRV; 21.5%). Co-infections were found in 302 cases (31.1%), and dual viral infection was dominant. RSV, HRV and IAV were the most frequent viral agents involved in co-infection. On the whole, the obvious seasonal peaks mainly from March to May were observed with peak strength varying from 1 year to another. This study provides a basic profile of the epidemiology of acute respiratory viral infection in hospitalized children in Shenzhen. The spectrum of viruses in the study site is similar to that in other places, but the seasonality is closely related to geographic position, different from that in big cities in northern China and neighboring Hong Kong. © 2014 The Authors. Influenza and Other Respiratory Viruses Published by John Wiley & Sons Ltd.

  7. Interferon therapy of acute respiratory viral infections in children

    Directory of Open Access Journals (Sweden)

    A.E. Abaturov

    2017-04-01

    Full Text Available The purpose of our study was to evaluate the efficacy and tolerability of nasal spray Laferobionum® (100,000 IU/ml in children with acute respiratory viral infections. Materials and methods. The study included 84 children aged 12 to 18 years. Children of the main group (42 persons received Laferobionum® spray in addition to the standard treatment for acute respiratory viral infections. The drug was administered to children of 12–14 years for 2 spray doses in each nasal passage 4–5 times a day at regular intervals (with the exception of sleep time, children aged 14–18 years received 3 spray-doses per each nasal passage 5–6 times a day at regular intervals (excluding sleep time. The course of treatment for all subjects was 5 days. Children of the control group received standard treatment for acute respiratory viral infections without Laferobionum®. Objective research included: auscultation of the heart and lungs, examination of the skin and mucous membranes, measurement of heart rate, blood pressure and body temperature. All patients underwent a general blood test, a general urinalysis, identification of the pathogen using the method of direct immunofluorescence (in smears taken from the nasal passages in the laboratory “Medical Diagnostic Center of Dnipropetrovsk Medical Academy”. Results. In the non-epidemic period, the respiratory syncytial virus and adenoviruses were the leading viral pathogens of acute respiratory viral infections. The main clinical manifestations of acute respiratory viral infection in the observed patients were signs of general inflammatory and catarrhal syndromes. All patients had not severe course of the disease. The data of the physical examination performed before the beginning of treatment indicated the absence of clinically significant deviations from the cardiovascular system in the children of the main and control groups. Arterial blood pressure and heart rate in the subjects of both groups were

  8. Complexities in Isolation and Purification of Multiple Viruses from Mixed Viral Infections: Viral Interference, Persistence and Exclusion.

    Directory of Open Access Journals (Sweden)

    Naveen Kumar

    Full Text Available Successful purification of multiple viruses from mixed infections remains a challenge. In this study, we investigated peste des petits ruminants virus (PPRV and foot-and-mouth disease virus (FMDV mixed infection in goats. Rather than in a single cell type, cytopathic effect (CPE of the virus was observed in cocultured Vero/BHK-21 cells at 6th blind passage (BP. PPRV, but not FMDV could be purified from the virus mixture by plaque assay. Viral RNA (mixture transfection in BHK-21 cells produced FMDV but not PPRV virions, a strategy which we have successfully employed for the first time to eliminate the negative-stranded RNA virus from the virus mixture. FMDV phenotypes, such as replication competent but noncytolytic, cytolytic but defective in plaque formation and, cytolytic but defective in both plaque formation and standard FMDV genome were observed respectively, at passage level BP8, BP15 and BP19 and hence complicated virus isolation in the cell culture system. Mixed infection was not found to induce any significant antigenic and genetic diversity in both PPRV and FMDV. Further, we for the first time demonstrated the viral interference between PPRV and FMDV. Prior transfection of PPRV RNA, but not Newcastle disease virus (NDV and rotavirus RNA resulted in reduced FMDV replication in BHK-21 cells suggesting that the PPRV RNA-induced interference was specifically directed against FMDV. On long-term coinfection of some acute pathogenic viruses (all possible combinations of PPRV, FMDV, NDV and buffalopox virus in Vero cells, in most cases, one of the coinfecting viruses was excluded at passage level 5 suggesting that the long-term coinfection may modify viral persistence. To the best of our knowledge, this is the first documented evidence describing a natural mixed infection of FMDV and PPRV. The study not only provides simple and reliable methodologies for isolation and purification of two epidemiologically and economically important groups of

  9. Acute Viral Respiratory Infection Rapidly Induces a CD8+ T Cell Exhaustion-like Phenotype.

    Science.gov (United States)

    Erickson, John J; Lu, Pengcheng; Wen, Sherry; Hastings, Andrew K; Gilchuk, Pavlo; Joyce, Sebastian; Shyr, Yu; Williams, John V

    2015-11-01

    Acute viral infections typically generate functional effector CD8(+) T cells (TCD8) that aid in pathogen clearance. However, during acute viral lower respiratory infection, lung TCD8 are functionally impaired and do not optimally control viral replication. T cells also become unresponsive to Ag during chronic infections and cancer via signaling by inhibitory receptors such as programmed cell death-1 (PD-1). PD-1 also contributes to TCD8 impairment during viral lower respiratory infection, but how it regulates TCD8 impairment and the connection between this state and T cell exhaustion during chronic infections are unknown. In this study, we show that PD-1 operates in a cell-intrinsic manner to impair lung TCD8. In light of this, we compared global gene expression profiles of impaired epitope-specific lung TCD8 to functional spleen TCD8 in the same human metapneumovirus-infected mice. These two populations differentially regulate hundreds of genes, including the upregulation of numerous inhibitory receptors by lung TCD8. We then compared the gene expression of TCD8 during human metapneumovirus infection to those in acute or chronic lymphocytic choriomeningitis virus infection. We find that the immunophenotype of lung TCD8 more closely resembles T cell exhaustion late into chronic infection than do functional effector T cells arising early in acute infection. Finally, we demonstrate that trafficking to the infected lung alone is insufficient for TCD8 impairment or inhibitory receptor upregulation, but that viral Ag-induced TCR signaling is also required. Our results indicate that viral Ag in infected lungs rapidly induces an exhaustion-like state in lung TCD8 characterized by progressive functional impairment and upregulation of numerous inhibitory receptors. Copyright © 2015 by The American Association of Immunologists, Inc.

  10. Bovine viral diarrhea virus (BVDV) genetic diversity in Spain: A review

    International Nuclear Information System (INIS)

    Diéguez, F.J.; Cerviño, M.; Yus, E.

    2017-01-01

    Bovine viral diarrhea virus (BVDV), a member of the genus Pestivirus of the family Flaviviridae, causes significant losses in cattle farming worldwide because of reduced milk production, increased mortality of young animals and reproductive, respiratory and intestinal problems. The virus is characterized by an important genetic, and consequently antigenic and pathogenic diversity. Knowing the variability of viral strains present in a population provides valuable information, particularly relevant for control programs development, vaccination recommendations and even identification of likely infection sources. Such information is therefore important at both local and regional levels. This review focuses on the genetic diversity of BVDV isolates infecting cattle in Spain over the last years. According to the published data, the most prevalent BVDV group in Spain was 1b, and to a lesser extent 1d, 1e and 1f. Besides, BVDV-2 has also been found in Spain with several ratified isolates. The studies carried out in Spain also showed increased genetic heterogeneity of BVDV strains, possibly due to a more intensive use of analytical tools available, presenting studies with increasingly greater sample sizes.

  11. Host Innate Immunity against Hepatitis E Virus and Viral Evasion Mechanisms.

    Science.gov (United States)

    Kang, Sangmin; Myoung, Jinjong

    2017-10-28

    Hepatitis E virus (HEV) infections cause epidemic or sporadic acute hepatitis, which are mostly self-limiting. However, viral infection in immunocompromised patients and pregnant women may result in serious consequences, such as chronic hepatitis and liver damage, mortality of the latter of which reaches up to 20-30%. Type I interferon (IFN)-induced antiviral immunity is known to be the first-line defense against virus infection. Upon HEV infection in the cell, the virus genome is recognized by pathogen recognition receptors, leading to rapid activation of intracellular signaling cascades. Expression of type I IFN triggers induction of a barrage of IFN-stimulated genes, helping the cells cope with viral infection. Interestingly, some of the HEV-encoded genes seem to be involved in disrupting signaling cascades for antiviral immune responses, and thus crippling cytokine/chemokine production. Antagonistic mechanisms of type I IFN responses by HEV have only recently begun to emerge, and in this review, we summarize known HEV evasion strategies and compare them with those of other hepatitis viruses.

  12. Bovine viral diarrhea virus (BVDV) genetic diversity in Spain: A review

    Energy Technology Data Exchange (ETDEWEB)

    Diéguez, F.J.; Cerviño, M.; Yus, E.

    2017-07-01

    Bovine viral diarrhea virus (BVDV), a member of the genus Pestivirus of the family Flaviviridae, causes significant losses in cattle farming worldwide because of reduced milk production, increased mortality of young animals and reproductive, respiratory and intestinal problems. The virus is characterized by an important genetic, and consequently antigenic and pathogenic diversity. Knowing the variability of viral strains present in a population provides valuable information, particularly relevant for control programs development, vaccination recommendations and even identification of likely infection sources. Such information is therefore important at both local and regional levels. This review focuses on the genetic diversity of BVDV isolates infecting cattle in Spain over the last years. According to the published data, the most prevalent BVDV group in Spain was 1b, and to a lesser extent 1d, 1e and 1f. Besides, BVDV-2 has also been found in Spain with several ratified isolates. The studies carried out in Spain also showed increased genetic heterogeneity of BVDV strains, possibly due to a more intensive use of analytical tools available, presenting studies with increasingly greater sample sizes.

  13. Toxicity of Engineered Nanoparticles to Aquatic Invertebrates

    DEFF Research Database (Denmark)

    Cupi, Denisa; Sørensen, Sara Nørgaard; Skjolding, Lars Michael

    2016-01-01

    This chapter provides a targeted description of some of the most important processes that influence toxicity and uptake of nanoparticles in aquatic invertebrates. It discusses silver nanoparticles (Ag NPs), on how aspects of dissolution and chemical species obtained from this process can influence...... ecotoxicity of aquatic invertebrates. The chapter focuses on how fullerenes affect the toxicity of other pollutants, but also reflect on the fate and behavior of C60 in the aquatic environment, as well as ecotoxicity to aquatic invertebrates. It presents the case of titanium dioxide nanoparticles (TiO2 NPs...... on bioaccumulation focusing on the effect of nanoparticle coating, uptake, and depuration in aquatic invertebrates....

  14. Role of complement and antibodies in controlling infection with pathogenic simian immunodeficiency virus (SIV in macaques vaccinated with replication-deficient viral vectors

    Directory of Open Access Journals (Sweden)

    Strasak Alexander

    2009-06-01

    Full Text Available Abstract Background We investigated the interplay between complement and antibodies upon priming with single-cycle replicating viral vectors (SCIV encoding SIV antigens combined with Adeno5-SIV or SCIV pseudotyped with murine leukemia virus envelope boosting strategies. The vaccine was applied via spray-immunization to the tonsils of rhesus macaques and compared with systemic regimens. Results Independent of the application regimen or route, viral loads were significantly reduced after challenge with SIVmac239 (p Conclusion The heterologous prime-boost strategy with replication-deficient viral vectors administered exclusively via the tonsils did not induce any neutralizing antibodies before challenge. However, after challenge, comparable SIV-specific humoral immune responses were observed in all vaccinated animals. Immunization with single cycle immunodeficiency viruses mounts humoral immune responses comparable to live-attenuated immunodeficiency virus vaccines.

  15. Single-cycle immunodeficiency viruses provide strategies for uncoupling in vivo expression levels from viral replicative capacity and for mimicking live-attenuated SIV vaccines

    International Nuclear Information System (INIS)

    Kuate, Seraphin; Stahl-Hennig, Christiane; Haaft, Peter ten; Heeney, Jonathan; Ueberla, Klaus

    2003-01-01

    To reduce the risks associated with live-attenuated immunodeficiency virus vaccines, single-cycle immunodeficiency viruses (SCIVs) were developed by primer complementation and production of the vaccine in the absence of vif in a vif-independent cell line. After a single intravenous injection of SCIVs into rhesus monkeys, peak viral RNA levels of 10 3 to 10 4 copies/ml plasma were observed, indicating efficient expression of SCIV in the vaccinee. After booster immunizations with SCIVs, SIV-specific humoral and cellular immune responses were observed. Although the vaccine doses used in this pilot study could not protect vaccinees from subsequent intravenous challenge with pathogenic SIVmac239, our results demonstrate that the novel SCIV approach allows us to uncouple in vivo expression levels from the viral replicative capacity facilitating the analysis of the relationship between viral expression levels or viral genes and immune responses induced by SIV

  16. Phytoremediation potential of aquatic macrophyte, Azolla.

    Science.gov (United States)

    Sood, Anjuli; Uniyal, Perm L; Prasanna, Radha; Ahluwalia, Amrik S

    2012-03-01

    Aquatic macrophytes play an important role in the structural and functional aspects of aquatic ecosystems by altering water movement regimes, providing shelter to fish and aquatic invertebrates, serving as a food source, and altering water quality by regulating oxygen balance, nutrient cycles, and accumulating heavy metals. The ability to hyperaccumulate heavy metals makes them interesting research candidates, especially for the treatment of industrial effluents and sewage waste water. The use of aquatic macrophytes, such as Azolla with hyper accumulating ability is known to be an environmentally friendly option to restore polluted aquatic resources. The present review highlights the phytoaccumulation potential of macrophytes with emphasis on utilization of Azolla as a promising candidate for phytoremediation. The impact of uptake of heavy metals on morphology and metabolic processes of Azolla has also been discussed for a better understanding and utilization of this symbiotic association in the field of phytoremediation.

  17. Pathogenesis and transmissibility of highly (H7N1 and low (H7N9 pathogenic avian influenza virus infection in red-legged partridge (Alectoris rufa

    Directory of Open Access Journals (Sweden)

    Bertran Kateri

    2011-02-01

    Full Text Available Abstract An experimental infection with highly pathogenic avian influenza virus (HPAIV and low pathogenic avian influenza virus (LPAIV was carried out in red-legged partridges (Alectoris rufa in order to study clinical signs, gross and microscopic lesions, and viral distribution in tissues and viral shedding. Birds were infected with a HPAIV subtype H7N1 (A/Chicken/Italy/5093/1999 and a LPAIV subtype H7N9 (A/Anas crecca/Spain/1460/2008. Uninoculated birds were included as contacts in both groups. In HPAIV infected birds, the first clinical signs were observed at 3 dpi, and mortality started at 4 dpi, reaching 100% at 8 dpi. The presence of viral antigen in tissues and viral shedding were confirmed by immunohistochemistry and quantitative real time RT-PCR (qRRT-PCR, respectively, in all birds infected with HPAIV. However, neither clinical signs nor histopathological findings were observed in LPAIV infected partridges. In addition, only short-term viral shedding together with seroconversion was detected in some LPAIV inoculated animals. The present study demonstrates that the red-legged partridge is highly susceptible to the H7N1 HPAIV strain, causing severe disease, mortality and abundant viral shedding and thus contributing to the spread of a potential local outbreak of this virus. In contrast, our results concerning H7N9 LPAIV suggest that the red-legged partridge is not a reservoir species for this virus.

  18. Pathogenesis and transmissibility of highly (H7N1) and low (H7N9) pathogenic avian influenza virus infection in red-legged partridge (Alectoris rufa).

    Science.gov (United States)

    Bertran, Kateri; Pérez-Ramírez, Elisa; Busquets, Núria; Dolz, Roser; Ramis, Antonio; Darji, Ayub; Abad, Francesc Xavier; Valle, Rosa; Chaves, Aida; Vergara-Alert, Júlia; Barral, Marta; Höfle, Ursula; Majó, Natàlia

    2011-02-07

    An experimental infection with highly pathogenic avian influenza virus (HPAIV) and low pathogenic avian influenza virus (LPAIV) was carried out in red-legged partridges (Alectoris rufa) in order to study clinical signs, gross and microscopic lesions, and viral distribution in tissues and viral shedding. Birds were infected with a HPAIV subtype H7N1 (A/Chicken/Italy/5093/1999) and a LPAIV subtype H7N9 (A/Anas crecca/Spain/1460/2008). Uninoculated birds were included as contacts in both groups. In HPAIV infected birds, the first clinical signs were observed at 3 dpi, and mortality started at 4 dpi, reaching 100% at 8 dpi. The presence of viral antigen in tissues and viral shedding were confirmed by immunohistochemistry and quantitative real time RT-PCR (qRRT-PCR), respectively, in all birds infected with HPAIV. However, neither clinical signs nor histopathological findings were observed in LPAIV infected partridges. In addition, only short-term viral shedding together with seroconversion was detected in some LPAIV inoculated animals. The present study demonstrates that the red-legged partridge is highly susceptible to the H7N1 HPAIV strain, causing severe disease, mortality and abundant viral shedding and thus contributing to the spread of a potential local outbreak of this virus. In contrast, our results concerning H7N9 LPAIV suggest that the red-legged partridge is not a reservoir species for this virus.

  19. Two Genetically Similar H9N2 Influenza A Viruses Show Different Pathogenicity in Mice

    Directory of Open Access Journals (Sweden)

    Qingtao Liu

    2016-11-01

    Full Text Available H9N2 Avian influenza virus has repeatedly infected humans and other mammals, which highlights the need to determine the pathogenicity and the corresponding mechanism of this virus for mammals. In this study, we found two H9N2 viruses with similar genetic background but with different pathogenicity in mice. The A/duck/Nanjing/06/2003 (NJ06 virus was highly pathogenic for mice, with a 50% mouse lethal dose of 102.83 50% egg infectious dose, whereas the A/duck/Nanjing/01/1999 (NJ01 virus was low pathogenic for mice, with a 50% mouse lethal dose of >106.81 50% egg infectious dose. Further studies showed that the NJ06 virus grew faster and reached significantly higher titers than NJ01 in vivo and in vitro. Moreover, the NJ06 virus induced more severe lung lesions, and higher levels of inflammatory cellular infiltration and cytokine response in lungs than NJ01 did. However, only twelve different amino acid residues (HA-K157E, NA-A9T, NA-R435K, PB2-T149P, PB2-K627E, PB1-R187K, PA-L548M, PA-M550L, NP-G127E, NP-P277H, NP-D340N, NS1-D171N were found between the two viruses, and all these residues except for NA-R435K were located in the known functional regions involved in interaction of viral proteins or between the virus and host factors. Summary, our results suggest that multiple amino acid differences may be responsible for the higher pathogenicity of the NJ06 virus for mice, resulting in lethal infection, enhanced viral replication, severe lung lesions, and excessive inflammatory cellular infiltration and cytokine response in lungs. These observations will be helpful for better understanding the pathogenic potential and the corresponding molecular basis of H9N2 viruses that might pose threats to human health in the future.

  20. Environmental controls, oceanography and population dynamics of pathogens and harmful algal blooms: connecting sources to human exposure

    Directory of Open Access Journals (Sweden)

    Minnett Peter

    2008-11-01

    Full Text Available Abstract Coupled physical-biological models are capable of linking the complex interactions between environmental factors and physical hydrodynamics to simulate the growth, toxicity and transport of infectious pathogens and harmful algal blooms (HABs. Such simulations can be used to assess and predict the impact of pathogens and HABs on human health. Given the widespread and increasing reliance of coastal communities on aquatic systems for drinking water, seafood and recreation, such predictions are critical for making informed resource management decisions. Here we identify three challenges to making this connection between pathogens/HABs and human health: predicting concentrations and toxicity; identifying the spatial and temporal scales of population and ecosystem interactions; and applying the understanding of population dynamics of pathogens/HABs to management strategies. We elaborate on the need to meet each of these challenges, describe how modeling approaches can be used and discuss strategies for moving forward in addressing these challenges.

  1. Bile acids for viral hepatitis

    DEFF Research Database (Denmark)

    Chen, Weikeng; Liu, J; Gluud, C

    2003-01-01

    The viral hepatitides are common causes of liver diseases globally. Trials have assessed bile acids for patients with viral hepatitis, but no consensus was reached regarding their usefulness.......The viral hepatitides are common causes of liver diseases globally. Trials have assessed bile acids for patients with viral hepatitis, but no consensus was reached regarding their usefulness....

  2. Viral hemorrhagic septicemia

    Science.gov (United States)

    Batts, William N.; Winton, James R.

    2012-01-01

    Viral hemorrhagic septicemia (VHS) is one of the most important viral diseases of finfish worldwide. In the past, VHS was thought to affect mainly rainbow trout Oncorhynchus mykiss reared at freshwater facilities in Western Europe where it was known by various names including Egtved disease and infectious kidney swelling and liver degeneration (Wolf 1988). Today, VHS is known as an important source of mortality for cultured and wild fish in freshwater and marine environments in several regions of the northern hemisphere (Dixon 1999; Gagné et al. 2007; Kim and Faisal 2011; Lumsden et al. 2007; Marty et al. 1998, 2003; Meyers and Winton 1995; Skall et al. 2005b; Smail 1999; Takano et al. 2001). Viral hemorrhagic septicemia is caused by the fish rhabdovirus, viral hemorrhagic septicemia virus (VHSV), a member of the genus Novirhabdovirus of the family Rhabdoviridae

  3. The impact of early immune destruction on the kinetics of postacute viral replication in rhesus monkey infected with the simian-human immunodeficiency virus 89.6P

    International Nuclear Information System (INIS)

    Zhang Zhiqiang; Schleif, William A.; Casimiro, Danilo R.; Handt, Larry; Chen, Minchun; Davies, Mary-Ellen; Liang Xiaoping; Fu Tongming; Tang Aimin; Wilson, Keith A.; McElhaugh, Michael; Carella, Anthony; Tan, Charles; Connolly, Brett; Hill, Susan; Klein, Hilton; Emini, Emilio A.; Shiver, John W.

    2004-01-01

    Set-point viral load is positively correlated with the extent of initial viral replication in pathogenic simian-human immunodeficiency virus (SHIV) infection. To elucidate the mechanisms underlying the correlation, we conducted a systematic investigation in rhesus monkeys infected with the highly pathogenic SHIV 89.6P. This model is widely used in the preclinical evaluation of AIDS vaccine candidates and a thorough understanding of the model's biology is important to the proper interpretation of these evaluations. We found that the levels of peak viremia were positively correlated not only with the levels of set-point viremia but, importantly, with the extent of initial overall immune destruction as indicated by the degree of CD4 + T cell depletion and lymph node germinal center (GC) formation. The extent of initial overall immune destruction was inversely correlated with subsequent development and maintenance of virus-specific cellular and humoral immune responses. Thus, these data suggest that the extent of early immune damage determines the development and durability of virus-specific immunity, thereby playing a critical role in establishing the levels of set-point viral replication in SHIV infection. Vaccines that limit both the initial viral replication and the extent of early immune damage will therefore mediate long-term virus replication control and mitigation of long-term immune destruction in this model of immunodeficiency virus infection

  4. ViralORFeome: an integrated database to generate a versatile collection of viral ORFs.

    Science.gov (United States)

    Pellet, J; Tafforeau, L; Lucas-Hourani, M; Navratil, V; Meyniel, L; Achaz, G; Guironnet-Paquet, A; Aublin-Gex, A; Caignard, G; Cassonnet, P; Chaboud, A; Chantier, T; Deloire, A; Demeret, C; Le Breton, M; Neveu, G; Jacotot, L; Vaglio, P; Delmotte, S; Gautier, C; Combet, C; Deleage, G; Favre, M; Tangy, F; Jacob, Y; Andre, P; Lotteau, V; Rabourdin-Combe, C; Vidalain, P O

    2010-01-01

    Large collections of protein-encoding open reading frames (ORFs) established in a versatile recombination-based cloning system have been instrumental to study protein functions in high-throughput assays. Such 'ORFeome' resources have been developed for several organisms but in virology, plasmid collections covering a significant fraction of the virosphere are still needed. In this perspective, we present ViralORFeome 1.0 (http://www.viralorfeome.com), an open-access database and management system that provides an integrated set of bioinformatic tools to clone viral ORFs in the Gateway(R) system. ViralORFeome provides a convenient interface to navigate through virus genome sequences, to design ORF-specific cloning primers, to validate the sequence of generated constructs and to browse established collections of virus ORFs. Most importantly, ViralORFeome has been designed to manage all possible variants or mutants of a given ORF so that the cloning procedure can be applied to any emerging virus strain. A subset of plasmid constructs generated with ViralORFeome platform has been tested with success for heterologous protein expression in different expression systems at proteome scale. ViralORFeome should provide our community with a framework to establish a large collection of virus ORF clones, an instrumental resource to determine functions, activities and binding partners of viral proteins.

