WorldWideScience

Sample records for apoplastic solute accumulation

  1. DspA/E contributes to apoplastic accumulation of ROS in nonhost A. thaliana

    Directory of Open Access Journals (Sweden)

    Alban eLaunay

    2016-04-01

    Full Text Available The bacterium Erwinia amylovora is responsible for the fire blight disease of Maleae, which provokes necrotic symptoms on aerial parts. The pathogenicity of this bacterium in hosts relies on its type three-secretion system (T3SS, a molecular syringe that allows the bacterium to inject effectors into the plant cell. E. amylovora-triggered disease in host plants is associated with the T3SS-dependent production of reactive oxygen species (ROS, although ROS are generally associated with resistance in other pathosystems. We showed previously that E. amylovora can multiply transiently in the nonhost plant Arabidopsis thaliana and that a T3SS-dependent production of intracellular ROS occurs during this interaction. In the present work we characterize the localization and source of hydrogen peroxide accumulation following E. amylovora infection. Transmission electron microscope (TEM analysis of infected tissues showed that hydrogen peroxide accumulation occurs in the cytosol, plastids, peroxisomes, and mitochondria as well as in the apoplast. Furthermore, TEM analysis showed that an E. amylovora dspA/E-deficient strain does not induce hydrogen peroxide accumulation in the apoplast. Consistently, a transgenic line expressing DspA/E accumulated ROS in the apoplast. The NADPH oxidase-deficient rbohD mutant showed a very strong reduction in hydrogen peroxide accumulation in response to E. amylovora inoculation. However, we did not find an increase in bacterial titers of E. amylovora in the rbohD mutant and the rbohD mutation did not suppress the toxicity of DspA/E when introgressed into a DspA/E-expressing transgenic line. Co-inoculation of E. amylovora with cycloheximide (CHX, which we found previously to suppress callose deposition and allow strong multiplication of E. amylovora in A. thaliana leaves, led to a strong reduction of apoplastic ROS accumulation but did not affect intracellular ROS. Our data strongly suggest that apoplastic ROS accumulation is

  2. Recovery of active pathogenesis-related enzymes from the apoplast ...

    African Journals Online (AJOL)

    Overall protease activity intensity was higher in the symplast. Maximum symplast contamination of the apoplast was 2% as estimated by glucose 6-phosphate dehydrogenase activity, a biochemical marker for symplast. Accumulation of pathogenesis-related enzymatic activities in the apoplast of M. acuminata leaf tissue was ...

  3. Papaya pulp gelling: is it premature ripening or problems of water accumulation in the apoplast?

    Directory of Open Access Journals (Sweden)

    Jurandi Gonçalves de Oliveira

    Full Text Available Gelled aspect in papaya fruit is typically confused with premature ripening. This research reports the characterization of this physiological disorder in the pulp of papaya fruit by measuring electrolyte leakage, Pi content, lipid peroxidation, pulp firmness, mineral contents (Ca, Mg and K - in pulp and seed tissues, and histological analysis of pulp tissue. The results showed that the gelled aspect of the papaya fruit pulp is not associated with tissue premature ripening. Data indicate a reduction of the vacuole water intake as the principal cause of the loss of cellular turgor; while the waterlogged aspect of the tissue may be due to water accumulation in the apoplast.

  4. Apoplastic and intracellular plant sugars regulate developmental transitions in witches’ broom disease of cacao

    Science.gov (United States)

    Barau, Joan; Grandis, Adriana; Carvalho, Vinicius Miessler de Andrade; Teixeira, Gleidson Silva; Zaparoli, Gustavo Henrique Alcalá; do Rio, Maria Carolina Scatolin; Rincones, Johana; Buckeridge, Marcos Silveira; Pereira, Gonçalo Amarante Guimarães

    2015-01-01

    Witches’ broom disease (WBD) of cacao differs from other typical hemibiotrophic plant diseases by its unusually long biotrophic phase. Plant carbon sources have been proposed to regulate WBD developmental transitions; however, nothing is known about their availability at the plant–fungus interface, the apoplastic fluid of cacao. Data are provided supporting a role for the dynamics of soluble carbon in the apoplastic fluid in prompting the end of the biotrophic phase of infection. Carbon depletion and the consequent fungal sensing of starvation were identified as key signalling factors at the apoplast. MpNEP2, a fungal effector of host necrosis, was found to be up-regulated in an autophagic-like response to carbon starvation in vitro. In addition, the in vivo artificial manipulation of carbon availability in the apoplastic fluid considerably modulated both its expression and plant necrosis rate. Strikingly, infected cacao tissues accumulated intracellular hexoses, and showed stunted photosynthesis and the up-regulation of senescence markers immediately prior to the transition to the necrotrophic phase. These opposite findings of carbon depletion and accumulation in different host cell compartments are discussed within the frame of WBD development. A model is suggested to explain phase transition as a synergic outcome of fungal-related factors released upon sensing of extracellular carbon starvation, and an early senescence of infected tissues probably triggered by intracellular sugar accumulation. PMID:25540440

  5. Movement of Abscisic Acid into the Apoplast in Response to Water Stress in Xanthium strumarium L.

    Science.gov (United States)

    Cornish, K; Zeevaart, J A

    1985-07-01

    The effect of water stress on the redistribution of abcisic acid (ABA) in mature leaves of Xanthium strumarium L. was investigated using a pressure dehydration technique. In both turgid and stressed leaves, the ABA in the xylem exudate, the ;apoplastic' ABA, increased before ;bulk leaf' stress-induced ABA accumulation began. In the initially turgid leaves, the ABA level remained constant in both the apoplast and the leaf as a whole until wilting symptoms appeared. Following turgor loss, sufficient quantities of ABA moved into the apoplast to stimulate stomatal closure. Thus, the initial increase of apoplastic ABA may be relevant to the rapid stomatal closure seen in stressed leaves before their bulk leaf ABA levels rise.Following recovery from water stress, elevated levels of ABA remained in the apoplast after the bulk leaf contents had returned to their prestress values. This apoplastic ABA may retard stomatal reopening during the initial recovery period.

  6. Apoplastic and intracellular plant sugars regulate developmental transitions in witches' broom disease of cacao.

    Science.gov (United States)

    Barau, Joan; Grandis, Adriana; Carvalho, Vinicius Miessler de Andrade; Teixeira, Gleidson Silva; Zaparoli, Gustavo Henrique Alcalá; do Rio, Maria Carolina Scatolin; Rincones, Johana; Buckeridge, Marcos Silveira; Pereira, Gonçalo Amarante Guimarães

    2015-03-01

    Witches' broom disease (WBD) of cacao differs from other typical hemibiotrophic plant diseases by its unusually long biotrophic phase. Plant carbon sources have been proposed to regulate WBD developmental transitions; however, nothing is known about their availability at the plant-fungus interface, the apoplastic fluid of cacao. Data are provided supporting a role for the dynamics of soluble carbon in the apoplastic fluid in prompting the end of the biotrophic phase of infection. Carbon depletion and the consequent fungal sensing of starvation were identified as key signalling factors at the apoplast. MpNEP2, a fungal effector of host necrosis, was found to be up-regulated in an autophagic-like response to carbon starvation in vitro. In addition, the in vivo artificial manipulation of carbon availability in the apoplastic fluid considerably modulated both its expression and plant necrosis rate. Strikingly, infected cacao tissues accumulated intracellular hexoses, and showed stunted photosynthesis and the up-regulation of senescence markers immediately prior to the transition to the necrotrophic phase. These opposite findings of carbon depletion and accumulation in different host cell compartments are discussed within the frame of WBD development. A model is suggested to explain phase transition as a synergic outcome of fungal-related factors released upon sensing of extracellular carbon starvation, and an early senescence of infected tissues probably triggered by intracellular sugar accumulation. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  7. Apoplastic Sugar Extraction and Quantification from Wheat Leaves Infected with Biotrophic Fungi.

    Science.gov (United States)

    Roman-Reyna, Veronica; Rathjen, John P

    2017-01-01

    Biotrophic fungi such as rusts modify the nutrient status of their hosts by extracting sugars. Hemibiotrophic and biotrophic fungi obtain nutrients from the cytoplasm of host cells and/or the apoplastic spaces. Uptake of nutrients from the cytoplasm is via intracellular hyphae or more complex structures such as haustoria. Apoplastic nutrients are taken up by intercellular hyphae. Overall the infection creates a sink causing remobilization of nutrients from local and distal tissues. The main mobile sugar in plants is sucrose which is absorbed via plant or fungal transporters once unloaded into the cytoplasm or the apoplast. Infection by fungal pathogens alters the apoplastic sugar contents and stimulates the influx of nutrients towards the site of infection as the host tissue transitions to sink. Quantification of solutes in the apoplast can help to understand the allocation of nutrients during infection. However, separation of apoplastic fluids from whole tissue is not straightforward and leakage from damaged cells can alter the results of the extraction. Here, we describe how variation in cytoplasmic contamination and infiltrated leaf volumes must be controlled when extracting apoplastic fluids from healthy and rust-infected wheat leaves. We show the importance of correcting the data for these parameters to measure sugar concentrations accurately.

  8. Accumulation and localization of extensin protein in apoplast of pea root nodule under aluminum stress.

    Science.gov (United States)

    Sujkowska-Rybkowska, Marzena; Borucki, Wojciech

    2014-12-01

    Cell wall components such as hydroxyproline-rich glycoproteins (HRGPs, extensins) have been proposed to be involved in aluminum (Al) resistance mechanisms in plants. We have characterized the distribution of extensin in pea (Pisum sativum L.) root nodules apoplast under short (for 2 and 24h) Al stress. Monoclonal antibodie LM1 have been used to locate extensin protein epitope by immunofluorescence and immunogold labeling. The nodules were shown to respond to Al stress by thickening of plant and infection thread (IT) walls and disturbances in threads growth and bacteria endocytosis. Immunoblot results indicated the presence of a 17-kDa band specific for LM1. Irrespective of the time of Al stress, extensin content increased in root nodules. Further observation utilizing fluorescence and transmission electron microscope showed that LM1 epitope was localized in walls and intercellular spaces of nodule cortex tissues and in the infection threads matrix. Al stress in nodules appears to be associated with higher extensin accumulation in matrix of enlarged thick-walled ITs. In addition to ITs, thickened walls and intercellular spaces of nodule cortex were also associated with intense extensin accumulation. These data suggest that Al-induced extensin accumulation in plant cell walls and ITs matrix may have influence on the process of IT growth and tissue and cell colonization by Rhizobium bacteria. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Movement of Abscisic Acid into the Apoplast in Response to Water Stress in Xanthium strumarium L. 1

    Science.gov (United States)

    Cornish, Katrina; Zeevaart, Jan A. D.

    1985-01-01

    The effect of water stress on the redistribution of abcisic acid (ABA) in mature leaves of Xanthium strumarium L. was investigated using a pressure dehydration technique. In both turgid and stressed leaves, the ABA in the xylem exudate, the `apoplastic' ABA, increased before `bulk leaf' stress-induced ABA accumulation began. In the initially turgid leaves, the ABA level remained constant in both the apoplast and the leaf as a whole until wilting symptoms appeared. Following turgor loss, sufficient quantities of ABA moved into the apoplast to stimulate stomatal closure. Thus, the initial increase of apoplastic ABA may be relevant to the rapid stomatal closure seen in stressed leaves before their bulk leaf ABA levels rise. Following recovery from water stress, elevated levels of ABA remained in the apoplast after the bulk leaf contents had returned to their prestress values. This apoplastic ABA may retard stomatal reopening during the initial recovery period. PMID:16664294

  10. Collection of apoplastic fluids from Arabidopsis thaliana leaves

    DEFF Research Database (Denmark)

    Madsen, Svend Roesen; Nour-Eldin, Hussam Hassan; Halkier, Barbara Ann

    2016-01-01

    The leaf apoplast comprises the extracellular continuum outside cell membranes. A broad range of processes take place in the apoplast, including intercellular signaling, metabolite transport, and plant-microbe interactions. To study these processes, it is essential to analyze the metabolite conte...... in apoplastic fluids. Due to the fragile nature of leaf tissues, it is a challenge to obtain apoplastic fluids from leaves. Here, methods to collect apoplastic washing fluid and guttation fluid from Arabidopsis thaliana leaves are described....

  11. Apoplastic domains and sub-domains in the shoots of etiolated corn seedlings

    Science.gov (United States)

    Epel, B. L.; Bandurski, R. S.

    1990-01-01

    Light Green, an apoplastic probe, was applied to the cut mesocotyl base or to the cut coleoptile apex of etiolated seedlings of Zea mays L. cv. Silver Queen. Probe transport was measured and its tissue distribution determined. In the mesocotyl, there is an apoplastic barrier between cortex and stele. This barrier creates two apoplastic domains which are non-communicating. A kinetic barrier exists between the apoplast of the mesocotyl stele and that of the coleoptile. This kinetic barrier is not absolute and there is limited communication between the apoplasts of the two regions. This kinetic barrier effectively creates two sub-domains. In the coleoptile, there is communication between the apoplast of the vascular strands and that of the surrounding cortical tissue. No apoplastic communication was observed between the coleoptile cortex and the mesocotyl cortex. Thus, the apoplastic space of the coleoptile cortex is a sub-domain of the integrated coleoptile domain and is separate from that of the apoplastic domain of the mesocotyl cortex.

  12. Ascorbate oxidase-dependent changes in the redox state of the apoplast modulate gene transcript accumulation leading to modified hormone signaling and orchestration of defense processes in tobacco.

    Science.gov (United States)

    Pignocchi, Cristina; Kiddle, Guy; Hernández, Iker; Foster, Simon J; Asensi, Amparo; Taybi, Tahar; Barnes, Jeremy; Foyer, Christine H

    2006-06-01

    The role of the redox state of the apoplast in hormone responses, signaling cascades, and gene expression was studied in transgenic tobacco (Nicotiana tabacum) plants with modified cell wall-localized ascorbate oxidase (AO). High AO activity specifically decreased the ascorbic acid (AA) content of the apoplast and altered plant growth responses triggered by hormones. Auxin stimulated shoot growth only when the apoplastic AA pool was reduced in wild-type or AO antisense lines. Oxidation of apoplastic AA in AO sense lines was associated with loss of the auxin response, higher mitogen-activated protein kinase activities, and susceptibility to a virulent strain of the pathogen Pseudomonas syringae. The total leaf glutathione pool, the ratio of reduced glutathione to glutathione disulfide, and glutathione reductase activities were similar in the leaves of all lines. However, AO sense leaves exhibited significantly lower dehydroascorbate reductase and ascorbate peroxidase activities than wild-type and antisense leaves. The abundance of mRNAs encoding antioxidant enzymes was similar in all lines. However, the day/night rhythms in the abundance of transcripts encoding the three catalase isoforms were changed in response to the AA content of the apoplast. Other transcripts influenced by AO included photorespiratory genes and a plasma membrane Ca(2+) channel-associated gene. We conclude that the redox state of the apoplast modulates plant growth and defense responses by regulating signal transduction cascades and gene expression patterns. Hence, AO activity, which modulates the redox state of the apoplastic AA pool, strongly influences the responses of plant cells to external and internal stimuli.

  13. Apoplastic interactions between plants and plant root intruders

    Directory of Open Access Journals (Sweden)

    Kanako eMitsumasu

    2015-08-01

    Full Text Available Numerous pathogenic or parasitic organisms attack plant roots to obtain nutrients, and the apoplast including the plant cell wall is where the plant cell meets such organisms. Root-parasitic angiosperms and nematodes are two distinct types of plant root parasites but share some common features in their strategies for breaking into plant roots. Striga and Orobanche are obligate root parasitic angiosperms that cause devastating agricultural problems worldwide. Parasitic plants form an invasion organ called a haustorium, where plant cell wall degrading enzymes (PCWDEs are highly expressed. Plant-parasitic nematodes are another type of agriculturally important plant root parasite. These nematodes breach the plant cell walls by protruding a sclerotized stylet from which PCWDEs are secreted. Responding to such parasitic invasion, host plants activate their own defense responses against parasites. Endoparasitic nematodes secrete apoplastic effectors to modulate host immune responses and to facilitate the formation of a feeding site. Apoplastic communication between hosts and parasitic plants also contributes to their interaction. Parasitic plant germination stimulants, strigolactones (SLs, are recently identified apoplastic signals that are transmitted over long distances from biosynthetic sites to functioning sites. Here, we discuss recent advances in understanding the importance of apoplastic signals and cell walls for plant-parasite interactions.

  14. Apoplastic interactions between plants and plant root intruders.

    Science.gov (United States)

    Mitsumasu, Kanako; Seto, Yoshiya; Yoshida, Satoko

    2015-01-01

    Numerous pathogenic or parasitic organisms attack plant roots to obtain nutrients, and the apoplast including the plant cell wall is where the plant cell meets such organisms. Root parasitic angiosperms and nematodes are two distinct types of plant root parasites but share some common features in their strategies for breaking into plant roots. Striga and Orobanche are obligate root parasitic angiosperms that cause devastating agricultural problems worldwide. Parasitic plants form an invasion organ called a haustorium, where plant cell wall degrading enzymes (PCWDEs) are highly expressed. Plant-parasitic nematodes are another type of agriculturally important plant root parasite. These nematodes breach the plant cell walls by protruding a sclerotized stylet from which PCWDEs are secreted. Responding to such parasitic invasion, host plants activate their own defense responses against parasites. Endoparasitic nematodes secrete apoplastic effectors to modulate host immune responses and to facilitate the formation of a feeding site. Apoplastic communication between hosts and parasitic plants also contributes to their interaction. Parasitic plant germination stimulants, strigolactones, are recently identified apoplastic signals that are transmitted over long distances from biosynthetic sites to functioning sites. Here, we discuss recent advances in understanding the importance of apoplastic signals and cell walls for plant-parasite interactions.

  15. Uncovering plant-pathogen crosstalk through apoplastic proteomic studies.

    Science.gov (United States)

    Delaunois, Bertrand; Jeandet, Philippe; Clément, Christophe; Baillieul, Fabienne; Dorey, Stéphan; Cordelier, Sylvain

    2014-01-01

    Plant pathogens have evolved by developing different strategies to infect their host, which in turn have elaborated immune responses to counter the pathogen invasion. The apoplast, including the cell wall and extracellular space outside the plasma membrane, is one of the first compartments where pathogen-host interaction occurs. The plant cell wall is composed of a complex network of polysaccharides polymers and glycoproteins and serves as a natural physical barrier against pathogen invasion. The apoplastic fluid, circulating through the cell wall and intercellular spaces, provides a means for delivering molecules and facilitating intercellular communications. Some plant-pathogen interactions lead to plant cell wall degradation allowing pathogens to penetrate into the cells. In turn, the plant immune system recognizes microbial- or damage-associated molecular patterns (MAMPs or DAMPs) and initiates a set of basal immune responses, including the strengthening of the plant cell wall. The establishment of defense requires the regulation of a wide variety of proteins that are involved at different levels, from receptor perception of the pathogen via signaling mechanisms to the strengthening of the cell wall or degradation of the pathogen itself. A fine regulation of apoplastic proteins is therefore essential for rapid and effective pathogen perception and for maintaining cell wall integrity. This review aims to provide insight into analyses using proteomic approaches of the apoplast to highlight the modulation of the apoplastic protein patterns during pathogen infection and to unravel the key players involved in plant-pathogen interaction.

  16. Silicon alleviates iron deficiency in cucumber by promoting mobilization of iron in the root apoplast

    DEFF Research Database (Denmark)

    Pavlovic, Jelena; Samardzic, Jelena; Maksimović, Vuk

    2013-01-01

    Root responses to lack of iron (Fe) have mainly been studied in nutrient solution experiments devoid of silicon (Si). Here we investigated how Si ameliorates Fe deficiency in cucumber (Cucumis sativus) with focus on the storage and utilization of Fe in the root apoplast. A combined approach...

  17. Pathogen-Induced Changes in the Antioxidant Status of the Apoplast in Barley Leaves

    Science.gov (United States)

    Vanacker, Hélène; Carver, Tim L.W.; Foyer, Christine H.

    1998-01-01

    Leaves of two barley (Hordeum vulgare L.) isolines, Alg-R, which has the dominant Mla1 allele conferring hypersensitive race-specific resistance to avirulent races of Blumeria graminis, and Alg-S, which has the recessive mla1 allele for susceptibility to attack, were inoculated with B. graminis f. sp. hordei. Total leaf and apoplastic antioxidants were measured 24 h after inoculation when maximum numbers of attacked cells showed hypersensitive death in Alg-R. Cytoplasmic contamination of the apoplastic extracts, judged by the marker enzyme glucose-6-phosphate dehydrogenase, was very low (less than 2%) even in inoculated plants. Dehydroascorbate, glutathione, superoxide dismutase, catalase, ascorbate peroxidase, glutathione reductase, monodehydroascorbate reductase, and dehydroascorbate reductase were present in the apoplast. Inoculation had no effect on the total foliar ascorbate pool size or the redox state. The glutathione content of Alg-S leaves and apoplast decreased, whereas that of Alg-R leaves and apoplast increased after pathogen attack, but the redox state was unchanged in both cases. Large increases in foliar catalase activity were observed in Alg-S but not in Alg-R leaves. Pathogen-induced increases in the apoplastic antioxidant enzyme activities were observed. We conclude that sustained oxidation does not occur and that differential strategies of antioxidant response in Alg-S and Alg-R may contribute to pathogen sensitivity. PMID:9662553

  18. Localizatlon of expansin-like protein in apoplast of pea (Pisum sativum L. root nodules during interaction with Rhizobium leguminosarum bv. viciae

    Directory of Open Access Journals (Sweden)

    Marzena Sujkowska

    2011-01-01

    Full Text Available During nodule development on pea roots, apoplast undergoes changes in activity of plant cell wall proteins such as expansins (EXPs. Because the accumulation of EXP protein has been correlated with the growth of various plant organs, we investigated using Western Blot and immunolocalization studies with antibody against PsEXP1, whether this protein was accumulated in the expanding cells of nodule. Immunoblot results indicated the presence of a 30-kDa band specific for pea root nodules. The EXP proteins content rose during growth of pea root nodules. Expansin(s protein was localized in nodule apoplast as well as in the infection thread walls. The enhanced amount of expansin-like proteins in meristematic part of nodule, root and shoot was shown. The localization of this protein in the meristematic cell walls can be related to the loosening of plant cell wall before cell enlargement. Both, plant cell enlargement and infection thread growth require activity of expansin(s. Possible involvement of EXPs in the process of pea root nodule development is also discussed.

  19. Cotton Ascorbate Oxidase Promotes Cell Growth in Cultured Tobacco Bright Yellow-2 Cells through Generation of Apoplast Oxidation

    Science.gov (United States)

    Li, Rong; Xin, Shan; Tao, Chengcheng; Jin, Xiang; Li, Hongbin

    2017-01-01

    Ascorbate oxidase (AO) plays an important role in cell growth through the modulation of reduction/oxidation (redox) control of the apoplast. Here, a cotton (Gossypium hirsutum) apoplastic ascorbate oxidase gene (GhAO1) was obtained from fast elongating fiber tissues. GhAO1 belongs to the multicopper oxidase (MCO) family and includes a signal peptide and several transmembrane regions. Analyses of quantitative real-time polymerase chain reaction (QRT-PCR) and enzyme activity showed that GhAO1 was expressed abundantly in 15-day post-anthesis (dpa) wild-type (WT) fibers in comparison with fuzzless-lintless (fl) mutant ovules. Subcellular distribution analysis in onion cells demonstrated that GhAO1 is localized in the cell wall. In transgenic tobacco bright yellow-2 (BY-2) cells with ectopic overexpression of GhAO1, the enhancement of cell growth with 1.52-fold increase in length versus controls was indicated, as well as the enrichment of both total ascorbate in whole-cells and dehydroascorbate acid (DHA) in apoplasts. In addition, promoted activities of AO and monodehydroascorbate reductase (MDAR) in apoplasts and dehydroascorbate reductase (DHAR) in whole-cells were displayed in transgenic tobacco BY-2 cells. Accumulation of H2O2, and influenced expressions of Ca2+ channel genes with the activation of NtMPK9 and NtCPK5 and the suppression of NtTPC1B were also demonstrated in transgenic tobacco BY-2 cells. Finally, significant induced expression of the tobacco NtAO gene in WT BY-2 cells under indole-3-acetic acid (IAA) treatment appeared; however, the sensitivity of the NtAO gene expression to IAA disappeared in transgenic BY-2 cells, revealing that the regulated expression of the AO gene is under the control of IAA. Taken together, these results provide evidence that GhAO1 plays an important role in fiber cell elongation and may promote cell growth by generating the oxidation of apoplasts, via the auxin-mediated signaling pathway. PMID:28644407

  20. Salicylic acid signaling inhibits apoplastic reactive oxygen species signaling.

    Science.gov (United States)

    Xu, Enjun; Brosché, Mikael

    2014-06-04

    Reactive oxygen species (ROS) are used by plants as signaling molecules during stress and development. Given the amount of possible challenges a plant face from their environment, plants need to activate and prioritize between potentially conflicting defense signaling pathways. Until recently, most studies on signal interactions have focused on phytohormone interaction, such as the antagonistic relationship between salicylic acid (SA)-jasmonic acid and cytokinin-auxin. In this study, we report an antagonistic interaction between SA signaling and apoplastic ROS signaling. Treatment with ozone (O3) leads to a ROS burst in the apoplast and induces extensive changes in gene expression and elevation of defense hormones. However, Arabidopsis thaliana dnd1 (defense no death1) exhibited an attenuated response to O3. In addition, the dnd1 mutant displayed constitutive expression of defense genes and spontaneous cell death. To determine the exact process which blocks the apoplastic ROS signaling, double and triple mutants involved in various signaling pathway were generated in dnd1 background. Simultaneous elimination of SA-dependent and SA-independent signaling components from dnd1 restored its responsiveness to O3. Conversely, pre-treatment of plants with SA or using mutants that constitutively activate SA signaling led to an attenuation of changes in gene expression elicited by O3. Based upon these findings, we conclude that plants are able to prioritize the response between ROS and SA via an antagonistic action of SA and SA signaling on apoplastic ROS signaling.

  1. IDENTIFICATION AND FUNCTIONAL ANNOTATION OF APOPLASTIC PHOSPHOPROTEINS OF HIPPOPHAE RHAMNOIDES SEEDLINGS

    Directory of Open Access Journals (Sweden)

    Ravi Gupta

    2016-12-01

    Full Text Available Phosphorylation is a reversible switch that regulates the biological activities of the proteins. Although there are ample of reports on the plant phosphoproteome analysis, phosphorylation status of apoplastic proteins has not been investigated profoundly. Here a shotgun proteomics approach was used to identify the phosphoproteins from the apoplast of the Hippophae rhamnoides (Seabuckthorn. A total of 123 phosphoproteins were identified using an SYNAPT G2 quadrupole time-of-flight mass spectrometer (Q-ToF-MS. Functional annotation of the identified phosphoproteins using PANTHER, Gene ontology, and KEGG programs showed that the majority of proteins were associated with the transporter, nucleic acid binding and amino acid metabolic activities. Prediction of secretory nature of the identified proteins using SignalP and SecretomeP servers showed that 56 % of the proteins were secretory, while rest of the 44 % of the proteins were non-secretory. PhosPhAt 4.0 detected 534 putative phosphorylation sites in the 75 unique Arabidopsis annotated proteins, wherein 195 (36% were on the serine residue, 196 (37% were on the threonine residue and 143 (27% were detected on the tyrosine residue. Taken together, our results provide the first insight into the phosphorylation-mediated regulation of apoplastic proteins by cellular processes, which would be helpful in an in-depth understanding of the apoplastic signaling

  2. Apoplastic pH in corn root gravitropism: a laser scanning confocal microscopy measurement

    International Nuclear Information System (INIS)

    Taylor, D.P.; Slattery, J.; Leopold, A.C.

    1996-01-01

    The ability to measure the pH of the apoplast in situ is of special interest as a test of the cell wall acidification theory. Optical sectioning of living seedlings of corn roots using the laser scanning confocal microscope (LSCM) permits us to make pH measurements in living tissue. The pH of the apoplast of corn roots was measured by this method after infiltration with CI-NERF, a pH-sensitive dye, along with Texas Red Dextran 3000, a pH-insensitive dye, as an internal standard. In the elongation zone of corn roots, the mean apoplastic pH was 4.9. Upon gravitropic stimulation, the pH on the convex side of actively bending roots was 4.5. The lowering of the apoplastic pH by 0.4 units appears to be sufficient to account for the increased growth on that side. This technique provides site-specific evidence for the acid growth theory of cell elongation. The LSCM permits measurements of the pH of living tissues, and has a sensitivity of approximately 0.2 pH units. (author)

  3. A paralogous decoy protects Phytophthora sojae apoplastic effector PsXEG1 from a host inhibitor.

    Science.gov (United States)

    Ma, Zhenchuan; Zhu, Lin; Song, Tianqiao; Wang, Yang; Zhang, Qi; Xia, Yeqiang; Qiu, Min; Lin, Yachun; Li, Haiyang; Kong, Liang; Fang, Yufeng; Ye, Wenwu; Wang, Yan; Dong, Suomeng; Zheng, Xiaobo; Tyler, Brett M; Wang, Yuanchao

    2017-02-17

    The extracellular space (apoplast) of plant tissue represents a critical battleground between plants and attacking microbes. Here we show that a pathogen-secreted apoplastic xyloglucan-specific endoglucanase, PsXEG1, is a focus of this struggle in the Phytophthora sojae -soybean interaction. We show that soybean produces an apoplastic glucanase inhibitor protein, GmGIP1, that binds to PsXEG1 to block its contribution to virulence. P. sojae , however, secretes a paralogous PsXEG1-like protein, PsXLP1, that has lost enzyme activity but binds to GmGIP1 more tightly than does PsXEG1, thus freeing PsXEG1 to support P. sojae infection. The gene pair encoding PsXEG1 and PsXLP1 is conserved in many Phytophthora species, and the P. parasitica orthologs PpXEG1 and PpXLP1 have similar functions. Thus, this apoplastic decoy strategy may be widely used in Phytophthora pathosystems. Copyright © 2017, American Association for the Advancement of Science.

  4. Autohydrolysis of plant xylans by apoplastic expression of thermophilic bacterial endo-xylanases

    DEFF Research Database (Denmark)

    Borkhardt, Bernhard; Harholt, Jesper; Ulvskov, Peter Bjarne

    2010-01-01

    The genes encoding the two endo-xylanases XynA and XynB from the thermophilic bacterium Dictyoglomus thermophilum were codon optimized for expression in plants. Both xylanases were designed to be constitutively expressed under the control of the CaMV 35S promoter and targeted to the apoplast....... Transient expression in tobacco and stable expression in transgenic Arabidopsis showed that both enzymes were expressed in an active form with temperature optima at 85 °C. Transgenic Arabidopsis accumulating heterologous endo-xylanases appeared phenotypically normal and were fully fertile. The highest...... xylanase activity in Arabidopsis was found in dry stems indicating that the enzymes were not degraded during stem senescence. High levels of enzyme activity were maintained in cell-free extracts from dry transgenic stems during incubation at 85 °C for 24 h. Analysis of cell wall polysaccharides after heat...

  5. Unraveling incompatibility between wheat and the fungal pathogen Zymoseptoria tritici through apoplastic proteomics.

    Science.gov (United States)

    Yang, Fen; Li, Wanshun; Derbyshire, Mark; Larsen, Martin R; Rudd, Jason J; Palmisano, Giuseppe

    2015-05-08

    Hemibiotrophic fungal pathogen Zymoseptoria tritici causes severe foliar disease in wheat. However, current knowledge of molecular mechanisms involved in plant resistance to Z. tritici and Z. tritici virulence factors is far from being complete. The present work investigated the proteome of leaf apoplastic fluid with emphasis on both host wheat and Z. tritici during the compatible and incompatible interactions. The proteomics analysis revealed rapid host responses to the biotrophic growth, including enhanced carbohydrate metabolism, apoplastic defenses and stress, and cell wall reinforcement, might contribute to resistance. Compatibility between the host and the pathogen was associated with inactivated plant apoplastic responses as well as fungal defenses to oxidative stress and perturbation of plant cell wall during the initial biotrophic stage, followed by the strong induction of plant defenses during the necrotrophic stage. To study the role of anti-oxidative stress in Z. tritici pathogenicity in depth, a YAP1 transcription factor regulating antioxidant expression was deleted and showed the contribution to anti-oxidative stress in Z. tritici, but was not required for pathogenicity. This result suggests the functional redundancy of antioxidants in the fungus. The data demonstrate that incompatibility is probably resulted from the proteome-level activation of host apoplastic defenses as well as fungal incapability to adapt to stress and interfere with host cell at the biotrophic stage of the interaction.

  6. Cadmium accumulation in the rootless macrophyte Wolffia globosa and its potential for phytoremediation.

    Science.gov (United States)

    Xie, Wan-Ying; Huang, Qing; Li, Gang; Rensing, Christopher; Zhu, Yong-Guan

    2013-01-01

    Cadmium (Cd) pollution around the world is a serious issue demanding acceptable solutions, one of which is phytoremediation that is both cost-effective and eco-friendly. Removal of Cd from contaminated water using plants with high growth rates and sufficient Cd accumulation abilities could be an appropriate choice. Here, we investigated a potential Cd accumulator, Wolffia, a rootless duckweed with high growth rate. Cd uptake, accumulation, tolerance, and phytofiltration ability by Wolffia globosa were examined. Furthermore, the effects of arsenic (As) on Cd uptake and phytofiltration by W. globosa were also studied. Cd uptake kinetics showed a linear pattern and a hyperbolic pattern without a plateau in lower (0-2 microM) and higher (0-200 microM) Cd concentration ranges, respectively, suggesting rapid Cd uptake by W. globosa Cd accumulation ability by W. globosa was higher at Cd concentrations 10 microM. All the five species of Wolffia exposed to I microM Cd for 5 days accumulated > 500 mg Cd kg(-1) DW. Ten gram fresh W. globosa could diminish almost all the Cd (2 microM) in a 200 mL solution. This enormous accumulation ability was mostly due to passive adsorption of Cd by the apoplast. Arsenic had no significant effect on Cd uptake and phytofiltration. The fresh fronds also showed a great As extracting ability. The results indicated that Wolffia is a strong Cd accumulator and has great Cd phytoremediation potential. Therefore, this plant can be used in fresh aquatic environments co-contaminated by low-levels of Cd and As.

  7. Freezing avoidance by supercooling in Olea europaea cultivars: the role of apoplastic water, solute content and cell wall rigidity.

    Science.gov (United States)

    Arias, Nadia S; Bucci, Sandra J; Scholz, Fabian G; Goldstein, Guillermo

    2015-10-01

    Plants can avoid freezing damage by preventing extracellular ice formation below the equilibrium freezing temperature (supercooling). We used Olea europaea cultivars to assess which traits contribute to avoid ice nucleation at sub-zero temperatures. Seasonal leaf water relations, non-structural carbohydrates, nitrogen and tissue damage and ice nucleation temperatures in different plant parts were determined in five cultivars growing in the Patagonian cold desert. Ice seeding in roots occurred at higher temperatures than in stems and leaves. Leaves of cold acclimated cultivars supercooled down to -13 °C, substantially lower than the minimum air temperatures observed in the study site. During winter, leaf ice nucleation and leaf freezing damage (LT50 ) occurred at similar temperatures, typical of plant tissues that supercool. Higher leaf density and cell wall rigidity were observed during winter, consistent with a substantial acclimation to sub-zero temperatures. Larger supercooling capacity and lower LT50 were observed in cold-acclimated cultivars with higher osmotically active solute content, higher tissue elastic adjustments and lower apoplastic water. Irreversible leaf damage was only observed in laboratory experiments at very low temperatures, but not in the field. A comparative analysis of closely related plants avoids phylogenetic independence bias in a comparative study of adaptations to survive low temperatures. © 2015 John Wiley & Sons Ltd.

  8. Proline accumulation, ions dynamics and sodium root-shoot partition and compartmentation

    Directory of Open Access Journals (Sweden)

    Jesus Emanuel eBojorquez Quintal

    2014-11-01

    Full Text Available Despite its economic relevance, little is known about salt tolerance mechanisms in pepper plants. To address this question, we compared differences in responses to NaCl in two Capsicum chinense varieties: Rex (tolerant and Chichen-Itza (sensitive. Under salt stress (150 mM NaCl over 7 days roots of Rex variety accumulated 50 times more compatible solutes such as proline compared to Chichen-Itza. Mineral analysis indicated that Na+ is restricted to roots by preventing its transport to leaves. Fluorescence analysis suggested an efficient Na+ compartmentalization in vacuole-like structures and in small intracellular compartments in roots of Rex variety. At the same time, Na+ in Chichen-Itza plants was compartmentalized in the apoplast, suggesting substantial Na+ extrusion. Rex variety was found to retain more K+ in its roots under salt stress according to a mineral analysis and microelectrode ion flux estimation (MIFE. Vanadate-sensitive H+ efflux was higher in Chichen-Itza variety plants, suggesting a higher activity of the plasma membrane H+-ATPase, which fuels the extrusion of Na+, and, possibly, also the re-uptake of K+. Our results suggest a combination of stress tolerance mechanisms, in order to alleviate the salt-induced injury. Furthermore, Na+ extrusion to apoplast does not appear to be an efficient strategy for salt tolerance in pepper plants.

  9. Ozone tolerance in snap bean is associated with elevated ascorbic acid in the leaf apoplast

    Energy Technology Data Exchange (ETDEWEB)

    Burkey, K.O. [North Carolina State Univ., United States Dept. of Agriculture-Agricultural Research Service, and Dept. of Crop Science, Raleigh, NC (United States); Eason, G. [North Carolina, State Univ., United States Dept. of Plant Pathology, Raleigh, NC (United States)

    2002-03-01

    Ascorbic acid (AA) in the leaf apoplast has the potential to limit ozone injury by participating in reactions that detoxify ozone and reactive oxygen intermediates and thus prevent plasma membrane damage. Genotypes of snap bean (Phaseolus vulgaris L) were compared in controlled environments and in open-top field chambers to assess the relationship between extracellular AA content and ozone tolerance. Vacuum infiltration methods were employed to separate leaf AA into extracellular and intracellular fractions. For plants grown in controlled environments at low ozone concentration (4 nmol mol{sup -1} ozone), leaf apoplast AA was significantly higher in tolerant genotypes (300-400 nmol g{sup -1} FW) compared with sensitive genotypes (approximately 50 nmol g{sup -1} FW), evidence that ozone tolerance is associated with elevated extracellular AA. For the open top chamber study, plants were grown in pots under charcoal-filtered air (CF) conditions and then either maintained under CF conditions (29 nmol mol{sup -1} ozone) or exposed to elevated ozone (67 nmol mol{sup -1} ozone). Following an 8-day treatment period, leaf apoplast AA was in the range of 100-190 nmol g{sup -1} FW for all genotypes, but no relationship was observed between apoplast AA content and ozone tolerance. The contrasting results in the two studies demonstrated a potential limitation in the interpretation of extracellular AA data. Apoplast AA levels presumably reflect the steady-state condition between supply from the cytoplasm and utilization within the cell wall. The capacity to detoxify ozone in the extracellular space may be underestimated under elevated ozone conditions where the dynamics of AA supply and utilization are not adequately represented by a steady-state measurement. (au)

  10. Apoplastic ascorbate contributes to the differential ozone sensitivity in two varieties of winter wheat under fully open-air field conditions

    International Nuclear Information System (INIS)

    Feng Zhaozhong; Pang Jing; Nouchi, Isamu; Kobayashi, Kazuhiko; Yamakawa, Takashi; Zhu Jianguo

    2010-01-01

    We studied leaf apoplastic ascorbates in relation to ozone (O 3 ) sensitivity in two winter wheat (Triticum aestivum L.) varieties: Yangfumai 2 (Y2) and Yangmai 16 (Y16). The plants were exposed to elevated O 3 concentration 27% higher than the ambient O 3 concentration in a fully open-air field from tillering stage until final maturity. The less sensitive variety Y16 had higher concentration of reduced ascorbate in the apoplast and leaf tissue by 33.5% and 12.0%, respectively, than those in the more sensitive variety Y2, whereas no varietal difference was detected in the decline of reduced ascorbate concentration in response to elevated O 3 . No effects of O 3 or variety were detected in either oxidized ascorbate or the redox state of ascorbate in the apoplast and leaf tissue. The lower ascorbate concentrations in both apoplast and leaf tissue should have contributed to the higher O 3 sensitivity in variety Y2. - Apoplastic ascorbate contributes to varietal difference in wheat tolerance to O 3 .

  11. Composite Transport Model and Water and Solute Transport across Plant Roots: An Update.

    Science.gov (United States)

    Kim, Yangmin X; Ranathunge, Kosala; Lee, Seulbi; Lee, Yejin; Lee, Deogbae; Sung, Jwakyung

    2018-01-01

    The present review examines recent experimental findings in root transport phenomena in terms of the composite transport model (CTM). It has been a well-accepted conceptual model to explain the complex water and solute flows across the root that has been related to the composite anatomical structure. There are three parallel pathways involved in the transport of water and solutes in roots - apoplast, symplast, and transcellular paths. The role of aquaporins (AQPs), which facilitate water flows through the transcellular path, and root apoplast is examined in terms of the CTM. The contribution of the plasma membrane bound AQPs for the overall water transport in the whole plant level was varying depending on the plant species, age of roots with varying developmental stages of apoplastic barriers, and driving forces (hydrostatic vs. osmotic). Many studies have demonstrated that the apoplastic barriers, such as Casparian bands in the primary anticlinal walls and suberin lamellae in the secondary cell walls, in the endo- and exodermis are not perfect barriers and unable to completely block the transport of water and some solute transport into the stele. Recent research on water and solute transport of roots with and without exodermis triggered the importance of the extension of conventional CTM adding resistances that arrange in series (epidermis, exodermis, mid-cortex, endodermis, and pericycle). The extension of the model may answer current questions about the applicability of CTM for composite water and solute transport of roots that contain complex anatomical structures with heterogeneous cell layers.

