WorldWideScience

Sample records for application purex storage

  1. PUREX Storage Tunnels dangerous waste permit application

    International Nuclear Information System (INIS)

    1991-12-01

    This report is part of a dangerous waste permit application for the storage of wastes from the Purex process at Hanford. Appendices are presented on the following: construction drawings; HSW-5638, specifications for disposal facility for failed equipment, Project CA-1513-A; HWS-8262, specification for Purex equipment disposal, Project CGC 964; storage tunnel checklist; classification of residual tank heels in Purex storage tunnels; emergency plan for Purex facility; training course descriptions; and the Purex storage tunnels engineering study

  2. PUREX Storage Tunnels dangerous waste permit application

    International Nuclear Information System (INIS)

    1991-12-01

    The PUREX Storage Tunnels are a mixed waste storage unit consisting of two underground railroad tunnels: Tunnel Number 1 designated 218-E-14 and Tunnel Number 2 designated 218-E-15. The two tunnels are connected by rail to the PUREX Plant and combine to provide storage space for 48 railroad cars (railcars). The PUREX Storage Tunnels provide a long-term storage location for equipment removed from the PUREX Plant. Transfers into the PUREX Storage Tunnels are made on an as-needed basis. Radioactively contaminated equipment is loaded on railcars and remotely transferred by rail into the PUREX Storage Tunnels. Railcars act as both a transport means and a storage platform for equipment placed into the tunnels. This report consists of part A and part B. Part A reports on amounts and locations of the mixed water. Part B permit application consists of the following: Facility Description and General Provisions; Waste Characteristics; Process Information; Groundwater Monitoring; Procedures to Prevent Hazards; Contingency Plan; Personnel Training; Exposure Information Report

  3. Hanford facility dangerous waste permit application, PUREX storage tunnels

    International Nuclear Information System (INIS)

    Price, S.M.

    1997-01-01

    The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (document number DOE/RL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion is limited to Part B permit application documentation submitted for individual, operating treatment, storage, and/or disposal units, such as the PUREX Storage Tunnels (this document, DOE/RL-90-24). Both the General Information and Unit-Specific portions of the Hanford Facility Dangerous Waste Permit Application address the content of the Part B permit application guidance prepared by the Washington State Department of Ecology (Ecology 1996) and the US Environmental Protection Agency (40 Code of Federal Regulations 270), with additional information needs defined by the Hazardous and Solid Waste Amendments and revisions of Washington Administrative Code 173-303. For ease of reference, the Washington State Department of Ecology alpha-numeric section identifiers from the permit application guidance documentation (Ecology 1996) follow, in brackets, the chapter headings and subheadings. A checklist indicating where information is contained in the PUREX Storage Tunnels permit application documentation, in relation to the Washington State Department of Ecology guidance, is located in the Contents Section. Documentation contained in the General Information Portion is broader in nature and could be used by multiple treatment, storage, and/or disposal units (e.g., the glossary provided in the General Information Portion). Wherever appropriate, the PUREX Storage Tunnels permit application documentation makes cross-reference to the General Information Portion, rather than duplicating text. Information provided in this PUREX Storage Tunnels permit application documentation is current as of April 1997

  4. PUREX storage tunnels waste analysis plan

    International Nuclear Information System (INIS)

    Haas, C.R.

    1995-01-01

    Washington Administrative Code 173-303-300 requires that a facility develop and follow a written waste analysis plan which describes the procedures that will be followed to ensure that its dangerous waste is managed properly. This document covers the activities at the PUREX Storage Tunnels used to characterize and designate waste that is generated within the PUREX plant, as well as waste received from other on-site sources

  5. PUREX storage tunnels waste analysis plan

    International Nuclear Information System (INIS)

    Haas, C.R.

    1996-01-01

    Washington Administrative Code 173-303-300 requires that a facility develop and follow a written waste analysis plan which describes the procedures that will be followed to ensure that its dangerous waste is managed properly. This document covers the activities at the PUREX Storage Tunnels used to characterize and designate waste that is generated within the PUREX Plant, as well as waste received from other on-site sources

  6. PUREX Storage Tunnels waste analysis plan. Revision 1

    International Nuclear Information System (INIS)

    Stephenson, M.J.

    1995-11-01

    Washington Administrative Code 173-303-300 requires that a facility develop and follow a written waste analysis plan which describes the procedures that will be followed to ensure that its dangerous waste is managed properly. This document covers the activities at the PUREX Storage Tunnels used to characterize and designate waste that is generated within the PUREX Plant, as well as waste received from other on-site sources

  7. PUREX facility preclosure work plan

    International Nuclear Information System (INIS)

    Engelmann, R.H.

    1997-01-01

    This preclosure work plan presents a description of the PUREX Facility, the history of the waste managed, and addresses transition phase activities that position the PUREX Facility into a safe and environmentally secure configuration. For purposes of this documentation, the PUREX Facility does not include the PUREX Storage Tunnels (DOE/RL-90/24). Information concerning solid waste management units is discussed in the Hanford Facility Dangerous Waste Permit Application, General Information Portion (DOE/RL-91-28, Appendix 2D)

  8. Radioactive air emissions notice of construction for deactivation of the PUREX storage tunnel number 2; FINAL

    International Nuclear Information System (INIS)

    JOHNSON, R.E.

    1999-01-01

    The Plutonium-Uranium Extraction (PUREX) Plant Storage Tunnel Number 2 (hereafter referred to as the PUREX Tunnel) was built in 1964. Since that time, the PUREX Tunnel has been used for storage of radioactive and mixed waste. In 1991, the PUREX Plant ceased operations and was transitioned to deactivation. The PUREX Tunnel continued to receive PUREX Plant waste material for storage during transition activities. Before 1995, a decision was made to store radioactive and mixed waste in the PUREX Tunnel generated from other onsite sources, on a case-by-case basis. This notice of construction (NOC) describes the activities associated with the reactivation of the PUREX Tunnel ventilation system and the transfer of up to 3.5 million curies (MCi) of radioactive waste to the PUREX Tunnel from any location on the Hanford Site. The unabated total effective dose equivalent (TEDE) estimated for the hypothetical offsite maximally exposed individual (MEI) is 5.6 E-2 millirem (mrem). The abated TEDE conservatively is estimated to account for 1.9 E-5 mrem to the MEI. The following text provides information requirements of Appendix A of Washington Administrative Code (WAC) 246-247 (requirements 1 through 18)

  9. Neptunium determination in PUREX process

    International Nuclear Information System (INIS)

    Rawat, Neetika; Kar, Aishwarya S.; Tomar, B.S.; Pandey, M.P.; Umadevi, K.

    2016-10-01

    237 Np is one of the most important minor actinides present in nuclear spent fuel both from environmental and application point of view. The routing of neptunium to the particular stream of PUREX process is necessary for its separation and purification as 237 Np is the target nuclide for production of 238 Pu. The routing of neptunium to a particular PUREX stream will also help in better nuclear waste management, which in turn, will impart less bearing on the environment considering its long half life, alpha emitting properties and mobile nature. In order to route Neptunium to a particular stream of PUREX process, it is imperative to understand the distribution of neptunium in various process streams. Owing to high dose of actual samples, the neptunium distribution was studied using 239 Np tracer by simulating actual column conditions of PUREX streams in lab scale. The present study deals with neptunium determination in actual PUREX streams samples also. (author)

  10. Alternatives for the disposition of PUREX organic solution

    International Nuclear Information System (INIS)

    Nelson, D.W.

    1995-01-01

    This Supporting Document submits options and recommendations for final management of Tank 40 Plutonium-Uranium Extraction (PUREX) Plant organic solution per Tri-Party Agreement Milestorm Number M-80-00-T03. Hanford is deactivating the PUREX Plant for the US DOE. One the key element of this Deactivation is disposition of approximately 81,300 liters (21,500 gallons) of slightly radioactively contaminated organic solution to reduce risk to the environment, reduce cost of long-term storage, and assure regulatory compliance. An announcement in the Commerce Business Daily (CBD) on October 14, 1994 has resulted in the submission of proposals from two facilities capabLe of receiving and thermally destroying the solution. Total decomposition by thermal destruction is the recommended option for the disposition of the PUREX organic solution and WHC is evaluating the proposals from the two facilities

  11. Ion exchange flowsheet for recovery of cesium from purex sludge supernatant at B Plant

    International Nuclear Information System (INIS)

    Carlstrom, R.F.

    1977-01-01

    Purex Sludge Supernatant (PSS) contains significant amounts of 137 Cs left after removal of strontium from fission product bearing Purex wastes. To remove cesium from PSS, an Ion Exchange Recovery system has been set up in Cells 17-21 at B Plant. The cesium that is recovered is stored within B Plant for eventual purification through the Cesium Purification process in Cell 38 and eventual encapsulation and storage in a powdered form at the Waste Encapsulation Storage Facility. Cesium depleted waste streams from the Ion Exchange processes are transferred to underground storage

  12. PUREX facility hazards assessment

    International Nuclear Information System (INIS)

    Sutton, L.N.

    1994-01-01

    This report documents the hazards assessment for the Plutonium Uranium Extraction Plant (PUREX) located on the US Department of Energy (DOE) Hanford Site. Operation of PUREX is the responsibility of Westinghouse Hanford Company (WHC). This hazards assessment was conducted to provide the emergency planning technical basis for PUREX. DOE Order 5500.3A requires an emergency planning hazards assessment for each facility that has the potential to reach or exceed the lowest level emergency classification. In October of 1990, WHC was directed to place PUREX in standby. In December of 1992 the DOE Assistant Secretary for Environmental Restoration and Waste Management authorized the termination of PUREX and directed DOE-RL to proceed with shutdown planning and terminal clean out activities. Prior to this action, its mission was to reprocess irradiated fuels for the recovery of uranium and plutonium. The present mission is to establish a passively safe and environmentally secure configuration at the PUREX facility and to preserve that condition for 10 years. The ten year time frame represents the typical duration expended to define, authorize and initiate follow-on decommissioning and decontamination activities

  13. Functional design criteria for the 242-A evaporator and PUREX [Plutonium-Uranium Extraction] Plant condensate interim retention basin

    International Nuclear Information System (INIS)

    Cejka, C.C.

    1990-01-01

    This document contains the functional design criteria for a 26- million-gallon retention basin and 10 million gallons of temporary storage tanks. The basin and tanks will be used to store 242-A Evaporator process condensate, the Plutonium-Uranium Extraction (PUREX) Plant process distillate discharge stream, and the PUREX Plant ammonia scrubber distillate stream. Completion of the project will allow both the 242-A Evaporator and the PUREX Plant to restart. 4 refs

  14. PUREX Plant deactivation mission analysis report

    International Nuclear Information System (INIS)

    Lund, D.P.

    1995-01-01

    The purpose of the PUREX Deactivation Project mission analysis is to define the problem to be addressed by the PUREX mission, and to lay the ground work for further system definition. The mission analysis is an important first step in the System Engineering (SE) process. This report presents the results of the PUREX Deactivation Project mission analysis. The purpose of the PUREX Deactivation Project is to prepare PUREX for Decontamination and Decommissioning within a five year time frame. This will be accomplished by establishing a passively safe and environmentally secure configuration of the PUREX Plant, that can be preserved for a 10-year horizon. During deactivation, appropriate portions of the safety envelop will be maintained to ensure deactivation takes place in a safe and regulatory compliant manner

  15. Hazards classification determination for PUREX fuel transfer to K-Basins

    International Nuclear Information System (INIS)

    Dodd, E.N. III.

    1995-01-01

    The PUREX Plant presently contains 2.9 metric tons of an aluminum clad Single Pass Reactor (SPR) fuel which is stored under water in four open top buckets in the PUREX slug storage basin. The PUREX dissolver cells contain approximately 0.5 metric tons of zirconium clad N Reactor fuel which was inadvertently placed into the process cell during charging operations. The dissolver N reactor elements will be recovered from the process floors using new crane operated tools. When the fuel shipment(s) is scheduled, the cask cars will be positioned into the PUREX rail tunnel and the overhead door will be opened. All the SPR fuel will be loaded into two cask rail cars inside four casks. The N Reactor fuel will be loaded into a separate rail car inside two or three casks. The car loading is initiated by opening the rail car lid and removing the cask lids. Prior to loading the canisters of N Reactor fuel, the canisters will be refilled with water (as needed) and a lid will be installed. The baskets of SPR fuel or canisters of N Reactor fuel will then be loaded into the casks. The lids to the casks will then be reinstalled and the car lids closed. The rail cars will then be decontaminated as necessary. The cask cars will be shipped either in two shipments or a combined single shipment using the rail route between PUREX and the K Basins. At the basin, the cask car will be positioned in the loadout area. The cask car lid will be opened and a single cask moved into the loadout pit, which is a lowered section of the basin. The cask lid is removed while the cask is lower into the pit. The fuel is then removed from the cask and stored in the basin. The cask is then removed, the lid reinstalled during removal, and the cask replaced into the cask car. This document identifies the hazard classification of the Fuel Transfer from the PUREX facility to K-Basins

  16. Integrating safety and health during deactiviation: With lessons learned from PUREX

    International Nuclear Information System (INIS)

    1995-01-01

    This report summarizes an integrated safety and health approach used during facility deactivation activities at the Department of Energy (DOE) Plutonium-Uranium Extraction (PUREX) Facility in Hanford, Washington. Resulting safety and health improvements and the potential, complex-wide application of this approach are discussed in this report through a description of its components and the impacts, or lessons-learned, of its use during the PUREX deactivation project. As a means of developing and implementing the integrated safety and health approach, the PUREX technical partnership was established in 1993 among the Office of Environment, Safety and Health's Office of Worker Health and Safety (EH-5); the Office of Environmental Management's Offices of Nuclear Material and Facility Stabilization (EM-60) and Compliance and Program Coordination (EM-20); the DOE Richland Operations Office; and the Westinghouse Hanford Company. It is believed that this report will provide guidance for instituting an integrated safety and health approach not only for deactivation activities, but for decommissioning and other clean-up activities as well. This confidence is based largely upon the rationality of the approach, often termed as common sense, and the measurable safety and health and project performance results that application of the approach produced during actual deactivation work at the PUREX Facility

  17. PUREX Deactivation Health and Safety documentation

    Energy Technology Data Exchange (ETDEWEB)

    Dodd, E.N. III

    1995-01-01

    The purpose of the PUREX Deactivation Project is to establish a passively safe and environmentally secure configuration of PUREX at the Hanford Site, and to preserve that configuration for a 10-year horizon. The 10-year horizon is used to predict future maintenance requirements and represents they typical time duration expended to define, authorize, and initiate the follow-on Decontamination and Decommissioning (D&D) activities. This document was prepared to increase attention to worker safety issues during the deactivation project and, as such, identifies the documentation and programs associated with PUREX Deactivation Health and Safety.

  18. PUREX transition project case study

    International Nuclear Information System (INIS)

    Jasen, W.G.

    1996-01-01

    In December 1992, the US Department of Energy (DOE) directed that the Plutonium-Uranium Extraction (PUREX) Plant be shut down and deactivated because it was no longer needed to support the nation's production of weapons-grade plutonium. The PUREX/UO 2 Deactivation Project will establish a safe and environmentally secure configuration for the facility and preserve that configuration for 10 years. The 10-year span is used to predict future maintenance requirements and represents the estimated time needed to define, authorize, and initiate the follow-on decontamination and decommissioning activities. Accomplishing the deactivation project involves many activities. Removing major hazards, such as excess chemicals, spent fuel, and residual plutonium are major goals of the project. The scope of the PUREX Transition Project is described within

  19. PUREX Deactivation Health and Safety documentation

    International Nuclear Information System (INIS)

    Dodd, E.N. III.

    1995-01-01

    The purpose of the PUREX Deactivation Project is to establish a passively safe and environmentally secure configuration of PUREX at the Hanford Site, and to preserve that configuration for a 10-year horizon. The 10-year horizon is used to predict future maintenance requirements and represents they typical time duration expended to define, authorize, and initiate the follow-on Decontamination and Decommissioning (D ampersand D) activities. This document was prepared to increase attention to worker safety issues during the deactivation project and, as such, identifies the documentation and programs associated with PUREX Deactivation Health and Safety

  20. PUREX source Aggregate Area management study report

    International Nuclear Information System (INIS)

    1993-03-01

    This report presents the results of an aggregate area management study (AAMS) for the PUREX Plant Aggregate Area in the 200 Areas of the US Department of Energy (DOE)Hanford Site in Washington State. This scoping level study provides the basis for initiating Remedial Investigation/Feasibility Study (RI/FS) activities under the comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) or Resource Conservation and Recovery Act (RCRA) Facility Investigations (RFI) and Corrective Measures Studies (CMS) under RCRA. This report also integrates select RCRA treatment, storage, or disposal (TSD) closure activities with CERCLA and RCRA past-practice investigations

  1. Data quality objectives for PUREX deactivation flushing

    International Nuclear Information System (INIS)

    Bhatia, R.K.

    1995-01-01

    This Data Quality Objection (DQO) defines the sampling and analysis requirements necessary to support the deactivation of the Plutonium-Uranium Extraction (PUREX) facility vessels that are regulated by WAC 173-303. Specifically, sampling and analysis requirements are identified for the flushing operations that are a major element of PUREX deactivation

  2. Purex process

    International Nuclear Information System (INIS)

    Starks, J.B.

    1977-01-01

    The following aspects of the Purex Process are discussed: head end dissolution, first solvent extraction cycle, second plutonium solvent extraction cycle, second uranium solvent extraction cycle, solvent recovery systems, primary recovery column for high activity waste, low activity waste, laboratory waste evaporation, vessel vent system, airflow and filtration, acid recovery unit, fume recovery, and discharges to seepage basin

  3. PUREX irradiated fuel recovery simulation

    International Nuclear Information System (INIS)

    Jaquish, W.R.

    1994-09-01

    This paper discusses the application of IGRIP (Interactive Graphical Robot Instruction Program) to assist environmental remediation efforts at the Department of Energy PUREX Plant at the Hanford Site. An IGRIP simulation was developed to plan, review, and verify proposed remediation activities. This simulation was designed to satisfy a number of unique purposes that each placed specific constraints and requirements on the design and implementation of the simulation. These purposes and their influence on the design of the simulation are presented. A discussion of several control code architectures for mechanical system simulations, including their advantages and limitations, is also presented

  4. Interface control document between PUREX/UO3 Plant Transition and Solid Waste Disposal Division

    International Nuclear Information System (INIS)

    Duncan, D.R.

    1994-01-01

    This interface control document (ICD) between PUREX/UO 3 Plant Transition (PPT) and Solid Waste Disposal Division (SWD) establishes at a top level the functional responsibilities of each division where interfaces exist between the two divisions. Since the PUREX Transition and Solid Waste Disposal divisions operate autonomously, it is important that each division has a clear understanding of the other division's expectations regarding these interfaces. This ICD primarily deals with solid wastes generated by the PPT. In addition to delineating functional responsibilities, the ICD includes a baseline description of those wastes that will require management as part of the interface between the divisions. The baseline description of wastes includes waste volumes and timing for use in planning the proper waste management capabilities: the primary purpose of this ICD is to ensure defensibility of expected waste stream volumes and Characteristics for future waste management facilities. Waste descriptions must be as complete as-possible to ensure adequate treatment, storage, and disposal capability will exist. The ICD also facilitates integration of existing or planned waste management capabilities of the PUREX. Transition and Solid Waste Disposal divisions. The ICD does not impact or affect the existing processes or procedures for shipping, packaging, or approval for shipping wastes by generators to the Solid Waste Division

  5. PUREX/UO3 deactivation project management plan

    International Nuclear Information System (INIS)

    Washenfelder, D.J.

    1993-12-01

    From 1955 through 1990, the Plutonium-Uranium Extraction Plant (PUREX) provided the United States Department of Energy Hanford Site with nuclear fuel reprocessing capability. It operated in sequence with the Uranium Trioxide (UO 3 ) Plant, which converted the PUREX liquid uranium nitrate product to solid UO 3 powder. Final UO 3 Plant operation ended in 1993. In December 1992, planning was initiated for the deactivation of PUREX and UO 3 Plant. The objective of deactivation planning was to identify the activities needed to establish a passively safe, environmentally secure configuration at both plants, and ensure that the configuration could be retained during the post-deactivation period. The PUREX/UO 3 Deactivation Project management plan represents completion of the planning efforts. It presents the deactivation approach to be used for the two plants, and the supporting technical, cost, and schedule baselines. Deactivation activities concentrate on removal, reduction, and stabilization of the radioactive and chemical materials remaining at the plants, and the shutdown of the utilities and effluents. When deactivation is completed, the two plants will be left unoccupied and locked, pending eventual decontamination and decommissioning. Deactivation is expected to cost $233.8 million, require 5 years to complete, and yield $36 million in annual surveillance and maintenance cost savings

  6. A development and an application of Mixset-X computer code for simulating the Purex solvent extraction system

    International Nuclear Information System (INIS)

    Shida, M.; Naito, M.; Suto, T.; Omori, E.; Nojiri, T.

    2001-01-01

    MIXSET is a FORTRAN code developed to simulate the Purex solvent extraction system using mixer-settler extractors. Japan Nuclear Cycle Development Institute (JNC) has been developing the MIXSET code since the years 1970 to analyze the behavior of nuclides in the solvent extraction processes in Tokai Reprocessing Plant (TRP). This paper describes the history of MIXSET code development, the features of the latest version, called MIXSET-X and the application of the code for safety evaluation work. (author)

  7. DOE Richland readiness review for PUREX

    International Nuclear Information System (INIS)

    Zamorski, M.J.

    1984-01-01

    For ten months prior to the November 1983 startup of the Plutonium and URanium EXtraction (PUREX) Plant, the Department of Energy's Richland Operations Office conducted an operational readiness review of the facility. This review was performed consistent with DOE and RL Order 5481.1 and in accordance with written plans prepared by the program and safety divisions. It involved personnel from five divisions within the office. The DOE review included two tasks: (1) overview and evaluation of the operating contractor's (Rockwell Hanford) readiness review for PUREX, and (2) independent assessment of 25 significant aspects of the startup effort. The RL reviews were coordinated by the program division and were phased in succession with the contractor's readiness review. As deficiencies or concerns were noted in the course of the review they were documented and required formal response from the contractor. Startup approval was given in three steps as the PUREX Plant began operation. A thorough review was performed and necessary documentation was prepared to support startup authorization in November 1983, before the scheduled startup date

  8. Engineering Phase 2 and Phase 3 certification programs -- PUREX deactivation

    International Nuclear Information System (INIS)

    Walser, R.L.

    1994-01-01

    This document describes the training programs required to become a Phase 2 and Phase 3 certified engineer at PUREX during deactivation. With the change in mission, the PUREX engineering/certification training program is being revamped as discussed below. The revised program will be administered by PUREX Technical Training using existing courses and training materials. The program will comply with the requirements of the Department of Energy (DOE) order 5480.20A, ''Personnel Selection, Qualification, Training, and Staffing Requirements at DOE Reactor and Non-Reactor Nuclear Facilities.''

  9. Engineering Phase 2 and Phase 3 certification programs -- PUREX deactivation

    Energy Technology Data Exchange (ETDEWEB)

    Walser, R.L.

    1994-12-13

    This document describes the training programs required to become a Phase 2 and Phase 3 certified engineer at PUREX during deactivation. With the change in mission, the PUREX engineering/certification training program is being revamped as discussed below. The revised program will be administered by PUREX Technical Training using existing courses and training materials. The program will comply with the requirements of the Department of Energy (DOE) order 5480.20A, ``Personnel Selection, Qualification, Training, and Staffing Requirements at DOE Reactor and Non-Reactor Nuclear Facilities.``

  10. Purex: process and equipment performance

    International Nuclear Information System (INIS)

    Orth, D.A.

    1986-01-01

    The Purex process is the solvent extraction system that uses tributyl phosphate as the extractant for separating uranium and plutonium from irradiated reactor fuels. Since the first flowsheet was proposed at Oak Ridge National Laboratory in 1950, the process has endured for over 30 years with only minor modifications. The spread of the technology was rapid, and worldwide use or research on Purex-type processes was reported by the time of the 1955 Geneva Conference. The overall performance of the process has been so good that there are no serious contenders for replacing it soon. This paper presents: process description; equipment performance (mixer-settlers, pulse columns, rapid contactors); fission product decontamination; solvent effects (solvent degradation products); and partitioning of uranium and plutonium

  11. Flowsheet for shear/leach processing of N Reactor fuel at PUREX

    International Nuclear Information System (INIS)

    Enghusen, M.B.

    1995-01-01

    This document was originally prepared to support the restart of the PUREX plant using a new Shear/Leach head end process. However, the PUREX facility was shutdown and processing of the remaining N Reactor fuel is no longer considered an alternative for fuel disposition. This document is being issued for reference only to document the activities which were investigated to incorporate the shear/leach process in the PUREX plant

  12. Application of biomass for the sorption of radionuclides from low level Purex aqueous wastes

    International Nuclear Information System (INIS)

    Ramanujam, A.; Gopalakrishnan, V.; Dhami, P.S.; Kannan, R.; Udupa, S.R.; Salvi, N.A.

    1997-05-01

    Microbial biomass have been found to be good biological adsorbents for radioactive nuclides such as uranium and thorium with comparatively easy desorption and recovery. Based on this, sorption studies have been carried out to assess the feasibility of using biomass Rhizopus arrhizus (RA) for the removal of radionuclides present in Purex low level waste streams. Biomass Rhizopus arrhizus (RA) appears effective for the removal of actinides and fission products from low level Purex plant waste/effluent solutions. Maximum sorption for uranium and plutonium is observed at 6-7 pH whereas for Am, Eu, Pm, Ce and Zr the sorption is maximum at pH 2 with high D values and fast kinetics in both cases. Sorption for Ru and Cs are negligible. Sorbed nuclides are recoverable by elution with 1 M HNO 3 , on once through basis. The method can be used for treating the evaporator condensates from the plant and the hold-up delay tank solution. The sodium nitrate salt concentration in the aqueous solution beyond 0.14 M seriously affects the metal uptake. The results from column experiments indicate a limited loading capacity in terms of mg of Am/U/Pu etc. per gm of RA. However, as the Purex low level effluents contain only trace level activities whose absolute ionic concentrations are much lower, the capacities observed with the present form of biomass may still be satisfactory

  13. 1997 project of the year, PUREX deactivation project

    International Nuclear Information System (INIS)

    Bailey, R.W.

    1998-01-01

    At the end of 1992, the PUREX and UO 3 plants were deemed no longer necessary for the defense needs of the United States. Although no longer necessary, they were very costly to maintain in their post-operation state. The DOE embarked on a deactivation strategy for these plants to reduce the costs of providing continuous surveillance of the facilities and their hazards. Deactivation of the PUREX and UO 3 plants was estimated to take 5 years and cost $222.5 million and result in an annual surveillance and maintenance cost of $2 million. Deactivation of the PUREX/UO 3 plants officially began on October 1, 1993. The deactivation was 15 months ahead of the original schedule and $75 million under the original cost estimate. The annual cost of surveillance and maintenance of the plants was reduced to less than $1 million

  14. PUREX exhaust ventilation system installation test report

    International Nuclear Information System (INIS)

    Blackaby, W.B.

    1997-01-01

    This Acceptance Test Report validates the testing performed, the exceptions logged and resolved and certifies this portion of the SAMCONS has met all design and test criteria to perform as an operational system. The proper installation of the PUREX exhaust ventilation system components and wiring was systematically evaluated by performance of this procedure. Proper operation of PUREX exhaust fan inlet, outlet, and vortex damper actuators and limit switches were verified, using special test equipment, to be correct and installed wiring connections were verified by operation of this equipment

  15. Plutonium uranium extraction (PUREX) end state basis for interim operation (BIO) for surveillance and maintenance

    Energy Technology Data Exchange (ETDEWEB)

    DODD, E.N.

    1999-05-12

    This Basis for Interim Operation (BIO) was developed for the PUREX end state condition following completion of the deactivation project. The deactivation project has removed or stabilized the hazardous materials within the facility structure and equipment to reduce the hazards posed by the facility during the surveillance and maintenance (S and M) period, and to reduce the costs associated with the S and M. This document serves as the authorization basis for the PUREX facility, excluding the storage tunnels, railroad cut, and associated tracks, for the deactivated end state condition during the S and M period. The storage tunnels, and associated systems and areas, are addressed in WHC-SD-HS-SAR-001, Rev. 1, PUREX Final Safety Analysis Report. During S and M, the mission of the facility is to maintain the conditions and equipment in a manner that ensures the safety of the workers, environment, and the public. The S and M phase will continue until the final decontamination and decommissioning (D and D) project and activities are begun. Based on the methodology of DOE-STD-1027-92, Hazards Categorization and Accident Analysis Techniques for Compliance with DOE Order 5480.23, Nuclear Safety Analysis Reports, the final facility hazards category is identified as hazards category This considers the remaining material inventories, form and distribution of the material, and the energies present to initiate events of concern. Given the current facility configuration, conditions, and authorized S and M activities, there are no operational events identified resulting in significant hazard to any of the target receptor groups (e.g., workers, public, environment). The only accident scenarios identified with consequences to the onsite co-located workers were based on external natural phenomena, specifically an earthquake. The dose consequences of these events are within the current risk evaluation guidelines and are consistent with the expectations for a hazards category 2

  16. Plutonium uranium extraction (PUREX) end state basis for interim operation (BIO) for surveillance and maintenance

    International Nuclear Information System (INIS)

    DODD, E.N.

    1999-01-01

    This Basis for Interim Operation (BIO) was developed for the PUREX end state condition following completion of the deactivation project. The deactivation project has removed or stabilized the hazardous materials within the facility structure and equipment to reduce the hazards posed by the facility during the surveillance and maintenance (S and M) period, and to reduce the costs associated with the S and M. This document serves as the authorization basis for the PUREX facility, excluding the storage tunnels, railroad cut, and associated tracks, for the deactivated end state condition during the S and M period. The storage tunnels, and associated systems and areas, are addressed in WHC-SD-HS-SAR-001, Rev. 1, PUREX Final Safety Analysis Report. During S and M, the mission of the facility is to maintain the conditions and equipment in a manner that ensures the safety of the workers, environment, and the public. The S and M phase will continue until the final decontamination and decommissioning (D and D) project and activities are begun. Based on the methodology of DOE-STD-1027-92, Hazards Categorization and Accident Analysis Techniques for Compliance with DOE Order 5480.23, Nuclear Safety Analysis Reports, the final facility hazards category is identified as hazards category This considers the remaining material inventories, form and distribution of the material, and the energies present to initiate events of concern. Given the current facility configuration, conditions, and authorized S and M activities, there are no operational events identified resulting in significant hazard to any of the target receptor groups (e.g., workers, public, environment). The only accident scenarios identified with consequences to the onsite co-located workers were based on external natural phenomena, specifically an earthquake. The dose consequences of these events are within the current risk evaluation guidelines and are consistent with the expectations for a hazards category 2

  17. Application of biomass for the sorption of radionuclides from low level Purex aqueous wastes

    Energy Technology Data Exchange (ETDEWEB)

    Ramanujam, A; Gopalakrishnan, V; Dhami, P S; Kannan, R [Fuel Reprocessing Div., Bhabha Atomic Research Centre, Mumbai (India); Udupa, S R; Salvi, N A [Bio-Organic Div., Bhabha Atomic Research Centre, Mumbai (India)

    1997-05-01

    Microbial biomass have been found to be good biological adsorbents for radioactive nuclides such as uranium and thorium with comparatively easy desorption and recovery. Based on this, sorption studies have been carried out to assess the feasibility of using biomass Rhizopus arrhizus (RA) for the removal of radionuclides present in Purex low level waste streams. Biomass Rhizopus arrhizus (RA) appears effective for the removal of actinides and fission products from low level Purex plant waste/effluent solutions. Maximum sorption for uranium and plutonium is observed at 6-7 pH whereas for Am, Eu, Pm, Ce and Zr the sorption is maximum at pH 2 with high D values and fast kinetics in both cases. Sorption for Ru and Cs are negligible. Sorbed nuclides are recoverable by elution with 1 M HNO{sub 3}, on once through basis. The method can be used for treating the evaporator condensates from the plant and the hold-up delay tank solution. The sodium nitrate salt concentration in the aqueous solution beyond 0.14 M seriously affects the metal uptake. The results from column experiments indicate a limited loading capacity in terms of mg of Am/U/Pu etc. per gm of RA. However, as the Purex low level effluents contain only trace level activities whose absolute ionic concentrations are much lower, the capacities observed with the present form of biomass may still be satisfactory. 15 refs., 12 tabs.

  18. Purex process operation and performance, 1970 Thoria Campaign

    International Nuclear Information System (INIS)

    Jackson, R.R.; Walser, R.L.

    1977-03-01

    The Hanford Purex Plant fulfilled a 1970 commitment to the Atomic Energy Commission to produce 360 kilograms of high purity 233 U as uranyl nitrate solution. Overall plant performance during both 1970 and 1966 confirmed the suitability of Purex for processing thorium on a campaign basis. The 1970 processing campaign, including flushing operations, is discussed with particular emphasis on problem areas. Background information on the process and equipment used is also presented. The organizations and their designations described are those existing in 1970

  19. Zirconium behaviour in purex process solutions

    International Nuclear Information System (INIS)

    Shu, J.

    1982-01-01

    The extraction behaviour of zirconium, as fission product, in TBP/diluent- HNO 3 -H 2 O systems, simulating Purex solutions, is studied. The main purpose is to attain an increasing in the zirconium decontamination factor by adjusting the extraction parameters. Equilibrium diagram, TBP concentration, aqueous:organic ratio, salting-out effects and, uranium loading in the organic phase were the main factors studied. All these experiments had been made with zirconium in the 10 - 2 - 10 - 3 concentration range. The extractant degradation products influence uppon the zirconium behaviour was also verified. With the obtained data it was possible to introduce some modification in the standard Purex flow-sheet in order to obtain the uranium product with higher zirconium decontamination. (Author) [pt

  20. TBP and diluent mass balances in the PUREX Plant at Hanford, 1955--1991

    International Nuclear Information System (INIS)

    Sederburg, J.P.; Reddick, J.A.

    1994-12-01

    The purpose of this report is to develop an estimate of the quantities of tributyl phosphate and diluent discharged in aqueous waste streams to the tank farms from the Hanford Purex Plant over its operating life. Purex was not the sole source of organics in the tank farms, but was a major contributor. Tributyl phosphate (TBP) and diluent, which changed from Shell E-2342 reg-sign to Soltrol-170 reg-sign and then to normal paraffin hydrocarbon (NPH), were organic chemicals used in the Purex solvent extraction process at Hanford to separate plutonium and uranium from spent nuclear fuels. This report is an estimate of the material balances for these chemicals in the Purex Plant at Hanford over its entire operating life. The Purex Plant had cold start up in November 1955 and shut down in 1990. It's process used a solution of 30 vol% TBP in diluent

  1. Regulatory Support of Treatment of Savannah River Site Purex Waste

    International Nuclear Information System (INIS)

    Reid, L.T.

    2009-01-01

    This paper describes the support given by federal and state regulatory agencies to Savannah River Site (SRS) during the treatment of an organic liquid mixed waste from the Plutonium Extraction (Purex) process. The support from these agencies allowed (SRS) to overcome several technical and regulatory barriers and treat the Purex waste such that it met LDR treatment standards. (authors)

  2. Determination of hydroxylamine in purex process solutions

    International Nuclear Information System (INIS)

    Ertel, D.; Weindel, P.

    1984-05-01

    In PUREX process solutions hydroxylamine or HAN (hydrolammonium nitrate) respectively, can be oxidized specifically to give nitrous acid, HNO 2 , which by sybsequent GRIESS reaction forms the well-known reddish azo-dye. Its absorbance is spectrophotometrically measured at 520 nm and results in linear calibration graphs covering the analytical range of 10 -5 to 10 -6 M NH 2 OH. The influence of other reductants (N 2 H 4 , Pu-III) as well as of further PUREX main constituents like U-VI, HNO 3 etc. was checked-up and determined quantitatively. There are no analytical limitations in case of HAN concentrations > 10 -2 M. (orig.) [de

  3. PUREX/UO3 facilities deactivation lessons learned history

    International Nuclear Information System (INIS)

    Gerber, M.S.

    1997-01-01

    In May 1997, a historic deactivation project at the PUREX (Plutonium URanium EXtraction) facility at the Hanford Site in south-central Washington State concluded its activities (Figure ES-1). The project work was finished at $78 million under its original budget of $222.5 million, and 16 months ahead of schedule. Closely watched throughout the US Department of Energy (DOE) complex and by the US Department of Defense for the value of its lessons learned, the PUREX Deactivation Project has become the national model for the safe transition of contaminated facilities to shut down status

  4. PUREX Plant deactivation function analysis report

    International Nuclear Information System (INIS)

    Lund, D.P.

    1995-09-01

    The document contains the functions, function definitions, function interfaces, function interface definitions, Input Computer Automated Manufacturing Definition (IDEFO) diagrams, and a function hierarchy chart that describe what needs to be performed to deactivate PUREX

  5. Purex process extraction cycles: a potential for progress today

    Energy Technology Data Exchange (ETDEWEB)

    Boullis, B.; Germain, M.; Goumondy, J.P.; Rouyer, H.

    1994-12-31

    The Purex process very quickly and very widely supplanted the other concepts considered for nuclear fuel reprocessing after the presentation made at the Geneva Conference in 1955. The selectivity and radiolytic stability of tributylphosphate (T.B.P) clearly appeared to augur an extremely attractive process for completing the separation of valuable elements in the irradiated fuel. The concept has confirmed its validity, and subsequently its ability to adapt to changing requirements or constraints. Its industrial viability is in fact unquestioned today: Purex process is the basis of all the reprocessing plants in operation or planned throughout the world, and recent commissioning of the UP3 plant in France, in remarkable conditions, attests to such a level of maturity that one is tempted to ask the question: ``What remains to be proved, discovered or improved in the core of the Purex process?``. (authors). 7 refs., 4 tabs.

  6. Purex process extraction cycles: a potential for progress today

    International Nuclear Information System (INIS)

    Boullis, B.; Germain, M.; Goumondy, J.P.; Rouyer, H.

    1994-01-01

    The Purex process very quickly and very widely supplanted the other concepts considered for nuclear fuel reprocessing after the presentation made at the Geneva Conference in 1955. The selectivity and radiolytic stability of tributylphosphate (T.B.P) clearly appeared to augur an extremely attractive process for completing the separation of valuable elements in the irradiated fuel. The concept has confirmed its validity, and subsequently its ability to adapt to changing requirements or constraints. Its industrial viability is in fact unquestioned today: Purex process is the basis of all the reprocessing plants in operation or planned throughout the world, and recent commissioning of the UP3 plant in France, in remarkable conditions, attests to such a level of maturity that one is tempted to ask the question: ''What remains to be proved, discovered or improved in the core of the Purex process?''. (authors). 7 refs., 4 tabs

  7. PUREX Plant aggregate area management study technical baseline report

    International Nuclear Information System (INIS)

    DeFord, D.H.; Carpenter, R.W.

    1995-05-01

    The PUREX aggregate area is made up of six operable units; 200-PO-1 through 200-PO-6 and consists of liquid and solid waste disposal sites in the vicinity of, and related to, PUREX Plant operations. This report describes PUREX and its waste sites, including cribs, french drains, septic tanks and drain fields, trenches and ditches, ponds, catch tanks, settling tanks, diversion boxes, underground tank farms, and the lines and encasements that connect them. Each waste site in the aggregate area is described separately. Close relationships between waste units, such as overflow from one to another, are also discussed. This document provides a technical baseline of the aggregate area and results from an environmental investigation. This document is based upon review and evaluation of numerous Hanford Site current and historical reports, drawings and photographs, supplemented with site inspections and employee interviews. No intrusive field investigations or sampling were conducted

  8. PUREX SAMCONS uninterruptible power supply (UPS) acceptance test report

    International Nuclear Information System (INIS)

    Blackaby, W.B.

    1997-01-01

    This Acceptance Test Report for the PUREX Surveillance and Monitoring and Control System (SAMCONS) Uninterruptible Power Supply (UPS) Acceptance Test Procedure validates the operation of the UPS, all alarming and display functions and the ability of the UPS to supply power to the SAMCONS as designed. The proper installation of the PUREX SAMCONS Trailer UPS components and wiring will be systematically evaluated by performance of this procedure. Proper operation of the SAMCONS computer UPS will be verified by performance of a timed functional load test, and verification of associated alarms and trouble indications. This test procedure will be performed in the SAMCONS Trailer and will include verification of receipt of alarms at the SAMCONS computer stations. This test may be performed at any time after the completion of HNF-SD-CP-ATP-083, PUREX Surveillance and Monitoring and Control System (SAMCONS) Acceptance Test Procedure, when computer display and alarm functions have been proven to operate correctly

  9. Effect of di-butyl phosphate on flash point of PUREX solvent

    International Nuclear Information System (INIS)

    Srivastav, Ravi Kant; Kumar, Shekhar; Balasubramonian, S.; Kamachi Mudali, U.; Natarajan, R.

    2015-01-01

    30% Tri-n-butyl phosphate (TBP) in a aliphatic diluent is used as a solvent for PUREX process. This diluent is essentially equivalent to commercial dodecane. The radiolytic and acidic degradation of TBP forms di-butyl phosphate (DBP) which is detrimental to the performance of the solvent during nuclear fuel reprocessing operations. To study the possible effect of DBP on the flashpoint of PUREX solvent, synthetic solutions were made by adding DBP and flashpoints of resultant mixtures were determined with an automatic flashpoint tester as per ASTM procedures. Experimental results indicated virtually no effect of DBP on flash point of PUREX solvent in the concentration ranges of 0-16 g/L DBP. (author)

  10. PUREX/UO{sub 3} facilities deactivation lessons learned: History

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, M.S.

    1997-11-25

    In May 1997, a historic deactivation project at the PUREX (Plutonium URanium EXtraction) facility at the Hanford Site in south-central Washington State concluded its activities (Figure ES-1). The project work was finished at $78 million under its original budget of $222.5 million, and 16 months ahead of schedule. Closely watched throughout the US Department of Energy (DOE) complex and by the US Department of Defense for the value of its lessons learned, the PUREX Deactivation Project has become the national model for the safe transition of contaminated facilities to shut down status.

  11. PUREX new substation ATR

    International Nuclear Information System (INIS)

    Nelson, D.E.

    1997-01-01

    This document is the acceptance test report (ATR) for the New PUREX Main and Minisubstations. It covers the factory and vendor acceptance and commissioning test reports. Reports are presented for the Main 5 kV substation building, the building fire system, switchgear, and vacuum breaker; the minisubstation control building and switch gear; commissioning test; electrical system and loads inspection; electrical utilities transformer and cable; and relay setting changes based on operational experience

  12. Cement waste form qualification report: WVDP [West Valley Demonstration Project] PUREX decontaminated supernatant

    International Nuclear Information System (INIS)

    McVay, C.W.; Stimmel, J.R.; Marchetti, S.

    1988-08-01

    This report provides a summary of work performed to develop a cement-based, low-level waste formulation suitable for the solidification of decontaminated high-level waste liquid produced as a by-product of PUREX spent fuel reprocessing. The resultant waste form is suitable for interim storage and is intended for ultimate disposal as low-level Class C waste; it also meets the stability requirements of the NRC Branch Technical Position on Waste Form Qualification, May 1983 and the requirements of 10 CFR 61. A recipe was developed utilizing only Portland Type I cement based on an inorganic salts simulant of the PUREX supernatant. The qualified recipe was tested full scale in the production facility and was observed to produce a product with entrained air, low density, and lower-than-expected compressive strength. Further laboratory scale testing with actual decontaminated supernatant revealed that set retarders were present in the supernatant, precluding setting of the product and allowing the production of ''bleed water.'' Calcium nitrate and sodium silicate were added to overcome the set retarding effect and produced a final product with improved performance when compared to the original formulation. This report describes the qualification process and qualification test results for the final product formulation. 7 refs., 38 figs., 21 tabs

  13. Purex process solvent: literature review

    International Nuclear Information System (INIS)

    Geier, R.G.

    1979-10-01

    This document summarizes the data on Purex process solvent presently published in a variety of sources. Extracts from these various sources are presented herein and contain the work done, the salient results obtained, and the original, unaltered conclusions of the author of each paper. Three major areas are addressed: solvent stability, solvent quality testing, and solvent treatment processes. 34 references, 44 tables

  14. Purex process solvent: literature review

    Energy Technology Data Exchange (ETDEWEB)

    Geier, R.G.

    1979-10-01

    This document summarizes the data on Purex process solvent presently published in a variety of sources. Extracts from these various sources are presented herein and contain the work done, the salient results obtained, and the original, unaltered conclusions of the author of each paper. Three major areas are addressed: solvent stability, solvent quality testing, and solvent treatment processes. 34 references, 44 tables.

  15. Purex pulse column designs for capacity factor of 3.0 to 3.5

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, G.L.

    1955-04-12

    This memorandum indicates the Purex-Plant pulse-column and pulse- generator revisions which would be required to assure an instantaneous capacity of 25 tons U/day with a 20% capacity safety margin under Purex HW {number_sign}3 Flowsheet conditions. (The use of the Purex HW {number_sign}4 Flowsheet (6) with the revised columns would be expected to increase the capacity to 29 or 30 tons U/day.) The indicated design changes are recorded here for study and for possible reference if need for increased production capacity should arise. No recommendation for adoption at this time is made.

  16. PUREX/UO3 Facilities deactivation lessons learned history

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, M.S.

    1996-09-19

    Disconnecting the criticality alarm permanently in June 1996 signified that the hazards in the PUREX (plutonium-uranium extraction) plant had been so removed and reduced that criticality was no longer a credible event. Turning off the PUREX criticality alarm also marked a salient point in a historic deactivation project, 1 year before its anticipated conclusion. The PUREX/UO3 Deactivation Project began in October 1993 as a 5-year, $222.5- million project. As a result of innovations implemented during 1994 and 1995, the project schedule was shortened by over a year, with concomitant savings. In 1994, the innovations included arranging to send contaminated nitric acid from the PUREX Plant to British Nuclear Fuels, Limited (BNFL) for reuse and sending metal solutions containing plutonium and uranium from PUREX to the Hanford Site tank farms. These two steps saved the project $36.9- million. In 1995, reductions in overhead rate, work scope, and budget, along with curtailed capital equipment expenditures, reduced the cost another $25.6 million. These savings were achieved by using activity-based cost estimating and applying technical schedule enhancements. In 1996, a series of changes brought about under the general concept of ``reengineering`` reduced the cost approximately another $15 million, and moved the completion date to May 1997. With the total savings projected at about $75 million, or 33.7 percent of the originally projected cost, understanding how the changes came about, what decisions were made, and why they were made becomes important. At the same time sweeping changes in the cultural of the Hanford Site were taking place. These changes included shifting employee relations and work structures, introducing new philosophies and methods in maintaining safety and complying with regulations, using electronic technology to manage information, and, adopting new methods and bases for evaluating progress. Because these changes helped generate cost savings and were

  17. Theme 1: fuel cycle and waste management. 1.3 the nuclear fuel cycle in the future. 1.3.1. thermal recycle of plutonium ''Ongoing industrialization of Purex'

    International Nuclear Information System (INIS)

    Wakem, M.J.

    2001-01-01

    The Purex process has been developed over many years from a process supporting military programmes in the years 1940 with the emphasis on production of a single product to today sophisticated large scale commercial plants designed to separate Uranium and Plutonium as high quality products. The plants have been designed, and are operated so as to discharge minimal aerial and liquid effluents whilst at the same time minimising arisings of liquid and solid waste. The scope of the facilities includes treatment of such wastes to create a form that is suitable for interim storage prior to final disposal. Typical of such plants are Thorp at Sellafield and UP3 at Cap La Hague, where plutonium dioxide is separated for the production of Mixed Oxide Fuel (MOX). The paper demonstrates the practical application of improvements to the Purex process at an industrial scale with the constraints imposed by technical, regulatory and commercial requirements. Successful examples will be addressed which illustrate the logical progression from technical concept, strategic decision and option taking, front end engineering definition, design and initial safety approval, regulatory approval leading to effective plant implementation and proving. (author)

  18. PUREX/UO3 facilities deactivation lessons learned history

    International Nuclear Information System (INIS)

    Hamrick, D.G.; Gerber, M.S.

    1995-01-01

    The Plutonium-Uranium Extraction (PUREX) Facility operated from 1956-1972, from 1983-1988, and briefly during 1989-1990 to produce for national defense at the Hanford Site in Washington State. The Uranium Trioxide (UO 3 ) Facility operated at the Hanford Site from 1952-1972, 1984-1988, and briefly in 1993. Both plants were ordered to permanent shutdown by the U.S. Department of Energy (DOE) in December 1992, thus initiating their deactivation phase. Deactivation is that portion of a facility's life cycle that occurs between operations and final decontamination and decommissioning (D ampersand D). This document details the history of events, and the lessons learned, from the time of the PUREX Stabilization Campaign in 1989-1990, through the end of the first full fiscal year (FY) of the deactivation project (September 30, 1994)

  19. Disposition of PUREX contaminated nitric acid the role of stakeholder involvement

    International Nuclear Information System (INIS)

    Jasen, W.G.; Duncan, R.A.

    1996-01-01

    What does the United States space shuttle and the Hanford PUREX facility's contaminated nitric acid have in common. Both are reusable. The PUREX Transition Project has achieved success and, minimized project expenses and waste generation by looking at excess chemicals not as waste but as reusable substitutes for commercially available raw materials. This philosophy has helped PUREX personnel to reuse or recycle more than 2.5 million pounds of excess chemicals, a portion of which is the slightly contaminated nitric acid. After extensive public review, the first shipment of contaminated acid was made in May 1995. Removal of the acid was completed on November 6, 1995 when the fiftieth shipment left the Hanford site. This activity, which avoided dispositioning the contaminated acid as a waste, generated significantly more public input and concern than was expected. One of the lessons learned from this process is to not underestimate public perceptions regarding the reuse of contaminated materials

  20. Delisting strategy for the Hanford Site 242-A Evaporator PUREX Plant Condensate Treatment Facility

    International Nuclear Information System (INIS)

    1992-04-01

    This document describes the strategy that the US Department of Energy, Richland Field Office intends to use in preparing the delisting petition for the 242-A Evaporator/PUREX Plant Condensate Treatment Facility. Because the 242-A Evaporator/PUREX Plant Condensate Treatment Facility will not be operational until 1994, the delisting petition will be structured as an up-front petition based on the ''multiple waste treatment facility'' approach outline in the 1985 US Environmental Protection Agency's Petitions to Delist Hazardous Waste. The 242-A evaporator/PUREX Plant Condensate Treatment Facility effluent characterization data will not be available to support the delisting petition, because the delisting petition will be submitted to the US Environmental Protection Agency before start-up of the 242-A Evaporator/PUREX Plant Condensate Treatment Facility. Therefore, the delisting petition will be based on data collected during the pilot plant testing for the 242-A Evaporator/PUREX Plant Condensate Treatment Facility. This pilot plant testing will be conducted on synthetic waste. The composition of the synthetic waste will be based on: (1) constituents of regulatory concern, and (2) on process knowledge. The pilot plant testing will be performed to determine the removal efficiencies of the process equipment at concentrations greater than reasonably could be expected in the actual waste. This strategy document also describes the logic used to develop the synthetic waste, to develop the pilot plant testing program, and to prepare the delisting petition. This strategy document also described how full-scale operating data will be collected during initial operation of the 242-A Evaporator/PUREX Plant Condensate Treatment Facility to verify information presented in the delisting petition

  1. Transfer of Plutonium-Uranium Extraction Plant and N Reactor irradiated fuel for storage at the 105-KE and 105-KW fuel storage basins, Hanford Site, Richland Washington

    International Nuclear Information System (INIS)

    1995-07-01

    The U.S. Department of Energy (DOE) needs to remove irradiated fuel from the Plutonium-Uranium Extraction (PUREX) Plant and N Reactor at the Hanford Site, Richland, Washington, to stabilize the facilities in preparation for decontamination and decommissioning (D ampersand D) and to reduce the cost of maintaining the facilities prior to D ampersand D. DOE is proposing to transfer approximately 3.9 metric tons (4.3 short tons) of unprocessed irradiated fuel, by rail, from the PUREX Plant in the 200 East Area and the 105 N Reactor (N Reactor) fuel storage basin in the 100 N Area, to the 105-KE and 105-KW fuel storage basins (K Basins) in the 100 K Area. The fuel would be placed in storage at the K Basins, along with fuel presently stored, and would be dispositioned in the same manner as the other existing irradiated fuel inventory stored in the K Basins. The fuel transfer to the K Basins would consolidate storage of fuels irradiated at N Reactor and the Single Pass Reactors. Approximately 2.9 metric tons (3.2 short tons) of single-pass production reactor, aluminum clad (AC) irradiated fuel in four fuel baskets have been placed into four overpack buckets and stored in the PUREX Plant canyon storage basin to await shipment. In addition, about 0.5 metric tons (0.6 short tons) of zircaloy clad (ZC) and a few AC irradiated fuel elements have been recovered from the PUREX dissolver cell floors, placed in wet fuel canisters, and stored on the canyon deck. A small quantity of ZC fuel, in the form of fuel fragments and chips, is suspected to be in the sludge at the bottom of N Reactor's fuel storage basin. As part of the required stabilization activities at N Reactor, this sludge would be removed from the basin and any identifiable pieces of fuel elements would be recovered, placed in open canisters, and stored in lead lined casks in the storage basin to await shipment. A maximum of 0.5 metric tons (0.6 short tons) of fuel pieces is expected to be recovered

  2. Production and remediation of low sludge simulated Purex waste glasses, 2: Effects of sludge oxide additions on glass durability

    International Nuclear Information System (INIS)

    Ramsey, W.G.

    1993-01-01

    Glass produced during the Purex 4 campaigns of the Integrated DWPF Melter System (IDMS) and the 774 Research Melter contained a lower fraction of sludge components than targeted by the Product Composition Control System (PCCS). Purex 4 glass was more durable than the benchmark (EA) glass, but was less durable than most other simulated SRS high-level waste glasses. Further, the measured durability of Purex 4 glass was not as well correlated with the durability predicted from the DWPF process control algorithm, probably because the algorithm was developed to predict the durability of SRS high-level waste glasses with higher sludge content than Purex 4. A melter run, designated Purex 4 Remediation, was performed using the 774 Research Melter to determine if the initial PCCS target composition determined for Purex 4 would produce acceptable glass whose durability could be accurately modeled by the DWPF glass durability algorithm. Reagent grade oxides and carbonates were added to Purex 4 melter feed stock to simulate a higher sludge loading. Each canister of glass produced was sampled and the glass durability was determined by the Product Consistency Test method. This document details the durability data and subsequent analysis

  3. Purex process operation and performance: 1970 thoria campaign

    International Nuclear Information System (INIS)

    Walser, R.L.

    1978-02-01

    The Hanford Purex Plant has demonstrated suitability for reprocessing irradiated thoria (ThO 2 ) target elements on a campaign basis. A 1965 process test and major production campaigns conducted in 1966 and 1970 recovered nitrate solution form products totaling approximately 565 tons of thorium and 820 kilograms of 233 U. The overall recoveries for the 1970 campaign based on reactor input data were 94.9 percent for thorium and 95.2 percent for uranium. The primary function of the Hanford Purex Plant is reprocessing of irradiated uranium fuel elements to separate and purify uranium, plutonium and neptunium. Converting the plant to thoria reprocessing required major process development work and equipment modifications. The operation and performance of the Plant during the 1970 thoria reprocessing campaign is discussed in this report. The discussion includes background information on the process and equipment, problems encountered, and changes recommended for future campaigns

  4. Forefront of PUREX system engineering. Chemistry and engineering of ruthenium, technetium and neptunium

    International Nuclear Information System (INIS)

    2004-07-01

    The paper reports the activity of the research committee organized by the Atomic Energy Society of Japan on 'Ruthenium and Technetium Chemistry in the PUREX System', with focusing on basic behaviors of ruthenium, technetium and neptunium in the PUREX process, the principles of plant design, and behaviors during the final waste treatment. The scope of the work includes the following major topics: (1) basic solution and solid-state chemistry; (2) basic solution and solid-state chemistry of minor actinides in particular, Np; (3) partitioning chemistry in the PUREX system and environmental behavior of the components; (4) processes of recovery, purification, and utilization of rare metal fission products; (5) field data on plant design, operation, decontamination, and decommissioning; (6) numerical process simulations and process control technologies; (7) compilation of a data base for process chemistry and plant engineering. (S. Ohno)

  5. PUREX/UO{sub 3} facilities deactivation lessons learned history

    Energy Technology Data Exchange (ETDEWEB)

    Hamrick, D.G.; Gerber, M.S.

    1995-01-01

    The Plutonium-Uranium Extraction (PUREX) Facility operated from 1956-1972, from 1983-1988, and briefly during 1989-1990 to produce for national defense at the Hanford Site in Washington State. The Uranium Trioxide (UO{sub 3}) Facility operated at the Hanford Site from 1952-1972, 1984-1988, and briefly in 1993. Both plants were ordered to permanent shutdown by the U.S. Department of Energy (DOE) in December 1992, thus initiating their deactivation phase. Deactivation is that portion of a facility`s life cycle that occurs between operations and final decontamination and decommissioning (D&D). This document details the history of events, and the lessons learned, from the time of the PUREX Stabilization Campaign in 1989-1990, through the end of the first full fiscal year (FY) of the deactivation project (September 30, 1994).

  6. Chemical processing of HTR fuels applying either THOREX or PUREX flow sheets

    Energy Technology Data Exchange (ETDEWEB)

    Zimmer, E; Merz, E [Kernforschungsanlage, Juelich GmbH, Institut fuer Chemische Technologie der Nuklearen Entsorgung, Juelich (Germany)

    1985-07-01

    Two fuel cycles are considered for utilization in high temperature gas-cooled reactors (HTRs): the high-enriched thorium-uranium (HEU 93% U-235) and the low-enriched uranium (LEU 8-12% U-235) fuel concept. For both fuel compositions suitable reprocessing procedures are required which are capable to separate the actinides thorium, uranium and plutonium from fission products and from each other. In any case, the processes under consideration utilize Tri-n-butylphosphate (TBP) together with a straight-chain paraffinic diluent (C{sub 8}-C{sub 14}, to day usually dodecane) as extractant in an aqueous nitrate system; most commonly, the related processes are known by the acronyms PUREX and THOREX. The PUREX process has become the reprocessing procedure quite generally used for all fuel types containing natural, slightly or highly enriched uranium together with lower or higher contents of plutonium. The THOREX process on the other hand has been developed to separate thorium, uranium and fission products from thorium based irradiated fuel. Generally, the utilization of the thorium fuel cycle is most attractive for High Temperature Reactors. On the other hand, the strong recommendation of INFCE to abandon the use of high-enriched uranium for nuclear energy applications virtually rules out the thorium fuel cycle, since economic utilization of thorium as a fertile material requires the use of high-enriched U-235. Thus, it was decided in the Federal Republic of Germany to switch over, at least for the foreseeable future, to the low enrichment uranium-plutonium fuel cycle, well aware of its economic shortcomings. In this paper various THOREX flowsheets as well as a PUREX variant suitable for LEU fuel reprocessing are described. Both processes have in common that the main stream is always presented by the fertile material, that means thorium and U-238, respectively.

  7. Zirconium and technetium recovery and partitioning in the presence of actinides in modified Purex process for ATW program. Final report

    International Nuclear Information System (INIS)

    Dzekun, E.G.; Fedorov, Y.S.; Galkin, B.Y.; Lyubtsev, R.I.; Mashkin, A.N.; Mishin, E.N.; Zilberman, B.Y.

    1994-01-01

    The modified Purex process flowsheet is based on combination of all irradiated materials, their joint dissolution and reprocessing as a NPP spent fuel solution with abnormal Pu content after addition of recycled depleted U concentrate. Some groups of long-lived radionuclides could be completely recovered and localized at the stage of extraction reprocessing using 30% TBP. Studies were conducted for 10 y to develop the process for recovery, concentration, and localization of U, Pu, Np, Tc, and Zr within 1st extraction cycle. Actinides are recovered from high-level raffinate of this cycle after evaporation and feed adjustment. Results in this report show that combined deep recovery of several elements from highly irradiated materials by TBP extraction, for further transmutation, is possible. Selective stripping of Zr from solvent phase containing U, Pu, Np, and Tc is quite effective. Development of the modified Purex process is not complete; main problem to be solved should be oxide separation from the loop and permissible storage duration before reprocessing and reuse in the loop

  8. Zirconium and technetium recovery and partitioning in the presence of actinides in modified Purex process for ATW program. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Dzekun, E.G.; Fedorov, Y.S.; Galkin, B.Y.; Lyubtsev, R.I.; Mashkin, A.N.; Mishin, E.N.; Zilberman, B.Y. [Radievyj Inst., Leningrad (Russian Federation)

    1994-12-31

    The modified Purex process flowsheet is based on combination of all irradiated materials, their joint dissolution and reprocessing as a NPP spent fuel solution with abnormal Pu content after addition of recycled depleted U concentrate. Some groups of long-lived radionuclides could be completely recovered and localized at the stage of extraction reprocessing using 30% TBP. Studies were conducted for 10 y to develop the process for recovery, concentration, and localization of U, Pu, Np, Tc, and Zr within 1st extraction cycle. Actinides are recovered from high-level raffinate of this cycle after evaporation and feed adjustment. Results in this report show that combined deep recovery of several elements from highly irradiated materials by TBP extraction, for further transmutation, is possible. Selective stripping of Zr from solvent phase containing U, Pu, Np, and Tc is quite effective. Development of the modified Purex process is not complete; main problem to be solved should be oxide separation from the loop and permissible storage duration before reprocessing and reuse in the loop.