  5. Aquatic subsidies transport anthropogenic nitrogen to riparian spiders

    Energy Technology Data Exchange (ETDEWEB)

    Akamatsu, Fumikazu, E-mail: f-akamt55@pwri.go.jp [Department of Environmental Sciences, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621 (Japan); Toda, Hideshige [Department of Environmental Sciences, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621 (Japan)

    2011-05-15

    Stable nitrogen isotopic composition ({delta}{sup 15}N) of aquatic biota increases with anthropogenic N inputs such as sewage and livestock waste downstream. Increase in {delta}{sup 15}N of riparian spiders downstream may reflect the anthropogenic pollution exposure through predation on aquatic insects. A two-source mixing model based on stable carbon isotopic composition showed the greatest dependence on aquatic insects (84%) by horizontal web-building spiders, followed by intermediate (48%) and low (31%) dependence by cursorial and vertical web-building spiders, respectively. The spider body size was negatively correlated with the dietary proportion of aquatic insects and spider {delta}{sup 15}N. The aquatic subsidies transported anthropogenic N to smaller riparian spiders downstream. This transport of anthropogenic N was regulated by spider's guild designation and body size. - Highlights: > {delta}{sup 15}N of aquatic insects increases downstream with anthropogenic nitrogen inputs. > {delta}{sup 15}N of riparian spiders increases with a high dietary proportion of aquatic insects and smaller spider body size. > The aquatic subsidies transport anthropogenic nitrogen to smaller riparian spiders downstream. - Smaller spiders assimilate anthropogenic nitrogen through the predation on aquatic subsides.

  6. Aquatic subsidies transport anthropogenic nitrogen to riparian spiders

    International Nuclear Information System (INIS)

    Akamatsu, Fumikazu; Toda, Hideshige

    2011-01-01

    Stable nitrogen isotopic composition (δ 15 N) of aquatic biota increases with anthropogenic N inputs such as sewage and livestock waste downstream. Increase in δ 15 N of riparian spiders downstream may reflect the anthropogenic pollution exposure through predation on aquatic insects. A two-source mixing model based on stable carbon isotopic composition showed the greatest dependence on aquatic insects (84%) by horizontal web-building spiders, followed by intermediate (48%) and low (31%) dependence by cursorial and vertical web-building spiders, respectively. The spider body size was negatively correlated with the dietary proportion of aquatic insects and spider δ 15 N. The aquatic subsidies transported anthropogenic N to smaller riparian spiders downstream. This transport of anthropogenic N was regulated by spider's guild designation and body size. - Highlights: → δ 15 N of aquatic insects increases downstream with anthropogenic nitrogen inputs. → δ 15 N of riparian spiders increases with a high dietary proportion of aquatic insects and smaller spider body size. → The aquatic subsidies transport anthropogenic nitrogen to smaller riparian spiders downstream. - Smaller spiders assimilate anthropogenic nitrogen through the predation on aquatic subsides.

  7. Role of gut pathogens in development of irritable bowel syndrome

    Directory of Open Access Journals (Sweden)

    Madhusudan Grover

    2014-01-01

    Full Text Available Acute infectious gastroenteritis is one of the most commonly identifiable risk factors for the development of irritable bowel syndrome (IBS. A number of bacterial, viral and parasitic pathogens have been found to be associated with the development of IBS and other functional gastrointestinal (GI disorders. Epidemiological studies have identified demographic and acute enteritis-related risk factors for the development of post-infectious-IBS (PI-IBS. Immune dysregulation, alterations in barrier function, serotonergic and mast cell activation have been identified as potential pathophysiological mechanisms. Additionally, variations in host genes involved in barrier function, antigen presentation and cytokine response have been associated with PI-IBS development. However, it is unknown whether specific pathogens have unique effects on long-term alterations in gut physiology or different pathogens converge to cause common alterations resulting in similar phenotype. The role of microbial virulence and pathogenicity factors in development of PI-IBS is also largely unknown. Additionally, alterations in host gut sensation, motility, secretion, and barrier function in PI-IBS need to be elucidated. Finally, both GI infections and antibiotics used to treat these infections can cause long-term alterations in host commensal microbiota. It is plausible that alteration in the commensal microbiome persists in a subset of patients predisposing them to develop PI-IBS.

  8. Protruding Features of Viral Capsids Are Clustered on Icosahedral Great Circles.

    Directory of Open Access Journals (Sweden)

    David P Wilson

    Full Text Available Spherical viruses are remarkably well characterized by the Triangulation (T number developed by Casper and Klug. The T-number specifies how many viral capsid proteins are required to cover the virus, as well as how they are further subdivided into pentamer and hexamer subunits. The T-number however does not constrain the orientations of these proteins within the subunits or dictate where the proteins should place their protruding features. These protrusions often take the form of loops, spires and helices, and are significant because they aid in stability of the capsid as well as recognition by the host organism. Until now there has be no overall understanding of the placement of protrusions for spherical viruses, other than they have icosahedral symmetry. We constructed a set of gauge points based upon the work affine extensions of Keef and Twarock, which have fixed relative angular locations with which to measure the locations of these features. This work adds a new element to our understanding of the geometric arrangement of spherical viral capsid proteins; chiefly that the locations of protruding features are not found stochastically distributed in an icosahedral manner across the viral surface, but instead these features are found only in specific locations along the 15 icosahedral great circles. We have found that this result holds true as the T number and viral capsids size increases, suggesting an underlying geometric constraint on their locations. This is in spite of the fact that the constraints on the pentamers and hexamer orientations change as a function of T-number, as you need to accommodate more hexamers in the same solid angle between pentamers. The existence of this angular constraint of viral capsids suggests that there is a fitness or energetic benefit to the virus placing its protrusions in this manner. This discovery may have profound impacts on identifying and eliminating viral pathogens, understanding evolutionary

  9. [Relationship between viral load of human bocavirus and clinical characteristics in children with acute lower respiratory tract infection].

    Science.gov (United States)

    Ding, Xiao-Fang; Zhang, Bing; Zhong, Li-Li; Xie, Le-Yun; Xiao, Ni-Guang

    2017-03-01

    To investigate the prevalence of human bocavirus (HBoV) in children with acute lower respiratory tract infection and to explore the relationship between the viral load of HBoV and the clinical characteristics of acute lower respiratory tract infection in children. A total of 1 554 nasopharyngeal aspirates from children who were hospitalized due to acute lower respiratory tract infection between March 2011 and March 2014 were collected. Quantitative real-time PCR was used to detect 12 RNA and 2 DNA viruses, adenovirus (ADV) and HBoV, and to measure the viral load of HBoV in HBoV-positive children. A comprehensive analysis was performed with reference to clinical symptoms and indicators. In the 1 554 specimens, 1 212 (77.99%) were positive for viruses, and 275 (17.70%) were HBoV-positive. In HBoV-positive cases, 94.9% were aged infection, and 230 (83.64%) had mixed infection. There was no significant difference in viral load between children with single infection and mixed infection (P>0.05). The patients with fever had a significantly higher viral load than those without fever (Pacute lower respiratory tract infection (P>0.05). HBoV is one of the important pathogens of acute lower respiratory tract infection in children. Children with a higher viral load of HBoV are more likely to experience symptoms such as fever and wheezing. However, the severity of disease and mixed infection are not significantly related to viral load.

  10. Oncolytic Viral Therapy and the Immune System: A Double-Edged Sword Against Cancer.

    Science.gov (United States)

    Marelli, Giulia; Howells, Anwen; Lemoine, Nicholas R; Wang, Yaohe

    2018-01-01

    Oncolytic viral therapy is a new promising strategy against cancer. Oncolytic viruses (OVs) can replicate in cancer cells but not in normal cells, leading to lysis of the tumor mass. Beside this primary effect, OVs can also stimulate the immune system. Tumors are an immuno-suppressive environment in which the immune system is silenced in order to avoid the immune response against cancer cells. The delivery of OVs into the tumor wakes up the immune system so that it can facilitate a strong and durable response against the tumor itself. Both innate and adaptive immune responses contribute to this process, producing an immune response against tumor antigens and facilitating immunological memory. However, viruses are recognized by the immune system as pathogens and the consequent anti-viral response could represent a big hurdle for OVs. Finding a balance between anti-tumor and anti-viral immunity is, under this new light, a priority for researchers. In this review, we provide an overview of the various ways in which different components of the immune system can be allied with OVs. We have analyzed the different immune responses in order to highlight the new and promising perspectives leading to increased anti-tumor response and decreased immune reaction to the OVs.

  11. Breaking into the epithelial apical-junctional complex--news from pathogen hackers.

    Science.gov (United States)

    Vogelmann, Roger; Amieva, Manuel R; Falkow, Stanley; Nelson, W James

    2004-02-01

    The epithelial apical-junctional complex is a key regulator of cellular functions. In addition, it is an important target for microbial pathogens that manipulate the cell to survive, proliferate and sometimes persist within a host. Out of a myriad of potential molecular targets, some bacterial and viral pathogens have selected a subset of protein targets at the apical-junctional complex of epithelial cells. Studying how microbes use these targets also teaches us about the inherent physiological properties of host molecules in the context of normal junctional structure and function. Thus, we have learned that three recently uncovered components of the apical-junctional complex of the Ig superfamily--junctional adhesion molecule, Nectin and the coxsackievirus and adenovirus receptor--are important regulators of junction structure and function and represent critical targets of microbial virulence gene products.

  12. Diversity and Impact of Prokaryotic Toxins on Aquatic Environments: A Review

    Directory of Open Access Journals (Sweden)

    Rogério Tenreiro

    2010-10-01

    and irrigation water. Clostridium members are also spore-forming bacteria and can persist in hostile environmental conditions for long periods of time, contributing to their hazard grade. Similarly, Pseudomonas species are widespread in the environment. Since P. aeruginosa is an emergent opportunistic pathogen, its toxins may represent new hazards for humans and animals. This review presents an overview of the diversity of toxins produced by prokaryotic microorganisms associated with aquatic habitats and their impact on environment, life and health of humans and other animals. Moreover, important issues like the availability of these toxins in the environment, contamination sources and pathways, genes involved in their biosynthesis and molecular mechanisms of some representative toxins are also discussed.

  13. Aetiology of acute paediatric gastroenteritis in Bulgaria during summer months: prevalence of viral infections.

    Science.gov (United States)

    Mladenova, Zornitsa; Steyer, Andrej; Steyer, Adela Fratnik; Ganesh, Balasubramanian; Petrov, Petar; Tchervenjakova, Tanja; Iturriza-Gomara, Miren

    2015-03-01

    Paediatric acute gastroenteritis is a global public health problem. Comprehensive laboratory investigation for viral, bacterial and parasitic agents is helpful for improving management of acute gastroenteritis in health care settings and for monitoring and controlling the spread of these infections. Our study aimed to investigate the role of various pathogens in infantile diarrhoea in Bulgaria outside the classical winter epidemics of rotavirus and norovirus. Stool samples from 115 hospitalized children aged 0-3 years collected during summer months were tested for presence of 14 infectious agents - group A rotavirus, astrovirus, Giardia, Cryptosporidium and Entamoeba using ELISAs; norovirus by real-time RT-PCR; picobirnavirus and sapovirus by RT-PCR; adenovirus using PCR, and Salmonella, Shigella, Escherichia coli, Yersinia and Campylobacter using standard bacterial cultures. Infectious origin was established in a total of 92 cases and 23 samples remained negative. A single pathogen was found in 67 stools, of which rotaviruses were the most prevalent (56.7 %), followed by noroviruses (19.4 %), enteric adenoviruses (7.5 %), astroviruses (6.0 %), bacteria and parasites (4.5 % each) and sapoviruses (1.4 %). Rotavirus predominant genotypes were G4P[8] (46.3 %) and G2P[4] (21.4 %); for astroviruses, type 1a was the most common, while the GII.4/2006b variant was the most prevalent among noroviruses. Bacteria were observed in five cases, with Salmonella sp. as the most prevalent, while parasites were found in ten stool samples, with Giardia intestinalis in five cases. The results demonstrated high morbidity associated with viral infections and that rotavirus and norovirus remain the most common pathogens associated with severe gastroenteritis during summer months in Bulgaria, a country with a temperate climate, and significant molecular diversity among circulating virus strains. © 2015 The Authors.

  14. Outdoor ranging of poultry: a major risk factor for the introduction and development of high pathogenicity Avian Influenza

    NARCIS (Netherlands)

    Koch, G.; Elbers, A.R.W.

    2006-01-01

    High-Pathogenicity Avian Influenza (HPAI) is an extremely infectious viral disease of poultry. Public health concerns were raised when six persons died in Hong Kong in 1997 after exposure to HPAI-infected poultry. Its danger became imminent in the recent HPAI epidemic in South-East Asia when the

  15. Viral Marketing

    OpenAIRE

    Sorina Raula Gîrboveanu; Silvia Puiu

    2008-01-01

    With consumers showing increasing resistance to traditional forms of advertising such as TV or newspaper ads, marketers have turned to alternate strategies, including viral marketing. Viral marketing exploits existing social networks by encouraging customers to share product information with their friends.In our study we are able to directly observe the effectiveness of person to person word of mouth advertising for hundreds of thousands of products for the first time

  16. Viral evasion of DNA-stimulated innate immune responses.

    Science.gov (United States)

    Christensen, Maria H; Paludan, Søren R

    2017-01-01

    Cellular sensing of virus-derived nucleic acids is essential for early defenses against virus infections. In recent years, the discovery of DNA sensing proteins, including cyclic GMP-AMP synthase (cGAS) and gamma-interferon-inducible protein (IFI16), has led to understanding of how cells evoke strong innate immune responses against incoming pathogens carrying DNA genomes. The signaling stimulated by DNA sensors depends on the adaptor protein STING (stimulator of interferon genes), to enable expression of antiviral proteins, including type I interferon. To facilitate efficient infections, viruses have evolved a wide range of evasion strategies, targeting host DNA sensors, adaptor proteins and transcription factors. In this review, the current literature on virus-induced activation of the STING pathway is presented and we discuss recently identified viral evasion mechanisms targeting different steps in this antiviral pathway.

  17. Human T-cell leukemia virus type 2 post-transcriptional control protein p28 is required for viral infectivity and persistence in vivo.

    Science.gov (United States)

    Yamamoto, Brenda; Li, Min; Kesic, Matthew; Younis, Ihab; Lairmore, Michael D; Green, Patrick L

    2008-05-12

    Human T-cell leukemia virus (HTLV) type 1 and type 2 are related but distinct pathogenic complex retroviruses. HTLV-1 is associated with adult T-cell leukemia and a variety of immune-mediated disorders including the chronic neurological disease termed HTLV-1-associated myelopathy/tropical spastic paraparesis. In contrast, HTLV-2 displays distinct biological differences and is much less pathogenic, with only a few reported cases of leukemia and neurological disease associated with infection. In addition to the structural and enzymatic proteins, HTLV encodes regulatory (Tax and Rex) and accessory proteins. Tax and Rex positively regulate virus production and are critical for efficient viral replication and pathogenesis. Using an over-expression system approach, we recently reported that the accessory gene product of the HTLV-1 and HTLV-2 open reading frame (ORF) II (p30 and p28, respectively) acts as a negative regulator of both Tax and Rex by binding to and retaining their mRNA in the nucleus, leading to reduced protein expression and virion production. Further characterization revealed that p28 was distinct from p30 in that it was devoid of major transcriptional modulating activity, suggesting potentially divergent functions that may be responsible for the distinct pathobiologies of HTLV-1 and HTLV-2. In this study, we investigated the functional significance of p28 in HTLV-2 infection, proliferation, and immortaliztion of primary T-cells in culture, and viral survival in an infectious rabbit animal model. An HTLV-2 p28 knockout virus (HTLV-2Deltap28) was generated and evaluated. Infectivity and immortalization capacity of HTLV-2Deltap28 in vitro was indistinguishable from wild type HTLV-2. In contrast, we showed that viral replication was severely attenuated in rabbits inoculated with HTLV-2Deltap28 and the mutant virus failed to establish persistent infection. We provide direct evidence that p28 is dispensable for viral replication and cellular immortalization of

  18. Apparent Herbivory and Indigenous Pathogens of Invasive Flowering Rush (Butomus umbellatus L.) in the Pacific Northwest

    Science.gov (United States)

    2015-06-01

    associated herbivore fauna and pathogenic diseases. The results of these surveys allow researchers to predict potential interactions between native...Canada. USDA Technical Bulletin No. 634. Martin, J. 1950. Use of acid, rose Bengal, and streptomycin in the plate method for estimating soil fungi... Soil Science 69:215-232. Merritt, R. W., K. W. Cummins, and M. B. Berg. 2008. An Introduction to the aquatic insects of North America. 4th ed

  19. Aquatic toxicology: past, present, and prospects.

    OpenAIRE

    Pritchard, J B

    1993-01-01

    Aquatic organisms have played important roles as early warning and monitoring systems for pollutant burdens in our environment. However, they have significant potential to do even more, just as they have in basic biology where preparations like the squid axon have been essential tools in establishing physiological and biochemical mechanisms. This review provides a brief summary of the history of aquatic toxicology, focusing on the nature of aquatic contaminants, the levels of contamination in...

  20. Two pathogen reduction technologies--methylene blue plus light and shortwave ultraviolet light--effectively inactivate hepatitis C virus in blood products.

    Science.gov (United States)

    Steinmann, Eike; Gravemann, Ute; Friesland, Martina; Doerrbecker, Juliane; Müller, Thomas H; Pietschmann, Thomas; Seltsam, Axel

    2013-05-01

    Contamination of blood products with hepatitis C virus (HCV) can cause infections resulting in acute and chronic liver diseases. Pathogen reduction methods such as photodynamic treatment with methylene blue (MB) plus visible light as well as irradiation with shortwave ultraviolet (UVC) light were developed to inactivate viruses and other pathogens in plasma and platelet concentrates (PCs), respectively. So far, their inactivation capacities for HCV have only been tested in inactivation studies using model viruses for HCV. Recently, a HCV infection system for the propagation of infectious HCV in cell culture was developed. Inactivation studies were performed with cell culture-derived HCV and bovine viral diarrhea virus (BVDV), a model for HCV. Plasma units or PCs were spiked with high titers of cell culture-grown viruses. After treatment of the blood units with MB plus light (Theraflex MB-Plasma system, MacoPharma) or UVC (Theraflex UV-Platelets system, MacoPharma), residual viral infectivity was assessed using sensitive cell culture systems. HCV was sensitive to inactivation by both pathogen reduction procedures. HCV in plasma was efficiently inactivated by MB plus light below the detection limit already by 1/12 of the full light dose. HCV in PCs was inactivated by UVC irradiation with a reduction factor of more than 5 log. BVDV was less sensitive to the two pathogen reduction methods. Functional assays with human HCV offer an efficient tool to directly assess the inactivation capacity of pathogen reduction procedures. Pathogen reduction technologies such as MB plus light treatment and UVC irradiation have the potential to significantly reduce transfusion-transmitted HCV infections. © 2012 American Association of Blood Banks.

  1. Tropical dermatology: marine and aquatic dermatology.

    Science.gov (United States)

    Haddad, Vidal; Lupi, Omar; Lonza, Juan Pedro; Tyring, Stephen K

    2009-11-01

    Dermatoses caused by marine organisms are frequently seen in dermatology clinics worldwide. Cutaneous injuries after exposure to marine environments include bacterial and fungal infections and lesions caused by aquatic plants and protists. Some of these diseases are well known by dermatologists, such as Vibrio vulnificus septicemia and erysipeloid, but others are uncommon, such as envenomation caused by ingestion or contact with certain dinoflagellates or cyanobacteria, which are associated with rashes that can begin within minutes after exposure. Many marine/aquatic invertebrates, such as sponges, cnidarians, echinoderms, crustaceans, and mollusks, are associated with different kinds of dermatologic lesions that can vary from irritant or allergic contact dermatitis to physical trauma and envenomations. These cutaneous lesions may result in mild local reactions or can be associated with severe systemic reactions. Invertebrate animals, such as cnidarians, sea urchins, and worms, and aquatic vertebrates, such as venomous fishes and stingrays, are commonly associated with skin lesions in many countries, where they can constitute occupational dermatoses among fishermen and scuba divers, but they can also be observed among persons who contact these animals in kitchens or beaches. The presence of unusual lesions, a recent travel history, and/or a report of contact with an aquatic environment (including ownership of a marine or freshwater aquarium) should alert the dermatologist to the etiology of the cutaneous problems. After completing this learning activity, participants should be able to recognize the cutaneous manifestations of marine/aquatic infections, bites, stings, and wounds, etc., treat the cutaneous manifestations of marine/aquatic injuries, and help prevent marine/aquatic injuries.

  2. Viral and bacterial septicaemic infections modulate the expression of PACAP splicing variants and VIP/PACAP receptors in brown trout immune organs.

    Science.gov (United States)

    Gorgoglione, Bartolomeo; Carpio, Yamila; Secombes, Christopher J; Taylor, Nick G H; Lugo, Juana María; Estrada, Mario Pablo

    2015-12-01

    Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) and PACAP-Related Peptide (PRP) are structurally similar peptides encoded in the same transcripts. Their transcription has been detected not only in the brain but also in a wide range of peripheral tissues, even including organs of the immune system. PACAP exerts pleiotropic activities through G-protein coupled membrane receptors: the PACAP-specific PAC-1 and the VPAC-1 and VPAC-2 receptors that exhibit similar affinities for the Vasoactive Intestinal Peptide (VIP) and PACAP. Recent findings added PACAP and its receptors to the growing list of mediators that allow cross-talk between the nervous, endocrine and immune systems in fish. In this study the expression of genes encoding for PACAP and PRP, as well as VIP/PACAP receptors was studied in laboratory-reared brown trout (Salmo trutta) after septicaemic infections. Respectively Viral Haemorrhagic Septicaemia Virus (VHSV-Ia) or the Gram-negative bacterium Yersinia ruckeri (ser. O1 - biot. 2) were used in infection challenges. Kidney and spleen, the teleost main lymphopoietic organs, were sampled during the first two weeks post-infection. RT-qPCR analysis assessed specific pathogens burden and gene expression levels. PACAP and PRP transcription in each organ was positively correlated to the respective pathogen burden, assessed targeting the VHSV-glycoprotein or Y. ruckeri 16S rRNA. Results showed as the transcription of PACAP splicing variants and VIP/PACAP receptors is modulated in these organs during an acute viral and bacterial septicaemic infections in brown trout. These gene expression results provide clues as to how the PACAP system is modulated in fish, confirming an involvement during active immune responses elicited by both viral and bacterial aetiological agents. However, further experimental evidence is still required to fully elucidate and characterize the role of PACAP and PRP for an efficient immune response against pathogens. Copyright © 2015

  3. Value of Sharing: Viral Advertisement

    OpenAIRE

    Duygu Aydın; Aşina Gülerarslan; Süleyman Karaçor; Tarık Doğan

    2013-01-01

    Sharing motivations of viral advertisements by consumers and the impacts of these advertisements on the perceptions for brand will be questioned in this study. Three fundamental questions are answered in the study. These are advertisement watching and sharing motivations of individuals, criteria of liking viral advertisement and the impact of individual attitudes for viral advertisement on brand perception respectively. This study will be carried out via a viral advertise...

  4. Viral Marketing and Academic Institution

    OpenAIRE

    Koktová, Silvie

    2010-01-01

    This bachelor thesis examines modern and constantly developing kind of internet marketing -- the so called viral marketing. It deals with its origin, principle, process, advantages and disadvantages, types of viral marketing and presumptions of creating successful viral campaign. The aim of the theoretical part is especially the understanding of viral marketing as one of the effective instruments of contemporary marketing. In this theoretical part the thesis also elaborates a marketing school...