  12. Protein profile of Beta vulgaris leaf apoplastic fluid and changes induced by Fe deficiency and Fe resupply

    Directory of Open Access Journals (Sweden)

    Laura eCeballos-Laita

    2015-03-01

    Full Text Available The fluid collected by direct leaf centrifugation has been used to study the proteome of the sugar beet apoplastic fluid as well as the changes induced by Fe deficiency and Fe resupply to Fe-deficient plants in the protein profile. Plants were grown in Fe-sufficient and Fe-deficient conditions, and Fe resupply was carried out with 45 μM Fe(III-EDTA for 24 h. Protein extracts of leaf apoplastic fluid were analyzed by two-dimensional isoelectric focusing-SDS-PAGE electrophoresis. Gel image analysis revealed 203 consistent spots, and proteins in 81% of them (164 were identified by nLC-MS/MS using a custom made reference repository of beet protein sequences. When redundant UniProt entries were deleted, a non-redundant leaf apoplastic proteome consisting of 109 proteins was obtained. TargetP and SecretomeP algorithms predicted that 63% of them were secretory proteins. Functional classification of the non-redundant proteins indicated that stress and defense, protein metabolism, cell wall and C metabolism accounted for approximately 75% of the identified proteome. The effects of Fe-deficiency on the leaf apoplast proteome were limited, with only five spots (2.5% changing in relative abundance, thus suggesting that protein homeostasis in the leaf apoplast fluid is well maintained upon Fe shortage. The identification of three chitinase isoforms among proteins increasing in relative abundance with Fe-deficiency suggests that one of the few effects of Fe deficiency in the leaf apoplast proteome includes cell wall modifications. Iron resupply to Fe deficient plants changed the relative abundance of 16 spots when compared to either Fe-sufficient or Fe-deficient samples. Proteins identified in these spots can be broadly classified as those responding to Fe-resupply, which included defense and cell wall related proteins, and non-responsive, which are mainly protein metabolism related proteins and whose changes in relative abundance followed the same trend as

  13. Composite Transport Model and Water and Solute Transport across Plant Roots: An Update

    Directory of Open Access Journals (Sweden)

    Yangmin X. Kim

    2018-02-01

    Full Text Available The present review examines recent experimental findings in root transport phenomena in terms of the composite transport model (CTM. It has been a well-accepted conceptual model to explain the complex water and solute flows across the root that has been related to the composite anatomical structure. There are three parallel pathways involved in the transport of water and solutes in roots – apoplast, symplast, and transcellular paths. The role of aquaporins (AQPs, which facilitate water flows through the transcellular path, and root apoplast is examined in terms of the CTM. The contribution of the plasma membrane bound AQPs for the overall water transport in the whole plant level was varying depending on the plant species, age of roots with varying developmental stages of apoplastic barriers, and driving forces (hydrostatic vs. osmotic. Many studies have demonstrated that the apoplastic barriers, such as Casparian bands in the primary anticlinal walls and suberin lamellae in the secondary cell walls, in the endo- and exodermis are not perfect barriers and unable to completely block the transport of water and some solute transport into the stele. Recent research on water and solute transport of roots with and without exodermis triggered the importance of the extension of conventional CTM adding resistances that arrange in series (epidermis, exodermis, mid-cortex, endodermis, and pericycle. The extension of the model may answer current questions about the applicability of CTM for composite water and solute transport of roots that contain complex anatomical structures with heterogeneous cell layers.

  14. Bacterially produced Pt-GFP as ratiometric dual-excitation sensor for in planta mapping of leaf apoplastic pH in intact Avena sativa and Vicia faba.

    Science.gov (United States)

    Geilfus, Christoph-Martin; Mühling, Karl H; Kaiser, Hartmut; Plieth, Christoph

    2014-01-01

    Ratiometric analysis with H(+)-sensitive fluorescent sensors is a suitable approach for monitoring apoplastic pH dynamics. For the acidic range, the acidotropic dual-excitation dye Oregon Green 488 is an excellent pH sensor. Long lasting (hours) recordings of apoplastic pH in the near neutral range, however, are more problematic because suitable pH indicators that combine a good pH responsiveness at a near neutral pH with a high photostability are lacking. The fluorescent pH reporter protein from Ptilosarcus gurneyi (Pt-GFP) comprises both properties. But, as a genetically encoded indicator and expressed by the plant itself, it can be used almost exclusively in readily transformed plants. In this study we present a novel approach and use purified recombinant indicators for measuring ion concentrations in the apoplast of crop plants such as Vicia faba L. and Avena sativa L. Pt-GFP was purified using a bacterial expression system and subsequently loaded through stomata into the leaf apoplast of intact plants. Imaging verified the apoplastic localization of Pt-GFP and excluded its presence in the symplast. The pH-dependent emission signal stood out clearly from the background. PtGFP is highly photostable, allowing ratiometric measurements over hours. By using this approach, a chloride-induced alkalinizations of the apoplast was demonstrated for the first in oat. Pt-GFP appears to be an excellent sensor for the quantification of leaf apoplastic pH in the neutral range. The presented approach encourages to also use other genetically encoded biosensors for spatiotemporal mapping of apoplastic ion dynamics.

  15. Early changes of the pH of the apoplast are different in leaves, stem and roots of Vicia faba L. under declining water availability.

    Science.gov (United States)

    Karuppanapandian, T; Geilfus, C-M; Mühling, K-H; Novák, O; Gloser, V

    2017-02-01

    Changes in pH of the apoplast have recently been discussed as an important factor in adjusting transpiration and water relations under conditions of drought via modulatory effect on abscisic acid (ABA) concentration. Using Vicia faba L., we investigated whether changes in the root, shoot and leaf apoplastic pH correlated with (1) a drought-induced reduction in transpiration and with (2) changes in ABA concentration. Transpiration, leaf water potential and ABA in leaves were measured and correlated with root and shoot xylem pH, determined by a pH microelectrode, and pH of leaf apoplast quantified by microscopy-based in vivo ratiometric analysis. Results revealed that a reduction in transpiration rate in the early phase of soil drying could not be linked with changes in the apoplastic pH via effects on the stomata-regulating hormone ABA. Moreover, drought-induced increase in pH of xylem or leaf apoplast was not the remote effect of an acropetal transport of alkaline sap from root, because root xylem acidified during progressive soil drying, whereas the shoot apoplast alkalized. We reason that other, yet unknown signalling mechanism was responsible for reduction of transpiration rate in the early phase of soil drying. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Root anatomy and element distribution vary between two Salix caprea isolates with different Cd accumulation capacities

    International Nuclear Information System (INIS)

    Vaculík, Marek; Konlechner, Cornelia; Langer, Ingrid; Adlassnig, Wolfram; Puschenreiter, Markus; Lux, Alexander; Hauser, Marie-Theres

    2012-01-01

    The understanding of the influence of toxic elements on root anatomy and element distribution is still limited. This study describes anatomical responses, metal accumulation and element distribution of rooted cuttings of Salix caprea after exposure to Cd and/or Zn. Differences in the development of apoplastic barriers and tissue organization in roots between two distinct S. caprea isolates with divergent Cd uptake and accumulation capacities in leaves might reflect an adaptive predisposition based on different natural origins. Energy-dispersive X-ray spectroscopy (EDX) revealed that Cd and Zn interfered with the distribution of elements in a tissue- and isolate-specific manner. Zinc, Ca, Mg, Na and Si were enriched in the peripheral bark, K and S in the phloem and Cd in both vascular tissues. Si levels were lower in the superior Cd translocator. Since the cuttings originated from stocks isolated from polluted and unpolluted sites we probably uncovered different strategies against toxic elements. - Highlights: ► We describe responses in roots of S. caprea exposed to Cd and Zn. ► Apoplastic barrier development varied among isolates from differently polluted sites. ► EDX analyses revealed variations of element distributions in root tissues. ► Si weight% was lower in the isolate with a higher Cd translocation capacity. ► S. caprea isolates possessed different strategies to respond to Cd and Zn. - S. caprea altered element distribution and translocation, apoplastic barrier development and root anatomy upon Cd and/or Zn exposure.

  17. Cell-specific vacuolar calcium storage mediated by CAX1 regulates apoplastic calcium concentration, gas exchange, and plant productivity in Arabidopsis.

    Science.gov (United States)

    Conn, Simon J; Gilliham, Matthew; Athman, Asmini; Schreiber, Andreas W; Baumann, Ute; Moller, Isabel; Cheng, Ning-Hui; Stancombe, Matthew A; Hirschi, Kendal D; Webb, Alex A R; Burton, Rachel; Kaiser, Brent N; Tyerman, Stephen D; Leigh, Roger A

    2011-01-01

    The physiological role and mechanism of nutrient storage within vacuoles of specific cell types is poorly understood. Transcript profiles from Arabidopsis thaliana leaf cells differing in calcium concentration ([Ca], epidermis 60 mM) were compared using a microarray screen and single-cell quantitative PCR. Three tonoplast-localized Ca(2+) transporters, CAX1 (Ca(2+)/H(+)-antiporter), ACA4, and ACA11 (Ca(2+)-ATPases), were identified as preferentially expressed in Ca-rich mesophyll. Analysis of respective loss-of-function mutants demonstrated that only a mutant that lacked expression of both CAX1 and CAX3, a gene ectopically expressed in leaves upon knockout of CAX1, had reduced mesophyll [Ca]. Reduced capacity for mesophyll Ca accumulation resulted in reduced cell wall extensibility, stomatal aperture, transpiration, CO(2) assimilation, and leaf growth rate; increased transcript abundance of other Ca(2+) transporter genes; altered expression of cell wall-modifying proteins, including members of the pectinmethylesterase, expansin, cellulose synthase, and polygalacturonase families; and higher pectin concentrations and thicker cell walls. We demonstrate that these phenotypes result from altered apoplastic free [Ca(2+)], which is threefold greater in cax1/cax3 than in wild-type plants. We establish CAX1 as a key regulator of apoplastic [Ca(2+)] through compartmentation into mesophyll vacuoles, a mechanism essential for optimal plant function and productivity.

  18. A genetic screen reveals Arabidopsis stomatal and/or apoplastic defenses against Pseudomonas syringae pv. tomato DC3000.

    Directory of Open Access Journals (Sweden)

    Weiqing Zeng

    2011-10-01

    Full Text Available Bacterial infection of plants often begins with colonization of the plant surface, followed by entry into the plant through wounds and natural openings (such as stomata, multiplication in the intercellular space (apoplast of the infected tissues, and dissemination of bacteria to other plants. Historically, most studies assess bacterial infection based on final outcomes of disease and/or pathogen growth using whole infected tissues; few studies have genetically distinguished the contribution of different host cell types in response to an infection. The phytotoxin coronatine (COR is produced by several pathovars of Pseudomonas syringae. COR-deficient mutants of P. s. tomato (Pst DC3000 are severely compromised in virulence, especially when inoculated onto the plant surface. We report here a genetic screen to identify Arabidopsis mutants that could rescue the virulence of COR-deficient mutant bacteria. Among the susceptible to coronatine-deficient Pst DC3000 (scord mutants were two that were defective in stomatal closure response, two that were defective in apoplast defense, and four that were defective in both stomatal and apoplast defense. Isolation of these three classes of mutants suggests that stomatal and apoplastic defenses are integrated in plants, but are genetically separable, and that COR is important for Pst DC3000 to overcome both stomatal guard cell- and apoplastic mesophyll cell-based defenses. Of the six mutants defective in bacterium-triggered stomatal closure, three are defective in salicylic acid (SA-induced stomatal closure, but exhibit normal stomatal closure in response to abscisic acid (ABA, and scord7 is compromised in both SA- and ABA-induced stomatal closure. We have cloned SCORD3, which is required for salicylic acid (SA biosynthesis, and SCORD5, which encodes an ATP-binding cassette (ABC protein, AtGCN20/AtABCF3, predicted to be involved in stress-associated protein translation control. Identification of SCORD5 begins to

  19. Mechanisms of salt tolerance in habanero pepper plants (Capsicum chinense Jacq.): Proline accumulation, ions dynamics and sodium root-shoot partition and compartmentation.

    Science.gov (United States)

    Bojórquez-Quintal, Emanuel; Velarde-Buendía, Ana; Ku-González, Angela; Carillo-Pech, Mildred; Ortega-Camacho, Daniela; Echevarría-Machado, Ileana; Pottosin, Igor; Martínez-Estévez, Manuel

    2014-01-01

    Despite its economic relevance, little is known about salt tolerance mechanisms in pepper plants. To address this question, we compared differences in responses to NaCl in two Capsicum chinense varieties: Rex (tolerant) and Chichen-Itza (sensitive). Under salt stress (150 mM NaCl over 7 days) roots of Rex variety accumulated 50 times more compatible solutes such as proline compared to Chichen-Itza. Mineral analysis indicated that Na(+) is restricted to roots by preventing its transport to leaves. Fluorescence analysis suggested an efficient Na(+) compartmentalization in vacuole-like structures and in small intracellular compartments in roots of Rex variety. At the same time, Na(+) in Chichen-Itza plants was compartmentalized in the apoplast, suggesting substantial Na(+) extrusion. Rex variety was found to retain more K(+) in its roots under salt stress according to a mineral analysis and microelectrode ion flux estimation (MIFE). Vanadate-sensitive H(+) efflux was higher in Chichen-Itza variety plants, suggesting a higher activity of the plasma membrane H(+)-ATPase, which fuels the extrusion of Na(+), and, possibly, also the re-uptake of K(+). Our results suggest a combination of stress tolerance mechanisms, in order to alleviate the salt-induced injury. Furthermore, Na(+) extrusion to apoplast does not appear to be an efficient strategy for salt tolerance in pepper plants.

  20. Effect of greenhouse conditions on the leaf apoplastic proteome of Coffea arabica plants.

    Science.gov (United States)

    Guerra-Guimarães, Leonor; Vieira, Ana; Chaves, Inês; Pinheiro, Carla; Queiroz, Vagner; Renaut, Jenny; Ricardo, Cândido P

    2014-06-02

    This work describes the coffee leaf apoplastic proteome and its modulation by the greenhouse conditions. The apoplastic fluid (APF) was obtained by leaf vacuum infiltration, and the recovered proteins were separated by 2-DE and subsequently identified by matrix assisted laser desorption/ionization time of flight-mass spectrometry, followed by homology search in EST coffee databases. Prediction tools revealed that the majority of the 195 identified proteins are involved in cell wall metabolism and in stress/defense responses. Although most of the proteins follow the classical secretory mechanism, a low percentage of them seem to result from unconventional secretion (leaderless secreted proteins). Principal components analysis revealed that the APF samples formed two distinct groups, with the temperature amplitude mostly contributing for this separation (higher or lower than 10°C, respectively). Sixty one polypeptide spots allowed defining these two groups and 28 proteins were identified, belonging to carbohydrate metabolism, cell wall modification and proteolysis. Interestingly stress/defense proteins appeared as more abundant in Group I which is associated with a higher temperature amplitude. It seems that the proteins in the coffee leaf APF might be implicated in structural modifications in the extracellular space that are crucial for plant development/adaptation to the conditions of the prevailing environment. This is the first detailed proteomic study of the coffee leaf apoplastic fluid (APF) and of its modulation by the greenhouse conditions. The comprehensive overview of the most abundant proteins present in the extra-cellular compartment is particularly important for the understanding of coffee responses to abiotic/biotic stress. This article is part of a Special Issue entitled: Environmental and structural proteomics. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Lead accumulation in the aquatic fern Azolla filiculoides.

    Science.gov (United States)

    Oren Benaroya, Rony; Tzin, Vered; Tel-Or, Elisha; Zamski, Eli

    2004-01-01

    In this study, we characterized lead (Pb2+) accumulation and storage by the aquatic fern Azolla filiculoides. Lead precipitates were detected in the vacuoles of mesophyll cells of Azolla plants cultured for 6 d in rich growth medium containing 20 mg l(-1) Pb2+. Energy dispersive spectroscopy (EDS) analysis of the relative element content of leaves collected from these plants revealed a 100% increase in the levels of P, S, Na and Ca and a 40% decrease in Mg and Cl compared to the untreated plants. Both Azolla whole plants and isolated apoplasts were incubated for 6 d in 20 mg l(-1) Pb2+. Lead content in the whole plant composed 0.37%, 2.3% and 1.8% of the dry weight after 2, 4 and 6 d of growth, respectively, while the isolated Azolla apoplast contained 0.125%, 1.22% and 1.4% Pb2+, respectively. Lead content in Azolla whole plant increase by 200%, 100% and 22% after 2, 4 and 6 d of growth, respectively, when compared to Azolla apoplast. Dark, electron dense deposits of lead were observed in light and transmission electron microscope in leaf cells treated with lead. All the observed lead deposits were localized in vacuoles while larger lead deposits were found in mature leaves than in young leaves. No lead deposits were found in cells of the cyanobiont Anabaena when the plants were exposed to similar conditions. Activity and content of V-H+-ATPase were studied in Azolla plants grown in the presence of 20, 40 and 80 mg l(-1) of lead for a period of 4 d. Activity of V-H+-ATPase was increased by 190%, 210% and 220%, respectively, but the content of V-H+-ATPase was reduced by all lead concentrations. Copyright 2004 Elsevier SAS

  2. The composite water and solute transport of barley (Hordeum vulgare) roots: effect of suberized barriers.

    Science.gov (United States)

    Ranathunge, Kosala; Kim, Yangmin X; Wassmann, Friedrich; Kreszies, Tino; Zeisler, Viktoria; Schreiber, Lukas

    2017-03-01

    Roots have complex anatomical structures, and certain localized cell layers develop suberized apoplastic barriers. The size and tightness of these barriers depend on the growth conditions and on the age of the root. Such complex anatomical structures result in a composite water and solute transport in roots. Development of apoplastic barriers along barley seminal roots was detected using various staining methods, and the suberin amounts in the apical and basal zones were analysed using gas chromatography-mass spectometry (GC-MS). The hydraulic conductivity of roots ( Lp r ) and of cortical cells ( Lp c ) was measured using root and cell pressure probes. When grown in hydroponics, barley roots did not form an exodermis, even at their basal zones. However, they developed an endodermis. Endodermal Casparian bands first appeared as 'dots' as early as at 20 mm from the apex, whereas a patchy suberin lamellae appeared at 60 mm. The endodermal suberin accounted for the total suberin of the roots. The absolute amount in the basal zone was significantly higher than in the apical zone, which was inversely proportional to the Lp r . Comparison of Lp r and Lp c suggested that cell to cell pathways dominate for water transport in roots. However, the calculation of Lp r from Lp c showed that at least 26 % of water transport occurs through the apoplast. Roots had different solute permeabilities ( P sr ) and reflection coefficients ( σ sr ) for the solutes used. The σ sr was below unity for the solutes, which have virtually zero permeability for semi-permeable membranes. Suberized endodermis significantly reduces Lp r of seminal roots. The water and solute transport across barley roots is composite in nature and they do not behave like ideal osmometers. The composite transport model should be extended by adding components arranged in series (cortex, endodermis) in addition to the currently included components arranged in parallel (apoplastic, cell to cell pathways). © The

  3. Specific Hypersensitive Response–Associated Recognition of New Apoplastic Effectors from Cladosporium fulvum in Wild Tomato

    NARCIS (Netherlands)

    Mesarich, Carl H.; Ӧkmen, Bilal; Rovenich, Hanna; Griffiths, Scott A.; Wang, Changchun; Karimi Jashni, Mansoor; Mihajlovski, Aleksandar; Collemare, Jérôme; Hunziker, Lukas; Deng, Cecilia H.; Burgt, Van Der Ate; Beenen, Henriek G.; Templeton, Matthew D.; Bradshaw, Rosie E.; Wit, De Pierre J.G.M.

    2018-01-01

    Tomato leaf mold disease is caused by the biotrophic fungus Cladosporium fulvum. During infection, C. fulvum produces extracellular small secreted protein (SSP) effectors that function to promote colonization of the leaf apoplast. Resistance to the disease is governed by Cf immune receptor genes

  4. Ecological significance of compatible solute accumulation by micro-organisms: from single cells to global climate.

    Science.gov (United States)

    Welsh, D T

    2000-07-01

    The osmoadaptation of most micro-organisms involves the accumulation of K(+) ions and one or more of a restricted range of low molecular mass organic solutes, collectively termed 'compatible solutes'. These solutes are accumulated to high intracellular concentrations, in order to balance the osmotic pressure of the growth medium and maintain cell turgor pressure, which provides the driving force for cell extension growth. In this review, I discuss the alternative roles which compatible solutes may also play as intracellular reserves of carbon, energy and nitrogen, and as more general stress metabolites involved in protection of cells against other environmental stresses including heat, desiccation and freezing. Thus, the evolutionary selection for the accumulation of a specific compatible solute may not depend solely upon its function during osmoadaptation, but also upon the secondary benefits its accumulation provides, such as increased tolerance of other environmental stresses prevalent in the organism's niche or even anti-herbivory or dispersal functions in the case of dimethylsulfoniopropionate (DMSP). In the second part of the review, I discuss the ecological consequences of the release of compatible solutes to the environment, where they can provide sources of compatible solutes, carbon, nitrogen and energy for other members of the micro-flora. Finally, at the global scale the metabolism of specific compatible solutes (betaines and DMSP) in brackish water, marine and hypersaline environments may influence global climate, due to the production of the trace gases, methane and dimethylsulfide (DMS) and in the case of DMS, also couple the marine and terrestrial sulfur cycles.

  5. Root suberin forms an extracellular barrier that affects water relations and mineral nutrition in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Ivan Baxter

    2009-05-01

    Full Text Available Though central to our understanding of how roots perform their vital function of scavenging water and solutes from the soil, no direct genetic evidence currently exists to support the foundational model that suberin acts to form a chemical barrier limiting the extracellular, or apoplastic, transport of water and solutes in plant roots. Using the newly characterized enhanced suberin1 (esb1 mutant, we established a connection in Arabidopsis thaliana between suberin in the root and both water movement through the plant and solute accumulation in the shoot. Esb1 mutants, characterized by increased root suberin, were found to have reduced day time transpiration rates and increased water-use efficiency during their vegetative growth period. Furthermore, these changes in suberin and water transport were associated with decreases in the accumulation of Ca, Mn, and Zn and increases in the accumulation of Na, S, K, As, Se, and Mo in the shoot. Here, we present direct genetic evidence establishing that suberin in the roots plays a critical role in controlling both water and mineral ion uptake and transport to the leaves. The changes observed in the elemental accumulation in leaves are also interpreted as evidence that a significant component of the radial root transport of Ca, Mn, and Zn occurs in the apoplast.

  6. Cerium oxide nanoparticles alter the salt stress tolerance of Brassica napus L. by modifying the formation of root apoplastic barriers.

    Science.gov (United States)

    Rossi, Lorenzo; Zhang, Weilan; Ma, Xingmao

    2017-10-01

    Rapidly growing global population adds significant strains on the fresh water resources. Consequently, saline water is increasingly tapped for crop irrigation. Meanwhile, rapid advancement of nanotechnology is introducing more and more engineered nanoparticles into the environment and in agricultural soils. While some negative effects of ENPs on plant health at very high concentrations have been reported, more beneficial effects of ENPs at relatively low concentrations are increasingly noticed, opening doors for potential applications of nanotechnology in agriculture. In particular, we found that cerium oxide nanoparticles (CeO 2 NPs) improved plant photosynthesis in salt stressed plants. Due to the close connections between salt stress tolerance and the root anatomical structures, we postulated that CeO 2 NPs could modify plant root anatomy and improve plant salt stress tolerance. This study aimed at testing the hypothesis with Brassica napus in the presence of CeO 2 NPs (0, 500 mg kg -1 dry sand) and/or NaCl (0, 50 mM) in a growth chamber. Free hand sections of fresh roots were taken every seven days for three weeks and the suberin lamellae development was examined under a fluorescence microscope. The results confirmed the hypothesis that CeO 2 NPs modified the formation of the apoplastic barriers in Brassica roots. In salt stressed plants, CeO 2 NPs shortened the root apoplastic barriers which allowed more Na + transport to shoots and less accumulation of Na + in plant roots. The altered Na + fluxes and transport led to better physiological performance of Brassica and may lead to new applications of nanotechnology in agriculture. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Analysis of putative apoplastic effectors from the nematode, Globodera rostochiensis, and identification of an expansin-like protein that can induce and suppress host defenses.

    Science.gov (United States)

    Ali, Shawkat; Magne, Maxime; Chen, Shiyan; Côté, Olivier; Stare, Barbara Gerič; Obradovic, Natasa; Jamshaid, Lubna; Wang, Xiaohong; Bélair, Guy; Moffett, Peter

    2015-01-01

    The potato cyst nematode, Globodera rostochiensis, is an important pest of potato. Like other pathogens, plant parasitic nematodes are presumed to employ effector proteins, secreted into the apoplast as well as the host cytoplasm, to alter plant cellular functions and successfully infect their hosts. We have generated a library of ORFs encoding putative G. rostochiensis putative apoplastic effectors in vectors for expression in planta. These clones were assessed for morphological and developmental effects on plants as well as their ability to induce or suppress plant defenses. Several CLAVATA3/ESR-like proteins induced developmental phenotypes, whereas predicted cell wall-modifying proteins induced necrosis and chlorosis, consistent with roles in cell fate alteration and tissue invasion, respectively. When directed to the apoplast with a signal peptide, two effectors, an ubiquitin extension protein (GrUBCEP12) and an expansin-like protein (GrEXPB2), suppressed defense responses including NB-LRR signaling induced in the cytoplasm. GrEXPB2 also elicited defense response in species- and sequence-specific manner. Our results are consistent with the scenario whereby potato cyst nematodes secrete effectors that modulate host cell fate and metabolism as well as modifying host cell walls. Furthermore, we show a novel role for an apoplastic expansin-like protein in suppressing intra-cellular defense responses.

  8. Analysis of putative apoplastic effectors from the nematode, Globodera rostochiensis, and identification of an expansin-like protein that can induce and suppress host defenses.

    Directory of Open Access Journals (Sweden)

    Shawkat Ali

    Full Text Available The potato cyst nematode, Globodera rostochiensis, is an important pest of potato. Like other pathogens, plant parasitic nematodes are presumed to employ effector proteins, secreted into the apoplast as well as the host cytoplasm, to alter plant cellular functions and successfully infect their hosts. We have generated a library of ORFs encoding putative G. rostochiensis putative apoplastic effectors in vectors for expression in planta. These clones were assessed for morphological and developmental effects on plants as well as their ability to induce or suppress plant defenses. Several CLAVATA3/ESR-like proteins induced developmental phenotypes, whereas predicted cell wall-modifying proteins induced necrosis and chlorosis, consistent with roles in cell fate alteration and tissue invasion, respectively. When directed to the apoplast with a signal peptide, two effectors, an ubiquitin extension protein (GrUBCEP12 and an expansin-like protein (GrEXPB2, suppressed defense responses including NB-LRR signaling induced in the cytoplasm. GrEXPB2 also elicited defense response in species- and sequence-specific manner. Our results are consistent with the scenario whereby potato cyst nematodes secrete effectors that modulate host cell fate and metabolism as well as modifying host cell walls. Furthermore, we show a novel role for an apoplastic expansin-like protein in suppressing intra-cellular defense responses.

  9. A new mechanism for the regulation of stomatal aperture size in intact leaves: accumulation of mesophyll-derived sucrose in the guard-cell wall of Vicia faba

    International Nuclear Information System (INIS)

    Lu, P.; Outlaw, W.H. Jr.; Smith, B.G.; Freed, G.A.

    1997-01-01

    At various times after pulse-labeling broad bean (Vicia faba L.) leaflets with 14CO2, whole-leaf pieces and rinsed epidermal peels were harvested and subsequently processed for histochemical analysis. Cells dissected from whole leaf retained apoplastic contents, whereas those from rinsed peels contained only symplastic contents. Sucrose (Suc)-specific radioactivity peaked (111 GBq mol-1) in palisade cells at 20 min. In contrast, the 14C content and Suc-specific radioactivity were very low in guard cells for 20 min, implying little CO2 incorporation; both then peaked at 40 min. The guard-cell apoplast had a high maximum Suc-specific radioactivity (204 GBq mol-1) and a high Suc influx rate (0.05 pmol stoma-1 min-1). These and other comparisons implied the presence of (a) multiple Suc pools in mesophyll cells, (b) a localized mesophyll-apoplast region that exchanges with phloem and stomata, and (c) mesophyll-derived Suc in guard-cell walls sufficient to diminish stomatal opening by approximately 3 micrometers. Factors expected to enhance Suc accumulation in guard-cell walls are (a) high transpiration rate, which closes stomata, and (b) high apoplastic Suc concentration, which is elevated when mesophyll Suc efflux exceeds translocation. Therefore, multiple physiological factors are integrated in the attenuation of stomatal aperture size by this previously unrecognized mechanism

  10. Association between photosynthesis and contrasting features of minor veins in leaves of summer annuals loading phloem via symplastic versus apoplastic routes.

    Science.gov (United States)

    Muller, Onno; Cohu, Christopher M; Stewart, Jared J; Protheroe, Johanna A; Demmig-Adams, Barbara; Adams, William W

    2014-09-01

    Foliar vascular anatomy and photosynthesis were evaluated for a number of summer annual species that either load sugars into the phloem via a symplastic route (Cucumis sativus L. cv. Straight Eight; Cucurbita pepo L. cv. Italian Zucchini Romanesco; Citrullus lanatus L. cv. Faerie Hybrid; Cucurbita pepo L. cv. Autumn Gold) or an apoplastic route (Nicotiana tabacum L.; Solanum lycopersicum L. cv. Brandywine; Gossypium hirsutum L.; Helianthus annuus L. cv. Soraya), as well as winter annual apoplastic loaders (Spinacia oleracea L. cv. Giant Nobel; Arabidopsis thaliana (L.) Heynhold Col-0, Swedish and Italian ecotypes). For all summer annuals, minor vein cross-sectional xylem area and tracheid number as well as the ratio of phloem loading cells to phloem sieve elements, each when normalized for foliar vein density (VD), was correlated with photosynthesis. These links presumably reflect (1) the xylem's role in providing water to meet foliar transpirational demand supporting photosynthesis and (2) the importance of the driving force of phloem loading as well as the cross-sectional area for phloem sap flux to match foliar photosynthate production. While photosynthesis correlated with the product of VD and cross-sectional phloem cell area among symplastic loaders, photosynthesis correlated with the product of VD and phloem cell number per vein among summer annual apoplastic loaders. Phloem cell size has thus apparently been a target of selection among symplastic loaders (where loading depends on enzyme concentration within loading cells) versus phloem cell number among apoplastic loaders (where loading depends on membrane transporter numbers). © 2014 Scandinavian Plant Physiology Society.

  11. The redox state of the apoplast influences the acclimation of photosynthesis and leaf metabolism to changing irradiance.

    Science.gov (United States)

    Karpinska, Barbara; Zhang, Kaiming; Rasool, Brwa; Pastok, Daria; Morris, Jenny; Verrall, Susan R; Hedley, Pete E; Hancock, Robert D; Foyer, Christine H

    2018-05-01

    The redox state of the apoplast is largely determined by ascorbate oxidase (AO) activity. The influence of AO activity on leaf acclimation to changing irradiance was explored in wild-type (WT) and transgenic tobacco (Nicotiana tobaccum) lines containing either high [pumpkin AO (PAO)] or low [tobacco AO (TAO)] AO activity at low [low light (LL); 250 μmol m -2  s -1 ] and high [high light (HL); 1600 μmol m -2  s -1 ] irradiance and following the transition from HL to LL. AO activities changed over the photoperiod, particularly in the PAO plants. AO activity had little effect on leaf ascorbate, which was significantly higher under HL than under LL. Apoplastic ascorbate/dehydroascorbate (DHA) ratios and threonate levels were modified by AO activity. Despite decreased levels of transcripts encoding ascorbate synthesis enzymes, leaf ascorbate increased over the first photoperiod following the transition from HL to LL, to much higher levels than LL-grown plants. Photosynthesis rates were significantly higher in the TAO leaves than in WT or PAO plants grown under HL but not under LL. Sub-sets of amino acids and fatty acids were lower in TAO and WT leaves than in the PAO plants under HL, and following the transition to LL. Light acclimation processes are therefore influenced by the apoplastic as well as chloroplastic redox state. © 2017 John Wiley & Sons Ltd.

  12. The Physiological and Biochemical Mechanisms Providing the Increased Constitutive Cold Resistance in the Potato Plants, Expressing the Yeast SUC2 Gene Encoding Apoplastic Invertase

    Directory of Open Access Journals (Sweden)

    A.N. Deryabin

    2016-05-01

    Full Text Available The expression of heterologous genes in plants is an effective method to improve our understanding of plant resistance mechanisms. The purpose of this work was to investigate the involvement of cell-wall invertase and apoplastic sugars into constitutive cold resistance of potato (Solanum tuberosum L., cv. Dйsirйe plants, which expressed the yeast SUC2 gene encoding apoplastic invertase. WT-plants of a potato served as the control. The increase in the essential cell-wall invertase activity in the leaves of transformed plants indicates significant changes in the cellular carbohydrate metabolism and regulatory function of this enzyme. The activity of yeast invertase changed the composition of intracellular sugars in the leaves of the transformed potato plant. The total content of sugars (sucrose, glucose, fructose in the leaves and apoplast was higher in the transformants, in comparison by WT-plants. Our data indicate higher constitutive resistance of transformants to severe hypothermia conditions compared to WT-plants. This fact allows us to consider cell-wall invertase as a enzyme of carbohydrate metabolism playing an important regulatory role in the metabolic signaling upon forming increased plant resistance to low temperature. Thus, the potato line with the integrated SUC2 gene is a convenient tool to study the role of the apoplastic invertase and the products of its activity during growth, development and formation constitutive resistance to hypothermia.

  13. Accumulation of uranium in plant roots absorbed from aqueous solutions

    International Nuclear Information System (INIS)

    Dohi, Terumi; Haga, Nobuhiko; Nakashima, Satoru; Tagai, Tokuhei

    2007-01-01

    In order to study accumulation mechanisms of uranium (U) in terrestrial plants, uptake experiments for U have been carried out by using Indian mustard (Brassica juncea). This plant is edible and known as a heavy metal accumulator, especially for cadmium (Cd). About 30 rootsstocks of Indian mustard grown hydroponically in laboratory dishes were kept in uranyl (UO 2 2+ ) nitrate solutions (initially 0.5 mmol/l) at 25degC for 24, 48 and 72 hours (h). The average U concentrations in leaves increased until 48 h up to about 0.6 mg/g and then decreased slightly. Those in roots showed similar trends, but with much higher maximum U concentrations of about 30 mg/g. Backscattered electron images under SEM of the roots showed that U was accumulated on the cell edges. EPMA elemental mapping indicated that phosphorus (P) distribution had a very strong correlation with that of U. The distribution of sulfur (S) appeared to be somewhat different form these U and P distributions. These results suggest that U can be absorbed into plant roots as uranyl (UO 2 2+ ) and might be fixed at the phospholipid rich cell membranes. This U accumulation mechanism appeared to be different from that for Cd which has a close association with S. (author)

  14. Guided synthesis of accumulative solutions for the conceptual design of an efficient stove working with biomass

    International Nuclear Information System (INIS)

    Álvarez Cabrales, Alexis; Gaskins Espinosa, Benjamín Gabriel; Pérez Rodríguez, Roberto; Simeón Monet, Rolando Esteban

    2014-01-01

    The conceptual design is closely related to a product functional structure and the search of solution principles for its definition. This work exposes an accumulative method for the traceability of the functional structure that implements the guided conceptual synthesis of solutions in the preliminary analysis of this designing process stage. The method constitutes a contribution to Pahls and Beitzs classic design model. In it, the functional information system is manipulated, providing the designer with a help so that he can examine the different solutions that are obtained, giving him the possibility of selecting the most convenient one. The guided analysis of the accumulative solutions synthesis is illustrated by means of the conceptual design of an efficient stove working with biomass. (author)

  15. Plant, cell, and molecular mechanisms of abscisic-acid regulation of stomatal apertures. A new mechanism for the regulation of stomatal-aperture size in intact leaves: Accumulation of mesophyll-derived sucrose in the guard-cell wall of Vicia faba L.

    Energy Technology Data Exchange (ETDEWEB)

    Lu, P.; Outlaw, W.H. Jr.; Smith, B.G.; Freed, G.A.

    1996-12-31

    At various times after pulse labeling Vicia faba L. leaflets with {sup 14}CO{sub 2}, whole-leaf pieces and rinsed epidermal peels were harvested and subsequently processed for histochemical analysis. Cells dissected from whole leaf retained apoplastic contents whereas those from rinsed peels contained only cytoplastic contents. Sucrose specific radioactivity peaked in palisade cells, 111 GBq{center_dot}mol{sup {minus}1}, at 20 min. In contrast, the {sup 14}C content and sucrose specific radioactivity were very low in guard cells for 20 min, implying little CO{sub 2} incorporation; both then peaked at 40 min. The guard-cell apoplast had a high maximum sucrose specific radioactivity and a high sucrose influx rate. These and other comparisons implied the presence of (a) multiple sucrose pools in mesophyll cells, (b) a localized mesophyll-apoplast region that exchanges with phloem and stomata, and (c) mesophyll-derived sucrose in guard-cell walls sufficient to diminish stomatal opening by {approximately} 4 {micro}m. Factors expected to enhance sucrose accumulation in guard-cell walls are (a) high transpiration rate, which closes stomata, and (b) high apoplastic sucrose concentration, which is elevated when mesophyll-sucrose efflux exceeds translocation. Therefore, multiple physiological factors are integrated in the attenuation of stomatal-aperture size by this previously unrecognized mechanism.

  16. A peroxidase-dependent apoplastic oxidative burst in cultured Arabidopsis cells functions in MAMP-elicited defense.

    Science.gov (United States)

    O'Brien, Jose A; Daudi, Arsalan; Finch, Paul; Butt, Vernon S; Whitelegge, Julian P; Souda, Puneet; Ausubel, Frederick M; Bolwell, G Paul

    2012-04-01

    Perception by plants of so-called microbe-associated molecular patterns (MAMPs) such as bacterial flagellin, referred to as pattern-triggered immunity, triggers a rapid transient accumulation of reactive oxygen species (ROS). We previously identified two cell wall peroxidases, PRX33 and PRX34, involved in apoplastic hydrogen peroxide (H2O2) production in Arabidopsis (Arabidopsis thaliana). Here, we describe the generation of Arabidopsis tissue culture lines in which the expression of PRX33 and PRX34 is knocked down by antisense expression of a heterologous French bean (Phaseolus vulgaris) peroxidase cDNA construct. Using these tissue culture lines and two inhibitors of ROS generation, azide and diphenylene iodonium, we found that perxoxidases generate about half of the H2O2 that accumulated in response to MAMP treatment and that NADPH oxidases and other sources such as mitochondria account for the remainder of the ROS. Knockdown of PRX33/PRX34 resulted in decreased expression of several MAMP-elicited genes, including MYB51, CYP79B2, and CYP81F2. Similarly, proteomic analysis showed that knockdown of PRX33/PRX34 led to the depletion of various MAMP-elicited defense-related proteins, including the two cysteine-rich peptides PDF2.2 and PDF2.3. Knockdown of PRX33/PRX34 also led to changes in the cell wall proteome, including increases in enzymes involved in cell wall remodeling, which may reflect enhanced cell wall expansion as a consequence of reduced H2O2-mediated cell wall cross-linking. Comparative metabolite profiling of a CaCl2 extract of the PRX33/PRX34 knockdown lines showed significant changes in amino acids, aldehydes, and keto acids but not fatty acids and sugars. Overall, these data suggest that PRX33/PRX34-generated ROS production is involved in the orchestration of pattern-triggered immunity in tissue culture cells.

  17. Metal accumulation in Nitellopsis obtusa cells from the laboratory solution

    International Nuclear Information System (INIS)

    Marciulioniene, D.; Montvydiene, D.; Ceburnis, D.

    2001-01-01

    The ability of Nitellopsis obtusa to accumulate heavy metals from the laboratory solution containing ions of Cd2+, Cr6+, Cu2+, Mn2+, Ni2+, Pb2+ and Zn2+ was investigated. Concentrations of heavy metals in the algae cells were determined, and the accumulation coefficient (AC) of heavy metals in the live cells (in the wall and the protoplast), in the dead cells (in the wall), and in the cells which have lost turgor were estimated. It was found that, according to the accumulation coefficient values in the cell wall of N. obtusa, the studied metals followed the order: Cr6+ < Pb2+ < Ni2+ < Cd2+ < Cu2+ < Zn2+ < Mn2+, while according to the accumulation coefficient values in the protoplast, the order was: Pb2+ < Cr6+ < Ni2+ < Zn2+ < Cd2+ < Cu2+ < Mn2+ . It was demonstrated that in both media metals were accumulated very similarly. The difference between AC in the cell walls of the live and dead cells was negligible. The obtained data allowed to conclude that all investigated metals were not only absorbed in the algae cell wall but they were intensively up taken into the cell. Data showed that among all investigated metals Cr6+ was the least absorbed in the cell wall, while Pb was predominantly absorbed in the cell wall, as well as Cd2+ and Cu2+ were more intensively up taken into the cell than other metals It was established that Mn2+ was Intensively adsorbed in the cell wall, and its uptake into the cell was intensive, too. (author)

  18. Controlled free radical attack in the apoplast: a hypothesis for roles of O, N and S species in regulatory and polysaccharide cleavage events during rapid abscission by Azolla.

    Science.gov (United States)

    Cohen, Michael F; Gurung, Sushma; Fukuto, Jon M; Yamasaki, Hideo

    2014-03-01

    Shedding of organs by abscission is a key terminal step in plant development and stress responses. Cell wall (CW) loosening at the abscission zone can occur through a combination chain breakage of apoplastic polysaccharides and tension release of cellulose microfibrils. Two distinctly regulated abscission cleavage events are amenable to study in small water ferns of the genus Azolla; one is a rapid abscission induced by environmental stimuli such as heat or chemicals, and the other is an ethylene-induced process occurring more slowly through the action of hydrolytic enzymes. Although free radicals are suggested to be involved in the induction of rapid root abscission, its mechanism is not fully understood. The apoplast contains peroxidases, metal-binding proteins and phenolic compounds that potentially generate free radicals from H2O2 to cleave polysaccharides in the CW and middle lamella. Effects of various thiol-reactive agents implicate the action of apoplastic peroxidases having accessible cysteine thiols in rapid abscission. The Ca(2+) dependency of rapid abscission may reflect the stabilization Ca(2+) confers to peroxidase structure and binding to pectin. To spur further investigation, we present a hypothetical model for small signaling molecules H2O2 and NO and their derivatives in regulating, via modification of putative protein thiols, free radical attack of apoplastic polysaccharides. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  19. Study of Plant Cell Wall Polymers Affected by Metal Accumulation Using Stimulated Raman Scattering Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Shi-You [Harvard Univ., Cambridge, MA (United States)

    2015-03-02

    This project aims to employ newly-developed chemical imaging techniques to measure, in real-time, the concentration, dynamics and spatial distribution of plant cell wall polymers during biomass growth with inoculation of transgenic symbiotic fungi, and to explore a new pathway of delivering detoxified metal to plant apoplast using transgenic symbiotic fungi, which will enhance metal accumulation from soil, and potentially these metals may in turn be used as catalysts to improve the efficiency of biomass conversion to biofuels. The proposed new pathway of biomass production will: 1) benefit metal and radionuclide contaminant mobility in subsurface environments, and 2) potentially improve biomass production and process for bioenergy

  20. Dry matter and nitrogen accumulation are not affected by superoptimal concentration of ammonium in flowing solution culture with pH control

    Science.gov (United States)

    Rideout, J. W.; Raper, C. D. Jr; Raper CD, J. r. (Principal Investigator)

    1994-01-01

    While it is known that superoptimal concentrations of the nitrate (NO3-) ion in solution culture do not increase NO3- uptake or dry matter accumulation, the same is not known for the ammonium (NH4+) ion. An experiment was conducted utilizing flowing solution culture with pH control to investigate the influence of superoptimal NH4+ concentrations on dry matter, nitrogen (N), potassium (K), calcium (Ca), and magnesium (Mg) accumulation by nonnodulated soybean plants. Increasing the NH4+ concentration in solution from 1 to 10 mM did not affect dry matter or N accumulation. Accumulations of K, Ca, and Mg were slightly decreased with increased NH4+ concentration. The NH4+ uptake system, which is saturated at less than 1mM NH4+, is able to regulate uptake of NH4+ at concentrations as high as 10 mM.

