WorldWideScience

Sample records for aquaglyceroporin channels correlates

  1. Aquaglyceroporins: ancient channels for metalloids

    Science.gov (United States)

    Bhattacharjee, Hiranmoy; Mukhopadhyay, Rita; Thiyagarajan, Saravanamuthu; Rosen, Barry P

    2008-01-01

    The identification of aquaglyceroporins as uptake channels for arsenic and antimony shows how these toxic elements can enter the food chain, and suggests that food plants could be genetically modified to exclude arsenic while still accumulating boron and silicon. PMID:19014407

  2. Electrostatics of aquaporin and aquaglyceroporin channels correlates with their transport selectivity

    Science.gov (United States)

    Oliva, Romina; Calamita, Giuseppe; Thornton, Janet M.; Pellegrini-Calace, Marialuisa

    2010-01-01

    Aquaporins are homotetrameric channel proteins, which allow the diffusion of water and small solutes across biological membranes. According to their transport function, aquaporins can be divided into “orthodox aquaporins”, which allow the flux of water molecules only, and “aquaglyceroporins”, which facilitate the diffusion of glycerol and other small solutes in addition to water. The contribution of individual residues in the pore to the selectivity of orthodox aquaporins and aquaglyceroporins is not yet fully understood. To gain insights into aquaporin selectivity, we focused on the sequence variation and electrostatics of their channels. The continuum Poisson-Boltzmann electrostatic potential along the channel was calculated and compared for ten three-dimensional-structures which are representatives of different aquaporin subfamilies, and a panel of functionally characterized mutants, for which high-accuracy three-dimensional-models could be derived. Interestingly, specific electrostatic profiles associated with the main selectivity to water or glycerol could be identified. In particular: (i) orthodox aquaporins showed a distinctive electrostatic potential maximum at the periplasmic side of the channel around the aromatic/Arg (ar/R) constriction site; (ii) aquaporin-0 (AQP0), a mammalian aquaporin with considerably low water permeability, had an additional deep minimum at the cytoplasmic side; (iii) aquaglyceroporins showed a rather flat potential all along the channel; and (iv) the bifunctional protozoan PfAQP had an unusual all negative profile. Evaluation of electrostatics of the mutants, along with a thorough sequence analysis of the aquaporin pore-lining residues, illuminated the contribution of specific residues to the electrostatics of the channels and possibly to their selectivity. PMID:20147624

  3. Aquaglyceroporins: generalized metalloid channels

    Science.gov (United States)

    Mukhopadhyay, Rita; Bhattacharjee, Hiranmoy; Rosen, Barry P.

    2014-01-01

    Background: Aquaporins (AQPs), members of a superfamily of transmembrane channel proteins, are ubiquitous in all domains of life. They fall into a number of branches that can be functionally categorized into two major sub-groups: i) orthodox aquaporins, which are water-specific channels, and ii) aquaglyceroporins, which allow the transport of water, non-polar solutes, such as urea or glycerol, the reactive oxygen species hydrogen peroxide, and gases such as ammonia, carbon dioxide and nitric oxide and, as described in this review, metalloids. Scope of Review: This review summarizes the key findings that AQP channels conduct bidirectional movement of metalloids into and out of cells. Major Conclusions: As(OH)3 and Sb(OH)3 behave as inorganic molecular mimics of glycerol, a property that allows their passage through AQP channels. Plant AQPs also allow the passage of boron and silicon as their hydroxyacids, boric acid (B(OH)3) and orthosilicic acid (Si(OH)4), respectively. Genetic analysis suggests that germanic acid (GeO2) is also a substrate. While As(III), Sb(III) and Ge(IV) are toxic metalloids, borate (B(III)) and silicate (Si(IV)) are essential elements in higher plants. General Significance: The uptake of environmental metalloids by aquaporins provides an understanding of (i) how toxic elements such as arsenic enter the food chain; (ii) the delivery of arsenic and antimony containing drugs in the treatment of certain forms of leukemia and chemotherapy of diseases caused by pathogenic protozoa; and (iii) the possibility that food plants such as rice could be made safer by genetically modifying them to exclude arsenic while still accumulating boron and silicon. PMID:24291688

  4. Arsenic transport by zebrafish aquaglyceroporins

    Directory of Open Access Journals (Sweden)

    Landfear Scott M

    2009-11-01

    Full Text Available Abstract Background Arsenic is one of the most ubiquitous toxins and endangers the health of tens of millions of humans worldwide. It is a mainly a water-borne contaminant. Inorganic trivalent arsenic (AsIII is one of the major species that exists environmentally. The transport of AsIII has been studied in microbes, plants and mammals. Members of the aquaglyceroporin family have been shown to actively conduct AsIII and its organic metabolite, monomethylarsenite (MAsIII. However, the transport of AsIII and MAsIII in in any fish species has not been characterized. Results In this study, five members of the aquaglyceroporin family from zebrafish (Danio rerio were cloned, and their ability to transport water, glycerol, and trivalent arsenicals (AsIII and MAsIII and antimonite (SbIII was investigated. Genes for at least seven aquaglyceroporins have been annotated in the zebrafish genome project. Here, five genes which are close homologues to human AQP3, AQP9 and AQP10 were cloned from a zebrafish cDNA preparation. These genes were named aqp3, aqp3l, aqp9a, aqp9b and aqp10 according to their similarities to the corresponding human AQPs. Expression of aqp9a, aqp9b, aqp3, aqp3l and aqp10 in multiple zebrafish organs were examined by RT-PCR. Our results demonstrated that these aquaglyceroporins exhibited different tissue expression. They are all detected in more than one tissue. The ability of these five aquaglyceroporins to transport water, glycerol and the metalloids arsenic and antimony was examined following expression in oocytes from Xenopus leavis. Each of these channels showed substantial glycerol transport at equivalent rates. These aquaglyceroporins also facilitate uptake of inorganic AsIII, MAsIII and SbIII. Arsenic accumulation in fish larvae and in different tissues from adult zebrafish was studied following short-term arsenic exposure. The results showed that liver is the major organ of arsenic accumulation; other tissues such as gill, eye

  5. Quantification of the Intracellular Life Time of Water Molecules to Measure Transport Rates of Human Aquaglyceroporins.

    Science.gov (United States)

    Palmgren, Madelene; Hernebring, Malin; Eriksson, Stefanie; Elbing, Karin; Geijer, Cecilia; Lasič, Samo; Dahl, Peter; Hansen, Jesper S; Topgaard, Daniel; Lindkvist-Petersson, Karin

    2017-12-01

    Orthodox aquaporins are transmembrane channel proteins that facilitate rapid diffusion of water, while aquaglyceroporins facilitate the diffusion of small uncharged molecules such as glycerol and arsenic trioxide. Aquaglyceroporins play important roles in human physiology, in particular for glycerol metabolism and arsenic detoxification. We have developed a unique system applying the strain of the yeast Pichia pastoris, where the endogenous aquaporins/aquaglyceroporins have been removed and human aquaglyceroporins AQP3, AQP7, and AQP9 are recombinantly expressed enabling comparative permeability measurements between the expressed proteins. Using a newly established Nuclear Magnetic Resonance approach based on measurement of the intracellular life time of water, we propose that human aquaglyceroporins are poor facilitators of water and that the water transport efficiency is similar to that of passive diffusion across native cell membranes. This is distinctly different from glycerol and arsenic trioxide, where high glycerol transport efficiency was recorded.

  6. Molar concentrations of sorbitol and polyethylene glycol inhibit the Plasmodium aquaglyceroporin but not that of E. coli: involvement of the channel vestibules.

    Science.gov (United States)

    Song, Jie; Almasalmeh, Abdulnasser; Krenc, Dawid; Beitz, Eric

    2012-05-01

    The aquaglyceroporins of Escherichia coli, EcGlpF, and of Plasmodium falciparum, PfAQP, are probably the best characterized members of the solute-conducting aquaporin (AQP) subfamily. Their crystal structures have been elucidated and numerous experimental and theoretical analyses have been conducted. However, opposing reports on their rates of water permeability require clarification. Hence, we expressed EcGlpF and PfAQP in yeast, prepared protoplasts, and compared water and glycerol permeability of both aquaglyceroporins in the presence of different osmolytes, i.e. sucrose, sorbitol, PEG300, and glycerol. We found that water permeability of PfAQP strongly depends on the external osmolyte, with full inhibition by sorbitol, and increasing water permeability when glycerol, PEG300, and sucrose were used. EcGlpF expression did not enhance water permeability over that of non-expressing control protoplasts regardless of the osmolyte. Glycerol permeability of PfAQP was also inhibited by sorbitol, but to a smaller extent, whereas EcGlpF conducted glycerol independently of the osmolyte. Mixtures of glycerol and urea passed PfAQP equally well under isosmotic conditions, whereas under hypertonic conditions in a countercurrent with water, glycerol was clearly preferred over urea. We conclude that PfAQP has high and EcGlpF low water permeability, and explain the inhibiting effect of sorbitol on PfAQP by its binding to the extracellular vestibule. The preference for glycerol under hypertonic conditions implies that in a physiological setting, PfAQP mainly acts as a water/glycerol channel rather than a urea facilitator. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Pentamidine Is Not a Permeant but a Nanomolar Inhibitor of the Trypanosoma brucei Aquaglyceroporin-2.

    Science.gov (United States)

    Song, Jie; Baker, Nicola; Rothert, Monja; Henke, Björn; Jeacock, Laura; Horn, David; Beitz, Eric

    2016-02-01

    The chemotherapeutic arsenal against human African trypanosomiasis, sleeping sickness, is limited and can cause severe, often fatal, side effects. One of the classic and most widely used drugs is pentamidine, an aromatic diamidine compound introduced in the 1940s. Recently, a genome-wide loss-of-function screen and a subsequently generated trypanosome knockout strain revealed a specific aquaglyceroporin, TbAQP2, to be required for high-affinity uptake of pentamidine. Yet, the underlying mechanism remained unclear. Here, we show that TbAQP2 is not a direct transporter for the di-basic, positively charged pentamidine. Even though one of the two common cation filters of aquaglyceroporins, i.e. the aromatic/arginine selectivity filter, is unconventional in TbAQP2, positively charged compounds are still excluded from passing the channel. We found, instead, that the unique selectivity filter layout renders pentamidine a nanomolar inhibitor of TbAQP2 glycerol permeability. Full, non-covalent inhibition of an aqua(glycero)porin in the nanomolar range has not been achieved before. The remarkable affinity derives from an electrostatic interaction with Asp265 and shielding from water as shown by structure-function evaluation and point mutation of Asp265. Exchange of the preceding Leu264 to arginine abolished pentamidine-binding and parasites expressing this mutant were pentamidine-resistant. Our results indicate that TbAQP2 is a high-affinity receptor for pentamidine. Taken together with localization of TbAQP2 in the flagellar pocket of bloodstream trypanosomes, we propose that pentamidine uptake is by endocytosis.

  8. Pentamidine Is Not a Permeant but a Nanomolar Inhibitor of the Trypanosoma brucei Aquaglyceroporin-2.

    Directory of Open Access Journals (Sweden)

    Jie Song

    2016-02-01

    Full Text Available The chemotherapeutic arsenal against human African trypanosomiasis, sleeping sickness, is limited and can cause severe, often fatal, side effects. One of the classic and most widely used drugs is pentamidine, an aromatic diamidine compound introduced in the 1940s. Recently, a genome-wide loss-of-function screen and a subsequently generated trypanosome knockout strain revealed a specific aquaglyceroporin, TbAQP2, to be required for high-affinity uptake of pentamidine. Yet, the underlying mechanism remained unclear. Here, we show that TbAQP2 is not a direct transporter for the di-basic, positively charged pentamidine. Even though one of the two common cation filters of aquaglyceroporins, i.e. the aromatic/arginine selectivity filter, is unconventional in TbAQP2, positively charged compounds are still excluded from passing the channel. We found, instead, that the unique selectivity filter layout renders pentamidine a nanomolar inhibitor of TbAQP2 glycerol permeability. Full, non-covalent inhibition of an aqua(glyceroporin in the nanomolar range has not been achieved before. The remarkable affinity derives from an electrostatic interaction with Asp265 and shielding from water as shown by structure-function evaluation and point mutation of Asp265. Exchange of the preceding Leu264 to arginine abolished pentamidine-binding and parasites expressing this mutant were pentamidine-resistant. Our results indicate that TbAQP2 is a high-affinity receptor for pentamidine. Taken together with localization of TbAQP2 in the flagellar pocket of bloodstream trypanosomes, we propose that pentamidine uptake is by endocytosis.

  9. Functional relevance of water and glycerol channels in Saccharomyces cerevisiae.

    Science.gov (United States)

    Sabir, Farzana; Loureiro-Dias, Maria C; Soveral, Graça; Prista, Catarina

    2017-05-01

    Our understanding of the functional relevance of orthodox aquaporins and aquaglyceroporins in Saccharomyces cerevisiae is essentially based on phenotypic variations obtained by expression/overexpression/deletion of these major intrinsic proteins in selected strains. These water/glycerol channels are considered crucial during various life-cycle phases, such as sporulation and mating and in some life processes such as rapid freeze-thaw tolerance, osmoregulation and phenomena associated with cell surface. Despite their putative functional roles not only as channels but also as sensors, their underlying mechanisms and their regulation are still poorly understood. In the present review, we summarize and discuss the physiological relevance of S. cerevisiae aquaporins (Aqy1 and Aqy2) and aquaglyceroporins (Fps1 and Yfl054c). In particular, the fact that most S. cerevisiae laboratory strains harbor genes coding for non-functional aquaporins, while wild and industrial strains possess at least one functional aquaporin, suggests that aquaporin activity is required for cell survival under more harsh conditions. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Local quantum channels preserving classical correlations

    International Nuclear Information System (INIS)

    Guo Zhihua; Cao Huaixin

    2013-01-01

    The aim of this paper is to discuss local quantum channels that preserve classical correlations. First, we give two equivalent characterizations of classical correlated states. Then we obtain the relationships among classical correlation-preserving local quantum channels, commutativity-preserving local quantum channels and commutativity-preserving quantum channels on each subsystem. Furthermore, for a two-qubit system, we show the general form of classical correlation-preserving local quantum channels. (paper)

  11. Flooding correlations in narrow channel

    International Nuclear Information System (INIS)

    Kim, S. H.; Baek, W. P.; Chang, S. H.

    1999-01-01

    Heat transfer in narrow gap is considered as important phenomena in severe accidents in nuclear power plants. Also in heat removal of electric chip. Critical heat flux(CHF) in narrow gap limits the maximum heat transfer rate in narrow channel. In case of closed bottom channel, flooding limited CHF occurrence is observed. Flooding correlations will be helpful to predict the CHF in closed bottom channel. In present study, flooding data for narrow channel geometry were collected and the work to recognize the effect of the span, w and gap size, s were performed. And new flooding correlations were suggested for high-aspect-ratio geometry. Also, flooding correlation was applied to flooding limited CHF data

  12. Spin chain model for correlated quantum channels

    Energy Technology Data Exchange (ETDEWEB)

    Rossini, Davide [International School for Advanced Studies SISSA/ISAS, via Beirut 2-4, I-34014 Trieste (Italy); Giovannetti, Vittorio; Montangero, Simone [NEST-CNR-INFM and Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa (Italy)], E-mail: monta@sns.it

    2008-11-15

    We analyze the quality of the quantum information transmission along a correlated quantum channel by studying the average fidelity between input and output states and the average output purity, giving bounds for the entropy of the channel. Noise correlations in the channel are modeled by the coupling of each channel use with an element of a one-dimensional interacting quantum spin chain. Criticality of the environment chain is seen to emerge in the changes of the fidelity and of the purity.

  13. Critical heat flux correlation for thin rectangular channels

    International Nuclear Information System (INIS)

    Tanaka, Futoshi; Mishima, Kaichiro; Hibiki, Takashi

    2007-01-01

    The effect of heated length on Critical heat flux (CHF) in thin rectangular channels was studied based on CHF data obtained under atmospheric pressure. CHF in small channels has been widely studied in the past decades but most of the studies are related to CHF in round tubes. Although basic mechanisms of burnout in thin rectangular channels are similar to tubes, applicability of CHF correlations for tubes to rectangular channels are questionable since CHF in rectangular channels are affected by the existence of non-heated walls and the non-circular geometry of channel circumference. Several studies of CHF in thin rectangular channels have been reported in relation to thermal hydraulic design of research reactors and neutron source targets and CHF correlations have been proposed, but the studies mostly focus on CHFs under geometrical conditions of the application of interest. In his study, existing CHF data obtained in thin rectangular channels were collected and the effect of heated length on CHF was examined. Existing CHF correlations were verified with positive quality flow CHF data but none of the correlations successfully reproduced the CHF for a wide range of heated length. A new CHF correlation for qualify region applicable to a wide range of heated length was developed based on the collected data. (author)

  14. Effective capacity of correlated MISO channels

    KAUST Repository

    Zhong, Caijun

    2011-06-01

    This paper presents an analytical performance investigation of the capacity limits of correlated multiple-input single-output (MISO) channels in the presence of quality-of-service (QoS) requirements. Exact closed-form expression for the effective capacity of correlated MISO channels is derived. In addition, simple expressions are obtained at the asymptotic high and low signal-to-noise ratio (SNR) regimes, which provide insights into the impact of various system parameters on the effective capacity of the system. Also, a complete characterization of the impact of spatial correlation on the effective capacity is provided with the aid of a majorization theory result. The findings suggest that antenna correlation reduce the effective capacity of the channels. Moreover, a stringent QoS requirement causes a significant reduction in the effective capacity but this can be effectively alleviated by increasing the number of antennas. © 2011 IEEE.

  15. Quantum Correlations Evolution Asymmetry in Quantum Channels

    International Nuclear Information System (INIS)

    Li Meng; Huang Yun-Feng; Guo Guang-Can

    2017-01-01

    It was demonstrated that the entanglement evolution of a specially designed quantum state in the bistochastic channel is asymmetric. In this work, we generalize the study of the quantum correlations, including entanglement and quantum discord, evolution asymmetry to various quantum channels. We found that the asymmetry of entanglement and quantum discord only occurs in some special quantum channels, and the behavior of the entanglement evolution may be quite different from the behavior of the quantum discord evolution. To quantum entanglement, in some channels it decreases monotonously with the increase of the quantum channel intensity. In some other channels, when we increase the intensity of the quantum channel, it decreases at first, then keeps zero for some time, and then rises up. To quantum discord, the evolution becomes more complex and you may find that it evolutes unsmoothly at some points. These results illustrate the strong dependence of the quantum correlations evolution on the property of the quantum channels. (paper)

  16. Spatial variability of correlated color temperature of lightning channels

    Directory of Open Access Journals (Sweden)

    Nobuaki Shimoji

    Full Text Available In this paper, we present the spatial variability of the correlated color temperature of lightning channel shown in a digital still image. In order to analyze the correlated color temperature, we calculated chromaticity coordinates of the lightning channels in the digital still image. From results, the spatial variation of the correlated color temperature of the lightning channel was confirmed. Moreover, the results suggest that the correlated color temperature and peak current of the lightning channels are related to each other. Keywords: Lightning, Color analysis, Correlated color temperature, Chromaticity coordinate, CIE 1931 xy-chromaticity diagram

  17. Protecting Quantum Correlation from Correlated Amplitude Damping Channel

    Science.gov (United States)

    Huang, Zhiming; Zhang, Cai

    2017-08-01

    In this work, we investigate the dynamics of quantum correlation measured by measurement-induced nonlocality (MIN) and local quantum uncertainty (LQU) in correlated amplitude damping (CAD) channel. We find that the memory parameter brings different influences on MIN and LQU. In addition, we propose a scheme to protect quantum correlation by executing prior weak measurement (WM) and post-measurement reversal (MR). However, better protection of quantum correlation by the scheme implies a lower success probability (SP).

  18. LDGM Codes for Channel Coding and Joint Source-Channel Coding of Correlated Sources

    Directory of Open Access Journals (Sweden)

    Javier Garcia-Frias

    2005-05-01

    Full Text Available We propose a coding scheme based on the use of systematic linear codes with low-density generator matrix (LDGM codes for channel coding and joint source-channel coding of multiterminal correlated binary sources. In both cases, the structures of the LDGM encoder and decoder are shown, and a concatenated scheme aimed at reducing the error floor is proposed. Several decoding possibilities are investigated, compared, and evaluated. For different types of noisy channels and correlation models, the resulting performance is very close to the theoretical limits.

  19. Spatial Correlation of PAN UWB-MIMO Channel Including User Dynamics

    DEFF Research Database (Denmark)

    Wang, Yu; Kovacs, Istvan Zsolt; Pedersen, Gert Frølund

    . It is found the channel shows spatial correlated wideband power, and spatial uncorrelated complex channel coefficients at different frequencies and delays with respect to a correlation coefficient threshold of 0.7. The Kronecker model is proved not suitable for the investigated scenarios. The MIMO UWB channel......In this paper we present and analyze spatial correlation properties of indoor 4x2 MIMO UWB channels in personal area network (PAN) scenarios. The presented results are based on measurement of radio links between an access point like device and a hand held or belt mounted device with dynamic user...

  20. High accurate volume holographic correlator with 4000 parallel correlation channels

    Science.gov (United States)

    Ni, Kai; Qu, Zongyao; Cao, Liangcai; Su, Ping; He, Qingsheng; Jin, Guofan

    2008-03-01

    Volume holographic correlator allows simultaneously calculate the two-dimensional inner product between the input image and each stored image. We have recently experimentally implemented in VHC 4000 parallel correlation channels with better than 98% output accuracy in a single location in a crystal. The speckle modulation is used to suppress the sidelobes of the correlation patterns, allowing more correlation spots to be contained in the output plane. A modified exposure schedule is designed to ensure the hologram in each channel with unity diffraction efficiency. In this schedule, a restricted coefficient was introduced into the original exposure schedule to solve the problem that the sensitivity and time constant of the crystal will change as a time function when in high-capacity storage. An interleaving method is proposed to improve the output accuracy. By unifying the distribution of the input and stored image patterns without changing the inner products between them, this method could eliminate the impact of correlation pattern variety on calculated inner product values. Moreover, by using this method, the maximum correlation spot size is reduced, which decreases the required minimum safe clearance between neighboring spots in the output plane, allowing more spots to be parallely detected without crosstalk. The experimental results are given and analyzed.

  1. Characteristic analysis on UAV-MIMO channel based on normalized correlation matrix.

    Science.gov (United States)

    Gao, Xi jun; Chen, Zi li; Hu, Yong Jiang

    2014-01-01

    Based on the three-dimensional GBSBCM (geometrically based double bounce cylinder model) channel model of MIMO for unmanned aerial vehicle (UAV), the simple form of UAV space-time-frequency channel correlation function which includes the LOS, SPE, and DIF components is presented. By the methods of channel matrix decomposition and coefficient normalization, the analytic formula of UAV-MIMO normalized correlation matrix is deduced. This formula can be used directly to analyze the condition number of UAV-MIMO channel matrix, the channel capacity, and other characteristic parameters. The simulation results show that this channel correlation matrix can be applied to describe the changes of UAV-MIMO channel characteristics under different parameter settings comprehensively. This analysis method provides a theoretical basis for improving the transmission performance of UAV-MIMO channel. The development of MIMO technology shows practical application value in the field of UAV communication.

  2. Effective capacity of multiple antenna channels: Correlation and keyhole

    KAUST Repository

    Zhong, Caijun

    2012-01-01

    In this study, the authors derive the effective capacity limits for multiple antenna channels which quantify the maximum achievable rate with consideration of link-layer delay-bound violation probability. Both correlated multiple-input single-output and multiple-input multiple-output keyhole channels are studied. Based on the closed-form exact expressions for the effective capacity of both channels, the authors look into the asymptotic high and low signal-to-noise ratio regimes, and derive simple expressions to gain more insights. The impact of spatial correlation on effective capacity is also characterised with the aid of a majorisation theory result. It is revealed that antenna correlation reduces the effective capacity of the channels and a stringent quality-of-service requirement causes a severe reduction in the effective capacity but can be alleviated by increasing the number of antennas. © 2012 The Institution of Engineering and Technology.

  3. A Demosaicking Algorithm with Adaptive Inter-Channel Correlation

    Directory of Open Access Journals (Sweden)

    Joan Duran

    2015-12-01

    Full Text Available Most common cameras use a CCD sensor device measuring a single color per pixel. Demosaicking is the interpolation process by which one can infer a full color image from such a matrix of values, thus interpolating the two missing components per pixel. Most demosaicking methods take advantage of inter-channel correlation locally selecting the best interpolation direction. The obtained results look convincing except when local geometry cannot be inferred from neighboring pixels or channel correlation is low. In these cases, these algorithms create interpolation artifacts such as zipper effect or color aliasing. This paper discusses the implementation details of the algorithm proposed in [J. Duran, A. Buades, ``Self-Similarity and Spectral Correlation Adaptive Algorithm for Color Demosaicking'', IEEE Transactions on Image Processing, 23(9, pp. 4031--4040, 2014]. The proposed method involves nonlocal image self-similarity in order to reduce interpolation artifacts when local geometry is ambiguous. It further introduces a clear and intuitive manner of balancing how much channel-correlation must be taken advantage of.

  4. Secret-Sharing over Multiple-Antenna Channels with Transmit Correlation

    KAUST Repository

    Zorgui, Marwen

    2015-01-07

    We consider secret-key agreement with public discussion over Rayleigh fastfading channels with transmit correlation. The legitimate receiver and the eavesdropper are assumed to have perfect channel knowledge while the transmitter has only knowledge of the transmit correlation matrix. First, We derive the expression of the key capacity under the considered setup. Then, we show that the optimal transmit strategy achieving the key capacity consists in transmitting Gaussian signals along the eingenvectors of the channel covariance matrix. The powers allocated to each channel mode are determined as the solution of a numerical optimization problem that we derive. We also provide a waterfilling interpretation of the optimal power allocation. Finally, we develop a necessary and sufficient condition for beamforming to be optimal, i.e., transmitting along the strongest channel mode only is key capacity-achieving.

  5. Secret-Sharing over Multiple-Antenna Channels with Transmit Correlation

    KAUST Repository

    Zorgui, Marwen; Rezki, Zouheir; Alomair, Basel; Alouini, Mohamed-Slim

    2015-01-01

    We consider secret-key agreement with public discussion over Rayleigh fastfading channels with transmit correlation. The legitimate receiver and the eavesdropper are assumed to have perfect channel knowledge while the transmitter has only knowledge of the transmit correlation matrix. First, We derive the expression of the key capacity under the considered setup. Then, we show that the optimal transmit strategy achieving the key capacity consists in transmitting Gaussian signals along the eingenvectors of the channel covariance matrix. The powers allocated to each channel mode are determined as the solution of a numerical optimization problem that we derive. We also provide a waterfilling interpretation of the optimal power allocation. Finally, we develop a necessary and sufficient condition for beamforming to be optimal, i.e., transmitting along the strongest channel mode only is key capacity-achieving.

  6. Channel allocation and rate adaptation for relayed transmission over correlated fading channels

    KAUST Repository

    Hwang, Kyusung

    2009-09-01

    We consider, in this paper, channel allocation and rate adaptation scheme for relayed transmission over correlated fading channels via cross-layer design. Specifically, jointly considering the data link layer buffer occupancy and channel quality at both the source and relay nodes, we develop an optimal channel allocation and rate adaptation policy for a dual-hop relayed transmission. As such the overall transmit power for the relayed system is minimized while a target packet dropping rate (PDR) due to buffer over flows is guaranteed. In order to find such an optimal policy, the channel allocation and rate adaptation transmission framework is formulated as a constraint Markov decision process (CMDP). The PDR performance of the optimal policy is compared with that of two conventional suboptimal schemes, namely the channel quality based and the buffer occupancy based channel allocation schemes. Numerical results show that for a given power budget, the optimal scheme requires significantly less power than the conventional schemes in order to maintain a target PDR. ©2009 IEEE.

  7. Effective capacity of correlated MISO channels

    KAUST Repository

    Zhong, Caijun; Ratnarajah, Tharm; Wong, Kaikit; Alouini, Mohamed-Slim

    2011-01-01

    This paper presents an analytical performance investigation of the capacity limits of correlated multiple-input single-output (MISO) channels in the presence of quality-of-service (QoS) requirements. Exact closed-form expression for the effective

  8. Denoising Algorithm for CFA Image Sensors Considering Inter-Channel Correlation.

    Science.gov (United States)

    Lee, Min Seok; Park, Sang Wook; Kang, Moon Gi

    2017-05-28

    In this paper, a spatio-spectral-temporal filter considering an inter-channel correlation is proposed for the denoising of a color filter array (CFA) sequence acquired by CCD/CMOS image sensors. Owing to the alternating under-sampled grid of the CFA pattern, the inter-channel correlation must be considered in the direct denoising process. The proposed filter is applied in the spatial, spectral, and temporal domain, considering the spatio-tempo-spectral correlation. First, nonlocal means (NLM) spatial filtering with patch-based difference (PBD) refinement is performed by considering both the intra-channel correlation and inter-channel correlation to overcome the spatial resolution degradation occurring with the alternating under-sampled pattern. Second, a motion-compensated temporal filter that employs inter-channel correlated motion estimation and compensation is proposed to remove the noise in the temporal domain. Then, a motion adaptive detection value controls the ratio of the spatial filter and the temporal filter. The denoised CFA sequence can thus be obtained without motion artifacts. Experimental results for both simulated and real CFA sequences are presented with visual and numerical comparisons to several state-of-the-art denoising methods combined with a demosaicing method. Experimental results confirmed that the proposed frameworks outperformed the other techniques in terms of the objective criteria and subjective visual perception in CFA sequences.

  9. Mutual information against correlations in binary communication channels.

    Science.gov (United States)

    Pregowska, Agnieszka; Szczepanski, Janusz; Wajnryb, Eligiusz

    2015-05-19

    Explaining how the brain processing is so fast remains an open problem (van Hemmen JL, Sejnowski T., 2004). Thus, the analysis of neural transmission (Shannon CE, Weaver W., 1963) processes basically focuses on searching for effective encoding and decoding schemes. According to the Shannon fundamental theorem, mutual information plays a crucial role in characterizing the efficiency of communication channels. It is well known that this efficiency is determined by the channel capacity that is already the maximal mutual information between input and output signals. On the other hand, intuitively speaking, when input and output signals are more correlated, the transmission should be more efficient. A natural question arises about the relation between mutual information and correlation. We analyze the relation between these quantities using the binary representation of signals, which is the most common approach taken in studying neuronal processes of the brain. We present binary communication channels for which mutual information and correlation coefficients behave differently both quantitatively and qualitatively. Despite this difference in behavior, we show that the noncorrelation of binary signals implies their independence, in contrast to the case for general types of signals. Our research shows that the mutual information cannot be replaced by sheer correlations. Our results indicate that neuronal encoding has more complicated nature which cannot be captured by straightforward correlations between input and output signals once the mutual information takes into account the structure and patterns of the signals.

  10. The sense of water in the blowfly Protophormia terraenovae.

    Science.gov (United States)

    Solari, Paolo; Masala, Carla; Falchi, Angela Maria; Sollai, Giorgia; Liscia, Anna

    2010-12-01

    The gustatory system of the blowfly, Protophormia terraenovae, is a relatively simple biological model for studies on chemosensory input and behavioral output. It appears to have renewed interest as a model for studies on the role of water channels, namely aquaporins or aquaglyceroporins, in water detection. To this end, we investigated the presence of water channels, their role in "water" and "salt" cell responsiveness and the transduction mechanism involved. For the first time our electrophysiological results point to the presence of an aquaglyceroporin in the chemoreceptor membrane of the "water" cell in the blowfly taste chemosensilla whose transduction mechanism ultimately involves an intracellular calcium increase and consequently cell depolarization. This hypothesis is also supported by calcium imaging data following proper stimulation. This mechanism is triggered by "water" cell stimulation with hypotonic solutions and/or solutes such as glycerol which crosses the membrane by way of aquaglyceroporins. Behavioral output indicates that the "sense" of water in blowflies is definitely not dependent on the "water" cell only, but also on the "salt" cell sensitivity. These findings also hypothesize a new role for aquaglyceroporin in spiking cell excitability. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. Role of correlations of lattice vibrations in channeling

    International Nuclear Information System (INIS)

    Barrett, J.H.; Jackson, D.P.

    1980-01-01

    Computer simulations of channeling have been done using correlated thermal displacements of the lattice atoms. For the channeling minimum yield and half angles, results are given as a function of temperature. For the surface yield, results are given as a function of angle from the axial direction to supplement earlier results as a function of temperature. In all quantities correlations cause effects qualitatively similar to a reduction in vibration amplitude, although the reduction varies from quantity to quantity. These variations are consistent with the idea that correlations will be most important for a trajectory aligned with the rows and of decreasing importance as the direction of a trajectory approaches a random direction. The largest effect occurs for the surface yield wherein there is a reduction of about 15% for the cases studied so far. (orig.)

  12. Control of the selectivity of the aquaporin water channel family by global orientational tuning

    DEFF Research Database (Denmark)

    Jensen, Morten Østergaard; Tajkhorshid, E.; Nollert, P.

    2002-01-01

    and orientation of a single file of seven to nine water molecules inside the channel. Two conserved asparagines force a central water molecule to serve strictly as a hydrogen bond donor to its neighboring water molecules. Assisted by the electrostatic potential generated by two half-membrane spanning loops......Aquaporins are transmembrane channels found in cell membranes of all life forms. We examine their apparently paradoxical property, facilitation of efficient permeation of water while excluding protons, which is of critical importance to preserving the electrochemical potential across the cell...... membrane. We have determined the structure of the Escherichia coli aquaglyceroporin GlpF with bound water, in native (2.7 angstroms) and in W48F/F200T mutant (2.1 angstroms) forms, and carried out 12-nanosecond molecular dynamics simulations that define the spatial and temporal probability distribution...

  13. Quantum-state transfer through long-range correlated disordered channels

    Science.gov (United States)

    Almeida, Guilherme M. A.; de Moura, Francisco A. B. F.; Lyra, Marcelo L.

    2018-05-01

    We study quantum-state transfer in XX spin-1/2 chains where both communicating spins are weakly coupled to a channel featuring disordered on-site magnetic fields. Fluctuations are modeled by long-range correlated sequences with self-similar profile obeying a power-law spectrum. We show that the channel is able to perform almost perfect quantum-state transmissions even in the presence of significant amounts of disorder provided the degree of those correlations is strong enough, with the cost of having long transfer times and unavoidable timing errors. Still, we show that the lack of mirror symmetry in the channel does not affect much the likelihood of having high-quality outcomes. Our results suggest that coexistence between localized and delocalized states can diminish effects of static perturbations in solid-state devices for quantum communication.

  14. Spatial-Temporal Correlation Properties of the 3GPP Spatial Channel Model and the Kronecker MIMO Channel Model

    Directory of Open Access Journals (Sweden)

    Cheng-Xiang Wang

    2007-02-01

    Full Text Available The performance of multiple-input multiple-output (MIMO systems is greatly influenced by the spatial-temporal correlation properties of the underlying MIMO channels. This paper investigates the spatial-temporal correlation characteristics of the spatial channel model (SCM in the Third Generation Partnership Project (3GPP and the Kronecker-based stochastic model (KBSM at three levels, namely, the cluster level, link level, and system level. The KBSM has both the spatial separability and spatial-temporal separability at all the three levels. The spatial-temporal separability is observed for the SCM only at the system level, but not at the cluster and link levels. The SCM shows the spatial separability at the link and system levels, but not at the cluster level since its spatial correlation is related to the joint distribution of the angle of arrival (AoA and angle of departure (AoD. The KBSM with the Gaussian-shaped power azimuth spectrum (PAS is found to fit best the 3GPP SCM in terms of the spatial correlations. Despite its simplicity and analytical tractability, the KBSM is restricted to model only the average spatial-temporal behavior of MIMO channels. The SCM provides more insights of the variations of different MIMO channel realizations, but the implementation complexity is relatively high.

  15. Secret-key agreement over spatially correlated fast-fading multiple-antenna channels with public discussion

    KAUST Repository

    Zorgui, Marwen

    2015-06-14

    We consider secret-key agreement with public discussion over multiple-input multiple-output (MIMO) Rayleigh fast-fading channels under correlated environment. We assume that transmit, legitimate receiver and eavesdropper antennas are correlated. The legitimate receiver and the eavesdropper are assumed to have perfect channel knowledge while the transmitter has only knowledge of the correlation matrices. First, we derive the expression of the secret-key capacity under the considered setup. Then, we prove that the optimal transmit strategy achieving the secret-key capacity consists in transmitting independent Gaussian signals along the eingenvectors of the transmit correlation matrix. The powers allocated to each channel mode are determined as the solution to a numerical optimization problem that we derive. A necessary and sufficient condition for beamforming (i.e., transmitting along the strongest channel mode) to be capacity-achieving is derived. Finally, we analyze the impact of correlation matrices on the system performance and provide closed-form expressions of the gain/loss due to correlation in the high power regime.

  16. Aquaglyceroporin-null trypanosomes display glycerol transport defects and respiratory-inhibitor sensitivity.

    Directory of Open Access Journals (Sweden)

    Laura Jeacock

    2017-03-01

    Full Text Available Aquaglyceroporins (AQPs transport water and glycerol and play important roles in drug-uptake in pathogenic trypanosomatids. For example, AQP2 in the human-infectious African trypanosome, Trypanosoma brucei gambiense, is responsible for melarsoprol and pentamidine-uptake, and melarsoprol treatment-failure has been found to be due to AQP2-defects in these parasites. To further probe the roles of these transporters, we assembled a T. b. brucei strain lacking all three AQP-genes. Triple-null aqp1-2-3 T. b. brucei displayed only a very moderate growth defect in vitro, established infections in mice and recovered effectively from hypotonic-shock. The aqp1-2-3 trypanosomes did, however, display glycerol uptake and efflux defects. They failed to accumulate glycerol or to utilise glycerol as a carbon-source and displayed increased sensitivity to salicylhydroxamic acid (SHAM, octyl gallate or propyl gallate; these inhibitors of trypanosome alternative oxidase (TAO can increase intracellular glycerol to toxic levels. Notably, disruption of AQP2 alone generated cells with glycerol transport defects. Consistent with these findings, AQP2-defective, melarsoprol-resistant clinical isolates were sensitive to the TAO inhibitors, SHAM, propyl gallate and ascofuranone, relative to melarsoprol-sensitive reference strains. We conclude that African trypanosome AQPs are dispensable for viability and osmoregulation but they make important contributions to drug-uptake, glycerol-transport and respiratory-inhibitor sensitivity. We also discuss how the AQP-dependent inverse sensitivity to melarsoprol and respiratory inhibitors described here might be exploited.

  17. Effective capacity of multiple antenna channels: Correlation and keyhole

    KAUST Repository

    Zhong, Caijun; Ratnarajah, Tharm; Wong, Kaikit; Alouini, Mohamed-Slim

    2012-01-01

    In this study, the authors derive the effective capacity limits for multiple antenna channels which quantify the maximum achievable rate with consideration of link-layer delay-bound violation probability. Both correlated multiple-input single

  18. Capacity of a quantum memory channel correlated by matrix product states

    Science.gov (United States)

    Mulherkar, Jaideep; Sunitha, V.

    2018-04-01

    We study the capacity of a quantum channel where channel acts like controlled phase gate with the control being provided by a one-dimensional quantum spin chain environment. Due to the correlations in the spin chain, we get a quantum channel with memory. We derive formulas for the quantum capacity of this channel when the spin state is a matrix product state. Particularly, we derive exact formulas for the capacity of the quantum memory channel when the environment state is the ground state of the AKLT model and the Majumdar-Ghosh model. We find that the behavior of the capacity for the range of the parameters is analytic.

  19. MIMO Channel Model with Propagation Mechanism and the Properties of Correlation and Eigenvalue in Mobile Environments

    Directory of Open Access Journals (Sweden)

    Yuuki Kanemiyo

    2012-01-01

    Full Text Available This paper described a spatial correlation and eigenvalue in a multiple-input multiple-output (MIMO channel. A MIMO channel model with a multipath propagation mechanism was proposed and showed the channel matrix. The spatial correlation coefficient formula −,′−′( between MIMO channel matrix elements was derived for the model and was expressed as a directive wave term added to the product of mobile site correlation −′( and base site correlation −′( without LOS path, which are calculated independently of each other. By using −,′−′(, it is possible to create the channel matrix element with a fixed correlation value estimated by −,′−′( for a given multipath condition and a given antenna configuration. Furthermore, the correlation and the channel matrix eigenvalue were simulated, and the simulated and theoretical correlation values agreed well. The simulated eigenvalue showed that the average of the first eigenvalue λ1 hardly depends on the correlation −,′−′(, but the others do depend on −,′−′( and approach 1 as −,′−′( decreases. Moreover, as the path moves into LOS, the 1 state with mobile movement becomes more stable than the 1 of NLOS path.

  20. Evaluation of correlations of flow boiling heat transfer of R22 in horizontal channels.

    Science.gov (United States)

    Zhou, Zhanru; Fang, Xiande; Li, Dingkun

    2013-01-01

    The calculation of two-phase flow boiling heat transfer of R22 in channels is required in a variety of applications, such as chemical process cooling systems, refrigeration, and air conditioning. A number of correlations for flow boiling heat transfer in channels have been proposed. This work evaluates the existing correlations for flow boiling heat transfer coefficient with 1669 experimental data points of flow boiling heat transfer of R22 collected from 18 published papers. The top two correlations for R22 are those of Liu and Winterton (1991) and Fang (2013), with the mean absolute deviation of 32.7% and 32.8%, respectively. More studies should be carried out to develop better ones. Effects of channel dimension and vapor quality on heat transfer are analyzed, and the results provide valuable information for further research in the correlation of two-phase flow boiling heat transfer of R22 in channels.

  1. Channel correlation of free space optical communication systems with receiver diversity in non-Kolmogorov atmospheric turbulence

    Science.gov (United States)

    Ma, Jing; Fu, Yulong; Tan, Liying; Yu, Siyuan; Xie, Xiaolong

    2018-05-01

    Spatial diversity as an effective technique to mitigate the turbulence fading has been widely utilized in free space optical (FSO) communication systems. The received signals, however, will suffer from channel correlation due to insufficient spacing between component antennas. In this paper, the new expressions of the channel correlation coefficient and specifically its components (the large- and small-scale channel correlation coefficients) for a plane wave with aperture effects are derived for horizontal link in moderate-to-strong turbulence, using a non-Kolmogorov spectrum that has a generalized power law in the range of 3-4 instead of the fixed classical Kolmogorov power law of 11/3. And then the influence of power law variations on the channel correlation coefficient and its components are analysed. The numerical results indicated that various value of the power law lead to varying effects on the channel correlation coefficient and its components. This work will help with the further investigation on the fading correlation in spatial diversity systems.

  2. Review of Critical Heat Flux Correlations for Upward Flow in a Vertical Thin Rectangular Channel

    International Nuclear Information System (INIS)

    Choi, Gil Sik; Chang, Soon Heung

    2014-01-01

    From the view point of safety, this type of fuel has higher resistance to earthquake and external impact. The cross section of coolant flow channel in the reactor core composed with the plate fuel is a thin rectangular shape. Thermal-hydraulic characteristics of this thin rectangular channel are different with those of general circular rod fuel bundle flow channel. Accordingly it could be thought that the CHF correlation in a thin rectangular channel is different with that in a circular channel, for which a large number of researches on CHF prediction have been carried out. The objective of this paper is to review previous researches on CHF in a thin rectangular channel, summarize the important conclusion and propose the new simple CHF correlation, which is based on the data set under high pressure and high flow rate condition. The researches on CHF in rectangular channel have been partially carried out according to the pressure, heated surface number, heated surface wettability effect, flow driving force and flow direction conditions. From the literature researches on CHF for upward flow in a vertical thin rectangular channel, some CHF prediction methods were reviewed and compared. There is no universal correlation which can predict CHF at all conditions, but generally, Katto empirical correlation is known to be useful at high pressure and high flow rate. The new simple correlation was developed from the restricted data set, the CHF prediction capacity of which is better than that of Katto. Even though the prediction consistency of the new simple correlation is lower, MAE and RMS error decreased quite. For the more development of the new simple CHF correlation, the more advanced regression analysis method and theoretical analysis should be studied in future

  3. Review of Critical Heat Flux Correlations for Upward Flow in a Vertical Thin Rectangular Channel

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Gil Sik; Chang, Soon Heung [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2014-05-15

    From the view point of safety, this type of fuel has higher resistance to earthquake and external impact. The cross section of coolant flow channel in the reactor core composed with the plate fuel is a thin rectangular shape. Thermal-hydraulic characteristics of this thin rectangular channel are different with those of general circular rod fuel bundle flow channel. Accordingly it could be thought that the CHF correlation in a thin rectangular channel is different with that in a circular channel, for which a large number of researches on CHF prediction have been carried out. The objective of this paper is to review previous researches on CHF in a thin rectangular channel, summarize the important conclusion and propose the new simple CHF correlation, which is based on the data set under high pressure and high flow rate condition. The researches on CHF in rectangular channel have been partially carried out according to the pressure, heated surface number, heated surface wettability effect, flow driving force and flow direction conditions. From the literature researches on CHF for upward flow in a vertical thin rectangular channel, some CHF prediction methods were reviewed and compared. There is no universal correlation which can predict CHF at all conditions, but generally, Katto empirical correlation is known to be useful at high pressure and high flow rate. The new simple correlation was developed from the restricted data set, the CHF prediction capacity of which is better than that of Katto. Even though the prediction consistency of the new simple correlation is lower, MAE and RMS error decreased quite. For the more development of the new simple CHF correlation, the more advanced regression analysis method and theoretical analysis should be studied in future.

  4. A 32-channel photon counting module with embedded auto/cross-correlators for real-time parallel fluorescence correlation spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gong, S.; Labanca, I.; Rech, I.; Ghioni, M. [Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)

    2014-10-15

    Fluorescence correlation spectroscopy (FCS) is a well-established technique to study binding interactions or the diffusion of fluorescently labeled biomolecules in vitro and in vivo. Fast FCS experiments require parallel data acquisition and analysis which can be achieved by exploiting a multi-channel Single Photon Avalanche Diode (SPAD) array and a corresponding multi-input correlator. This paper reports a 32-channel FPGA based correlator able to perform 32 auto/cross-correlations simultaneously over a lag-time ranging from 10 ns up to 150 ms. The correlator is included in a 32 × 1 SPAD array module, providing a compact and flexible instrument for high throughput FCS experiments. However, some inherent features of SPAD arrays, namely afterpulsing and optical crosstalk effects, may introduce distortions in the measurement of auto- and cross-correlation functions. We investigated these limitations to assess their impact on the module and evaluate possible workarounds.

  5. A 32-channel photon counting module with embedded auto/cross-correlators for real-time parallel fluorescence correlation spectroscopy

    International Nuclear Information System (INIS)

    Gong, S.; Labanca, I.; Rech, I.; Ghioni, M.

    2014-01-01

    Fluorescence correlation spectroscopy (FCS) is a well-established technique to study binding interactions or the diffusion of fluorescently labeled biomolecules in vitro and in vivo. Fast FCS experiments require parallel data acquisition and analysis which can be achieved by exploiting a multi-channel Single Photon Avalanche Diode (SPAD) array and a corresponding multi-input correlator. This paper reports a 32-channel FPGA based correlator able to perform 32 auto/cross-correlations simultaneously over a lag-time ranging from 10 ns up to 150 ms. The correlator is included in a 32 × 1 SPAD array module, providing a compact and flexible instrument for high throughput FCS experiments. However, some inherent features of SPAD arrays, namely afterpulsing and optical crosstalk effects, may introduce distortions in the measurement of auto- and cross-correlation functions. We investigated these limitations to assess their impact on the module and evaluate possible workarounds

  6. Joint image reconstruction method with correlative multi-channel prior for x-ray spectral computed tomography

    Science.gov (United States)

    Kazantsev, Daniil; Jørgensen, Jakob S.; Andersen, Martin S.; Lionheart, William R. B.; Lee, Peter D.; Withers, Philip J.

    2018-06-01

    Rapid developments in photon-counting and energy-discriminating detectors have the potential to provide an additional spectral dimension to conventional x-ray grayscale imaging. Reconstructed spectroscopic tomographic data can be used to distinguish individual materials by characteristic absorption peaks. The acquired energy-binned data, however, suffer from low signal-to-noise ratio, acquisition artifacts, and frequently angular undersampled conditions. New regularized iterative reconstruction methods have the potential to produce higher quality images and since energy channels are mutually correlated it can be advantageous to exploit this additional knowledge. In this paper, we propose a novel method which jointly reconstructs all energy channels while imposing a strong structural correlation. The core of the proposed algorithm is to employ a variational framework of parallel level sets to encourage joint smoothing directions. In particular, the method selects reference channels from which to propagate structure in an adaptive and stochastic way while preferring channels with a high data signal-to-noise ratio. The method is compared with current state-of-the-art multi-channel reconstruction techniques including channel-wise total variation and correlative total nuclear variation regularization. Realistic simulation experiments demonstrate the performance improvements achievable by using correlative regularization methods.

  7. Entanglement-enhanced communication over a quantum channel with correlated noise

    International Nuclear Information System (INIS)

    Banaszek, K.; Dragan, A.; Wasilewski, W.; Radzewicz, C.

    2005-01-01

    We present an experimental demonstration of entanglement enhanced classical capacity of a quantum channel with correlated noise. The channel is modelled by a fiber optic link exhibiting random birefringence that fluctuates on a time scale much longer than the temporal separation between consecutive uses of the channel. In this setting, it can be shown theoretically that introducing entanglement between two photons travelling down the fiber allows one to encode reliably one bit of information into their polarization degree of freedom. When no quantum correlations between two separate uses of the channel are allowed, this capacity is reduced by a factor of more than three. To demonstrate experimentally this effect, we generated polarization-entangled pairs of photons in either a singlet or a triplet state, corresponding to the two values of a classical bit. The pairs were then launched into a single-mode fiber submitted to random mechanical movements, scrambling the polarization state of the travelling light. At the output of the fiber, the photon pairs were detected using the Braunstein-Mann Bell state analyzer that allowed us to discriminate unambiguously the input singlet state against the triplet one despite polarization scrambling. To contrast this with the separable case, we also generated disentangled photon pairs and encoded information into their relative polarization. As predicted theoretically, after scrambling only partial information about the input state was retrieved. (author)

  8. On the Ergodic Secret-Key Agreement over Spatially Correlated Multiple-Antenna Channels with Public Discussion

    KAUST Repository

    Zorgui, Marwen

    2015-09-28

    We consider secret-key agreement with public discussion over multiple-input multiple-output (MIMO) Rayleigh fast-fading channels under correlated environment. We assume that transmit, legitimate receiver and eavesdropper antennas are correlated. The legitimate receiver and the eavesdropper are assumed to have perfect channel knowledge while the transmitter has only knowledge of the correlation matrices. First, we derive the expression of the secret-key capacity under the considered setup. We prove that the optimal transmit strategy achieving the secret-key capacity consists in transmitting independent Gaussian signals along the eingenvectors of the transmit correlation matrix. The powers allocated to each channel mode are determined as the solution to a numerical optimization problem. A necessary and sufficient condition for beamforming (i.e., transmitting along the strongest channel mode) to be capacity-achieving is derived. Moreover, we analyze the impact of correlation matrices on the system performance. Finally, we study the system’s performance in the two extreme power regimes. In the high-power regime, we provide closed-form expressions of the gain/loss due to correlation. In the low signal-to-noise ratio (SNR) regime, we investigate the energy efficiency of the system by determining the minimum energy required for sharing a secret-key bit and the wideband slope while highlighting the impact of correlation matrices.

  9. Eigenstructures of MIMO Fading Channel Correlation Matrices and Optimum Linear Precoding Designs for Maximum Ergodic Capacity

    Directory of Open Access Journals (Sweden)

    Hamid Reza Bahrami

    2007-01-01

    Full Text Available The ergodic capacity of MIMO frequency-flat and -selective channels depends greatly on the eigenvalue distribution of spatial correlation matrices. Knowing the eigenstructure of correlation matrices at the transmitter is very important to enhance the capacity of the system. This fact becomes of great importance in MIMO wireless systems where because of the fast changing nature of the underlying channel, full channel knowledge is difficult to obtain at the transmitter. In this paper, we first investigate the effect of eigenvalues distribution of spatial correlation matrices on the capacity of frequency-flat and -selective channels. Next, we introduce a practical scheme known as linear precoding that can enhance the ergodic capacity of the channel by changing the eigenstructure of the channel by applying a linear transformation. We derive the structures of precoders using eigenvalue decomposition and linear algebra techniques in both cases and show their similarities from an algebraic point of view. Simulations show the ability of this technique to change the eigenstructure of the channel, and hence enhance the ergodic capacity considerably.

  10. Performance analysis of MIMO wireless optical communication system with Q-ary PPM over correlated log-normal fading channel

    Science.gov (United States)

    Wang, Huiqin; Wang, Xue; Lynette, Kibe; Cao, Minghua

    2018-06-01

    The performance of multiple-input multiple-output wireless optical communication systems that adopt Q-ary pulse position modulation over spatial correlated log-normal fading channel is analyzed in terms of its un-coded bit error rate and ergodic channel capacity. The analysis is based on the Wilkinson's method which approximates the distribution of a sum of correlated log-normal random variables to a log-normal random variable. The analytical and simulation results corroborate the increment of correlation coefficients among sub-channels lead to system performance degradation. Moreover, the receiver diversity has better performance in resistance of spatial correlation caused channel fading.

  11. Outage Performance Analysis of Cooperative Diversity with MRC and SC in Correlated Lognormal Channels

    Directory of Open Access Journals (Sweden)

    Skraparlis D

    2009-01-01

    Full Text Available Abstract The study of relaying systems has found renewed interest in the context of cooperative diversity for communication channels suffering from fading. This paper provides analytical expressions for the end-to-end SNR and outage probability of cooperative diversity in correlated lognormal channels, typically found in indoor and specific outdoor environments. The system under consideration utilizes decode-and-forward relaying and Selection Combining or Maximum Ratio Combining at the destination node. The provided expressions are used to evaluate the gains of cooperative diversity compared to noncooperation in correlated lognormal channels, taking into account the spectral and energy efficiency of the protocols and the half-duplex or full-duplex capability of the relay. Our analysis demonstrates that correlation and lognormal variances play a significant role on the performance gain of cooperative diversity against noncooperation.

  12. Correlations of natural radionuclides in soil with those in sediment from the Danube and nearby irrigation channels

    International Nuclear Information System (INIS)

    Krmar, M.; Varga, E.; Slivka, J.

    2013-01-01

    The correlation between activity concentrations of some natural radionuclides ( 238 U, 226 Ra, 232 Th, 40 K) measured in soil and in sediment taken from the Danube River and nearby irrigation channels was studied. The soil samples were collected from the northern part of Serbia and the sediment from the Serbian part of the Danube River and from the surrounding irrigation channels. The correlation between 238 U and other natural radionuclides in irrigation channel sediments was not as good as in the Danube. One of the possible explanations for this weak correlation can be the different chemical dynamics of 238 U in the irrigation channel sediment or changes of the 238 U activity concentration in irrigation channel sediment due to some human activities. The evaluation of ratios of activity concentrations of some natural radionuclides could be a more sensitive method for the determination of contaminant, rather than the straightforward analysis of activity concentrations. -- Highlights: ► 238 U, 232 Th and 40 K were measured in soil, Danube and surrounding channel sediment. ► Correlation of activity concentrations were observed. ► In cannel sediment natural radionuclides are not well correlated as in Danube one. ► Ratios of 238 U, 232 Th and 40 K can be good indicator for TENORM monitoring

  13. The Time Division Multi-Channel Communication Model and the Correlative Protocol Based on Quantum Time Division Multi-Channel Communication

    International Nuclear Information System (INIS)

    Liu Xiao-Hui; Pei Chang-Xing; Nie Min

    2010-01-01

    Based on the classical time division multi-channel communication theory, we present a scheme of quantum time-division multi-channel communication (QTDMC). Moreover, the model of quantum time division switch (QTDS) and correlative protocol of QTDMC are proposed. The quantum bit error rate (QBER) is analyzed and the QBER simulation test is performed. The scheme shows that the QTDS can carry out multi-user communication through quantum channel, the QBER can also reach the reliability requirement of communication, and the protocol of QTDMC has high practicability and transplantable. The scheme of QTDS may play an important role in the establishment of quantum communication in a large scale in the future. (general)

  14. Gaussian Error Correction of Quantum States in a Correlated Noisy Channel

    DEFF Research Database (Denmark)

    Lassen, Mikael Østergaard; Berni, Adriano; Madsen, Lars Skovgaard

    2013-01-01

    Noise is the main obstacle for the realization of fault-tolerant quantum information processing and secure communication over long distances. In this work, we propose a communication protocol relying on simple linear optics that optimally protects quantum states from non-Markovian or correlated...... noise. We implement the protocol experimentally and demonstrate the near-ideal protection of coherent and entangled states in an extremely noisy channel. Since all real-life channels are exhibiting pronounced non-Markovian behavior, the proposed protocol will have immediate implications in improving...... the performance of various quantum information protocols....

  15. A Robust Pre-Filter and Power Loading Design for Time Reversal UWB Systems over Time-Correlated MIMO Channels

    Directory of Open Access Journals (Sweden)

    Sajjad Alizadeh

    2014-04-01

    Full Text Available Conventional Time Reversal (TR technique suffers from performance degradation in time varying Multiple-Input Multiple-Output Ultra-Wideband (MIMO-UWB systems due to outdating Channel State Information (CSI over time progressions. That is, the outdated CSI degrades the TR performance significantly in time varying channels. The correlation property of time correlated channels can improve the TR performance against other traditional TR designs. Based on this property, at first, we propose a robust TR-MIMO-UWB system design for a time-varying channel in which the CSI is updated only at the beginning of each block of data where the CSI is assumed to be known. As the channel varies over time, pre-processor blindly pre-equalizes the channel during the next symbol time by using the correlation property. Then, a novel recursive power allocation strategy is derived over time-correlated time-varying TR-MIMO-UWB channels. We show that the proposed power loading technique, considerably improves the BER performance of TR-MIMO-UWB system in imperfect CSI with robust pre-filter. The proposed algorithms lead to a cost-efficient CSI updating procedure for the TR optimization. Simulation results are provided to confirm the new design performance against traditional method.

  16. On slip correlations used in the determination of the void distribution of BWR fuel channels

    International Nuclear Information System (INIS)

    Oelgaard, P.L.

    1995-01-01

    When performing calculations on boiling water reactors it is necessary to establish a relation between the average velocity of the steam, Vg, and that of the water, Vf, in the fuel channels. This is usually done through establishing an expression for the slip ratio S=V g /V f . In the literature a number of such slip ratio correlations -based on measurements - has been presented. A comparison between some of these correlations has been performed in this paper. While the correlations have some general trends in common, the numerical values of S obtained with the correlations may vary significantly. Further, in spite of the fact that various flow regimes exist in a boiling channel none of the correlations considered take the change of flow regime into account. This raises the question: How reliable is the use of slip correlation? (orig.) (9 refs., 5 figs.)

  17. Capacity estimation and verification of quantum channels with arbitrarily correlated errors.

    Science.gov (United States)

    Pfister, Corsin; Rol, M Adriaan; Mantri, Atul; Tomamichel, Marco; Wehner, Stephanie

    2018-01-02

    The central figure of merit for quantum memories and quantum communication devices is their capacity to store and transmit quantum information. Here, we present a protocol that estimates a lower bound on a channel's quantum capacity, even when there are arbitrarily correlated errors. One application of these protocols is to test the performance of quantum repeaters for transmitting quantum information. Our protocol is easy to implement and comes in two versions. The first estimates the one-shot quantum capacity by preparing and measuring in two different bases, where all involved qubits are used as test qubits. The second verifies on-the-fly that a channel's one-shot quantum capacity exceeds a minimal tolerated value while storing or communicating data. We discuss the performance using simple examples, such as the dephasing channel for which our method is asymptotically optimal. Finally, we apply our method to a superconducting qubit in experiment.

  18. Spatial correlation in 3D MIMO channels using fourier coefficients of power spectrums

    KAUST Repository

    Nadeem, Qurrat-Ul-Ain

    2015-03-01

    In this paper, an exact closed-form expression for the Spatial Correlation Function (SCF) is derived for the standardized three-dimensional (3D) multiple-input multiple-output (MIMO) channel. This novel SCF is developed for a uniform linear array of antennas with non-isotropic antenna patterns. The proposed method resorts to the spherical harmonic expansion (SHE) of plane waves and the trigonometric expansion of Legendre and associated Legendre polynomials to obtain a closed-form expression for the SCF for arbitrary angular distributions and antenna patterns. The resulting expression depends on the underlying angular distributions and antenna patterns through the Fourier Series (FS) coefficients of power azimuth and elevation spectrums. The novelty of the proposed method lies in the SCF being valid for any 3D propagation environment. Numerical results validate the proposed analytical expression and study the impact of angular spreads on the correlation. The derived SCF will help evaluate the performance of correlated 3D MIMO channels in the future. © 2015 IEEE.

  19. Flow cytometry-assisted rapid isolation of recombinant Plasmodium berghei parasites exemplified by functional analysis of aquaglyceroporin

    Science.gov (United States)

    Kenthirapalan, Sanketha; Waters, Andrew P.; Matuschewski, Kai; Kooij, Taco W.A.

    2012-01-01

    The most critical bottleneck in the generation of recombinant Plasmodium berghei parasites is the mandatory in vivo cloning step following successful genetic manipulation. This study describes a new technique for rapid selection of recombinant P. berghei parasites. The method is based on flow cytometry to isolate isogenic parasite lines and represents a major advance for the field, in that it will speed the generation of recombinant parasites as well as cut down on animal use significantly. High expression of GFP during blood infection, a prerequisite for robust separation of transgenic lines by flow cytometry, was achieved. Isogenic recombinant parasite populations were isolated even in the presence of a 100-fold excess of wild-type (WT) parasites. Aquaglyceroporin (AQP) loss-of-function mutants and parasites expressing a tagged AQP were generated to validate this approach. aqp− parasites grow normally within the WT phenotypic range during blood infection of NMRI mice. Similarly, colonization of the insect vector and establishment of an infection after mosquito transmission were unaffected, indicating that AQP is dispensable for life cycle progression in vivo under physiological conditions, refuting its use as a suitable drug target. Tagged AQP localized to perinuclear structures and not the parasite plasma membrane. We suggest that flow-cytometric isolation of isogenic parasites overcomes the major roadblock towards a genome-scale repository of mutant and transgenic malaria parasite lines. PMID:23137753

  20. A Detection Algorithm for the BOC Signal Based on Quadrature Channel Correlation

    Directory of Open Access Journals (Sweden)

    Bo Qian

    2018-01-01

    Full Text Available In order to solve the problem of detecting a BOC signal, which uses a long-period pseudo random sequence, an algorithm is presented based on quadrature channel correlation. The quadrature channel correlation method eliminates the autocorrelation component of the carrier wave, allowing for the extraction of the absolute autocorrelation peaks of the BOC sequence. If the same lag difference and height difference exist for the adjacent peaks, the BOC signal can be detected effectively using a statistical analysis of the multiple autocorrelation peaks. The simulation results show that the interference of the carrier wave component is eliminated and the autocorrelation peaks of the BOC sequence are obtained effectively without demodulation. The BOC signal can be detected effectively when the SNR is greater than −12 dB. The detection ability can be improved further by increasing the number of sampling points. The higher the ratio of the square wave subcarrier speed to the pseudo random sequence speed is, the greater the detection ability is with a lower SNR. The algorithm presented in this paper is superior to the algorithm based on the spectral correlation.

  1. Asymmetric Joint Source-Channel Coding for Correlated Sources with Blind HMM Estimation at the Receiver

    Directory of Open Access Journals (Sweden)

    Ser Javier Del

    2005-01-01

    Full Text Available We consider the case of two correlated sources, and . The correlation between them has memory, and it is modelled by a hidden Markov chain. The paper studies the problem of reliable communication of the information sent by the source over an additive white Gaussian noise (AWGN channel when the output of the other source is available as side information at the receiver. We assume that the receiver has no a priori knowledge of the correlation statistics between the sources. In particular, we propose the use of a turbo code for joint source-channel coding of the source . The joint decoder uses an iterative scheme where the unknown parameters of the correlation model are estimated jointly within the decoding process. It is shown that reliable communication is possible at signal-to-noise ratios close to the theoretical limits set by the combination of Shannon and Slepian-Wolf theorems.

  2. Secret-key agreement over spatially correlated multiple-antenna channels in the low-SNR regime

    KAUST Repository

    Zorgui, Marwen; Rezki, Zouheir; Alomair, Basel; Jorswieck, Eduard A.; Alouini, Mohamed-Slim

    2015-01-01

    We consider secret-key agreement with public discussion over Rayleigh fast-fading channels with transmit, receive and eavesdropper correlation. The legitimate receiver along with the eavesdropper are assumed to have perfect channel knowledge while the transmitter has only knowledge of the correlation matrices. We analyze the secret-key capacity in the low signal-to-noise ratio (SNR) regime. We derive closed-form expressions for the first and the second derivatives of the secret-key capacity with respect to SNR at SNR= 0, for arbitrary correlation matrices and number of transmit, receive and eavesdropper antennas. Moreover, we identify optimal transmission strategies achieving these derivatives. For instance, we prove that achieving the first and the second derivatives requires a uniform power distribution between the eigenvectors spanning the maximal-eigenvalue eigenspace of the transmit correlation matrix. We also compare the optimal transmission scheme to a simple uniform power allocation. Finally, we express the minimum energy required for sharing a secret-key bit as well as the wideband slope in terms of the system parameters.