  9. Project C-018H, 242-A Evaporator/PUREX Plant Process Condensate Treatment Facility, functional design criteria. Revision 3

    International Nuclear Information System (INIS)

    Sullivan, N.

    1995-01-01

    This document provides the Functional Design Criteria (FDC) for Project C-018H, the 242-A Evaporator and Plutonium-Uranium Extraction (PUREX) Plant Condensate Treatment Facility (Also referred to as the 200 Area Effluent Treatment Facility [ETF]). The project will provide the facilities to treat and dispose of the 242-A Evaporator process condensate (PC), the Plutonium-Uranium Extraction (PUREX) Plant process condensate (PDD), and the PUREX Plant ammonia scrubber distillate (ASD)

  10. Some plutonium IV polymers properties in Purex process

    International Nuclear Information System (INIS)

    Scoazec, H.; Pasquiou, J.Y.; Germain, M.

    1990-01-01

    The metabolism of plutonium polymers in fuel reprocessing using the Purex process with tributylphosphate as solvent, and its practical consequence in real operation conditions are examined. Precipitation with dibutylphosphoric acid, a solvent degradation product, occurs both in extraction and stripping units when polymers are present. (author)

  11. Purex Process Improvements for Pu and NP Control in Total Actinide Recycle Flowsheets

    International Nuclear Information System (INIS)

    Birkett, J.E.; Carrott, M.J.; Crooks, G.; Fox, O.D.; Maher, C.J.; Taylor, R.J.; Woodhead, D.A.

    2006-01-01

    Significant improvements are required in the Purex process to optimise it for Advanced Fuel Cycles. Two key challenges we have identified are, firstly, developing more efficient methods for U/Pu separations especially at elevated Pu concentrations and, secondly, improving recovery, control and routing of Np in a modified Purex process. A series of Purex-like flowsheets for improved Pu separations based on hydroxamic acids and are reported. Purex-like flowsheets have been tested on a glovebox-housed 30-stage miniature centrifugal contactor train. A series of trials have been performed to demonstrate the processing of feeds with varying Pu contents ranging from 7 - 40% by weight. These flowsheets have demonstrated hydroxamic acids are excellent reagents for complexant stripping of Pu being able to achieve high decontamination factors (DF) on both the U and Pu product streams and co - recover Np with Pu. The advantages of a complexant-based approach are shown to be especially relevant when AFC scenarios are considered, where the Pu content of the fuel is expected to b e significantly higher. Recent results towards modifying the Purex process to improve recovery and control of Np in short residence time contactors are reported. Work on the development of chemical and process models to describe the complicated behaviour of Np under primary separation conditions (i.e. the HA extraction contactor) is described. To test the performance of the model a series of experiments were performed including testing of flowsheets on a fume-hood housed miniature centrifugal contactor train. The flowsheet was designed to emulate the conditions of a primar y separations contactor with the Np split between the U-solvent product and aqueous raffinate. In terms of Np routing the process model showed good agreement with flowsheet trial however much further work is required to fully understand this complex system. (authors)

  12. Production and remediation of low-sludge, simulated Purex waste glasses, 1: Effects of sludge oxide additions on melter operation

    International Nuclear Information System (INIS)

    Ramsey, W.G.

    1993-01-01

    Glass produced during the Purex 4 campaigns of the Integrated Defense Waste Processing Facility (DWPF) Melter System (IDMS) and the 774 Research Melter contained a lower fraction of sludge components than targeted by the Product Composition Control System (PCCS). Purex 4 glass was more durable than the benchmark (EA) glass, but less durable than most simulated SRS high-level waste glasses. Also, Purex 4 glass was considerably less durable than predicted by the algorithm which will be used to control production of DWPF glass. A melter run was performed using the 774 Research Melter to determine if the initial PCCS target composition determined for Purex 4 would produce acceptable glass whose durability could be accurately modeled by Hydration Thermodynamics. Reagent grade oxides and carbonates were added to Purex 4 melter feed stock to simulate a higher sludge loading. Each canister of glass produced was sampled and the composition, crystallinity, and durability was determined. This document details the melter operation and composition and crystallinity analyses

  13. Disposition of PUREX facility tanks D5 and E6 uranium and plutonium solutions

    International Nuclear Information System (INIS)

    Harty, D.P.

    1993-12-01

    Approximately 9 kilograms of plutonium and 5 metric tons of uranium in a 1 molar nitric acid solution are being stored in two PUREX facility vessels, tanks D5 and E6. The plutonium was accumulated during cleanup activities of the plutonium product area of the PUREX facility. Personnel at PUREX recently completed a formal presentation to the Surplus Materials Peer Panel (SMPP) regarding disposition of the material currently in these tanks. The peer panel is a group of complex-wide experts who have been chartered by EM-64 (Office of Site and Facility Transfer) to provide a third party independent review of disposition decisions. The information presented to the peer panel is provided in the first section of this report. The panel was generally receptive to the information provided at that time and the recommendations which were identified

  14. Waste Feed Delivery Purex Process Connector Design Pressure

    International Nuclear Information System (INIS)

    BRACKENBURY, P.J.

    2000-01-01

    The pressure retaining capability of the PUREX process connector is documented. A context is provided for the connector's current use within existing Projects. Previous testing and structural analyses campaigns are outlined. The deficient condition of the current inventory of connectors and assembly wrenches is highlighted. A brief history of the connector is provided. A bibliography of pertinent references is included

  15. Photochemical technique for reduction of uranium and subsequently plutonium in the Purex process

    International Nuclear Information System (INIS)

    Goldstein, M.; Barker, J.J.; Gangwer, T.

    1976-09-01

    A photochemical modification of the Purex process is described in which a purified side stream of UO 2 ++ ion is reduced to U +4 outside the radioactive area of the reprocessing plant. The U +4 is then cycled back to step 2 of the Purex process to reduce the plutonium and effect separation within the partitioning column. This process is shown to be very energy efficient and compatible with existing conventional lamp technology. Preliminary cost estimates of the energy requirements for photon production are essentially negligible. Conceptual systems and photochemical reactor designs are presented. Potential benefits of this system are discussed

  16. Sampling and Analysis Plan for PUREX canyon vessel flushing

    International Nuclear Information System (INIS)

    Villalobos, C.N.

    1995-01-01

    A sampling and analysis plan is necessary to provide direction for the sampling and analytical activities determined by the data quality objectives. This document defines the sampling and analysis necessary to support the deactivation of the Plutonium-Uranium Extraction (PUREX) facility vessels that are regulated pursuant to Washington Administrative Code 173-303

  17. The study of reductive reextraction of plutonium in the Purex process

    International Nuclear Information System (INIS)

    Poczynajlo, A.

    1985-01-01

    The methods of separation of U and Pu in the Purex process and the thermodynamic and kinetic properties of Pu(4) reductants are discussed. The kinetic equation of the process of reductive reextraction of plutonium for the first order reaction with respect to Pu(4) is derived. The kinetics of plutonium reextraction with the use of uranium (4), ascorbic acid and other reductants has been studied. The necessity of application of the stoichiometric excess of reductant has been explained by simultaneously occured reoxidation process of plutonium. The method of calculation of the steady- state plutonium concentration profiles has been elaborated for counter-current separation of U and Pu in multistage contactor. 90 refs., 20 tabs., 29 figs. (author)

  18. Purex optimization by computer simulation

    International Nuclear Information System (INIS)

    Campbell, T.G.; McKibben, J.M.

    1980-08-01

    For the past 2 years computer simulation has been used to study the performance of several solvent extraction banks in the Purex facility at the Savannah River Plant in Aiken, South Carolina. Individual process parameters were varied about their normal base case values to determine their individual effects on concentration profiles and end-stream compositions. The data are presented in graphical form to show the extent to which product losses, decontamination factors, solvent extraction bank inventories of fissile materials, and other key properties are affected by process changes. Presented in this way, the data are useful for adapting flowsheet conditions to a particular feed material or product specification, and for evaluating nuclear safety as related to bank inventories

  19. Environmental report of Purex Plant and Uranium Oxide Plant - Hanford reservation

    International Nuclear Information System (INIS)

    1979-04-01

    A description of the site, program, and facilities is given. The data and calculations indicate that there will be no significant adverse environmental impact from the resumption of full-scale operations of the Purex and Uranium Oxide Plants. All significant pathways of radionuclides in Purex Plant effluents are evaluated. This includes submersion in the airborne effluent plumes, consumption of drinking water and foodstuffs irrigated with Columbia River water, ingestion of radioactive iodine through the cow-to-milk pathway, consumption of fish, and other less significant pathways. A summary of research and surveillance programs designed to assess the possible changes in the terresstrial and aquatic environments on or near the Hanford Reservation is presented. The nonradiological discharges to the environment of prinicpal interest are chemicals, sewage, and solid waste. These discharges will not lead to any significant adverse effects on the environment

  20. Evaluation of consequence due to higher hydrazine content in partitioning stream of PUREX process

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, K. Suresh [Bhabha Atomic Research Centre, Mumbai (India). Special Nuclear Recycle Facility

    2016-07-01

    Hydrazine nitrate is being used as a stabilizer for U(IV) as well as Pu(III) during partitioning of Pu in PUREX process by scavenging the nitrous acid present along with nitric acid. As hydrazine hydrate as well as its salts have been successfully used for scrubbing of degradation products of TBP to aqueous phase, experiments were conducted to evaluate the consequence of hydrazine content during Pu partitioning. It was observed that higher amount of hydrazine nitrate along with uranous nitrate in the partitioning stream of PUREX process leads to build up of DBP in aqueous phase and resulted in precipitation of Pu.

  1. Solvent distillation studies for a purex reprocessing plant

    International Nuclear Information System (INIS)

    Ginisty, C.; Guillaume, B.

    1990-01-01

    A distillation system has been developed for regeneration of Purex solvent and will be implemented for the first time in a reprocessing plant. The results are described and analyzed, with emphasis on laboratory experiments which were made with a radioactive plant solvent. Particularly the distillation provides a good separation of solvent degradation products, which was verified by measurements of interfacial tension and plutonium or ruthenium retention. 16 refs., 3 figs., 5 tabs

  2. Removal of radionuclides from radioactive effluents of Purex origin using biomass banana pith as sorbant

    International Nuclear Information System (INIS)

    Ramanujam, A.; Dhami, P.S.; Kannan, R.; Das, S.K.; Naik, P.W.; Gopalakrishnan, V.; Kansra, V.P.; Balu, K.

    1998-06-01

    Investigations have been carried out on the applicability of dried banana pith (inner stem) for the sorption of various radionuclides viz. U, Pu, 241 Am, 144 Ce, 147 Pm, 152+154 Eu and 137 Cs which are generally present at trace level in Purex process waste effluents. The sorption of trivalent radionuclides as well as tetravalent plutonium was found to be high at pH 2, whereas sorption of uranium was found to be maximum at pH 6. Cesium was not found to be sorbed. 241 Am sorption was investigated in detail as a representative element of trivalent actinides and fission products to study the general trend. Though its sorption was kinetically slow, near-quantitative sorption was observed on prolonged contact. 241 Am sorption was studied in presence of NaNO 3 (up to 1 M) and Nd(III) up to 500 mg/l. Whereas no significant change in distribution ratios (D) was observed in the presence of NaNO 3 , it increased with neodymium concentration in the range tested. This indicates the effectiveness of the biomass as sorbent even in presence of sodium salts. Sorbed metal ions could be recovered by leaching with 2 M nitric acid. The dried biomass samples prepared from different sources were found to be stable for months and gave similar results on testing. The biomass was tested for its applicability for sorbing radionuclides present in Purex evaporator condensate and diluted high level waste solution on once through basis. The sorption capacity of banana pith for trivalent actinide-lanthanide is in the range of 60 mg/g banana pith. The results indicate that the biomass can be used effectively for the treatment of Purex Waste effluents for the removal of strontium, tri- and tetravalent actinides and fission products. The biomass was also tested for the sorption of toxic metal ions viz. Sr, Hg, Pb, Cr, Cd, and As from a nitrate solution at pH 2 and 4. D values followed the order Hg>Sr>Cd>Pb at pH 2, with Cr and As showing no uptake. These results indicate the potential of this

  3. Strategy and current state of research on enhanced iodine separation during spent fuel reprocessing by the Purex process

    Energy Technology Data Exchange (ETDEWEB)

    Devisme, F.; Juvenelle, A.; Touron, E. [CEA Valrho, Dir. de l' Energie Nucleaire, DEN/DRCP, 30 - Marcoule (France)

    2001-07-01

    An enhanced separation process designed to recover and purify molecular iodine desorbed during dissolution is described in the context of {sup 129}I management in the Purex process for transmutation or interim storage. It involves reducing acid scrubbing with hydroxyl-ammonium nitrate followed by oxidation with hydrogen peroxide to obtain selective desorption. The stoichiometry and kinetics are determined for each step and an experimental validation program is now in progress using a small pilot facility equipped with a scrubbing column. The technical feasibility of the process has already been demonstrated: room-temperature scrubbing with a HAN solution (0,5 mol.L{sup -1}) at a pH of about 5 results in 99% iodine trapping efficiency; the subsequent desorption yield is 99,5%. (author)

  4. Strategy and current state of research on enhanced iodine separation during spent fuel reprocessing by the Purex process

    International Nuclear Information System (INIS)

    Devisme, F.; Juvenelle, A.; Touron, E.

    2001-01-01

    An enhanced separation process designed to recover and purify molecular iodine desorbed during dissolution is described in the context of 129 I management in the Purex process for transmutation or interim storage. It involves reducing acid scrubbing with hydroxyl-ammonium nitrate followed by oxidation with hydrogen peroxide to obtain selective desorption. The stoichiometry and kinetics are determined for each step and an experimental validation program is now in progress using a small pilot facility equipped with a scrubbing column. The technical feasibility of the process has already been demonstrated: room-temperature scrubbing with a HAN solution (0,5 mol.L -1 ) at a pH of about 5 results in 99% iodine trapping efficiency; the subsequent desorption yield is 99,5%. (author)

  5. PUREX (SAMCONS) uninterruptible power supply (UPS) acceptance test procedure

    International Nuclear Information System (INIS)

    Blackaby, W.B.

    1997-01-01

    This Acceptance Test Procedure for the PUREX Surveillance and Monitoring and Control System (SAMCONS) Uninterruptible Power Supply (UPS) provides for testing and verifying the proper operation of the control panel alarms and trouble functions, the 6roper functioning of the AC inverter, ability of the battery supply to maintain the SAMCONS load for a minimum of two hours , and proper interaction with the SAMCONS Video graphic displays for alarm displays

  6. Calculation code revised MIXSET for Purex process

    International Nuclear Information System (INIS)

    Gonda, Kozo; Oka, Koichiro; Fukuda, Shoji.

    1979-02-01

    Revised MIXSET is a FORTRAN IV calculation code developed to simulate steady and transient behaviors of the Purex extraction process and calculate the optimum operating condition of the process. Revised MIXSET includes all the functions of MIXSET code as shown below. a) Maximum chemical system of eight components can be handled with or without mutual dependence of the distribution of components. b) The flowrate and concentration of feed can be renewed successively at any state, transient or steady, for searching optimum operating conditions. c) Optimum inputs of feed concentrations and flowrates can be calculated to satisfy both of specification and recovery rate of a product. d) Radioactive decay reactions can be handled on each component. Besides these functions, the following chemical reactions concerned in Purex process are newly-included in Revised MIXSET code and the quantitative changes of components such as H + , U(IV), U(VI), Pu(III), Pu(IV), NH 2 OH, N 2 H 4 can be simulated. 1st Gr. (i) reduction of Pu(IV); U 4+ + 2Pu 4+ + 2H 2 O → UO 2 2+ + 2Pu 3+ + 4H + . (ii) oxidation of Pu(III); 2Pu 3+ + 3H + + NO 3 - → 2Pu 4+ + HNO 2 + H 2 O. (iii) oxidation of U(IV); U 4+ + NO 3 - + H 2 O → UO 2 2+ + H + + HNO 2 2U 4+ + O 2 + 2H 2 O → 2UO 2 2+ + 4H + . (iv) decomposition of HNO 2 ; HNO 2 + N 2 H 5 + → HN 3 + 2H 2 O + H + . (author)

  7. Stability and modification of passive films of new PUREX-materials

    International Nuclear Information System (INIS)

    Schultze, J.W.; Siemensmeyer, B.; Patzelt, T.

    1991-10-01

    The valve metals Ti, Zr and others and their alloys can be used in nitric acid solutions of the Purex process. They are protected by passive films which are stable at least at low temperatures and concentrations. Electrochemical investigations and corrosion tests are applied to check improvements of the materials. Niobium can be used to substitute the very expensive tantalum. Electrochemical and analytical investigations show the formation of the corrosion stable oxide film. Special problems are treated, such as the stability of welded joints or the influence of radioactive irradiation. α-radiation and hot atoms are simulated by ion implantation, β- and γ-radiation are simulated by laser light. In both types of experiments no decrease of stability is indicated. The alloy Ti5Ta is more stable than Ti, but it is not as good as Ta. Other alloys of Ti were investigated, but they are not suitable for the Purex process. New protection layers are tested. With respect to their preparation as well as their corrosion stability, ANOF-films are promising, but TiN-films are not stable enough. (orig.) With 71 refs., 7 tabs., 71 figs [de

  8. Criticality prevention specifications thorium--uranium-233 separations in the Purex Plant

    International Nuclear Information System (INIS)

    Matheison, W.E.; Oberg, G.C.; Ritter, G.L.

    1970-01-01

    The specifications in this document define the limits or restrictions required to maintain an acceptably low probability of the occurrence of a nuclear chain reaction in the Purex Plant while processing irradiated thoria targets. These criticality prevention specifications do not stipulate the system, procedures, or mechanisms to permit operation within the limits or restrictions

  9. Studies in support of an SNM cutoff agreement: The PUREX exercise

    International Nuclear Information System (INIS)

    Stanbro, W.D.; Libby, R.; Segal, J.

    1995-01-01

    On September 23, 1993, President Clinton, in a speech before the United Nations General Assembly, called for an international agreement banning the production of plutonium and highly enriched uranium for nuclear explosive purposes. A major element of any verification regime for such an agreement would probably involve inspections of reprocessing plants in Nuclear Nonproliferation Treaty weapons states. Many of these are large facilities built in the 1950s with no thought that they would be subject to international inspection. To learn about some of the problems that might be involved in the inspection of such large, old facilities, the Department of Energy, Office of Arms Control and Nonproliferation, sponsored a mock inspection exercise at the PUREX plant on the Hanford Site. This exercise examined a series of alternatives for inspections of the PUREX as a model for this type of facility at other locations. A series of conclusions were developed that can be used to guide the development of verification regimes for a cutoff agreement at reprocessing facilities

  10. Uranium decontamination in Purex second plutonium cycle: An example of solvent extraction modeling

    International Nuclear Information System (INIS)

    Hsu, T.C.

    1986-01-01

    The existing Purex flowsheet used in the second plutonium cycle at the Savannah River Plant (SRP) does not remove uranium from the plutonium stream. To develop new flowsheets for the Purex second plutonium cycle, computer simulation using SEPHIS was used. SEPHIS is an ORNL-developed solvent extraction simulation code. Box-Wilson experimental design was used to select the minimum set of process conditions simulated. The calculated results were plotted into three-dimensional response surfaces by SAS/Graph (statistical analysis systems). These surfaces provide a broad and complete overview of the responses. Specific ranges of key variables were then investigated. The second series of process simulations identified flowsheets that provide high uranium decontamination while meeting all other key process requirements. The proposed flowsheet consists of modifying the existing 2B bank flowsheet by relocating the feed, increasing the extractant acidity, and adding a scrub stream. The nuclear safety issue was also examined

  11. Control measurement system in purex process

    International Nuclear Information System (INIS)

    Mani, V.V.S.

    1985-01-01

    The dependence of a bulk facility handling Purex Process on the control measurement system for evaluating the process performance needs hardly be emphasized. process control, Plant control, inventory control and quality control are the four components of the control measurement system. The scope and requirements of each component are different and the measurement methods are selected accordingly. However, each measurement system has six important elements. These are described in detail. The quality assurance programme carried out by the laboratory as a mechanism through which the quality of measurements is regularly tested and stated in quantitative terms is also explained in terms of internal and external quality assurance, with examples. Suggestions for making the control measurement system more responsive to the operational needs in future are also briefly discussed. (author)

  12. Modelling of uranium/plutonium splitting in purex process

    International Nuclear Information System (INIS)

    Boullis, B.; Baron, P.

    1987-06-01

    A mathematical model simulating the highly complex uranium/plutonium splitting operation in PUREX process has been achieved by the french ''Commissariat a l'Energie Atomique''. The development of such a model, which includes transfer and redox reactions kinetics for all the species involved, required an important experimental work in the field of basis chemical data acquisition. The model has been successfully validated by comparison of its results with those of specific trials achieved (at laboratory scale), and with the available results of the french reprocessing units operation. It has then been used for the design of french new plants splitting operations

  13. Reprocessing of spent nuclear fuel, Annex 2: Chemical-technology study of the modified 'Purex' process Chemical and radiochemical control analyses; Prerada isluzenog nuklearnog goriva, Prilog 2: Hemijsko tehnolosko ispitivanje modifikovanog 'purex' procesa

    Energy Technology Data Exchange (ETDEWEB)

    Gal, I [Institute of Nuclear Sciences Boris Kidric, Laboratorija za hemiju visoke aktivnosti, Vinca, Beograd (Serbia and Montenegro)

    1964-12-15

    The objective of this task was testing of the modified purex process in the constructed separation cell, and verification of the reliability and efficiency of the process. Extractors used were 1BX, 1BS and 1C. testing was done with syntetic solutions.

  14. Effect of Entrainment and Overflow Occurrences on Concentration Profile in PUREX Flow Sheet

    International Nuclear Information System (INIS)

    Ueda, Yoshinori; Ishii, Junichi; Matsumoto, Shiro

    2003-01-01

    A deviation in the operational condition of a mixer settler and a centrifugal contactor causes an entrainment or an overflow, which affects the concentration profile. Although there has been no quantitative study about the effect of such abnormal flows on the concentration profile, the occurrence of such abnormal flows has been severely restricted for a PUREX flow sheet. However, the restriction of abnormal flows can be relaxed when the effect of such flows is limited within the allowable range such that the concentration of the product does not deviate from its specification. This relaxation could serve to benefit a continuous operation under a certain degree of deviation from the operational condition and a smaller design load of a solvent extractor. From this viewpoint, the relationship between the magnitude of abnormal flows and the effect of them on the process was studied quantitatively using a specially developed code in a wide range of PUREX flow sheet conditions, and the possibility of this relaxation was investigated. The results showed that the effect of the abnormal flow on the concentration in the organic outflow or aqueous raffinate was dominated by the leakage fraction under normal conditions regardless of each specific flow sheet condition. The common correlations were found between the leakage fraction of uranium and plutonium under the occurrence of abnormal flows and that under no abnormal flow for the stripping and extracting conditions, respectively. Comparing the given correlations and the usual specification of the leakage fraction of uranium and plutonium suggested that the restriction of the abnormal flows could be relaxed for a usual PUREX flow sheet

  15. Advanced Purex process for the new French reprocessing plants

    International Nuclear Information System (INIS)

    Viala, M.; Ledermann, P.; Pradel, P.

    1993-01-01

    The paper describes the main process innovations of the new Cogema reprocessing plants of La Hague (UP3 and UP2 800). Major improvements of process like the use of rotary dissolvers and annular columns, and also entirely new processes like solvent distillation and plutonium oxidizing dissolution, yield an advanced Purex process. The results of these innovations are significant improvements for throughput, end-products purification performances and waste minimization. They contribute also to limit personnel exposure. The main results of the first three years of operation are described. (author). 3 refs., 5 figs

  16. Pretreatment of Hanford purex plant first-cycle waste

    International Nuclear Information System (INIS)

    Gibson, M.W.; Gerboth, D.M.; Peters, B.B.

    1987-01-01

    A process has been developed to pretreat neutralized, first-cycle high-level waste from the fuels reprocessing facility (PUREX Plant) at the Hanford Site. The process separates solids from the supernate liquid, which contains soluble salts. The solids, including most of the fission products and transuranic elements, may then be vitrified for disposal, while the low-level supernate stream may be processed into a less expensive grout waste form. The process also includes ion exchange treatment of the separated supernate stream to remove radiocesium. A flow sheet based on these operations was completed to support a planned demonstration of the process in the Hanford site B Plant canyon facility

  17. Process specifications and standards for the 1970 thorium campaign in the Purex Plant

    International Nuclear Information System (INIS)

    Van der Cook, R.E.; Ritter, G.L.

    1970-01-01

    The process specifications and standards for thorium processing operations in the Purex Plant are presented. These specifications represent currently known limits within which plant processing conditions must be maintained to meet defined product requirements safely and with minimum effect on equipment service life. These specifications cover the general areas of feed, essential materials, and chemical hazards

  18. Surveillance and Maintenance Plan for the Plutonium Uranium Extraction (PUREX) Facility

    International Nuclear Information System (INIS)

    Woods, P.J.

    1998-05-01

    This document provides a plan for implementing surveillance and maintenance (S ampersand M) activities to ensure the Plutonium Uranium Extraction (PUREX) Facility is maintained in a safe, environmentally secure, and cost-effective manner until subsequent closure during the final disposition phase of decommissioning. This plan has been prepared in accordance with the guidelines provided in the U.S. Department of Energy (DOE), Office of Environmental Management (EM) Decommissioning Resource Manual (DOE/EM-0246) (DOE 1995), and Section 8.6 of TPA change form P-08-97-01 to the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) (Ecology, et al. 1996). Specific objectives of the S ampersand M program are: Ensure adequate containment of remaining radioactive and hazardous material. Provide security control for access into the facility and physical safety to surveillance personnel. Maintain the facility in a manner that will minimize potential hazards to the public, the environment, and surveillance personnel. Provide a plan for the identification and compliance with applicable environmental, safety, health, safeguards, and security requirements

  19. Solar applications analysis for energy storage

    Science.gov (United States)

    Blanchard, T.

    1980-01-01

    The role of energy storage as it relates to solar energy systems is considered. Storage technologies to support solar energy applications, the status of storage technologies, requirements and specifications for storage technologies, and the adequacy of the current storage research and development program to meet these requirements are among the factors discussed. Emphasis is placed on identification of where the greatest potential exists for energy storage in support of those solar energy systems which could have a significant impact on the U.S. energy mix.

  20. Di-hydroxyurea-a Promising Reducing Reagent for the U/Pu split in the PUREX process

    Energy Technology Data Exchange (ETDEWEB)

    Taihong, Yan; Weifang, Zheng; Guoan, Ye; Yu, Zhang; Liang, Xian; Ying, Di; Xiaoyan, Bian [Department of Radiochemistry, China Institute of Atomic Energy - CIAE, Beijing 102413 (China)

    2009-06-15

    In the reprocessing of spent nuclear fuel by the Purex process, the separation of U and Pu is a major stage. This is commonly achieved by a redox process, in which a reducing agent (e.g. U(IV) or (FeII)) and a stabiliser (e.g. N{sub 2}H{sub 4} or NH{sub 2}SO{sub 3}H) are added to reduce extractable Pu{sup 4+} to un-extractable Pu{sup 3+}. The stabiliser prevents the nitrous acid catalysed re-oxidation of Pu(III) back to Pu(IV). One of the key objectives is to reduce both the number of solvent extraction cycles and the waste stream volumes [1]. One option for Advanced Purex flowsheets is to adopt a new salt-free reductant in the U/Pu split. Di-hydroxyurea(DHU)-a new Reducing reagent was synthesized with tri-associated solid phosgene (Bis(trichloromethyl)Carbonate) solved in dioxane and hydroxylamine hydrochloride solved in potassium acetate solution. The Reduction of Pu(IV) by DHU was investigated using UV-Vis spectrophotometer. The reduction back-extraction behavior of Pu(IV) in 30%TBP /OK was firstly investigated under conditions of different temperature, different concentration of DHU and HNO{sub 3} and various phase contract time respectively.The results showed that Pu(IV) in organic phase can be stripped rapidly to aqueous phase by DHU. Simulating the 1B contactor of the Purex process by DHU with nitric acid solution as the stripping agent,the separation factors of uranium/plutonium can reach 2.1 10{sup 4}. This indicates that DHU is a promising salt free agent for uranium/plutonium separation. (authors)

  1. Consolidation of the EXAm process: towards the reprocessing of a concentrated PUREX raffinate

    Energy Technology Data Exchange (ETDEWEB)

    Vanel, V.; Bollesteros, M.J.; Marie, C.; Montuir, M.; Pacary, V.; Antegnard, F.; Costenoble, S.; Boyer-Deslys, V. [CEA Marcoule, Nuclear Energy Division, Radiochemistry and Processes Department, Bagnols-sur-Ceze, F-30207 (France)

    2016-07-01

    Recycling americium alone from the spent fuel is an important issue currently studied for the future nuclear cycle (Generation IV systems) as Am is one of the main contributors to the long-term radiotoxicity and heat power of final waste. The solvent extraction process called EXAm has been developed by the CEA to enable the recovery of Am alone from a PUREX raffinate (with U, Np and Pu already removed). A mixture of DMDOHEMA and HDEHP diluted in TPH is used as the solvent and the Am/Cm selectivity is improved using TEDGA as a selective complexing agent to maintain Cm and the heavier lanthanides in the acidic aqueous phase (HNO{sub 3} 5-6 M). Americium is then selectively stripped from the light lanthanides at low acidity (pH 2.5-3) with a poly-aminocarboxylic acid (DTPA). An additional step is necessary before Am recovery, in order to strip molybdenum which would otherwise be complexed by DTPA and contaminate the Am raffinate. In order to make the process and its associated future plant more compact, the objective is now to adapt the EXAm process to a concentrated raffinate. With a concentrated PUREX raffinate, the process operates under conditions close to saturation both for the solvent and complexing agent TEDGA during the Am extraction step. Consequently, some changes were needed to adapt the flowsheet to higher concentrations of cations. Before the test on a real PUREX raffinate in the CBP shielded line at ATALANTE (at the end of 2015), the EXAm flowsheet had to be consolidated and achievable target performances ensured. A series of experiments and tests was performed: on laboratory scale (batch experiments), to identify the good operating conditions and to simulate the main phenomena involved (2010-2014); first on an inactive surrogate feed solution at G1 facility (2011-2013), and then on a surrogate feed solution with trace amounts of americium and curium (spiked test) in the C17 shielded line at ATALANTE (2014). (authors)

  2. Testing and economical evaluation of U(IV) in Purex

    International Nuclear Information System (INIS)

    Hoisington, J.E.; Hsu, T.C.

    1983-01-01

    The use of uranous nitrate, U(IV), as a plutonium reductant in the Purex solvent extraction process could significantly reduce the waste generation at the Savannah River Plant. The current reductant is a ferrous sulfamate (FS)/hydroxylamine nitrate (HAN) mixture. The iron and sulfate in the FS are major contributors to waste generation. The U(IV) reductant oxidizes to U(VI) producing no waste. The Savannah River Laboratory has developed an efficient electrochemical cell for U(IV) production and has demonstrated the effectiveness of U(IV) as a plutonium reductant. Plant tests and economic analyses are currently being conducted to determine the cost effectiveness of U(IV) implementation. The results of recent studies are presented

  3. Destruction of nitric acid in purex process streams by formaldehyde treatment

    International Nuclear Information System (INIS)

    Kumar, S.V.; Nadkarni, M.N.; Mayankutty, P.C.; Pillai, N.S.; Shinde, S.S.

    1974-01-01

    Efficiency of destruction of nitric acid in purex process streams with formaldehyde has been studied as a function of initial acidity, uranium concentration, rate of addition of formaldehyde and temperature in the range 6 - 0.5M acid. Guidelines are suggested for the accurate calculations of the volume of formaldehyde needed to effect the required change of acidity at 100degC. Sodium nitrite has been established as a 'key' to initiate the reaction and water as an effective scrubber for collecting the acid fumes emanating from the reaction vessel. (author)

  4. Evaluation of Proposed New LLW Disposal Activity: Disposal of Aqueous PUREX Waste Stream in the Saltstone Disposal Facility

    International Nuclear Information System (INIS)

    Cook, J.R.

    2003-01-01

    The Aqueous PUREX waste stream from Tanks 33 and 35, which have been blended in Tank 34, has been identified for possible processing through the Saltstone Processing Facility for disposal in the Saltstone Disposal Facility

  5. Removal of fission product ruthenium from purex process solutions: thiourea as complexing agent

    International Nuclear Information System (INIS)

    Floh, B.; Abrao, A.

    1980-01-01

    A new method for the treatment of spent uranium fuel is presented. It is based on the Purex Process using thiourea to increase the ruthenium decontamination factor. Thiourea exhibits a strong tendency for the formation of coordination compounds in acidic media. This tendency serves as a basis to transform nitrosyl-ruthenium species into Ru /SC(NH)(NH 2 )/ 2+ and Ru /SC(NH)(NH 2 )/ 3 complexes which are unextractable by TBP-varsol. The best conditions for the ruthenium-thiourea complex formation were found to be: thiourea-ruthenium ratio (mass/mass) close to 42, at 75 0 C, 30 minutes reaction time and aging period of 60 minutes. The ruthenium decontamination factor for a single uranium extraction are ca. 80-100, not interfering with extraction of actinides. These values are rather high in comparison to those obtained using the conventional Purex Process (e.g. F.D. sub(Ru)=10). By this reason the method developed here is suitable for the treatment of spent uranium fuels. Thiourea (100g/l) scrubbing experiments of ruthenium, partially co-extracted with actinides, confirmed the possibility of its removal from the extract. A decontamination greater than 83,5% for ruthenium as fission product is obtained in two stages with this procedure. (Author) [pt

  6. Advanced Purex process and waste minimization at La Hague

    International Nuclear Information System (INIS)

    Masson, H.; Nouguier, H.; Bernard, C.; Runge, S.

    1993-01-01

    After a brief recall of the different aspects of the commercial irradiated fuel reprocessing, this paper presents the achievements of the recently commissioned UP3 plant at La Hague. The advanced Purex process implemented with a total waste management results in important waste volume minimization, so that the total volume of high-level and transuranic waste is lower than what it would be in a once-through cycle. Moreover, further minimization is still possible, based on an improved waste management. Cogema has launched the necessary program, which will lead to an overall volume of HLW and TRU wastes of less than 1 m 3 /t by the end of the decade, the maximum possible activity being concentrated in the glass

  7. Uranium/plutonium and uranium/neptunium separation by the Purex process using hydroxyurea

    International Nuclear Information System (INIS)

    Zhu Zhaowu; He Jianyu; Zhang Zefu; Zhang Yu; Zhu Jianmin; Zhen Weifang

    2004-01-01

    Hydroxyurea dissolved in nitric acid can strip plutonium and neptunium from tri-butyl phosphate efficiently and has little influence on the uranium distribution between the two phases. Simulating the 1B contactor of the Purex process by hydroxyurea with nitric acid solution as a stripping agent, the separation factors of uranium/plutonium and uranium/neptunium can reach values as high as 4.7 x 10 4 and 260, respectively. This indicates that hydroxyurea is a promising salt free agent for uranium/plutonium and uranium/neptunium separations. (author)

  8. Chemical reactor for a PUREX reprocessing plant of 200Kg U/day capacity

    International Nuclear Information System (INIS)

    Oliveria Lopes, M.J. de.

    1974-03-01

    Dissolution of spent reactor fuels in Purex process is studied. Design of a chemical reactor for PWR elements, 3% enriched uranium dioxide with zircaloy cladding, for a 200Kg/day uranium plant is the main objective. Chop-leach process is employed and 7.5M nitric acid is used. Non-criticality was obtained by safe geometry and checked by spectrum homogeneous calculus and diffusion codes. Fuel cycle is considered and decladding and dissolution are treated more accurately

  9. Calculation code MIXSET for Purex process

    International Nuclear Information System (INIS)

    Gonda, Kozo; Fukuda, Shoji.

    1977-09-01

    MIXSET is a FORTRAN IV calculation code for Purex process that simulate the dynamic behavior of solvent extraction processes in mixer-settlers. Two options permit terminating dynamic phase by time or by achieving steady state. These options also permit continuing calculation successively using new inputs from a arbitrary phase. A third option permits artificial rapid close to steady state and a fourth option permits searching optimum input to satisfy both of specification and recovery rate of product. MIXSET handles maximum chemical system of eight components with or without mutual dependence of the distribution of the components. The chemical system in MIXSET includes chemical reactions and/or decaying reaction. Distribution data can be supplied by third-power polynominal equations or tables, and kinetic data by tables or given constants. The fluctuation of the interfacial level height in settler is converted into the flow rate changes of organic and aqueous stream to follow dynamic behavior of extraction process in detail. MIXSET can be applied to flowsheet study, start up and/or shut down procedure study and real time process management in countercurrent solvent extraction processes. (auth.)

  10. Building a mass storage system for physics applications

    International Nuclear Information System (INIS)

    Holmes, H.; Loken, S.

    1991-03-01

    The IEEE Mass Storage Reference Model and forthcoming standards based on it provide a standardized architecture to facilitate designing and building mass storage systems, and standard interfaces so that hardware and software from different vendors can interoperate in providing mass storage capabilities. A key concept of this architecture is the separation of control and data flows. This separation allows a smaller machine to provide control functions, while the data can flow directly between high-performance channels. Another key concept is the layering of the file system and the storage functions. This layering allows the designers of the mass storage system to focus on storage functions, which can support a variety of file systems, such as the Network File System, the Andrew File System, and others. The mass storage system provides location-independent file naming, essential if files are to be migrated to different storage devices without requiring changes in application programs. Physics data analysis applications are particularly challenging for mass storage systems because they stream vast amounts of data through analysis applications. Special mechanisms are required, to handle the high data rates and to avoid upsetting the caching mechanisms commonly used for smaller, repetitive-use files. High data rates are facilitated by direct channel connections, where, for example, a dual-ported drive will be positioned by the mass storage controller on one channel, then the data will flow on a second channel directly into the user machine, or directly to a high capacity network, greatly reducing the I/O capacity required in the mass storage control computer. Intelligent storage allocation can be used to bypass the cache devices entirely when large files are being moved

  11. Twelve Principles for Green Energy Storage in Grid Applications.

    Science.gov (United States)

    Arbabzadeh, Maryam; Johnson, Jeremiah X; Keoleian, Gregory A; Rasmussen, Paul G; Thompson, Levi T

    2016-01-19

    The introduction of energy storage technologies to the grid could enable greater integration of renewables, improve system resilience and reliability, and offer cost effective alternatives to transmission and distribution upgrades. The integration of energy storage systems into the electrical grid can lead to different environmental outcomes based on the grid application, the existing generation mix, and the demand. Given this complexity, a framework is needed to systematically inform design and technology selection about the environmental impacts that emerge when considering energy storage options to improve sustainability performance of the grid. To achieve this, 12 fundamental principles specific to the design and grid application of energy storage systems are developed to inform policy makers, designers, and operators. The principles are grouped into three categories: (1) system integration for grid applications, (2) the maintenance and operation of energy storage, and (3) the design of energy storage systems. We illustrate the application of each principle through examples published in the academic literature, illustrative calculations, and a case study with an off-grid application of vanadium redox flow batteries (VRFBs). In addition, trade-offs that can emerge between principles are highlighted.

  12. Multifunctional Carbon Nanostructures for Advanced Energy Storage Applications

    Directory of Open Access Journals (Sweden)

    Yiran Wang

    2015-05-01

    Full Text Available Carbon nanostructures—including graphene, fullerenes, etc.—have found applications in a number of areas synergistically with a number of other materials. These multifunctional carbon nanostructures have recently attracted tremendous interest for energy storage applications due to their large aspect ratios, specific surface areas, and electrical conductivity. This succinct review aims to report on the recent advances in energy storage applications involving these multifunctional carbon nanostructures. The advanced design and testing of multifunctional carbon nanostructures for energy storage applications—specifically, electrochemical capacitors, lithium ion batteries, and fuel cells—are emphasized with comprehensive examples.

  13. Pricing and Application of Electric Storage

    Science.gov (United States)

    Zhao, Jialin

    Electric storage provides a vehicle to store power for future use. It contributes to the grids in multiple aspects. For instance, electric storage is a more effective approach to provide electricity ancillary services than conventional methods. Additionally, electric storage, especially fast-responding units, allows owners to implement high-frequency power transactions in settings such as the 5-min real-time trading market. Such high-frequency power trades were limited in the past. However, as technology advances, the power markets have evolved. For instance, the California Independent System Operator now supports the 5-min real-time trading and the hourly day-ahead ancillary services bidding. Existing valuation models of electric storage were not designed to accommodate these recent market developments. To fill this gap, I focus on the fast-responding grid-level electric storage that provides both the real-time trading and the day-ahead ancillary services bidding. To evaluate such an asset, I propose a Monte Carlo Simulation-based valuation model. The foundation of my model is simulations of power prices. This study develops a new simulation model of electric prices. It is worth noting that, unlike existing models, my proposed simulation model captures the dependency of the real-time markets on the day-ahead markets. Upon such simulations, this study investigates the pricing and the application of electric storage at a 5-min granularity. Essentially, my model is a Dynamic Programming system with both endogenous variables (i.e., the State-of-Charge of electric storage) and exogenous variables (i.e., power prices). My first numerical example is the valuation of a fictitious 4MWh battery. Similarly, my second example evaluates the application of two units of 2MWh batteries. By comparing these two experiments, I investigate the issues related to battery configurations, such as the impacts of splitting storage capability on the valuation of electric storage.

  14. Hydrogen Storage for Aircraft Applications Overview

    Science.gov (United States)

    Colozza, Anthony J.; Kohout, Lisa (Technical Monitor)

    2002-01-01

    Advances in fuel cell technology have brought about their consideration as sources of power for aircraft. This power can be utilized to run aircraft systems or even provide propulsion power. One of the key obstacles to utilizing fuel cells on aircraft is the storage of hydrogen. An overview of the potential methods of hydrogen storage was compiled. This overview identifies various methods of hydrogen storage and points out their advantages and disadvantages relative to aircraft applications. Minimizing weight and volume are the key aspects to storing hydrogen within an aircraft. An analysis was performed to show how changes in certain parameters of a given storage system affect its mass and volume.

  15. A review on phase change energy storage: materials and applications

    International Nuclear Information System (INIS)

    Farid, Mohammed M.; Khudhair, Amar M.; Razack, Siddique Ali K.; Al-Hallaj, Said

    2004-01-01

    Latent heat storage is one of the most efficient ways of storing thermal energy. Unlike the sensible heat storage method, the latent heat storage method provides much higher storage density, with a smaller temperature difference between storing and releasing heat. This paper reviews previous work on latent heat storage and provides an insight to recent efforts to develop new classes of phase change materials (PCMs) for use in energy storage. Three aspects have been the focus of this review: PCM materials, encapsulation and applications. There are large numbers of phase change materials that melt and solidify at a wide range of temperatures, making them attractive in a number of applications. Paraffin waxes are cheap and have moderate thermal energy storage density but low thermal conductivity and, hence, require large surface area. Hydrated salts have larger energy storage density and higher thermal conductivity but experience supercooling and phase segregation, and hence, their application requires the use of some nucleating and thickening agents. The main advantages of PCM encapsulation are providing large heat transfer area, reduction of the PCMs reactivity towards the outside environment and controlling the changes in volume of the storage materials as phase change occurs. The different applications in which the phase change method of heat storage can be applied are also reviewed in this paper. The problems associated with the application of PCMs with regards to the material and the methods used to contain them are also discussed

  16. Separation of neptunium from uranium and plutonium in the Purex process

    International Nuclear Information System (INIS)

    Kolarik, Z.; Schuler, R.

    1984-01-01

    The possibility of removing neptunium from the Purex process in the first extraction cycle was investigated. Butyraldehyde was found to reduce Np(VI) to Np(V), but not Pu(IV) to Pu(III). Up to 99.7% Np can be separated from uranium and plutonium in the 1A extractor or, much more favourably, in an additional partitioning extractor. Hydroxylamine nitrate can be used for reducing Np(VI) to Np(V) in a uranium purification cycle at a high U concentration in the feed solution. Here the decontamination factor for Np can be as high as 2300 and is lowered if iron is present in the feed. (author)

  17. Combination RCRA groundwater monitoring plan for the 216-A-10, 216-A-36B, and 216-A-37-1 PUREX cribs

    International Nuclear Information System (INIS)

    Lindberg, J.W.

    1997-06-01

    This document presents a groundwater quality assessment monitoring plan, under Resource Conservation and Recovery Act of 1976 (RCRA) regulatory requirements for three RCRA sites in the Hanford Site's 200 East Area: 216-A-10, 216-A-36B, and 216-A-37-1 cribs (PUREX cribs). The objectives of this monitoring plan are to combine the three facilities into one groundwater quality assessment program and to assess the nature, extent, and rate of contaminant migration from these facilities. A groundwater quality assessment plan is proposed because at least one downgradient well in the existing monitoring well networks has concentrations of groundwater constituents indicating that the facilities have contributed to groundwater contamination. The proposed combined groundwater monitoring well network includes 11 existing near-field wells to monitor contamination in the aquifer in the immediate vicinity of the PUREX cribs. Because groundwater contamination from these cribs is known to have migrated as far away as the 300 Area (more than 25 km from the PUREX cribs), the plan proposes to use results of groundwater analyses from 57 additional wells monitored to meet environmental monitoring requirements of US Department of Energy Order 5400.1 to supplement the near-field data. Assessments of data collected from these wells will help with a future decision of whether additional wells are needed

  18. EXTRA·M: a computing code system for analysis of the Purex process with mixer settlers for reprocessing

    International Nuclear Information System (INIS)

    Tachimori, Shoichi

    1994-03-01

    A computer code system EXTRA·M, for simulation of transient behavior of the solutes in a multistage countercurrent extraction process, was developed aiming to predict the distribution and chemical behaviors of actinide elements, i.e., U, Pu, Np, and of technetium in the Purex process of fuel reprocessing. The mathematical model is applicable to a complete mixing stagewise contactor such as mixer settler and to the Purex, with tri-n-butylphosphate (TBP) and nitric acid system. The main characteristics of the EXTRA·M are as follows; i) Calculation of distribution ratios of the solutes is based on numerical equations of which parameter values are to be determined by a best fit method with a number of experimental data. ii) Total of 18 solutes; U(IV), U(VI), Pu(III), Pu(IV), Pu(V), Pu(VI), Np(IV), Np(V), Np(VI), Tc(IV), Tc(V), Tc(VI), Tc(VII), Zr(IV), HNO 3 , hydrazine, hydroxylamine nitrate and nitrous acid, are treated and rate equations of total 40 chemical reactions involving these solutes are incorporated. iii) Instantaneous change of flow conditions, i.e., concentration of the solutes and flow rate of the feeding solutions, is contrived by computation. iv) Reflux or bypass mode calculation, in which an aqueous raffinate stream is transferred to the preceding bank or stage, is possible. The present report explains the concept, assumptions and characteristics of the model, the material balance equations including distribution and reaction rate equations and their solution method, and the usefulness of the model by showing some examples of the verification results. A description and source program of EXTRA·M1, as an example, are listed in the annex. (J.P.N.) 63 refs

  19. A new concept for product refining in the Purex process

    International Nuclear Information System (INIS)

    Henrich, E.; Bauder, U.; Marquardt, R.

    1986-01-01

    In actual Purex plants the products are refined in additional solvent extraction cycles. Crystallization of uranyl and plutonyl nitrate from aqueous nitric acid solution is proposed as a potentially simpler product refining concept. Suitable crystallization conditions are being investigated in the laboratory using simulated and actual process solutions. A thorough removal of mother liquor is an essential purification step and well washed crystals usually contain less than 1% of an individual impurity. Crystallization simultaneously comprises a product concentration step. Hexavalent uranium can be separated from lower-valent plutonium. An outline of an integrated processing concept is given. Product refining by crystallization is compact; recycling of mother liquor plus wash acid prevents product loss and the generation of additional waste streams. (orig.) [de

  20. PUBG; purex solvent extraction process model. [IBM3033; CDC CYBER175; FORTRAN IV

    Energy Technology Data Exchange (ETDEWEB)

    Geldard, J.F.; Beyerlein, A.L.

    PUBG is a chemical model of the Purex solvent extraction system, by which plutonium and uranium are recovered from spent nuclear fuel rods. The system comprises a number of mixer-settler banks. This discrete stage structure is the basis of the algorithms used in PUBG. The stages are connected to provide for countercurrent flow of the aqueous and organic phases. PUBG uses the common convention that has the aqueous phase enter at the lowest numbered stage and exit at the highest one; the organic phase flows oppositely. The volumes of the mixers are smaller than those of the settlers. The mixers generate a fine dispersion of one phase in the other. The high interfacial area is intended to provide for rapid mass transfer of the plutonium and uranium from one phase to the other. The separation of this dispersion back into the two phases occurs in the settlers. The species considered by PUBG are Hydrogen (1+), Plutonium (4+), Uranyl Oxide (2+), Plutonium (3+), Nitrate Anion, and reductant in the aqueous phase and Hydrogen (1+), Uranyl Oxide (2+), Plutonium (4+), and TBP (tri-n-butylphosphate) in the organic phase. The reductant used in the Purex process is either Uranium (4+) or HAN (hydroxylamine nitrate).IBM3033;CDC CYBER175; FORTRAN IV; OS/MVS or OS/MVT (IBM3033), NOS 1.3 (CDC CYBER175); The IBM3033 version requires 150K bytes of memory for execution; 62,000 (octal) words are required by the CDC CYBER175 version..

  1. An advanced purex process based on salt-free reductants

    Energy Technology Data Exchange (ETDEWEB)

    He, Hui; Ye, Guoan; Tang, Hongbin; Zheng, Weifang; Li, Gaoliang; Lin, Rushan [China Institute of Atomic Energy, Beijing (China). Dept. of Radiochemistry

    2014-04-01

    An advanced plutonium and uranium recovery process has been established based on two organic reductants, N,N-dimethylhydroxylamine (DMHAN) and methylhydrazine (MH), as U/Pu separation reagents. This Advanced Purex process based on Organic Reductants (APOR) is composed of three cycles, including U/Pu co-decontamination/separation cycle, uranium purification cycle and plutonium purification cycle. Using DMHAN and MH as plutonium stripping reagents in the U/Pu co-decontamination/separation cycle and plutonium purification cycle, the APOR process exhibits high performance with following highlights: (1) the process is much simpler because of the elimination of Tc scrubbing operation and the supplement extraction operation, (2) high efficiency of U/Pu separation can be achieved in the first cycle, (3) plutonium product solution of high concentration can be obtained in the Pu purification cycle with a simple extraction operation instead of circumfluent extraction or evaporation of the plutonium solution. (orig.)

  2. A process to remove ammonia from PUREX plant effluents

    International Nuclear Information System (INIS)

    Moore, J.D.

    1990-01-01

    Zirconium-clad nuclear fuel from the Hanford N-Reactor is reprocessed in the PUREX (Plutonium Uranium Extraction) Plant operated by the Westinghouse Hanford Comapny. Before dissolution, cladding is chemically removed from the fuel elements with a solution of ammonium fluoride-ammonium nitrate (AFAN). a solution batch with an ammonia equivalent of about 1,100 kg is added to each fuel batch of 10 metric tons. This paper reports on this decladding process, know as the 'Zirflex' process which produces waste streams containing ammonia and ammonium slats. Waste stream treatment, includes ammonia scrubbing, scrub solution evaporation, residual solids dissolution, and chemical neutralization. These processes produce secondary liquid and gaseous waste streams containing varying concentrations of ammonia and low-level concentrations of radionuclides. Until legislative restrictions were imposed in 1987, these secondary streams were released to the soil in a liquid disposal 'crib' and to the atmosphere

  3. Chemical hydrogen storage material property guidelines for automotive applications

    Science.gov (United States)

    Semelsberger, Troy A.; Brooks, Kriston P.

    2015-04-01

    Chemical hydrogen storage is the sought after hydrogen storage media for automotive applications because of the expected low pressure operation (0.05 kg H2/kgsystem), and system volumetric capacities (>0.05 kg H2/Lsystem). Currently, the primary shortcomings of chemical hydrogen storage are regeneration efficiency, fuel cost and fuel phase (i.e., solid or slurry phase). Understanding the required material properties to meet the DOE Technical Targets for Onboard Hydrogen Storage Systems is a critical knowledge gap in the hydrogen storage research community. This study presents a set of fluid-phase chemical hydrogen storage material property guidelines for automotive applications meeting the 2017 DOE technical targets. Viable material properties were determined using a boiler-plate automotive system design. The fluid-phase chemical hydrogen storage media considered in this study were neat liquids, solutions, and non-settling homogeneous slurries. Material properties examined include kinetics, heats of reaction, fuel-cell impurities, gravimetric and volumetric hydrogen storage capacities, and regeneration efficiency. The material properties, although not exhaustive, are an essential first step in identifying viable chemical hydrogen storage material properties-and most important, their implications on system mass, system volume and system performance.

  4. Analysis of multi cloud storage applications for resource constrained mobile devices

    Directory of Open Access Journals (Sweden)

    Rajeev Kumar Bedi

    2016-09-01

    Full Text Available Cloud storage, which can be a surrogate for all physical hardware storage devices, is a term which gives a reflection of an enormous advancement in engineering (Hung et al., 2012. However, there are many issues that need to be handled when accessing cloud storage on resource constrained mobile devices due to inherent limitations of mobile devices as limited storage capacity, processing power and battery backup (Yeo et al., 2014. There are many multi cloud storage applications available, which handle issues faced by single cloud storage applications. In this paper, we are providing analysis of different multi cloud storage applications developed for resource constrained mobile devices to check their performance on the basis of parameters as battery consumption, CPU usage, data usage and time consumed by using mobile phone device Sony Xperia ZL (smart phone on WiFi network. Lastly, conclusion and open research challenges in these multi cloud storage apps are discussed.

  5. Advance purex process for the new reprocessing plants in France and in Japan

    International Nuclear Information System (INIS)

    Viala, M.

    1991-01-01

    In the early Eighties, Japanese utilities formed the Japan Nuclear Fuel Service Co (JNFS), which is in charge of the construction and the operation of the first commercial reprocessing plant in Japan to be erected in Rokkasho Village, Aomori Prefecture. Following a thorough worldwide examination of available processes and technologies, JNFS selected the French technology developed for UP3 and UP2 800 for the plants' main facilities. For these three new plants, the 40-year old PUREX process which is used worldwide for spent fuel reprocessing, has been significantly improved. This paper describes some of the innovative features of the selected processes

  6. Standardization of a method to study the distribution of Americium in purex process

    International Nuclear Information System (INIS)

    Dapolikar, T.T.; Pant, D.K.; Kapur, H.N.; Kumar, Rajendra; Dubey, K.

    2017-01-01

    In the present work the distribution of Americium in PUREX process is investigated in various process streams. For this purpose a method has been standardized for the determination of Am in process samples. The method involves extraction of Am with associated actinides using 30% TRPO-NPH at 0.3M HNO 3 followed by selective stripping of Am from the organic phase into aqueous phase at 6M HNO 3 . The assay of aqueous phase for Am content is carried out by alpha radiometry. The investigation has revealed that 100% Am follows the HLLW route. (author)

  7. Colorimetric determination of reducing normality in the Purex process

    International Nuclear Information System (INIS)

    Baumann, E.W.

    1983-07-01

    Adjustment of the valence state of plutonium from extractable Pu(IV) to nonextractable Pu(III) in the Purex process is accomplished by addition of reductants such as Fe(II), hydroxylamine nitrate (HAN), or U(IV). To implement on-line monitoring of this reduction step for improved process control at the Savannah River Plant, a simple colorimetric method for determining excess reductant (reducing normality) was developed. The method is based on formation of a colored complex of Fe(II) with FerroZine (Hach Chemical Company). The concentration of Fe(II) is determined directly. The concentration of HAN or U(IV), in addition to Fe(II), is determined indirectly as Fe(II), produced through reduction of Fe(III). Experimental conditions for a HAN-Fe(III) reaction of known stoichiometry were established. The effect of hydrazine, which stabilizes U(IV), was also determined. Real-time measurements of color development were made that simulated on-line performance. A laboratory analytical procedure is included. 5 references, 8 figures

  8. Spectrophotometric determination of nitrite in simulated Purex Process solutions

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, I.daC. de; Matsuda, H T; Araujo, B.F. de; Araujo, J.A. de

    1984-01-01

    A spectrophotometric method for nitrite determination in simulated Purex Process solutions is presented, utilizing the Griess reagent for the formation of the coloured azocompound with an absorption maximum at 525 nm. Molar absortivity was 36,262 and the sensitivity of the method 10/sup -6/M for nitrite. The calibration curve is linear in the range of 2 to 30..mu..g NO/sup -//sub 2//25 ml in cells of 1 cm optical path. The method can be used in the presence of uranium up to limits of an U/NO/sup -//sub 2/ ratio of 150. Test solutions were prepared to simulate composition and concentrations as obtained by irradiating standard fuel with a neutro flux of 3.2 x 10/sup 13/ n.s/sup -1/.cm/sup -2/, with a burn-up value of 33,000 Mwd/T and cooling time of two years. Nitrite determinations in these solutions were accurate within limits of 5%.

  9. Benefits and applications of modular hydroelectric pumped storage

    International Nuclear Information System (INIS)

    Koebbe, R.S.

    1991-01-01

    This paper reports on hydroelectric pumped storage which is the only proven and most efficient technology available for energy storage. It is used by utilities to provide peak and intermediate power and to optimize overall system performance. Because of increased environmental and regulatory constraints, few acceptable sites, long schedules, and huge financial commitments, large conventional pumped storage plants, are now virtually impossible to build. As an alternative, small modular pumped storage, with project sizes ranging from 25 MW to 200 MW, was created to overcome the difficulties of conventional projects. The modular approach involves standardizing the elements of a pumped storage plant by utilizing specialized siting techniques and optimizing design, equipment, and construction. Compared with conventional pumped storage, the modular design can reduce cost and expedite schedule; reduce environmental concerns and permitting obstacles; and expand applications of energy storage on a utility's system

  10. Separation of radio cesium from PUREX feed solution by sorption on composite ammonium molybdo phosphate (AMP)

    International Nuclear Information System (INIS)

    Singh, I.J.; Achuthan, P.V.; Jain, S.; Janardanan, C.; Gopalakrishnan, V.; Wattal, P.K.; Ramanujam, A.

    2001-01-01

    Composite AMP exchanger was developed and evaluated for separation of radio cesium from dissolver solutions of PUREX process using a column experiment. The composite shows excellent sorption of radio cesium from dissolver solutions without any loss of plutonium and uranium. The removal of radio cesium from dissolver solutions will help in lowering the degradation of tri-n-butyl phosphate (TBP) in the solvent extraction process and will also help in reducing the radiation related problems. (author)

  11. Application of electrochemical techniques in fuel reprocessing- an overview

    Energy Technology Data Exchange (ETDEWEB)

    Rao, M K; Bajpai, D D; Singh, R K [Power Reactor Fuel Reprocessing Plant, Tarapur (India)

    1994-06-01

    The operating experience and development work over the past several years have considerably improved the wet chemical fuel reprocessing PUREX process and have brought the reprocessing to a stage where it is ready to adopt the introduction of electrochemical technology. Electrochemical processes offer advantages like simplification of reprocessing operation, improved performance of the plant and reduction in waste volume. At Power Reactor Fuel Reprocessing plant, Tarapur, work on development and application of electrochemical processes has been carried out in stages. To achieve plant scale application of these developments, a new electrochemical cycle is being added to PUREX process at PREFRE. This paper describes the electrochemical and membrane cell development activities carried out at PREFRE and their current status. (author). 5 refs., 4 tabs.

  12. Potentiometric determination of uranium in simulated Purex Process solutions by acidiometry

    International Nuclear Information System (INIS)

    Cohen, V.H.; Matsuda, H.T.; Araujo, B.F. de; Araujo, J.A. de

    1983-01-01

    A potentiometric methods for sequential free acidity and uranium determination in simulated Purex Process solutions is described. An oxalate solution or a mixture of fluoride-oxalate pellets were used as complexing agent for free titration. Following this first equivalent point, uranium is determined-by indirect titration of H + liberated in the peruanate reaction. Some elements present in the standard fuel elements with a burn-up of 33.000 Mwd/t, neutron flux of 3,2 x 10 13 n.cm -2 .s -1 and cooling time of two years were considered as interfering elements in uranium analyses. As a substitute of Pu-IV, Th(NO 3 ) 4 solution was used. The method can be applied to aqueous and organic (TBP/diluent) solutions with 2% precision and 2% accuracy. (Autor) [pt

  13. Potentiometric determination of uranium in simulated Purex Process solutions by acidiometry

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, V H; Matsuda, H T; Araujo, B.F. de; Araujo, J.A. de

    1984-01-01

    A potentiometric methods for sequential free acidity and uranium determination in simulated Purex Process solutions is described. An oxalate solution or a mixture of fluoride-oxalate pellets were used as complexing agent for free titration. Following this first equivalent point, uranium is determined-by indirect titration of H/sup +/ liberated in the peruanate reaction. Some elements present in the standard fuel elements with a burn-up of 33.000 Mwd/t, neutron flux of 3,2 x 10/sup 13/n.cm/sup -2/.s/sup -1/ and cooling time of two years were considered as interfering elements in uranium analyses. As a substitute of Pu-IV, Th(NO/sub 3/)/sub 4/ solution was used. The method can be applied to aqueous and organic (TBP/diluent) solutions with 2% precision and 2% accuracy. (Autor).

  14. Recent studies related to head-end fuel processing at the Hanford PUREX plant

    Energy Technology Data Exchange (ETDEWEB)

    Swanson, J.L.