  1. Phenotypic analysis of apoplastic effectors from the phytopathogenic nematode, Globodera rostochiensis demonstrates that an expansin can induce and suppress host defenses

    Science.gov (United States)

    The potato cyst nematode Globodera rostochiensis (Woll.) is an important pest of potato. Like other biotrophic pathogens, plant parasitic nematodes are presumed to employ effector proteins, secreted into the apoplast as well as the host cytoplasm to successfully infect their hosts. We have identifie...

  2. Urea retranslocation from senescing Arabidopsis leaves is promoted by DUR3-mediated urea retrieval from leaf apoplast

    Science.gov (United States)

    Bohner, Anne; Kojima, Soichi; Hajirezaei, Mohammad; Melzer, Michael; von Wirén, Nicolaus

    2015-01-01

    In plants, urea derives either from root uptake or protein degradation. Although large quantities of urea are released during senescence, urea is mainly seen as a short-lived nitrogen (N) catabolite serving urease-mediated hydrolysis to ammonium. Here, we investigated the roles of DUR3 and of urea in N remobilization. During natural leaf senescence urea concentrations and DUR3 transcript levels showed a parallel increase with senescence markers like ORE1 in a plant age- and leaf age-dependent manner. Deletion of DUR3 decreased urea accumulation in leaves, whereas the fraction of urea lost to the leaf apoplast was enhanced. Under natural and N deficiency-induced senescence DUR3 promoter activity was highest in the vasculature, but was also found in surrounding bundle sheath and mesophyll cells. An analysis of petiole exudates from wild-type leaves revealed that N from urea accounted for >13% of amino acid N. Urea export from senescent leaves further increased in ureG-2 deletion mutants lacking urease activity. In the dur3 ureG double insertion line the absence of DUR3 reduced urea export from leaf petioles. These results indicate that urea can serve as an early metabolic marker for leaf senescence, and that DUR3-mediated urea retrieval contributes to the retranslocation of N from urea during leaf senescence. PMID:25440717

  3. The Apoplastic Secretome of Trichoderma virens During Interaction With Maize Roots Shows an Inhibition of Plant Defence and Scavenging Oxidative Stress Secreted Proteins

    Directory of Open Access Journals (Sweden)

    Guillermo Nogueira-Lopez

    2018-04-01

    Full Text Available In Nature, almost every plant is colonized by fungi. Trichoderma virens is a biocontrol fungus which has the capacity to behave as an opportunistic plant endophyte. Even though many plants are colonized by this symbiont, the exact mechanisms by which Trichoderma masks its entrance into its plant host remain unknown, but likely involve the secretion of different families of proteins into the apoplast that may play crucial roles in the suppression of plant immune responses. In this study, we investigated T. virens colonization of maize roots under hydroponic conditions, evidencing inter- and intracellular colonization by the fungus and modifications in root morphology and coloration. Moreover, we show that upon host penetration, T. virens secretes into the apoplast an arsenal of proteins to facilitate inter- and intracellular colonization of maize root tissues. Using a gel-free shotgun proteomics approach, 95 and 43 secretory proteins were identified from maize and T. virens, respectively. A reduction in the maize secretome (36% was induced by T. virens, including two major groups, glycosyl hydrolases and peroxidases. Furthermore, T. virens secreted proteins were mainly involved in cell wall hydrolysis, scavenging of reactive oxygen species and secondary metabolism, as well as putative effector-like proteins. Levels of peroxidase activity were reduced in the inoculated roots, suggesting a strategy used by T. virens to manipulate host immune responses. The results provide an insight into the crosstalk in the apoplast which is essential to maintain the T. virens-plant interaction.

  4. Numerical solution of kinetics equation for point defects accumulation in metals under irradiation

    International Nuclear Information System (INIS)

    Aldzhambekova, G.T.; Iskakov, B.M.

    1999-01-01

    In the report the mathematical model, describing processes of generation and accumulation of defects in solids under irradiation is considered. The equations of this model take into account the velocity of Frenkel pairs generation, the mutual recombination of vacancies and the interstitials, as well as velocity of defects absorption by discharge channeling of vacancies and interstitials. By Runge-Kutta method the numerical solution of the model was carried out

  5. Papaya pulp gelling: is it premature ripening or problems of water accumulation in the apoplast? Geleificação da polpa de mamão: amadurecimento prematuro ou problemas no acúmulo de água no apoplasto?

    Directory of Open Access Journals (Sweden)

    Jurandi Gonçalves de Oliveira

    2010-12-01

    Full Text Available Gelled aspect in papaya fruit is typically confused with premature ripening. This research reports the characterization of this physiological disorder in the pulp of papaya fruit by measuring electrolyte leakage, Pi content, lipid peroxidation, pulp firmness, mineral contents (Ca, Mg and K - in pulp and seed tissues, and histological analysis of pulp tissue. The results showed that the gelled aspect of the papaya fruit pulp is not associated with tissue premature ripening. Data indicate a reduction of the vacuole water intake as the principal cause of the loss of cellular turgor; while the waterlogged aspect of the tissue may be due to water accumulation in the apoplast.O aspecto geleificado da polpa de mamão é constantemente confundido com amadurecimento prematuro. Este trabalho caracterizou esse distúrbio fisiológico na polpa de frutos de mamão através de medidas de liberação de eletrólitos, conteúdo de Pi, peroxidação lipídica, firmeza da polpa, condudo mineral (Ca, Mg e K - na polpa e semente e análises histológicas da polpa. Os resultados mostram que o aspecto geleificado da polpa de mamão não está associado com o amadurecimento prematuro. Os resultados indicam uma redução da entrada de água no vacúolo como a principal causa da perda de turgor celular, enquanto o aspecto encharcado da polpa pode ser devido ao acúmulo de água no apoplasto.

  6. Separation of abscission zone cells in detached Azolla roots depends on apoplastic pH.

    Science.gov (United States)

    Fukuda, Kazuma; Yamada, Yoshiya; Miyamoto, Kensuke; Ueda, Junichi; Uheda, Eiji

    2013-01-01

    In studies on the mechanism of cell separation during abscission, little attention has been paid to the apoplastic environment. We found that the apoplastic pH surrounding abscission zone cells in detached roots of the water fern Azolla plays a major role in cell separation. Abscission zone cells of detached Azolla roots were separated rapidly in a buffer at neutral pH and slowly in a buffer at pH below 4.0. However, cell separation rarely occurred at pH 5.0-5.5. Light and electron microscopy revealed that cell separation was caused by a degradation of the middle lamella between abscission zone cells at both pH values, neutral and below 4.0. Low temperature and papain treatment inhibited cell separation. Enzyme(s) in the cell wall of the abscission zone cells might be involved in the degradation of the pectin of the middle lamella and the resultant, pH-dependent cell separation. By contrast, in Phaseolus leaf petioles, unlike Azolla roots, cell separation was slow and increased only at acidic pH. The rapid cell separation, as observed in Azolla roots at neutral pH, did not occur. Indirect immunofluorescence microscopy, using anti-pectin monoclonal antibodies, revealed that the cell wall pectins of the abscission zone cells of Azolla roots and Phaseolus leaf petioles looked similar and changed similarly during cell separation. Thus, the pH-related differences in cell separation mechanisms of Azolla and Phaseolus might not be due to differences in cell wall pectin, but to differences in cell wall-located enzymatic activities responsible for the degradation of pectic substances. A possible enzyme system is discussed. Copyright © 2012 Elsevier GmbH. All rights reserved.

  7. Abscisic Acid accumulation in spinach leaf slices in the presence of penetrating and nonpenetrating solutes.

    Science.gov (United States)

    Creelman, R A; Zeevaart, J A

    1985-01-01

    Abscisic acid (ABA) accumulated in detached, wilted leaves of spinach (Spinacia oleracea L. cv Savoy Hybrid 612) and reached a maximum level within 3 to 4 hours. The increase in ABA over that found in detached turgid leaves was approximately 10-fold. The effects of water stress could be mimicked by the use of thin slices of spinach leaves incubated in the presence of 0.6 molar mannitol, a compound which causes plasmolysis (loss of turgor). About equal amounts of ABA were found both in the leaf slices and in detached leaves, whereas 2 to 4 times more ABA accumulated in the medium than in the slices. When spinach leaf slices were incubated with ethylene glycol, a compound which rapidly penetrates the cell membrane causing a decrease in the osmotic potential of the tissue and only transient loss of turgor, no ABA accumulated. Ethylene glycol was not inhibitory with respect to ABA accumulation. Spinach leaf slices incubated in both ethylene glycol and mannitol had ABA levels similar to those found when slices were incubated with mannitol alone. Increases similar to those found with mannitol also occurred when Aquacide III, a highly purified form of polyethylene glycol, was used. Aquacide III causes cytorrhysis, a situation similar to that found in wilted leaves. Thus, it appears that loss of turgor is essential for ABA accumulation.When spinach leaf slices were incubated with solutes which are supposed to disturb membrane integrity (KHSO(3), 2-propanol, or KCl) no increase in ABA was observed. These data indicate that, with respect to the accumulation of ABA, mannitol caused a physical stress (loss of turgor) rather than a chemical stress (membrane damage).

  8. Accumulation of dissolved gases at hydrophobic surfaces in water and sodium chloride solutions: Implications for coal flotation

    Energy Technology Data Exchange (ETDEWEB)

    Hampton, M.A.; Nguyen, A.V. [University of Queensland, Brisbane, Qld. (Australia). Division of Chemical Engineering

    2009-08-15

    Dissolved gases can preferentially accumulate at the hydrophobic solid-water interface as revealed by neutron reflectivity measurements. In this paper, atomic force microscopy (AFM) was used to examine accumulation of dissolved gases at a hydrophobic surface in water and sodium chloride solutions. The solvent-exchange method was used to artificially form gaseous domains accumulated at the interface suitable for AFM imaging. Smooth graphite surfaces were used as model surfaces to minimize the secondary effect of surface roughness on the imaging. The concentration of NaCl up to 1 M was found to have a negligible influence on the geometry and population of pre-existing nanobubbles, nanopancakes and nanobubble-nanopancake composites. The implications of the findings on coal flotation in saline water are discussed in terms of attraction between hydrophobic surfaces in water, bubble-particle attachment and hydrophobic coagulation between particles.

  9. Applications of disorder-induced melting concept to critical-solute-accumulation processes

    International Nuclear Information System (INIS)

    Lam, N.Q.; Okamoto, P.R.; Heuer, J.K.

    2001-01-01

    A generalized version of the Lindemann melting criterion has recently been used to develop a unified thermodynamic description of disorder-induced amorphization and heat-induced melting. This concept of amorphization as a melting process is based on the fact that the melting temperature of a defective crystal driven far from equilibrium will decrease relative to that of its defect-free equilibrium state. The broader view of melting provides a new perspective of damage-accumulation processes such as radiation damage, ion implantation, ion beam mixing, plastic deformation, and fracture. For example, within this conceptual framework, disorder-induced amorphization is simply polymorphous melting of a critically disordered crystal at temperatures below the glass transition temperature. In the present communication, we discuss the application of the concept to two specific cases: amorphous phase formation during ion implantation and solute segregation-induced intergranular fracture

  10. Abscisic Acid Accumulation in Spinach Leaf Slices in the Presence of Penetrating and Nonpenetrating Solutes 1

    Science.gov (United States)

    Creelman, Robert A.; Zeevaart, Jan A. D.

    1985-01-01

    Abscisic acid (ABA) accumulated in detached, wilted leaves of spinach (Spinacia oleracea L. cv Savoy Hybrid 612) and reached a maximum level within 3 to 4 hours. The increase in ABA over that found in detached turgid leaves was approximately 10-fold. The effects of water stress could be mimicked by the use of thin slices of spinach leaves incubated in the presence of 0.6 molar mannitol, a compound which causes plasmolysis (loss of turgor). About equal amounts of ABA were found both in the leaf slices and in detached leaves, whereas 2 to 4 times more ABA accumulated in the medium than in the slices. When spinach leaf slices were incubated with ethylene glycol, a compound which rapidly penetrates the cell membrane causing a decrease in the osmotic potential of the tissue and only transient loss of turgor, no ABA accumulated. Ethylene glycol was not inhibitory with respect to ABA accumulation. Spinach leaf slices incubated in both ethylene glycol and mannitol had ABA levels similar to those found when slices were incubated with mannitol alone. Increases similar to those found with mannitol also occurred when Aquacide III, a highly purified form of polyethylene glycol, was used. Aquacide III causes cytorrhysis, a situation similar to that found in wilted leaves. Thus, it appears that loss of turgor is essential for ABA accumulation. When spinach leaf slices were incubated with solutes which are supposed to disturb membrane integrity (KHSO3, 2-propanol, or KCl) no increase in ABA was observed. These data indicate that, with respect to the accumulation of ABA, mannitol caused a physical stress (loss of turgor) rather than a chemical stress (membrane damage). PMID:16664022

  11. Early changes of the pH of the apoplast are different in leaves, stem and roots of Vicia faba L. under declining water availability

    Czech Academy of Sciences Publication Activity Database

    Karuppanapandian, T.; Geilfus, C.M.; Muehling, K.H.; Novák, Ondřej; Gloser, V.

    2017-01-01

    Roč. 255, FEB (2017), s. 51-58 ISSN 0168-9452 Institutional support: RVO:61389030 Keywords : xylem sap constituents * abscisic-acid * stomatal conductance * leaf apoplast * helianthus-annuus * plant-responses * intact plants * nacl stress * drying soil * guard-cells * Drought stress * Abscisic acid * Soil drying * Xylem sap * Osmolality * Water relations * Leaf water potential Subject RIV: EF - Botanics OBOR OECD: Plant sciences, botany Impact factor: 3.437, year: 2016

  12. Cadmium accumulation by Axonopus compressus (Sw. P. Beauv and Cyperus rotundas Linn growing in cadmium solution and cadmium-zinc contaminated soil

    Directory of Open Access Journals (Sweden)

    Paitip Thiravetyan

    2007-05-01

    Full Text Available This research investigated the phyto-remediation potentials of Cyperus rotundas Linn (Nutgrass and Axonopus compressus (Sw. P. Beauv (Carpetgrass for cadmium removal from cadmium solution andcadmium-zinc contaminated soil. Plants growth in the solution showed that cadmium decreased the relative growth rate of both grasses. However, the amount of cadmium accumulated in shoot and root was increasedwith the increase in cadmium concentration and exposure time. Growth in fertile soil mixed with Cd-contaminated zinc silicate residue (65% Si, 19% Ca, 2% Zn, 1% Mg and 0.03% Cd at the ratio of 50:50 (w/wfor 30 days showed that C. rotundas Linn accumulated cadmium in root and shoot to 2,178 and 1,144 mg kg-1 dry weight, respectively. A. compressus (Sw. P. Beauv accumulated cadmium in root and shoot to 1,965and 669 mg kg-1 dry weight, respectively. Scanning electron microscope connected to energy-dispersive X-ray spectroscopy suggested that the mechanism of cadmium accumulation by both grasses involved thecadmium precipitation in the stable form of cadmium silicate, which indicated that C. rotundas Linn and A. compressus (Sw. P. Beauv could be grown to prevent soil erosion and to remediate cadmium-contaminatedsoil.

  13. Revisiting the iron pools in cucumber roots: identification and localization.

    Science.gov (United States)

    Kovács, Krisztina; Pechoušek, Jiří; Machala, Libor; Zbořil, Radek; Klencsár, Zoltán; Solti, Ádám; Tóth, Brigitta; Müller, Brigitta; Pham, Hong Diep; Kristóf, Zoltán; Fodor, Ferenc

    2016-07-01

    Fe deficiency responses in Strategy I causes a shift from the formation of partially removable hydrous ferric oxide on the root surface to the accumulation of Fe-citrate in the xylem. Iron may accumulate in various chemical forms during its uptake and assimilation in roots. The permanent and transient Fe microenvironments formed during these processes in cucumber which takes up Fe in a reduction based process (Strategy I) have been investigated. The identification of Fe microenvironments was carried out with (57)Fe Mössbauer spectroscopy and immunoblotting, whereas reductive washing and high-resolution microscopy was applied for the localization. In plants supplied with (57)Fe(III)-citrate, a transient presence of Fe-carboxylates in removable forms and the accumulation of partly removable, amorphous hydrous ferric oxide/hydroxyde have been identified in the apoplast and on the root surface, respectively. The latter may at least partly be the consequence of bacterial activity at the root surface. Ferritin accumulation did not occur at optimal Fe supply. Under Fe deficiency, highly soluble ferrous hexaaqua complex is transiently formed along with the accumulation of Fe-carboxylates, likely Fe-citrate. As (57)Fe-citrate is non-removable from the root samples of Fe deficient plants, the major site of accumulation is suggested to be the root xylem. Reductive washing results in another ferrous microenvironment remaining in the root apoplast, the Fe(II)-bipyridyl complex, which accounts for ~30 % of the total Fe content of the root samples treated for 10 min and rinsed with CaSO4 solution. When (57)Fe(III)-EDTA or (57)Fe(III)-EDDHA was applied as Fe-source higher soluble ferrous Fe accumulation was accompanied by a lower total Fe content, confirming that chelates are more efficient in maintaining soluble Fe in the medium while less stable natural complexes as Fe-citrate may perform better in Fe accumulation.

  14. Determination of subcellular concentrations of soluble carbohydrates in rose petals during opening by nonaqueous fractionation method combined with infiltration-centrifugation method.

    Science.gov (United States)

    Yamada, Kunio; Norikoshi, Ryo; Suzuki, Katsumi; Imanishi, Hideo; Ichimura, Kazuo

    2009-11-01

    Petal growth associated with flower opening depends on cell expansion. To understand the role of soluble carbohydrates in petal cell expansion during flower opening, changes in soluble carbohydrate concentrations in vacuole, cytoplasm and apoplast of petal cells during flower opening in rose (Rosa hybrida L.) were investigated. We determined the subcellular distribution of soluble carbohydrates by combining nonaqueous fractionation method and infiltration-centrifugation method. During petal growth, fructose and glucose rapidly accumulated in the vacuole, reaching a maximum when petals almost reflected. Transmission electron microscopy showed that the volume of vacuole and air space drastically increased with petal growth. Carbohydrate concentration was calculated for each compartment of the petal cells and in petals that almost reflected, glucose and fructose concentrations increased to higher than 100 mM in the vacuole. Osmotic pressure increased in apoplast and symplast during flower opening, and this increase was mainly attributed to increases in fructose and glucose concentrations. No large difference in osmotic pressure due to soluble carbohydrates was observed between the apoplast and symplast before flower opening, but total osmotic pressure was much higher in the symplast than in the apoplast, a difference that was partially attributed to inorganic ions. An increase in osmotic pressure due to the continued accumulation of glucose and fructose in the symplast may facilitate water influx into cells, contributing to cell expansion associated with flower opening under conditions where osmotic pressure is higher in the symplast than in the apoplast.

  15. Cadmium accumulation by Axonopus compressus (Sw.) P. Beauv and Cyperus rotundas Linn growing in cadmium solution and cadmium-zinc contaminated soil

    OpenAIRE

    Paitip Thiravetyan; Vibol Sao; Woranan Nakbanpote

    2007-01-01

    This research investigated the phyto-remediation potentials of Cyperus rotundas Linn (Nutgrass) and Axonopus compressus (Sw.) P. Beauv (Carpetgrass) for cadmium removal from cadmium solution andcadmium-zinc contaminated soil. Plants growth in the solution showed that cadmium decreased the relative growth rate of both grasses. However, the amount of cadmium accumulated in shoot and root was increasedwith the increase in cadmium concentration and exposure time. Growth in fertile soil mixed with...

  16. PDH45 overexpressing transgenic tobacco and rice plants provide salinity stress tolerance via less sodium accumulation.

    Science.gov (United States)

    Nath, Manoj; Garg, Bharti; Sahoo, Ranjan Kumar; Tuteja, Narendra

    2015-01-01

    Salinity stress negatively affects the crop productivity worldwide, including that of rice. Coping with these losses is a major concern for all countries. The pea DNA helicase, PDH45 is a unique member of helicase family involved in the salinity stress tolerance. However, the exact mechanism of the PDH45 in salinity stress tolerance is yet to be established. Therefore, the present study was conducted to investigate the mechanism of PDH45-mediated salinity stress tolerance in transgenic tobacco and rice lines along with wild type (WT) plants using CoroNa Green dye based sodium localization in root and shoot sections. The results showed that under salinity stress root and shoot of PDH45 overexpressing transgenic tobacco and rice accumulated less sodium (Na(+)) as compared to their respective WT. The present study also reports salinity tolerant (FL478) and salinity susceptible (Pusa-44) varieties of rice accumulated lowest and highest Na(+) level, respectively. All the varieties and transgenic lines of rice accumulate differential Na(+) ions in root and shoot. However, roots accumulate high Na(+) as compared to the shoots in both tobacco and rice transgenic lines suggesting that the Na(+) transport in shoot is somehow inhibited. It is proposed that the PDH45 is probably involved in the deposition of apoplastic hydrophobic barriers and consequently inhibit Na(+) transport to shoot and therefore confers salinity stress tolerance to PDH45 overexpressing transgenic lines. This study concludes that tobacco (dicot) and rice (monocot) transgenic plants probably share common salinity tolerance mechanism mediated by PDH45 gene.

  17. Localization of acid phosphatase activity in the apoplast of root nodules of pea (Pisum sativum

    Directory of Open Access Journals (Sweden)

    Marzena Sujkowska

    2011-01-01

    Full Text Available Changes in the activity of acid phosphatase (AcPase in the apoplast of pea root nodule were investigated. The activity was determined using lead and cerium methods. The results indicated a following sequence of AcPase activity appearance during the development of the infection thread: 1 low AcPase activity appears in the outer part of cells of symbiotic bacteria; 2 bacteria show increased AcPase activity, and the enzyme activity appears in the thread walls; 3 activity exhibits also matrix of the infection thread; 4 bacteria just before their release from the infection threads show high AcPase activity; 5 AcPase activity ceases after bacteria transformation into bacteroids. The increase in bacterial AcPase activity may reflect a higher demand for inorganic phosphorus necessary for propagation of the bacteria within the infection threads and/or involved in bacteria release from the infection threads.

  18. Autophagy-Related Direct Membrane Import from ER/Cytoplasm into the Vacuole or Apoplast: A Hidden Gateway also for Secondary Metabolites and Phytohormones?

    Directory of Open Access Journals (Sweden)

    Ivan Kulich

    2014-04-01

    Full Text Available Transportation of low molecular weight cargoes into the plant vacuole represents an essential plant cell function. Several lines of evidence indicate that autophagy-related direct endoplasmic reticulum (ER to vacuole (and also, apoplast transport plays here a more general role than expected. This route is regulated by autophagy proteins, including recently discovered involvement of the exocyst subcomplex. Traffic from ER into the vacuole bypassing Golgi apparatus (GA acts not only in stress-related cytoplasm recycling or detoxification, but also in developmentally-regulated biopolymer and secondary metabolite import into the vacuole (or apoplast, exemplified by storage proteins and anthocyanins. We propose that this pathway is relevant also for some phytohormones’ (e.g., auxin, abscisic acid (ABA and salicylic acid (SA degradation. We hypothesize that SA is not only an autophagy inducer, but also a cargo for autophagy-related ER to vacuole membrane container delivery and catabolism. ER membrane localized enzymes will potentially enhance the area of biosynthetic reactive surfaces, and also, abundant ER localized membrane importers (e.g., ABC transporters will internalize specific molecular species into the autophagosome biogenesis domain of ER. Such active ER domains may create tubular invaginations of tonoplast into the vacuoles as import intermediates. Packaging of cargos into the ER-derived autophagosome-like containers might be an important mechanism of vacuole and exosome biogenesis and cytoplasm protection against toxic metabolites. A new perspective on metabolic transformations intimately linked to membrane trafficking in plants is emerging.

  19. Effects on the accumulation of calcium, magnesium, iron, manganese, copper and zinc of adding the two inorganic forms of selenium to solution cultures of Zea mays.

    Science.gov (United States)

    Longchamp, M; Angeli, N; Castrec-Rouelle, M

    2016-01-01

    The addition of selenate or selenite to common fertilizers for crop production could be an effective way of producing selenium-rich food and feed. However, this would be feasible only if the increase in plant selenium (Se) content did not negatively influence the uptake of other essential elements. We therefore need to understand the interactions between Se and other major and trace elements during uptake by the plant. This study aimed to evaluate the influence of inorganic forms of Se on the accumulation of selected macronutrients (Ca and Mg) and micronutrients (Fe, Zn, Mn and Cu). Those essential elements are involved in the oxidative balance of cells. Zea mays seedlings were grown hydroponically in growth chambers in nutrient solutions to which we added 10, 50 or 1000 μg.L(-1) of selenate and/or selenite. Cation accumulation was significantly affected by the addition of 50 μg.L(-1) or 1000 μg.L(-1) Se, but not by the presence of 10 μg.L(-1) of Se in the nutrient solution. The highest concentration (1000 μg.L(-1)) of Se in the nutrient solution affected the accumulation of essential cations in Zea mays: selenate tended to increase the accumulation of Mg, Zn and Mn, whereas a selenate/selenite mixture tended to decrease the accumulation of Ca, Mg, Zn and Mn. Only Fe accumulation was unaffected by Se whatever its form or concentration. Selenium may also affect the distribution of cations on Zea mays. For example, levels of Mg and Zn translocation to the shoots were lower in the presence of selenite. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  20. Manipulation of the apoplastic pH of intact plants mimics stomatal and growth responses to water availability and microclimatic variation.

    Science.gov (United States)

    Wilkinson, Sally; Davies, William J

    2008-01-01

    The apoplastic pH of intact Forsythiaxintermedia (cv. Lynwood) and tomato (Solanum lycopersicum) plants has been manipulated using buffered foliar sprays, and thereby stomatal conductance (g(s)), leaf growth rate, and plant water loss have been controlled. The more alkaline the pH of the foliar spray, the lower the g(s) and/or leaf growth rate subsequently measured. The most alkaline pH that was applied corresponds to that measured in sap extracted from shoots of tomato and Forsythia plants experiencing, respectively, soil drying or a relatively high photon flux density (PFD), vapour pressure deficit (VPD), and temperature in the leaf microclimate. The negative correlation between PFD/VPD/temperature and g(s) determined in well-watered Forsythia plants exposed to a naturally varying summer microclimate was eliminated by spraying the plants with relatively alkaline but not acidic buffers, providing evidence for a novel pH-based signalling mechanism linking the aerial microclimate with stomatal aperture. Increasing the pH of the foliar spray only reduced g(s) in plants of the abscisic acid (ABA)-deficient flacca mutant of tomato when ABA was simultaneously sprayed onto leaves or injected into stems. In well-watered Forsythia plants exposed to a naturally varying summer microclimate (variable PFD, VPD, and temperature), xylem pH and leaf ABA concentration fluctuated but were positively correlated. Manipulation of foliar apoplastic pH also affected the response of g(s) and leaf growth to ABA injected into stems of intact Forsythia plants. The techniques used here to control physiology and water use in intact growing plants could easily be applied in a horticultural context.

  1. Accumulation of cynaropicrin in globe artichoke and localization of enzymes involved in its biosynthesis.

    Science.gov (United States)

    Eljounaidi, K; Comino, C; Moglia, A; Cankar, K; Genre, A; Hehn, A; Bourgaud, F; Beekwilder, J; Lanteri, S

    2015-10-01

    Globe artichoke (Cynara cardunculus var. scolymus) belongs to the Asteraceae family, in which one of the most biologically significant class of secondary metabolites are sesquiterpene lactones (STLs). In globe artichoke the principal STL is the cynaropicrin, which contributes to approximately 80% of its characteristic bitter taste. Cynaropicrin content was assessed in globe artichoke tissues and was observed to accumulate in leaves of different developmental stages. In the receptacle, a progressive decrease was observed during inflorescence development, while the STL could not be detected in the inflorescence bracts. Almost undetectable amounts were found in the roots and inflorescence stems at the commercial stage. Cynaropicrin content was found to correlate with expression of genes encoding CcGAS, CcGAO and CcCOS, which are involved in the STL biosynthesis. A more detailed study of leaf material revealed that cynaropicrin predominantly accumulates in the trichomes, and not in the apoplastic cavity fluids. Analysis of the promoter regions of CcGAO and CcCOS revealed the presence of L1-box motifs, which confers trichome-specific expression in Arabidopsis, suggesting that cynaropicrin is not only stored but also synthesized in trichomes. A transient expression of GFP fusion proteins was performed in Nicotiana benthamiana plants: the CcGAS fluorescence signal was located in the cytoplasm while the CcGAO and CcCOS localized to the endoplasmatic reticulum. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. The Craterostigma plantagineum glycine-rich protein CpGRP1 interacts with a cell wall-associated protein kinase 1 (CpWAK1) and accumulates in leaf cell walls during dehydration.

    Science.gov (United States)

    Giarola, Valentino; Krey, Stephanie; von den Driesch, Barbara; Bartels, Dorothea

    2016-04-01

    Craterostigma plantagineum tolerates extreme desiccation. Leaves of this plant shrink and extensively fold during dehydration and expand again during rehydration, preserving their structural integrity. Genes were analysed that may participate in the reversible folding mechanism. Analysis of transcripts abundantly expressed in desiccated leaves identified a gene putatively coding for an apoplastic glycine-rich protein (CpGRP1). We studied the expression, regulation and subcellular localization of CpGRP1 and its ability to interact with a cell wall-associated protein kinase (CpWAK1) to understand the role of CpGRP1 in the cell wall during dehydration. The CpGRP1 protein accumulates in the apoplast of desiccated leaves. Analysis of the promoter revealed that the gene expression is mainly regulated at the transcriptional level, is independent of abscisic acid (ABA) and involves a drought-responsive cis-element (DRE). CpGRP1 interacts with CpWAK1 which is down-regulated in response to dehydration. Our data suggest a role of the CpGRP1-CpWAK1 complex in dehydration-induced morphological changes in the cell wall during dehydration in C. plantagineum. Cell wall pectins and dehydration-induced pectin modifications are predicted to be involved in the activity of the CpGRP1-CpWAK1 complex. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  3. Role of ATP-binding cassette and solute carrier transporters in erlotinib CNS penetration and intracellular accumulation.

    Science.gov (United States)

    Elmeliegy, Mohamed A; Carcaboso, Angel M; Tagen, Michael; Bai, Feng; Stewart, Clinton F

    2011-01-01

    To study the role of drug transporters in central nervous system (CNS) penetration and cellular accumulation of erlotinib and its metabolite, OSI-420. After oral erlotinib administration to wild-type and ATP-binding cassette (ABC) transporter-knockout mice (Mdr1a/b(-/-), Abcg2(-/-), Mdr1a/b(-/-)Abcg2(-/-), and Abcc4(-/-)), plasma was collected and brain extracellular fluid (ECF) was sampled using intracerebral microdialysis. A pharmacokinetic model was fit to erlotinib and OSI-420 concentration-time data, and brain penetration (P(Brain)) was estimated by the ratio of ECF-to-unbound plasma area under concentration-time curves. Intracellular accumulation of erlotinib was assessed in cells overexpressing human ABC transporters or SLC22A solute carriers. P(Brain) in wild-type mice was 0.27 ± 0.11 and 0.07 ± 0.02 (mean ± SD) for erlotinib and OSI-420, respectively. Erlotinib and OSI-420 P(Brain) in Abcg2(-/-) and Mdr1a/b(-/-)Abcg2(-/-) mice were significantly higher than in wild-type mice. Mdr1a/b(-/-) mice showed similar brain ECF penetration as wild-type mice (0.49 ± 0.37 and 0.04 ± 0.02 for erlotinib and OSI-420, respectively). In vitro, erlotinib and OSI-420 accumulation was significantly lower in cells overexpressing breast cancer resistance protein (BCRP) than in control cells. Only OSI-420, not erlotinib, showed lower accumulation in cells overexpressing P-glycoprotein (P-gp) than in control cells. The P-gp/BCRP inhibitor elacridar increased erlotinib and OSI-420 accumulation in BCRP-overexpressing cells. Erlotinib uptake was higher in OAT3- and OCT2-transfected cells than in empty vector control cells. Abcg2 is the main efflux transporter preventing erlotinib and OSI-420 penetration in mouse brain. Erlotinib and OSI-420 are substrates for SLC22A family members OAT3 and OCT2. Our findings provide a mechanistic basis for erlotinib CNS penetration, cellular uptake, and efflux mechanisms. ©2010 AACR.

  4. Accumulation of thorium and uranium by microbes. The effect of pH, concentration of metals, and time course on the accumulation of both elements using streptomyces levoris

    International Nuclear Information System (INIS)

    Tsuruta, Takehiko

    2006-01-01

    The accumulation of thorium and uranium by various microorganisms from a solution containing both metals at pH 3.5 was examined. Among the tested species, a high accumulation ability for thorium was exhibited by strains of gram-positive bacteria, such as Arthrobacter nicotianae, Bacillus megaterium, B. subtilis, Micrococcus luteus, Rhodococcus erythropolis, and Streptomyces levoris. Though uranium was accumulated in small amounts by most of microorganisms. A. nicotianae, S. flavoviridis, and S. levoris had relatively high uranium accumulation abilities. In these high performance thorium- and uranium-accumulating microorganisms, S. levoris, which accumulated the largest amount of uranium from the solution containing only uranium at pH 3.5, accumulated about 300 μmol thorium and 133 μmol uranium per gram dry weight of microbial cells from a solution containing both thorium and uranium at pH 3.5. The amount and time course of the thorium accumulation were almost unaffected by the co-existing uranium, while those of uranium were strongly affected by the co-existing thorium. The effects of pH, the thorium and uranium concentrations, and time course on both metal accumulations were also evaluated by numerical formulas. (author)

  5. Plant natriuretic peptides are apoplastic and paracrine stress response molecules

    KAUST Repository

    Wang, Yuhua

    2011-04-07

    Higher plants contain biologically active proteins that are recognized by antibodies against human atrial natriuretic peptide (ANP). We identified and isolated two Arabidopsis thaliana immunoreactive plant natriuretic peptide (PNP)-encoding genes, AtPNP-A and AtPNP-B, which are distantly related members of the expansin superfamily and have a role in the regulation of homeostasis in abiotic and biotic stresses, and have shown that AtPNP-A modulates the effects of ABA on stomata. Arabidopsis PNP (PNP-A) is mainly expressed in leaf mesophyll cells, and in protoplast assays we demonstrate that it is secreted using AtPNP-A:green fluorescent protein (GFP) reporter constructs and flow cytometry. Transient reporter assays provide evidence that AtPNP-A expression is enhanced by heat, osmotica and salt, and that AtPNP-A itself can enhance its own expression, thereby generating a response signature diagnostic for paracrine action and potentially also autocrine effects. Expression of native AtPNP-A is enhanced by osmotica and transiently by salt. Although AtPNP-A expression is induced by salt and osmotica, ABA does not significantly modulate AtPNP-A levels nor does recombinant AtPNP-A affect reporter expression of the ABA-responsive RD29A gene. Together, these results provide experimental evidence that AtPNP-A is stress responsive, secreted into the apoplastic space and can enhance its own expression. Furthermore, our findings support the idea that AtPNP-A, together with ABA, is an important component in complex plant stress responses and that, much like in animals, peptide signaling molecules can create diverse and modular signals essential for growth, development and defense under rapidly changing environmental conditions. © 2011 The Author.

  6. Gas exchange, phisiological indexes and ionic accumulation in Annona emarginata (Schltdl. H. Rainer seedlings in nutrients solution

    Directory of Open Access Journals (Sweden)

    Daniel Baron

    2013-06-01

    Full Text Available "Araticum-de-terra-fria" (Annona emarginata (Schltdl. H. Rainer has been consider a good alternative in rootstock production for the main commercial Annonaceae species. Although this species develops in different soil and climate conditions, there is no understanding by the physiological responses of this species at different nutritional levels. Thus, the objective of this study was to evaluate the influence of different ionic strengths on development of vegetative species known as "Araticum-de-terra-fria". It was evaluated in seedlings grown in different ionic strengths (25% I, 50% I, 75% I and 100% I of the complete nutrient solution Hoagland and Arnon (1950 nº 2, for 140 days, the following characteristics: Gas Exchange (CO2 assimilation rate, stomatal conductance, internal CO2 concentration, transpiration rate, water use efficiency, Rubisco carboxylation efficiency; Vegetative growth characteristics (diameter, leaf number, dry matter; Physiological Indexes (leaf area ratio, specific leaf area, relative growth rate, net assimilation rate, leaf weight ratio and Ionic Accumulation (nutrients leaf analysis. Seedlings grown under 50% I showed the highest values of Leaf CO2 assimilation rate, water use efficiency, carboxylation efficiency, growth, relative growth rate, net assimilation rate and ionic accumulation in the total dry matter. So it is concluded that "Araticum-de-terra-fria" seedlings grown under intermediate nutrient concentrations of complete nutrient solution Hoagland and Arnon (1950 nº 2, explored more adequately their physiological potential that justify their adaptation in different nutritional conditions and allow reducing the amount of mineral nutrition of seedlings production.

  7. ROS signaling and stomatal movement in plant responses to drought stress and pathogen attack.

    Science.gov (United States)

    Qi, Junsheng; Song, Chun-Peng; Wang, Baoshan; Zhou, Jianmin; Kangasjärvi, Jaakko; Zhu, Jian-Kang; Gong, Zhizhong

    2018-04-16

    Stomata, the pores formed by a pair of guard cells, are the main gateways for water transpiration and photosynthetic CO 2 exchange, as well as pathogen invasion in land plants. Guard cell movement is regulated by a combination of environmental factors including water status, light, CO 2 levels and pathogen attack, as well as endogenous signals such as abscisic acid and apoplastic reactive oxygen species (ROS). Under abiotic and biotic stress conditions, extracellular ROS are mainly produced by plasma membrane-localized NADPH oxidases, whereas intracellular ROS are produced in multiple organelles. These ROS form a sophisticated cellular signaling network, with the accumulation of apoplastic ROS an early hallmark of stomatal movement. Here, we review recent progress in understanding the molecular mechanisms of the ROS signaling network, primarily during drought stress and pathogen attack. We summarize the roles of apoplastic ROS in regulating stomatal movement, ABA and CO 2 signaling, and immunity responses. Finally, we discuss ROS accumulation and communication between organelles and cells. This information provides a conceptual framework for understanding how ROS signaling is integrated with various signaling pathways during plant responses to abiotic and biotic stress stimuli. This article is protected by copyright. All rights reserved.

  8. Reduced ABA Accumulation in the Root System is Caused by ABA Exudation in Upland Rice (Oryza sativa L. var. Gaoshan1) and this Enhanced Drought Adaptation.

    Science.gov (United States)

    Shi, Lu; Guo, Miaomiao; Ye, Nenghui; Liu, Yinggao; Liu, Rui; Xia, Yiji; Cui, Suxia; Zhang, Jianhua

    2015-05-01

    Lowland rice (Nipponbare) and upland rice (Gaoshan 1) that are comparable under normal and moderate drought conditions showed dramatic differences in severe drought conditions, both naturally occurring long-term drought and simulated rapid water deficits. We focused on their root response and found that enhanced tolerance of upland rice to severe drought conditions was mainly due to the lower level of ABA in its roots than in those of the lowland rice. We first excluded the effect of ABA biosynthesis and catabolism on root-accumulated ABA levels in both types of rice by monitoring the expression of four OsNCED genes and two OsABA8ox genes. Next, we excluded the impact of the aerial parts on roots by suppressing leaf-biosynthesized ABA with fluridone and NDGA (nordihydroguaiaretic acid), and measuring the ABA level in detached roots. Instead, we proved that upland rice had the ability to export considerably more root-sourced ABA than lowland rice under severe drought, which improved ABA-dependent drought adaptation. The investigation of apoplastic pH in root cells and root anatomy showed that ABA leakage in the root system of upland rice was related to high apoplastic pH and the absence of Casparian bands in the sclerenchyma layer. Finally, taking some genes as examples, we predicted that different ABA levels in rice roots stimulated distinct ABA perception and signaling cascades, which influenced its response to water stress. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  9. Cadmium uptake and speciation changes in the rhizosphere of cadmium accumulator and non-accumulator oilseed rape varieties

    Institute of Scientific and Technical Information of China (English)

    SU Dechun; XING Jianping; JIAO Weiping; WONG Woonchung

    2009-01-01

    Characteristics of cadmium (Cd) uptake kinetics and distribution of Cd speciation in the rhizosphere for Cd accumulator and non-accumulator oilseed rape varieties were investigated under nutrient solution and rhizobox soil culture conditions.The results showed that the maximal influx (Vmax) for Cd2+ and Km were significantly different for the two oilseed rape varieties.The value of Vmax for Cd accumulator oilseed rape Zhucang Huazi was two-fold greater than that for oilseed rape Chuangyou II-93.The exchangeable Cd concentration in the rhizosphere was significantly lower than in non-rhizospheric soils supplemented with Cd as CdSO4 for both the varieties.Carbonate-bound Cd in the rhizosphere of Cd accumulator oilseed rape was significantly higher than that in the rhizosphere of non-accumulator oilseed rape and non-rhizospheric soil.Cd accumulator oilseed rape had a higher Cd2+ affinity and more ability to uptake insoluble Cd in the soil than the non-accumulator oilseed rape.

  10. Metals Accumulation and Leaf Surface Anatomy of Murdannia spectabilis Growing in Zn/Cd Contaminated Soil

    Directory of Open Access Journals (Sweden)

    Ladawan Rattanapolsan

    2013-07-01

    Full Text Available Murdannia spectabilis (Kurz Faden was identified as a Zn/Cd hyperaccumulative plant. Leaf surface anatomy of the plant growing in non-contaminated soil (control and Zn/Cd contaminated soil,was studied and compared by a light microscopy and scanning electron microscopy combined with Energy-dispersive X-ray spectroscopy(SEM/EDS. The similarities were reticulate cuticle on epidermises, uniform polygonal cell, stomatal arrangement in six surrounding subsidiary cells, and submarginal sclerenchyma. The dissimilarities were uniserate trichomes spreading on both adaxial and abaxial epidermis of the plants growing in non-contaminated soil, whereas the uniserate trichomes were only on the submarginal-adaxial epidermis of the control plants. The trichomes on leaves of the plants growing in non-contaminated soil were found to have both uniseriate non-glandular and uniseriate glandular trichomes;whereas, leaves of the plants growing in the contaminated soil were merely non-glandular trichomes. The different shape and location of trichomes, the number of stomata and trichome indicated the effect of Zn and Cd on M. spectabilis. The higher percentages of Zn and Cd in the vascular bundle than in the cross section and epidermis areas showed both solutes could move along each route, with diffusion through the symplast and apoplast. The increase of Ca in M. spectabilis growing in Zn/Cd contaminated soil corresponded to the Zn and Cd distributed in the leaves. Zn K-edge and S K-edge XANES spectra proposed that Zn2+ ions were accumulated and/or adsorbed on the epidermis of the tuber, and then absorbed into the root and transport to the xylem. The double peaks of Zn-cysteine in the leaf samples proposed the metal sequestration was by sulphur proteins.