  3. Secret-key agreement over spatially correlated multiple-antenna channels in the low-SNR regime

    KAUST Repository

    Zorgui, Marwen

    2015-09-28

    We consider secret-key agreement with public discussion over Rayleigh fast-fading channels with transmit, receive and eavesdropper correlation. The legitimate receiver along with the eavesdropper are assumed to have perfect channel knowledge while the transmitter has only knowledge of the correlation matrices. We analyze the secret-key capacity in the low signal-to-noise ratio (SNR) regime. We derive closed-form expressions for the first and the second derivatives of the secret-key capacity with respect to SNR at SNR= 0, for arbitrary correlation matrices and number of transmit, receive and eavesdropper antennas. Moreover, we identify optimal transmission strategies achieving these derivatives. For instance, we prove that achieving the first and the second derivatives requires a uniform power distribution between the eigenvectors spanning the maximal-eigenvalue eigenspace of the transmit correlation matrix. We also compare the optimal transmission scheme to a simple uniform power allocation. Finally, we express the minimum energy required for sharing a secret-key bit as well as the wideband slope in terms of the system parameters.

  4. Aquaporin-11: A channel protein lacking apparent transport function expressed in brain

    Directory of Open Access Journals (Sweden)

    Tsunenari Takashi

    2006-05-01

    Full Text Available Abstract Background The aquaporins are a family of integral membrane proteins composed of two subfamilies: the orthodox aquaporins, which transport only water, and the aquaglyceroporins, which transport glycerol, urea, or other small solutes. Two recently described aquaporins, numbers 11 and 12, appear to be more distantly related to the other mammalian aquaporins and aquaglyceroporins. Results We report on the characterization of Aquaporin-11 (AQP11. AQP11 RNA and protein is found in multiple rat tissues, including kidney, liver, testes and brain. AQP11 has a unique distribution in brain, appearing in Purkinje cell dendrites, hippocampal neurons of CA1 and CA2, and cerebral cortical neurons. Immunofluorescent staining of Purkinje cells indicates that AQP11 is intracellular. Unlike other aquaporins, Xenopus oocytes expressing AQP11 in the plasma membrane failed to transport water, glycerol, urea, or ions. Conclusion AQP11 is functionally distinct from other proteins of the aquaporin superfamily and could represent a new aquaporin subfamily. Further studies are necessary to elucidate the role of AQP11 in the brain.

  5. Effect of void fraction correlations on two-phase pressure drop during flow boiling in narrow rectangular channel

    International Nuclear Information System (INIS)

    Huang, Dong; Gao, Puzhen; Chen, Chong; Lan, Shu

    2013-01-01

    Highlights: • Most of the slip ratio models and the Lockhart–Martinelli parameter based models give similar results. • The drift flux void fraction models give relatively small values. • The effect of void fraction correlations on two-phase friction pressure drop is inconspicuous. • The effect of void fraction correlations on two-phase acceleration pressure drop is significant. - Abstract: The void fraction of water during flow boiling in vertical narrow rectangular channel is experimentally investigated. The void fraction is indirectly determined using the present experimental data with various void fraction correlations or models published in the open literature. The effects of mass flux, mass quality, system pressure and inlet subcooling on the void fraction and pressure drop are discussed in detail. In addition, comparison and discussion among the numerous void fraction correlations are carried out. The effect of void fraction correlations on two-phase pressure drop is presented as well. The results reveal that most of the slip ratio correlations and the Lockhart–Martinelli parameter based void fraction correlations have results close to each other at mass quality higher than 0.2. The drift flux void fraction correlations give small values which are incompatible with other models making it inapplicable for narrow rectangular channel. The alteration of void fraction correlations has an inconspicuous effect on two-phase frictional pressure drop, while an obvious effect on two-phase accelerational pressure drop during flow boiling in narrow rectangular channel

  6. A model for the two-point velocity correlation function in turbulent channel flow

    International Nuclear Information System (INIS)

    Sahay, A.; Sreenivasan, K.R.

    1996-01-01

    A relatively simple analytical expression is presented to approximate the equal-time, two-point, double-velocity correlation function in turbulent channel flow. To assess the accuracy of the model, we perform the spectral decomposition of the integral operator having the model correlation function as its kernel. Comparisons of the empirical eigenvalues and eigenfunctions with those constructed from direct numerical simulations data show good agreement. copyright 1996 American Institute of Physics

  7. Gaussian capacity of the quantum bosonic memory channel with additive correlated Gaussian noise

    International Nuclear Information System (INIS)

    Schaefer, Joachim; Karpov, Evgueni; Cerf, Nicolas J.

    2011-01-01

    We present an algorithm for calculation of the Gaussian classical capacity of a quantum bosonic memory channel with additive Gaussian noise. The algorithm, restricted to Gaussian input states, is applicable to all channels with noise correlations obeying certain conditions and works in the full input energy domain, beyond previous treatments of this problem. As an illustration, we study the optimal input states and capacity of a quantum memory channel with Gauss-Markov noise [J. Schaefer, Phys. Rev. A 80, 062313 (2009)]. We evaluate the enhancement of the transmission rate when using these optimal entangled input states by comparison with a product coherent-state encoding and find out that such a simple coherent-state encoding achieves not less than 90% of the capacity.

  8. Silver and Nitrate Oppositely Modulate Antimony Susceptibility through Aquaglyceroporin 1 in Leishmania (Viannia) Species.

    Science.gov (United States)

    Andrade, Juvana M; Baba, Elio H; Machado-de-Avila, Ricardo A; Chavez-Olortegui, Carlos; Demicheli, Cynthia P; Frézard, Frédéric; Monte-Neto, Rubens L; Murta, Silvane M F

    2016-08-01

    Antimony (Sb) resistance in leishmaniasis chemotherapy has become one of the major challenges to the control of this spreading worldwide public health problem. Since the plasma membrane pore-forming protein aquaglyceroporin 1 (AQP1) is the major route of Sb uptake in Leishmania, functional studies are relevant to characterize drug transport pathways in the parasite. We generated AQP1-overexpressing Leishmania guyanensis and L. braziliensis mutants and investigated their susceptibility to the trivalent form of Sb (Sb(III)) in the presence of silver and nitrate salts. Both AQP1-overexpressing lines presented 3- to 4-fold increased AQP1 expression levels compared with those of their untransfected counterparts, leading to an increased Sb(III) susceptibility of about 2-fold. Competition assays using silver nitrate, silver sulfadiazine, or silver acetate prior to Sb(III) exposure increased parasite growth, especially in AQP1-overexpressing mutants. Surprisingly, Sb(III)-sodium nitrate or Sb(III)-potassium nitrate combinations showed significantly enhanced antileishmanial activities compared to those of Sb(III) alone, especially against AQP1-overexpressing mutants, suggesting a putative nitrate-dependent modulation of AQP1 activity. The intracellular level of antimony quantified by graphite furnace atomic absorption spectrometry showed that the concomitant exposure to Sb(III) and nitrate favors antimony accumulation in the parasite, increasing the toxicity of the drug and culminating with parasite death. This is the first report showing evidence of AQP1-mediated Sb(III) susceptibility modulation by silver in Leishmania and suggests the potential antileishmanial activity of the combination of nitrate salts and Sb(III). Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  9. The temperature dependence of the BK channel activity - kinetics, thermodynamics, and long-range correlations.

    Science.gov (United States)

    Wawrzkiewicz-Jałowiecka, Agata; Dworakowska, Beata; Grzywna, Zbigniew J

    2017-10-01

    Large-conductance, voltage dependent, Ca 2+ -activated potassium channels (BK) are transmembrane proteins that regulate many biological processes by controlling potassium flow across cell membranes. Here, we investigate to what extent temperature (in the range of 17-37°C with ΔT=5°C step) is a regulating parameter of kinetic properties of the channel gating and memory effect in the series of dwell-time series of subsequent channel's states, at membrane depolarization and hyperpolarization. The obtained results indicate that temperature affects strongly the BK channels' gating, but, counterintuitively, it exerts no effect on the long-range correlations, as measured by the Hurst coefficient. Quantitative differences between dependencies of appropriate channel's characteristics on temperature are evident for different regimes of voltage. Examining the characteristics of BK channel activity as a function of temperature allows to estimate the net activation energy (E act ) and changes of thermodynamic parameters (ΔH, ΔS, ΔG) by channel opening. Larger E act corresponds to the channel activity at membrane hyperpolarization. The analysis of entropy and enthalpy changes of closed to open channel's transition suggest the entropy-driven nature of the increase of open state probability during voltage activation and supports the hypothesis about the voltage-dependent geometry of the channel vestibule. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Conclusive identification of quantum channels via monogamy of quantum correlations

    International Nuclear Information System (INIS)

    Kumar, Asutosh; Singha Roy, Sudipto; Pal, Amit Kumar; Prabhu, R.; Sen, Aditi; Sen, Ujjwal

    2016-01-01

    We investigate the action of global noise and local channels, namely, amplitude-damping, phase-damping, and depolarizing channels, on monogamy of quantum correlations, such as negativity and quantum discord, in three-qubit systems. We discuss the monotonic and non-monotonic variation, and robustness of the monogamy scores. By using monogamy scores, we propose a two-step protocol to conclusively identify the noise applied to the quantum system, by using generalized Greenberger–Horne–Zeilinger and generalized W states as resource states. We discuss a possible generalization of the results to higher number of parties. - Highlights: • Monogamy score monotonically decays with noise for generalized GHZ state as input. • Non-monotonically decaying monogamy score with noise for generalized W state as input. • Characterizing the dynamics of monogamy score. • Dynamics terminal quantifying robustness of monogamy score against noise. • Conclusively identifying the type of noise using monogamy score.

  11. Conclusive identification of quantum channels via monogamy of quantum correlations

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Asutosh; Singha Roy, Sudipto; Pal, Amit Kumar [Harish-Chandra Research Institute, Chhatnag Road, Jhunsi, Allahabad 211019 (India); Homi Bhaba National Institute, Training School Complex, Anushaktinagar, Mumbai 400094 (India); Prabhu, R. [Harish-Chandra Research Institute, Chhatnag Road, Jhunsi, Allahabad 211019 (India); Homi Bhaba National Institute, Training School Complex, Anushaktinagar, Mumbai 400094 (India); Department of Physics, Indian Institute of Technology Patna, Bihta 801103, Bihar (India); Sen, Aditi, E-mail: aditi@hri.res.in [Harish-Chandra Research Institute, Chhatnag Road, Jhunsi, Allahabad 211019 (India); Homi Bhaba National Institute, Training School Complex, Anushaktinagar, Mumbai 400094 (India); Sen, Ujjwal [Harish-Chandra Research Institute, Chhatnag Road, Jhunsi, Allahabad 211019 (India); Homi Bhaba National Institute, Training School Complex, Anushaktinagar, Mumbai 400094 (India)

    2016-10-23

    We investigate the action of global noise and local channels, namely, amplitude-damping, phase-damping, and depolarizing channels, on monogamy of quantum correlations, such as negativity and quantum discord, in three-qubit systems. We discuss the monotonic and non-monotonic variation, and robustness of the monogamy scores. By using monogamy scores, we propose a two-step protocol to conclusively identify the noise applied to the quantum system, by using generalized Greenberger–Horne–Zeilinger and generalized W states as resource states. We discuss a possible generalization of the results to higher number of parties. - Highlights: • Monogamy score monotonically decays with noise for generalized GHZ state as input. • Non-monotonically decaying monogamy score with noise for generalized W state as input. • Characterizing the dynamics of monogamy score. • Dynamics terminal quantifying robustness of monogamy score against noise. • Conclusively identifying the type of noise using monogamy score.

  12. Ergodic channel capacity of spatial correlated multiple-input multiple-output free space optical links using multipulse pulse-position modulation

    Science.gov (United States)

    Wang, Huiqin; Wang, Xue; Cao, Minghua

    2017-02-01

    The spatial correlation extensively exists in the multiple-input multiple-output (MIMO) free space optical (FSO) communication systems due to the channel fading and the antenna space limitation. Wilkinson's method was utilized to investigate the impact of spatial correlation on the MIMO FSO communication system employing multipulse pulse-position modulation. Simulation results show that the existence of spatial correlation reduces the ergodic channel capacity, and the reception diversity is more competent to resist this kind of performance degradation.

  13. Secret-key agreement over spatially correlated fast-fading multiple-antenna channels with public discussion

    KAUST Repository

    Zorgui, Marwen; Rezki, Zouheir; Alomair, Basel; Alouini, Mohamed-Slim

    2015-01-01

    numerical optimization problem that we derive. A necessary and sufficient condition for beamforming (i.e., transmitting along the strongest channel mode) to be capacity-achieving is derived. Finally, we analyze the impact of correlation matrices

  14. Multiple Speech Source Separation Using Inter-Channel Correlation and Relaxed Sparsity

    Directory of Open Access Journals (Sweden)

    Maoshen Jia

    2018-01-01

    Full Text Available In this work, a multiple speech source separation method using inter-channel correlation and relaxed sparsity is proposed. A B-format microphone with four spatially located channels is adopted due to the size of the microphone array to preserve the spatial parameter integrity of the original signal. Specifically, we firstly measure the proportion of overlapped components among multiple sources and find that there exist many overlapped time-frequency (TF components with increasing source number. Then, considering the relaxed sparsity of speech sources, we propose a dynamic threshold-based separation approach of sparse components where the threshold is determined by the inter-channel correlation among the recording signals. After conducting a statistical analysis of the number of active sources at each TF instant, a form of relaxed sparsity called the half-K assumption is proposed so that the active source number in a certain TF bin does not exceed half the total number of simultaneously occurring sources. By applying the half-K assumption, the non-sparse components are recovered by regarding the extracted sparse components as a guide, combined with vector decomposition and matrix factorization. Eventually, the final TF coefficients of each source are recovered by the synthesis of sparse and non-sparse components. The proposed method has been evaluated using up to six simultaneous speech sources under both anechoic and reverberant conditions. Both objective and subjective evaluations validated that the perceptual quality of the separated speech by the proposed approach outperforms existing blind source separation (BSS approaches. Besides, it is robust to different speeches whilst confirming all the separated speeches with similar perceptual quality.

  15. On the performance of dual-hop systems with multiple antennas: Effects of spatial correlation, keyhole, and co-channel interference

    KAUST Repository

    Yang, Liang

    2012-12-01

    In this paper, taking into account realistic propagation conditions, namely, spatial correlation, keyhole channels, and unequal-power co-channel interference, we investigate the performance of a wireless relay network where all the nodes are equipped with multiple antennas. Considering channel state information assisted amplify-and-forward protocol, we present analytical expressions for the symbol error rate (SER) and outage probability. More specifically, we first derive the SER expressions of a relay system with orthogonal space-time block coding (OSTBC) over correlated/keyhole fading channels. We also analyze the outage probability of interference corrupted relay systems with maximal ratio combing (MRC) at the receiver as well as multiple-input multiple-output MRC (MIMO MRC). Numerical results are given to illustrate and verify the analytical results. © 2012 IEEE.

  16. On the performance of dual-hop systems with multiple antennas: Effects of spatial correlation, keyhole, and co-channel interference

    KAUST Repository

    Yang, Liang; Alouini, Mohamed-Slim; Qaraqe, Khalid A.; Liu, Weiping

    2012-01-01

    In this paper, taking into account realistic propagation conditions, namely, spatial correlation, keyhole channels, and unequal-power co-channel interference, we investigate the performance of a wireless relay network where all the nodes are equipped with multiple antennas. Considering channel state information assisted amplify-and-forward protocol, we present analytical expressions for the symbol error rate (SER) and outage probability. More specifically, we first derive the SER expressions of a relay system with orthogonal space-time block coding (OSTBC) over correlated/keyhole fading channels. We also analyze the outage probability of interference corrupted relay systems with maximal ratio combing (MRC) at the receiver as well as multiple-input multiple-output MRC (MIMO MRC). Numerical results are given to illustrate and verify the analytical results. © 2012 IEEE.

  17. Intrachromosomal amplification, locus deletion and point mutation in the aquaglyceroporin AQP1 gene in antimony resistant Leishmania (Viannia guyanensis.

    Directory of Open Access Journals (Sweden)

    Rubens Monte-Neto

    2015-02-01

    Full Text Available Antimony resistance complicates the treatment of infections caused by the parasite Leishmania.Using next generation sequencing, we sequenced the genome of four independent Leishmania guyanensis antimony-resistant (SbR mutants and found different chromosomal alterations including aneuploidy, intrachromosomal gene amplification and gene deletion. A segment covering 30 genes on chromosome 19 was amplified intrachromosomally in three of the four mutants. The gene coding for the multidrug resistance associated protein A involved in antimony resistance was also amplified in the four mutants, most likely through chromosomal translocation. All mutants also displayed a reduced accumulation of antimony mainly due to genomic alterations at the level of the subtelomeric region of chromosome 31 harboring the gene coding for the aquaglyceroporin 1 (LgAQP1. Resistance involved the loss of LgAQP1 through subtelomeric deletions in three mutants. Interestingly, the fourth mutant harbored a single G133D point mutation in LgAQP1 whose role in resistance was functionality confirmed through drug sensitivity and antimony accumulation assays. In contrast to the Leishmania subspecies that resort to extrachromosomal amplification, the Viannia strains studied here used intrachromosomal amplification and locus deletion.This is the first report of a naturally occurred point mutation in AQP1 in antimony resistant parasites.

  18. Channel Bow in Boiling Water Reactors - Hot Cell Examination Results and Correlation to Measured Bow

    International Nuclear Information System (INIS)

    Mahmood, S.T.; Lin, Y.P.; Dubecky, M.A.; Edsinger, K.; Mader, E.V.

    2007-01-01

    An increase in frequency of fuel channel-control blade interference has been observed in Boiling Water Reactors (BWR) in recent years. Many of the channels leading to interference were found to bow towards the control blade in a manner that was inconsistent with the expected bow due to other effects. The pattern of bow appeared to indicate a new channel bow mechanism that differed from the predominant bow mechanism caused by differential growth due to fast-fluence gradients. In order to investigate this new type of channel bow, coupons from several channels with varying degrees of bow were returned to the GE Vallecitos Nuclear Center (VNC) for Post-Irradiation Examination (PIE). This paper describes the characteristics of channel corrosion and hydrogen pickup observed, and relates the observations to the channel exposure level, control history, and measured channel bow. The channels selected for PIE had exposures in the range of 36-48 GWd/MTU and covered a wide range of measured bow. The coupons were obtained at 4 elevations from opposing channel sides adjacent and away from the control blade. The PIE performed on these coupons included visual examination, metallography, and hydrogen concentration measurements. A new mechanism of control-blade shadow corrosion-induced channel bow was found to correlate with differences in the extent of corrosion and corresponding differences in the hydrogen concentration between opposite sides of the channels. The increased corrosion on the control blade sides was found to be dependent on the level of control early in the life of the channel. The contributions of other potential factors leading to increased channel bow and channel-control blade interference are also discussed in this paper. (authors)

  19. On the Ergodic Capacity of Dual-Branch Correlated Log-Normal Fading Channels with Applications

    KAUST Repository

    Al-Quwaiee, Hessa; Alouini, Mohamed-Slim

    2015-01-01

    Closed-form expressions of the ergodic capacity of independent or correlated diversity branches over Log-Normal fading channels are not available in the literature. Thus, it is become of an interest to investigate the behavior of such metric at high

  20. Frequency and spatial correlation functions in a fading communication channel through the ionosphere

    International Nuclear Information System (INIS)

    Liu, C.H.; Yeh, K.C.

    1975-01-01

    Equations for the two-frequency two-position mutual coherence functions are derived under the usual parabolic and Markov approximations. These equations are then solved numerically. It is shown that the mutual coherence functions occur naturally in the study of pulse distortion through a random communication channel and in the investigation of signal correlations. Contour plots of correlation functions show the possibility of having equal values at two frequency separations for a given spatial separation. This behavior is explainable in terms of overlapping Fresnel zones

  1. Quantum correlation versus Bell-inequality violation under the amplitude damping channel

    Energy Technology Data Exchange (ETDEWEB)

    Ma, WenChao; Xu, Shuai; Shi, Jiadong; Ye, Liu, E-mail: yeliu@ahu.edu.cn

    2015-11-06

    We investigate the quantum correlations including quantum discord and entanglement under the amplitude damping channel. Our analysis results indicate that although the entanglement of initial state is degraded due to decoherence, the distribution trend of entanglement is not to be affected. Moreover, we find that the survival time for entanglement is much longer than for the Bell inequality violation, i.e., as time goes on the Bell inequality violation of final state may be not satisfied while the final state still remains entangled. Especially, although quantum entanglement and quantum discord all decrease under the amplitude damping channel, quantum discord (QD) is reduced significantly slower than entanglement. Therefore, the quantum discord is more robust against amplitude damping in comparison to entanglement measures. Furthermore, we also find that there are mixed states having quantum discord higher than that for pure states for a given degree of Bell's inequality violation. This means that the manipulation of nonclassical correlations via a pure state can result in a larger loss of quantum discord than that via a mixed state. - Highlights: • Entanglement distribution trend is not be affected by the decoherent. • The survival time for entanglement is much longer than for the Bell inequality violation. • The quantum discord is more robust against amplitude damping in comparison entanglement measures.

  2. The correlation based zonal method and its application to the back pass channel of oxy/air-fired CFB boiler

    International Nuclear Information System (INIS)

    Bordbar, Mohammad Hadi; Hyppänen, Timo

    2015-01-01

    A set of correlations for direct exchange area (DEA) between zones are presented. The correlations are simpler and much faster than the classical method used for DEA calculations in zone method. Additionally a unique form of correlation supports both singular and non-singular DEA calculation and no extra effort for non-singular cases is needed. Using the new correlations, the correlation based zone method (CBZM) is introduced and validated by several benchmarks. The CBZM results were in excellent agreement with the benchmark solutions. As an application case, by using the CZBM the gray and non-gray radiative heat transfer has been analyzed in a large back pass channel of a CFB boiler for the case of air and oxygen-fired combustion scenarios. The effect of the spectral radiative behavior of combustion gases on the predicted radiative heat fluxes on the walls is addressed. The effect of combustion scenario on the operation of the unit is also discussed. - Highlights: • Efficient correlations for DEA calculation are presented. • The gray and non-gray correlation based zone method is introduced. • The model is validated against several 3D benchmarks. • The effect of non-gray radiation in a large scale back pass channel is addressed. • The effect of combustion scenario on radiation in back pass channel is reported

  3. On the Ergodic Secret-Key Agreement over Spatially Correlated Multiple-Antenna Channels with Public Discussion

    KAUST Repository

    Zorgui, Marwen; Rezki, Zouheir; Alomair, Basel; Jorswieck, Eduard; Alouini, Mohamed-Slim

    2015-01-01

    numerical optimization problem. A necessary and sufficient condition for beamforming (i.e., transmitting along the strongest channel mode) to be capacity-achieving is derived. Moreover, we analyze the impact of correlation matrices on the system performance

  4. A Generalized Spatial Correlation Model for 3D MIMO Channels based on the Fourier Coefficients of Power Spectrums

    KAUST Repository

    Nadeem, Qurrat-Ul-Ain

    2015-05-07

    Previous studies have confirmed the adverse impact of fading correlation on the mutual information (MI) of two-dimensional (2D) multiple-input multiple-output (MIMO) systems. More recently, the trend is to enhance the system performance by exploiting the channel’s degrees of freedom in the elevation, which necessitates the derivation and characterization of three-dimensional (3D) channels in the presence of spatial correlation. In this paper, an exact closed-form expression for the Spatial Correlation Function (SCF) is derived for 3D MIMO channels. This novel SCF is developed for a uniform linear array of antennas with nonisotropic antenna patterns. The proposed method resorts to the spherical harmonic expansion (SHE) of plane waves and the trigonometric expansion of Legendre and associated Legendre polynomials. The resulting expression depends on the underlying arbitrary angular distributions and antenna patterns through the Fourier Series (FS) coefficients of power azimuth and elevation spectrums. The novelty of the proposed method lies in the SCF being valid for any 3D propagation environment. The developed SCF determines the covariance matrices at the transmitter and the receiver that form the Kronecker channel model. In order to quantify the effects of correlation on the system performance, the information-theoretic deterministic equivalents of the MI for the Kronecker model are utilized in both mono-user and multi-user cases. Numerical results validate the proposed analytical expressions and elucidate the dependence of the system performance on azimuth and elevation angular spreads and antenna patterns. Some useful insights into the behaviour of MI as a function of downtilt angles are provided. The derived model will help evaluate the performance of correlated 3D MIMO channels in the future.

  5. Acyrthosiphon pisum AQP2: a multifunctional insect aquaglyceroporin

    Czech Academy of Sciences Publication Activity Database

    Wallace, I. S.; Shakesby, A. J.; Hwang, J. H.; Choi, W. G.; Martínková, Natália; Douglas, A. E.; Roberts, D. M.

    2012-01-01

    Roč. 1818, č. 3 (2012), s. 627-635 ISSN 0005-2736 Institutional research plan: CEZ:AV0Z60930519 Keywords : aphid * Buchnera aphidicola * channel proteins * osmoregulation * phylogeny Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.389, year: 2012

  6. The correlated k-distribution technique as applied to the AVHRR channels

    Science.gov (United States)

    Kratz, David P.

    1995-01-01

    Correlated k-distributions have been created to account for the molecular absorption found in the spectral ranges of the five Advanced Very High Resolution Radiometer (AVHRR) satellite channels. The production of the k-distributions was based upon an exponential-sum fitting of transmissions (ESFT) technique which was applied to reference line-by-line absorptance calculations. To account for the overlap of spectral features from different molecular species, the present routines made use of the multiplication transmissivity property which allows for considerable flexibility, especially when altering relative mixing ratios of the various molecular species. To determine the accuracy of the correlated k-distribution technique as compared to the line-by-line procedure, atmospheric flux and heating rate calculations were run for a wide variety of atmospheric conditions. For the atmospheric conditions taken into consideration, the correlated k-distribution technique has yielded results within about 0.5% for both the cases where the satellite spectral response functions were applied and where they were not. The correlated k-distribution's principal advantages is that it can be incorporated directly into multiple scattering routines that consider scattering as well as absorption by clouds and aerosol particles.

  7. Channel Estimation and Optimal Training Design for Correlated MIMO Two-Way Relay Systems in Colored Environment

    OpenAIRE

    Wang, Rui; Tao, Meixia; Mehrpouyan, Hani; Hua, Yingbo

    2014-01-01

    In this paper, while considering the impact of antenna correlation and the interference from neighboring users, we analyze channel estimation and training sequence design for multi-input multi-output (MIMO) two-way relay (TWR) systems. To this end, we propose to decompose the bidirectional transmission links into two phases, i.e., the multiple access (MAC) phase and the broadcasting (BC) phase. By considering the Kronecker-structured channel model, we derive the optimal linear minimum mean-sq...

  8. Code-Aided Estimation and Detection on Time-Varying Correlated Mimo Channels: A Factor Graph Approach

    Directory of Open Access Journals (Sweden)

    Simoens Frederik

    2006-01-01

    Full Text Available This paper concerns channel tracking in a multiantenna context for correlated flat-fading channels obeying a Gauss-Markov model. It is known that data-aided tracking of fast-fading channels requires a lot of pilot symbols in order to achieve sufficient accuracy, and hence decreases the spectral efficiency. To overcome this problem, we design a code-aided estimation scheme which exploits information from both the pilot symbols and the unknown coded data symbols. The algorithm is derived based on a factor graph representation of the system and application of the sum-product algorithm. The sum-product algorithm reveals how soft information from the decoder should be exploited for the purpose of estimation and how the information bits can be detected. Simulation results illustrate the effectiveness of our approach.

  9. On slip correlations used in the determination of the void distribution of BWR fuel channels

    International Nuclear Information System (INIS)

    Oelgaard, P.L.

    1995-05-01

    When performing calculations on boiling water reactors it is necessary to establish a relation between the average velocity of the steam, V g , and that of the water, V f , in the fuel channels. This is usually done through establishing an expression for the slip ratio S=V g /V f . In the literature a number of such slip correlations - all based on measurements - has been presented. A comparison between some of these correlations has been performed in this paper. While the correlations have some general trends in common, the numerical values of S obtained with the correlations may vary significantly. Further, in spite of the fact that various flow regimes into account. This raises the question: How reliable is the use of slip correlations? (au)

  10. 8-Channel acquisition system for Time-Correlated Single-Photon Counting.

    Science.gov (United States)

    Antonioli, S; Miari, L; Cuccato, A; Crotti, M; Rech, I; Ghioni, M

    2013-06-01

    Nowadays, an increasing number of applications require high-performance analytical instruments capable to detect the temporal trend of weak and fast light signals with picosecond time resolution. The Time-Correlated Single-Photon Counting (TCSPC) technique is currently one of the preferable solutions when such critical optical signals have to be analyzed and it is fully exploited in biomedical and chemical research fields, as well as in security and space applications. Recent progress in the field of single-photon detector arrays is pushing research towards the development of high performance multichannel TCSPC systems, opening the way to modern time-resolved multi-dimensional optical analysis. In this paper we describe a new 8-channel high-performance TCSPC acquisition system, designed to be compact and versatile, to be used in modern TCSPC measurement setups. We designed a novel integrated circuit including a multichannel Time-to-Amplitude Converter with variable full-scale range, a D∕A converter, and a parallel adder stage. The latter is used to adapt each converter output to the input dynamic range of a commercial 8-channel Analog-to-Digital Converter, while the integrated DAC implements the dithering technique with as small as possible area occupation. The use of this monolithic circuit made the design of a scalable system of very small dimensions (95 × 40 mm) and low power consumption (6 W) possible. Data acquired from the TCSPC measurement are digitally processed and stored inside an FPGA (Field-Programmable Gate Array), while a USB transceiver allows real-time transmission of up to eight TCSPC histograms to a remote PC. Eventually, the experimental results demonstrate that the acquisition system performs TCSPC measurements with high conversion rate (up to 5 MHz/channel), extremely low differential nonlinearity (<0.04 peak-to-peak of the time bin width), high time resolution (down to 20 ps Full-Width Half-Maximum), and very low crosstalk between channels.

  11. On the Ergodic Capacity of Dual-Branch Correlated Log-Normal Fading Channels with Applications

    KAUST Repository

    Al-Quwaiee, Hessa

    2015-05-01

    Closed-form expressions of the ergodic capacity of independent or correlated diversity branches over Log-Normal fading channels are not available in the literature. Thus, it is become of an interest to investigate the behavior of such metric at high signal-to-noise (SNR). In this work, we propose simple closed-form asymptotic expressions of the ergodic capacity of dual-branch correlated Log- Normal corresponding to selection combining, and switch-and-stay combining. Furthermore, we capitalize on these new results to find new asymptotic ergodic capacity of correlated dual- branch free-space optical communication system under the impact of pointing error with both heterodyne and intensity modulation/direct detection. © 2015 IEEE.

  12. Correlation functions with fusion-channel multiplicity in W3 Toda field theory

    International Nuclear Information System (INIS)

    Belavin, Vladimir; Estienne, Benoit; Foda, Omar; Santachiara, Raoul

    2016-01-01

    Current studies of W N Toda field theory focus on correlation functions such that the W N highest-weight representations in the fusion channels are multiplicity-free. In this work, we study W 3 Toda 4-point functions with multiplicity in the fusion channel. The conformal blocks of these 4-point functions involve matrix elements of a fully-degenerate primary field with a highest-weight in the adjoint representation of sl 3 , and a fully-degenerate primary field with a highest-weight in the fundamental representation of sl 3 . We show that, when the fusion rules do not involve multiplicities, the matrix elements of the fully-degenerate adjoint field, between two arbitrary descendant states, can be computed explicitly, on equal footing with the matrix elements of the semi-degenerate fundamental field. Using null-state conditions, we obtain a fourth-order Fuchsian differential equation for the conformal blocks. Using Okubo theory, we show that, due to the presence of multiplicities, this differential equation belongs to a class of Fuchsian equations that is different from those that have appeared so far in W N theories. We solve this equation, compute its monodromy group, and construct the monodromy-invariant correlation functions. This computation shows in detail how the ambiguities that are caused by the presence of multiplicities are fixed by requiring monodromy-invariance.

  13. Robust Frame Synchronization for Low Signal-to-Noise Ratio Channels Using Energy-Corrected Differential Correlation

    Directory of Open Access Journals (Sweden)

    Kim Pansoo

    2009-01-01

    Full Text Available Recent standards for wireless transmission require reliable synchronization for channels with low signal-to-noise ratio (SNR as well as with a large amount of frequency offset, which necessitates a robust correlator structure for the initial frame synchronization process. In this paper, a new correlation strategy especially targeted for low SNR regions is proposed and its performance is analyzed. By utilizing a modified energy correction term, the proposed method effectively reduces the variance of the decision variable to enhance the detection performance. Most importantly, the method is demonstrated to outperform all previously reported schemes by a significant margin, for SNRs below 5 dB regardless of the existence of the frequency offsets. A variation of the proposed method is also presented for further enhancement over the channels with small frequency errors. The particular application considered for the performance verification is the second generation digital video broadcasting system for satellites (DVB-S2.

  14. Blind Cartography for Side Channel Attacks: Cross-Correlation Cartography

    Directory of Open Access Journals (Sweden)

    Laurent Sauvage

    2012-01-01

    Full Text Available Side channel and fault injection attacks are major threats to cryptographic applications of embedded systems. Best performances for these attacks are achieved by focusing sensors or injectors on the sensible parts of the application, by means of dedicated methods to localise them. Few methods have been proposed in the past, and all of them aim at pinpointing the cryptoprocessor. However it could be interesting to exploit the activity of other parts of the application, in order to increase the attack's efficiency or to bypass its countermeasures. In this paper, we present a localisation method based on cross-correlation, which issues a list of areas of interest within the attacked device. It realizes an exhaustive analysis, since it may localise any module of the device, and not only those which perform cryptographic operations. Moreover, it also does not require a preliminary knowledge about the implementation, whereas some previous cartography methods require that the attacker could choose the cryptoprocessor inputs, which is not always possible. The method is experimentally validated using observations of the electromagnetic near field distribution over a Xilinx Virtex 5 FPGA. The matching between areas of interest and the application layout in the FPGA floorplan is confirmed by correlation analysis.

  15. Energy-Efficient Optimization for HARQ Schemes over Time-Correlated Fading Channels

    KAUST Repository

    Shi, Zheng

    2018-03-19

    Energy efficiency of three common hybrid automatic repeat request (HARQ) schemes including Type I HARQ, HARQ with chase combining (HARQ-CC) and HARQ with incremental redundancy (HARQ-IR), is analyzed and joint power allocation and rate selection to maximize the energy efficiency is investigated in this paper. Unlike prior literature, time-correlated fading channels is considered and two widely concerned quality of service (QoS) constraints, i.e., outage and goodput constraints, are also considered in the optimization, which further differentiates this work from prior ones. Using a unified expression of asymptotic outage probabilities, optimal transmission powers and optimal rate are derived in closed-forms to maximize the energy efficiency while satisfying the QoS constraints. These closed-form solutions then enable a thorough analysis of the maximal energy efficiencies of various HARQ schemes. It is revealed that with low outage constraint, the maximal energy efficiency achieved by Type I HARQ is $\\\\frac{1}{4\\\\ln2}$ bits/J, while HARQ-CC and HARQ-IR can achieve the same maximal energy efficiency as $\\\\frac{\\\\kappa_\\\\infty}{4\\\\ln2}$ bits/J where $\\\\kappa_\\\\infty = 1.6617$. Moreover, time correlation in the fading channels has a negative impact on the energy efficiency, while large maximal allowable number of transmissions is favorable for the improvement of energy efficiency. The effectiveness of the energy-efficient optimization is verified by extensive simulations and the results also show that HARQ-CC can achieve the best tradeoff between energy efficiency and spectral efficiency among the three HARQ schemes.

  16. Dual channel detection of ultra low concentration of bacteria in real time by scanning fluorescence correlation spectroscopy

    Science.gov (United States)

    Altamore, Ilaria; Lanzano, Luca; Gratton, Enrico

    2013-06-01

    We describe a novel method to detect very low concentrations of bacteria in water. Our device consists of a portable horizontal geometry small confocal microscope with large pinhole and a holder for cylindrical cuvettes containing the sample. Two motors provide fast rotational and slow vertical motion of the cuvette so the device looks like a simplified flow cytometer without flow. To achieve high sensitivity, the design has two detection channels. Bacteria are stained by two different nucleic acid dyes and excited with two different lasers. Data are analyzed with a correlation filter based on particle passage pattern recognition. The passage of a particle through the illumination volume is compared with a Gaussian pattern in both channels. The width of the Gaussian correlates with the time of passage of the particle so one particle is counted when the algorithm finds a match with a Gaussian in both channels. The concentration of particles in the sample is deduced from the total number of coincident hits and the total volume scanned. This portable setup provides higher sensitivity, low-cost advantage, and it can have a wide use ranging from clinical applications to pollution monitors and water and air quality control.

  17. Dual channel detection of ultra low concentration of bacteria in real time by scanning fluorescence correlation spectroscopy

    International Nuclear Information System (INIS)

    Altamore, Ilaria; Lanzano, Luca; Gratton, Enrico

    2013-01-01

    We describe a novel method to detect very low concentrations of bacteria in water. Our device consists of a portable horizontal geometry small confocal microscope with large pinhole and a holder for cylindrical cuvettes containing the sample. Two motors provide fast rotational and slow vertical motion of the cuvette so the device looks like a simplified flow cytometer without flow. To achieve high sensitivity, the design has two detection channels. Bacteria are stained by two different nucleic acid dyes and excited with two different lasers. Data are analyzed with a correlation filter based on particle passage pattern recognition. The passage of a particle through the illumination volume is compared with a Gaussian pattern in both channels. The width of the Gaussian correlates with the time of passage of the particle so one particle is counted when the algorithm finds a match with a Gaussian in both channels. The concentration of particles in the sample is deduced from the total number of coincident hits and the total volume scanned. This portable setup provides higher sensitivity, low-cost advantage, and it can have a wide use ranging from clinical applications to pollution monitors and water and air quality control. (paper)

  18. Research on Cost Information Sharing and Channel Choice in a Dual-Channel Supply Chain

    Directory of Open Access Journals (Sweden)

    Huihui Liu

    2016-01-01

    Full Text Available Many studies examine information sharing in an uncertain demand environment in a supply chain. However there is little literature on cost information sharing in a dual-channel structure consisting of a retail channel and a direct sales channel. Assuming that the retail sale cost and direct sale cost are random variables with a general distribution, the paper investigates the retailer’s choice on cost information sharing in a Bertrand competition model. Based on the equilibrium outcome of information sharing, the manufacturer’s channel choice is discussed in detail. Our paper provides several interesting conclusions. In both single- and dual-channel structures, the retailer has little motivation to share its private cost information which is verified to be valuable for the manufacturer. When the cost correlation between the two channels increases, our analyses show that the manufacturer’s profit improves. However, when channel choice is involved, the value of information could play a different role. The paper finds that a dual-channel structure can benefit the manufacturer only when the cost correlation is sufficiently low. In addition, if the cost correlation is weak, the cost fluctuation will bring out the advantage of a dual-channel structure and adding a new direct channel will help in risk pooling.

  19. Correlation functions with fusion-channel multiplicity in W{sub 3} Toda field theory

    Energy Technology Data Exchange (ETDEWEB)

    Belavin, Vladimir [I.E. Tamm Department of Theoretical Physics, P.N. Lebedev Physical Institute,Leninsky Avenue 53, 119991 Moscow (Russian Federation); Department of Quantum Physics, Institute for Information Transmission Problems,Bolshoy Karetny per. 19, 127994 Moscow (Russian Federation); Estienne, Benoit [LPTHE, CNRS and Université Pierre et Marie Curie,Sorbonne Universités, 4 Place Jussieu, 75252 Paris Cedex 05 (France); Foda, Omar [School of Mathematics and Statistics, University of Melbourne,Parkville, Victoria 3010 (Australia); Santachiara, Raoul [LPTMS, CNRS (UMR 8626), Université Paris-Saclay,15 rue Georges Clémenceau, 91405 Orsay (France)

    2016-06-22

    Current studies of W{sub N} Toda field theory focus on correlation functions such that the W{sub N} highest-weight representations in the fusion channels are multiplicity-free. In this work, we study W{sub 3} Toda 4-point functions with multiplicity in the fusion channel. The conformal blocks of these 4-point functions involve matrix elements of a fully-degenerate primary field with a highest-weight in the adjoint representation of sl{sub 3}, and a fully-degenerate primary field with a highest-weight in the fundamental representation of sl{sub 3}. We show that, when the fusion rules do not involve multiplicities, the matrix elements of the fully-degenerate adjoint field, between two arbitrary descendant states, can be computed explicitly, on equal footing with the matrix elements of the semi-degenerate fundamental field. Using null-state conditions, we obtain a fourth-order Fuchsian differential equation for the conformal blocks. Using Okubo theory, we show that, due to the presence of multiplicities, this differential equation belongs to a class of Fuchsian equations that is different from those that have appeared so far in W{sub N} theories. We solve this equation, compute its monodromy group, and construct the monodromy-invariant correlation functions. This computation shows in detail how the ambiguities that are caused by the presence of multiplicities are fixed by requiring monodromy-invariance.

  20. Inference from correlated patterns: a unified theory for perceptron learning and linear vector channels

    Energy Technology Data Exchange (ETDEWEB)

    Kabashima, Y [Department of Computational Intelligence and Systems Science, Tokyo Institute of Technology, Yokohama 226-8502 (Japan)], E-mail: kaba@dis.titech.ac.jp

    2008-01-15

    A framework to analyze inference performance in densely connected single-layer feed-forward networks is developed for situations where a given data set is composed of correlated patterns. The framework is based on the assumption that the left and right singular value bases of the given pattern matrix are generated independently and uniformly from Haar measures. This assumption makes it possible to characterize the objective system by a single function of two variables which is determined by the eigenvalue spectrum of the cross-correlation matrix of the pattern matrix. Links to existing methods for analysis of perceptron learning and Gaussian linear vector channels and an application to a simple but nontrivial problem are also shown.

  1. Inference from correlated patterns: a unified theory for perceptron learning and linear vector channels

    International Nuclear Information System (INIS)

    Kabashima, Y

    2008-01-01

    A framework to analyze inference performance in densely connected single-layer feed-forward networks is developed for situations where a given data set is composed of correlated patterns. The framework is based on the assumption that the left and right singular value bases of the given pattern matrix are generated independently and uniformly from Haar measures. This assumption makes it possible to characterize the objective system by a single function of two variables which is determined by the eigenvalue spectrum of the cross-correlation matrix of the pattern matrix. Links to existing methods for analysis of perceptron learning and Gaussian linear vector channels and an application to a simple but nontrivial problem are also shown

  2. Inference from correlated patterns: a unified theory for perceptron learning and linear vector channels

    Science.gov (United States)

    Kabashima, Y.

    2008-01-01

    A framework to analyze inference performance in densely connected single-layer feed-forward networks is developed for situations where a given data set is composed of correlated patterns. The framework is based on the assumption that the left and right singular value bases of the given pattern matrix are generated independently and uniformly from Haar measures. This assumption makes it possible to characterize the objective system by a single function of two variables which is determined by the eigenvalue spectrum of the cross-correlation matrix of the pattern matrix. Links to existing methods for analysis of perceptron learning and Gaussian linear vector channels and an application to a simple but nontrivial problem are also shown.

  3. A new flooding correlation development and its critical heat flux predictions under low air-water flow conditions in Savannah River Site assembly channels

    International Nuclear Information System (INIS)

    Lee, S.Y.

    1993-01-01

    The upper limit to countercurrent flow, namely, flooding, is important to analyze the reactor coolability during an emergency cooling system (ECS) phase as a result of a large-break loss-of-coolant accident (LOCA) such as a double-ended guillotine break in the Savannah River Site (SRS) reactor system. During normal operation, the reactor coolant system utilizes downward flow through concentric heated tubes with ribs, which subdivided each annular channel into four subchannels. In this paper, a new flooding correlation has been developed based on the analytical models and literature data for adiabatic, steady-state, one-dimensional, air-water flow to predict flooding phenomenon in the SRS reactor assembly channel, which may have a counter-current air-water flow pattern during the ECS phase. In addition, the correlation was benchmarked against the experimental data conducted under the Oak Ridge National Laboratory multislit channel, which is close to the SRS assembly geometry. Furthermore, the correlation has also been used as a constitutive relationship in a new two-component two-phase thermal-hydraulics code FLOWTRAN-TF, which has been developed for a detailed analysis of SRS reactor assembly behavior during LOCA scenarios. Finally, the flooding correlation was applied to the predictions of critical heat flux, and the results were compared with the data taken by the SRS heat transfer laboratory under a single annular channel with ribs and a multiannular prototypic test rig

  4. Quantum channels with a finite memory

    International Nuclear Information System (INIS)

    Bowen, Garry; Mancini, Stefano

    2004-01-01

    In this paper we study quantum communication channels with correlated noise effects, i.e., quantum channels with memory. We derive a model for correlated noise channels that includes a channel memory state. We examine the case where the memory is finite, and derive bounds on the classical and quantum capacities. For the entanglement-assisted and unassisted classical capacities it is shown that these bounds are attainable for certain classes of channel. Also, we show that the structure of any finite-memory state is unimportant in the asymptotic limit, and specifically, for a perfect finite-memory channel where no information is lost to the environment, achieving the upper bound implies that the channel is asymptotically noiseless

  5. Signatures of Quantum Transport Through Two-Dimensional Structures With Correlated and Anti-Correlated Interfaces

    OpenAIRE

    Low, Tony; Ansari, Davood

    2008-01-01

    Electronic transport through a 2D deca-nanometer length channel with correlated and anti-correlated surfaces morphologies is studied using the Keldysh non-equilibrium Green function technique. Due to the pseudo-periodicity of these structures, the energy-resolved transmission possesses pseudo-bands and pseudo-gaps. Channels with correlated surfaces exhibit wider pseudo-bands than their anti-correlated counterparts. By surveying channels with various combinations of material parameters, we fou...

  6. An iterative detection method of MIMO over spatial correlated frequency selective channel: using list sphere decoding for simplification

    Science.gov (United States)

    Shi, Zhiping; Yan, Bing

    2010-08-01

    In multiple-input multiple-output(MIMO) wireless systems, combining good channel codes(e.g., Non-binary Repeat Accumulate codes) with adaptive turbo equalization is a good option to get better performance and lower complexity under Spatial Correlated Frequency Selective(SCFS) Channel. The key of this method is after joint antennas MMSE detection (JAD/MMSE) based on interruption cancelling using soft information, considering the detection result as an output of a Gaussian equivalent flat fading channel, and performing maximum likelihood detection(ML) to get more correct estimated result. But the using of ML brings great complexity increase, which is not allowed. In this paper, a low complexity method called list sphere decoding is introduced and applied to replace the ML in order to simplify the adaptive iterative turbo equalization system.

  7. Theoretical study to determine the heat transfer by forced convection coefficient in an empirical correlation in single phase, for annular channels

    International Nuclear Information System (INIS)

    Herrera A, E.

    1994-01-01

    In the heat transfer studies by forced convection, we have few data about behavior of the fluids in an annular channel heated by a concentric pipe, such date is necessary to know the heat transfer coefficient that establish the interchange of energy and the thermic properties of the fluid with the geometry of the flow. In this work the objective, was to compare some empirical correlations that we needed for determinate the heat transfer coefficient for annular channels, where we obtained similar at the theoretical results of an experiment made by Miller and Benforado. It is important to know such coefficients because we can determinate the heat quantity transmitted to a probe zone, in which we simulate a nuclear fuel element that developed huge heat quantity that must be dispersed in short time. We give theoretical data of the heat forced transfer convection and we analyzed the phenomena in annular channels given some empirical correlations employed by some investigators and we analyzed each one. (Author)

  8. Quantum-correlation breaking channels, quantum conditional probability and Perron-Frobenius theory

    Science.gov (United States)

    Chruściński, Dariusz

    2013-03-01

    Using the quantum analog of conditional probability and classical Bayes theorem we discuss some aspects of particular entanglement breaking channels: quantum-classical and classical-classical channels. Applying the quantum analog of Perron-Frobenius theorem we generalize the recent result of Korbicz et al. (2012) [8] on full and spectrum broadcasting from quantum-classical channels to arbitrary quantum channels.

  9. Quantum-correlation breaking channels, quantum conditional probability and Perron–Frobenius theory

    International Nuclear Information System (INIS)

    Chruściński, Dariusz

    2013-01-01

    Using the quantum analog of conditional probability and classical Bayes theorem we discuss some aspects of particular entanglement breaking channels: quantum–classical and classical–classical channels. Applying the quantum analog of Perron–Frobenius theorem we generalize the recent result of Korbicz et al. (2012) [8] on full and spectrum broadcasting from quantum–classical channels to arbitrary quantum channels.

  10. Correlations between channel probabilities in collisional dissociation of D3+

    International Nuclear Information System (INIS)

    Abraham, S.; Nir, D.; Rosner, B.

    1984-01-01

    Measurements of the dissociation of D 3 + ions at 300--600 keV under single- and multiple-collision conditions in Ar- and H 2 -gas targets have been performed. A complete separation of all dissociation channels was achieved, including the neutral channels, which were resolved using a fine-mesh technique. Data analysis in the multiple-collision regime confirms the validity of the rate equations governing the charge exchange processes. In the single-collision region the analysis yields constant relations between channel probabilities. Data rearrangement shows probability factorization and suggests that collisional dissociation is a two-stage process, a fast electron exchange followed by rearrangement and branching to the exit channels

  11. Measurement of the $t\\bar{t}$ spin correlations and top quark polarization in dileptonic channel

    CERN Document Server

    Khatiwada, Ajeeta

    2017-01-01

    The degree of top polarization and strength of $t\\bar{t}$ correlation are dependent on production dynamics, decay mechanism, and choice of the observables. At the LHC, measurement of the top polarization and spin correlations in $t\\bar{t}$ production is possible through various observables related to the angular distribution of decay leptons. A measurement of differential distribution provides a precision test of the standard model of particle physics and probes for deviations, which could be a sign of new physics. In particular, the phase space for the super-symmetric partner of the top quark can be constrained. Results from the Compact Muon Solenoid (CMS) collaboration for top quark polarization and spin correlation in the dileptonic channel are reviewed briefly in this proceeding. The measurements are obtained using 19.5 fb$^{-1}$ of data collected in pp collisions at the center-of-mass energy of 8 TeV.

  12. Channel allocation and rate adaptation for relayed transmission over correlated fading channels

    KAUST Repository

    Hwang, Kyusung; Hossain, Md Jahangir; Ko, Youngchai; Alouini, Mohamed-Slim

    2009-01-01

    at both the source and relay nodes, we develop an optimal channel allocation and rate adaptation policy for a dual-hop relayed transmission. As such the overall transmit power for the relayed system is minimized while a target packet dropping rate (PDR

  13. Chaos in quantum channels

    Energy Technology Data Exchange (ETDEWEB)

    Hosur, Pavan; Qi, Xiao-Liang [Department of Physics, Stanford University,476 Lomita Mall, Stanford, California 94305 (United States); Roberts, Daniel A. [Center for Theoretical Physics and Department of Physics, Massachusetts Institute of Technology,77 Massachusetts Ave, Cambridge, Massachusetts 02139 (United States); Yoshida, Beni [Perimeter Institute for Theoretical Physics,31 Caroline Street North, Waterloo, Ontario N2L 2Y5 (Canada); Walter Burke Institute for Theoretical Physics, California Institute of Technology,1200 E California Blvd, Pasadena CA 91125 (United States)

    2016-02-01

    We study chaos and scrambling in unitary channels by considering their entanglement properties as states. Using out-of-time-order correlation functions to diagnose chaos, we characterize the ability of a channel to process quantum information. We show that the generic decay of such correlators implies that any input subsystem must have near vanishing mutual information with almost all partitions of the output. Additionally, we propose the negativity of the tripartite information of the channel as a general diagnostic of scrambling. This measures the delocalization of information and is closely related to the decay of out-of-time-order correlators. We back up our results with numerics in two non-integrable models and analytic results in a perfect tensor network model of chaotic time evolution. These results show that the butterfly effect in quantum systems implies the information-theoretic definition of scrambling.

  14. New Exact and Asymptotic Results of Dual-Branch MRC over Correlated Nakagami-m Fading Channels

    KAUST Repository

    Al-Quwaiee, Hessa

    2015-05-01

    We present in this paper a new performance analysis results of dual-branch maximal-ratio combining over correlated Nakagami-m fading channels with arbitrary fading parameter. In particular, we derive exact closed-form expressions of the outage probability, the average bit error rate, and the ergodic capacity in terms of the extended generalized bivariate Meijer G- function. Moreover, we also provide simple closed- form asymptotic expressions in the high signal-to- noise ratio regime of these three fundamental performance measures. © 2015 IEEE.

  15. New Exact and Asymptotic Results of Dual-Branch MRC over Correlated Nakagami-m Fading Channels

    KAUST Repository

    Al-Quwaiee, Hessa; Alouini, Mohamed-Slim

    2015-01-01

    We present in this paper a new performance analysis results of dual-branch maximal-ratio combining over correlated Nakagami-m fading channels with arbitrary fading parameter. In particular, we derive exact closed-form expressions of the outage probability, the average bit error rate, and the ergodic capacity in terms of the extended generalized bivariate Meijer G- function. Moreover, we also provide simple closed- form asymptotic expressions in the high signal-to- noise ratio regime of these three fundamental performance measures. © 2015 IEEE.

  16. Correlations of Surface Deformation and 3D Flow Field in a Compliant Wall Turbulent Channel Flow.

    Science.gov (United States)

    Wang, Jin; Zhang, Cao; Katz, Joseph

    2015-11-01

    This study focuses on the correlations between surface deformation and flow features, including velocity, vorticity and pressure, in a turbulent channel flow over a flat, compliant Polydimethylsiloxane (PDMS) wall. The channel centerline velocity is 2.5 m/s, and the friction Reynolds number is 2.3x103. Analysis is based on simultaneous measurements of the time resolved 3D velocity and surface deformation using tomographic PIV and Mach-Zehnder Interferometry. The volumetric pressure distribution is calculated plane by plane by spatially integrating the material acceleration using virtual boundary, omni-directional method. Conditional sampling based on local high/low pressure and deformation events reveals the primary flow structures causing the deformation. High pressure peaks appear at the interface between sweep and ejection, whereas the negative deformations peaks (dent) appear upstream, under the sweeps. The persistent phase lag between flow and deformations are presumably caused by internal damping within the PDMS. Some of the low pressure peaks and strong ejections are located under the head of hairpin vortices, and accordingly, are associated with positive deformation (bump). Others bumps and dents are correlated with some spanwise offset large inclined quasi-streamwise vortices that are not necessarily associated with hairpins. Sponsored by ONR.

  17. Objective perimetry using a four-channel multifocal VEP system: correlation with conventional perimetry and thickness of the retinal nerve fibre layer.

    Science.gov (United States)

    Horn, Folkert K; Kaltwasser, Christoph; Jünemann, Anselm G; Kremers, Jan; Tornow, Ralf P

    2012-04-01

    There is evidence that multifocal visual evoked potentials (VEPs) can be used as an objective tool to detect visual field loss. The aim of this study was to correlate multifocal VEP amplitudes with standard perimetry data and retinal nerve fibre layer (RNFL) thickness. Multifocal VEP recordings were performed with a four-channel electrode array using 58 stimulus fields (pattern reversal dartboard). For each field, the recording from the channel with maximal signal-to-noise ratio (SNR) was retained, resulting in an SNR optimised virtual recording. Correlation with RNFL thickness, measured with spectral domain optical coherence tomography and with standard perimetry, was performed for nerve fibre bundle related areas. The mean amplitudes in nerve fibre related areas were smaller in glaucoma patients than in normal subjects. The differences between both groups were most significant in mid-peripheral areas. Amplitudes in these areas were significantly correlated with corresponding RNFL thickness (Spearman R=0.76) and with standard perimetry (R=0.71). The multifocal VEP amplitude was correlated with perimetric visual field data and the RNFL thickness of the corresponding regions. This method of SNR optimisation is useful for extracting data from recordings and may be appropriate for objective assessment of visual function at different locations. This study has been registered at http://www.clinicaltrials.gov (NCT00494923).

  18. Multi-scaled normal mode analysis method for dynamics simulation of protein-membrane complexes: A case study of potassium channel gating motion correlations

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Xiaokun; Han, Min; Ming, Dengming, E-mail: dming@fudan.edu.cn [Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai (China)

    2015-10-07

    Membrane proteins play critically important roles in many cellular activities such as ions and small molecule transportation, signal recognition, and transduction. In order to fulfill their functions, these proteins must be placed in different membrane environments and a variety of protein-lipid interactions may affect the behavior of these proteins. One of the key effects of protein-lipid interactions is their ability to change the dynamics status of membrane proteins, thus adjusting their functions. Here, we present a multi-scaled normal mode analysis (mNMA) method to study the dynamics perturbation to the membrane proteins imposed by lipid bi-layer membrane fluctuations. In mNMA, channel proteins are simulated at all-atom level while the membrane is described with a coarse-grained model. mNMA calculations clearly show that channel gating motion can tightly couple with a variety of membrane deformations, including bending and twisting. We then examined bi-channel systems where two channels were separated with different distances. From mNMA calculations, we observed both positive and negative gating correlations between two neighboring channels, and the correlation has a maximum as the channel center-to-center distance is close to 2.5 times of their diameter. This distance is larger than recently found maximum attraction distance between two proteins embedded in membrane which is 1.5 times of the protein size, indicating that membrane fluctuation might impose collective motions among proteins within a larger area. The hybrid resolution feature in mNMA provides atomic dynamics information for key components in the system without costing much computer resource. We expect it to be a conventional simulation tool for ordinary laboratories to study the dynamics of very complicated biological assemblies. The source code is available upon request to the authors.

  19. Outage probability analysis of wireless sensor networks in the presence of channel fading and spatial correlation

    KAUST Repository

    Al-Murad, Tamim M.

    2011-07-01

    Evaluating the reliability of wireless sensor networks is becoming more important as theses networks are being used in crucial applications. The outage probability defined as the probability that the error in the system exceeds a maximum acceptable threshold has recently been used as a measure of the reliability of such systems. In this work we find the outage probability of wireless sensor network in different scenarios of distributed sensing where sensors\\' readings are affected by spatial correlation and in the presence of channel fading. © 2011 IEEE.

  20. Quantum Channels With Memory

    International Nuclear Information System (INIS)

    Rybar, T.

    2012-01-01

    Quantum memory channels represent a very general, yet simple and comprehensible model for causal processes. As such they have attracted considerable research interest, mostly aimed on their transfer capabilities and structure properties. Most notably it was shown that memory channels can be implemented via physically naturally motivated collision models. We also define the concept of repeatable channels and show that only unital channels can be implemented repeat ably with pure memory channels. In the special case of qubit channels we also show that every unital qubit channel has a repeatable implementation. We also briefly explore the possibilities of stroboscopical simulation of channels and show that all random unitary channels can be stroboscopically simulated. Particularly in qubit case, all indivisible qubit channels are also random unitary, hence for qubit all indivisible channels can be stroboscopically simulated. Memory channels also naturally capture the framework of correlated experiments. We develop methods to gather and interpret data obtained in such setting and in detail examine the two qubit case. We also show that for control unitary interactions the measured data will never contradict a simple unitary evolution. Thus no memory effects can be spotted then. (author)

  1. Isolation of a novel aquaglyceroporin from a marine teleost (Sparus auratus): function and tissue distribution.

    NARCIS (Netherlands)

    Santos, C.R.; Estevao, M.D.; Fuentes, J.; Cardoso, -; Fabra, M.; Passos, A.L.; Detmers, F.J.M.; Deen, P.M.T.; Cerda, J.; Power, D.M.

    2004-01-01

    The aquaporins (formerly called the major intrinsic protein family) are transmembrane channel proteins. The family includes the CHIP group, which are functionally characterised as water channels and the GLP group, which are specialised for glycerol transport. The present study reports the

  2. A systematic method for correlating measurements of channel powers with the lattice constants in the neutron diffusion equations

    International Nuclear Information System (INIS)

    Buckler, A.N.

    1978-10-01

    The report describes the theoretical basis of the methods that have been developed for correlating measurements of spatially distributed quantities taken on the reactor with the lattice constants in the diffusion equations. The method can be used with any thermal reactor system of current interest, but the first application is to provide a replacement for the SAMSON code for Winfrith SGHW studies, where the measurements of interest are channel powers. (author)

  3. Flow and heat transfer in a curved channel

    Science.gov (United States)

    Brinich, P. F.; Graham, R. W.

    1977-01-01

    Flow and heat transfer in a curved channel of aspect ratio 6 and inner- to outer-wall radius ratio 0.96 were studied. Secondary currents and large longitudinal vortices were found. The heat-transfer rates of the outer and inner walls were independently controlled to maintain a constant wall temperature. Heating the inner wall increased the pressure drop along the channel length, whereas heating the outer wall had little effect. Outer-wall heat transfer was as much as 40 percent greater than the straight-channel correlation, and inner-wall heat transfer was 22 percent greater than the straight-channel correlation.

  4. On SIP Session setup delay for VoIP services over correlated fading channels

    DEFF Research Database (Denmark)

    Fathi, Hanane; Chakraborty, Shyam S.; Prasad, Ramjee

    2006-01-01

    In this paper, the session setup delay of the session initiation protocol (SIP) is studied. The transmissions on both the forward and reverse channel are assumed to experience Markovian errors. The session setup delay is evaluated for different transport protocols, and with the use of the radio...... link protocol (RLP). An adaptive retransmission timer is used to optimize SIP performances. Using numerical results, we find that SIP over user datagram protocol (UDP) instead of transport control protocol (TCP) can make the session setup up to 30% shorter. Also, RLP drastically reduces the session...... setup delay down to 4 to 5 s, even in environments with high frame error rates (10%) and significant correlation in the fading process (fDT=0.02). SIP is compared with its competitor H.323. SIP session setup delay with compressed messages outperforms H.323 session setup delay....

  5. Individual variation and hormonal modulation of a sodium channel beta subunit in the electric organ correlate with variation in a social signal.

    Science.gov (United States)

    Liu, He; Wu, Ming-Ming; Zakon, Harold H

    2007-09-01

    The sodium channel beta1 subunit affects sodium channel gating and surface density, but little is known about the factors that regulate beta1 expression or its participation in the fine control of cellular excitability. In this study we examined whether graded expression of the beta1 subunit contributes to the gradient in sodium current inactivation, which is tightly controlled and directly related to a social behavior, the electric organ discharge (EOD), in a weakly electric fish Sternopygus macrurus. We found the mRNA and protein levels of beta1 in the electric organ both correlate with EOD frequency. We identified a novel mRNA splice form of this gene and found the splicing preference for this novel splice form also correlates with EOD frequency. Androgen implants lowered EOD frequency and decreased the beta1 mRNA level but did not affect splicing. Coexpression of each splice form in Xenopus oocytes with either the human muscle sodium channel gene, hNav1.4, or a Sternopygus ortholog, smNav1.4b, sped the rate of inactivation of the sodium current and shifted the steady-state inactivation toward less negative membrane potentials. The translational product of the novel mRNA splice form lacks a previously identified important tyrosine residue but still functions normally. The properties of the fish alpha and coexpressed beta1 subunits in the oocyte replicate those of the electric organ's endogenous sodium current. These data highlight the role of ion channel beta subunits in regulating cellular excitability.

  6. Single-channel kinetics of BK (Slo1 channels

    Directory of Open Access Journals (Sweden)

    Yanyan eGeng

    2015-01-01

    Full Text Available Single-channel kinetics has proven a powerful tool to reveal information about the gating mechanisms that control the opening and closing of ion channels. This introductory review focuses on the gating of large conductance Ca2+- and voltage-activated K+ (BK or Slo1 channels at the single-channel level. It starts with single-channel current records and progresses to presentation and analysis of single-channel data and the development of gating mechanisms in terms of discrete state Markov (DSM models. The DSM models are formulated in terms of the tetrameric modular structure of BK channels, consisting of a central transmembrane pore-gate domain (PGD attached to four surrounding transmembrane voltage sensing domains (VSD and a large intracellular cytosolic domain (CTD, also referred to as the gating ring. The modular structure and data analysis shows that the Ca2+ and voltage dependent gating considered separately can each be approximated by 10-state two-tiered models with 5 closed states on the upper tier and 5 open states on the lower tier. The modular structure and joint Ca2+ and voltage dependent gating are consistent with a 50 state two-tiered model with 25 closed states on the upper tier and 25 open states on the lower tier. Adding an additional tier of brief closed (flicker states to the 10-state or 50-state models improved the description of the gating. For fixed experimental conditions a channel would gate in only a subset of the potential number of states. The detected number of states and the correlations between adjacent interval durations are consistent with the tiered models. The examined models can account for the single-channel kinetics and the bursting behavior of gating. Ca2+ and voltage activate BK channels by predominantly increasing the effective opening rate of the channel with a smaller decrease in the effective closing rate. Ca2+ and depolarization thus activate by mainly destabilizing the closed states.