    1988-08-01

    This report presents the results of studies addressing several problems in the head-end processing (decladding, metathesis, and core dissolution) of N Reactor fuel elements in the Hanford PUREX plant. These studies were conducted over 2 years: FY 1986 and FY 1987. The studies were divided into three major areas: 1) differences in head-end behavior of fuels having different histories, 2) suppression of /sup 106/Ru volatilization when the ammonia scrubber solution resulting from decladding is decontaminated by distillation prior to being discharged, and 3) suitability of flocculating agents for lowering the amount of transuranic (TRU) element-containing solids that accompany the decladding solution to waste. 16 refs., 43 figs.

  15. Chemical-technology investigation of modified purex process for reprocessing of spent nuclear fuel, Annex 1; Prilog 1: Hemijsko-tehnolosko ispitivanje modifikovanog 'purex proces' za preradu isluzenog nuklearnog goriva

    Energy Technology Data Exchange (ETDEWEB)

    Tolic, A; Stefanovic, M [Institute of Nuclear Sciences Boris Kidric, Laboratorija za visoku aktivnost, Vinca, Beograd (Serbia and Montenegro)

    1963-12-15

    The objective of the task in this year was to verify the first part of the modified purex process which covers the operation of the two most important extractors HA and HS. Special attention was paid to the fact that the testing results in laboratory conditions must be identical to the results in the industrial process. The experimental part of the task was divided in the following phases: preparation of the uranium solution; preparation of the equipment; testing of the uranium extraction and nitric acid; testing the decontamination of the organic phase; testing of plutonium extraction and HNO{sub 3}. A high number of control chemical and radiochemical analyses had to be completed, as well as a number of preliminary calculations, which are presented in this report.

  16. 77 FR 73635 - Northwest Storage GP, LLC; Notice of Application

    Science.gov (United States)

    2012-12-11

    ...) 1254 to a proposed 346-megawatt (MW) power plant located within the north industrial area of the Port...] Northwest Storage GP, LLC; Notice of Application Take notice that on November 21, 2012, Northwest Storage GP, LLC. (Northwest) filed with the Federal Energy Regulatory Commission an application under section 7 of...

  17. Hydrogen storage technology materials and applications

    CERN Document Server

    Klebanoff, Lennie

    2012-01-01

    Zero-carbon, hydrogen-based power technology offers the most promising long-term solution for a secure and sustainable energy infrastructure. With contributions from the world's leading technical experts in the field, Hydrogen Storage Technology: Materials and Applications presents a broad yet unified account of the various materials science, physics, and engineering aspects involved in storing hydrogen gas so that it can be used to provide power. The book helps you understand advanced hydrogen storage materials and how to build systems around them. Accessible to nonscientists, the first chapt

  18. Thermochemical heat storage for high temperature applications. A review

    Energy Technology Data Exchange (ETDEWEB)

    Felderhoff, Michael [Max-Planck-Institut fuer Kohlenforschung, Muelheim an der Ruhr (Germany); Urbanczyk, Robert; Peil, Stefan [Institut fuer Energie- und Umwelttechnik e.V. (IUTA), Duisburg (Germany)

    2013-07-01

    Heat storage for high temperature applications can be performed by several heat storage techniques. Very promising heat storage methods are based on thermochemical gas solid reactions. Most known systems are metal oxide/steam (metal hydroxides), carbon dioxide (metal carbonates), and metal/hydrogen (metal hydrides) systems. These heat storage materials posses high gravimetric and volumetric heat storage densities and because of separation of the reaction products and their storage in different locations heat losses can be avoided. The reported volumetric heat storage densities are 615, 1340 and 1513 [ kWh m{sup -3}] for calcium hydroxide Ca(OH){sub 2}, calcium carbonate CaCO{sub 3} and magnesium iron hydride Mg{sub 2}FeH{sub 6} respectively. Additional demands for gas storage decrease the heat storage density, but metal hydride systems can use available hydrogen storage possibilities for example caverns, pipelines and chemical plants. (orig.)

  19. 78 FR 58529 - Floridian Natural Gas Storage Company, LLC; Notice of Application

    Science.gov (United States)

    2013-09-24

    ... Natural Gas Storage Company, LLC; Notice of Application Take notice that on September 4, 2013, Floridian Natural Gas Storage Company, LLC (Floridian Gas Storage), 1000 Louisiana Street, Suite 4361, Houston, Texas 77002, filed in Docket No. CP13-541-000 an application under section 7(c) of the Natural Gas Act...

  20. Flywheel Energy Storage for Automotive Applications

    Directory of Open Access Journals (Sweden)

    Magnus Hedlund

    2015-09-01

    Full Text Available A review of flywheel energy storage technology was made, with a special focus on the progress in automotive applications. We found that there are at least 26 university research groups and 27 companies contributing to flywheel technology development. Flywheels are seen to excel in high-power applications, placing them closer in functionality to supercapacitors than to batteries. Examples of flywheels optimized for vehicular applications were found with a specific power of 5.5 kW/kg and a specific energy of 3.5 Wh/kg. Another flywheel system had 3.15 kW/kg and 6.4 Wh/kg, which can be compared to a state-of-the-art supercapacitor vehicular system with 1.7 kW/kg and 2.3 Wh/kg, respectively. Flywheel energy storage is reaching maturity, with 500 flywheel power buffer systems being deployed for London buses (resulting in fuel savings of over 20%, 400 flywheels in operation for grid frequency regulation and many hundreds more installed for uninterruptible power supply (UPS applications. The industry estimates the mass-production cost of a specific consumer-car flywheel system to be 2000 USD. For regular cars, this system has been shown to save 35% fuel in the U.S. Federal Test Procedure (FTP drive cycle.

  1. Alkaline hydrolysis process for treatment and disposal of Purex solvent waste

    International Nuclear Information System (INIS)

    Srinivas, C.; Venkatesh, K.A.; Wattal, P.K.; Theyyunni, T.K.; Kartha, P.K.S.; Tripathi, S.C.

    1994-01-01

    Treatment of spent Purex solvent (30% TBP-70% n-dodecane mixture) from reprocessing plants by alkaline hydrolysis process was investigated using inactive 30% TBP solvent as well as actual radioactive spent solvent. Complete conversion of TBP to water-soluble reaction products was achieved in 7 hours reaction time at 130 deg C using 50%(w/v) NaOH solution at NaOH to TBP mole ratio of 3:2. Addition of water to the product mixture resulted in the complete separation of diluent containing less than 2 and 8 Bg./ml. of α and β activity respectively. Silica gel and alumina were found effective for purification of the separated diluent. Aqueous phase containing most of the original radioactivity was found compatible with cement matrix for further conditioning and disposal. (author). 17 refs., 10 tabs., 1 fig

  2. Simplified nuclear fuel reprocessing flowsheet: a single-cycle Purex process

    International Nuclear Information System (INIS)

    Montuir, M.; Dinh, B.; Baron, P.

    2004-01-01

    A simplified flowsheet with only one purification cycle instead of three is proposed for reprocessing spent nuclear fuel using the Purex process. A single-cycle flowsheet minimizes the process equipment required, the number of control points before transfer between process units, and the solvent and effluent quantities. For the uranium stream, an alpha barrier is used to strip any residual contaminants (Np, Th, Pu) from the uranium-loaded solvent. This additional step eliminates the need for a second uranium cycle. For the plutonium stream, an additional βγ co-decontamination step and a higher plutonium concentration are required before the oxalate conversion step; a plutonium 'half-cycle' is added downstream. The unloaded solvent from this half-cycle is returned to the selective plutonium stripping step, allowing significant plutonium half-cycle losses. It should be possible to reduce the number of stages in the half-cycle extraction step by recycling the raffinate to the upstream separation process. (authors)

  3. Fisson product control by gamma spectrometry in Purex process solutions

    International Nuclear Information System (INIS)

    Goncalves, Maria A.; Matsuda, H.T.

    1982-01-01

    A radiometric method for fission product analysis by gamma spectrometry, to be applied for fission product control at an irradiated material processing facility, is described. Counting geometry was defined taking into account the activities of process solutions to be analysed, the remotely operated aliquotation device of the analytical cell and the available detection system. Natural and 19,91% enriched uranium samples were irradiated in order to simulate the composition of Purex process solutions. After a short decay time the samples were dissolved with HNO 3 and then conditioned in standard flasks with defined geometry. The spectra were obtained by a Ge(Li) semiconductor detector and analysed by the GELIGAM software system, using a floppy-disk connected to a PDP-11/05 computer. Libraries were prepared and calibrations were made with standard sources to fit the analysis of fission products in irradiated uranium solutions. It was possible to choose the best program to be used in routine analysis with the obtained data. (Author) [pt

  4. A Toolkit For Storage Qos Provisioning For Data-Intensive Applications

    Directory of Open Access Journals (Sweden)

    Renata Słota

    2012-01-01

    Full Text Available This paper describes a programming toolkit developed in the PL-Grid project, named QStorMan, which supports storage QoS provisioning for data-intensive applications in distributed environments. QStorMan exploits knowledge-oriented methods for matching storage resources to non-functional requirements, which are defined for a data-intensive application. In order to support various usage scenarios, QStorMan provides two interfaces, such as programming libraries or a web portal. The interfaces allow to define the requirements either directly in an application source code or by using an intuitive graphical interface. The first way provides finer granularity, e.g., each portion of data processed by an application can define a different set of requirements. The second method is aimed at legacy applications support, which source code can not be modified. The toolkit has been evaluated using synthetic benchmarks and the production infrastructure of PL-Grid, in particular its storage infrastructure, which utilizes the Lustre file system.

  5. The Use of Grid Storage Protocols for Healthcare Applications

    CERN Document Server

    Donno, F; CERN. Geneva. IT Department

    2008-01-01

    Grid computing has attracted worldwide attention for a variety of domains. Healthcare projects focus on data mining and standardization techniques, the issue of data accessibility and transparency over the storage systems on the Grid has seldom been tackled. In this position paper, we identify the key issues and requirements imposed by Healthcare applications and point out how Grid Storage Technology can be used to satisfy those requirements. The main contribution of this work is the identification of the characteristics and protocols that make Grid Storage technology attractive for building a Healthcare data storage infrastructure.

  6. 40 CFR 411.30 - Applicability; description of the materials storage piles runoff subcategory.

    Science.gov (United States)

    2010-07-01

    ... materials storage piles runoff subcategory. 411.30 Section 411.30 Protection of Environment ENVIRONMENTAL... Materials Storage Piles Runoff Subcategory § 411.30 Applicability; description of the materials storage piles runoff subcategory. The provisions of this subpart are applicable to discharges resulting from the...

  7. Adaptation of U(IV) reductant to Savannah River Plant Purex processes

    International Nuclear Information System (INIS)

    Orebaugh, E.G.

    1986-04-01

    Partitioning of uranium and plutonium in the Purex process requires the reduction of the extracted Pu(IV) to the less extractable Pu(III). This valence adjustment at SRP has historically been performed by the addition of ferrous ion, which eventually constitutes a major component of high-level waste solids requiring costly permanent disposal. Uranous nitrate, U(IV), is a kinetically fast reductant which may be substituted for Fe(II) without contributing to waste solids. This report documents U(IV) flowsheet development in the miniature mixer-settler equipment at SRL and provides an insight into the mechanisms responsible for the successful direct substitution of U(IV) for Fe(II) in 1B bank extractant. U(IV) will be the reductant of choice when its fast reduction kinetics are required in centrifugal-contactor-based processing. The flowsheets investigated here should transfer to such equipment with minimal modifications

  8. 224-T Transuranic Waste Storage and Assay Facility dangerous waste permit application

    International Nuclear Information System (INIS)

    1992-01-01

    Westinghouse Hanford Company is a major contractor to the US Department of Energy Richland Field Office and serves as cooperator of the 224-T Transuranic Waste Storage and Assay Facility, the storage unit addressed in this permit application. At the time of submission of this portion of the Hanford Facility. Dangerous Waste Permit Application covering the 224-T Transuranic Waste Storage and Assay Facility, many issues identified in comments to the draft Hanford Facility Dangerous Waste Permit remain unresolved. This permit application reflects the positions taken by the US Department of Energy, Company on the draft Hanford Facility Dangerous Waste Permit and may not be read to conflict with those comments. The 224-T Transuranic Waste Storage and Assay Facility Dangerous Waste Permit Application (Revision 0) consists of both a Part A and Part B permit application. An explanation of the Part A revisions associated with this unit, including the Part A revision currently in effect, is provided at the beginning of the Part A section. The Part B consists of 15 chapters addressing the organization and content of the Part B Checklist prepared by the Washington State Department of Ecology (Ecology 1987). The 224-T Transuranic Waste Storage and Assay Facility Dangerous Waste Permit Application contains information current as of March 1, 1992

  9. Spark Discharge Generated Nanoparticles for Hydrogen Storage Applications

    NARCIS (Netherlands)

    Vons, V.A.

    2010-01-01

    One of the largest obstacles to the large scale application of hydrogen powered fuel cell vehicles is the absence of hydrogen storage methods suitable for application on-board of these vehicles. Metal hydrides are materials in which hydrogen is reversibly absorbed by one or more metals or

  10. 76 FR 50724 - Sawgrass Storage, L.L.C.; Notice of Application

    Science.gov (United States)

    2011-08-16

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket Nos. CP11-523-000; PF10-20-000] Sawgrass Storage, L.L.C.; Notice of Application Take notice that on July 27, 2011, Sawgrass Storage, L.L.C..., filed an application in Docket No. CP11-523-000 pursuant to Section 7(c) of the Natural Gas Act (NGA...

  11. Economic issues of storage technologies in different applications

    International Nuclear Information System (INIS)

    Beurskens, L.W.M.; De Noord, M.

    2004-09-01

    For evaluating energy storage technologies, economical parameters are of considerable importance. A qualitative assessment is given of storage technologies in general, contributing to success or failure of their use. Based on data of nine storage technologies that are defined in the INVESTIRE Network (Investigation on storage technologies for intermittent renewable energies: evaluation and recommended R and D strategy), results of a quantitative cost analysis are presented, based on device-specific key parameters. The costs have been defined as additional costs, effected by the required investments and operation and maintenance expenditures, the efficiency of a device and its lifetime. In order to compare the technologies properly, categories of typical use have been defined, ranging from stand-alone small applications (typical storage capacity of 0.1 kWh) to levelling of power production (approximately 1 MWh). The outcome is presented in such a way that for each category of typical use, the best technological options are identified, based on a cost analysis

  12. Environmental performance of electricity storage systems for grid applications, a life cycle approach

    International Nuclear Information System (INIS)

    Oliveira, L.; Messagie, M.; Mertens, J.; Laget, H.; Coosemans, T.; Van Mierlo, J.

    2015-01-01

    Highlights: • Large energy storage systems: environmental performance under different scenarios. • ReCiPe midpoint and endpoint impact assessment results are analyzed. • Energy storage systems can replace peak power generation units. • Energy storage systems and renewable energy have the best environmental scores. • Environmental performance of storage systems is application dependent. - Abstract: In this paper, the environmental performance of electricity storage technologies for grid applications is assessed. Using a life cycle assessment methodology we analyze the impacts of the construction, disposal/end of life, and usage of each of the systems. Pumped hydro and compressed air storage are studied as mechanical storage, and advanced lead acid, sodium sulfur, lithium-ion and nickel–sodium-chloride batteries are addressed as electrochemical storage systems. Hydrogen production from electrolysis and subsequent usage in a proton exchange membrane fuel cell are also analyzed. The selected electricity storage systems mimic real world installations in terms of capacity, power rating, life time, technology and application. The functional unit is one kW h of energy delivered back to the grid, from the storage system. The environmental impacts assessed are climate change, human toxicity, particulate matter formation, and fossil resource depletion. Different electricity mixes are used in order to exemplify scenarios where the selected technologies meet specific applications. Results indicate that the performance of the storage systems is tied to the electricity feedstocks used during use stage. Renewable energy sources have lower impacts throughout the use stage of the storage technologies. Using the Belgium electricity mix of 2011 as benchmark, the sodium sulfur battery is shown to be the best performer for all the impacts analyzed. Pumped hydro storage follows in second place. Regarding infrastructure and end of life, results indicate that battery systems

  13. Lithium-Ion Battery Storage for the Grid—A Review of Stationary Battery Storage System Design Tailored for Applications in Modern Power Grids

    Directory of Open Access Journals (Sweden)

    Holger C. Hesse

    2017-12-01

    Full Text Available Battery energy storage systems have gained increasing interest for serving grid support in various application tasks. In particular, systems based on lithium-ion batteries have evolved rapidly with a wide range of cell technologies and system architectures available on the market. On the application side, different tasks for storage deployment demand distinct properties of the storage system. This review aims to serve as a guideline for best choice of battery technology, system design and operation for lithium-ion based storage systems to match a specific system application. Starting with an overview to lithium-ion battery technologies and their characteristics with respect to performance and aging, the storage system design is analyzed in detail based on an evaluation of real-world projects. Typical storage system applications are grouped and classified with respect to the challenges posed to the battery system. Publicly available modeling tools for technical and economic analysis are presented. A brief analysis of optimization approaches aims to point out challenges and potential solution techniques for system sizing, positioning and dispatch operation. For all areas reviewed herein, expected improvements and possible future developments are highlighted. In order to extract the full potential of stationary battery storage systems and to enable increased profitability of systems, future research should aim to a holistic system level approach combining not only performance tuning on a battery cell level and careful analysis of the application requirements, but also consider a proper selection of storage sub-components as well as an optimized system operation strategy.

  14. Energy Storage Applications in Power Systems with Renewable Energy Generation

    Science.gov (United States)

    Ghofrani, Mahmoud

    In this dissertation, we propose new operational and planning methodologies for power systems with renewable energy sources. A probabilistic optimal power flow (POPF) is developed to model wind power variations and evaluate the power system operation with intermittent renewable energy generation. The methodology is used to calculate the operating and ramping reserves that are required to compensate for power system uncertainties. Distributed wind generation is introduced as an operational scheme to take advantage of the spatial diversity of renewable energy resources and reduce wind power fluctuations using low or uncorrelated wind farms. The POPF is demonstrated using the IEEE 24-bus system where the proposed operational scheme reduces the operating and ramping reserve requirements and operation and congestion cost of the system as compared to operational practices available in the literature. A stochastic operational-planning framework is also proposed to adequately size, optimally place and schedule storage units within power systems with high wind penetrations. The method is used for different applications of energy storage systems for renewable energy integration. These applications include market-based opportunities such as renewable energy time-shift, renewable capacity firming, and transmission and distribution upgrade deferral in the form of revenue or reduced cost and storage-related societal benefits such as integration of more renewables, reduced emissions and improved utilization of grid assets. A power-pool model which incorporates the one-sided auction market into POPF is developed. The model considers storage units as market participants submitting hourly price bids in the form of marginal costs. This provides an accurate market-clearing process as compared to the 'price-taker' analysis available in the literature where the effects of large-scale storage units on the market-clearing prices are neglected. Different case studies are provided to

  15. Fission products control by gamma spectrometry in purex process solutions

    International Nuclear Information System (INIS)

    Goncalves, Maria Augusta

    1982-01-01

    This paper deals with a radiometric method for fission products analysisby gamma spectrometry. This method will be applied for fission productscontrol at the irradiated material processing facility, under construction inthe Instituto de Pesquisas Energeticas e Nucleares, SP, Brazil. Countinggeometry was defined taking into account the activities of process solutionsto be analysed, the remotely operated aliquotation device of analytical celland the available detection system. Natural and 19,91% enriched uraniumsamples were irradiated at IEAR-1 reactor in order to simulate thecomposition of Purex process solutions. After a short decay time, the sampleswere dissolved with HNO 3 and then, conditioned in standard flasks withdefined geometry. The spectra were obtained by a Ge(Li) semiconductordetector and analysed by the GELIGAM software system, losing a floppy-diskconnected to a PDP-11/05 computer. Libraries were prepared and calibrationswere made with standard sources to fit the programs to the analysis offission products in irradiated uranium solutions. It was possible to choosethe best program to be used in routine analysis with the obtained data.(author)

  16. The isolation of lutetium from gadolinium contained in Purex process solutions

    International Nuclear Information System (INIS)

    Bostick, D.T.; Vick, D.O.; May, M.P.; Walker, R.L.

    1992-09-01

    A chemical separation procedure has been devised to isolate Lu from Purex dissolver solutions containing the neutron poison, Gd. The isolation procedure involves the removal of U and >Pu from a dissolver solution using tributylphosphate solvent extraction. If required, solvent extraction using di-(2-ethylhexyl) phosphoric acid can be employed to further purify the sample be removing alkali and alkali earth elements. Finally, Lu is chromatographically separated from Gd and rare earth fission products on a Dowex 50W-X8 resin column using an alpha-hydroxyisobutyrate eluant. The success of the chemical separation procedure has been demonstrated in the quantitative recovery of as little as 1.4 ng Lu from solutions containing a 5000-fold excess of Gd. Additionally, Lu has been isolated from synthetic dissolver samples containing U, Ba, Cs, and Gd. Thermal emission MS data indicated that the Lu fraction of the synthetic sample was free of Gd interference

  17. Biophotopol: A Sustainable Photopolymer for Holographic Data Storage Applications

    Directory of Open Access Journals (Sweden)

    Augusto Beléndez

    2012-05-01

    Full Text Available Photopolymers have proved to be useful for different holographic applications such as holographic data storage or holographic optical elements. However, most photopolymers have certain undesirable features, such as the toxicity of some of their components or their low environmental compatibility. For this reason, the Holography and Optical Processing Group at the University of Alicante developed a new dry photopolymer with low toxicity and high thickness called biophotopol, which is very adequate for holographic data storage applications. In this paper we describe our recent studies on biophotopol and the main characteristics of this material.

  18. Cost analysis of energy storage systems for electric utility applications

    Energy Technology Data Exchange (ETDEWEB)

    Akhil, A. [Sandia National Lab., Albuquerque, NM (United States); Swaminathan, S.; Sen, R.K. [R.K. Sen & Associates, Inc., Bethesda, MD (United States)

    1997-02-01

    Under the sponsorship of the Department of Energy, Office of Utility Technologies, the Energy Storage System Analysis and Development Department at Sandia National Laboratories (SNL) conducted a cost analysis of energy storage systems for electric utility applications. The scope of the study included the analysis of costs for existing and planned battery, SMES, and flywheel energy storage systems. The analysis also identified the potential for cost reduction of key components.

  19. Research on the Orientation and Application of Distributed Energy Storage in Energy Internet

    Science.gov (United States)

    Zeng, Ming; Zhou, Pengcheng; Li, Ran; Zhou, Jingjing; Chen, Tao; Li, Zhe

    2018-01-01

    Energy storage is indispensable resources to achieve a high proportion of new energy power consumption in electric power system. As an important support to energy Internet, energy storage system can achieve a variety of energy integration operation to ensure maximum energy efficiency. In this paper, firstly, the SWOT analysis method is used to express the internal and external advantages and disadvantages of distributed energy storage participating in the energy Internet. Secondly, the function orientation of distributed energy storage in energy Internet is studied, based on which the application modes of distributed energy storage in virtual power plant, community energy storage and auxiliary services are deeply studied. Finally, this paper puts forward the development strategy of distributed energy storage which is suitable for the development of China’s energy Internet, and summarizes and prospects the application of distributed energy storage system.

  20. Review of Phase Change Materials Based on Energy Storage System with Applications

    Science.gov (United States)

    Thamaraikannn, R.; Kanimozhi, B.; Anish, M.; Jayaprabakar, J.; Saravanan, P.; Rohan Nicholas, A.

    2017-05-01

    The use of Different types of storage system using phase change materials (PCMs) is an effective way of storing energy and also to make advantages of heating and cooling systems are installed to maintain temperatures within the well-being zone. PCMs have been extensively used in various storage systems for heat pumps, solar engineering, and thermal control applications. The use of PCM’s for heating and cooling applications have been investigated during the past decade. There are large numbers of PCM’s, which melt and solidify at a wide range of temperatures, making them attractive in a number of applications. This paper also outline the investigation and analysis of Phase Change materials used in Different Types of storage systems with different applications.

  1. Analysis on applicable error-correcting code strength of storage class memory and NAND flash in hybrid storage

    Science.gov (United States)

    Matsui, Chihiro; Kinoshita, Reika; Takeuchi, Ken

    2018-04-01

    A hybrid of storage class memory (SCM) and NAND flash is a promising technology for high performance storage. Error correction is inevitable on SCM and NAND flash because their bit error rate (BER) increases with write/erase (W/E) cycles, data retention, and program/read disturb. In addition, scaling and multi-level cell technologies increase BER. However, error-correcting code (ECC) degrades storage performance because of extra memory reading and encoding/decoding time. Therefore, applicable ECC strength of SCM and NAND flash is evaluated independently by fixing ECC strength of one memory in the hybrid storage. As a result, weak BCH ECC with small correctable bit is recommended for the hybrid storage with large SCM capacity because SCM is accessed frequently. In contrast, strong and long-latency LDPC ECC can be applied to NAND flash in the hybrid storage with large SCM capacity because large-capacity SCM improves the storage performance.

  2. Centrifugal Spinning and Its Energy Storage Applications

    Science.gov (United States)

    Yao, Lu

    Lithium-ion batteries (LIBs) and supercapacitors are important electrochemical energy storage systems. LIBs have high specific energy density, long cycle life, good thermal stability, low self-discharge, and no memory effect. However, the low abundance of Li in the Earth's crust and the rising cost of LIBs urge the attempts to develop alternative energy storage systems. Recently, sodium-ion batteries (SIBs) have become an attractive alternative to LIBs due to the high abundance and low cost of Na. Although the specific capacity and energy density of SIBs are not as high as LIBs, SIBs can still be promising power sources for certain applications such as large-scale, stationary grids. Supercapacitors are another important class of energy storage devices. Electric double-layer capacitors (EDLCs) are one important type of supercapacitors and they exhibit high power density, long cycle life, excellent rate capability and environmental friendliness. The potential applications of supercapacitors include memory protection in electronic circuitry, consumer portable electronic devices, and electrical hybrid vehicles. The electrochemical performance of SIBs and EDLCs is largely dependent on the electrode materials. Therefore, development of superior electrodes is the key to achieve highperformance alternative energy storage systems. Recently, one-dimensional nano-/micro-fiber based electrodes have become promising candidates in energy storage because they possess a variety of desirable properties including large specific surface area, well-guided ionic/electronic transport, and good electrode-electrolyte contact, which contribute to enhanced electrochemical performance. Currently, most nano-/micro-fiber based electrodes are prepared via electrospinning method. However, the low production rate of this approach hinders its practical application in the production of fibrous electrodes. Thus, it is significantly important to employ a rapid, low-cost and scalable nano

  3. Outlook and application analysis of energy storage in power system with high renewable energy penetration

    Science.gov (United States)

    Feng, Junshu; Zhang, Fuqiang

    2018-02-01

    To realize low-emission and low-carbon energy production and consumption, large-scale development and utilization of renewable energy has been put into practice in China. And it has been recognized that power system of future high renewable energy shares can operate more reliably with the participation of energy storage. Considering the significant role of storage playing in the future power system, this paper focuses on the application of energy storage with high renewable energy penetration. Firstly, two application modes are given, including demand side application mode and centralized renewable energy farm application mode. Afterwards, a high renewable energy penetration scenario of northwest region in China is designed, and its production simulation with application of energy storage in 2050 has been calculated and analysed. Finally, a development path and outlook of energy storage is given.

  4. 75 FR 8051 - Petal Gas Storage, L.L.C.; Notice of Application

    Science.gov (United States)

    2010-02-23

    ... Storage, L.L.C.; Notice of Application February 12, 2010. Take notice that on January 29, 2010, Petal Gas Storage, L.L.C. (Petal), 1100 Louisiana Street, Houston, Texas, 77002, filed with the Federal Energy Regulatory Commission an abbreviated application pursuant to section 7(c) of the Natural Gas Act (NGA), as...

  5. Candidate thermal energy storage technologies for solar industrial process heat applications

    Science.gov (United States)

    Furman, E. R.

    1979-01-01

    A number of candidate thermal energy storage system elements were identified as having the potential for the successful application of solar industrial process heat. These elements which include storage media, containment and heat exchange are shown.

  6. Calculation code PULCO for Purex process in pulsed column

    International Nuclear Information System (INIS)

    Gonda, Kozo; Matsuda, Teruo

    1982-03-01

    The calculation code PULCO, which can simulate the Purex process using a pulsed column as an extractor, has been developed. The PULCO is based on the fundamental concept of mass transfer that the mass transfer within a pulsed column occurs through the interface of liquid drops and continuous phase fluid, and is the calculation code different from conventional ones, by which various phenomena such as the generation of liquid drops, their rising and falling, and the unification of liquid drops actually occurring in a pulsed column are exactly reflected and can be correctly simulated. In the PULCO, the actually measured values of the fundamental quantities representing the extraction behavior of liquid drops in a pulsed column are incorporated, such as the mass transfer coefficient of each component, the diameter and velocity of liquid drops in a pulsed column, the holdup of dispersed phase, and axial turbulent flow diffusion coefficient. The verification of the results calculated with the PULCO was carried out by installing a pulsed column of 50 mm inside diameter and 2 m length with 40 plate stage in a glove box for unirradiated uranium-plutonium mixed system. The results of the calculation and test were in good agreement, and the validity of the PULCO was confirmed. (Kako, I.)

  7. DIST: a computer code system for calculation of distribution ratios of solutes in the purex system

    Energy Technology Data Exchange (ETDEWEB)

    Tachimori, Shoichi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1996-05-01

    Purex is a solvent extraction process for reprocessing the spent nuclear fuel using tri n-butylphosphate (TBP). A computer code system DIST has been developed to calculate distribution ratios for the major solutes in the Purex process. The DIST system is composed of database storing experimental distribution data of U(IV), U(VI), Pu(III), Pu(IV), Pu(VI), Np(IV), Np(VI), HNO{sub 3} and HNO{sub 2}: DISTEX and of Zr(IV), Tc(VII): DISTEXFP and calculation programs to calculate distribution ratios of U(IV), U(VI), Pu(III), Pu(IV), Pu(VI), Np(IV), Np(VI), HNO{sub 3} and HNO{sub 2}(DIST1), and Zr(IV), Tc(VII)(DITS2). The DIST1 and DIST2 determine, by the best-fit procedures, the most appropriate values of many parameters put on empirical equations by using the DISTEX data which fulfill the assigned conditions and are applied to calculate distribution ratios of the respective solutes. Approximately 5,000 data were stored in the DISTEX and DISTEXFP. In the present report, the following items are described, 1) specific features of DIST1 and DIST2 codes and the examples of calculation 2) explanation of databases, DISTEX, DISTEXFP and a program DISTIN, which manages the data in the DISTEX and DISTEXFP by functions as input, search, correction and delete. and at the annex, 3) programs of DIST1, DIST2, and figure-drawing programs DIST1G and DIST2G 4) user manual for DISTIN. 5) source programs of DIST1 and DIST2. 6) the experimental data stored in the DISTEX and DISTEXFP. (author). 122 refs.

  8. Counter-current extraction studies for the recovery of neptunium by the Purex process. Part I

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasan, N.; Nadkarni, M. N.; Kumar, S. V.; Kartha, P. K.S.; Sonavane, R. R.; Ramaniah, M. V.; Patil, S. K.

    1974-07-01

    It is proposed to recover neptunium-237, along with uranium and plutonium, during the fuel reprocessing in the PREFRE plant at Tarapur. Counter-current extraction studies, relevant to the code contamination (HA) and partitioning (IA) cycles of the purex process, were carried out to arrive at suitable chemical flowsheet conditions which would enable the co-extraction of neptunium along with uranium and plutonium. The results of the studies carried out using a laboratory mixer-settler unit and synthetic mixtures of neptunium and uranium are reported here. Based on these results, the chemical flowsheet conditions are proposed for the co-extraction of neptunium even if it exists as Np(V) in the aqueous feed solution. (auth)

  9. Review—Two-Dimensional Layered Materials for Energy Storage Applications

    KAUST Repository

    Kumar, Pushpendra

    2016-07-02

    Rechargeable batteries are most important energy storage devices in modern society with the rapid development and increasing demand for handy electronic devices and electric vehicles. The higher surface-to-volume ratio two-dimensional (2D) materials, especially transition metal dichalcogenides (TMDCs) and transition metal carbide/nitrite generally referred as MXene, have attracted intensive research activities due to their fascinating physical/chemical properties with extensive applications. One of the growing applications is to use these 2D materials as potential electrodes for rechargeable batteries and electrochemical capacitors. This review is an attempt to summarize the research and development of TMDCs, MXenes and their hybrid structures in energy storage systems. (C) The Author(s) 2016. Published by ECS. All rights reserved.

  10. Review—Two-Dimensional Layered Materials for Energy Storage Applications

    KAUST Repository

    Kumar, Pushpendra; Abuhimd, Hatem; Wahyudi, Wandi; Li, Mengliu; Ming, Jun; Li, Lain-Jong

    2016-01-01

    Rechargeable batteries are most important energy storage devices in modern society with the rapid development and increasing demand for handy electronic devices and electric vehicles. The higher surface-to-volume ratio two-dimensional (2D) materials, especially transition metal dichalcogenides (TMDCs) and transition metal carbide/nitrite generally referred as MXene, have attracted intensive research activities due to their fascinating physical/chemical properties with extensive applications. One of the growing applications is to use these 2D materials as potential electrodes for rechargeable batteries and electrochemical capacitors. This review is an attempt to summarize the research and development of TMDCs, MXenes and their hybrid structures in energy storage systems. (C) The Author(s) 2016. Published by ECS. All rights reserved.

  11. Technology Roadmaps: Carbon Capture and Storage in Industrial Applications

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    A new technology roadmap on Carbon Capture and Storage in Industrial Applications, released today in Beijing, shows that carbon capture and storage (CCS) has the potential to reduce CO2 emissions from industrial applications by 4 gigatonnes in 2050. Such an amount is equal to roughly one-tenth of the total emission cuts needed from the energy sector by the middle of the century. This requires a rapid deployment of CCS technologies in various industrial sectors, and across both OECD and non-OECD countries. The roadmap, a joint report from the International Energy Agency (IEA) and the United Nations Industrial Development Organization (UNIDO), says that over 1800 industrial-scale projects are required over the next 40 years.

  12. Application of Cloud Storage on BIM Life-Cycle Management

    Directory of Open Access Journals (Sweden)

    Lieyun Ding

    2014-08-01

    Full Text Available Because of its high information intensity, strong consistency and convenient visualization features, building information modelling (BIM has received widespread attention in the fields of construction and project management. However, due to large amounts of information, high integration, the need for resource sharing between various departments, the long time-span of the BIM application, challenges relating to data interoperability, security and cost all slow down the adoption of BIM. This paper constructs a BIM cloud storage concept system using cloud storage, an advanced computer technology, to solve the problem of mass data processing, information security, and cost problems in the existing application of BIM to full life-cycle management. This system takes full advantage of the cloud storage technique. Achievements are reached in four areas of BIM information management, involving security and licensing management, file management, work process management and collaborative management. The system expands the time and space scales, improves the level of participation, and reduces the cost of BIM. The construction of the BIM cloud storage system is one of the most important directions of the development of BIM, which benefits the promotion and further development of BIM to better serve construction and engineering project management.

  13. A Review of Flywheel Energy Storage System Technologies and Their Applications

    Directory of Open Access Journals (Sweden)

    Mustafa E. Amiryar

    2017-03-01

    Full Text Available Energy storage systems (ESS provide a means for improving the efficiency of electrical systems when there are imbalances between supply and demand. Additionally, they are a key element for improving the stability and quality of electrical networks. They add flexibility into the electrical system by mitigating the supply intermittency, recently made worse by an increased penetration of renewable generation. One energy storage technology now arousing great interest is the flywheel energy storage systems (FESS, since this technology can offer many advantages as an energy storage solution over the alternatives. Flywheels have attributes of a high cycle life, long operational life, high round-trip efficiency, high power density, low environmental impact, and can store megajoule (MJ levels of energy with no upper limit when configured in banks. This paper presents a critical review of FESS in regards to its main components and applications, an approach not captured in earlier reviews. Additionally, earlier reviews do not include the most recent literature in this fast-moving field. A description of the flywheel structure and its main components is provided, and different types of electric machines, power electronics converter topologies, and bearing systems for use in flywheel storage systems are discussed. The main applications of FESS are explained and commercially available flywheel prototypes for each application are described. The paper concludes with recommendations for future research.

  14. Analytical control of reducing agents on uranium/plutonium partitioning at purex process; Controle analitico dos agentes redutores na particao uranio/plutonio no processo purex

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Izilda da Cruz de

    1995-07-01

    Spectrophotometric methods for uranium (IV), hydrazine (N{sub 2}H{sub 4}) and its decomposition product hydrazoic acid(HN{sub 3}), and hydroxylamine (NH{sub 2} OH) determinations were developed aiming their applications for the process control of CELESTE I installation at IPEN/CNEN-SP. These compounds are normally present in the U/Pu partitioning phase of the spent nuclear treatment via PUREX process. The direct spectrophotometry was used for uranium (IV) analysis in nitric acid-hydrazine solutions based on the absorption measurement at 648 nm. The azomethine compound formed by reaction of hydrazine and p-dimethylamine benzaldehyde with maximum absorption at 457 nm was the basis for the specific analytical method for hydrazine determination. The hydrazoic acid analysis was performed indirectly by its conversion into ferric azide complex with maximum absorption at 465 nm. The hydroxylamine detection was accomplished based on its selective oxidation to nitrous acid which is easily analyzed by the reaction with Griess reagent. The resulted azocompound gas a maximum absorption at 520 nm. The sensibility of 1,4x10{sup -6}M for U(IV) with 0,8% of precision, 1,6x10{sup -6}M for hydrazine with 0,8% of precision, 2,3x10{sup -6}M hydrazoic acid with 0,9% of precision and 2,5x10{sup -6}M for hydroxylamine with 0,8% of precision were achieved. The interference studies have shown that each reducing agent can be determined in the presence of each other without any interference. Uranium(VI) and plutonium have also shown no interference in these analysis. The established methods were adapted to run inside glove-boxes by using an optical fiber colorimetry and applied to process control of the CELESTE I installation. The results pointed out that the methods are reliable and safety in order to provide just-in-time information about process conditions. (author)

  15. Graphene hybridization for energy storage applications.

    Science.gov (United States)

    Li, Xianglong; Zhi, Linjie

    2018-05-08

    Graphene has attracted considerable attention due to its unique two-dimensional structure, high electronic mobility, exceptional thermal conductivity, excellent optical transmittance, good mechanical strength, and ultrahigh surface area. To meet the ever increasing demand for portable electronic products, electric vehicles, smart grids, and renewable energy integrations, hybridizing graphene with various functions and components has been demonstrated to be a versatile and powerful strategy to significantly enhance the performance of various energy storage systems such as lithium-ion batteries, supercapacitors and beyond, because such hybridization can result in synergistic effects that combine the best merits of involved components and confer new functions and properties, thereby improving the charge/discharge efficiencies and capabilities, energy/power densities, and cycle life of these energy storage systems. This review will focus on diverse graphene hybridization principles and strategies for energy storage applications, and the proposed outline is as follows. First, graphene and its fundamental properties, followed by graphene hybrids and related hybridization motivation, are introduced. Second, the developed hybridization formulas of using graphene for lithium-ion batteries are systematically categorized from the viewpoint of material structure design, bulk electrode construction, and material/electrode collaborative engineering; the latest representative progress on anodes and cathodes of lithium-ion batteries will be reviewed following such classifications. Third, similar hybridization formulas for graphene-based supercapacitor electrodes will be summarized and discussed as well. Fourth, the recently emerging hybridization formulas for other graphene-based energy storage devices will be briefed in combination with typical examples. Finally, future prospects and directions on the exploration of graphene hybridization toward the design and construction of

  16. Partitioning of actinides from high level waste of PUREX origin using octylphenyl-N,N'-diisobutylcarbamoylmethyl phosphine oxide (CMPO)-based supported liquid membrane

    International Nuclear Information System (INIS)

    Ramanujam, A.; Dhami, P.S.; Gopalakrishnan, V.; Dudwadkar, N.L.; Chitnis, R.R.; Mathur, J.N.

    1999-01-01

    The present studies deal with the application of the supported liquid membrane (SLM) technique for partitioning of actinides from high level waste of PUREX origin. The process uses a solution of octylphenyl-N,N'-diisobutylcarbamoylmethyl phosphine oxide (CMPO) in n-dodecane as a carrier with a polytetrafluoroethylene support and a mixture of citric acid, formic acid, and hydrazine hydrate as the receiving phase. The studies involve the investigation of such parameters as carrier concentration in SLM, acidity of the feed, and the feed composition. The studies indicated good transport of actinides like neptunium, americium, and plutonium across the membrane from nitric acid medium. A high concentration of uranium in the feed retards the transport of americium, suggesting the need for prior removal of uranium from the waste. The separation of actinides from uranium-lean simulated samples as well as actual high level waste has been found to be feasible using the above technique

  17. Application of burnup credit for PWR spent fuel storage pool

    International Nuclear Information System (INIS)

    Shin, Hee Sung; Ro, Seung-Gy; Bae, Kang Mok; Kim, Ik Soo; Shin, Young Joon

    1999-01-01

    A study on the application of burnup credit for a PWR spent fuel storage pool has been investigated using a computer code system such as CSAS6 module of SCALE 4.3 in association with 44-group SCALE cross-section library. The calculation bias of the code system at a 95% probability with a 95% confidence level seems to be 0.00951 by benchmarking the system for forty six experimental data. With the aid of this computer code system, criticality analysis has been performed for the PWR spent fuel storage pool. Uncertainties due to postulated abnormal and accidental conditions, and manufacturing tolerance such as stainless steel thickness of storage rack, fuel enrichment, fuel density and box size have statistically been combined and resulted in 0.00674. Also, isotopic correction factor which was based on the calculated and measured concentration of 43 isotopes for both selected actinides and fission products important in burnup credit application has been taken into account in the criticality analysis. It is revealed that the minimum burnup with the corrected isotopic concentrations as required for the safe storage is 5,730 MWd/tU in enriched fuel of 5.0 wt%. (author)

  18. 78 FR 9687 - Prineville Energy Storage, LLC; Notice of Preliminary Permit Application Accepted for Filing and...

    Science.gov (United States)

    2013-02-11

    ... Energy Storage, LLC; Notice of Preliminary Permit Application Accepted for Filing and Soliciting Comments, Motions To Intervene, and Competing Applications On August 31, 2012, Prineville Energy Storage, LLC, filed... Contact: Mr. Matthew Shapiro, Chief Executive Officer, Prineville Energy Storage, LLC, 1210 W. Franklin...

  19. 616 Nonradioactive Dangerous Waste Storage Facility dangerous waste permit application

    International Nuclear Information System (INIS)

    1991-10-01

    The 616 Nonradioactive Dangerous Waste Storage Facility Dangerous Waste Permit Application consists of both a Part A and a Part B permit application. An explanation of the Part A revisions associated with this storage unit, including the Part A included with this document, is provided at the beginning of the Part A Section. The Part B consists of 15 chapters addressing the organization and content of the Part B Checklist prepared by the Washington State Department of Ecology (Ecology 1987). For ease of reference, the checklist section numbers, in brackets, follow chapter headings and subheadings. The 616 Nonradioactive Dangerous Waste Storage Facility Dangerous Waste Permit Application (Revision 0) was submitted to the Washington State Department of Ecology and the US Environmental Protection Agency on July 31, 1989. Revision 1, addressing Washington State Department of Ecology review comments made on Revision 0 dated November 21, 1989, and March 23, 1990, was submitted on June 22, 1990. This submittal, Revision 2, addresses Washington State Department of Ecology review comments made on Revision 1, dated June 22, 1990, August 30, 1990, December 18, 1990, and July 8, 1991

  20. Advanced high-temperature thermal energy storage media for industrial applications

    Science.gov (United States)

    Claar, T. D.; Waibel, R. T.

    1982-02-01

    An advanced thermal energy storage media concept based on use of carbonate salt/ceramic composite materials is being developed for industrial process and reject heat applications. The composite latent/sensible media concept and its potential advantages over state of the art latent heat systems is described. Media stability requirements, on-going materials development efforts, and planned thermal energy storage (TES) performance evaluation tests are discussed.

  1. MnO2 Based Nanostructures for Supercapacitor Energy Storage Applications

    KAUST Repository

    Chen, Wei

    2013-11-01

    Nanostructured materials provide new and exciting approaches to the development of supercapacitor electrodes for high-performance electrochemical energy storage applications. One of the biggest challenges in materials science and engineering, however, is to prepare the nanomaterials with desirable characteristics and to engineer the structures in proper ways. This dissertation presents the successful preparation and application of very promising materials in the area of supercapacitor energy storage, including manganese dioxide and its composites, polyaniline and activated carbons. Attention has been paid to understanding their growth process and performance in supercapacitor devices. The morphological and electrochemical cycling effects, which contribute to the understanding of the energy storage mechanism of MnO2 based supercapacitors is thoroughly investigated. In addition, MnO2 based binary (MnO2-carbon nanocoils, MnO2-graphene) and ternary (MnO2-carbon nanotube-graphene) nanocomposites, as well as two novel electrodes (MnO2-carbon nanotube-textile and MnO2-carbon nanotube-sponge) have been studied as supercapacitor electrode materials, showing much improved electrochemical storage performance with good energy and power densities. Furthermore, a general chemical route was introduced to synthesize different conducting polymers and activated carbons by taking the MnO2 nanostructures as reactive templates. The electrochemical behaviors of the polyaniline and activated nanocarbon supercapacitors demonstrate the morphology-dependent enhancement of capacitance. Excellent energy and power densities were obtained from the template-derived polyaniline and activated carbon based supercapacitors, indicating the success of our proposed chemical route toward the preparation of high performance supercapacitor materials. The work discussed in this dissertation conclusively showed the significance of the preparation of desirable nanomaterials and the design of effective

  2. Summary of State-of-the-Art Power Conversion Systems for Energy Storage Applications

    Energy Technology Data Exchange (ETDEWEB)

    Atcitty, S.; Gray-Fenner, A.; Ranade, S.

    1998-09-01

    The power conversion system (PCS) is a vital part of many energy storage systems. It serves as the interface between the storage device, an energy source, and an AC load. This report summarizes the results of an extensive study of state-of-the-art power conversion systems used for energy storage applications. The purpose of the study was to investigate the potential for cost reduction and performance improvement in these power conversion systems and to provide recommendations for fiture research and development. This report provides an overview of PCS technology, a description of several state-of-the-art power conversion systems and how they are used in specific applications, a summary of four basic configurations for l:he power conversion systems used in energy storage applications, a discussion of PCS costs and potential cost reductions, a summary of the stancku-ds and codes relevant to the technology, and recommendations for future research and development.

  3. Polyaniline as a material for hydrogen storage applications.

    Science.gov (United States)

    Attia, Nour F; Geckeler, Kurt E

    2013-07-12

    The main challenge of commercialization of the hydrogen economy is the lack of convenient and safe hydrogen storage materials, which can adsorb and release a significant amount of hydrogen at ambient conditions. Finding and designing suitable cost-effective materials are vital requirements to overcome the drawbacks of investigated materials. Because of its outstanding electronic, thermal, and chemical properties, the electrically conducting polyaniline (PANI) has a high potential in hydrogen storage applications. In this review, the progress in the use of different structures of conducting PANI, its nanocomposites as well as activated porous materials based on PANI as hydrogen storage materials is presented and discussed. The effect of the unique electronic properties based on the π-electron system in the backbone of these materials in view of the hydrogen uptake and the relevant mechanisms are highlighted. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Gas storage in porous metal-organic frameworks for clean energy applications.

    Science.gov (United States)

    Ma, Shengqian; Zhou, Hong-Cai

    2010-01-07

    Depletion of fossil oil deposits and the escalating threat of global warming have put clean energy research, which includes the search for clean energy carriers such as hydrogen and methane as well as the reduction of carbon dioxide emissions, on the urgent agenda. A significant technical challenge has been recognized as the development of a viable method to efficiently trap hydrogen, methane and carbon dioxide gas molecules in a confined space for various applications. This issue can be addressed by employing highly porous materials as storage media, and porous metal-organic frameworks (MOFs) which have exceptionally high surface areas as well as chemically-tunable structures are playing an unusual role in this respect. In this feature article we provide an overview of the current status of clean energy applications of porous MOFs, including hydrogen storage, methane storage and carbon dioxide capture.

  5. Fuel Receiving and Storage Station. License application, amendment 7

    International Nuclear Information System (INIS)

    1976-02-01

    Amendment No. 7 to Allied-General Nuclear Services application for licensing of the Fuel Receiving and Storage Station consists of revised pages for: Amendment No. 7 to AG-L 105, ''Technical Description in Support of Application for FRSS Operation''; Amendment No. 1 to AG-L 105A, ''Early Operation of the Service Concentrator''; and Amendment No. 2 to AG-L 110, ''FRSS Summary Preoperational Report.''

  6. Analytical control of reducing agents on uranium/plutonium partitioning at purex process

    International Nuclear Information System (INIS)

    Araujo, Izilda da Cruz de

    1995-01-01

    Spectrophotometric methods for uranium (IV), hydrazine (N 2 H 4 ) and its decomposition product hydrazoic acid(HN 3 ), and hydroxylamine (NH 2 OH) determinations were developed aiming their applications for the process control of CELESTE I installation at IPEN/CNEN-SP. These compounds are normally present in the U/Pu partitioning phase of the spent nuclear treatment via PUREX process. The direct spectrophotometry was used for uranium (IV) analysis in nitric acid-hydrazine solutions based on the absorption measurement at 648 nm. The azomethine compound formed by reaction of hydrazine and p-dimethylamine benzaldehyde with maximum absorption at 457 nm was the basis for the specific analytical method for hydrazine determination. The hydrazoic acid analysis was performed indirectly by its conversion into ferric azide complex with maximum absorption at 465 nm. The hydroxylamine detection was accomplished based on its selective oxidation to nitrous acid which is easily analyzed by the reaction with Griess reagent. The resulted azocompound gas a maximum absorption at 520 nm. The sensibility of 1,4x10 -6 M for U(IV) with 0,8% of precision, 1,6x10 -6 M for hydrazine with 0,8% of precision, 2,3x10 -6 M hydrazoic acid with 0,9% of precision and 2,5x10 -6 M for hydroxylamine with 0,8% of precision were achieved. The interference studies have shown that each reducing agent can be determined in the presence of each other without any interference. Uranium(VI) and plutonium have also shown no interference in these analysis. The established methods were adapted to run inside glove-boxes by using an optical fiber colorimetry and applied to process control of the CELESTE I installation. The results pointed out that the methods are reliable and safety in order to provide just-in-time information about process conditions. (author)

  7. Licensing of spent fuel dry storage and consolidated rod storage

    International Nuclear Information System (INIS)

    Bailey, W.J.

    1990-02-01

    The results of this study, performed by Pacific Northwest Laboratory (PNL) and sponsored by the US Department of Energy (DOE), respond to the nuclear industry's recommendation that a report be prepared that collects and describes the licensing issues (and their resolutions) that confront a new applicant requesting approval from the US Nuclear Regulatory Commission (NRC) for dry storage of spent fuel or for large-scale storage of consolidated spent fuel rods in pools. The issues are identified in comments, questions, and requests from the NRC during its review of applicants' submittals. Included in the report are discussions of (1) the 18 topical reports on cask and module designs for dry storage fuel that have been submitted to the NRC, (2) the three license applications for dry storage of spent fuel at independent spent fuel storage installations (ISFSIs) that have been submitted to the NRC, and (3) the three applications (one of which was later withdrawn) for large-scale storage of consolidated fuel rods in existing spent fuel storage pools at reactors that were submitted tot he NRC. For each of the applications submitted, examples of some of the issues (and suggestions for their resolutions) are described. The issues and their resolutions are also covered in detail in an example in each of the three subject areas: (1) the application for the CASTOR V/21 dry spent fuel storage cask, (2) the application for the ISFSI for dry storage of spent fuel at Surry, and (3) the application for full-scale wet storage of consolidated spent fuel at Millstone-2. The conclusions in the report include examples of major issues that applicants have encountered. Recommendations for future applicants to follow are listed. 401 refs., 26 tabs

  8. MOFs for storage of natural gas in mobile applications

    Energy Technology Data Exchange (ETDEWEB)

    Marx, S.; Arnold, L.; Gaab, M.; Maurer, S.; Weickert, M.; Mueller, U. [BASF SE, Ludwigshafen (Germany); Gummaraju, R.; SantaMaria, M.; Wilson, K.; Garbotz, C.; Lynch, J. [BASF Corporation, Iselin, NJ (United States)

    2013-11-01

    Metal-organic frameworks (MOFs) are supposed to have high potential in gas storage, particular in the storage of natural gas (NG) for mobile applications. Due to the shale gas exploration and the cost advantage of natural gas on the North American market as well as the environmental benign behavior upon combustion, storage of gaseous fuels will become more important for future mobility. The main challenge with all gaseous fuels is the limited range of the fuel stored on board of a vehicle. Instead of increasing the pressure in the tank, which would lead to heavy tanks and high compression costs, MOFs might help to improve the energy density of the gas stored in a tank resulting in an increased driving distance or reduced space needed for the gas tanks. (orig.)

  9. Nanomaterials for Hydrogen Storage Applications: A Review

    Directory of Open Access Journals (Sweden)

    Michael U. Niemann

    2008-01-01

    Full Text Available Nanomaterials have attracted great interest in recent years because of the unusual mechanical, electrical, electronic, optical, magnetic and surface properties. The high surface/volume ratio of these materials has significant implications with respect to energy storage. Both the high surface area and the opportunity for nanomaterial consolidation are key attributes of this new class of materials for hydrogen storage devices. Nanostructured systems including carbon nanotubes, nano-magnesium based hydrides, complex hydride/carbon nanocomposites, boron nitride nanotubes, TiS2/MoS2 nanotubes, alanates, polymer nanocomposites, and metal organic frameworks are considered to be potential candidates for storing large quantities of hydrogen. Recent investigations have shown that nanoscale materials may offer advantages if certain physical and chemical effects related to the nanoscale can be used efficiently. The present review focuses the application of nanostructured materials for storing atomic or molecular hydrogen. The synergistic effects of nanocrystalinity and nanocatalyst doping on the metal or complex hydrides for improving the thermodynamics and hydrogen reaction kinetics are discussed. In addition, various carbonaceous nanomaterials and novel sorbent systems (e.g. carbon nanotubes, fullerenes, nanofibers, polyaniline nanospheres and metal organic frameworks etc. and their hydrogen storage characteristics are outlined.

  10. Thermal energy storage for smart grid applications

    Science.gov (United States)

    Al-Hallaj, Said; Khateeb, Siddique; Aljehani, Ahmed; Pintar, Mike

    2018-01-01

    Energy consumption for commercial building cooling accounts for 15% of all commercial building's electricity usage [1]. Electric utility companies charge their customers time of use consumption charges (/kWh) and additionally demand usage charges (/kW) to limit peak energy consumption and offset their high operating costs. Thus, there is an economic incentive to reduce both the electricity consumption charges and demand charges by developing new energy efficient technologies. Thermal energy storage (TES) systems using a phase change material (PCM) is one such technology that can reduce demand charges and shift the demand from on-peak to off-peak rates. Ice and chilled water have been used in thermal storage systems for many decades, but they have certain limitations, which include a phase change temperature of 0 degrees Celsius and relatively low thermal conductivity in comparison to other materials, which limit their applications as a storage medium. To overcome these limitations, a novel phase change composite (PCC) TES material was developed that has much higher thermal conductivity that significantly improves the charge / discharge rate and a customizable phase change temperature to allow for better integration with HVAC systems. Compared to ice storage, the PCC TES system is capable of very high heat transfer rate and has lower system and operational costs. Economic analysis was performed to compare the PCC TES system with ice system and favorable economics was proven. A 4.5 kWh PCC TES prototype system was also designed for testing and validation purpose.

  11. Prediction equations for corrosion rates of a A-537 and A-516 steels in Double Shell Slurry, Future PUREX, and Hanford Facilities Wastes

    International Nuclear Information System (INIS)

    Divine, J.R.; Bowen, W.M.; Mackey, D.B.; Bates, D.J.; Pool, K.H.

    1985-06-01

    Even though the interest in the corrosion of radwaste tanks goes back to the mid-1940's when waste storage was begun, and a fair amount of corrosion work has been done since then, the changes in processes and waste types have outpaced the development of new data pertinent to the new double shell tanks. As a consequence, Pacific Northwest Laboratory (PNL) began a development of corrosion data on a broad base of waste compositions in 1980. The objective of the program was to provide operations personnel with corrosion rate data as a function of waste temperature and composition. The work performed in this program examined A-537 tank steel in Double Shell Slurry and Future PUREX Wastes, at temperatures between 40 and 180 0 C as well as in Hanford Facilities Waste at 25 and 50 0 C. In general, the corrosion rates were less than 1 mpy (0.001 in./y) and usually less than 0.5 mpy. Excessive corrosion rates (>1 mpy) were only found in dilute waste compositions or in concentrated caustic compositions at temperatures above 140 0 C. Stress corrosion cracking was only observed under similar conditions. The results are presented as polynomial prediction equations with examples of the output of existing computer codes. The codes are not provided in the text but are available from the authors. 12 refs., 5 figs., 19 tabs

  12. Conducting polymer nanostructures: template synthesis and applications in energy storage.

    Science.gov (United States)

    Pan, Lijia; Qiu, Hao; Dou, Chunmeng; Li, Yun; Pu, Lin; Xu, Jianbin; Shi, Yi

    2010-07-02

    Conducting polymer nanostructures have received increasing attention in both fundamental research and various application fields in recent decades. Compared with bulk conducting polymers, conducting polymer nanostructures are expected to display improved performance in energy storage because of the unique properties arising from their nanoscaled size: high electrical conductivity, large surface area, short path lengths for the transport of ions, and high electrochemical activity. Template methods are emerging for a sort of facile, efficient, and highly controllable synthesis of conducting polymer nanostructures. This paper reviews template synthesis routes for conducting polymer nanostructures, including soft and hard template methods, as well as its mechanisms. The application of conducting polymer mesostructures in energy storage devices, such as supercapacitors and rechargeable batteries, are discussed.

  13. Conducting Polymer Nanostructures: Template Synthesis and Applications in Energy Storage

    Directory of Open Access Journals (Sweden)

    Lijia Pan

    2010-07-01

    Full Text Available Conducting polymer nanostructures have received increasing attention in both fundamental research and various application fields in recent decades. Compared with bulk conducting polymers, conducting polymer nanostructures are expected to display improved performance in energy storage because of the unique properties arising from their nanoscaled size: high electrical conductivity, large surface area, short path lengths for the transport of ions, and high electrochemical activity. Template methods are emerging for a sort of facile, efficient, and highly controllable synthesis of conducting polymer nanostructures. This paper reviews template synthesis routes for conducting polymer nanostructures, including soft and hard template methods, as well as its mechanisms. The application of conducting polymer mesostructures in energy storage devices, such as supercapacitors and rechargeable batteries, are discussed.

  14. Hydration of Magnesium Carbonate in a Thermal Energy Storage Process and Its Heating Application Design

    Directory of Open Access Journals (Sweden)

    Rickard Erlund

    2018-01-01

    Full Text Available First ideas of applications design using magnesium (hydro carbonates mixed with silica gel for day/night and seasonal thermal energy storage are presented. The application implies using solar (or another heat source for heating up the thermal energy storage (dehydration unit during daytime or summertime, of which energy can be discharged (hydration during night-time or winter. The applications can be used in small houses or bigger buildings. Experimental data are presented, determining and analysing kinetics and operating temperatures for the applications. In this paper the focus is on the hydration part of the process, which is the more challenging part, considering conversion and kinetics. Various operating temperatures for both the reactor and the water (storage tank are tested and the favourable temperatures are presented and discussed. Applications both using ground heat for water vapour generation and using water vapour from indoor air are presented. The thermal energy storage system with mixed nesquehonite (NQ and silica gel (SG can use both low (25–50% and high (75% relative humidity (RH air for hydration. The hydration at 40% RH gives a thermal storage capacity of 0.32 MJ/kg while 75% RH gives a capacity of 0.68 MJ/kg.

  15. Engineering Support for Handling Controller Conflicts in Energy Storage Systems Applications

    Directory of Open Access Journals (Sweden)

    Claudia Zanabria

    2017-10-01

    Full Text Available Energy storage systems will play a major role in the decarbonization of future sustainable electric power systems, allowing a high penetration of distributed renewable energy sources and contributing to the distribution network stability and reliability. To accomplish this, a storage system is required to provide multiple services such as self-consumption, grid support, peak-shaving, etc. The simultaneous activation of controllers operation may lead to conflicts, as a consequence the execution of committed services is not guaranteed. This paper presents and discusses a solution to the exposed issue by developing an engineering support approach to semi-automatically detect and handle conflicts for multi-usage storage systems applications. To accomplish that an ontology is developed and exploited by model-driven engineering mechanisms. The proposed approach is evaluated by implementing a use case example, where detection of conflicts is automatically done at an early design stage. Besides this, exploitable source code for conflicts resolution is generated and used during the design and prototype stages of controllers development. Thus, the proposed engineering support enhances the design and development of storage system controllers, especially for multi-usage applications.

  16. The Necessary and Sufficient Closure Process Completion Report for Purex FacilitySurveillance and Maintenance

    International Nuclear Information System (INIS)

    Gerald, J.W.