  11. The Arabidopsis homolog of human G3BP1 is a key regulator of stomatal and apoplastic immunity

    KAUST Repository

    Abulfaraj, Aala A.; Mariappan, Kiruthiga; Bigeard, Jean; Manickam, Prabhu; Blilou, Ikram; Guo, Xiujie; Al-Babili, Salim; Pflieger, Delphine; Hirt, Heribert; Rayapuram, Naganand

    2018-01-01

    Mammalian Ras-GTPase–activating protein SH3-domain–binding proteins (G3BPs) are a highly conserved family of RNA-binding proteins that link kinase receptor-mediated signaling to RNA metabolism. Mammalian G3BP1 is a multifunctional protein that functions in viral immunity. Here, we show that the Arabidopsis thaliana homolog of human G3BP1 negatively regulates plant immunity. Arabidopsis g3bp1 mutants showed enhanced resistance to the virulent bacterial pathogen Pseudomonas syringae pv. tomato. Pathogen resistance was mediated in Atg3bp1 mutants by altered stomatal and apoplastic immunity. Atg3bp1 mutants restricted pathogen entry into stomates showing insensitivity to bacterial coronatine–mediated stomatal reopening. AtG3BP1 was identified as a negative regulator of defense responses, which correlated with moderate up-regulation of salicylic acid biosynthesis and signaling without growth penalty.

  12. The Arabidopsis homolog of human G3BP1 is a key regulator of stomatal and apoplastic immunity

    KAUST Repository

    Abulfaraj, Aala Abdulaziz Hussien

    2018-05-31

    Mammalian Ras-GTPase–activating protein SH3-domain–binding proteins (G3BPs) are a highly conserved family of RNA-binding proteins that link kinase receptor-mediated signaling to RNA metabolism. Mammalian G3BP1 is a multifunctional protein that functions in viral immunity. Here, we show that the Arabidopsis thaliana homolog of human G3BP1 negatively regulates plant immunity. Arabidopsis g3bp1 mutants showed enhanced resistance to the virulent bacterial pathogen Pseudomonas syringae pv. tomato. Pathogen resistance was mediated in Atg3bp1 mutants by altered stomatal and apoplastic immunity. Atg3bp1 mutants restricted pathogen entry into stomates showing insensitivity to bacterial coronatine–mediated stomatal reopening. AtG3BP1 was identified as a negative regulator of defense responses, which correlated with moderate up-regulation of salicylic acid biosynthesis and signaling without growth penalty.

  13. Effect of phosphorus level on nitrogen accumulation and yield in soybean

    International Nuclear Information System (INIS)

    You Yubo; Wu Dongmei; Gong Zhenping; Ma Chunmei

    2012-01-01

    In this paper, the 15 N labeling with sand culture was conducted to study effects of phosphorus level on nitrogen accumulation, nodule nitrogen fixation and yield of soybean plants. Results showed that nitrogen accumulation, fixation and yield of soybean plants all presented a single peak curve with improvement of phosphorus nutrition level, with the peak value of phosphorus concentration in nutrient solution of 31 mg/L. When phosphorus concentration of nutrient solution was 11 mg/L, no obvious promotion was found on the ratio of nodule nitrogen fixation when increasing phosphorus concentration again, However, when phosphorus concentration of nutrient solution was 21 mg/L, increasing phosphorus concentration again had no obvious promotion on soybean plant nitrogen accumulation, nodule nitrogen fixation accumulation and yield, indicating that effect of phosphorus nutrition level on nitrogen fixation was lower than that on yield formation level. (authors)

  14. Accumulation of some metal ions on Bacillus licheniformis

    International Nuclear Information System (INIS)

    Hafez, M.B.; El-Desouky, W.; Fouad, A.

    2001-01-01

    Pure species of Bacillus licheniformis was used to remove ions from aqueous and simulated waste solutions. Metal ion accumulation on B. licheniformis was fast. Maximum uptake occurred at pH 4± 0.5 and at 25 ± 3 deg C. One gram of dry B. licheniformis was found to accumulate 115 mg cerium, 34 mg copper and 11 mg cobalt from aqueous solutions. The presence of certain foreign ions such as calcium, sodium and potassium decreased the uptake of ions by B. licheniformis, while citrate and EDTA prevent the uptake. Electron microscopic investigations showed that cerium (III), copper (II) and cobalt (II) accumulated extracellulary around the surface wall of B. licheniformis cells. A bio-adsorption mechanism between the metal ions and B. licheniformis cell wall was proposed. (author)

  15. Salinization of the soil solution decreases the further accumulation of salt in the root zone of the halophyte Atriplex nummularia Lindl. growing above shallow saline groundwater.

    Science.gov (United States)

    Alharby, Hesham F; Colmer, Timothy D; Barrett-Lennard, Edward G

    2018-01-01

    Water use by plants in landscapes with shallow saline groundwater may lead to the accumulation of salt in the root zone. We examined the accumulation of Na + and Cl - around the roots of the halophyte Atriplex nummularia Lindl. and the impacts of this increasing salinity for stomatal conductance, water use and growth. Plants were grown in columns filled with a sand-clay mixture and connected at the bottom to reservoirs containing 20, 200 or 400 mM NaCl. At 21 d, Na + and Cl - concentrations in the soil solution were affected by the salinity of the groundwater, height above the water table and the root fresh mass density at various soil depths (P soil solution therefore had a feedback effect on further salinization within the root zone. © 2017 John Wiley & Sons Ltd.

  16. Determination of extra and intracellular content from some lytic enzymes related with carnation (Dianthus caryophyllus L. root cell wall

    Directory of Open Access Journals (Sweden)

    Sixta Tulia Martínez Peralta

    2016-11-01

    Full Text Available The presence of some enzymes related to cell wall (polygalacturonase, the pectate lyase, protease and xylanase in carnation (Dianthus caryophyllus L. roots as well as the activity levels were determined. These levels were analyzed in different cellular places: the intercellular fluid that is part of apoplast, the symplast, and the total level (apoplast and symplast in carnation roots. Two methods were tested to extract the intercellular fluid. To obtain the intracellular content (symplast and total extract (apoplast+symplast, three methods were tested, using as extracting solution  i phosphate buffer, ii phosphate buffer + PVPP,  iii before the extraction with phosphate buffer, the carnation roots were washed with acetone.  The results showed the effect of different extracting solutions in the enzymatic activities and in the protein content. A new only one step method is proposed to extract the four enzymes and make the comparative analysis of enzymatic activity.

  17. Uranium accumulation by aquatic macrophyte, Pistia stratiotes

    International Nuclear Information System (INIS)

    Bhainsa, K.C.; D'Souza, S.F.

    2012-01-01

    Uranium accumulation by aquatic macrophyte, Pistia stratiotes from aqueous solution was investigated in laboratory condition. The objective was to evaluate the uranium accumulation potential and adopt the plant in uranium containing medium to improve its uptake capacity. The plant was found to tolerate and grow in the pH range of 3-7. Accumulation of uranium improved with increasing pH and the plant could remove 70% uranium from the medium (20 mg/L) within 24 hours of incubation at pH 5-6. Uptake of uranium on either side of this pH range decreased

  18. The passive system for reflooding of the VVER reactor core from the second-stage hydro-accumulators: design and basic design solutions

    International Nuclear Information System (INIS)

    Alexandr D Efanov; Sergey G Kalyakin; Andrey V Morozov; Oleg V Remizov; Vladimir M Berkovich; Victor N Krushelnitskiy; Vladimir G Peresadko; Yuri G Dragunov; Alexey K Podshibyakin; Sergey I Zaitcev

    2005-01-01

    Full text of publication follows: The fundamental difference in the safety assurance of the operating NPPs and those under design implies that the safety in the existing NPPs is achieved by energy-dependent (active) systems and depends on the proficiency of attending personnel. To provide safety, the new NPP designs use the physical processes proceeding in the facility without power supply; and they are unaffected by human errors. As to the safety level, the design of the new generation nuclear power plant NPP-92 relates to the class of the improved NPPs; and it applies a principle of diversity in the structure of systems responsible for critical safety functions. In accordance with the above-mentioned safety concept, the design development required a complex of experimental investigations and numerical modeling to be conducted. Among the passive safety systems of the NPP with RP-392 is the system of the second stage hydro-accumulators (GE-2). The system of the second-stage hydro-accumulators consists of four groups of hydro-accumulating tanks with a total coolant volume of 960 m 3 . The system is intended for the core flooding with coolant during 24 hours. In each group of the hydro-accumulators, the graded coolant flowrate is provided, which depends on residual heat in the reactor. The special check valves are tuned to open at the pressure drop in the circuit below 1.5 MPa. The paper presents the thermalhydraulic substantiation of the serviceability of the second-stage hydro-accumulators system for passive heat removal from the VVER reactor core and the basic design solutions on the GE-2 system. (authors)

  19. Expression of apoplast-targeted plant defensin MtDef4.2 confers resistance to leaf rust pathogen Puccinia triticina but does not affect mycorrhizal symbiosis in transgenic wheat.

    Science.gov (United States)

    Kaur, Jagdeep; Fellers, John; Adholeya, Alok; Velivelli, Siva L S; El-Mounadi, Kaoutar; Nersesian, Natalya; Clemente, Thomas; Shah, Dilip

    2017-02-01

    Rust fungi of the order Pucciniales are destructive pathogens of wheat worldwide. Leaf rust caused by the obligate, biotrophic basidiomycete fungus Puccinia triticina (Pt) is an economically important disease capable of causing up to 50 % yield losses. Historically, resistant wheat cultivars have been used to control leaf rust, but genetic resistance is ephemeral and breaks down with the emergence of new virulent Pt races. There is a need to develop alternative measures for control of leaf rust in wheat. Development of transgenic wheat expressing an antifungal defensin offers a promising approach to complement the endogenous resistance genes within the wheat germplasm for durable resistance to Pt. To that end, two different wheat genotypes, Bobwhite and Xin Chun 9 were transformed with a chimeric gene encoding an apoplast-targeted antifungal plant defensin MtDEF4.2 from Medicago truncatula. Transgenic lines from four independent events were further characterized. Homozygous transgenic wheat lines expressing MtDEF4.2 displayed resistance to Pt race MCPSS relative to the non-transgenic controls in growth chamber bioassays. Histopathological analysis suggested the presence of both pre- and posthaustorial resistance to leaf rust in these transgenic lines. MtDEF4.2 did not, however, affect the root colonization of a beneficial arbuscular mycorrhizal fungus Rhizophagus irregularis. This study demonstrates that the expression of apoplast-targeted plant defensin MtDEF4.2 can provide substantial resistance to an economically important leaf rust disease in transgenic wheat without negatively impacting its symbiotic relationship with the beneficial mycorrhizal fungus.

  20. Effects of salinity on growth and organic solutes accumulation of ...

    African Journals Online (AJOL)

    2013-03-27

    Mar 27, 2013 ... accumulation on the leaves and stem, and free amino acids in the roots, leaves and stems. Plants showed a ... with soil salinity, which has increased due to excessive fertilization ... The salts effects in plants has been studied, and its must be of ... To adapt and survive in these adverse conditions, the plants ...

  1. Seasonal profiles of leaf ascorbic acid content and redox state in ozone-sensitive wildflowers

    International Nuclear Information System (INIS)

    Burkey, Kent O.; Neufeld, Howard S.; Souza, Lara; Chappelka, Arthur H.; Davison, Alan W.

    2006-01-01

    Cutleaf coneflower (Rudbeckia laciniata L.), crown-beard (Verbesina occidentalis Walt.), and tall milkweed (Asclepias exaltata L.) are wildflower species native to Great Smoky Mountains National Park (U.S.A.). Natural populations of each species were analyzed for leaf ascorbic acid (AA) and dehydroascorbic acid (DHA) to assess the role of ascorbate in protecting the plants from ozone stress. Tall milkweed contained greater quantities of AA (7-10 μmol g -1 fresh weight) than crown-beard (2-4 μmol g -1 fresh weight) or cutleaf coneflower (0.5-2 μmol g -1 fresh weight). DHA was elevated in crown-beard and cutleaf coneflower relative to tall milkweed suggesting a diminished capacity for converting DHA into AA. Tall milkweed accumulated AA in the leaf apoplast (30-100 nmol g -1 fresh weight) with individuals expressing ozone foliar injury symptoms late in the season having less apoplast AA. In contrast, AA was not present in the leaf apoplast of either crown-beard or cutleaf coneflower. Unidentified antioxidant compounds were present in the leaf apoplast of all three species. Overall, distinct differences in antioxidant metabolism were found in the wildflower species that corresponded with differences in ozone sensitivity. - Wildflower species exhibit differences in ascorbic acid content and redox status that affect ozone sensitivity

  2. Microbial accumulation of uranium from nuclear liquid waste

    International Nuclear Information System (INIS)

    Mahmood, A.H.

    1986-01-01

    This investigation includes the isolation, identification and the fluctuations of the population densities of microorganisms in the nuclear liquid waste released by some laboratories of Iraqi Atomic Energy Commission. The efficiency of uranium accumulation on isolates (22 bacterial strains, 24 fungal strains and 6 yeast strains) was assessed in aqueous solution using fluorometric techniques. Two of the isolated microoganisms namely Bacillus sp. -15B and Mucor sp.16F showed exceptionally high attitude towards uranium accumulation. Optimal conditions required for efficient accumulation and recovery of uranium was then studied using the two selected isolates. 10 figs.; 162 refs.; 16 tabs

  3. Effect of transpiration on plant accumulation and translocation of PPCP/EDCs

    International Nuclear Information System (INIS)

    Dodgen, Laurel K.; Ueda, Aiko; Wu, Xiaoqin; Parker, David R.; Gan, Jay

    2015-01-01

    The reuse of treated wastewater for agricultural irrigation in arid and hot climates where plant transpiration is high may affect plant accumulation of pharmaceutical and personal care products (PPCPs) and endocrine disrupting chemicals (EDCs). In this study, carrot, lettuce, and tomato plants were grown in solution containing 16 PPCP/EDCs in either a cool-humid or a warm-dry environment. Leaf bioconcentration factors (BCF) were positively correlated with transpiration for chemical groups of different ionized states (p < 0.05). However, root BCFs were correlated with transpiration only for neutral PPCP/EDCs (p < 0.05). Neutral and cationic PPCP/EDCs showed similar accumulation, while anionic PPCP/EDCs had significantly higher accumulation in roots and significantly lower accumulation in leaves (p < 0.05). Results show that plant transpiration may play a significant role in the uptake and translocation of PPCP/EDCs, which may have a pronounced effect in arid and hot climates where irrigation with treated wastewater is common. - Highlights: • Leaf accumulation of PPCP/EDCs is related on plant transpiration. • Cationic and neutral PPCP/EDCs have similar leaf and root accumulation. • Anionic PPCP/EDCs have greater root accumulation and lesser leaf accumulation. • PPCP/EDCs are extensively metabolized in plant tissue and hydroponic solution. - High plant transpiration in arid and hot areas may lead to increased foliar accumulation of PPCP/EDCs from treated wastewater irrigation

  4. Macronutrients accumulation and growth of pineapple cultivars submitted to aluminum stress

    Directory of Open Access Journals (Sweden)

    Mauro F. C. Mota

    Full Text Available ABSTRACT The objective was to determine the growth and accumulation of macronutrients of two pineapple cultivars submitted to different concentrations of aluminum (Al. For this, a study was conducted in plastic pots containing 4 L of nutrient solution, in a randomized block design, in a 2 x 5 factorial scheme, corresponding to two pineapple cultivars (‘IAC Fantástico’ and ‘Vitória’ and five Al concentrations (0, 21.6, 43.2, 64.8 and 86.4 mg of Al plant-1, with four replicates. The following variables were evaluated: root length, dry matter of root, stem and leaf, stem diameter, number of leaves, chlorophyll content and accumulation of macronutrients at 60 days after treatment. The cv. ‘Vitória’ showed a linear decrease in chlorophyll content, root dry matter, root length and accumulation of N, P, K, Ca and Mg in most plant components promoted by the increase of Al concentration in the nutrient solution. The cv. ‘IAC Fantástico’ had lower total dry matter, stem dry matter, stem diameter and accumulation of N, Ca and Mg. However, the evaluated characteristics were not influenced by the increase of Al concentration, showing greater tolerance of this cultivar to Al in nutrient solution.

  5. Accumulation and phytotoxicity of engineered nanoparticles to Cucurbita pepo.

    Science.gov (United States)

    Hawthorne, Joseph; Musante, Craig; Sinha, Saion K; White, Jason C

    2012-04-01

    The effect of bulk and engineered nanoparticle (NP) Ag, Au, Cu, Si, and C at 250 and 750 mg/L on zucchini biomass, transpiration, and element content was determined. The pH of bulk and NP solutions prior to plant growth frequently differed. Nanoparticle Cu solution pH was significantly higher than bulk Cu, whereas for Ag and C, the NPs had significantly lower pH. Plants were unaffected by Au, regardless of particle size or concentration. NP Ag reduced plant biomass and transpiration by 49-91% compared to equivalent bulk Ag. NP Si at 750 mg/L reduced plant growth and transpiration by 30-51% relative to bulk Si. Bulk and NP Cu were phytotoxic but much of the effect was alleviated by humic acid. The shoot Ag and Cu content did not differ based on particle size or concentration. The accumulation of bulk Au was greater than the NP, but humic acid increased the accumulation of NP and bulk Au by 5.6-fold and 80%, respectively. The uptake of NP Si was 5.6-6.5-fold greater than observed with the bulk element. These findings show that the NPs may have unique phytotoxicity or accumulation patterns and that solution properties can significantly impact particle fate and effects.

  6. Study on transportation and accumulation mechanism of cadmium in metal-hyperaccumulating fern, Athyrium yokoscense, by synchrotron radiation x-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Taoka, Hiroki; Nakai, Izumi; Hokura, Akiko; Goto, Fumiyuki; Yoshihara, Toshihiro; Abe, Tomoko; Terada, Yasuko

    2012-01-01

    High energy synchrotron radiation micro X-ray fluorescence (HE-SR-μ-XRF) analysis and X-ray absorption fine structure (XAFS) analysis were applied to reveal accumulation mechanism of Cd in a generated callus of Cd hyperaccumulator fern Athyrium yokoscense. The effects of plant age on the distributions and the chemical forms of Cd were examined using the plant grown in the 1/2 M Murashige and Skoog (MS) medium containing 200 μM Cd. The callus grew vigorously with periodical medium change. The μ-XRF imaging of the mature and young root showed that Cd was located around the cell wall of the epidermis, cortex, endodermis and vascular bundles. It is estimated that Cd absorbed from the root was transported to the shoots via the apoplast. On the other hand, Cd was accumulated in the cell wall of the epidermis, cortex and vascular bundles in the stem. Furthermore, the concentration of Cd in the vascular bundles of the mature stem was higher than that of the young stem. On the other hand, Cd located in whole area in the leaf. The Cd K-edge XAFS analysis revealed that the majority of Cd in the roots of both mature and immature stages of A. yokoscense is bounded to the oxygen ligands. In contrast, it is found that Cd was bound to sulfur ligands as well as to oxygen ligands in the shoots. (author)

  7. Tolerance and accumulation characteristics of cadmium in Amaranthus hybridus L

    International Nuclear Information System (INIS)

    Zhang Xiaochuan; Zhang Shirong; Xu Xiaoxun; Li Ting; Gong Guoshu; Jia Yongxia; Li Yun; Deng Liangji

    2010-01-01

    Because of its toxicity to animals and humans, cadmium (Cd) is an environmentally important heavy metal. Consequently, researchers are interested in using hyperaccumulator and accumulator plants to decontaminate Cd polluted soils. To investigate Cd tolerance, uptake and accumulation by Amaranthus hybridus L., Cd concentration gradients were applied to a soil (at rates of 0, 30, 60, 90, 120, 150 and 180 mg kg -1 ) and hydroponics solutions (at rates of 0, 5, 10, 15, 20, 30, and 40 mg L -1 ) following a field survey. A. hybridus grew normally at added Cd concentrations ≤ 90 mg kg -1 and ≤ 20 mg L -1 in the soil culture and in the hydroponics solutions, respectively. In the hydroponics solutions, peroxidase activity showed a quadratic relationship and catalase activity changed irregularly with increasing Cd concentrations. The highest Cd concentration and accumulation in shoots were 241.56 mg kg -1 and 1006.95 μg pot -1 in the soil culture, and 354.56 mg kg -1 and 668.42 μg pot -1 in the hydroponics experiment. Bioconcentration factors in soil culture and hydroponics solutions were 0.58-1.22 and 5.18-17.55, and translocation factors were 0.64-1.50 and 0.33-0.92, respectively. A. hybridus has potential phytoremediation capability in Cd polluted soils.

  8. Tolerance and accumulation characteristics of cadmium in Amaranthus hybridus L

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Xiaochuan [College of Resources and Environment, Sichuan Agricultural University, 46 Xinkang Road, Yaan 625014 (China); Zhang Shirong, E-mail: rsz01@163.com [College of Resources and Environment, Sichuan Agricultural University, 46 Xinkang Road, Yaan 625014 (China); Xu Xiaoxun; Li Ting [College of Resources and Environment, Sichuan Agricultural University, 46 Xinkang Road, Yaan 625014 (China); Gong Guoshu [Agricultural College, Sichuan Agricultural University, Yaan 625014 (China); Jia Yongxia; Li Yun; Deng Liangji [College of Resources and Environment, Sichuan Agricultural University, 46 Xinkang Road, Yaan 625014 (China)

    2010-08-15

    Because of its toxicity to animals and humans, cadmium (Cd) is an environmentally important heavy metal. Consequently, researchers are interested in using hyperaccumulator and accumulator plants to decontaminate Cd polluted soils. To investigate Cd tolerance, uptake and accumulation by Amaranthus hybridus L., Cd concentration gradients were applied to a soil (at rates of 0, 30, 60, 90, 120, 150 and 180 mg kg{sup -1}) and hydroponics solutions (at rates of 0, 5, 10, 15, 20, 30, and 40 mg L{sup -1}) following a field survey. A. hybridus grew normally at added Cd concentrations {<=} 90 mg kg{sup -1} and {<=} 20 mg L{sup -1} in the soil culture and in the hydroponics solutions, respectively. In the hydroponics solutions, peroxidase activity showed a quadratic relationship and catalase activity changed irregularly with increasing Cd concentrations. The highest Cd concentration and accumulation in shoots were 241.56 mg kg{sup -1} and 1006.95 {mu}g pot{sup -1} in the soil culture, and 354.56 mg kg{sup -1} and 668.42 {mu}g pot{sup -1} in the hydroponics experiment. Bioconcentration factors in soil culture and hydroponics solutions were 0.58-1.22 and 5.18-17.55, and translocation factors were 0.64-1.50 and 0.33-0.92, respectively. A. hybridus has potential phytoremediation capability in Cd polluted soils.

  9. Dynamic stochastic accumulation model with application to pension savings management

    Directory of Open Access Journals (Sweden)

    Melicherčik Igor

    2010-01-01

    Full Text Available We propose a dynamic stochastic accumulation model for determining optimal decision between stock and bond investments during accumulation of pension savings. Stock prices are assumed to be driven by the geometric Brownian motion. Interest rates are modeled by means of the Cox-Ingersoll-Ross model. The optimal decision as a solution to the corresponding dynamic stochastic program is a function of the duration of saving, the level of savings and the short rate. Qualitative and quantitative properties of the optimal solution are analyzed. The model is tested on the funded pillar of the Slovak pension system. The results are calculated for various risk preferences of a saver.

  10. Seasonal profiles of leaf ascorbic acid content and redox state in ozone-sensitive wildflowers

    Energy Technology Data Exchange (ETDEWEB)

    Burkey, Kent O. [Plant Science Research Unit, USDA-ARS and North Carolina State University, 3127 Ligon Street, Raleigh, NC 27607 (United States)]. E-mail: koburkey@unity.ncsu.edu; Neufeld, Howard S. [Appalachian State University, Boone, NC (United States); Souza, Lara [Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN (United States); Chappelka, Arthur H. [Auburn University, Auburn, AL (United States); Davison, Alan W. [University of Newcastle, Newcastle, England (United Kingdom)

    2006-10-15

    Cutleaf coneflower (Rudbeckia laciniata L.), crown-beard (Verbesina occidentalis Walt.), and tall milkweed (Asclepias exaltata L.) are wildflower species native to Great Smoky Mountains National Park (U.S.A.). Natural populations of each species were analyzed for leaf ascorbic acid (AA) and dehydroascorbic acid (DHA) to assess the role of ascorbate in protecting the plants from ozone stress. Tall milkweed contained greater quantities of AA (7-10 {mu}mol g{sup -1} fresh weight) than crown-beard (2-4 {mu}mol g{sup -1} fresh weight) or cutleaf coneflower (0.5-2 {mu}mol g{sup -1} fresh weight). DHA was elevated in crown-beard and cutleaf coneflower relative to tall milkweed suggesting a diminished capacity for converting DHA into AA. Tall milkweed accumulated AA in the leaf apoplast (30-100 nmol g{sup -1} fresh weight) with individuals expressing ozone foliar injury symptoms late in the season having less apoplast AA. In contrast, AA was not present in the leaf apoplast of either crown-beard or cutleaf coneflower. Unidentified antioxidant compounds were present in the leaf apoplast of all three species. Overall, distinct differences in antioxidant metabolism were found in the wildflower species that corresponded with differences in ozone sensitivity. - Wildflower species exhibit differences in ascorbic acid content and redox status that affect ozone sensitivity.

  11. Effect of elevated Al and pH on the growth and root morphology of Al-tolerant and Al-sensitive wheat seedlings in an acid soil

    Directory of Open Access Journals (Sweden)

    Md. Toufiq Iqbal

    2014-03-01

    Full Text Available Aluminium ion (Al3+ toxicity and hydrogen ion (H+ activity are the major constraints for plant growth in acid soil. This study was undertaken to determine the effect of pH and Al on the growth response and changes in root morphology of Al-tolerant (ET8 and Al-sensitive (ES8 wheat seedlings. Different levels of AlCl3 and CaCO3 were added to the soils to manipulate soil pH and extractable Al. The results showed that the bulk soil pH remained constant at pH 4.1 with further applications of AlCl3, and that the seedlings died at the 200 mg AlCl3/kg treatments. The ET8 seedlings responded better than the ES8 seedlings in both low and high Al and pH. The ET8 seedlings had higher root surface areas and root tip numbers than the ES8 seedlings in the Al treatment. In contrast, the ES8 had higher root diameters than the ET8 seedlings due to the elevated Al supply. Apoplast Al increased with the increase of soil available extractable Al, and declined with the decrease of soil extractable Al. The ET8 seedlings accumulated more Al in their apoplast than the ES8 seedlings. This study concluded that accumulation of Al in the apoplast is also involved in Al tolerance mechanism with the addition of organic acid exudation.

  12. Elevated atmospheric CO2 decreases the ammonia compensation point of barley plants

    DEFF Research Database (Denmark)

    Wang, Liang; Pedas, Pai; Eriksson, Ulf Dennis

    2013-01-01

    mu mol mol(-1)) or elevated (800 mu mol mol(-1)) CO2 concentration with NO3- or NH4NO3 as the nitrogen source. The concentrations of NH4+ and H+ in the leaf apoplastic solution were measured along with different foliar N pools and enzymes involved in N metabolism. Elevated CO2 caused a threefold...... decrease in the NH4+ concentration in the apoplastic solution and slightly acidified it. This resulted in a decline of the chi(NH3) from 2.25 and 2.95 nmol mol(-1) under ambient CO2 to 0.37 and 0.89 nmol mol(-1) at elevated CO2 in the NO3- and NH4NO3 treatments, respectively. The decrease in chi(NH3...

  13. Cadmium accumulation by jack-bean and sorghum in hydroponic culture.

    Science.gov (United States)

    Francato Zancheta, Ariana Carramaschi; De Abreu, Cleide Aparecida; Zambrosi, Fernando César Bachiega; de Magalhães Erismann, Norma; Andrade Lagôa, Ana Maria Magalhães

    2015-01-01

    Among the technologies used to recuperate cadmium (Cd) contaminated soils, phytoextraction are particularly important, where the selection of suitable plants is critical to the success of the soil remediation. Thus, the objectives of this study were to evaluate the responses of jack-bean and sorghum to Cd supply and to quantify Cd accumulation by these species grown in hydroponic culture. The plants were subjected to 0, 15, 30, or 60 μmol Cd L(-1) in the nutrient solution, and gas exchange, plant growth and Cd accumulation were measured at 25 days after starting Cd treatments. The Cd supply severely reduced growth of shoots and roots in both species. In jack-bean, Cd decreased photosynthesis by 56-86%, stomatal conductance by 59-85% and transpiration by 48-80%. The concentrations and amounts of Cd accumulated in the plant tissues were proportional to the metal supply in the nutrient solution. Sorghum was more tolerant than jack-bean to Cd toxicity, but the latter showed a greater metal concentration and accumulation in the shoot. Therefore, jack-bean would be more suitable than sorghum for use in Cd phytoremediation programs based on phytoextraction.

  14. Apoplastic peroxidases are required for salicylic acid-mediated defense against Pseudomonas syringae.

    Science.gov (United States)

    Mammarella, Nicole D; Cheng, Zhenyu; Fu, Zheng Qing; Daudi, Arsalan; Bolwell, G Paul; Dong, Xinnian; Ausubel, Frederick M

    2015-04-01

    Reactive oxygen species (ROS) generated by NADPH oxidases or apoplastic peroxidases play an important role in the plant defense response. Diminished expression of at least two Arabidopsis thaliana peroxidase encoding genes, PRX33 (At3g49110) and PRX34 (At3g49120), as a consequence of anti-sense expression of a heterologous French bean peroxidase gene (asFBP1.1), were previously shown to result in reduced levels of ROS following pathogen attack, enhanced susceptibility to a variety of bacterial and fungal pathogens, and reduced levels of callose production and defense-related gene expression in response to the microbe associated molecular pattern (MAMP) molecules flg22 and elf26. These data demonstrated that the peroxidase-dependent oxidative burst plays an important role in the elicitation of pattern-triggered immunity (PTI). Further work reported in this paper, however, shows that asFBP1.1 antisense plants are not impaired in all PTI-associated responses. For example, some but not all flg22-elicited genes are induced to lower levels by flg22 in asFPB1.1, and callose deposition in asFPB1.1 is similar to wild-type following infiltration with a Pseudomonas syringae hrcC mutant or with non-host P. syringae pathovars. Moreover, asFPB1.1 plants did not exhibit any apparent defect in their ability to mount a hypersensitive response (HR). On the other hand, salicylic acid (SA)-mediated activation of PR1 was dramatically impaired in asFPB1.1 plants. In addition, P. syringae-elicited expression of many genes known to be SA-dependent was significantly reduced in asFBP1.1 plants. Consistent with this latter result, in asFBP1.1 plants the key regulator of SA-mediated responses, NPR1, showed both dramatically decreased total protein abundance and a failure to monomerize, which is required for its translocation into the nucleus. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Accumulation of organic compounds leached from plastic materials used in biopharmaceutical process containers.

    Science.gov (United States)

    Jenke, Dennis R; Zietlow, David; Garber, Mary Jo; Sadain, Salma; Reiber, Duane; Terbush, William

    2007-01-01

    Plastic materials are widely used in medical items, such as solution containers, transfusion sets, transfer tubing, and devices. An emerging trend in the biotechnology industry is the utilization of plastic containers to prepare, transport, and store an assortment of solutions including buffers, media, and in-process and finished product. The direct contact of such containers with the product at one or more points in its lifetime raises the possibility that container leachables may accumulate in the finished product. The interaction between several commercially available container materials and numerous model test solutions (representative of buffers and media used in biopharmaceutical applications) was investigated. This paper summarizes the identification of leachables associated with the container materials and documents the levels to which targeted leachables accumulate in the test solutions under defined storage conditions.

  16. SR-XRF imaging of Cs highly accumulated in vegetables

    International Nuclear Information System (INIS)

    Nakai, Izumi; Oda, Nahoko; Terada, Yasuko

    2011-01-01

    Accumulation of Cs in vegetables was studied with regard to the remediation of radioactive Cs from a nuclear plant accident in Fukushima. It was found that Brassica oleracea var. capitata, Brassica campestris var. perviridis, and Lactuca sativa accumulated Cs to a level of more than 10000 ppm (dry weight) when they were cultivated in 1 mM Cs solution. Two-dimensional distributions of Cs were revealed by SR-XRF imaging showing a homogeneous distribution of Cs in the plant bodies. (author)

  17. Cellular localization of cadmium and structural changes in maize plants grown on a cadmium contaminated soil with and without liming

    Energy Technology Data Exchange (ETDEWEB)

    Vieira da Cunha, Karina Patricia [Federal Rural University of Pernambuco, Department of Agronomy, Recife, PE 52171900 (Brazil); Araujo do Nascimento, Clistenes Williams [Federal Rural University of Pernambuco, Department of Agronomy, Recife, PE 52171900 (Brazil)], E-mail: clistenes@depa.ufrpe.br; Magalhaes de Mendonca Pimentel, Rejane; Pereira Ferreira, Clebio [Federal Rural University of Pernambuco, Department of Agronomy, Recife, PE 52171900 (Brazil)

    2008-12-15

    The effects of different concentrations of soil cadmium (0, 1, 3, 5, 10, and 20 mg kg{sup -1}) on growth, structural changes and cadmium cellular localization in leaves of maize plants (Zea mays L.) were investigated in a pot experiment. The results showed that the structural changes observed in maize leaves were not only a response to the Cd-induced stress but also a cellular mechanism to reduce the free Cd{sup +2} in the cytoplasm. However, this mechanism seems to be efficient only up to a Cd concentration in leaves between 27 and 35 mg kg{sup -1} for soils without and with liming, respectively. The cellular response varied with both the Cd concentration in soil and liming. For limed soil, Cd was preferentially accumulated in the apoplast while for unlimed soils Cd was more evenly distributed into the cells. The ability of Cd accumulation depended on the leaf tissue considered. The apoplast collenchyma presented the highest Cd concentration followed by the endodermis, perycicle, xylem, and epidermis. On the other hand, symplast Cd accumulated mainly in the endodermis, bundle sheath cells, parenchyma, and phloem. Based on the structural changes and growth reduction, the critical toxic concentration of soil Cd to maize plants is between 5 and 10 mg kg{sup -1}.

  18. Cellular localization of cadmium and structural changes in maize plants grown on a cadmium contaminated soil with and without liming

    International Nuclear Information System (INIS)

    Vieira da Cunha, Karina Patricia; Araujo do Nascimento, Clistenes Williams; Magalhaes de Mendonca Pimentel, Rejane; Pereira Ferreira, Clebio

    2008-01-01

    The effects of different concentrations of soil cadmium (0, 1, 3, 5, 10, and 20 mg kg -1 ) on growth, structural changes and cadmium cellular localization in leaves of maize plants (Zea mays L.) were investigated in a pot experiment. The results showed that the structural changes observed in maize leaves were not only a response to the Cd-induced stress but also a cellular mechanism to reduce the free Cd +2 in the cytoplasm. However, this mechanism seems to be efficient only up to a Cd concentration in leaves between 27 and 35 mg kg -1 for soils without and with liming, respectively. The cellular response varied with both the Cd concentration in soil and liming. For limed soil, Cd was preferentially accumulated in the apoplast while for unlimed soils Cd was more evenly distributed into the cells. The ability of Cd accumulation depended on the leaf tissue considered. The apoplast collenchyma presented the highest Cd concentration followed by the endodermis, perycicle, xylem, and epidermis. On the other hand, symplast Cd accumulated mainly in the endodermis, bundle sheath cells, parenchyma, and phloem. Based on the structural changes and growth reduction, the critical toxic concentration of soil Cd to maize plants is between 5 and 10 mg kg -1

  19. The potato-specific apyrase is apoplastically localized and has influence on gene expression, growth, and development.

    Science.gov (United States)

    Riewe, David; Grosman, Lukasz; Fernie, Alisdair R; Wucke, Cornelia; Geigenberger, Peter

    2008-07-01

    Apyrases hydrolyze nucleoside triphosphates and diphosphates and are found in all eukaryotes and a few prokaryotes. Although their enzymatic properties have been well characterized, relatively little is known regarding their subcellular localization and physiological function in plants. In this study, we used reverse genetic and biochemical approaches to investigate the role of potato (Solanum tuberosum)-specific apyrase. Silencing of the apyrase gene family with RNA interference constructs under the control of the constitutive 35S promoter led to a strong decrease in apyrase activity to below 10% of the wild-type level. This decreased activity led to phenotypic changes in the transgenic lines, including a general retardation in growth, an increase in tuber number per plant, and differences in tuber morphology. Silencing of apyrase under the control of a tuber-specific promoter led to similar changes in tuber morphology; however, there were no direct effects of apyrase inhibition on tuber metabolism. DNA microarrays revealed that decreased expression of apyrase leads to increased levels of transcripts coding for cell wall proteins involved in growth and genes involved in energy transfer and starch synthesis. To place these results in context, we determined the subcellular localization of the potato-specific apyrase. Using a combination of approaches, we were able to demonstrate that this enzyme is localized to the apoplast. We describe the evidence that underlies both this fact and that potato-specific apyrase has a crucial role in regulating growth and development.

  20. Accumulation of Colloidal Particles in Flow Junctions Induced by Fluid Flow and Diffusiophoresis

    Science.gov (United States)

    Shin, Sangwoo; Ault, Jesse T.; Warren, Patrick B.; Stone, Howard A.

    2017-10-01

    The flow of solutions containing solutes and colloidal particles in porous media is widely found in systems including underground aquifers, hydraulic fractures, estuarine or coastal habitats, water filtration systems, etc. In such systems, solute gradients occur when there is a local change in the solute concentration. While the effects of solute gradients have been found to be important for many applications, we observe an unexpected colloidal behavior in porous media driven by the combination of solute gradients and the fluid flow. When two flows with different solute concentrations are in contact near a junction, a sharp solute gradient is formed at the interface, which may allow strong diffusiophoresis of the particles directed against the flow. Consequently, the particles accumulate near the pore entrance, rapidly approaching the packing limit. These colloidal dynamics have important implications for the clogging of a porous medium, where particles that are orders of magnitude smaller than the pore width can accumulate and block the pores within a short period of time. We also show that this effect can be exploited as a useful tool for preconcentrating biomolecules for rapid bioassays.

  1. Accumulation of Colloidal Particles in Flow Junctions Induced by Fluid Flow and Diffusiophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Sangwoo [Univ. of Hawaii at Manoa, Honolulu, HI (United States); Ault, Jesse T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Warren, Patrick B. [Unilever R& D Port Sunlight, Wirral (United Kingdom); Stone, Howard A. [Princeton Univ., Princeton, NJ (United States)

    2017-11-16

    The flow of solutions containing solutes and colloidal particles in porous media is widely found in systems including underground aquifers, hydraulic fractures, estuarine or coastal habitats, water filtration systems, etc. In such systems, solute gradients occur when there is a local change in the solute concentration. While the effects of solute gradients have been found to be important for many applications, we observe an unexpected colloidal behavior in porous media driven by the combination of solute gradients and the fluid flow. When two flows with different solute concentrations are in contact near a junction, a sharp solute gradient is formed at the interface, which may allow strong diffusiophoresis of the particles directed against the flow. Consequently, the particles accumulate near the pore entrance, rapidly approaching the packing limit. These colloidal dynamics have important implications for the clogging of a porous medium, where particles that are orders of magnitude smaller than the pore width can accumulate and block the pores within a short period of time. As a result, we also show that this effect can be exploited as a useful tool for preconcentrating biomolecules for rapid bioassays.

  2. Bioaccumulation of uranium and thorium from the solution containing both elements using various microorganisms

    International Nuclear Information System (INIS)

    Tsuruta, T.

    2006-01-01

    The effects of proton, thorium and uranium on the bioaccumulation of thorium and uranium from the solution (pH 3.5) containing uranium and thorium using Streptomyces levoris cells were examined. The amount of thorium accumulated using the cells decreased by the pre-contact between the cells and the solution (pH 3.5) containing no metals, whereas that of uranium was almost unaffected by the treatment. The amount of thorium was almost unaffected by the existence of uranium. On the other hand, the amount of uranium accumulated was strongly affected by the thorium, especially thorium addition after uranium accumulation. The decrease of uranium accumulated by the addition of thorium after the accumulation of uranium was higher than that from the solution containing both elements. Therefore, the contribution of uranium-thorium exchange reaction was higher than that of competition reaction. Accordingly, proton-uranium-thorium exchange reaction was occurred in the accumulation of thorium from the solution containing thorium and uranium. The gram-positive bacteria, such as Micrococcus luteus, Arthrobacter nicotianae, Bacillus subtilis and B. megaterium, has a much higher separation factor as thorium/uranium than that of actinomycetes. These gram-positive bacterial strains can be used for the accumulation of thorium from the solution containing uranium and thorium

  3. Accumulation of strontium and cesium by kale as a function of age of plant

    International Nuclear Information System (INIS)

    Weaver, C.M.; Harris, N.D.; Fox, L.R.

    1981-01-01

    The accumulation of Sr and Cs throughout the growth cycle of a hydroponically grown vegetable crop (Brassica oleracea var. acephala D.C. Blue Curl) was studied. The cumulative effect of supplying the radionuclides through the nutrient solution to kale throughout the growth cycle, simulating a continuous discharge, was compared to exposure at each stage of the growth cycle to a single dose of radioactivity, simulating an accidental release. The time course of accumulation of 137 Cs supplied continuously through the nutrient solution resembled the sigmoidal dry weight growth curve of the vegetable. Accumulation of this nuclide after exposure of kale to radioactivity for 48 hours at each stage of growth decreased with age of the plant. The time course of 90 Sr supplied continuously resembled the pattern of the periodic 48-hour accumulation for this radionuclide, although there was a 1- to 2-week lag period between the two uptake patterns

  4. Plutonium recovery from carbonate wash solutions

    International Nuclear Information System (INIS)

    Gray, J.H.; Reif, D.J.; Chostner, D.F.; Holcomb, H.P.