  7. Revealing dynamically-organized receptor ion channel clusters in live cells by a correlated electric recording and super-resolution single-molecule imaging approach.

    Science.gov (United States)

    Yadav, Rajeev; Lu, H Peter

    2018-03-28

    The N-methyl-d-aspartate (NMDA) receptor ion-channel is activated by the binding of ligands, along with the application of action potential, important for synaptic transmission and memory functions. Despite substantial knowledge of the structure and function, the gating mechanism of the NMDA receptor ion channel for electric on-off signals is still a topic of debate. We investigate the NMDA receptor partition distribution and the associated channel's open-close electric signal trajectories using a combined approach of correlating single-molecule fluorescence photo-bleaching, single-molecule super-resolution imaging, and single-channel electric patch-clamp recording. Identifying the compositions of NMDA receptors, their spatial organization and distributions over live cell membranes, we observe that NMDA receptors are organized inhomogeneously: nearly half of the receptor proteins are individually dispersed; whereas others exist in heterogeneous clusters of around 50 nm in size as well as co-localized within the diffraction limited imaging area. We demonstrate that inhomogeneous interactions and partitions of the NMDA receptors can be a cause of the heterogeneous gating mechanism of NMDA receptors in living cells. Furthermore, comparing the imaging results with the ion-channel electric current recording, we propose that the clustered NMDA receptors may be responsible for the variation in the current amplitude observed in the on-off two-state ion-channel electric signal trajectories. Our findings shed new light on the fundamental structure-function mechanism of NMDA receptors and present a conceptual advancement of the ion-channel mechanism in living cells.

  8. KKL correlation for simulation of nanofluid flow and heat transfer in a permeable channel

    Energy Technology Data Exchange (ETDEWEB)

    Sheikholeslami Kandelousi, Mohsen, E-mail: m_sh_3750@yahoo.com

    2014-10-03

    Hydrothermal behavior of nanofluid fluid between two parallel plates is studied. One of the plates is externally heated, and the other plate, through which coolant fluid is injected, expands or contracts with time. The effective thermal conductivity and viscosity of nanofluid are calculated by KKL correlation. The effects of the nanoparticle volume fraction, Reynolds number, Expansion ratio and power law index on Hydrothermal behavior are investigated. Results show that heat transfer enhancement has direct relationship with Reynolds number when power law index is equals to zero but opposite trend is observed for other values of power law index. - Highlights: • Nanofluid Hydrothermal behavior in a porous channel is considered. • Nusselt number is an increasing function of ϕ, R and m. • Nusselt number is a decreasing function of α.

  9. Multiple spectral channels in branchiopods. I. Vision in dim light and neural correlates.

    Science.gov (United States)

    Lessios, Nicolas; Rutowski, Ronald L; Cohen, Jonathan H; Sayre, Marcel E; Strausfeld, Nicholas J

    2018-05-22

    Animals that have true color vision possess several spectral classes of photoreceptors. Pancrustaceans (Hexapoda+Crustacea) that integrate spectral information about their reconstructed visual world do so from photoreceptor terminals supplying their second optic neuropils, with subsequent participation of the third (lobula) and deeper centers (optic foci). Here, we describe experiments and correlative neural arrangements underlying convergent visual pathways in two species of branchiopod crustaceans that have to cope with a broad range of spectral ambience and illuminance in ephemeral pools, yet possess just two optic neuropils, the lamina and the optic tectum. Electroretinographic recordings and multimodel inference based on modeled spectral absorptance were used to identify the most likely number of spectral photoreceptor classes in their compound eyes. Recordings from the retina provide support for four color channels. Neuroanatomical observations resolve arrangements in their laminas that suggest signal summation at low light intensities, incorporating chromatic channels. Neuroanatomical observations demonstrate that spatial summation in the lamina of the two species are mediated by quite different mechanisms, both of which allow signals from several ommatidia to be pooled at single lamina monopolar cells. We propose that such summation provides sufficient signal for vision at intensities equivalent to those experienced by insects in terrestrial habitats under dim starlight. Our findings suggest that despite the absence of optic lobe neuropils necessary for spectral discrimination utilized by true color vision, four spectral photoreceptor classes have been maintained in Branchiopoda for vision at very low light intensities at variable ambient wavelengths that typify conditions in ephemeral freshwater habitats. © 2018. Published by The Company of Biologists Ltd.

  10. Optimal super dense coding over memory channels

    OpenAIRE

    Shadman, Zahra; Kampermann, Hermann; Macchiavello, Chiara; Bruß, Dagmar

    2011-01-01

    We study the super dense coding capacity in the presence of quantum channels with correlated noise. We investigate both the cases of unitary and non-unitary encoding. Pauli channels for arbitrary dimensions are treated explicitly. The super dense coding capacity for some special channels and resource states is derived for unitary encoding. We also provide an example of a memory channel where non-unitary encoding leads to an improvement in the super dense coding capacity.

  11. Study of electron beams within ISTTOK tokamak by means of a multi-channel Cherenkov detector; their correlation with hard X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Jakubowski, L., E-mail: Lech.Jakubowski@ipj.gov.p [Andrzej Soltan Institute for Nuclear Studies, 05-400 Otwock-Swierk (Poland); Malinowski, K.; Sadowski, M.J.; Zebrowski, J. [Andrzej Soltan Institute for Nuclear Studies, 05-400 Otwock-Swierk (Poland); Plyusnin, V.V. [Association Euratom/IST, Instituto de Plasmas e Fusao Nuclear, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Rabinski, M. [Andrzej Soltan Institute for Nuclear Studies, 05-400 Otwock-Swierk (Poland); Fernandes, H.; Silva, C.; Duarte, P. [Association Euratom/IST, Instituto de Plasmas e Fusao Nuclear, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Jakubowski, M.J. [Andrzej Soltan Institute for Nuclear Studies, 05-400 Otwock-Swierk (Poland)

    2010-11-11

    The paper describes experimental studies of electron beams emitted from a plasma torus within the ISTTOK tokamak, which were performed by means of a new four-channel detector of the Cherenkov type. A range of electron energy was estimated. There were also measured hard X-rays, and their correlation with the fast run-away electron beams was investigated experimentally.

  12. Wideband MIMO Channel Capacity Analysis in Multiprobe Anechoic Chamber Setups

    DEFF Research Database (Denmark)

    Fan, Wei; Kyosti, Pekka; Nielsen, Jesper Ødum

    2016-01-01

    been used to determine the test area size for a limited number of probes. However, it is desirable that the test area size is defined in terms of data rate deviation of the simulated channel in the laboratory from that of the target channel model. This paper reports MIMO capacity analysis results...... for wideband spatio-temporal channel models, with emphasis on the impact of spatial correlation at the transmit (Tx) side, the channel model, and the spatial correlation at the Rx side on the capacity simulation accuracy. Simulation results show that the number of probes is irrelevant to capacity simulation......This paper discusses over the air (OTA) testing for multiple input multiple output (MIMO) capable terminals with emphasis on wideband MIMO channel capacity analysis in a multi-probe anechoic chamber setup. In the literature, the spatial correlation simulation accuracy at the receiver (Rx) side has...

  13. Evoked potential correlates of selective attention with multi-channel auditory inputs

    Science.gov (United States)

    Schwent, V. L.; Hillyard, S. A.

    1975-01-01

    Ten subjects were presented with random, rapid sequences of four auditory tones which were separated in pitch and apparent spatial position. The N1 component of the auditory vertex evoked potential (EP) measured relative to a baseline was observed to increase with attention. It was concluded that the N1 enhancement reflects a finely tuned selective attention to one stimulus channel among several concurrent, competing channels. This EP enhancement probably increases with increased information load on the subject.

  14. Quantum Stackelberg duopoly in the presence of correlated noise

    International Nuclear Information System (INIS)

    Khan, Salman; Ramzan, M; Khan, M Khalid

    2010-01-01

    We study the influence of entanglement and correlated noise using correlated amplitude damping, depolarizing and phase damping channels on the quantum Stackelberg duopoly. Our investigations show that under the influence of an amplitude damping channel a critical point exists for an unentangled initial state at which firms get equal payoffs. The game becomes a follower advantage game when the channel is highly decohered. Two critical points corresponding to two values of the entanglement angle are found in the presence of correlated noise. Within the range of these limits of the entanglement angle, the game is a follower advantage game. In the case of a depolarizing channel, the payoffs of the two firms are strongly influenced by the memory parameter. The presence of quantum memory ensures the existence of the Nash equilibrium for the entire range of decoherence and entanglement parameters for both the channels. A local maximum in the payoffs is observed which vanishes as the channel correlation increases. Moreover, under the influence of the depolarizing channel, the game is always a leader advantage game. Furthermore, it is seen that the phase damping channel does not affect the outcome of the game.

  15. Performance analysis of correlated multi-channels in cognitive radio sensor network based smart grid

    CSIR Research Space (South Africa)

    Ogbodo, EU

    2017-09-01

    Full Text Available €  (7) Where = 1 − 1 √𝑀 ; = 3 𝑀−1 ;𝑠𝑖 = 2𝑠𝑖𝑛𝑖𝜋/4𝑛; M is the constellation order which may be 4, 16, 32, etc.; n is the number of iteration. We can then derive MGF based average error probability by simply...-QAM under correlated fading channels distribution conditions such that the signals are received at the various sensor nodes. We consider a dual-branch single-input multiple- output (SIMO) system. The received signal at the receiver can be modelled as: 𝑊𝑖(ð...

  16. Correlation between interstitial flow and pore structure in packed bed. 1st Report. Axial velocity measurement using MRI and visualization of axial channel flow; Juten sonai ryudo to kugeki kozo no sokan. 1. MRI ni yoru jikuhoko ryusoku bunpu no keisoku to jikiuhoko channel ryu no kashika

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, K; Yokouchi, Y; Hirai, S [Tokyo Institute of Technology, Tokyo (Japan)

    2000-02-25

    Structure and velocity measurements using magnetic resonance imaging (MRI) have been performed experimentally to obtain a correlation between pore structure and interstitial flow through the packed bed of 5 mm diameter in the tube of 36 mm ID. To measure axial velocity maps of water flow through the packed bed, the phase method of using the phase difference of water spin magnetization between flowing and stagnant fluids by applying magnetic fields with bipolar gradients was employed. The spatial resolution of the obtained map in 0.2 mm x 0.2 mm x 0.5 mm. It was made clear from the obtained axial velocity maps that channel flows with higher axial velocity were induced not only near the wall but also in the internal region of the packed bed. Furthermore, pore structure of the packed bed was characterized from multi-slice images by partitioning of void space and combining of each pore section along the axial direction to analyze the structure-flow correlation. It was found from image analysis that axial channels with long and straight void space existed in the pore structure, and that most of the channel flows with higher axial velocity were induced in the axial channels. The flow rate through an axial channel depends on the square of the averaged cross section of the axial channel. (author)

  17. Targeting Aquaporin Function : Potent Inhibition of Aquaglyceroporin-3 by a Gold-Based Compound

    NARCIS (Netherlands)

    Martins, Ana Paula; Marrone, Alessandro; Ciancetta, Antonella; Galan Cobo, Ana; Echevarria, Miriam; Moura, Teresa F.; Re, Nazzareno; Casini, Angela; Soveral, Graca

    2012-01-01

    Aquaporins (AQPs) are membrane channels that conduct water and small solutes such as glycerol and are involved in many physiological functions. Aquaporin-based modulator drugs are predicted to be of broad potential utility in the treatment of several diseases. Until today few AQP inhibitors have

  18. Quantum capacity of Pauli channels with memory

    International Nuclear Information System (INIS)

    Huang Peng; He Guangqiang; Lu Yuan; Zeng Guihua

    2011-01-01

    The amount of coherent quantum information that can be reliably transmitted down the memory Pauli channels with Markovian correlated noise is investigated. Two methods for evaluating the quantum capacity of the memory Pauli channels are proposed to try to trace the memory effect on the transmissions of quantum information. We show that the evaluation of quantum capacity can be reduced to the calculation of the initial memory state of each successive transmission. Furthermore, we derive quantum capacities of the memory phase flip channel, bit flip channel and bit-phase flip channel. Also, a lower bound of the quantum capacity of the memory depolarizing channel is obtained. An increase of the degree of memory of the channels has a positive effect on the increase of their quantum capacities.

  19. The gating mechanism of the human aquaporin 5 revealed by molecular dynamics simulations.

    Directory of Open Access Journals (Sweden)

    Lorant Janosi

    Full Text Available Aquaporins are protein channels located across the cell membrane with the role of conducting water or other small sugar alcohol molecules (aquaglyceroporins. The high-resolution X-ray structure of the human aquaporin 5 (HsAQP5 shows that HsAQP5, as all the other known aquaporins, exhibits tetrameric structure. By means of molecular dynamics simulations we analyzed the role of spontaneous fluctuations on the structural behavior of the human AQP5. We found that different conformations within the tetramer lead to a distribution of monomeric channel structures, which can be characterized as open or closed. The switch between the two states of a channel is a tap-like mechanism at the cytoplasmic end which regulates the water passage through the pore. The channel is closed by a translation of the His67 residue inside the pore. Moreover, water permeation rate calculations revealed that the selectivity filter, located at the other end of the channel, regulates the flow rate of water molecules when the channel is open, by locally modifying the orientation of His173. Furthermore, the calculated permeation rates of a fully open channel are in good agreement with the reported experimental value.

  20. Quantum privacy and Schur product channels

    Science.gov (United States)

    Levick, Jeremy; Kribs, David W.; Pereira, Rajesh

    2017-12-01

    We investigate the quantum privacy properties of an important class of quantum channels, by making use of a connection with Schur product matrix operations and associated correlation matrix structures. For channels implemented by mutually commuting unitaries, which cannot privatise qubits encoded directly into subspaces, we nevertheless identify private algebras and subsystems that can be privatised by the channels. We also obtain further results by combining our analysis with tools from the theory of quasi-orthogonal operator algebras and graph theory.

  1. Critical heat flux of subcooled flow boiling in narrow rectangular channels

    International Nuclear Information System (INIS)

    Kureta, Masatoshi; Akimoto, Hajime

    1999-01-01

    In relation to the high-heat-load devices such as a solid-target cooling channel of a high-intensity neutron source, burnout experiments were performed to obtain critical heat flux (CHF) data systematically for vertical upward flow in one-side heated rectangular channels. One of the objectives of this study was to study an extensibility of existing CHF correlations and models, which were proposed for a round tube, to rectangular channels for design calculation. Existing correlations and models were reviewed and compared with obtained data. Sudo's thin liquid layer dryout model, Griffel correlation and Bernath correlation were in good agreement with the experimental data for short-heated-length and low inlet water temperature conditions. (author)

  2. Influence of single-phase heat transfer correlations on safety analysis of research reactors with narrow rectangular fuel channels

    International Nuclear Information System (INIS)

    Rawashdeh, A.; Altamimi, R.; Lee, B.; Chung, Y. J.; Park, S.

    2013-01-01

    The influence of different single-phase heat transfer correlations on the fuel temperature and minimum critical heat flux ratio (MCHFR) during a typical accident of a 5 MW research reactor is investigated. A reactor uses plate type fuel, of which the cooling channels have a narrow rectangular shape. RELAP5/MOD3.3 tends to over-predict the Nusselt number (Nu) at a low Reynolds number (Re) region, and therefore the correlation set is modified to properly describe the thermal behavior at that region. To demonstrate the effect of Nu at a low-Re region on an accident analysis, a two-pump failure accident was chosen as a sample problem. In the accident, the downward core flow decreases by a pump coast-down, and then reverses upward by natural convection. During the pump coast-down and flow reversal, the flow undergoes a laminar flow regime which has a different Nu with respect to the correlation sets. Compared to the results by the original RELAP5/MOD3.3, the modified correlation set predicts the fuel temperature to be a little higher than the original value, and the MCHFR to be a little lower than the original value. Although the modified correlation set predicts the fuel temperature and the MCHFR to be less conservative than those calculated from the original correlation of RELAP5/MOD3.3, the maximum fuel temperature and the MCHFR still satisfy the safety acceptance criteria

  3. Onset of a nucleate boiling and incipient point of net vapor generation in narrow channel

    International Nuclear Information System (INIS)

    Hong, G.

    2014-01-01

    An experimental study on onset of nucleate boiling (ONB) and incipient point of net vapor generation (IPNVG) in narrow rectangular channel was presented. Flow direction in the channel was vertical upward. The experimental results indicate that the classical correlations of ONB for conventional channels were not suitable for the present narrow rectangular channel. The wall superheat needed to initiate boiling is found to be higher for the same given values of heat and mass flux. The experimental results of IPNVG indicate that the heat flux, triggering net vapor generation in narrow rectangular channel, is litter lower than that calculated by correlations for conventional channels. The relative prediction error of qIPNVG by Griffith model, Saha model and Sun model ranges from -17.9% to +9.6%. A new correlation was developed to predict the ONB in narrow rectangular channel. The proposed correlation predictions agreed well with the experimental data. (author)

  4. An Adaptive Channel Estimation Algorithm Using Time-Frequency Polynomial Model for OFDM with Fading Multipath Channels

    Directory of Open Access Journals (Sweden)

    Liu KJ Ray

    2002-01-01

    Full Text Available Orthogonal frequency division multiplexing (OFDM is an effective technique for the future 3G communications because of its great immunity to impulse noise and intersymbol interference. The channel estimation is a crucial aspect in the design of OFDM systems. In this work, we propose a channel estimation algorithm based on a time-frequency polynomial model of the fading multipath channels. The algorithm exploits the correlation of the channel responses in both time and frequency domains and hence reduce more noise than the methods using only time or frequency polynomial model. The estimator is also more robust compared to the existing methods based on Fourier transform. The simulation shows that it has more than improvement in terms of mean-squared estimation error under some practical channel conditions. The algorithm needs little prior knowledge about the delay and fading properties of the channel. The algorithm can be implemented recursively and can adjust itself to follow the variation of the channel statistics.

  5. How Equalization Techniques Affect the TCP Performance of MC-CDMA Systems in Correlated Fading Channels

    Directory of Open Access Journals (Sweden)

    Giacomo Leonardi

    2007-12-01

    Full Text Available This paper investigates the impact of several equalization techniques for multicarrier code division multiple access systems on the performance at both lower and upper layers (i.e., physical and TCP layers. Classical techniques such as maximal ratio combining, equal gain combining, orthogonality restoring combining, minimum mean square error, as well as a partial equalization (PE are investigated in time- and frequency-correlated fading channels with various numbers of interferers. Their impact on the performance at upper level is then studied. The results are obtained through an integrated simulation platform carefully reproducing all main aspects affecting the quality of service perceived by the final user, allowing an investigation of the real gain produced by signal processing techniques at TCP level.

  6. Stress Redistribution Explains Anti-correlated Subglacial Pressure Variations

    Directory of Open Access Journals (Sweden)

    Pierre-Marie Lefeuvre

    2018-01-01

    Full Text Available We used a finite element model to interpret anti-correlated pressure variations at the base of a glacier to demonstrate the importance of stress redistribution in the basal ice. We first investigated two pairs of load cells installed 20 m apart at the base of the 210 m thick Engabreen glacier in Northern Norway. The load cell data for July 2003 showed that pressurisation of a subglacial channel located over one load cell pair led to anti-correlation in pressure between the two pairs. To investigate the cause of this anti-correlation, we used a full Stokes 3D model of a 210 m thick and 25–200 m wide glacier with a pressurised subglacial channel represented as a pressure boundary condition. The model reproduced the anti-correlated pressure response at the glacier bed and variations in pressure of the same order of magnitude as the load cell observations. The anti-correlation pattern was shown to depend on the bed/surface slope. On a flat bed with laterally constrained cross-section, the resulting bridging effect diverted some of the normal forces acting on the bed to the sides. The anti-correlated pressure variations were then reproduced at a distance >10–20 m from the channel. In contrast, when the bed was inclined, the channel support of the overlying ice was vertical only, causing a reduction of the normal stress on the bed. With a bed slope of 5 degrees, the anti-correlation occurred within 10 m of the channel. The model thus showed that the effect of stress redistribution can lead to an opposite response in pressure at the same distance from the channel and that anti-correlation in pressure is reproduced without invoking cavity expansion caused by sliding.

  7. Expression of K2P5.1 potassium channels on CD4+ T lymphocytes correlates with disease activity in rheumatoid arthritis patients.

    Science.gov (United States)

    Bittner, Stefan; Bobak, Nicole; Feuchtenberger, Martin; Herrmann, Alexander M; Göbel, Kerstin; Kinne, Raimund W; Hansen, Anker J; Budde, Thomas; Kleinschnitz, Christoph; Frey, Oliver; Tony, Hans-Peter; Wiendl, Heinz; Meuth, Sven G

    2011-02-11

    CD4+ T cells express K(2P)5.1 (TWIK-related acid-sensitive potassium channel 2 (TASK2); KCNK5), a member of the two-pore domain potassium channel family, which has been shown to influence T cell effector functions. Recently, it was shown that K(2P)5.1 is upregulated upon (autoimmune) T cell stimulation. The aim of this study was to correlate expression levels of K(2P)5.1 on T cells from patients with rheumatoid arthritis (RA) to disease activity in these patients. Expression levels of K(2P)5.1 were measured by RT-PCR in the peripheral blood of 58 patients with RA and correlated with disease activity parameters (C-reactive protein levels, erythrocyte sedimentation rates, disease activity score (DAS28) scores). Twenty patients undergoing therapy change were followed-up for six months. Additionally, synovial fluid and synovial biopsies were investigated for T lymphocytes expressing K(2P)5.1. K(2P)5.1 expression levels in CD4+ T cells show a strong correlation to DAS28 scores in RA patients. Similar correlations were found for serological inflammatory parameters (erythrocyte sedimentation rate, C-reactive protein). In addition, K(2P)5.1 expression levels of synovial fluid-derived T cells are higher compared to peripheral blood T cells. Prospective data in individual patients show a parallel behaviour of K(2P)5.1 expression to disease activity parameters during a longitudinal follow-up for six months. Disease activity in RA patients correlates strongly with K(2P)5.1 expression levels in CD4+ T lymphocytes in the peripheral blood in cross-sectional as well as in longitudinal observations. Further studies are needed to investigate the exact pathophysiological mechanisms and to evaluate the possible use of K(2P)5.1 as a potential biomarker for disease activity and differential diagnosis.

  8. On the secrecy capacity of the wiretap channel with imperfect main channel estimation

    KAUST Repository

    Rezki, Zouheir

    2014-10-01

    We study the secrecy capacity of fast fading channels under imperfect main channel (between the transmitter and the legitimate receiver) estimation at the transmitter. Lower and upper bounds on the ergodic secrecy capacity are derived for a class of independent identically distributed (i.i.d.) fading channels. The achievable rate follows from a standard wiretap code in which a simple on-off power control is employed along with a Gaussian input. The upper bound is obtained using an appropriate correlation scheme of the main and eavesdropper channels and is the best known upper bound so far. The upper and lower bounds coincide with recently derived ones in case of perfect main CSI. Furthermore, the upper bound is tight in case of no main CSI, where the secrecy capacity is equal to zero. Asymptotic analysis at high and low signal-to-noise ratio (SNR) is also given. At high SNR, we show that the capacity is bounded by providing upper and lower bounds that depend on the channel estimation error. At low SNR, however, we prove that the secrecy capacity is asymptotically equal to the capacity of the main channel as if there were no secrecy constraint. Numerical results are provided for i.i.d. Rayleigh fading channels.

  9. Potassium channels in brain mitochondria.

    Science.gov (United States)

    Bednarczyk, Piotr

    2009-01-01

    Potassium channels are the most widely distributed class of ion channels. These channels are transmembrane proteins known to play important roles in both normal and pathophysiological functions in all cell types. Various potassium channels are recognised as potential therapeutic targets in the treatment of Parkinson's disease, Alzheimer's disease, brain/spinal cord ischaemia and sepsis. In addition to their importance as therapeutic targets, certain potassium channels are known for their beneficial roles in anaesthesia, cardioprotection and neuroprotection. Some types of potassium channels present in the plasma membrane of various cells have been found in the inner mitochondrial membrane as well. Potassium channels have been proposed to regulate mitochondrial membrane potential, respiration, matrix volume and Ca(+) ion homeostasis. It has been proposed that mitochondrial potassium channels mediate ischaemic preconditioning in various tissues. However, the specificity of a pharmacological agents and the mechanisms underlying their effects on ischaemic preconditioning remain controversial. The following potassium channels from various tissues have been identified in the inner mitochondrial membrane: ATP-regulated (mitoK(ATP)) channel, large conductance Ca(2+)-regulated (mitoBK(Ca)) channel, intermediate conductance Ca(2+)-regulated (mitoIK(Ca)) channel, voltage-gated (mitoKv1.3 type) channel, and twin-pore domain (mitoTASK-3) channel. It has been shown that increased potassium flux into brain mitochondria induced by either the mitoK(ATP) channel or mitoBK(Ca) channel affects the beneficial effects on neuronal cell survival under pathological conditions. Recently, differential distribution of mitoBK(Ca) channels has been observed in neuronal mitochondria. These findings may suggest a neuroprotective role for the mitoBK(Ca) channel in specific brain structures. This minireview summarises current data on brain mitochondrial potassium channels and the efforts to identify

  10. Comparison of Pilot Symbol Embedded Channel Estimation Algorithms

    Directory of Open Access Journals (Sweden)

    P. Kadlec

    2009-12-01

    Full Text Available In the paper, algorithms of the pilot symbol embedded channel estimation are compared. Attention is turned to the Least Square (LS channel estimation and the Sliding Correlator (SC algorithm. Both algorithms are implemented in Matlab to estimate the Channel Impulse Response (CIR of a channel exhibiting multi-path propagation. Algorithms are compared from the viewpoint of computational demands, influence of the Additive White Gaussian Noise (AWGN, an embedded pilot symbol and a computed CIR over the estimation error.

  11. Colloid-Colloid Hydrodynamic Interaction Around a Bend in a Quasi-One-Dimensional Channel

    Science.gov (United States)

    Liepold, Christopher; Zarcone, Ryan; Heumann, Tibor; Lin, Binhua; Rice, Stuart

    We report a study of the correlation between a pair of particles in a colloid suspension in a bent quasi-one-dimensional (q1d) channel as a function of bend angle. As the bend angle becomes more acute, we observe an increasing depletion of particles in the vicinity of the bend and an increase in the nearest-neighbor separation in the pair correlation function for particles on opposite sides of the bend. Further, we observe that the peak value of D12, the coupling term in the pair diffusion tensor that characterizes the effect of the motion of particle 1 on particle 2, coincides with the first peak in the pair correlation function, and that the pair separation dependence of D12 mimics that of the pair correlation function. We show that the observed behavior is a consequence of the geometric constraints imposed by the single-file requirement that the particle centers lie on the centerline of the channel and the requirement that the hydrodynamic flow must follow the channel around the bend. We find that the correlation between a pair of particles in a colloidal suspension in a bent q1D channel has the same functional dependence on the pair correlation function as in a straight q1D channel when measured in a coordinate system that follows the centerline of the bent channel. NSF MRSEC (DMR-1420709), Dreyfus Foundation (SI-14-014).

  12. Joint image reconstruction method with correlative multi-channel prior for x-ray spectral computed tomography

    DEFF Research Database (Denmark)

    Kazantsev, Daniil; Jørgensen, Jakob Sauer; Andersen, Martin S

    2018-01-01

    peaks. The acquired energy-binned data, however, suffer from low signal-to-noise ratio, acquisition artifacts, and frequently angular undersampled conditions. New regularized iterative reconstruction methods have the potential to produce higher quality images and since energy channels are mutually...... to encourage joint smoothing directions. In particular, the method selects reference channels from which to propagate structure in an adaptive and stochastic way while preferring channels with a high data signal-to-noise ratio. The method is compared with current state-of-the-art multi-channel reconstruction...

  13. On the ergodic secrecy capacity of the wiretap channel under imperfect main channel estimation

    KAUST Repository

    Rezki, Zouheir

    2011-11-01

    The ergodic secrecy capacity of the wiretap channel is known when the main channel (between the transmitter and the legitimate receiver) state information (CSI) is perfect at the transmitter and the coherence period is sufficiently large to enable random coding arguments in each block. In a fast fading scenario, when the codeword length spans many coherence periods, the secrecy capacity is still not known. In this paper, we present a framework that characterizes this secrecy capacity under imperfect main channel estimation at the transmitter. Inner and outer bounds on the ergodic secrecy capacity are derived for a class of independent identically distributed (i.i.d.) fading channels. The achievable rate is a simple on-off scheme using a Gaussian input. The upper bound is obtained using an appropriate correlation scheme of the main and the eavesdropper channels. The upper and the lower bounds coincide with recently derived ones in the perfect main CSI extreme. Furthermore, the lower bound matches the upper bound in no main CSI extreme, where the secrecy capacity is equal to zero. Numerical results are provided for independent identically distributed (i.i.d.) Rayleigh fading channels. © 2011 IEEE.

  14. Effective correlator for RadioAstron project

    Science.gov (United States)

    Sergeev, Sergey

    This paper presents the implementation of programme FX-correlator for Very Long Baseline Interferometry, adapted for the project "RadioAstron". Software correlator implemented for heterogeneous computing systems using graphics accelerators. It is shown that for the task interferometry implementation of the graphics hardware has a high efficiency. The host processor of heterogeneous computing system, performs the function of forming the data flow for graphics accelerators, the number of which corresponds to the number of frequency channels. So, for the Radioastron project, such channels is seven. Each accelerator is perform correlation matrix for all bases for a single frequency channel. Initial data is converted to the floating-point format, is correction for the corresponding delay function and computes the entire correlation matrix simultaneously. Calculation of the correlation matrix is performed using the sliding Fourier transform. Thus, thanks to the compliance of a solved problem for architecture graphics accelerators, managed to get a performance for one processor platform Kepler, which corresponds to the performance of this task, the computing cluster platforms Intel on four nodes. This task successfully scaled not only on a large number of graphics accelerators, but also on a large number of nodes with multiple accelerators.

  15. Detection-Guided Fast Affine Projection Channel Estimator for Speech Applications

    Directory of Open Access Journals (Sweden)

    Yan Wu Jennifer

    2007-04-01

    Full Text Available In various adaptive estimation applications, such as acoustic echo cancellation within teleconferencing systems, the input signal is a highly correlated speech. This, in general, leads to extremely slow convergence of the NLMS adaptive FIR estimator. As a result, for such applications, the affine projection algorithm (APA or the low-complexity version, the fast affine projection (FAP algorithm, is commonly employed instead of the NLMS algorithm. In such applications, the signal propagation channel may have a relatively low-dimensional impulse response structure, that is, the number m of active or significant taps within the (discrete-time modelled channel impulse response is much less than the overall tap length n of the channel impulse response. For such cases, we investigate the inclusion of an active-parameter detection-guided concept within the fast affine projection FIR channel estimator. Simulation results indicate that the proposed detection-guided fast affine projection channel estimator has improved convergence speed and has lead to better steady-state performance than the standard fast affine projection channel estimator, especially in the important case of highly correlated speech input signals.

  16. Many-body physics and the capacity of quantum channels with memory

    International Nuclear Information System (INIS)

    Plenio, M B; Virmani, S

    2008-01-01

    In most studies of the capacity of quantum channels, it is assumed that the errors in the use of each channel are independent. However, recent work has begun to investigate the effects of memory or correlations in the error, and has led to suggestions that there can be interesting non-analytic behaviour in the capacity of such channels. In a previous paper, we pursued this issue by connecting the study of channel capacities under correlated error to the study of critical behaviour in many-body physics. This connection enables the use of techniques from many-body physics to either completely solve or understand qualitatively a number of interesting models of correlated error with analogous behaviour to associated many-body systems. However, in order for this approach to work rigorously, there are a number of technical properties that need to be established for the lattice systems being considered. In this paper, we discuss these properties in detail, and establish them for some classes of many-body system

  17. Secret Sharing over Fast-Fading MIMO Wiretap Channels

    Directory of Open Access Journals (Sweden)

    Bloch Matthieu

    2009-01-01

    Full Text Available Secret sharing over the fast-fading MIMO wiretap channel is considered. A source and a destination try to share secret information over a fast-fading MIMO channel in the presence of an eavesdropper who also makes channel observations that are different from but correlated to those made by the destination. An interactive, authenticated public channel with unlimited capacity is available to the source and destination for the secret sharing process. This situation is a special case of the "channel model with wiretapper" considered by Ahlswede and Csiszár. An extension of their result to continuous channel alphabets is employed to evaluate the key capacity of the fast-fading MIMO wiretap channel. The effects of spatial dimensionality provided by the use of multiple antennas at the source, destination, and eavesdropper are then investigated.

  18. Subspace Analysis of Indoor UWB Channels

    Directory of Open Access Journals (Sweden)

    Rachid Saadane

    2005-03-01

    Full Text Available This work aims at characterizing the second-order statistics of indoor ultra-wideband (UWB channels using channel sounding techniques. We present measurement results for different scenarios conducted in a laboratory setting at Institut Eurécom. These are based on an eigendecomposition of the channel autocovariance matrix, which allows for the analysis of the growth in the number of significant degrees of freedom of the channel process as a function of the signaling bandwidth as well as the statistical correlation between different propagation paths. We show empirical eigenvalue distributions as a function of the signal bandwidth for both line-of-sight and non-line-of-sight situations. Furthermore, we give examples where paths from different propagation clusters (possibly arising from reflection or diffraction show strong statistical dependence.

  19. Blind Identification of FIR Channels in the Presence of Unknown Noise

    Directory of Open Access Journals (Sweden)

    Kon Max Wong

    2007-01-01

    Full Text Available Blind channel identification techniques based on second-order statistics (SOS of the received data have been a topic of active research in recent years. Among the most popular is the subspace method (SS proposed by Moulines et al. (1995. It has good performance when the channel output is corrupted by white noise. However, when the channel noise is correlated and unknown as is often encountered in practice, the performance of the SS method degrades severely. In this paper, we address the problem of estimating FIR channels in the presence of arbitrarily correlated noise whose covariance matrix is unknown. We propose several algorithms according to the different available system resources: (1 when only one receiving antenna is available, by upsampling the output, we develop the maximum a posteriori (MAP algorithm for which a simple criterion is obtained and an efficient implementation algorithm is developed; (2 when two receiving antennae are available, by upsampling both the outputs and utilizing canonical correlation decomposition (CCD to obtain the subspaces, we present two algorithms (CCD-SS and CCD-ML to blindly estimate the channels. Our algorithms perform well in unknown noise environment and outperform existing methods proposed for similar scenarios.

  20. Refractive-index-based screening of membrane-protein-mediated transfer across biological membranes.

    Science.gov (United States)

    Brändén, Magnus; Tabaei, Seyed R; Fischer, Gerhard; Neutze, Richard; Höök, Fredrik

    2010-07-07

    Numerous membrane-transport proteins are major drug targets, and therefore a key ingredient in pharmaceutical development is the availability of reliable, efficient tools for membrane transport characterization and inhibition. Here, we present the use of evanescent-wave sensing for screening of membrane-protein-mediated transport across lipid bilayer membranes. This method is based on a direct recording of the temporal variations in the refractive index that occur upon a transfer-dependent change in the solute concentration inside liposomes associated to a surface plasmon resonance (SPR) active sensor surface. The applicability of the method is demonstrated by a functional study of the aquaglyceroporin PfAQP from the malaria parasite Plasmodium falciparum. Assays of the temperature dependence of facilitated diffusion of sugar alcohols on a single set of PfAQP-reconstituted liposomes reveal that the activation energies for facilitated diffusion of xylitol and sorbitol are the same as that previously measured for glycerol transport in the aquaglyceroporin of Escherichia coli (5 kcal/mole). These findings indicate that the aquaglyceroporin selectivity filter does not discriminate sugar alcohols based on their length, and that the extra energy cost of dehydration of larger sugar alcohols, upon entering the pore, is compensated for by additional hydrogen-bond interactions within the aquaglyceroporin pore. Copyright 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  1. Experimental study on the effects of channel gap size on mixed convection heat transfer characteristics in vertical rectangular channels heated from both sides

    International Nuclear Information System (INIS)

    Sudo, Y.; Kaminaga, M.

    1990-01-01

    The effects of channel gap size on mixed forced and free convective heat transfer characteristics were experimentally investigated for water flowing near atmospheric pressure in a 750 mm long and 50 mm wide channel heated from both sides. The channel gap sizes investigated were 2.5, 6, 18 and 50 mm. Experiments were carried out for both aiding and opposing forced convective flows with a Reynolds number Re x of 4x10 to 6x10 6 and a Grashof number Gr x of 2x10 4 to 6x10 11 , where the distance x from the inlet of the channel is adopted as the characteristic length in Re x and Gr x . As for the results, the following were revealed for the parameters ranges investigated in this study. (1) When the dimensionless parameter, Gr x /Re x 21/8 Pr 1/2 is less than 10 -4 , the flow shows the nature of forced convective heat transfer for a channel with any channel gap size in both aiding and opposing flows. (2) When Gr x /Re x 21/8 Pr 1/2 is larger than 10 -2 , the flow shows the nature of free convective heat transfer for a channel with any channel gap size in both aiding and opposing flows. (3) When Gr x /Re x 21/8 Pr 1/2 is between 10 -4 and 10 -2 for the channel with a channel gap size equal to or larger than 6 mm, the heat transfer coefficients in both aiding and opposing flows become, on the average, higher than those predicted by the previous correlations for either the pure turbulent forced convection or the pure free convection, and can be expressed in simple forms with a combination of Gr x /Re x 21/8 Pr 1/2 and the previous correlation for either the pure turbulent forced convection or the free convection along a flat plate. (4) When Gr x /Re x 21/8 Pr 1/2 is between 10 -4 and 10 -2 for the channel with a channel gap size of 2.5 mm, the heat transfer coefficients in both aiding and opposing flows also become, on the average, higher than those predicted by the previous correlations for either the pure turbulent forced convection or the pure free convection. (orig./GL)

  2. Two-channel totally asymmetric simple exclusion processes

    International Nuclear Information System (INIS)

    Pronina, Ekaterina; Kolomeisky, Anatoly B

    2004-01-01

    Totally asymmetric simple exclusion processes, consisting of two coupled parallel lattice chains with particles interacting with hard-core exclusion and moving along the channels and between them, are considered. In the limit of strong coupling between the channels, the particle currents, density profiles and a phase diagram are calculated exactly by mapping the system into an effective one-channel totally asymmetric exclusion model. For intermediate couplings, a simple approximate theory, that describes the particle dynamics in vertical clusters of two corresponding parallel sites exactly and neglects the correlations between different vertical clusters, is developed. It is found that, similarly to the case of one-channel totally asymmetric simple exclusion processes, there are three stationary state phases, although the phase boundaries and stationary properties strongly depend on inter-channel coupling. Extensive computer Monte Carlo simulations fully support the theoretical predictions

  3. An Adaptive Channel Model for VBLAST in Vehicular Networks

    Directory of Open Access Journals (Sweden)

    Ghassan M. T. Abdalla

    2009-01-01

    Full Text Available The wireless transmission environment in vehicular ad hoc systems varies from line of sight with few surroundings to rich Rayleigh fading. An efficient communication system must adapt itself to these diverse conditions. Multiple antenna systems are known to provide superior performance compared to single antenna systems in terms of capacity and reliability. The correlation between the antennas has a great effect on the performance of MIMO systems. In this paper we introduce a novel adaptive channel model for MIMO-VBLAST systems in vehicular ad hoc networks. Using the proposed model, the correlation between the antennas was investigated. Although the line of sight is ideal for single antenna systems, it severely degrades the performance of VBLAST systems since it increases the correlation between the antennas. A channel update algorithm using single tap Kalman filters for VBLAST in flat fading channels has also been derived and evaluated. At 12 dB Es/N0, the new algorithm showed 50% reduction in the mean square error (MSE between the actual channel and the corresponding updated estimate compared to the MSE without update. The computational requirement of the proposed algorithm for a p×q VBLAST is 6p×q real multiplications and 4p×q real additions.

  4. Capacity of fully correlated MIMO system using character expansion of groups

    Directory of Open Access Journals (Sweden)

    Ejaz Khan

    2005-09-01

    Full Text Available It is well known that the use of antenna arrays at both sides of communication link can result in high channel capacities provided that the propagation medium is rich scattering. In most previous works presented on MIMO wireless structures, Rayleigh fading conditions were considered. In this work, the capacity of MIMO systems under fully correlated (i.e., correlations between rows and columns of channel matrix fading is considered. We use replica method and character expansions to calculate the capacity of correlated MIMO channel in closed form. In our calculations, it is assumed that the receiver has perfect channel state information (CSI but no such information is available at the transmitter.

  5. The effect of correlated observations on the performance of distributed estimation

    KAUST Repository

    Ahmed, Mohammed

    2013-12-01

    Estimating unknown signal in Wireless Sensor Networks (WSNs) requires sensor nodes to transmit their observations of the signal over a multiple access channel to a Fusion Center (FC). The FC uses the received observations, which is corrupted by observation noise and both channel fading and noise, to find the minimum Mean Square Error (MSE) estimate of the signal. In this paper, we investigate the effect of the source-node correlation (the correlation between sensor node observations and the source signal) and the inter-node correlation (the correlation between sensor node observations) on the performance of the Linear Minimum Mean Square Error (LMMSE) estimator for three correlation models in the presence of channel fading. First, we investigate the asymptotic behavior of the achieved distortion (i.e., MSE) resulting from both the observation and channel noise in a non-fading channel. Then, the effect of channel fading is considered and the corresponding distortion outage probability, the probability that the distortion exceeds a certain value, is found. By representing the distortion as a ratio of indefinite quadratic forms, a closed-form expression is derived for the outage probability that shows its dependency on the correlation. Finally, the new representation of the outage probability allows us to propose an iterative solution for the power allocation problem to minimize the outage probability under total and individual power constraints. Numerical simulations are provided to verify our analytic results. © 2013 IEEE.

  6. Channel Measurements and Characteristics for Cooperative Positioning Applications

    DEFF Research Database (Denmark)

    Wang, Wei; Steinböck, Gerhard; Jost, Thomas

    2012-01-01

    We have conducted an indoor channel measurement campaign to characterize the propagation channel for the development of cooperative positioning algorithms. The campaign focused particularly on the characteristics of multi-link channels with applications to positioning. In this contribution we...... present the measurement campaign and preliminary results on correlation characteristics of the received power. It is observed that the link-pair log power is uncorrelated. Moreover, the received log power can be modeled by realizations of independent Gaussian distributions for each link, based...... on the measured results....

  7. Modeling channel interference in an orbital angular momentum-multiplexed laser link

    Science.gov (United States)

    Anguita, Jaime A.; Neifeld, Mark A.; Vasic, Bane V.

    2009-08-01

    We study the effects of optical turbulence on the energy crosstalk among constituent orbital angular momentum (OAM) states in a vortex-based multi-channel laser communication link and determine channel interference in terms of turbulence strength and OAM state separation. We characterize the channel interference as a function of C2n and transmit OAM state, and propose probability models to predict the random fluctuations in the received signals for such architecture. Simulations indicate that turbulence-induced channel interference is mutually correlated across receive channels.

  8. Correlation between intra- and extracranial background EEG

    DEFF Research Database (Denmark)

    Duun-Henriksen, Jonas; Kjaer, Troels W.; Madsen, Rasmus E.

    2012-01-01

    Scalp EEG is the most widely used modality to record the electrical signals of the brain. It is well known that the volume conduction of these brain waves through the brain, cerebrospinal fluid, skull and scalp reduces the spatial resolution and the signal amplitude. So far the volume conduction...... has primarily been investigated by realistic head models or interictal spike analysis. We have set up a novel and more realistic experiment that made it possible to compare the information in the intra- and extracranial EEG. We found that intracranial EEG channels contained correlated patterns when...... placed less than 30 mm apart, that intra- and extracranial channels were partly correlated when placed less than 40 mm apart, and that extracranial channels probably were correlated over larger distances. The underlying cortical area that influences the extracranial EEG is found to be up to 45 cm2...

  9. Forced convective boiling heat transfer of water in vertical rectangular narrow channel

    International Nuclear Information System (INIS)

    Chen, Chong; Gao, Pu-zhen; Tan, Si-chao; Chen, Han-ying; Chen, Xian-bing

    2015-01-01

    Highlights: • Chen correlation cannot well predict the coefficient of rectangular channel. • Kim and Mudawar correlation is the best one among the Chen type correlations. • Lazarek and Black correlation predicted 7.0% of data within the ±30% error band. • The new correlation can well predict the coefficient with a small MAE of 14.4%. - Abstract: In order to research the characteristics of boiling flows in a vertical rectangular narrow channel, a series of convective boiling heat transfer experiments are performed. The test section is made of stainless steel with an inner diameter of 2 × 40 mm and heated length of 1100 mm. The 3194 experimental data points are obtained for a heat flux range of 10–700 kW/m 2 , a mass flux range of 200–2400 kg/m 2 s, a system pressure range of 0.1–2.5 MPa, and a quality range of 0–0.8. Eighteen prediction models are used to predict the flow boiling heat transfer coefficient of the rectangular narrow channel and the predicted value is compared against the database including 3194 data points, the results show that Chen type correlations and Lazarek and Black type correlations are not suitable for the rectangular channel very much. The Kim and Mudawar correlation is the best one among the 18 models. A new correlation is developed based on the superposition concept of nucleate boiling and convective boiling. the new correlation is shown to provide a good prediction against the database, evidenced by an overall MAE of 14.4%, with 95.2% and 98.6% of the data falling within ±30% and ±35% error bands, respectively

  10. Study on Boiling Heat Transfer Phenomenon in Micro-channels

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Namgyun [Inha Technical College, Incheon (Korea, Republic of)

    2017-09-15

    Recently, efficient heat dissipation has become necessary because of the miniaturization of devices, and research on boiling on micro-channels has attracted attention. However, in the case of micro-channels, the friction coefficient and heat transfer characteristics are different from those in macro-channels. This leads to large errors in the micro scale results, when compared to correlations derived from the macro scale. In addition, due to the complexity of the mechanism, the boiling phenomenon in micro-channels cannot be approached only by experimental and theoretical methods. Therefore, numerical methods should be utilized as well, to supplement these methods. However, most numerical studies have been conducted on macro-channels. In this study, we applied the lattice Boltzmann method, proposed as an alternative numerical tool to simulate the boiling phenomenon in the micro-channel, and predicted the bubble growth process in the channel.

  11. Towards OPE based local quark-hadron duality: light-quark channels

    International Nuclear Information System (INIS)

    Hofmann, Ralf

    2002-01-01

    Various light-quark channel current-current correlators are subjected to the concept of a non-perturbative component of coarse graining in operator product expansions introduced in a parallel work. This procedure allows for low-energy structure of the OPE-derived spectral function. With naive vacuum saturation for 4-quark operators and using lattice data for the gauge invariant scalar quark correlator the results are far off the experimentally measured behavior. However, using the correlation length of the gauge invariant vector quark correlator, which is about 10 times smaller than the scalar one, the qualitative results are rather realistic. Namely, the input of information on the mass of the lowest resonance in one channel yields the corresponding masses within acceptable errors in other channels. Still, the shapes of the calculated spectral functions are considerably deformed as compared to experiment. This may be a consequence of vacuum saturation and the truncation at a mass dimension which is below the critical dimension from which on the asymptotic expansion does not approximate anymore. To improve on this high-resolution lattice information on gauge invariant n>2 point correlators would be needed. Motivated by the small effective correlation length in the 4-quark contributions the relevance of the approach for heavy quark physics, in particular in the calculation of non-leptonic, inclusive ΔΓ, is discussed

  12. Correlations for reduced-width amplitudes in 49V

    International Nuclear Information System (INIS)

    Chou, B.H.; Mitchell, G.E.; Bilpuch, E.G.; Westerfeldt, C.R.

    1980-01-01

    Measurement of the relative sign of inelastic proton-channel amplitudes permits the determination of amplitude correlations. Data were obtained for 45 5/2 + resonances in 49 V. Although the reduced widths in each channel followed a Porter-Thomas distribution, large amplitude correlations were observed. The results are compared with the reduced-width--amplitude distribution of Krieger and Porter. This is the first direct test of the Krieger-Porter distribution

  13. Training sequence design for MIMO channels : An application-oriented approach

    NARCIS (Netherlands)

    Katselis, D.; Rojas, C.R.; Bengtsson, M.; Bjornson, E.; Bombois, X.; Shariati, N.; Jansson, M.; Hjalmarsson, H.

    2013-01-01

    In this paper, the problem of training optimization for estimating a multiple-input multiple-output (MIMO) flat fading channel in the presence of spatially and temporally correlated Gaussian noise is studied in an application-oriented setup. So far, the problem of MIMO channel estimation has mostly

  14. Quantum entanglement enhances the capacity of bosonic channels with memory

    International Nuclear Information System (INIS)

    Cerf, Nicolas J.; Clavareau, Julien; Macchiavello, Chiara; Roland, Jeremie

    2005-01-01

    The bosonic quantum channels have recently attracted a growing interest, motivated by the hope that they open a tractable approach to the generally hard problem of evaluating quantum channel capacities. These studies, however, have always been restricted to memoryless channels. Here, it is shown that the classical capacity of a bosonic Gaussian channel with memory can be significantly enhanced if entangled symbols are used instead of product symbols. For example, the capacity of a photonic channel with 70%-correlated thermal noise of one-third the shot noise is enhanced by about 11% when using 3.8-dB entangled light with a modulation variance equal to the shot noise

  15. Unsupervised Idealization of Ion Channel Recordings by Minimum Description Length

    DEFF Research Database (Denmark)

    Gnanasambandam, Radhakrishnan; Nielsen, Morten S; Nicolai, Christopher

    2017-01-01

    and characterize an idealization algorithm based on Rissanen's Minimum Description Length (MDL) Principle. This method uses minimal assumptions and idealizes ion channel recordings without requiring a detailed user input or a priori assumptions about channel conductance and kinetics. Furthermore, we demonstrate...... that correlation analysis of conductance steps can resolve properties of single ion channels in recordings contaminated by signals from multiple channels. We first validated our methods on simulated data defined with a range of different signal-to-noise levels, and then showed that our algorithm can recover...... channel currents and their substates from recordings with multiple channels, even under conditions of high noise. We then tested the MDL algorithm on real experimental data from human PIEZO1 channels and found that our method revealed the presence of substates with alternate conductances....

  16. Slope failure of chalk channel margins

    DEFF Research Database (Denmark)

    Gale, A.; Anderskouv, Kresten; Surlyk, Finn

    2015-01-01

    provide evidence for recurring margin collapse of a long-lived Campanian channel. Compressionally deformed and thrust chalk hardgrounds are correlated to thicker, non-cemented chalk beds that form a broad, gentle anticline. These chalks represent a slump complex with a roll-over anticline of expanded, non......-cemented chalk in the head region and a culmination of condensed hardgrounds in the toe region. Observations strongly suggest that the slumping represents collapse of a channel margin. Farther northwards, the contemporaneous succession shows evidence of small-scale penecontemporaneous normal faulting towards...

  17. Modeling and Simulation of MIMO Mobile-to-Mobile Wireless Fading Channels

    Directory of Open Access Journals (Sweden)

    Gholamreza Bakhshi

    2012-01-01

    Full Text Available Analysis and design of multielement antenna systems in mobile fading channels require a model for the space-time cross-correlation among the links of the underlying multipleinput multiple-output (MIMO Mobile-to-Mobile (M-to-M communication channels. In this paper, we propose the modified geometrical two-ring model, a MIMO channel reference model for M-to-M communication systems. This model is based on the extension of single-bounce two-ring scattering model for flat fading channel under the assumption that the transmitter and the receiver are moving. Assuming single-bounce scattering model in both isotropic and nonisotropic environment, a closed-form expression for the space-time cross-correlation function (CCF between any two subchannels is derived. The proposed model provides an important framework in M-to-M system design, where includes many existing correlation models as special cases. Also, two realizable statistical simulation models are proposed for simulating both isotropic and nonisotropic reference model. The realizable simulation models are based on Sum-of-Sinusoids (SoS simulation model. Finally, the correctness of the proposed simulation models is shown via different simulation scenarios.

  18. Optical Communications Channel Combiner

    Science.gov (United States)

    Quirk, Kevin J.; Quirk, Kevin J.; Nguyen, Danh H.; Nguyen, Huy

    2012-01-01

    NASA has identified deep-space optical communications links as an integral part of a unified space communication network in order to provide data rates in excess of 100 Mb/s. The distances and limited power inherent in a deep-space optical downlink necessitate the use of photon-counting detectors and a power-efficient modulation such as pulse position modulation (PPM). For the output of each photodetector, whether from a separate telescope or a portion of the detection area, a communication receiver estimates a log-likelihood ratio for each PPM slot. To realize the full effective aperture of these receivers, their outputs must be combined prior to information decoding. A channel combiner was developed to synchronize the log-likelihood ratio (LLR) sequences of multiple receivers, and then combines these into a single LLR sequence for information decoding. The channel combiner synchronizes the LLR sequences of up to three receivers and then combines these into a single LLR sequence for output. The channel combiner has three channel inputs, each of which takes as input a sequence of four-bit LLRs for each PPM slot in a codeword via a XAUI 10 Gb/s quad optical fiber interface. The cross-correlation between the channels LLR time series are calculated and used to synchronize the sequences prior to combining. The output of the channel combiner is a sequence of four-bit LLRs for each PPM slot in a codeword via a XAUI 10 Gb/s quad optical fiber interface. The unit is controlled through a 1 Gb/s Ethernet UDP/IP interface. A deep-space optical communication link has not yet been demonstrated. This ground-station channel combiner was developed to demonstrate this capability and is unique in its ability to process such a signal.

  19. Basolateral K+ channels in airway epithelia. II. Role in Cl- secretion and evidence for two types of K+ channel

    International Nuclear Information System (INIS)

    McCann, J.D.; Welsh, M.J.

    1990-01-01

    We previously described a Ca2(+)-activated K+ channel (KCLIC) in airway epithelial cells. To determine whether the KCLIC channel is a basolateral membrane channel and to understand its role in Cl- secretion, we studied airway epithelial cells grown on permeable supports. When cells were stimulated with A23187, charybdotoxin (ChTX) inhibited Cl- secretion and 86Rb efflux at the same concentrations, indicating that the KCLIC channel is required for Ca2(+)-stimulated Cl- secretion. We also investigated the function of K+ channels in adenosine 3',5'-cyclic monophosphate-stimulated secretion. Addition of isoproterenol caused a biphasic increase in Cl- secretion; the time course of the transient component correlated with the time course of the isoproterenol-induced increase in Ca2+ concentration [( Ca2+]c). ChTX inhibited the transient component, but not the prolonged component of secretion; Ba2+ inhibited the sustained component. These results suggest that when cells are grown on permeable supports isoproterenol-induced secretion depends on activation of two types of K+ channel: the KCLIC channel that is stimulated initially and a ChTX-insensitive K+ channel that is stimulated during sustained secretion. This conclusion was supported by measurement of 86Rb efflux from cell monolayers

  20. Analytical study of narrow channel flow for a spallation target system design

    Energy Technology Data Exchange (ETDEWEB)

    Islam, Md. Shafiqul; Monde, Masanori [Saga Univ., Saga (Japan); Terada, Atsuhiko; Kinoshita, Hidetaka; Hino, Ryutaro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-07-01

    Heat transfer and pressure drop characteristics under fully developed turbulent water flow condition were analyzed over a two-dimensional narrow rectangular channel whose height is H=1.2 mm. The channel configuration and water flow condition simulate forced convection cooling of a spallation target system components design such as a solid target and a proton beam window. The high-Reynolds number form of the standard k - {epsilon} and RNG k - {epsilon} models employing wall functions for the Reynolds number (Re) range of 7,000 to 22,000 were used in the analyses. As for heat transfer characteristics of a smooth channel, the Nusselt number obtained by the standard k - {epsilon} model agreed very well with the Dittus-Boelter correlation. No significant differences in friction factors for the smooth channel were observed for these two models, which agreed well with the Blasius correlation. However, the standard k - {epsilon} model could not predict friction factors well for the rib-roughened channel. (author)

  1. Analytical study of narrow channel flow for a spallation target system design

    International Nuclear Information System (INIS)

    Islam, Md. Shafiqul; Monde, Masanori; Terada, Atsuhiko; Kinoshita, Hidetaka; Hino, Ryutaro

    2001-07-01

    Heat transfer and pressure drop characteristics under fully developed turbulent water flow condition were analyzed over a two-dimensional narrow rectangular channel whose height is H=1.2 mm. The channel configuration and water flow condition simulate forced convection cooling of a spallation target system components design such as a solid target and a proton beam window. The high-Reynolds number form of the standard k - ε and RNG k - ε models employing wall functions for the Reynolds number (Re) range of 7,000 to 22,000 were used in the analyses. As for heat transfer characteristics of a smooth channel, the Nusselt number obtained by the standard k - ε model agreed very well with the Dittus-Boelter correlation. No significant differences in friction factors for the smooth channel were observed for these two models, which agreed well with the Blasius correlation. However, the standard k - ε model could not predict friction factors well for the rib-roughened channel. (author)

  2. ASIC3 channels in multimodal sensory perception.

    Science.gov (United States)

    Li, Wei-Guang; Xu, Tian-Le

    2011-01-19

    Acid-sensing ion channels (ASICs), which are members of the sodium-selective cation channels belonging to the epithelial sodium channel/degenerin (ENaC/DEG) family, act as membrane-bound receptors for extracellular protons as well as nonproton ligands. At least five ASIC subunits have been identified in mammalian neurons, which form both homotrimeric and heterotrimeric channels. The highly proton sensitive ASIC3 channels are predominantly distributed in peripheral sensory neurons, correlating with their roles in multimodal sensory perception, including nociception, mechanosensation, and chemosensation. Different from other ASIC subunit composing ion channels, ASIC3 channels can mediate a sustained window current in response to mild extracellular acidosis (pH 7.3-6.7), which often occurs accompanied by many sensory stimuli. Furthermore, recent evidence indicates that the sustained component of ASIC3 currents can be enhanced by nonproton ligands including the endogenous metabolite agmatine. In this review, we first summarize the growing body of evidence for the involvement of ASIC3 channels in multimodal sensory perception and then discuss the potential mechanisms underlying ASIC3 activation and mediation of sensory perception, with a special emphasis on its role in nociception. We conclude that ASIC3 activation and modulation by diverse sensory stimuli represent a new avenue for understanding the role of ASIC3 channels in sensory perception. Furthermore, the emerging implications of ASIC3 channels in multiple sensory dysfunctions including nociception allow the development of new pharmacotherapy.

  3. Monte Carlo simulation of ion-beam channeling in YBa2Cu3O7

    International Nuclear Information System (INIS)

    Khodyrev, V.A.; Chumanov, V.Ya.; Bourdelle, K.K.; Pokhil, G.P.

    1994-01-01

    A Monte Carlo program (UPIC) for the simulation of ion channeling in crystals with complex structure is described. The program is applied to simulate the channeling of 1.5 MeV He + and 1 MeV D + near the [001] axis of YBa 2 Cu 3 O 7 assuming strongly correlated atomic displacements along the [001] Cu-O rows in the superconducting state. The values for the abrupt change in the half-width of the channeling dip observed in experiments [R.P. Sharma et al., Phys. Rev. B 38 (1988) 9287] at the temperature of the superconducting transition, T c , are reproduced in the simulations with correlation coefficients of 0.8-0.9. The increase in the minimum channeling yield at T c found in measurements [T. Haga et al., Phys. Rev. B 41 (1990) 826] can be qualitatively explained by the increase in dechanneling rate due to correlations. ((orig.))

  4. Channel Bottom Morphology in the Deltaic Reach of the Song Hau (mekong) River Channel in Vietnam

    Science.gov (United States)

    Allison, M. A.; Weathers, H. D., III; Meselhe, E. A.

    2016-02-01

    Boat-based, channel bathymetry and bankline elevation studies were conducted in the tidal and estuarine Mekong River channel using multibeam bathymetry and LIDAR corrected for elevation by RTK satellite positioning. Two mapping campaigns, one at high discharge in October 2014 and one at low discharge in March 2015, were conducted in the lower 100 km reach of the Song Hau distributary channel to (1) examine bottom morphology and its relationship to sediment transport, and (2) to provide information to setup the grid for a multi-dimensional and reduced complexity models of channel hydrodynamics and sediment dynamics. Sand fields were identified in multibeam data by the presence of dunes that were as large as 2-4 m high and 40-80 m wavelength and by clean sands in bottom grabs. Extensive areas of sand at the head and toe of mid-channel islands displayed 10-25 m diameter circular pits that could be correlated with bucket dredge, sand mining activities observed at some of the sites. Large areas of the channel floor were relict (containing little or no modern sediment) in the high discharge campaign, identifiable by the presence of along channel erosional furrows and terraced outcrops along the channel floor and margins. Laterally extensive flat areas were also observed in the channel thalweg. Both these and the relict areas were sampled by bottom grab as stiff silty clays. Complex cross-channel combinations of these morphologies were observed in some transects, suggesting strong bottom steering of tidal and riverine currents. Relative to high discharge, transects above and below the salt penetration limit showed evidence of shallowing in the thalweg and adjacent sloping areas at low discharge in March 2015. This shallowing, combined with the reduced extent of sand fields and furrowed areas, and soft muds in grabs, suggests seasonal trapping of fine grained sediment is occurring by estuarine and tidal circulation.

  5. Analysis of soft-decision FEC on non-AWGN channels.

    Science.gov (United States)

    Cho, Junho; Xie, Chongjin; Winzer, Peter J

    2012-03-26

    Soft-decision forward error correction (SD-FEC) schemes are typically designed for additive white Gaussian noise (AWGN) channels. In a fiber-optic communication system, noise may be neither circularly symmetric nor Gaussian, thus violating an important assumption underlying SD-FEC design. This paper quantifies the impact of non-AWGN noise on SD-FEC performance for such optical channels. We use a conditionally bivariate Gaussian noise model (CBGN) to analyze the impact of correlations among the signal's two quadrature components, and assess the effect of CBGN on SD-FEC performance using the density evolution of low-density parity-check (LDPC) codes. On a CBGN channel generating severely elliptic noise clouds, it is shown that more than 3 dB of coding gain are attainable by utilizing correlation information. Our analyses also give insights into potential improvements of the detection performance for fiber-optic transmission systems assisted by SD-FEC.

  6. Pilot-based parametric channel estimation algorithm for DCO-OFDM-based visual light communications

    Science.gov (United States)

    Qian, Xuewen; Deng, Honggui; He, Hailang

    2017-10-01

    Due to wide modulation bandwidth in optical communication, multipath channels may be non-sparse and deteriorate communication performance heavily. Traditional compressive sensing-based channel estimation algorithm cannot be employed in this kind of situation. In this paper, we propose a practical parametric channel estimation algorithm for orthogonal frequency division multiplexing (OFDM)-based visual light communication (VLC) systems based on modified zero correlation code (ZCC) pair that has the impulse-like correlation property. Simulation results show that the proposed algorithm achieves better performances than existing least squares (LS)-based algorithm in both bit error ratio (BER) and frequency response estimation.

  7. Channel Power in Multi-Channel Environments

    NARCIS (Netherlands)

    M.G. Dekimpe (Marnik); B. Skiera (Bernd)

    2004-01-01

    textabstractIn the literature, little attention has been paid to instances where companies add an Internet channel to their direct channel portfolio. However, actively managing multiple sales channels requires knowing the customers’ channel preferences and the resulting channel power. Two key

  8. Phase-Type Models of Channel-Holding Times in Cellular Communication Systems

    DEFF Research Database (Denmark)

    Christensen, Thomas Kaare; Nielsen, Bo Friis; Iversen, Villy Bæk

    2004-01-01

    In this paper, we derive the distribution of the channel-holding time when both cell-residence and call-holding times are phase-type distributed. Furthermore, the distribution of the number of handovers, the conditional channel-holding time distributions, and the channel-holding time when cell re...... residence times are correlated are derived. All distributions are of phase type, making them very general and flexible. The channel-holding times are of importance in performance evaluation and simulation of cellular mobile communication systems.......In this paper, we derive the distribution of the channel-holding time when both cell-residence and call-holding times are phase-type distributed. Furthermore, the distribution of the number of handovers, the conditional channel-holding time distributions, and the channel-holding time when cell...

  9. Convective heat transfer in MHD channels and its influence on channel performance

    International Nuclear Information System (INIS)

    Ahluwalia, R.K.; Doss, E.D.