  5. Hepatitis B and hepatitis C viruses: a review of viral genomes, viral induced host immune responses, genotypic distributions and worldwide epidemiology

    Directory of Open Access Journals (Sweden)

    Umar Saeed

    2014-04-01

    Full Text Available Hepatitis B and hepatitis C viruses (HCV are frequently propagating blood borne pathogens in global community. Viral hepatitis is primarily associated with severe health complications, such as liver cirrhosis, hepatocellular carcinoma, hepatic fibrosis and steatosis. A literature review was conducted on hepatitis B virus (HBV, HBV genome, genotypic distribution and global epidemiology of HBV, HCV, HCV genome, HCV and host immune responses, HCV genotypic distribution and global epidemiology. The valued information was subjected for review. HBV has strict tissue tropism to liver. The virus infecting hepatocytes produces large amount of hepatitis B surface antigen particles which lack the DNA. It has capability to integrate into host genome. It has been found that genotype C is most emerging genotype associated with more severe liver diseases (cirrhosis. The approximate prevalence rate of genotype C is 27.7% which represents a major threat to future generations. Approximately 8% of population is chronic carrier of HBV in developing countries. The chronic carrier rate of HBV is 2%-7% in Middle East, Eastern and Southern Europe, South America and Japan. Among HCV infected individuals, 15% usually have natural tendency to overcome acute viral infection, where as 85% of individuals were unable to control HCV infection. The internal ribosomal entry site contains highly conserved structures important for binding and appropriate positioning of viral genome inside the host cell. HCV infects only in 1%-10% of hepatocytes, but production of tumor necrosis factor alpha (from CD8+ cells and interferon-gamma cause destruction of both infected cells and non-infected surrounding cells. Almost 11 genotypes and above 100 subtypes of HCV exists worldwide with different geographical distribution. Many efforts are still needed to minimize global burden of these infections. For the complete eradication of HBV (just like small pox and polio via vaccination strategies

  6. Uncommon and Neglected Venezuelan Viral Diseases: Etiologic Agents, Physiopathological, Clinical and Epidemiological Characteristics

    Directory of Open Access Journals (Sweden)

    Juan C. Gabaldon-Figueira

    2015-10-01

    Full Text Available Abstract (english Viral infectious diseases are common in Venezuela, influenza, dengue, yellow fever, HIV infection, viral Hepatitis, chikungunya fever and many others represent public health problems in the country and therefore, have been well documented. However, other rarer and even unique or lethal viral illnesses present in Venezuela are usually poorly understood or even unknown. This review described Venezuelan Hemorrhagic Fever, Venezuelan Equine Encephalitis, Hantavirus Infections and Mayaro fever, named as neglected diseases, emphasizing the etiologic agents and their most relevant pathogenic mechanisms, clinical and epidemiological characteristics. Although there is not an official report about the re-emergence of these diseases, falling living standards and unsanitary conditions, together with limited accessibility to hygiene products and medical supplies, put us on alert about the re-emergence of these neglected diseases. Resumen (español Las enfermedades infecciosas virales son comunes en Venezuela, influenza, dengue, fiebre amarilla, infección por VIH, hepatitis viral, fiebre chikungunya y muchas otras representan problemas de salud pública en el país y por lo tanto, han sido bien documentadas. Sin embargo, otras enfermedades virales más raras e incluso únicas y letales presentes en Venezuela son generalmente poco estudiadas y hasta desconocidas. Esta revisión describe alguna de estas enfermedades olvidadas tales como la fiebre hemorrágica venezolana, la encefalitis equina venezolana, las infecciones por hantavirus y la fiebre de Mayaro, haciendo hincapié en los agentes etiológicos y en sus mecanismos patogénicos más relevantes, características clínicas y epidemiológicas. Aunque no hay informes oficiales sobre el resurgimiento de estas enfermedades, la caída de los niveles de vida y las condiciones insalubres, junto con el acceso limitado a los productos de higiene y suministros médicos, debe alertar sobre el

  7. Assessment of sources of human pathogens and fecal contamination in a Florida freshwater lake.

    Science.gov (United States)

    Staley, Christopher; Reckhow, Kenneth H; Lukasik, Jerzy; Harwood, Valerie J

    2012-11-01

    We investigated the potential for a variety of environmental reservoirs to harbor or contribute fecal indicator bacteria (FIB), DNA markers of human fecal contamination, and human pathogens to a freshwater lake. We hypothesized that submerged aquatic vegetation (SAV), sediments, and stormwater act as reservoirs and/or provide inputs of FIB and human pathogens to this inland water. Analysis included microbial source tracking (MST) markers of sewage contamination (Enterococcus faecium esp gene, human-associated Bacteroides HF183, and human polyomaviruses), pathogens (Salmonella, Cryptosporidium, Giardia, and enteric viruses), and FIB (fecal coliforms, Escherichia coli, and enterococci). Bayesian analysis was used to assess relationships among microbial and physicochemical variables. FIB in the water were correlated with concentrations in SAV and sediment. Furthermore, the correlation of antecedent rainfall and major rain events with FIB concentrations and detection of human markers and pathogens points toward multiple reservoirs for microbial contaminants in this system. Although pathogens and human-source markers were detected in 55% and 21% of samples, respectively, markers rarely coincided with pathogen detection. Bayesian analysis revealed that low concentrations (<45 CFU × 100 ml(-1)) of fecal coliforms were associated with 93% probability that pathogens would not be detected; furthermore the Bayes net model showed associations between elevated temperature and rainfall with fecal coliform and enterococci concentrations, but not E. coli. These data indicate that many under-studied matrices (e.g. SAV, sediment, stormwater) are important reservoirs for FIB and potentially human pathogens and demonstrate the usefulness of Bayes net analysis for water quality assessment. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Screening for Sexually Transmitted Infection Pathogens in Semen Samples

    Directory of Open Access Journals (Sweden)

    RW Peeling

    2005-01-01

    Full Text Available The transmission of sexually transmitted infection (STI pathogens from an infected donor to the recipient of a semen donation in assisted conception may result not only in acute infection but also in long-term reproductive complications or adverse outcomes of pregnancy, including infection of the offspring. Screening for bacterial STI pathogens, Chlamydia trachomatis and Neisseria gonorrhoeae is strongly recommended because these pathogens can cause serious reproductive complications in the recipients of semen donations and infection in their offspring. Screening for these pathogens should be performed using the most sensitive methods, such as nucleic acid amplified tests. False-negative results due to inhibitory substances in the semen sample should be monitored using amplification controls. Where specimen transport is not a problem and culture facilities are available, N gonorrhoeae can also be detected by culture. Laboratories performing screening should subscribe to proficiency programs and have strict quality controls. Although Trichomonas vaginalis, group B streptococcus and genital mycoplasmas have been associated with adverse outcomes of pregnancy, the frequent finding of these organisms in healthy individuals brings into question the validity of mandatory inclusion of these organisms in the screening panel. Although viral STI pathogens and Treponema pallidum -- the causative agent of syphilis -- may be detected in semen, their presence may be more sensitively detected through antibody testing of the donor. Screening donors for HIV, hepatitis B and syphilis by serology is uniformly recommended in all of the guidelines, but the value of screening either donors or semen samples for cytomegalovirus, herpes simplex viruses and human papilloma viruses is less clear.

  9. Identification of a novel multiple kinase inhibitor with potent antiviral activity against influenza virus by reducing viral polymerase activity

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Yutaka; Kakisaka, Michinori; Chutiwitoonchai, Nopporn [Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Tajima, Shigeru [Department of Virology I, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo 162-8640 (Japan); Hikono, Hirokazu; Saito, Takehiko [Influenza and Prion Disease Research Center, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856 (Japan); Aida, Yoko, E-mail: aida@riken.jp [Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan)

    2014-07-18

    Highlights: • Screening of 50,000 compounds and subsequent lead optimization identified WV970. • WV970 has antiviral effects against influenza A, B and highly pathogenic viral strains. • WV970 inhibits viral genome replication and transcription. • A target database search suggests that WV970 may bind to a number of kinases. • KINOMEscan screening revealed that WV970 has inhibitory effects on 15 kinases. - Abstract: Neuraminidase inhibitors are the only currently available influenza treatment, although resistant viruses to these drugs have already been reported. Thus, new antiviral drugs with novel mechanisms of action are urgently required. In this study, we identified a novel antiviral compound, WV970, through cell-based screening of a 50,000 compound library and subsequent lead optimization. This compound exhibited potent antiviral activity with nanomolar IC{sub 50} values against both influenza A and B viruses but not non-influenza RNA viruses. Time-of-addition and indirect immunofluorescence assays indicated that WV970 acted at an early stage of the influenza life cycle, but likely after nuclear entry of viral ribonucleoprotein (vRNP). Further analyses of viral RNA expression and viral polymerase activity indicated that WV970 inhibited vRNP-mediated viral genome replication and transcription. Finally, structure-based virtual screening and comprehensive human kinome screening were used to demonstrate that WV970 acts as a multiple kinase inhibitor, many of which are associated with influenza virus replication. Collectively, these results strongly suggest that WV970 is a promising anti-influenza drug candidate and that several kinases associated with viral replication are promising drug targets.

  10. Identification of a novel multiple kinase inhibitor with potent antiviral activity against influenza virus by reducing viral polymerase activity

    International Nuclear Information System (INIS)

    Sasaki, Yutaka; Kakisaka, Michinori; Chutiwitoonchai, Nopporn; Tajima, Shigeru; Hikono, Hirokazu; Saito, Takehiko; Aida, Yoko

    2014-01-01

    Highlights: • Screening of 50,000 compounds and subsequent lead optimization identified WV970. • WV970 has antiviral effects against influenza A, B and highly pathogenic viral strains. • WV970 inhibits viral genome replication and transcription. • A target database search suggests that WV970 may bind to a number of kinases. • KINOMEscan screening revealed that WV970 has inhibitory effects on 15 kinases. - Abstract: Neuraminidase inhibitors are the only currently available influenza treatment, although resistant viruses to these drugs have already been reported. Thus, new antiviral drugs with novel mechanisms of action are urgently required. In this study, we identified a novel antiviral compound, WV970, through cell-based screening of a 50,000 compound library and subsequent lead optimization. This compound exhibited potent antiviral activity with nanomolar IC 50 values against both influenza A and B viruses but not non-influenza RNA viruses. Time-of-addition and indirect immunofluorescence assays indicated that WV970 acted at an early stage of the influenza life cycle, but likely after nuclear entry of viral ribonucleoprotein (vRNP). Further analyses of viral RNA expression and viral polymerase activity indicated that WV970 inhibited vRNP-mediated viral genome replication and transcription. Finally, structure-based virtual screening and comprehensive human kinome screening were used to demonstrate that WV970 acts as a multiple kinase inhibitor, many of which are associated with influenza virus replication. Collectively, these results strongly suggest that WV970 is a promising anti-influenza drug candidate and that several kinases associated with viral replication are promising drug targets

  11. Identifying the Achilles heel of multi-host pathogens: the concept of keystone ‘host’ species illustrated by Mycobacterium ulcerans transmission

    International Nuclear Information System (INIS)

    Roche, Benjamin; Eric Benbow, M; Merritt, Richard; Kimbirauskas, Ryan; McIntosh, Mollie; Small, Pamela L C; Williamson, Heather; Guégan, Jean-François

    2013-01-01

    Pathogens that use multiple host species are an increasing public health issue due to their complex transmission, which makes them difficult to mitigate. Here, we explore the possibility of using networks of ecological interactions among potential host species to identify the particular disease-source species to target to break down transmission of such pathogens. We fit a mathematical model on prevalence data of Mycobacterium ulcerans in western Africa and we show that removing the most abundant taxa for this category of pathogen is not an optimal strategy to decrease the transmission of the mycobacterium within aquatic ecosystems. On the contrary, we reveal that the removal of some taxa, especially Oligochaeta worms, can clearly reduce rates of pathogen transmission, and these should be considered as keystone organisms for its transmission because they lead to a substantial reduction in pathogen prevalence regardless of the network topology. Besides their potential application for the understanding of M. ulcerans ecology, we discuss how networks of species interactions can modulate transmission of multi-host pathogens. (letter)

  12. The GAAS metagenomic tool and its estimations of viral and microbial average genome size in four major biomes.

    Directory of Open Access Journals (Sweden)

    Florent E Angly

    2009-12-01

    Full Text Available Metagenomic studies characterize both the composition and diversity of uncultured viral and microbial communities. BLAST-based comparisons have typically been used for such analyses; however, sampling biases, high percentages of unknown sequences, and the use of arbitrary thresholds to find significant similarities can decrease the accuracy and validity of estimates. Here, we present Genome relative Abundance and Average Size (GAAS, a complete software package that provides improved estimates of community composition and average genome length for metagenomes in both textual and graphical formats. GAAS implements a novel methodology to control for sampling bias via length normalization, to adjust for multiple BLAST similarities by similarity weighting, and to select significant similarities using relative alignment lengths. In benchmark tests, the GAAS method was robust to both high percentages of unknown sequences and to variations in metagenomic sequence read lengths. Re-analysis of the Sargasso Sea virome using GAAS indicated that standard methodologies for metagenomic analysis may dramatically underestimate the abundance and importance of organisms with small genomes in environmental systems. Using GAAS, we conducted a meta-analysis of microbial and viral average genome lengths in over 150 metagenomes from four biomes to determine whether genome lengths vary consistently between and within biomes, and between microbial and viral communities from the same environment. Significant differences between biomes and within aquatic sub-biomes (oceans, hypersaline systems, freshwater, and microbialites suggested that average genome length is a fundamental property of environments driven by factors at the sub-biome level. The behavior of paired viral and microbial metagenomes from the same environment indicated that microbial and viral average genome sizes are independent of each other, but indicative of community responses to stressors and

  13. Pathogens and pharmaceuticals in source-separated urine in eThekwini, South Africa.

    Science.gov (United States)

    Bischel, Heather N; Özel Duygan, Birge D; Strande, Linda; McArdell, Christa S; Udert, Kai M; Kohn, Tamar

    2015-11-15

    In eThekwini, South Africa, the production of agricultural fertilizers from human urine collected from urine-diverting dry toilets is being evaluated at a municipality scale as a way to help finance a decentralized, dry sanitation system. The present study aimed to assess a range of human and environmental health hazards in source-separated urine, which was presumed to be contaminated with feces, by evaluating the presence of human pathogens, pharmaceuticals, and an antibiotic resistance gene. Composite urine samples from households enrolled in a urine collection trial were obtained from urine storage tanks installed in three regions of eThekwini. Polymerase chain reaction (PCR) assays targeted 9 viral and 10 bacterial human pathogens transmitted by the fecal-oral route. The most frequently detected viral pathogens were JC polyomavirus, rotavirus, and human adenovirus in 100%, 34% and 31% of samples, respectively. Aeromonas spp. and Shigella spp. were frequently detected gram negative bacteria, in 94% and 61% of samples, respectively. The gram positive bacterium, Clostridium perfringens, which is known to survive for extended times in urine, was found in 72% of samples. A screening of 41 trace organic compounds in the urine facilitated selection of 12 priority pharmaceuticals for further evaluation. The antibiotics sulfamethoxazole and trimethoprim, which are frequently prescribed as prophylaxis for HIV-positive patients, were detected in 95% and 85% of samples, reaching maximum concentrations of 6800 μg/L and 1280 μg/L, respectively. The antiretroviral drug emtricitabine was also detected in 40% of urine samples. A sulfonamide antibiotic resistance gene (sul1) was detected in 100% of urine samples. By coupling analysis of pathogens and pharmaceuticals in geographically dispersed samples in eThekwini, this study reveals a range of human and environmental health hazards in urine intended for fertilizer production. Collection of urine offers the benefit of

  14. Environmental enrichment for aquatic animals.

    Science.gov (United States)

    Corcoran, Mike

    2015-05-01

    Aquatic animals are the most popular pets in the United States based on the number of owned pets. They are popular display animals and are increasingly used in research settings. Enrichment of captive animals is an important element of zoo and laboratory medicine. The importance of enrichment for aquatic animals has been slower in implementation. For a long time, there was debate over whether or not fish were able to experience pain or form long-term memories. As that debate has reduced and the consciousness of more aquatic animals is accepted, the need to discuss enrichment for these animals has increased. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Recommended reporting standards for test accuracy studies of infectious diseases of finfish, amphibians, molluscs and crustaceans: the STRADAS-aquatic checklist

    Science.gov (United States)

    Gardner, Ian A; Whittington, Richard J; Caraguel, Charles G B; Hick, Paul; Moody, Nicholas J G; Corbeil, Serge; Garver, Kyle A.; Warg, Janet V.; Arzul, Isabelle; Purcell, Maureen; St. J. Crane, Mark; Waltzek, Thomas B.; Olesen, Niels J; Lagno, Alicia Gallardo

    2016-01-01

    Complete and transparent reporting of key elements of diagnostic accuracy studies for infectious diseases in cultured and wild aquatic animals benefits end-users of these tests, enabling the rational design of surveillance programs, the assessment of test results from clinical cases and comparisons of diagnostic test performance. Based on deficiencies in the Standards for Reporting of Diagnostic Accuracy (STARD) guidelines identified in a prior finfish study (Gardner et al. 2014), we adapted the Standards for Reporting of Animal Diagnostic Accuracy Studies—paratuberculosis (STRADAS-paraTB) checklist of 25 reporting items to increase their relevance to finfish, amphibians, molluscs, and crustaceans and provided examples and explanations for each item. The checklist, known as STRADAS-aquatic, was developed and refined by an expert group of 14 transdisciplinary scientists with experience in test evaluation studies using field and experimental samples, in operation of reference laboratories for aquatic animal pathogens, and in development of international aquatic animal health policy. The main changes to the STRADAS-paraTB checklist were to nomenclature related to the species, the addition of guidelines for experimental challenge studies, and the designation of some items as relevant only to experimental studies and ante-mortem tests. We believe that adoption of these guidelines will improve reporting of primary studies of test accuracy for aquatic animal diseases and facilitate assessment of their fitness-for-purpose. Given the importance of diagnostic tests to underpin the Sanitary and Phytosanitary agreement of the World Trade Organization, the principles outlined in this paper should be applied to other World Organisation for Animal Health (OIE)-relevant species.

  16. [Emergent viral infections

    NARCIS (Netherlands)

    Galama, J.M.D.

    2001-01-01

    The emergence and re-emergence of viral infections is an ongoing process. Large-scale vaccination programmes led to the eradication or control of some viral infections in the last century, but new viruses are always emerging. Increased travel is leading to a rise in the importation of exotic

  17. Viral safety characteristics of Flebogamma DIF, a new pasteurized, solvent-detergent treated and Planova 20 nm nanofiltered intravenous immunoglobulin.

    Science.gov (United States)

    Caballero, Santiago; Nieto, Sandra; Gajardo, Rodrigo; Jorquera, Juan I

    2010-07-01

    A new human liquid intravenous immunoglobulin product, Flebogamma DIF, has been developed. This IgG is purified from human plasma by cold ethanol fractionation, PEG precipitation and ion exchange chromatography. The manufacturing process includes three different specific pathogen clearance (inactivation/removal) steps: pasteurization, solvent/detergent treatment and Planova nanofiltration with a pore size of 20 nm. This study evaluates the pathogen clearance capacity of seven steps in the production process for a wide range of viruses through spiking experiments: the three specific steps mentioned above and also four more production steps. Infectivity of samples was measured using a Tissue Culture Infectious Dose assay (log(10) TCID(50)) or Plaque Forming Units assay (log(10) PFU). Validation studies demonstrated that each specific step cleared more than 4 log(10) for all viruses assayed. An overall viral clearance between > or =13.33 log(10) and > or =25.21 log(10), was achieved depending on the virus and the number of steps studied for each virus. It can be concluded that Flebogamma DIF has a very high viral safety profile. 2010 The International Association for Biologicals. Published by Elsevier Ltd. All rights reserved.

  18. Tritium in the aquatic environment

    International Nuclear Information System (INIS)

    Blaylock, B.G.; Hoffman, F.O.; Frank, M.L.

    1986-02-01

    Tritium is of environmental importance because it is released from nuclear facilities in relatively large quantities and because it has a half life of 12.26 y. Most of the tritium released into the atmosphere eventually reaches the aqueous environment, where it is rapidly taken up by aquatic organisms. This paper reviews the current literature on tritium in the aquatic environment. Conclusions from the review, which covered studies of algae, aquatic macrophytes, invertebrates, fish, and the food chain, were that aquatic organisms incorporate tritium into their tissue-free water very rapidly and reach concentrations near those of the external medium. The rate at which tritium from tritiated water is incorporated into the organic matter of cells is slower than the rate of its incorporation into the tissue-free water. If organisms consume tritiated food, incorporation of tritium into the organic matter is faster, and a higher tritium concentration is reached than when the organisms are exposed to only tritiated water alone. Incorporation of tritium bound to molecules into the organic matter depends on the chemical form of the ''carrier'' molecule. No evidence was found that biomagnification of tritium occurs at higher trophic levels. Radiation doses from tritium releases to large populations of humans will most likely come from the consumption of contaminated water rather than contaminated aquatic food products

  19. Modification of picornavirus genomic RNA using 'click' chemistry shows that unlinking of the VPg peptide is dispensable for translation and replication of the incoming viral RNA

    NARCIS (Netherlands)

    Langereis, Martijn A|info:eu-repo/dai/nl/304823597; Feng, Qian; Nelissen, Frank H T; Virgen-Slane, Richard; van der Heden van Noort, Gerbrand J; Maciejewski, Sonia; Filippov, Dmitri V; Semler, Bert L; van Delft, Floris L; van Kuppeveld, Frank J M|info:eu-repo/dai/nl/156614723

    Picornaviruses constitute a large group of viruses comprising medically and economically important pathogens such as poliovirus, coxsackievirus, rhinovirus, enterovirus 71 and foot-and-mouth disease virus. A unique characteristic of these viruses is the use of a viral peptide (VPg) as primer for

  20. Mutations in the Schmallenberg Virus Gc Glycoprotein Facilitate Cellular Protein Synthesis Shutoff and Restore Pathogenicity of NSs Deletion Mutants in Mice.

    Science.gov (United States)

    Varela, Mariana; Pinto, Rute Maria; Caporale, Marco; Piras, Ilaria M; Taggart, Aislynn; Seehusen, Frauke; Hahn, Kerstin; Janowicz, Anna; de Souza, William Marciel; Baumgärtner, Wolfgang; Shi, Xiaohong; Palmarini, Massimo

    2016-06-01

    Serial passage of viruses in cell culture has been traditionally used to attenuate virulence and identify determinants of viral pathogenesis. In a previous study, we found that a strain of Schmallenberg virus (SBV) serially passaged in tissue culture (termed SBVp32) unexpectedly displayed increased pathogenicity in suckling mice compared to wild-type SBV. In this study, we mapped the determinants of SBVp32 virulence to the viral genome M segment. SBVp32 virulence is associated with the capacity of this virus to reach high titers in the brains of experimentally infected suckling mice. We also found that the Gc glycoprotein, encoded by the M segment of SBVp32, facilitates host cell protein shutoff in vitro Interestingly, while the M segment of SBVp32 is a virulence factor, we found that the S segment of the same virus confers by itself an attenuated phenotype to wild-type SBV, as it has lost the ability to block the innate immune system of the host. Single mutations present in the Gc glycoprotein of SBVp32 are sufficient to compensate for both the attenuated phenotype of the SBVp32 S segment and the attenuated phenotype of NSs deletion mutants. Our data also indicate that the SBVp32 M segment does not act as an interferon (IFN) antagonist. Therefore, SBV mutants can retain pathogenicity even when they are unable to fully control the production of IFN by infected cells. Overall, this study suggests that the viral glycoprotein of orthobunyaviruses can compensate, at least in part, for the function of NSs. In addition, we also provide evidence that the induction of total cellular protein shutoff by SBV is determined by multiple viral proteins, while the ability to control the production of IFN maps to the NSs protein. The identification of viral determinants of pathogenesis is key to the development of prophylactic and intervention measures. In this study, we found that the bunyavirus Gc glycoprotein is a virulence factor. Importantly, we show that mutations in the Gc

  1. Plants in aquatic ecosystems: current trends and future directions

    NARCIS (Netherlands)

    O’Hare, Matthew T.; Aguiar, Francisca C.; Asaeda, Takashi; Bakker, Elisabeth S.; Chambers, Patricia A.; Clayton, John S.; Elger, Arnaud; Ferreira, Teresa M.; Gross, Elisabeth M.; Gunn, Iain D.M.; Gurnell, Angela M.; Hellsten, Seppo; Hofstra, Deborah E.; Li, Wei; Mohr, Silvia; Puijalon, Sara; Szoszkiewicz, Krzysztof; Willby, Nigel J.; Wood, Kevin A.