    1991-01-01

    540Periodically higher than expected levels of plutonium are found in carbonate solutions used to wash second plutonium cycle solvent. The recent accumulation of plutonium in carbonate wash solutions has led to studies to determine the cause of that plutonium accumulation, to evaluate the quality of all canyon solvents, and to develop additional criteria needed to establish when solvent quality is acceptable. Solvent from three canyon solvent extraction cycles was used to evaluate technology required to measure tributyl phosphate (TBP) degradation products and was used to evaluate solvent quality criteria during the development of plutonium recovery processes. 1 fig

  5. Hydrogen Sulfide Alleviates Aluminum Toxicity via Decreasing Apoplast and Symplast Al Contents in Rice

    Directory of Open Access Journals (Sweden)

    Chun Q. Zhu

    2018-03-01

    Full Text Available Hydrogen sulfide (H2S plays a vital role in Al3+ stress resistance in plants, but the underlying mechanism is unclear. In the present study, pretreatment with 2 μM of the H2S donor NaHS significantly alleviated the inhibition of root elongation caused by Al toxicity in rice roots, which was accompanied by a decrease in Al contents in root tips under 50 μM Al3+ treatment. NaHS pretreatment decreased the negative charge in cell walls by reducing the activity of pectin methylesterase and decreasing the pectin and hemicellulose contents in rice roots. This treatment also masked Al-binding sites in the cell wall by upregulating the expression of OsSATR1 and OsSTAR2 in roots and reduced Al binding in the cell wall by stimulating the expression of the citrate acid exudation gene OsFRDL4 and increasing the secretion of citrate acid. In addition, NaHS pretreatment decreased the symplasmic Al content by downregulating the expression of OsNRAT1, and increasing the translocation of cytoplasmic Al to the vacuole via upregulating the expression of OsALS1. The increment of antioxidant enzyme [superoxide dismutase (SOD, ascorbate peroxidase (APX, catalase (CAT, and peroxidase (POD] activity with NaHS pretreatment significantly decreased the MDA and H2O2 content in rice roots, thereby reducing the damage of Al3+ toxicity on membrane integrity in rice. H2S exhibits crosstalk with nitric oxide (NO in response to Al toxicity, and through reducing NO content in root tips to alleviate Al toxicity. Together, this study establishes that H2S alleviates Al toxicity by decreasing the Al content in the apoplast and symplast of rice roots.

  6. Can ligand addition to soil enhance Cd phytoextraction? A mechanistic model study.

    Science.gov (United States)

    Lin, Zhongbing; Schneider, André; Nguyen, Christophe; Sterckeman, Thibault

    2014-11-01

    Phytoextraction is a potential method for cleaning Cd-polluted soils. Ligand addition to soil is expected to enhance Cd phytoextraction. However, experimental results show that this addition has contradictory effects on plant Cd uptake. A mechanistic model simulating the reaction kinetics (adsorption on solid phase, complexation in solution), transport (convection, diffusion) and root absorption (symplastic, apoplastic) of Cd and its complexes in soil was developed. This was used to calculate plant Cd uptake with and without ligand addition in a great number of combinations of soil, ligand and plant characteristics, varying the parameters within defined domains. Ligand addition generally strongly reduced hydrated Cd (Cd(2+)) concentration in soil solution through Cd complexation. Dissociation of Cd complex ([Formula: see text]) could not compensate for this reduction, which greatly lowered Cd(2+) symplastic uptake by roots. The apoplastic uptake of [Formula: see text] was not sufficient to compensate for the decrease in symplastic uptake. This explained why in the majority of the cases, ligand addition resulted in the reduction of the simulated Cd phytoextraction. A few results showed an enhanced phytoextraction in very particular conditions (strong plant transpiration with high apoplastic Cd uptake capacity), but this enhancement was very limited, making chelant-enhanced phytoextraction poorly efficient for Cd.

  7. Increased Uptake of Chelated Copper Ions by Lolium perenne Attributed to Amplified Membrane and Endodermal Damage

    Directory of Open Access Journals (Sweden)

    Anthea Johnson

    2015-10-01

    Full Text Available The contributions of mechanisms by which chelators influence metal translocation to plant shoot tissues are analyzed using a combination of numerical modelling and physical experiments. The model distinguishes between apoplastic and symplastic pathways of water and solute movement. It also includes the barrier effects of the endodermis and plasma membrane. Simulations are used to assess transport pathways for free and chelated metals, identifying mechanisms involved in chelate-enhanced phytoextraction. Hypothesized transport mechanisms and parameters specific to amendment treatments are estimated, with simulated results compared to experimental data. Parameter values for each amendment treatment are estimated based on literature and experimental values, and used for model calibration and simulation of amendment influences on solute transport pathways and mechanisms. Modeling indicates that chelation alters the pathways for Cu transport. For free ions, Cu transport to leaf tissue can be described using purely apoplastic or transcellular pathways. For strong chelators (ethylenediaminetetraacetic acid (EDTA and diethylenetriaminepentaacetic acid (DTPA, transport by the purely apoplastic pathway is insufficient to represent measured Cu transport to leaf tissue. Consistent with experimental observations, increased membrane permeability is required for simulating translocation in EDTA and DTPA treatments. Increasing the membrane permeability is key to enhancing phytoextraction efficiency.

  8. Accumulation of copper by the aquatic macrophyte Salvinia biloba Raddi (Salviniaceae

    Directory of Open Access Journals (Sweden)

    F. Freitas

    2017-07-01

    Full Text Available Abstract Aquatic macrophytes have properties and mechanisms which are useful for the removal of substances in solution, commonly used in phytoremediation processes in aquatic environments. This study evaluated the performance of copper (Cu accumulation by Salvinia biloba Raddi (Salviniaceae in different metal concentrations (1, 3 and 5 µg mL-1, as well as the control treatment, measured at intervals of 0, 7 and 14 days under laboratory conditions, with control as to pH and luminosity. After the experiment, the S. biloba biomass was washed, kiln dried, crushed and subjected to the process of digestion, and subsequently the accumulated copper content was determined by atomic absorption spectroscopy. The results showed that S. biloba is apt at accumulating copper, varying significantly between different treatments and days of exposure to the contaminant, as well as its interaction (treatment × days. The highest accumulation values were observed in treatment with 5 µg mL-1, which at 14 days, with 11,861 µg g-1 of copper. We observed symptoms of toxicity and mortality in plants, probably indicating the effect of copper on the species when at high levels. Salvinia biloba is an efficient species in the removal of copper in solution, its recommendation as a remediating agent in aquatic ecosystems being possible.

  9. Accumulation effects in modulation spectroscopy with high-repetition-rate pulses: Recursive solution of optical Bloch equations

    Science.gov (United States)

    Osipov, Vladimir Al.; Pullerits, Tõnu

    2017-10-01

    Application of the phase-modulated pulsed light for advance spectroscopic measurements is the area of growing interest. The phase modulation of the light causes modulation of the signal. Separation of the spectral components of the modulations allows to distinguish the contributions of various interaction pathways. The lasers with high repetition rate used in such experiments can lead to appearance of the accumulation effects, which become especially pronounced in systems with long-living excited states. Recently it was shown that such accumulation effects can be used to evaluate parameters of the dynamical processes in the material. In this work we demonstrate that the accumulation effects are also important in the quantum characteristics measurements provided by modulation spectroscopy. In particular, we consider a model of quantum two-level system driven by a train of phase-modulated light pulses, organized in analogy with the two-dimensional spectroscopy experiments. We evaluate the harmonics' amplitudes in the fluorescent signal and calculate corrections appearing from the accumulation effects. We show that the corrections can be significant and have to be taken into account at analysis of experimental data.

  10. An Apoplastic β-Glucosidase is Essential for the Degradation of Flavonol 3-O-β-Glucoside-7-O-α-Rhamnosides in Arabidopsis.

    Science.gov (United States)

    Roepke, Jonathon; Gordon, Harley O W; Neil, Kevin J A; Gidda, Satinder; Mullen, Robert T; Freixas Coutin, José A; Bray-Stone, Delaney; Bozzo, Gale G

    2017-06-01

    Flavonol bisglycosides accumulate in plant vegetative tissues in response to abiotic stress, including simultaneous environmental perturbations (i.e. nitrogen deficiency and low temperature, NDLT), but disappear with recovery from NDLT. Previously, we determined that a recombinant Arabidopsis β-glucosidase (BGLU), BGLU15, hydrolyzes flavonol 3-O-β-glucoside-7-O-α-rhamnosides and flavonol 3-O-β-glucosides, forming flavonol 7-O-α-rhamnosides and flavonol aglycones, respectively. In this study, the transient expression of a BGLU15-Cherry fusion protein in onion epidermal cells demonstrated that BGLU15 was localized to the apoplast. Analysis of BGLU15 T-DNA insertional inactivation lines (bglu15-1 and bglu15-2) revealed negligible levels of BGLU15 transcripts, whereas its paralogs BGLU12 and BGLU16 were expressed in wild-type and bglu15 plants. The recombinant BGLU16 did not hydrolyze quercetin 3-O-β-glucoside-7-O-α-rhamnoside or rhamnosylated flavonols, but was active with the synthetic substrate, p-nitrophenyl-β-d-glucoside. In addition, shoots of both bglu15 mutants contained negligible flavonol 3-O-β-glucoside-7-O-α-rhamnoside hydrolase activity, whereas this activity increased by 223% within 2 d of NDLT recovery in wild-type plants. The levels of flavonol 3-O-β-glucoside-7-O-α-rhamnosides and quercetin 3-O-β-glucoside were high and relatively unchanged in shoots of bglu15 mutants during recovery from NDLT, whereas rapid losses were apparent in wild-type shoots. Moreover, losses of two flavonol 3-O-β-neohesperidoside-7-O-α-rhamnosides and kaempferol 3-O-α-rhamnoside-7-O-α-rhamnoside were evident during recovery from NDLT, regardless of whether BGLU15 was present. A spike in a kaempferol 7-O-α-rhamnoside occurred with stress recovery, regardless of germplasm, suggesting a contribution from hydrolysis of kaempferol 3-O-β-neohesperidoside-7-O-α-rhamnosides and/or kaempferol 3-O-α-rhamnoside-7-O-α-rhamnoside by hitherto unknown mechanisms. Thus

  11. Arsenic uptake and accumulation in rice (Oryza sativa L.) with selenite fertilization and water management.

    Science.gov (United States)

    Wan, Yanan; Camara, Aboubacar Younoussa; Huang, Qingqing; Yu, Yao; Wang, Qi; Li, Huafen

    2018-07-30

    The accumulation of arsenic (As) in rice grain is a potential threat to human health. Our study investigated the possible mediatory role of selenite fertilization on As uptake and accumulation by rice (Oryza sativa L.) under different water management regimes (aerobic or flooded) in a pot experiment. Soil solutions were also extracted during the growing season to monitor As dynamics. Results showed that As contents in the soil solutions, seedlings, and mature rice were higher under flooded than under aerobic water management. Under aerobic conditions, selenite additions slightly increased As concentrations in soil solutions (in the last two samplings), but decreased As levels in rice plants. Relative to the control, 0.5 mg kg -1 selenite decreased rice grain As by 27.5%. Under flooded conditions, however, selenite additions decreased As in soil solutions, while increased As in rice grain. Tendencies also showed that selenite additions decreased the proportion of As in rice shoots both at the seedling stage and maturity, and were more effective in aerobic soil. Our results demonstrate that the effect of selenite fertilizer on As accumulation by rice is related to water management. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Passive accumulation of Au nanoparticles in tumours in mice

    International Nuclear Information System (INIS)

    Kempson, I.M.; Wang, C.H.; Lai, S.F.; Cai, X.; Hwu, Y.; Yang, C.S.; Margaritondo, G.

    2011-01-01

    Full text: Enhance biocompatibility and passive accumulation of gold nanoparticles into tumours in vivo. Improved biocompatible nanoparticles synthesized by radical synthesis in solution by X-ray irradiation (5,000 Gy/sec). As an alternative to the use of chemical reducing agents, irradiation solutions can cause the reduction of dissolved ions to form nuclei form in sub-second times and growth is easily controlled by physically the X-ray intensity. The intensity can be used to manipulate growth rates for different applications and in the information of spherical and rod-structures. Size is easily controlled by exposure time and capping agents and provides high reproducibility with small size distributions. Resulting body burden in subcutaneous tumour mouse models was determined in various organs with ICP-MS. Cellular distributions were analysed with transmission x-ray Microscopy and conventional histology. The resulting nanoparticle sols were highly concentrated. naturally sterile, have high temperature stability and synthesised with fewer chemical reactants; providing greater chemical and biological adaptability. The results demonstrated that a passivated biocompatible surface, minimizing physiological clearance from the animal allows non-specific accumulation of large concentrations of nanoparticles into tumour tissues and significant penetration and circumnavigation of the binding site barrier effect. Concentrations of gold reached ∼ 25 times greater than surrounding muscle tissue and were retained for many hours. Physicochemical properties of nanoparticles impart significant influence on their ability to penetrate and accumulate in tumour tissues. Effective synthesis enables high concentrations of gold nanoparticles to accumulate in tumour tissues which could be applied to development in radiation oncology applications.

  13. SUCROSE TRANSPORTER 5 supplies Arabidopsis embryos with biotin and affects triacylglycerol accumulation

    Science.gov (United States)

    Pommerrenig, Benjamin; Popko, Jennifer; Heilmann, Mareike; Schulmeister, Sylwia; Dietel, Katharina; Schmitt, Bianca; Stadler, Ruth; Feussner, Ivo; Sauer, Norbert

    2013-01-01

    The Arabidopsis SUC5 protein represents a classical sucrose/H+ symporter. Functional analyses previously revealed that SUC5 also transports biotin, an essential co-factor for fatty acid synthesis. However, evidence for a dual role in transport of the structurally unrelated compounds sucrose and biotin in plants was lacking. Here we show that SUC5 localizes to the plasma membrane, and that the SUC5 gene is expressed in developing embryos, confirming the role of the SUC5 protein as substrate carrier across apoplastic barriers in seeds. We show that transport of biotin but not of sucrose across these barriers is impaired in suc5 mutant embryos. In addition, we show that SUC5 is essential for the delivery of biotin into the embryo of biotin biosynthesis-defective mutants (bio1 and bio2). We compared embryo and seedling development as well as triacylglycerol accumulation and fatty acid composition in seeds of single mutants (suc5, bio1 or bio2), double mutants (suc5 bio1 and suc5 bio2) and wild-type plants. Although suc5 mutants were like the wild-type, bio1 and bio2 mutants showed developmental defects and reduced triacylglycerol contents. In suc5 bio1 and suc5 bio2 double mutants, developmental defects were severely increased and the triacylglycerol content was reduced to a greater extent in comparison to the single mutants. Supplementation with externally applied biotin helped to reduce symptoms in both single and double mutants, but the efficacy of supplementation was significantly lower in double than in single mutants, showing that transport of biotin into the embryo is lower in the absence of SUC5. PMID:23031218

  14. Cadmium accumulation by muskmelon under salt stress in contaminated organic soil

    Energy Technology Data Exchange (ETDEWEB)

    Gabrijel, Ondrasek [University of Zagreb, Faculty of Agriculture, Svetosimunska 25, 10000 Zagreb (Croatia)], E-mail: gondrasek@agr.hr; Davor, Romic [University of Zagreb, Faculty of Agriculture, Svetosimunska 25, 10000 Zagreb (Croatia); Zed, Rengel [Soil Science and Plant Nutrition, Faculty of Natural and Agricultural Sciences, University of Western Australia, Crawley WA 6009 (Australia); Marija, Romic; Monika, Zovko [University of Zagreb, Faculty of Agriculture, Svetosimunska 25, 10000 Zagreb (Croatia)

    2009-03-15

    Human-induced salinization and trace element contamination are widespread and increasing rapidly, but their interactions and environmental consequences are poorly understood. Phytoaccumulation, as the crucial entry pathway for biotoxic Cd into the human foodstuffs, correlates positively with rhizosphere salinity. Hypothesising that organic matter decreases the bioavailable Cd{sup 2+} pool and therefore restricts its phytoextraction, we assessed the effects of four salinity levels (0, 20, 40 and 60 mM NaCl) and three Cd levels (0.3, 5.5 and 10.4 mg kg{sup -1}) in peat soil on mineral accumulation/distribution as well as vegetative growth and fruit yield parameters of muskmelon (Cucumis melo L.) in a greenhouse. Salt stress reduced shoot biomass and fruit production, accompanied by increased Na and Cl and decreased K concentration in above-ground tissues. A 25- and 50-day exposure to salinity increased Cd accumulation in leaves up to 87% and 46%, respectively. Accumulation of Cd in the fruits was up to 43 times lower than in leaves and remained unaltered by salinity. Soil contamination by Cd enhanced its accumulation in muskmelon tissues by an order of magnitude compared with non-contaminated control. In the drainage solution, concentrations of Na and Cl slightly exceeded those in the irrigation solution, whereas Cd concentration in drainage solution was lower by 2-3 orders of magnitude than the total amount added. Chemical speciation and distribution modelling (NICA-Donnan) using Visual MINTEQ showed predominance of dissolved organic ligands in Cd chemisorption and complexation in all treatments; however, an increase in salt addition caused a decrease in organic Cd complexes from 99 to 71%, with free Cd{sup 2+} increasing up to 6% and Cd-chlorocomplexes up to 23%. This work highlights the importance of soil organic reactive surfaces in reducing trace element bioavailability and phytoaccumulation. Chloride salinity increased Cd accumulation in leaves but not in fruit

  15. Cadmium stress in wheat seedlings: growth, cadmium accumulation and photosynthesis

    DEFF Research Database (Denmark)

    Ci, Dunwei; Jiang, Dong; Wollenweber, Bernd

    2010-01-01

    parameters were generally depressed by Cd stress, especially under the high Cd concentrations. Cd concentration and accumulation in both shoots and roots increased with increasing external Cd concentrations. Relationships between corrected parameters of growth, photosynthesis and fluorescence and corrected......Seedlings of wheat (Triticum aestivum L.) cultivars Jing 411, Jinmai 30 and Yangmai 10 were exposed to 0, 10, 20, 30, 40 or 50 μM of CdCl2 in a solution culture experiment. The effects of cadmium (Cd) stress on wheat growth, leaf photon energy conversion, gas exchange, and Cd accumulation in wheat...

  16. Carbon Accumulation during Photosynthesis in Leaves of Nitrogen- and Phosphorus-Stressed Cotton.

    Science.gov (United States)

    Radin, J W; Eidenbock, M P

    1986-11-01

    Leaves of cotton (Gossypium hirsutum L.) accumulate considerable dry mass per unit area during photosynthesis. The percentage of C in that accumulated dry mass was estimated as the regression coefficient (slope) of a linear regression relating C per unit area to total dry mass per unit area. Plants were grown on full nutrients or on N- or P-deficient nutrient solutions. In the fully nourished controls, the mass that accumulated over a 9-hour interval beginning at dawn contained 38.6% C. N and P stress increased the C concentration of accumulated mass to 49.7% and 45.1%, respectively. Nutrient stress also increased the starch concentration of accumulated mass, but starch alone could not account for the differences in C concentration. P stress decreased the estimated rate of C export from source leaves, calculated as the difference between C assimilation and C accumulation. The effect of P stress on apparent export was very sensitive to the C concentration used in the calculation, and would not have been revealed with an assumption of unchanged C concentration in the accumulated mass.

  17. Mesoscale modeling of solute precipitation and radiation damage

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yongfeng [Idaho National Lab. (INL), Idaho Falls, ID (United States); Schwen, Daniel [Idaho National Lab. (INL), Idaho Falls, ID (United States); Ke, Huibin [Idaho National Lab. (INL), Idaho Falls, ID (United States); Univ. of Wisconsin, Madison, WI (United States); Bai, Xianming [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hales, Jason [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-01

    This report summarizes the low length scale effort during FY 2014 in developing mesoscale capabilities for microstructure evolution in reactor pressure vessels. During operation, reactor pressure vessels are subject to hardening and embrittlement caused by irradiation-induced defect accumulation and irradiation-enhanced solute precipitation. Both defect production and solute precipitation start from the atomic scale, and manifest their eventual effects as degradation in engineering-scale properties. To predict the property degradation, multiscale modeling and simulation are needed to deal with the microstructure evolution, and to link the microstructure feature to material properties. In this report, the development of mesoscale capabilities for defect accumulation and solute precipitation are summarized. Atomic-scale efforts that supply information for the mesoscale capabilities are also included.

  18. Salinity Reduction and Biomass Accumulation in Hydroponic Growth of Purslane (Portulaca oleracea).

    Science.gov (United States)

    de Lacerda, Laís Pessôa; Lange, Liséte Celina; Costa França, Marcel Giovanni; Zonta, Everaldo

    2015-01-01

    In many of the world's semi-arid and arid regions, the increase in demand for good quality water associated with the gradual and irreversible salinisation of the soil and water have raised the development of techniques that facilitate the safe use of brackish and saline waters for agronomic purposes. This study aimed to evaluate the salinity reduction of experimental saline solutions through the ions uptake capability of purslane (Portulaca oleracea), as well as its biomass accumulation. The hydroponic system used contained three different nutrient solutions composed of fixed concentrations of macro and micronutrients to which three different concentrations of sodium chloride had been added. Two conditions were tested, clipped and intact plants. It was observed that despite there being a notable removal of magnesium and elevated biomass accumulation, especially in the intact plants, purslane did not present the expected removal quantity of sodium and chloride. We confirmed that in the research conditions of the present study, purslane is a saline-tolerant species but accumulation of sodium and chloride was not shown as previously described in the literature.

  19. A general solution strategy of modified power method for higher mode solutions

    International Nuclear Information System (INIS)

    Zhang, Peng; Lee, Hyunsuk; Lee, Deokjung

    2016-01-01

    A general solution strategy of the modified power iteration method for calculating higher eigenmodes has been developed and applied in continuous energy Monte Carlo simulation. The new approach adopts four features: 1) the eigen decomposition of transfer matrix, 2) weight cancellation for higher modes, 3) population control with higher mode weights, and 4) stabilization technique of statistical fluctuations using multi-cycle accumulations. The numerical tests of neutron transport eigenvalue problems successfully demonstrate that the new strategy can significantly accelerate the fission source convergence with stable convergence behavior while obtaining multiple higher eigenmodes at the same time. The advantages of the new strategy can be summarized as 1) the replacement of the cumbersome solution step of high order polynomial equations required by Booth's original method with the simple matrix eigen decomposition, 2) faster fission source convergence in inactive cycles, 3) more stable behaviors in both inactive and active cycles, and 4) smaller variances in active cycles. Advantages 3 and 4 can be attributed to the lower sensitivity of the new strategy to statistical fluctuations due to the multi-cycle accumulations. The application of the modified power method to continuous energy Monte Carlo simulation and the higher eigenmodes up to 4th order are reported for the first time in this paper. -- Graphical abstract: -- Highlights: •Modified power method is applied to continuous energy Monte Carlo simulation. •Transfer matrix is introduced to generalize the modified power method. •All mode based population control is applied to get the higher eigenmodes. •Statistic fluctuation can be greatly reduced using accumulated tally results. •Fission source convergence is accelerated with higher mode solutions.

  20. Growth and Accumulation of Secondary Metabolites in Perilla as Affected by Photosynthetic Photon Flux Density and Electrical Conductivity of the Nutrient Solution

    Directory of Open Access Journals (Sweden)

    Na Lu

    2017-05-01

    Full Text Available The global demand for medicinal plants is increasing. The quality of plants grown outdoors, however, is difficult to control. Myriad environmental factors influence plant growth and directly impact biosynthetic pathways, thus affecting the secondary metabolism of bioactive compounds. Plant factories use artificial lighting to increase the quality of medicinal plants and stabilize production. Photosynthetic photon flux density (PPFD and electrical conductivity (EC of nutrient solutions are two important factors that substantially influence perilla (Perilla frutescens, Labiatae plant growth and quality. To identify suitable levels of PPFD and EC for perilla plants grown in a plant factory, the growth, photosynthesis, and accumulation of secondary metabolites in red and green perilla plants were measured at PPFD values of 100, 200, and 300 μmol m-2 s-1 in nutrient solutions with EC values of 1.0, 2.0, and 3.0 dS m-1. The results showed significant interactive effects between PPFD and EC for both the fresh and dry weights of green perilla, but not for red perilla. The fresh and dry weights of shoots and leafy areas were affected more by EC than by PPFD in green perilla, whereas they were affected more by PPFD than by EC in red perilla. Leaf net photosynthetic rates were increased as PPFD increased in both perilla varieties, regardless of EC. The perillaldehyde concentration (mg g-1 in red perilla was unaffected by the treatments, but accumulation in plants (mg per plant was significantly enhanced as the weight of dry leaves increased. Perillaldehyde concentrations in green perilla showed significant differences between combinations of the highest PPFD with the highest EC and the lowest PPFD with the lowest EC. Rosmarinic acid concentration (mg g-1 was increased in a combination of low EC and high PPFD conditions. Optimal cultivation conditions of red and green perilla in plant factory will be discussed in terms of plant growth and contents of

  1. Gama-aminobutyric acid accumulation in Elsholtzia splendens in response to copper toxicity*

    OpenAIRE

    Yang, Xiao-e; Peng, Hong-yun; Tian, Sheng-ke

    2005-01-01

    A solution with different Cu supply levels was cultured to investigate gama-aminobutyric acid (GABA) accumulation in Elsholtzia splendens, a native Chinese Cu-tolerant and accumulating plant species. Increasing Cu from 0.25 to 500 μmol/L significantly enhanced levels of GABA and histidine (His), but considerably decreased levels of aspartate (Asp) and glutamate (Glu) in the leaves. The leaf Asp level negatively correlated with leaf Cu level, while leaf GABA level positively correlated with le...

  2. Cell wall accumulation of fluorescent proteins derived from a trans-Golgi cisternal membrane marker and paramural bodies in interdigitated Arabidopsis leaf epidermal cells.

    Science.gov (United States)

    Akita, Kae; Kobayashi, Megumi; Sato, Mayuko; Kutsuna, Natsumaro; Ueda, Takashi; Toyooka, Kiminori; Nagata, Noriko; Hasezawa, Seiichiro; Higaki, Takumi

    2017-01-01

    In most dicotyledonous plants, leaf epidermal pavement cells develop jigsaw puzzle-like shapes during cell expansion. The rapid growth and complicated cell shape of pavement cells is suggested to be achieved by targeted exocytosis that is coordinated with cytoskeletal rearrangement to provide plasma membrane and/or cell wall materials for lobe development during their morphogenesis. Therefore, visualization of membrane trafficking in leaf pavement cells should contribute an understanding of the mechanism of plant cell morphogenesis. To reveal membrane trafficking in pavement cells, we observed monomeric red fluorescent protein-tagged rat sialyl transferases, which are markers of trans-Golgi cisternal membranes, in the leaf epidermis of Arabidopsis thaliana. Quantitative fluorescence imaging techniques and immunoelectron microscopic observations revealed that accumulation of the red fluorescent protein occurred mostly in the curved regions of pavement cell borders and guard cell ends during leaf expansion. Transmission electron microscopy observations revealed that apoplastic vesicular membrane structures called paramural bodies were more frequent beneath the curved cell wall regions of interdigitated pavement cells and guard cell ends in young leaf epidermis. In addition, pharmacological studies showed that perturbations in membrane trafficking resulted in simple cell shapes. These results suggested possible heterogeneity of the curved regions of plasma membranes, implying a relationship with pavement cell morphogenesis.

  3. A Unique Pool of Compatible Solutes on Rhodopirellula baltica, Member of the Deep-Branching Phylum Planctomycetes.

    Directory of Open Access Journals (Sweden)

    Ana Filipa d'Avó

    Full Text Available The intracellular accumulation of small organic solutes was described in the marine bacterium Rhodopirellula baltica, which belongs to the globally distributed phylum Planctomycetes whose members exhibit an intriguing lifestyle and cell morphology. Sucrose, α-glutamate, trehalose and mannosylglucosylglycerate (MGG are the main solutes involved in the osmoadaptation of R. baltica. The ratio and total intracellular organic solutes varied significantly in response to an increase in salinity, temperature and nitrogen content. R. baltica displayed an initial response to both osmotic and thermal stresses that includes α-glutamate accumulation. This trend was followed by a rather unique and complex osmoadaptation mechanism characterized by a dual response to sub-optimal and supra-optimal salinities. A reduction in the salinity to sub-optimal conditions led primarily to the accumulation of trehalose. In contrast, R. baltica responded to salt stress mostly by increasing the intracellular levels of sucrose. The switch between the accumulation of trehalose and sucrose was by far the most significant effect caused by increasing the salt levels of the medium. Additionally, MGG accumulation was found to be salt- as well as nitrogen-dependent. MGG accumulation was regulated by nitrogen levels replacing α-glutamate as a K(+ counterion in nitrogen-poor environments. This is the first report of the accumulation of compatible solutes in the phylum Planctomycetes and of the MGG accumulation in a mesophilic organism.

  4. Radiation-induced nitration of organic compounds in aqueous solutions

    International Nuclear Information System (INIS)

    Ershov, B.G.; Gordeev, A.V.; Bykov, G.L.; Moisy, P.

    2012-01-01

    Radiolysis in aqueous nitrate and acetic acid solutions and nitrate/nitric acid and phenol was studied. The radiolysis of these solutes occurs with circle NO 2 radical, which is the active nitrating agent. Accumulation of nitromethane and nitrite was determined during γ-irradiation of aqueous solutions containing acetic and nitrate solutions. Irradiation of aqueous phenol-nitrate/nitric acid solutions results in the formation of 2- and 4-nitrophenols.

  5. Radiation-induced nitration of organic compounds in aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Ershov, B.G.; Gordeev, A.V.; Bykov, G.L. [Russian Academy of Sciences, Moscow (Russian Federation). Frumkin Inst. of Physical Chemistry and Electrochemistry; Moisy, P. [CEA, Bagnols sur Ceze (France). Nuclear Energy Div.

    2012-07-01

    Radiolysis in aqueous nitrate and acetic acid solutions and nitrate/nitric acid and phenol was studied. The radiolysis of these solutes occurs with {sup circle} NO{sup 2} radical, which is the active nitrating agent. Accumulation of nitromethane and nitrite was determined during {gamma}-irradiation of aqueous solutions containing acetic and nitrate solutions. Irradiation of aqueous phenol-nitrate/nitric acid solutions results in the formation of 2- and 4-nitrophenols.

  6. Influence of earthworm mucus and amino acids on tomato seedling growth and cadmium accumulation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Shujie [College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095 (China); Hu Feng, E-mail: fenghu@njau.edu.c [College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095 (China); Li Huixin; Li Xiuqiang [College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095 (China)

    2009-10-15

    The effects on the growth of tomato seedlings and cadmium accumulation of earthworm mucus and a solution of amino acids matching those in earthworm mucus was studied through a hydroponic experiment. The experiment included four treatments: 5 mg Cd L{sup -1} (CC), 5 mg Cd L{sup -1} + 100 mL L{sup -1} earthworm mucus (CE), 5 mg Cd L{sup -1} + 100 mL L{sup -1} amino acids solution (CA) and the control (CK). Results showed that, compared with CC treatment, either earthworm mucus or amino acids significantly increased tomato seedling growth and Cd accumulation but the increase was much higher in the CE treatment compared with the CA treatment. This may be due to earthworm mucus and amino acids significantly increasing the chlorophyll content, antioxidative enzyme activities, and essential microelement uptake and transport in the tomato seedlings. The much greater increase in the effect of earthworm mucus compared with amino acid treatments may be due to IAA-like substances in earthworm mucus. - Earthworm mucus increased tomato seedlings growth and Cd accumulation through increasing chlorophyll content, antioxidative enzyme activities, and essential microelement accumulation.

  7. Zinc accumulation potential and toxicity threshold determined for a metal-accumulating Populus canescens clone in a dose-response study

    Energy Technology Data Exchange (ETDEWEB)

    Langer, Ingrid [Institute of Soil Science, University of Natural Resources and Applied Life Sciences, Peter Jordan-Strasse 82, A-1190 Vienna (Austria); Krpata, Doris [Institute of Microbiology, Innsbruck University, Technikerstrasse 25, A-6020 Innsbruck (Austria); Fitz, Walter J.; Wenzel, Walter W. [Institute of Soil Science, University of Natural Resources and Applied Life Sciences, Peter Jordan-Strasse 82, A-1190 Vienna (Austria); Schweiger, Peter F., E-mail: peter.schweiger@boku.ac.a [Institute of Soil Science, University of Natural Resources and Applied Life Sciences, Peter Jordan-Strasse 82, A-1190 Vienna (Austria)

    2009-10-15

    The effect of increasing soil Zn concentrations on growth and Zn tissue concentrations of a metal-accumulating aspen clone was examined in a dose-response study. Plants were grown in a soil with a low native Zn content which was spiked with Zn salt solutions and subsequently aged. Plant growth was not affected by NH{sub 4}NO{sub 3}-extractable soil Zn concentrations up to 60 mug Zn g{sup -1} soil, but it was completely inhibited at extractable concentrations above 90 mug Zn g{sup -1} soil. From these data an effective concentration of 68.5 mug extractable Zn g{sup -1} soil was calculated at which plant growth was reduced by 50%. The obtained information on toxicity threshold concentrations, and the relation between plant Zn accumulation and extractable soil Zn concentrations may be used to assess the suitability of the investigated Populus canescens clone for various phytoremediation strategies. The potential risk of metal transfer into food webs associated with P. canescens stands on Zn-polluted sites may also be estimated. - Quantitative information about the concentration-dependent Zn accumulation of Populus canescens contributes to assess its suitability for phytoremediation.

  8. Effect of Transpiration on Plant Accumulation and Translocation of PPCP/EDCs

    Science.gov (United States)

    Dodgen, Laurel K; Ueda, Aiko; Wu, Xiaoqin; Parker, David R; Gan, Jay

    2015-01-01

    The reuse of treated wastewater for agricultural irrigation in arid and hot climates where plant transpiration is high may affect plant accumulation of pharmaceutical and personal care products (PPCPs) and endocrine disrupting chemicals (EDCs). In this study, carrot, lettuce, and tomato plants were grown in solution containing 16 PPCP/EDCs in either a cool-humid or a warm-dry environment. Leaf bioconcentration factors (BCF) were positively correlated with transpiration for chemical groups of different ionized states (p < 0.05). However, root BCFs were correlated with transpiration only for neutral PPCP/EDCs (p < 0.05). Neutral and cationic PPCP/EDCs showed similar accumulation, while anionic PPCP/EDCs had significantly higher accumulation in roots and significantly lower accumulation in leaves (p < 0.05). Results show that plant transpiration may play a significant role in the uptake and translocation of PPCP/EDCs, which may have a pronounced effect in arid and hot climates where irrigation with treated wastewater is common. PMID:25594843

  9. MODELING OF TEMPERATURE FIELDS IN A SOLID HEAT ACCUMULLATORS

    Directory of Open Access Journals (Sweden)

    S. S. Belimenko

    2016-10-01

    Full Text Available Purpose. Currently, one of the priorities of energy conservation is a cost savings for heating in commercial and residential buildings by the stored thermal energy during the night and its return in the daytime. Economic effect is achieved due to the difference in tariffs for the cost of electricity in the daytime and at night. One of the most common types of devices that allow accumulating and giving the resulting heat are solid heat accumulators. The main purpose of the work: 1 software development for the calculation of the temperature field of a flat solid heat accumulator, working due to the heat energy accumulation in the volume of thermal storage material without phase transition; 2 determination the temperature distribution in its volumes at convective heat transfer. Methodology. To achieve the study objectives a heat transfer theory and Laplace integral transform were used. On its base the problems of determining the temperature fields in the channels of heat accumulators, having different cross-sectional shapes were solved. Findings. Authors have developed the method of calculation and obtained solutions for the determination of temperature fields in channels of the solid heat accumulator in conditions of convective heat transfer. Temperature fields over length and thickness of channels were investigated. Experimental studies on physical models and industrial equipment were conducted. Originality. For the first time the technique of calculating the temperature field in the channels of different cross-section for the solid heat accumulator in the charging and discharging modes was proposed. The calculation results are confirmed by experimental research. Practical value. The proposed technique is used in the design of solid heat accumulators of different power as well as full-scale production of them was organized.

  10. Proteomic analysis of apoplastic fluid of Coffea arabica leaves highlights novel biomarkers for resistance against Hemileia vastatrix

    Directory of Open Access Journals (Sweden)

    Leonor eGuerra-Guimarães

    2015-06-01

    Full Text Available A proteomic analysis of the apoplastic fluid (APF of coffee leaves was conducted to investigate the cellular processes associated with incompatible (resistant and compatible (susceptible Coffea arabica-Hemileia vastatrix interactions, during the 24-96 hai period. The APF proteins were extracted by leaf vacuum infiltration and protein profiles were obtained by 2-DE. The comparative analysis of the gels revealed 210 polypeptide spots whose volume changed in abundance between samples (control, resistant and susceptible during the 24-96 hai period. The proteins identified were involved mainly in protein degradation, cell wall metabolism and stress/defense responses, most of them being hydrolases (around 70%, particularly sugar hydrolases and peptidases/proteases. The changes in the APF proteome along the infection process revealed two distinct phases of defense responses, an initial/basal one (24-48 hai and a late/specific one (72-96 hai. Compared to susceptibility, resistance was associated with a higher number of proteins, which was more evident in the late/specific phase. Proteins involved in the resistance response were mainly, glycohydrolases of the cell wall, serine proteases and pathogen related-like proteins (PR-proteins, suggesting that some of these proteins could be putative candidates for resistant markers of coffee to H. vastatrix. Antibodies were produced against chitinase, pectin methylesterase, serine carboxypeptidase, reticuline oxidase and subtilase and by an immunodetection assay it was observed an increase of these proteins in the resistant sample. With this methodology we have identified proteins that are candidate markers of resistance and that will be useful in coffee breeding programs to assist in the selection of cultivars with resistance to H. vastatrix.

  11. Simulation of the accumulation kinetics for radiation point defects in a metals with impurity

    International Nuclear Information System (INIS)

    Iskakov, B.M.; Nurova, A.B.

    2001-01-01

    In the work a kinetics of vacancies (V) and interstitial atoms (IA) accumulation for cases when the V and IA are recombining with each other, absorbing by drain and capturing by impurity atoms has been simulated. The differential equations system numerical solution was carried out by the Runge-Kutta method. The dynamical equilibrium time achievement for the point radiation defects accumulation process in the metal with impurity is considered

  12. Effect of minerals on accumulation of Cs by fungus Saccaromyces cerevisiae.

    Science.gov (United States)

    Ohnuki, Toshihiko; Sakamoto, Fuminori; Yamasaki, Shinya; Kozai, Naofumi; Shiotsu, Hiroyuki; Utsunomiya, Satoshi; Watanabe, Naoko; Kozaki, Tamotsu

    2015-06-01

    The accumulation of Cs by unicellular fungus of Saccharomyces cerevisiae in the presence of minerals has been studied to elucidate the role of microorganisms in the migration of radioactive Cs in the environment. Two different types of experiments were employed: experiments using stable Cs to examine the effect of a carbon source on the accumulation of Cs, and accumulation experiments of radioactive Cs from agar medium containing (137)Cs and zeolite, vermiculite, phlogopite, smectite, mica, or illite as mineral supplements. In the former type of experiments, the Cs-accumulated cells were analyzed by scanning electron microscopy equipped with energy dispersive X-ray analysis (SEM-EDS). In the latter type, the radioactivity in the yeast cells was measured by an autoradiography technique. When a carbon source was present, higher amounts of Cs accumulated in the cells than in the resting condition without a carbon source. Analyses with SEM-EDS showed that no mineral formed on the cell surface. These results indicate that the yeast cells accumulate Cs by adsorption on the cell surface and intracellular accumulation. In the presence of minerals in the agar medium, the radioactivity in the yeast cells was in the order of mica > smectite, illite > vermiculite, phlogopite, zeolite. This order is inversely correlated to the ratio of the concentration of radioactive Cs between the minerals and the medium solution. These results strongly suggest that the yeast accumulates radioactive Cs competitively with minerals. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Long-distance signaling within Coleus x hybridus leaves; mediated by changes in intra-leaf CO2?

    Science.gov (United States)

    Stahlberg, R.; Van Volkenburgh, E.; Cleland, R. E.

    2001-01-01

    Rapid long-distance signaling in plants can occur via several mechanisms, including symplastic electric coupling and pressure waves. We show here in variegated Coleus leaves a rapid propagation of electrical signals that appears to be caused by changes in intra-leaf CO2 concentrations. Green leaf cells, when illuminated, undergo a rapid depolarization of their membrane potential (Vm) and an increase in their apoplastic pH (pHa) by a process that requires photosynthesis. This is followed by a slower hyperpolarization of Vm and apoplastic acidification, which do not require photosynthesis. White (chlorophyll-lacking) leaf cells, when in isolated white leaf segments, show only the slow response, but when in mixed (i.e. green and white) segments, the rapid Vm depolarization and increase in pHa propagate over more than 10 mm from the green to the white cells. Similarly, these responses propagate 12-20 mm from illuminated to unilluminated green cells. The fact that the propagation of these responses is eliminated when the leaf air spaces are infiltrated with solution indicates that the signal moves in the apoplast rather than the symplast. A depolarization of the mesophyll cells is induced in the dark by a decrease in apoplastic CO2 but not by an increase in pHa. These results support the hypothesis that the propagating signal for the depolarization of the white mesophyll cells is a photosynthetically induced decrease in the CO2 level of the air spaces throughout the leaf.

  14. Copper accumulation by stickleback nests containing spiggin.

    Science.gov (United States)

    Pinho, G L L; Martins, C M G; Barber, I

    2016-07-01

    The three-spined stickleback is a ubiquitous fish of marine, brackish and freshwater ecosystems across the Northern hemisphere that presents intermediate sensitivity to copper. Male sticklebacks display a range of elaborate reproductive behaviours that include nest construction. To build the nests, each male binds nesting material together using an endogenous glycoprotein nesting glue, known as 'spiggin'. Spiggin is a cysteine-rich protein and, therefore, potentially binds heavy metals present in the environment. The aim of this study was to investigate the capacity of stickleback nests to accumulate copper from environmental sources. Newly built nests, constructed by male fish from polyester threads in laboratory aquaria, were immersed in copper solutions ranging in concentration from 21.1-626.6 μg Cu L(-1). Bundles of polyester threads from aquaria without male fish were also immersed in the same copper solutions. After immersion, nests presented higher amounts of copper than the thread bundles, indicating a higher capacity of nests to bind this metal. A significant, positive correlation between the concentration of copper in the exposure solution and in the exposed nests was identified, but there was no such relationship for thread bundles. Since both spiggin synthesis and male courtship behaviour are under the control of circulating androgens, we predicted that males with high courtship scores would produce and secrete high levels of the spiggin protein. In the present study, nests built by high courtship score males accumulated more copper than those built by low courtship score males. Considering the potential of spiggin to bind metals, the positive relationship between fish courtship and spiggin secretion seems to explain the higher amount of copper on the nests from the fish showing high behaviour scores. Further work is now needed to determine the consequences of the copper binding potential of spiggin in stickleback nests for the health and survival of

  15. Iodine uptake by spinach (Spinacia oleracea L.) plants grown in solution culture: effects of iodine species and solution concentrations.

    Science.gov (United States)

    Zhu, Y-G; Huang, Y-Z; Hu, Y; Liu, Y-X

    2003-04-01

    A hydroponic experiment was carried out to investigate the effects of iodine species and solution concentrations on iodine uptake by spinach (Spinacia oleracea L.). Five iodine concentrations (0, 1, 10, 50 and 100 microM) for iodate (IO(3)(-)) and iodide (I(-)) were used. Results show that higher concentrations of I(-) (> or =10 microM) had some detrimental effect on plant growth, while IO(3)(-) had little effect on the biomass production of spinach plants. Increases in iodine concentration in the growth solution significantly enhanced I concentrations in plant tissues. The detrimental effect of I(-) on plant growth was probably due to the excessively high accumulation of I in plant tissues. The solution-to-spinach leaf transfer factors (TF(leaf), fresh weight basis) for plants treated with iodide were between 14.2 and 20.7 at different solution concentrations of iodide; TF(leaf) for plants treated with iodate decreased gradually from 23.7 to 2.2 with increasing solution concentrations of iodate. The distribution coefficients (DCs) of I between leaves and roots were constantly higher for plants treated with iodate than those treated with iodide. DCs for plants treated with iodide increased with increasing solution concentrations of iodide, while DCs for plants treated with iodate (around 5.5) were similar across the range of solution concentrations of iodate used in this experiment. The implications of iodine accumulation in leafy vegetables in human iodine nutrition are also discussed. Copyright 2002 Elsevier Science Ltd.