    1980-01-01

    The limitations of the integral boundary layer methods and the potential of the differential boundary layer method in analyzing MHD channel flows are assessed. The sensitivity of results from the integral method to the parametrization of boundary layer profiles and calculation of wall heat transfer is established. A mixing-length type turbulence model for flow on rough walls is developed and validated by comparison with experimental data. The turbulence model is used in a quasi-three-dimensional boundary layer model to evaluate the influence of wall roughness and pressure gradients on the flow characteristics and performance of MHD channels. The behaviors of skin friction and Stanton number calculated from the analytical model are found to differ considerably from the empirical correlations valid for non-MHD flows without pressure gradients

  10. Measurement of Spin Correlation in Top Quark Pair Production at ATLAS

    CERN Document Server

    McLaughlan, Thomas

    2014-01-01

    This thesis presents a study of spin correlation in tt ̄ production in the ATLAS detector, in proton-proton collisions, corresponding to an integrated luminosity of 4.7 fb$^{−1}$, with a centre of mass energy of $\\sqrt{s}$ = 7 TeV. Both the dilepton and single lepton channels are considered, the latter providing a greater challenge due to the neccessity to reconstruct the down-type quark resulting from the W boson decay. A simple technique is employed to reconstruct single lepton $t\\bar{t}$ events, with the transverse angle between the charged lepton and down-type quark used as a probe of the spin correlation. In the dilepton channel, the transverse angle between both charged leptons is used. The extracted value of spin correlation in each channel is consistent with Standard Model predictions, with the result in the eμ channel alone sufficient to exclude a model without spin correlation at 7.8$\\sigma$. Also described is the author’s contribution to the maintenance and development of the Atlantis Event D...

  11. Amplitude correlations for inelastic proton scattering from 48Ti

    International Nuclear Information System (INIS)

    Chou, B.H.; Mitchell, G.E.; Bilpuch, E.G.; Westerfeldt, C.R.

    1981-01-01

    The magnitudes and relative signs of inelastic proton channel amplitudes were determined for three decay channels for 45 5/2 + resonances in 49 V. The reduced widths in each channel follow a Porter-Thomas distribution, but extremely large amplitude correlations are observed - for one pair of channel amplitudes the relative sign is positive for 43 of 45 resonances. These results provide the first direct test of the Krieger-Porter reduced width amplitude distribution. (orig.)

  12. K Lambda and K Sigma photoproduction in a coupled-channels framework

    NARCIS (Netherlands)

    Usov, A; Scholten, O

    A coupled-channels analysis, based on the K-matrix approach, is presented for photo-induced kaon production. It is shown that channel coupling effects are large and should not be ignored. The importance of contact terms in the analysis, associated with short-range correlations, is pointed out. The

  13. Information-guided communications in MIMO systems with channel state impairments

    KAUST Repository

    Yang, Yuli

    2013-06-20

    Information-guided channel hopping (IGCH) is a promising technique for high-data-rate communications using multiple antennas for information mapping at the transmitter and optional antenna diversity at the receiver. Compared with some popular multi-antenna techniques, the advantage of this scheme is proven in ideal channel conditions, where the channel is spatially white and the perfect channel state information is assumed available at the receiver. The main objective of this paper is to present an information theoretical study on IGCH in realistic propagation environments with channel degeneracy due to spatial correlation and keyhole phenomena as well as imperfect channel estimation. It is proven that good performance promised by IGCH can be achieved in a variety of non-ideal channel conditions. Moreover, the analysis in this paper provides a convenient tool for the corresponding system design in practical operating environments. © 2013 John Wiley & Sons, Ltd.

  14. Information-guided communications in MIMO systems with channel state impairments

    KAUST Repository

    Yang, Yuli; Aï ssa, Sonia

    2013-01-01

    Information-guided channel hopping (IGCH) is a promising technique for high-data-rate communications using multiple antennas for information mapping at the transmitter and optional antenna diversity at the receiver. Compared with some popular multi-antenna techniques, the advantage of this scheme is proven in ideal channel conditions, where the channel is spatially white and the perfect channel state information is assumed available at the receiver. The main objective of this paper is to present an information theoretical study on IGCH in realistic propagation environments with channel degeneracy due to spatial correlation and keyhole phenomena as well as imperfect channel estimation. It is proven that good performance promised by IGCH can be achieved in a variety of non-ideal channel conditions. Moreover, the analysis in this paper provides a convenient tool for the corresponding system design in practical operating environments. © 2013 John Wiley & Sons, Ltd.

  15. Correlations between resonances in a statistical scattering model

    International Nuclear Information System (INIS)

    Gorin, T.; Rotter, I.

    1997-01-01

    The distortion of the regular motion in a quantum system by its coupling to the continuum of decay channels is investigated. The regular motion is described by means of a Poissonian ensemble. We focus on the case of only few channels K 2 K distribution in the GOE case. 2. Due to the coupling to the continuum, correlations are induced not only between the positions of the resonances but also between positions and widths. These correlations remain even in the strong coupling limit. In order to explain these results, an asymptotic expression for the width distribution is derived for the one channel case. It relates the width of a trapped resonance state to the distance between its two neighboring levels. (orig.)

  16. Targeting aquaporin function: potent inhibition of aquaglyceroporin-3 by a gold-based compound.

    Directory of Open Access Journals (Sweden)

    Ana Paula Martins

    Full Text Available Aquaporins (AQPs are membrane channels that conduct water and small solutes such as glycerol and are involved in many physiological functions. Aquaporin-based modulator drugs are predicted to be of broad potential utility in the treatment of several diseases. Until today few AQP inhibitors have been described as suitable candidates for clinical development. Here we report on the potent inhibition of AQP3 channels by gold(III complexes screened on human red blood cells (hRBC and AQP3-transfected PC12 cells by a stopped-flow method. Among the various metal compounds tested, Auphen is the most active on AQP3 (IC(50 = 0.8±0.08 µM in hRBC. Interestingly, the compound poorly affects the water permeability of AQP1. The mechanism of gold inhibition is related to the ability of Au(III to interact with sulphydryls groups of proteins such as the thiolates of cysteine residues. Additional DFT and modeling studies on possible gold compound/AQP adducts provide a tentative description of the system at a molecular level. The mapping of the periplasmic surface of an homology model of human AQP3 evidenced the thiol group of Cys40 as a likely candidate for binding to gold(III complexes. Moreover, the investigation of non-covalent binding of Au complexes by docking approaches revealed their preferential binding to AQP3 with respect to AQP1. The high selectivity and low concentration dependent inhibitory effect of Auphen (in the nanomolar range together with its high water solubility makes the compound a suitable drug lead for future in vivo studies. These results may present novel metal-based scaffolds for AQP drug development.

  17. Voltage-gated proton channel is expressed on phagosomes

    International Nuclear Information System (INIS)

    Okochi, Yoshifumi; Sasaki, Mari; Iwasaki, Hirohide; Okamura, Yasushi

    2009-01-01

    Voltage-gated proton channel has been suggested to help NADPH oxidase activity during respiratory burst of phagocytes through its activities of compensating charge imbalance and regulation of pH. In phagocytes, robust production of reactive oxygen species occurs in closed membrane compartments, which are called phagosomes. However, direct evidence for the presence of voltage-gated proton channels in phagosome has been lacking. In this study, the expression of voltage-gated proton channels was studied by Western blot with the antibody specific to the voltage-sensor domain protein, VSOP/Hv1, that has recently been identified as the molecular correlate for the voltage-gated proton channel. Phagosomal membranes of neutrophils contain VSOP/Hv1 in accordance with subunits of NADPH oxidases, gp91, p22, p47 and p67. Superoxide anion production upon PMA activation was significantly reduced in neutrophils from VSOP/Hv1 knockout mice. These are consistent with the idea that voltage-gated proton channels help NADPH oxidase in phagocytes to produce reactive oxygen species.

  18. Flow model for open-channel reach or network

    Science.gov (United States)

    Schaffranek, R.W.

    1987-01-01

    Formulation of a one-dimensional model for simulating unsteady flow in a single open-channel reach or in a network of interconnected channels is presented. The model is both general and flexible in that it can be used to simulate a wide range of flow conditions for various channel configurations. It is based on a four-point (box), implicit, finite-difference approximation of the governing nonlinear flow equations with user-definable weighting coefficients to permit varying the solution scheme from box-centered to fully forward. Unique transformation equations are formulated that permit correlation of the unknowns at the extremities of the channels, thereby reducing coefficient matrix and execution time requirements. Discharges and water-surface elevations computed at intermediate locations within a channel are determined following solution of the transformation equations. The matrix of transformation and boundary-condition equations is solved by Gauss elimination using maximum pivot strategy. Two diverse applications of the model are presented to illustrate its broad utility. (USGS)

  19. Forced convection heat transfer of steam in a square ribbed channel

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jiazeng; Gao, Jianmin; Gao, Tieyu [Xi' an Jiaotong University, Shaanxi (China)

    2012-04-15

    An experimental study of heat transfer characteristics of steam in a square channel (simulating a gas turbine blade cooling passage) with two opposite surfaces roughened by 60 deg parallel ribs was performed. The ranges of key governing parameters were: Reynolds numbers (Re) based on the channel hydraulic diameter (30000-140000), entry gauge pressure (0.2Mpa-0.5Mpa), heat flux of heat transfer surface area (5kWm{sup -2}-20kWm{sup -2}), and steam superheat (13 .deg. C-51 .deg. C). The test channel length was 1000mm, while the rib spacing (p/e) was 10, and the ratio of rib height (e) to hydraulic diameter (D) was 0.048. The test channel was heated by passing current through stainless steel walls instrumented with thermocouples. The local heat transfer coefficients on the ribbed wall from the channel entrance to the fully developed regions were measured. The semi-empirical correlation was fitted out by using the average Nusselt numbers in the fully developed region to cover the range of Reynolds number. The correlation can be used in the design of new generation of gas turbine blade cooled by steam.

  20. On the computation of the higher-order statistics of the channel capacity over generalized fading channels

    KAUST Repository

    Yilmaz, Ferkan

    2012-12-01

    The higher-order statistics (HOS) of the channel capacity μn=E[logn (1+γ end)], where n ∈ N denotes the order of the statistics, has received relatively little attention in the literature, due in part to the intractability of its analysis. In this letter, we propose a novel and unified analysis, which is based on the moment generating function (MGF) technique, to exactly compute the HOS of the channel capacity. More precisely, our mathematical formalism can be readily applied to maximal-ratio-combining (MRC) receivers operating in generalized fading environments. The mathematical formalism is illustrated by some numerical examples focusing on the correlated generalized fading environments. © 2012 IEEE.

  1. On the computation of the higher-order statistics of the channel capacity over generalized fading channels

    KAUST Repository

    Yilmaz, Ferkan; Alouini, Mohamed-Slim

    2012-01-01

    The higher-order statistics (HOS) of the channel capacity μn=E[logn (1+γ end)], where n ∈ N denotes the order of the statistics, has received relatively little attention in the literature, due in part to the intractability of its analysis. In this letter, we propose a novel and unified analysis, which is based on the moment generating function (MGF) technique, to exactly compute the HOS of the channel capacity. More precisely, our mathematical formalism can be readily applied to maximal-ratio-combining (MRC) receivers operating in generalized fading environments. The mathematical formalism is illustrated by some numerical examples focusing on the correlated generalized fading environments. © 2012 IEEE.

  2. Complete Flow Blockage of a Fuel Channel for Research Reactor

    International Nuclear Information System (INIS)

    Lee, Byeonghee; Park, Suki

    2015-01-01

    The CHF correlation suitable for narrow rectangular channels are implemented in RELAP5/MOD3.3 code for the analyses, and the behavior of fuel temperatures and MCHFR(minimum critical heat flux ratio) are compared between the original and modified codes. The complete flow blockage of fuel channel for research reactor is analyzed using original and modified RELAP5/MOD3.3 and the results are compared each other. The Sudo-Kaminaga CHF correlation is implemented into RELAP5/MOD3.3 for analyzing the behavior of fuel adjacent to the blocked channel. A flow blockage of fuel channels can be postulated by a foreign object blocking cooling channels of fuels. Since a research reactor with plate type fuel has isolated fuel channels, a complete flow blockage of one fuel channel can cause a failure of adjacent fuel plates by the loss of cooling capability. Although research reactor systems are designed to prevent foreign materials from entering into the core, partial flow blockage accidents and following fuel failures are reported in some old research reactors. In this report, an analysis of complete flow blockage accident is presented for a 15MW pool-type research reactor with plate type fuels. The fuel surface experience different heat transfer regime in the results from original and modified RELAP5/MOD3.3. By the discrepancy in heat transfer mode of two cases, a fuel melting is expected by the modified RELAP5/MOD3.3, whereas the fuel integrity is ensured by the original code

  3. Modeling of Non-WSSUS Double-Rayleigh Fading Channels for Vehicular Communications

    Directory of Open Access Journals (Sweden)

    Carlos A. Gutiérrez

    2017-01-01

    Full Text Available This paper deals with the modeling of nonstationary time-frequency (TF dispersive multipath fading channels for vehicle-to-vehicle (V2V communication systems. As a main contribution, the paper presents a novel geometry-based statistical channel model that facilitates the analysis of the nonstationarities of V2V fading channels arising at a small-scale level due to the time-varying nature of the propagation delays. This new geometrical channel model has been formulated following the principles of plane wave propagation (PWP and assuming that the transmitted signal reaches the receiver antenna through double interactions with multiple interfering objects (IOs randomly located in the propagation area. As a consequence of such interactions, the first-order statistics of the channel model’s envelope are shown to follow a worse-than-Rayleigh distribution; specifically, they follow a double-Rayleigh distribution. General expressions are derived for the envelope and phase distributions, four-dimensional (4D TF correlation function (TF-CF, and TF-dependent delay and Doppler profiles of the proposed channel model. Such expressions are valid regardless of the underlying geometry of the propagation area. Furthermore, a closed-form solution of the 4D TF-CF is presented for the particular case of the geometrical two-ring scattering model. The obtained results provide new theoretical insights into the correlation and spectral properties of small-scale nonstationary V2V double-Rayleigh fading channels.

  4. Backscattering/transmission of 2 MeV He{sup ++} ions quantitative correlation study

    Energy Technology Data Exchange (ETDEWEB)

    Berec, V., E-mail: bervesn@gmail.com [Institute of Nuclear Sciences Vinca, University of Belgrade, P.O. Box 522, 11001 Belgrade (Serbia); Germogli, G.; Mazzolari, A.; Guidi, V. [INFN Sezione di Ferrara and Dipartimento di Fisica e Scienze della Terra, Via Saragat 1, 44100 Ferrara (Italy); De Salvador, D. [Dipartimento di Fisica, Università di Padova, Via Marzolo n.8, 35131 Padova (Italy); INFN Laboratori Nazionali di Legnaro, Viale Università 2, 35020 Legnaro, PD (Italy); Bacci, L. [INFN Laboratori Nazionali di Legnaro, Viale Università 2, 35020 Legnaro, PD (Italy)

    2015-07-15

    In this work we report on detailed findings of planar channeling oscillations of 2 MeV He{sup ++} particles in (1 1 0) silicon crystal. The exact correlation and coherence mechanism between confined particles oscillating trajectories are analyzed theoretically and experimentally in backscattering/transmission geometry. Regular patterns of channeled He{sup ++} ion planar oscillations are shown to be dominated by the crystal harmonic-oscillator potential and multiple scattering effect. For the first time it was shown that under the planar channeling conditions trajectories of positively charged particles exhibit observable correlation dynamics, including the interference effect. Quantitative estimation of channeling efficiency is performed using path integral method.

  5. Voltage-gated calcium channels of Paramecium cilia.

    Science.gov (United States)

    Lodh, Sukanya; Yano, Junji; Valentine, Megan S; Van Houten, Judith L

    2016-10-01

    Paramecium cells swim by beating their cilia, and make turns by transiently reversing their power stroke. Reversal is caused by Ca 2+ entering the cilium through voltage-gated Ca 2+ (Ca V ) channels that are found exclusively in the cilia. As ciliary Ca 2+ levels return to normal, the cell pivots and swims forward in a new direction. Thus, the activation of the Ca V channels causes cells to make a turn in their swimming paths. For 45 years, the physiological characteristics of the Paramecium ciliary Ca V channels have been known, but the proteins were not identified until recently, when the P. tetraurelia ciliary membrane proteome was determined. Three Ca V α1 subunits that were identified among the proteins were cloned and confirmed to be expressed in the cilia. We demonstrate using RNA interference that these channels function as the ciliary Ca V channels that are responsible for the reversal of ciliary beating. Furthermore, we show that Pawn (pw) mutants of Paramecium that cannot swim backward for lack of Ca V channel activity do not express any of the three Ca V 1 channels in their ciliary membrane, until they are rescued from the mutant phenotype by expression of the wild-type PW gene. These results reinforce the correlation of the three Ca V channels with backward swimming through ciliary reversal. The PwB protein, found in endoplasmic reticulum fractions, co-immunoprecipitates with the Ca V 1c channel and perhaps functions in trafficking. The PwA protein does not appear to have an interaction with the channel proteins but affects their appearance in the cilia. © 2016. Published by The Company of Biologists Ltd.

  6. Detection of a random signal in a multi-channel environment: a performance study

    International Nuclear Information System (INIS)

    Frenzel, K.Z.

    1986-01-01

    Performance of the optimal (likelihood ratio) test and suboptimal tests, including the normalized cross correlator and two energy detectors are compared for problems involving non-gaussian as well as gaussian statistics. Also, optimal one-channel processing is compared to optimal two-channel processing for equivalent total signal-to-noise ratios. Receiver operator characteristics (ROC) curves obtained by a combination of simulation and analytic methods are used to evaluate the performance of the processors. It was found that two-channel processing helps the detection performance the most when the noise levels are uncertain. This was true for all signal and noise densities studied. In cases where the noise levels and channel attenuations are known, or when only the attenuations are uncertain, the performance using optimal one-channel processing was close to that found using optimal two-channel processing. When comparing optimal processors to the three suboptimal processors, it was found that when the noise level in each channel is very uncertain, the performance of the normalized cross correlator is much closer to the optimal than that of either of the energy detectors. If, however, the noise levels are know with a fair degree of certainty, the performance of the energy detectors improves considerably, in some cases approaching the optimal performance

  7. Heat transfer in a compact heat exchanger containing rectangular channels and using helium gas

    Science.gov (United States)

    Olson, D. A.

    1991-01-01

    Development of a National Aerospace Plane (NASP), which will fly at hypersonic speeds, require novel cooling techniques to manage the anticipated high heat fluxes on various components. A compact heat exchanger was constructed consisting of 12 parallel, rectangular channels in a flat piece of commercially pure nickel. The channel specimen was radiatively heated on the top side at heat fluxes of up to 77 W/sq cm, insulated on the back side, and cooled with helium gas flowing in the channels at 3.5 to 7.0 MPa and Reynolds numbers of 1400 to 28,000. The measured friction factor was lower than that of the accepted correlation for fully developed turbulent flow, although the uncertainty was high due to uncertainty in the channel height and a high ratio of dynamic pressure to pressure drop. The measured Nusselt number, when modified to account for differences in fluid properties between the wall and the cooling fluid, agreed with past correlations for fully developed turbulent flow in channels. Flow nonuniformity from channel-to-channel was as high as 12 pct above and 19 pct below the mean flow.

  8. The acrylamide (S)-1 differentially affects Kv7 (KCNQ) potassium channels

    DEFF Research Database (Denmark)

    Bentzen, Bo Hjorth; Schmitt, Nicole; Calloe, Kirstine

    2006-01-01

    The family of Kv7 (KCNQ) potassium channels consists of five members. Kv7.2 and 3 are the primary molecular correlates of the M-current, but also Kv7.4 and Kv7.5 display M-current characteristics. M-channel modulators include blockers (e.g., linopirdine) for cognition enhancement and openers (e.g...

  9. Practical 3-D Beam Pattern Based Channel Modeling for Multi-Polarized Massive MIMO Systems.

    Science.gov (United States)

    Aghaeinezhadfirouzja, Saeid; Liu, Hui; Balador, Ali

    2018-04-12

    In this paper, a practical non-stationary three-dimensional (3-D) channel models for massive multiple-input multiple-output (MIMO) systems, considering beam patterns for different antenna elements, is proposed. The beam patterns using dipole antenna elements with different phase excitation toward the different direction of travels (DoTs) contributes various correlation weights for rays related towards/from the cluster, thus providing different elevation angle of arrivals (EAoAs) and elevation angle of departures (EAoDs) for each antenna element. These include the movements of the user that makes our channel to be a non-stationary model of clusters at the receiver (RX) on both the time and array axes. In addition, their impacts on 3-D massive MIMO channels are investigated via statistical properties including received spatial correlation. Additionally, the impact of elevation/azimuth angles of arrival on received spatial correlation is discussed. Furthermore, experimental validation of the proposed 3-D channel models on azimuth and elevation angles of the polarized antenna are specifically evaluated and compared through simulations. The proposed 3-D generic models are verified using relevant measurement data.

  10. Experimental and numerical study on heat transfer and pressure drop performance of Cross-Wavy primary surface channel

    International Nuclear Information System (INIS)

    Ma, Ting; Du, Lin-xiu; Sun, Ning; Zeng, Min; Sundén, Bengt; Wang, Qiu-wang

    2016-01-01

    Highlights: • Naphthalene sublimation experiments were performed for Cross-Wavy channels. • Entrance region has a small effect on unit-averaged heat transfer coefficient of Cross-Wavy channels. • Correlations of Nusselt number and friction factor in Cross-Wavy channel were obtained. • Similar Cross-Wavy channels have similar thermal hydraulic performance. - Abstract: The Cross-Wavy primary surface heat exchanger is one of the most promising candidates for microturbine recuperators. In this paper, naphthalene sublimation experiments are performed for Cross-Wavy channels in a wind tunnel. The experimental results indicate that the entrance region has a small effect on the unit-averaged heat transfer coefficient of whole Cross-Wavy channels. Correlations of Nusselt number and friction factor in the Cross-Wavy channel are obtained. However, only the Cross-Wavy channel with a large equivalent diameter is tested because the actual Cross-Wavy channels are very complicated and small. Therefore, based on the similarity rules, five Cross-Wavy channels with similar structures but different equivalent diameters are further investigated by numerical simulations. The numerical results indicate that the Cross-Wavy channels with similar structures but different equivalent diameters have similar thermal-hydraulic performance in the studied Reynolds number range.

  11. Technical Note: Statistical dependences between channels in radiochromic film readings. Implications in multichannel dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    González-López, Antonio, E-mail: antonio.gonzalez7@carm.es [Hospital Clínico Universitario Virgen de la Arrixaca, Ctra. Madrid-Cartagena, El Palmar, Murcia 30120 (Spain); Vera-Sánchez, Juan Antonio [Servicio de Protección Radiológica y Física Médica Hospital Universitari Sant Joan de Reus, Av. del Dr. Josep Laporte, 2, Reus, Tarragona 43204 (Spain); Ruiz-Morales, Carmen [Hospital IMED Elche, Max Planck No. 3, Elche, Alicante 03203 (Spain)

    2016-05-15

    Purpose: This note studies the statistical relationships between color channels in radiochromic film readings with flatbed scanners. The same relationships are studied for noise. Finally, their implications for multichannel film dosimetry are discussed. Methods: Radiochromic films exposed to wedged fields of 6 MV energy were read in a flatbed scanner. The joint histograms of pairs of color channels were used to obtain the joint and conditional probability density functions between channels. Then, the conditional expectations and variances of one channel given another channel were obtained. Noise was extracted from film readings by means of a multiresolution analysis. Two different dose ranges were analyzed, the first one ranging from 112 to 473 cGy and the second one from 52 to 1290 cGy. Results: For the smallest dose range, the conditional expectations of one channel given another channel can be approximated by linear functions, while the conditional variances are fairly constant. The slopes of the linear relationships between channels can be used to simplify the expression that estimates the dose by means of the multichannel method. The slopes of the linear relationships between each channel and the red one can also be interpreted as weights in the final contribution to dose estimation. However, for the largest dose range, the conditional expectations of one channel given another channel are no longer linear functions. Finally, noises in different channels were found to correlate weakly. Conclusions: Signals present in different channels of radiochromic film readings show a strong statistical dependence. By contrast, noise correlates weakly between channels. For the smallest dose range analyzed, the linear behavior between the conditional expectation of one channel given another channel can be used to simplify calculations in multichannel film dosimetry.

  12. Axial vector diquark correlations in the nucleon: structure functions and static properties

    Energy Technology Data Exchange (ETDEWEB)

    Mineo, H. E-mail: mineo@nt.phys.s.u-tokyo.ac.jp; Bentz, W.; Ishii, N.; Yazaki, K

    2002-06-03

    In order to extract information on the strength of quark-quark correlations in the axial vector (a.v.) diquark channel (J{sup P}=1{sup +},T=1), we analyze the quark light cone momentum distributions in the nucleon, in particular their flavor dependencies, and the static properties of the nucleon. To construct the nucleon as a relativistic 3-quark bound state, we use a simple 'static' approximation to the full Faddeev equation in the Nambu-Jona-Lasinio model, including correlations in the scalar (J{sup P}=0{sup +},T=0) and a.v. diquark channels. It is shown that the a.v. diquark correlations should be rather weak compared to the scalar ones. From our analysis we extract information on the strength of the correlations as well as on the probability of the a.v. diquark channel.

  13. Frequency Dependence of Measured Massive MIMO Channel Properties

    DEFF Research Database (Denmark)

    Oliveras Martínez, Àlex; Carvalho, Elisabeth De; Nielsen, Jesper Ødum

    2016-01-01

    A multi-user massive MIMO measurement campaign is conducted to study the channel propagation characteristics (e.g. user correlation, sum of eigenvalues and condition number), focusing on the stability over frequencies and the impact of the array aperture. We use 3 arrays with 64 antennas (6m linear...... array, 2m linear array and 25cm by 28cm squared 2D array) serving 8 users holding a handset with 2 antennas. The study of the measurements shows that the propagation characteristics of the channel are stable for all the measured frequencies. We also observe that user proximity and user handgrip...... stabilize the studied properties of the channel across the frequencies, and in such case the larger the aperture of the array the more stable the properties. The number of base station antennas improves the propagation characteristics of the channel and stabilizes the properties in the frequency domain....

  14. Multicarrier chaotic communications in multipath fading channels without channel estimation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shilian, E-mail: wangsl@nudt.edu.cn; Zhang, Zhili [College of Electrical Science and Engineering, National University of Defense Technology, Changsha, 410073, P R China (China)

    2015-01-15

    A multi-carrier chaotic shift keying(MC-CSK) communication scheme with low probability of interception(LPI) is proposed in this article. We apply chaotic spreading sequences in the frequency domain, mapping a different chip of a chaotic sequence to an individual orthogonal frequency division multiplexing(OFDM) subcarrier. In each block size of $M$ OFDM symbols, we use one pilot OFDM symbol inserted time-spaced in all-frequency to transmit the reference chaotic signal and use the other M-1 OFDM symbols to transmit the information-bearing signals each spreaded by the reference chaotic signal. At the receiver, we construct a differential detector after DFT and recover the information bits from the correlations between the pilot OFDM symbol and the other M-1 OFDM symbols in each block size of M. Performance analysis and computer simulations show that the MC-CSK outperforms differential chaos shift keying(DCSK) in AWGN channels with high bandwidth efficiency for the block size of M=2 and that the MC-CSK exploits effectively the frequent diversity of the multipath channel.

  15. Multicarrier chaotic communications in multipath fading channels without channel estimation

    Directory of Open Access Journals (Sweden)

    Shilian Wang

    2015-01-01

    Full Text Available A multi-carrier chaotic shift keying(MC-CSK communication scheme with low probability of interception(LPI is proposed in this article. We apply chaotic spreading sequences in the frequency domain, mapping a different chip of a chaotic sequence to an individual orthogonal frequency division multiplexing(OFDM subcarrier. In each block size of $M$ OFDM symbols, we use one pilot OFDM symbol inserted time-spaced in all-frequency to transmit the reference chaotic signal and use the other M-1 OFDM symbols to transmit the information-bearing signals each spreaded by the reference chaotic signal. At the receiver, we construct a differential detector after DFT and recover the information bits from the correlations between the pilot OFDM symbol and the other M-1 OFDM symbols in each block size of M. Performance analysis and computer simulations show that the MC-CSK outperforms differential chaos shift keying(DCSK in AWGN channels with high bandwidth efficiency for the block size of M=2 and that the MC-CSK exploits effectively the frequent diversity of the multipath channel.

  16. Kinematics and statistics of dense, slow granular flow through vertical channels

    Science.gov (United States)

    Ananda, K. S.; Moka, Sudheshna; Nott, Prabhu R.

    We have investigated the flow of dry granular materials through vertical channels in the regime of dense slow flow using video imaging of the particles adjacent to a transparent wall. Using an image processing technique based on particle tracking velocimetry, the video movies were analysed to obtain the velocities of individual particles. Experiments were conducted in two- and three-dimensional channels. In the latter, glass beads and mustard seeds were used as model granular materials, and their translational velocities were measured. In the former, aluminium disks with a dark diametral stripe were used and their translational velocities and spin were measured. Experiments in the three-dimensional channels were conducted for a range of the channel width W, and for smooth and rough sidewalls. As in earlier studies, we find that shearing takes place predominantly in thin layers adjacent to the walls, while the rest of the material appears to move as a plug. However, there are large velocity fluctuations even in the plug, where the macroscopic deformation rate is negligibly small. The thickness of the shear layer, scaled by the particle diameter dp, increases weakly with W/dp. The experimental data for the velocity field are in good agreement with the Cosserat plasticity model proposed recently. We also measured the mean spin of the particles in the two-dimensional channel, and its deviation from half the vorticity. There is a clear, measurable deviation, which too is in qualitative agreement with the Cosserat plasticity model. The statistics of particle velocity and spin fluctuations in the two-dimensional channel were analysed by determining their probability distribution function, and their spatial and temporal correlation. They were all found to be broadly similar to previous observations for three-dimensional channels, but some differences are evident. The spatial correlation of the velocity fluctuations are much stronger in the two-dimensional channel, implying

  17. Model validation of channel zapping quality

    NARCIS (Netherlands)

    Kooij, R.; Nicolai, F.; Ahmed, K.; Brunnström, K.

    2009-01-01

    In an earlier paper we showed, that perceived quality of channel zapping is related to the perceived quality of download time of web browsing, as suggested by ITU-T Rec.G.1030. We showed this by performing subjective tests resulting in an excellent fit with a 0.99 correlation. This was what we call

  18. Ion mass dependence for low energy channeling in single-wall nanotubes

    International Nuclear Information System (INIS)

    Zheng Liping; Zhu Zhiyuan; Li Yong; Zhu Dezhang; Xia Huihao

    2008-01-01

    An Monte Carlo (MC) simulation program has been used to study ion mass dependence for the low energy channeling of natural- and pseudo-Ar ions in single-wall nanotubes. The MC simulations show that the channeling critical angle Ψ C obeys the (E) -1/2 and the (M 1 ) -1/2 rules, where E is the incident energy and M 1 is the ion mass. The reason for this may be that the motion of the channeled (or de-channeled) ions should be correlated with both the incident energy E and the incident momentum (2M 1 E) 1/2 , in order to obey the conservation of energy and momentum

  19. RHIC Data Correlation Methodology

    International Nuclear Information System (INIS)

    Michnoff, R.; D'Ottavio, T.; Hoff, L.; MacKay, W.; Satogata, T.

    1999-01-01

    A requirement for RHIC data plotting software and physics analysis is the correlation of data from all accelerator data gathering systems. Data correlation provides the capability for a user to request a plot of multiple data channels vs. time, and to make meaningful time-correlated data comparisons. The task of data correlation for RHIC requires careful consideration because data acquisition triggers are generated from various asynchronous sources including events from the RHIC Event Link, events from the two Beam Sync Links, and other unrelated clocks. In order to correlate data from asynchronous acquisition systems a common time reference is required. The RHIC data correlation methodology will allow all RHIC data to be converted to a common wall clock time, while still preserving native acquisition trigger information. A data correlation task force team, composed of the authors of this paper, has been formed to develop data correlation design details and provide guidelines for software developers. The overall data correlation methodology will be presented in this paper

  20. Urea recycling contributes to nitrogen retention in calves fed milk replacer and low-protein solid feed.

    Science.gov (United States)

    Berends, Harma; van den Borne, Joost J G C; Røjen, Betina A; van Baal, Jürgen; Gerrits, Walter J J

    2014-07-01

    Urea recycling, with urea originating from catabolism of amino acids and hepatic detoxification of ammonia, is particularly relevant for ruminant animals, in which microbial protein contributes substantially to the metabolizable protein supply. However, the quantitative contribution of urea recycling to protein anabolism in calves during the transition from preruminants (milk-fed calves) to ruminants [solid feed (SF)-fed calves] is unknown. The aim of this study was to quantify urea recycling in milk-fed calves when provided with low-protein SF. Forty-eight calves [164 ± 1.6 kg body weight (BW)] were assigned to 1 of 4 SF levels [0, 9, 18, and 27 g of dry matter (DM) SF · kg BW(-0.75) · d⁻¹] provided in addition to an identical amount of milk replacer. Urea recycling was quantified after a 24-h intravenous infusion of [¹⁵N₂]urea by analyzing urea isotopomers in 68-h fecal and urinary collections. Real-time qPCR was used to measure gene expression levels of bovine urea transporter B (bUTB) and aquaglyceroporin-3 and aquaglyceroporin-7 in rumen wall tissues. For every incremental gram of DM SF intake (g DM · kg(0.75)), nitrogen intake increased by 0.70 g, and nitrogen retention increased by 0.55 g (P intake, but aquaglyceroporin-7 expression did not. We conclude that in addition to the increase in digested nitrogen, urea recycling contributes to the observed increase in nitrogen retention with increasing SF intake in milk-fed calves. Furthermore, ruminal bUTB and aquaglyceroporin-3 expression are upregulated with SF intake, which might be associated with urea recycling. © 2014 American Society for Nutrition.

  1. Strategies for sustainable channel relations in mobile telecom sector

    Directory of Open Access Journals (Sweden)

    Githa Heggde

    2011-01-01

    Full Text Available The telecom sector in India largely comprises of wireless connections for phones. As of today, there are approximately 21 network providers in the country with about 7 per each circle, each offering competitive pricing to the consumers. The main objective of the study is to provide an accurate role for the company executive in developing channel relations. Further to this, the study explores the strategies which can sustain a good working relationship between the company and its channel members in the mobile telecom sector. The constructs identified for developing sustainable relationships were Setting distribution objectives, Channel design, Logistics, Image Building, Inventory management, Channel management, Payment & credit, Promotional assistance, Setting targets, Coverage frequency , Motivating channel members to perform. The sample selected contained distributors from the Mobile telecom sector and company executives/channel managers of leading telecom companies. Factor analysis and Friedman’s test was applied. The findings revealed a correlation in attitude between distributors and the executives. Motivating distributors was rated as the most important strategy by the company. The distributors felt that all channel partners needed to have positive attitude towards the channel while company executives felt that aggression made channel members perform effectively. Such findings will be of use to mobile telecom companies who are new entrants to the Indian market and to existing companies who plan to expand their coverage.

  2. Multivariate η-μ fading distribution with arbitrary correlation model

    Science.gov (United States)

    Ghareeb, Ibrahim; Atiani, Amani

    2018-03-01

    An extensive analysis for the multivariate ? distribution with arbitrary correlation is presented, where novel analytical expressions for the multivariate probability density function, cumulative distribution function and moment generating function (MGF) of arbitrarily correlated and not necessarily identically distributed ? power random variables are derived. Also, this paper provides exact-form expression for the MGF of the instantaneous signal-to-noise ratio at the combiner output in a diversity reception system with maximal-ratio combining and post-detection equal-gain combining operating in slow frequency nonselective arbitrarily correlated not necessarily identically distributed ?-fading channels. The average bit error probability of differentially detected quadrature phase shift keying signals with post-detection diversity reception system over arbitrarily correlated and not necessarily identical fading parameters ?-fading channels is determined by using the MGF-based approach. The effect of fading correlation between diversity branches, fading severity parameters and diversity level is studied.

  3. Critical heat flux for flow boiling of water in mini-channels

    International Nuclear Information System (INIS)

    Zhang, Weizhong; Mishima, Kaichiro; Hibiki, Takashi

    2007-01-01

    Critical heat flux (CHF) is a limiting factor when flow boiling is applied to dissipate high heat flux in mini-channels. In view of practical importance of critical heat flux correlations in engineering design and prediction, this study presents an evaluation of existing CHF correlations for flow boiling of water with available databases taken from small-diameter tubes, and then develops a new, simple CHF correlation for flow boiling in mini-channel. Three correlations by Bowring, Katto and Shah are evaluated with available CHF data in the literature for saturated flow boiling, and three correlations by Inasaka-Nariai, Celata et al. and Hall-Mudawar evaluated with the CHF data for subcooled flow boiling. The Hall-Mudawar correlation and the Shah correlation appear to be the most reliable tools for CHF prediction in the subcooled and saturated flow boiling regions, respectively. In order to avoid the defect of predictive discontinuities often encountered when applying previous correlations, a simple, nondimensional, inlet conditions dependent CHF correlation for saturated flow boiling has been formulated. Its functional form is determined by application of the artificial neural network and parametric trend analyses to the collected database. Superiority of this new correlation has been verified by the collected database. It has a mean deviation of 16.8% for this collected databank, smallest among all tested correlations. Compared to many inordinately complex correlations, this new correlation consists only of one single equation. (author)

  4. HCN Channels Modulators: The Need for Selectivity

    Science.gov (United States)

    Romanelli, Maria Novella; Sartiani, Laura; Masi, Alessio; Mannaioni, Guido; Manetti, Dina; Mugelli, Alessandro; Cerbai, Elisabetta

    2016-01-01

    Hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels, the molecular correlate of the hyperpolarization-activated current (If/Ih), are membrane proteins which play an important role in several physiological processes and various pathological conditions. In the Sino Atrial Node (SAN) HCN4 is the target of ivabradine, a bradycardic agent that is, at the moment, the only drug which specifically blocks If. Nevertheless, several other pharmacological agents have been shown to modulate HCN channels, a property that may contribute to their therapeutic activity and/or to their side effects. HCN channels are considered potential targets for developing drugs to treat several important pathologies, but a major issue in this field is the discovery of isoform-selective compounds, owing to the wide distribution of these proteins into the central and peripheral nervous systems, heart and other peripheral tissues. This survey is focused on the compounds that have been shown, or have been designed, to interact with HCN channels and on their binding sites, with the aim to summarize current knowledge and possibly to unveil useful information to design new potent and selective modulators. PMID:26975509

  5. Study of condensation of refrigerants in a micro-channel for development of future compact micro-channel condensers

    Science.gov (United States)

    Chowdhury, Sourav

    2009-12-01

    Mini- and micro-channel technology has gained considerable ground in the recent years in industry and is favored due to its several advantages stemming from its high surface to volume ratio and high values of proof pressure it can withstand. Micro-channel technology has paved the way to development of highly compact heat exchangers with low cost and mass penalties. In the present work, the issues related to the sizing of compact micro-channel condensers have been explored. The considered designs encompass both the conventional and MEMS fabrication techniques. In case of MEMS-fabricated micro-channel condenser, wet etching of the micro-channel structures, followed by bonding of two such wafers with silicon nitride layers at the interface was attempted. It was concluded that the silicon nitride bonding requires great care in terms of high degree of surface flatness and absence of roughness and also high degree of surface purity and thus cannot be recommended for mass fabrication. Following this investigation, a carefully prepared experimental setup and test micro-channel with hydraulic diameter 700 mum and aspect ratio 7:1 was fabricated and overall heat transfer and pressure drop aspects of two condensing refrigerants, R134a and R245fa were studied at a variety of test conditions. To the best of author's knowledge, so far no data has been reported in the literature on condensation in such high aspect ratio micro-channels. Most of the published experimental works on condensation of refrigerants are concerning conventional hydraulic diameter channels (> 3mm) and only recently some experimental data has been reported in the sub-millimeter scale channels for which the surface tension and viscosity effects play a dominant role and the effect of gravity is diminished. It is found that both experimental data and empirically-derived correlations tend to under-predict the present data by an average of 25%. The reason for this deviation could be because a high aspect ratio

  6. Computational Investigations in Rectangular Convergent and Divergent Ribbed Channels

    Science.gov (United States)

    Sivakumar, Karthikeyan; Kulasekharan, N.; Natarajan, E.

    2018-05-01

    Computational investigations on the rib turbulated flow inside a convergent and divergent rectangular channel with square ribs of different rib heights and different Reynolds numbers (Re=20,000, 40,000 and 60,000). The ribs were arranged in a staggered fashion between the upper and lower surfaces of the test section. Computational investigations are carried out using computational fluid dynamic software ANSYS Fluent 14.0. Suitable solver settings like turbulence models were identified from the literature and the boundary conditions for the simulations on a solution of independent grid. Computations were carried out for both convergent and divergent channels with 0 (smooth duct), 1.5, 3, 6, 9 and 12 mm rib heights, to identify the ribbed channel with optimal performance, assessed using a thermo hydraulic performance parameter. The convergent and divergent rectangular channels show higher Nu values than the standard correlation values.

  7. Expected number of quantum channels in quantum networks

    Science.gov (United States)

    Chen, Xi; Wang, He-Ming; Ji, Dan-Tong; Mu, Liang-Zhu; Fan, Heng

    2015-07-01

    Quantum communication between nodes in quantum networks plays an important role in quantum information processing. Here, we proposed the use of the expected number of quantum channels as a measure of the efficiency of quantum communication for quantum networks. This measure quantified the amount of quantum information that can be teleported between nodes in a quantum network, which differs from classical case in that the quantum channels will be consumed if teleportation is performed. We further demonstrated that the expected number of quantum channels represents local correlations depicted by effective circles. Significantly, capacity of quantum communication of quantum networks quantified by ENQC is independent of distance for the communicating nodes, if the effective circles of communication nodes are not overlapped. The expected number of quantum channels can be enhanced through transformations of the lattice configurations of quantum networks via entanglement swapping. Our results can shed lights on the study of quantum communication in quantum networks.

  8. The Mobility and Dispersal of Augmented Gravel in Upland Channels: a Knowledge-limited Practise in Supply-limited Channels

    Science.gov (United States)

    Downs, P. W.; Gilvear, D. J.

    2017-12-01

    Most river restoration research has been directed at rivers in the highly populated alluvial lowlands: significantly less is known about effectively rehabilitating upland channels, in part because the dynamics of sediment transfer are less well understood. Upland gravel augmentation is thus both a somewhat unproven method for rehabilitating degraded aquatic habitats in sediment-poor reaches, but also a natural experiment in better understanding sediment dynamics in steep, hydraulically-complex river channels. Monitoring on the River Avon in SW England since Water Year (WY) 2015 uses seismic impact plates, RFID-tagged particles and detailed channel bed mapping to establish the mobility rates of augmented particles, their dispersal distances and settling locations relative to flows received. Particles are highly, and equally, mobile: in WY2015, 17 sub-bankfull flows moved at least 60% of augmented particles with volumetric movement non-linearly correlated to flow energy but not to particle size. Waning rates of transport over the year suggest supply limitations. This relationship breaks down early in WY2017 where a two-year flow event moved 40% of the particles in just two months - confounding factors may include particle mass differences and particle supplies from upstream. Median particle travel distances correlate well to energy applied and suggest a long-tailed fan of dispersal with supplemental controls including channel curvature, boulder presence and stream power. Locally, particles are deposited preferentially around boulders and in sheltered river margins but also perched in clusters above the low-flow channel. High tracer mobility makes median transport distances highly dependent on the survey length - in WY2017 some particles travelled 300 m in a 3-month period that included the two-year flood event. Further, in WY2017 median transport distance as a function of volumetric transport suggested significant transport beyond the target reach. The observed

  9. Channel Capacity Calculation at Large SNR and Small Dispersion within Path-Integral Approach

    Science.gov (United States)

    Reznichenko, A. V.; Terekhov, I. S.

    2018-04-01

    We consider the optical fiber channel modelled by the nonlinear Shrödinger equation with additive white Gaussian noise. Using Feynman path-integral approach for the model with small dispersion we find the first nonzero corrections to the conditional probability density function and the channel capacity estimations at large signal-to-noise ratio. We demonstrate that the correction to the channel capacity in small dimensionless dispersion parameter is quadratic and positive therefore increasing the earlier calculated capacity for a nondispersive nonlinear optical fiber channel in the intermediate power region. Also for small dispersion case we find the analytical expressions for simple correlators of the output signals in our noisy channel.

  10. Design of Wideband MIMO Car-to-Car Channel Models Based on the Geometrical Street Scattering Model

    Directory of Open Access Journals (Sweden)

    Nurilla Avazov

    2012-01-01

    Full Text Available We propose a wideband multiple-input multiple-output (MIMO car-to-car (C2C channel model based on the geometrical street scattering model. Starting from the geometrical model, a MIMO reference channel model is derived under the assumption of single-bounce scattering in line-of-sight (LOS and non-LOS (NLOS propagation environments. The proposed channel model assumes an infinite number of scatterers, which are uniformly distributed in two rectangular areas located on both sides of the street. Analytical solutions are presented for the space-time-frequency cross-correlation function (STF-CCF, the two-dimensional (2D space CCF, the time-frequency CCF (TF-CCF, the temporal autocorrelation function (ACF, and the frequency correlation function (FCF. An efficient sum-of-cisoids (SOCs channel simulator is derived from the reference model. It is shown that the temporal ACF and the FCF of the SOC channel simulator fit very well to the corresponding correlation functions of the reference model. To validate the proposed channel model, the mean Doppler shift and the Doppler spread of the reference model have been matched to real-world measurement data. The comparison results demonstrate an excellent agreement between theory and measurements, which confirms the validity of the derived reference model. The proposed geometry-based channel simulator allows us to study the effect of nearby street scatterers on the performance of C2C communication systems.

  11. Joint Linear Processing for an Amplify-and-Forward MIMO Relay Channel with Imperfect Channel State Information

    Directory of Open Access Journals (Sweden)

    Vandendorpe Luc

    2010-01-01

    Full Text Available The problem of jointly optimizing the source precoder, relay transceiver, and destination equalizer has been considered in this paper for a multiple-input-multiple-output (MIMO amplify-and-forward (AF relay channel, where the channel estimates of all links are assumed to be imperfect. The considered joint optimization problem is nonconvex and does not offer closed-form solutions. However, it has been shown that the optimization of one variable when others are fixed is a convex optimization problem which can be efficiently solved using interior-point algorithms. In this context, an iterative technique with the guaranteed convergence has been proposed for the AF MIMO relay channel that includes the direct link. It has been also shown that, for the double-hop relay case without the receive-side antenna correlations in each hop, the global optimality can be confirmed since the structures of the source precoder, relay transceiver, and destination equalizer have closed forms and the remaining joint power allocation can be solved using Geometric Programming (GP technique under high signal-to-noise ratio (SNR approximation. In the latter case, the performance of the iterative technique and the GP method has been compared with simulations to ensure that the iterative approach gives reasonably good solutions with an acceptable complexity. Moreover, simulation results verify the robustness of the proposed design when compared to the nonrobust design that assumes estimated channels as actual channels.

  12. Analysis of Multipath Mitigation Techniques with Land Mobile Satellite Channel Model

    Directory of Open Access Journals (Sweden)

    M. Z. H. Bhuiyan J. Zhang

    2012-12-01

    Full Text Available Multipath is undesirable for Global Navigation Satellite System (GNSS receivers, since the reception of multipath can create a significant distortion to the shape of the correlation function leading to an error in the receivers’ position estimate. Many multipath mitigation techniques exist in the literature to deal with the multipath propagation problem in the context of GNSS. The multipath studies in the literature are often based on optimistic assumptions, for example, assuming a static two-path channel or a fading channel with a Rayleigh or a Nakagami distribution. But, in reality, there are a lot of channel modeling issues, for example, satellite-to-user geometry, variable number of paths, variable path delays and gains, Non Line-Of-Sight (NLOS path condition, receiver movements, etc. that are kept out of consideration when analyzing the performance of these techniques. Therefore, this is of utmost importance to analyze the performance of different multipath mitigation techniques in some realistic measurement-based channel models, for example, the Land Multipath is undesirable for Global Navigation Satellite System (GNSS receivers, since the reception of multipath can create a significant distortion to the shape of the correlation function leading to an error in the receivers’ position estimate. Many multipath mitigation techniques exist in the literature to deal with the multipath propagation problem in the context of GNSS. The multipath studies in the literature are often based on optimistic assumptions, for example, assuming a static two-path channel or a fading channel with a Rayleigh or a Nakagami distribution. But, in reality, there are a lot of channel modeling issues, for example, satellite-to-user geometry, variable number of paths, variable path delays and gains, Non Line-Of-Sight (NLOS path condition, receiver movements, etc. that are kept out of consideration when analyzing the performance of these techniques. Therefore, this

  13. Measurement channel of neutron flow based on software

    International Nuclear Information System (INIS)

    Rivero G, T.; Benitez R, J. S.

    2008-01-01

    The measurement of the thermal power in nuclear reactors is based mainly on the measurement of the neutron flow. The presence of these in the reactor core is associated to neutrons released by the fission reaction of the uranium-235. Once moderate, these neutrons are precursors of new fissions. This process it is known like chain reaction. Thus, the power to which works a nuclear reactor, he is proportional to the number of produced fissions and as these depend on released neutrons, also the power is proportional to the number of present neutrons. The measurement of the thermal power in a reactor is realized with called instruments nuclear channels. To low power (level source), these channels measure the individual counts of detected neutrons, whereas to a medium and high power, they measure the electrical current or fluctuation of the same one that generate the fission neutrons in ionization chambers especially designed to detect neutrons. For the case of TRIGA reactors, the measurement channels of neutron flow use discreet digital electronic technology makes some decades already. Recently new technological tools have arisen that allow developing new versions of nuclear channels of simple form and compacts. The present work consists of the development of a nuclear channel for TRIGA reactors based on the use of the correlated signal of a fission chamber for ample interval. This new measurement channel uses a data acquisition card of high speed and the data processing by software that to the being installed in a computer is created a virtual instrument, with what spreads in real time, in graphic and understandable form for the operator, the power indication to which it operates the nuclear reactor. This system when being based on software, offers a major versatility to realize changes in the signal processing and power monitoring algorithms. The experimental tests of neutronic power measurement show a reliable performance through seven decades of power, with a

  14. Experimental investigation of onset of nucleate boiling in this rectangular channels

    International Nuclear Information System (INIS)

    Belhadj, M.; Christensen, R.N.; Aldemir, T.

    1988-01-01

    The 10 kW, HEU fueled Ohio State University Research Reactor (OSURR) will be upgraded to operate with plate type LEU U 3 Si 2 , fuel elements in the power range 250-500 kW. The core will be cooled by natural convection and an onset of nucleate boiling (ONB) margin of 1.2 will be maintained in the hot channel under steady-state operation. The validity of the correlations used for predicting ONB in plate type research reactors is not known for low heat flux-low velocity flows. An experiment has been set up at The Ohio State University to investigate ONB for laminar flow in this rectangular channels. The results show that: The Bergles-Rohsenow correlation and the correlation proposed by Ricque and Siboul predict higher and lower ONB fluxes than actual, respectively. The ONB heat flux is flow velocity dependent

  15. Angular correlations in top quark decays in standard model extensions

    International Nuclear Information System (INIS)

    Batebi, S.; Etesami, S. M.; Mohammadi-Najafabadi, M.

    2011-01-01

    The CMS Collaboration at the CERN LHC has searched for the t-channel single top quark production using the spin correlation of the t-channel. The signal extraction and cross section measurement rely on the angular distribution of the charged lepton in the top quark decays, the angle between the charged lepton momentum and top spin in the top rest frame. The behavior of the angular distribution is a distinct slope for the t-channel single top (signal) while it is flat for the backgrounds. In this Brief Report, we investigate the contributions which this spin correlation may receive from a two-Higgs doublet model, a top-color assisted technicolor (TC2) and the noncommutative extension of the standard model.

  16. Functional characterization of a prokaryotic Kir channel.

    Science.gov (United States)

    Enkvetchakul, Decha; Bhattacharyya, Jaya; Jeliazkova, Iana; Groesbeck, Darcy K; Cukras, Catherine A; Nichols, Colin G

    2004-11-05

    The Kir gene family encodes inward rectifying K+ (Kir) channels that are widespread and critical regulators of excitability in eukaryotic cells. A related gene family (KirBac) has recently been identified in prokaryotes. While a crystal structure of one member, Kir-Bac1.1, has been solved, there has been no functional characterization of any KirBac gene products. Here we present functional characterization of KirBac1.1 reconstituted in liposomes. Utilizing a 86Rb+ uptake assay, we demonstrate that KirBac1.1 generates a K+ -selective permeation path that is inhibited by extraliposomal Ba2+ and Ca2+ ions. In contrast to KcsA (an acid-activated bacterial potassium channel), KirBac1.1 is inhibited by extraliposomal acid (pKa approximately 6). This characterization of KirBac1.1 activity now paves the way for further correlation of structure and function in this model Kir channel.

  17. Time delay correlations in chaotic scattering and random matrix approach

    International Nuclear Information System (INIS)

    Lehmann, N.; Savin, D.V.; Sokolov, V.V.; Sommers, H.J.

    1994-01-01

    We study the correlations in the time delay a model of chaotic resonance scattering based on the random matrix approach. Analytical formulae which are valid for arbitrary number of open channels and arbitrary coupling strength between resonances and channels are obtained by the supersymmetry method. The time delay correlation function, through being not a Lorentzian, is characterized, similar to that of the scattering matrix, by the gap between the cloud of complex poles of the S-matrix and the real energy axis. 28 refs.; 4 figs

  18. Experiment on transient heat transfer in closed narrow channel

    International Nuclear Information System (INIS)

    Ochiai, Masaaki

    1985-01-01

    Heat transfer coefficients and transient pressures in closed narrow channels were obtained experimentally, in order to assess the gap heat transfer models in the computer code WTRLGD which were devised to analyze the internal pressure behavior of waterlogged fuel rods. Gap widths of channels are 0.1--0.5mm to simulate the gap region of waterlogged fuel rods, and test fluids are water (7--89.2 0 C) and Freon-113 (9.2 0 C). The results show that the heater temperature and the pressure measured in the experiments without the DNB occurrence are simulated fairly well by the calculational model of WTRLGD where the heat transfer in a closed narrow channel is evaluated with one-dimensional transient thermal conduction equation and Jens and Lottes' correlation for nucleate boiling. Consequently, it is also suggested that the above equations are available for evaluation of heat flux from fuel to internal water of waterlogged fuel rods. The film boiling heat transfer coefficient was in the same order of that evaluated by Bromley's correlation and the DNB heat flux was smaller than that obtained in quasi-steady experiments with ordinary systems, although the experimental data for them were not enough. (author)

  19. Cation gating and selectivity in a purified, reconstituted, voltage-dependent sodium channel

    International Nuclear Information System (INIS)

    Barchi, R.L.; Tanaka, J.C.

    1984-01-01

    In excitable membranes, the voltage-dependent sodium channel controls the primary membrane conductance change necessary for the generation of an action potential. Over the past four decades, the time- and voltage-dependent sodium currents gated by this channel have been thoroughly documented with increasingly sophisticated voltage-clamp techniques. Recent advances in the biochemistry of membrane proteins have led to the solubilization and purification of this channel protein from nerve (6) and from muscle (4) or muscle-derived (1) membranes, and have provided an approach to the correlation of the channel's molecular structure with its functional properties. Each of these sodium channel preparations appears to contain a large glycoprotein either as its sole component (2) or in association with several small subunits (6, 3). Evidence that these purified proteins represent the excitable membrane sodium channel is presented. 8 refs., 1 fig., 1 tab

  20. Channelling and electromagnetic radiation of channelling particles

    International Nuclear Information System (INIS)

    Kalashnikov, N.

    1983-01-01

    A brief description is presented of the channelling of charged particles between atoms in the crystal lattice. The specificities are discussed of the transverse motion of channelling particles as are the origin and properties of quasi-characteristic radiation of channelling particles which accompany transfers from one band of permissible energies of the transverse motion of channelling particles to the other. (B.S.)

  1. Modeling of dislocation channel width evolution in irradiated metals

    Science.gov (United States)

    Doyle, Peter J.; Benensky, Kelsa M.; Zinkle, Steven J.

    2018-02-01

    Defect-free dislocation channel formation has been reported to promote plastic instability during tensile testing via localized plastic flow, leading to a distinct loss of ductility and strain hardening in many low-temperature irradiated materials. In order to study the underlying mechanisms governing dislocation channel width and formation, the channel formation process is modeled via a simple stochastic dislocation-jog process dependent upon grain size, defect cluster density, and defect size. Dislocations traverse a field of defect clusters and jog stochastically upon defect interaction, forming channels of low defect-density. Based upon prior molecular dynamics (MD) simulations and in-situ experimental transmission electron microscopy (TEM) observations, each dislocation encounter with a dislocation loop or stacking fault tetrahedron (SFT) is assumed to cause complete absorption of the defect cluster, prompting the dislocation to jog up or down by a distance equal to half the defect cluster diameter. Channels are predicted to form rapidly and are comparable to reported TEM measurements for many materials. Predicted channel widths are found to be most strongly dependent on mean defect size and correlated well with a power law dependence on defect diameter and density, and distance from the dislocation source. Due to the dependence of modeled channel width on defect diameter and density, maximum channel width is predicted to slowly increase as accumulated dose increases. The relatively weak predicted dependence of channel formation width with distance, in accordance with a diffusion analogy, implies that after only a few microns from the source, most channels observed via TEM analyses may not appear to vary with distance because of limitations in the field-of-view to a few microns. Further, examinations of the effect of the so-called "source-broadening" mechanism of channel formation showed that its effect is simply to add a minimum thickness to the channel

  2. Some properties of a channeling model of fracture flow

    International Nuclear Information System (INIS)

    Tsang, Y.W.; Tsang, C.F.; Neretnieks, I.

    1986-12-01

    The Gamma distribution and the log-normal distribution were used to describe the density distribution of the apertures within a channel. For every set of parameter values (correlation length, and the parameters of the distributions) 95 different statistically equivalent channels were generated. The aperture distribution along the channels are then used to determine the total channel volume, the hydraulic conductivity and the flow rate and residence time for a given gradient. The volumes of the channels were found to vary little whereas the hydraulic conductivity, which is primarily determined by the smallest aperture along the channels, varies considerably. For a wide density distribution the hydraulic conductivity easily spans several orders of magnitude. The flow rate and the velocity variations are primarily influenced by the conductivity variations and are only to a small extent influenced by the volume variations in the channel. The average specific area of the whole channel exhibits small variations. The hydraulic and transport properties of hypothetical fractures containing several channels are investigated by randomly picking several of the generated channels, coupling them in parallel and subjecting them to the same hydraulic head difference. The flow rate and residence time distribution of the coupled channels is used to investigate the dispersion properties of the fracture. It was found that the dispersion expressed as Peclet numbers was on the order of 1 to 4 for most of the distributions used but could attain very large Peclet numbers for (unrealistically) narrow aperture distributions. Simulations of breakthrough curves for tracers in single fracture flow experiments indicate that when few channels participate and the dispersion in the individual channels is small, the breakthrough curve is expected not to be entirely smooth but to contain distinct plateaus. This property has been noted in several experiments. (orig./HP)

  3. Experimental studies on heat transfer to supercritical water in 2 × 2 rod bundle with two channels

    International Nuclear Information System (INIS)

    Gu, H.Y.; Hu, Z.X.; Liu, D.; Xiao, Y.; Cheng, X.

    2015-01-01

    Highlights: • Heat transfer to supercritical water in a 2 × 2 rod bundle is investigated. • Effects of system parameters on heat transfer in bundle are analyzed. • The test data were compared with twenty heat transfer correlations. - Abstract: The experiment of heat transfer to supercritical water in 2 × 2 rod bundle is performed at Shanghai Jiao Tong University. The test section consists of two channels separated by a square steel assembly box with rounded corners. Water flows downward in the first channel and then turns upward in the second channel to cool the 2 × 2 rod bundle installed inside the assembly box. The bundle consists of four heated rods of 10 mm in O.D. and 1.18 in pitch-to-diameter ratio. The fluid enthalpy in the first channel increases due to the heat transfer through the assembly box when flowing downward. The minimum fluid enthalpy increase in the first channel appears at the pseudo-critical region due to the small temperature difference between the two channels. Effects of various parameters on heat transfer behavior inside the 2 × 2 rod bundle are similar to those observed in tube or annuli. No special phenomenon in heat transfer is observed during the mass flux and power transient. The steady-state heat transfer correlation is applicable to predict the heat transfer in the mass or power transient sequence. In addition, the importance of several dimensionless numbers and the accuracy of 20 heat transfer correlations are assessed. It is concluded that the buoyancy parameter proposed by Cheng et al. (2009) shows unique effect on heat transfer coefficient. Among the 20 selected heat transfer correlations, the correlations of Jackson and Fewster (1975) and Bishop et al. (1964) give the best predictions when compared with the experimental data

  4. First results of correlation electron cyclotron emission on Tore Supra

    OpenAIRE

    Udintsev, V. S.; Goniche, M.; Ségul, J.L.; Giruzzi, G.; Molina, D.; Turco, F.; Huysmans, G. T. A.; Maget, P.; Krämer-Flecken, A.

    2006-01-01

    Measurements of electron temperature fluctuations by means of correlation electron cyclotron emission (ECE) diagnostics aid in understanding the nature of the turbulent transport infusion plasmas. On Tore Supra tokamak, a 32-channel heterodyne ECE radiometer has been upgraded to include two channels for temperature fluctuation measurements. The central frequency of the yttrium iron garnet filter on each channel is remotely monitored by a driver, allowing one to shift the observation volume in...

  5. Stable formation of ultrahigh power-density 248 nm channels in Xe cluster targets

    Energy Technology Data Exchange (ETDEWEB)

    Borisov, Alex B.; Racz, Ervin; Khan, Shahab F.; Poopalasingam, Sankar; McCorkindale, John C.; Boguta, John; Longworth, James W.; Rhodes, Charles K. [Laboratory for X-ray Microimaging and Bioinformatics, Department of Physics, University of Illinois at Chicago, Chicago, IL 60607-7059 (United States); KFKI Research Institute for Particle and Nuclear Physics, EURATOM Association, P.O. Box 49, 1525 Budapest (Hungary)

    2012-07-11

    The optimization of relativistic and ponderomotive self-channeling of ultra-powerful 248 nm laser pulses launched in underdense plasmas with an appropriate longitudinal gradient in the electron density profile located at the initial stage of the self-channeling leads to (1) stable channel formation and (2) highly efficient power compression producing power densities in the 10{sup 19}-10{sup 20} W/cm{sup 3} range. The comparison of theoretical studies with experimental results involving the correlation of (a) Thomson images of the electron density with (b) x-ray images of the channel morphology demonstrates that more than 90% of the incident 248 nm power can be trapped in stable channels and that this stable propagation can be extended to power levels significantly exceeding the critical power of the self-channeling process.

  6. Investigation of Heat Transfer in Mini Channels using Planar Laser Induced Fluorescence

    DEFF Research Database (Denmark)

    Bøgild, Morten Ryge; Poulsen, Jonas Lundsted; Rath, Emil Zacho

    2012-01-01

    In this paper an experimental investigation of the heat transfer in mini channels with a hydraulic diameter of 889 m is conducted. The method used is planar laser induceduorescence (PLIF), which uses the principle of laser excitation of rhodamine B in water. The goal of this study is to validate...... the applicability of PLIF to determine the convective heat transfer coecient in mini channels against conventional correlations of the convective heat transfer coecient. The applicability of the conventional theory in micro and mini channels has been discussed by several researchers, but to the authors knowledge...

  7. Optimization of Training Signal Transmission for Estimating MIMO Channel under Antenna Mutual Coupling Conditions

    Directory of Open Access Journals (Sweden)

    Xia Liu

    2010-01-01

    Full Text Available This paper reports investigations on the effect of antenna mutual coupling on performance of training-based Multiple-Input Multiple-Output (MIMO channel estimation. The influence of mutual coupling is assessed for two training-based channel estimation methods, Scaled Least Square (SLS and Minimum Mean Square Error (MMSE. It is shown that the accuracy of MIMO channel estimation is governed by the sum of eigenvalues of channel correlation matrix which in turn is influenced by the mutual coupling in transmitting and receiving array antennas. A water-filling-based procedure is proposed to optimize the training signal transmission to minimize the MIMO channel estimation errors.

  8. Colloid-colloid hydrodynamic interaction around a bend in a quasi-one-dimensional channel.

    Science.gov (United States)

    Liepold, Christopher; Zarcone, Ryan; Heumann, Tibor; Rice, Stuart A; Lin, Binhua

    2017-07-01

    We report a study of how a bend in a quasi-one-dimensional (q1D) channel containing a colloid suspension at equilibrium that exhibits single-file particle motion affects the hydrodynamic coupling between colloid particles. We observe both structural and dynamical responses as the bend angle becomes more acute. The structural response is an increasing depletion of particles in the vicinity of the bend and an increase in the nearest-neighbor separation in the pair correlation function for particles on opposite sides of the bend. The dynamical response monitored by the change in the self-diffusion [D_{11}(x)] and coupling [D_{12}(x)] terms of the pair diffusion tensor reveals that the pair separation dependence of D_{12} mimics that of the pair correlation function just as in a straight q1D channel. We show that the observed behavior is a consequence of the boundary conditions imposed on the q1D channel: both the single-file motion and the hydrodynamic flow must follow the channel around the bend.

  9. Heat transfer and pressure drop in rectangular channels with crossing fins (a Review)

    Science.gov (United States)

    Sokolov, N. P.; Polishchuk, V. G.; Andreev, K. D.; Rassokhin, V. A.; Zabelin, N. A.