    2018-01-01

    Aquatic plants fulfil a wide range of ecological roles, and make a substantial contribution to the structure, function and service provision of aquatic ecosystems. Given their well-documented importance in aquatic ecosystems, research into aquatic plants continues to blossom. The 14th International

  2. Novel aquatic modules for bioregenerative life-support systems based on the closed equilibrated biological aquatic system (c.e.b.a.s.)

    Science.gov (United States)

    Bluem, Volker; Paris, Frank

    2002-06-01

    The closed equilibrated biological aquatic system (C.E.B.A.S) is a man-made aquatic ecosystem which consists of four subcomponents: an aquatic animal habitat, an aquatic plant bioreactor, an ammonia oxidizing bacteria filter and a data acquisition/control unit. It is a precursor for different types of fish and aquatic plant production sites which are disposed for the integration into bioregenerative life-support systems. The results of two successful spaceflights of a miniaturized C.E.B.A.S version (the C.E.B.A.S. MINI MODULE) allow the optimization of aquatic food production systems which are already developed in the ground laboratory and open new aspects for their utilization as aquatic modules in space bioregenerative life support systems. The total disposition offers different stages of complexity of such aquatic modules starting with simple but efficient aquatic plant cultivators which can be implemented into water recycling systems and ending up in combined plant/fish aquaculture in connection with reproduction modules and hydroponics applications for higher land plants. In principle, aquaculture of fishes and/or other aquatic animals edible for humans offers optimal animal protein production under lowered gravity conditions without the tremendous waste management problems connected with tetrapod breeding and maintenance. The paper presents details of conducted experimental work and of future dispositions which demonstrate clearly that aquaculture is an additional possibility to combine efficient and simple food production in space with water recycling utilizing safe and performable biotechnologies. Moreover, it explains how these systems may contribute to more variable diets to fulfill the needs of multicultural crews.

  3. Viral DNA Sensors IFI16 and Cyclic GMP-AMP Synthase Possess Distinct Functions in Regulating Viral Gene Expression, Immune Defenses, and Apoptotic Responses during Herpesvirus Infection.

    Science.gov (United States)

    Diner, Benjamin A; Lum, Krystal K; Toettcher, Jared E; Cristea, Ileana M

    2016-11-15

    rapidly oligomerizes at incoming herpesvirus genomes at the nuclear periphery to transcriptionally repress viral gene expression and limit viral replicative capacity. We further demonstrate that IFI16 does not initiate upstream activation of the canonical STING/TBK-1/IRF3 signaling pathway but is required for downstream antiviral cytokine expression. In contrast, we find that, upon DNA sensing during herpesvirus infection, cGAS triggers apoptosis in a STING-dependent manner. Our live-cell imaging, mass spectrometry-based proteomics, CRISPR-based cellular assays, and optogenetics underscore the value of integrative approaches to uncover complex cellular responses against pathogens. Copyright © 2016 Diner et al.

  4. Comparative analytical evaluation of the respiratory TaqMan Array Card with real-time PCR and commercial multi-pathogen assays.

    Science.gov (United States)

    Harvey, John J; Chester, Stephanie; Burke, Stephen A; Ansbro, Marisela; Aden, Tricia; Gose, Remedios; Sciulli, Rebecca; Bai, Jing; DesJardin, Lucy; Benfer, Jeffrey L; Hall, Joshua; Smole, Sandra; Doan, Kimberly; Popowich, Michael D; St George, Kirsten; Quinlan, Tammy; Halse, Tanya A; Li, Zhen; Pérez-Osorio, Ailyn C; Glover, William A; Russell, Denny; Reisdorf, Erik; Whyte, Thomas; Whitaker, Brett; Hatcher, Cynthia; Srinivasan, Velusamy; Tatti, Kathleen; Tondella, Maria Lucia; Wang, Xin; Winchell, Jonas M; Mayer, Leonard W; Jernigan, Daniel; Mawle, Alison C

    2016-02-01

    In this study, a multicenter evaluation of the Life Technologies TaqMan(®) Array Card (TAC) with 21 custom viral and bacterial respiratory assays was performed on the Applied Biosystems ViiA™ 7 Real-Time PCR System. The goal of the study was to demonstrate the analytical performance of this platform when compared to identical individual pathogen specific laboratory developed tests (LDTs) designed at the Centers for Disease Control and Prevention (CDC), equivalent LDTs provided by state public health laboratories, or to three different commercial multi-respiratory panels. CDC and Association of Public Health Laboratories (APHL) LDTs had similar analytical sensitivities for viral pathogens, while several of the bacterial pathogen APHL LDTs demonstrated sensitivities one log higher than the corresponding CDC LDT. When compared to CDC LDTs, TAC assays were generally one to two logs less sensitive depending on the site performing the analysis. Finally, TAC assays were generally more sensitive than their counterparts in three different commercial multi-respiratory panels. TAC technology allows users to spot customized assays and design TAC layout, simplify assay setup, conserve specimen, dramatically reduce contamination potential, and as demonstrated in this study, analyze multiple samples in parallel with good reproducibility between instruments and operators. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Environmental viral contamination in a pediatric hospital outpatient waiting area: implications for infection control.

    Science.gov (United States)

    D'Arcy, Nikki; Cloutman-Green, Elaine; Klein, Nigel; Spratt, David A

    2014-08-01

    Nosocomial outbreaks of viral etiology are costly and can have a major impact on patient care. Many viruses are known to persist in the inanimate environment and may pose a risk to patients and health care workers. We investigate the frequency of environmental contamination with common health care-associated viruses and explore the use of torque-teno virus as a marker of environmental contamination. Environmental screening for a variety of clinically relevant viruses was carried out over 3 months in a UK pediatric hospital using air sampling and surface swabbing. Swabs were tested for the presence of virus nucleic acid by quantitative polymerase chain reactions. Viral nucleic acid was found on surfaces and in the air throughout the screening period, with adenovirus DNA being the most frequent. Door handles were frequently contaminated. Torque-teno virus was also found at numerous sites. Evidence of environmental contamination with viral pathogens is present in health care environments and may be indicative of an infectious virus being present. Screening for viruses should be included in infection control strategies. Torque-teno virus may provide a better marker of contamination and reduce time and cost of screening for individual viruses. Copyright © 2014 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Mosby, Inc. All rights reserved.

  6. Expanding Aquatic Observations through Recreation

    Directory of Open Access Journals (Sweden)

    Robert J. W. Brewin

    2017-11-01

    Full Text Available Accurate observations of the Earth system are required to understand how our planet is changing and to help manage its resources. The aquatic environment—including lakes, rivers, wetlands, estuaries, coastal and open oceans—is a fundamental component of the Earth system controlling key physical, biological, and chemical processes that allow life to flourish. Yet, this environment is critically undersampled in both time and space. New and cost-effective sampling solutions are urgently needed. Here, we highlight the potential to improve aquatic sampling by tapping into recreation. We draw attention to the vast number of participants that engage in aquatic recreational activities and argue, based on current technological developments and recent research, that the time is right to employ recreational citizens to improve large-scale aquatic sampling efforts. We discuss the challenges that need to be addressed for this strategy to be successful (e.g., sensor integration, data quality, and citizen motivation, the steps needed to realize its potential, and additional societal benefits that arise when engaging citizens in scientific sampling.

  7. Performance evaluation on aquatic product cold-chain logistics

    Directory of Open Access Journals (Sweden)

    Wenbing Wu

    2015-11-01

    Full Text Available Purpose: The requirements for high quality and diversification aquatic products are increasing with the improvement of Chinese living standard. However, the distribution between place of production and place of consumption are uneven, which results in large cold-chain logistics demand for aquatic products. At present, the low-level development of cold chain logistics has a bad impact on the circulation of aquatic products in China. So it is very urgent to develop cold-chain logistics in China. Design/methodology/approach: In order to do this, we apply performance evaluation, a well-known management tool, to study Chinese aquatic product cold-chain logistics. In this paper we first propose SISP(Subjects, Indexes, Standards, and Phases of performance evaluation model and ACSSN model(Aquatic product, Customer, Supply Chain, Society, and Node enterprises of supply chain for aquatic products cold-chain logistics performance evaluation. Then an ANP-Fuzzy method is proposed to evaluate the operational performance of Shandong Oriental Ocean Sci-Tech Co., Ltd. Furthermore, a system dynamic model is built to simulate the impact of temperature on the profits in aquatic products cold-chain sales section. Findings: We find out within a reasonable temperature range, lower temperature brings higher profit level. Also, performance improvement methods are proposed and the simulation of performance evaluation system is developed. Practical implications: Our findings can help to improve the level of aquatic product cold-chain logistics in China. Originality/value: The paper proposes the SISP (Subjects, Indexes, Standards, and Phases of performance evaluation model and ACSSN model (Aquatic product, Customer, Supply Chain, Society, and Node enterprises of supply chain for aquatic products cold-chain logistics performance evaluation.

  8. MicroRNA Expression during Viral Infection or PolyI:C Stimulation in a Fish Model

    DEFF Research Database (Denmark)

    Kristensen, Lasse Bøgelund Juel; Schyth, Brian Dall; Lorenzen, Niels

    Fish are important as small vertebrate models for studying various aspects of development and disease. MicroRNA regulation in fish has so far received attention especially in studies of their expression and function during embryonic development. In the studies carried out at the National Veterinary...... Institute in Århus we aim at using fish models for studying microRNA regulation during viral infection. In the studies presented here we make use of a qPCR method to detect miRNAs in fish cells. We present results regarding the expression of the immunologically relevant microRNAs, miR-155, miR-146a and mi......R-146b in fish cells during infection with the fish pathogenic virus viral hemorrhagic septicemia virus (VHSV) and during immune stimulation with double stranded RNA (polyI:C). We highlight the need of finding stable normalization genes for microRNA detection....

  9. Abstracts of the 31. annual aquatic toxicity workshop

    International Nuclear Information System (INIS)

    Burridge, L.E.; Haya, K.; Niimi, A.J.

    2004-01-01

    This conference provided an opportunity for an informal exchange of recent research information and knowledge on aquatic and environmental toxicology. Topics ranged from basic aquatic toxicology to applications in environmental monitoring, setting regulations and developing criteria for sediment and water quality. The workshops were attended by representatives from industry, governments and universities. The current challenges and approaches to deal with aquatic toxicology and their biological effect on aquatic biota were discussed. The sessions were entitled as follows: environmental effects monitoring; pesticides; ecological risk assessment; sediment disposal at sea; oil and gas; pharmaceuticals; artifactual toxicity in municipal waste water; sediment and soil toxicity; contaminants in aquatic systems; biological effects; and discoveries in aquatic sciences. The conference included 4 plenary sessions and 119 platform papers, of which 24 papers have been indexed separately for inclusion in this database. refs., tabs., figs

  10. A metagenomic assessment of viral contamination on fresh parsley plants irrigated with fecally tainted river water.

    Science.gov (United States)

    Fernandez-Cassi, X; Timoneda, N; Gonzales-Gustavson, E; Abril, J F; Bofill-Mas, S; Girones, R

    2017-09-18

    Microbial food-borne diseases are still frequently reported despite the implementation of microbial quality legislation to improve food safety. Among all the microbial agents, viruses are the most important causative agents of food-borne outbreaks. The development and application of a new generation of sequencing techniques to test for viral contaminants in fresh produce is an unexplored field that allows for the study of the viral populations that might be transmitted by the fecal-oral route through the consumption of contaminated food. To advance this promising field, parsley was planted and grown under controlled conditions and irrigated using contaminated river water. Viruses polluting the irrigation water and the parsley leaves were studied by using metagenomics. To address possible contamination due to sample manipulation, library preparation, and other sources, parsley plants irrigated with nutritive solution were used as a negative control. In parallel, viruses present in the river water used for plant irrigation were analyzed using the same methodology. It was possible to assign viral taxons from 2.4 to 74.88% of the total reads sequenced depending on the sample. Most of the viral reads detected in the river water were related to the plant viral families Tymoviridae (66.13%) and Virgaviridae (14.45%) and the phage viral families Myoviridae (5.70%), Siphoviridae (5.06%), and Microviridae (2.89%). Less than 1% of the viral reads were related to viral families that infect humans, including members of the Adenoviridae, Reoviridae, Picornaviridae and Astroviridae families. On the surface of the parsley plants, most of the viral reads that were detected were assigned to the Dicistroviridae family (41.52%). Sequences related to important viral pathogens, such as the hepatitis E virus, several picornaviruses from species A and B as well as human sapoviruses and GIV noroviruses were detected. The high diversity of viral sequences found in the parsley plants

  11. Diagnosis, gB genotype distribution and viral load of symptomatic congenitally infected CMV patients in Cuba.

    Science.gov (United States)

    Correa, C; Kourí, V; Pérez, L; Soto, Y; Limia, C

    2016-10-01

    Cytomegalovirus (CMV) is the leading cause of viral congenital infection. Some viral factors have been proposed to be CMV pathogenicity markers. The objective of this study was to investigate the frequency of congenital CMV infection in symptomatic patients and the possible association with the CMV glycoprotein B (gB) genotype and viral load. A total of 361 newborns (NB) and 158 pregnant women (PW) with clinically suspected CMV infection were enrolled. Studied samples included urine, saliva, serum, vaginal swabs and amniotic fluid. CMV infection was diagnosed by multiplex nested PCR. CMV gB genotyping was performed on infected samples, followed by viral load determination. Overall, 18.7% of the tested patients were positive for CMV infection, 19.7% of NB were congenitally infected and 16.5% of PW showed active CMV infection. gB-2 was the most prevalent genotype detected (39/97 patients). gB CMV mixed infections were detected in 12 patients. gB-2 was associated with mono-infections (PCMV load was statistically significant among patients presenting different clinical signs (P=0.04). This study showed that CMV is a frequent cause of congenital infection in symptomatic Cuban patients. Despite gB2 being the most frequently detected, gB-4 was the only genotype associated with clinical features (sepsis-like syndrome in NB). No other associations among specific genotypes and clinical characteristics were found. Further studies are needed to clarify the role that viral load and genotype play in the outcome of congenital infection.

  12. Viral evasion of DNA-stimulated innate immune responses

    Science.gov (United States)

    Christensen, Maria H; Paludan, Søren R

    2017-01-01

    Cellular sensing of virus-derived nucleic acids is essential for early defenses against virus infections. In recent years, the discovery of DNA sensing proteins, including cyclic GMP–AMP synthase (cGAS) and gamma-interferon-inducible protein (IFI16), has led to understanding of how cells evoke strong innate immune responses against incoming pathogens carrying DNA genomes. The signaling stimulated by DNA sensors depends on the adaptor protein STING (stimulator of interferon genes), to enable expression of antiviral proteins, including type I interferon. To facilitate efficient infections, viruses have evolved a wide range of evasion strategies, targeting host DNA sensors, adaptor proteins and transcription factors. In this review, the current literature on virus-induced activation of the STING pathway is presented and we discuss recently identified viral evasion mechanisms targeting different steps in this antiviral pathway. PMID:26972769

  13. Ubiquitin-regulated nuclear-cytoplasmic trafficking of the Nipah virus matrix protein is important for viral budding.

    Directory of Open Access Journals (Sweden)

    Yao E Wang

    2010-11-01

    Full Text Available Paramyxoviruses are known to replicate in the cytoplasm and bud from the plasma membrane. Matrix is the major structural protein in paramyxoviruses that mediates viral assembly and budding. Curiously, the matrix proteins of a few paramyxoviruses have been found in the nucleus, although the biological function associated with this nuclear localization remains obscure. We report here that the nuclear-cytoplasmic trafficking of the Nipah virus matrix (NiV-M protein and associated post-translational modification play a critical role in matrix-mediated virus budding. Nipah virus (NiV is a highly pathogenic emerging paramyxovirus that causes fatal encephalitis in humans, and is classified as a Biosafety Level 4 (BSL4 pathogen. During live NiV infection, NiV-M was first detected in the nucleus at early stages of infection before subsequent localization to the cytoplasm and the plasma membrane. Mutations in the putative bipartite nuclear localization signal (NLS and the leucine-rich nuclear export signal (NES found in NiV-M impaired its nuclear-cytoplasmic trafficking and also abolished NiV-M budding. A highly conserved lysine residue in the NLS served dual functions: its positive charge was important for mediating nuclear import, and it was also a potential site for monoubiquitination which regulates nuclear export of the protein. Concordantly, overexpression of ubiquitin enhanced NiV-M budding whereas depletion of free ubiquitin in the cell (via proteasome inhibitors resulted in nuclear retention of NiV-M and blocked viral budding. Live Nipah virus budding was exquisitely sensitive to proteasome inhibitors: bortezomib, an FDA-approved proteasome inhibitor for treating multiple myeloma, reduced viral titers with an IC(50 of 2.7 nM, which is 100-fold less than the peak plasma concentration that can be achieved in humans. This opens up the possibility of using an "off-the-shelf" therapeutic against acute NiV infection.

  14. Detection of hepatitis E virus and other livestock-related pathogens in Iowa streams

    Science.gov (United States)

    Givens, Carrie E.; Kolpin, Dana W.; Borchardt, Mark A.; Duris, Joseph W.; Moorman, Thomas B.; Spencer, Susan K.

    2016-01-01

    Manure application is a source of pathogens to the environment. Through overland runoff and tile drainage, zoonotic pathogens can contaminate surface water and streambed sediment and could affect both wildlife and human health. This study examined the environmental occurrence of gene markers for livestock-related bacterial, protozoan, and viral pathogens and antibiotic resistance in surface waters within the South Fork Iowa River basin before and after periods of swine manure application on agricultural land. Increased concentrations of indicator bacteria after manure application exceeding Iowa's state bacteria water quality standards suggest that swine manure contributes to diminished water quality and may pose a risk to human health. Additionally, the occurrence of HEV and numerous bacterial pathogen genes for Escherichia coli, Enterococcus spp., Salmonella sp., and Staphylococcus aureus in both manure samples and in corresponding surface water following periods of manure application suggests a potential role for swine in the spreading of zoonotic pathogens to the surrounding environment. During this study, several zoonotic pathogens were detected including Shiga-toxin producing E. coli, Campylobacter jejuni, pathogenic enterococci, and S. aureus; all of which can pose mild to serious health risks to swine, humans, and other wildlife. This research provides the foundational understanding required for future assessment of the risk to environmental health from livestock-related zoonotic pathogen exposures in this region. This information could also be important for maintaining swine herd biosecurity and protecting the health of wildlife near swine facilities.

  15. Pathogenicity of Genetically Similar, H5N1 Highly Pathogenic Avian Influenza Virus Strains in Chicken and the Differences in Sensitivity among Different Chicken Breeds

    Science.gov (United States)

    Matsuu, Aya; Kobayashi, Tomoko; Patchimasiri, Tuangthong; Shiina, Takashi; Suzuki, Shingo; Chaichoune, Kridsada; Ratanakorn, Parntep; Hiromoto, Yasuaki; Abe, Haruka; Parchariyanon, Sujira; Saito, Takehiko

    2016-01-01

    Differences in the pathogenicity of genetically closely related H5N1 highly pathogenic avian influenza viruses (HPAIVs) were evaluated in White Leghorn chickens. These viruses varied in the clinical symptoms they induced, including lethality, virus shedding, and replication in host tissues. A comparison of the host responses in the lung, brain, and spleen suggested that the differences in viral replication efficiency were related to the host cytokine response at the early phase of infection, especially variations in the proinflammatory cytokine IL-6. Based on these findings, we inoculated the virus that showed the mildest pathogenicity among the five tested, A/pigeon/Thailand/VSMU-7-NPT/2004, into four breeds of Thai indigenous chicken, Phadu-Hung-Dang (PHD), Chee, Dang, and Luang-Hung-Khao (LHK), to explore effects of genetic background on host response. Among these breeds, Chee, Dang, and LHK showed significantly longer survival times than White Leghorns. Virus shedding from dead Thai indigenous chickens was significantly lower than that from White Leghorns. Although polymorphisms were observed in the Mx and MHC class I genes, there was no significant association between the polymorphisms in these loci and resistance to HPAIV. PMID:27078641

  16. Aquatic arsenic: phytoremediation using floating macrophytes.

    Science.gov (United States)

    Rahman, M Azizur; Hasegawa, H

    2011-04-01

    Phytoremediation, a plant based green technology, has received increasing attention after the discovery of hyperaccumulating plants which are able to accumulate, translocate, and concentrate high amount of certain toxic elements in their above-ground/harvestable parts. Phytoremediation includes several processes namely, phytoextraction, phytodegradation, rhizofiltration, phytostabilization and phytovolatilization. Both terrestrial and aquatic plants have been tested to remediate contaminated soils and waters, respectively. A number of aquatic plant species have been investigated for the remediation of toxic contaminants such as As, Zn, Cd, Cu, Pb, Cr, Hg, etc. Arsenic, one of the deadly toxic elements, is widely distributed in the aquatic systems as a result of mineral dissolution from volcanic or sedimentary rocks as well as from the dilution of geothermal waters. In addition, the agricultural and industrial effluent discharges are also considered for arsenic contamination in natural waters. Some aquatic plants have been reported to accumulate high level of arsenic from contaminated water. Water hyacinth (Eichhornia crassipes), duckweeds (Lemna gibba, Lemna minor, Spirodela polyrhiza), water spinach (Ipomoea aquatica), water ferns (Azolla caroliniana, Azolla filiculoides, and Azolla pinnata), water cabbage (Pistia stratiotes), hydrilla (Hydrilla verticillata) and watercress (Lepidium sativum) have been studied to investigate their arsenic uptake ability and mechanisms, and to evaluate their potential in phytoremediation technology. It has been suggested that the aquatic macrophytes would be potential for arsenic phytoremediation, and this paper reviews up to date knowledge on arsenic phytoremediation by common aquatic macrophytes. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Bovine viral diarrhea virus (BVDV genetic diversity in Spain: A review

    Directory of Open Access Journals (Sweden)

    Francisco J. Diéguez

    2017-07-01

    Full Text Available Bovine viral diarrhea virus (BVDV, a member of the genus Pestivirus of the family Flaviviridae, causes significant losses in cattle farming worldwide because of reduced milk production, increased mortality of young animals and reproductive, respiratory and intestinal problems. The virus is characterized by an important genetic, and consequently antigenic and pathogenic diversity. Knowing the variability of viral strains present in a population provides valuable information, particularly relevant for control programs development, vaccination recommendations and even identification of likely infection sources. Such information is therefore important at both local and regional levels. This review focuses on the genetic diversity of BVDV isolates infecting cattle in Spain over the last years. According to the published data, the most prevalent BVDV group in Spain was 1b, and to a lesser extent 1d, 1e and 1f. Besides, BVDV-2 has also been found in Spain with several ratified isolates. The studies carried out in Spain also showed increased genetic heterogeneity of BVDV strains, possibly due to a more intensive use of analytical tools available, presenting studies with increasingly greater sample sizes.

  18. State of the Science White Paper: Effects of Plastics Pollution on Aquatic Life and Aquatic-Dependent Wildlife

    Science.gov (United States)

    This document is a state-of-the-science review – one that summarizes available scientific information on the effects of chemicals associated with plastic pollution and their potential impacts on aquatic life and aquatic-dependent wildlife.

  19. Nitrous oxide emission by aquatic macrofauna

    DEFF Research Database (Denmark)

    Stief, Peter; Poulsen, Morten; Nielsen, Lars Peter

    2009-01-01

      A large variety of aquatic animals was found to emit the potent greenhouse gas nitrous oxide when nitrate was present in the environment. The emission was ascribed to denitrification by ingested bacteria in the anoxic animal gut, and the exceptionally high N2O-to-N2 production ratio suggested...... delayed induction of the last step of denitrification. Filter- and deposit-feeding animal species showed the highest rates of nitrous oxide emission and predators the lowest, probably reflecting the different amounts of denitrifying bacteria in the diet. We estimate that nitrous oxide emission by aquatic...... animals is quantitatively important in nitraterich aquatic environments like freshwater, coastal marine, and deep-sea ecosystems. The contribution of this source to overall nitrous oxide emission from aquatic environments might further increase because of the projected increase of nitrate availability...

  20. Recommendations for control of pathogens and infectious diseases in fish research facilities

    Science.gov (United States)

    Kent, M.L.; Feist, S.W.; Harper, C.; Hoogstraten-Miller, S.; Law, J.M.; Sanchez-Morgado, J. M.; Tanguay, R.L.; Sanders, G.E.; Spitsbergen, J.M.; Whipps, Christopher M.