  16. Role of Accumulated Calcium in Alleviating Aluminum Injury in Wheat Plants

    Directory of Open Access Journals (Sweden)

    M. Alamgir Hossain

    2014-01-01

    Full Text Available Aluminum (Al sensitive wheat cultivar kalyansona was grown for 14 d in a range of Ca solution (125, 625, and 2500 μM plus other nutrients without Al. At 14 d after Ca treatment, half of these plants were harvested (H1, and the rest of the plants were exposed to 100 μM Al for additional 6 d and harvested (H2. Severe Al injury was found only in the plants with the lowest supply of Ca before Al treatment. Aluminum concentration in the apoplastic fluid was very high at 125 μM Ca probably because the plasma membrane of some of the cells was destroyed due to the attack of 100 μM Al. Aluminum content in roots decreased with increasing supply of Ca before Al treatment. Calcium content decreased drastically at harvest (H2 in the plants with 100 μM Al. Under Al stress conditions, the plant responded to Al in different ways due to not only the different Ca supply but also the variation of Ca content in the plant tissues. Actually, the plants having the largest Ca content in the roots before Al treatment can receive less Al injury during Al treatment. To substantiate this idea, a companion study was conducted to investigate the effects of 2500 μM Ca supply during, before, and after 100 μM Al treatment on root growth. The results indicated clearly that exogenous Ca supply before Al treatment is able to alleviate Al injury but less effective than Ca supply during Al treatment.

  17. Uptake and accumulation of four PPCP/EDCs in two leafy vegetables

    International Nuclear Information System (INIS)

    Dodgen, L.K.; Li, J.; Parker, D.; Gan, J.J.

    2013-01-01

    Many pharmaceutical and personal care products (PPCPs) and endocrine-disrupting chemicals (EDCs) are present in reclaimed water, leading to concerns of human health risks from the consumption of food crops irrigated with reclaimed water. This study evaluated the potential for plant uptake and accumulation of four commonly occurring PPCP/EDCs, i.e., bisphenol A (BPA), diclofenac sodium (DCL), naproxen (NPX), and 4-nonylphenol (NP), by lettuce (Lactuca sativa) and collards (Brassica oleracea) in hydroponic culture, using 14 C-labeled compounds. In both plant species, plant accumulation followed the order of BPA > NP > DCL > NPX and accumulation in roots was much greater than in leaves and stems. Concentrations of 14 C-PPCP/EDCs in plant tissues ranged from 0.22 ± 0.03 to 927 ± 213 ng/g, but nearly all 14 C-residue was non-extractable. PPCP/EDCs, particularly BPA and NP, were also extensively transformed in the nutrient solution. Dietary uptake of these PPCP/EDCs by humans was predicted to be negligible. -- Highlights: •Accumulation of bisphenol A, diclofenac, naproxen, and 4-nonylphenol by lettuce and collards was examined. •Plant accumulation had the order of BPA > NP > DCL > NPX. •Accumulation in roots was greater than in new leaves, original leaves, and stems. •Nearly all accumulated analyte was non-extractable. -- Four commonly occurring PPCP/EDCs were taken up into roots of lettuce and collards, but translocation into edible leaves was limited and nearly all residue was non-extractable

  18. Carbon and nitrogen accumulation and fluxes on Landscape Evolution Observatory (LEO) slopes

    Science.gov (United States)

    Dontsova, K.; Volk, M.; Webb, C.; Hunt, E.; Tfaily, M. M.; Van Haren, J. L. M.; Sengupta, A.; Chorover, J.; Troch, P.; Ruiz, J.

    2017-12-01

    Carbon accumulation on the landscapes in organic and inorganic forms is an important sink of CO2 from the atmosphere. Formation and preservation of organic compounds is accompanied by N fixation from the atmosphere and cycling in the soil. Model slopes of Landscape Evolution Observatory present unique opportunity to examine carbon and nitrogen buildup on the landscapes during soil formation processes, such as weathering of primary minerals and microbial activity, due to low original levels of C and N, tight control over environmental conditions, and high spatial and temporal density of measurements. This presents results of inorganic and organic C and N measurements in the cores collected in LEO slopes after several years of exposure to the rainfall, as well as soil solution measurements collected through 496 samplers on each of three model slopes and in seepage. We observed significant spatially distributed accumulation of both C (organic and inorganic) and N in soil profiles. We also observed differences in the composition of organic compounds in the solid and solution phases depending on location on the slope indicating formation of heterogeneity as soils develop. This works indicates potential of physical models to help understand accumulation and fluxes of C and N on natural landscapes.

  19. Cesium accumulation by bacterium Thermus sp.TibetanG7: hints for biomineralization of cesiumbearing geyserite in hot springs in Tibet, China

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The bacterium Thermus sp. TibetanG7, isolated from hot springs in Tibet, China, was examined for the ability to accumulate cesium from solutions. Environmental conditions were simulated and the effects of pH, K+, Na+ and K+-regimes were then studied to determine the possible role of the bacterium in the formation of cesium-bearing geyserite around these hot springs. In despite of the inhibition of K+ and Na+, the bacterium Thermus sp. TibetanG7 revealed noticeable accumulation of cesium from solutions, with maximum accumulations of 53.49 and 40.41 μmol Cesium/g cell dry weight in Na+ and K+ inhibition experiments, respectively. The accumulation of cesium by this microorganism is rapid, with 40%―50% accumulated within the first 5 min. K+-deficient cells showed a much higher capacity of cesium accumulation compared with K+-sufficient cells. It is evident that the bacteria within the genus thermus play a significant role in the cesium assembly. The formation of cesium-bearing geyserite is also considered.

  20. Propionate induces cell swelling and K+ accumulation in shark rectal gland

    International Nuclear Information System (INIS)

    Feldman, G.M.; Ziyadeh, F.N.; Mills, J.W.; Booz, G.W.; Kleinzeller, A.

    1989-01-01

    Small organic anions have been reported to induce cell solute accumulation and swelling. To investigate the mechanism of swelling, we utilized preparations of rectal gland cells from Squalus acanthias incubated in medium containing propionate. Propionate causes cells to swell by diffusing across membranes in its nonionic form, acidifying cell contents, and activating the Na+-H+ antiporter. The Na+-H+ exchange process tends to correct intracellular pH (pHi), and thus it maintains a favorable gradient for propionic acid diffusion and allows propionate to accumulate. Activation of the Na+-H+ antiport also facilitates Na+ entry into the cell and Nai accumulation. At the same time Na+-K+-ATPase activity, unaffected by propionate, replaces Nai with Ki, whereas the K+ leak rate, decreased by propionate, allows Ki to accumulate. As judged by 86 Rb+ efflux, the reduction in K+ leak was not due to propionate-induced cell acidification or reduction in Cli concentration. Despite inducing cell swelling, propionate did not disrupt cell structural elements and F actin distribution along cell membranes

  1. Propionate induces cell swelling and K+ accumulation in shark rectal gland

    Energy Technology Data Exchange (ETDEWEB)

    Feldman, G.M.; Ziyadeh, F.N.; Mills, J.W.; Booz, G.W.; Kleinzeller, A. (Mount Desert Island Biological Laboratory, Salsbury Cove, ME (USA))

    1989-08-01

    Small organic anions have been reported to induce cell solute accumulation and swelling. To investigate the mechanism of swelling, we utilized preparations of rectal gland cells from Squalus acanthias incubated in medium containing propionate. Propionate causes cells to swell by diffusing across membranes in its nonionic form, acidifying cell contents, and activating the Na+-H+ antiporter. The Na+-H+ exchange process tends to correct intracellular pH (pHi), and thus it maintains a favorable gradient for propionic acid diffusion and allows propionate to accumulate. Activation of the Na+-H+ antiport also facilitates Na+ entry into the cell and Nai accumulation. At the same time Na+-K+-ATPase activity, unaffected by propionate, replaces Nai with Ki, whereas the K+ leak rate, decreased by propionate, allows Ki to accumulate. As judged by {sup 86}Rb+ efflux, the reduction in K+ leak was not due to propionate-induced cell acidification or reduction in Cli concentration. Despite inducing cell swelling, propionate did not disrupt cell structural elements and F actin distribution along cell membranes.

  2. Effect of vanadium on plant growth and its accumulation in plant tissues

    Directory of Open Access Journals (Sweden)

    Narumol Vachirapatama

    2011-06-01

    Full Text Available Hydroponic experiments were conducted to investigate vanadium uptake by Chinese green mustard and tomato plantsand its effect on their growth. Twenty-eight (Chinese green mustard and 79 days (tomato after germination, the plants wereexposed for a further seven days to a solution containing six different concentrations of ammonium metavanadate (0-80 mg/lNH4VO3. The vanadium accumulated in the plant tissues were determined by ion-interaction high performance liquid chromatography,with confirmation by magnetic sector ICP-MS.The results indicated that nutrient solution containing more than 40 mg/l NH4VO3 affected plant growth for bothChinese green mustard and tomato plant. Chinese green mustard grown in the solution containing NH4VO3 at the concentrationsof 40 and 80 mg/l had stem length, number of leaves, dry weight of leaf, stem and root significantly lower than those ofplants grown in the solution containing 0-20 mg/l NH4VO3. Tomato plants were observed to wilt after four days in contactwith the nutrient solutions containing 40 and 80 mg/l NH4VO3. As the vanadium concentrations increased, a resultantdecrease in the stem length, root fresh weight, and fruit fresh weight were noted. The accumulation of vanadium was higher inthe root compared with leaf, stem, or fruit. Measured levels of vanadium, from a nutrient solution containing 40 mg/l NH4VO3,were 328, 340, and 9.66x103 g/g in the leaf, stem and root for Chinese green mustard, and 4.04 and 4.01x103 g/g in the fruitand roots for tomato plants, respectively.

  3. Effect of minerals on accumulation of Cs by fungus Saccaromyces cerevisiae

    International Nuclear Information System (INIS)

    Ohnuki, Toshihiko; Sakamoto, Fuminori; Yamasaki, Shinya; Kozai, Naofumi; Shiotsu, Hiroyuki; Utsunomiya, Satoshi; Watanabe, Naoko; Kozaki, Tamotsu

    2015-01-01

    The accumulation of Cs by unicellular fungus of Saccharomyces cerevisiae in the presence of minerals has been studied to elucidate the role of microorganisms in the migration of radioactive Cs in the environment. Two different types of experiments were employed: experiments using stable Cs to examine the effect of a carbon source on the accumulation of Cs, and accumulation experiments of radioactive Cs from agar medium containing 137 Cs and zeolite, vermiculite, phlogopite, smectite, mica, or illite as mineral supplements. In the former type of experiments, the Cs-accumulated cells were analyzed by scanning electron microscopy equipped with energy dispersive X-ray analysis (SEM-EDS). In the latter type, the radioactivity in the yeast cells was measured by an autoradiography technique. When a carbon source was present, higher amounts of Cs accumulated in the cells than in the resting condition without a carbon source. Analyses with SEM-EDS showed that no mineral formed on the cell surface. These results indicate that the yeast cells accumulate Cs by adsorption on the cell surface and intracellular accumulation. In the presence of minerals in the agar medium, the radioactivity in the yeast cells was in the order of mica > smectite, illite >> vermiculite, phlogopite, zeolite. This order is inversely correlated to the ratio of the concentration of radioactive Cs between the minerals and the medium solution. These results strongly suggest that the yeast accumulates radioactive Cs competitively with minerals. - Graphical abstract: Autoradiography analysis showed that presence of larger amounts of mineral of vermiculite collected in South Africa induced less accumulation of radioactive Cs in yeast cells from the medium. - Highlights: • Effect of minerals on the accumulation of radioactive Cs by yeast was studied. • Presence of minerals reduced accumulation of radioactive Cs by yeast. • The order of reduction is mica>smectite, illite>>vermiculite, phlogopite

  4. The influence of nitrogen - urea fertilization to leaves and chloride chlorocholine on the accumulation Cs-137 in spring wheat crops

    International Nuclear Information System (INIS)

    Hrynczuk, B.; Weber, R.

    1998-01-01

    In pot experiments were studied effects of using nitrogen urea solution to leaves and use chloride chlorocholine on the Cs-137 accumulation in spring wheat crops. The Cs-137 contamination was conducted from soil and through leaves. It has been found that use nitrogen fertilization as urea solution spray and in addition use chloride chlorocholine caused an increase of Cs-137 concentration in grain from the contaminated soil. Accumulation of Cs-137 in spring wheat grain is 2-4 times higher coming from the contaminated leaves in blooming phase in comparison to the grain of plants contaminated in spread phase. The urea solution fertilization used on leaves and addition chloride chlorocholine did not influence the Cs-137 accumulation in grain when the plants were contaminated in the early growing phase. The Cs-137 contamination brought on the plants after using chloride chlorocholine in subsequent growing phases passed early into spring wheat grain. (author)

  5. The migration, accumulation and distribution of 59Fe in rice plants and soils

    International Nuclear Information System (INIS)

    Wang Yumin; Xu Shiming; Xu Guanren

    1990-07-01

    The 59 Fe is one of radionuclides in the waste water discharged from nuclear power plants. The accumulation and distribution of 59 Fe in rice plants at different growing stages and the accumulation and migration in soils of different textures were studied by using solution containing 59 FeCl 3 as a tracer. At the same contaminated activity, the distribution in the soils are discussed. According to the biological consequences caused by 59 Fe entering indirectly into agroecological environment, the possible methods for treatment and utilization of agricultural products are suggested

  6. Plutonium(VI) accumulation and reduction by lichen biomass: correlation with U(VI)

    International Nuclear Information System (INIS)

    Ohnuki, Toshihiko; Aoyagi, Hisao; Kitatsuji, Yoshihiro; Samadfam, Mohammad; Kimura, Yasuhiko; William Purvis, O.

    2004-01-01

    The uptake of plutonium(VI) and uranium(VI) by lichen biomass was studied in the foliose lichen Parmotrema tinctorum to elucidate the migration behavior of Pu and U in the terrestrial environment. Pu and U uptake by P. tinctorum averaged 0.040±0.010 and 0.055±0.015 g g dry -1 , respectively, after 96 h incubation with 4.0x10 -4 mol l -1 Pu solutions of pH 3, 4 and 5. SEM observations showed that the accumulated Pu is evenly distributed on the upper and lower surfaces of P. tinctorum, in contrast to U(VI), which accumulated in both cortical and medullary layers. UV/VIS absorption spectroscopy demonstrates that a fraction of Pu(VI) in the solution is reduced to Pu(V) by the organic substances released from P. tinctorum, and the accumulated Pu on the surface is reduced to Pu(IV), while U(VI) keeps the oxidation state of VI. Since the solubility of Pu(IV) hydroxides is very low, reduced Pu(VI) does not penetrate to the medullary layers, but is probably precipitated as Pu(IV) hydroxides on the cortical lichen surface. It is concluded that the uptake and reduction of Pu(VI) by lichens is important to determine the mobilization and oxidation states of Pu in the terrestrial environment

  7. The impact of xylem cavitation on water potential isotherms measured by the pressure chamber technique in Metasequoia glyptostroboides Hu & W.C. Cheng.

    Science.gov (United States)

    Yang, Dongmei; Pan, Shaoan; Tyree, Melvin T

    2016-08-01

    Pressure-volume (PV) curve analysis is the most common and accurate way of estimating all components of the water relationships in leaves (water potential isotherms) as summarized in the Höfler diagram. PV curve analysis yields values of osmotic pressure, turgor pressure, and elastic modulus of cell walls as a function of relative water content. It allows the computation of symplasmic/apoplastic water content partitioning. For about 20 years, cavitation in xylem has been postulated as a possible source of error when estimating the above parameters, but, to the best of the authors' knowledge, no one has ever previously quantified its influence. Results in this paper provide independent estimates of osmotic pressure by PV curve analysis and by thermocouple psychrometer measurement. An anatomical evaluation was also used for the first time to compare apoplastic water fraction estimates from PV analysis with anatomical values. Conclusions include: (i) PV curve values of osmotic pressure are underestimated prior to correcting osmotic pressure for water loss by cavitation in Metasequoia glyptostroboides; (ii) psychrometer estimates of osmotic pressure obtained in tissues killed by freezing or heating agreed with PV values before correction for apoplastic water dilution; (iii) after correction for dilution effects, a solute concentration enhancement (0.27MPa or 0.11 osmolal) was revealed. The possible sources of solute enhancement were starch hydrolysis and release of ions from the Donnan free space of needle cell walls. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  8. A review of irradiation induced re-solution in oxide fuels

    International Nuclear Information System (INIS)

    Turnbull, J.A.

    1980-01-01

    The paper reviews the existing experimental evidence for irradiation induced re-solution and also possible explanations for the mechanism. The importance of re-solution is considered with regard to intragranular bubbles and the accumulation of gas on grain boundaries. It is concluded that re-solution is most effective at low temperatures and could account for the present concern over gas release in high burn-up water reactor fuel assemblies. (author)

  9. Variation in copper and zinc tolerance and accumulation in 12 willow clones: implications for phytoextraction*

    Science.gov (United States)

    Yang, Wei-dong; Wang, Yu-yan; Zhao, Feng-liang; Ding, Zhe-li; Zhang, Xin-cheng; Zhu, Zhi-qiang; Yang, Xiao-e

    2014-01-01

    Willows (Salix spp.) have shown high potential for the phytoextraction of heavy metals. This study compares variations in copper (Cu) and zinc (Zn) tolerance and accumulation potential among 12 willow clones grown in a nutrient solution treated with 50 μmol/L of Cu or Zn, respectively. The results showed differences in the tolerance and accumulation of Cu and Zn with respect to different species/clones. The biomass variation among clones in response to Cu or Zn exposure ranged from the stimulation of growth to inhibition, and all of the clones tested showed higher tolerance to Cu than to Zn. The clones exhibited less variation in Cu accumulation but larger variation in Zn accumulation. Based on translocation factors, it was found that most of the Cu was retained in the roots and that Zn was more mobile than Cu for all clones. It is concluded that most willow clones are good accumulators of Zn and Cu. PMID:25183033

  10. Iron Retention in Root Hemicelluloses Causes Genotypic Variability in the Tolerance to Iron Deficiency-Induced Chlorosis in Maize

    Directory of Open Access Journals (Sweden)

    Rongli Shi

    2018-04-01

    Full Text Available Antagonistic interactions of phosphorus (P hamper iron (Fe acquisition by plants and can cause Fe deficiency-induced chlorosis. To determine the physiological processes underlying adverse Fe–P interactions, the maize lines B73 and Mo17, which differ in chlorosis susceptibility, were grown hydroponically at different Fe:P ratios. In the presence of P, Mo17 became more chlorotic than B73. The higher sensitivity of Mo17 to Fe deficiency was not related to Fe–P interactions in leaves but to lower Fe translocation to shoots, which coincided with a larger pool of Fe being fixed in the root apoplast of P-supplied Mo17 plants. Fractionating cell wall components from roots showed that most of the cell wall-contained P accumulated in pectin, whereas most of the Fe was bound to root hemicelluloses, revealing that co-precipitation of Fe and P in the apoplast was not responsible for Fe inactivation in roots. A negative correlation between chlorophyll index and hemicellulose-bound Fe in 85 inbred lines of the intermated maize B73 × Mo17 (IBM population indicated that apoplastic Fe retention contributes to genotypic differences in chlorosis susceptibility of maize grown under low Fe supplies. Our study indicates that Fe retention in the hemicellulose fraction of roots is an important determinant in the tolerance to Fe deficiency-induced chlorosis of graminaceous plant species with low phytosiderophore release, like maize.

  11. Vertical structures in vibrated wormlike micellar solutions

    Science.gov (United States)

    Epstein, Tamir; Deegan, Robert

    2008-11-01

    Vertically vibrated shear thickening particulate suspensions can support a free-standing interfaces oriented parallel to gravity. We find that shear thickening worm-like micellar solutions also support such vertical interfaces. Above a threshold in acceleration, the solution spontaneously accumulates into a labyrinthine pattern characterized by a well-defined vertical edge. The formation of vertical structures is of interest because they are unique to shear-thickening fluids, and they indicate the existence of an unknown stress bearing mechanism.

  12. Advanced accumulator for PWR

    International Nuclear Information System (INIS)

    Ichimura, Taiki; Chikahata, Hideyuki

    1997-01-01

    Advanced accumulators have been incorporated into the APWR design in order to simplify the safety system configuration and to improve reliability. The advanced accumulators refill the reactor vessel with a large discharge flow rate in a large LOCA, then switch to a small flow rate to continue safety injection for core reflooding. The functions of the conventional accumulator and the low head safety injection pump are integrated into this advanced accumulator. Injection performance tests simulating LOCA conditions and visualization tests for new designs have been carried out. This paper describes the APWR ECCS configuration, the advanced accumulator design and some of the injection performance and visualization test results. It was verified that the flow resistance of the advanced accumulator is independent of the model scale. The similarity law and performance data of the advanced accumulator for applying APWR was established. (author)

  13. Utilization of aloe vera extract as electrolyte for an accumulator

    Science.gov (United States)

    Azmi, F.; Sispriatna, D.; Ikhsan, K.; Masrura, M.; Azzahra, S. S.; Mahidin; Supardan, M. D.

    2018-03-01

    Aloe vera contains acid, which has the potential to generate electric current. The objective of this research is to study the potency of aloe vera extract as electrolyte for an accumulator. Experimental results showed that aloe vera extract has no a stable value of voltage and currency. The voltage and currency of aloe vera extract were reduced more than 50% for 60 minutes. Then, aloe vera extract was mixed with accu zuur to produce electrolyte solution. The mixture composition of aloe vera extract to accu zuur of 50:50 (v/v) generated stable voltage and currency. The experimental results showed the potential use of aloe vera extract to reduce the chemicals used in a conventional electrolyte solution.

  14. Accumulation of humic acid in DET/DGT gels

    Digital Repository Service at National Institute of Oceanography (India)

    Van der Veeken, P.L.R.; Chakraborty, P.; Van Leeuwen, H.P.

    , but it is practically negligible above an ionic strength of 10 mM (22, 33). The SRFA is expected to be negatively charged at pH 6.1, which would explain the lower FA concentrations in the gel in the presence of a negative Donnan potential, although this effect... thickness in solution κ -1 m, Debye length τ s, elementary diffusion time constant τ acc s, time scale for DET accumulation Literature Cited (1) Morel, F. M. M. Principles of Aquatic Chemistry; John Wiley: New York, 1983. (2) Wilkinson, K. J.; Slaveykova, V...

  15. Accumulation of deuterium oxide in body fluids after ingestion of D2O-labeled beverages

    International Nuclear Information System (INIS)

    Davis, J.M.; Lamb, D.R.; Burgess, W.A.; Bartoli, W.P.

    1987-01-01

    A simple low-cost procedure was developed to compare the temporal profiles of deuterium oxide (D 2 O) accumulation in body fluids after ingestion of D 2 O-labeled solutions. D 2 O concentration was measured in plasma and saliva samples taken at various intervals after ingestion of 20 ml of D 2 O mixed with five solutions differing in carbohydrate and electrolyte concentrations. An infrared spectrometer was used to measure D 2 O in purified samples obtained after a 48-h incubation period during which the water (D 2 O and H 2 O) in the sample was equilibrated with an equal volume of distilled water in a sealed diffusion dish. The procedure yields 100% recoveries of 60-500 ppm D 2 O with an average precision of 5%. When compared with values for distilled water, D 2 O accumulation in serial samples of plasma and saliva was slower for ingested solutions containing 40 and 15% glucose and faster for hypotonic saline and a 6% carbohydrate-electrolyte solution. These differences appear to reflect known differences in gastric emptying and intestinal absorption of these beverages. Therefore, this technique may provide a useful index of the rate of water uptake from ingested beverages into the body fluids

  16. Uranium and radium content in the soil solutions of the south-western part of Belarus

    International Nuclear Information System (INIS)

    Sokolik, G.A.; Ovsyannikova, S.V.; Vojnikova, E.V.; Popenya, M.V.

    2008-01-01

    The contents of uranium and radium in the pore soil solutions, which are the main chain in the geochemical and biological migration of the chemical elements, has been determined for the first time in Belarus. The control sites have been located outside the zone of Chernobyl fallout radionuclide contamination, that allowed evaluating the current background level of uranium and radium content in the soil solutions. The data on accumulation of the radioactive elements in the pore solutions give the opportunity to estimate the reserve of the radioactive elements in the migratory active forms in the soils. In the majority of soils studied, uranium content in the pore solution is higher than radium content, that points to the higher migratory ability of uranium. The direct correlation between content of fulvic acids' components in the soil solutions and accumulation of uranium in such solutions has been established. (authors)

  17. Effects of phosphate and thiosulphate on arsenic accumulation in the species Brassica juncea.

    Science.gov (United States)

    Grifoni, Martina; Schiavon, Michela; Pezzarossa, Beatrice; Petruzzelli, Gianniantonio; Malagoli, Mario

    2015-02-01

    Arsenic (As) is recognized as a toxic pollutant in soils of many countries. Since phosphorus (P) and sulphur (S) can influence arsenic mobility and bioavailability, as well as the plant tolerance to As, phytoremediation techniques employed to clean-up As-contaminated areas should consider the interaction between As and these two nutrients. In this study, the bioavailability and accumulation of arsenate in the species Brassica juncea were compared between soil system and hydroponics in relation to P and S concentration of the growth substrate. In one case, plants were grown in pots filled with soil containing 878 mg As kg(-1). The addition of P to soil resulted in increased As desorption and significantly higher As accumulation in plants, with no effect on growth. The absence of toxic effects on plants was likely due to high S in soil, which could efficiently mitigate metal toxicity. In the hydroponic experiment, plants were grown with different combinations of As (0 or 100 μM) and P (56 or 112 μM). S at 400 μM was also added to the nutrient solution of control (-As) and As-treated plants, either individually or in combination with P. The addition of P reduced As uptake by plants, while high S resulted in higher As accumulation and lower P content. These results suggest that S can influence the interaction between P and As for the uptake by plants. The combined increase of P and S in the nutrient solution did not lead to higher accumulation of As, but enhanced As translocation from the root to the shoot. This aspect is of relevance for the phytoremediation of As-contaminated sites.

  18. The accumulation, transformation, and effects of quinestrol in duckweed (Spirodela polyrhiza L.).

    Science.gov (United States)

    Geng, Qianqian; Li, Tian; Li, Pingliang; Wang, Xin; Chu, Weijing; Ma, Yanan; Ma, Hui; Ni, Hanwen

    2018-09-01

    Potential risk of endocrine disrupting compounds on non-target organisms has received extensive attentions in recent years. The present work aimed to investigate the behavior and effect of a synthetic steroid estrogen quinestrol in duckweed Spirodela polyrhiza L. Experimental results showed that quinestrol could be uptaken, accumulated, and biotransformed into 17 α-ethynylestradiol in S. polyrhiza L. The accumulation of quinestrol had a positive relation to the exposure concentration. The bioaccumulation rate was higher when the duckweed was exposed to quinestrol solutions at low concentrations than at high concentration. While the transformation of quinestrol showed no concentration-dependent manner. Quinestrol reduced the biomass and pigment content and increased superoxide dismutase and catalase activities and malondialdehyde contents in the duckweed. The results demonstrated that quinestrol could be accumulated and biotransformed in aquatic plant S. polyrhiza L. This work would provide supplemental data on the behavior of this steroid estrogen compound in aquatic system. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Xylem diameter changes during osmotic stress, desiccation and freezing in Pinus sylvestris and Populus tremula.

    Science.gov (United States)

    Lintunen, Anna; Lindfors, Lauri; Nikinmaa, Eero; Hölttä, Teemu

    2017-04-01

    Trees experience low apoplastic water potential frequently in most environments. Low apoplastic water potential increases the risk of embolism formation in xylem conduits and creates dehydration stress for the living cells. We studied the magnitude and rate of xylem diameter change in response to decreasing apoplastic water potential and the role of living parenchyma cells in it to better understand xylem diameter changes in different environmental conditions. We compared responses of control and heat-injured xylem of Pinus sylvestris (L.) and Populus tremula (L.) branches to decreasing apoplastic water potential created by osmotic stress, desiccation and freezing. It was shown that xylem in control branches shrank more in response to decreasing apoplastic water potential in comparison with the samples that were preheated to damage living xylem parenchyma. By manipulating the osmotic pressure of the xylem sap, we observed xylem shrinkage due to decreasing apoplastic water potential even in the absence of water tension within the conduits. These results indicate that decreasing apoplastic water potential led to withdrawal of intracellular water from the xylem parenchyma, causing tissue shrinkage. The amount of xylem shrinkage per decrease in apoplastic water potential was higher during osmotic stress or desiccation compared with freezing. During desiccation, xylem diameter shrinkage involved both dehydration-related shrinkage of xylem parenchyma and water tension-induced shrinkage of conduits, whereas dehydration-related shrinkage of xylem parenchyma was accompanied by swelling of apoplastic ice during freezing. It was also shown that the exchange of water between symplast and apoplast within xylem is clearly faster than previously reported between the phloem and the xylem. Time constant of xylem shrinkage was 40 and 2 times higher during osmotic stress than during freezing stress in P. sylvestris and P. tremula, respectively. Finally, it was concluded that the

  20. Uptake and accumulation of four PPCP/EDCs in two leafy vegetables.

    Science.gov (United States)

    Dodgen, L K; Li, J; Parker, D; Gan, J J

    2013-11-01

    Many pharmaceutical and personal care products (PPCPs) and endocrine-disrupting chemicals (EDCs) are present in reclaimed water, leading to concerns of human health risks from the consumption of food crops irrigated with reclaimed water. This study evaluated the potential for plant uptake and accumulation of four commonly occurring PPCP/EDCs, i.e., bisphenol A (BPA), diclofenac sodium (DCL), naproxen (NPX), and 4-nonylphenol (NP), by lettuce (Lactuca sativa) and collards (Brassica oleracea) in hydroponic culture, using (14)C-labeled compounds. In both plant species, plant accumulation followed the order of BPA > NP > DCL > NPX and accumulation in roots was much greater than in leaves and stems. Concentrations of (14)C-PPCP/EDCs in plant tissues ranged from 0.22 ± 0.03 to 927 ± 213 ng/g, but nearly all (14)C-residue was non-extractable. PPCP/EDCs, particularly BPA and NP, were also extensively transformed in the nutrient solution. Dietary uptake of these PPCP/EDCs by humans was predicted to be negligible. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. The Dynamics of Market Insurance, Insurable Assets, and Wealth Accumulation

    OpenAIRE

    Koeniger, Winfried

    2002-01-01

    We analyze dynamic interactions between market insurance, the stock of insurable assets and liquid wealth accumulation in a model with non-durable and durable consumption. The stock of the durable is exposed to risk against which households can insure. Since the model does not have a closed form solution we first provide an analytical approximation for the case in which households own abundant liquid wealth. It turns out that precautionary motives still matter because of fluctuations of the p...

  2. Speciation Matters: Bioavailability of Silver and Silver Sulfide Nanoparticles to Alfalfa (Medicago sativa).

    Science.gov (United States)

    Stegemeier, John P; Schwab, Fabienne; Colman, Benjamin P; Webb, Samuel M; Newville, Matthew; Lanzirotti, Antonio; Winkler, Christopher; Wiesner, Mark R; Lowry, Gregory V

    2015-07-21

    Terrestrial crops are directly exposed to silver nanoparticles (Ag-NPs) and their environmentally transformed analog silver sulfide nanoparticles (Ag2S-NPs) when wastewater treatment biosolids are applied as fertilizer to agricultural soils. This leads to a need to understand their bioavailability to plants. In the present study, the mechanisms of uptake and distribution of silver in alfalfa (Medicago sativa) were quantified and visualized upon hydroponic exposure to Ag-NPs, Ag2S-NPs, and AgNO3 at 3 mg total Ag/L. Total silver uptake was measured in dried roots and shoots, and the spatial distribution of elements was investigated using transmission electron microscopy (TEM) and synchrotron-based X-ray imaging techniques. Despite large differences in release of Ag(+) ions from the particles, Ag-NPs, Ag2S-NPs, and Ag(+) became associated with plant roots to a similar degree, and exhibited similarly limited (<1%) amounts of translocation of silver into the shoot system. X-ray fluorescence (XRF) mapping revealed differences in the distribution of Ag into roots for each treatment. Silver nanoparticles mainly accumulated in the (columella) border cells and elongation zone, whereas Ag(+) accumulated more uniformly throughout the root. In contrast, Ag2S-NPs remained largely adhered to the root exterior, and the presence of cytoplasmic nano-SixOy aggregates was observed. Exclusively in roots exposed to particulate silver, NPs smaller than the originally dosed NPs were identified by TEM in the cell walls. The apparent accumulation of Ag in the root apoplast determined by XRF, and the presence of small NPs in root cell walls suggests uptake of partially dissolved NPs and translocation along the apoplast.

  3. Diversity, biological roles and biosynthetic pathways for sugar-glycerate containing compatible solutes in bacteria and archaea.

    Science.gov (United States)

    Empadinhas, Nuno; da Costa, Milton S

    2011-08-01

    A decade ago the compatible solutes mannosylglycerate (MG) and glucosylglycerate (GG) were considered to be rare in nature. Apart from two species of thermophilic bacteria, Thermus thermophilus and Rhodothermus marinus, and a restricted group of hyperthermophilic archaea, the Thermococcales, MG had only been identified in a few red algae. Glucosylglycerate was considered to be even rarer and had only been detected as an insignificant solute in two halophilic microorganisms, a cyanobacterium, as a component of a polysaccharide and of a glycolipid in two actinobacteria. Unlike the hyper/thermophilic MG-accumulating microorganisms, branching close to the root of the Tree of Life, those harbouring GG shared a mesophilic lifestyle. Exceptionally, the thermophilic bacterium Persephonella marina was reported to accumulate GG. However, and especially owing to the identification of the key-genes for MG and GG synthesis and to the escalating numbers of genomes available, a plethora of new organisms with the resources to synthesize these solutes has been recognized. The accumulation of GG as an 'emergency' compatible solute under combined salt stress and nitrogen-deficient conditions now seems to be a disseminated survival strategy from enterobacteria to marine cyanobacteria. In contrast, the thermophilic and extremely radiation-resistant bacterium Rubrobacter xylanophilus is the only actinobacterium known to accumulate MG, and under all growth conditions tested. This review addresses the environmental factors underlying the accumulation of MG, GG and derivatives in bacteria and archaea and their roles during stress adaptation or as precursors for more elaborated macromolecules. The diversity of pathways for MG and GG synthesis as well as those for some of their derivatives is also discussed. The importance of glycerate-derived organic solutes in the microbial world is only now being recognized. Their stress-dependent accumulation and the molecular aspects of their

  4. Enantioselective accumulation, metabolism and phytoremediation of lactofen by aquatic macrophyte Lemna minor.

    Science.gov (United States)

    Wang, Fang; Yi, Xiaotong; Qu, Han; Chen, Li; Liu, Donghui; Wang, Peng; Zhou, Zhiqiang

    2017-09-01

    Pesticides are frequently detected in water bodies due to the agricultural application, which may pose impacts on aquatic organisms. The enantioselective bioaccumulation and metabolism of the herbicide lactofen in aquatic floating macrophyte Lemna minor (L. minor) were studied and the potential L. minor phytoremediation was investigated. Ultra-high performance liquid chromatography - tandem mass spectrometry (UHPLC-MS-MS) analysis for lactofen and its two known metabolites in L. minor was performed. The initial concentrations of racemic lactofen, R-lactofen and S-lactofen were all 30μgL -1 in the growth solution. The distribution of lactofen and its metabolites in growth solution and L. minor was determined throughout a 5-d laboratory trial. It was observed that S-lactofen was preferentially taken up and metabolized in L. minor. After rac-lactofen exposure, the accumulation amount of S-lactofen was approximately 3-fold more than that of R-lactofen in L. minor and the metabolism rate of S-lactofen (T 1/2 =0.92 d) was significantly faster than R-lactofen (T 1/2 =1.55 d). L. minor could only slightly accelerate the metabolism and removal of lactofen in the growth solution. As for the metabolites, desethyl lactofen was found to be the major metabolite in L. minor and the growth solution, whereas the metabolite acifluorfene was undetectable. No interconversion of the two enantiomers was observed after individual enantiomer exposure, indicating they were configurationally stable. The findings of this work represented that the accumulation and metabolism of lactofen in L. minor were enantioselective, and L. minor had limited capacity for the removal of lactofen and its metabolite in water. Copyright © 2017. Published by Elsevier Inc.

  5. Growth and Photosynthetic Pigments Accumulation of Jute Mallow (Corchorus olitorius Linn. in Response to Different Levels of Magnesium Application

    Directory of Open Access Journals (Sweden)

    Ezekiel Dare OLOWOLAJU

    2017-06-01

    Full Text Available The hereby study investigated the effect of Magnesium application at different levels on the morphological parameters and photosynthetic pigment accumulation of Corchorus olitorius. Seeds of C. olitorius were utilized in the experiment. These seeds were sown in 2 big bowls and were supplied with 200 ml of water every day until they were fully established. After three weeks of sowing, the seedlings were transplanted into plastic pots. The treatments were: distilled water (control; nutrient solution in which the concentration of Magnesium was increased by the factor of 5 (N5, nutrient solution in which the concentration of Magnesium was increased by the factor of 10 (N10 and nutrient solution lacking Magnesium source (NMg. The seedlings were then divided into 4 regimes, with each regime containing each treatment. From the results obtained, it was observed that there was a significant effect at (P≥0.05 on the Corchorus olitorius growth parameters and photosynthetic pigment accumulation among the treatments. There was an increase in the shoot height, number of leaves, number of flowers, leaf area and the photosynthetic pigment accumulation in the seedlings treated with magnesium increased by the factor of 5 (N5 than by other treatments. The control recorded the lowest values for these parameters. It can be concluded that for an optimum growth of Corchorus olitorius, it can be inferred that the plant can do well in nutrient solution having Magnesium source (at moderate level.

  6. Selection of suitable fertilizer draw solute for a novel fertilizer-drawn forward osmosis-anaerobic membrane bioreactor hybrid system.

    Science.gov (United States)

    Kim, Youngjin; Chekli, Laura; Shim, Wang-Geun; Phuntsho, Sherub; Li, Sheng; Ghaffour, Noreddine; Leiknes, TorOve; Shon, Ho Kyong

    2016-06-01

    In this study, a protocol for selecting suitable fertilizer draw solute for anaerobic fertilizer-drawn forward osmosis membrane bioreactor (AnFDFOMBR) was proposed. Among eleven commercial fertilizer candidates, six fertilizers were screened further for their FO performance tests and evaluated in terms of water flux and reverse salt flux. Using selected fertilizers, bio-methane potential experiments were conducted to examine the effect of fertilizers on anaerobic activity due to reverse diffusion. Mono-ammonium phosphate (MAP) showed the highest biogas production while other fertilizers exhibited an inhibition effect on anaerobic activity with solute accumulation. Salt accumulation in the bioreactor was also simulated using mass balance simulation models. Results showed that ammonium sulfate and MAP were the most appropriate for AnFDFOMBR since they demonstrated less salt accumulation, relatively higher water flux, and higher dilution capacity of draw solution. Given toxicity of sulfate to anaerobic microorganisms, MAP appears to be the most suitable draw solution for AnFDFOMBR. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Selection of suitable fertilizer draw solute for a novel fertilizer-drawn forward osmosis-anaerobic membrane bioreactor hybrid system

    KAUST Repository

    Kim, Youngjin

    2016-02-09

    In this study, a protocol for selecting suitable fertilizer draw solute for anaerobic fertilizer-drawn forward osmosis membrane bioreactor (AnFDFOMBR) was proposed. Among eleven commercial fertilizer candidates, six fertilizers were screened further for their FO performance tests and evaluated in terms of water flux and reverse salt flux. Using selected fertilizers, bio-methane potential experiments were conducted to examine the effect of fertilizers on anaerobic activity due to reverse diffusion. Mono-ammonium phosphate (MAP) showed the highest biogas production while other fertilizers exhibited an inhibition effect on anaerobic activity with solute accumulation. Salt accumulation in the bioreactor was also simulated using mass balance simulation models. Results showed that ammonium sulphate and MAP were the most appropriate for AnFDFOMBR since they demonstrated less salt accumulation, relatively higher water flux, and higher dilution capacity of draw solution. Given toxicity of sulphate to anaerobic microorganisms, MAP appears to be the most suitable draw solution for AnFDFOMBR.

  8. Manganese uptake and accumulation by the hyperaccumulator plant Phytolacca acinosa Roxb. (Phytolaccaceae)

    International Nuclear Information System (INIS)

    Xue, S.G.; Chen, Y.X.; Reeves, Roger D.; Baker, Alan J.M.; Lin, Q.; Fernando, Denise R.

    2004-01-01

    The perennial herb Phytolacca acinosa Roxb. (Phytolaccaceae), which occurs in Southern China, has been found to be a new manganese hyperaccumulator by means of field surveys on Mn-rich soils and by glasshouse experiments. This species not only has remarkable tolerance to Mn but also has extraordinary uptake and accumulation capacity for this element. The maximum Mn concentration in the leaf dry matter was 19,300 μg/g on Xiangtan Mn tailings wastelands, with a mean of 14,480 μg/g. Under nutrient solution culture conditions, P. acinosa could grow normally with Mn supplied at a concentration of 8000 μmol/l, although with less biomass than in control samples supplied with Mn at 5 μmol/l. Manganese concentration in the shoots increased with increasing external Mn levels, but the total mass of Mn accumulated in the shoots first increased and then decreased. At an Mn concentration of 5000 μmol/l in the culture solution, the Mn accumulation in the shoot dry matter was highest (258 mg/plant). However, the Mn concentration in the leaves reached its highest value (36,380 μg/g) at an Mn supply level of 12,000 μmol/l. These results confirm that P. acinosa is an Mn hyperaccumulator which grows rapidly, has substantial biomass, wide distribution and a broad ecological amplitude. This species provides a new plant resource for exploring the mechanism of Mn hyperaccumulation, and has potential for use in the phytoremediation of Mn-contaminated soils

  9. Preliminary study of platinum accumulation in the fruitbodies of a model fungal species: king oyster mushroom (Pleurotus eryngii)

    International Nuclear Information System (INIS)

    Urban, P.L.; Bazala, M.A.; Bystrzejewska-Piotrowska, G.; Pianka, D.; Steborowski, R.; Asztemborska, M.; Kowalska, J.; Manjon, J.L.; Kuthan, R.T.