    2015-06-01

    Channels with crossing finning find wide use in the cooling paths of high-temperature gas turbine blade systems. At different times, different institutions carried out experimental investigations of heat transfer and pressure drop in channels with coplanar finning of opposite walls for obtaining semiempirical dependences of Nusselt criteria (dimensionless heat-transfer coefficients) and pressure drop coefficients on the operating Reynolds number and relative geometrical parameters (or their complexes). The shape of experimental channels, the conditions of experiments, and the used variables were selected so that they would be most suited for solving particular practical tasks. Therefore, the results obtained in processing the experimental data have large scatter and limited use. This article considers the results from experimental investigations of different authors. In comparing the results, additional calculations were carried out for bringing the mathematical correlations to the form of dependences from the same variables. Generalization of the results is carried out. In the final analysis, universal correlations are obtained for determining the pressure drop coefficients and Nusselt number values for the flow of working medium in channels with coplanar finning.

  10. Charged and Neutral Particles Channeling Phenomena Channeling 2008

    Science.gov (United States)

    Dabagov, Sultan B.; Palumbo, Luigi

    2010-04-01

    regime by a buried oxide layer / V. Guidi, A. Mazzolari and V. V. Tikhomirov -- A positron source using channeling in crystals for linear colliders / X. Artru ... [et al.] -- Parametric channeling and collapse of charged particles beams in crystals / M. Vysotskyy and V. Vysotskii.The formation and usage of coherent correlated charged particles states in the physics of channeling in crystals / S. V. Adamenko, V. I. Vysotskii and M. V. Vysotskyy -- Surface channeling of magnetic-charged particles on multilayer surface / S. V. Adamenko and V. I. Vysotskii -- Coherent creation of anti-hydrogen atoms in a crystal by relativistic antiproton / Yu. P. Kunashenko -- Thermal equilibrium of light ions in heavy crystals / E. Tsyganov -- Photon emission of electrons in a crystalline undulator / H. Backe ... [et al.] -- Channeling radiation from relativistic electrons in a crystal target as complementary x-ray and gamma ray source at synchrotron light facilities / K. B. Korotchenko, Yu. L. Pivovarov and T. A. Tukhfatullin -- Diffracted channeling radiation and other compound radiation processes / H. Nitta -- Collective scattering on the atom planes under the condition of full transition / A. R. Mkrtchyan ... [et al.] -- The proposal of the experiment on the research of the diffracted channeling radiation / D. A. Baklanov ... [et al.] -- Positron channeling at the DaOne BTF Facility: the cup experiment / L. Quintieri ... [et al.] -- Radiation spectra of 200 MeV electrons in diamond and silicon crystals at axial and planar orientations / K. Fissum ... [et al.] -- Channeling experiments with electrons at the Mainz Microtron Mami / W. Lauth ... [et al.] -- Dechanneling of positrons by dislocations: effects of anharmonic interactions / J. George and A. P. Pathak -- Diffracted channeling radiation from axially channeled relativistic electrons / K. B. Korotchenko ... [et al.] -- Intensive quasi-monochromatic, directed x-ray radiation of planar channeled positron bunch / L. Gevorgian

  11. Noise correlations in cosmic microwave background experiments

    Science.gov (United States)

    Dodelson, Scott; Kosowsky, Arthur; Myers, Steven T.

    1995-01-01

    Many analysis of microwave background experiments neglect the correlation of noise in different frequency of polarization channels. We show that these correlations, should they be present, can lead to serve misinterpretation of an experiment. In particular, correlated noise arising from either electronics or atmosphere may mimic a cosmic signal. We quantify how the likelihood function for a given experiment varies with noise correlation, using both simple analytic models and actual data. For a typical microwave background anisotropy experiment, noise correlations at the level of 1% of the overall noise can seriously reduce the significance of a given detection.

  12. Revisiting the Correlations of Peak Luminosity with Spectral Lag and Peak Energy of the Observed Gamma-ray Bursts

    Directory of Open Access Journals (Sweden)

    Yun-A Jo

    2016-12-01

    Full Text Available An analysis of light curves and spectra of observed gamma-ray bursts in gamma-ray ranges is frequently demanded because the prompt emission contains immediate details regarding the central engine of gamma-ray bursts (GRBs. We have revisited the relationship between the collimation-corrected peak luminosity and the spectral lag, investigating the lag-luminosity relationships in great detail by focusing on spectral lags resulting from all possible combinations of channels. Firstly, we compiled the opening angle data and demonstrated that the distribution of opening angles of 205 long GRBs is represented by a double Gaussian function having maxima at ~ 0.1 and ~ 0.3 radians. We confirmed that the peak luminosity and the spectral lag are anti-correlated, both in the observer frame and in the source frame. We found that, in agreement with our previous conclusion, the correlation coefficient improves significantly in the source frame. It should be noted that spectral lags involving channel 2 (25-50 keV yield high correlation coefficients, where Swift/Burst Alert Telescope (BAT has four energy channels (channel 1: 15-25 keV, channel 2: 25-50 keV, channel 3: 50-100 keV, channel 4: 100-200 keV. We also found that peak luminosity is positively correlated with peak energy.

  13. Capacity of a bosonic memory channel with Gauss-Markov noise

    International Nuclear Information System (INIS)

    Schaefer, Joachim; Daems, David; Karpov, Evgueni; Cerf, Nicolas J.

    2009-01-01

    We address the classical capacity of a quantum bosonic memory channel with additive noise, subject to an input energy constraint. The memory is modeled by correlated noise emerging from a Gauss-Markov process. Under reasonable assumptions, we show that the optimal modulation results from a 'quantum water-filling' solution above a certain input energy threshold, similar to the optimal modulation for parallel classical Gaussian channels. We also derive analytically the optimal multimode input state above this threshold, which enables us to compute the capacity of this memory channel in the limit of an infinite number of modes. The method can also be applied to a more general noise environment which is constructed by a stationary Gauss process. The extension of our results to the case of broadband bosonic channels with colored Gaussian noise should also be straightforward.

  14. Stochastic Analysis of Natural Convection in Vertical Channels with Random Wall Temperature

    Directory of Open Access Journals (Sweden)

    Ryoichi Chiba

    2017-01-01

    Full Text Available This study attempts to derive the statistics of temperature and velocity fields of laminar natural convection in a heated vertical channel with random wall temperature. The wall temperature is expressed as a random function with respect to time, or a random process. First, analytical solutions of the transient temperature and flow velocity fields for an arbitrary temporal variation in the channel wall temperature are obtained by the integral transform and convolution theorem. Second, the autocorrelations of the temperature and velocity are formed from the solutions, assuming a stationarity in time. The mean square values of temperature and velocity are computed under the condition that the fluctuation in the channel wall temperature can be considered as white noise or a stationary Markov process. Numerical results demonstrate that a decrease in the Prandtl number or an increase in the correlation time of the random process increases the level of mean square velocity but does not change its spatial distribution tendency, which is a bell-shaped profile with a peak at a certain horizontal distance from the channel wall. The peak position is not substantially affected by the Prandtl number or the correlation time.

  15. A Triply Selective MIMO Channel Simulator Using GPUs

    Directory of Open Access Journals (Sweden)

    R. Carrasco-Alvarez

    2018-01-01

    Full Text Available A methodology for implementing a triply selective multiple-input multiple-output (MIMO simulator based on graphics processing units (GPUs is presented. The resulting simulator is based on the implementation of multiple double-selective single-input single-output (SISO channel generators, where the multiple inputs and the multiple received signals have been transformed in order to supply the corresponding space correlation of the channel under consideration. A direct consequence of this approach is the flexibility provided, which allows different propagation statistics to each SISO channel to be specified and thus more complex environments to be replicated. It is shown that under some specific constraints, the statistics of the triply selective MIMO simulator are the same as those reported in the state of art. Simulation results show the computational time improvement achieved, up to 650-fold for an 8 × 8 MIMO channel simulator when compared with sequential implementations. In addition to the computational improvement, the proposed simulator offers flexibility for testing a variety of scenarios in vehicle-to-vehicle (V2V and vehicle-to-infrastructure (V2I systems.

  16. Hard Fusion Based Spectrum Sensing over Mobile Fading Channels in Cognitive Vehicular Networks.

    Science.gov (United States)

    Qian, Xiaomin; Hao, Li; Ni, Dadong; Tran, Quang Thanh

    2018-02-06

    An explosive growth in vehicular wireless applications gives rise to spectrum resource starvation. Cognitive radio has been used in vehicular networks to mitigate the impending spectrum starvation problem by allowing vehicles to fully exploit spectrum opportunities unoccupied by licensed users. Efficient and effective detection of licensed user is a critical issue to realize cognitive radio applications. However, spectrum sensing in vehicular environments is a very challenging task due to vehicle mobility. For instance, vehicle mobility has a large effect on the wireless channel, thereby impacting the detection performance of spectrum sensing. Thus, gargantuan efforts have been made in order to analyze the fading properties of mobile radio channel in vehicular environments. Indeed, numerous studies have demonstrated that the wireless channel in vehicular environments can be characterized by a temporally correlated Rayleigh fading. In this paper, we focus on energy detection for spectrum sensing and a counting rule for cooperative sensing based on Neyman-Pearson criteria. Further, we go into the effect of the sensing and reporting channel conditions on the sensing performance under the temporally correlated Rayleigh channel. For local and cooperative sensing, we derive some alternative expressions for the average probability of misdetection. The pertinent numerical and simulating results are provided to further validate our theoretical analyses under a variety of scenarios.

  17. [Influence of organochlorine pesticides in wastewater on the soil along the channel].

    Science.gov (United States)

    Xu, Liang; Zhang, Cai-Xiang; Liu, Min; Liao, Xiao-Ping; Yao, Lin-Lin; Li, Jia-Le; Xiang, Qing-Qing

    2013-08-01

    Nine profile soil samples and two sewage water samples were collected from Xiaodian sewage irrigation area in Taiyuan city, concentrations of organochlorine pesticides (OCPs) were determined by the gas chromatography coupled with electron capture detector (GC-ECD) to analyze the influence of the leakage of sewage water. The result shows that OCPs in sewage water were mainly composed of HCHs. Concentrations of DDTs and other organochlorine pesticides were very low or out of the detection limit. Concentrations of sigmaOCPs and HCHs in eight profiles near irrigation channels to some extend decreased with the increasing of the linear distance off the channel, which shows influences of the leakage of sewage water on the soil nearby. Concentrations of HCHs clearly decreased with the increasing of soil depth in most profile soils. For the horizontal direction, concentrations of HCHs also decreased with the increasing of the linear distance off the channel. The correlation between HCHs and TOC was positive, but no correlation between pH and HCHs was found.

  18. Spatial Dynamic Wideband Modeling of the MIMO Satellite-to-Earth Channel

    OpenAIRE

    Lehner, Andreas; Steingass, Alexander

    2014-01-01

    A novel MIMO (multiple input multiple output) satellite channel model that allows the generation of associated channel impulse response (CIR) time series depending on the movement profile of a land mobile terminal is presented in this paper. Based on high precise wideband measurements in L-band the model reproduces the correlated shadowing and multipath conditions in rich detail. The model includes time and space variant echo signals appearing and disappearing in dependence on the receive ...

  19. An Effective Channel Allocation Scheme to Reduce Co-Channel and Adjacent Channel Interference for WMN Backhaul

    International Nuclear Information System (INIS)

    Abbasi, S.; Ismaili, I.A.; Khuhawar, F.Y.

    2016-01-01

    Two folded work presents channel allocation scheme sustaining channel orthogonality and channel spacing to reduce CCI (Co-Channel Interference) and ACI (Adjacent Channel Interference) for inter flow of an intra-flow link. Proposed scheme as a part of radio resource allocation is applied on infrastructure based backhaul of wireless mesh network using directional antennas. The proposed approach is applied separately on 2.4 and 5GHz bands. Interference of connectivity graph is modelled by strongly connected directed graph and greedy algorithms are used for channel allocation. We have used OPNET Modeller suite to simulate network models for this research. The proposed arrangement reduces the channel interference and increases system throughput. In this research, the influence of channel is computed in terms of network throughput and delay. (author)

  20. Computer Simulation Investigation on the Effect of Channelled and Unchannelled Screens on Smoke Contamination in Atriums Upper Balconies

    Directory of Open Access Journals (Sweden)

    Nasif Mohammad Shakir

    2014-07-01

    Full Text Available This paper performed the effect of installing channel screen on smoke contamination in the presence of 0.5 m deep down stand in a fire compartment. The results are then compared with smoke contamination occurrence when the channel screens were removed. The results showed that there will be 96% increase in upper balconies smoke contamination in an atrium when no channel screens at fire compartment opening are used. This work provides new correlation obtained from numerical study which can predict the smoke contamination height in upper balconies of the atrium in the presence of 0.5 m down stand and no channel screens. The proposed correlation will be useful design tool for building designer to design safe shopping malls (atrium.

  1. Numerical investigation of fluid flow and heat transfer under high heat flux using rectangular micro-channels

    KAUST Repository

    Mansoor, Mohammad M.

    2012-02-01

    A 3D-conjugate numerical investigation was conducted to predict heat transfer characteristics in a rectangular cross-sectional micro-channel employing simultaneously developing single-phase flows. The numerical code was validated by comparison with previous experimental and numerical results for the same micro-channel dimensions and classical correlations based on conventional sized channels. High heat fluxes up to 130W/cm 2 were applied to investigate micro-channel thermal characteristics. The entire computational domain was discretized using a 120×160×100 grid for the micro-channel with an aspect ratio of (α=4.56) and examined for Reynolds numbers in the laminar range (Re 500-2000) using FLUENT. De-ionized water served as the cooling fluid while the micro-channel substrate used was made of copper. Validation results were found to be in good agreement with previous experimental and numerical data [1] with an average deviation of less than 4.2%. As the applied heat flux increased, an increase in heat transfer coefficient values was observed. Also, the Reynolds number required for transition from single-phase fluid to two-phase was found to increase. A correlation is proposed for the results of average Nusselt numbers for the heat transfer characteristics in micro-channels with simultaneously developing, single-phase flows. © 2011 Elsevier Ltd.

  2. Optimal Training for Time-Selective Wireless Fading Channels Using Cutoff Rate

    Directory of Open Access Journals (Sweden)

    Tong Lang

    2006-01-01

    Full Text Available We consider the optimal allocation of resources—power and bandwidth—between training and data transmissions for single-user time-selective Rayleigh flat-fading channels under the cutoff rate criterion. The transmitter exploits statistical channel state information (CSI in the form of the channel Doppler spectrum to embed pilot symbols into the transmission stream. At the receiver, instantaneous, though imperfect, CSI is acquired through minimum mean-square estimation of the channel based on some set of pilot observations. We compute the ergodic cutoff rate for this scenario. Assuming estimator-based interleaving and -PSK inputs, we study two special cases in-depth. First, we derive the optimal resource allocation for the Gauss-Markov correlation model. Next, we validate and refine these insights by studying resource allocation for the Jakes model.

  3. Coupled channels description of the α-decay fine structure

    Science.gov (United States)

    Delion, D. S.; Ren, Zhongzhou; Dumitrescu, A.; Ni, Dongdong

    2018-05-01

    We review the coupled channels approach of α transitions to excited states. The α-decaying states are identified as narrow outgoing Gamow resonances in an α-daughter potential. The real part of the eigenvalue corresponds to the Q-value, while the imaginary part determines the half of the total α-decay width. We first review the calculations describing transitions to rotational states treated by the rigid rotator model, in even–even, odd-mass and odd–odd nuclei. It is found that the semiclassical method overestimates the branching ratios to excited 4+ for some even–even α-emitters and fails in explaining the unexpected inversion of branching ratios of some odd-mass nuclei, while the coupled-channels results show good agreement with the experimental data. Then, we review the coupled channels method for α-transitions to 2+ vibrational and transitional states. We present the results of the Coherent State Model that describes in a unified way the spectra of vibrational, transitional and rotational nuclei. We evidence general features of the α-decay fine structure, namely the linear dependence between α-intensities and excitation energy, the linear correlation between the strength of the α-core interaction and spectroscopic factor, and the inverse correlation between the nuclear collectivity, given by electromagnetic transitions, and α-clustering.

  4. Progressive transmission of images over fading channels using rate-compatible LDPC codes.

    Science.gov (United States)

    Pan, Xiang; Banihashemi, Amir H; Cuhadar, Aysegul

    2006-12-01

    In this paper, we propose a combined source/channel coding scheme for transmission of images over fading channels. The proposed scheme employs rate-compatible low-density parity-check codes along with embedded image coders such as JPEG2000 and set partitioning in hierarchical trees (SPIHT). The assignment of channel coding rates to source packets is performed by a fast trellis-based algorithm. We examine the performance of the proposed scheme over correlated and uncorrelated Rayleigh flat-fading channels with and without side information. Simulation results for the expected peak signal-to-noise ratio of reconstructed images, which are within 1 dB of the capacity upper bound over a wide range of channel signal-to-noise ratios, show considerable improvement compared to existing results under similar conditions. We also study the sensitivity of the proposed scheme in the presence of channel estimation error at the transmitter and demonstrate that under most conditions our scheme is more robust compared to existing schemes.

  5. Low-SNR Capacity of MIMO Optical Intensity Channels

    KAUST Repository

    Chaaban, Anas; Rezki, Zouheir; Alouini, Mohamed-Slim

    2017-01-01

    The capacity of the multiple-input multiple-output (MIMO) optical intensity channel is studied, under both average and peak intensity constraints. We focus on low SNR, which can be modeled as the scenario where both constraints proportionally vanish, or where the peak constraint is held constant while the average constraint vanishes. A capacity upper bound is derived, and is shown to be tight at low SNR under both scenarios. The capacity achieving input distribution at low SNR is shown to be a maximally-correlated vector-binary input distribution. Consequently, the low-SNR capacity of the channel is characterized. As a byproduct, it is shown that for a channel with peak intensity constraints only, or with peak intensity constraints and individual (per aperture) average intensity constraints, a simple scheme composed of coded on-off keying, spatial repetition, and maximum-ratio combining is optimal at low SNR.

  6. Low-SNR Capacity of MIMO Optical Intensity Channels

    KAUST Repository

    Chaaban, Anas

    2017-09-18

    The capacity of the multiple-input multiple-output (MIMO) optical intensity channel is studied, under both average and peak intensity constraints. We focus on low SNR, which can be modeled as the scenario where both constraints proportionally vanish, or where the peak constraint is held constant while the average constraint vanishes. A capacity upper bound is derived, and is shown to be tight at low SNR under both scenarios. The capacity achieving input distribution at low SNR is shown to be a maximally-correlated vector-binary input distribution. Consequently, the low-SNR capacity of the channel is characterized. As a byproduct, it is shown that for a channel with peak intensity constraints only, or with peak intensity constraints and individual (per aperture) average intensity constraints, a simple scheme composed of coded on-off keying, spatial repetition, and maximum-ratio combining is optimal at low SNR.

  7. The role of transient receptor potential channels in metabolic syndrome

    DEFF Research Database (Denmark)

    Liu, Daoyan; Zhu, Zhiming; Tepel, Martin

    2008-01-01

    Metabolic syndrome is correlated with increased cardiovascular risk and characterized by several factors, including visceral obesity, hypertension, insulin resistance, and dyslipidemia. Several members of a large family of nonselective cation entry channels, e.g., transient receptor potential (TRP...

  8. On the effect of correlated measurements on the performance of distributed estimation

    KAUST Repository

    Ahmed, Mohammed

    2013-06-01

    We address the distributed estimation of an unknown scalar parameter in Wireless Sensor Networks (WSNs). Sensor nodes transmit their noisy observations over multiple access channel to a Fusion Center (FC) that reconstructs the source parameter. The received signal is corrupted by noise and channel fading, so that the FC objective is to minimize the Mean-Square Error (MSE) of the estimate. In this paper, we assume sensor node observations to be correlated with the source signal and correlated with each other as well. The correlation coefficient between two observations is exponentially decaying with the distance separation. The effect of the distance-based correlation on the estimation quality is demonstrated and compared with the case of unity correlated observations. Moreover, a closed-form expression for the outage probability is derived and its dependency on the correlation coefficients is investigated. Numerical simulations are provided to verify our analytic results. © 2013 IEEE.

  9. On the prediction of single-phase forced convection heat transfer in narrow rectangular channels

    International Nuclear Information System (INIS)

    Ghione, Alberto; Noel, Brigitte; Vinai, Paolo; Demazière, Christophe

    2014-01-01

    In this paper, selected heat transfer correlations for single-phase forced convection are assessed for the case of narrow rectangular channels. The work is of interest in the thermal-hydraulic analysis of the Jules Horowitz Reactor (JHR), which is a research reactor under construction at CEA-Cadarache (France). In order to evaluate the validity of the correlations, about 300 tests from the SULTAN-JHR database were used. The SULTAN-JHR program was carried out at CEA-Grenoble and it includes different kinds of tests for two different vertical rectangular channels with height of 600 mm and gap of 1.51 and 2.16 mm. The experimental conditions range between 2 - 9 bar for the pressure; 0.5 - 18 m/s for the coolant velocity and 0.5 - 7.5 MW/m 2 for the heat flux (whose axial distribution is uniform). Forty-two thermocouples and eight pressure taps were placed at several axial locations, measuring wall temperature and pressure respectively. The analysis focused on turbulent flow with Reynolds numbers between 5.5 x 10 3 - 2.4 x 10 5 and Prandtl numbers between 1.5 - 6. It was shown that standard correlations as the Dittus-Boelter and Seider-Tate significantly under-estimate the heat transfer coefficient, especially at high Reynolds number. Other correlations specifically designed for narrow rectangular channels were also taken into account and compared. The correlation of Popov-Petukhov in the form suggested by Siman-Tov still under-estimates the heat transfer coefficient, even if slight improvements could be seen. A better agreement for the tests with gap equal to 2.16 mm could be found with the correlation of Ma and the one of Liang. However the heat transfer coefficient when the gap is equal to 1.51 mm could not be predicted accurately. Furthermore these correlations were based on data at low Reynolds numbers (up to 13000) and low heat flux, so the use of them for SULTAN-JHR may be questionable. According to the authors’ knowledge, existing models of heat transfer

  10. Performance of Narrowband Signal Detection under Correlated Rayleigh Fading Based on Synthetic Array

    Directory of Open Access Journals (Sweden)

    Ali Broumandan

    2009-01-01

    design parameters of probability of detection (Pd and probability of false alarm (Pfa. An optimum detector based on Estimator-Correlator (EC is developed, and its performance is compared with that of suboptimal Equal-Gain (EG combiner in different channel correlation scenarios. It is shown that in moderate channel correlation scenarios the detection performance of EC and EG is identical. The sensitivity of the proposed method to knowledge of motion parameters is also investigated. An extensive set of measurements based on CDMA-2000 pilot signals using the static antenna and synthetic array are used to experimentally verify these theoretical findings.

  11. Effect of rotation on convective mass transfer in rotating channels

    International Nuclear Information System (INIS)

    Pharoah, J.G.; Djilali, N.

    2002-01-01

    Laminar flow and mass transfer in rotating channels is investigated in the context of centrifugal membrane separation. The effect of orientation with respect to the rotational axis is examined for rectangular channels of aspect ratio 3 and the Rossby number is varied from 0.3 to 20.9. Both Ro and the channel orientation are found to have a significant effect on the flow. Mass transfer calculations corresponding to reverse osmosis desalination are carried out at various operating pressures and all rotating cases exhibit significant process enhancements at relatively low rotation rates. Finally, while it is common in the membrane literature to correlate mass transfer performance with membrane shear rates this is shown not to be valid in the cases presented herein. (author)

  12. Correlated Sources in Distributed Networks--Data Transmission, Common Information Characterization and Inferencing

    Science.gov (United States)

    Liu, Wei

    2011-01-01

    Correlation is often present among observations in a distributed system. This thesis deals with various design issues when correlated data are observed at distributed terminals, including: communicating correlated sources over interference channels, characterizing the common information among dependent random variables, and testing the presence of…

  13. Nonlinear drift-diffusion model of gating in K and nACh ion channels

    Energy Technology Data Exchange (ETDEWEB)

    Vaccaro, S.R. [Department of Physics, University of Adelaide, Adelaide, South Australia 5005 (Australia)], E-mail: svaccaro@physics.adelaide.edu.au

    2007-09-03

    The configuration of a sensor regulates the transition between the closed and open states of both voltage and ligand gated channels. The closed state dwell-time distribution f{sub c}(t) derived from a Fokker-Planck equation with a nonlinear diffusion coefficient is in good agreement with experimental data and can account for the power law approximation to f{sub c}(t) for a delayed rectifier K channel and a nicotinic acetylcholine (nACh) ion channel. The solution of a master equation which approximates the Fokker-Planck equation provides a better description of the small time behaviour of the dwell-time distribution and can account for the empirical rate-amplitude correlation for these ion channels.

  14. Citizens and service channels: channel choice and channel management implications

    NARCIS (Netherlands)

    Pieterson, Willem Jan

    2010-01-01

    The arrival of electronic channels in the 1990s has had a huge impact on governmental service delivery. The new channels have led to many new opportunities to improve public service delivery, not only in terms of citizen satisfaction, but also in cost reduction for governmental agencies. However,

  15. Real space channelization for generic DBT system image quality evaluation with channelized Hotelling observer

    Science.gov (United States)

    Petrov, Dimitar; Cockmartin, Lesley; Marshall, Nicholas; Vancoillie, Liesbeth; Young, Kenneth; Bosmans, Hilde

    2017-03-01

    Digital breast tomosynthesis (DBT) is a relatively new 3D mammography technique that promises better detection of low contrast masses than conventional 2D mammography. The parameter space for DBT is large however and finding an optimal balance between dose and image quality remains challenging. Given the large number of conditions and images required in optimization studies, the use of human observers (HO) is time consuming and certainly not feasible for the tuning of all degrees of freedom. Our goal was to develop a model observer (MO) that could predict human detectability for clinically relevant details embedded within a newly developed structured phantom for DBT applications. DBT series were acquired on GE SenoClaire 3D, Giotto Class, Fujifilm AMULET Innovality and Philips MicroDose systems at different dose levels, Siemens Inspiration DBT acquisitions were reconstructed with different algorithms, while a larger set of DBT series was acquired on Hologic Dimensions system for first reproducibility testing. A channelized Hotelling observer (CHO) with Gabor channels was developed The parameters of the Gabor channels were tuned on all systems at standard scanning conditions and the candidate that produced the best fit for all systems was chosen. After tuning, the MO was applied to all systems and conditions. Linear regression lines between MO and HO scores were calculated, giving correlation coefficients between 0.87 and 0.99 for all tested conditions.

  16. Aquaporins in Digestive System.

    Science.gov (United States)

    Zhu, Shuai; Ran, Jianhua; Yang, Baoxue; Mei, Zhechuan

    2017-01-01

    In this chapter, we mainly discuss the expression and function of aquaporins (AQPs ) expressed in digestive system . AQPs in gastrointestinal tract include four members of aquaporin subfamily: AQP1, AQP4, AQP5 and AQP8, and a member of aquaglyceroporin subfamily: AQP3. In the digestive glands, especially the liver, we discuss three members of aquaporin subfamily: AQP1, AQP5 and AQP8, a member of aquaglyceroporin subfamily: AQP9. AQP3 is involved in the diarrhea and inflammatory bowel disease; AQP5 is relevant to gastric carcinoma cell proliferation and migration; AQP9 plays considerable role in glycerol metabolism , urea transport and hepatocellular carcinoma. Further investigation is necessary for specific locations and functions of AQPs in digestive system.

  17. Fission via compound states and JπK A. Bohr's channels: what we can learn from recent studies with slow neutrons

    Directory of Open Access Journals (Sweden)

    Furman W.I.

    2012-02-01

    Full Text Available Last data on angular correlations of fission fragments from slow (s-wave neutron induced binary fission of spin-aligned nuclei 235U are discussed in the context of JπK A. Bohrs channels. Special attention is paid to K = 0 channel. Reasons for its suppression are specified for compound nucleus states of negative parity. A brief overview of recent data on T-odd angular correlations in ternary and binary (with emission of a third particle, a neutron or γ-quantum fission induced by slow polarized neutrons is presented. On the basis of the developed theoretical approach it is shown that a valuable information on JπK fission channels at scission point can be inferred from these T-odd angular correlations.

  18. Effects of fading and spatial correlation on node selection for estimation in Wireless Sensor Networks

    KAUST Repository

    Al-Murad, Tamim M.

    2010-06-01

    In densely deployed sensor networks, correlation among measurements may be high. Spatial sampling through node selection is usually used to minimize this correlation and to save energy consumption. However because of the fading nature of the wireless channels, extra care should be taken when performing this sampling. In this paper, we develop expressions for the distortion which include the channel effects. The asymptotic behavior of the distortion as the number of sensors or total transmit power increase without bound is also investigated. Further, based on the channel and position information we propose and test several node selection schemes.

  19. Binary zone-plate array for a parallel joint transform correlator applied to face recognition.

    Science.gov (United States)

    Kodate, K; Hashimoto, A; Thapliya, R

    1999-05-10

    Taking advantage of small aberrations, high efficiency, and compactness, we developed a new, to our knowledge, design procedure for a binary zone-plate array (BZPA) and applied it to a parallel joint transform correlator for the recognition of the human face. Pairs of reference and unknown images of faces are displayed on a liquid-crystal spatial light modulator (SLM), Fourier transformed by the BZPA, intensity recorded on an optically addressable SLM, and inversely Fourier transformed to obtain correlation signals. Consideration of the bandwidth allows the relations among the channel number, the numerical aperture of the zone plates, and the pattern size to be determined. Experimentally a five-channel parallel correlator was implemented and tested successfully with a 100-person database. The design and the fabrication of a 20-channel BZPA for phonetic character recognition are also included.

  20. Performance Analysis of Beamforming in MU-MIMO Systems for Rayleigh Fading Channels

    KAUST Repository

    Hassan, Ahmad K.; Moinuddin, Muhammad; Al-Saggaf, Ubaid M.; Al-Naffouri, Tareq Y.

    2017-01-01

    This paper characterizes the performance metrics of MU-MIMO systems under Rayleigh fading channels in the presence of both cochannel interference and additive noise with unknown channel state information and known correlation matrices. In the first task, we derive analytical expressions for the cumulative distribution function of the instantaneous signal-to-interference-plus-noise ratio (SINR) for any deterministic beamvectors. As a second task, exact closed-form expressions are derived for the instantaneous capacity, the upper bound on ergodic capacity, and the Gram-Schmidt orthogonalization-based ergodic capacity for similar intra-cell correlation coefficients. Finally, we present the utility of several structured-diagonalization techniques, which can achieve the tractability for the approximate solution of ergodic capacity for both similar as well as different intra-cell correlation matrices. The novelty of this paper is to formulate the received SINR in terms of indefinite quadratic forms, which allows us to use complex residue theory to characterize the system behavior. The analytical expressions obtained closely match simulation results.

  1. Performance Analysis of Beamforming in MU-MIMO Systems for Rayleigh Fading Channels

    KAUST Repository

    Hassan, Ahmad K.

    2017-03-25

    This paper characterizes the performance metrics of MU-MIMO systems under Rayleigh fading channels in the presence of both cochannel interference and additive noise with unknown channel state information and known correlation matrices. In the first task, we derive analytical expressions for the cumulative distribution function of the instantaneous signal-to-interference-plus-noise ratio (SINR) for any deterministic beamvectors. As a second task, exact closed-form expressions are derived for the instantaneous capacity, the upper bound on ergodic capacity, and the Gram-Schmidt orthogonalization-based ergodic capacity for similar intra-cell correlation coefficients. Finally, we present the utility of several structured-diagonalization techniques, which can achieve the tractability for the approximate solution of ergodic capacity for both similar as well as different intra-cell correlation matrices. The novelty of this paper is to formulate the received SINR in terms of indefinite quadratic forms, which allows us to use complex residue theory to characterize the system behavior. The analytical expressions obtained closely match simulation results.

  2. Asymptotic analysis of downlink MISO systems over Rician fading channels

    KAUST Repository

    Falconet, Hugo

    2016-06-24

    In this work, we focus on the ergodic sum rate in the downlink of a single-cell large-scale multi-user MIMO system in which the base station employs N antennas to communicate with K single-antenna user equipments. A regularized zero-forcing (RZF) scheme is used for precoding under the assumption that each link forms a spatially correlated MIMO Rician fading channel. The analysis is conducted assuming N and K grow large with a non trivial ratio and perfect channel state information is available at the base station. Recent results from random matrix theory and large system analysis are used to compute an asymptotic expression of the signal-to-interference-plus-noise ratio as a function of the system parameters, the spatial correlation matrix and the Rician factor. Numerical results are used to evaluate the performance gap in the finite system regime under different operating conditions. © 2016 IEEE.

  3. Asymptotic analysis of downlink MISO systems over Rician fading channels

    KAUST Repository

    Falconet, Hugo; Sanguinetti, Luca; Kammoun, Abla; Debbah, Merouane

    2016-01-01

    In this work, we focus on the ergodic sum rate in the downlink of a single-cell large-scale multi-user MIMO system in which the base station employs N antennas to communicate with K single-antenna user equipments. A regularized zero-forcing (RZF) scheme is used for precoding under the assumption that each link forms a spatially correlated MIMO Rician fading channel. The analysis is conducted assuming N and K grow large with a non trivial ratio and perfect channel state information is available at the base station. Recent results from random matrix theory and large system analysis are used to compute an asymptotic expression of the signal-to-interference-plus-noise ratio as a function of the system parameters, the spatial correlation matrix and the Rician factor. Numerical results are used to evaluate the performance gap in the finite system regime under different operating conditions. © 2016 IEEE.

  4. Multi-channel probes to understand fission dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Mosby, Shea Morgan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-04-15

    Explaining the origin of the elements is a major outstanding question in nuclear astrophysics. Observed elemental abundance distribution shows strong nuclear physics effects. In conclusion, neutron-induced reactions are important for nuclear astrophysics and applied fields in nuclear energy and security. LANSCE has a program to address many of these questions directly with neutron beams on (near-)stable nuclei. Increasing demand for correlated data to test details of fission models poses additional challenges. Possibilities exist to extend existing experimental efforts to radioactive beam facilities. Kinematic focusing from using inverse kinematics has potential to circumvent some challenges associated with measuring correlations between fission output channels.

  5. Evaluation of stochastic differential equation approximation of ion channel gating models.

    Science.gov (United States)

    Bruce, Ian C

    2009-04-01

    Fox and Lu derived an algorithm based on stochastic differential equations for approximating the kinetics of ion channel gating that is simpler and faster than "exact" algorithms for simulating Markov process models of channel gating. However, the approximation may not be sufficiently accurate to predict statistics of action potential generation in some cases. The objective of this study was to develop a framework for analyzing the inaccuracies and determining their origin. Simulations of a patch of membrane with voltage-gated sodium and potassium channels were performed using an exact algorithm for the kinetics of channel gating and the approximate algorithm of Fox & Lu. The Fox & Lu algorithm assumes that channel gating particle dynamics have a stochastic term that is uncorrelated, zero-mean Gaussian noise, whereas the results of this study demonstrate that in many cases the stochastic term in the Fox & Lu algorithm should be correlated and non-Gaussian noise with a non-zero mean. The results indicate that: (i) the source of the inaccuracy is that the Fox & Lu algorithm does not adequately describe the combined behavior of the multiple activation particles in each sodium and potassium channel, and (ii) the accuracy does not improve with increasing numbers of channels.

  6. Effect of nano-scale morphology on micro-channel wall surface and electrical characterization in lead silicate glass micro-channel plate

    Science.gov (United States)

    Cai, Hua; Li, Fangjun; Xu, Yanglei; Bo, Tiezhu; Zhou, Dongzhan; Lian, Jiao; Li, Qing; Cao, Zhenbo; Xu, Tao; Wang, Caili; Liu, Hui; Li, Guoen; Jia, Jinsheng

    2017-10-01

    Micro-channel plate (MCP) is a two dimensional arrays of microscopic channel charge particle multiplier. Silicate composition and hydrogen reduction are keys to determine surface morphology of micro-channel wall in MCP. In this paper, lead silicate glass micro-channel plates in two different cesium contents (0at%, 0.5at%) and two different hydrogen reduction temperatures (400°C,450°C) were present. The nano-scale morphology, elements content and chemical states of microporous wall surface treated under different alkaline compositions and reduction conditions was investigated by Atomic Force Microscopy (AFM) and X-ray Photoelectron Spectroscopy (XPS), respectively. Meanwhile, the electrical characterizations of MCP, including the bulk resistance, electron gain and the density of dark current, were measured in a Vacuum Photoelectron Imaging Test Facility (VPIT).The results indicated that the granular phase occurred on the surface of microporous wall and diffuses in bulk glass is an aggregate of Pb atom derived from the reduction of Pb2+. In micro-channel plate, the electron gain and bulk resistance were mainly correlated to particle size and distribution, the density of dark current (DDC) went up with the increasing root-mean-square roughness (RMS) on the microporous wall surface. Adding cesiums improved the size of Pb atomic aggregation, lowered the relative concentration of [Pb] reduced from Pb2+ and decreased the total roughness of micro-channel wall surface, leading a higher bulk resistance, a lower electron gain and a less dark current. Increasing hydrogen reduction temperature also improved the size of Pb atomic aggregation, but enhanced the relative concentration of [Pb] and enlarged the total roughness of micro-channel wall surface, leading a higher bulk resistance, a lower electron gain and a larger dark current. The reasons for the difference of electrical characteristics were discussed.

  7. Ion Channel Genes and Epilepsy: Functional Alteration, Pathogenic Potential, and Mechanism of Epilepsy.

    Science.gov (United States)

    Wei, Feng; Yan, Li-Min; Su, Tao; He, Na; Lin, Zhi-Jian; Wang, Jie; Shi, Yi-Wu; Yi, Yong-Hong; Liao, Wei-Ping

    2017-08-01

    Ion channels are crucial in the generation and modulation of excitability in the nervous system and have been implicated in human epilepsy. Forty-one epilepsy-associated ion channel genes and their mutations are systematically reviewed. In this paper, we analyzed the genotypes, functional alterations (funotypes), and phenotypes of these mutations. Eleven genes featured loss-of-function mutations and six had gain-of-function mutations. Nine genes displayed diversified funotypes, among which a distinct funotype-phenotype correlation was found in SCN1A. These data suggest that the funotype is an essential consideration in evaluating the pathogenicity of mutations and a distinct funotype or funotype-phenotype correlation helps to define the pathogenic potential of a gene.

  8. Robustness of quantum correlations against linear noise

    International Nuclear Information System (INIS)

    Guo, Zhihua; Cao, Huaixin; Qu, Shixian

    2016-01-01

    Relative robustness of quantum correlations (RRoQC) of a bipartite state is firstly introduced relative to a classically correlated state. Robustness of quantum correlations (RoQC) of a bipartite state is then defined as the minimum of RRoQC of the state relative to all classically correlated ones. It is proved that as a function on quantum states, RoQC is nonnegative, lower semi-continuous and neither convex nor concave; especially, it is zero if and only if the state is classically correlated. Thus, RoQC not only quantifies the endurance of quantum correlations of a state against linear noise, but also can be used to distinguish between quantum and classically correlated states. Furthermore, the effects of local quantum channels on the robustness are explored and characterized. (paper)

  9. Statistical Modeling, Simulation, and Experimental Verification of Wideband Indoor Mobile Radio Channels

    Directory of Open Access Journals (Sweden)

    Yuanyuan Ma

    2018-01-01

    Full Text Available This paper focuses on the modeling, simulation, and experimental verification of wideband single-input single-output (SISO mobile fading channels for indoor propagation environments. The indoor reference channel model is derived from a geometrical rectangle scattering model, which consists of an infinite number of scatterers. It is assumed that the scatterers are exponentially distributed over the two-dimensional (2D horizontal plane of a rectangular room. Analytical expressions are derived for the probability density function (PDF of the angle of arrival (AOA, the PDF of the propagation path length, the power delay profile (PDP, and the frequency correlation function (FCF. An efficient sum-of-cisoids (SOC channel simulator is derived from the nonrealizable reference model by employing the SOC principle. It is shown that the SOC channel simulator approximates closely the reference model with respect to the FCF. The SOC channel simulator enables the performance evaluation of wideband indoor wireless communication systems with reduced realization expenditure. Moreover, the rationality and usefulness of the derived indoor channel model is confirmed by various measurements at 2.4, 5, and 60 GHz.

  10. Drift flux formulation of a boiling water reactor channel with subcooled boiling

    International Nuclear Information System (INIS)

    Elias, E.E.; Shak, D.P.; May, R.S.

    1987-01-01

    The channel formulation used in the BWR module of the Modular Modeling System MMS-02 is presented. The purpose of channel model is to accurately predict the transient response of the enthalpy void and flow rate. Accurate prediction of the two-phase enthalpy, and void fraction distributions along the channel is important since they are key input parameters to the neutronic model, and have direct effect on the core and overall reactor response. In order to model the channel response correctly, the physical phenomena had to be realistically represented. The model accounts for subcooled boiling and slip through the use of an empirical subcooled void-quality model. Simplifying assumptions are made so that only one differential equation, the energy equation, is integrated along the channel. A consistent use of semi-empirical correlations enables a complete representation of the channel flow and void fraction with the bulk enthalpy as the only state variable. The differential equation and the constitutive relations of this two-phase flow model are presented. Several numerical examples are given, and finally, come conclusions are presented

  11. Chaotic scattering: the supersymmetry method for large number of channels

    International Nuclear Information System (INIS)

    Lehmann, N.; Saher, D.; Sokolov, V.V.; Sommers, H.J.

    1995-01-01

    We investigate a model of chaotic resonance scattering based on the random matrix approach. The hermitian part of the effective hamiltonian of resonance states is taken from the GOE whereas the amplitudes of coupling to decay channels are considered both random or fixed. A new version of the supersymmetry method is worked out to determine analytically the distribution of poles of the S-matrix in the complex energy plane as well as the mean value and two-point correlation function of its elements when the number of channels scales with the number of resonance states. Analytical formulae are compared with numerical simulations. All results obtained coincide in both models provided that the ratio m of the numbers of channels and resonances is small enough and remain qualitatively similar for larger values of m. The relation between the pole distribution and the fluctuations in scattering is discussed. It is shown in particular that the clouds of poles of the S-matrix in the complex energy plane are separated from the real axis by a finite gap Γ g which determines the correlation length in the scattering fluctuations and leads to the exponential asymptotics of the decay law of a complicated intermediate state. ((orig.))

  12. Chaotic scattering: the supersymmetry method for large number of channels

    Energy Technology Data Exchange (ETDEWEB)

    Lehmann, N. (Essen Univ. (Gesamthochschule) (Germany). Fachbereich 7 - Physik); Saher, D. (Essen Univ. (Gesamthochschule) (Germany). Fachbereich 7 - Physik); Sokolov, V.V. (Essen Univ. (Gesamthochschule) (Germany). Fachbereich 7 - Physik); Sommers, H.J. (Essen Univ. (Gesamthochschule) (Germany). Fachbereich 7 - Physik)

    1995-01-23

    We investigate a model of chaotic resonance scattering based on the random matrix approach. The hermitian part of the effective hamiltonian of resonance states is taken from the GOE whereas the amplitudes of coupling to decay channels are considered both random or fixed. A new version of the supersymmetry method is worked out to determine analytically the distribution of poles of the S-matrix in the complex energy plane as well as the mean value and two-point correlation function of its elements when the number of channels scales with the number of resonance states. Analytical formulae are compared with numerical simulations. All results obtained coincide in both models provided that the ratio m of the numbers of channels and resonances is small enough and remain qualitatively similar for larger values of m. The relation between the pole distribution and the fluctuations in scattering is discussed. It is shown in particular that the clouds of poles of the S-matrix in the complex energy plane are separated from the real axis by a finite gap [Gamma][sub g] which determines the correlation length in the scattering fluctuations and leads to the exponential asymptotics of the decay law of a complicated intermediate state. ((orig.))

  13. [Synopsis about the hypothesis of "information channel" of channel-collateral system].

    Science.gov (United States)

    Chang, Xi-Lang

    2008-10-01

    The author of the present paper founded a theorem about the "incompleteness of single channel structure" (nerve, blood vessel, lymphatic, interspace, aperture, etc.) through quantitative and qualitative analysis about the economic information channel in the human body, which eliminates the probability of single channel structure in the information channel of channel (meridian)-collateral system. After comprehensive analysis on the current researches, the author puts forward a neodoxy, i.e., the body "information channel" structure of the channel-collateral system, mainly follows the distribution regularity of systemic statistics, and is not a single specific entity; various layers of the information channel in the main stems of the channel-collaterals are composed of optimized structure tissues. Hence, the structure of this information channel of channel-collateral system is an overall-optimized, sequential and compatible systemic structure. From this neodoxy, the author brings forward a working principle of channel-collaterals, which is supported theoretically by bio-auxology. The longitudinal distribution of the main stems of meridian-collaterals is considered to result from that in the process of the animal evolution, in the animals moving forward, the microscopic complicated movement of intracorporeal information and energy molecules is related to the forward macroscopic and non-uniform movement of organism in trans-measure. Its impulse and kinetic momentum forms a main vector in the longitudinal direction of the body (the direction of the main stem of channel-collaterals). In order to adapt to and utilize natural regularities, the main stems of the channel-collaterals gradually differentiate and evolve in the living organism, forming a whole system. The "hypothesis of biological origin of channel-collateral system" and "that of information channel of the channel-collaterals in the body" constitute a relatively complete theoretical system framework.

  14. The hitchhiker’s guide to the voltage-gated sodium channel galaxy

    Science.gov (United States)

    2016-01-01

    Eukaryotic voltage-gated sodium (Nav) channels contribute to the rising phase of action potentials and served as an early muse for biophysicists laying the foundation for our current understanding of electrical signaling. Given their central role in electrical excitability, it is not surprising that (a) inherited mutations in genes encoding for Nav channels and their accessory subunits have been linked to excitability disorders in brain, muscle, and heart; and (b) Nav channels are targeted by various drugs and naturally occurring toxins. Although the overall architecture and behavior of these channels are likely to be similar to the more well-studied voltage-gated potassium channels, eukaryotic Nav channels lack structural and functional symmetry, a notable difference that has implications for gating and selectivity. Activation of voltage-sensing modules of the first three domains in Nav channels is sufficient to open the channel pore, whereas movement of the domain IV voltage sensor is correlated with inactivation. Also, structure–function studies of eukaryotic Nav channels show that a set of amino acids in the selectivity filter, referred to as DEKA locus, is essential for Na+ selectivity. Structures of prokaryotic Nav channels have also shed new light on mechanisms of drug block. These structures exhibit lateral fenestrations that are large enough to allow drugs or lipophilic molecules to gain access into the inner vestibule, suggesting that this might be the passage for drug entry into a closed channel. In this Review, we will synthesize our current understanding of Nav channel gating mechanisms, ion selectivity and permeation, and modulation by therapeutics and toxins in light of the new structures of the prokaryotic Nav channels that, for the time being, serve as structural models of their eukaryotic counterparts. PMID:26712848

  15. Channel box

    International Nuclear Information System (INIS)

    Tanabe, Akira.

    1993-01-01

    In a channel box of a BWR type reactor, protruding pads are disposed in axial position on the lateral side of a channel box opposing to a control rod and facing the outer side portion of the control rod in a reactor core loaded state. In the initial loading stage of fuel assemblies, channel fasteners and spacer pads are abutted against each other in the upper portion between the channel boxes sandwiching the control rod therebetween. Further, in the lower portion, a gap as a channel for the movement of the control rod is ensured by the support of fuel support metals. If the channel box is bent toward the control rod along with reactor operation, the pads are abutted against each other to always ensure the gap through which the control rod can move easily. Further, when the pads are brought into contact with each other, the bending deformation of the channel box is corrected by urging to each other. Thus, the control rod can always be moved smoothly to attain reactor safety operation. (N.H.)

  16. Modelling of the new FLNR magnetic analyzer vacuum channel

    International Nuclear Information System (INIS)

    Bashevoj, V.V.; Majdikov, V.Z.

    1998-01-01

    The quality of any magnetic analyzer directly depends on the area of radial cross section of its volume filled with the ions trajectories. The conception of new magnetic spectrometer vacuum channel is based on computer modelling of the maximum filling of the spectrometer acceptance with given pole pieces width and the gap height of the magnetic dipole together with the maximum transmission of underflected in magnetic field emission from the target at the angle of measurements. The correct correlation of the aperture of the vacuum channel with durability, engineering and ease of handling characteristics combined with ion-optical properties of the spectrometer determines its construction in the whole

  17. Experimental study of natural convective heat transfer in a vertical hexagonal sub channel

    International Nuclear Information System (INIS)

    Tandian, Nathanael P.; Umar, Efrizon; Hardianto, Toto; Febriyanto, Catur

    2012-01-01

    The development of new practices in nuclear reactor safety aspects and optimization of recent nuclear reactors, including the APWR and the PHWR reactors, needs a knowledge on natural convective heat transfer within sub-channels formed among several nuclear fuel rods or heat exchanger tubes. Unfortunately, the currently available empirical correlation equations for such heat transfer modes are limited and researches on convective heat transfer within a bundle of vertical cylinders (especially within the natural convection modes) are scarcely done. Although boundary layers around the heat exchanger cylinders or fuel rods may be dominated by their entry regions, most of available convection correlation equations are for fully developed boundary layers. Recently, an experimental study on natural convective heat transfer in a subchannel formed by several heated parallel cylinders that arranged in a hexagonal configuration has been being done. The study seeks for a new convection correlation for the natural convective heat transfer in the sub-channel formed among the hexagonal vertical cylinders. A new convective heat transfer correlation equation has been obtained from the study and compared to several similar equations in literatures.

  18. Sea Turtles Geolocalization in the Indian Ocean: An Over Sea Radio Channel framework integrating a trilateration technique

    Science.gov (United States)

    Guegan, Loic; Murad, Nour Mohammad; Bonhommeau, Sylvain

    2018-03-01

    This paper deals with the modeling of the over sea radio channel and aims to establish sea turtles localization off the coast of Reunion Island, and also on Europa Island in the Mozambique Channel. In order to model this radio channel, a framework measurement protocol is proposed. The over sea measured channel is integrated to the localization algorithm to estimate the turtle trajectory based on Power of Arrival (PoA) technique compared to GPS localization. Moreover, cross correlation tool is used to characterize the over sea propagation channel. First measurement of the radio channel on the Reunion Island coast combine to the POA algorithm show an error of 18 m for 45% of the approximated points.

  19. The exchange of correlated pions and kaons in the baryon-baryon interaction

    International Nuclear Information System (INIS)

    Reuber, A.G.

    1995-09-01

    The exchange of two correlated pions or kaons provides the main part of the intermediate-range attraction between two baryons. In this work, a dynamical model for correlated two-pion and two-kaon exchange in the baryon-baryon interaction is presented, both in the scalar-isoscalar (σ) and the vector-isovector (ρ) channel. The contribution of correlated ππ and K anti K exchange is derived from the amplitudes for the transition of a baryon-antibaryon state (B anti B') to a ππ or K anti K state in the pseudophysical region by applying dispersion theory and unitarity. For the B anti B'→ππ, K anti K amplitudes a microscopic model is constructed, which is based on the hadron-exchange picture. The Born terms include contributions from baryon-exchange as well as ρ-pole diagrams. The correlations between the two pseudoscalar mesons are taken into account exactly by means of ππ-K anti K amplitudes derived likewise from a meson-exchange model, which is in line with the empirical ππ data. The parameters of the B anti B'→ππ, K anti K model, which are related to each other by the assumption of SU(3) symmetry, are determined by the adjustment to the quasiempirical N anti N→ππ amplitudes in the pseudophysical region. It is found that correlated K anti K exchange being negligible in the NN interaction plays an important role in the σ-channel for baryon-baryon states with non-vanishing strangeness. The strength of correlated ππ plus K anti K exchange in the σ-channel decreases with the strangeness of the baryon-baryon system becoming more negative. Due to the admixture of baryon-exchange processes to the SU(3)-symmetric ρ-pole contributions the results for correlated ππ-exchange in the vector-isovector channel deviate from what is expected in the naive SU(3) picture for genuine ρ-exchange. (orig.)

  20. Two-phase flow boiling pressure drop in small channels

    International Nuclear Information System (INIS)

    Sardeshpande, Madhavi V.; Shastri, Parikshit; Ranade, Vivek V.

    2016-01-01

    Highlights: • Study of typical 19 mm steam generator tube has been undertaken in detail. • Study of two phase flow boiling pressure drop, flow instability and identification of flow regimes using pressure fluctuations is the main focus of present work. • Effect of heat and mass flux on pressure drop and void fraction was studied. • Flow regimes identified from pressure fluctuations data using FFT plots. • Homogeneous model predicted pressure drop well in agreement. - Abstract: Two-phase flow boiling in small channels finds a variety of applications in power and process industries. Heat transfer, boiling flow regimes, flow instabilities, pressure drop and dry out are some of the key issues related to two-phase flow boiling in channels. In this work, the focus is on pressure drop in two-phase flow boiling in tubes of 19 mm diameter. These tubes are typically used in steam generators. Relatively limited experimental database is available on 19 mm ID tube. Therefore, in the present work, the experimental set-up is designed for studying flow boiling in 19 mm ID tube in such a way that any of the different flow regimes occurring in a steam generator tube (from pre-heating of sub-cooled water to dry-out) can be investigated by varying inlet conditions. The reported results cover a reasonable range of heat and mass flux conditions such as 9–27 kW/m 2 and 2.9–5.9 kg/m 2 s respectively. In this paper, various existing correlations are assessed against experimental data for the pressure drop in a single, vertical channel during flow boiling of water at near-atmospheric pressure. A special feature of these experiments is that time-dependent pressures are measured at four locations along the channel. The steady-state pressure drop is estimated and the identification of boiling flow regimes is done with transient characteristics using time series analysis. Experimental data and corresponding results are compared with the reported correlations. The results will be

  1. Measurement of turbulent electron temperature fluctuations on the ASDEX Upgrade tokamak using correlated electron cyclotron emission

    Energy Technology Data Exchange (ETDEWEB)

    Freethy, S. J., E-mail: simon.freethy@ipp.mpg.de [Max Planck Institute for Plasma Physics, 85748 Garching (Germany); Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Conway, G. D.; Happel, T.; Köhn, A. [Max Planck Institute for Plasma Physics, 85748 Garching (Germany); Classen, I.; Vanovac, B. [FOM Institute DIFFER, 5612 AJ Eindhoven (Netherlands); Creely, A. J.; White, A. E. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2016-11-15

    Turbulent temperature fluctuations are measured on the ASDEX Upgrade tokamak using pairs of closely spaced, narrow-band heterodyne radiometer channels and a standard correlation technique. The pre-detection spacing and bandwidth of the radiometer channel pairs is chosen such that they are physically separated less than a turbulent correlation length, but do not overlap. The radiometer has 4 fixed filter frequency channels and two tunable filter channels for added flexibility in the measurement position. Relative temperature fluctuation amplitudes are observed in a helium plasma to be δT/T = (0.76 ± 0.02)%, (0.67 ± 0.02)%, and (0.59 ± 0.03)% at normalised toroidal flux radius of ρ{sub tor} = 0.82, 0.75, and 0.68, respectively.

  2. Threshold and channel interaction in cochlear implant users: evaluation of the tripolar electrode configuration.

    Science.gov (United States)

    Bierer, Julie Arenberg

    2007-03-01

    The efficacy of cochlear implants is limited by spatial and temporal interactions among channels. This study explores the spatially restricted tripolar electrode configuration and compares it to bipolar and monopolar stimulation. Measures of threshold and channel interaction were obtained from nine subjects implanted with the Clarion HiFocus-I electrode array. Stimuli were biphasic pulses delivered at 1020 pulses/s. Threshold increased from monopolar to bipolar to tripolar stimulation and was most variable across channels with the tripolar configuration. Channel interaction, quantified by the shift in threshold between single- and two-channel stimulation, occurred for all three configurations but was largest for the monopolar and simultaneous conditions. The threshold shifts with simultaneous tripolar stimulation were slightly smaller than with bipolar and were not as strongly affected by the timing of the two channel stimulation as was monopolar. The subjects' performances on clinical speech tests were correlated with channel-to-channel variability in tripolar threshold, such that greater variability was related to poorer performance. The data suggest that tripolar channels with high thresholds may reveal cochlear regions of low neuron survival or poor electrode placement.

  3. Spectral and Energy Efficient Low-Overhead Uplink and Downlink Channel Estimation for 5G Massive MIMO Systems

    Directory of Open Access Journals (Sweden)

    Imran Khan

    2018-01-01

    Full Text Available Uplink and Downlink channel estimation in massive Multiple Input Multiple Output (MIMO systems is an intricate issue because of the increasing channel matrix dimensions. The channel feedback overhead using traditional codebook schemes is very large, which consumes more bandwidth and decreases the overall system efficiency. The purpose of this paper is to decrease the channel estimation overhead by taking the advantage of sparse attributes and also to optimize the Energy Efficiency (EE of the system. To cope with this issue, we propose a novel approach by using Compressed-Sensing (CS, Block Iterative-Support-Detection (Block-ISD, Angle-of-Departure (AoD and Structured Compressive Sampling Matching Pursuit (S-CoSaMP algorithms to reduce the channel estimation overhead and compare them with the traditional algorithms. The CS uses temporal-correlation of time-varying channels to produce Differential-Channel Impulse Response (DCIR among two CIRs that are adjacent in time-slots. DCIR has greater sparsity than the conventional CIRs as it can be easily compressed. The Block-ISD uses spatial-correlation of the channels to obtain the block-sparsity which results in lower pilot-overhead. AoD quantizes the channels whose path-AoDs variation is slower than path-gains and such information is utilized for reducing the overhead. S-CoSaMP deploys structured-sparsity to obtain reliable Channel-State-Information (CSI. MATLAB simulation results show that the proposed CS based algorithms reduce the feedback and pilot-overhead by a significant percentage and also improve the system capacity as compared with the traditional algorithms. Moreover, the EE level increases with increasing Base Station (BS density, UE density and lowering hardware impairments level.

  4. Enhancing robustness of multiparty quantum correlations using weak measurement

    International Nuclear Information System (INIS)

    Singh, Uttam; Mishra, Utkarsh; Dhar, Himadri Shekhar

    2014-01-01

    Multipartite quantum correlations are important resources for the development of quantum information and computation protocols. However, the resourcefulness of multipartite quantum correlations in practical settings is limited by its fragility under decoherence due to environmental interactions. Though there exist protocols to protect bipartite entanglement under decoherence, the implementation of such protocols for multipartite quantum correlations has not been sufficiently explored. Here, we study the effect of local amplitude damping channel on the generalized Greenberger–Horne–Zeilinger state, and use a protocol of optimal reversal quantum weak measurement to protect the multipartite quantum correlations. We observe that the weak measurement reversal protocol enhances the robustness of multipartite quantum correlations. Further it increases the critical damping value that corresponds to entanglement sudden death. To emphasize the efficacy of the technique in protection of multipartite quantum correlation, we investigate two proximately related quantum communication tasks, namely, quantum teleportation in a one sender, many receivers setting and multiparty quantum information splitting, through a local amplitude damping channel. We observe an increase in the average fidelity of both the quantum communication tasks under the weak measurement reversal protocol. The method may prove beneficial, for combating external interactions, in other quantum information tasks using multipartite resources. - Highlights: • Extension of weak measurement reversal scheme to protect multiparty quantum correlations. • Protection of multiparty quantum correlation under local amplitude damping noise. • Enhanced fidelity of quantum teleportation in one sender and many receivers setting. • Enhanced fidelity of quantum information splitting protocol

  5. Enhancing robustness of multiparty quantum correlations using weak measurement

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Uttam, E-mail: uttamsingh@hri.res.in [Quantum Information and Computation Group, Harish-Chandra Research Institute, Chhatnag Road, Jhunsi, Allahabad 211 019 (India); Mishra, Utkarsh, E-mail: utkarsh@hri.res.in [Quantum Information and Computation Group, Harish-Chandra Research Institute, Chhatnag Road, Jhunsi, Allahabad 211 019 (India); Dhar, Himadri Shekhar, E-mail: dhar.himadri@gmail.com [School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067 (India)

    2014-11-15

    Multipartite quantum correlations are important resources for the development of quantum information and computation protocols. However, the resourcefulness of multipartite quantum correlations in practical settings is limited by its fragility under decoherence due to environmental interactions. Though there exist protocols to protect bipartite entanglement under decoherence, the implementation of such protocols for multipartite quantum correlations has not been sufficiently explored. Here, we study the effect of local amplitude damping channel on the generalized Greenberger–Horne–Zeilinger state, and use a protocol of optimal reversal quantum weak measurement to protect the multipartite quantum correlations. We observe that the weak measurement reversal protocol enhances the robustness of multipartite quantum correlations. Further it increases the critical damping value that corresponds to entanglement sudden death. To emphasize the efficacy of the technique in protection of multipartite quantum correlation, we investigate two proximately related quantum communication tasks, namely, quantum teleportation in a one sender, many receivers setting and multiparty quantum information splitting, through a local amplitude damping channel. We observe an increase in the average fidelity of both the quantum communication tasks under the weak measurement reversal protocol. The method may prove beneficial, for combating external interactions, in other quantum information tasks using multipartite resources. - Highlights: • Extension of weak measurement reversal scheme to protect multiparty quantum correlations. • Protection of multiparty quantum correlation under local amplitude damping noise. • Enhanced fidelity of quantum teleportation in one sender and many receivers setting. • Enhanced fidelity of quantum information splitting protocol.

  6. Ion channeling

    International Nuclear Information System (INIS)

    Erramli, H.; Blondiaux, G.

    1994-01-01

    Channeling phenomenon was predicted, many years ago, by stark. The first channeling experiments were performed in 1963 by Davies and his coworkers. Parallely Robinson and Oen have investigated this process by simulating trajectories of ions in monocrystals. This technique has been combined with many methods like Rutherford Backscattering Spectrometry (R.B.S.), Particles Induced X-rays Emission (P.I.X.E) and online Nuclear Reaction (N.R.A.) to localize trace elements in the crystal or to determine crystalline quality. To use channeling for material characterization we need data about the stopping power of the incident particle in the channeled direction. The ratios of channeled to random stopping powers of silicon for irradiation in the direction have been investigated and compared to the available theoretical results. We describe few applications of ion channeling in the field of materials characterization. Special attention is given to ion channeling combined with Charged Particle Activation Analysis (C.P.A.A.) for studying the behaviour of oxygen atoms in Czochralski silicon lattices under the influence of internal gettering and in different gaseous atmospheres. Association between ion channeling and C.P.A.A was also utilised for studying the influence of the growing conditions on concentration and position of carbon atoms at trace levels in the MOVPE Ga sub (1-x) Al sub x lattice. 6 figs., 1 tab., 32 refs. (author)

  7. Channel characteristics and coordination in three-echelon dual-channel supply chain

    Science.gov (United States)

    Saha, Subrata

    2016-02-01

    We explore the impact of channel structure on the manufacturer, the distributer, the retailer and the entire supply chain by considering three different channel structures in radiance of with and without coordination. These structures include a traditional retail channel and two manufacturer direct channels with and without consistent pricing. By comparing the performance of the manufacturer, the distributer and the retailer, and the entire supply chain in three different supply chain structures, it is established analytically that, under some conditions, a dual channel can outperform a single retail channel; as a consequence, a coordination mechanism is developed that not only coordinates the dual channel but also outperforms the non-cooperative single retail channel. All the analytical results are further analysed through numerical examples.

  8. Void fraction calculation in a channel containing boiling coolant

    International Nuclear Information System (INIS)

    Norelli, F.

    1978-01-01

    The problem of void fraction calculation was studied for a channel containing boiling coolant, when a slip ratio correlation is used. Use of fitting (e.g. polinomial or rational algebraic) for slip ratio correlation and the characteristic method are proposed in this work. In this way we are reduced to some elementary quadrature problem. Another problem discussed in the present work concerns what we must consider as ''initial condition'' in any initial value problem, in order to take into account different error distributions in steady state and in successive time-dependent calculations

  9. Statistical mechanical analysis of the linear vector channel in digital communication

    International Nuclear Information System (INIS)

    Takeda, Koujin; Hatabu, Atsushi; Kabashima, Yoshiyuki

    2007-01-01

    A statistical mechanical framework to analyze linear vector channel models in digital wireless communication is proposed for a large system. The framework is a generalization of that proposed for code-division multiple-access systems in Takeda et al (2006 Europhys. Lett. 76 1193) and enables the analysis of the system in which the elements of the channel transfer matrix are statistically correlated with each other. The significance of the proposed scheme is demonstrated by assessing the performance of an existing model of multi-input multi-output communication systems

  10. Charge Fractionalization in the Two-Channel Kondo Effect

    Science.gov (United States)

    Landau, L. Aviad; Cornfeld, Eyal; Sela, Eran

    2018-05-01

    The phenomenon of charge fractionalization describes the emergence of novel excitations with fractional quantum numbers, as predicted in strongly correlated systems such as spin liquids. We elucidate that precisely such an unusual effect may occur in the simplest possible non-Fermi liquid, the two-channel Kondo effect. To bring this concept down to experimental test, we study nonequilibrium transport through a device realizing the charge two-channel Kondo critical point in a recent experiment by Iftikhar et al. [Nature (London) 526, 233 (2015), 10.1038/nature15384]. The shot noise at low voltages is predicted to result in a universal Fano factor e*/e =1 /2 . This allows us to experimentally identify elementary transport processes of emergent fermions carrying half-integer charge.