    2009-01-01

    Concerns about infectious diseases in fish used for research have risen along with the dramatic increase in the use of fish as models in biomedical research. In addition to acute diseases causing severe morbidity and mortality, underlying chronic conditions that cause low-grade or subclinical infections may confound research results. Here we present recommendations and strategies to avoid or minimize the impacts of infectious agents in fishes maintained in the research setting. There are distinct differences in strategies for control of pathogens in fish used for research compared to fishes reared as pets or in aquaculture. Also, much can be learned from strategies and protocols for control of diseases in rodents used in research, but there are differences. This is due, in part, the unique aquatic environment that is modified by the source and quality of the water provided and the design of facilities. The process of control of pathogens and infectious diseases in fish research facilities is relatively new, and will be an evolving process over time. Nevertheless, the goal of documenting, detecting, and excluding pathogens in fish is just as important as in mammalian research models.

  1. Nutrients and bioactive substances in aquatic organisms

    International Nuclear Information System (INIS)

    Devadasan, K.; Mukundan, M.K.; Antony, P.D.; Viswanathan Nair, P.G.; Perigreen, P.A.; Joseph, Jose

    1994-01-01

    The International Symposium on Nutrients and Bioactive Substances in Aquatic Organisms, was held during 16-17 September 1993 by the Society of Fisheries Technologists (India) to review the progress of research in this area in India and elsewhere. The papers presented indicate that scientific productivity in this field is substantial and that some of the bioactive materials isolated from aquatic organisms have potential application in human health, nutrition and therapy. The symposium focussed attention on toxicants, nutrients and bioactive substances in aquatic organisms in general, and also on pollution of aquatic systems due to thermal effluents. Paper relevant to INIS database is indexed separately. (M.K.V.)

  2. Diets and abundances of aquatic and semi-aquatic reptiles in the Alligator Rivers Region

    International Nuclear Information System (INIS)

    Shine, R.

    1986-01-01

    The mining and milling of uranium in the Alligator River Region in the Northern Territory has raised the possibility that heavy metals and radionuclides might escape into the aquatic system and be accumulated by the reptilian fauna. Aquatic and semi-aquatic reptiles are regularly eaten by Aboriginal people of the region, and data on diets and reproduction of these species, as well as on their dispersion and abundance, are essential before the possibility that reptiles might act as pathways for these contaminants to Aboriginals can be assessed. The objectives of this study were to provide quantitative data on the diets of filesnakes, sand goannas and water goannas, to provide information on seasonal changes in their abundance and distribution within the Magela Creek system; and to describe their reproductive cycles

  3. Viral haemorrhagic septicaemia virus in marine fish and its implications for fish farming - a review

    DEFF Research Database (Denmark)

    Skall, Helle Frank; Olesen, Niels Jørgen; Mellergaard, Stig

    2005-01-01

    Viral haemorrhagic septicaemia virus (VHSV) has, in recent decades, been isolated from an increasing number of free-living marine fish species. So far, it has been isolated from at least 48 fish species from the northern hemisphere, including North America, Asia and Europe, and fifteen different...... marine fish show no to low pathogenicity to rainbow trout and Atlantic salmon, although several are pathogenic for turbot. Marine VHSV isolates are so far serologically indistinguishable from freshwater isolates. Genotyping based on VHSV G- and N-genes reveals four groups indicating the geographical...... origin of the isolates, with one group representing traditional European freshwater isolates and isolates of north European marine origin, a second group of marine isolates from the Baltic Sea, a third group of isolates from the North Sea, and a group representing North American isolates. Examples...

  4. A neonatal murine model for evaluation of enterovirus E HY12 virus infection and pathogenicity.

    Directory of Open Access Journals (Sweden)

    Xiaochun Gai

    Full Text Available HY12 viruses are enteroviruses recently isolated from cattle characterized by severe respiratory and digestive disease with high morbidity and mortality in China. While the viruses exhibit unique biological and molecular characters distinct from known enterovirus E, the pathogenicity and viral pathogenesis remains largely unknown.Neonatal mice of Balb/C, ICR, and Kunming strain are infected with HY12 to determine the susceptible mouse strain. The minimal infection dose, the virus infection routes, the pathogenicity and tissue tropism for HY12 were determined by infecting susceptible mice with HY12 viruses, and confirmed by different approaches including virus isolation and recovery, virus detection, histopathology, and immunohistochemistry.A murine model for HY12 infection was successfully established and employed to investigate the pathogenicity of HY12 viruses. ICR mouse strain is the most susceptible strain for HY12 infection with a minimal infective dose as 2×106TCID50/mouse. HY12 viruses have the capability of infecting ICR suckling mice via all infection routes including intranasal administration, oral administration, intraperitoneal injection, subcutaneous injection, and intramuscular injection, which are confirmed by the isolation and recovery of viruses from HY12-infected mice; detection of viruses by RT-PCR; observations of pathological lesions and inflammatory cell infiltrations in the intestine, lung, liver, and brain; uncovering of HY12 virus antigens in majority of tissues, especially in intestine, lung, and infected brain of mice by immunohistochemistry assay.A neonatal murine model for HY12 infection is successfully established for determining the susceptible mouse strain, the minimal infective dose, the infection route, the viral pathogenicity and the tropism of HY12, thus providing an invaluable model system for elucidating the pathogenesis of HY12 viruses and the elicited immunity.

  5. Identifying potential virulence determinants in viral haemorrhagic septicaemia virus (VHSV) for rainbow trout

    DEFF Research Database (Denmark)

    Campbell, Scott; Collet, Bertrand; Einer-Jensen, Katja

    2009-01-01

    of an isolate recovered in 2000 from a viral haemorrhagic septicaemia disease episode in a marine rainbow trout farm in Sweden (SE-SVA-1033) was evaluated in juvenile rainbow trout via intraperitoneal injection and immersion challenge alongside 3 isolates recovered from wild-caught marine fish (DK-4p37, DK-5e59...... and UKMLA98/6HE1) suspected of being of low pathogenicity to trout. Mortality data revealed that isolate SE-SVA-1033 caused VHSV-specific mortality in both intraperitoneal and immersion challenges (75.0 and 15.4%, respectively). The remaining Genotype Ib isolates caused significantly lower mortalities using...

  6. Toxicological effects of pyrethroids on non-target aquatic insects.

    Science.gov (United States)

    Antwi, Frank B; Reddy, Gadi V P

    2015-11-01

    The toxicological effects of pyrethroids on non-target aquatic insects are mediated by several modes of entry of pyrethroids into aquatic ecosystems, as well as the toxicological characteristics of particular pyrethroids under field conditions. Toxicokinetics, movement across the integument of aquatic insects, and the toxicodynamics of pyrethroids are discussed, and their physiological, symptomatic and ecological effects evaluated. The relationship between pyrethroid toxicity and insecticide uptake is not fully defined. Based on laboratory and field data, it is likely that the susceptibility of aquatic insects (vector and non-vector) is related to biochemical and physiological constraints associated with life in aquatic ecosystems. Understanding factors that influence aquatic insects susceptibility to pyrethroids is critical for the effective and safe use of these compounds in areas adjacent to aquatic environments. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Pathogenesis of highly pathogenic avian influenza A virus (H7N1) infection in chickens inoculated with three different doses.

    Science.gov (United States)

    Chaves, Aida J; Busquets, Nuria; Campos, Naiana; Ramis, Antonio; Dolz, Roser; Rivas, Raquel; Valle, Rosa; Abad, F Xavier; Darji, Ayub; Majo, Natalia

    2011-04-01

    To study the pathogenesis of a H7N1 highly pathogenic avian influenza virus strain, specific pathogen free chickens were inoculated with decreasing concentrations of virus: 10(5.5) median embryo lethal dose (ELD(50)) (G1), 10(3.5) ELD(50) (G2) and 10(1.5) ELD(50) (G3). Disease progression was monitored over a period of 16 days and sequential necropsies and tissue samples were collected for histological and immunohistochemical examination. Viral RNA loads were also quantified in different tissues, blood, oropharyngeal swabs, and cloacal swabs using quantitative real-time reverse transcriptase-polymerase chain reaction (RT-qPCR). Clinical signs of depression, apathy, listlessness, huddling and ruffled feathers were recorded in G1 and a few G2 birds, whilst neurological signs were only observed in chickens inoculated with the highest dose. Gross lesions of haemorrhages were observed in the unfeathered skin of the comb and legs, and skeletal muscle, lung, pancreas and kidneys of birds inoculated with 10(5.5) ELD(50) and 10(3.5) ELD(50) doses. Microscopic lesions and viral antigen were demonstrated in cells of the nasal cavity, lung, heart, skeletal muscle, brain, spinal cord, gastrointestinal tract, pancreas, liver, bone marrow, thymus, bursa of Fabricius, spleen, kidney, adrenal gland and skin. Viral RNA was detected by RT-qPCR in kidney, lung, intestine, and brain samples of G1 and G2 birds. However, in birds infected with the lowest dose, viral RNA was detected only in brain and lung samples in low amounts at 5 and 7 days post infection. Interestingly, viral shedding was observed in oropharyngeal and cloacal swabs with proportionate decrease with the inoculation dose. We conclude that although an adequate infectious dose is critical in reproducing the clinical infection, chickens exposed to lower doses can be infected and shed virus representing a risk for the dissemination of the viral agent.

  8. Pathogen inactivation of Dengue virus in red blood cells using amustaline and glutathione.

    Science.gov (United States)

    Aubry, Maite; Laughhunn, Andrew; Santa Maria, Felicia; Lanteri, Marion C; Stassinopoulos, Adonis; Musso, Didier

    2017-12-01

    Dengue virus (DENV) is an arbovirus primarily transmitted through mosquito bite; however, DENV transfusion-transmitted infections (TTIs) have been reported and asymptomatic DENV RNA-positive blood donors have been identified in endemic countries. DENV is considered a high-risk pathogen for blood safety. One of the mitigation strategies to prevent arbovirus TTIs is pathogen inactivation. In this study we demonstrate that the amustaline and glutathione (S-303/GSH) treatment previously found effective against Zika virus in red blood cells (RBCs) is also effective in inactivating DENV. Red blood cells were spiked with high levels of DENV. Viral RNA loads and infectious titers were measured in the untreated control and before and after pathogen inactivation treatment of RBC samples. DENV infectivity was also assessed over five successive cell culture passages to detect any potential residual replicative virus. The mean ± SD DENV titer in RBCs before inactivation was 6.61 ± 0.19 log 50% tissue culture infectious dose (TCID 50 )/mL and the mean viral RNA load was 8.42 log genome equivalents/mL. No replicative DENV was detected either immediately after completion of treatment using S-303/GSH or after cell culture passages. Treatment using S-303/GSH inactivated high levels of DENV in RBCs to the limit of detection. In combination with previous studies showing the effective inactivation of DENV in plasma and platelets using the licensed amotosalen/UVA system, this study demonstrates that high levels of DENV can be inactivated in all blood components. © 2017 The Authors Transfusion published by Wiley Periodicals, Inc. on behalf of AABB.

  9. Laboratory procedures to generate viral metagenomes.

    Science.gov (United States)

    Thurber, Rebecca V; Haynes, Matthew; Breitbart, Mya; Wegley, Linda; Rohwer, Forest

    2009-01-01

    This collection of laboratory protocols describes the steps to collect viruses from various samples with the specific aim of generating viral metagenome sequence libraries (viromes). Viral metagenomics, the study of uncultured viral nucleic acid sequences from different biomes, relies on several concentration, purification, extraction, sequencing and heuristic bioinformatic methods. No single technique can provide an all-inclusive approach, and therefore the protocols presented here will be discussed in terms of hypothetical projects. However, care must be taken to individualize each step depending on the source and type of viral-particles. This protocol is a description of the processes we have successfully used to: (i) concentrate viral particles from various types of samples, (ii) eliminate contaminating cells and free nucleic acids and (iii) extract, amplify and purify viral nucleic acids. Overall, a sample can be processed to isolate viral nucleic acids suitable for high-throughput sequencing in approximately 1 week.

  10. Hepatitis A through E (Viral Hepatitis)

    Science.gov (United States)

    ... Treatment Eating, Diet, & Nutrition Clinical Trials Wilson Disease Hepatitis (Viral) View or Print All Sections What is Viral Hepatitis? Viral hepatitis is an infection that causes liver inflammation ...

  11. High Throughput Sequencing for Detection of Foodborne Pathogens

    Directory of Open Access Journals (Sweden)

    Camilla Sekse

    2017-10-01

    Full Text Available High-throughput sequencing (HTS is becoming the state-of-the-art technology for typing of microbial isolates, especially in clinical samples. Yet, its application is still in its infancy for monitoring and outbreak investigations of foods. Here we review the published literature, covering not only bacterial but also viral and Eukaryote food pathogens, to assess the status and potential of HTS implementation to inform stakeholders, improve food safety and reduce outbreak impacts. The developments in sequencing technology and bioinformatics have outpaced the capacity to analyze and interpret the sequence data. The influence of sample processing, nucleic acid extraction and purification, harmonized protocols for generation and interpretation of data, and properly annotated and curated reference databases including non-pathogenic “natural” strains are other major obstacles to the realization of the full potential of HTS in analytical food surveillance, epidemiological and outbreak investigations, and in complementing preventive approaches for the control and management of foodborne pathogens. Despite significant obstacles, the achieved progress in capacity and broadening of the application range over the last decade is impressive and unprecedented, as illustrated with the chosen examples from the literature. Large consortia, often with broad international participation, are making coordinated efforts to cope with many of the mentioned obstacles. Further rapid progress can therefore be prospected for the next decade.

  12. Modulation of Intestinal Paracellular Transport by Bacterial Pathogens.

    Science.gov (United States)

    Roxas, Jennifer Lising; Viswanathan, V K

    2018-03-25

    The passive and regulated movement of ions, solutes, and water via spaces between cells of the epithelial monolayer plays a critical role in the normal intestinal functioning. This paracellular pathway displays a high level of structural and functional specialization, with the membrane-spanning complexes of the tight junctions, adherens junctions, and desmosomes ensuring its integrity. Tight junction proteins, like occludin, tricellulin, and the claudin family isoforms, play prominent roles as barriers to unrestricted paracellular transport. The past decade has witnessed major advances in our understanding of the architecture and function of epithelial tight junctions. While it has been long appreciated that microbes, notably bacterial and viral pathogens, target and disrupt junctional complexes and alter paracellular permeability, the precise mechanisms remain to be defined. Notably, renewed efforts will be required to interpret the available data on pathogen-mediated barrier disruption in the context of the most recent findings on tight junction structure and function. While much of the focus has been on pathogen-induced dysregulation of junctional complexes, commensal microbiota and their products may influence paracellular permeability and contribute to the normal physiology of the gut. Finally, microbes and their products have become important tools in exploring host systems, including the junctional properties of epithelial cells. © 2018 American Physiological Society. Compr Physiol 8:823-842, 2018. Copyright © 2018 American Physiological Society. All rights reserved.

  13. Spatial distribution of aquatic insects

    DEFF Research Database (Denmark)

    Iversen, Lars Lønsmann

    (time since glacial disturbance and habitat stability) and question the generality of these processes for the understanding of species richness gradients in European rivers. Using regional distributions of European mayflies, stoneflies, and caddisflies this chapter demonstrates that differences...... and shape the habitat requirements and distribution of one of the most affected groups of freshwater species: aquatic insects. It comprises four chapters each addressing different spatial factors in relation to the occurrence of aquatic insects in Europe. Chapter I examine two spatial ecological processes...... niche is derived from local distribution patterns, without incorporating landscape history it can lead to an erroneous niche definition. Chapter III provides some of the first evidence for differences in dispersal phenology related to flight potential in aquatic insects. The chapter highlights...

  14. Multiple infections of rodents with zoonotic pathogens in Austria.

    Science.gov (United States)

    Schmidt, Sabrina; Essbauer, Sandra S; Mayer-Scholl, Anne; Poppert, Sven; Schmidt-Chanasit, Jonas; Klempa, Boris; Henning, Klaus; Schares, Gereon; Groschup, Martin H; Spitzenberger, Friederike; Richter, Dania; Heckel, Gerald; Ulrich, Rainer G

    2014-07-01

    Rodents are important reservoirs for a large number of zoonotic pathogens. We examined the occurrence of 11 viral, bacterial, and parasitic agents in rodent populations in Austria, including three different hantaviruses, lymphocytic choriomeningitis virus, orthopox virus, Leptospira spp., Borrelia spp., Rickettsia spp., Bartonella spp., Coxiella burnetii, and Toxoplasma gondii. In 2008, 110 rodents of four species (40 Clethrionomys glareolus, 29 Apodemus flavicollis, 26 Apodemus sylvaticus, and 15 Microtus arvalis) were trapped at two rural sites in Lower Austria. Chest cavity fluid and samples of lung, spleen, kidney, liver, brain, and ear pinna skin were collected. We screened selected tissue samples for hantaviruses, lymphocytic choriomeningitis virus, orthopox viruses, Leptospira, Borrelia, Rickettsia, Bartonella spp., C. burnetii, and T. gondii by RT-PCR/PCR and detected nucleic acids of Tula hantavirus, Leptospira spp., Borrelia afzelii, Rickettsia spp., and different Bartonella species. Serological investigations were performed for hantaviruses, lymphocytic choriomeningitis virus, orthopox viruses, and Rickettsia spp. Here, Dobrava-Belgrade hantavirus-, Tula hantavirus-, lymphocytic choriomeningitis virus-, orthopox virus-, and rickettsia-specific antibodies were demonstrated. Puumala hantavirus, C. burnetii, and T. gondii were neither detected by RT-PCR/PCR nor by serological methods. In addition, multiple infections with up to three pathogens were shown in nine animals of three rodent species from different trapping sites. In conclusion, these results show that rodents in Austria may host multiple zoonotic pathogens. Our observation raises important questions regarding the interactions of different pathogens in the host, the countermeasures of the host's immune system, the impact of the host-pathogen interaction on the fitness of the host, and the spread of infectious agents among wild rodents and from those to other animals or humans.

  15. Viral and immunological factors associated with breast milk transmission of SIV in rhesus macaques

    Directory of Open Access Journals (Sweden)

    Fresh Lynn

    2004-07-01

    Full Text Available Abstract Background The viral and host factors involved in transmission of HIV through breastfeeding are largely unknown, and intervention strategies are urgently needed to protect at-risk populations. To evaluate the viral and immunological factors directly related to milk transmission of virus, we have evaluated the disease course of Simian Immunodeficiency Virus (SIV in lactating rhesus macaques (Macaca mulatta as a model of natural breast milk transmission of HIV. Results Fourteen lactating macaques were infected intravenously with SIV/DeltaB670, a pathogenic isolate of SIV and were pair-housed with their suckling infants throughout the disease course. Transmission was observed in 10 mother-infant pairs over a one-year period. Two mothers transmitted virus during the period of initial viremia 14–21 days post inoculation (p.i. and were classified as early transmitters. Peak viral loads in milk and plasma of early transmitters were similar to other animals, however the early transmitters subsequently displayed a rapid progressor phenotype and failed to control virus expression as well as other animals at 56 days p.i. Eight mothers were classified as late transmitters, with infant infection detected at time points in the chronic stage of the maternal SIV disease course (81 to 360 days. Plasma viral loads, CD4+ T cell counts and SIV-specific antibody titers were similar in late transmitters and non-transmitters. Late breast milk transmission, however, was correlated with higher average milk viral loads and more persistent viral expression in milk 12 to 46 weeks p.i. as compared to non-transmitters. Four mothers failed to transmit virus, despite disease progression and continuous lactation. Conclusion These studies validate the SIV-infected rhesus macaque as a model for breast milk transmission of HIV. As observed in studies of HIV-infected women, transmission occurred at time points throughout the period of lactation. Transmission during the

  16. Low Prevalence of Human Pathogens on Fresh Produce on Farms and in Packing Facilities: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Amelia E. Van Pelt

    2018-02-01

    Full Text Available Foodborne illness burdens individuals around the world and may be caused by consuming fresh produce contaminated with bacterial, parasite, and viral pathogens. Pathogen contamination on produce may originate at the farm and packing facility. This research aimed to determine the prevalence of human pathogens (bacteria, parasites, and viruses on fresh produce (fruits, herbs, and vegetables on farms and in packing facilities worldwide through a systematic review of 38 peer-reviewed articles. The median and range of the prevalence was calculated, and Kruskal–Wallis tests and logistic regression were performed to compare prevalence among pooled samples of produce groups, pathogen types, and sampling locations. Results indicated a low median percentage of fresh produce contaminated with pathogens (0%. Both viruses (p-value = 0.017 and parasites (p-value = 0.033, on fresh produce, exhibited higher prevalence than bacteria. No significant differences between fresh produce types or between farm and packing facility were observed. These results may help to better quantify produce contamination in the production environment and inform strategies to prevent future foodborne illness.

  17. Non-infectious plasmid engineered to simulate multiple viral threat agents.

    Science.gov (United States)

    Carrera, Monica; Sagripanti, Jose-Luis

    2009-07-01

    The aim of this study was to design and construct a non-virulent simulant to replace several pathogenic viruses in the development of detection and identification methods in biodefense. A non-infectious simulant was designed and engineered to include the nucleic acid signature of VEEV (Venezuelan Equine Encephalitis virus), Influenza virus, Rift Valley Fever virus, Machupo virus, Lassa virus, Yellow Fever virus, Ebola virus, Eastern Equine Encephalitis virus, Junin virus, Marburg virus, Dengue virus, and Crimean-Congo virus, all in a single construct. The nucleic acid sequences of all isolates available for each virus species were aligned using ClustalW software in order to obtain conserved regions of the viral genomes. Specific primers were designed to permit the identification and differentiation between viral threat agents. A chimera of 3143 base pairs was engineered to produce 13 PCR amplicons of different sizes. PCR amplification of the simulant with virus-specific primers revealed products of the predicted length, in bands of similar intensity, and without detectable unspecific products by electrophoresis analysis. The simulant described could reduce the need to use infectious viruses in the development of detection and diagnostic methods, and could also be useful as a non-virulent positive control in nucleic acid-based tests against biological threat agents.

  18. Adsorption of viral particles from the blood plasma of patients with viral hepatitis on nanodiamonds.

    Science.gov (United States)

    Baron, A V; Osipov, N V; Yashchenko, S V; Kokotukha, Yu A; Baron, I J; Puzyr, A P; Olkhovskiy, I A; Bondar, V S

    2016-07-01

    Adsorption of viral particles from the blood plasma of patients with viral hepatitis B and C on modified nanodiamonds (MNDs) was shown in the in vitro experiments. PCR method showed the treatment of plasma with MNDs leads to a decrease in the viral load by 2-3 orders of magnitude or more in both cases studied. These results make it possible to predict the applicability of MNDs for the development of new technologies of hemodialysis and plasmapheresis for binding and removal of viral particles from the blood of infected patients.

  19. A multiplexed reverse transcriptase PCR assay for identification of viral respiratory pathogens at point-of-care

    Energy Technology Data Exchange (ETDEWEB)

    Letant, S E; .Ortiz, J I; Tammero, L; Birch, J M; Derlet, R W; Cohen, S; Manning, D; McBride, M T

    2007-04-11

    We have developed a nucleic acid-based assay that is rapid, sensitive, specific, and can be used for the simultaneous detection of 5 common human respiratory pathogens including influenza A, influenza B, parainfluenza type 1 and 3, respiratory syncytial virus, and adenovirus group B, C, and E. Typically, diagnosis on an un-extracted clinical sample can be provided in less than 3 hours, including sample collection, preparation, and processing, as well as data analysis. Such a multiplexed panel would enable rapid broad-spectrum pathogen testing on nasal swabs, and therefore allow implementation of infection control measures, and timely administration of antiviral therapies. This article presents a summary of the assay performance in terms of sensitivity and specificity. Limits of detection are provided for each targeted respiratory pathogen, and result comparisons are performed on clinical samples, our goal being to compare the sensitivity and specificity of the multiplexed assay to the combination of immunofluorescence and shell vial culture currently implemented at the UCDMC hospital. Overall, the use of the multiplexed RT-PCR assay reduced the rate of false negatives by 4% and reduced the rate of false positives by up to 10%. The assay correctly identified 99.3% of the clinical negatives, 97% of adenovirus, 95% of RSV, 92% of influenza B, and 77% of influenza A without any extraction performed on the clinical samples. The data also showed that extraction will be needed for parainfluenza virus, which was only identified correctly 24% of the time on un-extracted samples.