    1997-10-01

    This document completes the U.S. Department of Energy Closure Process for Necessary and Sufficient Sets of Standards process for the Plutonium Uranium Extraction facility located at the Hanford Site in Washington State. This documentation is provided to support the Work Smart Standards set identified for the long-term surveillance and maintenance of PUREX. This report is organized into two volumes. Volume 1 contains the following sections: Section 1: Provides an introduction for the document Section 2: Provides a basis for initiating the N ampersand S process Section 3: Defines the work and hazards to be addressed Section 4: Identifies the N ampersand S set of standards and requirements Section 5: Provides the justification for adequacy of the work smart standards Section 6: Shows the criteria and qualifications of the teams Section 7: Describes the stakeholder participation and concerns Section 8: Provides a list of references used within the document

  17. Application of nanomaterials in solar thermal energy storage

    Science.gov (United States)

    Shamshirgaran, Seyed Reza; Khalaji Assadi, Morteza; Viswanatha Sharma, Korada

    2018-06-01

    Solar thermal conversion technology harvests the sun's energy, rather than fossil fuels, to generate low-cost, low/zero-emission energy in the form of heating, cooling or electrical form for residential, commercial, and industrial sectors. The advent of nanofluids and nanocomposites or phase change materials, is a new field of study which is adapted to enhance the efficiency of solar collectors. The concepts of thermal energy storage technologies are investigated and the role of nanomaterials in energy conversion is discussed. This review revealed that although the exploitation of nanomaterials will boost the performance of solar collectors almost in all cases, this would be accompanied by certain challenges such as production cost, instability, agglomeration and erosion. Earlier studies have dealt with the enhancement of thermal conductivity and heat capacity; however, less attention has been given to the facing challenges. Moreover, no exact criteria can be found for the selection of appropriate nanomaterials and their properties for a specific application. In most research studies, the nanoparticles' material and properties have not been selected based on estimated values so that all the aspects of desired application could be considered simultaneously. The wide spread use of nanomaterials can lead to cost effective solutions as well. Therefore, it seems there should be a sense of techno-economic optimization in exploiting nanomaterials for solar thermal energy storage applications. The optimization should cover the key parameters, particularly nanoparticle type, size, loading and shape which depends on the sort of application and also dispersion technology.

  18. Application of nanomaterials in solar thermal energy storage

    Science.gov (United States)

    Shamshirgaran, Seyed Reza; Khalaji Assadi, Morteza; Viswanatha Sharma, Korada

    2017-12-01

    Solar thermal conversion technology harvests the sun's energy, rather than fossil fuels, to generate low-cost, low/zero-emission energy in the form of heating, cooling or electrical form for residential, commercial, and industrial sectors. The advent of nanofluids and nanocomposites or phase change materials, is a new field of study which is adapted to enhance the efficiency of solar collectors. The concepts of thermal energy storage technologies are investigated and the role of nanomaterials in energy conversion is discussed. This review revealed that although the exploitation of nanomaterials will boost the performance of solar collectors almost in all cases, this would be accompanied by certain challenges such as production cost, instability, agglomeration and erosion. Earlier studies have dealt with the enhancement of thermal conductivity and heat capacity; however, less attention has been given to the facing challenges. Moreover, no exact criteria can be found for the selection of appropriate nanomaterials and their properties for a specific application. In most research studies, the nanoparticles' material and properties have not been selected based on estimated values so that all the aspects of desired application could be considered simultaneously. The wide spread use of nanomaterials can lead to cost effective solutions as well. Therefore, it seems there should be a sense of techno-economic optimization in exploiting nanomaterials for solar thermal energy storage applications. The optimization should cover the key parameters, particularly nanoparticle type, size, loading and shape which depends on the sort of application and also dispersion technology.

  19. Short Term Energy Storage for Grid Support in Wind Power Applications

    DEFF Research Database (Denmark)

    Stroe, Daniel Ioan; Stan, Ana-Irina; Diosi, Robert

    2012-01-01

    The penetration of wind power into the power system has been increasing in the recent years. Therefore, a lot of concerns related to the reliable operation of the power system have been addressed. An attractive solution to minimize the limitations faced by the wind power grid integration, and thus...... to increase the power system stability and the energy quality, is to integrate energy storage devices into wind power plants. This paper gives an overview of the state-of-the-art short-term energy storage devices and presents several applications which can be provided by the energy storage device - wind power...

  20. Counter-current extraction studies for the recovery of neptunium by the Purex process. Part II

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasan, N.; Nadkarni, M. N.; Kumar, S. V.; Kartha, P. K.S.; Sonavane, R. R.; Ramaniah, M. V.; Patil, S. K.

    1974-07-01

    Counter-extraction experiments were carried out under the conditions relevant to the partitioning column (IBX) in the purex process to know the path of neptunium present as Np (VI) the organic phase during the partitioning step. The results obtained show that when ferrous sulphamates is used as the reducing agent, most of the neptunium continues to remain with uranium in the organic stream while with hydrazine stabilized uranous nitrate as the reducing agent, a major fraction of neptunium follows the aqueous stream. Mixer-settler experiments were also carried out under the conditions relevant to the uranium purification cycle (2D) to establish the conditions for forcing neptunium to the aqueous raffinate or for partitioning it from uranium if both neptunium and uranium are co-extracted in this cycle and the results obtained are reported here. (auth)

  1. Hydrogen Storage Materials for Mobile and Stationary Applications: Current State of the Art.

    Science.gov (United States)

    Lai, Qiwen; Paskevicius, Mark; Sheppard, Drew A; Buckley, Craig E; Thornton, Aaron W; Hill, Matthew R; Gu, Qinfen; Mao, Jianfeng; Huang, Zhenguo; Liu, Hua Kun; Guo, Zaiping; Banerjee, Amitava; Chakraborty, Sudip; Ahuja, Rajeev; Aguey-Zinsou, Kondo-Francois

    2015-09-07

    One of the limitations to the widespread use of hydrogen as an energy carrier is its storage in a safe and compact form. Herein, recent developments in effective high-capacity hydrogen storage materials are reviewed, with a special emphasis on light compounds, including those based on organic porous structures, boron, nitrogen, and aluminum. These elements and their related compounds hold the promise of high, reversible, and practical hydrogen storage capacity for mobile applications, including vehicles and portable power equipment, but also for the large scale and distributed storage of energy for stationary applications. Current understanding of the fundamental principles that govern the interaction of hydrogen with these light compounds is summarized, as well as basic strategies to meet practical targets of hydrogen uptake and release. The limitation of these strategies and current understanding is also discussed and new directions proposed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Conception of modular hydrogen storage systems for portable applications

    International Nuclear Information System (INIS)

    Paladini, V.; Miotti, P.; Manzoni, G.; Ozebec, J.

    2003-01-01

    Hydrogen, till now the most prominent candidate as a future sustainable energy carrier, yields a gravimetric energy density three times as high as liquid hydrocarbon. Furthermore it is proven to be the most environmentally friendly fuel. Unfortunately, a few components regarding storage and tank solutions have not yet reached a technology level required for broad use. Thus, we intend to propose solutions and device concepts for both devices everyday use and space applications. This contribution assesses both state of the art of storage materials and existing technologies of power generation systems for application in portable devices. The aim of this work is to define the characteristics of a modular system, being suitable for a wide range of different devices, operating on advanced metal hydrides as the active hydrogen supply component. The concept has been studied and modelled with respect to volumes, mass and power requirements of different devices. The smallest system developed is intended to run, for example, a mobile phone. Minor tuning and straightforward scale up of this power supply module should make it suitable for general applicability in any portable device. (author)

  3. The use of application-specific performance targets and engineering considerations to guide hydrogen storage materials development

    Energy Technology Data Exchange (ETDEWEB)

    Stetson, Ned T., E-mail: ned.stetson@ee.doe.gov [U.S. Department of Energy, 1000 Independence Ave., SW, EE-2H, Washington, DC 20585 (United States); Ordaz, Grace; Adams, Jesse; Randolph, Katie [U.S. Department of Energy, 1000 Independence Ave., SW, EE-2H, Washington, DC 20585 (United States); McWhorter, Scott [Savannah River National Laboratory, Aiken, SC 29808 (United States)

    2013-12-15

    Highlights: •Portable power and material handling equipment as early market technology pathways. •Engineering based system-level storage-materials requirements. •Application based targets. -- Abstract: The Hydrogen and Fuel Cells Technologies Office, carried out through the DOE Office of Energy Efficiency and Renewable Energy, maintains a broad portfolio of activities to enable the commercialization of fuel cells across a range of near, mid and long-term applications. Improved, advanced hydrogen storage technologies are seen as a critical need for successful implementation of hydrogen fuel cells in many of these applications. To guide and focus materials development efforts, the DOE develops system performance targets for the specific applications of interest, and carries out system engineering analyses to determine the system-level performance delivered when the materials are incorporated into a complete system. To meet the needs of applications, it is important to consider the system-level performance, not just the material-level properties. An overview of the DOE’s hydrogen storage efforts in developing application-specific performance targets and systems engineering to guide hydrogen storage materials identification and development is herein provided.

  4. The use of application-specific performance targets and engineering considerations to guide hydrogen storage materials development

    International Nuclear Information System (INIS)

    Stetson, Ned T.; Ordaz, Grace; Adams, Jesse; Randolph, Katie; McWhorter, Scott

    2013-01-01

    Highlights: •Portable power and material handling equipment as early market technology pathways. •Engineering based system-level storage-materials requirements. •Application based targets. -- Abstract: The Hydrogen and Fuel Cells Technologies Office, carried out through the DOE Office of Energy Efficiency and Renewable Energy, maintains a broad portfolio of activities to enable the commercialization of fuel cells across a range of near, mid and long-term applications. Improved, advanced hydrogen storage technologies are seen as a critical need for successful implementation of hydrogen fuel cells in many of these applications. To guide and focus materials development efforts, the DOE develops system performance targets for the specific applications of interest, and carries out system engineering analyses to determine the system-level performance delivered when the materials are incorporated into a complete system. To meet the needs of applications, it is important to consider the system-level performance, not just the material-level properties. An overview of the DOE’s hydrogen storage efforts in developing application-specific performance targets and systems engineering to guide hydrogen storage materials identification and development is herein provided

  5. FLYWHEEL ENERGY STORAGE SYSTEMS WITH SUPERCONDUCTING BEARINGS FOR UTILITY APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Michael Strasik; Mr. Arthur Day; Mr. Philip Johnson; Dr. John Hull

    2007-10-26

    This project’s mission was to achieve significant advances in the practical application of bulk high-temperature superconductor (HTS) materials to energy-storage systems. The ultimate product was planned as an operational prototype of a flywheel system on an HTS suspension. While the final prototype flywheel did not complete the final offsite demonstration phase of the program, invaluable lessons learned were captured on the laboratory demonstration units that will lead to the successful deployment of a future HTS-stabilized, composite-flywheel energy-storage system (FESS).

  6. FLYWHEEL ENERGY STORAGE SYSTEMS WITH SUPERCONDUCTING BEARINGS FOR UTILITY APPLICATIONS

    International Nuclear Information System (INIS)

    Dr. Michael Strasik; Mr. Arthur Day; Mr. Philip Johnson; Dr. John Hull

    2007-01-01

    This project's mission was to achieve significant advances in the practical application of bulk high-temperature superconductor (HTS) materials to energy-storage systems. The ultimate product was planned as an operational prototype of a flywheel system on an HTS suspension. While the final prototype flywheel did not complete the final offsite demonstration phase of the program, invaluable lessons learned were captured on the laboratory demonstration units that will lead to the successful deployment of a future HTS-stabilized, composite-flywheel energy-storage system (FESS)

  7. On the identification of complexing radiolysis products in the Purex system. (20%TBP - Dodecane - HNO3)

    International Nuclear Information System (INIS)

    Becker, R.; Baumgartner, F.; Steiglitz, L.

    1978-09-01

    The lifetime of the extraction system TBP Dodecane-aqueous HNO. In the Purex process is limited by radiolytic and hydrolytic decomposition of the extracting and diluting agent which is indicated by an increased retention of fission products, especially zirconium. In this work, the radiolytically formed complexing agents responsible for this are enriched (molecular distillation) and separated in several fractions by liquid chromatography. The chemical composition of these fractions was identified by a combination of gas chromatography and mass spectrometry, supplemented by infra-red spectroscopy. As for doubtful complexing agents, they are mainly long-chain phosphoric acid esters, and, to a lesser extent, the existence of polycarbonyl compounds is suspected. The high molecular weight components of the phosphate ester fraction could be separated by gas chromatography and identified as oligomeric phosphate esters. (author)

  8. Separation of 90Sr from Purex high level waste and development of a 90Sr-90Y generator

    International Nuclear Information System (INIS)

    Ramanujam, A.; Dhami, P.S.; Chitnis, R.R.; Achuthan, P.V.; Kannan, R.; Gopalakrishnan, V.; Balu, K.

    2000-04-01

    90 Y (T 1/2 =64.2 h) finds several applications in nuclear medicine. It is formed from the decay of 90 Sr which has a long half-life of 28.8 years. 90 Sr can be used as a long-lasting source for the production of carrier-free 90 Y. 90 Sr itself is abundantly available in high level waste (HLW) of PUREX origin. The present studies deal with the separation of pure 90 Sr from HLW and the subsequent separation of 90 Y from 90 Sr. Actinides and some of the fission products like lanthanides, zirconium, molybdenum and cesium were first removed from the HLW using methods based on solvent extraction and ion-exchange studied earlier in our laboratory. The resulting waste solution was used as a feed for the present process. The separation of 90 Sr from HLW was based on radiochemical method which involved a repeated scavenging with ferric hydroxide followed by strontium carbonate precipitation. The separation of 90 Y from 90 Sr was achieved by membrane separation technique. A compact generator is developed for this separation using a commercially available polytetrafluoroethylene (PTFE) membrane, impregnated with indigenously synthesised 2-ethylhexyl 2-ethylhexyl phosphonic acid (KSM-17). Generator system overcomes the drawbacks associated with conventional solvent extraction and ion-exchange based generators. The product is in chloride form and is suitable for complexation studies. After gaining an operating experience of ∼3 years in generating carrier-free 90 Y at 2 mCi level for initial studies in radiotherapeutic applications, the process was scaled up for the production of about 12 mCi of 90 Y to be used for animal studies before its application to patients. Radiochemical and chemical purity of the product was critically assayed by radiometry, ICP-AES, etc. The process is amenable for further scaling up. (author)

  9. Possible Lead Free Nanocomposite Dielectrics for High Energy Storage Applications

    Directory of Open Access Journals (Sweden)

    Srinivas Kurpati

    2017-03-01

    Full Text Available There is an increasing demand to improve the energy density of dielectric capacitors for satisfying the next generation material systems. One effective approach is to embed high dielectric constant inclusions such as lead zirconia titanate in polymer matrix. However, with the increasing concerns on environmental safety and biocompatibility, the need to expel lead (Pb from modern electronics has been receiving more attention. Using high aspect ratio dielectric inclusions such as nanowires could lead to further enhancement of energy density. Therefore, the present brief review work focuses on the feasibility of development of a lead-free nanowire reinforced polymer matrix capacitor for energy storage application. It is expected that Lead-free sodium Niobate nanowires (NaNbO3 and Boron nitride will be a future candidate to be synthesized using simple hydrothermal method, followed by mixing them with polyvinylidene fluoride (PVDF/ divinyl tetramethyl disiloxanebis (benzocyclobutene matrix using a solution-casting method for Nanocomposites fabrication. The energy density of NaNbO3 and BN based composites are also be compared with that of lead-containing (PbTiO3/PVDF Nano composites to show the feasibility of replacing lead-containing materials from high-energy density dielectric capacitors. Further, this paper explores the feasibility of these materials for space applications because of high energy storage capacity, more flexibility and high operating temperatures. This paper is very much useful researchers who would like to work on polymer nanocomposites for high energy storage applications.

  10. Separation of An(III) from PUREX raffinate as an innovative SANEX process based on a mixture of TODGA/TBP

    International Nuclear Information System (INIS)

    Sypula, Michal; Wilden, Andreas; Schreinemachers, Christian; Modolo, Giuseppe

    2010-01-01

    Within the ACSEPT project, an innovative SANEX process based on TODGA/TBP for selective An(III) separation from PUREX raffinate was studied. Oxalic acid usually used for Zr complexation is considered a weak point. An investigation to substitute oxalic acid with a different masking agent was carried out. A new masking agent already studied in FZJ was applied and showed good complexation properties towards Zr and Pd. Re-investigation of the formula of the actinide stripping solution was also performed. Good separation of Ln over Am was obtained by means of DTPA and malic acid. Glycine appeared to be the strongest within the tested buffers. (authors)

  11. Magnetic energy storage devices for small scale applications

    International Nuclear Information System (INIS)

    Kumar, B.

    1992-01-01

    This paper covers basic principles of magnetic energy storage, structure requirements and limitations, configurations of inductors, attributes of high-T c superconducting materials including thermal instabilities, a relative comparison with the state-of-the-art high energy density power sources, and refrigeration requirements. Based on these fundamental considerations, the design parameters of a micro superconducting magnetic energy unit for Air Force applications is presented and discussed

  12. Energy storage

    CERN Document Server

    Brunet, Yves

    2013-01-01

    Energy storage examines different applications such as electric power generation, transmission and distribution systems, pulsed systems, transportation, buildings and mobile applications. For each of these applications, proper energy storage technologies are foreseen, with their advantages, disadvantages and limits. As electricity cannot be stored cheaply in large quantities, energy has to be stored in another form (chemical, thermal, electromagnetic, mechanical) and then converted back into electric power and/or energy using conversion systems. Most of the storage technologies are examined: b

  13. Plutonium-uranium separation in the Purex process using mixtures of hydroxylamine nitrate and ferrous sulfamate

    International Nuclear Information System (INIS)

    McKibben, J.M.; Chostner, D.F.; Orebaugh, E.G.

    1983-11-01

    Laboratory studies, followed by plant operation, established that a mixture of hydroxylamine nitrate (HAN) and ferrous sulfamate (FS) is superior to FS used alone as a reductant for plutonium in the Purex first cycle. FS usage has been reduced by about 70% (from 0.12 to 0.04M) compared to the pre-1978 period. This reduced the volume of neutralized waste due to FS by 194 liters/metric ton of uranium (MTU) processed. The new flowsheet also gives lower plutonium losses to waste and at least comparable fission product decontamination. To achieve satisfactory performance at this low concentration of FS, the acidity in the 1B mixer-settler was reduced by using a split-scrub - a low acid scrub in stage one and a higher acid scrub in stage three - to remove acid from the solvent exiting the 1A centrifugal contactor. 8 references, 14 figures, 1 table

  14. Developments in organic solid–liquid phase change materials and their applications in thermal energy storage

    International Nuclear Information System (INIS)

    Sharma, R.K.; Ganesan, P.; Tyagi, V.V.; Metselaar, H.S.C.; Sandaran, S.C.

    2015-01-01

    Highlights: • Review of organic phase change materials for thermal energy storage. • Review of the eutectic mixtures of organic PCMs. • Review of the techniques of PCM encapsulations and enhancing the thermal conductivity. • Applications of low and medium temperature organic PCMs are listed in detail. • Recommendations are made for future applications of organic PCMs. - Abstract: Thermal energy storage as sensible or latent heat is an efficient way to conserve the waste heat and excess energy available such as solar radiation. Storage of latent heat using organic phase change materials (PCMs) offers greater energy storage density over a marginal melting and freezing temperature difference in comparison to inorganic materials. These favorable characteristics of organic PCMs make them suitable in a wide range of applications. These materials and their eutectic mixtures have been successfully tested and implemented in many domestic and commercial applications such as, building, electronic devices, refrigeration and air-conditioning, solar air/water heating, textiles, automobiles, food, and space industries. This review focuses on three aspects: the materials, encapsulation and applications of organic PCMs, and provides an insight on the recent developments in applications of these materials. Organic PCMs have inherent characteristic of low thermal conductivity (0.15–0.35 W/m K), hence, a larger surface area is required to enhance the heat transfer rate. Therefore, attention is also given to the thermal conductivity enhancement of the materials, which helps to keep the area of the system to a minimum. Besides, various available techniques for material characterization have also been discussed. It has been found that a wide range of the applications of organic PCMs in buildings and other low and medium temperature solar energy applications are in abundant use but these materials are not yet popular among space applications and virtual data storage media. In

  15. Hybrid Electric Energy Storages: Their Specific Features and Application (Review)

    Science.gov (United States)

    Popel', O. S.; Tarasenko, A. B.

    2018-05-01

    The article presents a review of various aspects related to development and practical use of hybrid electric energy storages (i.e., those uniting different energy storage technologies and devices in an integrated system) in transport and conventional and renewable power engineering applications. Such devices, which were initially developed for transport power installations, are increasingly being used by other consumers characterized by pronounced nonuniformities of their load schedule. A range of tasks solved using such energy storages is considered. It is shown that, owing to the advent of new types of energy storages and the extended spectrum of their performance characteristics, new possibilities for combining different types of energy storages and for developing hybrid systems have become available. This, in turn, opens up the possibility of making energy storages with better mass and dimension characteristics and achieving essentially lower operational costs. The possibility to secure more comfortable (base) operating modes of primary sources of energy (heat engines and renewable energy source based power installations) and to achieve a higher capacity utilization factor are unquestionable merits of hybrid energy storages. Development of optimal process circuit solutions, as well as energy conversion and control devices facilitating the fullest utilization of the properties of each individual energy storage included in the hybrid system, is among the important lines of research carried out in this field in Russia and abroad. Our review of existing developments has shown that there are no universal technical solutions in this field (the specific features of a consumer have an essential effect on the process circuit solutions and on the composition of a hybrid energy storage), a circumstance that dictates the need to extend the scope of investigations in this promising field.

  16. Dry process potentials

    International Nuclear Information System (INIS)

    Faugeras, P.

    1997-01-01

    Various dry processes have been studied and more or less developed in order particularly to reduce the waste quantities but none of them had replaced the PUREX process, for reasons departing to policy errors, un-appropriate demonstration examples or too late development, although realistic and efficient dry processes such as a fluoride selective volatility based processes have been demonstrated in France (CLOVIS, ATILA) and would be ten times cheaper than the PUREX process. Dry processes could regain interest in case of a nuclear revival (following global warming fears) or thermal wastes over-production. In the near future, dry processes could be introduced in complement to the PUREX process, especially at the end of the process cycle, for a more efficient recycling and safer storage (inactivation)

  17. Design aspects of integrated compact thermal storage system for solar dryer applications

    International Nuclear Information System (INIS)

    Rajaraman, R.; Velraj, R.; Renganarayanan, S.

    2000-01-01

    Solar energy is an excellent source for drying of crops, fruits, vegetables and other agricultural and forest products. Though the availability of solar energy is plenty, it is time dependent in nature. The energy need for some applications is also time dependent, but in a different pattern and phase from the solar energy supply. This implies that the solar dryer should be integrated with an efficient thermal storage system to match the time-dependent supply and end-use requirements. Based on the studies carried out on Latent Heat Thermal Storage (LHTS) Systems, it is observed that when air is used as the heat transfer fluid in LHTS system, nearly uniform surface heat flux can be achieved. Hence the LHTS systems are most suitable for air based solar drying applications. In the present work some major conclusions arrived from the investigations on LHTS systems and the design considerations for the integrated latent heat thermal storage for the solar dryer are reported. (Author)

  18. The used nuclear fuel problem - can reprocessing and consolidated storage be complementary?

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, C.; Thomas, I. [EnergySolutions Federal EPC., 2345 Stevens Drive, Richland, WA 99354 (United States)

    2013-07-01

    This paper describes our CISF (Consolidated Interim Storage Facilities) and Reprocessing Facility concepts and show how they can be combined with a geologic repository to provide a comprehensive system for dealing with spent fuels in the USA. The performance of the CISF was logistically analyzed under six operational scenarios. A 3-stage plan has been developed to establish the CISF. Stage 1: the construction at the CISF site of only a rail receipt interface and storage pad large enough for the number of casks that will be received. The construction of the CISF Canister Handling Facility, the Storage Cask Fabrication Facility, the Cask Maintenance Facility and supporting infrastructure are performed during stage 2. The construction and placement into operation of a water-filled pool repackaging facility is completed for Stage 3. By using this staged approach, the capital cost of the CISF is spread over a number of years. It also allows more time for a final decision on the geologic repository to be made. A recycling facility will be built, this facility will used the NUEX recycling process that is based on the aqueous-based PUREX solvent extraction process, using a solvent of tri-N-butyl phosphate in a kerosene diluent. It is capable of processing spent fuels at a rate of 5 MT per day, at burn-ups up to 50 GWD per ton of spent fuels and a minimum of 5 years out-of-reactor cooling.

  19. Application of room temperature ionic liquids in advanced fuel cycles RIAR research concept program users

    International Nuclear Information System (INIS)

    Bychkov, Alexander V.; Kormilitsyn, Michael V.; Savochkin, Yuri P.; Osipenko, Alexander G.; Smolensky, Valeri V.; Shadrin, Alexander Yu.; Babain, Vladimir A.

    2005-01-01

    The paper reviews briefly the research program on application of Room Temperature Ionic Liquids (RTILs) in some processes of the nuclear fuel reprocessing, particularly in the uranium-aluminum fuel reprocessing and separation of TPEs and REEs from the PUREX process liquid waste, and approaches to implementation of this program. (author)

  20. Characterization of past and present solid waste streams from the Plutonium-Uranium Extraction Plant

    International Nuclear Information System (INIS)

    Pottmeyer, J.A.; Weyns, M.I.; Lorenzo, D.S.; Vejvoda, E.J.; Duncan, D.R.

    1993-04-01

    During the next two decades the transuranic wastes, now stored in the burial trenches and storage facilities at the Hanford Site, are to be retrieved, processed at the Waste Receiving and Processing Facility, and shipped to the Waste Isolation Pilot Plant near Carlsbad, New Mexico for final disposal. Over 7% of the transuranic waste to be retrieved for shipment to the Waste Isolation Pilot Plant has been generated at the Plutonium-Uranium Extraction (PUREX) Plant. The purpose of this report is to characterize the radioactive solid wastes generated by PUREX using process knowledge, existing records, and oral history interviews. The PUREX Plant is currently operated by the Westinghouse Hanford Company for the US Department of Energy and is now in standby status while being prepared for permanent shutdown. The PUREX Plant is a collection of facilities that has been used primarily to separate plutonium for nuclear weapons from spent fuel that had been irradiated in the Hanford Site's defense reactors. Originally designed to reprocess aluminum-clad uranium fuel, the plant was modified to reprocess zirconium alloy clad fuel elements from the Hanford Site's N Reactor. PUREX has provided plutonium for research reactor development, safety programs, and defense. In addition, the PUREX was used to recover slightly enriched uranium for recycling into fuel for use in reactors that generate electricity and plutonium. Section 2.0 provides further details of the PUREX's physical plant and its operations. The PUREX Plant functions that generate solid waste are as follows: processing operations, laboratory analyses and supporting activities. The types and estimated quantities of waste resulting from these activities are discussed in detail

  1. Ethanol as radon storage: applications for measurement

    International Nuclear Information System (INIS)

    Winter, I.; Philipsborn, H. von

    1997-01-01

    Ethanol as Radon Storage: Applications for Measurement Ethanol has a solubility for radon of 6 Bq/l per kBq/m 3 air, 24 times higher than water. On filtration of ethanol, radon decay products are completely adsorbed on glass fiber filters, as previously reported for water. Hence: 1. A new simple method for measuring radon in soil air, without expensive equipment. 2. The production of mailable radon calibration sources ('radonol') with 50-100 kBq/l in PET-bottles with 3.8 days half-life, using uraniferous rocks as primary source. (orig.) [de

  2. Determination of Duty Cycle for Energy Storage Systems in a Renewables (Solar) Firming Application

    Energy Technology Data Exchange (ETDEWEB)

    Schoenwald, David A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Electric Power Systems Research Dept.; Ellison, James [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Electric Power Systems Research Dept.

    2016-04-01

    This report supplements the document, “Protocol for Uniformly Measuring and Expressing the Performance of Energy Storage Systems,” issued in a revised version in April 2016, which will include the renewables (solar) firming application for an energy storage system (ESS). This report provides the background and documentation associated with the determination of a duty cycle for an ESS operated in a renewables (solar) firming application for the purpose of measuring and expressing ESS performance in accordance with the ESS performance protocol.

  3. Porous One-Dimensional Nanomaterials: Design, Fabrication and Applications in Electrochemical Energy Storage.

    Science.gov (United States)

    Wei, Qiulong; Xiong, Fangyu; Tan, Shuangshuang; Huang, Lei; Lan, Esther H; Dunn, Bruce; Mai, Liqiang

    2017-05-01

    Electrochemical energy storage technology is of critical importance for portable electronics, transportation and large-scale energy storage systems. There is a growing demand for energy storage devices with high energy and high power densities, long-term stability, safety and low cost. To achieve these requirements, novel design structures and high performance electrode materials are needed. Porous 1D nanomaterials which combine the advantages of 1D nanoarchitectures and porous structures have had a significant impact in the field of electrochemical energy storage. This review presents an overview of porous 1D nanostructure research, from the synthesis by bottom-up and top-down approaches with rational and controllable structures, to several important electrochemical energy storage applications including lithium-ion batteries, sodium-ion batteries, lithium-sulfur batteries, lithium-oxygen batteries and supercapacitors. Highlights of porous 1D nanostructures are described throughout the review and directions for future research in the field are discussed at the end. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Uranous nitrate production for purex process applications using PtO2 catalyst and H2/H2-gas mixtures

    International Nuclear Information System (INIS)

    Sreenivasa Rao, K.; Shyamali, R.; Narayan, C.V.; Patil, A.R.; Jambunathan, U.; Ramanujam, A.; Kansara, V.P.

    2003-04-01

    In the Purex process of spent fuel reprocessing. the twin objectives- decontamination and partitioning are achieved by extracting uranium (VI) and plutonium (IV) together in the solvent 30% TBP-dodecane and then selectively reducing Pu (IV) to Pu (III) in which valency it is least extractable in the solvent. Uranous nitrate stabilized with hydrazine nitrate is the widely employed partitioning agent. The conventional method of producing U(IV) is by the electrolytic reduction of uranyl nitrate with hydrazine nitrate as uranous ion stabilizer. Tre percentage conversion of U(VI) to U(IV) obtained in this method is 50 -60 %. The use of this solution as partitioning agent leads not only to the dilution of the plutonium product but also to increase in uranium processing load by each externally fed uranous nitrate batch. Also the oxide coating of the anode, TSIA (Titanium Substrate Insoluble Anode) wears out after a certain period of operation. This necessitates recoating which is quite cumbersome considering the amount of the decontamination involved. An alternative to the conventional electrolytic method of reduction of uranyl nitrate to uranous nitrate was explored at FRD laboratory .The studies have revealed that near 100% uranous nitrate can be produced by reducing uranyl nitrate with H 2 gas or H 2 (8%)- Ar/N 2 gas mixture in presence of PtO 2 catalyst. This report describes the laboratory scale studies carried out to optimize the various parameters. Based on these studies reduction of uranyl nitrate on a pilot plant scale was carried out. The design and operation of the reductor column and also the various studies carried out in the pilot plant studies are discussed. Near 100% conversion of uranyl nitrate to uranous nitrate and also the redundancy of supply of electrical energy make this process a viable alternative to the existing electrolytic method. (author)

  5. Zirconium-Based metal organic framework (Zr-MOF) material with high hydrostability for hydrogen storage applications

    CSIR Research Space (South Africa)

    Ren, Jianwei

    2013-09-01

    Full Text Available Material-based solutions, such as metal organic frameworks (MOFs), continue to attract increasing attention as viable options for hydrogen storage applications. MOFs are widely regarded as promising materials for hydrogen storage due to their high...

  6. 76 FR 30936 - West Maui Pumped Storage Water Supply, LLC; Notice of Preliminary Permit Application Accepted for...

    Science.gov (United States)

    2011-05-27

    ... Storage Water Supply, LLC; Notice of Preliminary Permit Application Accepted for Filing and Soliciting...-acre reservoir; (4) a turnout to supply project effluent water to an existing irrigation system; (5) a...,000 megawatt-hours. Applicant Contact: Bart M. O'Keeffe, West Maui Pumped Storage Water Supply, LLC, P...

  7. Thermal energy storage technologies for sustainability systems design, assessment and applications

    CERN Document Server

    Kalaiselvam, S

    2014-01-01

    Thermal Energy Storage Technologies for Sustainability is a broad-based overview describing the state-of-the-art in latent, sensible, and thermo-chemical energy storage systems and their applications across industries. Beginning with a discussion of the efficiency and conservation advantages of balancing energy demand with production, the book goes on to describe current state-of-the art technologies. Not stopping with description, the authors also discuss design, modeling, and simulation of representative systems, and end with several case studies of systems in use.Describes how thermal energ

  8. Small Form Factor Information Storage Devices for Mobile Applications in Korea

    Science.gov (United States)

    Park, Young-Pil; Park, No-Cheol; Kim, Chul-Jin

    Recently, the ubiquitous environment in which anybody can reach a lot of information data without any limitations on the place and time has become an important social issue. There are two basic requirements in the field of information storage devices which have to be satisfied; the first is the demand for the improvement of memory capacity to manage the increased data capacity in personal and official purposes. The second is the demand for new development of information storage devices small enough to be applied to mobile multimedia digital electronics, including digital camera, PDA and mobile phones. To summarize, for the sake of mobile applications, it is necessary to develop information storage devices which have simultaneously a large capacity and a small size. Korea possesses the necessary infrastructure for developing such small sized information storage devices. It has a good digital market, major digital companies, and various research institutes. Nowadays, many companies and research institutes including university cooperate together in the research on small sized information storage devices. Thus, it is expected that small form factor optical disk drives will be commercialized in the very near future in Korea.

  9. The Design and Application of Data Storage System in Miyun Satellite Ground Station

    Science.gov (United States)

    Xue, Xiping; Su, Yan; Zhang, Hongbo; Liu, Bin; Yao, Meijuan; Zhao, Shu

    2015-04-01

    China has launched Chang'E-3 satellite in 2013, firstly achieved soft landing on moon for China's lunar probe. Miyun satellite ground station firstly used SAN storage network system based-on Stornext sharing software in Chang'E-3 mission. System performance fully meets the application requirements of Miyun ground station data storage.The Stornext file system is a sharing file system with high performance, supports multiple servers to access the file system using different operating system at the same time, and supports access to data on a variety of topologies, such as SAN and LAN. Stornext focused on data protection and big data management. It is announced that Quantum province has sold more than 70,000 licenses of Stornext file system worldwide, and its customer base is growing, which marks its leading position in the big data management.The responsibilities of Miyun satellite ground station are the reception of Chang'E-3 satellite downlink data and management of local data storage. The station mainly completes exploration mission management, receiving and management of observation data, and provides a comprehensive, centralized monitoring and control functions on data receiving equipment. The ground station applied SAN storage network system based on Stornext shared software for receiving and managing data reliable.The computer system in Miyun ground station is composed by business running servers, application workstations and other storage equipments. So storage systems need a shared file system which supports heterogeneous multi-operating system. In practical applications, 10 nodes simultaneously write data to the file system through 16 channels, and the maximum data transfer rate of each channel is up to 15MB/s. Thus the network throughput of file system is not less than 240MB/s. At the same time, the maximum capacity of each data file is up to 810GB. The storage system planned requires that 10 nodes simultaneously write data to the file system through 16

  10. The reduction of Np(VI) and Np(V) by tit dihydroxyurea and its application to the U/Np separation in the PUREX process

    Energy Technology Data Exchange (ETDEWEB)

    Yan, T.H.; Zheng, W.F.; Zuo, C.; Xian, L.; Zhang, Y.; Bian, X.Y.; Li, R.X.; Di, Y. [Dept. of Radiochemistry, China Inst. of Atomic Energy, BJ (China)

    2010-07-01

    The reduction of Np(VI) and Np(V) by Dihydroxyurea (DHU) was studied by spectrophotometry. The results show that the reduction of Np(VI) to Np(V) by DHU is particularly fast. The apparent rate constant is 1.86s{sup -1} at 4 C as [HNO{sub 3}] = 0.44 M and [DHU] = 7.5 x 10{sup -2} M. While further reduction of Np(V) to Np(IV) is so slow that no Np(IV) is observed in 2 h. The reduction back-extraction behavior of Np(VI) in 30% tri-butyl phosphate/kerosene was firstly investigated under conditions of different temperature, different concentrations of DHU and HNO{sub 3} and various phase contact time, respectively. The results show that 98% of Np(VI) in the organic phase can be stripped rapidly to the aqueous phase by DHU under the given experimental conditions. As the concentration of HNO{sub 3} in the aqueous phase increases, the stripping efficiency decreases. While the stripping efficiency increases with the increase of the concentration of DHU. Simulating the 1B contactor of the PUREX process using DHU as the stripping agent, the SF{sub U}/Np equals to 183 under the given experimental conditions. It indicates that Np will follow with Pu in the U/Pu separation stage in the reprocessing of spent fuels. (orig.)

  11. ERDA's Chemical Energy Storage Program

    Science.gov (United States)

    Swisher, J. H.; Kelley, J. H.

    1977-01-01

    The Chemical Energy Storage Program is described with emphasis on hydrogen storage. Storage techniques considered include pressurized hydrogen gas storage, cryogenic liquid hydrogen storage, storage in hydride compounds, and aromatic-alicyclic hydrogen storage. Some uses of energy storage are suggested. Information on hydrogen production and hydrogen use is also presented. Applications of hydrogen energy systems include storage of hydrogen for utilities load leveling, industrial marketing of hydrogen both as a chemical and as a fuel, natural gas supplementation, vehicular applications, and direct substitution for natural gas.

  12. Wallboard with Latent Heat Storage for Passive Solar Applications; TOPICAL

    International Nuclear Information System (INIS)

    Kedl, R.J.

    2001-01-01

    Conventional wallboard impregnated with octadecane paraffin[melting point-23 C (73.5 F)] is being developed as a building material with latent heat storage for passive solar and other applications. Impregnation was accomplished simply by soaking the wallboard in molten wax. Concentrations of wax in the combined product as high as 35% by weight can be achieved. Scale-up of the soaking process, from small laboratory samples to full-sized 4- by 8-ft sheets, has been successfully accomplished. The required construction properties of wallboard are maintained after impregnation, that is, it can be painted and spackled. Long-term, high-temperature exposure tests and thermal cycling tests showed no tendency of the paraffin to migrate within the wallboard, and there was no deterioration of thermal energy storage capacity. In support of this concept, a computer model was developed to handle thermal transport and storage by a phase change material (PCM) dispersed in a porous media. The computer model was confirmed by comparison with known analytical solutions and also by comparison with temperatures measured in wallboard during an experimentally generated thermal transient. Agreement between the model and known solution was excellent. Agreement between the model and thermal transient was good, only after the model was modified to allow the PCM to melt over a temperature range, rather than at a specific melting point. When the melting characteristics of the PCM (melting point, melting range, and heat of fusion), as determined from a differential scanning calorimeter plot, were used in the model, agreement between the model and transient data was very good. The confirmed computer model may now be used in conjunction with a building heating and cooling code to evaluate design parameters and operational characteristics of latent heat storage wallboard for passive solar applications

  13. Nanostructured oxides for energy storage applications in batteries and supercapacitors

    International Nuclear Information System (INIS)

    Chandra, A.; Roberts, A. J.; Yee, E. L. H.; Slade, R. C. T.

    2009-01-01

    Nanostructured materials are extensively investigated for application in energy storage and power generation devices. This paper deals with the synthesis and characterization of nanomaterials based on oxides of vanadium and with their application as electrode materials for energy storage systems viz. supercapacitors. These nano-oxides have been synthesized using a hydrothermal route in the presence of templates: 1-hexadecylamine, Tweens and Brij types. Using templates during synthesis enables tailoring of the particle morphology and physical characteristics of synthesized powders. Broad X-ray diffraction peaks show the formation of nanoparticles, confirmed using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) investigations. SEM studies show that a large range of nanostructures such as needles, fibers, particles, etc. can be synthesized. These particles have varying surface areas and electrical conductivity. Enhancement of surface area as much as seven times relative to surface areas of starting parent materials has been observed. These properties make such materials ideal candidates for application as electrode materials in super capacitors. Assembly and characterization of supercapacitors based on electrodes containing these active nano-oxides are discussed. Specific capacitance of >100 F g -1 has been observed. The specific capacitance decreases with cycling: causes of this phenomenon are presented. (authors)

  14. Synthesis of Cr-MOF derived porous carbon for hydrogen storage applications

    CSIR Research Space (South Africa)

    Musyoka, Nicholas M

    2014-07-01

    Full Text Available Over the recent years, applications of porous metal-organic frameworks (MOFs) in hydrogen storage have received increasing attention in the scientific community. Conversion of organic moiety in MOFs to porous carbon, as well as the use of MOFs as a...

  15. Nanostructured porous graphene and its composites for energy storage applications

    Science.gov (United States)

    Ramos Ferrer, Pablo; Mace, Annsley; Thomas, Samantha N.; Jeon, Ju-Won

    2017-10-01

    Graphene, 2D atomic-layer of sp2 carbon, has attracted a great deal of interest for use in solar cells, LEDs, electronic skin, touchscreens, energy storage devices, and microelectronics. This is due to excellent properties of graphene, such as a high theoretical surface area, electrical conductivity, and mechanical strength. The fundamental structure of graphene is also manipulatable, allowing for the formation of an even more extraordinary material, porous graphene. Porous graphene structures can be categorized as microporous, mesoporous, or macroporous depending on the pore size, all with their own unique advantages. These characteristics of graphene, which are further explained in this paper, may be the key to greatly improving a wide range of applications in energy storage systems.

  16. Purex process modelling - do we really need speciation data?

    International Nuclear Information System (INIS)

    Taylor, R.J.; May, I.

    2001-01-01

    The design of reprocessing flowsheets has become a complex process requiring sophisticated simulation models, containing both chemical and engineering features. Probably the most basic chemical data needed is the distribution of process species between solvent and aqueous phases at equilibrium, which is described by mathematical algorithms. These algorithms have been constructed from experimentally determined distribution coefficients over a wide range of conditions. Distribution algorithms can either be empirical fits of the data or semi-empirical equations, which describe extraction as functions of process variables such as temperature, activity coefficients, uranium loading, etc. Speciation data is not strictly needed in the accumulation of distribution coefficients, which are simple ratios of analyte concentration in the solvent phase to that in the aqueous phase. However, as we construct process models of increasing complexity, speciation data becomes much more important both to raise confidence in the model and to understand the process chemistry at a more fundamental level. UV/vis/NIR spectrophotometry has been our most commonly used speciation method since it is a well-established method for the analysis of actinide ion oxidation states in solution at typical process concentrations. However, with the increasing availability to actinide science of more sophisticated techniques (e.g. NMR; EXAFS) complementary structural information can often be obtained. This paper will, through examples, show how we have used spectrophotometry as a primary tool in distribution and kinetic experiments to obtain data for process models, which are then validated through counter-current flowsheet trials. It will also discuss how spectrophotometry and other speciation methods are allowing us to study the link between molecular structure and extraction behaviour, showing how speciation data really is important in PUREX process modelling. (authors)

  17. Synthesis of graphene nanomaterials and their application in electrochemical energy storage

    Science.gov (United States)

    Xiong, Guoping

    The need to store and use energy on diverse scales in a modern technological society necessitates the design of large and small energy systems, among which electrical energy storage systems such as batteries and capacitors have attracted much interest in the past several decades. Supercapacitors, also known as ultracapacitors, or electrochemical capacitors, with fast power delivery and long cycle life are complementing or even replacing batteries in many applications. The rapid development of miniaturized electronic devices has led to a growing need for rechargeable micro-power sources with high performance. Among different sources, electrochemical micro-capacitors or micro-supercapacitors provide higher power density than their counterparts and are gaining increased interest from the research and engineering communities. Rechargeable Li ion batteries with high energy and power density, long cycling life, high charge-discharge rate (1C - 3C) and safe operation are in high demand as power sources and power backup for hybrid electric vehicles and other applications. In the present work, graphene-based graphene materials have been designed and synthesized for electrochemical energy storage applications, e.g., conventional supercapacitors (macro-supercapacitors), microsupercapacitors and lithium ion batteries. Factors influencing the formation and structure of graphitic petals grown by microwave plasma-enhanced chemical vapor deposition on oxidized silicon substrates were investigated through process variation and materials analysis. Insights gained into the growth mechanism of these graphitic petals suggest a simple scribing method can be used to control both the location and formation of petals on flat Si substrates. Transitional metal oxides and conducting polymers have been coated on the graphitic petal-based electrodes by facile chemical methods for multifunctional energy storage applications. Detailed electrochemical characterization (e.g., cyclic voltammetry and

  18. A Retrieval Optimized Surveillance Video Storage System for Campus Application Scenarios

    Directory of Open Access Journals (Sweden)

    Shengcheng Ma

    2018-01-01

    Full Text Available This paper investigates and analyzes the characteristics of video data and puts forward a campus surveillance video storage system with the university campus as the specific application environment. Aiming at the challenge that the content-based video retrieval response time is too long, the key-frame index subsystem is designed. The key frame of the video can reflect the main content of the video. Extracted from the video, key frames are associated with the metadata information to establish the storage index. The key-frame index is used in lookup operations while querying. This method can greatly reduce the amount of video data reading and effectively improves the query’s efficiency. From the above, we model the storage system by a stochastic Petri net (SPN and verify the promotion of query performance by quantitative analysis.

  19. Nanoarchitectured graphene-based supercapacitors for next-generation energy-storage applications.

    Science.gov (United States)

    Salunkhe, Rahul R; Lee, Ying-Hui; Chang, Kuo-Hsin; Li, Jing-Mei; Simon, Patrice; Tang, Jing; Torad, Nagy L; Hu, Chi-Chang; Yamauchi, Yusuke

    2014-10-20

    Tremendous development in the field of portable electronics and hybrid electric vehicles has led to urgent and increasing demand in the field of high-energy storage devices. In recent years, many research efforts have been made for the development of more efficient energy-storage devices such as supercapacitors, batteries, and fuel cells. In particular, supercapacitors have great potential to meet the demands of both high energy density and power density in many advanced technologies. For the last half decade, graphene has attracted intense research interest for electrical double-layer capacitor (EDLC) applications. The unique electronic, thermal, mechanical, and chemical characteristics of graphene, along with the intrinsic benefits of a carbon material, make it a promising candidate for supercapacitor applications. This Review focuses on recent research developments in graphene-based supercapacitors, including doped graphene, activated graphene, graphene/metal oxide composites, graphene/polymer composites, and graphene-based asymmetric supercapacitors. The challenges and prospects of graphene-based supercapacitors are also discussed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. The SERI solar energy storage program

    Science.gov (United States)

    Copeland, R. J.; Wright, J. D.; Wyman, C. E.

    1980-01-01

    In support of the DOE thermal and chemical energy storage program, the solar energy storage program (SERI) provides research on advanced technologies, systems analyses, and assessments of thermal energy storage for solar applications in support of the Thermal and Chemical Energy Storage Program of the DOE Division of Energy Storage Systems. Currently, research is in progress on direct contact latent heat storage and thermochemical energy storage and transport. Systems analyses are being performed of thermal energy storage for solar thermal applications, and surveys and assessments are being prepared of thermal energy storage in solar applications. A ranking methodology for comparing thermal storage systems (performance and cost) is presented. Research in latent heat storage and thermochemical storage and transport is reported.

  1. Multi-walled carbon nano-tubes for energy storage and production applications

    International Nuclear Information System (INIS)

    Andrews, R.; Jacques, D.; Likpa, S.; Qian, D.; Rantell, T.; Anthony, J.

    2005-01-01

    Full text of publication follows: Since their discovery, carbon nano-tubes have been proposed as candidate materials for a broad range of applications, including high strength composites, molecular electronics, and energy storage. In many cases, nano-tubes have been proposed to replace traditional carbon materials, such as activated carbons in energy storage devices. In other cases, novel applications have been proposed, such as the use of carbon nano-tube arrays in photovoltaic devices. The use of multi-walled carbon nano-tubes in energy storage devices has generated great interest due to their high inherent conductivity, layered structure, and high surface area per volume compared to traditional graphitic materials. However as produced nano-tubes do not possess ideal properties, and exhibit only modest charge storage. We have explored the charge storage abilities of nano-tubes with varying morphologies (fullerenic versus stacked cones), nano-tubes containing N or B dopants, as well as various post-treatments of the nano-tubes. The use of nano-tubes in charge storage devices will be described, as well as modification of the nano-tube surfaces or morphology to improve this performance. The synthesis of nano-tubes with several differing hetero-atom dopants will also be described, as well as the effect of heat treatment on these structures. One of the most significant problems in organic photovoltaics is the typically low charge-carrier mobility in organic thin films which, coupled with short exciton diffusion lengths, means that photo-generated charge-carrier pairs are more likely to re-combine than reach an electrode to generate current. Two organic systems with high charge-carrier mobilities are carbon nano-tubes (here, MWNTs) and acene-based organic semiconductors. We believe that blended devices based on MWNTs and organic semiconductors could lead to the next class of efficient, flexible and inexpensive organic photovoltaic systems. We have developed methods to

  2. Workshop on Hydrogen Storage and Generation for Medium-Power and -Energy Applications

    National Research Council Canada - National Science Library

    Matthews, Michael

    1998-01-01

    This report summarizes the Workshop on Hydrogen Storage and Generation Technologies for Medium-Power and -Energy Applications which was held on April 8-10, 1997 at the Radisson Hotel Orlando Airport in Orlando, Florida...

  3. Analysis Tools for Sizing and Placement of Energy Storage for Grid Applications - A Literature Review

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, Michael G.; Kintner-Meyer, Michael CW; Sadovsky, Artyom; DeSteese, John G.

    2010-09-24

    The purpose of this report was to review pertinent literature and studies that might reveal models capable of optimizing the siting, sizing and economic value of energy storage in the future smart grid infrastructure. Energy storage technology and utility system deployment have been subjects of intense research and development for over three decades. During this time, many models have been developed that consider energy storage implementation in the electric power industry and other applications. Nevertheless, this review of literature discovered no actual models and only a few software tools that relate specifically to the application environment and expected requirements of the evolving smart grid infrastructure. This report indicates the existing need for such a model and describes a pathway for developing it.

  4. Wastes from fuel reprocessing

    International Nuclear Information System (INIS)

    Eschrich, H.

    1976-01-01

    Handling, treatment, and interim storage of radioactive waste, problems confronted with during the reprocessing of spent fuel elements from LWR's according to the Purex-type process, are dealt with in detail. (HR/LN) [de

  5. Review of thermal energy storage technologies based on PCM application in buildings

    DEFF Research Database (Denmark)

    Pomianowski, Michal Zbigniew; Heiselberg, Per; Zhang, Yinping

    2013-01-01

    Thermal energy storage systems (TES), using phase change material (PCM) in buildings, are widely investigated technologies and a fast developing research area. Therefore, there is a need for regular and consistent reviews of the published studies. This review is focused on PCM technologies...... is paid to discussion and identification of proper methods to correctly determine the thermal properties of PCM materials and their composites and as well procedures to determine their energy storage and saving potential. The purpose of the paper is to highlight promising technologies for PCM application...... developed to serve the building industry. Various PCM technologies tailored for building applications are studied with respect to technological potential to improve indoor environment, increase thermal inertia and decrease energy use for building operation. What is more, in this review special attention...

  6. Demonstration of Minor Actinide separation from a genuine PUREX raffinate by TODGA/TBP and SANEX reprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Magnusson, D. [European Commission, Joint Research Center, Institute for Transuranium Elements, Postfach 2340 D-76125 Karlsruhe (Germany); Chalmers University of Technology, Nuclear Chemistry, Deparment of Chemical and Biological Engineering, Gothenburg (Sweden); Christiansen, B.; Glatz, J.P.; Malmbeck, R.; Serrano-Purroy, D. [European Commission, Joint Research Center, Institute for Transuranium Elements, Postfach 2340 D-76125 Karlsruhe (Germany); Modolo, G. [Forschungszentrum Juelich, Institute for Energy Research, Safety Research and Reactor Technology, D-52425 Juelich (Germany); Sorel, C. [Commissariat a l' Energie Atomique Valrho (CEA), DRCP/SCPS, BP17171, 30207 Bagnols-sur-Ceze (France)

    2008-07-01

    A genuine High Active Raffinate was produced from small scale Purex reprocessing of a UO{sub 2} spent fuel solution and used as feed for a subsequent TODGA/TBP process. In this process, efficient recovery of the trivalent Minor Actinides (MA) actinides could be demonstrated using a hot cell set-up of 32 centrifugal contactor stages. The feed decontamination factors obtained for Am and Cm were in the range of 4.10{sup 4} which corresponds to a recovery of more than 99.99 % in the product fraction. Trivalent lanthanides and Y were co-extracted, otherwise only a small part of the Ru ended up in the product. The collected actinide/lanthanide fraction was later used as feed for a Sanex (separation of actinides from lanthanides) process based on the CyMe{sub 4}-BTBP ligand. Preliminary results show recoveries of more than 99.9 % of Am, Cm and less than 0.1 % of the major lanthanides in the product. (authors)

  7. 76 FR 28025 - East Maui Pumped Storage Water Supply LCC; Notice of Preliminary Permit Application Accepted for...

    Science.gov (United States)

    2011-05-13

    ... Storage Water Supply LCC; Notice of Preliminary Permit Application Accepted for Filing and Soliciting... Act (FPA), proposing to study the feasibility of the East Maui Pumped Storage Water Supply Project to.... Bart M. O'Keeffe, East Maui Pumped Storage Water Supply LLC; P.O. Box 1916; Discovery Bay, CA 94505...

  8. Design and thermodynamic analysis of a hybrid energy storage system based on A-CAES (adiabatic compressed air energy storage) and FESS (flywheel energy storage system) for wind power application

    International Nuclear Information System (INIS)

    Zhao, Pan; Dai, Yiping; Wang, Jiangfeng

    2014-01-01

    Electricity generated from renewable wind sources is highly erratic due to the intermittent nature of wind. This uncertainty of wind power can lead to challenges regarding power system operation and dispatch. Energy storage system in conjunction with wind energy system can offset these effects, making the wind power controllable. Moreover, the power spectrum of wind power exhibits that the fluctuations of wind power include various components with different frequencies and amplitudes. Thus, the hybrid energy storage system is more suitable for smoothing out the wind power fluctuations effectively rather than the independent energy storage system. A hybrid energy storage system consisting of adiabatic compressed air energy storage (A-CAES) system and flywheel energy storage system (FESS) is proposed for wind energy application. The design of the proposed system is laid out firstly. The A-CAES system operates in variable cavern pressure, constant turbine inlet pressure mode, whereas the FESS is controlled by constant power strategy. Then, the off-design analysis of the proposed system is carried out. Meanwhile, a parametric analysis is also performed to investigate the effects of several parameters on the system performance, including the ambient conditions, inlet temperature of compressor, storage cavern temperature, maximum and minimum pressures of storage cavern. - Highlights: • A wind-hybrid energy storage system composed of A-CAES and FESS is proposed. • The design of the proposed hybrid energy storage system is laid out. • The off-design analysis of the proposed system is carried out. • A parametric analysis is conducted to examine the system performance

  9. Thermal energy storage - A review of concepts and systems for heating and cooling applications in buildings

    DEFF Research Database (Denmark)

    Pavlov, Georgi Krasimiroy; Olesen, Bjarne W.

    2012-01-01

    period required, economic viability, and operating conditions. One of the main issues impeding the utilization of the full potential of natural and renewable energy sources, e.g., solar and geothermal, for space heating and space cooling applications is the development of economically competitive......The use of thermal energy storage (TES) in buildings in combination with space heating and/or space cooling has recently received much attention. A variety of TES techniques have developed over the past decades. TES systems can provide short-term storage for peak-load shaving as well as long......-term (seasonal) storage for the introduction of natural and renewable energy sources. TES systems for heating or cooling are utilized in applications where there is a time mismatch between the demand and the most economically favorable supply of energy. The selection of a TES system mainly depends on the storage...

  10. Development of latent heat storage systems. New storage materials and concepts for solar energy, efficient use, and spaceflight applications. Entwicklung von Latentwaermespeichern. Neue Speichermaterialien und Konzepte fuer Solarenergie, rationelle Energienutzung und Raumfahrtanwendungen

    Energy Technology Data Exchange (ETDEWEB)

    Glueck, A.; Krause, S.; Lindner, F.; Staehle, H.J.; Tamme, R. (DLR, Stuttgart (Germany). Inst. fuer Technische Thermodynamik)

    1991-11-01

    To extend the operational range of thermal energy storage systems and to provide access to new fields of applications, it is necessary to develop storage systems with higher energy densities than can be achieved with conventional materials. Advanced storage concepts such as latent heat storage and chemical storage are suitable for this. (orig.).

  11. Optimal design and application of a compound cold storage system combining seasonal ice storage and chilled water storage

    NARCIS (Netherlands)

    Yan, C.; Shi, W.; Li, X.; Zhao, Y.

    2016-01-01

    Seasonal cold storage using natural cold sources for cooling is a sustainable cooling technique. However, this technique suffers from limitations such as large storage space and poor reliability. Combining seasonal storage with short-term storage might be a promising solution while it is not

  12. Licensing of spent fuel dry storage and consolidated rod storage: A Review of Issues and Experiences

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, W.J.

    1990-02-01

    The results of this study, performed by Pacific Northwest Laboratory (PNL) and sponsored by the US Department of Energy (DOE), respond to the nuclear industry's recommendation that a report be prepared that collects and describes the licensing issues (and their resolutions) that confront a new applicant requesting approval from the US Nuclear Regulatory Commission (NRC) for dry storage of spent fuel or for large-scale storage of consolidated spent fuel rods in pools. The issues are identified in comments, questions, and requests from the NRC during its review of applicants' submittals. Included in the report are discussions of (1) the 18 topical reports on cask and module designs for dry storage fuel that have been submitted to the NRC, (2) the three license applications for dry storage of spent fuel at independent spent fuel storage installations (ISFSIs) that have been submitted to the NRC, and (3) the three applications (one of which was later withdrawn) for large-scale storage of consolidated fuel rods in existing spent fuel storage pools at reactors that were submitted tot he NRC. For each of the applications submitted, examples of some of the issues (and suggestions for their resolutions) are described. The issues and their resolutions are also covered in detail in an example in each of the three subject areas: (1) the application for the CASTOR V/21 dry spent fuel storage cask, (2) the application for the ISFSI for dry storage of spent fuel at Surry, and (3) the application for full-scale wet storage of consolidated spent fuel at Millstone-2. The conclusions in the report include examples of major issues that applicants have encountered. Recommendations for future applicants to follow are listed. 401 refs., 26 tabs.

  13. Modular vault dry storage system for interim storage of irradiated fuel

    International Nuclear Information System (INIS)

    Cundill, B.R.; Ealing, C.J.; Agarwal, B.K.

    1988-01-01

    The Foster Wheeler Energy Application (FWEA) Modular Vault Dry Store (MVDS) is a dry storage concept for the storage of all types of irradiated reactor fuel. For applications in the US, FWEA submitted an MVDS Topical Report to the US NRC during 1986. Following NRC approval of the MVDS Topical Report concept for unconsolidated LWR fuel, US utilities have available a new, compact, economic and flexible system for the storage of irradiated fuel at the reactor site for time periods of at least 20 years (the period of the first license). The MVDS concept jointly developed by FWEA and GEC in the U.K., has other applications for large central away from reactor storage facilities such as a Monitorable Retrievable Storage (MRS) installation. This paper describes the licensed MVDS design, aspects of performance are discussed and capital costs compared with alternative concepts. Alternative configurations of MVDS are outlined

  14. Spectrophotometric determination of dissolved tri n-butyl phosphate in aqueous streams of Purex process

    International Nuclear Information System (INIS)

    Ganesh, S.; Velavendan, P.; Pandey, N.K.; Ahmed, M.K.; Kamachi Mudali, U.; Natarajan, R.

    2012-01-01

    A spectrophotometric method is developed for the determination of dissolved tri-n butyl phosphate (TBP) in aqueous streams of Purex process used in nuclear fuel reprocessing. The method is based on the formation of phosphomolybdate with added ammonium molybdate followed by reduction with hydrazine sulphate in acid medium. Orthophosphate and molybdate ions combine in acidic solution to give molybdophosphoric (phosphomolybdic) acid, which upon selective reduction (with hydrazinium sulphate) produces a blue colour, due to molybdenum blue. The intensity of blue colour is proportional to the amount of phosphate. If the acidity at the time of reduction is 0.5 M in sulphuric acid and hydrazinium sulphate is the reductant, the resulting blue complex exhibits maximum absorption at 810-840 nm. The system obeys Lambert-Beer's law at 830 nm in the concentration range of 0.1-1.0 μg/mol of phosphate. Molar Absorptivity was determined to be 3.1 x 10 4 L mol -1 cm -1 at 830 nm. The results obtained are reproducible with standard deviation of 1 % and relative error less than 2 % and are in good agreement with those obtained by ion chromatographic technique. (author)

  15. The Current Status of Hydrogen Storage Alloy Development for Electrochemical Applications

    Science.gov (United States)

    Young, Kwo-hsiung; Nei, Jean

    2013-01-01

    In this review article, the fundamentals of electrochemical reactions involving metal hydrides are explained, followed by a report of recent progress in hydrogen storage alloys for electrochemical applications. The status of various alloy systems, including AB5, AB2, A2B7-type, Ti-Ni-based, Mg-Ni-based, BCC, and Zr-Ni-based metal hydride alloys, for their most important electrochemical application, the nickel metal hydride battery, is summarized. Other electrochemical applications, such as Ni-hydrogen, fuel cell, Li-ion battery, air-metal hydride, and hybrid battery systems, also have been mentioned. PMID:28788349

  16. Development of thermal energy storage materials for biomedical applications.

    Science.gov (United States)

    Shukla, A; Sharma, Atul; Shukla, Manjari; Chen, C R

    2015-01-01

    The phase change materials (PCMs) have been utilized widely for solar thermal energy storage (TES) devices. The quality of these materials to remain at a particular temperature during solid-liquid, liquid-solid phase transition can also be utilized for many biomedical applications as well and has been explored in recent past already. This study reports some novel PCMs developed by them, along with some existing PCMs, to be used for such biomedical applications. Interestingly, it was observed that the heating/cooling properties of these PCMs enhance the quality of a variety of biomedical applications with many advantages (non-electric, no risk of electric shock, easy to handle, easy to recharge thermally, long life, cheap and easily available, reusable) over existing applications. Results of the present study are quite interesting and exciting, opening a plethora of opportunities for more work on the subject, which require overlapping expertise of material scientists, biochemists and medical experts for broader social benefits.