  11. Characterization of Unruh channel in the context of open quantum systems

    International Nuclear Information System (INIS)

    Banerjee, Subhashish; Alok, Ashutosh Kumar; Omkar, S.; Srikanth, R.

    2017-01-01

    In this work, we study an important facet of field theories in curved spacetime, viz. the Unruh effect, by making use of ideas of statistical mechanics and quantum foundations. Aspects of decoherence and dissipation, natural artifacts of open quantum systems, along with foundational issues such as the trade-off between coherence and mixing as well as various aspects of quantum correlations are investigated in detail for the Unruh effect. We show how the Unruh effect can be quantified mathematically by the Choi matrix approach. We study how environmentally induced decoherence modifies the effect of the Unruh channel. The differing effects of a dissipative or non-dissipative environment are noted. Further, useful parameters characterizing channel performance such as gate and channel fidelity are applied here to the Unruh channel, both with and without external influences. Squeezing, which is known to play an important role in the context of particle creation, is shown to be a useful resource in a number of scenarios.

  12. MONETARY TRANSMISSION CHANNELS IN ROMANIA – THE CREDIT CHANNEL

    Directory of Open Access Journals (Sweden)

    Magdalena RĂDULESCU

    2009-12-01

    Full Text Available The theoretical – intuitive analysis applied to the segment of monetary transmission evidences the fact that forming the traditional monetary impulses transmission channels are in a starting phase due to the long financial non – intermediary process which Romanian economy had known. In these conditions, the exchange rate channel, and also NBR currency purchases was, for a long time, an important way through which monetary authorities actions influenced macro economical behaviors. But starting with 2000, it is observed a credit channel reactivation and, especially, interest rate channel. Anyhow, the credit channel continues to be undermined by the existence of liquidity surplus within the system, by the phenomena of substitution of national currency credit with currency credits, and also moral hazardous displays. Albeit some of these phenomena also affect the interest rate channel, its role in sending monetary policy impulses is in a continuous progress. Apparently, it acts by way of nominal interest rates, their real level seeming less relevant. Once with remaking the two traditional channels, the companies and households balance is configured and consolidated, which shall potentate in the future the efficiency of the monetary policy. This paper analyses the credit channel in Romania, through an unrestricted VAR analysis.. It shows the responses of exchange rate, inflation rate, GDP, interest rate, imports and exports to a shock on non-governmental credit

  13. Analysis of different communication channels for promoting hygiene behaviour.

    Science.gov (United States)

    Pinfold, J V

    1999-10-01

    A hygiene intervention study reduced diarrhoeal disease transmission in rural northeast Thailand by promoting hand-washing and dish-washing behaviour. Most of the target audience did not recognize a connection between these behaviours and diarrhoeal disease, and therefore a social marketing approach was used to develop a campaign promoting behaviours through a variety of communication channels keeping messages simple and in terms understood by the community. Overall, there was a strong correlation between the number of communication channels remembered by respondents and their knowledge score, with passive channels of printed media such as stickers, posters and leaflets associated with significantly higher scores than other channels. However, the same did not hold true for improvement in actual behaviour and only 'school children' were associated with significantly less fingertip contamination. In-depth interviews with conformers and non-conformers suggested that although most knew the intervention messages well enough, the importance they attached to them differed markedly. Thus dissemination of message knowledge was not consistent with the process of dissemination of actual practice. Where a strong sense of community spirit existed, friends, relatives and neighbours were more likely to discuss intervention activities with each other.

  14. ZnO-channel thin-film transistors: Channel mobility

    International Nuclear Information System (INIS)

    Hoffman, R.L.

    2004-01-01

    ZnO-channel thin-film transistor (TFT) test structures are fabricated using a bottom-gate structure on thermally oxidized Si; ZnO is deposited via RF sputtering from an oxide target, with an unheated substrate. Electrical characteristics are evaluated, with particular attention given to the extraction and interpretation of transistor channel mobility. ZnO-channel TFT mobility exhibits severe deviation from that assumed by ideal TFT models; mobility extraction methodology must accordingly be recast so as to provide useful insight into device operation. Two mobility metrics, μ avg and μ inc , are developed and proposed as relevant tools in the characterization of nonideal TFTs. These mobility metrics are employed to characterize the ZnO-channel TFTs reported herein; values for μ inc as high as 25 cm2/V s are measured, comprising a substantial increase in ZnO-channel TFT mobility as compared to previously reported performance for such devices

  15. Visualization experimental investigation on long stripe coherent structure in small-scale rectangular channel

    International Nuclear Information System (INIS)

    Su Jiqiang; Sun Zhongning; Fan Guangming; Wang Shiming

    2013-01-01

    The long stripe coherent structure of the turbulent boundary layer in a small- scale vertical rectangular channel was observed by using hydrogen bubble flow trace visualization technique. The statistical properties of the long stripe in the experimental channel boundary layer were compared with that in the smooth flat plate boundary layer. The pitch characteristics were explained by the formation mechanism of the long stripe. It was analyzed that how the change of y + affected the distribution of the long stripe. In addition, the frequency characteristics of the long stripe were also investigated, and the correlation of the long stripe frequency in such a flow channel was obtained. (authors)

  16. Bose-Einstein correlations in W+ W- events at LEP2

    CERN Document Server

    van Dalen, Jorn A

    2000-01-01

    Analyses of Bose-Einstein Correlations in w+w- events at LEP2 by the four LEP collaborations are presented. In particular, Bose-Einstein correlations in w+w- overlap are investigated and the possible existence of these correlations between particles coming from different W's, which may influence the W mass measurements in the fully-hadronic channel e+e- --+ w+w- --+ qiihq3ij<. No evidence for such an inter-W Bose-Einstein correlation is found by L3 and ALEPH. Possible indication of these correlations by DELPHI is mentioned.

  17. Disguising quantum channels by mixing and channel distance trade-off

    International Nuclear Information System (INIS)

    Fung, Chi-Hang Fred; Chau, H F

    2014-01-01

    We consider the reverse problem of the distinguishability of two quantum channels, which we call the disguising problem. Given two quantum channels, the goal here is to make the two channels identical by mixing with some other channels with minimal mixing probabilities. This quantifies how much one channel can disguise as the other. In addition, the possibility to trade-off between the two mixing probabilities allows one channel to be more preserved (less mixed) at the expense of the other. We derive lower- and upper-bounds of the trade-off curve and apply them to a few example channels. Optimal trade-off is obtained in one example. We relate the disguising problem and the distinguishability problem by showing that the former can lower and upper bound the diamond norm. We also show that the disguising problem gives an upper-bound on the key generation rate in quantum cryptography. (paper)

  18. Ligand-based design and synthesis of novel sodium channel blockers from a combined phenytoin–lidocaine pharmacophore

    OpenAIRE

    Wang, Yuesheng; Jones, Paulianda J.; Batts, Timothy W.; Landry, Victoria; Patel, Manoj K.; Brown, Milton L.

    2008-01-01

    The voltage-gated sodium channel remains a rich area for the development of novel blockers. In this study we used comparative molecular field analysis (CoMFA), a ligand-based design strategy, to generate a 3D model based upon local anesthetics, hydantoins, and α-hydroxyphenylamides to elucidate a SAR for their binding site in the neuronal sodium channel. Correlation by partial least squares (PLS) analysis of in vitro sodium channel binding activity (expressed as pIC50) and the CoMFA descripto...

  19. Drainage basins, channels, and flow characteristics of selected streams in central Pennsylvania

    Science.gov (United States)

    Brush, Lucien M.

    1961-01-01

    The hydraulic, basin, and geologic characteristics of 16 selected streams in central Pennsylvania were measured for the purpose of studying the relations among these general characteristics and their process of development. The basic parameters which were measured include bankfull width and depth, channel slope, bed material size and shape, length of stream from drainage divide, and size of drainage area. The kinds of bedrock over which the streams flow were noted. In these streams the bankfull channel is filled by flows approximating the 2.3-year flood. By measuring the breadth and mean depth of the channel, it was possible to compute the bankfull mean velocity for each of the 119 sampling stations. These data were then used to compute the downstream changes in hydraulic geometry of the streams studied. This method has been called an indirect computation of the hydraulic geometry. The results obtained by the indirect method are similar to those of the direct method of other workers. The basins were studied by examining the relations of drainage area, discharge, and length of stream from drainage divide. For the streams investigated, excellent correlations were found to exist between drainage area and the 2.3-year flood, as well as between length of stream from the basin divide and drainage area. From these correlations it is possible to predict the discharge for the 2.3-year flood at any arbitrary point along the length of the stream. The long, intermediate, and short axes of pebbles sampled from the bed of the stream were recorded to study both size and sphericity changes along individual streams and among the streams studied. No systematic downstream changes in sphericity were found. Particle size changes are erratic and show no consistent relation to channel slope. Particle size decreases downstream in many streams but remains constant or increases in others. Addition of material by tributaries is one factor affecting particle size and another is the parent

  20. Revisiting Cross-Channel Information Transfer for Chromatic Aberration Correction

    KAUST Repository

    Sun, Tiancheng; Peng, Yifan; Heidrich, Wolfgang

    2017-01-01

    Image aberrations can cause severe degradation in image quality for consumer-level cameras, especially under the current tendency to reduce the complexity of lens designs in order to shrink the overall size of modules. In simplified optical designs, chromatic aberration can be one of the most significant causes for degraded image quality, and it can be quite difficult to remove in post-processing, since it results in strong blurs in at least some of the color channels. In this work, we revisit the pixel-wise similarity between different color channels of the image and accordingly propose a novel algorithm for correcting chromatic aberration based on this cross-channel correlation. In contrast to recent weak prior-based models, ours uses strong pixel-wise fitting and transfer, which lead to significant quality improvements for large chromatic aberrations. Experimental results on both synthetic and real world images captured by different optical systems demonstrate that the chromatic aberration can be significantly reduced using our approach.

  1. Revisiting Cross-Channel Information Transfer for Chromatic Aberration Correction

    KAUST Repository

    Sun, Tiancheng

    2017-12-25

    Image aberrations can cause severe degradation in image quality for consumer-level cameras, especially under the current tendency to reduce the complexity of lens designs in order to shrink the overall size of modules. In simplified optical designs, chromatic aberration can be one of the most significant causes for degraded image quality, and it can be quite difficult to remove in post-processing, since it results in strong blurs in at least some of the color channels. In this work, we revisit the pixel-wise similarity between different color channels of the image and accordingly propose a novel algorithm for correcting chromatic aberration based on this cross-channel correlation. In contrast to recent weak prior-based models, ours uses strong pixel-wise fitting and transfer, which lead to significant quality improvements for large chromatic aberrations. Experimental results on both synthetic and real world images captured by different optical systems demonstrate that the chromatic aberration can be significantly reduced using our approach.

  2. Efficient tracking of the cross-correlation coefficient

    NARCIS (Netherlands)

    Aarts, R.M.; Irwan, R.; Janssen, A.J.E.M.

    2002-01-01

    In many (audio) processing algorithms, involving manipulation of discrete-time signals, the performance can vary strongly over the repertoire that is used. This may be the case when the signals from the various channels are allowed to be strongly positively or negatively correlated. We propose and

  3. Compound Wiretap Channels

    Directory of Open Access Journals (Sweden)

    Kramer Gerhard

    2009-01-01

    Full Text Available Abstract This paper considers the compound wiretap channel, which generalizes Wyner's wiretap model to allow the channels to the (legitimate receiver and to the eavesdropper to take a number of possible states. No matter which states occur, the transmitter guarantees that the receiver decodes its message and that the eavesdropper is kept in full ignorance about the message. The compound wiretap channel can also be viewed as a multicast channel with multiple eavesdroppers, in which the transmitter sends information to all receivers and keeps the information secret from all eavesdroppers. For the discrete memoryless channel, lower and upper bounds on the secrecy capacity are derived. The secrecy capacity is established for the degraded channel and the semideterministic channel with one receiver. The parallel Gaussian channel is further studied. The secrecy capacity and the secrecy degree of freedom ( are derived for the degraded case with one receiver. Schemes to achieve the for the case with two receivers and two eavesdroppers are constructed to demonstrate the necessity of a prefix channel in encoder design. Finally, the multi-antenna (i.e., MIMO compound wiretap channel is studied. The secrecy capacity is established for the degraded case and an achievable is given for the general case.

  4. ATP Release Channels

    Directory of Open Access Journals (Sweden)

    Akiyuki Taruno

    2018-03-01

    Full Text Available Adenosine triphosphate (ATP has been well established as an important extracellular ligand of autocrine signaling, intercellular communication, and neurotransmission with numerous physiological and pathophysiological roles. In addition to the classical exocytosis, non-vesicular mechanisms of cellular ATP release have been demonstrated in many cell types. Although large and negatively charged ATP molecules cannot diffuse across the lipid bilayer of the plasma membrane, conductive ATP release from the cytosol into the extracellular space is possible through ATP-permeable channels. Such channels must possess two minimum qualifications for ATP permeation: anion permeability and a large ion-conducting pore. Currently, five groups of channels are acknowledged as ATP-release channels: connexin hemichannels, pannexin 1, calcium homeostasis modulator 1 (CALHM1, volume-regulated anion channels (VRACs, also known as volume-sensitive outwardly rectifying (VSOR anion channels, and maxi-anion channels (MACs. Recently, major breakthroughs have been made in the field by molecular identification of CALHM1 as the action potential-dependent ATP-release channel in taste bud cells, LRRC8s as components of VRACs, and SLCO2A1 as a core subunit of MACs. Here, the function and physiological roles of these five groups of ATP-release channels are summarized, along with a discussion on the future implications of understanding these channels.

  5. Cross-correlation interference effects in multiaccess optical communications

    Science.gov (United States)

    Peterson, G. D.; Gardner, C. S.

    1981-03-01

    An analysis is presented of the cross correlation between user codes in an optical code-division multiple-access communication system. The system model is a multiaccess satellite repeater, where the uplink and downlink channels are direct-detection optical-polarization modulation links. The error probability is obtained in terms of the cross correlation between the intended and interfering user codes. It is demonstrated that the system error rate can be minimized by the use of code sequences in which the normalized second moment of the cross correlation between codes is small.

  6. Functional significance of M-type potassium channels in nociceptive cutaneous sensory endings

    Science.gov (United States)

    Passmore, Gayle M.; Reilly, Joanne M.; Thakur, Matthew; Keasberry, Vanessa N.; Marsh, Stephen J.; Dickenson, Anthony H.; Brown, David A.

    2012-01-01

    M-channels carry slowly activating potassium currents that regulate excitability in a variety of central and peripheral neurons. Functional M-channels and their Kv7 channel correlates are expressed throughout the somatosensory nervous system where they may play an important role in controlling sensory nerve activity. Here we show that Kv7.2 immunoreactivity is expressed in the peripheral terminals of nociceptive primary afferents. Electrophysiological recordings from single afferents in vitro showed that block of M-channels by 3 μM XE991 sensitized Aδ- but not C-fibers to noxious heat stimulation and induced spontaneous, ongoing activity at 32°C in many Aδ-fibers. These observations were extended in vivo: intraplantar injection of XE991 selectively enhanced the response of deep dorsal horn (DH) neurons to peripheral mid-range mechanical and higher range thermal stimuli, consistent with a selective effect on Aδ-fiber peripheral terminals. These results demonstrate an important physiological role of M-channels in controlling nociceptive Aδ-fiber responses and provide a rationale for the nocifensive behaviors that arise following intraplantar injection of the M-channel blocker XE991. PMID:22593734

  7. Functional significance of M-type potassium channels in nociceptive cutaneous sensory endings

    Directory of Open Access Journals (Sweden)

    Gayle M. Passmore

    2012-05-01

    Full Text Available M-channels carry slowly activating potassium currents that regulate excitability in a variety of central and peripheral neurons. Functional M-channels and their Kv7 channel correlates are expressed throughout the somatosensory nervous system where they may play an important role in controlling sensory nerve activity. Here we show that Kv7.2 immunoreactivity is expressed in the peripheral terminals of nociceptive primary afferents. Electrophysiological recordings from single afferents in vitro showed that block of M-channels by 3 µM XE991 sensitised Adelta- but not C-fibres to noxious heat stimulation and induced spontaneous, ongoing activity at 32ºC in many Adelta-fibres. These observations were extended in vivo: intraplantar injection of XE991 selectively enhanced the response of deep dorsal horn neurons to peripheral mid-range mechanical and higher range thermal stimuli, consistent with a selective effect on Adelta-fibre peripheral terminals. These results demonstrate an important physiological role of M-channels in controlling nociceptive Adelta-fibre responses and provide a rationale for the nocifensive behaviours that arise following intraplantar injection of the M-channel blocker XE991.

  8. Barbed channels enhance unidirectional connectivity between neuronal networks cultured on multi electrode arrays

    Science.gov (United States)

    le Feber, Joost; Postma, Wybren; de Weerd, Eddy; Weusthof, Marcel; Rutten, Wim L. C.

    2015-01-01

    Cultured neurons on multi electrode arrays (MEAs) have been widely used to study various aspects of neuronal (network) functioning. A possible drawback of this approach is the lack of structure in these networks. At the single cell level, several solutions have been proposed to enable directed connectivity, and promising results were obtained. At the level of connected sub-populations, a few attempts have been made with promising results. First assessment of the designs' functionality, however, suggested room for further improvement. We designed a two chamber MEA aiming to create a unidirectional connection between the networks in both chambers (“emitting” and “receiving”). To achieve this unidirectionality, all interconnecting channels contained barbs that hindered axon growth in the opposite direction (from receiving to emitting chamber). Visual inspection showed that axons predominantly grew through the channels in the promoted direction. This observation was confirmed by spontaneous activity recordings. Cross-correlation between the signals from two electrodes inside the channels suggested signal propagation at ≈2 m/s from emitting to receiving chamber. Cross-correlation between the firing patterns in both chambers indicated that most correlated activity was initiated in the emitting chamber, which was also reflected by a significantly lower fraction of partial bursts (i.e., a one-chamber-only burst) in the emitting chamber. Finally, electrical stimulation in the emitting chamber induced a fast response in that chamber, and a slower response in the receiving chamber. Stimulation in the receiving chamber evoked a fast response in that chamber, but no response in the emitting chamber. These results confirm the predominantly unidirectional nature of the connecting channels from emitting to receiving chamber. PMID:26578869

  9. Barbed channels enhance unidirectional connectivity between neuronal networks cultured on multi electrode arrays.

    Directory of Open Access Journals (Sweden)

    Joost eLe Feber

    2015-11-01

    Full Text Available Cultured neurons on multi electrode arrays (MEAs have been widely used to study various as-pects of neuronal (network functioning. A possible drawback of this approach is the lack of structure in these networks. At the single cell level, several solutions have been proposed to ena-ble directed connectivity, and promising results were obtained. At the level of connected sub-populations, a few attempts have been made with promising results. First assessment of the de-signs’ functionality, however, suggested room for further improvement.We designed a two chamber MEA aiming to create a unidirectional connection between the net-works in both chambers (‘emitting’ and ‘receiving’. To achieve this unidirectionality, all inter-connecting channels contained barbs that hindered axon growth in the opposite direction (from receiving to emitting chamber. Visual inspection showed that axons predominantly grew through the channels in the promoted direction . This observation was confirmed by spontaneous activity recordings. Cross-correlation between the signals from two electrodes inside the channels suggested signal propagation at ≈2 m/s from emitting to receiving chamber. Cross-correlation between the firing patterns in both chambers indicated that most correlated activity was initiated in the emitting chamber, which was also reflected by a significantly lower fraction of partial bursts (e. a one-chamber-only burst in the emitting chamber. Finally, electrical stimulation in the emitting chamber induced a fast response in that chamber, and a slower response in the receiving chamber. Stimulation in the receiving chamber evoked a fast response in that chamber, but no response in the emitting chamber. These results confirm the predominantly unidirectional nature of the connecting channels from emitting to receiving chamber.

  10. Mass transfer in horizontal flow channels with thermal gradients

    International Nuclear Information System (INIS)

    Bendrich, G.; Shemilt, L.W.

    1997-01-01

    Mass transfer to a wall of a horizontal rectangular channel reactor was investigated by the limiting current technique for Reynolds numbers ranging from 200 to 32000. Overall mass transfer coefficients at various mass transfer surface angles were obtained while the reactor was operated under isothermal and non-isothermal conditions. Dimensionless correlations were developed for isothermal flows from 25 to 55 o C and for non-isothermal flows with applied temperature differences up to 30 o C. In the laminar flow range natural convection dominated, but under turbulent conditions combined natural and forced convection prevailed. Mass transfer was approximately doubled under optimum selection of channel surface rotation, temperature gradient and flow rate. (author)

  11. Counter-current flow limited CHF in thin rectangular channels

    International Nuclear Information System (INIS)

    Cheng, L.Y.

    1990-01-01

    An analytical expression for counter-current-flow-limitation (CCFL) was used to predict critical heat flux (CHF) for downward flow in thin vertical rectangular channels which are prototypes of coolant channels in test and research nuclear reactors. Top flooding is the mechanism for counter-current flow limited CHF. The CCFL correlation also was used to determine the circulation and flooding-limited CHF. Good agreements were observed between the period the model predictions and data on the CHF for downflow. The minimum CHF for downflow is lower than the flooding-limited CHF and it is predicted to occur at a liquid flow rate higher than that at the flooding limit. 17 refs., 7 figs

  12. Spark Channels

    Energy Technology Data Exchange (ETDEWEB)

    Haydon, S. C. [Department of Physics, University of New England, Armidale, NSW (Australia)

    1968-04-15

    A brief summary is given of the principal methods used for initiating spark channels and the various highly time-resolved techniques developed recently for studies with nanosecond resolution. The importance of the percentage overvoltage in determining the early history and subsequent development of the various phases of the growth of the spark channel is discussed. An account is then given of the recent photographic, oscillographic and spectroscopic investigations of spark channels initiated by co-axial cable discharges of spark gaps at low [{approx} 1%] overvoltages. The phenomena observed in the development of the immediate post-breakdown phase, the diffuse glow structure, the growth of the luminous filament and the final formation of the spark channel in hydrogen are described. A brief account is also given of the salient features emerging from corresponding studies of highly overvolted spark gaps in which the spark channel develops from single avalanche conditions. The essential differences between the two types of channel formation are summarized and possible explanations of the general features are indicated. (author)

  13. Hand Motion Classification Using a Multi-Channel Surface Electromyography Sensor

    Directory of Open Access Journals (Sweden)

    Dong Sun

    2012-01-01

    Full Text Available The human hand has multiple degrees of freedom (DOF for achieving high-dexterity motions. Identifying and replicating human hand motions are necessary to perform precise and delicate operations in many applications, such as haptic applications. Surface electromyography (sEMG sensors are a low-cost method for identifying hand motions, in addition to the conventional methods that use data gloves and vision detection. The identification of multiple hand motions is challenging because the error rate typically increases significantly with the addition of more hand motions. Thus, the current study proposes two new methods for feature extraction to solve the problem above. The first method is the extraction of the energy ratio features in the time-domain, which are robust and invariant to motion forces and speeds for the same gesture. The second method is the extraction of the concordance correlation features that describe the relationship between every two channels of the multi-channel sEMG sensor system. The concordance correlation features of a multi-channel sEMG sensor system were shown to provide a vast amount of useful information for identification. Furthermore, a new cascaded-structure classifier is also proposed, in which 11 types of hand gestures can be identified accurately using the newly defined features. Experimental results show that the success rate for the identification of the 11 gestures is significantly high.

  14. Hand motion classification using a multi-channel surface electromyography sensor.

    Science.gov (United States)

    Tang, Xueyan; Liu, Yunhui; Lv, Congyi; Sun, Dong

    2012-01-01

    The human hand has multiple degrees of freedom (DOF) for achieving high-dexterity motions. Identifying and replicating human hand motions are necessary to perform precise and delicate operations in many applications, such as haptic applications. Surface electromyography (sEMG) sensors are a low-cost method for identifying hand motions, in addition to the conventional methods that use data gloves and vision detection. The identification of multiple hand motions is challenging because the error rate typically increases significantly with the addition of more hand motions. Thus, the current study proposes two new methods for feature extraction to solve the problem above. The first method is the extraction of the energy ratio features in the time-domain, which are robust and invariant to motion forces and speeds for the same gesture. The second method is the extraction of the concordance correlation features that describe the relationship between every two channels of the multi-channel sEMG sensor system. The concordance correlation features of a multi-channel sEMG sensor system were shown to provide a vast amount of useful information for identification. Furthermore, a new cascaded-structure classifier is also proposed, in which 11 types of hand gestures can be identified accurately using the newly defined features. Experimental results show that the success rate for the identification of the 11 gestures is significantly high.

  15. Ontology-aided feature correlation for multi-modal urban sensing

    Science.gov (United States)

    Misra, Archan; Lantra, Zaman; Jayarajah, Kasthuri

    2016-05-01

    The paper explores the use of correlation across features extracted from different sensing channels to help in urban situational understanding. We use real-world datasets to show how such correlation can improve the accuracy of detection of city-wide events by combining metadata analysis with image analysis of Instagram content. We demonstrate this through a case study on the Singapore Haze. We show that simple ontological relationships and reasoning can significantly help in automating such correlation-based understanding of transient urban events.

  16. Propagation of nonclassical correlations across a quantum spin chain

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, S. [Centre for Theoretical Atomic, Molecular and Optical Physics, School of Mathematics and Physics, Queen' s University, Belfast BT7 1NN, Northern Ireland (United Kingdom); Physics Department, University College Cork, Cork (Ireland); Quantum Systems Unit, Okinawa Institute of Science and Technology, Okinawa (Japan); Apollaro, T. J. G. [Dipartimento di Fisica e Astronomia, Universita di Firenze, Via G. Sansone 1, IT-50019 Sesto Fiorentino (Italy); Di Franco, C. [Physics Department, University College Cork, Cork, Republic of Ireland (Ireland); Banchi, L.; Cuccoli, A. [Dipartimento di Fisica e Astronomia, Universita di Firenze, Via G. Sansone 1, IT-50019 Sesto Fiorentino (Italy); INFN Sezione di Firenze, via G.Sansone 1, IT-50019 Sesto Fiorentino (Italy); Vaia, R. [Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, via Madonna del Piano 10, IT-50019 Sesto Fiorentino (Italy); Plastina, F. [Dipartimento di Fisica, Universita della Calabria, IT-87036 Arcavacata di Rende (Italy); INFN Gruppo collegato di Cosenza, Universita della Calabria, IT-87036, Arcavacata di Rende (Italy); Paternostro, M. [Centre for Theoretical Atomic, Molecular and Optical Physics, School of Mathematics and Physics, Queen' s University, Belfast BT7 1NN, Northern Ireland (United Kingdom)

    2011-11-15

    We study the transport of quantum correlations across a chain of interacting spin-1/2 particles. As a quantitative figure of merit, we choose a symmetric version of quantum discord and compare it with the transported entanglement, addressing various operating regimes of the spin medium. Discord turns out to be better transported for a wide range of working points and initial conditions of the system. We relate this behavior to the efficiency of propagation of a single excitation across the spin chain. Moreover, we point out the role played by a magnetic field in the dynamics of discord in the effective channel embodied by the chain. Our analysis can be interestingly extended to transport processes in more complex networks and the study of nonclassical correlations under general quantum channels.

  17. Wall-cooling-induced mixed-convection flow recirculation in a vertical square-array multi-rod channel

    International Nuclear Information System (INIS)

    Luangdilok, W.; Todreas, N.E.

    1989-01-01

    This work investigated the structure of penetrative flow recirculation and associated flow conditions in a multi-rod channel induced by interassembly heat transfer that causes cooling through channel walls. Three investigation approaches, experimental, numerical, and analytical were employed in a complimentary fashion. Physical experiments involved water flow visualization and temperature measurement in a 4x4 rod square channel. Numerical experiments involved 3-dimensional simulations of water and sodium flow in a 2x2-rod channels. An approximate reverse flow model including Prandtl number effect was developed. A correlating equation based on the model and experiments was verified for water to correctly predict the trend of the 4x4-rod experimental penetration depth data. (orig.)

  18. Joint source/channel coding of scalable video over noisy channels

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, G.; Zakhor, A. [Department of Electrical Engineering and Computer Sciences University of California Berkeley, California94720 (United States)

    1997-01-01

    We propose an optimal bit allocation strategy for a joint source/channel video codec over noisy channel when the channel state is assumed to be known. Our approach is to partition source and channel coding bits in such a way that the expected distortion is minimized. The particular source coding algorithm we use is rate scalable and is based on 3D subband coding with multi-rate quantization. We show that using this strategy, transmission of video over very noisy channels still renders acceptable visual quality, and outperforms schemes that use equal error protection only. The flexibility of the algorithm also permits the bit allocation to be selected optimally when the channel state is in the form of a probability distribution instead of a deterministic state. {copyright} {ital 1997 American Institute of Physics.}

  19. Distributed Channel Estimation and Pilot Contamination Analysis for Massive MIMO-OFDM Systems

    KAUST Repository

    Zaib, Alam

    2016-07-22

    By virtue of large antenna arrays, massive MIMO systems have a potential to yield higher spectral and energy efficiency in comparison with the conventional MIMO systems. This paper addresses uplink channel estimation in massive MIMO-OFDM systems with frequency selective channels. We propose an efficient distributed minimum mean square error (MMSE) algorithm that can achieve near optimal channel estimates at low complexity by exploiting the strong spatial correlation among antenna array elements. The proposed method involves solving a reduced dimensional MMSE problem at each antenna followed by a repetitive sharing of information through collaboration among neighboring array elements. To further enhance the channel estimates and/or reduce the number of reserved pilot tones, we propose a data-aided estimation technique that relies on finding a set of most reliable data carriers. Furthermore, we use stochastic geometry to quantify the pilot contamination, and in turn use this information to analyze the effect of pilot contamination on channel MSE. The simulation results validate our analysis and show near optimal performance of the proposed estimation algorithms.

  20. Compound Wiretap Channels

    Directory of Open Access Journals (Sweden)

    Shlomo Shamai (Shitz

    2009-01-01

    Full Text Available This paper considers the compound wiretap channel, which generalizes Wyner's wiretap model to allow the channels to the (legitimate receiver and to the eavesdropper to take a number of possible states. No matter which states occur, the transmitter guarantees that the receiver decodes its message and that the eavesdropper is kept in full ignorance about the message. The compound wiretap channel can also be viewed as a multicast channel with multiple eavesdroppers, in which the transmitter sends information to all receivers and keeps the information secret from all eavesdroppers. For the discrete memoryless channel, lower and upper bounds on the secrecy capacity are derived. The secrecy capacity is established for the degraded channel and the semideterministic channel with one receiver. The parallel Gaussian channel is further studied. The secrecy capacity and the secrecy degree of freedom (s.d.o.f. are derived for the degraded case with one receiver. Schemes to achieve the s.d.o.f. for the case with two receivers and two eavesdroppers are constructed to demonstrate the necessity of a prefix channel in encoder design. Finally, the multi-antenna (i.e., MIMO compound wiretap channel is studied. The secrecy capacity is established for the degraded case and an achievable s.d.o.f. is given for the general case.

  1. General correlation for prediction of critical heat flux ratio in water cooled channels

    Energy Technology Data Exchange (ETDEWEB)

    Pernica, R.; Cizek, J.

    1995-09-01

    The paper present the general empirical Critical Heat Flux Ration (CHFR) correlation which is valid for vertical water upflow through tubes, internally heated concentric annuli and rod bundles geometries with both wide and very tight square and triangular rods lattices. The proposed general PG correlation directly predicts the CHFR, it comprises axial and radial non-uniform heating, and is valid in a wider range of thermal hydraulic conditions than previously published critical heat flux correlations. The PG correlation has been developed using the critical heat flux Czech data bank which includes more than 9500 experimental data on tubes, 7600 data on rod bundles and 713 data on internally heated concentric annuli. Accuracy of the CHFR prediction, statistically assessed by the constant dryout conditions approach, is characterized by the mean value nearing 1.00 and the standard deviation less than 0.06. Moverover, a subchannel form of the PG correlations is statistically verified on Westinghouse and Combustion Engineering rod bundle data bases, i.e. more than 7000 experimental CHF points of Columbia University data bank were used.

  2. Electron correlation in highly-charged-ion collisions

    International Nuclear Information System (INIS)

    Hansen, J.P.; Taulbjerg, K.

    1992-01-01

    We have used the coupled-channel method to study the significance of electron correlation in the reaction mechanism for two-electron capture in C 5+ -He collisions. Two different sets of calculations were performed. While the static correlation energy was generally included in the calculations, further correlation effects were ignored in the first set of calculations. In the second set of calculations the so-called doubly excited symmetry basis (DESB) states were used to model the spatial electron correlation. The difference between the two sets of results is so profound that we can conclude that electron correlation plays an essential role in the reaction mechanism. The results of the DESB-based calculations are in good agreement with experimental data [Holt et al., Phys. Rev. A 43, 607 (1991)

  3. Target correlation and polarization effects on the electron impact ionization of He atoms

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Hari P, E-mail: hps1@physics.ucf.edu [Physics Department, University of Central Florida, Orlando, FL 32816 (United States)

    2011-03-28

    We have reported here the results of our investigation of the effects of electron correlation and polarization of the target in the incident channel on the electron impact ionization of the helium atom. The triple differential cross section (TDCS) is calculated for 28.6 eV incident electron energy for the case when the two final-state outgoing electrons share 4.0 eV excess energy equally and unequally and leave in the opposite direction. The electron correlation and polarization of the He-target in the initial state are considered completely ab initio using the recently extended multiconfiguration Hartree-Fock method. The electron correlation between the two outgoing electrons in the final state is included through the variationally determined screening potential. It is found that both target correlation and polarization in the incident channel play an important role; the polarization has larger effect on the TDCS than the target correlation. We compared our results with available experimental and theoretical data.

  4. Effect of aspect ratio on the laminar-to-turbulent transition in rectangular channel

    International Nuclear Information System (INIS)

    Wang Chang; Gao Puzhen; Tan Sichao; Xu Chao

    2012-01-01

    Highlights: ► Effect of aspect ratio on the transition Reynolds number in rectangular channel is studied. ► Prediction correlation for transition Reynolds number is proposed. ► The initiation location of flow transition is studied. - Abstract: The critical Reynolds number of the laminar-to-turbulent transition in the rectangular channel is investigated based on the energy gradient method. The results show that the critical Reynolds number decreases with the increasing aspect ratio. However, the relative location of laminar breakdown does not migrate significantly with the variation of the aspect ratio. In addition, a theoretical correlation as a function of the aspect ratio is proposed to calculate the transition Reynolds number, and the predicted values are in good agreement with the experimental data obtained in the published literatures.

  5. A computational design approach for virtual screening of peptide interactions across K+ channel families

    Directory of Open Access Journals (Sweden)

    Craig A. Doupnik

    2015-01-01

    Full Text Available Ion channels represent a large family of membrane proteins with many being well established targets in pharmacotherapy. The ‘druggability’ of heteromeric channels comprised of different subunits remains obscure, due largely to a lack of channel-specific probes necessary to delineate their therapeutic potential in vivo. Our initial studies reported here, investigated the family of inwardly rectifying potassium (Kir channels given the availability of high resolution crystal structures for the eukaryotic constitutively active Kir2.2 channel. We describe a ‘limited’ homology modeling approach that can yield chimeric Kir channels having an outer vestibule structure representing nearly any known vertebrate or invertebrate channel. These computationally-derived channel structures were tested in silico for ‘docking’ to NMR structures of tertiapin (TPN, a 21 amino acid peptide found in bee venom. TPN is a highly selective and potent blocker for the epithelial rat Kir1.1 channel, but does not block human or zebrafish Kir1.1 channel isoforms. Our Kir1.1 channel-TPN docking experiments recapitulated published in vitro findings for TPN-sensitive and TPN-insensitive channels. Additionally, in silico site-directed mutagenesis identified ‘hot spots’ within the channel outer vestibule that mediate energetically favorable docking scores and correlate with sites previously identified with in vitro thermodynamic mutant-cycle analysis. These ‘proof-of-principle’ results establish a framework for virtual screening of re-engineered peptide toxins for interactions with computationally derived Kir channels that currently lack channel-specific blockers. When coupled with electrophysiological validation, this virtual screening approach may accelerate the drug discovery process, and can be readily applied to other ion channels families where high resolution structures are available.

  6. Current Correlations in a Majorana Beam Splitter

    Science.gov (United States)

    Haim, Arbel; Berg, Erez; von Oppen, Felix; Oreg, Yuval

    We study current correlations in a T-junction composed of a grounded topological superconductor and of two normal-metal leads which are biased at a voltage V. We show that the existence of an isolated Majorana zero mode in the junction dictates a universal behavior for the cross correlation of the currents through the two normal-metal leads of the junction. The cross correlation is negative and approaches zero at high bias voltages as - 1 / V . This behavior is robust in the presence of disorder and multiple transverse channels, and persists at finite temperatures. In contrast, an accidental low-energy Andreev bound state gives rise to non-universal behavior of the cross correlation. We employ numerical transport simulations to corroborate our conclusions.

  7. Simulating a partial LOCA in a narrow channel using the DSNP simulating system

    International Nuclear Information System (INIS)

    Saphier, D.

    2007-01-01

    A partial LOCA accident in a pool type research reactor was investigated. A new MTR type fuel channel model for the DSNP simulation system was developed; permitting detailed axial and radial temperature distribution. New and older heat transfer correlations were incorporated in the model. Simulation for water levels of 14 and 35 cm in a 62 cm channel were performed. The resulting maximum temperatures remain significantly below the aluminium melting point, and no damage to the core will take place under these conditions

  8. Compressive Sensing Based Bayesian Sparse Channel Estimation for OFDM Communication Systems: High Performance and Low Complexity

    Science.gov (United States)

    Xu, Li; Shan, Lin; Adachi, Fumiyuki

    2014-01-01

    In orthogonal frequency division modulation (OFDM) communication systems, channel state information (CSI) is required at receiver due to the fact that frequency-selective fading channel leads to disgusting intersymbol interference (ISI) over data transmission. Broadband channel model is often described by very few dominant channel taps and they can be probed by compressive sensing based sparse channel estimation (SCE) methods, for example, orthogonal matching pursuit algorithm, which can take the advantage of sparse structure effectively in the channel as for prior information. However, these developed methods are vulnerable to both noise interference and column coherence of training signal matrix. In other words, the primary objective of these conventional methods is to catch the dominant channel taps without a report of posterior channel uncertainty. To improve the estimation performance, we proposed a compressive sensing based Bayesian sparse channel estimation (BSCE) method which cannot only exploit the channel sparsity but also mitigate the unexpected channel uncertainty without scarifying any computational complexity. The proposed method can reveal potential ambiguity among multiple channel estimators that are ambiguous due to observation noise or correlation interference among columns in the training matrix. Computer simulations show that proposed method can improve the estimation performance when comparing with conventional SCE methods. PMID:24983012

  9. Statistical properties of chaotic scattering with one open channel

    International Nuclear Information System (INIS)

    Izrajlev, F.M.; Saher, D.; Sokolov, V.V.

    1993-01-01

    The correspondence between statistical properties of decaying states and fluctuations in resonance scattering is studied in a statistical model with one open channel. The model is described by an ensemble of random nonhermitian matrices. The dependence of the correlation length on the coupling parameter both for the S-matrix and the cross-section is studied numerically. 37 refs., 7 figs

  10. Numerical Analysis of the Pressure Drop on a Flow Channel Filled with Catalysts for Nuclear Hydrogen Production System

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Sung Deok; Kim, C. S.; Kim, M. H.; Kim, Y. W. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Seo, D. U.; Park, G. C. [Seoul National Univ., Seoul (Korea, Republic of)

    2013-10-15

    Designing a process heat exchanger (PHE) is one of the main technical challenges in the development of a nuclear hydrogen production system. The PHE provides an interface between the helium gas and the sulfuric acid gas. The SO3 gas is heated and decomposed into SO2 and O2 in the PHE. For this reason, PHE is also called a sulfur trioxide decomposer. The Korea Atomic Energy Research Institute (KAERI) has developed a hybrid-design decomposer to withstand severe operating conditions. Figure 1 shows the layout of the PHE which has a hybrid form of its flow channel geometry; there is a printed-circuit form on the primary helium side and a plate-fin form on the secondary SO3 side. There are many widespread correlations for the porous media such as the Carman, Ergun, Zhavoronkov et al., Susskind and Becker and Reichelt correlation. In the nuclear field, the KTA correlation was developed for a reactor core design for a high-temperature gas-cooled reactor. In this paper, we discussed a numerical analysis and validation of a pressure drop on a SO3 flow channel filled with various sized catalysts. We discussed a numerical analysis and validation of a pressure drop on a flow channel filled with catalysts in the channel. The results of the pressure drop simulation are compared with the results obtained using well-known empirical correlations. From the comparison results, the validity of the two-dimensional numerical analysis is not shown. The main reason may be due to a discord of the channel geometry and the extreme irregularity in the size of the catalyst. It should be accomplished by comparing its results with the experimental data, yet there are no experimental data available up to now.

  11. Study of the external parameters influence on the channel discharge radius in Hg lamps

    International Nuclear Information System (INIS)

    Cristea, M.

    2000-01-01

    In this paper, the plasma electric conductivity and the channel radius for high-pressure mercury arc discharge are calculated. The examined model emphasizes some correlations between various external parameters (current intensity, silicon tube diameter and working pressure) and the channel discharge radius. After model validation, the temperature distribution in the discharge zone is obtained and then the electrons and ions distribution, the electric carriers mobility and the electric conductivity for different lamp characteristics are calculated. The applied numerical simulation shows a linear increase of the channel radius with the tube radius Rw increasing, and a very week pressure dependence (in the range 0.5 - 5 atm.)

  12. A Low-Power Correlator ASIC for Arrays with Many Antennas

    Science.gov (United States)

    D'Addario, Larry R.; Wang, Douglas

    2016-01-01

    We report the design of a new application-specific integrated circuit (ASIC) for use in radio telescope correlators. It supports the construction of correlators for an arbitrarily large number of signals. The ASIC uses an intrinsically low-power architecture along with design techniques and a process that together result in unprecedentedly low power consumption. The design is flexible in that it can support telescopes with almost any number of antennas N. It is intended for use in an "FX" correlator, where a uniform filter bank breaks each signal into separate frequency channels prior to correlation.

  13. Mimicking multi-channel scattering with single-channel approaches

    OpenAIRE

    Grishkevich, Sergey; Schneider, Philipp-Immanuel; Vanne, Yulian V.; Saenz, Alejandro

    2009-01-01

    The collision of two atoms is an intrinsic multi-channel (MC) problem as becomes especially obvious in the presence of Feshbach resonances. Due to its complexity, however, single-channel (SC) approximations, which reproduce the long-range behavior of the open channel, are often applied in calculations. In this work the complete MC problem is solved numerically for the magnetic Feshbach resonances (MFRs) in collisions between generic ultracold 6Li and 87Rb atoms in the ground state and in the ...

  14. Fine Channel Networks

    Science.gov (United States)

    1997-01-01

    A color image of fine channel networks on Mars; north toward top. The scene shows heavily cratered highlands dissected by dendritic open channel networks that dissect steep slopes of impact crater walls. This image is a composite of Viking high-resolution images in black and white and low-resolution images in color. The image extends from latitude 9 degrees S. to 5 degrees S. and from longitude 312 degrees to 320 degrees; Mercator projection. The dendritic pattern of the fine channels and their location on steep slopes leads to the interpretation that these are runoff channels. The restriction of these types of channels to ancient highland rocks suggests that these channels are old and date from a time on Mars when conditions existed for precipitation to actively erode rocks. After the channels reach a low plain, they appear to end. Termination may have resulted from burial by younger deposits or perhaps the flows percolated into the surface materials and continued underground.

  15. Development of generalized correlation equation for the local wall shear stress

    International Nuclear Information System (INIS)

    Jeon, Yu Mi; Bae, Jun Ho; Park, Joo Hwan

    2010-01-01

    The pressure drop characteristics for a fuel channel are essential for the design and reliable operation of a nuclear reactor. Over several decades, analytical methods have been developed to predict the friction factor in the fuel bundle flows. In order to enhance the accuracy of prediction for the pressure drop in a rod bundle, the influences of a channel wall and the local shear stress distribution should be considered. Hence, the correlation equation for a local shear stress distribution should be developed in order to secure an analytical solution for the friction factor of a rod bundle. For a side subchannel, which has the influence of the channel wall, the local shear stress distribution is dependent on the ratio of wall to diameter (W/D) as well as the ratio of pitch to diameter (P/D). In the case that W/D has the same value with P/D, the local shear stress distribution can be simply correlated with the function of angular position for each value of P/D. While, in the case that W/D has the different value with P/D, the correlation equation should be developed for each case of P/D and W/D. Hence, in the present study, the generalized correlation equation of a local shear stress distribution is developed for a side subchannel in the case that W/D has the different value with P/D

  16. Four-Channel Biosignal Analysis and Feature Extraction for Automatic Emotion Recognition

    Science.gov (United States)

    Kim, Jonghwa; André, Elisabeth

    This paper investigates the potential of physiological signals as a reliable channel for automatic recognition of user's emotial state. For the emotion recognition, little attention has been paid so far to physiological signals compared to audio-visual emotion channels such as facial expression or speech. All essential stages of automatic recognition system using biosignals are discussed, from recording physiological dataset up to feature-based multiclass classification. Four-channel biosensors are used to measure electromyogram, electrocardiogram, skin conductivity and respiration changes. A wide range of physiological features from various analysis domains, including time/frequency, entropy, geometric analysis, subband spectra, multiscale entropy, etc., is proposed in order to search the best emotion-relevant features and to correlate them with emotional states. The best features extracted are specified in detail and their effectiveness is proven by emotion recognition results.

  17. Long-range correlations in a simple stochastic model of coupled transport

    International Nuclear Information System (INIS)

    Larralde, Hernan; Sanders, David P

    2009-01-01

    We study coupled transport in the nonequilibrium stationary state of a model consisting of independent random walkers, moving along a one-dimensional channel, which carry a conserved energy-like quantity, with density and temperature gradients imposed by reservoirs at the ends of the channel. In our model, walkers interact with other walkers at the same site by sharing energy at each time step, but the amount of energy carried does not affect the motion of the walkers. We find that already in this simple model long-range correlations arise in the nonequilibrium stationary state which are similar to those observed in more realistic models of coupled transport. We derive an analytical expression for the source of these correlations, which we use to obtain semi-analytical results for the correlations themselves assuming a local-equilibrium hypothesis. These are in very good agreement with results from direct numerical simulations.

  18. Fourth-Order Spatial Correlation of Thermal Light

    International Nuclear Information System (INIS)

    Wen Feng; Zhang Xun; Sun Jia; Song Jian-Ping; Zhang Yan-Peng; Xue Xin-Xin

    2014-01-01

    We investigate the fourth-order spatial correlation properties of pseudo-thermal light in the photon counting regime, and apply the Klyshko advanced-wave picture to describe the process of four-photon coincidence counting measurement. We deduce the theory of a proof-of-principle four-photon coincidence counting configuration, and find that if the four randomly radiated photons come from the same radiation area and are indistinguishable in principle, the fourth-order correlation of them is 24 times larger than that when four photons come from different radiation areas. In addition, we also show that the higher-order spatial correlation function can be decomposed into multiple lower-order correlation functions, and the contrast and visibility of low-order correlation peaks are less than those of higher orders, while the resolutions all are identical. This study may be useful for better understanding the four-photon interference and multi-channel correlation imaging

  19. Heating limits of boiling downward two-phase flow in parallel channels

    International Nuclear Information System (INIS)

    Fukuda, Kenji; Kondoh, Tetsuya; Hasegawa, Shu; Sakai, Takaaki.

    1989-01-01

    Flow characteristics and heating limits of downward two-phase flow in single or parallel multi-channels are investigated experimentally and analytically. The heating section used is made of glass tube, in which the heater tube is inserted, and the flow regime inside it is observed. In single channel experiments with low flow rate conditions, it is found that, initially, gas phase which flows upward against the downward liquid phase flow condenses and diminishes as it flows up being cooled by inflowing liquid. However, as the heating power is increased, some portion of the gas phase reaches the top and accumulates to form an liquid level, which eventually causes the dryout. On the other hand, for high flow rate condition, the flooding at the bottom of the heated section is the cause of the dryout. In parallel multi-channels experiments, reversed (upward) flow which leads to the dryout is observed in some of these channels for low flow rate conditions, while the situation is the same to the single channel case for high flow rate conditions. Analyses are carried out to predict the onset of dryout in single channel using the drift flux model as well as the Wallis' flooding correlation. Above-mentioned two types of the dryout and their boundary are predicted which agree well with the experimental results. (author)

  20. Spatial Correlation Characterization of a Full Dimension Massive MIMO System

    KAUST Repository

    Nadeem, Qurrat-Ul-Ain

    2017-02-07

    Elevation beamforming and Full Dimension MIMO (FD-MIMO) are currently active areas of research and standardization in 3GPP LTE-Advanced. FD-MIMO utilizes an active antenna array system (AAS), that provides the ability of adaptive electronic beam control over the elevation dimension, resulting in a better system performance as compared to the conventional 2D MIMO systems. FD-MIMO is more advantageous when amalgamated with massive MIMO systems, in that it exploits the additional degrees of freedom offered by a large number of antennas in the elevation. To facilitate the evaluation of these systems, a large effort in 3D channel modeling is needed. This paper aims at providing a summary of the recent 3GPP activity around 3D channel modeling. The 3GPP proposed approach to model antenna radiation pattern is compared with the ITU approach. A closed-form expression is then worked out for the spatial correlation function (SCF) for channels constituted by individual antenna elements in the array by exploiting results on spherical harmonics and Legendre polynomials. The proposed expression can be used to obtain correlation coefficients for any arbitrary 3D propagation environment. Simulation results corroborate and study the derived spatial correlation expression. The results are directly applicable to the analysis of future 5G 3D massive MIMO systems.

  1. Experimental evidence of independence of nuclear de-channeling length on the particle charge sign

    Energy Technology Data Exchange (ETDEWEB)

    Bagli, E.; Guidi, V.; Mazzolari, A.; Bandiera, L.; Germogli, G.; Sytov, A.I. [Universita di Ferrara, Dipartimento di Fisica e Scienze della Terra (Italy); INFN Sezione di Ferrara (Italy); De Salvador, D. [Universita di Padova, Dipartimento di Fisica e Astronomia, Padua (Italy); INFN Laboratori Nazionali di Legnaro (Italy); Berra, A.; Prest, M. [Universita dell' Insubria, Como (Italy); INFN Sezione di Milano Bicocca, Milan (Italy); Vallazza, E. [INFN Sezione di Trieste (Italy)

    2017-02-15

    Under coherent interactions, particles undergo correlated collisions with the crystal lattice and their motion result in confinement in the fields of atomic planes, i.e. particle channeling. Other than coherently interacting with the lattice, particles also suffer incoherent interactions with individual nuclei and may leave their bounded motion, i.e., they de-channel. The latter is the main limiting factor for applications of coherent interactions in crystal-assisted particle steering. We experimentally investigated the nature of de-channeling of 120 GeV/c e{sup -} and e{sup +} in a bent silicon crystal at H4-SPS external line at CERN. We found that while channeling efficiency differs significantly for e{sup -} (2 ± 2%) and e{sup +} (54 ± 2%), their nuclear de-channeling length is comparable, (0.6 ± 0.1) mm for e{sup -} and (0.7 ± 0.3) mm for e{sup +}. The experimental proof of the equality of the nuclear de-channeling length for positrons and electrons is interpreted in terms of similar dynamics undergone by the channeled particles in the field of nuclei irrespective of their charge. (orig.)

  2. Nucleon-nucleon correlations in dense nuclear matter

    International Nuclear Information System (INIS)

    Alm, T.

    1993-02-01

    In this thesis new results on the problematics of the formation of nucleon-nucleon correlations in nuclear matter could be presented. Starting from a general study of the two-particle problem in matter we studied the occurrence of a suprafluid phase (pair condensate of nucleons). The Gorkov decoupling by means of anomalous Green functions was generalized, so that also Cooper pairs with spin 1 (triplet pairing) can be described. A generalized gap equation resulted, which permits to determine the order parameters of the suprafluied phase in arbitrary channels of the nucleon-nucleon scattering states. This equation was solvd in the 1 S 0 -, in the 3 P 2 - 3 F 2 , and in the 3 S 1 - 3 D 1 channel under application of realistic nucleon-nucleon potentials. The behaviour of the resulting gap parameters in the single channels was studied as function of density and temperature. (orig.) [de

  3. Volume Regulated Channels

    DEFF Research Database (Denmark)

    Klausen, Thomas Kjær

    of volume perturbations evolution have developed system of channels and transporters to tightly control volume homeostasis. In the past decades evidence has been mounting, that the importance of these volume regulated channels and transporters are not restricted to the defense of cellular volume...... but are also essential for a number of physiological processes such as proliferation, controlled cell death, migration and endocrinology. The thesis have been focusing on two Channels, namely the swelling activated Cl- channel (ICl, swell) and the transient receptor potential Vanilloid (TRPV4) channel. I: Cl......- serves a multitude of functions in the mammalian cell, regulating the membrane potential (Em), cell volume, protein activity and the driving force for facilitated transporters giving Cl- and Cl- channels a major potential of regulating cellular function. These functions include control of the cell cycle...

  4. Scorpion Toxins Specific for Potassium (K+ Channels: A Historical Overview of Peptide Bioengineering

    Directory of Open Access Journals (Sweden)

    Zachary L. Bergeron

    2012-11-01

    Full Text Available Scorpion toxins have been central to the investigation and understanding of the physiological role of potassium (K+ channels and their expansive function in membrane biophysics. As highly specific probes, toxins have revealed a great deal about channel structure and the correlation between mutations, altered regulation and a number of human pathologies. Radio- and fluorescently-labeled toxin isoforms have contributed to localization studies of channel subtypes in expressing cells, and have been further used in competitive displacement assays for the identification of additional novel ligands for use in research and medicine. Chimeric toxins have been designed from multiple peptide scaffolds to probe channel isoform specificity, while advanced epitope chimerization has aided in the development of novel molecular therapeutics. Peptide backbone cyclization has been utilized to enhance therapeutic efficiency by augmenting serum stability and toxin half-life in vivo as a number of K+-channel isoforms have been identified with essential roles in disease states ranging from HIV, T-cell mediated autoimmune disease and hypertension to various cardiac arrhythmias and Malaria. Bioengineered scorpion toxins have been monumental to the evolution of channel science, and are now serving as templates for the development of invaluable experimental molecular therapeutics.

  5. Predicting the Types of Ion Channel-Targeted Conotoxins Based on AVC-SVM Model.

    Science.gov (United States)

    Xianfang, Wang; Junmei, Wang; Xiaolei, Wang; Yue, Zhang

    2017-01-01

    The conotoxin proteins are disulfide-rich small peptides. Predicting the types of ion channel-targeted conotoxins has great value in the treatment of chronic diseases, epilepsy, and cardiovascular diseases. To solve the problem of information redundancy existing when using current methods, a new model is presented to predict the types of ion channel-targeted conotoxins based on AVC (Analysis of Variance and Correlation) and SVM (Support Vector Machine). First, the F value is used to measure the significance level of the feature for the result, and the attribute with smaller F value is filtered by rough selection. Secondly, redundancy degree is calculated by Pearson Correlation Coefficient. And the threshold is set to filter attributes with weak independence to get the result of the refinement. Finally, SVM is used to predict the types of ion channel-targeted conotoxins. The experimental results show the proposed AVC-SVM model reaches an overall accuracy of 91.98%, an average accuracy of 92.17%, and the total number of parameters of 68. The proposed model provides highly useful information for further experimental research. The prediction model will be accessed free of charge at our web server.

  6. Irresponsiveness of two retinoblastoma cases to conservative therapy correlates with up- regulation of hERG1 channels and of the VEGF-A pathway

    Directory of Open Access Journals (Sweden)

    La Torre Agostino

    2010-09-01

    Full Text Available Abstract Background Treatment strategies for Retinoblastoma (RB, the most common primary intraocular tumor in children, have evolved over the past few decades and chemoreduction is currently the most popular treatment strategy. Despite success, systemic chemotherapeutic treatment has relevant toxicity, especially in the pediatric population. Antiangiogenic therapy has thus been proposed as a valuable alternative for pediatric malignancies, in particolar RB. Indeed, it has been shown that vessel density correlates with both local invasive growth and presence of metastases in RB, suggesting that angiogenesis could play a pivotal role for both local and systemic invasive growth in RB. We present here two cases of sporadic, bilateral RB that did not benefit from the conservative treatment and we provide evidence that the VEGF-A pathway is significantly up-regulated in both RB cases along with an over expression of hERG1 K+ channels. Case presentation Two patients showed a sporadic, bilateral RB, classified at Stage II of the Reese-Elsworth Classification. Neither of them got benefits from conservative treatment, and the two eyes were enucleated. In samples from both RB cases we studied the VEGF-A pathway: VEGF-A showed high levels in the vitreous, the vegf-a, flt-1, kdr, and hif1-α transcripts were over-expressed. Moreover, both the transcripts and proteins of the hERG1 K+ channels turned out to be up-regulated in the two RB cases compared to the non cancerous retinal tissue. Conclusions We provide evidence that the VEGF-A pathway is up-regulated in two particular aggressive cases of bilateral RB, which did not experience any benefit from conservative treatment, showing the overexpression of the vegf-a, flt-1, kdr and hif1-α transcripts and the high secretion of VEGF-A. Moreover we also show for the first time that the herg1 gene transcripts and protein are over expressed in RB, as occurs in several aggressive tumors. These results further stress

  7. Transient river response, captured by channel steepness and its concavity

    Science.gov (United States)

    Vanacker, Veerle; von Blanckenburg, Friedhelm; Govers, Gerard; Molina, Armando; Campforts, Benjamin; Kubik, Peter W.

    2015-01-01

    Mountain rivers draining tropical regions are known to be great conveyor belts carrying efficiently more than half of the global sediment flux to the oceans. Many tropical mountain areas are located in tectonically active belts where the hillslope and stream channel morphology are rapidly evolving in response to changes in base level. Here, we report basin-wide denudation rates for an east-west transect through the tropical Andes. Hillslope and channel morphology vary systematically from east to west, reflecting the transition from high relief, strongly dissected topography in the escarpment zones into relatively low relief topography in the inter-Andean valley. The spatial pattern of differential denudation rates reflects the transient adjustment of the landscape to rapid river incision following tectonic uplift and river diversion. In the inter-Andean valley, upstream of the wave of incision, slopes and river channels display a relatively smooth, concave-up morphology and denudation rates (time scale of 104-105 a) are consistently low (3 to 200 mm/ka). In contrast, slopes and river channels of rejuvenated basins draining the eastern cordillera are steep to very steep; and the studied drainage basins show a wide range of denudation rate values (60 to 400 mm/ka) that increase systematically with increasing basin mean slope gradient, channel steepness, and channel convexity. Drainage basins that are characterised by strong convexities in their river longitudinal profiles systematically have higher denudation rates. As such, this is one of the first studies that provides field-based evidence of a correlation between channel concavity and basin mean denudation rates, consistent with process-based fluvial incision models.

  8. Update on the implication of potassium channels in autism: K+ channelautism spectrum disorder

    Directory of Open Access Journals (Sweden)

    Luca eGuglielmi

    2015-03-01

    Full Text Available Autism spectrum disorders (ASDs are characterized by impaired ability to properly implement environmental stimuli that are essential to achieve a state of social and cultural exchange. Indeed, the main features of ASD are impairments of interpersonal relationships, verbal and non-verbal communication and restricted and repetitive behaviors. These aspects are often accompanied by several comorbidities such as motor delay, praxis impairment, gait abnormalities, insomnia and above all epilepsy. Genetic analyses of autistic individuals uncovered deleterious mutations in several K+ channel types strengthening the notion that their intrinsic dysfunction may play a central etiologic role in ASD. However, indirect implication of K+ channels in ASD has been also reported. For instance, loss of fragile X mental retardation protein (FMRP results in K+ channels deregulation, network dysfunction and ASD-like cognitive and behavioral symptoms. Therefore, this review provides an update on direct and indirect implications of K+ channels in ASDs. Owing to a mounting body of evidence associating a channelopathy pathogenesis to autism and that nearly 500 ion channel proteins are encoded by the human genome, we also propose to classify ASDs − whose susceptibility is significantly enhanced by ion channels defects, either in a monogenic or multigenic condition − in a new category named channelAutism Spectrum Disorder (channelASD; cASD and introduce a new taxonomy (e.g.: Kvx.y-channelASD and likewise Navx.y-channelASD, Cavx.y-channelASD; etc.. This review also highlights some degree of clinical and genetic overlap between K+ channelASDs and K+ channelepsies, whereby such correlation suggests that a subcategory characterized by a channelASD-channelepsy phenotype may be distinguished. Ultimately, this overview aims to further understand the different clinical subgroups and help parse out the distinct biological basis of autism that are essential to establish patient

  9. Effective channel approach to nuclear scattering at high energies

    International Nuclear Information System (INIS)

    Rule, D.W.

    1975-01-01

    The description of high energy nuclear reactions is considered within the framework of the effective channel approach. A variational procedure is used to obtain an expression for the Green's function in the effective channel, which includes the average fluctuation potential, average energy, and an additional term arising from the non-commutability of the kinetic energy operator and the effective target wave function. The resulting expression for the effective channel, containing one variational parameter, is used to obtain the coupling potential. The resulting formulation is applied to the elastic scattering of 1 GeV protons by 4 He nuclei. A simple Gaussian form is used for the spin--isospin averaged proton--nucleon interaction. The variational parameter in the effective channel wave function is fixed a posteriori via the total p-- 4 He cross section. The effect of the coupling to the effective channel is demonstrated, as well as the effect of each term in the coupled equation for this channel. The calculated elastic cross sections were compared to both the recent data from Saclay and the earlier Brookhaven data for the 1-GeV p-- 4 He elastic scattering cross section. Using proton--nucleus elastic scattering experiments to study the proton--nucleon elastic scattering amplitude is discussed. The main purpose of our study is to investigate the effects on the cross section of varying, within its estimated range of uncertainty, each parameter which enters into the coupled equations. The magnitude of these effects was found to be large enough to conclude that any effects due to dynamical correlations would be obscured by the uncertainties in the input parameters

  10. Pairing correlations around scission

    International Nuclear Information System (INIS)

    Krappe, H.J.; Fadeev, S.

    2001-01-01

    To describe pairing correlations in a fissioning system one commonly projects the BCS wave function separately onto good particle numbers in each fragment in the exit channel, but only onto the total number of particles in the parent system. We propose to interpolate between these limiting situations by the generator-coordinate method with the particle-number difference between the nascent fragments as the generator coordinate. Model calculations are presented for the Hill-Wheeler-box potential with a δ-function diaphragm to mimic scission

  11. Space-Time Trellis Coded 8PSK Schemes for Rapid Rayleigh Fading Channels

    Directory of Open Access Journals (Sweden)

    Salam A. Zummo

    2002-05-01

    Full Text Available This paper presents the design of 8PSK space-time (ST trellis codes suitable for rapid fading channels. The proposed codes utilize the design criteria of ST codes over rapid fading channels. Two different approaches have been used. The first approach maximizes the symbol-wise Hamming distance (HD between signals leaving from or entering to the same encoder′s state. In the second approach, set partitioning based on maximizing the sum of squared Euclidean distances (SSED between the ST signals is performed; then, the branch-wise HD is maximized. The proposed codes were simulated over independent and correlated Rayleigh fading channels. Coding gains up to 4 dB have been observed over other ST trellis codes of the same complexity.

  12. Modeling water droplet condensation and evaporation in DNS of turbulent channel flow

    Energy Technology Data Exchange (ETDEWEB)

    Russo, E; Kuerten, J G M; Geld, C W M van der [Department of Mechanical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven (Netherlands); Geurts, B J, E-mail: e.russo@tue.nl [Faculty EEMCS, University of Twente, PO Box 217, 7500 AE Enschede (Netherlands)

    2011-12-22

    In this paper a point particle model for two-way coupling in water droplet-laden incompressible turbulent flow of air is proposed. The model is based on conservation laws and semi-empirical correlations. It has been implemented and tested in a DNS code based for turbulent channel flow with an Eulerian-Lagrangian approach. The two-way coupling is investigated in terms of the effects of mass and heat transfer on the droplets distributions along the channel wall-normal direction and by comparison of the droplet temperature statistics with respect to the case without evaporation and condensation. A remarkable conclusion is that the presence of evaporating and condensing droplets results in an increase in the non-dimensional heat transfer coefficient of the channel flow represented by the Nusselt number.

  13. 'Level-level correlation and absorption in nuclear reactions'

    International Nuclear Information System (INIS)

    Hussein, M.S.