  20. Antimicrobial Properties of Plant Essential Oils against Human Pathogens and Their Mode of Action: An Updated Review

    Directory of Open Access Journals (Sweden)

    Mallappa Kumara Swamy

    2016-01-01

    Full Text Available A wide range of medicinal and aromatic plants (MAPs have been explored for their essential oils in the past few decades. Essential oils are complex volatile compounds, synthesized naturally in different plant parts during the process of secondary metabolism. Essential oils have great potential in the field of biomedicine as they effectively destroy several bacterial, fungal, and viral pathogens. The presence of different types of aldehydes, phenolics, terpenes, and other antimicrobial compounds means that the essential oils are effective against a diverse range of pathogens. The reactivity of essential oil depends upon the nature, composition, and orientation of its functional groups. The aim of this article is to review the antimicrobial potential of essential oils secreted from MAPs and their possible mechanisms of action against human pathogens. This comprehensive review will benefit researchers who wish to explore the potential of essential oils in the development of novel broad-spectrum key molecules against a broad range of drug-resistant pathogenic microbes.

  1. Antimicrobial Properties of Plant Essential Oils against Human Pathogens and Their Mode of Action: An Updated Review

    Science.gov (United States)

    2016-01-01

    A wide range of medicinal and aromatic plants (MAPs) have been explored for their essential oils in the past few decades. Essential oils are complex volatile compounds, synthesized naturally in different plant parts during the process of secondary metabolism. Essential oils have great potential in the field of biomedicine as they effectively destroy several bacterial, fungal, and viral pathogens. The presence of different types of aldehydes, phenolics, terpenes, and other antimicrobial compounds means that the essential oils are effective against a diverse range of pathogens. The reactivity of essential oil depends upon the nature, composition, and orientation of its functional groups. The aim of this article is to review the antimicrobial potential of essential oils secreted from MAPs and their possible mechanisms of action against human pathogens. This comprehensive review will benefit researchers who wish to explore the potential of essential oils in the development of novel broad-spectrum key molecules against a broad range of drug-resistant pathogenic microbes. PMID:28090211

  2. Human T-cell leukemia virus type 2 post-transcriptional control protein p28 is required for viral infectivity and persistence in vivo

    Directory of Open Access Journals (Sweden)

    Kesic Matthew

    2008-05-01

    Full Text Available Abstract Background Human T-cell leukemia virus (HTLV type 1 and type 2 are related but distinct pathogenic complex retroviruses. HTLV-1 is associated with adult T-cell leukemia and a variety of immune-mediated disorders including the chronic neurological disease termed HTLV-1-associated myelopathy/tropical spastic paraparesis. In contrast, HTLV-2 displays distinct biological differences and is much less pathogenic, with only a few reported cases of leukemia and neurological disease associated with infection. In addition to the structural and enzymatic proteins, HTLV encodes regulatory (Tax and Rex and accessory proteins. Tax and Rex positively regulate virus production and are critical for efficient viral replication and pathogenesis. Using an over-expression system approach, we recently reported that the accessory gene product of the HTLV-1 and HTLV-2 open reading frame (ORF II (p30 and p28, respectively acts as a negative regulator of both Tax and Rex by binding to and retaining their mRNA in the nucleus, leading to reduced protein expression and virion production. Further characterization revealed that p28 was distinct from p30 in that it was devoid of major transcriptional modulating activity, suggesting potentially divergent functions that may be responsible for the distinct pathobiologies of HTLV-1 and HTLV-2. Results In this study, we investigated the functional significance of p28 in HTLV-2 infection, proliferation, and immortaliztion of primary T-cells in culture, and viral survival in an infectious rabbit animal model. An HTLV-2 p28 knockout virus (HTLV-2Δp28 was generated and evaluated. Infectivity and immortalization capacity of HTLV-2Δp28 in vitro was indistinguishable from wild type HTLV-2. In contrast, we showed that viral replication was severely attenuated in rabbits inoculated with HTLV-2Δp28 and the mutant virus failed to establish persistent infection. Conclusion We provide direct evidence that p28 is dispensable for

  3. Avian metapneumovirus excretion in vaccinated and non-vaccinated specified pathogen free laying chickens.

    Science.gov (United States)

    Hess, M; Huggins, M B; Mudzamiri, R; Heincz, U

    2004-02-01

    Vaccinated and non-vaccinated specified pathogen-free White Leghorn laying chickens were challenged at peak of lay by the intravenous or oculonasal route with a virulent avian metapneumovirus (aMPV) subtype B chicken strain. Severe clinical signs and a drop in egg production were induced in the non-vaccinated intravenously challenged birds whereas the vaccinates were not affected. Live virus excretion was demonstrated in the faeces and respiratory tract of non-vaccinated hens for up to 7 days post intravenous challenge. After oculonasal challenge, virus excretion could only be demonstrated in the respiratory tract for up to 5 days. No live virus excretion was found in either the faeces or the respiratory tract of vaccinated birds. Concurrent with live virus isolation, the presence of viral RNA was demonstrated by single reverse transcription-polymerase chain reaction (RT-PCR). Nested RT-PCR was more sensitive and viral RNA could be detected in non-vaccinated birds up to 28 days post either intravenous or oculonasal challenge, at which time the experiment was terminated. Viral RNA was detected for up to 12 days in vaccinated birds. This is the first study investigating excretion of aMPV and viral RNA in vaccinated and non-vaccinated laying hens challenged under experimental conditions. The results are of importance with regard to the persistence of aMPV and the appropriate diagnostic detection method in laying birds.

  4. Concentration of infectious aquatic rhabdoviruses from freshwater and seawater using ultrafiltration.

    Science.gov (United States)

    Grant, Amelia A M; Jakob, Eva; Richard, Jon; Garver, Kyle A

    2011-12-01

    Infectious hematopoietic necrosis virus (IHNV), viral hemorrhagic septicemia virus, and spring viremia of carp virus were concentrated and detected from freshwater and seawater samples by using hollow-fiber ultrafiltration. Within 60 min, virus in a 50-L freshwater or saltwater sample was concentrated more than 70-fold, and virus retention efficiencies were consistently greater than 88%. Retention efficiency was highly dependent upon concentrations of column blocking and sample stabilization solutions. A large column with a surface area of 1.15 m2 and a filtration capacity of 5-200 L exhibited optimal viral retention when blocked with 2% fetal bovine serum (FBS) and when the samples were supplemented with 0.1% FBS. Conversely, a small column with 100-fold less surface area and a filtering capacity of 0.5-2.0 L was optimized when blocked with 1% FBS and when the samples were supplemented with 0.1% FBS. The optimized ultrafiltration procedure was further validated with water from a tank that contained IHNV-exposed juvenile sockeye salmon Oncorhynchus nerka, resulting in an average virus retention efficiency of 91.6 +/- 4.1% (mean +/- SE). Virus quantification of concentrated samples demonstrated that IHNV shedding in sockeye salmon preceded mortality; shedding of the virus was observed to increase significantly as early as 7 d postchallenge and peaked at day 14, when virus levels reached 4.87 x 10(3) plaque-forming units/mL. We conclude that ultrafiltration is a reliable and effective method for concentrating viable aquatic rhabdoviruses from large volumes of water and has application for the analysis of environmental water samples.

  5. Aquatic Plant Control Research Program. Allelopathic Aquatic Plants for Aquatic Plant Management: A Feasibility Study

    Science.gov (United States)

    1989-10-01

    1978. " Ecotoxicology of aquatic plant communi- ties," Principles of Ecotoxicology , SCOPE Report 12, Chapter 11, pp 239-255. [Heavy metals, Pollutants...Phragmites communis and Equisetum limosum were cultivated . They found plant-plant influences depend on soil type. Typha latifolia, S. A2 lacustris, and

  6. Purification of Water by Aquatic Plants

    OpenAIRE

    Morimitsu, Katsuhito; Kawahigashi, Tatsuo

    2013-01-01

    [Abstract] Water quality purification of many water systems including those occurring in rivers depends to a great degree on water quality purification activities of aquatic plants and microbes. This paper presents a discussion of results, based on laboratory experiments, of purification by aquatic plants.

  7. Aquatic Macrophyte Risk Assessment for Pesticides

    NARCIS (Netherlands)

    Maltby, L.; Arnold, D.; Arts, G.H.P.; Davies, J.; Heimbach, F.; Pickl, C.; Poulsen, V.

    2009-01-01

    Given the essential role that primary producers play in aquatic ecosystems, it is imperative that the potential risk of pesticides to the structure and functioning of aquatic plants is adequately assessed. This book discusses the assessment of the risk of pesticides with herbicidal activity to

  8. Intranasal immunization of baculovirus displayed hemagglutinin confers complete protection against mouse adapted highly pathogenic H7N7 reassortant influenza virus.

    Directory of Open Access Journals (Sweden)

    Subaschandrabose Rajesh Kumar

    Full Text Available BACKGROUND: Avian influenza A H7N7 virus poses a pandemic threat to human health because of its ability for direct transmission from domestic poultry to humans and from human to human. The wide zoonotic potential of H7N7 combined with an antiviral immunity inhibition similar to pandemic 1918 H1N1 and 2009 H1N1 influenza viruses is disconcerting and increases the risk of a putative H7N7 pandemic in the future, underlining the urgent need for vaccine development against this virus. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we developed a recombinant vaccine by expressing the H7N7-HA protein on the surface of baculovirus (Bac-HA. The protective efficacy of the live Bac-HA vaccine construct was evaluated in a mouse model by challenging mice immunized intranasally (i.n. or subcutaneously (s.c. with high pathogenic mouse adapted H7N7 reassorted strain. Although s.c. injection of live Bac-HA induced higher specific IgG than i.n. immunization, the later resulted in an elevated neutralization titer. Interestingly, 100% protection from the lethal viral challenge was only observed for the mice immunized intranasally with live Bac-HA, whereas no protection was achieved in any other s.c. or i.n. immunized mice groups. In addition, we also observed higher mucosal IgA as well as increased IFN-γ and IL-4 responses in the splenocytes of the surviving mice coupled with a reduced viral titer and diminished histopathological signs in the lungs. CONCLUSION: Our results indicated that protection from high pathogenic H7N7 (NL/219/03 virus requires both mucosal and systemic immune responses in mice. The balance between Th1 and Th2 cytokines is also required for the protection against the H7N7 pathogen. Intranasal administration of live Bac-HA induced all these immune responses and protected the mice from lethal viral challenge. Therefore, live Bac-HA is an effective vaccine candidate against H7N7 viral infections.

  9. Faktor Risiko Non Viral Pada Karsinoma Nasofaring

    Directory of Open Access Journals (Sweden)

    Sukri Rahman

    2015-09-01

    Full Text Available Abstrak           Latar belakang: Karsinoma nasofaring adalah tumor ganas epitel nasofaring yang sampai saat ini penyebabnya belum diketahui, infeksi virus Epstein Barr dilaporkan sebagai faktor dominan terjadinya karsinoma nasofaring tetapi faktor non viral juga berperan untuk timbulnya keganasan nasofaring. Tujuan: Untuk mengetahui faktor non viral  yang dapat meningkatkan kejadian karsinoma nasofaring sehingga dapat mencegah dan menghindari faktor-faktor non viral tersebut. Tinjauan Pustaka: Karsinoma nasofaring merupakan tumor ganas epitel nasofaring yang penyebabnya berhubungan dengan faktor viral dan non viral diantaranya asap rokok, ikan asin, formaldehid, genetik, asap kayu bakar , debu kayu, infeksi kronik telinga hidung tenggorok, alkohol dan obat tradisional. Kesimpulan: Pembuktian secara klinis dan ilmiah terhadap faktor non viral sebagai penyebab timbulnya karsinoma nasofaring masih belum dapat dijelaskan secara pasti. Faktor non viral merupakan salah satu faktor risiko yang dapat meningkatkan angka kejadian timbulnya keganasan nasofaring Kata kunci: karsinoma nasofaring, faktor risiko, non viral AbstractBackground: Nasopharyngeal carcinoma is a malignant epithelial nasopharyngeal tumor that until now the cause still unknown, Epstein barr virus infection had reported as predominant occurance of nasopharyngeal carcinoma but non viral factors may also contribute to the onset of the incidence of nasopharyngeal malignancy. Purpose: To find non viral factors that may increase the incidence of nasopharyngel carcinoma in order to prevent and avoid non-viral factors Literature: Nasopharyngeal carcinoma is a malignant tumor that causes nasopharyngeal epithelium associated with viral and non-viral factors such as cigarette smoke, salt fish, formaldehyde, genetic, wood smoke ,wood dust, ear nose throat chronic infections, alcohol, and traditional medicine. Conclusion: Clinically and scientifically proving the non-viral factors as

  10. Clinical characteristics and viral load of respiratory syncytial virus and human metapneumovirus in children hospitaled for acute lower respiratory tract infection.

    Science.gov (United States)

    Yan, Xiao-Li; Li, Yu-Ning; Tang, Yi-Jie; Xie, Zhi-Ping; Gao, Han-Chun; Yang, Xue-Mei; Li, Yu-Mei; Liu, Li-Jun; Duan, Zhao-Jun

    2017-04-01

    Respiratory syncytial virus (RSV) and human metapneumovirus (HMPV) are two common viral pathogens in acute lower respiratory tract infections (ALRTI). However, the association of viral load with clinical characteristics is not well-defined in ALRTI. To explore the correlation between viral load and clinical characteristics of RSV and HMPV in children hospitalized for ALRTI in Lanzhou, China. Three hundred and eighty-seven children hospitalized for ALRTI were enrolled. Nasopharyngeal aspirates (NPAs) were sampled from each children. Real-time PCR was used to screen RSV, HMPV, and twelve additional respiratory viruses. Bronchiolitis was the leading diagnoses both in RSV and HMPV positive patients. A significantly greater frequency of wheezing (52% vs. 33.52%, P = 0.000) was noted in RSV positive and negative patients. The RSV viral load was significant higher in children aged infections (P = 0.000). No difference was found in the clinical features of HMPV positive and negative patients. The HMPV viral load had no correlation with any clinical characteristics. The incidences of severe disease were similar between single infection and coinfection for the two viruses (RSV, P = 0.221; HMPV, P = 0.764) and there has no statistical significance between severity and viral load (P = 0.166 and P = 0.721). Bronchiolitis is the most common disease caused by RSV and HMPV. High viral load or co-infection may be associated with some symptoms but neither has a significant impact on disease severity for the two viruses. J. Med. Virol. 89:589-597, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  11. Evaluation of The Antibacterial Effects of The New Benzothiazole and Tetrahydropyrimidine Derivatives against Streptococcus Iniae, Edwardsiella Tarda and Aeromonas Hydrophila as Some Zoonotic Bacterial Pathogens

    Directory of Open Access Journals (Sweden)

    Reza Aryan

    2016-09-01

    Full Text Available Background & Objective: The novel stronger antibacterial compounds such as the thiazole and pyrimidine derivatives are needed in order to remove the threat of bacterial antibiotic resistance in zoonotic aquatic bacterial pathogens. In this study, we evaluated the inhibitory effect of the new benzothiazole and tetrahydropyrimidine derivatives against three important zoonotic aquatic pathogens including Streptococcus iniae, Edwardsiella tarda and Aeromonas hydrophila. Material & Methods: Benzothiazole and tetrahydropyrimidine derivatives were synthesized and dissolved in DMSO with a concentration of 8129 μg/mL. Then, the disk diffusion and broth microdilution methods were applied to evaluate the antibacterial effects. Results were recorded as the minimum inhibitory concentration (MIC and the growth inhibition zone diameter. Results: The study showed that the two tetrahydropyrimidine derivatives had no inhibition effects on all of the studied bacteria. Moreover, no inhibitory effect was observed from the three banzothiazole derivatives against A. hydrophila. However, the benzothiazole derivatives showed significant inhibitory effect against S. iniae and E. tarda with MIC of 256-1024 µg/mL and the growth inhibition zone diameter of 4.3±0.3-18.2±0.1 mm. Conclusion: The antibacterial effect of the new banzothiazole derivatives was confirmed on S. iniae and E. tarda pathogens for the first time.  

  12. Neurological manifestations of dengue viral infection

    Directory of Open Access Journals (Sweden)

    Carod-Artal FJ

    2014-10-01

    Full Text Available Francisco Javier Carod-Artal1,21Neurology Department, Raigmore hospital, Inverness, UK; 2Universitat Internacional de Catalunya (UIC, Barcelona, Spain Abstract: Dengue is the most common mosquito-borne viral infection worldwide. There is increased evidence for dengue virus neurotropism, and neurological manifestations could make part of the clinical picture of dengue virus infection in at least 0.5%–7.4% of symptomatic cases. Neurological complications have been classified into dengue virus encephalopathy, dengue virus encephalitis, immune-mediated syndromes (acute disseminated encephalomyelitis, myelitis, Guillain–Barré syndrome, neuritis brachialis, acute cerebellitis, and others, neuromuscular complications (hypokalemic paralysis, transient benign muscle dysfunction and myositis, and dengue-associated stroke. Common neuro-ophthalmic complications are maculopathy and retinal vasculopathy. Pathogenic mechanisms include systemic complications and metabolic disturbances resulting in encephalopathy, direct effect of the virus provoking encephalitis, and postinfectious immune mechanisms causing immune-mediated syndromes. Dengue viruses should be considered as a cause of neurological disorders in endemic regions. Standardized case definitions for specific neurological complications are still needed. Keywords: encephalitis, encephalopathy, dengue fever, neurological complications

  13. Mimic Phosphorylation of a βC1 Protein Encoded by TYLCCNB Impairs Its Functions as a Viral Suppressor of RNA Silencing and a Symptom Determinant.

    Science.gov (United States)

    Zhong, Xueting; Wang, Zhan Qi; Xiao, Ruyuan; Cao, Linge; Wang, Yaqin; Xie, Yan; Zhou, Xueping

    2017-08-15

    Phosphorylation of the βC1 protein encoded by the betasatellite of tomato yellow leaf curl China virus (TYLCCNB-βC1) by SNF1-related protein kinase 1 (SnRK1) plays a critical role in defense of host plants against geminivirus infection in Nicotiana benthamiana However, how phosphorylation of TYLCCNB-βC1 impacts its pathogenic functions during viral infection remains elusive. In this study, we identified two additional tyrosine residues in TYLCCNB-βC1 that are phosphorylated by SnRK1. The effects of TYLCCNB-βC1 phosphorylation on its functions as a viral suppressor of RNA silencing (VSR) and a symptom determinant were investigated via phosphorylation mimic mutants in N. benthamiana plants. Mutations that mimic phosphorylation of TYLCCNB-βC1 at tyrosine 5 and tyrosine 110 attenuated disease symptoms during viral infection. The phosphorylation mimics weakened the ability of TYLCCNB-βC1 to reverse transcriptional gene silencing and to suppress posttranscriptional gene silencing and abolished its interaction with N. benthamiana ASYMMETRIC LEAVES 1 in N. benthamiana leaves. The mimic phosphorylation of TYLCCNB-βC1 had no impact on its protein stability, subcellular localization, or self-association. Our data establish an inhibitory effect of phosphorylation of TYLCCNB-βC1 on its pathogenic functions as a VSR and a symptom determinant and provide a mechanistic explanation of how SnRK1 functions as a host defense factor. IMPORTANCE Tomato yellow leaf curl China virus (TYLCCNV), which causes a severe yellow leaf curl disease in China, is a monopartite geminivirus associated with the betasatellite (TYLCCNB). TYLCCNB encodes a single pathogenicity protein, βC1 (TYLCCNB-βC1), which functions as both a viral suppressor of RNA silencing (VSR) and a symptom determinant. Here, we show that mimicking phosphorylation of TYLCCNB-βC1 weakens its ability to reverse transcriptional gene silencing, to suppress posttranscriptional gene silencing, and to interact with N

  14. Metabolism goes viral.

    Science.gov (United States)

    Miyake-Stoner, Shigeki J; O'Shea, Clodagh C

    2014-04-01

    Viral and cellular oncogenes converge in targeting critical protein interaction networks to reprogram the cellular DNA and protein replication machinery for pathological replication. In this issue, Thai et al. (2014) show that adenovirus E4ORF1 activates MYC glycolytic targets to induce a Warburg-like effect that converts glucose into nucleotides for viral replication. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Rift valley fever virus nonstructural protein NSs promotes viral RNA replication and transcription in a minigenome system.

    Science.gov (United States)

    Ikegami, Tetsuro; Peters, C J; Makino, Shinji

    2005-05-01

    Rift Valley fever virus (RVFV), which belongs to the genus Phlebovirus, family Bunyaviridae, has a tripartite negative-strand genome (S, M, and L segments) and is an important mosquito-borne pathogen for domestic animals and humans. We established an RVFV T7 RNA polymerase-driven minigenome system in which T7 RNA polymerase from an expression plasmid drove expression of RNA transcripts for viral proteins and minigenome RNA transcripts carrying a reporter gene between both termini of the M RNA segment in 293T cells. Like other viruses of the Bunyaviridae family, replication and transcription of the RVFV minigenome required expression of viral N and L proteins. Unexpectedly, the coexpression of an RVFV nonstructural protein, NSs, with N and L proteins resulted in a significant enhancement of minigenome RNA replication. Coexpression of NSs protein with N and L proteins also enhanced minigenome mRNA transcription in the cells expressing viral-sense minigenome RNA transcripts. NSs protein expression increased the RNA replication of minigenomes that originated from S and L RNA segments. Enhancement of minigenome RNA synthesis by NSs protein occurred in cells lacking alpha/beta interferon (IFN-alpha/beta) genes, indicating that the effect of NSs protein on minigenome RNA replication was unrelated to a putative NSs protein-induced inhibition of IFN-alpha/beta production. Our finding that RVFV NSs protein augmented minigenome RNA synthesis was in sharp contrast to reports that Bunyamwera virus (genus Bunyavirus) NSs protein inhibits viral minigenome RNA synthesis, suggesting that RVFV NSs protein and Bunyamwera virus NSs protein have distinctly different biological roles in viral RNA synthesis.

  16. Pathogenic Escherichia coli producing Extended-Spectrum β-Lactamases isolated from surface water and wastewater.

    Science.gov (United States)

    Franz, Eelco; Veenman, Christiaan; van Hoek, Angela H A M; de Roda Husman, Ana; Blaak, Hetty

    2015-09-24

    To assess public health risks from environmental exposure to Extended-Spectrum β-Lactamases (ESBL)-producing bacteria, it is necessary to have insight in the proportion of relative harmless commensal variants and potentially pathogenic ones (which may directly cause disease). In the current study, 170 ESBL-producing E. coli from Dutch wastewater (n = 82) and surface water (n = 88) were characterized with respect to ESBL-genotype, phylogenetic group, resistance phenotype and virulence markers associated with enteroaggregative E. coli (EAEC), enteroinvasive E. coli (EIEC), enteropathogenic E. coli (EPEC), enterotoxigenic E. coli (ETEC), extraintesinal E. coli (ExPEC), and Shiga toxin-producing E. coli (STEC). Overall, 17.1% of all ESBL-producing E. coli were suspected pathogenic variants. Suspected ExPECs constituted 8.8% of all ESBL-producing variants and 8.3% were potential gastrointestinal pathogens (4.1% EAEC, 1.8% EPEC, 1.2% EIEC, 1.2% ETEC, no STEC). Suspected pathogens were significantly associated with ESBL-genotype CTX-M-15 (X(2) = 14.7, P antibiotics. In conclusion, this study demonstrates that the aquatic environment is a potential reservoir of E. coli variants that combine ESBL-genes, a high level of multi-drug resistance and virulence factors, and therewith pose a health risk to humans upon exposure.

  17. Application of nano-packaging in aquatics

    Directory of Open Access Journals (Sweden)

    D Jafarpour

    2018-03-01

    Conclusion: With regard to aquatics high nutritional value and their important presence in diet one should think of a way to increase it's survivability and maintaining quality. For this, nano technology can help packaging aquatics. Nano can be applied considerably in food health and environment protection.

  18. Broadening of coreceptor usage by human immunodeficiency virus type 2 does not correlate with increased pathogenicity in an in vivo model.