  17. Wind turbine storage systems

    International Nuclear Information System (INIS)

    Ibrahim, H.; Ilinca, A.; Perron, J.

    2005-01-01

    Electric power is often produced in locations far from the point of utilization which creates a challenge in stabilizing power grids, particularly since electricity cannot be stored. The production of decentralized electricity by renewable energy sources offers a greater security of supply while protecting the environment. Wind power holds the greatest promise in terms of environmental protection, competitiveness and possible applications. It is known that wind energy production is not always in phase with power needs because of the uncertainty of wind. For that reason, energy storage is the key for the widespread integration of wind energy into the power grids. This paper proposed various energy storage methods that can be used in combination with decentralized wind energy production where an imbalance exists between electricity production and consumption. Energy storage can play an essential role in bringing value to wind energy, particularly if electricity is to be delivered during peak hours. Various types of energy storage are already in use or are being developed. This paper identified the main characteristics of various electricity storage techniques and their applications. They include stationary or embarked storage for long or short term applications. A comparison of characteristics made it possible to determine which types of electricity storage are best suited for wind energy. These include gravity energy; thermal energy; compressed air energy; coupled storage with natural gas; coupled storage with liquefied gas; hydrogen storage for fuel cells; chemical energy storage; storage in REDOX batteries; storage by superconductive inductance; storage in supercondensers; and, storage as kinetic energy. 21 refs., 21 figs

  18. 77 FR 73651 - Cascade Energy Storage, LLC; Notice of Preliminary Permit Application Accepted for Filing and...

    Science.gov (United States)

    2012-12-11

    ..., Motions To Intervene, and Competing Applications On October 23, 2012, Cascade Energy Storage, LLC, filed... Executive Officer, Cascade Energy Storage, LLC, 1210 W. Franklin Street, Ste. 2, Boise, Idaho 83702; phone... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 14464-000] Cascade Energy...

  19. Battery Storage Technologies for Electrical Applications: Impact in Stand-Alone Photovoltaic Systems

    OpenAIRE

    Daniel Akinyele; Juri Belikov; Yoash Levron

    2017-01-01

    Batteries are promising storage technologies for stationary applications because of their maturity, and the ease with which they are designed and installed compared to other technologies. However, they pose threats to the environment and human health. Several studies have discussed the various battery technologies and applications, but evaluating the environmental impact of batteries in electrical systems remains a gap that requires concerted research efforts. This study first presents an ove...

  20. Applications of the ANSI/ANS standard on the storage of fissile materials

    International Nuclear Information System (INIS)

    Thomas, J.T.

    1985-01-01

    The American National Standard ''Guide for Nuclear Criticality Safety in the Storage of Fissile Materials,'' ANSI/N16.5-1975 is the subject of this paper. The 'Guide' was reaffirmed in 1982. The technical bases for the conditions and requirements are discussed. Suggestions for applications and several general problems addressed by the Guide are presented. The development of information needed for future extensions of the area of applicability is given

  1. Conducting Polymer Nanostructures: Template Synthesis and Applications in Energy Storage

    OpenAIRE

    Pan, Lijia; Qiu, Hao; Dou, Chunmeng; Li, Yun; Pu, Lin; Xu, Jianbin; Shi, Yi

    2010-01-01

    Conducting polymer nanostructures have received increasing attention in both fundamental research and various application fields in recent decades. Compared with bulk conducting polymers, conducting polymer nanostructures are expected to display improved performance in energy storage because of the unique properties arising from their nanoscaled size: high electrical conductivity, large surface area, short path lengths for the transport of ions, and high electrochemical activity. Template met...

  2. IEA SHC Task 42 / ECES Annex 29 - Working Group B: Applications of Compact Thermal Energy Storage

    NARCIS (Netherlands)

    Helden, W. van; Yamaha, M.; Rathgeber, C.; Hauer, A.; Huaylla, F.; Le Pierrès, N.; Stutz, B.; Mette, B.; Dolado, P.; Lazaro, A.; Mazo, J.; Dannemand, M.; Furbo, S.; Campos-Celador, A.; Diarce, G.; Cuypers, R.; König-Haagen, A.; Höhlein, S.; Brüggemann, D.; Fumey, B.; Weber, R.; Köll, R.; Wagner, W.; Daguenet-Frick, X.; Gantenbein, P.; Kuznik, F.

    2016-01-01

    The IEA joint Task 42 / Annex 29 is aimed at developing compact thermal energy storage materials and systems. In Working Group B, experts are working on the development of compact thermal energy storage applications, in the areas cooling, domestic heating and hot water and industry. The majority of

  3. Synthesis and applications of carbon nanomaterials for energy generation and storage.

    Science.gov (United States)

    Notarianni, Marco; Liu, Jinzhang; Vernon, Kristy; Motta, Nunzio

    2016-01-01

    The world is facing an energy crisis due to exponential population growth and limited availability of fossil fuels. Over the last 20 years, carbon, one of the most abundant materials found on earth, and its allotrope forms such as fullerenes, carbon nanotubes and graphene have been proposed as sources of energy generation and storage because of their extraordinary properties and ease of production. Various approaches for the synthesis and incorporation of carbon nanomaterials in organic photovoltaics and supercapacitors have been reviewed and discussed in this work, highlighting their benefits as compared to other materials commonly used in these devices. The use of fullerenes, carbon nanotubes and graphene in organic photovoltaics and supercapacitors is described in detail, explaining how their remarkable properties can enhance the efficiency of solar cells and energy storage in supercapacitors. Fullerenes, carbon nanotubes and graphene have all been included in solar cells with interesting results, although a number of problems are still to be overcome in order to achieve high efficiency and stability. However, the flexibility and the low cost of these materials provide the opportunity for many applications such as wearable and disposable electronics or mobile charging. The application of carbon nanotubes and graphene to supercapacitors is also discussed and reviewed in this work. Carbon nanotubes, in combination with graphene, can create a more porous film with extraordinary capacitive performance, paving the way to many practical applications from mobile phones to electric cars. In conclusion, we show that carbon nanomaterials, developed by inexpensive synthesis and process methods such as printing and roll-to-roll techniques, are ideal for the development of flexible devices for energy generation and storage - the key to the portable electronics of the future.

  4. Synthesis and applications of carbon nanomaterials for energy generation and storage

    Directory of Open Access Journals (Sweden)

    Marco Notarianni

    2016-02-01

    Full Text Available The world is facing an energy crisis due to exponential population growth and limited availability of fossil fuels. Over the last 20 years, carbon, one of the most abundant materials found on earth, and its allotrope forms such as fullerenes, carbon nanotubes and graphene have been proposed as sources of energy generation and storage because of their extraordinary properties and ease of production. Various approaches for the synthesis and incorporation of carbon nanomaterials in organic photovoltaics and supercapacitors have been reviewed and discussed in this work, highlighting their benefits as compared to other materials commonly used in these devices. The use of fullerenes, carbon nanotubes and graphene in organic photovoltaics and supercapacitors is described in detail, explaining how their remarkable properties can enhance the efficiency of solar cells and energy storage in supercapacitors. Fullerenes, carbon nanotubes and graphene have all been included in solar cells with interesting results, although a number of problems are still to be overcome in order to achieve high efficiency and stability. However, the flexibility and the low cost of these materials provide the opportunity for many applications such as wearable and disposable electronics or mobile charging. The application of carbon nanotubes and graphene to supercapacitors is also discussed and reviewed in this work. Carbon nanotubes, in combination with graphene, can create a more porous film with extraordinary capacitive performance, paving the way to many practical applications from mobile phones to electric cars. In conclusion, we show that carbon nanomaterials, developed by inexpensive synthesis and process methods such as printing and roll-to-roll techniques, are ideal for the development of flexible devices for energy generation and storage – the key to the portable electronics of the future.

  5. Disposition and transportation of surplus radioactive low specific activity nitric acid. Volume 1, Environmental Assessment

    International Nuclear Information System (INIS)

    1995-05-01

    DOE is deactivating the PUREX plant at Hanford; this will involve the disposition of about 692,000 liters (183,000 gallons) of surplus nitric acid contaminated with low levels of U and other radionuclides. The nitric acid, designated as low specific activity, is stored in 4 storage tanks at PUREX. Five principal alternatives were evaluated: transfer for reuse (sale to BNF plc), no action, continued storage in Hanford upgraded or new facility, consolidation of DOE surplus acid, and processing the LSA nitric acid as waste. The transfer to BNF plc is the preferred alternative. From the analysis, it is concluded that the proposed disposition and transportation of the acid does not constitute a major federal action significantly affecting the quality of the human environment within the meaning of NEPA; therefore an environmental impact statement is not required

  6. Conception of a heat storage system for household applications. Category: New product innovations

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Thomas [Leuphana Univ. Lueneburg (Germany); Rammelberg, Holger U.; Roennebeck, Thomas [and others

    2012-07-01

    Almost 90% of the energy consumption of private households in Germany is used for heating. Thus, an efficient, sustainable and reliable heat management is one of the main challenges in the future. Heat storage will become a key technology when considering the daily, weekly, seasonal and unpredictable fluctuations of energy production with renewables. The storage of heat is much more volume- and energy-efficient as well as more economical than electricity storage. However, transport of heat over long distances is coupled with high losses, compared with electricity transport. Therefore, we propose the use of micro CHP in combination with volume-efficient and nearly loss-free heat storage to counteract electricity fluctuations. Focus of this contribution the conception of the large-scale project ''Thermal Battery'', funded by the European Union and the Federal State of Lower Saxony. The underlying principle is the utilization of reversible thermochemical reactions, such as dehydration and rehydration of salt hydrates for heat storage. The main goal is the development of a prototypical storage tank, which is capable of storing 80 kWh of heat with a system volume of less than 1 m{sup 3}. Importantly, the Vattenfall New Energy Services as a collaboration partner will support the development of an application-oriented heat storage device. This project is being carried out by an interdisciplinary team of engineers, chemists, physicists and environmental scientists.

  7. Applications of covalent organic frameworks (COFs): From gas storage and separation to drug delivery

    Institute of Scientific and Technical Information of China (English)

    Ming-Xue Wu; Ying-Wei Yang

    2017-01-01

    Covalent organic frameworks (COFs) are an emerging class of porous covalent organic structures whose backbones were composed of light elements (B,C,N,O,Si) and linked by robust covalent bonds to endow such material with desirable properties,i.e.,inherent porosity,well-defined pore aperture,ordered channel structure,large surface area,high stability,and multi-dimension.As expected,the abovementioned properties of COFs broaden the applications of this class of materials in various fields such as gas storage and separation,catalysis,optoelectronics,sensing,small molecules adsorption,and drug delivery.In this review,we outlined the synthesis of COFs and highlighted their applications ranging from the initial gas storage and separation to drug delivery.

  8. High and ultra-high vacuum pumping techniques: applications in accelerators and storage rings

    International Nuclear Information System (INIS)

    Schaefer, G.

    1988-01-01

    A survey is given on gas transfer pumps, especially Turbomolecular pumps, and entrapment pumps (cryopumps and getter pumps) mainly with regard to their application in evacuating particle accelerators and storage rings. (A.C.A.S.) [pt

  9. Economics of dry storage systems

    International Nuclear Information System (INIS)

    Moore, G.R.; Winders, R.C.

    1980-01-01

    This paper postulates a dry storage application suitable as a regional away-from-reactor storage (AFR), develops an economical system design concept and estimates system costs. The system discussed uses the experience gained in the dry storage research activities and attempts to present a best foot forward system concept. The major element of the system is the Receiving and Packaging Building. In this building fuel assemblies are removed from transportation casks and encapsulated for storage. This facility could be equally applicable to silo, vault, or caisson storage. However the caisson storage concept has been chosen for discussion purposes

  10. Synthesis of a hybrid MIL-101(Cr)/ZTC composite for hydrogen storage applications

    CSIR Research Space (South Africa)

    Musyoka, Nicholas M

    2016-06-01

    Full Text Available Metal–organic frameworks (MOFs) hybrid composites have recently attracted considerable attention in hydrogen storage applications. In this study a hybrid composite of zeolite templated carbon (ZTC) and Cr-based MOF (MIL-101) was synthesised...

  11. Diatomite-Templated Synthesis of Freestanding 3D Graphdiyne for Energy Storage and Catalysis Application.

    Science.gov (United States)

    Li, Jiaqiang; Xu, Jing; Xie, Ziqian; Gao, Xin; Zhou, Jingyuan; Xiong, Yan; Chen, Changguo; Zhang, Jin; Liu, Zhongfan

    2018-05-01

    Graphdiyne (GDY), a new kind of two-dimensional (2D) carbon allotropes, has extraordinary electrical, mechanical, and optical properties, leading to advanced applications in the fields of energy storage, photocatalysis, electrochemical catalysis, and sensors. However, almost all reported methods require metallic copper as a substrate, which severely limits their large-scale application because of the high cost and low specific surface area (SSA) of copper substrate. Here, freestanding three-dimensional GDY (3DGDY) is successfully prepared using naturally abundant and inexpensive diatomite as template. In addition to the intrinsic properties of GDY, the fabricated 3DGDY exhibits a porous structure and high SSA that enable it to be directly used as a lithium-ion battery anode material and a 3D scaffold to create Rh@3DGDY composites, which would hold great potential applications in energy storage and catalysts, respectively. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Tritium storage

    International Nuclear Information System (INIS)

    Hircq, B.

    1989-01-01

    A general synthesis about tritium storage is achieved in this paper and a particular attention is given to practical application in the Fusion Technology Program. Tritium, storage under gaseous form and solid form are discussed (characteristics, advantages, disadvantages and equipments). The way of tritium storage is then discussed and a choice established as a function of a logic which takes into account the main working parameters

  13. Application of the BEPU methodology to assess fuel performance in dry storage

    International Nuclear Information System (INIS)

    Feria, F.; Herranz, L.E.

    2017-01-01

    Highlights: • Application of the BEPU methodology to estimate the cladding stress in dry storage. • The stress predicted is notably affected by the irradiation history. • Improvements of FGR modelling would significantly enhance the stress estimates. • The prediction uncertainty should not be disregarded when assessing clad integrity. - Abstract: The stress at which fuel cladding is submitted in dry storage is the driving force of the main degrading mechanisms postulated (i.e., embrittlement due to hydrides radial reorientation and creep). Therefore, a sound assessment is mandatory to reliably predict fuel performance under the dry storage prevailing conditions. Through fuel rod thermo-mechanical codes, best estimate calculations can be conducted. Precision of predictions depends on uncertainties affecting the way of calculating the stress, so by using uncertainty analysis an upper bound of stress can be determined and compared to safety limits set. The present work shows the application of the BEPU (Best Estimate Plus Uncertainty) methodology in this field. Concretely, hydrides radial reorientation has been assessed based on stress predictions under challenging thermal conditions (400 °C) and a stress limit of 90 MPa. The computational tools used to do that are FRAPCON-3xt (best estimate) and Dakota (uncertainty analysis). The methodology has been applied to a typical PWR fuel rod highly irradiated (65 GWd/tU) at different power histories. The study performed allows concluding that both the power history and the prediction uncertainty should not be disregarded when fuel rod integrity is evaluated in dry storage. On probabilistic bases, a burnup of 60 GWd/tU is found out as an acceptable threshold even in the most challenging irradiation conditions considered.

  14. NMR characterization of segmental dynamics in poly(alkyl methacrylate) using CODEX and PUREX exchange techniques

    International Nuclear Information System (INIS)

    Becker-Guedes, Fabio; Azevedo, Eduardo R. de; Bonagamba, Tito J.; Schmidt-Rohr, Klaus

    2001-01-01

    Slow side group dynamics in a series of five poly(alkyl methacrylate)s with varying side group sizes (PMAA, PMMA, PEMA, PiBMA, and PcHMA, with -H, -CH 3 , -CH 2 CH 3 , -CH 2 CH(CH 3 ) 2 , and -cyclohexyl alkyl substituents, respectively) have been studied quantitatively by center band-only detection of exchange (CODEX) and pure exchange (PUREX) 13 C solid-state nuclear magnetic resonance (NMR). Flips and small-angle motions of the ester groups associated with the β-relaxation are observed distinctly, and the fraction of slowly flipping groups has been measured with 3% precision. In PMMA, 34% of side groups flip, while the fraction is 31% in PEMA at 25 C. Even the large isobutyl ether and cyclohexylester side groups can flip in the glassy state, although the flipping fraction is reduced to 22% and ∼10%, respectively. In poly methacrylic acid, no slow side group flips are detected. In PMMA, the flipping fraction is temperature-independent between 25 C and 80 C, while in Pemal it increases continuously from 31 to 60% between 25 C and 60 C. A similar doubling is also observed in Pi BMA. (author)

  15. Characteristics and mechanism of explosive reactions of Purex solvents with Nitric Acid at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Miyata, Teijiro [Radiation Application Development Association, Tokai, Ibaraki (Japan); Takada, Junichi; Koike, Tadao; Tsukamoto, Michio; Watanabe, Koji [Department of Fuel Cycle Safety Research, Nuclear Safety Research Center, Tokai Research Establishment, Japan Atomic Energy Research Institute, Tokai, Ibaraki (Japan); Ida, Masaaki [JGC PLANTECH CO., LTD (Japan); Nakagiri, Naotaka [JGC Corp., Tokyo (Japan); Nishio, Gunji [Research Organization for Information Science and Technology, Tokai, Ibaraki (Japan)

    2000-03-01

    This investigation was undertaken to make clear the energetic properties and mechanism of explosive decomposition of Purex solvent systems (TBP/n-Dodecane/HNO{sub 3}) by Nitric Acid at elevated temperatures using a calorimetric technique (DSC, ARC) and a chromatographic technique (GC, GC/MS). The measurement of exothermic events of solvent-HNO{sub 3} reactions using DSC with a stainless steel sealed cell showed distinct two peaks with maxima at around 170 and 320degC, respectively. The peak at around 170degC was mainly attributed to the reactions of dealkylation products (n-butyl nitrate) of TBP and the solvent with nitric acid, and the peak at around 320degC was attributed to the exothermic decomposition of nitrated dodecanes formed in the foregoing exothermic reaction of dodecane with nitric acid. By using the data obtained in ARC experiments, activation energies of 123.2 and 152.5 kJ/mol were determined for the exothermic reaction of TBP with nitric acid and for the exothermic pyrolysis of n-butyl nitrate, respectively. Some possible pathways were considered for the explosive decomposition of TBP by nitric acid at elevated temperatures. (author)

  16. Technology Application of Environmental Friendly Refrigeration (Green Refrigeration) on Cold Storage for Fishery Industry

    Science.gov (United States)

    Rasta, IM; Susila, IDM; Subagia, IWA

    2018-01-01

    The application of refrigeration technology to postharvest fishery products is an very important. Moreover, Indonesia is a tropical region with relatively high temperatures. Fish storage age can be prolonged with a decrease in temperature. Frozen fish can even be stored for several months. Fish freezing means preparing fish for storage in low-temperature cold storage. The working fluid used in cold storage to cool low-temperature chambers and throw heat into high-temperature environments is refrigerant. So far refrigerant used in cold storage is Hydrochloroflourocarbons (HCFC) that is R-22. Chlor is a gas that causes ODP (Ozone Depleting Potential), while Flour is a gas that causes GWP (Global Warming Potential). Government policy began in 2015 to implement Hydrochloroflourocarbons Phase-Out Management Plan. Hydrocarbon (HC) is an alternative substitute for R-22. HC-22 (propane ≥ 99.5%) has several advantages, among others: environmentally friendly, indicated by a zero ODP value, and GWP = 3 (negligible), thermophysical property and good heat transfer characteristics, vapor phase density Which is low, and good solubility with mineral lubricants. The use of HC-22 in cold storage is less than R-22. From the analysis results obtained, cold storage system using HC-22 has better performance and energy consumption is more efficient than the R-22.

  17. Applications of CCTO supercapacitor in energy storage and electronics

    Directory of Open Access Journals (Sweden)

    R. K. Pandey

    2013-06-01

    Full Text Available Since the discovery of colossal dielectric constant in CCTO supercapacitor in 2000, development of its practical application to energy storage has been of great interest. In spite of intensive efforts, there has been thus far, no report of proven application. The object of this research is to understand the reason for this lack of success and to find ways to overcome this limitation. Reported herein is the synthesis of our research in ceramic processing of this material and its characterization, particularly with the objective of identifying potential applications. Experimental results have shown that CCTO's permittivity and loss tangent, the two most essential dielectric parameters of fundamental importance for the efficiency of a capacitor device, are intrinsically coupled. They increase or decrease in tandem. Therefore, efforts to simultaneously retain the high permittivity while minimizing the loss tangent of CCTO might not succeed unless an entirely non-typical approach is taken for processing this material. Based on the experimental results and their analysis, it has been identified that it is possible to produce CCTO bulk ceramics with conventional processes having properties that can be exploited for fabricating an efficient energy storage device (EDS. We have additionally identified that CCTO can be used for the development of efficient solid state capacitors of Class II type comparable to the widely used barium titanate (BT capacitors. Based on high temperature studies of the resistivity and the Seebeck coefficient it is found that CCTO is a wide bandgap n-type semiconductor material which could be used for high temperature electronics. The temperature dependence of the linear thermal expansion of CCTO shows the presence of possible phase changes at 220 and 770 °C the origin of which remains unexplained.

  18. Applications of CCTO supercapacitor in energy storage and electronics

    Science.gov (United States)

    Pandey, R. K.; Stapleton, W. A.; Tate, J.; Bandyopadhyay, A. K.; Sutanto, I.; Sprissler, S.; Lin, S.

    2013-06-01

    Since the discovery of colossal dielectric constant in CCTO supercapacitor in 2000, development of its practical application to energy storage has been of great interest. In spite of intensive efforts, there has been thus far, no report of proven application. The object of this research is to understand the reason for this lack of success and to find ways to overcome this limitation. Reported herein is the synthesis of our research in ceramic processing of this material and its characterization, particularly with the objective of identifying potential applications. Experimental results have shown that CCTO's permittivity and loss tangent, the two most essential dielectric parameters of fundamental importance for the efficiency of a capacitor device, are intrinsically coupled. They increase or decrease in tandem. Therefore, efforts to simultaneously retain the high permittivity while minimizing the loss tangent of CCTO might not succeed unless an entirely non-typical approach is taken for processing this material. Based on the experimental results and their analysis, it has been identified that it is possible to produce CCTO bulk ceramics with conventional processes having properties that can be exploited for fabricating an efficient energy storage device (EDS). We have additionally identified that CCTO can be used for the development of efficient solid state capacitors of Class II type comparable to the widely used barium titanate (BT) capacitors. Based on high temperature studies of the resistivity and the Seebeck coefficient it is found that CCTO is a wide bandgap n-type semiconductor material which could be used for high temperature electronics. The temperature dependence of the linear thermal expansion of CCTO shows the presence of possible phase changes at 220 and 770 °C the origin of which remains unexplained.

  19. Composite high-pressure vessels for hydrogen storage in mobile application. Pt. 1 / Light weight composite cylinders for compressed hydrogen. Pt. 2 - custom made hydrogen storage tanks and vessels

    Energy Technology Data Exchange (ETDEWEB)

    Rasche, C. [MCS Cylinder Systems GmbH, Dinslaken (Germany)

    2000-07-01

    Recent developments on fuel cell technology demonstrated the feasibility of propelling vehicles by converting fuel directly into electricity. Fuel cells conveniently use either compressed (CGH{sub 2}) or liquid hydrogen (LH{sub 2}) or methanol as the fuel source from a tank. Mobile storage of these fuelling will become an urgent need as this technology will come into series production expected for 2010. Due to the requirements on mobile hydrogen storage and the energy losses in the hydrogen-to-application-chain, a light-weight and energetic qualities and minimise ist bulky nature. Mobile storage of hydrogen can be realised either at high pressure values (> 20 MPa) or at deep temperatures (<-253 C). CGH{sub 2}: In the last few years, the introduction of natural gas driven vehicles has seen the development of compact mobile pressurised gas tanks in principle, this storage technique is also applicable for the compressed storage of hydrogen at filling pressures of > 20 MPa. LH{sub 2} : Storing hydrogen or natural gases in general in the liquid phase is accomplished either by applying a overpressure or keeping it below the phase transition temperature at ambient pressure in super insulated devices. (orig.)

  20. Highly stable supercapacitors with conducting polymer core-shell electrodes for energy storage applications

    KAUST Repository

    Xia, Chuan; Chen, Wei; Wang, Xianbin; Hedhili, Mohamed N.; Wei, Nini; Alshareef, Husam N.

    2015-01-01

    commercial application. Here, the development of nanostructured PAni-RuO2 core-shell arrays as electrodes for highly stable pseudocapacitors with excellent energy storage performance is reported. A thin layer of RuO2 grown by atomic layer deposition (ALD

  1. Analysis of H2 storage needs for early market non-motive fuel cell applications.

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Terry Alan; Moreno, Marcina; Arienti, Marco; Pratt, Joseph William; Shaw, Leo; Klebanoff, Leonard E.

    2012-03-01

    Hydrogen fuel cells can potentially reduce greenhouse gas emissions and the United States dependence on foreign oil, but issues with hydrogen storage are impeding their widespread use. To help overcome these challenges, this study analyzes opportunities for their near-term deployment in five categories of non-motive equipment: portable power, construction equipment, airport ground support equipment, telecom backup power, and man-portable power and personal electronics. To this end, researchers engaged end users, equipment manufacturers, and technical experts via workshops, interviews, and electronic means, and then compiled these data into meaningful and realistic requirements for hydrogen storage in specific target applications. In addition to developing these requirements, end-user benefits (e.g., low noise and emissions, high efficiency, potentially lower maintenance costs) and concerns (e.g., capital cost, hydrogen availability) of hydrogen fuel cells in these applications were identified. Market data show potential deployments vary with application from hundreds to hundreds of thousands of units.

  2. Solar applications of thermal energy storage. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Lee, C.; Taylor, L.; DeVries, J.; Heibein, S.

    1979-01-01

    A technology assessment is presented on solar energy systems which use thermal energy storage. The study includes characterization of the current state-of-the-art of thermal energy storage, an assessment of the energy storage needs of solar energy systems, and the synthesis of this information into preliminary design criteria which would form the basis for detailed designs of thermal energy storage. (MHR)

  3. Applications of thermal energy storage to process heat storage and recovery in the paper and pulp industry. Final report, September 1977--May 1978

    Energy Technology Data Exchange (ETDEWEB)

    Carr, J.H.; Hurley, P.J.; Martin, P.J.

    1978-09-01

    Applications of Thermal Energy Storage (TES) in a paper and pulp mill power house were studied as one approach to the transfer of steam production from fossil fuel boilers to waste fuel (hog fuel) boilers. Data from specific mills were analyzed, and various TES concepts evaluated for application in the process steam supply system. Constant pressure and variable pressure steam accumulators were found to be the most attractive storage concepts for this application. Performance analyses based on the operation of a math model of the process steam supply system indicate potential substitution of waste wood fuel for 100,000 bbl oil per year per installation with the accumulator TES system. Based on an industry survey of potential TES application, which requires excess base steaming capability, the results from the individual installation were extrapolated to a near-term (1980's) fossil fuel savings in the paper and pulp industry of 3.2 x 10/sup 6/ bbl oil/year. Conceptual designs of mechanical equipment and control systems indicate installed cost estimates of about $560,000 per installation, indicating an after tax return on investment of over 30%.

  4. Energy storage

    Science.gov (United States)

    Kaier, U.

    1981-04-01

    Developments in the area of energy storage are characterized, with respect to theory and laboratory, by an emergence of novel concepts and technologies for storing electric energy and heat. However, there are no new commercial devices on the market. New storage batteries as basis for a wider introduction of electric cars, and latent heat storage devices, as an aid for solar technology applications, with satisfactory performance standards are not yet commercially available. Devices for the intermediate storage of electric energy for solar electric-energy systems, and for satisfying peak-load current demands in the case of public utility companies are considered. In spite of many promising novel developments, there is yet no practical alternative to the lead-acid storage battery. Attention is given to central heat storage for systems transporting heat energy, small-scale heat storage installations, and large-scale technical energy-storage systems.

  5. Metal hydride hydrogen and heat storage systems as enabling technology for spacecraft applications

    Energy Technology Data Exchange (ETDEWEB)

    Reissner, Alexander, E-mail: reissner@fotec.at [FOTEC Forschungs- und Technologietransfer GmbH, Viktor Kaplan Straße 2, 2700 Wiener Neustadt (Austria); University of Applied Sciences Wiener Neustadt, Johannes Gutenberg-Straße 3, 2700 Wiener Neustadt (Austria); Pawelke, Roland H.; Hummel, Stefan; Cabelka, Dusan [FOTEC Forschungs- und Technologietransfer GmbH, Viktor Kaplan Straße 2, 2700 Wiener Neustadt (Austria); Gerger, Joachim [University of Applied Sciences Wiener Neustadt, Johannes Gutenberg-Straße 3, 2700 Wiener Neustadt (Austria); Farnes, Jarle, E-mail: Jarle.farnes@prototech.no [CMR Prototech AS, Fantoftvegen 38, PO Box 6034, 5892 Bergen (Norway); Vik, Arild; Wernhus, Ivar; Svendsen, Tjalve [CMR Prototech AS, Fantoftvegen 38, PO Box 6034, 5892 Bergen (Norway); Schautz, Max, E-mail: max.schautz@esa.int [European Space Agency, ESTEC – Keplerlaan 1, 2201 AZ Noordwijk Zh (Netherlands); Geneste, Xavier, E-mail: xavier.geneste@esa.int [European Space Agency, ESTEC – Keplerlaan 1, 2201 AZ Noordwijk Zh (Netherlands)

    2015-10-05

    Highlights: • A metal hydride tank concept for heat and hydrogen storage is presented. • The tank is part of a closed-loop reversible fuel cell system for space application. • For several engineering issues specific to the spacecraft application, solutions have been developed. • The effect of water contamination has been approximated for Ti-doped NaAlH{sub 4}. • A novel heat exchanger design has been realized by Selective Laser Melting. - Abstract: The next generation of telecommunication satellites will demand a platform payload performance in the range of 30+ kW within the next 10 years. At this high power output, a Regenerative Fuel Cell Systems (RFCS) offers an efficiency advantage in specific energy density over lithium ion batteries. However, a RFCS creates a substantial amount of heat (60–70 kJ per mol H{sub 2}) during fuel cell operation. This requires a thermal hardware that accounts for up to 50% of RFCS mass budget. Thus the initial advantage in specific energy density is reduced. A metal hydride tank for combined storage of heat and hydrogen in a RFCS may overcome this constraint. Being part of a consortium in an ongoing European Space Agency project, FOTEC is building a technology demonstrator for such a combined hydrogen and heat storage system.

  6. 40 CFR Table 1 to Subpart Bbbbbb... - Applicability Criteria, Emission Limits, and Management Practices for Storage Tanks

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 14 2010-07-01 2010-07-01 false Applicability Criteria, Emission Limits, and Management Practices for Storage Tanks 1 Table 1 to Subpart BBBBBB of Part 63 Protection of... Criteria, Emission Limits, and Management Practices for Storage Tanks If you own or operate Then you must 1...

  7. Investigation of Stratified Thermal Storage Tank Performance for Heating and Cooling Applications

    Directory of Open Access Journals (Sweden)

    Azharul Karim

    2018-04-01

    Full Text Available A large amount of energy is consumed by heating and cooling systems to provide comfort conditions for commercial building occupants, which generally contribute to peak electricity demands. Thermal storage tanks in HVAC systems, which store heating/cooling energy in the off-peak period for use in the peak period, can be used to offset peak time energy demand. In this study, a theoretical investigation on stratified thermal storage systems is performed to determine the factors that significantly influence the thermal performance of these systems for both heating and cooling applications. Five fully-insulated storage tank geometries, using water as the storage medium, were simulated to determine the effects of water inlet velocity, tank aspect ratio and temperature difference between charging (inlet and the tank water on mixing and thermocline formation. Results indicate that thermal stratification enhances with increased temperature difference, lower inlet velocities and higher aspect ratios. It was also found that mixing increased by 303% when the temperature difference between the tank and inlet water was reduced from 80 °C to 10 °C, while decreasing the aspect ratio from 3.8 to 1.0 increased mixing by 143%. On the other hand, increasing the inlet water velocity significantly increased the storage mixing. A new theoretical relationship between the inlet water velocity and thermocline formation has been developed. It was also found that inlet flow rates can be increased, without increasing the mixing, after the formation of the thermocline.

  8. The CUNY Energy Institute Electrical Energy Storage Development for Grid Applications

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Sanjoy

    2013-03-31

    1. Project Objectives The objectives of the project are to elucidate science issues intrinsic to high energy density electricity storage (battery) systems for smart-grid applications, research improvements in such systems to enable scale-up to grid-scale and demonstrate a large 200 kWh battery to facilitate transfer of the technology to industry. 2. Background Complex and difficult to control interfacial phenomena are intrinsic to high energy density electrical energy storage systems, since they are typically operated far from equilibrium. One example of such phenomena is the formation of dendrites. Such dendrites occur on battery electrodes as they cycle, and can lead to internal short circuits, reducing cycle life. An improved understanding of the formation of dendrites and their control can improve the cycle life and safety of many energy storage systems, including rechargeable lithium and zinc batteries. Another area where improved understanding is desirable is the application of ionic liquids as electrolytes in energy storage systems. An ionic liquid is typically thought of as a material that is fully ionized (consisting only of anions and cations) and is fluid at or near room temperature. Some features of ionic liquids include a generally high thermal stability (up to 450 °C), a high electrochemical window (up to 6 V) and relatively high intrinsic conductivities. Such features make them attractive as battery or capacitor electrolytes, and may enable batteries which are safer (due to the good thermal stability) and of much higher energy density (due to the higher voltage electrode materials which may be employed) than state of the art secondary (rechargeable) batteries. Of particular interest is the use of such liquids as electrolytes in metal air batteries, where energy densities on the order of 1-2,000 Wh / kg are possible; this is 5-10 times that of existing state of the art lithium battery technology. The Energy Institute has been engaged in the

  9. Graphene Thermal Properties: Applications in Thermal Management and Energy Storage

    Directory of Open Access Journals (Sweden)

    Jackie D. Renteria

    2014-11-01

    Full Text Available We review the thermal properties of graphene, few-layer graphene and graphene nanoribbons, and discuss practical applications of graphene in thermal management and energy storage. The first part of the review describes the state-of-the-art in the graphene thermal field focusing on recently reported experimental and theoretical data for heat conduction in graphene and graphene nanoribbons. The effects of the sample size, shape, quality, strain distribution, isotope composition, and point-defect concentration are included in the summary. The second part of the review outlines thermal properties of graphene-enhanced phase change materials used in energy storage. It is shown that the use of liquid-phase-exfoliated graphene as filler material in phase change materials is promising for thermal management of high-power-density battery parks. The reported experimental and modeling results indicate that graphene has the potential to outperform metal nanoparticles, carbon nanotubes, and other carbon allotropes as filler in thermal management materials.

  10. Thermal energy storage for building heating and cooling applications. Quarterly progress report, April--June 1976

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, H.W.; Kedl, R.J.

    1976-11-01

    This is the first in a series of quarterly progress reports covering activities at ORNL to develop thermal energy storage (TES) technology applicable to building heating and cooling. Studies to be carried out will emphasize latent heat storage in that sensible heat storage is held to be an essentially existing technology. Development of a time-dependent analytical model of a TES system charged with a phase-change material was started. A report on TES subsystems for application to solar energy sources is nearing completion. Studies into the physical chemistry of TES materials were initiated. Preliminary data were obtained on the melt-freeze cycle behavior and viscosities of sodium thiosulfate pentahydrate and a mixture of Glauber's salt and Borax; limited melt-freeze data were obtained on two paraffin waxes. A subcontract was signed with Monsanto Research Corporation for studies on form-stable crystalline polymer pellets for TES; subcontracts are being negotiated with four other organizations (Clemson University, Dow Chemical Company, Franklin Institute, and Suntek Research Associates). Review of 10 of 13 unsolicited proposals received was completed by the end of June 1976.

  11. A review on energy conservation in building applications with thermal storage by latent heat using phase change materials

    International Nuclear Information System (INIS)

    Khudhair, Amar M.; Farid, Mohammed M.

    2004-01-01

    Energy storage in the walls, ceiling and floor of buildings may be enhanced by encapsulating suitable phase change materials (PCMs) within these surfaces to capture solar energy directly and increase human comfort by decreasing the frequency of internal air temperature swings and maintaining the temperature closer to the desired temperature for a longer period of time. This paper summarizes the investigation and analysis of thermal energy storage systems incorporating PCMs for use in building applications. Researches on thermal storage in which the PCM is encapsulated in concrete, gypsum wallboard, ceiling and floor have been ongoing for some time and are discussed. The problems associated with the application of PCMs with regard to the selection of materials and the methods used to contain them are also discussed

  12. Optical Digital Disk Storage: An Application for News Libraries.

    Science.gov (United States)

    Crowley, Mary Jo

    1988-01-01

    Describes the technology, equipment, and procedures necessary for converting a historical newspaper clipping collection to optical disk storage. Alternative storage systems--microforms, laser scanners, optical storage--are also retrieved, and the advantages and disadvantages of optical storage are considered. (MES)

  13. Application of PCM energy storage in combination with night ventilation for space cooling

    International Nuclear Information System (INIS)

    Barzin, Reza; Chen, John J.J.; Young, Brent R.; Farid, Mohammed M.

    2015-01-01

    Highlights: • Night ventilation were tested in combination with PCM-impregnated gypsum boards. • The Price-based method were experimentally used to perform peak load shifting. • Importance of the application of a smart control were experimentally investigated. • A cost and energy saving up to 93% and 92% per day respectively were achieved. - Abstract: In recent years, as a result of the continuous increase in energy demand, the use of energy storage has become increasingly important. To address this problem, the application of phase change materials (PCM) in buildings has received attention because of their high energy storage density and their ease of incorporation in building envelopes. Despite large experimental works conducted on the application phase change materials in buildings, there is very little work done on this application in combination with night ventilation. In this study, the application of night ventilation in combination with PCM-impregnated gypsum boards for cooling purposes was experimentally investigated. Two identical test huts equipped with “smart” control systems were used for testing the concept. One hut was constructed using impregnated gypsum boards, while the other hut was finished with ordinary gypsum board. Initially an air conditioning (AC) unit, without night ventilation, was used in both huts to charge the PCM during low peak period, showing very little savings in electricity. However, when night ventilation was used to charge the PCM instead, a weekly electricity saving of 73% was achieved.

  14. Investigation on clean-up of Zr and HDBP in PUREX process with UDMH oxalate

    International Nuclear Information System (INIS)

    Zhang Youzhi; Wang Xuanjun; Li Zhengli; Liu Xiangxuan

    2007-01-01

    It is generally accepted that the interracial crud formation is related to the complex formation of Zr with degradation products of TBP, such as DBP and MBP, in PUREX process, especially in the first cycle. The crud seriously deteriorates the operation of extraction column and therefore must be properly cleared up. Various clear up methods were studied and those with salt-free washing agents were recently focused. In this paper a new scrubbing agent 1,1- dimethylhydrazine (UDMH) oxalate was proposed, the optimized experimental conditions were described, and the possible mechanism was discussed. The influence of different factors, including reaction temperature, UDMH oxalate concentration, organic-to-aqueous phase ratio, and free UDMH concentration, on the decontamination factors were examined with simulated Zr- and/or DBP-loaded solvents. The optical experimental parameters are found as follows: temperature 40-60 degree C, phase ratio V (o) /V (a) =1, concentration of UDMH oxalate solution 0.4-0.6 mol/L. Especialy some UDMH was added into the UDMH oxalate queues solution to make the concentration of free UDMH 0.2-0.3 mol/L. Under these conditions, the decontaminator factor of Zr from the corresponding simulated solvent with UDMH oxalate is up to 143, slightly higher than that with sodium carbonate. The decontamination factor of HDBP from the corresponding simulated solvent with UDMH oxalate is up to 100, similar to sodium carbonate. (authors)

  15. Utilizing cloud storage architecture for long-pulse fusion experiment data storage

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ming; Liu, Qiang [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Wuhan, Hubei (China); School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, Hubei (China); Zheng, Wei, E-mail: zhenghaku@gmail.com [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Wuhan, Hubei (China); School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, Hubei (China); Wan, Kuanhong; Hu, Feiran; Yu, Kexun [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Wuhan, Hubei (China); School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, Hubei (China)

    2016-11-15

    Scientific data storage plays a significant role in research facility. The explosion of data in recent years was always going to make data access, acquiring and management more difficult especially in fusion research field. For future long-pulse experiment like ITER, the extremely large data will be generated continuously for a long time, putting much pressure on both the write performance and the scalability. And traditional database has some defects such as inconvenience of management, hard to scale architecture. Hence a new data storage system is very essential. J-TEXTDB is a data storage and management system based on an application cluster and a storage cluster. J-TEXTDB is designed for big data storage and access, aiming at improving read–write speed, optimizing data system structure. The application cluster of J-TEXTDB is used to provide data manage functions and handles data read and write operations from the users. The storage cluster is used to provide the storage services. Both clusters are composed with general servers. By simply adding server to the cluster can improve the read–write performance, the storage space and redundancy, making whole data system highly scalable and available. In this paper, we propose a data system architecture and data model to manage data more efficient. Benchmarks of J-TEXTDB performance including read and write operations are given.

  16. Utilizing cloud storage architecture for long-pulse fusion experiment data storage

    International Nuclear Information System (INIS)

    Zhang, Ming; Liu, Qiang; Zheng, Wei; Wan, Kuanhong; Hu, Feiran; Yu, Kexun

    2016-01-01

    Scientific data storage plays a significant role in research facility. The explosion of data in recent years was always going to make data access, acquiring and management more difficult especially in fusion research field. For future long-pulse experiment like ITER, the extremely large data will be generated continuously for a long time, putting much pressure on both the write performance and the scalability. And traditional database has some defects such as inconvenience of management, hard to scale architecture. Hence a new data storage system is very essential. J-TEXTDB is a data storage and management system based on an application cluster and a storage cluster. J-TEXTDB is designed for big data storage and access, aiming at improving read–write speed, optimizing data system structure. The application cluster of J-TEXTDB is used to provide data manage functions and handles data read and write operations from the users. The storage cluster is used to provide the storage services. Both clusters are composed with general servers. By simply adding server to the cluster can improve the read–write performance, the storage space and redundancy, making whole data system highly scalable and available. In this paper, we propose a data system architecture and data model to manage data more efficient. Benchmarks of J-TEXTDB performance including read and write operations are given.

  17. Energy storage systems cost update : a study for the DOE Energy Storage Systems Program.

    Energy Technology Data Exchange (ETDEWEB)

    Schoenung, Susan M. (Longitude 122 West, Menlo Park, CA)

    2011-04-01

    This paper reports the methodology for calculating present worth of system and operating costs for a number of energy storage technologies for representative electric utility applications. The values are an update from earlier reports, categorized by application use parameters. This work presents an update of energy storage system costs assessed previously and separately by the U.S. Department of Energy (DOE) Energy Storage Systems Program. The primary objective of the series of studies has been to express electricity storage benefits and costs using consistent assumptions, so that helpful benefit/cost comparisons can be made. Costs of energy storage systems depend not only on the type of technology, but also on the planned operation and especially the hours of storage needed. Calculating the present worth of life-cycle costs makes it possible to compare benefit values estimated on the same basis.

  18. Electrochemical energy storage systems for solar thermal applications

    Science.gov (United States)

    Krauthamer, S.; Frank, H.

    1980-01-01

    Existing and advanced electrochemical storage and inversion/conversion systems that may be used with terrestrial solar-thermal power systems are evaluated. The status, cost and performance of existing storage systems are assessed, and the cost, performance, and availability of advanced systems are projected. A prime consideration is the cost of delivered energy from plants utilizing electrochemical storage. Results indicate that the five most attractive electrochemical storage systems are the: iron-chromium redox (NASA LeRC), zinc-bromine (Exxon), sodium-sulfur (Ford), sodium-sulfur (Dow), and zinc-chlorine (EDA).

  19. Analysis on engineering application of CNP1000 in-containment refueling water storage tank

    International Nuclear Information System (INIS)

    Wang Bin; Wang Yong; Qiu Jian; Weng Minghui

    2005-01-01

    Based on the basic design of CNP1000 (three loops), which is self-reliance designed by China National Nuclear Cooperation, and investigation results from abroad advanced nuclear power plant design of In-containment Refueling Water Storage tank, this paper describe the system flowsheet, functional requirements, structural design and piping arrangement about In-containment Refueling Water Storage Tank. The design takes the lower structural space as the IRWST. Four areas are configured to meet the diverse functional requirements, including depressurization area, water collection area, safety injection and/or containment spray suction area, TSP storage area / reactor cavity flooding holdup tank. Also the paper depict the corresponding analysis and demonstration, such as In-containment Refueling Water Storage Tank pressure transient on depressurization area of IRWST, suction and internal flow stream of IRWST, configuration of strains, the addition method and amount of chemical addition, design and engineering applicant of Reactor Cavity Flooding System. All the analysis results show the basic design of IRWST meeting with the Utility Requirement Document's requirements on performance of safety function, setting of overfill passage, overpressure protection, related interference, etc., and show the reliability of Engineering Safety Features being improved for CNP1000 (three loops). Meanwhile, it is demonstrated that the design of In-containment Refueling Water Storage Tank can apply on the future nuclear power plant project in China. (authors)

  20. Nonradioactive Air Emissions Notice of Construction (NOC) Application for the Central Waste Complex (CSC) for Storage of Vented Waste Containers

    International Nuclear Information System (INIS)

    KAMBERG, L.D.

    2000-01-01

    This Notice of Construction (NOC) application is submitted for the storage and management of waste containers at the Central Waste Complex (CWC) stationary source. The CWC stationary source consists of multiple sources of diffuse and fugitive emissions, as described herein. This NOC is submitted in accordance with the requirements of Washington Administrative Code (WAC) 173-400-110 (criteria pollutants) and 173-460-040 (toxic air pollutants), and pursuant to guidance provided by the Washington State Department of Ecology (Ecology). Transuranic (TRU) mixed waste containers at CWC are vented to preclude the build up of hydrogen produced as a result of radionuclide decay, not as safety pressure releases. The following activities are conducted within the CWC stationary source: Storage and inspection; Transfer and staging; Packaging; Treatment; and Sampling. This NOC application is intended to cover all existing storage structures within the current CWC treatment, storage, and/or disposal (TSD) boundary, as well as any storage structures, including waste storage pads and staging areas, that might be constructed in the future within the existing CWC boundary

  1. A new storage-ring light source

    Energy Technology Data Exchange (ETDEWEB)

    Chao, Alex [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-06-01

    A recently proposed technique in storage ring accelerators is applied to provide potential high-power sources of photon radiation. The technique is based on the steady-state microbunching (SSMB) mechanism. As examples of this application, one may consider a high-power DUV photon source for research in atomic and molecular physics or a high-power EUV radiation source for industrial lithography. A less challenging proof-of-principle test to produce IR radiation using an existing storage ring is also considered.

  2. Wind-energy storage

    Science.gov (United States)

    Gordon, L. H.

    1980-01-01

    Program SIMWEST can model wind energy storage system using any combination of five types of storage: pumped hydro, battery, thermal, flywheel, and pneumatic. Program is tool to aid design of optional system for given application with realistic simulation for further evaluation and verification.

  3. Application of Peleg's equation to describe creep responses of potatoes under constant and variable storage conditions.

    Science.gov (United States)

    Solomon, W K; Jindal, V K

    2017-06-01

    The application of Peleg's equation to characterize creep behavior of potatoes during storage was investigated. Potatoes were stored at 25, 15, 5C, and variable (fluctuating) temperature for 16 or 26 weeks. The Peleg equation adequately described the creep response of potatoes during storage at all storage conditions (R 2  = .97to .99). Peleg constant k 1 exhibited a significant (p creep responses during storage or processing will be potentially helpful to better understand the phenomenon. The model parameters from such model could be used to relate rheological properties of raw and cooked potatoes. Moreover, the model parameters could be used to establish relationship between instrumental and sensory attributes which will help in the prediction of sensory attributes from instrumental data. © 2016 Wiley Periodicals, Inc.

  4. 40 CFR 266.205 - Standards applicable to the storage of solid waste military munitions.

    Science.gov (United States)

    2010-07-01

    ... solid waste military munitions. 266.205 Section 266.205 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF SPECIFIC HAZARDOUS... applicable to the storage of solid waste military munitions. (a) Criteria for hazardous waste regulation of...

  5. Applications of differential algebra to single-particle dynamics in storage rings

    International Nuclear Information System (INIS)

    Yan, Y.

    1991-09-01

    Recent developments in the use of differential algebra to study single-particle beam dynamics in charged-particle storage rings are the subject of this paper. Chapter 2 gives a brief review of storage rings. The concepts of betatron motion and synchrotron motion, and their associated resonances, are introduced. Also introduced are the concepts of imperfections, such as off-momentum, misalignment, and random and systematic errors, and their associated corrections. The chapter concludes with a discussion of numerical simulation principles and the concept of one-turn periodic maps. In Chapter 3, the discussion becomes more focused with the introduction of differential algebras. The most critical test for differential algebraic mapping techniques -- their application to long-term stability studies -- is discussed in Chapter 4. Chapter 5 presents a discussion of differential algebraic treatment of dispersed betatron motion. The paper concludes in Chapter 6 with a discussion of parameterization of high-order maps

  6. Nanoporous Ni with High Surface Area for Potential Hydrogen Storage Application.

    Science.gov (United States)

    Zhou, Xiaocao; Zhao, Haibo; Fu, Zhibing; Qu, Jing; Zhong, Minglong; Yang, Xi; Yi, Yong; Wang, Chaoyang

    2018-06-01

    Nanoporous metals with considerable specific surface areas and hierarchical pore structures exhibit promising applications in the field of hydrogen storage, electrocatalysis, and fuel cells. In this manuscript, a facile method is demonstrated for fabricating nanoporous Ni with a high surface area by using SiO₂ aerogel as a template, i.e., electroless plating of Ni into an SiO₂ aerogel template followed by removal of the template at moderate conditions. The effects of the prepared conditions, including the electroless plating time, temperature of the structure, and the magnetism of nanoporous Ni are investigated in detail. The resultant optimum nanoporous Ni with a special 3D flower-like structure exhibited a high specific surface area of about 120.5 m²/g. The special nanoporous Ni exhibited a promising prospect in the field of hydrogen storage, with a hydrogen capacity of 0.45 wt % on 4.5 MPa at room temperature.

  7. Sorption heat storage for long-term low-temperature applications: A review on the advancements at material and prototype scale

    NARCIS (Netherlands)

    Scapino, L.; Zondag, H.A.; Van Bael, J.; Diriken, J.; Rindt, C.C.M.

    2017-01-01

    Sorption heat storage has the potential to store large amounts of thermal energy from renewables and other distributed energy sources. This article provides an overview on the recent advancements on long-term sorption heat storage at material- and prototype- scales. The focus is on applications

  8. Nanostructured carbon and carbon nanocomposites for electrochemical energy storage applications.

    Science.gov (United States)

    Su, Dang Sheng; Schlögl, Robert

    2010-02-22

    Electrochemical energy storage is one of the important technologies for a sustainable future of our society, in times of energy crisis. Lithium-ion batteries and supercapacitors with their high energy or power densities, portability, and promising cycling life are the cores of future technologies. This Review describes some materials science aspects on nanocarbon-based materials for these applications. Nanostructuring (decreasing dimensions) and nanoarchitecturing (combining or assembling several nanometer-scale building blocks) are landmarks in the development of high-performance electrodes for with long cycle lifes and high safety. Numerous works reviewed herein have shown higher performances for such electrodes, but mostly give diverse values that show no converging tendency towards future development. The lack of knowledge about interface processes and defect dynamics of electrodes, as well as the missing cooperation between material scientists, electrochemists, and battery engineers, are reasons for the currently widespread trial-and-error strategy of experiments. A concerted action between all of these disciplines is a prerequisite for the future development of electrochemical energy storage devices.

  9. Synthesis of biomass derived carbon materials for environmental engineering and energy storage applications

    Science.gov (United States)

    Huggins, Mitchell Tyler

    Biomass derived carbon (BC) can serve as an environmentally and cost effective material for both remediation and energy production/storage applications. The use of locally derived biomass, such as unrefined wood waste, provides a renewable feedstock for carbon material production compared to conventional unrenewable resources like coal. Additionally, energy and capital cost can be reduced through the reduction in transport and processing steps and the use of spent material as a soil amendment. However, little work has been done to evaluate and compare biochar to conventional materials such as granular activated carbon or graphite in advanced applications of Environmental Engineering. In this work I evaluated the synthesis and compared the performance of biochar for different applications in wastewater treatment, nutrient recovery, and energy production and storage. This includes the use of biochar as an electrode and filter media in several bioelectrochemical systems (BES) treating synthetic and industrial wastewater. I also compared the treatment efficiency of granular biochar as a packed bed adsorbent for the primary treatment of high strength brewery wastewater. My studies conclude with the cultivation of fungal biomass to serve as a template for biochar synthesis, controlling the chemical and physical features of the feedstock and avoiding some of the limitations of waste derived materials.

  10. A High-Efficiency Voltage Equalization Scheme for Supercapacitor Energy Storage System in Renewable Generation Applications

    Directory of Open Access Journals (Sweden)

    Liran Li

    2016-06-01

    Full Text Available Due to its fast charge and discharge rate, a supercapacitor-based energy storage system is especially suitable for power smoothing in renewable energy generation applications. Voltage equalization is essential for series-connected supercapacitors in an energy storage system, because it supports the system’s sustainability and maximizes the available cell energy. In this paper, we present a high-efficiency voltage equalization scheme for supercapacitor energy storage systems in renewable generation applications. We propose an improved isolated converter topology that uses a multi-winding transformer. An improved push-pull forward circuit is applied on the primary side of the transformer. A coupling inductor is added on the primary side to allow the switches to operate under the zero-voltage switching (ZVS condition, which reduces switching losses. The diodes in the rectifier are replaced with metal-oxide-semiconductor field-effect transistors (MOSFETs to reduce the power dissipation of the secondary side. In order to simplify the control, we designed a controllable rectifying circuit to achieve synchronous rectifying on the secondary side of the transformer. The experimental results verified the effectiveness of the proposed design.

  11. Application specific dimensioning of energy storage systems for light rail vehicles; Betriebsspezifische Auslegung von Energiespeichern fuer Strassenbahnen

    Energy Technology Data Exchange (ETDEWEB)

    Klausner, S. [Fraunhofer-Institut fuer Verkehrs- und Infrastruktursysteme IVI, Dresden (Germany). Abt. fuer Emissionsfreie Antriebe und Energiespeicher; Lehnert, M. [Fraunhofer-Institut fuer Verkehrs- und Infrastruktursysteme IVI, Dresden (Germany)

    2008-07-01

    The insertion of electric energy storage systems to obtain a decreasing energy and power demand of trams and light rail vehicles can occur as stationary or mobile construction. For the dimensioning of a mobile energy storage system the objective of the application has to be fixed. At the practical example of the tram in Dresden the dimensioning with the goal energy saving is demonstrated. (orig.)

  12. Atomistic Modelling of Materials for Clean Energy Applications : hydrogen generation, hydrogen storage, and Li-ion battery

    OpenAIRE

    Qian, Zhao

    2013-01-01

    In this thesis, a number of clean-energy materials for hydrogen generation, hydrogen storage, and Li-ion battery energy storage applications have been investigated through state-of-the-art density functional theory. As an alternative fuel, hydrogen has been regarded as one of the promising clean energies with the advantage of abundance (generated through water splitting) and pollution-free emission if used in fuel cell systems. However, some key problems such as finding efficient ways to prod...

  13. Some wind-energy storage options

    Energy Technology Data Exchange (ETDEWEB)

    Eldridge, F R; Ljungstroem, O [ed.

    1976-01-01

    Systems capable of storing energy generated from the wind can be categorized in terms of electrochemical energy storage systems, thermal energy storage systems, kinetic energy systems, and potential energy systems. Recent surveys of energy storage systems have evaluated some of these available storage technologies in terms of the minimum economic sizes for utility applications, estimated capital costs of these units, expected life, dispersed storage capabilities, and estimated turn-around efficiencies of the units. These are summarized for various types of energy storage options.

  14. Hanford facility dangerous waste permit application, 616 Nonradioactive Dangerous Waste Storage Facility. Revision 2A

    International Nuclear Information System (INIS)

    Bowman, R.C.

    1994-04-01

    This permit application for the 616 Nonradioactive Dangerous Waste Storage Facility consists for 15 chapters. Topics of discussion include the following: facility description and general provisions; waste characteristics; process information; personnel training; reporting and record keeping; and certification

  15. Technical and economic feasibility of thermal energy storage. Thermal energy storage application to the brick/ceramic industry. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Glenn, D.R.

    1976-10-01

    An initial project to study the technical and economic feasibility of thermal energy storage (TES) in the three major consumer markets, namely, the residential, commercial and industrial sectors is described. A major objective of the study was to identify viable TES applications from which a more concise study could be launched, leading to a conceptual design and in-depth validation of the TES energy impacts. This report documents one such program. The brick/ceramic industries commonly use periodic kilns which by their operating cycle require time-variant energy supply and consequently variable heat rejection. This application was one of the numerous TES opportunities that emerged from the first study, now available from the ERDA Technical Information Center, Oak Ridge, Tennessee, identified as Report No. COO-2558-1.

  16. Nanostructure of highly aromatic graphene nanosheets -- From optoelectronics to electrochemical energy storage applications

    Science.gov (United States)

    Biswas, Sanjib

    The exceptional electrical properties along with intriguing physical and chemical aspects of graphene nanosheets can only be realized by nanostructuring these materials through the homogeneous and orderly distribution of these nanosheets without compromising the aromaticity of the native basal plane. Graphene nanosheets prepared by direct exfoliation as opposed to the graphene oxide route are necessary in order to preserve the native chemical properties of graphene basal planes. This research has been directed at optimally combining the diverse physical and chemical aspects of graphene nanosheets such as particle size, surface area and edge chemistry to fabricate nanostructured architectures for optoelectronics and high power electrochemical energy storage applications. In the first nanostructuring effort, a monolayer of these ultrathin, highly hydrophobic graphene nanosheets was prepared on a large area substrate via self-assembly at the liquid-liquid interface. Driven by the minimization of interfacial energy these planar graphene nanosheets produce a close packed monolayer structure at the liquid-liquid interface. The resulting monolayer film exhibits high electrical conductivity of more than 1000 S/cm and an optical transmission of more than 70-80% between wavelengths of 550 nm and 2000 nm making it an ideal candidate for optoelectronic applications. In the second part of this research, nanostructuring was used to create a configuration suitable for supercapacitor applications. A free standing, 100% binder free multilayer, flexible film consisting of monolayers of graphene nanosheets was prepared by utilizing the van der Waals forces of attraction between the basal plans of the graphene nanosheets coupled with capillary driven and drying-induced collapse. A major benefit in this approach is that the graphene nanosheet's attractive physical and chemical characteristics can be synthesized into an architecture consisting of large and small nanosheets to create an

  17. Energy efficiency and capacity retention of Ni–MH batteries for storage applications

    International Nuclear Information System (INIS)

    Zhu, Wenhua H.; Zhu, Ying; Davis, Zenda; Tatarchuk, Bruce J.

    2013-01-01

    operating limitation of 50 ± 20% SoC. This work is potentially beneficial for determination of the current SoC level during the battery pack being operated for energy storage applications

  18. Material Research on Salt Hydrates for Seasonal Heat Storage Application in a Residential Environment

    Energy Technology Data Exchange (ETDEWEB)

    Ferchaud, C.J.; Zondag, H.A.; De Boer, R. [ECN Biomass and Energy Efficiency, Petten (Netherlands)

    2013-09-15

    Water vapor sorption in salt hydrates is a promising method to realize seasonal solar heat storage in the residential sector. Several materials already showed promising performance for this application. However, the stability of these materials needs to be improved for long-term (30 year) application in seasonal solar heat storages. The purpose of this article is to identify the influence of the material properties of the salt hydrates on the performance and the reaction kinetics of the sorption process. The experimental investigation presented in this article shows that the two salt hydrates Li2SO4.H2O and CuSO4.5H2O can store and release heat under the operating conditions of a seasonal solar heat storage in a fully reversible way. However, these two materials show differences in terms of energy density and reaction kinetics. Li2SO4.H2O can release heat with an energy density of around 0.80 GJ/m{sup 3} within 4 hours of rehydration at 25C, while CuSO4.5H2O needs around 130 hours at the same temperature to be fully rehydrated and reaches an energy density of 1.85 GJ/m{sup 3}. Since the two salts are dehydrated and hydrated under the same conditions, this difference in behavior is directly related to the intrinsic properties of the materials.