    Level-level correlation (LLC) in nuclear reactions is discussed in general and it is shown that in the presence of LLC, N sub(μ) = Σ/g μa/ 2 > divided by gamma μ T tilde, where T tilde is the average absorption in the eigen channels [pt

  14. Development of Generalized Correlation Equation for the Local Wall Shear Stress

    International Nuclear Information System (INIS)

    Jeon, Yu Mi; Park, Ju Hwan

    2010-06-01

    The pressure drop characteristics for a fuel channel are essential for the design and reliable operation of a nuclear reactor. Over several decades, analytical methods have been developed to predict the friction factor in the fuel bundle flows. In order to enhance the accuracy of prediction for the pressure drop in a rod bundle, the influences of a channel wall and the local shear stress distribution should be considered. Therefore, the correlation equation for a local wall shear stress distribution should be developed in order to secure an analytical solution for the friction factor of a rod bundle. For a side subchannel, which has the influence of the channel wall, the local wall shear stress distribution is dependent on the ratio of wall to diameter (W/D) as well as the ratio of pitch to diameter (P/D). In the case that W/D has the same value with P/D, the local shear stress distribution can be simply correlated with the function of angular position for each value of P/D. While in the case where W/D has a different value than P/D, the correlation equation should be developed for each case of P/D and W/D. Therefore, in the present study, the generalized correlation equation of the local wall shear stress distribution was developed for a side subchannel in the case where W/D has a different value than P/D. Consequently, the generalized correlation equation of a local wall shear stress distribution can be represented by the equivalent pitch to diameter ratio, P'/D for the case that P/D and W/D had a different value

  15. Counter-current gas-liquid two-phase flow in a narrow rectangular channel

    International Nuclear Information System (INIS)

    Sohn, Byung Hu; Kim, Byong Joo

    2000-01-01

    A study of counter-current two-phase flow in a narrow rectangular channel has been performed. Two-phase flow patterns and void fractions were experimentally studied in a 760 mm long and 100 mm wide test section with 3.0 mm gap. The resulting data have been compared to previous transition criteria and empirical correlations. The comparison of experimental data to the transition criteria developed by Taitel and Barnea showed good agreement for the bubbly-to-slug transition. For the criteria of Mishima and Ishii to be applicable to the slug to churn transition, a new model seems to be needed for the accurate prediction of the distribution parameter for the counter-current flow in narrow rectangular channels. For the churn-to-annular transition the model of Taitel and Barnea was found to be close to the experimental data. However the model should be improved in conjunction with the channel geometry to accurately predict the counter-current flow limitation and flow transition. It was verified the distribution parameter was well-correlated by the drift-flux model. The distribution parameter for the present study was found to be about 1.2 for all flow regimes except 1.0 for an annular flow. (author)

  16. Experimental study of falling water limitation under counter-current flow in the vertical rectangular channel

    International Nuclear Information System (INIS)

    Usui, Tohru; Kaminaga, Masanori; Sudo, Yukio.

    1988-07-01

    Quantitative understanding of critical heat flux (CHF) in the narrow vertical rectangular channel is required for the thermo-hydroulic design and the safety analysis of research reactors in which flat-plate-type fuel is adopted. Especially, critical heat flux under low downward velocity has a close relation with falling water limitation under counter-current flow. Accordingly, CCFL (Counter-current Flow Limitation) experiments were carried out for both vertical rectangular channels and vertical circular tubes varried in their size and configuration of their cross sections, to make clear CCFL characteristics in the vertical rectangular channels. In the experiments, l/de of the rectangular channel was changed from 3.5 to 180. As the results, it was clear that different equivalent hydraulic diameter de, namely width or water gap of channel, gave different CCFL characteristics of rectangular channel. But the influence of channel length l on CCFL characteristics was not observed. Besides, a dimensionless correlation to estimate a relation between upward air velocity and downward water velocity was proposed based on the present experimental results. The difference of CCFL characteristics between rectangular channels and circular tubes was also investigated. Especially for the rectangular channels, dry-patches appearing condition was made clear as a flow-map. (author)

  17. Measurement-device-independent quantum key distribution with correlated source-light-intensity errors

    Science.gov (United States)

    Jiang, Cong; Yu, Zong-Wen; Wang, Xiang-Bin

    2018-04-01

    We present an analysis for measurement-device-independent quantum key distribution with correlated source-light-intensity errors. Numerical results show that the results here can greatly improve the key rate especially with large intensity fluctuations and channel attenuation compared with prior results if the intensity fluctuations of different sources are correlated.

  18. Automated Filtering of Common Mode Artifacts in Multi-Channel Physiological Recordings

    Science.gov (United States)

    Kelly, John W.; Siewiorek, Daniel P.; Smailagic, Asim; Wang, Wei

    2014-01-01

    The removal of spatially correlated noise is an important step in processing multi-channel recordings. Here, a technique termed the adaptive common average reference (ACAR) is presented as an effective and simple method for removing this noise. The ACAR is based on a combination of the well-known common average reference (CAR) and an adaptive noise canceling (ANC) filter. In a convergent process, the CAR provides a reference to an ANC filter, which in turn provides feedback to enhance the CAR. This method was effective on both simulated and real data, outperforming the standard CAR when the amplitude or polarity of the noise changes across channels. In many cases the ACAR even outperformed independent component analysis (ICA). On 16 channels of simulated data the ACAR was able to attenuate up to approximately 290 dB of noise and could improve signal quality if the original SNR was as high as 5 dB. With an original SNR of 0 dB, the ACAR improved signal quality with only two data channels and performance improved as the number of channels increased. It also performed well under many different conditions for the structure of the noise and signals. Analysis of contaminated electrocorticographic (ECoG) recordings further showed the effectiveness of the ACAR. PMID:23708770

  19. A channel profile analyser

    International Nuclear Information System (INIS)

    Gobbur, S.G.

    1983-01-01

    It is well understood that due to the wide band noise present in a nuclear analog-to-digital converter, events at the boundaries of adjacent channels are shared. It is a difficult and laborious process to exactly find out the shape of the channels at the boundaries. A simple scheme has been developed for the direct display of channel shape of any type of ADC on a cathode ray oscilliscope display. This has been accomplished by sequentially incrementing the reference voltage of a precision pulse generator by a fraction of a channel and storing ADC data in alternative memory locations of a multichannel pulse height analyser. Alternative channels are needed due to the sharing at the boundaries of channels. In the flat region of the profile alternate memory locations are channels with zero counts and channels with the full scale counts. At the boundaries all memory locations will have counts. The shape of this is a direct display of the channel boundaries. (orig.)

  20. Mixed convection heat transfer to carbon dioxide flowing upward and downward in a vertical tube and an annular channel

    International Nuclear Information System (INIS)

    Bae, Yoon Y.

    2011-01-01

    Highlights: → Experimental results of heat transfer at a supercritical pressure for a tube with an inner diameter of 4.57 mm and a corresponding annular channel (8 mm x 10 mm, 1 mm gap) were compared each other. → Effect of various parameters such as pressure, flow direction, diameter, channel shape, was investigated. → Existing correlation for supercritical heat transfer were evaluated against the experimental data. → Some unusual characteristics of supercritical heat transfer, such as overshoot and non-monotonic behavior against buoyancy parameter, were discussed. → New correlations were proposed based on the experimental data. - Abstract: This paper addresses three main subjects in supercritical heat transfer: (1) difference in thermal characteristics between upward and downward flows; (2) effect of simulating flow channel shape; (3) evaluation of the existing supercritical heat transfer correlations. To achieve the objectives, a series of experiments was carried out with CO 2 flowing upward and downward in a circular tube with an inner diameter of 4.57 mm and an annular channel created between a tube with an inner diameter of 10 mm and a heater rod with an outer diameter of 8 mm. The working fluid, CO 2 , has been regarded as an appropriate modeling fluid for water, primarily because of their similarity in property variations against reduced temperatures. The mass flux ranged from 400 to 1200 kg/m 2 s. The heat flux was varied between 30 and 140 kW/m 2 so that the pseudo-critical point was located in the middle of the heated section at a given mass flux. The measurements were made at a pressure of 8.12 MPa, which corresponds to 110% of the critical pressure of CO 2 . The difference between the upward and downward flows was observed clearly. The heat transfer deterioration was observed in the downward flow through an annular subchannel over the region beyond the critical point. Several well-known correlations were evaluated against the experimental

  1. Low-Complexity Interference-Free Downlink Channel Assignment with Improved Performance in Coordinated Small Cells

    KAUST Repository

    Radaydeh, Redha M.

    2015-05-01

    This paper proposes a low-complexity interference-free channel assignment scheme with improved desired downlink performance in coordinated multi-antenna small-coverage access points (APs) that employ the open-access control strategy. The adopted system treats the case when each user can be granted an access to one of the available channels at a time. Moreover, each receive terminal can suppress a limited number of resolvable interfering sources via its highly-correlated receive array. On the other hand, the operation of the deployed APs can be coordinated to serve active users, and the availability of multiple physical channels and the use of uncorrelated transmit antennas at each AP are exploited to improve the performance of supported users. The analysis provides new approaches to use the transmit antenna array at each AP, the multiple physical channels, the receive antenna array at each user in order to identify interference-free channels per each user, and then to select a downlink channel that provides the best possible improved performance. The event of concurrent interference-free channel identification by different users is also treated to further improve the desired link associated with the scheduled user. The analysis considers the practical scenario of imperfect identification of interference-free channel by an active user and/or the imperfectness in scheduling concurrent users requests on the same channel. The developed formulations can be used to study any performance metric and they are applicable for any statistical and geometric channel models. © 2015 IEEE.

  2. Cross correlation measurement of low frequency conductivity noise

    Science.gov (United States)

    Jain, Aditya Kumar; Nigudkar, Himanshu; Chakraborti, Himadri; Udupa, Aditi; Gupta, Kantimay Das

    2018-04-01

    In order to study the low frequency noise(1/f noise)an experimental technique based on cross correlation of two channels is presented. In this method the device under test (DUT)is connected to the two independently powered preamplifiers in parallel. The amplified signals from the two preamplifiers are fed to two channels of a digitizer. Subsequent data processing largelyeliminates the uncorrelated noise of the two channels. This method is tested for various commercial carbon/metal film resistors by measuring equilibrium thermal noise (4kBTR). The method is then modified to study the non-equilibrium low frequency noise of heterostructure samples using fiveprobe configuration. Five contact probes allow two parts of the sample to become two arms of a balanced bridge. This configuration helps in suppressing the effect of power supply fluctuations, bath temperature fluctuations and contact resistances.

  3. The drift flux correlation in RELAP-UK

    International Nuclear Information System (INIS)

    Holmes, J.A.

    1977-11-01

    A numerical technique for modelling the effects of drift flux in vertical channels is described, which has been included in the RELAP-UK code for the analysis of loss of coolant accidents. It is based on the assumption that the difference between the average velocities of the steam and water phases is a result of the linear superposition of the profile slip and the local slip. The profile slip may be obtained from a choice of profile slip correlations, which includes the flow-dependent Bryce correlation, modified at low void fractions to be consistent with the analysis of Zuber and Findlay. Comparisons are given between the drift flux correlation and certain sets of published experimental data. (author)

  4. Automated Electrophysiology Makes the Pace for Cardiac Ion Channel Safety Screening

    Directory of Open Access Journals (Sweden)

    Clemens eMoeller

    2011-11-01

    Full Text Available The field of automated patch-clamp electrophysiology has emerged from the tension between the pharmaceutical industry’s need for high-throughput compound screening versus its need to be conservative due to regulatory requirements. On the one hand, hERG channel screening was increasingly requested for new chemical entities, as the correlation between blockade of the ion channel coded by hERG and Torsades de Pointes cardiac arrhythmia gained increasing attention. On the other hand, manual patch-clamping, typically quoted as the gold-standard for understanding ion channel function and modulation, was far too slow (and, consequently, too expensive for keeping pace with the numbers of compounds submitted for hERG channel investigations from pharmaceutical R&D departments. In consequence it became more common for some pharmaceutical companies to outsource safety pharmacological investigations, with a focus on hERG channel interactions. This outsourcing has allowed those pharmaceutical companies to build up operational flexibility and greater independence from internal resources, and allowed them to obtain access to the latest technological developments that emerged in automated patch-clamp electrophysiology – much of which arose in specialized biotech companies. Assays for nearly all major cardiac ion channels are now available by automated patch-clamping using heterologous expression systems, and recently, automated action potential recordings from stem-cell derived cardiomyocytes have been demonstrated. Today, most of the large pharmaceutical companies have acquired automated electrophysiology robots and have established various automated cardiac ion channel safety screening assays on these, in addition to outsourcing parts of their needs for safety screening.

  5. Critical heat flux for free convection boiling in thin rectangular channels

    International Nuclear Information System (INIS)

    Cheng, Lap Y.; Tichler, P.R.

    1991-01-01

    A review of the experimental data on free convection boiling critical heat flux (CHF) in vertical rectangular channels reveals three mechanisms of burnout. They are the pool boiling limit, the circulation limit, and the flooding limit associated with a transition in flow regime from churn to annular flow. The dominance of a particular mechanism depends on the dimensions of the channel. Analytical models were developed for each free convection boiling limit. Limited agreement with data is observed. A CHF correlation, which is valid for a wide range of gap sizes, was constructed from the CHFs calculated according to the three mechanisms of burnout. 17 refs., 7 figs

  6. Ion channels in plants.

    Science.gov (United States)

    Hedrich, Rainer

    2012-10-01

    Since the first recordings of single potassium channel activities in the plasma membrane of guard cells more than 25 years ago, patch-clamp studies discovered a variety of ion channels in all cell types and plant species under inspection. Their properties differed in a cell type- and cell membrane-dependent manner. Guard cells, for which the existence of plant potassium channels was initially documented, advanced to a versatile model system for studying plant ion channel structure, function, and physiology. Interestingly, one of the first identified potassium-channel genes encoding the Shaker-type channel KAT1 was shown to be highly expressed in guard cells. KAT1-type channels from Arabidopsis thaliana and its homologs from other species were found to encode the K(+)-selective inward rectifiers that had already been recorded in early patch-clamp studies with guard cells. Within the genome era, additional Arabidopsis Shaker-type channels appeared. All nine members of the Arabidopsis Shaker family are localized at the plasma membrane, where they either operate as inward rectifiers, outward rectifiers, weak voltage-dependent channels, or electrically silent, but modulatory subunits. The vacuole membrane, in contrast, harbors a set of two-pore K(+) channels. Just very recently, two plant anion channel families of the SLAC/SLAH and ALMT/QUAC type were identified. SLAC1/SLAH3 and QUAC1 are expressed in guard cells and mediate Slow- and Rapid-type anion currents, respectively, that are involved in volume and turgor regulation. Anion channels in guard cells and other plant cells are key targets within often complex signaling networks. Here, the present knowledge is reviewed for the plant ion channel biology. Special emphasis is drawn to the molecular mechanisms of channel regulation, in the context of model systems and in the light of evolution.

  7. Regulation of sodium channel function by bilayer elasticity: the importance of hydrophobic coupling. Effects of Micelle-forming amphiphiles and cholesterol

    DEFF Research Database (Denmark)

    Lundbæk, Jens August; Birn, Pia; Hansen, Anker J

    2004-01-01

    , Triton X-100, and reduced Triton X-100) that make lipid bilayers less "stiff", as measured using gA channels, shift the voltage dependence of sodium channel inactivation toward more hyperpolarized potentials. At low amphiphile concentration, the magnitude of the shift is linearly correlated to the change...

  8. Channel and Timeslot Co-Scheduling with Minimal Channel Switching for Data Aggregation in MWSNs

    Directory of Open Access Journals (Sweden)

    Sanggil Yeoum

    2017-05-01

    Full Text Available Collision-free transmission and efficient data transfer between nodes can be achieved through a set of channels in multichannel wireless sensor networks (MWSNs. While using multiple channels, we have to carefully consider channel interference, channel and time slot (resources optimization, channel switching delay, and energy consumption. Since sensor nodes operate on low battery power, the energy consumed in channel switching becomes an important challenge. In this paper, we propose channel and time slot scheduling for minimal channel switching in MWSNs, while achieving efficient and collision-free transmission between nodes. The proposed scheme constructs a duty-cycled tree while reducing the amount of channel switching. As a next step, collision-free time slots are assigned to every node based on the minimal data collection delay. The experimental results demonstrate that the validity of our scheme reduces the amount of channel switching by 17.5%, reduces energy consumption for channel switching by 28%, and reduces the schedule length by 46%, as compared to the existing schemes.

  9. Surface channeling

    International Nuclear Information System (INIS)

    Sizmann, R.; Varelas, C.

    1976-01-01

    There is experimental evidence that swift light ions incident at small angles towards single crystalline surfaces can lose an appreciable fraction of their kinetic energy during reflection. It is shown that these projectiles penetrate into the bulk surface region of the crystal. They can travel as channeled particles along long paths through the solid (surface channeling). The angular distribution and the depth history of the re-emerged projectiles are investigated by computer simulations. A considerable fraction of the penetrating projectiles re-emerges from the crystal with constant transverse energy if the angle of incidence is smaller than the critical angle for axial channeling. Analytical formulae are derived based on a diffusion model for surface channeling. A comparison with experimental data exhibits the relevance of the analytical solutions. (Auth.)

  10. Comparison of different source calculations in two-nucleon channel at large quark mass

    Science.gov (United States)

    Yamazaki, Takeshi; Ishikawa, Ken-ichi; Kuramashi, Yoshinobu

    2018-03-01

    We investigate a systematic error coming from higher excited state contributions in the energy shift of light nucleus in the two-nucleon channel by comparing two different source calculations with the exponential and wall sources. Since it is hard to obtain a clear signal of the wall source correlation function in a plateau region, we employ a large quark mass as the pion mass is 0.8 GeV in quenched QCD. We discuss the systematic error in the spin-triplet channel of the two-nucleon system, and the volume dependence of the energy shift.

  11. Contrastive experimental study on heat transfer and friction characteristics in steam cooled and air cooled rectangular channels with rib turbulators

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Jianying; Li, Guojun; Gao, Tieyu [Xian Jiaotong University, Xian (China)

    2014-09-15

    The present experiment compares the heat transfer and friction characteristics in steam cooled and air cooled rectangular channels (simulating a gas turbine blade cooling passage) with two opposite rib-roughened walls. The Reynolds number (Re) whose length scale is the hydraulic diameter of the passage is set within the range of 10000-60000. The channel length is 1000 mm. The pitch-to-rib height ratio, the channel aspect ratio and the channel blockage ratio is 10, 0.5 and 0.047, respectively. It is found that the average Nu, the average friction coefficient, and the heat transfer performance of both steam and air in the ribbed channels show almost the same change trend with the increase of Re. Under the same test conditions, the average Nu of steam is 30.2% higher than that of air, the average friction coefficient is 18.4% higher, and the heat transfer performances of steam on the ribbed and the smooth walls are 8.4% and 7.3% higher than those of air, respectively. In addition, semi-empirical correlations for the two test channels are developed, which can predict the Nu under the given test condition. The correlations can be used in the design of the internal cooling passage of new generation steam cooled gas turbine blade/vane.

  12. Subcooled flow boiling heat transfer from microporous surfaces in a small channel

    International Nuclear Information System (INIS)

    Yan, Sun; Li, Zhang; Hong, Xu; Xiaocheng, Zhong

    2011-01-01

    The continuously increasing requirement for high heat transfer rate in a compact space can be met by combining the small channel/microchannel and heat transfer enhancement methods during fluid subcooled flow boiling. In this paper, the sintered microporous coating, as an efficient means of enhancing nucleate boiling, was applied to a horizontal, rectangular small channel. Water flow boiling heat transfer characteristics from the small channel with/without the microporous coating were experimentally investigated. The small channel, even without the coating, presented flow boiling heat transfer enhancement at low vapor quality due to size effects of the channel. This enhancement was also verified by under-predictions from macro-scale correlations. In addition to the enhancement from the channel size, all six microporous coatings with various structural parameters were found to further enhance nucleate boiling significantly. Effects of the coating structural parameters, fluid mass flux and inlet subcooling were also investigated to identify the optimum condition for heat transfer enhancement. Under the optimum condition, the microporous coating could produce the heat transfer coefficients 2.7 times the smooth surface value in subcooled flow boiling and 3 times in saturated flow boiling. The combination of the microporous coating and small channel led to excellent heat transfer performance, and therefore was deemed to have promising application prospects in many areas such as air conditioning, chip cooling, refrigeration systems, and many others involving compact heat exchangers. (authors)

  13. Correlated dewetting patterns in thin polystyrene films

    CERN Document Server

    Neto, C; Seemann, R; Blossey, R; Becker, J; Grün, G

    2003-01-01

    We describe preliminary results of experiments and simulations concerned with the dewetting of thin polystyrene films (thickness < 7 nm) on top of silicon oxide wafers. In the experiments we scratched an initially flat film with an atomic force microscopy (AFM) tip, producing dry channels in the film. Dewetting of the films was imaged in situ using AFM and a correlated pattern of holes ('satellite holes') was observed along the rims bordering the channels. The development of this complex film rupture process was simulated and the results of experiments and simulations are in good agreement. On the basis of these results, we attempt to explain the appearance of satellite holes and their positions relative to pre-existing holes.

  14. Correlated dewetting patterns in thin polystyrene films

    International Nuclear Information System (INIS)

    Neto, Chiara; Jacobs, Karin; Seemann, Ralf; Blossey, Ralf; Becker, Juergen; Gruen, Guenther

    2003-01-01

    We describe preliminary results of experiments and simulations concerned with the dewetting of thin polystyrene films (thickness < 7 nm) on top of silicon oxide wafers. In the experiments we scratched an initially flat film with an atomic force microscopy (AFM) tip, producing dry channels in the film. Dewetting of the films was imaged in situ using AFM and a correlated pattern of holes ('satellite holes') was observed along the rims bordering the channels. The development of this complex film rupture process was simulated and the results of experiments and simulations are in good agreement. On the basis of these results, we attempt to explain the appearance of satellite holes and their positions relative to pre-existing holes

  15. Distributed Antenna Channels with Regenerative Relaying: Relay Selection and Asymptotic Capacity

    Directory of Open Access Journals (Sweden)

    Aitor del Coso

    2007-11-01

    Full Text Available Multiple-input-multiple-output (MIMO techniques have been widely proposed as a means to improve capacity and reliability of wireless channels, and have become the most promising technology for next generation networks. However, their practical deployment in current wireless devices is severely affected by antenna correlation, which reduces their impact on performance. One approach to solve this limitation is relaying diversity. In relay channels, a set of N wireless nodes aids a source-destination communication by relaying the source data, thus creating a distributed antenna array with uncorrelated path gains. In this paper, we study this multiple relay channel (MRC following a decode-and-forward (D&F strategy (i.e., regenerative forwarding, and derive its achievable rate under AWGN. A half-duplex constraint on relays is assumed, as well as distributed channel knowledge at both transmitter and receiver sides of the communication. For this channel, we obtain the optimum relay selection algorithm and the optimum power allocation within the network so that the transmission rate is maximized. Likewise, we bound the ergodic performance of the achievable rate and derive its asymptotic behavior in the number of relays. Results show that the achievable rate of regenerative MRC grows as the logarithm of the Lambert W function of the total number of relays, that is, 𝒞=log⁡2(W0(N. Therefore, D&F relaying, cannot achieve the capacity of actual MISO channels.

  16. An information-guided channel-hopping scheme for block-fading channels with estimation errors

    KAUST Repository

    Yang, Yuli

    2010-12-01

    Information-guided channel-hopping technique employing multiple transmit antennas was previously proposed for supporting high data rate transmission over fading channels. This scheme achieves higher data rates than some mature schemes, such as the well-known cyclic transmit antenna selection and space-time block coding, by exploiting the independence character of multiple channels, which effectively results in having an additional information transmitting channel. Moreover, maximum likelihood decoding may be performed by simply decoupling the signals conveyed by the different mapping methods. In this paper, we investigate the achievable spectral efficiency of this scheme in the case of having channel estimation errors, with optimum pilot overhead for minimum meansquare error channel estimation, when transmitting over blockfading channels. Our numerical results further substantiate the robustness of the presented scheme, even with imperfect channel state information. ©2010 IEEE.

  17. Nematic liquid crystals on sinusoidal channels: the zigzag instability.

    Science.gov (United States)

    Silvestre, Nuno M; Romero-Enrique, Jose M; Telo da Gama, Margarida M

    2017-01-11

    Substrates which are chemically or topographically patterned induce a variety of liquid crystal textures. The response of the liquid crystal to competing surface orientations, typical of patterned substrates, is determined by the anisotropy of the elastic constants and the interplay of the relevant lengths scales, such as the correlation length and the surface geometrical parameters. Transitions between different textures, usually with different symmetries, may occur under a wide range of conditions. We use the Landau-de Gennes free energy to investigate the texture of nematics in sinusoidal channels with parallel anchoring bounded by nematic-air interfaces that favour perpendicular (hometropic) anchoring. In micron size channels 5CB was observed to exhibit a non-trivial texture characterized by a disclination line, within the channel, which is broken into a zigzag pattern. Our calculations reveal that when the elastic anisotropy of the nematic does not favour twist distortions the defect is a straight disclination line that runs along the channel, which breaks into a zigzag pattern with a characteristic period, when the twist elastic constant becomes sufficiently small when compared to the splay and bend constants. The transition occurs through a twist instability that drives the defect line to rotate from its original position. The interplay between the energetically favourable twist distortions that induce the defect rotation and the liquid crystal anchoring at the surfaces leads to the zigzag pattern. We investigate in detail the dependence of the periodicity of the zigzag pattern on the geometrical parameters of the sinusoidal channels, which in line with the experimental results is found to be non-linear.

  18. Heat transfer in plate heat exchanger channels: Experimental validation of selected correlation equations

    Directory of Open Access Journals (Sweden)

    Cieśliński Janusz T.

    2016-09-01

    Full Text Available This study is focused on experimental investigation of selected type of brazed plate heat exchanger (PHEx. The Wilson plot approach was applied in order to estimate heat transfer coefficients for the PHEx passages. The main aim of the paper was to experimentally check ability of several correlations published in the literature to predict heat transfer coefficients by comparison experimentally obtained data with appropriate predictions. The results obtained revealed that Hausen and Dittus-Boelter correlations underestimated heat transfer coefficient for the tested PHEx by an order of magnitude. The Aspen Plate code overestimated heat transfer coefficient by about 50%, while Muley-Manglik correlation overestimated it from 1% to 25%, dependent on the value of Reynolds number and hot or cold liquid side.

  19. Automatic bad channel detection in intracranial electroencephalographic recordings using ensemble machine learning.

    Science.gov (United States)

    Tuyisenge, Viateur; Trebaul, Lena; Bhattacharjee, Manik; Chanteloup-Forêt, Blandine; Saubat-Guigui, Carole; Mîndruţă, Ioana; Rheims, Sylvain; Maillard, Louis; Kahane, Philippe; Taussig, Delphine; David, Olivier

    2018-03-01

    Intracranial electroencephalographic (iEEG) recordings contain "bad channels", which show non-neuronal signals. Here, we developed a new method that automatically detects iEEG bad channels using machine learning of seven signal features. The features quantified signals' variance, spatial-temporal correlation and nonlinear properties. Because the number of bad channels is usually much lower than the number of good channels, we implemented an ensemble bagging classifier known to be optimal in terms of stability and predictive accuracy for datasets with imbalanced class distributions. This method was applied on stereo-electroencephalographic (SEEG) signals recording during low frequency stimulations performed in 206 patients from 5 clinical centers. We found that the classification accuracy was extremely good: It increased with the number of subjects used to train the classifier and reached a plateau at 99.77% for 110 subjects. The classification performance was thus not impacted by the multicentric nature of data. The proposed method to automatically detect bad channels demonstrated convincing results and can be envisaged to be used on larger datasets for automatic quality control of iEEG data. This is the first method proposed to classify bad channels in iEEG and should allow to improve the data selection when reviewing iEEG signals. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  20. On the Packet Loss Correlation in Wireless Mesh Networks

    DEFF Research Database (Denmark)

    Pahlevani, Peyman; Cabrera Guerrero, Juan Alberto; Roetter, Daniel Enrique Lucani

    2014-01-01

    /or multi-path routing approaches as well as network coding (NC) subgraph selection problems (routing in NC). This paper proposes simple channel models to incorporate the effect of correlation between receivers in a parametric fashion and supports them with a measurement campaign that leverages various...

  1. Changes in Inward Rectifier K+ Channels in Hepatic Stellate Cells During Primary Culture

    Science.gov (United States)

    Lee, Dong Hyeon; Kong, In Deok; Lee, Joong-Woo

    2008-01-01

    Purpose This study examined the expression and function of inward rectifier K+ channels in cultured rat hepatic stellate cells (HSC). Materials and Methods The expression of inward rectifier K+ channels was measured using real-time RT-PCR, and electrophysiological properties were determined using the gramicidin-perforated patch-clamp technique. Results The dominant inward rectifier K+ channel subtypes were Kir2.1 and Kir6.1. These dominant K+ channel subtypes decreased significantly during the primary culture throughout activation process. HSC can be classified into two subgroups: one with an inward-rectifying K+ current (type 1) and the other without (type 2). The inward current was blocked by Ba2+ (100 µM) and enhanced by high K+ (140 mM), more prominently in type 1 HSC. There was a correlation between the amplitude of the Ba2+-sensitive current and the membrane potential. In addition, Ba2+ (300 µM) depolarized the membrane potential. After the culture period, the amplitude of the inward current decreased and the membrane potential became depolarized. Conclusion HSC express inward rectifier K+ channels, which physiologically regulate membrane potential and decrease during the activation process. These results will potentially help determine properties of the inward rectifier K+ channels in HSC as well as their roles in the activation process. PMID:18581597

  2. Experimental study on single-phase convection heat transfer characteristics of pebble bed channels with internal heat generation

    International Nuclear Information System (INIS)

    Meng Xianke; Sun Zhongning; Zhou Ping; Xu Guangzhan

    2012-01-01

    The water-cooled pebble bed reactor core is the porous channels stacked with spherical fuel elements, having evident effect on enhancing heat transfer. Owing to the variability and randomness characteristics of it's interstice, pebble bed channels have a very complex heat transfer situation and have little correlative research. In order to research the heat transfer characters of pebble bed channels with internal heat source, electromagnetic induction heating method was adopted for overall heating the pebble bed which was composed of 8 mm diameter steel balls, and the internal heat transfer characteristics were researched. By comparing and analyzing the experimental data, the rule of power distribution and heat transfer coefficient with heat flux density, inlet temperature and working fluid's Re were got. According to the experimental data fitting, the dimensionless average heat transfer coefficient correlation criteria was got. The fitting results are good agreement with the experimental results within 12% difference. (authors)

  3. DETECTING AND CORRECTING MOTION BLUR FROM IMAGES SHOT WITH CHANNEL-DEPENDENT EXPOSURE TIME

    Directory of Open Access Journals (Sweden)

    L. Lelégard

    2012-07-01

    Full Text Available This article describes a pipeline developed to automatically detect and correct motion blur due to the airplane motion in aerial images provided by a digital camera system with channel-dependent exposure times. Blurred images show anisotropy in their Fourier Transform coefficients that can be detected and estimated to recover the characteristics of the motion blur. To disambiguate the anisotropy produced by a motion blur from the possible spectral anisotropy produced by some periodic patterns present in a sharp image, we consider the phase difference of the Fourier Transform of two channel shot with different exposure times (i.e. with different blur extensions. This is possible because of the deep correlation between the three visible channels ensures phase coherence of the Fourier Transform coefficients in sharp images. In this context, considering the phase difference constitutes both a good detector and estimator of the motion blur parameters. In order to improve on this estimation, the phase difference is performed on local windows in the image where the channels are more correlated. The main lobe of the phase difference, where the phase difference between two channels is close to zero actually imitates an ellipse which axis ratio discriminates blur and which orientation and minor axis give respectively the orientation and the blur kernel extension of the long exposure-time channels. However, this approach is not robust to the presence in the phase difference of minor lobes due to phase sign inversions in the Fourier transform of the motion blur. They are removed by considering the polar representation of the phase difference. Based on the blur detection step, blur correction is eventually performed using two different approaches depending on the blur extension size: using either a simple frequency-based fusion for small blur or a semi blind iterative method for larger blur. The higher computing costs of the latter method make it only

  4. Numerical study of mixed convection heat transfer enhancement in a channel with active flow modulation

    Science.gov (United States)

    Billah, Md. Mamun; Khan, Md Imran; Rahman, Mohammed Mizanur; Alam, Muntasir; Saha, Sumon; Hasan, Mohammad Nasim

    2017-06-01

    A numerical study of steady two dimensional mixed convention heat transfer phenomena in a rectangular channel with active flow modulation is carried out in this investigation. The flow in the channel is modulated via a rotating cylinder placed at the center of the channel. In this study the top wall of the channel is subjected to an isothermal low temperature while a discrete isoflux heater is positioned on the lower wall. The fluid flow under investigation is assumed to have a Prandtl number of 0.71 while the Reynolds No. and the Grashof No. are varied in wide range for four different situations such as: i) plain channel with no cylinder, ii) channel with stationary cylinder, iii) channel with clockwise rotating cylinder and iv) channel with counter clockwise rotating cylinder. The results obtained in this study are presented in terms of the distribution of streamlines, isotherms in the channel while the heat transfer process from the heat source is evaluated in terms of the local Nusselt number, average Nusselt number. The outcomes of this study also indicate that the results are strongly dependent on the type of configuration and direction of rotation of the cylinder and that the average Nusselt number value rises with an increase in Reynolds and Grashof numbers but the correlation between these parameters at higher values of Reynolds and Grashof numbers becomes weak.

  5. Experimental study on heat transfer augmentation for high heat flux removal in rib-roughened narrow channels

    Energy Technology Data Exchange (ETDEWEB)

    Islam, M.S.; Monde, Masanori [Saga Univ. (Japan); Hino, Ryutaro; Haga, Katsuhiro; Sudo, Yukio

    1997-07-01

    Frictional pressure drop and heat transfer performance in a very narrow rectangular channel having one-sided constant heat flux and repeated-ribs for turbulent flow have been investigated experimentally, and their experimental correlations were obtained using the least square method. The rib pitch-to-height ratios(p/k) were 10 and 20 while holding the rib height constant at 0.2mm, the Reynolds number(Re) from 2,414 to 98,458 under different channel heights of 1.2mm, 2.97mm, and 3.24mm, the rib height-to-channel equivalent diameter(k/De) of 0.03, 0.04, and 0.09 respectively. The results show that the rib-roughened surface augments heat transfer 2-3 times higher than that of the smooth surface with the expense of 2.8-4 times higher frictional pressure drop under Re=5000-10{sup 5}, p/k=10, and H=1.2mm. Experimental results obtained by channel height, H=1.2mm shows a little bit higher heat transfer and friction factor performance than the higher channel height, H=3.24mm. The effect of fin and consequently higher turbulence intensity are responsible for producing higher heat transfer rates. The obtained correlations could be used to design the cooling passages between the target plates to remove high heat flux up to 12MW/m{sup 2} generated at target plates in a high-intensity proton accelerator system. (author). 54 refs.

  6. Experimental study on heat transfer augmentation for high heat flux removal in rib-roughened narrow channels

    International Nuclear Information System (INIS)

    Islam, M.S.; Monde, Masanori; Hino, Ryutaro; Haga, Katsuhiro; Sudo, Yukio.

    1997-07-01

    Frictional pressure drop and heat transfer performance in a very narrow rectangular channel having one-sided constant heat flux and repeated-ribs for turbulent flow have been investigated experimentally, and their experimental correlations were obtained using the least square method. The rib pitch-to-height ratios(p/k) were 10 and 20 while holding the rib height constant at 0.2mm, the Reynolds number(Re) from 2,414 to 98,458 under different channel heights of 1.2mm, 2.97mm, and 3.24mm, the rib height-to-channel equivalent diameter(k/De) of 0.03, 0.04, and 0.09 respectively. The results show that the rib-roughened surface augments heat transfer 2-3 times higher than that of the smooth surface with the expense of 2.8-4 times higher frictional pressure drop under Re=5000-10 5 , p/k=10, and H=1.2mm. Experimental results obtained by channel height, H=1.2mm shows a little bit higher heat transfer and friction factor performance than the higher channel height, H=3.24mm. The effect of fin and consequently higher turbulence intensity are responsible for producing higher heat transfer rates. The obtained correlations could be used to design the cooling passages between the target plates to remove high heat flux up to 12MW/m 2 generated at target plates in a high-intensity proton accelerator system. (author). 54 refs

  7. Long range correlation in Higgs boson plus two jets production at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Peng [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Nuclear Science Division; Yuan, C. -P. [Michigan State Univ., East Lansing, MI (United States). Dept. of Physics and Astronomy; Yuan, Feng [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Nuclear Science Division

    2016-09-09

    Here, we study Higgs boson plus two high energy jets production at the LHC in the kinematics where the two jets are well separated in rapidity. The partonic processes are dominated by the t-channel weak boson fusion (WBF) and gluon fusion (GF) contributions. We derive the associated QCD resummation formalism for the correlation analysis where the total transverse momentum q⊥ of the Higgs boson and two jets is small. Because of different color structures, the resummation results lead to distinguished behaviors: the WBF contribution peaks at relative low q⊥ while all GF channel contributions are strongly de-correlated and spread to a much wider q⊥ range. Furthermore, by applying a kinematic cut on q⊥, one can effectively increase the WBF signal to the GF background by a significant factor. This, then strengthens the ability to investigate the WBF channel in Higgs boson production and study the couplings of Higgs to electroweak bosons.

  8. Aberration compensation of an ultrasound imaging instrument with a reduced number of channels.

    Science.gov (United States)

    Jiang, Wei; Astheimer, Jeffrey P; Waag, Robert C

    2012-10-01

    Focusing and imaging qualities of an ultrasound imaging system that uses aberration correction were experimentally investigated as functions of the number of parallel channels. Front-end electronics that consolidate signals from multiple physical elements can be used to lower hardware and computational costs by reducing the number of parallel channels. However, the signals from sparse arrays of synthetic elements yield poorer aberration estimates. In this study, aberration estimates derived from synthetic arrays of varying element sizes are evaluated by comparing compensated receive focuses, compensated transmit focuses, and compensated b-scan images of a point target and a cyst phantom. An array of 80 x 80 physical elements with a pitch of 0.6 x 0.6 mm was used for all of the experiments and the aberration was produced by a phantom selected to mimic propagation through abdominal wall. The results show that aberration correction derived from synthetic arrays with pitches that have a diagonal length smaller than 70% of the correlation length of the aberration yield focuses and images of approximately the same quality. This connection between correlation length of the aberration and synthetic element size provides a guideline for determining the number of parallel channels that are required when designing imaging systems that employ aberration correction.

  9. Relative ordering of square-norm distance correlations in open quantum systems

    International Nuclear Information System (INIS)

    Wu Tao; Song Xue-Ke; Ye Liu

    2014-01-01

    We investigate the square-norm distance correlation dynamics of the Bell-diagonal states under different local decoherence channels, including phase flip, bit flip, and bit-phase flip channels by employing the geometric discord (GD) and its modified geometric discord (MGD), as the measures of the square-norm distance correlations. Moreover, an explicit comparison between them is made in detail. The results show that there is no distinct dominant relative ordering between them. Furthermore, we obtain that the GD just gradually deceases to zero, while MGD initially has a large freezing interval, and then suddenly changes in evolution. The longer the freezing interval, the less the MGD is. Interestingly, it is shown that the dynamic behaviors of the two geometric discords under the three noisy environments for the Werner-type initial states are the same. (general)

  10. On the secrecy capacity of the MISO wiretap channel under imperfect channel estimation

    KAUST Repository

    Rezki, Zouheir; Alomair, Basel; Alouini, Mohamed-Slim

    2014-01-01

    We consider a wiretap channel consisting of a source with multiple antennas, a legitimate receiver and an eavesdropper with a single antenna each. The channels between the source and the receivers undergo fast fading. We assume that the transmitter, in addition to the statistics of both channels, is only aware of a noisy version of the CSI to the legitimate receiver referred to as main channel. The legitimate receiver is aware of both its instantaneous channel gain and the transmitter's estimate of the main channel. On the other hand, the eavesdropper's receiver, in addition to its instantaneous channel realization, is aware of the actual main CSI and the transmitter's estimate as well. While the capacity of this channel is still open even with perfect CSI at the transmitter, we provide in this paper upper and lower bounds on the secrecy capacity. The upper bound is tighter than the one corresponding to perfect main CSI and the gap between the two upper bounds is characterized in function of the channel estimation error variance, at high-SNR. Furthermore, we show that our upper and lower bounds coincide in the case of no main CSI providing a trivial secrecy capacity.

  11. Improvement of critical heat flux correlation for research reactors using plate-type fuel

    International Nuclear Information System (INIS)

    Kaminaga, Masanori; Yamamoto, Kazuyoshi; Sudo, Yukio

    1998-01-01

    In research reactors, plate-type fuel elements are generally adopted so as to produce high power densities and are cooled by a downward flow. A core flow reversal from a steady-state forced downward flow to an upward flow due to natural convection should occur during operational transients such as Loss of the primary coolant flow'. Therefore, in the thermal hydraulic design of research reactors, critical heat flux (CHF) under a counter-current flow limitation (CCFL) or a flooding condition are important to determine safety margins of fuel against CHF during a core flow reversal. The authors have proposed a CHF correlation scheme for the thermal hydraulic design of research reactors, based on CHF experiments for both upward and downward flows including CCFL condition. When the CHF correlation scheme was proposed, a subcooling effect for CHF correlation under CCFL condition had not been considered because of a conservative evaluation and a lack of enough CHF data to determine the subcooling effect on CHF. A too conservative evaluation is not appropriate for the design of research reactors because of construction costs etc. Also, conservativeness of the design must be determined precisely. In this study, therefore, the subcooling effect on CHF under the CCFL conditions in vertical rectangular channels heated from both sides were investigated quantitatively based on CHF experimental results obtained under uniform and non-uniform heat flux conditions. As a result, it was made clear that CHF in this region increase linearly with an increase of the channel inlet subcooling and a new CHF correlation including the effect of channel inlet subcooling was proposed. The new correlation could be adopted under the conditions of the atmospheric pressure, the inlet subcooling less than 78K, the channel gap size between 2.25 to 5.0mm, the axial peaking factor between 1.0 to 1.6 and L/De between 71 to 174 which were the ranges investigated in this study. (author)

  12. Modeling water droplet condensation and evaporation in DNS of turbulent channel flow

    NARCIS (Netherlands)

    Russo, E.; Kuerten, J.G.M.; Geld, van der C.W.M.; Geurts, B.J.

    2011-01-01

    In this paper a point particle model for two-way coupling in water droplet-laden incompressible turbulent flow of air is proposed. The model is based on conservation laws and semi-empirical correlations. It has been implemented and tested in a DNS code based for turbulent channel flow with an

  13. Modeling water droplet condensation and evaporation in DNS of turbulent channel flow

    NARCIS (Netherlands)

    Russo, E; Kuerten, Johannes G.M.; van der Geld, C.W.M.; Geurts, Bernardus J.

    In this paper a point particle model for two-way coupling in water droplet-laden incompressible turbulent flow of air is proposed. The model is based on conservation laws and semi-empirical correlations. It has been implemented and tested in a DNS code based for turbulent channel flow with an

  14. A linearization of quantum channels

    Science.gov (United States)

    Crowder, Tanner

    2015-06-01

    Because the quantum channels form a compact, convex set, we can express any quantum channel as a convex combination of extremal channels. We give a Euclidean representation for the channels whose inverses are also valid channels; these are a subset of the extreme points. They form a compact, connected Lie group, and we calculate its Lie algebra. Lastly, we calculate a maximal torus for the group and provide a constructive approach to decomposing any invertible channel into a product of elementary channels.

  15. Channel Characteristics and Transmission Performance for Various Channel Configurations at 60 GHz

    Directory of Open Access Journals (Sweden)

    Yang Haibing

    2007-01-01

    Full Text Available Extensive measurements are conducted in room environments at 60 GHz to analyze the channel characteristics for various channel configurations. Channel parameters retrieved from measurements are presented and analyzed based on generic channel models. Particularly, a simple single-cluster model is applied for the parameter retrieval and performance evaluation. By this model, power delay profiles are simply described by a -factor, a root-mean-squared delay spread, and a shape parameter. The considered channels are configured with the combination of omnidirectional, fan-beam, and pencil-beam antennas at transmitter and receiver sides. Both line-of-sight (LOS and non-LOS (NLOS channels are considered. Further, to evaluate the transmission performance, we analyze the link budget in the considered environments, then design and simulate an OFDM system with a data rate of 2 Gbps to compare the bit-error-rate (BER performance by using the measured and modeled channels. Both coded and uncoded OFDM systems are simulated. It is observed that the BER performance agrees well for the measured and modeled channels. In addition, directive configurations can provide sufficient link margins and BER performance for high data rate communications. To increase the coverage and performance in the NLOS area, it is preferable to apply directive antennas.

  16. Channel Characteristics and Transmission Performance for Various Channel Configurations at 60 GHz

    Directory of Open Access Journals (Sweden)

    Haibing Yang

    2007-05-01

    Full Text Available Extensive measurements are conducted in room environments at 60 GHz to analyze the channel characteristics for various channel configurations. Channel parameters retrieved from measurements are presented and analyzed based on generic channel models. Particularly, a simple single-cluster model is applied for the parameter retrieval and performance evaluation. By this model, power delay profiles are simply described by a K-factor, a root-mean-squared delay spread, and a shape parameter. The considered channels are configured with the combination of omnidirectional, fan-beam, and pencil-beam antennas at transmitter and receiver sides. Both line-of-sight (LOS and non-LOS (NLOS channels are considered. Further, to evaluate the transmission performance, we analyze the link budget in the considered environments, then design and simulate an OFDM system with a data rate of 2 Gbps to compare the bit-error-rate (BER performance by using the measured and modeled channels. Both coded and uncoded OFDM systems are simulated. It is observed that the BER performance agrees well for the measured and modeled channels. In addition, directive configurations can provide sufficient link margins and BER performance for high data rate communications. To increase the coverage and performance in the NLOS area, it is preferable to apply directive antennas.

  17. Performance analysis of power-efficient adaptive interference cancelation in fading channels

    KAUST Repository

    Radaydeh, Redha Mahmoud Mesleh; Alouini, Mohamed-Slim

    2010-01-01

    This paper analyzes the performance of a -steering scheme for highly correlated receive antennas in the presence of statistically unordered co-channel interferers over multipath fading channels. An adaptive activation of receive antennas according to the interfering signals fading conditions is considered in the analysis. Analytical expressions for various system performance measures, including the outage probability, average error probability of different signaling schemes, and raw moments of the combined signal-to-interference-plus-noise ratio (SINR) are obtained in exact forms. Numerical and simulation results for the performance-complexity tradeoff of this scheme is presented and then compared with that of full-size arbitrary interference cancelation and no cancelation scenarios. ©2010 IEEE.

  18. Performance analysis of power-efficient adaptive interference cancelation in fading channels

    KAUST Repository

    Radaydeh, Redha Mahmoud Mesleh

    2010-12-01

    This paper analyzes the performance of a -steering scheme for highly correlated receive antennas in the presence of statistically unordered co-channel interferers over multipath fading channels. An adaptive activation of receive antennas according to the interfering signals fading conditions is considered in the analysis. Analytical expressions for various system performance measures, including the outage probability, average error probability of different signaling schemes, and raw moments of the combined signal-to-interference-plus-noise ratio (SINR) are obtained in exact forms. Numerical and simulation results for the performance-complexity tradeoff of this scheme is presented and then compared with that of full-size arbitrary interference cancelation and no cancelation scenarios. ©2010 IEEE.

  19. Heat removal capability of core-catcher with inclined cooling channels

    International Nuclear Information System (INIS)

    Suzuki, Y.; Tahara, M.; Kurita, T.; Hamazaki, R.; Morooka, S.

    2009-01-01

    A core-catcher is one of the mitigation systems that provide functions of molten corium cooling and stabilization during a severe accident. Toshiba has been developing a compact core-catcher to be placed at the lower drywell floor in the containment vessel for the next generation BWR as well as near term ABWR. This paper presents the evaluation of heat removal capability of the core-catcher with inclined cooling channels, our verification status and plan. The heat removal capability of the core-catcher is analyzed by using the newly developed two-phase flow analysis code which incorporates drift flux parameters for inclined channels and the CHF correlation obtained from SULTAN tests. Effects of geometrical parameters such as the inclination and the gap size of the cooling channel on the heat removal capability are also evaluated. These results show that the core-catcher has sufficient capability to cool the molten corium during a severe accident. Based on the analysis, it has been shown that the core-catcher has an efficient capability of heat removal to cool the molten corium. (author)

  20. Volume of the space of qubit-qubit channels and state transformations under random quantum channels

    OpenAIRE

    Lovas, Attila; Andai, Attila

    2017-01-01

    The simplest building blocks for quantum computations are the qubit-qubit quantum channels. In this paper, we analyze the structure of these channels via their Choi representation. The restriction of a quantum channel to the space of classical states (i.e. probability distributions) is called the underlying classical channel. The structure of quantum channels over a fixed classical channel is studied, the volume of general and unital qubit channels with respect to the Lebesgue measure is comp...

  1. Prediction of Second-Order Moments of Inter-Channel Interference with Principal Component Analysis and Neural Networks

    DEFF Research Database (Denmark)

    Jones, Rasmus Thomas; Medeiros Diniz, Júlio César; Yankov, Metodi Plamenov

    2017-01-01

    A machine learning framework for predicting auto-correlation functions of inter-channel nonlinearities within the uncompensated optical fiber link is proposed. Low generalization error is obtained on the test data....

  2. Cross-correlation time-of-flight analysis of molecular beam scattering

    International Nuclear Information System (INIS)

    Nowikow, C.V.; Grice, R.

    1979-01-01

    The theory of the cross-correlation method of time-of-flight analysis is presented in a form which highlights its formal similarity to the conventional method. A time-of-flight system for the analysis of crossed molecular beam scattering is described, which is based on a minicomputer interface and can operate in both the cross-correlation and conventional modes. The interface maintains the synchronisation of chopper disc rotation and channel advance indefinitely in the cross-correlation method and can acquire data in phase with the beam modulation in both methods. The shutter function of the cross-correlation method is determined and the deconvolution analysis of the data is discussed. (author)

  3. Correlation Coefficient Control For A Frequency Reconfigurable Dual-Band Compact MIMO Antenna Destined For LTE

    DEFF Research Database (Denmark)

    Tatomirescu, Alexandru; Buskgaard, Emil Feldborg; Pedersen, Gert Frølund

    2014-01-01

    . The MIMO performance is investigated in two different channel models through efficiency, branch power imbalance and envelope correlation. The proposed antennas have acceptable levels of isolation between them, even in the low-bands, while having a good efficiency. Furthermore, the correlation coefficient...

  4. Performance Analysis of Iterative Channel Estimation and Multiuser Detection in Multipath DS-CDMA Channels

    Science.gov (United States)

    Li, Husheng; Betz, Sharon M.; Poor, H. Vincent

    2007-05-01

    This paper examines the performance of decision feedback based iterative channel estimation and multiuser detection in channel coded aperiodic DS-CDMA systems operating over multipath fading channels. First, explicit expressions describing the performance of channel estimation and parallel interference cancellation based multiuser detection are developed. These results are then combined to characterize the evolution of the performance of a system that iterates among channel estimation, multiuser detection and channel decoding. Sufficient conditions for convergence of this system to a unique fixed point are developed.

  5. An MGF-based capacity analysis of equal gain combining over fading channels

    KAUST Repository

    Yilmaz, Ferkan; Alouini, Mohamed-Slim

    2010-01-01

    Exact average capacity results for L-branch coherent equal-gain combining (EGC) in correlated and uncorrelated fading channels are not known. This paper develops a novel framework (approach) for capacity analysis of L-branch EGC in generalized fading channels. In addition, Gamma shadowed generalized Nakagami-m fading model is proposed in order to statistically model the fading environments in high frequencies such as 60 GHz and above. Some simulations are carried out and then the obtained results are accentuated by means of numerical analysis based on the proposed framework. Numerical and simulation results, performed to verify the correctness of the proposed framework, are in perfect agreement. ©2010 IEEE.

  6. An MGF-based capacity analysis of equal gain combining over fading channels

    KAUST Repository

    Yilmaz, Ferkan

    2010-09-01

    Exact average capacity results for L-branch coherent equal-gain combining (EGC) in correlated and uncorrelated fading channels are not known. This paper develops a novel framework (approach) for capacity analysis of L-branch EGC in generalized fading channels. In addition, Gamma shadowed generalized Nakagami-m fading model is proposed in order to statistically model the fading environments in high frequencies such as 60 GHz and above. Some simulations are carried out and then the obtained results are accentuated by means of numerical analysis based on the proposed framework. Numerical and simulation results, performed to verify the correctness of the proposed framework, are in perfect agreement. ©2010 IEEE.

  7. On the secrecy capacity of the MISO wiretap channel under imperfect channel estimation

    KAUST Repository

    Rezki, Zouheir

    2014-12-01

    We consider a wiretap channel consisting of a source with multiple antennas, a legitimate receiver and an eavesdropper with a single antenna each. The channels between the source and the receivers undergo fast fading. We assume that the transmitter, in addition to the statistics of both channels, is only aware of a noisy version of the CSI to the legitimate receiver referred to as main channel. The legitimate receiver is aware of both its instantaneous channel gain and the transmitter\\'s estimate of the main channel. On the other hand, the eavesdropper\\'s receiver, in addition to its instantaneous channel realization, is aware of the actual main CSI and the transmitter\\'s estimate as well. While the capacity of this channel is still open even with perfect CSI at the transmitter, we provide in this paper upper and lower bounds on the secrecy capacity. The upper bound is tighter than the one corresponding to perfect main CSI and the gap between the two upper bounds is characterized in function of the channel estimation error variance, at high-SNR. Furthermore, we show that our upper and lower bounds coincide in the case of no main CSI providing a trivial secrecy capacity.

  8. Channel electron multipliers

    International Nuclear Information System (INIS)

    Seidman, A.; Avrahami, Z.; Sheinfux, B.; Grinberg, J.

    1976-01-01

    A channel electron multiplier is described having a tubular wall coated with a secondary-electron emitting material and including an electric field for accelerating the electrons, the electric field comprising a plurality of low-resistive conductive rings each alternating with a high-resistive insulating ring. The thickness of the low-resistive rings is many times larger than that of the high-resistive rings, being in the order of tens of microns for the low-resistive rings and at least one order of magnitude lower for the high-resistive rings; and the diameter of the channel tubular walls is also many times larger than the thickness of the high-resistive rings. Both single-channel and multiple-channel electron multipliers are described. A very important advantage, particularly in making multiple-channel multipliers, is the simplicity of the procedure that may be used in constructing such multipliers. Other operational advantages are described

  9. Spatial dispersion and performance evaluation of indoor MIMO channels at 2.25 GHz

    NARCIS (Netherlands)

    Yang, Haibing; Herben, M.H.A.J.

    2004-01-01

    Channel capacity of a MIMO system is dependent not only on the signal-to-noise ratio (SNR) but also on spatial correlation among antenna elements. Therefore, the system design must rely on good propagation predictions. By using a ray tracing simulator, which considers reflections, penetrations and

  10. Parton distribution function for quarks in an s-channel approach

    CERN Document Server

    Hautmann, F

    2007-01-01

    We use an s-channel picture of hard hadronic collisions to investigate the parton distribution function for quarks at small momentum fraction x, which corresponds to very high energy scattering. We study the renormalized quark distribution at one loop in this approach. In the high-energy picture, the quark distribution function is expressed in terms of a Wilson-line correlator that represents the cross section for a color dipole to scatter from the proton. We model this Wilson-line correlator in a saturation model. We relate this representation of the quark distribution function to the corresponding representation of the structure function F_T(x,Q^2) for deeply inelastic scattering.

  11. Removal of eye blink artifacts in wireless EEG sensor networks using reduced-bandwidth canonical correlation analysis.

    Science.gov (United States)

    Somers, Ben; Bertrand, Alexander

    2016-12-01

    Chronic, 24/7 EEG monitoring requires the use of highly miniaturized EEG modules, which only measure a few EEG channels over a small area. For improved spatial coverage, a wireless EEG sensor network (WESN) can be deployed, consisting of multiple EEG modules, which interact through short-distance wireless communication. In this paper, we aim to remove eye blink artifacts in each EEG channel of a WESN by optimally exploiting the correlation between EEG signals from different modules, under stringent communication bandwidth constraints. We apply a distributed canonical correlation analysis (CCA-)based algorithm, in which each module only transmits an optimal linear combination of its local EEG channels to the other modules. The method is validated on both synthetic and real EEG data sets, with emulated wireless transmissions. While strongly reducing the amount of data that is shared between nodes, we demonstrate that the algorithm achieves the same eye blink artifact removal performance as the equivalent centralized CCA algorithm, which is at least as good as other state-of-the-art multi-channel algorithms that require a transmission of all channels. Due to their potential for extreme miniaturization, WESNs are viewed as an enabling technology for chronic EEG monitoring. However, multi-channel analysis is hampered in WESNs due to the high energy cost for wireless communication. This paper shows that multi-channel eye blink artifact removal is possible with a significantly reduced wireless communication between EEG modules.

  12. Pacemaker rate and depolarization block in nigral dopamine neurons: a somatic sodium channel balancing act

    Science.gov (United States)

    Tucker, Kristal R.; Huertas, Marco A.; Horn, John P.; Canavier, Carmen C.; Levitan, Edwin S.

    2012-01-01

    Midbrain dopamine (DA) neurons are slow intrinsic pacemakers that undergo depolarization (DP) block upon moderate stimulation. Understanding DP block is important because it has been correlated with the clinical efficacy of chronic antipsychotic drug treatment. Here we describe how voltage-gated sodium (NaV) channels regulate DP block and pacemaker activity in DA neurons of the substantia nigra using rat brain slices. The distribution, density and gating of NaV currents were manipulated by blocking native channels with tetrodotoxin and by creating virtual channels and anti-channels with dynamic clamp. Although action potentials initiate in the axon initial segment (AIS) and NaV channels are distributed in multiple dendrites, selective reduction of NaV channel activity in the soma was sufficient to decrease pacemaker frequency and increase susceptibility to DP block. Conversely, increasing somatic NaV current density raised pacemaker frequency and lowered susceptibility to DP block. Finally, when NaV currents were restricted to the soma, pacemaker activity occurred at abnormally high rates due to excessive local subthreshold NaV current. Together with computational simulations, these data show that both the slow pacemaker rate and the sensitivity to DP block that characterizes DA neurons result from the low density of somatic NaV channels. More generally, we conclude that the somatodendritic distribution of NaV channels is a major determinant of repetitive spiking frequency. PMID:23077037

  13. Coherifying quantum channels

    Science.gov (United States)

    Korzekwa, Kamil; Czachórski, Stanisław; Puchała, Zbigniew; Życzkowski, Karol

    2018-04-01

    Is it always possible to explain random stochastic transitions between states of a finite-dimensional system as arising from the deterministic quantum evolution of the system? If not, then what is the minimal amount of randomness required by quantum theory to explain a given stochastic process? Here, we address this problem by studying possible coherifications of a quantum channel Φ, i.e., we look for channels {{{Φ }}}{ \\mathcal C } that induce the same classical transitions T, but are ‘more coherent’. To quantify the coherence of a channel Φ we measure the coherence of the corresponding Jamiołkowski state J Φ. We show that the classical transition matrix T can be coherified to reversible unitary dynamics if and only if T is unistochastic. Otherwise the Jamiołkowski state {J}{{Φ }}{ \\mathcal C } of the optimally coherified channel is mixed, and the dynamics must necessarily be irreversible. To assess the extent to which an optimal process {{{Φ }}}{ \\mathcal C } is indeterministic we find explicit bounds on the entropy and purity of {J}{{Φ }}{ \\mathcal C }, and relate the latter to the unitarity of {{{Φ }}}{ \\mathcal C }. We also find optimal coherifications for several classes of channels, including all one-qubit channels. Finally, we provide a non-optimal coherification procedure that works for an arbitrary channel Φ and reduces its rank (the minimal number of required Kraus operators) from {d}2 to d.

  14. Ion channel expression patterns in glioblastoma stem cells with functional and therapeutic implications for malignancy.

    Directory of Open Access Journals (Sweden)

    Julia Pollak

    Full Text Available Ion channels and transporters have increasingly recognized roles in cancer progression through the regulation of cell proliferation, migration, and death. Glioblastoma stem-like cells (GSCs are a source of tumor formation and recurrence in glioblastoma multiforme, a highly aggressive brain cancer, suggesting that ion channel expression may be perturbed in this population. However, little is known about the expression and functional relevance of ion channels that may contribute to GSC malignancy. Using RNA sequencing, we assessed the enrichment of ion channels in GSC isolates and non-tumor neural cell types. We identified a unique set of GSC-enriched ion channels using differential expression analysis that is also associated with distinct gene mutation signatures. In support of potential clinical relevance, expression of selected GSC-enriched ion channels evaluated in human glioblastoma databases of The Cancer Genome Atlas and Ivy Glioblastoma Atlas Project correlated with patient survival times. Finally, genetic knockdown as well as pharmacological inhibition of individual or classes of GSC-enriched ion channels constrained growth of GSCs compared to normal neural stem cells. This first-in-kind global examination characterizes ion channels enriched in GSCs and explores their potential clinical relevance to glioblastoma molecular subtypes, gene mutations, survival outcomes, regional tumor expression, and experimental responses to loss-of-function. Together, the data support the potential biological and therapeutic impact of ion channels on GSC malignancy and provide strong rationale for further examination of their mechanistic and therapeutic importance.

  15. Ion channel expression patterns in glioblastoma stem cells with functional and therapeutic implications for malignancy.

    Science.gov (United States)

    Pollak, Julia; Rai, Karan G; Funk, Cory C; Arora, Sonali; Lee, Eunjee; Zhu, Jun; Price, Nathan D; Paddison, Patrick J; Ramirez, Jan-Marino; Rostomily, Robert C

    2017-01-01

    Ion channels and transporters have increasingly recognized roles in cancer progression through the regulation of cell proliferation, migration, and death. Glioblastoma stem-like cells (GSCs) are a source of tumor formation and recurrence in glioblastoma multiforme, a highly aggressive brain cancer, suggesting that ion channel expression may be perturbed in this population. However, little is known about the expression and functional relevance of ion channels that may contribute to GSC malignancy. Using RNA sequencing, we assessed the enrichment of ion channels in GSC isolates and non-tumor neural cell types. We identified a unique set of GSC-enriched ion channels using differential expression analysis that is also associated with distinct gene mutation signatures. In support of potential clinical relevance, expression of selected GSC-enriched ion channels evaluated in human glioblastoma databases of The Cancer Genome Atlas and Ivy Glioblastoma Atlas Project correlated with patient survival times. Finally, genetic knockdown as well as pharmacological inhibition of individual or classes of GSC-enriched ion channels constrained growth of GSCs compared to normal neural stem cells. This first-in-kind global examination characterizes ion channels enriched in GSCs and explores their potential clinical relevance to glioblastoma molecular subtypes, gene mutations, survival outcomes, regional tumor expression, and experimental responses to loss-of-function. Together, the data support the potential biological and therapeutic impact of ion channels on GSC malignancy and provide strong rationale for further examination of their mechanistic and therapeutic importance.

  16. The Extended-Window Channel Estimator for Iterative Channel-and-Symbol Estimation

    Directory of Open Access Journals (Sweden)

    Barry John R

    2005-01-01

    Full Text Available The application of the expectation-maximization (EM algorithm to channel estimation results in a well-known iterative channel-and-symbol estimator (ICSE. The EM-ICSE iterates between a symbol estimator based on the forward-backward recursion (BCJR equalizer and a channel estimator, and may provide approximate maximum-likelihood blind or semiblind channel estimates. Nevertheless, the EM-ICSE has high complexity, and it is prone to misconvergence. In this paper, we propose the extended-window (EW estimator, a novel channel estimator for ICSE that can be used with any soft-output symbol estimator. Therefore, the symbol estimator may be chosen according to performance or complexity specifications. We show that the EW-ICSE, an ICSE that uses the EW estimator and the BCJR equalizer, is less complex and less susceptible to misconvergence than the EM-ICSE. Simulation results reveal that the EW-ICSE may converge faster than the EM-ICSE.

  17. Heat Coulomb blockade of one ballistic channel

    Science.gov (United States)

    Sivre, E.; Anthore, A.; Parmentier, F. D.; Cavanna, A.; Gennser, U.; Ouerghi, A.; Jin, Y.; Pierre, F.

    2018-02-01

    Quantum mechanics and Coulomb interaction dictate the behaviour of small circuits. The thermal implications cover fundamental topics from quantum control of heat to quantum thermodynamics, with prospects of novel thermal machines and an ineluctably growing influence on nanocircuit engineering. Experimentally, the rare observations thus far include the universal thermal conductance quantum and heat interferometry. However, evidence for many-body thermal effects paving the way to markedly different heat and electrical behaviours in quantum circuits remains wanting. Here we report on the observation of the Coulomb blockade of electronic heat flow from a small metallic circuit node, beyond the widespread Wiedemann-Franz law paradigm. We demonstrate this thermal many-body phenomenon for perfect (ballistic) conduction channels to the node, where it amounts to the universal suppression of precisely one quantum of conductance for the transport of heat, but none for electricity. The inter-channel correlations that give rise to such selective heat current reduction emerge from local charge conservation, in the floating node over the full thermal frequency range (laws for thermal transport in nanocircuits.