    2005-01-01

    A model species of saprophytic fungus, king oyster mushroom (Pleurotus eryngii), was cultivated on barley substrate supplied with [Pt(NH 3 ) 4 ](NO 3 ) 2 , under well defined conditions. The samples of the collected fruiting bodies were digested and analyzed for total platinum content by means of ICP-MS. The results proved that platinum is not accumulated in the fruitbodies of Pleurotus eryngii for a wide range of Pt concentrations in the culture substrate (100-1000 ppb Pt in 50 ml of water solution added to ca. 450 g of hydrated barley seeds per container). Observable levels of Pt were only found in the fruitbodies obtained from the medium contaminated with 10000 ppb (10 ppm) platinum solution. This demonstrates significant difference in the effectiveness of platinum extraction in fungi and plants, which are capable to accumulate platinum even when supplied at lower concentration (<500 ppb). It also shows different physiological pathways of platinum and other elements which are easily accumulated in the fruitbodies of the same species. (author)

  10. MPK6 controls H2 O2-induced root elongation by mediating Ca2+ influx across the plasma membrane of root cells in Arabidopsis seedlings.

    Science.gov (United States)

    Han, Shuan; Fang, Lin; Ren, Xuejian; Wang, Wenle; Jiang, Jing

    2015-01-01

    Mitogen-activated protein kinases (MPKs) play critical roles in signalling and growth, and Ca(2+) and H2 O2 control plant growth processes associated with abscisic acid (ABA). However, it remains unclear how MPKs are involved in H2 O2 - and Ca(2+) -mediated root elongation. Root elongation in seedlings of the loss-of-function mutant Atmpk6 (Arabidopsis thaliana MPK6) was less sensitive to moderate H2 O2 or ABA than that in wild-type (WT) plants. The enhanced elongation was a result of root cell expansion. This effect disappeared when ABA-induced H2 O2 accumulation or the cytosolic Ca(2+) increase were defective. Molecular and biochemical evidence showed that increased expression of the cell wall peroxidase PRX34 in Atmpk6 root cells enhanced apoplastic H2 O2 generation; this promoted a cytosolic Ca(2+) increase and Ca(2+) influx across the plasma membrane. The plasma membrane damage caused by high levels of H2 O2 was ameliorated in a Ca(2+) -dependent manner. These results suggested that there was intensified PRX34-mediated H2 O2 generation in the apoplast and increased Ca(2+) flux into the cytosol of Atmpk6 root cells; that is, the spatial separation of apoplastic H2 O2 from cytosolic Ca(2+) in root cells prevented H2 O2 -induced inhibition of root elongation in Atmpk6 seedlings. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  11. ROOT ANATOMICAL PLASTICITY IN RESPONSE TO SALT STRESS UNDER REAL AND FULL-SEASON FIELD CONDITIONS AND DETERMINATION OF NEW ANATOMIC SELECTION CHARACTERS FOR BREEDING SALT-RESISTANT RICE (Oryza sativa L.

    Directory of Open Access Journals (Sweden)

    Mehmet AYBEKE

    2016-12-01

    Full Text Available Specific understanding of root anatomy plasticity under salt stress is lacking and requires creation of efficient screening techniques for stress condition s. To fill this gap, this study aimed to determine the anatomical plasticity in root chracteristics of 31 different rice cultivars (from ‘Best’ to ‘Low’ yielding grown under real field conditions (saline and non-saline from planting to harvesting and to reveal detailed root anatomical parameters that can be used to select and breed salt-tolerant rice. Anatomical and histochemical features of all cultivars and thin structures of the apoplastic barriers were investigated. The amount of silica (Si, 35 different anatomical characteristics, anatomical plasticity characteristics, plasticity rates, plasticity trends and changes and strategies of each group under saline and non-saline conditions were compared. The results showed that protective anatomical characters improved/remained equal to, and worsened/remained equal to those of the controls, in the ‘Best’ and other groups, respectively, from non-saline to saline conditions. Anatomical plasticity is essentially directly related to apoplastic barrier features. High genotypic variation was observed in root anatomy in all cultivars, but foremost traits were as follows: (1 cell size, (2 Si presence, (3 Si accumulation shape, (4 Si distribution towards root stele, (5 xylem arch features, (6 lignification-suberization properties in apoplastic barriers and their degrees, (7 presence/absence of idioblast cells filled with gummic and phenolic substances and (8 moderate anatomical plasticity. Cultivars with the most stabile anatomy under saline and non-saline conditions should be used to select and breed salt-resistant rice.

  12. A Study on the Establishment of Radiation Dose Estimation Procedure for Accumulated Radioactive Ions for RAON ISOL System

    Directory of Open Access Journals (Sweden)

    KIM Do Hyun

    2017-01-01

    Full Text Available For purposes of various experiments, RAON heavy ion accelerator facility has been designed in Korea. ISOL is one system of RAON accelerators to generate and separate rare isotopes. Radioactive ions generated from target-proton reactions are separated and accumulated at separation devices. The accumulated isotopes release the gamma radiations; therefore, the radiation safety must be clearly estimated. In this study, a process to evaluate radiations from the accumulated ions was proposed by modifying FISPACT code. The proposed process was validated by comparing a solution of single element decay problem. Using the process, a preliminary study for radiation doses were performed in a virtual separation devise.

  13. Batteries and accumulators in France

    International Nuclear Information System (INIS)

    2012-12-01

    The present report gives an overview of the batteries and accumulators market in France in 2011 based on the data reported through ADEME's Register of Batteries and accumulators. In 2001, the French Environmental Agency, known as ADEME, implemented a follow-up of the batteries and accumulators market, creating the Observatory of batteries and accumulators (B and A). In 2010, ADEME created the National Register of producers of Batteries and Accumulators in the context of the implementation of the order issued on November 18, 2009. This is one of the four enforcement orders for the decree 2009-1139 issued on September 22, 2009, concerning batteries and accumulators put on the market and the disposal of waste batteries and accumulators, and which transposes the EU-Directive 2006/66/CE into French law. This Register follows the former Observatory for batteries and accumulators. This Register aims to record the producers on French territory and to collect the B and A producers and recycling companies' annual reporting: the regulation indeed requires that all B and A producers and recycling companies report annually on the Register the quantities of batteries and accumulators they put on the market, collect and treat. Based on this data analysis, ADEME issues an annual report allowing both the follow-up of the batteries and accumulators market in France and communication regarding the achievement of the collection and recovery objectives set by EU regulation. This booklet presents the situation in France in 2011

  14. Key factors influencing the stability of silane solution during long-term surface treatment on carbon steel

    International Nuclear Information System (INIS)

    Xian, Xiaochao; Chen, Minglu; Li, Lixin; Lin, Zhen; Xiang, Jun; Zhao, Shuo

    2013-01-01

    Highlights: •The corrosion-resistance time of silane films decreases with increasing cycle numbers. •The morphology of silane films prepared from aged solution is inhomogeneous. •Introduction of contamination ions is one reason for the poor property of aged solution. •Consumption of silane is the other reason for the poor property of aged solution. •Fe 3+ accumulated is the key factor influencing the property of silane solution. -- Abstract: The mixtures of bis-[trimethoxysilylpropyl]amine and vinyltriacetoxysilane were used for surface treatment of carbon steel, aiming to investigate the factors influencing the stability of silane solution during long-term experiment from two aspects. One is the concentrations of contamination ions, and the other is mass of silane consumed per cycle which is calculated according to concentration of Si measured by silicon molybdenum blue photometry. The results indicate that the accumulation of contamination ions, especially Fe 3+ , is the main factor leading to the condensation between the Si–OH groups in silane solution, which is responsible for the downward stability of silane solution

  15. Radioecological studies of 137Cs in limnological ecosystems. Biochemical states of 137Cs accumulated in killifish (Medaka, Oryzias latipes) meat

    International Nuclear Information System (INIS)

    Miyake, Sadaaki; Motegi, Misako; Oosawa, Takashi; Nakazawa, Kiyoaki; Izumo, Yoshiro; Nakamura, Fumio.

    1997-01-01

    Biochemical states of 137 Cs accumulated in killifish's (Medaka, Oryzias latipes) meat were investigated in order to elucidate the accumulation mechanism of the radionuclide in goldfish, Carassius auratus auratus, examined in our preceding report. Most of 137 Cs radioactivity in the killifish's raw meat accumulated this radionuclide in the radioactive freshwater, were found in the non-protein nitrogenous compound (NPNC) fraction (>92%), also in the killifish's control raw meat mixed with 137 Cs, the difference between both meat samples was not clear. As the results of gel filtration profiles on Sephadex G-25 for the NPNC fraction of these meats, each only one radioactive peak was shown, also similar to 137 CsCl solution. Moreover, these peaks appeared at the same position. On the other hand, the peak positions absorbed at OD 280nm in the samples were different from those of each radioactive peak. It was so suggested that 137 Cs accumulated in the killifish's meat was shown not to be binding to protein's composition. Furthermore, as the results on thin-layer chromatography, ion-exchange resin chromatography and reaction with 137 Cs in samples and ammonium phosphomolybdate, 137 Cs in the NPNC fraction of the killifish's meat was not almost different from those of each control and 137 CsCl solution. (author)

  16. Accumulation of arsenic in Lemna gibba L. (duckweed) in tailing waters of two abandoned uranium mining sites in Saxony, Germany

    International Nuclear Information System (INIS)

    Mkandawire, Martin; Dudel, E. Gert

    2005-01-01

    Accumulation of arsenic in Lemna gibba L. was investigated in tailing waters of abandoned uranium mine sites, following the hypothesis that arsenic poses contamination risks in post uranium mining in Saxony, Germany. Consequently, macrophytes growing in mine tailing waters accumulate high amounts of arsenic, which might be advantageous for biomonitoring arsenic transfer to higher trophic levels, and for phytoremediation. Water and L. gibba sample collected from pond on tailing dumps of abandoned mine sites at Lengenfeld and Neuensalz-Mechelgruen were analysed for arsenic. Laboratory cultures in nutrient solutions modified with six arsenic and three PO 4 3- concentrations were conducted to gain insight into the arsenic-L. gibba interaction. Arsenic accumulation coefficients in L. gibba were 10 times as much as the background concentrations in both tailing waters and nutrient solutions. Arsenic accumulations in L. gibba increased with arsenic concentration in the milieu but they decreased with phosphorus concentration. Significant reductions in arsenic accumulation in L. gibba were observed with the addition of PO 4 3- at all six arsenic test concentrations in laboratory experiments. Plant samples from laboratory trials had on average twofold higher bioaccumulation coefficients than tailing water at similar arsenic concentrations. This would be attributed to strong interaction among chemical components, and competition among ions in natural aquatic environment. The results of the study indicate that L. gibba can be a preliminary bioindicator for arsenic transfer from substrate to plants and might be used to monitor the transfer of arsenic from lower to higher trophic levels in the abandoned mine sites. There is also the potential of using L. gibba L. for arsenic phytoremediation of mine tailing waters because of its high accumulation capacity as demonstrated in this study. Transfer of arsenic contamination transported by accumulations in L. gibba carried with flowing

  17. Ecological strategies of Al-accumulating and non-accumulating functional groups from the cerrado sensu stricto

    Directory of Open Access Journals (Sweden)

    Marcelo C. de Souza

    2015-06-01

    Full Text Available The cerrado's flora comprises aluminum-(Al accumulating and non-accumulating plants, which coexist on acidic and Al-rich soils with low fertility. Despite their existence, the ecological importance or biological strategies of these functional groups have been little explored. We evaluated the leaf flushing patterns of both groups throughout a year; leaf concentrations of N, P, K, Ca, Mg, S, Al, total flavonoids and polyphenols; as well as the specific leaf area (SLA on young and mature leaves within and between the groups. In Al-accumulating plants, leaf flushed throughout the year, mainly in May and September; for non-accumulating plants, leaf flushing peaked at the dry-wet seasons transition. However, these behaviors could not be associated with strategies for building up concentrations of defense compounds in leaves of any functional groups. Al-accumulating plants showed low leaf nutrient concentrations, while non-accumulating plants accumulated more macronutrients and produced leaves with high SLA since the juvenile leaf phase. This demonstrates that the increase in SLA is slower in Al-accumulating plants that are likely to achieve SLA values comparable to the rest of the plant community only in the wet season, when sunlight capture is important for the growth of new branches.

  18. Ecological strategies of Al-accumulating and non-accumulating functional groups from the cerrado sensu stricto.

    Science.gov (United States)

    Souza, Marcelo C de; Bueno, Paula C P; Morellato, Leonor P C; Habermann, Gustavo

    2015-01-01

    The cerrado's flora comprises aluminum-(Al) accumulating and non-accumulating plants, which coexist on acidic and Al-rich soils with low fertility. Despite their existence, the ecological importance or biological strategies of these functional groups have been little explored. We evaluated the leaf flushing patterns of both groups throughout a year; leaf concentrations of N, P, K, Ca, Mg, S, Al, total flavonoids and polyphenols; as well as the specific leaf area (SLA) on young and mature leaves within and between the groups. In Al-accumulating plants, leaf flushed throughout the year, mainly in May and September; for non-accumulating plants, leaf flushing peaked at the dry-wet seasons transition. However, these behaviors could not be associated with strategies for building up concentrations of defense compounds in leaves of any functional groups. Al-accumulating plants showed low leaf nutrient concentrations, while non-accumulating plants accumulated more macronutrients and produced leaves with high SLA since the juvenile leaf phase. This demonstrates that the increase in SLA is slower in Al-accumulating plants that are likely to achieve SLA values comparable to the rest of the plant community only in the wet season, when sunlight capture is important for the growth of new branches.

  19. Colocalization of low-methylesterified pectins and Pb deposits in the apoplast of aspen roots exposed to lead

    International Nuclear Information System (INIS)

    Rabęda, Irena; Bilski, Henryk; Mellerowicz, Ewa J.; Napieralska, Anna; Suski, Szymon; Woźny, Adam; Krzesłowska, Magdalena

    2015-01-01

    Low-methylesterified homogalacturonans have been suggested to play a role in the binding and immobilization of Pb in CW. Using root apices of hybrid aspen, a plant with a high phytoremediation potential, as a model, we demonstrated that the in situ distribution pattern of low-methylesterified homogalacturonan, pectin epitope (JIM5-P), reflects the pattern of Pb occurrence. The region which indicated high JIM5-P level corresponded with “Pb accumulation zone”. Moreover, JIM5-P was especially abundant in cell junctions, CWs lining the intercellular spaces and the corners of intercellular spaces indicating the highest accumulation of Pb. Furthermore, JIM5-P and Pb commonly co-localized. The observations indicate that low-methylesterified homogalacturonan is the CW polymer that determines the capacity of CW for Pb sequestration. Our results suggest a promising directions for CW modification for enhancing the efficiency of plant roots in Pb accumulation, an important aspect in the phytoremediation of soils contaminated with trace metals. - Highlights: • Co-localization of low-methylesterified pectins and Pb was analysed in situ. • The pattern of Pb accumulation matched low-methylesterified pectins distribution. • Low-methylesterified pectins and Pb commonly co-localized in cell walls. • Low-methylesterified pectins revealed an important compound in Pb sequestration. • We suggest a new direction in enhancing plant efficiency for phytoremediation. - The distribution of lead in developing tissues of aspen root tips exposed to short-term lead treatment mimics the distribution of low-methylesterified pectin epitope

  20. Solutions against PWSCC in dissimilar welds cracks of reactor components

    International Nuclear Information System (INIS)

    Schlader, D.; Michaut, B.; Knapp, M

    2005-01-01

    This article provides a brief overview of the experience accumulated by Framatome ANP in the development and use of repair and mitigation techniques of the PWSCC in dissimilar welds cracks of reactor components. A brief description of the alternatives available to the industry for the solution of this problem for both PWR and BWR reactor types is also included. These solutions have been implemented many times by Framatome ANP in Europe and the US. The article also describes the way the know-how is shared among the different regions of the company in order to offer customer specific solutions. (Author)

  1. Coupling of solute transport and cell expansion in pea stems

    Science.gov (United States)

    Schmalstig, J. G.; Cosgrove, D. J.

    1990-01-01

    As cells expand and are displaced through the elongation zone of the epicotyl of etiolated pea (Pisum sativum L. var Alaska) seedlings, there is little net dilution of the cell sap, implying a coordination between cell expansion and solute uptake from the phloem. Using [14C] sucrose as a phloem tracer (applied to the hypogeous cotyledons), the pattern of label accumulation along the stem closely matched the growth rate pattern: high accumulation in the growing zone, little accumulation in nongrowing regions. Several results suggest that a major portion of phloem contents enters elongating cells through the symplast. We propose that the coordination between phloem transport and cell expansion is accomplished via regulatory pathways affecting both plasmodesmata conductivity and cell expansion.

  2. The locations and amounts of endogenous ions and elements in the cap and elongating zone of horizontally oriented roots of Zea mays L.: an electron-probe EDS study

    Science.gov (United States)

    Moore, R.; Cameron, I. L.; Hunter, K. E.; Olmos, D.; Smith, N. K.

    1987-01-01

    We used quantitative electron-probe energy-dispersive x-ray microanalysis to localize endogenous Na, Cl, K, P, S, Mg and Ca in cryofixed and freeze-dried cryosections of the cap (i.e. the putative site of graviperception) and elongating zone (i.e. site of gravicurvature) of horizontally oriented roots of Zea mays. Ca, Na, Cl, K and Mg accumulate along the lower side of caps of horizontally oriented roots. The most dramatic asymmetries of these ions occur in the apoplast, especially the mucilage. We could not detect any significant differences in the concentrations of these ions in the central cytoplasm of columella cells along the upper and lower sides of caps of horizontally-oriented roots. However, the increased amounts of Na, Cl, K and Mg in the longitudinal walls of columella cells along the lower side of the cap suggest that these ions may move down through the columella tissue of horizontally-oriented roots. Ca also accumulates (largely in the mucilage) along the lower side of the elongating zone of horizontally-oriented roots, while Na, P, Cl and K tend to accumulate along the upper side of the elongating zone. Of these ions, only K increases in concentration in the cytoplasm and longitudinal walls of cortical cells in the upper vs lower sides of the elongating zone. These results indicate that (1) gravity-induced asymmetries of ions differ significantly in the cap and elongating zone of graviresponding roots, (2) Ca accumulates along the lower side of the cap and elongating zone of graviresponding roots, (3) increased growth of the upper side of the elongating zone of horizontally-oriented roots correlates positively with increased amounts of K in the cytoplasm and longitudinal walls of cortical cells, and (4) the apoplast (especially the mucilage) may be an important component of the pathway via which ions move in graviresponding rots of Zea mays. These results are discussed relative to mechanisms for graviperception and gravicurvature of roots.

  3. Cadmium induces changes in sucrose partitioning, invertase activities, and membrane functionality in roots of Rangpur lime (Citrus limonia L. Osbeck).

    Science.gov (United States)

    Podazza, G; Rosa, M; González, J A; Hilal, M; Prado, F E

    2006-09-01

    Cadmium (Cd) uptake effects on sucrose content, invertase activities, and plasma membrane functionality were investigated in Rangpur lime roots ( CITRUS LIMONIA L. Osbeck). Cadmium accumulation was significant in roots but not in shoots and leaves. Cadmium produced significant reduction in roots DW and increment in WC. Leaves and shoots did not show significant differences on both parameters. Sucrose content was higher in control roots than in Cd-exposed ones. Apoplastic sucrose content was much higher in Cd-exposed roots than in control ones. Cd-exposed roots showed a significant decrease in both cell wall-bound and cytoplasmic (neutral) invertase activities; while the vacuolar isoform did not show any change. Alterations in lipid composition and membrane fluidity of Cd-exposed roots were also observed. In Cd-exposed roots phospholipid and glycolipid contents decreased about 50 %, while sterols content was reduced about 22 %. Proton extrusion was inhibited by Cd. Lipid peroxidation and proton extrusion inhibition were also detected by histochemical analysis. This work's findings demonstrate that Cd affects sucrose partitioning and invertase activities in apoplastic and symplastic regions in Rangpur lime roots as well as the plasma membrane functionality and H (+)-ATPase activity.

  4. Plasma membrane H(+)-ATPase is involved in methyl jasmonate-induced root hair formation in lettuce (Lactuca sativa L.) seedlings.

    Science.gov (United States)

    Zhu, Changhua; Yang, Na; Ma, Xiaoling; Li, Guijun; Qian, Meng; Ng, Denny; Xia, Kai; Gan, Lijun

    2015-06-01

    Our results show that methyl jasmonate induces plasma membrane H (+) -ATPase activity and subsequently influences the apoplastic pH of trichoblasts to maintain a cell wall pH environment appropriate for root hair development. Root hairs, which arise from root epidermal cells, are tubular structures that increase the efficiency of water absorption and nutrient uptake. Plant hormones are critical regulators of root hair development. In this study, we investigated the regulatory role of the plasma membrane (PM) H(+)-ATPase in methyl jasmonate (MeJA)-induced root hair formation. We found that MeJA had a pronounced effect on the promotion of root hair formation in lettuce seedlings, but that this effect was blocked by the PM H(+)-ATPase inhibitor vanadate. Furthermore, MeJA treatment increased PM H(+)-ATPase activity in parallel with H(+) efflux from the root tips of lettuce seedlings and rhizosphere acidification. Our results also showed that MeJA-induced root hair formation was accompanied by hydrogen peroxide accumulation. The apoplastic acidification acted in concert with reactive oxygen species to modulate root hair formation. Our results suggest that the effect of MeJA on root hair formation is mediated by modulation of PM H(+)-ATPase activity.

  5. Pathway of phloem unloading in tobacco sink leaves

    International Nuclear Information System (INIS)

    Turgeon, R.

    1987-01-01

    Phloem unloading in transition sink leaves of tobacco (Nicotiana tabacum L.) was analyzed by quantitative autoradiography. Source leaves were labeled with 14 CO 2 and experimental treatments were begun approximately 1 h later when label had entered the sink leaves. Autoradiographs were prepared from rapidly frozen, lyophilized sink tissue at the beginning and end of the treatments and the amount of label in veins and in surrounding cells was determined by microdensitometry. Photoassimilate unloaded from third order and larger, but not smaller, veins. Long-distance import and unloading did not respond the same way to all experimental treatments. Import was completely inhibited by cold, anaerobiosis or steam girdling the sink leaf petiole. Unloading was inhibited by cold but continued in an anaerobic atmosphere and after steam girdling. Uptake of exogenous [ 14 C]sucrose was inhibited by anaerobiosis. Since an apoplastic pathway of phloem unloading would involve solute uptake from the apoplast the results are most consistent with passive symplastic unloading of photoassimilates from phloem to surrounding cells

  6. Hartig' net formation of Tricholoma vaccinum-spruce ectomycorrhiza in hydroponic cultures.

    Science.gov (United States)

    Henke, Catarina; Jung, Elke-Martina; Kothe, Erika

    2015-12-01

    For re-forestation of metal-contaminated land, ectomycorrhizal trees may provide a solution. Hence, the study of the interaction is necessary to allow for comprehensive understanding of the mutually symbiotic features. On a structural level, hyphal mantle and the Hartig' net formed in the root apoplast are essential for plant protection and mycorrhizal functioning. As a model, we used the basidiomycete Tricholoma vaccinum and its host spruce (Picea abies). Using an optimized hydroponic cultivation system, both features could be visualized and lower stress response of the tree was obtained in non-challenged cultivation. Larger spaces in the apoplasts could be shown with high statistical significance. The easy accessibility will allow to address metal stress or molecular responses in both partners. Additionally, the proposed cultivation system will enable for other experimental applications like addressing flooding, biological interactions with helper bacteria, chemical signaling, or other biotic or abiotic challenges relevant in the natural habitat.

  7. Controls on accumulation and soil solution partitioning of heavy metals across upland sites in United Kingdom (UK).

    Science.gov (United States)

    Zia, Afia; van den Berg, Leon; Ahmad, Muhammad Nauman; Riaz, Muhammad; Zia, Dania; Ashmore, Mike

    2018-05-31

    A significant body of knowledge suggests that soil solution pH and dissolved organic carbon (DOC) strongly influence metal concentrations and speciation in porewater, however, these effects vary between different metals. This study investigated the factors influencing soil and soil solution concentrations of copper (Cu), lead (Pb), nickel (Ni) and zinc (Zn) under field conditions in upland soils from UK having a wide range of pH, DOC and organic matter contents. The study primarily focussed on predicting soil and soil solution metal concentrations from the data on total soil metal concentrations (HNO 3 extracts) and soil and soil solution properties (pH, DOC and organic matter content). We tested the multiple regression models proposed by Tipping et al. (2003) to predict heavy metal concentrations in soil solutions and the results indicated a better fit (higher R 2 values) in both studies for Pb compared to the Zn and Cu concentrations. Both studies observed consistent negative relationships of metals with pH and loss on ignition (LOI) suggesting an increase in soil solution metal concentrations with increasing acidity. The positive relationship between Pb concentrations in porewater and HNO 3 extracts was similar for both studies, however, similar relationships were not found for the Zn and Cu concentrations because of the negative coefficients for these metals in our study. The results of this study conclude that the predictive equations of Tipping et al. (2003) may not be applicable to the field sites where the range of DOC and metal concentrations is much lower than their study. Our study also suggests that the extent to which metals are partitioned into soil solution is lower in soils with a higher organic matter contents due to binding of these metals to soil organic matter. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Accumulation of potassium in scala vestibuli perilymph of the mammalian cochlea.

    Science.gov (United States)

    Salt, A N; Ohyama, K

    1993-01-01

    Movements of potassium (K+) were monitored during perfusion of either the scala tympani (ST) or the scala vestibuli (SV) of the guinea pig cochlea with a solution containing 15 mmol/LK+. A highly asymmetric clearance of K+ was observed, with K+ rapidly being taken up from the ST and allowed to accumulate in the SV. Under some conditions the SV K+ concentration could exceed that in the perfused ST. These observations are believed to result from the distortion of passive K+ diffusion by the high circulating current of K+ that is part of the transduction process. Calculations are presented to demonstrate that circulating fluxes are of sufficient magnitude to generate the results observed. The high rate of circulating K+ current is probably also responsible for the difference in physiologic K+ concentration between the ST and SV, in which the ST perilymph K+ concentration is typically found to be half that of the SV. A clearance of K+ from the ST and its eventual accumulation in the SV could play a role in how the ear responds to abnormal ion concentrations, such as may occur in Meniere's disease. It is proposed that an accumulation of K+ in the SV would result in vestibular dysfunction that might contribute to the vestibular symptoms of the disease.

  9. Effects of Nitrogen and Nutrient Removal on Nitrate Accumulation and Growth Characteristics of Spinach (Spinacia oleraceae L.

    Directory of Open Access Journals (Sweden)

    mohammadsadegh sadeghi

    2017-12-01

    was conducted with twolevels of removal (removal of nutrient one week before harvest or not to remove and fourlevels of nitrogen (25, 50, 100 and 200 mg/l with sixreplications. During the growing season in the greenhouse, temperature was fixed between 24-27 °C and photoperiod of 16 hours of light and 8 hours of darkness. The measured traits were root fresh and dry weight, shoot fresh and dry weight, Fv/Fm ratio, and chlorophyll index, number of leaf per plant, leaf area, nitrate and total nitrogen. Results and Discussion: The results of this experiment showed that increasingnitrogen concentration from 25 to 200 mg/l increased shoot dry weight, number of leaves and leaf area, by 22.00, 7.26, 4.79 and 14.00 fold, respectively. Nitrogen also increased Fv/Fm and chlorophyll index. Nutrient removal in a week before harvest had no significant effect on fresh and dry weight of shoots and roots, number of leaves,leaf area, chlorophyll index and Fv/Fm. Increasing concentrations of nitrogen increased nitrate and total nitrogen in petiole while removing the nutrient solution in a week before harvest significantly decreased amounts of the above-mentioned traits. Nutrient solution removal is an appropriate strategy to reduce nitrate accumulation in spinach that has no effect on yield loss. Conclusions: The results showed that increasing the concentration of nitrogen increased plant growth indicators such as shoot fresh and dry weight, root fresh and dry weight, leaf area and number of leaf per plants, so that the greatest increase was obtained from concentration of 200 mg/lit. Increasing the concentration of nitrogen enhanced nitrate and total nitrogen of petiole so that the highest concentration of nitrate and total nitrogen was observed in200 mg/lit nitrogen. Nutrient solution removal in a week before the harvest had a significant effect in reducing all traits but it decreased nitrate accumulation and total nitrogen of petiole significantly. At the end of the experiment, it was

  10. Interaction between blood-brain barrier and glymphatic system in solute clearance.

    Science.gov (United States)

    Verheggen, I C M; Van Boxtel, M P J; Verhey, F R J; Jansen, J F A; Backes, W H

    2018-03-30

    Neurovascular pathology concurs with protein accumulation, as the brain vasculature is important for waste clearance. Interstitial solutes, such as amyloid-β, were previously thought to be primarily cleared from the brain by blood-brain barrier transport. Recently, the glymphatic system was discovered, in which cerebrospinal fluid is exchanged with interstitial fluid, facilitated by the aquaporin-4 water channels on the astroglial endfeet. Glymphatic flow can clear solutes from the interstitial space. Blood-brain barrier transport and glymphatic clearance likely serve complementary roles with partially overlapping mechanisms providing a well-conditioned neuronal environment. Disruption of these mechanisms can lead to protein accumulation and may initiate neurodegenerative disorders, for instance amyloid-β accumulation and Alzheimer's disease. Although both mechanisms seem to have a similar purpose, their interaction has not been clearly discussed previously. This review focusses on this interaction in healthy and pathological conditions. Future health initiatives improving waste clearance might delay or even prevent onset of neurodegenerative disorders. Defining glymphatic flow kinetics using imaging may become an alternative way to identify those at risk of Alzheimer's disease. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Calculation on maximum accumulation of Pu-239 and Pu-241 from aqueous homogeneous reactor

    International Nuclear Information System (INIS)

    Ikhlas H Siregar; Frida Agung R; Suharyana; Azizul Khakim; Dahman Siregar

    2016-01-01

    Calculations on maximum accumulation of Pu-239 and Pu-241 using MCNPX computer code with UO_2(NO_3)_2 fuel solution enriched by 19.75% operating at temperature 80°C have been conducted. AHR design was simulated with cylindrical core having diameter of 63.4 cm and 122 cm high. From this geometry we found the reactor was critical with density 108 gr U/L of UO_2(NO_3)_2 solution. The result showed that multiplication factor (k_e_f_f) of AHR was 1.05284. Then the burn up calculations were done for various time intervals from 5 days until 285 years to analyze the result. From calculation, it was found out that the saturated concentration of Pu-239 was reached after 40-50 years of operation, producing 1.23 x 102 gr and the activity 7.645 Ci. While for operate time of AHR to produce Pu-241 should under 80 years with mass 21.7 gr and the activity 2.247 x 103 Ci. The accumulations of both isotopes are considered to be small, having low potential for misusing them for producing nuclear weapon. (author)

  12. Phloem loading--not metaphysical, only complex: towards a unified model of phloem loading.

    Science.gov (United States)

    Komor, E; Orlich, G; Weig, A; Köckenberger, W

    1996-08-01

    Phloem loading comprises the entire pathway of phloem-mobile solutes from their place of generation (or delivery) to the sieve tubes in a sequence of transport steps across or passing by several different cell types. Each of these steps can be classified as symplastic or apoplastic. The detailed anatomical-cytological work in the past ten years made clear that the symplastic continuity from mesophyll to sieve tubes may be very different for different plant species or even in different vein orders. Therefore data from one species are not transferable to another species and a well-rounded picture involving different experimental methods has to be aimed at for each species separately. The information obtained with the Ricinus seedling, where phloem loading and sieve tube sap analysis can be achieved relatively easily, is presented. The analysis of the radioactive labelling of sucrose from the sieve tubes of cotyledons, in which external and intracellular sucrose had been differently labelled, revealed that at sucrose concentrations close to the natural one, 50% of sucrose is loaded directly from the external medium. The other 50% is first taken up by mesophyll and then released for uptake into the sieve tubes. No bundle tissue works as obligate, intermediate sucrose storage. The apoplast therefore definitely serves as a transit reservoir for sucrose destined to be loaded into the sieve tubes. The sieve tube sap contains glycolytic metabolites at concentrations higher than found in the hypocotyl tissue, whereas the corresponding glycolytic enzymes are missing. It is concluded that the enzymes are sequestered in the companion cell or by parietal membrane stacks. Not only the sieve tubes but nearly all cotyledonary cells are equipped with a sucrose-H(+) symporter able to achieve sucrose accumulation and sensitive to inhibition by high salt concentrations or SH reagents. A cDNA clone coding for a sucrose carrier was isolated. It is transcribed at approximately the same

  13. Chloride on the Move

    KAUST Repository

    Li, Bo

    2017-01-09

    Chloride (Cl−) is an essential plant nutrient but under saline conditions it can accumulate to toxic levels in leaves; limiting this accumulation improves the salt tolerance of some crops. The rate-limiting step for this process – the transfer of Cl− from root symplast to xylem apoplast, which can antagonize delivery of the macronutrient nitrate (NO3−) to shoots – is regulated by abscisic acid (ABA) and is multigenic. Until recently the molecular mechanisms underpinning this salt-tolerance trait were poorly defined. We discuss here how recent advances highlight the role of newly identified transport proteins, some that directly transfer Cl− into the xylem, and others that act on endomembranes in ‘gatekeeper’ cell types in the root stele to control root-to-shoot delivery of Cl−.

  14. Accumulation of Sr90-Y90 by the developing spawn and larvae of Coregonus lavaretus L

    International Nuclear Information System (INIS)

    Kulikov, N.V.; Ozhegov, L.N.

    1976-01-01

    The results are given of laboratory experiments aimed at studying accumulation of Sr-90 and its daughter product Y-90 in the spawn and larvae of whitefish, a representative of autumn spawning fish species. The results are of interest for predicting possible consequences of radioactive contamination of water bodies and introduction of limits for permissible concentration of radioactive substances in aqueous medium. The accumulation coefficient of Sr-90 in the spawn reaches its maximum after the first twenty four hours of the experiment. Subsequently throughout the incubation period the accumulation coefficient (AC) of radionuclide does not undergo any changes being about 3. Besides it has been established that the equilibrium distribution of Sr-90 in whitefish spawn and the surrounding solution occurs during the first two hours. Unlike Sr-90 the accumulation of Y-90 occurs during the whole incubation period and results in the AC value of 80 by the end of the spawn incubation. The experiments aimed at determining the strength of radionuclide fixation by whitefish spawn and larvae revealed that both radionuclides in the spawn are rather mobile. Strontium separates fully from it during the first twenty four hours and yttrium marked by higher fixation strength transfers completely from the spawn into surrounding aqueous medium by the end of the experiment. In larvae the radionuclides are fixed stroger than in the spawn. The approximate radiation doses of embryos by the time of their hatching have been estimated. The estimates indicate that the total radiation dose of the spawn developing in aqueous solution of Sr-90 - Y-90 with 1.1 curie/0 -5 concentration is about 500 radl

  15. Effects of water management on arsenic and cadmium speciation and accumulation in an upland rice cultivar.

    Science.gov (United States)

    Hu, Pengjie; Ouyang, Younan; Wu, Longhua; Shen, Libo; Luo, Yongming; Christie, Peter

    2015-01-01

    Pot and field experiments were conducted to investigate the effects of water regimes on the speciation and accumulation of arsenic (As) and cadmium (Cd) in Brazilian upland rice growing in soils polluted with both As and Cd. In the pot experiment constant and intermittent flooding treatments gave 3-16 times higher As concentrations in soil solution than did aerobic conditions but Cd showed the opposite trend. Compared to arsenate, there were more marked changes in the arsenite concentrations in the soil solution as water management shifted, and therefore arsenite concentrations dominated the As speciation and bioavailability in the soil. In the field experiment As concentrations in the rice grains increased from 0.14 to 0.21 mg/kg while Cd concentrations decreased from 0.21 to 0.02 mg/kg with increasing irrigation ranging from aerobic to constantly flooding conditions. Among the various water regimes the conventional irrigation treatment produced the highest rice grain yield of 6.29 tons/ha. The As speciation analysis reveals that the accumulation of dimethylarsinic acid (from 11.3% to 61.7%) made a greater contribution to the increase in total As in brown rice in the intermittent and constant flooding treatments compared to the intermittent-aerobic treatment. Thus, water management exerted opposite effects on Cd and As speciation and bioavailability in the soil and consequently on their accumulation in the upland rice. Special care is required when irrigation regime methods are employed to mitigate the accumulation of metal(loid)s in the grain of rice grown in soils polluted with both As and Cd. Copyright © 2014. Published by Elsevier B.V.

  16. Hydrophilization of graphite using plasma above/in a solution

    Science.gov (United States)

    Hoshino, Shuhei; Kawahara, Kazuma; Takeuchi, Nozomi

    2018-01-01

    A hydrophilization method for graphite is required for applications such as conductive ink. In typical chemical oxidation methods for graphite have the problems of producing many defects in graphite and a large environmental impact. In recent years, the plasma treatment has attracted attention because of the high quality of the treated samples and the low environmental impact. In this study, we proposed an above-solution plasma treatment with a high contact probability of graphite and plasma since graphite accumulates on the solution surface due to its hydrophobicity, which we compared with a so-called solution plasma treatment. Graphite was hydrophilized via reactions with OH radicals generated by the plasma. It was confirmed that hydroxyl and carboxyl groups were modified to the graphite and the dispersibility was improved. The above-solution plasma achieved more energy-efficient hydrophilization than the solution plasma and it was possible to enhance the dispersibility by increasing the plasma-solution contact area.

  17. Effects of Salt Accumulation in Soil by Evaporation on Unsaturated Soil Hydraulic Properties

    Science.gov (United States)

    Liu, Y.; Liu, Q.

    2017-12-01

    Soil salinization is one type of soil degradation caused by saline groundwater evaporation. Salt accumulation in the soil will change the pore structure of soil, which should change the unsaturated soil hydraulic properties including the soil water characteristic curve (SWCC). To investigate the effect of salt accumulation on the SWCC and find the best suitable SWCC model to characterize the relationship of soil moisture and soil matrix potential, we have conducted laboratory SWCC experiments with the soil columns saturated by NaCl solution with different concentration (deionized water, 3 g/L, 15 g/L, 50 g/L, 100 g/L and 200 g/L). As the concentration of initial solution increases, the matrix potential corresponding to the same moisture increases. As the water was evaporated, the salt would precipitate in soil continuously, which would decrease the porosity of soils and increase the negative pressure of soils. With higher initial concentration, the more salt accumulation caused the more residual water content in the soils. For van Genuchten-Mualem model, the residual water contents θr were 0.0159, 0.0181, 0.0182, 0.0328, 0.0312, 0.0723, 0.0864 in the columns initially saturated by deionized water, 3 g/L, 15 g/L, 50 g/L, 100 g/L and 200 g/L, respectively. The van Genuchten-Mualem model, Fredlund-Xing model, Gardern model, Mckee-Bumb model and Brooks-Corey model were fitted by MATLAB with the experiments data, and the fitted coefficients were compared. The Fredlund-Xing model has the best fitting coefficients and the calculated value was consistent with the observed data.

  18. The marine cyanobacterium Crocosphaera watsonii WH8501 synthesizes the compatible solute trehalose by a laterally acquired OtsAB fusion protein

    NARCIS (Netherlands)

    Pade, N.; Compaoré, J.; Klähn, S.; Stal, L.J.; Hagemann, M.

    2012-01-01

    Compatible solutes are small organic molecules that are involved in the acclimation to various stresses such as temperature and salinity. Marine or moderate halotolerant cyanobacteria accumulate glucosylglycerol, while cyanobacteria with low salt tolerance (freshwater strains) usually accumulate

  19. Microbial accumulation of uranium

    International Nuclear Information System (INIS)

    Zhang Wei; Dong Faqin; Dai Qunwei

    2005-01-01

    The mechanism of microbial accumulation of uranium and the effects of some factors (including pH, initial uranium concentration, pretreatment of bacteria, and so on) on microbial accumulation of uranium are discussed briefly. The research direction and application prospect are presented. (authors)

  20. A physiological and genetic approach to the improvement of tomato (Lycopersicon esculentum Mill.) fruit soluble solids

    International Nuclear Information System (INIS)

    Damon, S.E.

    1989-01-01

    Physiological processes and the genetic basis determining soluble solids content (SSC) of processing tomato fruit were addressed. Analysis of [ 3 H]-(fructosyl)-sucrose translocation in tomato indicates that phloem unloading in the fruit occurs, at least in part, to the apoplast. Apoplastic sucrose, glucose and fructose concentrations were estimated as 1 to 7, 12 to 49 and 8 to 63 millimolar, respectively in tomato fruit pericarp. Short-term uptake of [ 14 C]sucrose, -glucose and -fructose in tomato pericarp discs showes first order kinetics over the physiologically relevant concentration range. The uptake of [ 14 C]-(glycosyl)-1'fluorosucrose was identical to the rate of [ 14 C] sucrose uptake suggesting sucrose may be taken up directly without prior extracellular hydrolysis. Short-term uptake of all three sugars was insensitive to 10 micromolar carbonyl cyanide m-chlorophenylhydrazone and to 10 micromolar p-chloromercuribenzene sulfonic acid. However, long-term accumulation of glucose was sensitive to carbonyl cyanide m-chlorophenylhydrazone. Sugar uptake across the plasmamembrane does not appear to be energy dependent, suggesting that sugar accumulation in the tomato is driven by subsequent intracellular metabolism and/or active uptake at the tonoplast. Fourteen genomic DNA probes and ten restriction endonucleases were used to identify restriction fragment length polymorphisms (RFLPs) useful in the linkage analysis of quantitative trait loci controlling the expression of SSC in a segregating F 2 population from a cross between L. esculentum (UC204B) and L. cheesmanii f. minor, a wild species with high fruit soluble solids. RFLPs were detected between the DNAs of the two tomato species with all 14 probes

  1. Accumulation of Dissolved DMSP by Marine Bacteria and its Degradation Via Bacterivory

    Science.gov (United States)

    Wolfe, Gordon V.

    1996-01-01

    Several bacterial isolates enriched from seawater using complex media were able to accumulate dimethylsulfoniopropionate (DMSP) from media into cells over several hours without degrading it. Uptake only occurred in metabolically active cells, and was repressed in some strains by the presence of additional carbon sources. Accumulation was also more rapid in osmotically-stressed cells, suggesting DMSP is used as an osmotic solute. Uptake could be blocked by inhibitors of active transport systems (2,4-dinitrophenol, azide, arsenate) and of protein synthesis (chloramphenicol). Some structural analogs such as glycine betaine and S-methyl methionine also blocked DMSP uptake, suggesting that the availability of alternate organic osmolytes may influence DMSP uptake. Stresses such as freezing, heating, or osmotic down shock resulted in partial release of DMSP back to the medium. One strain which contained a DMSP-lyase was also able to accumulate DMSP, and DMS was only produced in the absence of alternate carbon sources. Bacteria containing DMSP were prepared as prey for bacterivorous ciliates and flagellates, to examine the fate of the DMSP during grazing. In all cases, predators metabolized the DMSP in bacteria. In some cases, DMS was produced, but it is not clear if this was due to the predators or to associated bacteria in the non-axenic grazer cultures. Bacterivores may influence DMSP cycling by either modulating populations of DMSP-metabolizing bacteria, or by metabolizing DMSP accumulated by bacterial prey.