  19. Protocols for atomistic modeling of water uptake into zeolite crystals for thermal storage and other applications

    International Nuclear Information System (INIS)

    Fasano, Matteo; Borri, Daniele; Chiavazzo, Eliodoro; Asinari, Pietro

    2016-01-01

    Highlights: • Numerical protocols for modeling water adsorption and infiltration into zeolite. • A priori screening of new materials for heat storage and desalination is possible. • Water uptake isotherms for bridging atomistic and engineering scales. - Abstract: We report numerical protocols for describing the water uptake process into microporous materials, with special emphasis on zeolite crystals. A better understanding and more predictive tools of the latter process are critical for a number of modern engineering applications, ranging from the optimization of loss free and compact thermal storage plants up to more efficient separation processes. Water sorption (and desorption) is indeed the key physical phenomenon to consider when designing several heat storage cycles, whereas water infiltration is to be studied when concerned with sieving through microporous materials for manufacturing selective membranes (e.g. water desalination by reverse osmosis). Despite the two quite different applications above, in this article we make an effort for illustrating a comprehensive numerical framework for predicting the engineering performances of microporous materials, based on detailed atomistic models. Thanks to the nowadays spectacular progresses in synthesizing an ever increasing number of new materials with desired properties such as zeolite with various concentrations of hydrophilic defects, we believe that the reported tools can possibly guide engineers in choosing and optimizing innovative materials for (thermal) engineering applications in the near future.

  20. Adaptive control of energy storage systems for power smoothing applications

    DEFF Research Database (Denmark)

    Meng, Lexuan; Dragicevic, Tomislav; Guerrero, Josep M.

    2017-01-01

    Energy storage systems (ESSs) are desired and widely applied for power smoothing especially in systems with renewable generation and pulsed loads. High-pass-filter (HPF) is commonly applied in those applications in which the HPF extracts the high frequency fluctuating power and uses...... that as the power reference for ESS. The cut-off frequency, as the critical parameter, actually decides the power/energy compensated by ESS. Practically the state-of-charge (SoC) of the ESS has to be limited for safety and life-cycle considerations. In this paper an adaptive cut-off frequency design is proposed...

  1. Status of US storage efforts

    International Nuclear Information System (INIS)

    Leasburg, R.H.

    1984-01-01

    Tasks involved in the implementation of the Nuclear Waste Policy Act are discussed. The need for speedy action on applications to deal with spent fuel storage problems is stressed. The problems faced by the Virginia Electric and Power Company, where full core discharge capability at the 1600-megawatt Surry power station is expected to be reached in early 1986, are reviewed. It is pointed out that although the Nuclear Waste Policy Act does not apply in this case, the problems illustrate the situation that may be faced after the Act is implemented. Problems involved in intro-utility transhipments and dry cask storage of spent fuel from Surry, including transportation ordinances at state and local levels and approval for the use of dry casks for storage, are reported. The suggestion that dry casks be used for interim storage and eventual transport to monitored retrievable storage facilities or permanent storage sites is considered. It is pointed out that data from a proposed 3-utility demonstration program of dry cask storage of consolidated fuels and the storage of fuels in air should give information applicable to the timely implementation of the Nuclear Waste Policy Act

  2. Energy storage for sustainable microgrid

    CERN Document Server

    Gao, David Wenzhong

    2015-01-01

    Energy Storage for Sustainable Microgrid addresses the issues related to modelling, operation and control, steady-state and dynamic analysis of microgrids with ESS. This book discusses major electricity storage technologies in depth along with their efficiency, lifetime cycles, environmental benefits and capacity, so that readers can envisage which type of storage technology is best for a particular microgrid application. This book offers solutions to numerous difficulties such as choosing the right ESS for the particular microgrid application, proper sizing of ESS for microgrid, as well as

  3. A review of the kinetics of oxidation and reduction of sale-free reagents in the U/Pu separation process

    International Nuclear Information System (INIS)

    Li Sa; Ouyang Yinggen; Gao Yaobin

    2012-01-01

    Background: Recently, the most reductant widely used to partition plutonium from uranium in the Purex solvent extraction purification process have been salt-free reagents. Purpose: In order to determine the utility of sale-free reagents in the Purex solvent extraction process. Methods: The report is a review of the applications of sale-free reagents in the U/Pu separation process, such as hydroxylamine derivative, U(IV), aldehyde derivative, hydrazine, hydroxyl carbamide, derivative, hydroxamic acid and so on. Results: In this review, we have investigated and summarized the previous works covering the thermodynamics and dynamics behaviors to offer references for the future R and D works on the capability of salt-free reagents in the PUREX process and to indicate its applications. Conclusions: Acetohydroxamic acid and hydroxysemicarbazide have the capability of stripping trace amount plutonium of uranium in the future industrialization. (authors)

  4. Bed geometries, fueling strategies and optimization of heat exchanger designs in metal hydride storage systems for automotive applications: A review

    DEFF Research Database (Denmark)

    Mazzucco, Andrea; Dornheim, Martin; Sloth, Michael

    2014-01-01

    This review presents recent developments for effective heat management systems to be integrated in metal hydride storage tanks, and investigates the performance improvements and limitations of each particular solution. High pressures and high temperatures metal hydrides can lead to different design...... given to metal hydride storage tanks for light duty vehicles, since this application is the most promising one for such storage materials and has been widely studied in the literature. Enhancing cooling/heating during hydrogen uptake and discharge has found to be essential to improve storage systems...

  5. Break-Even Points of Battery Energy Storage Systems for Peak Shaving Applications

    Directory of Open Access Journals (Sweden)

    Claudia Rahmann

    2017-06-01

    Full Text Available In the last few years, several investigations have been carried out in the field of optimal sizing of energy storage systems (ESSs at both the transmission and distribution levels. Nevertheless, most of these works make important assumptions about key factors affecting ESS profitability such as efficiency and life cycles and especially about the specific costs of the ESS, without considering the uncertainty involved. In this context, this work aims to answer the question: what should be the costs of different ESS technologies in order to make a profit when considering peak shaving applications? The paper presents a comprehensive sensitivity analysis of the interaction between the profitability of an ESS project and some key parameters influencing the project performance. The proposed approach determines the break-even points for different ESSs considering a wide range of life cycles, efficiencies, energy prices, and power prices. To do this, an optimization algorithm for the sizing of ESSs is proposed from a distribution company perspective. From the results, it is possible to conclude that, depending on the values of round trip efficiency, life cycles, and power price, there are four battery energy storage systems (BESS technologies that are already profitable when only peak shaving applications are considered: lead acid, NaS, ZnBr, and vanadium redox.

  6. Behavior of mercury and iodine during vitrification of simulated alkaline Purex waste

    International Nuclear Information System (INIS)

    Holton, L.K.

    1981-09-01

    Current plans indicate that the high-level wastes stored at the Savannah River Plant will be solidified by vitrification. The behavior of mercury and iodine during the vitrification process is of concern because: mercury is present in the waste in high concentrations (0.1 to 2.8 wt%); mercury will react with iodine and the other halogens present in the waste during vitrification and; the mercury compounds formed will be volatilized from the vitrification process placing a high particulate load in the vitrification system off-gas. Twelve experiments were completed to study the behavior of mercury during vitrification of simulated SRP Purex waste. The mercury was completely volatized from the vitrification system in all experiments. The mercury reacted with iodine, chlorine and oxygen to form a fine particulate solid. Quantitative recovery of mercury compounds formed in the vitrification system off-gas was not possible due to high (37 to 90%) deposition of solids in the off-gas piping. The behavior of mercury and iodine was most strongly influenced by the vitrification system atmosphere. During experiments performed in which the oxygen content of the vitrification system atmosphere was low (< 1 vol%); iodine retention in the glass product was 27 to 55%, the mercury composition of the solids recovered from the off-gas scrub solutions was 75 to 85 wt%, and a small quantity of metallic mercury was recovered from the off-gas scrub solution. During experiments performed in which the oxygen content of the vitrification system atmosphere was high (20 vol%), iodide retention in the glass product was 3 to 15%, the mercury composition of the solids recovered from the off-gas scrub solutions was 60 to 80 wt%, and very little metallic mercury was recovered from the off-gas scrub solution

  7. 2D Metal Chalcogenides Incorporated into Carbon and their Assembly for Energy Storage Applications.

    Science.gov (United States)

    Deng, Zongnan; Jiang, Hao; Li, Chunzhong

    2018-05-01

    2D metal chalcogenides have become a popular focus in the energy storage field because of their unique properties caused by their single-atom thicknesses. However, their high surface energy and van der Waals attraction easily cause serious stacking and restacking, leading to the generation of more inaccessible active sites with rapid capacity fading. The hybridization of 2D metal chalcogenides with highly conductive materials, particularly, incorporating ultrasmall and few-layered metal chalcogenides into carbon frameworks, can not only maximize the exposure of active sites but also effectively avoid their stacking and aggregation during the electrochemical reaction process. Therefore, a satisfactory specific capacity will be achieved with a long cycle life. In this Concept, the representative progress on such intriguing nanohybrids and their applications in energy storage devices are mainly summarized. Finally, an outlook of the future development and challenges of such nanohybrids for achieving an excellent energy storage capability is also provided. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Dry spent fuel storage licensing

    International Nuclear Information System (INIS)

    Sturz, F.C.

    1995-01-01

    In the US, at-reactor-site dry spent fuel storage in independent spent fuel storage installations (ISFSI) has become the principal option for utilities needing storage capacity outside of the reactor spent fuel pools. Delays in the geologic repository operational date at or beyond 2010, and the increasing uncertainty of the US Department of Energy's (DOE) being able to site and license a Monitored Retrievable Storage (MRS) facility by 1998 make at-reactor-site dry storage of spent nuclear fuel increasingly desirable to utilities and DOE to meet the need for additional spent fuel storage capacity until disposal, in a repository, is available. The past year has been another busy year for dry spent fuel storage licensing. The licensing staff has been reviewing 7 applications and 12 amendment requests, as well as participating in inspection-related activities. The authors have licensed, on a site-specific basis, a variety of dry technologies (cask, module, and vault). By using certified designs, site-specific licensing is no longer required. Another new cask has been certified. They have received one new application for cask certification and two amendments to a certified cask design. As they stand on the brink of receiving multiple applications from DOE for the MPC, they are preparing to meet the needs of this national program. With the range of technical and licensing options available to utilities, the authors believe that utilities can meet their need for additional spent fuel storage capacity for essentially all reactor sites through the next decade

  9. NRCan's hydrogen storage R and D program

    International Nuclear Information System (INIS)

    Scepanovic, V.

    2004-01-01

    'Full text:' Natural Resources Canada (NRCan) has been working in partnership with industry, other government departments and academia to expedite the development of hydrogen technologies. NRCan's Hydrogen and Fuel Cell R and D Program covers all aspects of hydrogen technologies: production, storage, utilization and codes and standards. Hydrogen storage is a key enabling technology for the advancement of fuel cell power systems in transportation, stationary, and portable applications. NRCan's storage program has been focused on developing storage materials and technologies for a range of applications with the emphasis on transportation. An overview of most recent hydrogen storage projects including pressurized hydrogen, liquid hydrogen and storage in hydrides and carbon-based materials will be given. (author)

  10. On the use of time resolved laser-induced spectrofluorometry in the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Moulin, C.; Decambox, P.; Mauchien, P.; Davin, T.; Pradel, B.

    1991-01-01

    Time Resolved Laser-Induced Spectrofluorometry (TRLIS) has been used for actinides trace analysis and complexation analysis in the nuclear fuel cycle. Results obtained in the different fields such as in geology, in the Purex process, in the environment, in the medical and in waste storage assessment are presented. 4 figs., 6 refs

  11. Novel bamboo structured TiO2 nanotubes for energy storage/production applications

    Science.gov (United States)

    Samuel, J. J.; Beh, K. P.; Cheong, Y. L.; Yusuf, W. A. A.; Yam, F. K.

    2018-04-01

    Nanostructured TiO2 received much attention owing to its high surface-to-volume ratio, which can be advantageous in energy storage and production applications. However, the increase in energy consumption at present and possibly the foreseeable future has demanded energy storage and production devices of even higher performance. A direct approach would be manipulating the physical aspects of TiO2 nanostructures, particularly, nanotubes. In this work, dual voltage anodization system has been implemented to fabricate bamboo shaped TiO2 nanotubes, which offers even greater surface area. This unique nanostructure would be used in Dye Sensitized Solar Cell (DSSC) fabrication and its performance will be evaluated and compared along other forms of TiO2 nanotubes. The results showed that bamboo shaped nanotubes indeed are superior morphologically, with an increase of efficiency of 107% at 1.130% efficiency when compared to smooth walled nanotubes at 0.546% efficiency.

  12. Progress in electrical energy storage system:A critical review

    Institute of Scientific and Technical Information of China (English)

    Haisheng Chen; Thang Ngoc Cong; Wei Yang; Chunqing Tan; Yongliang Li; Yulong Ding

    2009-01-01

    Electrical energy storage technologies for stationary applications are reviewed.Particular attention is paid to pumped hydroelectric storage,compressed air energy storage,battery,flow battery,fuel cell,solar fuel,superconducting magnetic energy storage, flywheel, capacitor/supercapacitor,and thermal energy torage.Comparison is made among these technologies in terms of technical characteris-tics,applications and deployment status.

  13. An Evaluation of Criticality Margin by an Application of Parallelogram Lattice Arrangement in the Nuclear Fuel Storage Rack

    International Nuclear Information System (INIS)

    Kim, Song Hyun; Kim, Hong Chul; Shin, Chang Ho; Kim, Jong Kyung; Kim, Kyo Youn

    2010-01-01

    The criticality evaluation in the nuclear fuel storage rack is essentially required for the prevention of the criticality accident. The square lattice structure of the storage rack is commonly used because it has a simple structure for the storage of the numerous fuel assemblies as well as the good mechanical strength. For the design of the fuel storage rack, the boron plate is commonly used for the criticality reduction. In this study, an arrangement method with the parallelogram lattice structure is proposed for the reduction of the boron concentration or the rack pitch. The criticality margins by the application of the parallelogram lattice were evaluated with MCNP5 code. From the result, the reduction of the boron concentrated in the borated-Al plate was evaluated

  14. 77 FR 34031 - Petal Gas Storage, L.L.C., Hattiesburg Industrial Gas Sales, L.L.C.; Notice of Application

    Science.gov (United States)

    2012-06-08

    ... Storage, L.L.C., Hattiesburg Industrial Gas Sales, L.L.C.; Notice of Application Take notice that on May 21, 2012, Petal Gas Storage, L.L.C. (Petal) and Hattiesburg Industrial Gas Sales, L.L.C. (Hattiesburg... pursuant to sections 7(c) and 7(b) of the Natural Gas Act (NGA), for authorization for Petal to acquire the...

  15. The reprocessing-recycling of spent nuclear fuel. Actinides separation - Application to wastes management; Le traitement-recyclage du combustible nucleaire use. La separation des actinides - Application a la gestion des dechets

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    After its use in the reactor, the spent fuel still contains lot of recoverable material for an energetic use (uranium, plutonium), but also fission products and minor actinides which represent the residues of nuclear reactions. The reprocessing-recycling of the spent fuel, as it is performed in France, implies the chemical separation of these materials. The development and the industrial implementation of this separation process represent a major contribution of the French science and technology. The reprocessing-recycling allows a good management of nuclear wastes and a significant saving of fissile materials. With the recent spectacular rise of uranium prices, this process will become indispensable with the development of the next generation of fast neutron reactors. This book takes stock of the present and future variants of the chemical process used for the reprocessing of spent fuels. It describes the researches in progress and presents the stakes and recent results obtained by the CEA. content: the separation of actinides, a key factor for a sustainable nuclear energy; the actinides, a discovery of the 20. century; the radionuclides in nuclear fuels; the aquo ions of actinides; some redox properties of actinides; some complexing properties of actinide cations; general considerations about treatment processes; some characteristics of nuclear fuels in relation with their reprocessing; technical goals and specific constraints of the PUREX process; front-end operations of the PUREX process; separation and purification operations of the PUREX process; elaboration of finite products in the framework of the PUREX process; management and treatment of liquid effluents; solid wastes of the PUREX process; towards a joint management of uranium and plutonium: the COEX{sup TM} process; technical options of treatment and recycling techniques; the fuels of generation IV reactors; front-end treatment processes of advanced fuels; hydrometallurgical processes for future fuel

  16. Evaluation of lead/carbon devices for utility applications : a study for the DOE Energy Storage Program.

    Energy Technology Data Exchange (ETDEWEB)

    Walmet, Paula S. (MeadWestvaco Corporation,North Charleston, SC)

    2009-06-01

    This report describes the results of a three-phase project that evaluated lead-based energy storage technologies for utility-scale applications and developed carbon materials to improve the performance of lead-based energy storage technologies. In Phase I, lead/carbon asymmetric capacitors were compared to other technologies that used the same or similar materials. At the end of Phase I (in 2005) it was found that lead/carbon asymmetric capacitors were not yet fully developed and optimized (cost/performance) to be a viable option for utility-scale applications. It was, however, determined that adding carbon to the negative electrode of a standard lead-acid battery showed promise for performance improvements that could be beneficial for use in utility-scale applications. In Phase II various carbon types were developed and evaluated in lead-acid batteries. Overall it was found that mesoporous activated carbon at low loadings and graphite at high loadings gave the best cycle performance in shallow PSoC cycling. Phase III studied cost/performance benefits for a specific utility application (frequency regulation) and the full details of this analysis are included as an appendix to this report.

  17. Ammonia emission factors from broiler litter in barns, in storage, and after land application.

    Science.gov (United States)

    Moore, Philip A; Miles, Dana; Burns, Robert; Pote, Dan; Berg, Kess; Choi, In Hag

    2011-01-01

    We measured NH₃ emissions from litter in broiler houses, during storage, and after land application and conducted a mass balance of N in poultry houses. Four state-of-the-art tunnel-ventilated broiler houses in northwest Arkansas were equipped with NH₃ sensors, anemometers, and data loggers to continuously record NH₃ concentrations and ventilation for 1 yr. Gaseous fluxes of NH₃, N₂O, CH₄, and CO₂ from litter were measured. Nitrogen (N) inputs and outputs were quantified. Ammonia emissions during storage and after land application were measured. Ammonia emissions during the flock averaged approximately 15.2 kg per day-house (equivalent to 28.3 g NH₃per bird marketed). Emissions between flocks equaled 9.09 g NH₃ per bird. Hence, in-house NH₃ emissions were 37.5 g NH₃ per bird, or 14.5 g kg(-1) bird marketed (50-d-old birds). The mass balance study showed N inputs for the year to the four houses totaled 71,340 kg N, with inputs from bedding, chicks, and feed equal to 303, 602, and 70,435 kg, respectively (equivalent to 0.60, 1.19, and 139.56 g N per bird). Nitrogen outputs totaled 70,396 kg N. Annual N output from birds marketed, NH₃ emissions, litter or cake, mortality, and NO₂ emissions was 39,485, 15,571, 14,464, 635, and 241 kg N, respectively (equivalent to 78.2, 30.8, 28.7, 1.3, and 0.5 g N per bird). The percent N recovery for the N mass balance study was 98.8%. Ammonia emissions from stacked litter during a 16-d storage period were 172 g Mg(-1) litter, which is equivalent to 0.18 g NH₃ per bird. Ammonia losses from poultry litter broadcast to pastures were 34 kg N ha (equivalent to 15% of total N applied or 7.91 g NH₃ per bird). When the litter was incorporated into the pasture using a new knifing technique, NH₃ losses were virtually zero. The total NH₃ emission factor for broilers measured in this study, which includes losses in-house, during storage, and after land application, was 45.6 g NH₃ per bird marketed. by the

  18. Ten questions to Jean Dhers on the storage of electric energy

    International Nuclear Information System (INIS)

    2006-01-01

    The authors proposes a comprehensive set of technical and economical data and information on electricity storage: the reasons to store energy (autonomous, stationary and network applications), the different types and advantages of energy storages with reversible power, the means to massively store electricity to exploit in on the network (description, uses and comparison of pumping energy transfer station, energy storage under the form of compressed air), the inertial storage (storage of kinetic energy accumulated in a flywheel, and its applications), the importance of storage with electrochemical batteries (reversible storage, evolution of batteries in ground transports, main economic sectors for batteries), fuel cells, the role of energy storage by power capacitors, the perspectives of super capacitors in a near future (comparison of their performance with those of batteries, possible applications), the use of electromagnetic storage of electricity (description, advantages, drawbacks and applications of superconducting magnet energy storage or SMES), and how the research on electric power storage is organised

  19. Selenium electrochemistry. Applications in the nuclear fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Maslennikov, A.; Peretroukhine, V. [Russian Academy of Sciences, Moscow (Russian Federation). Inst. of Physical Chemistry; David, F. [Centre National de la Recherche Scientifique (CNRS), 91 - Orsay (France); Lecomte, M. [CEA Centre d' Etudes de la Valle du Rhone, 30 - Marcoule (France). Direction du Cycle du Combustible

    1999-07-01

    Modern state of selenium electrochemistry is reviewed in respect of the application of electrochemical methods for the study of the behavior of this element and its quantitative analysis in the solutions of nuclear fuel cycle. The review includes the data on the redox potentials of Se in aqueous solutions, and the data on Se redox reactions, occurring at mercury and solid electrodes. Analysis of the available literature data shows that the inverse stripping voltammetry technique for trace Se concentration and determination seems to be the most promising in application for the Se determination in PUREX solutions and in radioactive wastes. The adaptation of the ISV technique for the trace Se concentration and determination in the solutions of the nuclear fuel cycle is indicated as the most prospective goal of the future experimental study. (author)

  20. Flywheel Energy Storage Drive System for Wind Applications

    Directory of Open Access Journals (Sweden)

    Marius Constantin Georgescu

    2014-09-01

    Full Text Available This paper presents a wind small power plant with a Smart Storage Modular Structure (SSMS, as follows: a Short Time Storage Module (STSM based on a flywheel with Induction Motor (IM and a Medium/Long Time Storage Module (MLTSM based on a Vanadium Redox flow Battery (VRB. To control the speed and torque of the IM are used a nonlinear sensorless solution and a direct torque solution which have been compared. Now, the author proposes to replace the IM by a dc motor with permanent magnet energy injection. In this aim, are accomplished some laboratory tests.

  1. The reprocessing-recycling of spent nuclear fuel. Actinides separation - Application to wastes management

    International Nuclear Information System (INIS)

    2008-01-01

    After its use in the reactor, the spent fuel still contains lot of recoverable material for an energetic use (uranium, plutonium), but also fission products and minor actinides which represent the residues of nuclear reactions. The reprocessing-recycling of the spent fuel, as it is performed in France, implies the chemical separation of these materials. The development and the industrial implementation of this separation process represent a major contribution of the French science and technology. The reprocessing-recycling allows a good management of nuclear wastes and a significant saving of fissile materials. With the recent spectacular rise of uranium prices, this process will become indispensable with the development of the next generation of fast neutron reactors. This book takes stock of the present and future variants of the chemical process used for the reprocessing of spent fuels. It describes the researches in progress and presents the stakes and recent results obtained by the CEA. content: the separation of actinides, a key factor for a sustainable nuclear energy; the actinides, a discovery of the 20. century; the radionuclides in nuclear fuels; the aquo ions of actinides; some redox properties of actinides; some complexing properties of actinide cations; general considerations about treatment processes; some characteristics of nuclear fuels in relation with their reprocessing; technical goals and specific constraints of the PUREX process; front-end operations of the PUREX process; separation and purification operations of the PUREX process; elaboration of finite products in the framework of the PUREX process; management and treatment of liquid effluents; solid wastes of the PUREX process; towards a joint management of uranium and plutonium: the COEX TM process; technical options of treatment and recycling techniques; the fuels of generation IV reactors; front-end treatment processes of advanced fuels; hydrometallurgical processes for future fuel cycles

  2. Electrodeposited reduced-graphene oxide/cobalt oxide electrodes for charge storage applications

    Energy Technology Data Exchange (ETDEWEB)

    García-Gómez, A. [CQE, Instituto Superior Técnico, Universidade de Lisboa, Lisboa (Portugal); Eugénio, S., E-mail: s.eugenio@tecnico.ulisboa.pt [CQE, Instituto Superior Técnico, Universidade de Lisboa, Lisboa (Portugal); Duarte, R.G. [CQE, Instituto Superior Técnico, Universidade de Lisboa, Lisboa (Portugal); ESTBarreiro, Instituto Politécnico de Setúbal, Setúbal (Portugal); Silva, T.M. [CQE, Instituto Superior Técnico, Universidade de Lisboa, Lisboa (Portugal); ADEM, GI-MOSM, ISEL-Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, Lisboa (Portugal); Carmezim, M.J. [CQE, Instituto Superior Técnico, Universidade de Lisboa, Lisboa (Portugal); ESTSetúbal, Instituto Politécnico de Setúbal, Setúbal (Portugal); Montemor, M.F. [CQE, Instituto Superior Técnico, Universidade de Lisboa, Lisboa (Portugal)

    2016-09-30

    Highlights: • Electrochemically reduced graphene/CoOx composites were successfully produced by electrodeposition. • The composite material presents a specific capacitance of about 430 F g{sup −1}. • After heat treatment, the capacitance retention of the composite was 76% after 3500 cycles. - Abstract: In the present work, electrochemically reduced-graphene oxide/cobalt oxide composites for charge storage electrodes were prepared by a one-step pulsed electrodeposition route on stainless steel current collectors and after that submitted to a thermal treatment at 200 °C. A detailed physico-chemical characterization was performed by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and Raman spectroscopy. The electrochemical response of the composite electrodes was studied by cyclic voltammetry and charge-discharge curves and related to the morphological and phase composition changes induced by the thermal treatment. The results revealed that the composites were promising materials for charge storage electrodes for application in redox supercapacitors, attaining specific capacitances around 430 F g{sup −1} at 1 A g{sup −1} and presenting long-term cycling stability.

  3. Investigation of innovative thermochemical energy storage processes and materials for building applications

    OpenAIRE

    Aydin, Devrim

    2016-01-01

    In this study, it is aimed to develop an innovative thermochemical energy storage system through material, reactor and process based investigations for building space heating applications. The developed system could be integrated with solar thermal collectors, photovoltaic panels or heat pumps to store any excess energy in the form of heat for later use. Thereby, it is proposed to address the problem of high operational costs and CO2 emissions released by currently used fossil fuel based heat...

  4. Considerations applicable to the transportability of a transportable storage cask at the end of the storage period

    International Nuclear Information System (INIS)

    Sanders, T.L.; Ottinger, C.A.; Brimhall, J.L.; Creer, J.M.; Gilbert, E.R.; Jones, R.H.; McConnell, P.E.

    1991-11-01

    Additional spent fuel storage capacity is needed at many nuclear power plant sites where spent fuel storage pools have either reached or are expected to reach maximum capacities before spent fuel can be removed. This analysis examines certain aspects of Transportable Storage Casks (TSC) to assist in the determination of their feasibility as an option for at-reactor dry storage. Factors that can affect in-transport reliability include: the quality of design, development, and fabrication activities; the possibilities of damage or error during loading and closure; in-storage deterioration or unanticipated storage conditions; and the potential for loss of storage period monitoring/measurement data necessary for verifying the TSC fitness-for-transport. The reported effort utilizes a relative reliability comparison of TSCs to Transport-Only Casks (TOC) to identify and prioritize those issues and activities that are unique to TSCs. TSC system recommendations combine certain design and operational features, such as in-service monitoring, pretransport assessments, and conservation design assumptions, which when implemented and verified, should sufficiently ensure that the system will perform as intended in a later transport environment

  5. A more efficient way to shape metal-organic framework (MOF) powder materials for hydrogen storage applications

    CSIR Research Space (South Africa)

    Ren, Jianwei

    2015-04-01

    Full Text Available operation time. This granulation approach is a more efficient way to shape MOF-type powder materials into application-specific configurations compared to the mechanical pressing method. The pellets could be conveniently packed in a small hydrogen storage...

  6. Image storage, cataloguing and retrieval using a personal computer database software application

    International Nuclear Information System (INIS)

    Lewis, G.; Howman-Giles, R.

    1999-01-01

    Full text: Interesting images and cases are collected and collated by most nuclear medicine practitioners throughout the world. Changing imaging technology has altered the way in which images may be presented and are reported, with less reliance on 'hard copy' for both reporting and archiving purposes. Digital image generation and storage is rapidly replacing film in both radiological and nuclear medicine practice. A personal computer database based interesting case filing system is described and demonstrated. The digital image storage format allows instant access to both case information (e.g. history and examination, scan report or teaching point) and the relevant images. The database design allows rapid selection of cases and images appropriate to a particular diagnosis, scan type, age or other search criteria. Correlative X-ray, CT, MRI and ultrasound images can also be stored and accessed. The application is in use at The New Children's Hospital as an aid to postgraduate medical education, with new cases being regularly added to the database

  7. A review of the semiconductor storage of television signals. Part 2: Applications 1975-1986

    Science.gov (United States)

    Riley, J. L.

    1987-08-01

    This is the second of two reports. In the first, the emerging semiconductor memory technology over the last two decades and some of the important operational characteristics of each ensuing generation of device are described together with the design philosophy for forming the devices into useful tools for the storage of television signals. The second of these reports describes some of the applications. These include improved television synchronizers, high quality PAL decoders, television noise reducers, film dirt concealment equipment and buffer storage for television picture processing equipment such as stills stores. The continuing developments in the technology promise still further increases of memory capacity and there is a proposal to build a mass semiconductor television picture sequence store, initially as a research tool.

  8. High-level waste tank modifications, installation of mobilization equipment/check out

    International Nuclear Information System (INIS)

    Schiffhauer, M.A.; Thompson, S.C.

    1992-01-01

    PUREX high-level waste (HLW) is contained at the West Valley Demonstration Project (WVDP) in an underground carbon-steel storage tank. The HLW consists of a precipitated sludge and an alkaline supernate. This report describes the system that the WVDP has developed and implemented to resuspend and wash the HLW sludge from the tank. The report discusses Sludge Mobilization and Wash System (SMWS) equipment design, installation, and testing. The storage tank required modifications to accommodate the SMWS. These modifications are discussed as well

  9. Evaluating Dihydroazulene/Vinylheptafulvene Photoswitches for Solar Energy Storage Applications.

    Science.gov (United States)

    Wang, Zhihang; Udmark, Jonas; Börjesson, Karl; Rodrigues, Rita; Roffey, Anna; Abrahamsson, Maria; Nielsen, Mogens Brøndsted; Moth-Poulsen, Kasper

    2017-08-10

    Efficient solar energy storage is a key challenge in striving toward a sustainable future. For this reason, molecules capable of solar energy storage and release through valence isomerization, for so-called molecular solar thermal energy storage (MOST), have been investigated. Energy storage by photoconversion of the dihydroazulene/vinylheptafulvene (DHA/VHF) photothermal couple has been evaluated. The robust nature of this system is determined through multiple energy storage and release cycles at elevated temperatures in three different solvents. In a nonpolar solvent such as toluene, the DHA/VHF system can be cycled more than 70 times with less than 0.01 % degradation per cycle. Moreover, the [Cu(CH 3 CN) 4 ]PF 6 -catalyzed conversion of VHF into DHA was demonstrated in a flow reactor. The performance of the DHA/VHF couple was also evaluated in prototype photoconversion devices, both in the laboratory by using a flow chip under simulated sunlight and under outdoor conditions by using a parabolic mirror. Device experiments demonstrated a solar energy storage efficiency of up to 0.13 % in the chip device and up to 0.02 % in the parabolic collector. Avenues for future improvements and optimization of the system are also discussed. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. High-temperature molten salt thermal energy storage systems for solar applications

    Science.gov (United States)

    Petri, R. J.; Claar, T. D.; Ong, E.

    1983-01-01

    Experimental results of compatibility screening studies of 100 salt/containment/thermal conductivity enhancement (TCE) combinations for the high temperature solar thermal application range of 704 deg to 871 C (1300 to 1600 F) are presented. Nine candidate containment/HX alloy materials and two TCE materials were tested with six candidate solar thermal alkali and alkaline earth carbonate storage salts (both reagent and technical grade of each). Compatibility tests were conducted with salt encapsulated in approx. 6.0 inch x 1 inch welded containers of test material from 300 to 3000 hours. Compatibility evaluations were end application oriented, considering the potential 30 year lifetime requirement of solar thermal power plant components. Analyses were based on depth and nature of salt side corrosion of materials, containment alloy thermal aging effects, weld integrity in salt environment, air side containment oxidation, and chemical and physical analyses of the salt. A need for more reliable, and in some cases first time determined thermophysical and transport property data was also identified for molten carbonates in the 704 to 871 C temperature range. In particular, accurate melting point (mp) measurements were performed for Li2CO3 and Na2CO3 while melting point, heat of fusion, and specific heat determinations were conducted on 81.3 weight percent Na2CO3-18.7 weight percent K2CO3 and 52.2 weight percent BaCO3-47.8 weight percent Na2CO3 to support future TES system design and ultimate scale up of solar thermal energy storage (TES) subsystems.

  11. Storage potential of ‘SCS426 Venice’ apples under different storage technologies

    Directory of Open Access Journals (Sweden)

    Mariuccia Schlichting de Martin

    2018-04-01

    Full Text Available Abstract This study aimed to evaluate the storage potential of SCS426 Venice apples under different storage technologies. Fruits were harvested in an experimental orchard located in Fraiburgo, SC and stored for up to eight and ten months in 2013 and 2014, respectively. Apples were treated or not with methylcyclopropene (1-MCP and stored under air atmosphere (AA, 0.5±0.5 °C/RH 85±5% or controlled atmosphere (CA; 1.5 kPa of O2 and 1.5 kPa of CO2 at 0.7±0.5 °C/RH of 93±3%. Fruits were evaluated every two months of storage, after one and seven days of shelf life (23 ± 0.3 °C/RH 93±3%. The storage period of ‘SCS426 Venice’ apples under AA without 1-MCP application should not extend beyond six months. Under this storage condition, fruits had higher incidence of decay, ethylene production and respiratory rates, higher skin degreening, lower flesh firmness, titratable acidity and soluble solids content than fruits stored under CA or AA with 1-MCP. ‘SCS426 Venice’ apples develop flesh browning and superficial scald after long-term storage. ‘SCS426 Venice’ apples under AA treated with 1-MCP or under CA (regardless of 1-MCP application can be stored for more than eight months, keeping flesh firmness above 14 lb and low incidence of physiological disorders even after ten months of storage.

  12. Creation of a Unified Educational Space within a SLA University Classroom Using Cloud Storage and On-Line Applications

    Science.gov (United States)

    Karabayeva, Kamilya Zhumartovna

    2016-01-01

    In the present article the author gives evidence of effective application of cloud storage and on-line applications in the educational process of the higher education institution, as well as considers the problems and prospects of using cloud technologies in the educational process, when creating a unified educational space in the foreign language…

  13. Research on an IP disaster recovery storage system

    Science.gov (United States)

    Zeng, Dong; Wang, Yusheng; Zhu, Jianfeng

    2008-12-01

    According to both the Fibre Channel (FC) Storage Area Network (SAN) switch and Fabric Application Interface Standard (FAIS) mechanism, an iSCSI storage controller is put forward and based upon it, an internet Small Computer System Interface (iSCSI) SAN construction strategy for disaster recovery (DR) is proposed and some multiple sites replication models and a closed queue performance analysis method are also discussed in this paper. The iSCSI storage controller lies in the fabric level of the networked storage infrastructure, and it can be used to connect to both the hybrid storage applications and storage subsystems, besides, it can provide virtualized storage environment and support logical volume access control, and by cooperating with the remote peerparts, a disaster recovery storage system can be built on the basis of the data replication, block-level snapshot and Internet Protocol (IP) take-over functions.

  14. Highly stable supercapacitors with conducting polymer core-shell electrodes for energy storage applications

    KAUST Repository

    Xia, Chuan

    2015-01-14

    Conducting polymers such as polyaniline (PAni) show a great potential as pseudocapacitor materials for electrochemical energy storage applications. Yet, the cycling instability of PAni resulting from structural alteration is a major hurdle to its commercial application. Here, the development of nanostructured PAni-RuO2 core-shell arrays as electrodes for highly stable pseudocapacitors with excellent energy storage performance is reported. A thin layer of RuO2 grown by atomic layer deposition (ALD) on PAni nanofibers plays a crucial role in stabilizing the PAni pseudocapacitors and improving their energy density. The pseudocapacitors, which are based on optimized PAni-RuO2 core-shell nanostructured electrodes, exhibit very high specific capacitance (710 F g-1 at 5 mV s-1) and power density (42.2 kW kg-1) at an energy density of 10 Wh kg-1. Furthermore, they exhibit remarkable capacitance retention of ≈88% after 10 000 cycles at very high current density of 20 A g-1, superior to that of pristine PAni-based pseudocapacitors. This prominently enhanced electrochemical stability successfully demonstrates the buffering effect of ALD coating on PAni, which provides a new approach for the preparation of metal-oxide/conducting polymer hybrid electrodes with excellent electrochemical performance.

  15. Resource Conservation and Recovery Act (RCRA) Part B permit application for tank storage units at the Oak Ridge Y-12 Plant

    International Nuclear Information System (INIS)

    1994-05-01

    In compliance with the Resource Conservation and Recovery Act (RCRA), this report discusses information relating to permit applications for three tank storage units at Y-12. The storage units are: Building 9811-1 RCRA Tank Storage Unit (OD-7); Waste Oil/Solvent Storage Unit (OD-9); and Liquid Organic Solvent Storage Unit (OD-10). Numerous sections discuss the following: Facility description; waste characteristics; process information; groundwater monitoring; procedures to prevent hazards; contingency plan; personnel training; closure plan, post closure plan, and financial requirements; record keeping; other federal laws; organic air emissions; solid waste management units; and certification. Sixteen appendices contain such items as maps, waste analyses and forms, inspection logs, equipment identification, etc

  16. Carbon storage in a heavy clay soil landfill site after biosolid application

    International Nuclear Information System (INIS)

    Bolan, N.S.; Kunhikrishnan, A.; Naidu, R.

    2013-01-01

    Applying organic amendments including biosolids and composts to agricultural land could increase carbon (C) storage in soils and contribute significantly to the reduction of greenhouse gas emissions. Although a number of studies have examined the potential value of biosolids as a soil conditioner and nutrient source, there has been only limited work on the impact of biosolid application on C sequestration in soils. The objective of this study was to examine the potential value of biosolids in C sequestration in soils. Two types of experiments were conducted to examine the effect of biosolid application on C sequestration. In the first laboratory incubation experiment, the rate of decomposition of a range of biosolid samples was compared with other organic amendments including composts and biochars. In the second field experiment, the effect of biosolids on the growth of two bioenergy crops, Brassica juncea (Indian mustard) and Helianthus annuus (sunflower) on a landfill site was examined in relation to biomass production and C sequestration. The rate of decomposition varied amongst the organic amendments, and followed: composts > biosolids > biochar. There was a hundred fold difference in the rate of decomposition between biochar and other organic amendments. The rate of decomposition of biosolids decreased with increasing iron (Fe) and aluminum (Al) contents of biosolids. Biosolid application increased the dry matter yield of both plant species (by 2–2.5 fold), thereby increasing the biomass C input to soils. The rate of net C sequestration resulting from biosolid application (Mg C ha −1 yr −1 Mg −1 biosolids) was higher for mustard (0.103) than sunflower (0.087). Biosolid application is likely to result in a higher level of C sequestration when compared to other management strategies including fertilizer application and conservation tillage, which is attributed to increased microbial biomass, and Fe and Al oxide-induced immobilization of C. - Graphical

  17. Carbon storage in a heavy clay soil landfill site after biosolid application

    Energy Technology Data Exchange (ETDEWEB)

    Bolan, N.S., E-mail: Nanthi.Bolan@unisa.edu.au [Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, SA 5095 (Australia); Cooperative Research Centre for Contaminants Assessment and Remediation of the Environment (CRC CARE), University of South Australia, SA 5095 (Australia); Kunhikrishnan, A. [Chemical Safety Division, Department of Agro-Food Safety, National Academy of Agricultural Science, Suwon-si, Gyeonggi-do 441-707 (Korea, Republic of); Naidu, R. [Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, SA 5095 (Australia); Cooperative Research Centre for Contaminants Assessment and Remediation of the Environment (CRC CARE), University of South Australia, SA 5095 (Australia)

    2013-11-01

    Applying organic amendments including biosolids and composts to agricultural land could increase carbon (C) storage in soils and contribute significantly to the reduction of greenhouse gas emissions. Although a number of studies have examined the potential value of biosolids as a soil conditioner and nutrient source, there has been only limited work on the impact of biosolid application on C sequestration in soils. The objective of this study was to examine the potential value of biosolids in C sequestration in soils. Two types of experiments were conducted to examine the effect of biosolid application on C sequestration. In the first laboratory incubation experiment, the rate of decomposition of a range of biosolid samples was compared with other organic amendments including composts and biochars. In the second field experiment, the effect of biosolids on the growth of two bioenergy crops, Brassica juncea (Indian mustard) and Helianthus annuus (sunflower) on a landfill site was examined in relation to biomass production and C sequestration. The rate of decomposition varied amongst the organic amendments, and followed: composts > biosolids > biochar. There was a hundred fold difference in the rate of decomposition between biochar and other organic amendments. The rate of decomposition of biosolids decreased with increasing iron (Fe) and aluminum (Al) contents of biosolids. Biosolid application increased the dry matter yield of both plant species (by 2–2.5 fold), thereby increasing the biomass C input to soils. The rate of net C sequestration resulting from biosolid application (Mg C ha{sup −1} yr{sup −1} Mg{sup −1} biosolids) was higher for mustard (0.103) than sunflower (0.087). Biosolid application is likely to result in a higher level of C sequestration when compared to other management strategies including fertilizer application and conservation tillage, which is attributed to increased microbial biomass, and Fe and Al oxide-induced immobilization of C

  18. Experimental results of a 3 k Wh thermochemical heat storage module for space heating application

    NARCIS (Netherlands)

    Finck, C.J.; Henquet, E.M.R.; Soest, C.F.L. van; Oversloot, H.P.; Jong, A.J. de; Cuypers, R.; Spijker, J.C. van 't

    2014-01-01

    A 3 kWh thermochemical heat storage (TCS) module was built as part of an all-in house system implementation focusing on space heating application at a temperature level of 40 ºC and a temperature lift of 20 K. It has been tested and measurements showed a maximum water circuit temperature span

  19. Hydrogen transport and storage in engineered glass microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Rambach, G.D.

    1994-04-20

    New, high-strength, hollow, glass microspheres filled with pressurized hydrogen exhibit storage densities which make them attractive for bulk hydrogen storage and transport. The hoop stress at failure of our engineered glass microspheres is about 150,000 psi, permitting a three-fold increase in pressure limit and storage capacity above commercial microspheres, which fail at wall stresses of 50,000 psi. For this project, microsphere material and structure will be optimized for storage capacity and charge/discharge kinetics to improve their commercial practicality. Microsphere production scale up will be performed, directed towards large-scale commercial use. Our analysis relating glass microspheres for hydrogen transport with infrastructure and economics` indicate that pressurized microspheres can be economically competitive with other forms of bulk rail and truck transport such as hydride beds, cryocarbons and pressurized tube transports. For microspheres made from advanced materials and processes, analysis will also be performed to identify the appropriate applications of the microspheres considering property variables, and different hydrogen infrastructure, end use, production and market scenarios. This report presents some of the recent modelling results for large beds of glass microspheres in hydrogen storage applications. It includes plans for experiments to identify the properties relevant to large-bed hydrogen transport and storage applications, of the best, currently producible, glass microspheres. This work began in March, 1994. Project successes will be manifest in the matching of cur-rent glass microspheres with a useful application in hydrogen bulk transport and storage, and in developing microsphere materials and processes that increase the storage density and reduce the storage energy requirement.

  20. Final Project Report for DOE/EERE High-Capacity and Low-Cost Hydrogen-Storage Sorbents for Automotive Applications

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Hong-Cai [Texas A & M Univ., College Station, TX (United States); Liu, Di-Jia [Texas A & M Univ., College Station, TX (United States)

    2017-12-01

    This report provides a review of the objectives, progress, and milestones of the research conducted during this project on the topic of developing innovative metal-organic frameworks (MOFs) and porous organic polymers (POPs) for high-capacity and low-cost hydrogen-storage sorbents in automotive applications.1 The objectives of the proposed research were to develop new materials as next-generation hydrogen storage sorbents that meet or exceed DOE’s 2017 performance targets of gravimetric capacity of 0.055 kg H2/kgsystem and volumetric capacity of 0.040 kg H2/Lsystem at a cost of $400/kg H2 stored. Texas A&M University (TAMU) and Argonne National Laboratory (ANL) collaborated in developing low-cost and high-capacity hydrogen-storage sorbents with appropriate stability, sorption kinetics, and thermal conductivity. The research scope and methods developed to achieve the project’s goals include the following: Advanced ligand design and synthesis to construct MOF sorbents with optimal hydrogen storage capacities, low cost and high stability; Substantially improve the hydrogen uptake capacity and chemical stability of MOF-based sorbents by incorporating high valent metal ions during synthesis or through the post-synthetic metal metathesis oxidation approach; Enhance sorbent storage capacity through material engineering and characterization; Generate a better understanding of the H2-sorbent interaction through advanced characterization and simulation. Over the course of the project 5 different MOFs were developed and studied: PCN-250, PCN-12, PCN-12’, PCN-608 and PCN-609.2-3 Two different samples were submitted to the National Renewable Energy Laboratory (NREL) in order to validate their hydrogen adsorption capacity, PCN-250 and PCN-12. Neither of these samples reached the project’s Go/No-Go requirements but the data obtained did further prove the hypothesis that the presence of open metal

  1. Lithium Ion Battery Chemistries from Renewable Energy Storage to Automotive and Back-up Power Applications

    DEFF Research Database (Denmark)

    Stan, Ana-Irina; Swierczynski, Maciej Jozef; Stroe, Daniel Ioan

    2014-01-01

    Lithium ion (Li-ion) batteries have been extensively used in consumer electronics because of their characteristics, such as high efficiency, long life, and high gravimetric and volumetric energy. In addition, Li-ion batteries are becoming the most attractive candidate as electrochemical storage...... systems for stationary applications, as well as power source for sustainable automotive and back-up power supply applications. This paper gives an overview of the Li-ion battery chemistries that are available at present in the market, and describes the three out of four main applications (except...... the consumers’ applications), grid support, automotive, and back-up power, for which the Li-ion batteries are suitable. Each of these applications has its own specifications and thus, the chemistry of the Li-ion battery should be chosen to fulfil the requirements of the corresponding application. Consequently...

  2. Optical storage networking

    Science.gov (United States)

    Mohr, Ulrich

    2001-11-01

    For efficient business continuance and backup of mission- critical data an inter-site storage network is required. Where traditional telecommunications costs are prohibitive for all but the largest organizations, there is an opportunity for regional carries to deliver an innovative storage service. This session reveals how a combination of optical networking and protocol-aware SAN gateways can provide an extended storage networking platform with the lowest cost of ownership and the highest possible degree of reliability, security and availability. Companies of every size, with mainframe and open-systems environments, can afford to use this integrated service. Three mayor applications are explained; channel extension, Network Attached Storage (NAS), Storage Area Networks (SAN) and how optical networks address the specific requirements. One advantage of DWDM is the ability for protocols such as ESCON, Fibre Channel, ATM and Gigabit Ethernet, to be transported natively and simultaneously across a single fiber pair, and the ability to multiplex many individual fiber pairs over a single pair, thereby reducing fiber cost and recovering fiber pairs already in use. An optical storage network enables a new class of service providers, Storage Service Providers (SSP) aiming to deliver value to the enterprise by managing storage, backup, replication and restoration as an outsourced service.

  3. Hydrogen storage in carbon nanotubes.

    Science.gov (United States)

    Hirscher, M; Becher, M

    2003-01-01

    The article gives a comprehensive overview of hydrogen storage in carbon nanostructures, including experimental results and theoretical calculations. Soon after the discovery of carbon nanotubes in 1991, different research groups succeeded in filling carbon nanotubes with some elements, and, therefore, the question arose of filling carbon nanotubes with hydrogen by possibly using new effects such as nano-capillarity. Subsequently, very promising experiments claiming high hydrogen storage capacities in different carbon nanostructures initiated enormous research activity. Hydrogen storage capacities have been reported that exceed the benchmark for automotive application of 6.5 wt% set by the U.S. Department of Energy. However, the experimental data obtained with different methods for various carbon nanostructures show an extreme scatter. Classical calculations based on physisorption of hydrogen molecules could not explain the high storage capacities measured at ambient temperature, and, assuming chemisorption of hydrogen atoms, hydrogen release requires temperatures too high for technical applications. Up to now, only a few calculations and experiments indicate the possibility of an intermediate binding energy. Recently, serious doubt has arisen in relation to several key experiments, causing considerable controversy. Furthermore, high hydrogen storage capacities measured for carbon nanofibers did not survive cross-checking in different laboratories. Therefore, in light of today's knowledge, it is becoming less likely that at moderate pressures around room temperature carbon nanostructures can store the amount of hydrogen required for automotive applications.

  4. High-performance mass storage system for workstations

    Science.gov (United States)

    Chiang, T.; Tang, Y.; Gupta, L.; Cooperman, S.

    1993-01-01

    Reduced Instruction Set Computer (RISC) workstations and Personnel Computers (PC) are very popular tools for office automation, command and control, scientific analysis, database management, and many other applications. However, when using Input/Output (I/O) intensive applications, the RISC workstations and PC's are often overburdened with the tasks of collecting, staging, storing, and distributing data. Also, by using standard high-performance peripherals and storage devices, the I/O function can still be a common bottleneck process. Therefore, the high-performance mass storage system, developed by Loral AeroSys' Independent Research and Development (IR&D) engineers, can offload a RISC workstation of I/O related functions and provide high-performance I/O functions and external interfaces. The high-performance mass storage system has the capabilities to ingest high-speed real-time data, perform signal or image processing, and stage, archive, and distribute the data. This mass storage system uses a hierarchical storage structure, thus reducing the total data storage cost, while maintaining high-I/O performance. The high-performance mass storage system is a network of low-cost parallel processors and storage devices. The nodes in the network have special I/O functions such as: SCSI controller, Ethernet controller, gateway controller, RS232 controller, IEEE488 controller, and digital/analog converter. The nodes are interconnected through high-speed direct memory access links to form a network. The topology of the network is easily reconfigurable to maximize system throughput for various applications. This high-performance mass storage system takes advantage of a 'busless' architecture for maximum expandability. The mass storage system consists of magnetic disks, a WORM optical disk jukebox, and an 8mm helical scan tape to form a hierarchical storage structure. Commonly used files are kept in the magnetic disk for fast retrieval. The optical disks are used as archive

  5. Thermodynamic, Environmental and Economic Analyses of Solar Ejector Refrigeration System Application for Cold Storage

    Directory of Open Access Journals (Sweden)

    İbrahim ÜÇGÜL

    2009-02-01

    Full Text Available The refrigeration processes have been widely applied for especially in cold storages. In these plants, the systems working with compressed vapour cooling cycles have been used as a classical method. In general, electrical energy is used for compressing in these processes. Although, mainly the electricity itself has no pollution effect on the environment, the fossil fuels that are widely used to produce electricity in the most of the world, affect the nature terribly. In short, these refrigeration plants, because of the source of the electricity pollute the nature indirectly. However, for compression an ejector refrigeration system requires one of the important renewable energy sources with negligible pollution impact on the environment, namely solar energy from a thermal source. Thermodynamical, environmental and economical aspects of the ejector refrigeration system working with solar energy was investigated in this study. As a pilot case, apple cold storage plants widely used in ISPARTA city, which 1/5 th of apple production of TURKEY has been provided from, was chosen. Enviromental and economical advantages of solar ejector refrigeration system application for cold storage dictated by thermodynamic, economic and enviromental analyses in this research.

  6. Catalysis and Downsizing in Mg-Based Hydrogen Storage Materials

    Directory of Open Access Journals (Sweden)

    Jianding Li

    2018-02-01

    Full Text Available Magnesium (Mg-based materials are promising candidates for hydrogen storage due to the low cost, high hydrogen storage capacity and abundant resources of magnesium for the realization of a hydrogen society. However, the sluggish kinetics and strong stability of the metal-hydrogen bonding of Mg-based materials hinder their application, especially for onboard storage. Many researchers are devoted to overcoming these challenges by numerous methods. Here, this review summarizes some advances in the development of Mg-based hydrogen storage materials related to downsizing and catalysis. In particular, the focus is on how downsizing and catalysts affect the hydrogen storage capacity, kinetics and thermodynamics of Mg-based hydrogen storage materials. Finally, the future development and applications of Mg-based hydrogen storage materials is discussed.

  7. Method of neptunium recovery into the product stream of the Purex second codecontamination step for LWR fuel reprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Tsuboya, T; Nemoto, S; Hoshino, T; Segawa, T [Power Reactor and Nuclear Fuel Development Corp., Tokyo (Japan)

    1973-04-01

    The neptunium behavior in the second codecontamination step in Purex process of Power Reactor and Nuclear Fuel Development Corporation was experimentally studied, and the conditions for discharging neptunium in product stream were examined. Improved nitrous acid method was applied to the second codecontamination step. Nitrous acid (NaNO/sub 2/) was supplied to the 1st stage of extraction section at feed rate of 7.5 mM/hr, and hydrazine (hydrazine nitrate) was supplied to some stages near feed point at feed rate of 1.6 mM/hr, by using laboratory scale mixer-settlers having 6 ml of mixing volume and 17 ml of settling volume. Neptunium extraction behavior was analyzed by the code NEPTUN-I simulating neptunium concentration profile and by the code NEPTUN-II for calculating Np (V) and Np (VI) concentration. Batch experiments were performed for explaining the reduction reaction of Np (VI) in organic phase. After shaking the aqueous solution containing Np (VI) in 3 M nitric acid with the various volume ratios of TBP, both phases were separated, and the neptunium concentration was determined. In conclusion, the improved nitrous acid method was effective for the neptunium discharge in product stream when the flow ratio of organic phase to aqueous phase was increased to about three times.

  8. Bismuth chalcogenide compounds Bi 2 × 3 (X=O, S, Se): Applications in electrochemical energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Ni, Jiangfeng; Bi, Xuanxuan; Jiang, Yu; Li, Liang; Lu, Jun

    2017-04-01

    Bismuth chalcogenides Bi2×3 (X=O, S, Se) represent a unique type of materials in diverse polymorphs and configurations. Multiple intrinsic features of Bi2×3 such as narrow bandgap, ion conductivity, and environmental friendliness, have render them attractive materials for a wide array of energy applications. In particular, their rich structural voids and the alloying capability of Bi enable the chalcogenides to be alternative electrodes for energy storage such as hydrogen (H), lithium (Li), sodium (Na) storage and supercapacitors. However, the low conductivity and poor electrochemical cycling are two key challenges for the practical utilization of Bi2×3 electrodes. Great efforts have been devoted to mitigate these challenges and remarkable progresses have been achieved, mainly taking profit of nanotechnology and material compositing engineering. In this short review, we summarize state-of-the-art research advances in the rational design of diverse Bi2×3 electrodes and their electrochemical energy storage performance for H, Li, and Na and supercapacitors. We also highlight the key technical issues at present and provide insights for the future development of bismuth based materials in electrochemical energy storage devices.

  9. Electrochemistry and Storage Panel Report

    Science.gov (United States)

    Stedman, J. K.; Halpert, G.

    1984-01-01

    Design and performance requirements for electrochemical power storage systems are discussed and some of the approaches towards satisfying these constraints are described. Geosynchronous and low Earth orbit applications, radar type load constraints, and high voltage systems requirements are addressed. In addition, flywheel energy storage is discussed.

  10. Energy storage for the electricity grid : benefits and market potential assessment guide : a study for the DOE Energy Storage Systems Program.

    Energy Technology Data Exchange (ETDEWEB)

    Eyer, James M. (Distributed Utility Associates, Inc., Livermore, CA); Corey, Garth P. (KTech Corporation, Albuquerque, NM)

    2010-02-01

    This guide describes a high-level, technology-neutral framework for assessing potential benefits from and economic market potential for energy storage used for electric-utility-related applications. The overarching theme addressed is the concept of combining applications/benefits into attractive value propositions that include use of energy storage, possibly including distributed and/or modular systems. Other topics addressed include: high-level estimates of application-specific lifecycle benefit (10 years) in $/kW and maximum market potential (10 years) in MW. Combined, these criteria indicate the economic potential (in $Millions) for a given energy storage application/benefit. The benefits and value propositions characterized provide an important indication of storage system cost targets for system and subsystem developers, vendors, and prospective users. Maximum market potential estimates provide developers, vendors, and energy policymakers with an indication of the upper bound of the potential demand for storage. The combination of the value of an individual benefit (in $/kW) and the corresponding maximum market potential estimate (in MW) indicates the possible impact that storage could have on the U.S. economy. The intended audience for this document includes persons or organizations needing a framework for making first-cut or high-level estimates of benefits for a specific storage project and/or those seeking a high-level estimate of viable price points and/or maximum market potential for their products. Thus, the intended audience includes: electric utility planners, electricity end users, non-utility electric energy and electric services providers, electric utility regulators and policymakers, intermittent renewables advocates and developers, Smart Grid advocates and developers, storage technology and project developers, and energy storage advocates.

  11. Hanford Central Waste Complex: Radioactive mixed waste storage facility dangerous waste permit application

    International Nuclear Information System (INIS)

    1991-10-01

    The Hanford Site is owned by the US Government and operated by the US Department of Energy Field Office, Richland. The Hanford Site manages and produces dangerous waste and mixed waste (containing both radioactive and dangerous components). The dangerous waste is regulated in accordance with the Resource Conversation and Recovery Act of 1976 and the State of Washington Hazardous Waste Management Act of 1976. The radioactive component of mixed waste is interpreted by the US Department of Energy to be regulated under the Atomic Energy Act of 1954; the nonradioactive dangerous component of mixed waste is interpreted to be regulated under the Resource Conservation and Recovery Act of 1976 and Washington Administrative Code 173--303. Westinghouse Hanford Company is a major contractor to the US Department of Energy Field Office, Richland and serves as co-operator of the Hanford Central Waste Complex. The Hanford Central Waste Complex is an existing and planned series of treatment, storage, and/or disposal units that will centralize the management of solid waste operations at a single location on the Hanford facility. The Hanford Central Waste Complex units include the Radioactive Mixed Waste Storage Facility, the unit addressed by this permit application, and the Waste Receiving and Processing Facility. The Waste Receiving and Processing Facility is covered in a separate permit application submittal

  12. Key-value Storage Systems (and Beyond with Python

    Directory of Open Access Journals (Sweden)

    2010-09-01

    Full Text Available Web application developers often use RDBMS systems such as MySql or PostgreSql but there are many other types of databases out there. Key-value storage, schema and schema-less document storage, and column-oriented DBMS systems abound. These kind of database systems are becoming more popular when developing scalable web applications but many developers are unsure how to integrate them into their projects. This talk will focus on the key-value class of data storage systems, weigh the strengths and drawbacks of each and discuss typical use cases for key value storage.

  13. Nanostructured Thin Film Synthesis by Aerosol Chemical Vapor Deposition for Energy Storage Applications

    Science.gov (United States)

    Chadha, Tandeep S.

    Renewable energy sources offer a viable solution to the growing energy demand while mitigating concerns for greenhouse gas emissions and climate change. This has led to a tremendous momentum towards solar and wind-based energy harvesting technologies driving efficiencies higher and costs lower. However, the intermittent nature of these energy sources necessitates energy storage technologies, which remain the Achilles heel in meeting the renewable energy goals. This dissertation focusses on two approaches for addressing the needs of energy storage: first, targeting direct solar to fuel conversion via photoelectrochemical water-splitting and second, improving the performance of current rechargeable batteries by developing new electrode architectures and synthesis processes. The aerosol chemical vapor deposition (ACVD) process has emerged as a promising single-step approach for nanostructured thin film synthesis directly on substrates. The relationship between the morphology and the operating parameters in the process is complex. In this work, a simulation based approach has been developed to understand the relationship and acquire the ability of predicting the morphology. These controlled nanostructured morphologies of TiO2 , compounded with gold nanoparticles of various shapes, are used for solar water-splitting applications. Tuning of light absorption in the visible-light range along with reduced electron-hole recombination in the composite structures has been demonstrated. The ACVD process is further extended to a novel single-step synthesis of nanostructured TiO2 electrodes directly on the current collector for applications as anodes in lithium-ion batteries, mainly for electric vehicles and hybrid electric vehicles. The effect of morphology of the nanostructures has been investigated via experimental studies and electrochemical transport modelling. Results demonstrate the exceptional performance of the single crystal one-dimensional nanostructures over granular

  14. Saying goodbye to optical storage technology.

    Science.gov (United States)

    McLendon, Kelly; Babbitt, Cliff

    2002-08-01

    The days of using optical disk based mass storage devices for high volume applications like health care document imaging are coming to an end. The price/performance curve for redundant magnetic disks, known as RAID, is now more positive than for optical disks. All types of application systems, across many sectors of the marketplace are using these newer magnetic technologies, including insurance, banking, aerospace, as well as health care. The main components of these new storage technologies are RAID and SAN. SAN refers to storage area network, which is a complex mechanism of switches and connections that allow multiple systems to store huge amounts of data securely and safely.