    NARCIS (Netherlands)

    M.E. van der Ende (Marchina); C. Guillon (Christophe); P.H.M. Boers (Patrick); R.A. Gruters (Rob); P. Racz; K. Tenner-Racz; A.D.M.E. Osterhaus (Albert); M. Schutten (Martin)

    2000-01-01

    textabstractThe pathogenic properties of four primary human immunodeficiency virus type 2 (HIV-2) isolates and two primary HIV-2 biological clones were studied in an in vivo human-to-mouse chimeric model. The cell-associated viral load and the ability to reduce the severity of the induced

  19. Breaking into the epithelial apical–junctional complex — news from pathogen hackers

    Science.gov (United States)

    Vogelmann, Roger; Amieva, Manuel R; Falkow, Stanley; Nelson, W James

    2012-01-01

    The epithelial apical–junctional complex is a key regulator of cellular functions. In addition, it is an important target for microbial pathogens that manipulate the cell to survive, proliferate and sometimes persist within a host. Out of a myriad of potential molecular targets, some bacterial and viral pathogens have selected a subset of protein targets at the apical–junctional complex of epithelial cells. Studying how microbes use these targets also teaches us about the inherent physiological properties of host molecules in the context of normal junctional structure and function. Thus, we have learned that three recently uncovered components of the apical–junctional complex of the Ig superfamily — junctional adhesion molecule, Nectin and the coxsackievirus and adenovirus receptor — are important regulators of junction structure and function and represent critical targets of microbial virulence gene products. PMID:15037310

  20. Nitrous oxide emission by aquatic macrofauna

    Science.gov (United States)

    Stief, Peter; Poulsen, Morten; Nielsen, Lars Peter; Brix, Hans; Schramm, Andreas

    2009-01-01

    A large variety of aquatic animals was found to emit the potent greenhouse gas nitrous oxide when nitrate was present in the environment. The emission was ascribed to denitrification by ingested bacteria in the anoxic animal gut, and the exceptionally high N2O-to-N2 production ratio suggested delayed induction of the last step of denitrification. Filter- and deposit-feeding animal species showed the highest rates of nitrous oxide emission and predators the lowest, probably reflecting the different amounts of denitrifying bacteria in the diet. We estimate that nitrous oxide emission by aquatic animals is quantitatively important in nitrate-rich aquatic environments like freshwater, coastal marine, and deep-sea ecosystems. The contribution of this source to overall nitrous oxide emission from aquatic environments might further increase because of the projected increase of nitrate availability in tropical regions and the numeric dominance of filter- and deposit-feeders in eutrophic ecosystems. PMID:19255427

  1. SearchSmallRNA: a graphical interface tool for the assemblage of viral genomes using small RNA libraries data.

    Science.gov (United States)

    de Andrade, Roberto R S; Vaslin, Maite F S

    2014-03-07

    Next-generation parallel sequencing (NGS) allows the identification of viral pathogens by sequencing the small RNAs of infected hosts. Thus, viral genomes may be assembled from host immune response products without prior virus enrichment, amplification or purification. However, mapping of the vast information obtained presents a bioinformatics challenge. In order to by pass the need of line command and basic bioinformatics knowledge, we develop a mapping software with a graphical interface to the assemblage of viral genomes from small RNA dataset obtained by NGS. SearchSmallRNA was developed in JAVA language version 7 using NetBeans IDE 7.1 software. The program also allows the analysis of the viral small interfering RNAs (vsRNAs) profile; providing an overview of the size distribution and other features of the vsRNAs produced in infected cells. The program performs comparisons between each read sequenced present in a library and a chosen reference genome. Reads showing Hamming distances smaller or equal to an allowed mismatched will be selected as positives and used to the assemblage of a long nucleotide genome sequence. In order to validate the software, distinct analysis using NGS dataset obtained from HIV and two plant viruses were used to reconstruct viral whole genomes. SearchSmallRNA program was able to reconstructed viral genomes using NGS of small RNA dataset with high degree of reliability so it will be a valuable tool for viruses sequencing and discovery. It is accessible and free to all research communities and has the advantage to have an easy-to-use graphical interface. SearchSmallRNA was written in Java and is freely available at http://www.microbiologia.ufrj.br/ssrna/.

  2. Task 1.5 Genomic Shift and Drift Trends of Emerging Pathogens

    Energy Technology Data Exchange (ETDEWEB)

    Borucki, M

    2010-01-05

    The Lawrence Livermore National Laboratory (LLNL) Bioinformatics group has recently taken on a role in DTRA's Transformation Medical Technologies Initiative (TMTI). The high-level goal of TMTI is to accelerate the development of broad-spectrum countermeasures. To achieve those goals, TMTI has a near term need to conduct analyses of genomic shift and drift trends of emerging pathogens, with a focused eye on select agent pathogens, as well as antibiotic and virulence markers. Most emerging human pathogens are zoonotic viruses with a genome composed of RNA. The high mutation rate of the replication enzymes of RNA viruses contributes to sequence drift and provides one mechanism for these viruses to adapt to diverse hosts (interspecies transmission events) and cause new human and zoonotic diseases. Additionally, new viral pathogens frequently emerge due to genetic shift (recombination and segment reassortment) which allows for dramatic genotypic and phenotypic changes to occur rapidly. Bacterial pathogens also evolve via genetic drift and shift, although sequence drift generally occurs at a much slower rate for bacteria as compared to RNA viruses. However, genetic shift such as lateral gene transfer and inter- and intragenomic recombination enables bacteria to rapidly acquire new mechanisms of survival and antibiotic resistance. New technologies such as rapid whole genome sequencing of bacterial genomes, ultra-deep sequencing of RNA virus populations, metagenomic studies of environments rich in antibiotic resistance genes, and the use of microarrays for the detection and characterization of emerging pathogens provide mechanisms to address the challenges posed by the rapid emergence of pathogens. Bioinformatic algorithms that enable efficient analysis of the massive amounts of data generated by these technologies as well computational modeling of protein structures and evolutionary processes need to be developed to allow the technology to fulfill its potential.

  3. Transcriptome of Aphanomyces euteiches: new oomycete putative pathogenicity factors and metabolic pathways.

    Directory of Open Access Journals (Sweden)

    Elodie Gaulin

    Full Text Available Aphanomyces euteiches is an oomycete pathogen that causes seedling blight and root rot of legumes, such as alfalfa and pea. The genus Aphanomyces is phylogenically distinct from well-studied oomycetes such as Phytophthora sp., and contains species pathogenic on plants and aquatic animals. To provide the first foray into gene diversity of A. euteiches, two cDNA libraries were constructed using mRNA extracted from mycelium grown in an artificial liquid medium or in contact to plant roots. A unigene set of 7,977 sequences was obtained from 18,864 high-quality expressed sequenced tags (ESTs and characterized for potential functions. Comparisons with oomycete proteomes revealed major differences between the gene content of A. euteiches and those of Phytophthora species, leading to the identification of biosynthetic pathways absent in Phytophthora, of new putative pathogenicity genes and of expansion of gene families encoding extracellular proteins, notably different classes of proteases. Among the genes specific of A. euteiches are members of a new family of extracellular proteins putatively involved in adhesion, containing up to four protein domains similar to fungal cellulose binding domains. Comparison of A. euteiches sequences with proteomes of fully sequenced eukaryotic pathogens, including fungi, apicomplexa and trypanosomatids, allowed the identification of A. euteiches genes with close orthologs in these microorganisms but absent in other oomycetes sequenced so far, notably transporters and non-ribosomal peptide synthetases, and suggests the presence of a defense mechanism against oxidative stress which was initially characterized in the pathogenic trypanosomatids.

  4. Understanding the Role of Intrinsic Disorder of Viral Proteins in the Oncogenicity of Different Types of HPV.

    Science.gov (United States)

    Tamarozzi, Elvira Regina; Giuliatti, Silvana

    2018-01-09

    Intrinsic disorder is very important in the biological function of several proteins, and is directly linked to their foldability during interaction with their targets. There is a close relationship between the intrinsically disordered proteins and the process of carcinogenesis involving viral pathogens. Among these pathogens, we have highlighted the human papillomavirus (HPV) in this study. HPV is currently among the most common sexually transmitted infections, besides being the cause of several types of cancer. HPVs are divided into two groups, called high- and low-risk, based on their oncogenic potential. The high-risk HPV E6 protein has been the target of much research, in seeking treatments against HPV, due to its direct involvement in the process of cell cycle control. To understand the role of intrinsic disorder of the viral proteins in the oncogenic potential of different HPV types, the structural characteristics of intrinsically disordered regions of high and low-risk HPV E6 proteins were analyzed. In silico analyses of primary sequences, prediction of tertiary structures, and analyses of molecular dynamics allowed the observation of the behavior of such disordered regions in these proteins, thereby proving a direct relationship of structural variation with the degree of oncogenicity of HPVs. The results obtained may contribute to the development of new therapies, targeting the E6 oncoprotein, for the treatment of HPV-associated diseases.

  5. A community-based framework for aquatic ecosystem models

    DEFF Research Database (Denmark)

    Trolle, Didde; Hamilton, D. P.; Hipsey, M. R.

    2012-01-01

    Here, we communicate a point of departure in the development of aquatic ecosystem models, namely a new community-based framework, which supports an enhanced and transparent union between the collective expertise that exists in the communities of traditional ecologists and model developers. Through...... a literature survey, we document the growing importance of numerical aquatic ecosystem models while also noting the difficulties, up until now, of the aquatic scientific community to make significant advances in these models during the past two decades. Through a common forum for aquatic ecosystem modellers we...... aim to (i) advance collaboration within the aquatic ecosystem modelling community, (ii) enable increased use of models for research, policy and ecosystem-based management, (iii) facilitate a collective framework using common (standardised) code to ensure that model development is incremental, (iv...

  6. Airborne transmission of a highly pathogenic avian influenza strain H5N1 between groups of chickens quantified in an experimental setting.

    NARCIS (Netherlands)

    Spekreijse, D.; Bouma, A.; Koch, G.; Stegeman, J.A.

    2011-01-01

    Highly pathogenic avian influenza (HPAI) is a devastating viral disease of poultry and quick control of outbreaks is vital. Airborne transmission has often been suggested as a route of transmission between flocks, but knowledge of the rate of transmission via this route is sparse. In the current

  7. Prevalence of transfusion-transmitted viral pathogens among health-care workers and risk mitigation programme in a paediatric tertiary care hospital

    Directory of Open Access Journals (Sweden)

    Charu Nayyar

    2017-01-01

    Full Text Available The health-care workers (HCWs are at an occupational risk of exposure to blood-borne pathogens, mainly, HIV, hepatitis B virus (HBV and hepatitis C virus. HBV is currently the only blood-borne virus for which a vaccine is available. All health-care institutions must encourage the HCWs to undergo screening for blood-borne pathogens.

  8. The Canonical Immediate Early 3 Gene Product pIE611 of Mouse Cytomegalovirus Is Dispensable for Viral Replication but Mediates Transcriptional and Posttranscriptional Regulation of Viral Gene Products.

    Science.gov (United States)

    Rattay, Stephanie; Trilling, Mirko; Megger, Dominik A; Sitek, Barbara; Meyer, Helmut E; Hengel, Hartmut; Le-Trilling, Vu Thuy Khanh

    2015-08-01

    Transcription of mouse cytomegalovirus (MCMV) immediate early ie1 and ie3 is controlled by the major immediate early promoter/enhancer (MIEP) and requires differential splicing. Based on complete loss of genome replication of an MCMV mutant carrying a deletion of the ie3-specific exon 5, the multifunctional IE3 protein (611 amino acids; pIE611) is considered essential for viral replication. Our analysis of ie3 transcription resulted in the identification of novel ie3 isoforms derived from alternatively spliced ie3 transcripts. Construction of an IE3-hemagglutinin (IE3-HA) virus by insertion of an in-frame HA epitope sequence allowed detection of the IE3 isoforms in infected cells, verifying that the newly identified transcripts code for proteins. This prompted the construction of an MCMV mutant lacking ie611 but retaining the coding capacity for the newly identified isoforms ie453 and ie310. Using Δie611 MCMV, we demonstrated the dispensability of the canonical ie3 gene product pIE611 for viral replication. To determine the role of pIE611 for viral gene expression during MCMV infection in an unbiased global approach, we used label-free quantitative mass spectrometry to delineate pIE611-dependent changes of the MCMV proteome. Interestingly, further analysis revealed transcriptional as well as posttranscriptional regulation of MCMV gene products by pIE611. Cytomegaloviruses are pathogenic betaherpesviruses persisting in a lifelong latency from which reactivation can occur under conditions of immunosuppression, immunoimmaturity, or inflammation. The switch from latency to reactivation requires expression of immediate early genes. Therefore, understanding of immediate early gene regulation might add insights into viral pathogenesis. The mouse cytomegalovirus (MCMV) immediate early 3 protein (611 amino acids; pIE611) is considered essential for viral replication. The identification of novel protein isoforms derived from alternatively spliced ie3 transcripts prompted

  9. High antiviral effects of hibiscus tea extract on the H5 subtypes of low and highly pathogenic avian influenza viruses.

    Science.gov (United States)

    Baatartsogt, Tugsbaatar; Bui, Vuong N; Trinh, Dai Q; Yamaguchi, Emi; Gronsang, Dulyatad; Thampaisarn, Rapeewan; Ogawa, Haruko; Imai, Kunitoshi

    2016-10-01

    Viral neuraminidase inhibitors are widely used as synthetic anti-influenza drugs for the prevention and treatment of influenza. However, drug-resistant influenza A virus variants, including H5N1 highly pathogenic avian influenza viruses (HPAIVs), have been reported. Therefore, the discovery of novel and effective antiviral agents is warranted. We screened the antiviral effects of 11 herbal tea extracts (hibiscus, black tea, tencha, rosehip tea, burdock tea, green tea, jasmine tea, ginger tea, lavender tea, rose tea and oak tea) against the H5N1 HPAIV in vitro. Among the tested extracts, only the hibiscus extract and its fractionated extract (frHibis) highly and rapidly reduced the titers of all H5 HPAIVs and low pathogenic AIVs (LPAIVs) used in the pre-treatment tests of Madin-Darby canine kidney (MDCK) cells that were inoculated with a mixture of the virus and the extract. Immunogold electron microscopy showed that anti-H5 monoclonal antibodies could not bind to the deformed H5 virus particles pretreated with frHibis. In post-treatment tests of MDCK cells cultured in the presence of frHibis after infection with H5N1 HPAIV, the frHibis inhibited viral replication and the expression of viral antigens and genes. Among the plants tested, hibiscus showed the most prominent antiviral effects against both H5 HPAIV and LPAIV.

  10. Pathogenic effects of Rift Valley fever virus NSs gene are alleviated in cultured cells by expressed antiviral short hairpin RNAs.

    Science.gov (United States)

    Scott, Tristan; Paweska, Janusz T; Arbuthnot, Patrick; Weinberg, Marc S

    2012-01-01

    Rift Valley fever virus (RVFV), a member of the Bunyaviridae family, may cause severe hepatitis, encephalitis and haemorrhagic fever in humans. There are currently no available licensed vaccines or therapies to treat the viral infection in humans. RNA interference (RNAi)-based viral gene silencing offers a promising approach to inhibiting replication of this highly pathogenic virus. The small (S) segment of the RVFV tripartite genome carries the genetic determinates for pathogenicity during infection. This segment encodes the non-structural S (NSs) and essential nucleocapsid (N) genes. To advance RNAi-based inhibition of RVFV replication, we designed several Pol III short hairpin RNA (shRNA) expression cassettes against the NSs and N genes, including a multimerized plasmid vector that included four shRNA expression cassettes. Effective target silencing was demonstrated using full- and partial-length target reporter assays, and confirmed by western blot analysis of exogenous N and NSs expression. Small RNA northern blots showed detectable RNAi guide strand formation from single and multimerized shRNA constructs. Using a cell culture model of RVFV replication, shRNAs targeting the N gene decreased intracellular nucleocapsid protein concentration and viral replication. The shRNAs directed against the NSs gene reduced NSs protein concentrations and alleviated NSs-mediated cytotoxicity, which may be caused by host transcription suppression. These data are the first demonstration that RNAi activators have a potential therapeutic benefit for countering RVFV infection.

  11. Cerebral Blood Flow Responses to Aquatic Treadmill Exercise.

    Science.gov (United States)

    Parfitt, Rhodri; Hensman, Marianne Y; Lucas, Samuel J E

    2017-07-01

    Aquatic treadmills are used as a rehabilitation method for conditions such as spinal cord injury, osteoarthritis, and stroke, and can facilitate an earlier return to exercise training for athletes. However, their effect on cerebral blood flow (CBF) responses has not been examined. We tested the hypothesis that aquatic treadmill exercise would augment CBF and lower HR compared with land-based treadmill exercise. Eleven participants completed incremental exercise (crossover design) starting from walking pace (4 km·h, immersed to iliac crest [aquatic], 6 km·h [land]) and increasing 1 km·h every 2 min up to 10 km·h for aquatic (maximum belt speed) or 12 km·h for land. After this, participants completed two 2-min bouts of exercise immersed to midthigh and midchest at constant submaximal speed (aquatic), or were ramped to exhaustion (land; increased gradient 2° every min). Middle cerebral artery blood flow velocity (MCAv) and HR were measured throughout, and the initial 10 min of each protocol and responses at each immersion level were compared. Compared with land-based treadmill, MCAvmean increased more from baseline for aquatic exercise (21% vs 12%, P aquatic walking compared with land-based moderate intensity running (~10 cm·s, P = 0.56). Greater water immersion lowered HR (139 vs 178 bpm for midchest vs midthigh), whereas MCAvmean remained constant (P = 0.37). Findings illustrate the potential for aquatic treadmill exercise to enhance exercise-induced elevations in CBF and thus optimize shear stress-mediated adaptation of the cerebrovasculature.

  12. Nutrition and training adaptations in aquatic sports.

    Science.gov (United States)

    Mujika, Iñigo; Stellingwerff, Trent; Tipton, Kevin

    2014-08-01

    The adaptive response to training is determined by the combination of the intensity, volume, and frequency of the training. Various periodized approaches to training are used by aquatic sports athletes to achieve performance peaks. Nutritional support to optimize training adaptations should take periodization into consideration; that is, nutrition should also be periodized to optimally support training and facilitate adaptations. Moreover, other aspects of training (e.g., overload training, tapering and detraining) should be considered when making nutrition recommendations for aquatic athletes. There is evidence, albeit not in aquatic sports, that restricting carbohydrate availability may enhance some training adaptations. More research needs to be performed, particularly in aquatic sports, to determine the optimal strategy for periodizing carbohydrate intake to optimize adaptations. Protein nutrition is an important consideration for optimal training adaptations. Factors other than the total amount of daily protein intake should be considered. For instance, the type of protein, timing and pattern of protein intake and the amount of protein ingested at any one time influence the metabolic response to protein ingestion. Body mass and composition are important for aquatic sport athletes in relation to power-to-mass and for aesthetic reasons. Protein may be particularly important for athletes desiring to maintain muscle while losing body mass. Nutritional supplements, such as b-alanine and sodium bicarbonate, may have particular usefulness for aquatic athletes' training adaptation.

  13. Honey Bee Viruses in Wild Bees: Viral Prevalence, Loads, and Experimental Inoculation

    Science.gov (United States)

    Dolezal, Adam G.; Hendrix, Stephen D.; Scavo, Nicole A.; Carrillo-Tripp, Jimena; Harris, Mary A.; Wheelock, M. Joseph; O’Neal, Matthew E.; Toth, Amy L.

    2016-01-01

    Evidence of inter-species pathogen transmission from managed to wild bees has sparked concern that emerging diseases could be causing or exacerbating wild bee declines. While some pathogens, like RNA viruses, have been found in pollen and wild bees, the threat these viruses pose to wild bees is largely unknown. Here, we tested 169 bees, representing 4 families and 8 genera, for five common honey bee (Apis mellifera) viruses, finding that more than 80% of wild bees harbored at least one virus. We also quantified virus titers in these bees, providing, for the first time, an assessment of viral load in a broad spectrum of wild bees. Although virus detection was very common, virus levels in the wild bees were minimal—similar to or lower than foraging honey bees and substantially lower than honey bees collected from hives. Furthermore, when we experimentally inoculated adults of two different bee species (Megachile rotundata and Colletes inaequalis) with a mixture of common viruses that is lethal to honey bees, we saw no effect on short term survival. Overall, we found that honey bee RNA viruses can be commonly detected at low levels in many wild bee species, but we found no evidence that these pathogens cause elevated short-term mortality effects. However, more work on these viruses is greatly needed to assess effects on additional bee species and life stages. PMID:27832169

  14. Honey Bee Viruses in Wild Bees: Viral Prevalence, Loads, and Experimental Inoculation.

    Science.gov (United States)

    Dolezal, Adam G; Hendrix, Stephen D; Scavo, Nicole A; Carrillo-Tripp, Jimena; Harris, Mary A; Wheelock, M Joseph; O'Neal, Matthew E; Toth, Amy L

    2016-01-01

    Evidence of inter-species pathogen transmission from managed to wild bees has sparked concern that emerging diseases could be causing or exacerbating wild bee declines. While some pathogens, like RNA viruses, have been found in pollen and wild bees, the threat these viruses pose to wild bees is largely unknown. Here, we tested 169 bees, representing 4 families and 8 genera, for five common honey bee (Apis mellifera) viruses, finding that more than 80% of wild bees harbored at least one virus. We also quantified virus titers in these bees, providing, for the first time, an assessment of viral load in a broad spectrum of wild bees. Although virus detection was very common, virus levels in the wild bees were minimal-similar to or lower than foraging honey bees and substantially lower than honey bees collected from hives. Furthermore, when we experimentally inoculated adults of two different bee species (Megachile rotundata and Colletes inaequalis) with a mixture of common viruses that is lethal to honey bees, we saw no effect on short term survival. Overall, we found that honey bee RNA viruses can be commonly detected at low levels in many wild bee species, but we found no evidence that these pathogens cause elevated short-term mortality effects. However, more work on these viruses is greatly needed to assess effects on additional bee species and life stages.

  15. New tools for aquatic habitat modeling

    Science.gov (United States)

    D. Tonina; J. A. McKean; C. Tang; P. Goodwin

    2011-01-01

    Modeling of aquatic microhabitat in streams has been typically done over short channel reaches using one-dimensional simulations, partly because of a lack of high resolution. subaqueous topographic data to better define model boundary conditions. The Experimental Advanced Airborne Research Lidar (EAARL) is an airborne aquatic-terrestrial sensor that allows simultaneous...

  16. Multilocus Sequence Typing and Staphylococcal Protein A Typing Revealed Novel and Diverse Clones of Methicillin-Resistant Staphylococcus aureus in Seafood and the Aquatic Environment.

    Science.gov (United States)

    Murugadas, V; Toms, C Joseph; Reethu, Sara A; Lalitha, K V

    2017-03-01

    Methicillin-resistant Staphylococcus aureus (MRSA) has been a global health concern since the 1960s, and isolation of this pathogen from food-producing animals has been increasing. However, little information is available on the prevalence of MRSA and its clonal characteristics in seafood and the aquatic environment. In this study, 267 seafood and aquatic environment samples were collected from three districts of Kerala, India. Staphylococcal protein A (spa) typing and multilocus sequence typing (MLST) was performed for 65 MRSA strains isolated from 20 seafood and aquatic environment samples. The MRSA clonal profiles were t657-ST772, t002-ST5, t334-ST5, t311-ST5, t121-ST8, t186-ST88, t127-ST1, and two non-spa assignable strains. Whole spa gene sequence analysis along with MLST confirmed one strain as t711-ST6 and another as a novel MRSA clone identified for the first time in seafood and the aquatic environment with a t15669 spa type and a new MLST profile of ST420-256-236-66-82-411-477. The MRSA strains were clustered into five clonal complexes based on the goeBURST algorithm, indicating high diversity among MRSA strains in seafood and the aquatic environment. The novel clone formed a separate clonal complex with matches to three loci. This study recommends large-scale spa typing and MLST of MRSA isolates from seafood and the aquatic environment to determine the prevalence of new MRSA clones. This monitoring process can be useful for tracing local spread of MRSA isolates into the seafood production chain in a defined geographical area.

  17. [Investigation of bacterial and viral etiology in community acquired central nervous system infections with molecular methods].