  18. Channel identification machines.

    Science.gov (United States)

    Lazar, Aurel A; Slutskiy, Yevgeniy B

    2012-01-01

    We present a formal methodology for identifying a channel in a system consisting of a communication channel in cascade with an asynchronous sampler. The channel is modeled as a multidimensional filter, while models of asynchronous samplers are taken from neuroscience and communications and include integrate-and-fire neurons, asynchronous sigma/delta modulators and general oscillators in cascade with zero-crossing detectors. We devise channel identification algorithms that recover a projection of the filter(s) onto a space of input signals loss-free for both scalar and vector-valued test signals. The test signals are modeled as elements of a reproducing kernel Hilbert space (RKHS) with a Dirichlet kernel. Under appropriate limiting conditions on the bandwidth and the order of the test signal space, the filter projection converges to the impulse response of the filter. We show that our results hold for a wide class of RKHSs, including the space of finite-energy bandlimited signals. We also extend our channel identification results to noisy circuits.

  19. Channel Identification Machines

    Directory of Open Access Journals (Sweden)

    Aurel A. Lazar

    2012-01-01

    Full Text Available We present a formal methodology for identifying a channel in a system consisting of a communication channel in cascade with an asynchronous sampler. The channel is modeled as a multidimensional filter, while models of asynchronous samplers are taken from neuroscience and communications and include integrate-and-fire neurons, asynchronous sigma/delta modulators and general oscillators in cascade with zero-crossing detectors. We devise channel identification algorithms that recover a projection of the filter(s onto a space of input signals loss-free for both scalar and vector-valued test signals. The test signals are modeled as elements of a reproducing kernel Hilbert space (RKHS with a Dirichlet kernel. Under appropriate limiting conditions on the bandwidth and the order of the test signal space, the filter projection converges to the impulse response of the filter. We show that our results hold for a wide class of RKHSs, including the space of finite-energy bandlimited signals. We also extend our channel identification results to noisy circuits.

  20. CHANNEL ESTIMATION TECHNIQUE

    DEFF Research Database (Denmark)

    2015-01-01

    A method includes determining a sequence of first coefficient estimates of a communication channel based on a sequence of pilots arranged according to a known pilot pattern and based on a receive signal, wherein the receive signal is based on the sequence of pilots transmitted over the communicat......A method includes determining a sequence of first coefficient estimates of a communication channel based on a sequence of pilots arranged according to a known pilot pattern and based on a receive signal, wherein the receive signal is based on the sequence of pilots transmitted over...... the communication channel. The method further includes determining a sequence of second coefficient estimates of the communication channel based on a decomposition of the first coefficient estimates in a dictionary matrix and a sparse vector of the second coefficient estimates, the dictionary matrix including...... filter characteristics of at least one known transceiver filter arranged in the communication channel....

  1. Using Remote Sensing and High-Resolution Digital Elevation Models to Identify Potential Erosional Hotspots Along River Channels During High Discharge Storm Events

    Science.gov (United States)

    Orland, E. D.; Amidon, W. H.

    2017-12-01

    As global warming intensifies, large precipitation events and associated floods are becoming increasingly common. Channel adjustments during floods can occur by both erosion and deposition of sediment, often damaging infrastructure in the process. There is thus a need for predictive models that can help managers identify river reaches that are most prone to adjustment during storms. Because rivers in post-glacial landscapes often flow over a mixture of bedrock and alluvial substrates, the identification of bedrock vs. alluvial channel reaches is an important first step in predicting vulnerability to channel adjustment during flood events, especially because bedrock channels are unlikely to adjust significantly, even during floods. This study develops a semi-automated approach to predicting channel substrate using a high-resolution LiDAR-derived digital elevation model (DEM). The study area is the Middlebury River in Middlebury, VT-a well-studied watershed with a wide variety of channel substrates, including reaches with documented channel adjustments during recent flooding events. Multiple metrics were considered for reference—such as channel width and drainage area—but the study utilized channel slope as a key parameter for identifying morphological variations within the Middlebury River. Using data extracted from the DEM, a power law was fit to selected slope and drainage area values for each branch in order to model idealized slope-drainage area relationships, which were then compared with measured slope-drainage area relationships. Differences in measured slope minus predicted slope (called delta-slope) are shown to help predict river channel substrate. Compared with field observations, higher delta-slope values correlate with more stable, boulder rich channels or bedrock gorges; conversely the lowest delta-slope values correlate with flat, sediment rich alluvial channels. The delta-slope metric thus serves as a reliable first-order predictor of channel

  2. Use of navigation channels by Lake Sturgeon: Does channelization increase vulnerability of fish to ship strikes?

    Directory of Open Access Journals (Sweden)

    Darryl W Hondorp

    Full Text Available Channelization for navigation and flood control has altered the hydrology and bathymetry of many large rivers with unknown consequences for fish species that undergo riverine migrations. In this study, we investigated whether altered flow distributions and bathymetry associated with channelization attracted migrating Lake Sturgeon (Acipenser fulvescens into commercial navigation channels, potentially increasing their exposure to ship strikes. To address this question, we quantified and compared Lake Sturgeon selection for navigation channels vs. alternative pathways in two multi-channel rivers differentially affected by channelization, but free of barriers to sturgeon movement. Acoustic telemetry was used to quantify Lake Sturgeon movements. Under the assumption that Lake Sturgeon navigate by following primary flow paths, acoustic-tagged Lake Sturgeon in the more-channelized lower Detroit River were expected to choose navigation channels over alternative pathways and to exhibit greater selection for navigation channels than conspecifics in the less-channelized lower St. Clair River. Consistent with these predictions, acoustic-tagged Lake Sturgeon in the more-channelized lower Detroit River selected the higher-flow and deeper navigation channels over alternative migration pathways, whereas in the less-channelized lower St. Clair River, individuals primarily used pathways alternative to navigation channels. Lake Sturgeon selection for navigation channels as migratory pathways also was significantly higher in the more-channelized lower Detroit River than in the less-channelized lower St. Clair River. We speculated that use of navigation channels over alternative pathways would increase the spatial overlap of commercial vessels and migrating Lake Sturgeon, potentially enhancing their vulnerability to ship strikes. Results of our study thus demonstrated an association between channelization and the path use of migrating Lake Sturgeon that could prove

  3. BRAIN NETWORKS. Correlated gene expression supports synchronous activity in brain networks.

    Science.gov (United States)

    Richiardi, Jonas; Altmann, Andre; Milazzo, Anna-Clare; Chang, Catie; Chakravarty, M Mallar; Banaschewski, Tobias; Barker, Gareth J; Bokde, Arun L W; Bromberg, Uli; Büchel, Christian; Conrod, Patricia; Fauth-Bühler, Mira; Flor, Herta; Frouin, Vincent; Gallinat, Jürgen; Garavan, Hugh; Gowland, Penny; Heinz, Andreas; Lemaître, Hervé; Mann, Karl F; Martinot, Jean-Luc; Nees, Frauke; Paus, Tomáš; Pausova, Zdenka; Rietschel, Marcella; Robbins, Trevor W; Smolka, Michael N; Spanagel, Rainer; Ströhle, Andreas; Schumann, Gunter; Hawrylycz, Mike; Poline, Jean-Baptiste; Greicius, Michael D

    2015-06-12

    During rest, brain activity is synchronized between different regions widely distributed throughout the brain, forming functional networks. However, the molecular mechanisms supporting functional connectivity remain undefined. We show that functional brain networks defined with resting-state functional magnetic resonance imaging can be recapitulated by using measures of correlated gene expression in a post mortem brain tissue data set. The set of 136 genes we identify is significantly enriched for ion channels. Polymorphisms in this set of genes significantly affect resting-state functional connectivity in a large sample of healthy adolescents. Expression levels of these genes are also significantly associated with axonal connectivity in the mouse. The results provide convergent, multimodal evidence that resting-state functional networks correlate with the orchestrated activity of dozens of genes linked to ion channel activity and synaptic function. Copyright © 2015, American Association for the Advancement of Science.

  4. Dynamic regulation of mechanosensitive channels: capacitance used to monitor patch tension in real time

    Science.gov (United States)

    Suchyna, Thomas M.; Besch, Steven R.; Sachs, Frederick

    2004-03-01

    All cells, from bacteria to human, are mechanically sensitive. The most rapid of these membrane protein transducers are mechanosensitive ion channels, ionic pores in the membrane that open and close in response to membrane tension. In specific sensory organs, these channels serve the senses of touch and hearing, and inform the central nervous system about the filling of hollow organs such as the bladder. Non-specialized cells use these channels to report on changes in cell volume and local strain. To preserve dynamic sensitivity, sensory receptors adapt to steady-state stimuli. Here we show that in rat astrocytes, the most abundant cells in the brain, this apparent adaptation to the stimulus is actually an inactivation. We have been able to track the time course of local strain by measuring attofarad changes in membrane capacitance and show that it is not correlated with loss of channel activity. The reduction in current with time is caused by an increased occupancy of low conductance states, and a reduction in the probability of opening, not a relaxation of local stress. The occupancy of these substates depends on the integrity of the cell's cytoplasm. However, while disruption of the cytoskeleton leads to a loss of inactivation, it leaves activation unaffected. The activation process is voltage-insensitive, closely correlated with changes in capacitance, and seems to arise solely from stress in the bilayer. The inactivation rate decreases with depolarization, and kinetic analysis suggests that the process involves multiple cytoplasmic ligands. Surprisingly, multivalent ions such as Gd+3 and Ca+2 that bind to the lipids and affect channel gating, do not affect the strain-induced increase in membrane capacitance; contrary to expectations, membrane elasticity is unchanged.

  5. Evaluation of Diversity Antenna Designs Using Ray Tracing, Measured Radiation Patterns, and MIMO Channel Measurements

    Directory of Open Access Journals (Sweden)

    Pal Arindam

    2007-01-01

    Full Text Available This paper presents an evaluation of the MIMO performance of three candidate antenna array designs, each embedded within a PDA footprint, using indoor wideband channel measurements at 5.2 GHz alongside channel simulations. A channel model which employs the plane-wave approximation was used to combine the embedded antenna radiation patterns of the candidate devices obtained from far-field pattern measurements and multipath component parameters from an indoor ray-tracer. The 4-element candidate arrays were each constructed using a different type of antenna element, and despite the diverse element directivities, pattern characteristics, and polarization purities, all three devices were constructed to fully exploit diversity in polarization, space, and angle. Thus, low correlation and high information theoretic capacity was observed in each case. A good match between the model and the measurements is also demonstrated, especially for MIMO subsets of identically or orthogonally polarized linear slot antennas. The interdependencies between the channel XPD, directional spread and pathloss, and the respective impact on channel capacity are also discussed in this paper.

  6. Evaluation of Diversity Antenna Designs Using Ray Tracing, Measured Radiation Patterns, and MIMO Channel Measurements

    Directory of Open Access Journals (Sweden)

    Arindam Pal

    2007-01-01

    Full Text Available This paper presents an evaluation of the MIMO performance of three candidate antenna array designs, each embedded within a PDA footprint, using indoor wideband channel measurements at 5.2 GHz alongside channel simulations. A channel model which employs the plane-wave approximation was used to combine the embedded antenna radiation patterns of the candidate devices obtained from far-field pattern measurements and multipath component parameters from an indoor ray-tracer. The 4-element candidate arrays were each constructed using a different type of antenna element, and despite the diverse element directivities, pattern characteristics, and polarization purities, all three devices were constructed to fully exploit diversity in polarization, space, and angle. Thus, low correlation and high information theoretic capacity was observed in each case. A good match between the model and the measurements is also demonstrated, especially for 2×2 MIMO subsets of identically or orthogonally polarized linear slot antennas. The interdependencies between the channel XPD, directional spread and pathloss, and the respective impact on channel capacity are also discussed in this paper.

  7. Influence of internal channel geometry of gas turbine blade on flow structure and heat transfer

    Science.gov (United States)

    Szwaba, Ryszard; Kaczynski, Piotr; Telega, Janusz; Doerffer, Piotr

    2017-12-01

    This paper presents the study of the influence of channel geometry on the flow structure and heat transfer, and also their correlations on all the walls of a radial cooling passage model of a gas turbine blade. The investigations focus on the heat transfer and aerodynamic measurements in the channel, which is an accurate representation of the configuration used in aeroengines. Correlations for the heat transfer coefficient and the pressure drop used in the design of internal cooling passages are often developed from simplified models. It is important to note that real engine passages do not have perfect rectangular cross sections, but include a corner fillets, ribs with fillet radii and a special orientation. Therefore, this work provides detailed fluid flow and heat transfer data for a model of radial cooling geometry which has very realistic features.

  8. Voltage-Gated Calcium Channels

    Science.gov (United States)

    Zamponi, Gerald Werner

    Voltage Gated Calcium Channels is the first comprehensive book in the calcium channel field, encompassing over thirty years of progress towards our understanding of calcium channel structure, function, regulation, physiology, pharmacology, and genetics. This book balances contributions from many of the leading authorities in the calcium channel field with fresh perspectives from risings stars in the area, taking into account the most recent literature and concepts. This is the only all-encompassing calcium channel book currently available, and is an essential resource for academic researchers at all levels in the areas neuroscience, biophysics, and cardiovascular sciences, as well as to researchers in the drug discovery area.

  9. Hydrodynamics of slug flow in a vertical narrow rectangular channel under laminar flow condition

    International Nuclear Information System (INIS)

    Wang, Yang; Yan, Changqi; Cao, Xiaxin; Sun, Licheng; Yan, Chaoxing; Tian, Qiwei

    2014-01-01

    Highlights: • Slug flow hydrodynamics in a vertical narrow rectangular duct were investigated. • The velocity of trailing Taylor bubble undisturbed by the leading one was measured. • Correlation of Taylor bubble velocity with liquid slug length ahead it was proposed. • Evolution of length distributions of Taylor bubble and liquid slug was measured. • The model of predicted length distributions was applied to the rectangular channel. - Abstract: The hydrodynamics of gas–liquid two-phase slug flow in a vertical narrow rectangular channel with the cross section of 2.2 mm × 43 mm is investigated using a high speed video camera system. Simultaneous measurements of velocity and duration of Taylor bubble and liquid slug made it possible to determine the length distributions of the liquid slug and Taylor bubble. Taylor bubble velocity is dependent on the length of the liquid slug ahead, and an empirical correlation is proposed based on the experimental data. The length distributions of Taylor bubbles and liquid slugs are positively skewed (log-normal distribution) at all measuring positions for all flow conditions. A modified model based on that for circular tubes is adapted to predict the length distributions in the present narrow rectangular channel. In general, the experimental data is well predicted by the modified model

  10. Entanglement and optimal strings of qubits for memory channels

    International Nuclear Information System (INIS)

    Karimipour, V.; Memarzadeh, L.

    2006-01-01

    We investigate the problem of enhancement of mutual information by encoding classical data into entangled input states of arbitrary length and show that while there is a threshold memory or correlation parameter beyond which entangled states outperform the separable states, resulting in a higher mutual information, this memory threshold increases toward unity as the length of the string increases. These observations imply that encoding classical data into entangled states may not enhance the classical capacity of quantum channels

  11. Plasma cortisol stress response in channel catfish, Ictalurus punctatus influences susceptibility to Edwardeseilla ictaluri

    Science.gov (United States)

    Cortisol is a primary stress hormone in fish as its plasma variations correlate with the occurrence of various stressful situations. Past studies have demonstrated that fish subjected to handling stress or poor water quality had a reduced ability to resist pathogens. Channel catfish fingerlings th...

  12. The mechanism of erythrocyte sedimentation. Part 1: Channeling in sedimenting blood.

    Science.gov (United States)

    Pribush, A; Meyerstein, D; Meyerstein, N

    2010-01-01

    Despite extensive efforts to elucidate the mechanism of erythrocyte sedimentation, the understanding of this mechanism still remains obscure. In attempt to clarify this issue, we studied the effect of hematocrit (Hct) on the complex admittance of quiescent blood measured at different axial positions of the 2 mm x 2 mm cross-section chambers. It was found that after the aggregation process is completed, the admittance reveals delayed changes caused by the formation of cell-free zones within the settling dispersed phase. The delay time (tau(d)) correlates positively with Hct and the distance between the axial position where measurements were performed and the bottom and is unaffected by the gravitational load. These findings and literature reports for colloidal gels suggest that erythrocytes in aggregating media form a network followed by the formation of plasma channels within it. The cell-free zones form initially near the bottom and then propagate toward the top until they reach the plasma/blood interface. These channels increase the permeability of a network and, as a result, accelerate the sedimentation velocity. The energy of the flow field in channels is sufficiently strong to erode their walls. The upward movement of network fragments in channels is manifested by erratic fluctuations of the conductivity. The main conclusion, which may be drawn from the results of this study, is that the phase separation of blood is associated with the formation of plasma channels within the sedimenting dispersed phase.

  13. Measurement-Based Spatial Correlation and Capacity of Indoor Distributed MIMO System

    Directory of Open Access Journals (Sweden)

    Yan Zhang

    2013-01-01

    Full Text Available Distributed MIMO (D-MIMO system is one of the candidates for future wireless access networks. In this study, the spatial correlation and capacity in indoor D-MIMO system are presented. All results are from the actual channel measurements in typical indoor scenarios, including office and corridor. Based on measured data, spatial correlation coefficients between distributed transmitting antennas are analyzed. Although the literature about D-MIMO system assumes the small scale fading between distributed antennas is independent, we find that spatial correlation may still exist in specific propagation scenario. This correlation can also degrade the performance of D-MIMO system. To mitigate the impact of spatial correlation, one efficient method is to use transmitting antenna selection technique.

  14. Robust, highly customizable, and economical multi-channel electrode for chronic multi-unit recording in behaving animals.

    Science.gov (United States)

    Tateyama, Yukina; Oyama, Kei; Shiraishi, Masaru; Iijima, Toshio; Tsutsui, Ken-Ichiro

    2017-12-01

    Multi-unit recording has been one of the most widely used techniques to investigate the correlation between multiple neuronal activities and behavior. However, a common problem of currently used multi-channel electrodes is their physical weakness. In this study, we developed a novel multi-channel electrode with sufficient physical strength to penetrate a thickened dura mater. This electrode consists of low-cost materials and is easily fabricated, and it enables recording without removing dura mater, thereby reducing the risk of inflammation, infection, or brain herniation. The low-cost multi-channel electrode developed in this study would be a useful tool for chronic recording in behaving animals. Copyright © 2017. Published by Elsevier B.V.

  15. Evaluation channel performance in multichannel environments

    NARCIS (Netherlands)

    Gensler, S.; Dekimpe, M.; Skiera, B.

    2007-01-01

    Evaluating channel performance is crucial for actively managing multiple sales channels, and requires understanding the customers' channel preferences. Two key components of channel performance are (i) the existing customers' intrinsic loyalty to a particular channel and (ii) the channel's ability

  16. The drift-flux correlation package MDS

    International Nuclear Information System (INIS)

    Hoeld, A.

    2001-01-01

    Based on the SONNENBURG drift-flux correlation, developed at GRS/Garching (Germany), a comprehensive drift-flux correlation package (MDS) has been established. Its aim is to support thermal-hydraulic mixture-fluid models, models being used for the simulation of the steady state and transient behaviour of characteristic thermal-hydraulic parameters of single- or two-phase fluids flowing along coolant channels of different types (being, e.g., parts of NPP-s, steam generators etc.). The characteristic properties of this package with respect to the behaviour at co- and counter-current flow, its inverse solutions needed for steady state simulations, its behaviour when approaching the lower or upper boundary of a two-phase region, its verification and behaviour with respect to other correlations will be discussed. An adequate driver code, MDSDRI, has been established too, allowing to test the package very thoroughly out of the complex thermal-hydraulic codes. (author)

  17. The drift-flux correlation package MDS

    Energy Technology Data Exchange (ETDEWEB)

    Hoeld, A. [Bernaysstr. 16A, Munich, F.R. (Germany)

    2001-07-01

    Based on the SONNENBURG drift-flux correlation, developed at GRS/Garching (Germany), a comprehensive drift-flux correlation package (MDS) has been established. Its aim is to support thermal-hydraulic mixture-fluid models, models being used for the simulation of the steady state and transient behaviour of characteristic thermal-hydraulic parameters of single- or two-phase fluids flowing along coolant channels of different types (being, e.g., parts of NPP-s, steam generators etc.). The characteristic properties of this package with respect to the behaviour at co- and counter-current flow, its inverse solutions needed for steady state simulations, its behaviour when approaching the lower or upper boundary of a two-phase region, its verification and behaviour with respect to other correlations will be discussed. An adequate driver code, MDSDRI, has been established too, allowing to test the package very thoroughly out of the complex thermal-hydraulic codes. (author)

  18. Characterization of Crystals for Steering of Protons through Channelling in Hadronic Accelerators

    CERN Document Server

    Guidi, V; Boscolo-Marchi, E; Carnera, A; Chesnokov, Yu A; Della Mea, G; De Salvador, D; Fiorini, M; Ivanov, Y M; Martinelli, G; Mazzolari, A; Milan, E; Milan, R; Sambo, A; Scandale, Walter; Todros, S; Vomiero, A

    2006-01-01

    Channeling of relativistic particles through a crystal may be useful for many applications in accelerators, and particularly for collimation in hadronic colliders. Efficiency proved to be dependent on the state of the crystal surface and hence on the method used for preparation. We investigated the morphology and structure of the surface of the samples that have been used in accelerators with high efficiency. We found that crystal fabrication by only mechanical methods (dicing, lapping, and others) leads to a superficial damaged layer, which is correlated to performance limitation in accelerators. A planar chemical etching was studied and applied in order to remove the superficial damaged layer. RBS channeling analysis with low-energy protons and 4He+ highlighted better crystal perfection at surface, as a result of the etching. A protocol for preparation and characterization of crystal for channelling has been developed, which may be of interest for reliable operation with crystals in accelerators.

  19. Real-Time River Channel-Bed Monitoring at the Chariton and Mississippi Rivers in Missouri, 2007-09

    Science.gov (United States)

    Rydlund, Jr., Paul H.

    2009-01-01

    Scour and depositional responses to hydrologic events have been important to the scientific community studying sediment transport as well as potential effects on bridges and other hydraulic structures within riverine systems. A river channel-bed monitor composed of a single-beam transducer was installed on a bridge crossing the Chariton River near Prairie Hill, Missouri (structure L-344) as a pilot study to evaluate channel-bed change in response to the hydrologic condition disseminated from an existing streamgage. Initial results at this location led to additional installations in cooperation with the Missouri Department of Transportation at an upstream Chariton River streamgage location at Novinger, Missouri (structure L-534) and a Mississippi River streamgage location near Mehlville, Missouri (structures A-1850 and A-4936). In addition to stage, channel-bed elevation was collected at all locations every 15 minutes and transmitted hourly to a U.S. Geological Survey database. Bed elevation data for the Chariton River location at Novinger and the Mississippi River location near Mehlville were provided to the World Wide Web for real-time monitoring. Channel-bed data from the three locations indicated responses to hydrologic events depicted in the stage record; however, notable bedforms apparent during inter-event flows also may have affected the relation of scour and deposition to known hydrologic events. Throughout data collection periods, Chariton River locations near Prairie Hill and Novinger reflected bed changes as much as 13 feet and 5 feet. Nearly all of the bed changes correlated well with the hydrographic record at these locations. The location at the Mississippi River near Mehlville indicated a much more stable channel bed throughout the data collection period. Despite missing data resulting from damage to one of the river channel-bed monitors from ice accumulation at the upstream nose of the bridge pier early in the record, the record from the downstream

  20. Channel Choice: A Literature Review

    DEFF Research Database (Denmark)

    Østergaard Madsen, Christian; Kræmmergaard, Pernille

    2015-01-01

    The channel choice branch of e-government studies citizens’ and businesses’ choice of channels for interacting with government, and how government organizations can integrate channels and migrate users towards the most cost-efficient channels. In spite of the valuable contributions offered...

  1. Heat transfer and friction characteristics in steam cooled rectangular channels with rib turbulators

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Jianying; Gao, Tieyu; Li, Guojun [Xi' an Jiaotong University, Xi' an (China)

    2014-01-15

    We studied the heat transfer and friction characteristics in steam-cooled rectangular channels with rib turbulators on W side or H side walls in the Reynolds number (Re) range of 10000-80000. Each of the test channels was welded by four stainless steel plates to simulate the actual geometry and heat transfer structure of blade/vane internal cooling passage. The length of the channel L was 1000 mm, the cross section of the channel was 40 mm X 80 mm, and the pitch-to-rib height ratio p/e was kept at 10. The channel blockage ratio (W/H) was 0.047. Results showed that the Nusselt number (Nu) distributions displayed different trends at the entrance region with the increase of Re for the rib turbulators on the W side walls. The heat transfer performance of the rib turbulators on the H side walls was about 24- 27% higher than that on the W side walls at the same pumping power. In addition, semi-empirical correlations for the two cases, rib turbulators on W side walls and rib turbulators on H side walls, were developed based on the heat transfer results, which could be used in the design of the internal cooling passage of new generation steam-cooled gas turbine blade/vane.

  2. Reconfigurable virtual electrowetting channels.

    Science.gov (United States)

    Banerjee, Ananda; Kreit, Eric; Liu, Yuguang; Heikenfeld, Jason; Papautsky, Ian

    2012-02-21

    Lab-on-a-chip systems rely on several microfluidic paradigms. The first uses a fixed layout of continuous microfluidic channels. Such lab-on-a-chip systems are almost always application specific and far from a true "laboratory." The second involves electrowetting droplet movement (digital microfluidics), and allows two-dimensional computer control of fluidic transport and mixing. The merging of the two paradigms in the form of programmable electrowetting channels takes advantage of both the "continuous" functionality of rigid channels based on which a large number of applications have been developed to date and the "programmable" functionality of digital microfluidics that permits electrical control of on-chip functions. In this work, we demonstrate for the first time programmable formation of virtual microfluidic channels and their continuous operation with pressure driven flows using an electrowetting platform. Experimental, theoretical, and numerical analyses of virtual channel formation with biologically relevant electrolyte solutions and electrically-programmable reconfiguration are presented. We demonstrate that the "wall-less" virtual channels can be formed reliably and rapidly, with propagation rates of 3.5-3.8 mm s(-1). Pressure driven transport in these virtual channels at flow rates up to 100 μL min(-1) is achievable without distortion of the channel shape. We further demonstrate that these virtual channels can be switched on-demand between multiple inputs and outputs. Ultimately, we envision a platform that would provide rapid prototyping of microfluidic concepts and would be capable of a vast library of functions and benefitting applications from clinical diagnostics in resource-limited environments to rapid system prototyping to high throughput pharmaceutical applications.

  3. Spatial correlation characterization of a uniform circular array in 3D MIMO systems

    KAUST Repository

    Nadeem, Qurrat-Ul-Ain; Kammoun, Abla; Debbah, Merouane; Alouini, Mohamed-Slim

    2016-01-01

    In this paper, we consider a uniform circular array (UCA) of directional antennas at the base station (BS) and the mobile station (MS) and derive an exact closed-form expression for the spatial correlation present in the 3D multiple-input multiple-output (MIMO) channel constituted by these arrays. The underlying method leverages the mathematical convenience of the spherical harmonic expansion (SHE) of plane waves and the trigonometric expansion of Legendre and associated Legendre polynomials. In contrast to the existing results, this generalized closed-form expression is independent of the form of the underlying angular distributions and antenna patterns. Moreover, the incorporation of the elevation dimension into the antenna pattern and channel model renders the proposed expression extremely useful for the performance evaluation of 3D MIMO systems in the future. Verification is achieved with the help of simulation results, which highlight the dependence of the spatial correlation on channel and array parameters. An interesting interplay between the mean angle of departure (AoD), angular spread and the positioning of antennas in the array is demonstrated. © 2016 IEEE.

  4. Spatial correlation characterization of a uniform circular array in 3D MIMO systems

    KAUST Repository

    Nadeem, Qurrat-Ul-Ain

    2016-08-11

    In this paper, we consider a uniform circular array (UCA) of directional antennas at the base station (BS) and the mobile station (MS) and derive an exact closed-form expression for the spatial correlation present in the 3D multiple-input multiple-output (MIMO) channel constituted by these arrays. The underlying method leverages the mathematical convenience of the spherical harmonic expansion (SHE) of plane waves and the trigonometric expansion of Legendre and associated Legendre polynomials. In contrast to the existing results, this generalized closed-form expression is independent of the form of the underlying angular distributions and antenna patterns. Moreover, the incorporation of the elevation dimension into the antenna pattern and channel model renders the proposed expression extremely useful for the performance evaluation of 3D MIMO systems in the future. Verification is achieved with the help of simulation results, which highlight the dependence of the spatial correlation on channel and array parameters. An interesting interplay between the mean angle of departure (AoD), angular spread and the positioning of antennas in the array is demonstrated. © 2016 IEEE.

  5. Experimental study of falling film evaporation in large scale rectangular channel

    International Nuclear Information System (INIS)

    Huang, X.G.; Yang, Y.H.; Hu, P.

    2015-01-01

    Highlights: • This paper studies the falling film evaporation in large scale rectangular channel experimentally. • The effects of air flow rate, film temperature and film flow rate on falling film evaporation are analyzed. • Increasing the air flow rate is considered as an efficient method to enhance the evaporation rate. • A correlation including the wave effect for falling film evaporation is derived based on heat and mass transfer analogy. - Abstract: The falling film evaporation in a large scale rectangular channel is experimentally studied in this paper for the design and improvement of passive containment cooling system. The evaporation mass transfer coefficient h D is obtained by the evaporation rate and vapor partial pressure difference of film surface and air bulk. The experimental results indicate that increasing of air flow rate appears to enhance h D , while the film temperature and film flow rate have little effect on h D . Since the wave effect on evaporation is noticed in experiment, the evaporation mass transfer correlation including the wave effect is developed on the basis of heat and mass transfer analogy and experimental data

  6. KV7 potassium channels

    DEFF Research Database (Denmark)

    Stott, Jennifer B; Jepps, Thomas Andrew; Greenwood, Iain A

    2014-01-01

    Potassium channels are key regulators of smooth muscle tone, with increases in activity resulting in hyperpolarisation of the cell membrane, which acts to oppose vasoconstriction. Several potassium channels exist within smooth muscle, but the KV7 family of voltage-gated potassium channels have been...

  7. Radial correlation length measurements on ASDEX Upgrade using correlation Doppler reflectometry

    International Nuclear Information System (INIS)

    Schirmer, J; Conway, G D; Holzhauer, E; Suttrop, W; Zohm, H

    2007-01-01

    The technique of correlation Doppler reflectometry for providing radial correlation length L r measurements is explored in this paper. Experimental L r measurements are obtained using the recently installed dual channel Doppler reflectometer system on ASDEX Upgrade. The experimental measurements agree well with theory and with L r measured on other fusion devices using different diagnostic techniques. A strong link between L r and plasma confinement could be observed. From the L- to the H-mode, an increase in the absolute value of E r shear was detected at the same plasma edge region where a decrease in L r was measured. This observation is in agreement with theoretical models which predict that an increase in the absolute shear suppresses turbulent fluctuations in the plasma, leading to a reduction in L r . Furthermore, L r decreases from the plasma core to the edge and decreases with increasing plasma triangularity δ. The experimental results have been extensively modelled using a 2-dimensional finite difference time domain code. The simulations confirm that Doppler reflectometry provides robust radial correlation lengths of the turbulence with high resolution and suggests that L r is independent of the turbulence wavenumber k p erpendicular and its fluctuation level

  8. Preservation of meandering river channels in uniformly aggrading channel belts

    NARCIS (Netherlands)

    Lageweg, W.I. van de; Schuurman, F.; Cohen, K.M.; Dijk, W.M. van; Shimizu, Y.; Kleinhans, M.G.

    2016-01-01

    Channel belt deposits from meandering river systems commonly display an internal architecture of stacked depositional features with scoured basal contacts due to channel and bedform migration across a range of scales. Recognition and correct interpretation of these bounding surfaces is essential to

  9. Multi-channel service retailing: The effects of channel performance satisfaction on behavioral intentions.

    NARCIS (Netherlands)

    Birgelen, van M.; Jong, de A.; Ruyter, de J.C.

    2006-01-01

    Abstract The number of channels that retailers can use interchangeably to provide customer service has increased. We report on a study of clients of a large retail bank that investigates the channel performance satisfaction–behavioral intentions relationship when the traditional service channel

  10. The effect of a magnetic field on heat transfer in a slotted channel

    International Nuclear Information System (INIS)

    Evtushenko, I.A.; Hua, T.Q.; Kirillov, I.R.; Reed, Claude B.; Sidorenkov, S.S.

    1995-01-01

    The results of numerical and experimental studies of liquid metal heat transfer in slotted channels in a transverse magnetic field are presented. Test results showed an improvement in heat transfer in a straight channel at low and moderate interaction parameter N. The Nusselt number at small N (around 120) was up to twofold higher than in turbulent flow without a magnetic field, the Peclet number being equal. This effect of heat transfer enhancement is caused by the generation and development of large-scale velocity fluctuations close to the heated wall area. Qualitative and quantitative correlations between heat transfer and velocity fluctuation characteristics are presented. (orig.)

  11. Channel Planform Dynamics Monitoring and Channel Stability Assessment in Two Sediment-Rich Rivers in Taiwan

    Directory of Open Access Journals (Sweden)

    Cheng-Wei Kuo

    2017-01-01

    Full Text Available Recurrent flood events induced by typhoons are powerful agents to modify channel morphology in Taiwan’s rivers. Frequent channel migrations reflect highly sensitive valley floors and increase the risk to infrastructure and residents along rivers. Therefore, monitoring channel planforms is essential for analyzing channel stability as well as improving river management. This study analyzed annual channel changes along two sediment-rich rivers, the Zhuoshui River and the Gaoping River, from 2008 to 2015 based on satellite images of FORMOSAT-2. Channel areas were digitized from mid-catchment to river mouth (~90 km. Channel stability for reaches was assessed through analyzing the changes of river indices including braid index, active channel width, and channel activity. In general, the valley width plays a key role in braided degree, active channel width, and channel activity. These indices increase as the valley width expands whereas the braid index decreases slightly close to the river mouth due to the change of river types. This downstream pattern in the Zhuoshui River was interrupted by hydraulic construction which resulted in limited changes downstream from the weir, due to the lack of water and sediment supply. A 200-year flood, Typhoon Morakot in 2009, induced significant changes in the two rivers. The highly active landscape in Taiwan results in very sensitive channels compared to other regions. An integrated Sensitivity Index was proposed for identifying unstable reaches, which could be a useful reference for river authorities when making priorities in river regulation strategy. This study shows that satellite image monitoring coupled with river indices analysis could be an effective tool to evaluate spatial and temporal changes in channel stability in highly dynamic river systems.

  12. Performance Analysis of Compact FD-MIMO Antenna Arrays in a Correlated Environment

    KAUST Repository

    Nadeem, Qurrat-Ul-Ain

    2017-03-06

    Full dimension multiple-input-multiple-output (FDMIMO) is one of the key technologies proposed in the 3rd Generation Partnership Project (3GPP) for the fifth generation (5G) communication systems. The reason can be attributed to its ability to yield significant performance gains through the deployment of active antenna elements at the base station in the vertical as well as the conventional horizontal directions, enabling several elevation beamforming strategies. The resulting improvement in spectral efficiency largely depends on the orthogonality of the sub-channels constituting the FD-MIMO system. Accommodating a large number of antenna elements with sufficient spacing poses several constraints for practical implementation, making it imperative to consider compact antenna arrangements that minimize the overall channel correlation. Two such configurations considered in this work are the uniform linear array (ULA) and the uniform circular array (UCA) of antenna ports, where each port is mapped to a group of physical antenna elements arranged in the vertical direction. The generalized analytical expression for the spatial correlation function (SCF) for the UCA is derived, exploiting results on spherical harmonics and Legendre polynomials. The mutual coupling between antenna dipoles is accounted for and the resulting SCF is also presented. The second part of this work compares the spatial correlation and mutual information (MI) performance of the ULA and UCA configurations in the 3GPP 3D urban-macro and urban-micro cell scenarios, utilizing results from Random Matrix Theory (RMT) on the deterministic equivalent of the MI for the Kronecker channel model. Simulation results study the performance patterns of the two arrays as a function of several channel and array parameters and identify applications and environments suitable for the deployment of each array.

  13. Correlation electron cyclotron emission diagnostic and improved calculation of turbulent temperature fluctuation levels on ASDEX Upgrade

    Science.gov (United States)

    Creely, A. J.; Freethy, S. J.; Burke, W. M.; Conway, G. D.; Leccacorvi, R.; Parkin, W. C.; Terry, D. R.; White, A. E.

    2018-05-01

    A newly upgraded correlation electron cyclotron emission (CECE) diagnostic has been installed on the ASDEX Upgrade tokamak and has begun to perform experimental measurements of electron temperature fluctuations. CECE diagnostics measure small amplitude electron temperature fluctuations by correlating closely spaced heterodyne radiometer channels. This upgrade expanded the system from six channels to thirty, allowing simultaneous measurement of fluctuation level radial profiles without repeat discharges, as well as opening up the possibility of measuring radial turbulent correlation lengths. Newly refined statistical techniques have been developed in order to accurately analyze the fluctuation data collected from the CECE system. This paper presents the hardware upgrades for this system and the analysis techniques used to interpret the raw data, as well as measurements of fluctuation spectra and fluctuation level radial profiles.

  14. ASIC3 Channels Integrate Agmatine and Multiple Inflammatory Signals through the Nonproton Ligand Sensing Domain

    Directory of Open Access Journals (Sweden)

    Cao Hui

    2010-12-01

    Full Text Available Abstract Background Acid-sensing ion channels (ASICs have long been known to sense extracellular protons and contribute to sensory perception. Peripheral ASIC3 channels represent natural sensors of acidic and inflammatory pain. We recently reported the use of a synthetic compound, 2-guanidine-4-methylquinazoline (GMQ, to identify a novel nonproton sensing domain in the ASIC3 channel, and proposed that, based on its structural similarity with GMQ, the arginine metabolite agmatine (AGM may be an endogenous nonproton ligand for ASIC3 channels. Results Here, we present further evidence for the physiological correlation between AGM and ASIC3. Among arginine metabolites, only AGM and its analog arcaine (ARC activated ASIC3 channels at neutral pH in a sustained manner similar to GMQ. In addition to the homomeric ASIC3 channels, AGM also activated heteromeric ASIC3 plus ASIC1b channels, extending its potential physiological relevance. Importantly, the process of activation by AGM was highly sensitive to mild acidosis, hyperosmolarity, arachidonic acid (AA, lactic acid and reduced extracellular Ca2+. AGM-induced ASIC3 channel activation was not through the chelation of extracellular Ca2+ as occurs with increased lactate, but rather through a direct interaction with the newly identified nonproton ligand sensing domain. Finally, AGM cooperated with the multiple inflammatory signals to cause pain-related behaviors in an ASIC3-dependent manner. Conclusions Nonproton ligand sensing domain might represent a novel mechanism for activation or sensitization of ASIC3 channels underlying inflammatory pain-sensing under in vivo conditions.

  15. Distribution Channels Conflict and Management

    OpenAIRE

    Kiran, Dr Vasanth; Majumdar, Dr Mousumi; Kishore, Dr Krishna

    2012-01-01

    Relationships in distribution channels tend to be long-term oriented and members of the channel rely on each other to jointly realize their goals by serving buyers. Despite the channels focus on serving buyers, conflicts often arise between channel members because of each members self-interest. When conflicts arise, the perceptions of a channel member based on normative, rational/instrumental, or emotional reasoning will influence relational norms like trust and commitment that characterize t...

  16. Static flow instability in subcooled flow boiling in parallel channels

    International Nuclear Information System (INIS)

    Siman-Tov, M.; Felde, D.K.; McDuffee, J.L.; Yoder, G.L. Jr.

    1995-01-01

    A series of tests for static flow instability or flow excursion (FE) at conditions applicable to the proposed Advanced Neutron Source reactor was completed in parallel rectangular channels configuration with light water flowing vertically upward at very high velocities. True critical heat flux experiments under similar conditions were also conducted. The FE data reported in this study considerably extend the velocity range of data presently available worldwide. Out of the three correlations compared, the Saha and Zuber correlation had the best fit with the data. However, a modification was necessary to take into account the demonstrated dependence of the Stanton (St) and Nusselt (Nu) numbers on subcooling levels, especially in the low subcooling regime

  17. Process and device for controlling the operatability of a measuring channel in safety arrangements

    International Nuclear Information System (INIS)

    Edelmann, M.

    1983-01-01

    In addition to the neutron - and temperature - measuring channels, the detectors and thermocouples for active functional testing are also included in the safety circuits. The measuring parameter (neutron flux or coolant outlet temperature) is modulated by the output control system or output and/or coolant flow. This modulation is determined using an auxillary parameter (movement of control rods or neutron flux). To represent the actual value of the measuring parameter to be compared with the previously determined reference value, there is a division of the relative change of the neutron flux or the coolant outlet temperature by the change of control rod position or reactor output caused by it. The effect of the auxiliary parameter on the measured parameter is measured by the cross correlation of both of them and of the auxiliary parameter directly or by auto correlation. The coarse and fine monitoring of the measuring channels takes place with different time constants. (orig./PW)

  18. Quantum communication under channel uncertainty

    International Nuclear Information System (INIS)

    Noetzel, Janis Christian Gregor

    2012-01-01

    This work contains results concerning transmission of entanglement and subspaces as well as generation of entanglement in the limit of arbitrary many uses of compound- and arbitrarily varying quantum channels (CQC, AVQC). In both cases, the channel is described by a set of memoryless channels. Only forward communication between one sender and one receiver is allowed. A code is said to be ''good'' only, if it is ''good'' for every channel out of the set. Both settings describe a scenario, in which sender and receiver have only limited channel knowledge. For different amounts of information about the channel available to sender or receiver, coding theorems are proven for the CQC. For the AVQC, both deterministic and randomised coding schemes are considered. Coding theorems are proven, as well as a quantum analogue of the Ahlswede-dichotomy. The connection to zero-error capacities of stationary memoryless quantum channels is investigated. The notion of symmetrisability is defined and used for both classes of channels.

  19. Electrophysiological characterisation of KCNQ channel modulators

    DEFF Research Database (Denmark)

    Schrøder, R.L

    Potassium (K+) ion channels are ubiquitously expressed in mammalian cells, and each channel serves a precise physiological role due to its specific biophysical characteristics and expression pattern. A few K+ channels are targets for certain drugs, and in this thesis it is suggested that the KCNQ K......+ channels may be targets for neuroprotective, anti-epileptic and anti-nociceptive compounds. The importance of these channels is underscored by the fact that four out of five KCNQ channel subtypes are involved in severe human diseases. However, the pharmacology of the KCNQ channels is yet poorly understood...... as these channels were identified only recently. Therefore, there is a need for understanding the biophysical behavior and pharmacology of these ion channels. KCNQ channels belong to the group of voltage-activated K+ channels. The subfamily consists of KCNQ1-5, which is primarily expressed in the CNS, heart, ear...

  20. A spatial interference minimization strategy for the correlated LTE downlink channel

    OpenAIRE

    Nordin, R; Armour, SMD; McGeehan, JP

    2010-01-01

    In a downlink transmission, users can benefit from the high capacity gain achieved by transmitting independent data streams from multiple antennas to multiple users sharing the same physical time-frequency resources. This technique is known as multiuser MIMO (MU-MIMO). However, performance of MU-MIMO is sensitive towards propagation imperfections, such as time dispersion and inter-stream interference due to antenna correlation. In this paper we investigate the performance of MUMIMO operation ...

  1. Fluctuations of nuclear cross sections in the region of strong overlapping resonances and at large number of open channels

    International Nuclear Information System (INIS)

    Kun, S.Yu.

    1985-01-01

    On the basis of the symmetrized Simonius representation of the S matrix statistical properties of its fluctuating component in the presence of direct reactions are investigated. The case is considered where the resonance levels are strongly overlapping and there is a lot of open channels, assuming that compound-nucleus cross sections which couple different channels are equal. It is shown that using the averaged unitarity condition on the real energy axis one can eliminate both resonance-resonance and channel-channel correlations from partial r transition amplitudes. As a result, we derive the basic points of the Epicson fluctuation theory of nuclear cross sections, independently of the relation between the resonance overlapping and the number of open channels, and the validity of the Hauser-Feshbach model is established. If the number of open channels is large, the time of uniform population of compound-nucleus configurations, for an open excited nuclear system, is much smaller than the Poincare time. The life time of compound nucleus is discussed

  2. Eight channel fast scalar

    Energy Technology Data Exchange (ETDEWEB)

    Waddoup, W D; Stubbs, R J [Durham Univ. (UK)

    1977-11-01

    An eight channel 64-bit scaler has been constructed with a static CMOS memory. Scaling frequencies are independently variable, at each channel, as are the number of bits/channel. The scaler, when used in conjunction with a multichannel charge to time converter results in a very flexible, gated multichannel ADC.

  3. Automatic pickup of arrival time of channel wave based on multi-channel constraints

    Science.gov (United States)

    Wang, Bao-Li

    2018-03-01

    Accurately detecting the arrival time of a channel wave in a coal seam is very important for in-seam seismic data processing. The arrival time greatly affects the accuracy of the channel wave inversion and the computed tomography (CT) result. However, because the signal-to-noise ratio of in-seam seismic data is reduced by the long wavelength and strong frequency dispersion, accurately timing the arrival of channel waves is extremely difficult. For this purpose, we propose a method that automatically picks up the arrival time of channel waves based on multi-channel constraints. We first estimate the Jaccard similarity coefficient of two ray paths, then apply it as a weight coefficient for stacking the multichannel dispersion spectra. The reasonableness and effectiveness of the proposed method is verified in an actual data application. Most importantly, the method increases the degree of automation and the pickup precision of the channel-wave arrival time.

  4. Measurements of $t\\overline{t}$ Spin Correlations in CMS

    CERN Document Server

    Beernaert, Kelly Simone

    2014-01-01

    We present an overview of the measurements of $t\\bar{t}$ spin correlations in the CMS Collaboration. We present two analyses both in the dilepton channel using proton-proton collisions at $\\sqrt{s}\\, =\\, 7$ TeV based on an integrated luminosity of 5.0 fb$^{-1}$. The spin correlations and polarization are measured using angular asymmetries. The results are consistent with unpolarized top quarks and Standard Model spin correlation. The second analysis sets a limit on the real part of the top-quark chromo-magnetic dipole moment of $-0.043\\, <\\, Re({\\hat{\\mu}}_{t})\\, <\\, 0.117$ at $95\\,%$ confidence level through the measured azimuthal angle difference between the two charged leptons from $t\\bar{t}$ production.

  5. Functional modifications of acid-sensing ion channels by ligand-gated chloride channels.

    Directory of Open Access Journals (Sweden)

    Xuanmao Chen

    Full Text Available Together, acid-sensing ion channels (ASICs and epithelial sodium channels (ENaC constitute the majority of voltage-independent sodium channels in mammals. ENaC is regulated by a chloride channel, the cystic fibrosis transmembrane conductance regulator (CFTR. Here we show that ASICs were reversibly inhibited by activation of GABA(A receptors in murine hippocampal neurons. This inhibition of ASICs required opening of the chloride channels but occurred with both outward and inward GABA(A receptor-mediated currents. Moreover, activation of the GABA(A receptors modified the pharmacological features and kinetic properties of the ASIC currents, including the time course of activation, desensitization and deactivation. Modification of ASICs by open GABA(A receptors was also observed in both nucleated patches and outside-out patches excised from hippocampal neurons. Interestingly, ASICs and GABA(A receptors interacted to regulate synaptic plasticity in CA1 hippocampal slices. The activation of glycine receptors, which are similar to GABA(A receptors, also modified ASICs in spinal neurons. We conclude that GABA(A receptors and glycine receptors modify ASICs in neurons through mechanisms that require the opening of chloride channels.

  6. Coupling of SK channels, L-type Ca2+ channels, and ryanodine receptors in cardiomyocytes.

    Science.gov (United States)

    Zhang, Xiao-Dong; Coulibaly, Zana A; Chen, Wei Chun; Ledford, Hannah A; Lee, Jeong Han; Sirish, Padmini; Dai, Gu; Jian, Zhong; Chuang, Frank; Brust-Mascher, Ingrid; Yamoah, Ebenezer N; Chen-Izu, Ye; Izu, Leighton T; Chiamvimonvat, Nipavan

    2018-03-16

    Small-conductance Ca 2+ -activated K + (SK) channels regulate the excitability of cardiomyocytes by integrating intracellular Ca 2+ and membrane potentials on a beat-to-beat basis. The inextricable interplay between activation of SK channels and Ca 2+ dynamics suggests the pathology of one begets another. Yet, the exact mechanistic underpinning for the activation of cardiac SK channels remains unaddressed. Here, we investigated the intracellular Ca 2+ microdomains necessary for SK channel activation. SK currents coupled with Ca 2+ influx via L-type Ca 2+ channels (LTCCs) continued to be elicited after application of caffeine, ryanodine or thapsigargin to deplete SR Ca 2+ store, suggesting that LTCCs provide the immediate Ca 2+ microdomain for the activation of SK channels in cardiomyocytes. Super-resolution imaging of SK2, Ca v 1.2 Ca 2+ channel, and ryanodine receptor 2 (RyR2) was performed to quantify the nearest neighbor distances (NND) and localized the three molecules within hundreds of nanometers. The distribution of NND between SK2 and RyR2 as well as SK2 and Ca v 1.2 was bimodal, suggesting a spatial relationship between the channels. The activation mechanism revealed by our study paved the way for the understanding of the roles of SK channels on the feedback mechanism to regulate the activities of LTCCs and RyR2 to influence local and global Ca 2+ signaling.

  7. Activation of TRPV1 channels inhibits mechanosensitive Piezo channel activity by depleting membrane phosphoinositides

    Science.gov (United States)

    Borbiro, Istvan; Badheka, Doreen; Rohacs, Tibor

    2015-01-01

    Capsaicin is an activator of the heat-sensitive TRPV1 (transient receptor potential vanilloid 1) ion channels and has been used as a local analgesic. We found that activation of TRPV1 channels with capsaicin either in dorsal root ganglion neurons or in a heterologous expression system inhibited the mechanosensitive Piezo1 and Piezo2 channels by depleting phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] and its precursor PI(4)P from the plasma membrane through Ca2+-induced phospholipase Cδ (PLCδ) activation. Experiments with chemically inducible phosphoinositide phosphatases and receptor-induced activation of PLCβ indicated that inhibition of Piezo channels required depletion of both PI(4)P and PI(4,5)P2. The mechanically activated current amplitudes decreased substantially in the excised inside-out configuration, where the membrane patch containing Piezo1 channels is removed from the cell. PI(4,5)P2 and PI(4)P applied to these excised patches inhibited this decrease. Thus, we concluded that Piezo channel activity requires the presence of phosphoinositides, and the combined depletion of PI(4,5)P2 or PI(4)P reduces channel activity. In addition to revealing a role for distinct membrane lipids in mechanosensitive ion channel regulation, these data suggest that inhibition of Piezo2 channels may contribute to the analgesic effect of capsaicin. PMID:25670203

  8. New Channels, New Possibilities

    DEFF Research Database (Denmark)

    Pieterson, Willem; Ebbers, Wolfgang; Østergaard Madsen, Christian

    2017-01-01

    In this contribution we discuss the characteristics of what we call the fourth generation of public sector service channels: social robots. Based on a review of relevant literature we discuss their characteristics and place into multi-channel models of service delivery. We argue that social robots......-channel models of service delivery. This is especially relevant given the current lack of evaluations of such models, the broad range of channels available, and their different stages of deployment at governments around the world. Nevertheless, social robots offer an potentially very relevant addition...

  9. Kv4 channels underlie the subthreshold-operating A-type K+-current in nociceptive dorsal root ganglion neurons

    Directory of Open Access Journals (Sweden)

    Thanawath R Na Phuket

    2009-07-01

    Full Text Available The dorsal root ganglion (DRG contains heterogeneous populations of sensory neurons including primary nociceptive neurons and C-fibers implicated in pain signaling.  Recent studies have demonstrated DRG hyperexcitability associated with downregulation of A-type K+ channels; however, the molecular correlate of the corresponding A-type K+ current (IA has remained hypothetical.  Kv4 channels may underlie the IA in DRG neurons.  We combined electrophysiology, molecular biology (whole-tissue and single-cell RT-PCR and immunohistochemistry to investigate the molecular basis of the IA in acutely dissociated DRG neurons from 7-8 day-old rats.  Whole-cell recordings demonstrate a robust tetraethylammonium-resistant (20 mM and 4-aminopyridine-sensitive (5 mM IA.  Matching Kv4 channel properties, activation and inactivation of this IA occur in the subthreshold range of membrane potentials and the rate of recovery from inactivation is rapid and voltage-dependent.  Among Kv4 transcripts, the DRG expresses significant levels of Kv4.1 and Kv4.3 mRNAs.  Also, single small-medium diameter DRG neurons (~30 mm exhibit correlated frequent expression of mRNAs encoding Kv4.1 and Nav1.8, a known nociceptor marker.  In contrast, the expressions of Kv1.4 and Kv4.2 mRNAs at the whole-tissue and single-cell levels are relatively low and infrequent.  Kv4 protein expression in nociceptive DRG neurons was confirmed by immunohistochemistry, which demonstrates colocalization of Kv4.3 and Nav1.8, and negligible expression of Kv4.2.  Furthermore, specific dominant-negative suppression and overexpression strategies confirmed the contribution of Kv4 channels to IA in DRG neurons.  Contrasting the expression patterns of Kv4 channels in the central and peripheral nervous systems, we discuss possible functional roles of these channels in primary sensory neurons.

  10. Ion channelling in diamond

    International Nuclear Information System (INIS)

    Derry, T.E.

    1978-06-01

    Diamond is one of the most extreme cases from a channelling point of view, having the smallest thermal vibration amplitude and the lowest atomic number of commonly-encountered crystals. These are the two parameters most important for determining channelling behaviour. It is of consiberable interest therefore to see how well the theories explaining and predicting the channeling properties of other substance, succeed with diamond. Natural diamond, although the best available form for these experiments, is rather variable in its physical properties. Part of the project was devoted to considering and solving the problem of obtaining reproducible results representative of the ideal crystal. Channelling studies were performed on several good crystals, using the Rutherford backscattering method. Critical angles for proton channelling were measured for incident energies from 0.6 to 4.5 MeV, in the three most open axes and three most open planes of the diamond structure, and for α-particle channelling at 0.7 and 1.0 MeV (He + ) in the same axes and planes. For 1.0 MeV protons, the crystal temperature was varied from 20 degrees Celsius to 700 degrees Celsius. The results are presented as curves of backscattered yield versus angle in the region of each axis or plane, and summarised in the form of tables and graphs. Generally the critical angles, axial minimum yields, and temperature dependence are well predicted by the accepted theories. The most valuable overall conclusion is that the mean thermal vibration amplitude of the atoms in a crytical determines the critical approach distance to the channel walls at which an ion can remain channelled, even when this distance is much smaller than the Thomas-Fermi screening distance of the atomic potential, as is the case in diamond. A brief study was made of the radiation damage caused by α-particle bombardment, via its effect on the channelling phenomenon. It was possible to hold damage down to negligible levels during the

  11. Robust OFDM Timing Synchronisation in Multipath Channels

    Directory of Open Access Journals (Sweden)

    McLaughlin S

    2008-01-01

    Full Text Available Abstract This paper addresses pre-FFT synchronisation for orthogonal frequency division multiplex (OFDM under varying multipath conditions. To ensure the most efficient data transmission possible, there should be no constraints on how much of the cyclic prefix (CP is occupied by intersymbol interference (ISI. Here a solution for timing synchronisation is proposed, that is, robust even when the strongest multipath components are delayed relative to the first arriving paths. In this situation, existing methods perform poorly, whereas the solution proposed uses the derivative of the correlation function and is less sensitive to the channel impulse response. In this paper, synchronisation of a DVB single-frequency network is investigated. A refinement is proposed that uses heuristic rules based on the maxima of the correlation and derivative functions to further reduce the estimate variance. The technique has relevance to broadcast, OFDMA, and WLAN applications, and simulations are presented which compare the method with existing approaches.

  12. Ion Channel Trafficking: Control of Ion Channel Density as a Target for Arrhythmias?

    Directory of Open Access Journals (Sweden)

    Elise Balse

    2017-10-01

    Full Text Available The shape of the cardiac action potential (AP is determined by the contributions of numerous ion channels. Any dysfunction in the proper function or expression of these ion channels can result in a change in effective refractory period (ERP and lead to arrhythmia. The processes underlying the correct targeting of ion channels to the plasma membrane are complex, and have not been fully characterized in cardiac myocytes. Emerging evidence highlights ion channel trafficking as a potential causative factor in certain acquired and inherited arrhythmias, and therapies which target trafficking as opposed to pore block are starting to receive attention. In this review we present the current evidence for the mechanisms which underlie precise control of cardiac ion channel trafficking and targeting.

  13. Customer Responses to Channel Migration Strategies Toward the E-channel

    NARCIS (Netherlands)

    Trampe, Debra; Konus, Umut; Verhoef, Peter C.

    2014-01-01

    Many firms stimulate customers to use the E-channel for services, which provokes various consumer responses to such limits on their freedom of choice. In a study on bank customers, we examine the extent of customer reactance in response to various E-channel migration strategies, the potential of

  14. Multi-rate control over AWGN channels via analog joint source-channel coding

    KAUST Repository

    Khina, Anatoly; Pettersson, Gustav M.; Kostina, Victoria; Hassibi, Babak

    2017-01-01

    We consider the problem of controlling an unstable plant over an additive white Gaussian noise (AWGN) channel with a transmit power constraint, where the signaling rate of communication is larger than the sampling rate (for generating observations and applying control inputs) of the underlying plant. Such a situation is quite common since sampling is done at a rate that captures the dynamics of the plant and which is often much lower than the rate that can be communicated. This setting offers the opportunity of improving the system performance by employing multiple channel uses to convey a single message (output plant observation or control input). Common ways of doing so are through either repeating the message, or by quantizing it to a number of bits and then transmitting a channel coded version of the bits whose length is commensurate with the number of channel uses per sampled message. We argue that such “separated source and channel coding” can be suboptimal and propose to perform joint source-channel coding. Since the block length is short we obviate the need to go to the digital domain altogether and instead consider analog joint source-channel coding. For the case where the communication signaling rate is twice the sampling rate, we employ the Archimedean bi-spiral-based Shannon-Kotel'nikov analog maps to show significant improvement in stability margins and linear-quadratic Gaussian (LQG) costs over simple schemes that employ repetition.

  15. Multi-rate control over AWGN channels via analog joint source-channel coding

    KAUST Repository

    Khina, Anatoly

    2017-01-05

    We consider the problem of controlling an unstable plant over an additive white Gaussian noise (AWGN) channel with a transmit power constraint, where the signaling rate of communication is larger than the sampling rate (for generating observations and applying control inputs) of the underlying plant. Such a situation is quite common since sampling is done at a rate that captures the dynamics of the plant and which is often much lower than the rate that can be communicated. This setting offers the opportunity of improving the system performance by employing multiple channel uses to convey a single message (output plant observation or control input). Common ways of doing so are through either repeating the message, or by quantizing it to a number of bits and then transmitting a channel coded version of the bits whose length is commensurate with the number of channel uses per sampled message. We argue that such “separated source and channel coding” can be suboptimal and propose to perform joint source-channel coding. Since the block length is short we obviate the need to go to the digital domain altogether and instead consider analog joint source-channel coding. For the case where the communication signaling rate is twice the sampling rate, we employ the Archimedean bi-spiral-based Shannon-Kotel\\'nikov analog maps to show significant improvement in stability margins and linear-quadratic Gaussian (LQG) costs over simple schemes that employ repetition.

  16. Channel sialic acids limit hERG channel activity during the ventricular action potential.

    Science.gov (United States)

    Norring, Sarah A; Ednie, Andrew R; Schwetz, Tara A; Du, Dongping; Yang, Hui; Bennett, Eric S

    2013-02-01

    Activity of human ether-a-go-go-related gene (hERG) 1 voltage-gated K(+) channels is responsible for portions of phase 2 and phase 3 repolarization of the human ventricular action potential. Here, we questioned whether and how physiologically and pathophysiologically relevant changes in surface N-glycosylation modified hERG channel function. Voltage-dependent hERG channel gating and activity were evaluated as expressed in a set of Chinese hamster ovary (CHO) cell lines under conditions of full glycosylation, no sialylation, no complex N-glycans, and following enzymatic deglycosylation of surface N-glycans. For each condition of reduced glycosylation, hERG channel steady-state activation and inactivation relationships were shifted linearly by significant depolarizing ∼9 and ∼18 mV, respectively. The hERG window current increased significantly by 50-150%, and the peak shifted by a depolarizing ∼10 mV. There was no significant change in maximum hERG current density. Deglycosylated channels were significantly more active (20-80%) than glycosylated controls during phases 2 and 3 of action potential clamp protocols. Simulations of hERG current and ventricular action potentials corroborated experimental data and predicted reduced sialylation leads to a 50-70-ms decrease in action potential duration. The data describe a novel mechanism by which hERG channel gating is modulated through physiologically and pathophysiologically relevant changes in N-glycosylation; reduced channel sialylation increases hERG channel activity during the action potential, thereby increasing the rate of action potential repolarization.

  17. Reversed stereo depth and motion direction with anti-correlated stimuli.

    Science.gov (United States)

    Read, J C; Eagle, R A

    2000-01-01

    We used anti-correlated stimuli to compare the correspondence problem in stereo and motion. Subjects performed a two-interval forced-choice disparity/motion direction discrimination task for different displacements. For anti-correlated 1d band-pass noise, we found weak reversed depth and motion. With 2d anti-correlated stimuli, stereo performance was impaired, but the perception of reversed motion was enhanced. We can explain the main features of our data in terms of channels tuned to different spatial frequencies and orientation. We suggest that a key difference between the solution of the correspondence problem by the motion and stereo systems concerns the integration of information at different orientations.

  18. Course on Ionic Channels

    CERN Document Server

    1986-01-01

    This book is based on a series of lectures for a course on ionic channels held in Santiago, Chile, on November 17-20, 1984. It is intended as a tutorial guide on the properties, function, modulation, and reconstitution of ionic channels, and it should be accessible to graduate students taking their first steps in this field. In the presentation there has been a deliberate emphasis on the spe­ cific methodologies used toward the understanding of the workings and function of channels. Thus, in the first section, we learn to "read" single­ channel records: how to interpret them in the theoretical frame of kinetic models, which information can be extracted from gating currents in re­ lation to the closing and opening processes, and how ion transport through an open channel can be explained in terms of fluctuating energy barriers. The importance of assessing unequivocally the origin and purity of mem­ brane preparations and the use of membrane vesicles and optical tech­ niques in the stUGY of ionic channels a...

  19. Quantum communication under channel uncertainty

    Energy Technology Data Exchange (ETDEWEB)

    Noetzel, Janis Christian Gregor

    2012-09-06

    This work contains results concerning transmission of entanglement and subspaces as well as generation of entanglement in the limit of arbitrary many uses of compound- and arbitrarily varying quantum channels (CQC, AVQC). In both cases, the channel is described by a set of memoryless channels. Only forward communication between one sender and one receiver is allowed. A code is said to be ''good'' only, if it is ''good'' for every channel out of the set. Both settings describe a scenario, in which sender and receiver have only limited channel knowledge. For different amounts of information about the channel available to sender or receiver, coding theorems are proven for the CQC. For the AVQC, both deterministic and randomised coding schemes are considered. Coding theorems are proven, as well as a quantum analogue of the Ahlswede-dichotomy. The connection to zero-error capacities of stationary memoryless quantum channels is investigated. The notion of symmetrisability is defined and used for both classes of channels.

  20. Effects of water-channel attractions on single-file water permeation through nanochannels

    International Nuclear Information System (INIS)

    Xu, Yousheng; Zheng, Youqu; Tian, Xingling; Lv, Mei; He, Bing; Deng, Maolin; Xiu, Peng; Tu, Yusong

    2016-01-01

    Single-file transportation of water across narrow nanochannels such as carbon nanotubes has attracted much attention in recent years. Such permeation can be greatly affected by the water-channel interactions; despite some progress, this issue has not been fully explored. Herein we use molecular dynamics simulations to investigate the effects of water-channel attractions on occupancy, translational (transportation) and orientational dynamics of water inside narrow single-walled carbon nanotubes (SWNTs). We use SWNTs as the model nanochannels and change the strength of water-nanotube attractions to mimic the changes in the hydrophobicity/polarity of the nanochannel. We investigate the dependence of water occupancy inside SWNTs on the water-channel attraction and identify the corresponding threshold values for drying states, wetting-drying transition states, and stably wetting states. As the strength of water-channel attractions increases, water flow increases rapidly first, and then decreases gradually; the maximal flow occurs in the case where the nanochannel is predominately filled with the 1D water wire but with a small fraction of ‘empty states’, indicating that appropriate empty-filling (drying-wetting) switching can promote water permeation. This maximal flow is unexpected, since in traditional view, the stable and tight hydrogen-bonding network of the water wire is the prerequisite for high permeability of water. The underlying mechanism is discussed from an energetic perspective. In addition, the effect of water-channel attractions on reorientational dynamics of the water wire is studied, and a negative correlation between the flipping frequency of water wire and the water-channel attraction is observed. The underlying mechanism is interpreted in term of the axial total dipole moment of inner water molecules. This work would help to better understand the effects of water-channel attractions on wetting properties of narrow nanochannels, and on single