  15. Spent fuel storage and transport cask decontamination and modification. An overview of management requirements and applications based on practical experience

    International Nuclear Information System (INIS)

    1999-04-01

    A large increase in the number of casks required for transport and/or storage of spent fuel is forecast into the next century. The principal requirement will be for increased number of storage and dual purpose (transport/storage) casks for interim storage of spent fuel prior to reprocessing or permanent disposal in both on-site and off-site storage facilities. Through contact with radioactive materials spent fuel casks will be contaminated on both internal and external surfaces. In broad terms, cask contamination management can be defined by three components: minimisation, prevention and decontamination. This publication is a compilation of international experience with cask contamination problems and decontamination practices. The objective is to present current knowledge and experience as well as developments, trends and potential for new applications in this field. Furthermore, the report may assist in new design or modification of existing casks, cask handling systems and decontamination equipment

  16. User manual for storage simulation construction set

    International Nuclear Information System (INIS)

    Sehgal, Anil; Volz, Richard A.

    1999-01-01

    The Storage Simulation Set (SSCS) is a tool for composing storage system models using Telegrip. It is an application written in C++ and motif. With this system, the models of a storage system can be composed rapidly and accurately. The aspects of the SSCS are described within this report

  17. Addendum to the Safety Analysis Report for the Steel Waste Packaging. Revision 1

    International Nuclear Information System (INIS)

    Crow, S.R.

    1996-01-01

    The Battelle Pacific Northwest National Laboratory Safety Analysis Report (SAR) for the Steel Waste Package requires additional analyses to support the shipment of remote-handled radioactive waste and special-case waste from the 324 building hot cells to PUREX for interim storage. This addendum provides the analyses required to show that this waste can be safely shipped onsite in the configuration shown

  18. Progress and challenges in cleaning up Hanford

    Energy Technology Data Exchange (ETDEWEB)

    Wagoner, J.D. [Dept. of Energy, Richland, WA (United States)

    1997-08-01

    This paper presents captioned viewgraphs which briefly summarize cleanup efforts at the Hanford Site. Underground waste tank and spent nuclear fuel issues are described. Progress is reported for the Plutonium Finishing Plant, PUREX plant, B-Plant/Waste Encapsulation Storage Facility, and Fast Flux Test Facility. A very brief overview of costs and number of sites remediated and/or decommissioned is given.

  19. Application of neem (Azadirachta indica) as biological pesticides in cocoa seed (Theobroma cacao) storage using various local adsorbent media

    Science.gov (United States)

    Mardiyani, S. A.; Sunawan; Pawestri, A. E.

    2018-03-01

    Cocoa seeds are recalcitrant (the water content is more than 40%) that require special handling. The use of adsorbent media to reduce the decrease in the quality of cocoa seeds and extend their shelf life in this storage has not been widely done. Local adsorbent media such as sawdust, sand and ash have the potential to maintain the viability of cocoa seeds. The objective of this research was to determine the interaction of the application of neem (Azadirachta indica) as biological pesticides and the use of various natural adsorbent media in the storage of cocoa seeds (Theobroma cacao). It was an experimental study with a factorial design composed of three factors. The first factor was the medium adsorbent type for the storage of cocoa seed, which consists of three levels (river sand, ash, and sawdust). The second factor was the concentration of neem leaves for pre-storage treatment with three levels (10, 20, and 30%). The third factor was the storage time (10 and 20 days). The results of the study indicated that the combination of the three factors showed a significant interaction in the height of the plant and the diameter of the stem of the seedling at 28 days after sowing. The fresh weight of the seedlings of the seeds that were stored in ash media gave a better result than the seedlings of seeds that had been stored in the river sand and the sawdust as adsorbent media. The application of 20% extract of neem leaves gave the best influence for the seeds that were stored for 20 days.

  20. Compact nuclear fuel storage

    International Nuclear Information System (INIS)

    Kiselev, V.V.; Churakov, Yu.A.; Danchenko, Yu.V.; Bylkin, B.K.; Tsvetkov, S.V.

    1983-01-01

    Different constructions of racks for compact storage of spent fuel assemblies (FA) in ''coolin''g pools (CP) of NPPs with the BWR and PWR type reactors are described. Problems concerning nuclear and radiation safety and provision of necessary thermal conditions arising in such rack design are discussed. It is concluded that the problem of prolonged fuel storage at NPPs became Very actual for many countries because of retapdation of the rates of fuel reprocessing centers building. Application of compact storage racks is a promising solution of the problem of intermediate FA storage at NPPs. Such racks of stainless boron steel and with neutron absorbers in the from of boron carbide panels enable to increase the capacity of the present CP 2-2.6 times, and the period of FA storage in them up to 5-10 years

  1. All-optical signal processing data communication and storage applications

    CERN Document Server

    Eggleton, Benjamin

    2015-01-01

    This book provides a comprehensive review of the state-of-the art of optical signal processing technologies and devices. It presents breakthrough solutions for enabling a pervasive use of optics in data communication and signal storage applications. It presents presents optical signal processing as solution to overcome the capacity crunch in communication networks. The book content ranges from the development of innovative materials and devices, such as graphene and slow light structures, to the use of nonlinear optics for secure quantum information processing and overcoming the classical Shannon limit on channel capacity and microwave signal processing. Although it holds the promise for a substantial speed improvement, today’s communication infrastructure optics remains largely confined to the signal transport layer, as it lags behind electronics as far as signal processing is concerned. This situation will change in the near future as the tremendous growth of data traffic requires energy efficient and ful...

  2. 4th international renewable energy storage conference (IRES 2009)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    Within the 4th International Renewable Energy Storage Conference of The European Association for Renewable Energy (Bonn, Federal Republic of Germany) and The World Council for Renewable Energy (Bonn, Federal Republic of Germany) between 24th and 25 November, 2009, in Berlin (Federal Republic of Germany), the following lectures were held: (1) The World Wind Energy Association (A. Kane); (2) The contribution of wind power to the energy supply of tomorrow (H. Albers); (3) Intelligent energy systems for the integration of renewable energies (A.-C. Agricola); (4) 100% Renewable energies: From fossil baseload plants to renewable plants for basic supply (M. Willenbacher); (5) High-performance Li-ion technology for stationary and mobile applications (A. Gutsch); (6) Energy storage in geological underground - Competition of use at storage formations (L. Dietrich); (7) E-mobility concepts for model region ''Rhein-Ruhr'' in North Rhine Westphalia (G.-U. Funk); (8) Photovoltaic energy storage for a better energy management in residential buildings (S. Pincemin); (9) Self-consuming photovoltaic energy in Germany - Impact on energy flows, business cases, and the distribution grid (M. Braun); (10) Local energy systems -optimized for local consumption of self-produced electricity (B. Wille-Haussmann); (11) Assessing the economics of distributed storage systems at the end consumer level (K.-H. Ahlert); (12) A new transportation system for heat on a wide temperature range (S. Gschwander); (13) Latent heat storage media for cooling applications (C. Doetsch); (14) Numerical and experimental analysis of latent heat storage systems for mobile application (F. Roesler); (15) CO{sub 2}-free heat supply from waste heat (H.-W. Etzkorn); (16) Stationary Li-Ion-technology applications for dispatchable power (C. Kolligs); (17) Redox-flow batteries - Electric storage systems for renewable energy (T. Smolinka); (18) Energy storage by means of flywheels (H. Kielsein); (19

  3. Application of gamma irradiation for storage potato

    International Nuclear Information System (INIS)

    Rezaee, M.; Almasi, M.

    2009-01-01

    Since deficiency of controlled store in Iran and environmental problems of chemical material the use of gamma irradiation to control sprouting and increase the length of storage time of potatoes has been proposed as an alternative to cold storage or the use of chemical sprout suppressants. In this study potatoes of Agria Variety were irradiated at a dose of 0.10 KGY and stored along with the unirradiated controls at 12±3°C for a period of more than 6 month from October to April .After 4 month of storage the sprouting ranged from 5 to 12% in irradiated potatoes and 45 to 74% in unirradiated samples and after 6 month the unirradiated potatoes were discarded because of heavy sprouting and rotting. The rot attack was approximately double in unirradiated samples. It was found that losses through dehydration were 10.3 to 15.1 % in the irradiated potatoes. Also a comparative study of reducing and non-reducing sugars, vitamin-C content, total sugar, starch and protein was carried out between unirradiated and irradiated samples. The results suggested the efficacy of Gamma irradiation for ensuring availability of the storing quality of potato during lean periods from October to April. (author)

  4. Performance of high-resolution position-sensitive detectors developed for storage-ring decay experiments

    International Nuclear Information System (INIS)

    Yamaguchi, T.; Suzaki, F.; Izumikawa, T.; Miyazawa, S.; Morimoto, K.; Suzuki, T.; Tokanai, F.; Furuki, H.; Ichihashi, N.; Ichikawa, C.; Kitagawa, A.; Kuboki, T.; Momota, S.; Nagae, D.; Nagashima, M.; Nakamura, Y.; Nishikiori, R.; Niwa, T.; Ohtsubo, T.; Ozawa, A.

    2013-01-01

    Highlights: • Position-sensitive detectors were developed for storage-ring decay spectroscopy. • Fiber scintillation and silicon strip detectors were tested with heavy ion beams. • A new fiber scintillation detector showed an excellent position resolution. • Position and energy detection by silicon strip detectors enable full identification. -- Abstract: As next generation spectroscopic tools, heavy-ion cooler storage rings will be a unique application of highly charged RI beam experiments. Decay spectroscopy of highly charged rare isotopes provides us important information relevant to the stellar conditions, such as for the s- and r-process nucleosynthesis. In-ring decay products of highly charged RI will be momentum-analyzed and reach a position-sensitive detector set-up located outside of the storage orbit. To realize such in-ring decay experiments, we have developed and tested two types of high-resolution position-sensitive detectors: silicon strips and scintillating fibers. The beam test experiments resulted in excellent position resolutions for both detectors, which will be available for future storage-ring experiments

  5. An innovative approach to enhance methane hydrate formation kinetics with leucine for energy storage application

    International Nuclear Information System (INIS)

    Veluswamy, Hari Prakash; Kumar, Asheesh; Kumar, Rajnish; Linga, Praveen

    2017-01-01

    Highlights: • Innovative combinatorial hybrid approach to reduce nucleation stochasticity and enhance hydrate growth. • Methane hydrate growth curves are similar in UTR and STR configurations in presence of leucine. • Amalgamation of stirred (STR) and unstirred (UTR) configuration is demonstrated. • Reliable method for scale up and commercial production of Solidified Natural Gas (SNG). - Abstract: Natural gas storage in clathrate hydrates or solidified natural gas (SNG) offers the safest, cleanest and the most compact mode of storage aided by the relative ease in natural gas (NG) recovery with minimal cost compared to known conventional methods of NG storage. The stochastic nature of hydrate nucleation and the slow kinetics of hydrate growth are major challenges that needs to be addressed on the SNG production side. A deterministic and fast nucleation coupled with rapid crystallization kinetics would empower this beneficial technology for commercial application. We propose a hybrid combinatorial approach of methane hydrate formation utilizing the beneficial aspect of environmentally benign amino acid (leucine) as a kinetic promoter by combining stirred and unstirred reactor operation. This hybrid approach is simple, can easily be implemented and scaled-up to develop an economical SNG technology for efficient storage of natural gas on a large scale. Added benefits include the minimal energy requirement during hydrate growth resulting in overall cost reduction for SNG technology.

  6. Towards Cryogenic Liquid-Vapor Energy Storage Units for space applications

    Science.gov (United States)

    Afonso, Josiana Prado

    With the development of mechanical coolers and very sensitive cryogenic sensors, it could be interesting to use Energy Storage Units (ESU) and turn off the cryocooler to operate in a free micro vibration environment. An ESU would also avoid cryogenic systems oversized to attenuate temperature fluctuations due to thermal load variations which is useful particularly for space applications. In both cases, the temperature drift must remain limited to keep good detector performances. In this thesis, ESUs based on the high latent heat associated to liquid-vapor phase change to store energy have been studied. To limit temperature drifts while keeping small size cell at low temperature, a potential solution consists in splitting the ESU in two volumes: a low temperature cell coupled to a cryocooler cold finger through a thermal heat switch and an expansion volume at room temperature to reduce the temperature increase occurring during liquid evaporation. To obtain a vanishing temperature drift, a new improvement has been tested using two-phase nitrogen: a controlled valve was inserted between the two volumes in order to control the cold cell pressure. In addition, a porous material was used inside the cell to turn the ESU gravity independent and suitable for space applications. In this case, experiments reveal not fully understood results concerning both energy storage and liquid-wall temperature difference. To capture the thermal influence of the porous media, a dedicated cell with poorly conductive lateral wall was built and operated with two-phase helium. After its characterization outside the saturation conditions (conduction, convection), experiments were performed, with and without porous media, heating at the top or the bottom of the cell with various heat fluxes and for different saturation temperatures. In parallel, a model describing the thermal response for a cell containing liquid and vapor with a porous medium heated at the top ("against gravity") was developed

  7. Miscibility gap alloys with inverse microstructures and high thermal conductivity for high energy density thermal storage applications

    International Nuclear Information System (INIS)

    Sugo, Heber; Kisi, Erich; Cuskelly, Dylan

    2013-01-01

    New high energy-density thermal storage materials are proposed which use miscibility gap binary alloy systems to operate through the latent heat of fusion of one component dispersed in a thermodynamically stable matrix. Using trial systems Al–Sn and Fe–Cu, we demonstrate the development of the required inverse microstructure (low melting point phase embedded in high melting point matrix) and excellent thermal storage potential. Several other candidate systems are discussed. It is argued that such systems offer enhancement over conventional phase change thermal storage by using high thermal conductivity microstructures (50–400 W/m K); minimum volume of storage systems due to high energy density latent heat of fusion materials (0.2–2.2 MJ/L); and technical utility through adaptability to a great variety of end uses. Low (<300 °C), mid (300–400 °C) and high (600–1400 °C) temperature options exist for applications ranging from space heating and process drying to concentrated solar thermal energy conversion and waste heat recovery. -- Highlights: ► Alloys of immiscible metals are proposed as thermal storage systems. ► High latent heat of fusion per unit volume and tunable temperature are advantageous. ► Thermal storage systems with capacities of 0.2–2.2 MJ/L are identified. ► Heat delivery is via a rigid non-reactive high thermal conductivity matrix. ► The required inverse microstructures were developed for Sn–Al and Cu–Fe systems

  8. Dry storage systems using casks for long term storage in an AFR and repository

    International Nuclear Information System (INIS)

    Einfeld, K.; Popp, F.W.

    1986-01-01

    In conclusion it can be stated that two basic routes with respect to spent fuel storage casks are feasible. One is the Multiple Transport Cask, which with certain modifications can be upgraded to meet the criteria for intermediate storage. Its status is characterized by the licensing of several types of Castor Casks for an intermediate storage period of 30 years in the AFR Storage Facility of DWK at Gorleben in the FRG. The other one is the Final Disposal (Repository) Cask, which can be made suitable for long term storage before a final decision with respect to a repository application is taken. The licensing procedure for a Pilot Conditioning Facility with the Pollux Cask System as reference case will be initiated by DWK in the near future. Under the assumption that in addition to the present Multiple Transport/Storage Casks a license for a Final disposal Cask with respect to long term storage is available, the relative merits of different cask storage systems would have to be evaluated

  9. Advanced materials for energy storage.

    Science.gov (United States)

    Liu, Chang; Li, Feng; Ma, Lai-Peng; Cheng, Hui-Ming

    2010-02-23

    Popularization of portable electronics and electric vehicles worldwide stimulates the development of energy storage devices, such as batteries and supercapacitors, toward higher power density and energy density, which significantly depends upon the advancement of new materials used in these devices. Moreover, energy storage materials play a key role in efficient, clean, and versatile use of energy, and are crucial for the exploitation of renewable energy. Therefore, energy storage materials cover a wide range of materials and have been receiving intensive attention from research and development to industrialization. In this Review, firstly a general introduction is given to several typical energy storage systems, including thermal, mechanical, electromagnetic, hydrogen, and electrochemical energy storage. Then the current status of high-performance hydrogen storage materials for on-board applications and electrochemical energy storage materials for lithium-ion batteries and supercapacitors is introduced in detail. The strategies for developing these advanced energy storage materials, including nanostructuring, nano-/microcombination, hybridization, pore-structure control, configuration design, surface modification, and composition optimization, are discussed. Finally, the future trends and prospects in the development of advanced energy storage materials are highlighted.

  10. Primer on lead-acid storage batteries

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    This handbook was developed to help DOE facility contractors prevent accidents caused during operation and maintenance of lead-acid storage batteries. Major types of lead-acid storage batteries are discussed as well as their operation, application, selection, maintenance, and disposal (storage, transportation, as well). Safety hazards and precautions are discussed in the section on battery maintenance. References to industry standards are included for selection, maintenance, and disposal.

  11. Application of superconducting magnet energy storage to improve power system dynamic performance

    International Nuclear Information System (INIS)

    Mitani, Y.; Tsuji, K.; Murakami, Y.

    1988-01-01

    The application of Superconducting Magnet Energy Storage (SMES) to the stabilization of a power system with long distance bulk power transmission lines which has the problem of poorly damped power oscillations, is presented. Control schemes for stabilization using SMES which is capable of controlling active and reactive power simultaneously in four quadrant ranges, is proposed. The effective locations and the necessary capacities of SMES for power system stabilizing control are discussed in detail. Results of numerical analysis and experiments in an artificial power transmission system demonstrate the significant effect of the control by SMES on the improvement of power system oscillatory performance

  12. Case Studies of Energy Storage with Fuel Cells and Batteries for Stationary and Mobile Applications

    Directory of Open Access Journals (Sweden)

    Nadia Belmonte

    2017-03-01

    Full Text Available In this paper, hydrogen coupled with fuel cells and lithium-ion batteries are considered as alternative energy storage methods. Their application on a stationary system (i.e., energy storage for a family house and a mobile system (i.e., an unmanned aerial vehicle will be investigated. The stationary systems, designed for off-grid applications, were sized for photovoltaic energy production in the area of Turin, Italy, to provide daily energy of 10.25 kWh. The mobile systems, to be used for high crane inspection, were sized to have a flying range of 120 min, one being equipped with a Li-ion battery and the other with a proton-exchange membrane fuel cell. The systems were compared from an economical point of view and a life cycle assessment was performed to identify the main contributors to the environmental impact. From a commercial point of view, the fuel cell and the electrolyzer, being niche products, result in being more expensive with respect to the Li-ion batteries. On the other hand, the life cycle assessment (LCA results show the lower burdens of both technologies.

  13. Commercialization of aquifer thermal energy storage technology

    Energy Technology Data Exchange (ETDEWEB)

    Hattrup, M.P.; Weijo, R.O.

    1989-09-01

    Pacific Northwest Laboratory (PNL) conducted this study for the US Department of Energy's (DOE) Office of Energy Storage and Distribution. The purpose of the study was to develop and screen a list of potential entry market applications for aquifer thermal energy storage (ATES). Several initial screening criteria were used to identify promising ATES applications. These include the existence of an energy availability/usage mismatch, the existence of many similar applications or commercial sites, the ability to utilize proven technology, the type of location, market characteristics, the size of and access to capital investment, and the number of decision makers involved. The in-depth analysis identified several additional screening criteria to consider in the selection of an entry market application. This analysis revealed that the best initial applications for ATES are those where reliability is acceptable, and relatively high temperatures are allowable. Although chill storage was the primary focus of this study, applications that are good candidates for heat ATES were also of special interest. 11 refs., 3 tabs.

  14. Value and cost analyses for solar thermal-storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Luft, W.; Copeland, R.J.

    1983-04-01

    Value and cost data for thermal energy storage are presented for solar thermal central receiver systems for which thermal energy storage appears to be attractive. Both solar thermal electric power and industrial process heat applications are evaluated. The value of storage is based on the cost for fossil fuel and solar thermal collector systems in 1990. The costing uses a standard lifetime methodology with the storage capacity as a parameter. Both value and costs are functions of storage capacity. However, the value function depends on the application. Value/cost analyses for first-generation storage concepts for five central receiver systems (molten salt, water/steam, organic fluid, air, and liquid metal) established the reference against which new systems were compared. Some promising second-generation energy storage concepts have been identified, and some more advanced concepts have also been evaluated.

  15. A Review of Energy Storage Technologies

    DEFF Research Database (Denmark)

    Connolly, David

    2010-01-01

    A brief examination into the energy storage techniques currently available for the integration of fluctuating renewable energy was carried out. These included Pumped Hydroelectric Energy Storage (PHES), Underground Pumped Hydroelectric Energy Storage (UPHES), Compressed Air Energy Storage (CAES...... than PHES depending on the availability of suitable sites. FBES could also be utilised in the future for the integration of wind, but it may not have the scale required to exist along with electric vehicles. The remaining technologies will most likely be used for their current applications...

  16. Evolution of clustered storage

    CERN Multimedia

    CERN. Geneva; Van de Vyvre, Pierre

    2007-01-01

    The session actually featured two presentations: * Evolution of clustered storage by Lance Hukill, Quantum Corporation * ALICE DAQ - Usage of a Cluster-File System: Quantum StorNext by Pierre Vande Vyvre, CERN-PH the second one prepared at short notice by Pierre (thanks!) to present how the Quantum technologies are being used in the ALICE experiment. The abstract to Mr Hukill's follows. Clustered Storage is a technology that is driven by business and mission applications. The evolution of Clustered Storage solutions starts first at the alignment between End-users needs and Industry trends: * Push-and-Pull between managing for today versus planning for tomorrow * Breaking down the real business problems to the core applications * Commoditization of clients, servers, and target devices * Interchangeability, Interoperability, Remote Access, Centralized control * Oh, and yes, there is a budget and the "real world" to deal with This presentation will talk through these needs and trends, and then ask the question, ...

  17. 324 Building Compliance Project: Selection and evaluation of alternatives for the removal of solid remote-handled mixed wastes from the 324 Building

    International Nuclear Information System (INIS)

    Ross, W.A.; Bierschbach, M.C.; Dukelow, J.S. Jr.

    1995-06-01

    Six alternatives for the interim storage of remote-handled mixed wastes from the 324 Building on the Hanford Site have been identified and evaluated. The alternatives focus on the interim storage facility and include use of existing facilities in the 200 Area, the construction of new facilities, and the vitrification of the wastes within the 324 Building to remove the majority of the wastes from under RCRA regulations. The six alternatives are summarized in Table S.1, which identifies the primary facilities to be utilized, the anticipated schedule for removal of the wastes, the costs of the transfer from 324 Building to the interim storage facility (including any capital costs), and an initial risk comparison of the alternatives. A recently negotiated Tri-Party Agreement (TPA) change requires the last of the mixed wastes to be removed by May 1999. The ability to use an existing facility reduces the costs since it eliminates the need for new capital construction. The basic regulatory approvals for the storage of mixed wastes are in place for the PUREX facility, but the Form HI permit will need some minor modifications since the 324 Building wastes have some additional characteristic waste codes and the current permit limits storage of wastes to those from the facility itself. Regulatory reviews have indicated that it will be best to use the tunnels to store the wastes. The PUREX alternatives will only provide storage for about 65% of the wastes. This results from the current schedule of the B-Cell Clean Out Project, which projects that dispersible debris will continue to be collected in small quantities until the year 2000. The remaining fraction of the wastes will then be stored in another facility. Central Waste Complex (CWC) is currently proposed for that residual waste storage; however, other options may also be available

  18. Low Pressure Storage of Natural Gas for Vehicular Applications

    International Nuclear Information System (INIS)

    Tim Burchell; Mike Rogers

    2000-01-01

    Natural gas is an attractive fuel for vehicles because it is a relatively clean-burning fuel compared with gasoline. Moreover, methane can be stored in the physically adsorbed state[at a pressure of 3.5 MPa (500 psi)] at energy densities comparable to methane compressed at 24.8 MPa (3600 psi). Here we report the development of natural gas storage monoliths[1]. The monolith manufacture and activation methods are reported along with pore structure characterization data. The storage capacities of these monoliths are measured gravimetrically at a pressure of 3.5 MPa (500 psi) and ambient temperature, and storage capacities of and gt;150 V/V have been demonstrated and are reported

  19. Technology on the storage of laser power

    International Nuclear Information System (INIS)

    Urakawa, Junji

    2001-01-01

    I report the technology on the storage of laser power using Fabry-Perot Optical Cavity. This technology is applicable for the generation of high brightness X-ray with the combination of compact electron linac or small storage ring in which about 100 MeV electron beam with normalized emittance of 10 -5 m is controlled. The distance of two concave mirrors with high reflectivity is controlled within sub-nm is essential to keep the resonance condition for the storage of laser power. I also report the possibility on several kind of applications and the status of this technology. (author)

  20. Redox-active Hybrid Materials for Pseudocapacitive Energy Storage

    Science.gov (United States)

    Boota, Muhammad

    Organic-inorganic hybrid materials show a great promise for the purpose of manufacturing high performance electrode materials for electrochemical energy storage systems and beyond. Molecular level combination of two best suited components in a hybrid material leads to new or sometimes exceptional sets of physical, chemical, mechanical and electrochemical properties that makes them attractive for broad ranges of applications. Recently, there has been growing interest in producing redox-active hybrid nanomaterials for energy storage applications where generally the organic component provides high redox capacitance and the inorganic component offers high conductivity and robust support. While organic-inorganic hybrid materials offer tremendous opportunities for electrochemical energy storage applications, the task of matching the right organic material out of hundreds of natural and nearly unlimited synthetic organic molecules to appropriate nanostructured inorganic support hampers their electrochemical energy storage applications. We aim to present the recent development of redox-active hybrid materials for pseudocapacitive energy storage. We will show the impact of combination of suitable organic materials with distinct carbon nanostructures and/or highly conductive metal carbides (MXenes) on conductivity, charge storage performance, and cyclability. Combined experimental and molecular simulation results will be discussed to shed light on the interfacial organic-inorganic interactions, pseudocapacitive charge storage mechanisms, and likely orientations of organic molecules on conductive supports. Later, the concept of all-pseudocapacitive organic-inorganic asymmetric supercapacitors will be highlighted which open up new avenues for developing inexpensive, sustainable, and high energy density aqueous supercapacitors. Lastly, future challenges and opportunities to further tailor the redox-active hybrids will be highlighted.

  1. The storage location assignment problem: application in an agribusiness company

    Directory of Open Access Journals (Sweden)

    Helton C. Gomes

    2015-09-01

    Full Text Available The goal of this work is propose an efficient storage scheme for a company in the agribusiness sector. The company studied herein is located in the Alto Paranaíba region of Minas Gerais, and exports coffee beans. Efficient storage can provide improvements in the use of space, operational resources, and staff time, as well as facilitating the order picking process. To accomplish this, the problem was mathematically modeled as a Storage Location Assignment Problem (SLAP, aimed at minimizing handling costs and maximizing space utilization and storage efficiency. The mathematical model using the company data was solved using the CPLEX solver, version 12.1. The results obtained were compared with the actual company scenario, and several advantages were observed.

  2. Steganography System with Application to Crypto-Currency Cold Storage and Secure Transfer

    Directory of Open Access Journals (Sweden)

    Michael J. Pelosi

    2018-04-01

    Full Text Available In this paper, we introduce and describe a novel approach to adaptive image steganography which is combined with One-Time Pad encryption and demonstrate the software which implements this methodology. Testing using the state-of-the-art steganalysis software tool StegExpose concludes the image hiding is reliably secure and undetectable using reasonably-sized message payloads (≤25% message bits per image pixel; bpp. Payload image file format outputs from the software include PNG, BMP, JP2, JXR, J2K, TIFF, and WEBP. A variety of file output formats is empirically important as most steganalysis programs will only accept PNG, BMP, and possibly JPG, as the file inputs. In this extended reprint, we introduce additional application and discussion regarding cold storage of crypto-currency account and password information, as well as applications for secure transfer in hostile or insecure network circumstances.

  3. Aflatoxins & Safe Storage

    Directory of Open Access Journals (Sweden)

    Philippe eVillers

    2014-04-01

    Full Text Available The paper examines both field experience and research on the prevention of the exponential growth of aflatoxins during multi-month post harvest storage in hot, humid countries. The approach described is the application of modern safe storage methods using flexible, Ultra Hermetic™ structures that create an unbreatheable atmosphere through insect and microorganism respiration alone, without use of chemicals, fumigants, or pumps. Laboratory and field data are cited and specific examples are given describing the uses of Ultra Hermetic storage to prevent the growth of aflatoxins with their significant public health consequences. Also discussed is the presently limited quantitative information on the relative occurrence of excessive levels of aflatoxin (>20 ppb before versus after multi-month storage of such crops as maize, rice and peanuts when under high humidity, high temperature conditions and, consequently, the need for further research to determine the frequency at which excessive aflatoxin levels are reached in the field versus after months of post-harvest storage. The significant work being done to reduce aflatoxin levels in the field is mentioned, as well as its probable implications on post harvest storage. Also described is why, with some crops such as peanuts, using Ultra Hermetic storage may require injection of carbon dioxide or use of an oxygen absorber as an accelerant. The case of peanuts is discussed and experimental data is described.

  4. Solar Energy Grid Integration Systems -- Energy Storage (SEGIS-ES).

    Energy Technology Data Exchange (ETDEWEB)

    Hanley, Charles J.; Ton, Dan T. (U.S. Department of Energy, Washington, D.C.); Boyes, John D.; Peek, Georgianne Huff

    2008-07-01

    This paper describes the concept for augmenting the SEGIS Program (an industry-led effort to greatly enhance the utility of distributed PV systems) with energy storage in residential and small commercial applications (SEGIS-ES). The goal of SEGIS-ES is to develop electrical energy storage components and systems specifically designed and optimized for grid-tied PV applications. This report describes the scope of the proposed SEGIS-ES Program and why it will be necessary to integrate energy storage with PV systems as PV-generated energy becomes more prevalent on the nation's utility grid. It also discusses the applications for which energy storage is most suited and for which it will provide the greatest economic and operational benefits to customers and utilities. Included is a detailed summary of the various storage technologies available, comparisons of their relative costs and development status, and a summary of key R&D needs for PV-storage systems. The report concludes with highlights of areas where further PV-specific R&D is needed and offers recommendations about how to proceed with their development.

  5. Storage Rings

    International Nuclear Information System (INIS)

    Fischer, W.

    2010-01-01

    Storage rings are circular machines that store particle beams at a constant energy. Beams are stored in rings without acceleration for a number of reasons (Tab. 1). Storage rings are used in high-energy, nuclear, atomic, and molecular physics, as well as for experiments in chemistry, material and life sciences. Parameters for storage rings such as particle species, energy, beam intensity, beam size, and store time vary widely depending on the application. The beam must be injected into a storage ring but may not be extracted (Fig. 1). Accelerator rings such as synchrotrons are used as storage rings before and after acceleration. Particles stored in rings include electrons and positrons; muons; protons and anti-protons; neutrons; light and heavy, positive and negative, atomic ions of various charge states; molecular and cluster ions, and neutral polar molecules. Spin polarized beams of electrons, positrons, and protons were stored. The kinetic energy of the stored particles ranges from 10 -6 eV to 3.5 x 10 12 eV (LHC, 7 x 10 12 eV planned), the number of stored particles from one (ESR) to 1015 (ISR). To store beam in rings requires bending (dipoles) and transverse focusing (quadrupoles). Higher order multipoles are used to correct chromatic aberrations, to suppress instabilities, and to compensate for nonlinear field errors of dipoles and quadrupoles. Magnetic multipole functions can be combined in magnets. Beams are stored bunched with radio frequency systems, and unbunched. The magnetic lattice and radio frequency system are designed to ensure the stability of transverse and longitudinal motion. New technologies allow for better storage rings. With strong focusing the beam pipe dimensions became much smaller than previously possible. For a given circumference superconducting magnets make higher energies possible, and superconducting radio frequency systems allow for efficient replenishment of synchrotron radiation losses of large current electron or positron beams

  6. Research progress about chemical energy storage of solar energy

    Science.gov (United States)

    Wu, Haifeng; Xie, Gengxin; Jie, Zheng; Hui, Xiong; Yang, Duan; Du, Chaojun

    2018-01-01

    In recent years, the application of solar energy has been shown obvious advantages. Solar energy is being discontinuity and inhomogeneity, so energy storage technology becomes the key to the popularization and utilization of solar energy. Chemical storage is the most efficient way to store and transport solar energy. In the first and the second section of this paper, we discuss two aspects about the solar energy collector / reactor, and solar energy storage technology by hydrogen production, respectively. The third section describes the basic application of solar energy storage system, and proposes an association system by combining solar energy storage and power equipment. The fourth section briefly describes several research directions which need to be strengthened.

  7. Engineering study: Fast Flux Test Facility fuel reprocessing

    International Nuclear Information System (INIS)

    Beary, M.M.; Raab, G.J.; Reynolds, W.R. Jr.; Yoder, R.A.

    1974-01-01

    Several alternatives were studied for reprocessing FFTF fuels at Hanford. Alternative I would be to decontaminate and trim the fuel at T Plant and electrolytically dissolve the fuel at Purex. Alternative II would be to decontaminate and shear leach the fuels in a new facility near Purex. Alternative III would be to decontaminate and store fuel elements indefinitely at T Plant for subsequent offsite shipment. Alternative I, 8 to 10 M$ and 13 quarter-years; for Alternative II, 24 to 28 M$ and 20 quarter-years; for Alternative III, 3 to 4 M$ and 8 quarter-years. Unless there is considerable slippage in the FFTF shipping schedule, it would not be possible to build a new facility as described in Alternative II in time without building temporary storage facilities at T Plant, as described in Alternative III

  8. Thermal energy storage for cooling of commercial buildings

    Energy Technology Data Exchange (ETDEWEB)

    Akbari, H. (Lawrence Berkeley Lab., CA (USA)); Mertol, A. (Science Applications International Corp., Los Altos, CA (USA))

    1988-07-01

    The storage of coolness'' has been in use in limited applications for more than a half century. Recently, because of high electricity costs during utilities' peak power periods, thermal storage for cooling has become a prime target for load management strategies. Systems with cool storage shift all or part of the electricity requirement from peak to off-peak hours to take advantage of reduced demand charges and/or off-peak rates. Thermal storage technology applies equally to industrial, commercial, and residential sectors. In the industrial sector, because of the lack of economic incentives and the custom design required for each application, the penetration of this technology has been limited to a few industries. The penetration rate in the residential sector has been also very limited due to the absence of economic incentives, sizing problems, and the lack of compact packaged systems. To date, the most promising applications of these systems, therefore, appear to be for commercial cooling. In this report, the current and potential use of thermal energy storage systems for cooling commercial buildings is investigated. In addition, a general overview of the technology is presented and the applicability and cost-effectiveness of this technology for developed and developing countries are discussed. 28 refs., 12 figs., 1 tab.

  9. Interim storage of radioactive waste packages

    International Nuclear Information System (INIS)

    1998-01-01

    This report covers all the principal aspects of production and interim storage of radioactive waste packages. The latest design solutions of waste storage facilities and the operational experiences of developed countries are described and evaluated in order to assist developing Member States in decision making and design and construction of their own storage facilities. This report is applicable to any category of radioactive waste package prepared for interim storage, including conditioned spent fuel, high level waste and sealed radiation sources. This report addresses the following issues: safety principles and requirements for storage of waste packages; treatment and conditioning methods for the main categories of radioactive waste; examples of existing interim storage facilities for LILW, spent fuel and high level waste; operational experience of Member States in waste storage operations including control of storage conditions, surveillance of waste packages and observation of the behaviour of waste packages during storage; retrieval of waste packages from storage facilities; technical and administrative measures that will ensure optimal performance of waste packages subject to various periods of interim storage

  10. 10 CFR 72.103 - Geological and seismological characteristics for applications for dry cask modes of storage on or...

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Geological and seismological characteristics for... § 72.103 Geological and seismological characteristics for applications for dry cask modes of storage on... foundation and geological investigation, literature review, and regional geological reconnaissance show no...

  11. Synthesis of SWNT/Pt nanocomposites for their effective role in hydrogen storage applications

    Science.gov (United States)

    Sharma, Anshu; Andreas, Rossos; Nehra, S. P.

    2018-05-01

    Single Wall Carbon Nanotubes (SWNTs) decorated with platinum were synthesized for hydrogen storage applications. Platinum was deposited on the nanotubes using hexachloroplatinic acid (H2PtCl6.6H2O) as a precursor. Commercial SWNTs were also used to compare the results. The obtained SWNTs/Pt nanocomposite was characterized by various techniques such as powder X-ray diffractrometry (XRD), Raman Spectroscopy and Scanning Electron Microscopy (SEM). Furthermore, in the case of SWNTs/Pt, Pt nanoparticles are found to be uniformly dispersed and bound to the SWNTs acting like a single atom catalyst.

  12. Energy Conversion and Storage Program

    Energy Technology Data Exchange (ETDEWEB)

    Cairns, E.J.

    1992-03-01

    The Energy Conversion and Storage Program applies chemistry and materials science principles to solve problems in (1) production of new synthetic fuels, (2) development of high-performance rechargeable batteries and fuel cells, (3) development of advanced thermochemical processes for energy conversion, (4) characterization of complex chemical processes, and (5) application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis. Electrochemistry research aims to develop advanced power systems for electric vehicle and stationary energy storage applications. Topics include identification of new electrochemical couples for advanced rechargeable batteries, improvements in battery and fuel-cell materials, and the establishment of engineering principles applicable to electrochemical energy storage and conversion. Chemical Applications research includes topics such as separations, catalysis, fuels, and chemical analyses. Included in this program area are projects to develop improved, energy-efficient methods for processing waste streams from synfuel plants and coal gasifiers. Other research projects seek to identify and characterize the constituents of liquid fuel-system streams and to devise energy-efficient means for their separation. Materials Applications research includes the evaluation of the properties of advanced materials, as well as the development of novel preparation techniques. For example, the use of advanced techniques, such as sputtering and laser ablation, are being used to produce high-temperature superconducting films.

  13. Combined long reach and dexterous manipulation for waste storage tank applications

    International Nuclear Information System (INIS)

    Burks, B.L.; Armstrong, G.A.; Butler, P.L.; Boissiere, P.

    1991-01-01

    One of the highest priority environmental restoration tasks within the Department of Energy (DOE) is the remediation of single-shell waste storage tanks (WSTs), especially those suspected of, or documented as, leakers. Most currently proposed approaches for remediation of large underground WSTs require application of remotely operated long-reach (greater than 10 m), high-lift capacity (greater than 200 kg) manipulator systems. Because of the complexity of in-tank hardware, waste forms, remediation tasks, and variety of end-effector tools, these manipulator systems must also be capable of performing a diverse set of dexterous manipulations. This presentation will describe the integration of a Spar RMS 2500 manipulator system, a Schilling Titan-7F manipulator, and control systems developed at ORNL and SNL to provide a combined long reach and dexterous manipulation system. The purpose of integrating these two manipulator systems was to study and demonstrate their combined performance, evaluate design requirements for a deployed system, and provide a testbed for control and end-effector technologies that might be applicable to remediation of WSTs. 5 refs

  14. Technology and Manufacturing Readiness of Early Market Motive and Non-Motive Hydrogen Storage Technologies for Fuel Cell Applications

    Energy Technology Data Exchange (ETDEWEB)

    Ronnebro, Ewa

    2012-06-16

    PNNL’s objective in this report is to provide DOE with a technology and manufacturing readiness assessment to identify hydrogen storage technologies’ maturity levels for early market motive and non-motive applications and to provide a path forward toward commercialization. PNNL’s Technology Readiness Assessment (TRA) is based on a combination of Technology Readiness Level (TRL) and Manufacturing Readiness Level (MRL) designations that enable evaluation of hydrogen storage technologies in varying levels of development. This approach provides a logical methodology and roadmap to enable the identification of hydrogen storage technologies, their advantages/disadvantages, gaps and R&D needs on an unbiased and transparent scale that is easily communicated to interagency partners. The TRA report documents the process used to conduct the TRA, reports the TRL and MRL for each assessed technology and provides recommendations based on the findings.

  15. Advanced materials for energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chang; Li, Feng; Ma, Lai-Peng; Cheng, Hui-Ming [Shenyang National Laboratory for Materials Science Institute of Metal Research, Chinese Academy of Sciences 72 Wenhua Road, Shenyang 110016 (China)

    2010-02-23

    Popularization of portable electronics and electric vehicles worldwide stimulates the development of energy storage devices, such as batteries and supercapacitors, toward higher power density and energy density, which significantly depends upon the advancement of new materials used in these devices. Moreover, energy storage materials play a key role in efficient, clean, and versatile use of energy, and are crucial for the exploitation of renewable energy. Therefore, energy storage materials cover a wide range of materials and have been receiving intensive attention from research and development to industrialization. In this review, firstly a general introduction is given to several typical energy storage systems, including thermal, mechanical, electromagnetic, hydrogen, and electrochemical energy storage. Then the current status of high-performance hydrogen storage materials for on-board applications and electrochemical energy storage materials for lithium-ion batteries and supercapacitors is introduced in detail. The strategies for developing these advanced energy storage materials, including nanostructuring, nano-/microcombination, hybridization, pore-structure control, configuration design, surface modification, and composition optimization, are discussed. Finally, the future trends and prospects in the development of advanced energy storage materials are highlighted. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  16. Quantifying watershed surface depression storage: determination and application in a hydrologic model

    Science.gov (United States)

    Joseph K. O. Amoah; Devendra M. Amatya; Soronnadi. Nnaji

    2012-01-01

    Hydrologic models often require correct estimates of surface macro-depressional storage to accurately simulate rainfall–runoff processes. Traditionally, depression storage is determined through model calibration or lumped with soil storage components or on an ad hoc basis. This paper investigates a holistic approach for estimating surface depressional storage capacity...

  17. Warehousing in the Global Supply Chain Advanced Models, Tools and Applications for Storage Systems

    CERN Document Server

    2012-01-01

    With increased globalization and offshore sourcing, global supply chain management is becoming an important issue for many businesses as it involves a company's worldwide interests and suppliers rather than simply a local or national orientation. The storage systems significantly affect the level of quality of products, the customer’s service level, and the global logistic cost. The mission of warehousing systems design, control and optimization is to effectively ship products in the right place, at the right time, and in the right quantity (i.e. in any configuration) without any damages or alterations, and minimizing costs. Warehousing in the Global Supply Chain presents and discusses a set of models, tools and real applications, including a few case studies rarely presented with a sufficient detail by other literature, to illustrate the main challenges in warehousing activities. This includes all warehouse operations (from receiving to shipping), problems and issues (e.g. storage allocation, assignment,...

  18. Single bi-temperature thermal storage tank for application in solar thermal plant

    Science.gov (United States)

    Litwin, Robert Zachary; Wait, David; Lancet, Robert T.

    2017-05-23

    Thermocline storage tanks for solar power systems are disclosed. A thermocline region is provided between hot and cold storage regions of a fluid within the storage tank cavity. One example storage tank includes spaced apart baffles fixed relative to the tank and arranged within the thermocline region to substantially physically separate the cavity into hot and cold storage regions. In another example, a flexible baffle separated the hot and cold storage regions and deflects as the thermocline region shifts to accommodate changing hot and cold volumes. In yet another example, a controller is configured to move a baffle within the thermocline region in response to flow rates from hot and cold pumps, which are used to pump the fluid.

  19. Carbon material for hydrogen storage

    Science.gov (United States)

    Bourlinos, Athanasios; Steriotis, Theodore; Stubos, Athanasios; Miller, Michael A

    2016-09-13

    The present invention relates to carbon based materials that are employed for hydrogen storage applications. The material may be described as the pyrolysis product of a molecular precursor such as a cyclic quinone compound. The pyrolysis product may then be combined with selected transition metal atoms which may be in nanoparticulate form, where the metals may be dispersed on the material surface. Such product may then provide for the reversible storage of hydrogen. The metallic nanoparticles may also be combined with a second metal as an alloy to further improve hydrogen storage performance.

  20. Electrospun zeolite-templated carbon composite fibres for hydrogen storage applications

    CSIR Research Space (South Africa)

    Annamalai, Perushini

    2017-01-01

    Full Text Available -defined hierarchical pore structure. The study involved encapsulation of highly porous zeolite-templated carbon (ZTC) into electrospun fibres and testing of the resulting composites for hydrogen storage. The hydrogen storage capacity of the composite fibres was 1...

  1. Applied research on energy storage and conversion for photovoltaic and wind energy systems. Volume II. Photovoltaic systems with energy storage. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    This volume of the General Electric study was directed at an evaluation of those energy storage technologies deemed best suited for use in conjunction with a photovoltaic energy conversion system in utility, residential and intermediate applications. Break-even cost goals are developed for several storage technologies in each application. These break-even costs are then compared with cost projections presented in Volume I of this report to show technologies and time frames of potential economic viability. The form of the presentation allows the reader to use more accurate storage system cost data as they become available. The report summarizes the investigations performed and presents the results, conclusions and recommendations pertaining to use of energy storage with photovoltaic energy conversion systems. Candidate storage concepts studied include (1) above ground and underground pumped hydro, (2) underground compressed air, (3) electric batteries, (4) flywheels, and (5) hydrogen production and storage. (WHK)

  2. Interim Hanford Waste Management Plan

    International Nuclear Information System (INIS)

    1985-09-01

    The September 1985 Interim Hanford Waste Management Plan (HWMP) is the third revision of this document. In the future, the HWMP will be updated on an annual basis or as major changes in disposal planning at Hanford Site require. The most significant changes in the program since the last release of this document in December 1984 include: (1) Based on studies done in support of the Hanford Defense Waste Environmental Impact Statement (HDW-EIS), the size of the protective barriers covering contaminated soil sites, solid waste burial sites, and single-shell tanks has been increased to provide a barrier that extends 30 m beyond the waste zone. (2) As a result of extensive laboratory development and plant testing, removal of transuranic (TRU) elements from PUREX cladding removal waste (CRW) has been initiated in PUREX. (3) The level of capital support in years beyond those for which specific budget projections have been prepared (i.e., fiscal year 1992 and later) has been increased to maintain Hanford Site capability to support potential future missions, such as the extension of N Reactor/PUREX operations. The costs for disposal of Hanford Site defense wastes are identified in four major areas in the HWMP: waste storage and surveillance, technology development, disposal operations, and capital expenditures

  3. Multifunctional composites for energy storage

    Science.gov (United States)

    Shuvo, Mohammad Arif I.; Karim, Hasanul; Rajib, Md; Delfin, Diego; Lin, Yirong

    2014-03-01

    Electrochemical super-capacitors have become one of the most important topics in both academia and industry as novel energy storage devices because of their high power density, long life cycles, and high charge/discharge efficiency. Recently, there has been an increasing interest in the development of multifunctional structural energy storage devices such as structural super-capacitors for applications in aerospace, automobiles and portable electronics. These multifunctional structural super-capacitors provide lighter structures combining energy storage and load bearing functionalities. Due to their superior materials properties, carbon fiber composites have been widely used in structural applications for aerospace and automotive industries. Besides, carbon fiber has good electrical conductivity which will provide lower equivalent series resistance; therefore, it can be an excellent candidate for structural energy storage applications. Hence, this paper is focused on performing a pilot study for using nanowire/carbon fiber hybrids as building materials for structural energy storage materials; aiming at enhancing the charge/discharge rate and energy density. This hybrid material combines the high specific surface area of carbon fiber and pseudo-capacitive effect of metal oxide nanowires which were grown hydrothermally in an aligned fashion on carbon fibers. The aligned nanowire array could provide a higher specific surface area that leads to high electrode-electrolyte contact area and fast ion diffusion rates. Scanning Electron Microscopy (SEM) and XRay Diffraction (XRD) measurements were used for the initial characterization of this nanowire/carbon fiber hybrid material system. Electrochemical testing has been performed using a potentio-galvanostat. The results show that gold sputtered nanowire hybrid carbon fiber provides 65.9% better performance than bare carbon fiber cloth as super-capacitor.

  4. Development of a High-Fidelity Model for an Electrically Driven Energy Storage Flywheel Suitable for Small Scale Residential Applications

    Directory of Open Access Journals (Sweden)

    Mustafa E. Amiryar

    2018-03-01

    Full Text Available Energy storage systems (ESS are key elements that can be used to improve electrical system efficiency by contributing to balance of supply and demand. They provide a means for enhancing the power quality and stability of electrical systems. They can enhance electrical system flexibility by mitigating supply intermittency, which has recently become problematic, due to the increased penetration of renewable generation. Flywheel energy storage systems (FESS are a technology in which there is gathering interest due to a number of advantages offered over other storage solutions. These technical qualities attributed to flywheels include high power density, low environmental impact, long operational life, high round-trip efficiency and high cycle life. Furthermore, when configured in banks, they can store MJ levels of energy without any upper limit. Flywheels configured for grid connected operation are systems comprising of a mechanical part, the flywheel rotor, bearings and casings, and the electric drive part, inclusive of motor-generator (MG and power electronics. This contribution focusses on the modelling and simulation of a high inertia FESS for energy storage applications which has the potential for use in the residential sector in more challenging situations, a subject area in which there are few publications. The type of electrical machine employed is a permanent magnet synchronous motor (PMSM and this, along with the power electronics drive, is simulated in the MATLAB/Simulink environment. A brief description of the flywheel structure and applications are given as a means of providing context for the electrical modelling and simulation reported. The simulated results show that the system run-down losses are 5% per hour, with overall roundtrip efficiency of 88%. The flywheel speed and energy storage pattern comply with the torque variations, whilst the DC-bus voltage remains constant and stable within ±3% of the rated voltage, regardless of

  5. Electromechanical Storage Systems for Application to Isolated Wind Energy Plants

    International Nuclear Information System (INIS)

    Avia Aranda, F.; Cruz Cruz, I.

    1999-01-01

    Substantial technology advances have occurred during the last decade that have had and appreciated impact on performance and feasibility of the Electromechanical Storage Systems. Improvements in magnetic bearings, composite materials, power conversion systems, microelectronic control systems and computer simulation models have increased flywheel reliability, and energy storage capacity, while decreasing overall system size, weight and cost. These improvements have brought flywheels to the forefront in the quest for alternate systems. The result of the study carried out under the scope of the SEDUCTOR, about the state of art of the Electromechanical Storage Systems is presented in this report. (Author) 15 refs

  6. Thermophysical parameters of coconut oil and its potential application as the thermal energy storage system in Indonesia

    Science.gov (United States)

    Putri, Widya A.; Fahmi, Zulfikar; Sutjahja, I. M.; Kurnia, D.; Wonorahardjo, S.

    2016-08-01

    The high consumption of electric energy for room air conditioning (AC) system in Indonesia has driven the research of potential thermal energy storage system as a passive temperature controller. The application of coconut oil (CO) as the potential candidate for this purpose has been motivated since its working temperature just around the human thermal comfort zone in the tropical area as Indonesia. In this research we report the time-dependent temperature data of CO, which is adopting the T-history method. The analysis of the data revealed a set of thermophysical parameters, consist of the mean specific heats of the solid and liquid, as well as the latent heat of fusion for the phase change transition. The performance of CO to decrease the air temperature was measured in the thermal chamber. From the results it is shown that the latent phase of CO related to the solid-liquid phase transition show the highest capability in heat absorption, directly showing the potential application of CO as thermal energy storage system in Indonesia.

  7. Ammonia Storage as Complex Compounds for a Safe and Compact Hydrogen Storage

    National Research Council Canada - National Science Library

    Sarkisian, Paul

    2003-01-01

    .... Design software suitable to the evaluation of the complex compounds for this particular application was developed that would determine the size and weight of the complex compound sorber to be used for ammonia storage...

  8. Energy storage crystalline gel materials for 3D printing application

    Science.gov (United States)

    Mao, Yuchen; Miyazaki, Takuya; Gong, Jin; Zhu, Meifang

    2017-04-01

    Phase change materials (PCMs) are considered one of the most reliable latent heat storage and thermoregulation materials. In this paper, a vinyl monomer is used to provide energy storage capacity and synthesize gel with phase change property. The side chain of copolymer form crystal microcell to storage/release energy through phase change. The crosslinking structure of the copolymer can protect the crystalline micro-area maintaining the phase change stable in service and improving the mechanical strength. By selecting different monomers and adjusting their ratios, we design the chemical structure and the crystallinity of gels, which in further affect their properties, such as strength, flexibility, thermal absorb/release transition temperature, transparency and the water content. Using the light-induced polymerization 3D printing techniques, we synthesize the energy storage gel and shape it on a 3D printer at the same time. By optimizing the 3D printing conditions, including layer thickness, curing time and light source, etc., the 3D printing objects are obtained.

  9. Optimizing Storage and Renewable Energy Systems with REopt

    Energy Technology Data Exchange (ETDEWEB)

    Elgqvist, Emma M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Anderson, Katherine H. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Cutler, Dylan S. [National Renewable Energy Lab. (NREL), Golden, CO (United States); DiOrio, Nicholas A. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Laws, Nicholas D. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Olis, Daniel R. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Walker, H. A. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-12-27

    Under the right conditions, behind the meter (BTM) storage combined with renewable energy (RE) technologies can provide both cost savings and resiliency. Storage economics depend not only on technology costs and avoided utility rates, but also on how the technology is operated. REopt, a model developed at NREL, can be used to determine the optimal size and dispatch strategy for BTM or off-grid applications. This poster gives an overview of three applications of REopt: Optimizing BTM Storage and RE to Extend Probability of Surviving Outage, Optimizing Off-Grid Energy System Operation, and Optimizing Residential BTM Solar 'Plus'.

  10. Polymers for energy storage and conversion

    CERN Document Server

    Mittal, Vikas

    2013-01-01

    One of the first comprehensive books to focus on the role of polymers in the burgeoning energy materials market Polymers are increasingly finding applications in the areas of energy storage and conversion. A number of recent advances in the control of the polymer molecular structure which allows the polymer properties to be more finely tuned have led to these advances and new applications. Polymers for Energy Storage and Conversion assimilates these advances in the form of a comprehensive text that includes the synthesis and properties of a large number of polymer systems for

  11. Application of dielectric surface barrier discharge for food storage

    Directory of Open Access Journals (Sweden)

    Yassine BELLEBNA

    2015-12-01

    Full Text Available Ozone (O3 is a powerful oxidizer and has much higher disinfection potential than chlorine and other disinfectants. Ozone finds its application mainly in water treatment and air purification Dielectric barrier discharge (DBD method has proved to be the best method to produce ozone. Dried air or oxygen is forced to pass through a 1-2 mm gap. The aim of this study was to show that disinfection system using ozone generated by dielectric barrier discharge (DBD is an effective alternative to be used in food industry and ensures a safe quality of air for optimum preservation of fruits and vegetables. The DBDs are specific kind of discharges because one (or sometimes both electrodes is covered by a dielectric material, thereby preventing the discharge to move towards electrical breakdown. A succession of microdischarges occurs rapidly; their "lifetime" is in the range of a few nanoseconds. One of their most important applications is the production of ozone for air treatment, used mainly in the area of food industry, for extending the storage life of foods. After the achievement of a surface DBD reactor of cylindrical shape and its electrical characterization, it was then used as an ozone generator for air disinfection. Obtained results have shown that this reactor used as an ozone generator is effective for disinfection of air by removing viruses, bacteria and pathogens, causing the slowdown of the ripening process of fruits and vegetables.

  12. Developing semi-analytical solution for multiple-zone transient storage model with spatially non-uniform storage

    Science.gov (United States)

    Deng, Baoqing; Si, Yinbing; Wang, Jia

    2017-12-01

    Transient storages may vary along the stream due to stream hydraulic conditions and the characteristics of storage. Analytical solutions of transient storage models in literature didn't cover the spatially non-uniform storage. A novel integral transform strategy is presented that simultaneously performs integral transforms to the concentrations in the stream and in storage zones by using the single set of eigenfunctions derived from the advection-diffusion equation of the stream. The semi-analytical solution of the multiple-zone transient storage model with the spatially non-uniform storage is obtained by applying the generalized integral transform technique to all partial differential equations in the multiple-zone transient storage model. The derived semi-analytical solution is validated against the field data in literature. Good agreement between the computed data and the field data is obtained. Some illustrative examples are formulated to demonstrate the applications of the present solution. It is shown that solute transport can be greatly affected by the variation of mass exchange coefficient and the ratio of cross-sectional areas. When the ratio of cross-sectional areas is big or the mass exchange coefficient is small, more reaches are recommended to calibrate the parameter.

  13. Cloud Data Storage Federation for Scientific Applications

    NARCIS (Netherlands)

    Koulouzis, S.; Vasyunin, D.; Cushing, R.; Belloum, A.; Bubak, M.; an Mey, D.; Alexander, M.; Bientinesi, P.; Cannataro, M.; Clauss, C.; Costan, A.; Kecskemeti, G.; Morin, C.; Ricci, L.; Sahuquillo, J.; Schulz, M.; Scarano, V.; Scott, S.L.; Weidendorfer, J.

    2014-01-01

    Nowadays, data-intensive scientific research needs storage capabilities that enable efficient data sharing. This is of great importance for many scientific domains such as the Virtual Physiological Human. In this paper, we introduce a solution that federates a variety of systems ranging from file

  14. A Method of Signal Scrambling to Secure Data Storage for Healthcare Applications.

    Science.gov (United States)

    Bao, Shu-Di; Chen, Meng; Yang, Guang-Zhong

    2017-11-01

    A body sensor network that consists of wearable and/or implantable biosensors has been an important front-end for collecting personal health records. It is expected that the full integration of outside-hospital personal health information and hospital electronic health records will further promote preventative health services as well as global health. However, the integration and sharing of health information is bound to bring with it security and privacy issues. With extensive development of healthcare applications, security and privacy issues are becoming increasingly important. This paper addresses the potential security risks of healthcare data in Internet-based applications and proposes a method of signal scrambling as an add-on security mechanism in the application layer for a variety of healthcare information, where a piece of tiny data is used to scramble healthcare records. The former is kept locally and the latter, along with security protection, is sent for cloud storage. The tiny data can be derived from a random number generator or even a piece of healthcare data, which makes the method more flexible. The computational complexity and security performance in terms of theoretical and experimental analysis has been investigated to demonstrate the efficiency and effectiveness of the proposed method. The proposed method is applicable to all kinds of data that require extra security protection within complex networks.

  15. Battery Storage Technologies for Electrical Applications: Impact in Stand-Alone Photovoltaic Systems

    Directory of Open Access Journals (Sweden)

    Daniel Akinyele

    2017-11-01

    Full Text Available Batteries are promising storage technologies for stationary applications because of their maturity, and the ease with which they are designed and installed compared to other technologies. However, they pose threats to the environment and human health. Several studies have discussed the various battery technologies and applications, but evaluating the environmental impact of batteries in electrical systems remains a gap that requires concerted research efforts. This study first presents an overview of batteries and compares their technical properties such as the cycle life, power and energy densities, efficiencies and the costs. It proposes an optimal battery technology sizing and selection strategy, and then assesses the environmental impact of batteries in a typical renewable energy application by using a stand-alone photovoltaic (PV system as a case study. The greenhouse gas (GHG impact of the batteries is evaluated based on the life cycle emission rate parameter. Results reveal that the battery has a significant impact in the energy system, with a GHG impact of about 36–68% in a 1.5 kW PV system for different locations. The paper discusses new batteries, strategies to minimize battery impact and provides insights into the selection of batteries with improved cycling capacity, higher lifespan and lower cost that can achieve lower environmental impacts for future applications.

  16. Damsel: A Data Model Storage Library for Exascale Science

    Energy Technology Data Exchange (ETDEWEB)

    Choudhary, Alok [Northwestern Univ., Evanston, IL (United States); Liao, Wei-keng [Northwestern Univ., Evanston, IL (United States)

    2014-07-11

    Computational science applications have been described as having one of seven motifs (the “seven dwarfs”), each having a particular pattern of computation and communication. From a storage and I/O perspective, these applications can also be grouped into a number of data model motifs describing the way data is organized and accessed during simulation, analysis, and visualization. Major storage data models developed in the 1990s, such as Network Common Data Format (netCDF) and Hierarchical Data Format (HDF) projects, created support for more complex data models. Development of both netCDF and HDF5 was influenced by multi-dimensional dataset storage requirements, but their access models and formats were designed with sequential storage in mind (e.g., a POSIX I/O model). Although these and other high-level I/O libraries have had a beneficial impact on large parallel applications, they do not always attain a high percentage of peak I/O performance due to fundamental design limitations, and they do not address the full range of current and future computational science data models. The goal of this project is to enable exascale computational science applications to interact conveniently and efficiently with storage through abstractions that match their data models. The project consists of three major activities: (1) identifying major data model motifs in computational science applications and developing representative benchmarks; (2) developing a data model storage library, called Damsel, that supports these motifs, provides efficient storage data layouts, incorporates optimizations to enable exascale operation, and is tolerant to failures; and (3) productizing Damsel and working with computational scientists to encourage adoption of this library by the scientific community. The product of this project, Damsel library, is openly available for download from http://cucis.ece.northwestern.edu/projects/DAMSEL. Several case studies and application programming interface

  17. Energy storage in ceramic dielectrics

    International Nuclear Information System (INIS)

    Love, G.R.