    Science.gov (United States)

    Kahraman, Hasip; Tünger, Alper; Şenol, Şebnem; Gazi, Hörü; Avcı, Meltem; Örmen, Bahar; Türker, Nesrin; Atalay, Sabri; Köse, Şükran; Ulusoy, Sercan; Işıkgöz Taşbakan, Meltem; Sipahi, Oğuz Reşat; Yamazhan, Tansu; Gülay, Zeynep; Alp Çavuş, Sema; Pullukçu, Hüsnü

    2017-07-01

    In this multicenter prospective cohort study, it was aimed to evaluate the bacterial and viral etiology in community-acquired central nervous system infections by standart bacteriological culture and multiplex polymerase chain reaction (PCR) methods. Patients hospitalized with central nervous system infections between April 2012 and February 2014 were enrolled in the study. Demographic and clinical information of the patients were collected prospectively. Cerebrospinal fluid (CSF) samples of the patients were examined by standart bacteriological culture methods, bacterial multiplex PCR (Seeplex meningitis-B ACE Detection (Streptococcus pneumoniae, Neisseria meningitidis, Haemophilus influenzae, Listeria monocytogenes, Group B streptococci) and viral multiplex PCR (Seeplex meningitis-V1 ACE Detection kits herpes simplex virus-1 (HSV1), herpes simplex virus-2 (HSV2), varicella zoster virus (VZV), cytomegalovirus (CMV), Epstein Barr virus (EBV) and human herpes virus 6 (HHV6)) (Seeplex meningitis-V2 ACE Detection kit (enteroviruses)). Patients were classified as purulent meningitis, aseptic meningitis and encephalitis according to their clinical, CSF (leukocyte level, predominant cell type, protein and glucose (blood/CSF) levels) and cranial imaging results. Patients who were infected with a pathogen other than the detection of the kit or diagnosed as chronic meningitis and other diseases during the follow up, were excluded from the study. A total of 79 patients (28 female, 51 male, aged 42.1 ± 18.5) fulfilled the study inclusion criteria. A total of 46 patients were classified in purulent meningitis group whereas 33 were in aseptic meningitis/encephalitis group. Pathogens were detected by multiplex PCR in 41 patients. CSF cultures were positive in 10 (21.7%) patients (nine S.pneumoniae, one H.influenzae) and PCR were positive for 27 (58.6%) patients in purulent meningitis group. In this group one type of bacteria were detected in 18 patients (14 S.pneumoniae, two N

  18. Terrestrial vegetation and aquatic chemistry influence larval mosquito abundance in catch basins, Chicago, USA

    Directory of Open Access Journals (Sweden)

    Gardner Allison M

    2013-01-01

    Full Text Available Abstract Background An important determinant of mosquito-borne pathogen transmission is the spatial distribution of vectors. The primary vectors of West Nile virus (WNV in Illinois are Culex pipiens Linnaeus (Diptera: Culicidae and Culex restuans Theobald. In urban environments, these mosquitoes commonly oviposit in roadside storm water catch basins. However, use of this habitat is inconsistent, with abundance of larvae varying significantly across catch basins at a fine spatial scale. Methods We tested the hypothesis that attributes of the biotic and abiotic environment contribute to spatial and temporal variation in production of mosquito vectors, characterizing the relationship between terrestrial vegetation and aquatic chemistry and Culex abundance in Chicago, Illinois. Larvae were sampled from 60 catch basins from June 14 to October 3, 2009. Density of shrubs and 14 tree genera surrounding the basins were quantified, as well as aquatic chemistry content of each basin. Results We demonstrate that the spatial pattern of Culex abundance in catch basins is strongly influenced by environmental characteristics, resulting in significant variation across the urban landscape. Using regression and machine learning techniques, we described landscape features and microhabitat characteristics of four Chicago neighborhoods and examined the implications of these measures for larval abundance in adjacent catch basins. The important positive predictors of high larval abundance were aquatic ammonia, nitrates, and area of shrubs of height Culex during the fruit-bearing periods and early senescent periods in August and September. Conclusions This study identifies environmental predictors of mosquito production in urban environments. Because an abundance of adult Culex is integral to efficient WNV transmission and mosquitoes are found in especially high densities near larval habitats, identifying aquatic sites for Culex and landscape features that promote

  19. Viral Haemorrhagic Septicaemia Virus

    DEFF Research Database (Denmark)

    Olesen, Niels Jørgen; Skall, Helle Frank

    2013-01-01

    This chapter covers the genetics (genotypes and serotypes), clinical signs, host species, transmission, prevalence, diagnosis, control and prevention of viral haemorrhagic septicaemia virus.......This chapter covers the genetics (genotypes and serotypes), clinical signs, host species, transmission, prevalence, diagnosis, control and prevention of viral haemorrhagic septicaemia virus....

  20. Chemical disinfection of non-porous inanimate surfaces experimentally contaminated with four human pathogenic viruses.

    OpenAIRE

    Sattar, S. A.; Springthorpe, V. S.; Karim, Y.; Loro, P.

    1989-01-01

    The chemical disinfection of virus-contaminated non-porous inanimate surfaces was investigated using coxsackievirus B3, adenovirus type 5, parainfluenza virus type 3 and coronavirus 229E as representatives of important nosocomial viral pathogens. A 10 microliter amount of the test virus, suspended in either faeces or mucin, was placed onto each stainless steel disk (about 1 cm in diameter) and the inoculum allowed to dry for 1 h under ambient conditions. Sixteen disinfectant formulations were...

  1. Viral commercials: the consumer as marketeer

    NARCIS (Netherlands)

    Ketelaar, P.E.; Lucassen, P.; Kregting, G.H.J.

    2010-01-01

    Research into the reasons why consumers pass along viral commercials: their motives, the content characteristics of viral commercials and the medium context in which viral commercials appear. Based on the uses and gratifications perspective this study has determined which motives of consumers,

  2. Aquatic adventitious roots of the wetland plant Meionectes brownii can photosynthesize

    DEFF Research Database (Denmark)

    Rich, Sarah Meghan; Ludwig, Martha; Pedersen, Ole

    2011-01-01

    • Many wetland plants produce aquatic adventitious roots from submerged stems. Aquatic roots can form chloroplasts, potentially producing endogenous carbon and oxygen. Here, aquatic root photosynthesis was evaluated in the wetland plant Meionectes brownii, which grows extensive stem-borne aquatic...... roots during submergence. • Underwater photosynthetic light and CO(2) response curves were determined for aquatic-adapted leaves, stems and aquatic roots of M. brownii. Oxygen microelectrode and (14)CO(2)-uptake experiments determined shoot inputs of O(2) and photosynthate into aquatic roots. • Aquatic...... adventitious roots contain a complete photosynthetic pathway. Underwater photosynthetic rates are similar to those of stems, with a maximum net photosynthetic rate (P(max)) of 0.38 µmol O(2) m(-2) s(-1); however, this is c. 30-fold lower than that of aquatic-adapted leaves. Under saturating light with 300 mmol...

  3. Rapid screening for entry inhibitors of highly pathogenic viruses under low-level biocontainment.

    Directory of Open Access Journals (Sweden)

    Aparna Talekar

    Full Text Available Emerging viruses including Nipah, Hendra, Lujo, and Junin viruses have enormous potential to spread rapidly. Nipah virus, after emerging as a zoonosis, has also evolved the capacity for human-to-human transmission. Most of the diseases caused by these pathogens are untreatable and require high biocontainment conditions. Universal methods for rapidly identifying and screening candidate antivirals are urgently needed. We have developed a modular antiviral platform strategy that relies on simple bioinformatic and genetic information about each pathogen. Central to this platform is the use of envelope glycoprotein cDNAs to establish multi-cycle replication systems under BSL2 conditions for viral pathogens that normally require BSL3 and BSL4 facilities. We generated monoclonal antibodies against Nipah G by cDNA immunization in rats, and we showed that these antibodies neutralize both Nipah and Hendra live viruses. We then used these effective Henipavirus inhibitors to validate our screening strategy. Our proposed strategy should contribute to the response capability for emerging infectious diseases, providing a way to initiate antiviral development immediately upon identifying novel viruses.

  4. Journal of Aquatic Plant Management. Volume 36

    National Research Council Canada - National Science Library

    1998-01-01

    The U.S. Army Corps of Engineers (CE) Aquatic Plant Control Research Program (APCRP) is the Nation's only federally authorized research program directed to develop technology for the management of non-indigenous aquatic plant species...

  5. Increased pathogenicity and shedding in chickens of a wild bird-origin low pathogenicity avian influenza virus of the H7N3 subtype following multiple in vivo passages in quail and turkey.

    Science.gov (United States)

    Cilloni, Filippo; Toffan, Anna; Giannecchini, Simone; Clausi, Valeria; Azzi, Alberta; Capua, Ilaria; Terregino, Calogero

    2010-03-01

    In order to investigate viral adaptation mechanisms to poultry, we performed serial in vivo passages of a wild bird low pathogenicity avian influenza isolate of the H7N3 subtype (A/mallard/Italy/33/01) in three different domestic species (chicken, turkey, and Japanese quail). The virus under study was administered via natural routes at the dose of 10(6) egg infective dose50/ 0.1 ml to chickens, turkeys, and quails in order to investigate the clinical susceptibility and the shedding levels after infection. Multiple in vivo passages of the virus were performed by serially infecting groups of five naive birds of each species, with samples collected from a previously infected group. Quails and turkeys were susceptible to infection for 10 serial passages, whereas chickens were susceptible to two cycles of infection only. Infection of chicken with the quail- and turkey-adapted viruses showed an increased pathogenicity and/or shedding, causing more severe clinical signs and/or higher levels of viral excretion compared to the original strain. The data obtained herein suggest that infection of selected avian species may facilitate the adaptation of avian influenza viruses originating from the wild bird reservoir to chicken. This is the first time turkey has been shown to act as a species in which a virus from the wild reservoir can increase its replication activity in other domestic species.

  6. Differentiated Brand Marketing Strategy for China’s Conventional Aquatic Products

    Institute of Scientific and Technical Information of China (English)

    Hua; LIANG; Zhongming; SHEN

    2015-01-01

    The volume of production and marketing of China’s conventional aquatic products is increasing. Compared with price of livestock and poultry products,price of conventional aquatic products is relatively low. Differentiated brand marketing for China’s conventional aquatic products is a key approach for increasing market demand for conventional aquatic products and increasing value of conventional aquatic products. The differentiated brand marketing is an inevitable trend of market development and also a powerful arm for market competition. China’s conventional aquatic products can take differentiated brand marketing strategies such as brand orientation,brand concept,brand culture,and place name brand,to better keep market competitive edge and increase economic benefits.

  7. Molecular Biosensors for Electrochemical Detection of Infectious Pathogens in Liquid Biopsies: Current Trends and Challenges.

    Science.gov (United States)

    Campuzano, Susana; Yáñez-Sedeño, Paloma; Pingarrón, José Manuel

    2017-11-03

    Rapid and reliable diagnosis of infectious diseases caused by pathogens, and timely initiation of appropriate treatment are critical determinants to promote optimal clinical outcomes and general public health. Conventional in vitro diagnostics for infectious diseases are time-consuming and require centralized laboratories, experienced personnel and bulky equipment. Recent advances in electrochemical affinity biosensors have demonstrated to surpass conventional standards in regards to time, simplicity, accuracy and cost in this field. The tremendous potential offered by electrochemical affinity biosensors to detect on-site infectious pathogens at clinically relevant levels in scarcely treated body fluids is clearly stated in this review. The development and application of selected examples using different specific receptors, assay formats and electrochemical approaches focusing on the determination of specific circulating biomarkers of different molecular (genetic, regulatory and functional) levels associated with bacterial and viral pathogens are critically discussed. Existing challenges still to be addressed and future directions in this rapidly advancing and highly interesting field are also briefly pointed out.

  8. The oldest record of aquatic amniote congenital scoliosis.

    Directory of Open Access Journals (Sweden)

    Tomasz Szczygielski

    Full Text Available We report the first occurrence of congenital scoliosis in an early Permian aquatic parareptile, Stereosternum tumidum from Paraná state, Brazil. The spine malformation is caused by a congenital hemivertebra. These observations give insight into the biomechanical aspects of underwater locomotion in an axial skeleton-compromised aquatic amniote. This is the oldest record of a hemivertebra in an aquatic animal.

  9. Viral Metagenomics: MetaView Software

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, C; Smith, J

    2007-10-22

    The purpose of this report is to design and develop a tool for analysis of raw sequence read data from viral metagenomics experiments. The tool should compare read sequences of known viral nucleic acid sequence data and enable a user to attempt to determine, with some degree of confidence, what virus groups may be present in the sample. This project was conducted in two phases. In phase 1 we surveyed the literature and examined existing metagenomics tools to educate ourselves and to more precisely define the problem of analyzing raw read data from viral metagenomic experiments. In phase 2 we devised an approach and built a prototype code and database. This code takes viral metagenomic read data in fasta format as input and accesses all complete viral genomes from Kpath for sequence comparison. The system executes at the UNIX command line, producing output that is stored in an Oracle relational database. We provide here a description of the approach we came up with for handling un-assembled, short read data sets from viral metagenomics experiments. We include a discussion of the current MetaView code capabilities and additional functionality that we believe should be added, should additional funding be acquired to continue the work.

  10. Acute Pancreatitis in acute viral hepatitis

    Directory of Open Access Journals (Sweden)

    S K.C.

    2011-03-01

    Full Text Available Introduction: The association of acute viral hepatitis and acute pancreatitis is well described. This study was conducted to find out the frequency of pancreatic involvement in acute viral hepatitis in the Nepalese population. Methods: Consecutive patients of acute viral hepatitis presenting with severe abdominal pain between January 2005 and April 2010 were studied. Patients with history of significant alcohol consumption and gall stones were excluded. Acute viral hepatitis was diagnosed by clinical examination, liver function test, ultrasound examination and confirmed by viral serology. Pancreatitis was diagnosed by clinical presentation, biochemistry, ultrasound examination and CT scan. Results: Severe abdominal pain was present in 38 of 382 serologically-confirmed acute viral hepatitis patients. Twenty five patients were diagnosed to have acute pancreatitis. The pancreatitis was mild in 14 and severe in 11 patients. The etiology of pancreatitis was hepatitis E virus in 18 and hepatitis A virus in 7 patients. Two patients died of complications secondary to shock. The remaining patients recovered from both pancreatitis and hepatitis on conservative treatment. Conclusions: Acute pancreatitis occurred in 6.5 % of patients with acute viral hepatitis. Cholelithiasis and gastric ulcers are the other causes of severe abdominal pain. The majority of the patients recover with conservative management. Keywords: acute viral hepatitis, acute pancreatitis, pain abdomen, hepatitis E, hepatitis A, endemic zone

  11. Prolonged excretion of a low-pathogenicity H5N2 avian influenza virus strain in the Pekin duck

    Science.gov (United States)

    Carranza-Flores, José Manuel; Padilla-Noriega, Luis; Loza-Rubio, Elizabeth

    2013-01-01

    H5N2 strains of low-pathogenicity avian influenza virus (LPAIV) have been circulating for at least 17 years in some Mexican chicken farms. We measured the rate and duration of viral excretion from Pekin ducks that were experimentally inoculated with an H5N2 LPAIV that causes death in embryonated chicken eggs (A/chicken/Mexico/2007). Leghorn chickens were used as susceptible host controls. The degree of viral excretion was evaluated with real-time reverse transcriptase-polymerase chain reaction (RRT-PCR) using samples from oropharyngeal and cloacal swabs. We observed prolonged excretion from both species of birds lasting for at least 21 days. Prolonged excretion of LPAIV A/chicken/Mexico/2007 is atypical. PMID:23820212

  12. Viral inactivation in hemotherapy: systematic review on inactivators with action on nucleic acids

    Directory of Open Access Journals (Sweden)

    Patricia Marial Sobral

    2012-01-01

    Full Text Available The aim of this study was to conduct a systematic review on the photoinactivators used in hemotherapy, with action on viral genomes. The SciELO, Science Direct, PubMed and Lilacs databases were searched for articles. The inclusion criterion was that these should be articles on inactivators with action on genetic material that had been published between 2000 and 2010. The key words used in identifying such articles were "hemovigilance", "viral inactivation", "photodynamics", "chemoprevention" and "transfusion safety". Twenty-four articles on viral photoinactivation were found with the main photoinactivators covered being: methylene blue, amotosalen HCl, S-303 frangible anchor linker effector (FRALE, riboflavin and inactin. The results showed that methylene blue has currently been studied least, because it diminishes coagulation factors and fibrinogen. Riboflavin has been studied most because it is a photoinactivator of endogenous origin and has few collateral effects. Amotosalen HCl is effective for platelets and is also used on plasma, but may cause changes both to plasma and to platelets, although these are not significant for hemostasis. S-303 FRALE may lead to neoantigens in erythrocytes and is less indicated for red-cell treatment; in such cases, PEN 110 is recommended. Thus, none of the methods for pathogen reduction is effective for all classes of agents and for all blood components, but despite the high cost, these photoinactivators may diminish the risk of blood-transmitted diseases.

  13. Inter- and intra-host viral diversity in a large seasonal DENV2 outbreak.

    Directory of Open Access Journals (Sweden)

    Camila Malta Romano

    Full Text Available BACKGROUND: High genetic diversity at both inter- and intra-host level are hallmarks of RNA viruses due to the error-prone nature of their genome replication. Several groups have evaluated the extent of viral variability using different RNA virus deep sequencing methods. Although much of this effort has been dedicated to pathogens that cause chronic infections in humans, few studies investigated arthropod-borne, acute viral infections. METHODS AND PRINCIPAL FINDINGS: We deep sequenced the complete genome of ten DENV2 isolates from representative classical and severe cases sampled in a large outbreak in Brazil using two different approaches. Analysis of the consensus genomes confirmed the larger extent of the 2010 epidemic in comparison to a previous epidemic caused by the same viruses in another city two years before (genetic distance = 0.002 and 0.0008 respectively. Analysis of viral populations within the host revealed a high level of conservation. After excluding homopolymer regions of 454/Roche generated sequences, we found 10 to 44 variable sites per genome population at a frequency of >1%, resulting in very low intra-host genetic diversity. While up to 60% of all variable sites at intra-host level were non-synonymous changes, only 10% of inter-host variability resulted from non-synonymous mutations, indicative of purifying selection at the population level. CONCLUSIONS AND SIGNIFICANCE: Despite the error-prone nature of RNA-dependent RNA-polymerase, dengue viruses maintain low levels of intra-host variability.

  14. Book review: Aquatic insect ecology: 1. Biology and habitat

    OpenAIRE

    Arnett, Ross H.

    2010-01-01

    Book Review: A comprehensive treatment of the ecology of aquatic insects in one place is needed for both students and researchers. Professor Ward is doing this in two volumes. The first volume covers the biology and habitats, as indicated in the subtitle, of the 13 insect orders that are either entirely aquatic at some stage, or those with some members aquatic at some stage. The second volume will be devoted entirely to the feeding ecology of these aquatic species.

  15. Use of a two-step ultrafiltration procedure to concentrate viral hemorrhagic septicemia virus (VHSV) in seawater.

    Science.gov (United States)

    Kim, Soo-Jin; Kim, Jong-Oh; Kim, Wi-Sik; Oh, Myung-Joo

    2015-11-01

    Viral hemorrhagic septicemia virus (VHSV) has been reported to be stable in both fresh as well as seawater, suggesting that VHSV exists in natural aquatic environments and might have an effect on the wild and cultured fish. However, VHSV is below the detectable limits of laboratory tests in natural seawater. In this study, a two-step ultrafiltration (UF) procedure was used to concentration of VHSV in seawater, providing samples that were tested for infectivity by cell culture and the presence of VHSV by quantitative reverse transcriptase PCR (qRT-PCR) methods. Overall, VHSV was approximately concentrated 100-1000 times in 1, 5 and 10 L, seawater volumes respectively: from 2.81×10(6) to 6.53×10(7)/mL and 10(3.3) to 10(3.8)TCID50/mL prior to the UF procedure, to 3.78×10(8), 1.16 × 10(11), and 9.12 × 10(10)/mL after the procedure. This is the first report of concentrating VHSV using an UF method that was specifically designed for seawater samples. In addition, the two-step UF procedure appears to be compatible with viral cell culture and qRT-PCR methods. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Viral O-GalNAc peptide epitopes

    DEFF Research Database (Denmark)

    Olofsson, Sigvard; Blixt, Klas Ola; Bergström, Tomas

    2016-01-01

    Viral envelope glycoproteins are major targets for antibodies that bind to and inactivate viral particles. The capacity of a viral vaccine to induce virus-neutralizing antibodies is often used as a marker for vaccine efficacy. Yet the number of known neutralization target epitopes is restricted o...

  17. Nano-plastics in the aquatic environment.

    Science.gov (United States)

    Mattsson, K; Hansson, L-A; Cedervall, T

    2015-10-01

    The amount of plastics released to the environment in modern days has increased substantially since the development of modern plastics in the early 1900s. As a result, concerns have been raised by the public about the impact of plastics on nature and on, specifically, aquatic wildlife. Lately, much attention has been paid to macro- and micro-sized plastics and their impact on aquatic organisms. However, micro-sized plastics degrade subsequently into nano-sizes whereas nano-sized particles may be released directly into nature. Such particles have a different impact on aquatic organisms than larger pieces of plastic due to their small size, high surface curvature, and large surface area. This review describes the possible sources of nano-sized plastic, its distribution and behavior in nature, the impact of nano-sized plastic on the well-being of aquatic organisms, and the difference of impact between nano- and micro-sized particles. We also identify research areas which urgently need more attention and suggest experimental methods to obtain useful data.

  18. Early Pleistocene aquatic resource use in the Turkana Basin.

    Science.gov (United States)

    Archer, Will; Braun, David R; Harris, Jack W K; McCoy, Jack T; Richmond, Brian G

    2014-12-01

    Evidence for the acquisition of nutritionally dense food resources by early Pleistocene hominins has implications for both hominin biology and behavior. Aquatic fauna may have comprised a source of highly nutritious resources to hominins in the Turkana Basin at ∼1.95 Ma. Here we employ multiple datasets to examine the issue of aquatic resource use in the early Pleistocene. This study focuses on four components of aquatic faunal assemblages (1) taxonomic diversity, (2) skeletal element proportion, (3) bone fragmentation and (4) bone surface modification. These components are used to identify associations between early Pleistocene aquatic remains and hominin behavior at the site of FwJj20 in the Koobi Fora Fm. (Kenya). We focus on two dominant aquatic species: catfish and turtles. Further we suggest that data on aquatic resource availability as well as ethnographic examples of aquatic resource use complement our observations on the archaeological remains from FwJj20. Aquatic food items provided hominins with a valuable nutritional alternative to an exclusively terrestrial resource base. We argue that specific advantages afforded by an aquatic alternative to terrestrial resources include (1) a probable reduction in required investment of energy relative to economic return in the form of nutritionally dense food items, (2) a decrease in the technological costs of resource acquisition, and (3) a reduced level of inter-specific competition associated with carcass access and an associated reduction of predation risk relative to terrestrial sources of food. The combined evidence from FwJj20 suggests that aquatic resources may have played a substantial role in early Pleistocene diets and these resources may have been overlooked in previous interpretations of hominin behavior. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. A hepatocellular carcinoma cell line producing mature hepatitis B viral particles

    International Nuclear Information System (INIS)

    Fellig, Yakov; Almogy, Gidon; Galun, Eithan; Ketzinel-Gilad, Mali

    2004-01-01

    Current in vitro models for hepatitis B virus (HBV) are based on human hepatoblastoma cell lines transfected with HBV genome. The objective of this work was to develop an in vitro, hepatocellular carcinoma (HCC)-based system supporting HBV full replication and producing mature viral particles. The FLC4 human HCC cell line was stably transfected with a plasmid carrying a head-to-tail dimer of the adwHBV genome. One of the clones, FLC4A10 II , exhibited prolonged expression of HBV, as was demonstrated by secreted levels of HBsAg, HBeAg, and HBV DNA in the culture medium of the growing cells. Furthermore, the cells produced HBV particles that were detected by a cesium chloride density gradient performed on the culture medium. Analysis by Southern blot revealed that HBV DNA has integrated into the FLC4A10 II cell genome. The presence of HBV in the FLC4A10 II cells did not cause alterations in cell morphology and the cells continued to resemble mature hepatocytes. They do exhibit a high mitotic activity. The new HBV stably transfected cell line, FLC4A10 II , can serve as an important tool for further exploration of HBV host-pathogen interaction, viral life cycle, and for assessing new antiviral agents

  20. Aquatic Life Benchmarks

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Aquatic Life Benchmarks is an EPA-developed set of criteria for freshwater species. These benchmarks are based on toxicity values reviewed by EPA and used in the...