    1990-01-01

    Historically, multilayer ceramic capacitors (MLC's) have not been considered for energy storage applications for two primary reasons. First, physically large ceramic capacitors were very expensive and, second, total energy density obtainable was not nearly so high as in electrolytic capacitor types. More recently, the fabrication technology for MLC's has improved significantly, permitting both significantly higher energy density and significantly lower costs. Simultaneously, in many applications, total energy storage has become smaller, and the secondary requirements of very low effective series resistance and effective series inductance (which, together, determine how efficiently the energy may be stored and recovered) have become more important. It is therefore desirable to reexamine energy storage in ceramics for contemporary commercial and near-commercial dielectrics. Stored energy is proportional to voltage squared only in the case of paraelectric insulators, because only they have capacitance that is independent of bias voltage. High dielectric constant materials, however, are ferroics (that is ferroelectric and/or antiferroelectric) and display significant variation of effective dielectric constant with bias voltage

  18. Design and optimization of superconducting magnet system for energy storage application

    International Nuclear Information System (INIS)

    Bhunia, Uttam

    2015-01-01

    In view of developing superconducting magnetic energy storage system (SMES) technology that will mitigate voltage sag/dip in the utility line, VEC centre has taken up a leading role in the country. In the first phase a solenoid-type 0.6 MJ SMES system using cryo-stable NbTi superconductor has been designed, developed and tested successfully with resistive load to mitigate power line voltage dips. The cryogenic test results of 0.6 MJ SMES coil will be highlighted. Further, effort is underway to develop a 4.5 MJ/1 MW SMES system with toroidal coil configuration. The lecture will also cover the superconducting coil development for SMES application with special emphasis on design aspects and the optimization issue of the toroidal system using NbTi based Rutherford-type cable. (author)

  19. Control of a lithium-ion battery storage system for microgrid applications

    Science.gov (United States)

    Pegueroles-Queralt, Jordi; Bianchi, Fernando D.; Gomis-Bellmunt, Oriol

    2014-12-01

    The operation of future microgrids will require the use of energy storage systems employing power electronics converters with advanced power management capacities. This paper presents the control scheme for a medium power lithium-ion battery bidirectional DC/AC power converter intended for microgrid applications. The switching devices of a bidirectional DC converter are commanded by a single sliding mode control law, dynamically shaped by a linear voltage regulator in accordance with the battery management system. The sliding mode controller facilitates the implementation and design of the control law and simplifies the stability analysis over the entire operating range. Control parameters of the linear regulator are designed to minimize the impact of commutation noise in the DC-link voltage regulation. The effectiveness of the proposed control strategy is illustrated by experimental results.

  20. High Density Digital Data Storage System

    Science.gov (United States)

    Wright, Kenneth D., II; Gray, David L.; Rowland, Wayne D.

    1991-01-01

    The High Density Digital Data Storage System was designed to provide a cost effective means for storing real-time data from the field-deployable digital acoustic measurement system. However, the high density data storage system is a standalone system that could provide a storage solution for many other real time data acquisition applications. The storage system has inputs for up to 20 channels of 16-bit digital data. The high density tape recorders presently being used in the storage system are capable of storing over 5 gigabytes of data at overall transfer rates of 500 kilobytes per second. However, through the use of data compression techniques the system storage capacity and transfer rate can be doubled. Two tape recorders have been incorporated into the storage system to produce a backup tape of data in real-time. An analog output is provided for each data channel as a means of monitoring the data as it is being recorded.

  1. Application of battery-based storage systems in household-demand smoothening in electricity-distribution grids

    International Nuclear Information System (INIS)

    Purvins, Arturs; Papaioannou, Ioulia T.; Debarberis, Luigi

    2013-01-01

    Highlights: ► Battery system application in demand smoothening in distribution grids is analysed. ► Five European countries are studied with and without high photovoltaic deployment. ► A sensitivity analysis for different battery system parameters is performed. ► A simple battery system management is sufficient for low demand smoothening. ► More elaborate management is required for high demand smoothening. - Abstract: This article analyses in technical terms the application of battery-based storage systems for household-demand smoothening in electricity-distribution grids. The analysis includes case studies of Denmark, Portugal, Greece, France and Italy. A high penetration of photovoltaic systems in distribution grids is considered as an additional scenario. A sensitivity analysis is performed in order to examine the smoothening effect of daily demand profiles for different configurations of the battery system. In general, battery-storage systems with low rated power and low battery capacity can smooth the demand sufficiently with the aid of a simple management process. For example, with 1 kW of peak demand, a 30–45% decrease in the variability of the daily demand profile can be achieved with a battery system of 0.1 kW rated power and up to 0.6 kW h battery capacity. However, further smoothening requires higher battery-system capacity and power. In this case, more elaborate management is also needed to use the battery system efficiently.

  2. Study of the storage of hydrogen in carbon nanostructures

    International Nuclear Information System (INIS)

    Poirier, E.; Chahine, R.; Cossement, D.; Tessier, A.; Belanger, M.; Bose, T.K.; Dodelet, J-P.; Dellero, T.

    2000-01-01

    The storage of hydrogen is one of the points of development in industrial applications of fuel cells (CAP) of type PEMFC (Proton Exchange Membrane Fuel Cell). An effective system of storage would be a major step in the large scale utilization of this energy source. Process improvements concerning the storage density of energy, the cost, and facilities and the reliability of the storage must be sought in particular for the mobile applications. Among the different approaches possible, the absorption on carbon nanotubes, the production by hydrides in the organic solutions or storage hyperbar in the gas state seems the most promising way.The storage of hydrogen gas at ambient temperature today appears as the technical solution simplest, more advanced and more economic. However the energy density of hydrogen being weaker than that of the traditional fuels, of the quantities more important must be stored at equivalent rate. Hyperbar storage (higher pressure has 350 bar) of hydrogen makes it possible to reduce the volume of the tanks and strengthens the argument for their weights and cost

  3. Engineered Nanomaterials for Energy Harvesting and Storage Applications

    Science.gov (United States)

    Gullapalli, Hemtej

    Energy harvesting and storage are independent mechanisms, each having their own significance in the energy cycle. Energy is generally harvested from temperature variations, mechanical vibrations and other phenomena which are inherently sporadic in nature, harvested energy stands a better chance of efficient utilization if it can be stored and used later, depending on the demand. In essence a comprehensive device that can harness power from surrounding environment and provide a steady and reliable source of energy would be ideal. Towards realizing such a system, for the harvesting component, a piezoelectric nano-composite material consisting of ZnO nanostructures embedded into the matrix of 'Paper' has been developed. Providing a flexible backbone to a brittle material makes it a robust architecture. Energy harvesting by scavenging both mechanical and thermal fluctuations using this flexible nano-composite is discussed in this thesis. On the energy storage front, Graphene based materials developed with a focus towards realizing ultra-thin lithium ion batteries and supercapacitors are introduced. Efforts for enhancing the energy storage performance of such graphitic carbon are detailed. Increasing the rate capability by direct CVD synthesis of graphene on current collectors, enhancing its electrochemical capacity through doping and engineering 3D metallic structures to increase the areal energy density have been studied.

  4. Time-resolved laser-induced fluorescence in the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Moulin, C.; Decambox, P.; Mauchien, P.; Petit, A.

    1995-01-01

    Time-Resolved Laser-Induced Fluorescence (TRLIF) is a very sensitive and selective method that has been used for actinides and lanthanides analysis in the nuclear fuel cycle. This technique has been used in different fields such as in geology, in the Purex process, in the environment, in the medical and in waste storage assessment. Spectroscopic data, limits of detection and results obtained in previously quoted fields are presented. (author)

  5. Ferroelectric polymer dielectrics: Emerging materials for future electrostatic energy storage applications

    Science.gov (United States)

    Panda, Maheswar

    2018-05-01

    In this manuscript, the dielectric behavior of a variety of ferroelectric polymer dielectrics (FPD), which may bethe materials for future electrostatic energy storage application shave been discussed. The variety of polymer dielectrics, comprising of ferroelectric polymer[polyvinylidene fluoride (PVDF)]/non-polarpolymer [low density polyethylene (LDPE)] and different sizes of metal particles (Ni, quasicrystal of Al-Cu-Fe) as filler, were prepared through different process conditions (cold press/hot press) and are investigated experimentally. Very high values of effective dielectric constants (ɛeff) with low loss tangent (Tan δ) were observed forall the prepared FPD at their respective percolation thresholds (fc). The enhancement of ɛeff and Tan δ at the insulator to metal transition (IMT) is explained through the boundary layer capacitor effect and the percolation theory respectively. The non-universal fc/critical exponents across the IMT have been explained through percolation theory andis attributed to the fillerparticle size& shape, interaction between the components, method of their preparation, adhesiveness, connectivity and homogeneity, etc. of the samples. Recent results on developed FPD with high ɛeff and low Tan δ prepared through cold press have proven themselves to be the better candidates for low frequency and static dielectric applications.

  6. Assessment of shielding analysis methods, codes, and data for spent fuel transport/storage applications

    International Nuclear Information System (INIS)

    Parks, C.V.; Broadhead, B.L.; Hermann, O.W.; Tang, J.S.; Cramer, S.N.; Gauthey, J.C.; Kirk, B.L.; Roussin, R.W.

    1988-07-01

    This report provides a preliminary assessment of the computational tools and existing methods used to obtain radiation dose rates from shielded spent nuclear fuel and high-level radioactive waste (HLW). Particular emphasis is placed on analysis tools and techniques applicable to facilities/equipment designed for the transport or storage of spent nuclear fuel or HLW. Applications to cask transport, storage, and facility handling are considered. The report reviews the analytic techniques for generating appropriate radiation sources, evaluating the radiation transport through the shield, and calculating the dose at a desired point or surface exterior to the shield. Discrete ordinates, Monte Carlo, and point kernel methods for evaluating radiation transport are reviewed, along with existing codes and data that utilize these methods. A literature survey was employed to select a cadre of codes and data libraries to be reviewed. The selection process was based on specific criteria presented in the report. Separate summaries were written for several codes (or family of codes) that provided information on the method of solution, limitations and advantages, availability, data access, ease of use, and known accuracy. For each data library, the summary covers the source of the data, applicability of these data, and known verification efforts. Finally, the report discusses the overall status of spent fuel shielding analysis techniques and attempts to illustrate areas where inaccuracy and/or uncertainty exist. The report notes the advantages and limitations of several analysis procedures and illustrates the importance of using adequate cross-section data sets. Additional work is recommended to enable final selection/validation of analysis tools that will best meet the US Department of Energy's requirements for use in developing a viable HLW management system. 188 refs., 16 figs., 27 tabs

  7. Energy storage. A challenge for energy transition

    International Nuclear Information System (INIS)

    Bart, Jean-Baptiste; Nekrasov, Andre; Pastor, Emmanuel; Benefice, Emmanuel; Brincourt, Thierry; Brisse, Annabelle; Cagnac, Albannie; Delille, Gauthier; Hinchliffe, Timothee; Lancel, Gilles; Jeandel, Elodie; Lefebvre, Thierry; Loevenbruck, Philippe; Penneau, Jean-Francois; Soler, Robert; Stevens, Philippe; Radvanyi, Etienne; Torcheux, Laurent

    2017-06-01

    Written by several EDF R and D engineers, this book aims at presenting an overview of knowledge and know-how of EDF R and D in the field of energy storage, and at presenting the different technologies and their application to electric power systems. After a description of the context related to a necessary energy transition, the authors present the numerous storage technologies. They distinguish direct storage of power (pumped storage water stations, compressed air energy storage, flywheels, the various electrochemical batteries, metal-air batteries, redox flow batteries, superconductors), thermal storage (power to heat, heat to power) and hydrogen storage (storage under different forms), and propose an overview of the situation of standardisation of storage technologies. In the next part, they give an overview of the main services provided by storage to the electric power system: production optimisation, frequency adjustment, grid constraint resolution, local smoothing of PV and wind production, supply continuity. The last part discusses perspectives regarding the role of tomorrow's storage in the field of electrical mobility, for emerging markets, and with respect to different scenarios

  8. A Comprehensive Review of Thermal Energy Storage

    Directory of Open Access Journals (Sweden)

    Ioan Sarbu

    2018-01-01

    Full Text Available Thermal energy storage (TES is a technology that stocks thermal energy by heating or cooling a storage medium so that the stored energy can be used at a later time for heating and cooling applications and power generation. TES systems are used particularly in buildings and in industrial processes. This paper is focused on TES technologies that provide a way of valorizing solar heat and reducing the energy demand of buildings. The principles of several energy storage methods and calculation of storage capacities are described. Sensible heat storage technologies, including water tank, underground, and packed-bed storage methods, are briefly reviewed. Additionally, latent-heat storage systems associated with phase-change materials for use in solar heating/cooling of buildings, solar water heating, heat-pump systems, and concentrating solar power plants as well as thermo-chemical storage are discussed. Finally, cool thermal energy storage is also briefly reviewed and outstanding information on the performance and costs of TES systems are included.

  9. Hydrogen storage and delivery system development: Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Handrock, J.L. [Sandia National Labs., Livermore, CA (United States)

    1996-10-01

    Hydrogen storage and delivery is an important element in effective hydrogen utilization for energy applications and is an important part of the FY1994-1998 Hydrogen Program Implementation Plan. This project is part of the Field Work Proposal entitled Hydrogen Utilization in Internal Combustion Engines (ICE). The goal of the Hydrogen Storage and Delivery System Development Project is to expand the state-of-the-art of hydrogen storage and delivery system design and development. At the foundation of this activity is the development of both analytical and experimental evaluation platforms. These tools provide the basis for an integrated approach for coupling hydrogen storage and delivery technology to the operating characteristics of potential hydrogen energy use applications. Results of the analytical model development portion of this project will be discussed. Analytical models have been developed for internal combustion engine (ICE) hybrid and fuel cell driven vehicles. The dependence of hydride storage system weight and energy use efficiency on engine brake efficiency and exhaust temperature for ICE hybrid vehicle applications is examined. Results show that while storage system weight decreases with increasing engine brake efficiency energy use efficiency remains relatively unchanged. The development, capability, and use of a recently developed fuel cell vehicle storage system model will also be discussed. As an example of model use, power distribution and control for a simulated driving cycle is presented. Model calibration results of fuel cell fluid inlet and exit temperatures at various fuel cell idle speeds, assumed fuel cell heat capacities, and ambient temperatures are presented. The model predicts general increases in temperature with fuel cell power and differences between inlet and exit temperatures, but under predicts absolute temperature values, especially at higher power levels.

  10. Battery energy storage systems life cycle costs case studies

    Energy Technology Data Exchange (ETDEWEB)

    Swaminathan, S.; Miller, N.F.; Sen, R.K. [SENTECH, Inc., Bethesda, MD (United States)

    1998-08-01

    This report presents a comparison of life cycle costs between battery energy storage systems and alternative mature technologies that could serve the same utility-scale applications. Two of the battery energy storage systems presented in this report are located on the supply side, providing spinning reserve and system stability benefits. These systems are compared with the alternative technologies of oil-fired combustion turbines and diesel generators. The other two battery energy storage systems are located on the demand side for use in power quality applications. These are compared with available uninterruptible power supply technologies.

  11. Small magnetic energy storage systems using high temperature superconductors

    International Nuclear Information System (INIS)

    Kumar, B.

    1991-01-01

    This paper reports on magnetic energy storage for power systems that has been considered for commercial utility power, air and ground mobile power sources, and spacecraft applications. Even at the current technology limits of energy storage (100 KJ/Kg*), superconducting magnetic energy storage inductors do not offer a strong advantage over state-of-the-art batteries. The commercial utility application does not have a weight and volume limitation, and is under intense study in several countries for diurnal cycle energy storage and high power delivery. The advent of high temperature superconductors has reduced one of the penalties of superconducting magnetic energy storage in that refrigeration and cryocontainers become greatly simplified. Still, structural and current density issues that limit the energy density and size of superconducting inductors do not change. Cold weather starting of aircraft engines is an application where these limitations are not as significant, and where current systems lack performance. The very cold environments make it difficult to achieve high power densities in state-of-the-art batteries and hydraulically activated starters. The same cold environments make it possible to cool superconducting systems for weeks using a single charge of liquid nitrogen. At the same, the ground carts can handle the size and weight of superconducting magnetic storage (SMES) devices

  12. Mixed Solutions of Electrical Energy Storage

    Directory of Open Access Journals (Sweden)

    Chioncel Cristian Paul

    2012-01-01

    Full Text Available The paper presents electrical energy storage solutions using electricbatteries and supercapacitors powered from photovoltaic solarmodules, with possibilities of application in electric and hybrid vehicles.The future development of electric cars depends largely on electricalenergy storage solutions that should provide a higher range of roadand operating parameters comparable to those equipped with internalcombustion engines, that eliminate pollution.

  13. Incorporating solid state drives into distributed storage systems

    OpenAIRE

    Wacha, Rosie

    2012-01-01

    Big data stores are becoming increasingly important in a variety of domains including scientific computing, internet applications, and business applications. For price and performance reasons, such storage is comprised of magnetic hard drives. To achieve the necessary degree of performance and reliability, the drives are configured into storage subsystems based on RAID (Redundant Array of Independent Disks). Because of their mechanical nature, hard drives are relatively power-hungry and slow ...

  14. Properties of thermoplastic polymers used for hydrogen storage under pressure

    International Nuclear Information System (INIS)

    Jousse, F.; Mazabraud, P.; Icard, B.; Mosdale, R.; Serre-Combe, P.

    2000-01-01

    The storage of hydrogen is one of the points of development of industrial applications of fuel cells of type PEMFC ( Proton Exchange Membrane Fuel Cell). Developing an effective system of storage remains major. Ameliorations concerning the storage density of energy, the cost and facilities and the storage must be considered especially for the mobile applications. Among different approaches possible, the absorption on carbon nanotubes, the production by hydrides in the organic solutions or storage hyperbar in the gas state seem the most promising way. The storage of hydrogen gas at ambient temperature today appears as the simplest technical solution, the most advanced and the most economic solution. However, the energy density of hydrogen being weaker than that of the traditional fuels, of the quantities more important must be stored at equivalent rate. Hyperbar storage (higher pressure has 350 bar) of hydrogen makes it possible to reduce the volume of the tanks and strengthens the argument for their weights and cost

  15. Southern company energy storage study :

    Energy Technology Data Exchange (ETDEWEB)

    Ellison, James; Bhatnagar, Dhruv; Black, Clifton; Jenkins, Kip

    2013-03-01

    This study evaluates the business case for additional bulk electric energy storage in the Southern Company service territory for the year 2020. The model was used to examine how system operations are likely to change as additional storage is added. The storage resources were allowed to provide energy time shift, regulation reserve, and spinning reserve services. Several storage facilities, including pumped hydroelectric systems, flywheels, and bulk-scale batteries, were considered. These scenarios were tested against a range of sensitivities: three different natural gas price assumptions, a 15% decrease in coal-fired generation capacity, and a high renewable penetration (10% of total generation from wind energy). Only in the elevated natural gas price sensitivities did some of the additional bulk-scale storage projects appear justifiable on the basis of projected production cost savings. Enabling existing peak shaving hydroelectric plants to provide regulation and spinning reserve, however, is likely to provide savings that justify the project cost even at anticipated natural gas price levels. Transmission and distribution applications of storage were not examined in this study. Allowing new storage facilities to serve both bulk grid and transmission/distribution-level needs may provide for increased benefit streams, and thus make a stronger business case for additional storage.

  16. Thermodynamic analysis of a compressed carbon dioxide energy storage system using two saline aquifers at different depths as storage reservoirs

    International Nuclear Information System (INIS)

    Liu, Hui; He, Qing; Borgia, Andrea; Pan, Lehua; Oldenburg, Curtis M.

    2016-01-01

    Highlights: • A compressed CO_2 energy storage system using two storage reservoirs is presented. • Compressed CO_2 energy storage density is higher than that of CAES. • The effects of storage reservoir pressure on the system performance are studied. - Abstract: Compressed air energy storage (CAES) is one of the leading large-scale energy storage technologies. However, low thermal efficiency and low energy storage density restrict its application. To improve the energy storage density, we propose a two-reservoir compressed CO_2 energy storage system. We present here thermodynamic and parametric analyses of the performance of an idealized two-reservoir CO_2 energy storage system under supercritical and transcritical conditions using a steady-state mathematical model. Results show that the transcritical compressed CO_2 energy storage system has higher round-trip efficiency and exergy efficiency, and larger energy storage density than the supercritical compressed CO_2 energy storage. However, the configuration of supercritical compressed CO_2 energy storage is simpler, and the energy storage densities of the two systems are both higher than that of CAES, which is advantageous in terms of storage volume for a given power rating.

  17. State waste discharge permit application: 200 Area Treated Effluent Disposal Facility (Project W-049H)

    Energy Technology Data Exchange (ETDEWEB)

    1994-08-01

    As part of the original Hanford Federal Facility Agreement and Concent Order negotiations, US DOE, US EPA and the Washington State Department of Ecology agreed that liquid effluent discharges to the ground to the Hanford Site are subject to permitting in the State Waste Discharge Permit Program (SWDP). This document constitutes the SWDP Application for the 200 Area TEDF stream which includes the following streams discharged into the area: Plutonium Finishing Plant waste water; 222-S laboratory Complex waste water; T Plant waste water; 284-W Power Plant waste water; PUREX chemical Sewer; B Plant chemical sewer, process condensate, steam condensate; 242-A-81 Water Services waste water.

  18. State waste discharge permit application: 200 Area Treated Effluent Disposal Facility (Project W-049H)

    International Nuclear Information System (INIS)

    1994-08-01

    As part of the original Hanford Federal Facility Agreement and Concent Order negotiations, US DOE, US EPA and the Washington State Department of Ecology agreed that liquid effluent discharges to the ground to the Hanford Site are subject to permitting in the State Waste Discharge Permit Program (SWDP). This document constitutes the SWDP Application for the 200 Area TEDF stream which includes the following streams discharged into the area: Plutonium Finishing Plant waste water; 222-S laboratory Complex waste water; T Plant waste water; 284-W Power Plant waste water; PUREX chemical Sewer; B Plant chemical sewer, process condensate, steam condensate; 242-A-81 Water Services waste water

  19. Assessment of adsorbate density models for numerical simulations of zeolite-based heat storage applications

    International Nuclear Information System (INIS)

    Lehmann, Christoph; Beckert, Steffen; Gläser, Roger; Kolditz, Olaf; Nagel, Thomas

    2017-01-01

    Highlights: • Characteristic curves fit for binderless Zeolite 13XBFK. • Detailed comparison of adsorbate density models for Dubinin’s adsorption theory. • Predicted heat storage densities robust against choice of density model. • Use of simple linear density models sufficient. - Abstract: The study of water sorption in microporous materials is of increasing interest, particularly in the context of heat storage applications. The potential-theory of micropore volume filling pioneered by Polanyi and Dubinin is a useful tool for the description of adsorption equilibria. Based on one single characteristic curve, the system can be extensively characterised in terms of isotherms, isobars, isosteres, enthalpies etc. However, the mathematical description of the adsorbate density’s temperature dependence has a significant impact especially on the estimation of the energetically relevant adsorption enthalpies. Here, we evaluate and compare different models existing in the literature and elucidate those leading to realistic predictions of adsorption enthalpies. This is an important prerequisite for accurate simulations of heat and mass transport ranging from the laboratory scale to the reactor level of the heat store.

  20. 76 FR 47577 - Enstor Grama Ridge Storage and Transportation, L.L.C.; Enstor Katy Storage and Transportation, L...

    Science.gov (United States)

    2011-08-05

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. PR10-97-003; Docket No. PR10-101-003; Not Consolidated] Enstor Grama Ridge Storage and Transportation, L.L.C.; Enstor Katy Storage and Transportation, L.P.; Notice of Filing Take notice that on July 29, 2011, the applicants listed...

  1. Lunar-derived titanium alloys for hydrogen storage

    Science.gov (United States)

    Love, S.; Hertzberg, A.; Woodcock, G.

    1992-01-01

    Hydrogen gas, which plays an important role in many projected lunar power systems and industrial processes, can be stored in metallic titanium and in certain titanium alloys as an interstitial hydride compound. Storing and retrieving hydrogen with titanium-iron alloy requires substantially less energy investment than storage by liquefaction. Metal hydride storage systems can be designed to operate at a wide range of temperatures and pressures. A few such systems have been developed for terrestrial applications. A drawback of metal hydride storage for lunar applications is the system's large mass per mole of hydrogen stored, which rules out transporting it from earth. The transportation problem can be solved by using native lunar materials, which are rich in titanium and iron.

  2. Effect of substrate storage conditions on the stability of “Smart” films used for mammalian cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Bluestein, Blake M.; Reed, Jamie A.; Canavan, Heather E., E-mail: Canavan@unm.edu

    2017-01-15

    Highlights: • pNIPAM can be deposited onto a surface using plasma polymerization or spin coating. • Storage conditions can affect both surfaces although thermoresponse is maintained. • spNIPAM surfaces delaminate over time, regardless of storage conditions. • Delamination will affect cell attachment/detachment, resulting in limited attachment. • ppNIPAM surfaces are more stable, regardless of storage conditions. - Abstract: When poly(N-isopropyl acrylamide) (pNIPAM) is tethered to a surface, it can induce the spontaneous release of a sheet of mammalian cells. The release of cells is a result of the reversible phase transition the polymer undergoes at its lower critical solution temperature (LCST). Many techniques are used for the deposition of pNIPAM onto cell culture substrates. Previously, we compared two methods of deposition (plasma polymerization, and co-deposition with a sol-gel). We proved that although both were technically appropriate for obtaining thermoresponsive pNIPAM films, the surfaces that were co-deposited with a sol-gel caused some disruption in cell activity. The variation of cell behavior could be due to the delamination of pNIPAM films leaching toxic chemicals into solution. In this work, we assessed the stability of these pNIPAM films by manipulating the storage conditions and analyzing the surface chemistry using X-ray photoelectron spectroscopy (XPS) and contact angle measurements over the amount of time required to obtain confluent cell sheets. From XPS, we demonstrated that ppNIPAM (plasma polymerized NIPAM) films remains stable across all storage conditions while sol-gel deposition show large deviations after 48 h of storage. Cell response of the deposited films was assessed by investigating the cytotoxicity and biocompatibility. The 37 °C and high humidity storage affects sol-gel deposited films, inhibiting normal cell growth and proper thermoresponse of the film. Surface chemistry, thermoresponse and cell growth remained

  3. Enhancement of heat transfer for thermal energy storage application using stearic acid nanocomposite with multi-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Li, TingXian; Lee, Ju-Hyuk; Wang, RuZhu; Kang, Yong Tae

    2013-01-01

    A latent heat storage nanocomposite made of stearic acid (SA) and multi-walled carbon nanotube (MWCNT) is prepared for thermal energy storage application. The thermal properties of the SA/MWCNT nanocomposite are characterized by SEM (scanning electron microscopy) and DSC (differential scanning calorimeter) analysis techniques, and the effects of different volume fractions of MWCNT on the heat transfer enhancement and thermal performance of stearic acid are investigated during the charging and discharging phases. The SEM analysis shows that the additive of MWCNT is uniformly distributed in the phase change material of stearic acid, and the DSC analysis reveals that the melting point of SA/MWCNT nanocomposite shifts to a lower temperature during the charging phase and the freezing point shifts to a higher temperature during the discharging phase when compared with the pure stearic acid. The experimental results show that the addition of MWCNT can improve the thermal conductivity of stearic acid effectively, but it also weakens the natural convection of stearic acid in liquid state. In comparison with the pure stearic acid, the charging rate can be decreased by about 50% while the discharging rate can be improved by about 91% respectively by using the SA/5.0% MWCNT nanocomposite. It appears that the MWCNT is a promising candidate for enhancing the heat transfer performance of latent heat thermal energy storage system. - Highlights: • A nanocomposite made of stearic acid and multi-walled carbon nanotube is prepared for thermal energy storage application. • Effects of multi-walled carbon nanotube on the thermal performance of the nanocomposite are investigated. • Multi-walled carbon nanotube enhances the thermal conductivity but weakens the natural convection of stearic acid. • Discharging/charging rates of stearic acid are increased/decreased by using multi-walled carbon nanotube

  4. Synthesis, morphological, electromechanical characterization of (CaMgFex)Fe1-xTi3O12-δ/PDMS nanocomposite thin films for energy storage application

    Science.gov (United States)

    Tripathy, Ashis; Sharma, Priyaranjan; Sahoo, Narayan

    2018-03-01

    At the present time, flexible and stretchable electronics has intended to use the new cutting-edge technologies for advanced electronic application. Currently, Polymers are being employed for such applications but they are not effective due to their low dielectric constant. To enhance the dielectric properties of polymer for energy storage application, it is necessary to add ceramic material of high dielectric constant to synthesize a polymer-ceramic composite. Therefore, a novel attempt has been made to enhance the dielectric properties of the Polydimethylsiloxane (PDMS) polymer by adding (CaMgFex)Fe1-xTi3O12-δ(0ceramic powder. The newly developed CMFTO2/PDMS composite based thin film shows a higher dielectric constant (ε‧) value (~350), extremely low tangent loss (tanδ) ( 90%), which can make it a potential material for advanced flexible electronic devices, energy storage and biomedical applications.

  5. Economic Aspects of Innovations in Energy Storage

    OpenAIRE

    Strielkowski, Wadim; Lisin, Evgeny

    2017-01-01

    Energy storage is emerging as a potential method for addressing global energy system challenges across many different application areas. However, there are technical and non-technical barriers to the widespread deployment of energy storage devices. With regard to the above, it seems crucial to identify innovation processes, mechanisms and systems (in a broad sense) that can allow energy storage to help meet energy system challenges, and also deliver industrial growth from technology developme...

  6. Computation of integral electron storage ring beam characteristics in the application package DeCA. Version 3.3. A physical model

    International Nuclear Information System (INIS)

    Gladkikh, P.I.; Strelkov, M.A.; Zelinskij, A.Yu.

    1993-01-01

    In calculations and optimization of electron storage ring lattices, aside from solving the problem of particle motion stability in the ring and calculating ring structure functions and betatron tune, it is of great importance to determine the integral characteristics such as momentum compaction factor, chromaticity of the lattice, emittance, energy spread, bunch size, beam lifetime, etc. Knowing them, one is able to determine all most important properties which the beam would have in the storage ring, as well as to work out requirements for physical equipment of the ring. In this respect it is of importance to have a possibility of calculating rapidly all the parameters required. This paper describes convenient algorithms for calculating integral beam characteristics in electron storage rings, which are employed in the application package DeCA

  7. Design of spent fuel storage facilities

    International Nuclear Information System (INIS)

    1994-01-01

    This Safety Guide is for interim spent fuel storage facilities that are not integral part of an operating nuclear power plant. Following the introduction, Section 2 describes the general safety requirements applicable to the design of both wet and dry spent fuel storage facilities; Section 3 deals with the design requirements specific to either wet or dry storage. Recommendations for the auxiliary systems of any storage facility are contained in Section 4; these are necessary to ensure the safety of the system and its safe operation. Section 5 provides recommendations for establishing the quality assurance system for a storage facility. Section 6 discusses the requirements for inspection and maintenance that must be considered during the design. Finally, Section 7 provides guidance on design features to be considered to facilitate eventual decommissioning. 18 refs

  8. Moderate Temperature Dense Phase Hydrogen Storage Materials within the US Department of Energy (DOE H2 Storage Program: Trends toward Future Development

    Directory of Open Access Journals (Sweden)

    Scott McWhorter

    2012-05-01

    Full Text Available Hydrogen has many positive attributes that make it a viable choice to augment the current portfolio of combustion-based fuels, especially when considering reducing pollution and greenhouse gas (GHG emissions. However, conventional methods of storing H2 via high-pressure or liquid H2 do not provide long-term economic solutions for many applications, especially emerging applications such as man-portable or stationary power. Hydrogen storage in materials has the potential to meet the performance and cost demands, however, further developments are needed to address the thermodynamics and kinetics of H2 uptake and release. Therefore, the US Department of Energy (DOE initiated three Centers of Excellence focused on developing H2 storage materials that could meet the stringent performance requirements for on-board vehicular applications. In this review, we have summarized the developments that occurred as a result of the efforts of the Metal Hydride and Chemical Hydrogen Storage Centers of Excellence on materials that bind hydrogen through ionic and covalent linkages and thus could provide moderate temperature, dense phase H2 storage options for a wide range of emerging Proton Exchange Membrane Fuel Cell (PEM FC applications.

  9. Thermoeconomic evaluation of air conditioning system with chilled water storage

    International Nuclear Information System (INIS)

    Lin, Hu; Li, Xin-hong; Cheng, Peng-sheng; Xu, Bu-gong

    2014-01-01

    Highlights: • A new thermoeconomic evaluation methodology has been presented. • The relationship between thermodynamic and economic performances has been revealed. • A key point for thermal storage technology further application is discovered. • A system has been analyzed via the new method and EUD method. - Abstract: As a good load shifting technology for power grid, chilled energy storage has been paid more and more attention, but it always consumes more energy than traditional air conditioning system, and the performance analysis is mostly from the viewpoint of peak-valley power price to get cost saving. The paper presents a thermoeconomic evaluation methodology for the system with chilled energy storage, by which thermodynamic performance influence on cost saving has been revealed. And a system with chilled storage has been analyzed, which can save more than 15% of power cost with no energy consumption increment, and just certain difference between peak and valley power prices can make the technology for good economic application. The results show that difference between peak and valley power prices is not the only factor on economic performance, thermodynamic performance of the storage system is the more important factor, and too big price difference is a barrier for its application, instead of for more cost saving. All of these give a new direction for thermal storage technology application

  10. Buffering Implications for the Design Space of Streaming MEMS Storage

    NARCIS (Netherlands)

    Khatib, M.G.; Abelmann, Leon; Preas, Kathy

    2011-01-01

    Emerging nanotechnology-based systems encounter new non-functional requirements. This work addresses MEMS storage, an emerging technology that promises ultrahigh density and energy-efficient storage devices. We study the buffering requirement of MEMS storage in streaming applications. We show that

  11. Helium effects on tritium storage materials

    International Nuclear Information System (INIS)

    Moysan, I.; Contreras, S.; Demoment, J.

    2008-01-01

    For ten years French Tritium laboratories have been using metal hydride storage beds with LaNi 4 Mn for process gas (HDT mixture) absorption, desorption and for both short and long term storage. This material has been chosen because of its low equilibrium pressure and of its ability to retain decay helium 3 in its lattice. Aging effects on the thermodynamic behavior of LaNi 4 Mn have been investigated. Aging, due to formation of helium 3 in the lattice, decreases the desorption isotherm plateau pressure and shifts the α phase to the higher stoichiometries. Life time of the two kinds of tritium (and isotopes) storage vessels managed in the laboratory depends on these aging changes. The Tritium Long Term Storage (namely STLT) and the hydride storage vessel (namely FSH 400) are based on LaNi 4 Mn even though they are not used for the same applications. STLT contains LaNi 4 Mn in an aluminum vessel and is designed for long term pure tritium storage. The FSH 400 is composed of LaNi 4 Mn included within a stainless steel container. This design is aimed at storing low tritium content mixtures (less than 3% of tritium) and for supplying processes with HDT gas. Life time of the STLT can reach 12 years. Life time of the FSH 400 varies from 1.2 years to more than 25 years depending on the application. (authors)

  12. Helium effects on tritium storage materials

    Energy Technology Data Exchange (ETDEWEB)

    Moysan, I.; Contreras, S.; Demoment, J. [CEA Valduc, Service HDT, 21 - Is-sur-Tille (France)

    2008-07-15

    For ten years French Tritium laboratories have been using metal hydride storage beds with LaNi{sub 4}Mn for process gas (HDT mixture) absorption, desorption and for both short and long term storage. This material has been chosen because of its low equilibrium pressure and of its ability to retain decay helium 3 in its lattice. Aging effects on the thermodynamic behavior of LaNi{sub 4}Mn have been investigated. Aging, due to formation of helium 3 in the lattice, decreases the desorption isotherm plateau pressure and shifts the {alpha} phase to the higher stoichiometries. Life time of the two kinds of tritium (and isotopes) storage vessels managed in the laboratory depends on these aging changes. The Tritium Long Term Storage (namely STLT) and the hydride storage vessel (namely FSH 400) are based on LaNi{sub 4}Mn even though they are not used for the same applications. STLT contains LaNi{sub 4}Mn in an aluminum vessel and is designed for long term pure tritium storage. The FSH 400 is composed of LaNi{sub 4}Mn included within a stainless steel container. This design is aimed at storing low tritium content mixtures (less than 3% of tritium) and for supplying processes with HDT gas. Life time of the STLT can reach 12 years. Life time of the FSH 400 varies from 1.2 years to more than 25 years depending on the application. (authors)

  13. Application of flywheel energy storage for heavy haul locomotives

    International Nuclear Information System (INIS)

    Spiryagin, Maksym; Wolfs, Peter; Szanto, Frank; Sun, Yan Quan; Cole, Colin; Nielsen, Dwayne

    2015-01-01

    Highlights: • A novel design for heavy haul locomotive equipped with a flywheel energy storage system is proposed. • The integrated intelligent traction control system was developed. • A flywheel energy storage system has been tested through a simulation process. • The developed hybrid system was verified using an existing heavy haul railway route. • Fuel efficiency analysis confirms advantages of the hybrid design. - Abstract: At the present time, trains in heavy haul operations are typically hauled by several diesel-electric locomotives coupled in a multiple unit. This paper studies the case of a typical consist of three Co–Co diesel-electric locomotives, and considers replacing one unit with an alternative version, with the same design parameters, except that the diesel-electric plant is replaced with flywheel energy storage equipment. The intelligent traction and energy control system installed in this unit is integrated into the multiple-unit control to allow redistribution of the power between all units. In order to verify the proposed design, a three-stage investigation has been performed as described in this paper. The initial stage studies a possible configuration of the flywheel energy storage system by detailed modelling of the proposed intelligent traction and energy control system. The second stage includes the investigation and estimation of possible energy flows using a longitudinal train dynamics simulation. The final stage compares the conventional and the proposed locomotive configurations considering two parameters: fuel efficiency and emissions reduction.

  14. Application of energy storage devices in power systems

    African Journals Online (AJOL)

    user

    paper concentrates on performance benefits of adding energy storage to power ..... Because of geographical, environmental, and cost constraints, construction of pumped .... transport, in Information Day on Non-Nuclear Energy RTD, Brussels.

  15. Underground storage of carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Shoichi [Univ. of Tokyo, Hongo, Bunkyo-ku (Japan)

    1993-12-31

    Desk studies on underground storage of CO{sub 2} were carried out from 1990 to 1991 fiscal years by two organizations under contract with New Energy and Indestrial Technology Development Organization (NEDO). One group put emphasis on application of CO{sub 2} EOR (enhanced oil recovery), and the other covered various aspects of underground storage system. CO{sub 2} EOR is a popular EOR method in U.S. and some oil countries. At present, CO{sub 2} is supplied from natural CO{sub 2} reservoirs. Possible use of CO{sub 2} derived from fixed sources of industries is a main target of the study in order to increase oil recovery and storage CO{sub 2} under ground. The feasibility study of the total system estimates capacity of storage of CO{sub 2} as around 60 Gton CO{sub 2}, if worldwide application are realized. There exist huge volumes of underground aquifers which are not utilized usually because of high salinity. The deep aquifers can contain large amount of CO{sub 2} in form of compressed state, liquefied state or solution to aquifer. A preliminary technical and economical survey on the system suggests favorable results of 320 Gton CO{sub 2} potential. Technical problems are discussed through these studies, and economical aspects are also evaluated.

  16. Robust holographic storage system design.

    Science.gov (United States)

    Watanabe, Takahiro; Watanabe, Minoru

    2011-11-21

    Demand is increasing daily for large data storage systems that are useful for applications in spacecraft, space satellites, and space robots, which are all exposed to radiation-rich space environment. As candidates for use in space embedded systems, holographic storage systems are promising because they can easily provided the demanded large-storage capability. Particularly, holographic storage systems, which have no rotation mechanism, are demanded because they are virtually maintenance-free. Although a holographic memory itself is an extremely robust device even in a space radiation environment, its associated lasers and drive circuit devices are vulnerable. Such vulnerabilities sometimes engendered severe problems that prevent reading of all contents of the holographic memory, which is a turn-off failure mode of a laser array. This paper therefore presents a proposal for a recovery method for the turn-off failure mode of a laser array on a holographic storage system, and describes results of an experimental demonstration. © 2011 Optical Society of America

  17. Magnetic energy storage

    International Nuclear Information System (INIS)

    Rogers, J.D.

    1980-01-01

    The fusion program embraces low loss superconductor strand development with integration into cables capable of carrying 50 kA in pulsed mode at high fields. This evolvement has been paralleled with pulsed energy storage coil development and testing from tens of kJ at low fields to a 20 MJ prototype tokamak induction coil at 7.5 T. Energy transfer times have ranged from 0.7 ms to several seconds. Electric utility magnetic storage for prospective application is for diurnal load leveling with massive systems to store 10 GWh at 1.8 K in a dewar structure supported on bedrock underground. An immediate utility application is a 30 MJ system to be used to damp power oscillations on the Bonneville Power Administration electric transmission lines. An off-shoot of this last work is a new program for electric utility VAR control with the potential for use to suppress subsynchronous resonance. This paper presents work in progress, work planned, and recently completed unusual work

  18. Implementasi Cloud Storage Menggunakan OwnCloud yang High-Availability

    Directory of Open Access Journals (Sweden)

    Ikhwan Ar-Razy

    2016-04-01

    Full Text Available Implementation of practicum courses in Department of Computer Engineering Diponegoro University has some drawbacks, one of them is a lot of lab assistant and the practitioner experiencing difficulties in terms of archiving. One solution to solve the problem is implementing a shared file storage system that is easy and can be accessed by both practitioners or lab assistants. The purpose of this research is to build a cloud-based storage systems that are reliable to preventing crash damage hardware and high availability. The purpose of this research is achieved by designing the appropriate methodology. The result of this research is a storage system that is on the server side by using virtualization and data replication (DRBD as a storage method. The system is composed of two physical servers and one virtual server. Physical servers are using Proxmox VE as operating system and virtual server is using Ubuntu Server as operating system. OwnCloud applications and files are stored in the virtual server. File storage system has several major functions, which are: upload, download, user management, remove, and restore. The functions are executed through web pages, desktop application and Android application.

  19. Evaluating multifunctional storage usage for the integration of renewable energies

    Energy Technology Data Exchange (ETDEWEB)

    Koopmann, Simon; Wasowicz, Bartholomaeus; Raths, Stephan; Pollok, Thomas; Schnettler, Armin [RWTH Aachen Univ. (Germany). Inst. for High Voltage Technology

    2012-07-01

    Market and grid integration of the increasing share of renewable energy sources (RES) pose significant challenges to the electricity system in Germany. Energy storages are frequently discussed as one part of the solution. However, storage operators in a liberalized electricity market are profit maximizing actors, who are only interested in supporting the integration of RES, if it is economically attractive. A storage dispatch optimization model has been developed to comprehensively analyze the wide range of storage applications. Three storage operational modes are introduced and evaluated in this paper. The entirely market-focused multimarket operation is found to be the most profitable option for storage operators. Integration of RES is of minor importance in this operational mode. Using storage systems only for grid purposes in the grid supportive operational mode is found to be least profitable. A combined storage usage for market and grid applications in the multifunctional operation achieves similar benefits for the grid as in the grid supportive mode by better integrating RES, while also achieving profits from the markets. The current market and regulatory framework however, provides no incentives for storage operators to pursue this dispatch strategy, which is favorable for an improved RES integration.

  20. Lightweight storage and overlay networks for fault tolerance.

    Energy Technology Data Exchange (ETDEWEB)

    Oldfield, Ron A.

    2010-01-01

    The next generation of capability-class, massively parallel processing (MPP) systems is expected to have hundreds of thousands to millions of processors, In such environments, it is critical to have fault-tolerance mechanisms, including checkpoint/restart, that scale with the size of applications and the percentage of the system on which the applications execute. For application-driven, periodic checkpoint operations, the state-of-the-art does not provide a scalable solution. For example, on today's massive-scale systems that execute applications which consume most of the memory of the employed compute nodes, checkpoint operations generate I/O that consumes nearly 80% of the total I/O usage. Motivated by this observation, this project aims to improve I/O performance for application-directed checkpoints through the use of lightweight storage architectures and overlay networks. Lightweight storage provide direct access to underlying storage devices. Overlay networks provide caching and processing capabilities in the compute-node fabric. The combination has potential to signifcantly reduce I/O overhead for large-scale applications. This report describes our combined efforts to model and understand overheads for application-directed checkpoints, as well as implementation and performance analysis of a checkpoint service that uses available compute nodes as a network cache for checkpoint operations.

  1. Modeling and experimental validation of a Hybridized Energy Storage System for automotive applications

    Science.gov (United States)

    Fiorenti, Simone; Guanetti, Jacopo; Guezennec, Yann; Onori, Simona

    2013-11-01

    This paper presents the development and experimental validation of a dynamic model of a Hybridized Energy Storage System (HESS) consisting of a parallel connection of a lead acid (PbA) battery and double layer capacitors (DLCs), for automotive applications. The dynamic modeling of both the PbA battery and the DLC has been tackled via the equivalent electric circuit based approach. Experimental tests are designed for identification purposes. Parameters of the PbA battery model are identified as a function of state of charge and current direction, whereas parameters of the DLC model are identified for different temperatures. A physical HESS has been assembled at the Center for Automotive Research The Ohio State University and used as a test-bench to validate the model against a typical current profile generated for Start&Stop applications. The HESS model is then integrated into a vehicle simulator to assess the effects of the battery hybridization on the vehicle fuel economy and mitigation of the battery stress.

  2. Activation of hydrogen storage materials in the Li-Mg-N-H system: Effect on storage properties

    International Nuclear Information System (INIS)

    Yang, Jun; Sudik, Andrea; Wolverton, C.

    2007-01-01

    We investigate the thermodynamics, kinetics, and capacity of the hydrogen storage reaction: Li 2 Mg(NH) 2 + 2H 2 ↔ Mg(NH 2 ) 2 + 2LiH. Starting with LiNH 2 and MgH 2 , two distinct procedures have been previously proposed for activating samples to induce the reversible storage reaction. We clarify here the impact of these two activation procedures on the resulting capacity for the Li-Mg-N-H reaction. Additionally, we measure the temperature-dependent kinetic absorption data for this hydrogen storage system. Finally, our experiments confirm the previously reported formation enthalpy (ΔH), hydrogen capacity, and pressure-composition-isotherm (PCI) data, and suggest that this system represents a kinetically (but not thermodynamically) limited system for vehicular on-board storage applications

  3. Porous media experience applicable to field evaluation for compressed air energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Allen, R.D.; Gutknecht, P.J.

    1980-06-01

    A survey is presented of porous media field experience that may aid in the development of a compressed air energy storage field demonstration. Work done at PNL and experience of other groups and related industries is reviewed. An overall view of porous media experience in the underground storage of fluids is presented. CAES experience consists of site evaluation and selection processes used by groups in California, Kansas, and Indiana. Reservoir design and field evaluation of example sites are reported. The studies raised questions about compatibility with depleted oil and gas reservoirs, storage space rights, and compressed air regulations. Related experience embraces technologies of natural gas, thermal energy, and geothermal and hydrogen storage. Natural gas storage technology lends the most toward compressed air storage development, keeping in mind the respective differences between stored fluids, physical conditions, and cycling frequencies. Both fluids are injected under pressure into an aquifer to form a storage bubble confined between a suitable caprock structure and partially displaced ground water. State-of-the-art information is summarized as the necessary foundation material for field planning. Preliminary design criteria are given as recommendations for basic reservoir characteristics. These include geometric dimensions and storage matrix properties such as permeability. Suggested ranges are given for injection air temperature and reservoir pressure. The second step in developmental research is numerical modeling. Results have aided preliminary design by analyzing injection effects upon reservoir pressure, temperature and humidity profiles. Results are reported from laboratory experiments on candidate sandstones and caprocks. Conclusions are drawn, but further verification must be done in the field.

  4. Carbon Nanotubes as Future Energy Storage System

    OpenAIRE

    Vasu , V; Silambarasan , D

    2017-01-01

    International audience; Hydrogen is considered to be a clean energy carrier. At present the main drawback in using hydrogen as the fuel is the lack of proper hydrogen storage vehicle, thus ongoing research is focused on the development of advance hydrogen storage materials. Many alloys are able to store hydrogen reversibly, but the gravimetric storage density is too low for any practical applications. Theoretical studies have predicted that interaction of hydrogen with carbon nanotubes is by ...

  5. Damsel: A Data Model Storage Library for Exascale Science

    Energy Technology Data Exchange (ETDEWEB)

    Koziol, Quincey [The HDF Group, Champaign, IL (United States)

    2014-11-26

    The goal of this project is to enable exascale computational science applications to interact conveniently and efficiently with storage through abstractions that match their data models. We will accomplish this through three major activities: (1) identifying major data model motifs in computational science applications and developing representative benchmarks; (2) developing a data model storage library, called Damsel, that supports these motifs, provides efficient storage data layouts, incorporates optimizations to enable exascale operation, and is tolerant to failures; and (3) productizing Damsel and working with computational scientists to encourage adoption of this library by the scientific community.

  6. Damsel - A Data Model Storage Library for Exascale Science

    Energy Technology Data Exchange (ETDEWEB)

    Samatova, Nagiza F

    2014-07-18

    The goal of this project is to enable exascale computational science applications to interact conveniently and efficiently with storage through abstractions that match their data models. We will accomplish this through three major activities: (1) identifying major data model motifs in computational science applications and developing representative benchmarks; (2) developing a data model storage library, called Damsel, that supports these motifs, provides efficient storage data layouts, incorporates optimizations to enable exascale operation, and is tolerant to failures; and (3) productizing Damsel and working with computational scientists to encourage adoption of this library by the scientific community.

  7. Modulated synthesis of Cr-MOF (MIL 101) for hydrogen storage applications

    CSIR Research Space (South Africa)

    Segakweng, T

    2014-08-01

    Full Text Available as a fuel into fuel cell technologies is only possible when safe and effective hydrogen storage systems become available. Complete usage of hydrogen is only possible if proper and effective storage systems with fast kinetics becomes available. Porous...

  8. Economic and technical feasibility study of compressed air storage

    Energy Technology Data Exchange (ETDEWEB)

    1976-03-01

    The results of a study of the economic and technical feasibility of compressed air energy storage (CAES) are presented. The study, which concentrated primarily on the application of underground air storage with combustion turbines, consisted of two phases. In the first phase a general assessment of the technical alternatives, economic characteristics and the institutional constraints associated with underground storage of compressed air for utility peaking application was carried out. The goal of this assessment was to identify potential barrier problems and to define the incentive for the implementation of compressed air storage. In the second phase, the general conclusions of the assessment were tested by carrying out the conceptual design of a CAES plant at two specific sites, and a program of further work indicated by the assessment study was formulated. The conceptual design of a CAES plant employing storage in an aquifer and that of a plant employing storage in a conventionally excavated cavern employing a water leg to maintain constant pressure are shown. Recommendations for further work, as well as directions of future turbo-machinery development, are made. It is concluded that compressed air storage is technically feasible for off-peak energy storage, and, depending on site conditions, CAES plants may be favored over simple cycle turbine plants to meet peak demands. (LCL)

  9. Green synthesis of chromium-based metal-organic framework (Cr-MOF) from waste polyethylene terephthalate (PET) bottles for hydrogen storage applications

    CSIR Research Space (South Africa)

    Ren, Jianwei

    2016-10-01

    Full Text Available It is of great economic value to produce high-value PET-based MOF materials by the veritable elimination of waste PET, and provide sufficient MOF materials for hydrogen storage applications. Consequently, this work demonstrates the use of waste PET...

  10. From accelerators to storage rings to

    International Nuclear Information System (INIS)

    Panofsky, W.K.H.

    1983-02-01

    This talk gives a general but highly subjective overview of the expectation for accelerators and colliders for high energy physics, but not extended developments of accelerators and storage rings for application to nuclear structure physics, synchrotron radiation, medical applications or industrial use

  11. Relaxor-ferroelectric BaLnZT (Ln = La, Nd, Sm, Eu, and Sc) ceramics for actuator and energy storage application

    Science.gov (United States)

    Ghosh, Sarit K.; Mallick, Kaushik; Tiwari, B.; Sinha, E.; Rout, S. K.

    2018-01-01

    Lead free ceramics Ba1-x Ln2x/3Zr0.3Ti0.7O3 (Ln = La, Nd, Sm, Eu and Sc), x = 0.02-0.10 are investigated for electrostrictive effect and energy storage properties in the proximity of relaxor-paraelectric phase boundary. Relaxor phase evidence from slim hysteresis loop and low remnant polarization are the key parameters responsible for improve the electrostrictive effect and energy storage properties simultaneously. With increase in rare earth content negative strain disappeared and almost hysteresis free strain is achieved. Strain-hysteresis profile in term of S-E, S-E 2 and S-P 2 is used to analyze the electrostrictive behavior of these ceramics. An average strain (S%) ˜ 0.03%, is accomplished at initial concentrations of x = 0.02-0.04 and electrostrictive coefficients (Q 11, and M 11) as well as the energy storage density is improved by a factor of 1.2 and 2.6 respectively when compare with pure (x = 0.0) ceramic. Above x ≥ 0.06, all compositions show a stable behavior which suggested the possibilities of these relaxor ceramics towards high precision actuators and energy storage application.

  12. Battery energy storage market feasibility study

    International Nuclear Information System (INIS)

    Kraft, S.; Akhil, A.

    1997-07-01

    Under the sponsorship of the Department of Energy's Office of Utility Technologies, the Energy Storage Systems Analysis and Development Department at Sandia National Laboratories (SNL) contracted Frost and Sullivan to conduct a market feasibility study of energy storage systems. The study was designed specifically to quantify the energy storage market for utility applications. This study was based on the SNL Opportunities Analysis performed earlier. Many of the groups surveyed, which included electricity providers, battery energy storage vendors, regulators, consultants, and technology advocates, viewed energy storage as an important enabling technology to enable increased use of renewable energy and as a means to solve power quality and asset utilization issues. There are two versions of the document available, an expanded version (approximately 200 pages, SAND97-1275/2) and a short version (approximately 25 pages, SAND97-1275/1)

  13. Battery energy storage market feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Kraft, S. [Frost and Sullivan, Mountain View, CA (United States); Akhil, A. [Sandia National Labs., Albuquerque, NM (United States). Energy Storage Systems Analysis and Development Dept.

    1997-07-01

    Under the sponsorship of the Department of Energy`s Office of Utility Technologies, the Energy Storage Systems Analysis and Development Department at Sandia National Laboratories (SNL) contracted Frost and Sullivan to conduct a market feasibility study of energy storage systems. The study was designed specifically to quantify the energy storage market for utility applications. This study was based on the SNL Opportunities Analysis performed earlier. Many of the groups surveyed, which included electricity providers, battery energy storage vendors, regulators, consultants, and technology advocates, viewed energy storage as an important enabling technology to enable increased use of renewable energy and as a means to solve power quality and asset utilization issues. There are two versions of the document available, an expanded version (approximately 200 pages, SAND97-1275/2) and a short version (approximately 25 pages, SAND97-1275/1).

  14. Management issues for high performance storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Louis, S. [Lawrence Livermore National Lab., CA (United States); Burris, R. [Oak Ridge National Lab., TN (United States)

    1995-03-01

    Managing distributed high-performance storage systems is complex and, although sharing common ground with traditional network and systems management, presents unique storage-related issues. Integration technologies and frameworks exist to help manage distributed network and system environments. Industry-driven consortia provide open forums where vendors and users cooperate to leverage solutions. But these new approaches to open management fall short addressing the needs of scalable, distributed storage. We discuss the motivation and requirements for storage system management (SSM) capabilities and describe how SSM manages distributed servers and storage resource objects in the High Performance Storage System (HPSS), a new storage facility for data-intensive applications and large-scale computing. Modem storage systems, such as HPSS, require many SSM capabilities, including server and resource configuration control, performance monitoring, quality of service, flexible policies, file migration, file repacking, accounting, and quotas. We present results of initial HPSS SSM development including design decisions and implementation trade-offs. We conclude with plans for follow-on work and provide storage-related recommendations for vendors and standards groups seeking enterprise-wide management solutions.

  15. Space Station thermal storage/refrigeration system research and development

    Science.gov (United States)

    Dean, W. G.; Karu, Z. S.

    1993-01-01

    Space Station thermal loading conditions represent an order of magnitude increase over current and previous spacecraft such as Skylab, Apollo, Pegasus III, Lunar Rover Vehicle, and Lockheed TRIDENT missiles. Thermal storage units (TSU's) were successfully used on these as well as many applications for ground based solar energy storage applications. It is desirable to store thermal energy during peak loading conditions as an alternative to providing increased radiator surface area which adds to the weight of the system. Basically, TSU's store heat by melting a phase change material (PCM) such as a paraffin. The physical property data for the PCM's used in the design of these TSU's is well defined in the literature. Design techniques are generally well established for the TSU's. However, the Space Station provides a new challenge in the application of these data and techniques because of three factors: the large size of the TSU required, the integration of the TSU for the Space Station thermal management concept with its diverse opportunities for storage application, and the TSU's interface with a two-phase (liquid/vapor) thermal bus/central heat rejection system. The objective in the thermal storage research and development task was to design, fabricate, and test a demonstration unit. One test article was to be a passive thermal storage unit capable of storing frozen food at -20 F for a minimum of 90 days. A second unit was to be capable of storing frozen biological samples at -94 F, again for a minimum of 90 days. The articles developed were compatible with shuttle mission conditions, including safety and handling by astronauts. Further, storage rack concepts were presented so that these units can be integrated into Space Station logistics module storage racks. The extreme sensitivity of spacecraft radiator systems design-to-heat rejection temperature requirements is well known. A large radiator area penalty is incurred if low temperatures are accommodated via a

  16. Laboratory simulation of high-level liquid waste evaporation and storage

    International Nuclear Information System (INIS)

    Anderson, P.A.

    1978-01-01

    The reprocessing of nuclear fuel generates high-level liquid wastes (HLLW) which require interim storage pending solidification. Interim storage facilities are most efficient if the HLLW is evaporated prior to or during the storage period. Laboratory evaporation and storage studies with simulated waste slurries have yielded data which are applicable to the efficient design and economical operation of actual process equipment

  17. Federated data storage and management infrastructure

    International Nuclear Information System (INIS)

    Zarochentsev, A; Kiryanov, A; Klimentov, A; Krasnopevtsev, D; Hristov, P

    2016-01-01

    The Large Hadron Collider (LHC)’ operating at the international CERN Laboratory in Geneva, Switzerland, is leading Big Data driven scientific explorations. Experiments at the LHC explore the fundamental nature of matter and the basic forces that shape our universe. Computing models for the High Luminosity LHC era anticipate a growth of storage needs of at least orders of magnitude; it will require new approaches in data storage organization and data handling. In our project we address the fundamental problem of designing of architecture to integrate a distributed heterogeneous disk resources for LHC experiments and other data- intensive science applications and to provide access to data from heterogeneous computing facilities. We have prototyped a federated storage for Russian T1 and T2 centers located in Moscow, St.-Petersburg and Gatchina, as well as Russian / CERN federation. We have conducted extensive tests of underlying network infrastructure and storage endpoints with synthetic performance measurement tools as well as with HENP-specific workloads, including the ones running on supercomputing platform, cloud computing and Grid for ALICE and ATLAS experiments. We will present our current accomplishments with running LHC data analysis remotely and locally to demonstrate our ability to efficiently use federated data storage experiment wide within National Academic facilities for High Energy and Nuclear Physics as well as for other data-intensive science applications, such as bio-informatics. (paper)

  18. Workshop on compact storage ring technology: applications to lithography

    International Nuclear Information System (INIS)

    1986-01-01

    Project planning in the area of x-ray lithography is discussed. Three technologies that are emphasized are the light source, the lithographic technology, and masking technology. The needs of the semiconductor industry in the lithography area during the next decade are discussed, particularly as regards large scale production of high density dynamic random access memory devices. Storage ring parameters and an overall exposure tool for x-ray lithography are addressed. Competition in this area of technology from Germany and Japan is discussed briefly. The design of a storage ring is considered, including lattice design, magnets, and beam injection systems

  19. Phenothiazine based polymers for energy and data storage application

    Energy Technology Data Exchange (ETDEWEB)

    Golriz, Seyed Ahmad Ali

    2013-03-15

    charge and discharge cycles. In addition to applications in batteries the bistability of phenothiazine polymers for high density data storage purposes was studied. Using the conductive mode of scanning force microscopy (SFM), nano-scaled patterning of spin-coated polymer films induced by electrochemical oxidation was successfully demonstrated. The scanning probe experiments revealed differences in the conductive states of written patterns before and after oxidation with no significant change in topography. Remarkably, the patterns were stable with respect to the storage time as well as mechanical wear. Finally, new synthetic approaches towards mechanically nanowear stable and redox active surfaces were established. Via grafting from methods based on Atom Transfer Radical Polymerization (ATRP), redox active polymer brushes with phenothiazine moieties were prepared and characterized by SFM and X-ray techniques. In particular, a synthetic route based on polymer brush structures with activated ester functionality appeared as a very promising and versatile fabrication method. The activated ester brushes were used for attachment of phenothiazine moieties in a successive step. By using crosslinkable diamine moieties, polymer brushes with redox functionalities and with increased surface wear resistance were successfully synthesized. In summary, this work offers deep insights into the electronic properties of polymers with phenothiazine redox active moieties. Furthermore, the applicability of phenothiazine polymers for electronic devices was explored and improved from synthetic polymer chemistry point of view.

  20. One-dimensional nanomaterials for energy storage

    Science.gov (United States)

    Chen, Cheng; Fan, Yuqi; Gu, Jianhang; Wu, Liming; Passerini, Stefano; Mai, Liqiang

    2018-03-01

    The search for higher energy density, safer, and longer cycling-life energy storage systems is progressing quickly. One-dimensional (1D) nanomaterials have a large length-to-diameter ratio, resulting in their unique electrical, mechanical, magnetic and chemical properties, and have wide applications as electrode materials in different systems. This article reviews the latest hot topics in applying 1D nanomaterials, covering both their synthesis and their applications. 1D nanomaterials can be grouped into the categories: carbon, silicon, metal oxides, and conducting polymers, and we structure our discussion accordingly. Then, we survey the unique properties and application of 1D nanomaterials in batteries and supercapacitors, and provide comments on the progress and advantages of those systems, paving the way for a better understanding of employing 1D nanomaterials for energy storage.