  2. Stable isotopic composition of perchlorate and nitrate accumulated in plants: Hydroponic experiments and field data.

    Science.gov (United States)

    Estrada, Nubia Luz; Böhlke, J K; Sturchio, Neil C; Gu, Baohua; Harvey, Greg; Burkey, Kent O; Grantz, David A; McGrath, Margaret T; Anderson, Todd A; Rao, Balaji; Sevanthi, Ritesh; Hatzinger, Paul B; Jackson, W Andrew

    2017-10-01

    Natural perchlorate (ClO 4 - ) in soil and groundwater exhibits a wide range in stable isotopic compositions (δ 37 Cl, δ 18 O, and Δ 17 O), indicating that ClO 4 - may be formed through more than one pathway and/or undergoes post-depositional isotopic alteration. Plants are known to accumulate ClO 4 - , but little is known about their ability to alter its isotopic composition. We examined the potential for plants to alter the isotopic composition of ClO 4 - in hydroponic and field experiments conducted with snap beans (Phaseolus vulgaris L.). In hydroponic studies, anion ratios indicated that ClO 4 - was transported from solutions into plants similarly to NO 3 - but preferentially to Cl - (4-fold). The ClO 4 - isotopic compositions of initial ClO 4 - reagents, final growth solutions, and aqueous extracts from plant tissues were essentially indistinguishable, indicating no significant isotope effects during ClO 4 - uptake or accumulation. The ClO 4 - isotopic composition of field-grown snap beans was also consistent with that of ClO 4 - in varying proportions from irrigation water and precipitation. NO 3 - uptake had little or no effect on NO 3 - isotopic compositions in hydroponic solutions. However, a large fractionation effect with an apparent ε ( 15 N/ 18 O) ratio of 1.05 was observed between NO 3 - in hydroponic solutions and leaf extracts, consistent with partial NO 3 - reduction during assimilation within plant tissue. We also explored the feasibility of evaluating sources of ClO 4 - in commercial produce, as illustrated by spinach, for which the ClO 4 - isotopic composition was similar to that of indigenous natural ClO 4 - . Our results indicate that some types of plants can accumulate and (presumably) release ClO 4 - to soil and groundwater without altering its isotopic characteristics. Concentrations and isotopic compositions of ClO 4 - and NO 3 - in plants may be useful for determining sources of fertilizers and sources of ClO 4 - in their growth

  3. Accumulation and effects of copper on aquatic macrophytes Potamogeton pectinatus L.: Potential application to environmental monitoring and phytoremediation.

    Science.gov (United States)

    Costa, Marcela Brandão; Tavares, Francesca Valêncio; Martinez, Claudia Bueno; Colares, Ioni Gonçalves; Martins, Camila de Martinez Gaspar

    2018-07-15

    This study investigated the ability of Potamogeton pectinatus L. to accumulate copper and its effects on plants. In accumulation tests, macrophytes were exposed (96 h) to different copper concentrations (0-1000 µM) and the metal was measured in media and plant tissues (roots, stems and leaves) to determine the bioconcentration factor (BCF). Plants accumulated high concentrations of copper in a dose-dependent manner and roots was the main organ for copper accumulation. However, the more copper increased in water, the more BCF values decreased. It may be due to either saturation of copper uptake or down-regulation of metal uptake by plants. In the physiological and morphological analyses, plants were kept (96 h) in Hoagland nutrient solution without copper, in full Hoagland solution (0.5 µM Cu) and in Hoagland medium with copper from 1 to 100 µM. The absence and the presence of copper above to 1 µM inhibited photosynthesis. Chlorophylls and carotenoid levels also decreased with the excess of copper, a fact that may have affected the photosystem II-dependent of chlorophyll and caused photosynthesis suppression. Only macrophytes at 10 µM Cu showed decrease in length and number of leaves on the 10th day of the test, when they died. Chlorosis and necrosis were observed in control groups and groups with extra copper, but not in Hoalgand group. Overall, the macrophyte P. pectinatus can be considered a suitable plant for monitoring environments contaminated by copper, based on results of copper accumulation in the plant, decrease in pigment concentration and presence of chlorosis and necrosis. However, values of BCF based on fresh water tissues was not proper to indicate the use of P. pectinatus for cleaning environments contaminated by copper. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Photosynthesis Activates Plasma Membrane H+-ATPase via Sugar Accumulation.

    Science.gov (United States)

    Okumura, Masaki; Inoue, Shin-Ichiro; Kuwata, Keiko; Kinoshita, Toshinori

    2016-05-01

    Plant plasma membrane H(+)-ATPase acts as a primary transporter via proton pumping and regulates diverse physiological responses by controlling secondary solute transport, pH homeostasis, and membrane potential. Phosphorylation of the penultimate threonine and the subsequent binding of 14-3-3 proteins in the carboxyl terminus of the enzyme are required for H(+)-ATPase activation. We showed previously that photosynthesis induces phosphorylation of the penultimate threonine in the nonvascular bryophyte Marchantia polymorpha However, (1) whether this response is conserved in vascular plants and (2) the process by which photosynthesis regulates H(+)-ATPase phosphorylation at the plasma membrane remain unresolved issues. Here, we report that photosynthesis induced the phosphorylation and activation of H(+)-ATPase in Arabidopsis (Arabidopsis thaliana) leaves via sugar accumulation. Light reversibly phosphorylated leaf H(+)-ATPase, and this process was inhibited by pharmacological and genetic suppression of photosynthesis. Immunohistochemical and biochemical analyses indicated that light-induced phosphorylation of H(+)-ATPase occurred autonomously in mesophyll cells. We also show that the phosphorylation status of H(+)-ATPase and photosynthetic sugar accumulation in leaves were positively correlated and that sugar treatment promoted phosphorylation. Furthermore, light-induced phosphorylation of H(+)-ATPase was strongly suppressed in a double mutant defective in ADP-glucose pyrophosphorylase and triose phosphate/phosphate translocator (adg1-1 tpt-2); these mutations strongly inhibited endogenous sugar accumulation. Overall, we show that photosynthesis activated H(+)-ATPase via sugar production in the mesophyll cells of vascular plants. Our work provides new insight into signaling from chloroplasts to the plasma membrane ion transport mechanism. © 2016 American Society of Plant Biologists. All Rights Reserved.

  5. Effects of Aeration Treatment on γ-Aminobutyric Acid Accumulation in Germinated Tartary Buckwheat (Fagopyrum tataricum

    Directory of Open Access Journals (Sweden)

    Yuanxin Guo

    2016-01-01

    Full Text Available To explore the optimum condition of γ-aminobutyric acid (GABA accumulation in germinated tartary buckwheat, effects of some factors including aeration treatment, physiological indexes, air flow rate, culture temperature, and pH value of cultivating solution under hypoxia on GABA in germinated tartary buckwheat were investigated. The results showed that the dark cultures with distilled water at 30°C, 2 days, and aeration stress with 1.0 L/min air flow rate at 30°C were optimal for GABA accumulation. Under these conditions, the predicted content of GABA was up to 371.98 μg/g DW. The analysis of correlation indicated that there was a significant correlation (P<0.01 between GABA accumulation and physiological indexes. Box-Behnken experimental analysis revealed that optimal conditions with aeration treatment for GABA accumulation in germinated tartary buckwheat were air flow rate of 1.04 L/min, culture temperature of 31.25°C, and a pH value of 4.21. Under these conditions, the GABA content was predicted as high as 386.20 μg/g DW, which was close to the measured value (379.00±9.30 μg/g DW. The variance analysis and validation test suggested that this established regression model could predict GABA accumulation in tartary buckwheat during germination.

  6. Accumulation of arsenic in Lemna gibba L. (duckweed) in tailing waters of two abandoned uranium mining sites in Saxony, Germany

    Energy Technology Data Exchange (ETDEWEB)

    Mkandawire, Martin; Dudel, E. Gert

    2005-01-05

    Accumulation of arsenic in Lemna gibba L. was investigated in tailing waters of abandoned uranium mine sites, following the hypothesis that arsenic poses contamination risks in post uranium mining in Saxony, Germany. Consequently, macrophytes growing in mine tailing waters accumulate high amounts of arsenic, which might be advantageous for biomonitoring arsenic transfer to higher trophic levels, and for phytoremediation. Water and L. gibba sample collected from pond on tailing dumps of abandoned mine sites at Lengenfeld and Neuensalz-Mechelgruen were analysed for arsenic. Laboratory cultures in nutrient solutions modified with six arsenic and three PO{sub 4}{sup 3-} concentrations were conducted to gain insight into the arsenic-L. gibba interaction. Arsenic accumulation coefficients in L. gibba were 10 times as much as the background concentrations in both tailing waters and nutrient solutions. Arsenic accumulations in L. gibba increased with arsenic concentration in the milieu but they decreased with phosphorus concentration. Significant reductions in arsenic accumulation in L. gibba were observed with the addition of PO{sub 4}{sup 3-} at all six arsenic test concentrations in laboratory experiments. Plant samples from laboratory trials had on average twofold higher bioaccumulation coefficients than tailing water at similar arsenic concentrations. This would be attributed to strong interaction among chemical components, and competition among ions in natural aquatic environment. The results of the study indicate that L. gibba can be a preliminary bioindicator for arsenic transfer from substrate to plants and might be used to monitor the transfer of arsenic from lower to higher trophic levels in the abandoned mine sites. There is also the potential of using L. gibba L. for arsenic phytoremediation of mine tailing waters because of its high accumulation capacity as demonstrated in this study. Transfer of arsenic contamination transported by accumulations in L. gibba

  7. Guidelines for Waste Accumulation Areas (WAAs)

    International Nuclear Information System (INIS)

    1991-07-01

    The purpose of this document is to set conditions for establishing and maintaining areas for the accumulation of hazardous waste at LBL. Areas designed for accumulation of these wastes in quantities greater than 100 kg (220 lb) per month of solid waste or 55 gallons per month of liquid waste are called Waste Accumulation Areas (WAAs). Areas designed for accumulation of wastes in smaller amounts are called Satellite Accumulation Areas (SAAs). This document provides guidelines for employee and organizational responsibilities for WAAs; constructing a WAA; storing waste in a WAA; operating and maintaining a WAA, and responding to spills in a WAA. 4 figs

  8. Biota-Sediment Accumulation Factor Data

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Biota-Sediment Accumulation Factor contains approximately 20,000 biota-sediment accumulation factors (BSAFs) from 20 locations (mostly Superfund sites) for...

  9. Screening for new accumulator plants in Andes Range mines

    Science.gov (United States)

    Bech, Jaume; Roca, Núria

    2016-04-01

    Toxic metal pollution of waters and soils is a major environmental problem, and most conventional remediation approaches do not provide acceptable solutions. The use of plants or plant products to restore or stabilize contaminated sites, collectively known as phytoremediation, takes advantage of the natural abilities of plants to take up, accumulate, store, or degrade organic and inorganic substances. Although not a new concept, phytoremediation is currently being re-examined as an environmentally friendly, cost-effective means of reducing metal contaminated soil. Plants growing on naturally metal-enriched soils are of particular interest in this regard, since they are genetically tolerant to high metal concentrations and have an excellent adaptation to this multi-stress environment. Processes include using plants that tolerate and accumulate metals at high levels (phytoextraction) and using plants that can grow under conditions that are toxic to other plants while preventing, for example, soil erosion (phytostabilization). Soil and plant samples were taken at polymetallic mines in Peru, Ecuador and Chile. It is suggested that Plantago orbignyana Steinheil is a Pb hyperaccumulator. Moreover, unusually elevated concentrations of Pb (over 1000 mg kg-1) and Translocation Factor (TF) greater than one were also detected in shoots of 6 different plants species (Ageratina sp., Achirodine alata, Cortaderia apalothica, Epilobium denticulatum, Taraxacum officinalis and Trifolium repens) of a Caroline mine in Perú. Among the grass species (Poaceae), the highest shoot As concentration were found in Paspalum sp. (>1000 μg g-1) and Eriochola ramose (460 μg g-1) from the Cu mine in Peru and in Holcus lanatus and Pennisetum clandestinum (>200 μg g-1) from the silver mine in Ecuador. The shoot accumulation of Zn was highest in Baccharis amdatensis (>1900 μg g-1) and in Rumex crispus (1300 μg g-1) from the Ag mine in Ecuador (Bech et al., 2002). Paspalum racemosum also

  10. 47 CFR 32.3100 - Accumulated depreciation.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Accumulated depreciation. 32.3100 Section 32... Accumulated depreciation. (a) This account shall include the accumulated depreciation associated with the... with depreciation amounts concurrently charged to Account 6561, Depreciation expense—telecommunications...

  11. Comparison Of Cd And Zn Accumulation In Tissues Of Different Vascular Plants: A Radiometric Study

    Directory of Open Access Journals (Sweden)

    Dürešová Zuzana

    2015-12-01

    Full Text Available The aim of the present work was to compare the accumulation and translocation of Cd and Zn in plants of tobacco (Nicotiana tabacum L., celery (Apium graveolens L., maize (Zea mays L., giant reed (Arundo donax L., and alpine pennycress (Noccaea caerulescens L. under conditions of short-term hydroponic experiments using nutrient solutions spiked with radionuclides 109Cd or 65Zn, and direct gamma-spectrometry. It was found that the time-course of metals accumulation in studied plants was not different in terms of target metal, but it was significantly different on the level of plant species. The highest values of Cd accumulation showed plants of giant reed, whereby the accumulation decreased in the order: giant reed > tobacco > alpine pennycress >> maize and celery. On the basis of concentration ratios (CR [Me]shoot / [Me]root calculation for both metals, it was found that Cd and Zn were in prevailing part accumulated in the root tissues and only partially accumulated in the shoots, where the amount of accumulated Cd and Zn increased from the oldest developed leaves to the youngest developed leaves. The CR values corresponding to these facts were calculated in the range 0.06 – 0.27 for Cd and for Zn 0.06 – 0.48. In terms of plant species, the CR values obtained for Cd decreased in the order: maize > celery > tobacco and giant reed > alpine pennycress. The similarity between studied objects – individual plant species on the basis of the obtained variables defining Cd or Zn accumulation at different conditions of the experiments as well as the relationships between obtained variables and conditions of the experiments were subjected to multivariate analysis method – cluster analysis (CA. According to the findings and this analysis, it can be expected that plants of tobacco and giant reed will dispose with similar characteristics as plants of alpine pennycress, which are classified as Zn/Cd hyperaccumulators, in terms of Cd or Zn accumulation

  12. Removal of phosphate and nitrate from aqueous solution using ...

    African Journals Online (AJOL)

    sunny t

    water, 3.5 g of NaCl were dissolved to obtain 3.5 g/l salinity final solution. When the ... The nitrate adsorption was highly pH dependent, which affects the ... adsorption mechanism that the optimum pH for phosphate removal by .... Biosorption of copper(ii) from aqueous ... Accumulation and detoxification of toxic elements by ...

  13. Radiocaesium accumulation by different plant species

    International Nuclear Information System (INIS)

    Filiptsova, G.G.

    2000-01-01

    Using the model object influence of mineral nutritions level on radiocaesium accumulation by different plant species has been studied. It was shown the wheat roots accumulation the minimal value on radiocaesium on normal potassium level, the rye roots accumulation maximal level radiocaesium. (authors)

  14. Simulation of pore pressure accumulation under cyclic loading using Finite Volume Method

    DEFF Research Database (Denmark)

    Tang, Tian; Hededal, Ole

    2014-01-01

    This paper presents a finite volume implementation of a porous, nonlinear soil model capable of simulating pore pressure accumulation under cyclic loading. The mathematical formulations are based on modified Biot’s coupled theory by substituting the original elastic constitutive model...... with an advanced elastoplastic model suitable for describing monotonic as well as cyclic loading conditions. The finite volume method is applied to discretize these formulations. The resulting set of coupled nonlinear algebraic equations are then solved by a ’segregated’ solution procedure. An efficient return...

  15. Bladder-type hydropneumatic accumulators

    International Nuclear Information System (INIS)

    Anigas, F.

    1985-01-01

    Hydropneumatic pressure accumulators allow liquids to be stored under pressure, their operating principle being based on the inherent compressibility of elements in a liquid and gaseous state. A wide range of fluids can be covered by means of the appropriate choice of the material for the body and bladder. Their main applications are: energy accumulation, safety reserve, suspension. (author)

  16. Strain accumulation in quasicrystalline solids

    International Nuclear Information System (INIS)

    Nori, F.; Ronchetti, M.; Elser, V.

    1988-01-01

    We study the relaxation of 2D quasicrystalline elastic networks when their constituent bonds are perturbed homogeneously. Whereas ideal, quasiperiodic networks are stable against such perturbations, we find significant accumulations of strain in a class of disordered networks generated by a growth process. The grown networks are characterized by root mean square phason fluctuations which grow linearly with system size. The strain accumulation we observe in these networks also grows linearly with system size. Finally, we find a dependence of strain accumulation on cooling rate

  17. Effects of lead accumulation on the Azolla caroliniana-Anabaena association.

    Science.gov (United States)

    Roberts, Anne E; Boylen, Charles W; Nierzwicki-Bauer, Sandra A

    2014-04-01

    The effect of lead accumulation on photopigment production, mineral nutrition, and Anabaena vegetative cell size and heterocyst formation in Azolla caroliniana was investigated. Plants were exposed to 0, 1, 5, 10, and 20 mg L(-1) lead acetate for ten days. Lead accumulation increased when plants were treated with higher lead concentrations. Results revealed a statistically significant decline in total chlorophyll, chlorophyll a, chlorophyll b, and carotenoids in 5, 10, and 20 mg Pb L(-1) treatment groups as compared to plants with 0 or 1 mg Pb L(-1) treatments. No statistically significant change in anthocyanin production was observed. Calcium, magnesium, and zinc concentrations in plants decreased in increasing treatment groups, whereas sodium and potassium concentrations increased. Nitrogen and carbon were also found to decrease in plant tissue. Anabaena vegetative cells decreased in size and heterocyst frequency declined rapidly in a Pb dose-dependent manner. These results indicate that, while A. caroliniana removes lead from aqueous solution, the heavy metal causes physiological and biochemical changes by impairing photosynthesis, changing mineral nutrition, and impeding the growth and formation of heterocysts of the symbiotic cyanobacteria that live within leaf cavities of the fronds. Copyright © 2014. Published by Elsevier Inc.

  18. Radioecological studies of {sup 137}Cs in limnological ecosystems. Biochemical states of {sup 137}Cs accumulated in killifish (Medaka, Oryzias latipes) meat

    Energy Technology Data Exchange (ETDEWEB)

    Miyake, Sadaaki; Motegi, Misako; Oosawa, Takashi; Nakazawa, Kiyoaki [Saitama Institute of Public Health, Urawa (Japan); Izumo, Yoshiro; Nakamura, Fumio

    1997-07-01

    Biochemical states of {sup 137}Cs accumulated in killifish`s (Medaka, Oryzias latipes) meat were investigated in order to elucidate the accumulation mechanism of the radionuclide in goldfish, Carassius auratus auratus, examined in our preceding report. Most of {sup 137}Cs radioactivity in the killifish`s raw meat accumulated this radionuclide in the radioactive freshwater, were found in the non-protein nitrogenous compound (NPNC) fraction (>92%), also in the killifish`s control raw meat mixed with {sup 137}Cs, the difference between both meat samples was not clear. As the results of gel filtration profiles on Sephadex G-25 for the NPNC fraction of these meats, each only one radioactive peak was shown, also similar to {sup 137}CsCl solution. Moreover, these peaks appeared at the same position. On the other hand, the peak positions absorbed at OD{sub 280nm} in the samples were different from those of each radioactive peak. It was so suggested that {sup 137}Cs accumulated in the killifish`s meat was shown not to be binding to protein`s composition. Furthermore, as the results on thin-layer chromatography, ion-exchange resin chromatography and reaction with {sup 137}Cs in samples and ammonium phosphomolybdate, {sup 137}Cs in the NPNC fraction of the killifish`s meat was not almost different from those of each control and {sup 137}CsCl solution. (author)

  19. Solids Accumulation Scouting Studies

    Energy Technology Data Exchange (ETDEWEB)

    Duignan, M. R.; Steeper, T. J.; Steimke, J. L.

    2012-09-26

    The objective of Solids Accumulation activities was to perform scaled testing to understand the behavior of remaining solids in a Double Shell Tank (DST), specifically AW-105, at Hanford during multiple fill, mix, and transfer operations. It is important to know if fissionable materials can concentrate when waste is transferred from staging tanks prior to feeding waste treatment plants. Specifically, there is a concern that large, dense particles containing plutonium could accumulate in poorly mixed regions of a blend tank heel for tanks that employ mixing jet pumps. At the request of the DOE Hanford Tank Operations Contractor, Washington River Protection Solutions, the Engineering Development Laboratory of the Savannah River National Laboratory performed a scouting study in a 1/22-scale model of a waste staging tank to investigate this concern and to develop measurement techniques that could be applied in a more extensive study at a larger scale. Simulated waste tank solids: Gibbsite, Zirconia, Sand, and Stainless Steel, with stainless steel particles representing the heavier particles, e.g., plutonium, and supernatant were charged to the test tank and rotating liquid jets were used to mix most of the solids while the simulant was pumped out. Subsequently, the volume and shape of the mounds of residual solids and the spatial concentration profiles for the surrogate for heavier particles were measured. Several techniques were developed and equipment designed to accomplish the measurements needed and they included: 1. Magnetic particle separator to remove simulant stainless steel solids. A device was designed and built to capture these solids, which represent the heavier solids during a waste transfer from a staging tank. 2. Photographic equipment to determine the volume of the solids mounds. The mounds were photographed as they were exposed at different tank waste levels to develop a composite of topographical areas. 3. Laser rangefinders to determine the volume of

  20. Diquafosol Ophthalmic Solution Increases Pre- and Postlens Tear Film During Contact Lens Wear in Rabbit Eyes.

    Science.gov (United States)

    Nagahara, Yukiko; Koh, Shizuka; Oshita, Yoshihiro; Nagano, Takashi; Mano, Hidetoshi; Nishida, Kohji; Watanabe, Hitoshi

    2017-11-01

    To investigate the behavior of prelens tear film (PLTF) and postlens tear film (PoLTF) after the instillation of diquafosol using an experimental rabbit model of eyes with contact lens. Cross-sectional, anterior segment optical coherence tomographic images of the inferior midperipheral cornea were obtained at baseline and at 5, 15, 30, 60, 90, and 120 min after the instillation of 3% diquafosol ophthalmic solution in 10 Japanese white rabbits wearing contact lenses. From the obtained images, the areas of the PLTF and PoLTF were calculated. Both artificial tear solution and 0.1% sodium hyaluronate ophthalmic solution were used for comparison. Significant fluid accumulation in both the PLTF and PoLTF was observed after diquafosol instillation, whereas no fluid accumulation was visible after the instillation of artificial tear or sodium hyaluronate. The increase in PLTF area after diquafosol instillation was significantly higher (Pophthalmic solution increases PLTF and PoLTF in rabbit eyes with contact lenses. Diquafosol has potential as a treatment option for contact lens-related dry eye.

  1. Choice Rules and Accumulator Networks

    Science.gov (United States)

    2015-01-01

    This article presents a preference accumulation model that can be used to implement a number of different multi-attribute heuristic choice rules, including the lexicographic rule, the majority of confirming dimensions (tallying) rule and the equal weights rule. The proposed model differs from existing accumulators in terms of attribute representation: Leakage and competition, typically applied only to preference accumulation, are also assumed to be involved in processing attribute values. This allows the model to perform a range of sophisticated attribute-wise comparisons, including comparisons that compute relative rank. The ability of a preference accumulation model composed of leaky competitive networks to mimic symbolic models of heuristic choice suggests that these 2 approaches are not incompatible, and that a unitary cognitive model of preferential choice, based on insights from both these approaches, may be feasible. PMID:28670592

  2. Henry's law and accumulation of weak source for crust-derived helium: A case study of Weihe Basin, China

    Directory of Open Access Journals (Sweden)

    Yuhong Li

    2017-12-01

    Full Text Available Crust-derived helium is generated from the radioactive decay of uranium, thorium and other radioactive elements in geological bodies. Compared with conventional natural gas, helium is a typical weak source gas as a result of extremely slow generation rate and absence of helium-generating peak. It is associated with methane or carbon dioxide reservoirs frequently and related to groundwater closely. Helium can meet the industry standard with 0.1% in volume fraction. In order to study the accumulation mechanism of helium, the previous research on Henry's coefficient and solubility of helium, nitrogen and methane are summarized and the key roles of Henry's Law in the helium migration, accumulation and preservation are discussed by simulating calculation taking Weihe Basin as an example. According to the Law, the gas solubility in dilute solution is controlled by the gas partial pressure and the Henry's coefficient. Compared with the carrier gases, the Henry's constant of helium is high, with striking difference at low and high temperature. In addition, the helium partial pressure is greatly different in helium source rocks and gas reservoirs, resulting in the great differences of helium solubility in the two places. The accumulation progresses are as follows. Firstly, helium can dissolve into water and migrate out of helium source rocks due to the high helium solubility, which is caused by high helium partial pressure and high temperature in source rock. Secondly, when dissolved helium is transported to the shallow gas reservoir, it is prone to be out of solution and into reservoir due to the extremely low partial pressure and low temperature. Meanwhile part of carrier gases dissolves into water, as if helium is “replaced” out. Furthermore, the low concentration funnel of dissolved helium is formed near the gas reservoir, then other dissolved helium continues to migrate towards the gas reservoir, which greatly improves the helium accumulation

  3. Antibiotics protect against fructose-induced hepatic lipid accumulation in mice: role of endotoxin.

    Science.gov (United States)

    Bergheim, Ina; Weber, Synia; Vos, Miriam; Krämer, Sigrid; Volynets, Valentina; Kaserouni, Seline; McClain, Craig J; Bischoff, Stephan C

    2008-06-01

    Consumption of refined carbohydrates in soft drinks has been postulated to be a key factor in the development of non-alcoholic fatty liver disease (NAFLD). The aim of the present study was to test the effects of ad libitum access to different sugars consumed in drinking water on hepatic fat accumulation. For 8 weeks, C57BL/J6 mice had free access to solutions containing 30% glucose, fructose, sucrose, or water sweetened with artificial sweetener (AS) or plain water. Body weight, caloric intake, hepatic steatosis and lipid peroxidation were assessed. Total caloric intake and weight gain were highest in mice exposed to glucose. In contrast, hepatic lipid accumulation was significantly higher in mice consuming fructose compared to all other groups. Moreover, endotoxin levels in portal blood and lipid peroxidation as well as TNFalpha expression were significantly higher in fructose fed mice than in all other groups. Concomitant treatment of fructose fed mice with antibiotics (e.g., polymyxin B and neomycin) markedly reduced hepatic lipid accumulation in fructose fed mice. These data support the hypothesis that high fructose consumption may not only lead to liver damage through overfeeding but also may be directly pro-inflammatory by increasing intestinal translocation of endotoxin.

  4. Nickel-accumulating plant from Western Australia

    Energy Technology Data Exchange (ETDEWEB)

    Severne, B C; Brooks, R R

    1972-01-01

    A small shrub Hybanthus floribundus (Lindl.) F. Muell. Violaceae growing in Western Australia accumulates nickel and cobalt to a very high degree. Values of up to 23% nickel in leaf ash may represent the highest relative accumulation of a metal on record. The high accumulation of nickel poses interesting problems in plant physiology and plant biochemistry. 9 references, 2 figures, 1 table.

  5. Role of the Ca-pectates on the accumulation of heavy metals in the root apoplasm.

    Science.gov (United States)

    Castaldi, Paola; Lauro, Giampaolo; Senette, Caterina; Deiana, Salvatore

    2010-12-01

    In order to better understand the processes that regulate the accumulation in the apoplasm of heavy metals and their mobilization by the plant metabolites it is essential to study the mechanisms that regulate the interactions between metal ions and pectins. In such a context, the sorption of Cd(II), Zn(II), Cu(II) and Pb(II) from single and multi-metal solutions, by a Ca-polygalacturonate gel with a degree of esterification of 18.0 (PGAM(1)) and 65.5% (PGAM(2)) was studied in the 3.0-6.0 pH range in the presence of CaCl(2) 2.5mM. The sorption of Cr(III) from single metal solution was also considered. The results show that the amount of each metal ion sorbed increases with increasing the initial metal ion concentration and pH. The data from the single metal solution tests show that at pH 6.0 the affinity of the metal ions towards the PGAM(1) matrix follows the order: Cr(III)>Cu(II)≅Pb(II)≫Zn(II)≅Cd(II). The simultaneous sorption of the bivalent metal ions by the PGAM(1) gels indicates that Pb(II) is selectively sorbed. The FT-IR spectra show that the carboxylate groups are mainly responsible for the metal ion coordination. The ability of PGAM(2) to accumulate Cr(III), Cu(II), and Pb(II) was lower than that found in the PGAM(1) systems whereas the sorption of Zn(II) and Cd(II) was negligible. Copyright © 2010 Elsevier Masson SAS. All rights reserved.

  6. Digitonin abolishes free 2-deoxy-D-glucose accumulation in isolated rat adipocytes

    International Nuclear Information System (INIS)

    Thompson, K.; Kleinzeller, A.

    1986-01-01

    The hypothesis that accumulation against sizable chemical gradients of free (non-phosphorylated) 2-deoxy-D-glucose (2dGlc) in isolated rat adipocytes results from an intracellular compartmentation of free hexose was investigated. Cells exposed to 20 μg/ml digitonin for 10' demonstrated an increased plasma membrane permeability indexed by increased L-glucose entry rates and cellular (presumably cytosolic) protein and K + loss. Functional integrity of intracellular organelles was indicated by the ability of the cells to support ATP-driven 45 Ca 2+ -uptake. Equilibrium 3-O-methylglucose (3-O-MG, a non-accumulated hexose) levels were unaffected. These data suggest a specific permeabilizing action of digitonin at the plasma membrane having no effect on intracellular organelles or passively distributed solutes. Upon addition of digitonin, free 2dGlc fell from 66.5 +/- 8.9 to 7.4 +/- 2.3 pmol/10 5 cells, a value not significantly different from 3-O-MG levels. The gradient of 2dGlc-phosphate was also abolished, as was the increased steady-state free 2dGlc levels induced by insulin. The data argue against a compartmentation model as either the mechanism of adipocyte sugar accumulation or the basis of the steady-state free 2dGlc increase seen with insulin and suggest that an intact plasma membrane is essential to the process

  7. Fusicoccin-induced catalase inhibitor is produced independently of H+-ATPase activation and behaves as an organic acid.

    Science.gov (United States)

    Beffagna, Nicoletta; Riva, Marzia Alessandra

    2011-06-01

    The phytotoxin fusicoccin (FC) was found to induce an increase in apoplastic H₂O₂ content in Arabidopsis thaliana cells, apparently linked to the presence of an as yet unidentified catalase inhibitor detectable even in the external medium of FC-treated cells. This study, aimed to further characterize the inhibitor's features, shows that (1) FC-induced H₂O₂ accumulation increases as a function of FC concentration and correlates to the amount of inhibitor released at apoplastic level. The pattern of H+ efflux, conversely, does not fit with that of these two parameters, suggesting that neither the production nor the release of the catalase inhibitor is linked to the main role of FC in activating the plasma membrane (PM) H+-ATPase; (2) treatment with 10 µM erythrosine B (EB) early and totally inhibits net H+ and K+ fluxes across the PM, indicative of the H+ pump activity; nevertheless, also in these conditions a huge FC-induced H₂O₂ accumulation occurs, confirming that this effect is not related to the FC-induced PM H+-ATPase activation; (3) the inhibitor's release increases with time in all conditions tested and is markedly affected by extracellular pH (a higher pH value being associated to a larger efflux), in agreement with a weak acid release; and (4) the inhibitor can be almost completely recovered in a CH₂C₂-soluble fraction extracted from the incubation medium by sequential acid-base partitioning which contains nearly all of the organic acids released. These final results strongly suggest that the metabolite responsible for the FC-induced catalase inhibition belongs to the organic acid class. Copyright © Physiologia Plantarum 2011.

  8. Accumulation of satellites

    International Nuclear Information System (INIS)

    Safronov, V.S.; Ruskol, E.L.

    1977-01-01

    Formation and evolution of circumplanetary satellite swarms are investigated. Characteristic times of various processes are estimated. The characteristic time for the accumulation of the bodies in the swarm was several orders of magnitude shorter than that of the planet, i.e. than the time of the replenishment of the material by the swarm (10 8 yr). The model of the accumulation of the swarm is constructed taking into account the increase of its mass due to trapping of heliocentrically moving particles and its decrease due to outfall of the inner part of the swarm onto the growing planet. The accumulation of circumplanetary bodies is also considered. The main features of the evolution of the swarm essentially depend on the size distribution of bodies in the swarm and in the zone of the planet and also on the degree of the concentration of the swarm mass toward the planet. If the sum of the exponents of the inverse power laws of these distributions is less than 7, the model of the transparent swarm developed in this paper should be preferred. When this sum is greater than 7, the model of opaque swarm suggested by A. Harris and W.M. Kaula is better. There is predominant trapping of small particles into the swarm due to their more frequent collisions. Optical thickness of the protoplanetary cloud in radial direction is estimated. It is shown that at the final stage of the planetary accumulation, the cloud was semitransparent in the region of terrestrial planets and volatile substances evaporated at collisions could be swept out from the outer parts of the satellite swarm by the solar wind

  9. Accumulation of radionuclides by lichen symbionts

    Energy Technology Data Exchange (ETDEWEB)

    Nifontova, M G; Kulikov, N V [AN SSSR, Sverdlovsk. Inst. Ehkologii Rastenij i Zhivotnykh

    1983-01-01

    The aim of investigation is the quantitative estimation of ability and role of separate symbionts in the accumulation of radionuclides. As investigation volumes, durably cultivated green lichen alga Trebouxia erici and lichen fungi extracted from Cladonia rangiferina, Parmelia caperata and Acarospora fuscata are used. The accumulation of radioactive isotopes with fungi and seaweeds is estimated according to accumulation coefficients (AC) which are the ratio of radiation concentration in plants and agarized medium. Radionuclide content (/sup 90/Sr and /sup 137/Cs) is determined radiometrically. A special series of experiments is done to investigate radionuclide accumulation dependences with lichen seaweed and fungi on light conditions. It is shown that both symbionts of lichen-seaweed and fungus take part in the accumulation of radionuclide from outer medium (atmospheric fall-out and soil). However fungus component constituting the base of structural organization of thallus provides the greater part of radionuclides accumulated by the plant. Along with this the violation of viability of seaweed symbionts particularly in the case of light deficiency brings about the reduction of /sup 137/Cs sorption by seaweeds and tells on the total content of radiocesium in plant thallus.

  10. SIMULATION OF CARS ACCUMULATION PROCESSES FOR SOLVING TASKS OF OPERATIONAL PLANNING IN CONDITIONS OF INITIAL INFORMATION UNCERTAINTY

    Directory of Open Access Journals (Sweden)

    О. A. Tereshchenko

    2017-06-01

    Full Text Available Purpose. The article highlights development of the methodological basis for simulation the processes of cars accumulation in solving operational planning problems under conditions of initial information uncertainty for assessing the sustainability of the adopted planning scenario and calculating the associated technological risks. Methodology. The solution of the problem under investigation is based on the use of general scientific approaches, the apparatus of probability theory and the theory of fuzzy sets. To achieve this purpose, the factors influencing the entropy of operational plans are systematized. It is established that when planning the operational work of railway stations, sections and nodes, the most significant factors that cause uncertainty in the initial information are: a external conditions with respect to the railway ground in question, expressed by the uncertainty of the timing of cars arrivals; b external, hard-to-identify goals for the functioning of other participants in the logistics chain (primarily customers, expressed by the uncertainty of the completion time with the freight cars. These factors are suggested to be taken into account in automated planning through statistical analysis – the establishment and study of the remaining time (prediction errors. As a result, analytical dependencies are proposed for rational representation of the probability density functions of the time residual distribution in the form of point, piecewise-defined and continuous analytic models. The developed models of cars accumulation, the application of which depends on the identified states of the predicted incoming car flow to the accumulation system, are presented below. In addition, the last proposed model is a general case of models of accumulation processes with an arbitrary level of reliability of the initial information for any structure of the incoming flow of cars. In conclusion, a technique for estimating the results of

  11. Induced Plant Accumulation of Lithium

    Directory of Open Access Journals (Sweden)

    Laurence Kavanagh

    2018-02-01

    Full Text Available Lithium’s (Li value has grown exponentially since the development of Li-ion batteries. It is usually accessed in one of two ways: hard rock mineral mining or extraction from mineral-rich brines. Both methods are expensive and require a rich source of Li. This paper examines the potential of agro-mining as an environmentally friendly, economically viable process for extracting Li from low grade ore. Agro-mining exploits an ability found in few plant species, to accumulate substantial amounts of metals in the above ground parts of the plant. Phyto-mined metals are then retrieved from the incinerated plants. Although the actual amount of metal collected from a crop may be low, the process has been shown to be profitable. We have investigated the suitability of several plant species including: Brassica napus and Helianthus annuus, as Li-accumulators under controlled conditions. Large plant trials were carried out with/without chelating agents to encourage Li accumulation. The question we sought to answer was, can any of the plant species investigated accumulate Li at levels high enough to justify using them to agro-mine Li. Results show maximum accumulated levels of >4000 mg/kg Li in some species. Our data suggests that agro-mining of Li is a potentially viable process.

  12. Diatom. A potential bio-accumulator of gold

    International Nuclear Information System (INIS)

    Chakraborty, N.; Pal, R.; Ramaswami, A.; Nayak, D.; Lahiri, S.

    2006-01-01

    The bioaccumulation of gold in trace concentration by Nitzschia obtusa and Navicula minima, two members of bacillariophyceae, has been studied. It has been observed that Nitzschia obtusa showed better accumulation of gold in acidic pH in comparison to neutral and basic pH. Maximum accumulation was observed with 1 mg x kg -1 or less gold concentration. However, the accumulation by the living cells was reduced when the matrix concentration was higher. Navicula minima, on the other hand, found to be a better accumulator of gold in wide ranges of pH and substrate concentration of the media. It was also inferred that the gold accumulation by diatom was mainly due to adsorption by biosilica (siliceous frustules of dead diatom cells). Accumulated gold was recovered with conc. HNO 3 . (author)

  13. Impact of two iron(III) chelators on the iron, cadmium, lead and nickel accumulation in poplar grown under heavy metal stress in hydroponics.

    Science.gov (United States)

    Mihucz, Victor G; Csog, Árpád; Fodor, Ferenc; Tatár, Enikő; Szoboszlai, Norbert; Silaghi-Dumitrescu, Luminiţa; Záray, Gyula

    2012-04-15

    Poplar (Populus jacquemontiana var. glauca cv. Kopeczkii) was grown in hydroponics containing 10 μM Cd(II), Ni(II) or Pb(II), and Fe as Fe(III) EDTA or Fe(III) citrate in identical concentrations. The present study was designed to compare the accumulation and distribution of Fe, Cd, Ni and Pb within the different plant compartments. Generally, Fe and heavy-metal accumulation were higher by factor 2-7 and 1.6-3.3, respectively, when Fe(III) citrate was used. Iron transport towards the shoot depended on the Fe(III) chelate and, generally, on the heavy metal used. Lead was accumulated only in the root. The amounts of Fe and heavy metals accumulated by poplar were very similar to those of cucumber grown in an identical way, indicating strong Fe uptake regulation of these two Strategy I plants: a cultivar and a woody plant. The Strategy I Fe uptake mechanism (i.e. reducing Fe(III) followed by Fe(II) uptake), together with the Fe(III) chelate form in the nutrient solution had significant effects on Fe and heavy metal uptake. Poplar appears to show phytoremediation potential for Cd and Ni, as their transport towards the shoot was characterized by 51-54% and 26-48% depending on the Fe(III) supply in the nutrient solution. Copyright © 2012 Elsevier GmbH. All rights reserved.

  14. Understanding Accumulation: The Relevance of Marx’s Theory of Primitive Accumulation in Media and Communication Studies

    Directory of Open Access Journals (Sweden)

    Mattias Ekman

    2012-05-01

    Full Text Available The aim of this article is to discuss and use Marx’s theory on primitive accumulation, outlined in the first volume of Capital, in relation to media and communication research. In order to develop Marx’s argument the discussion is revitalized through Harvey’s concept of accumulation by dispossession. The article focuses on two different fields within media and communication research where the concept of accumulation by dispossession is applicable. First, the role of news media content, news flows and news media systems are discussed in relation to social mobilization against capitalism, privatizations, and the financial sector. Second, Marx’s theory is used to examine how communication in Web 2.0 and the development of ICTs could advance the processes of capital accumulation by appropriating the work performed by users of Web 2.0 and by increasing the corporate surveillance of Internet users. In conclusion, by analyzing how primitive accumulation is intertwined with contemporary expanded reproduction of capital, the article shows that Marx’s theory can contribute to critical media and communication research in several ways.

  15. Radionuclide accumulation peculiarities demonstrated by vegetable varieties

    International Nuclear Information System (INIS)

    Kruk, A.V.; Goncharenko, G.G.; Kilchevsky, A.V.

    2004-01-01

    This study focused on ecological and genetic aspects of radionuclide accumulation demonstrated by a number of vegetable varieties. The researches resulted in determining the cabbage varieties which were characterised by the minimal level of radionuclide accumulation. It was shown that the above varieties manifested the relation between radionuclide accumulation and morphobiological characteristics such as vegetation period duration and yield criteria. The study specified the genotypes with high ecological stability as regards to radionuclide accumulation: 'Beloruskaya 85' cabbage and 'Dokhodny' tomato showed the best response to Cs 137, while 'Beloruskaya 85', 'Rusinovka', 'Amager 611' cabbage varieties and 'Sprint' tomato showed the minimal level of Sr 90 accumulation. (authors)

  16. Tritium enrichment from aqueous solutions using cryosublimation of mono- and polysaccharides

    International Nuclear Information System (INIS)

    Wierczinski, B.; Muellen, G.; Rosenhauer, S.

    2008-01-01

    Cryosublimation is one technique, which allows the accumulation of tritium from aqueous solutions using certain chemical compounds. After studying several inorganic compounds such as zeolites and metal salts, as well as some humic substances, we have now investigated several mono- and polysaccharides, such as glucose, maltose, galactose, starch, agar, and gelatine. Except for starch all of the above mentioned compounds showed a clear enrichment of tritium. The highest value was reached for Agartine, which gave an enrichment factor of 6.2. Since mono- and polysaccharides form weak hydrogen bonds, these results prove again our theory that tritium is preferably accumulated in exchangeable hydrogen bonds. (author)

  17. 47 CFR 32.3300 - Accumulated depreciation-nonoperating.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Accumulated depreciation-nonoperating. 32.3300....3300 Accumulated depreciation—nonoperating. (a) This account shall include the accumulated amortization and depreciation associated with the investment contained in Account 2006, Nonoperating Plant. (b...

  18. Gypsum accumulation on carbonate stone

    Science.gov (United States)

    McGee, E.S.; Mossotti, V.G.

    1992-01-01

    The accumulation of gypsum on carbonate stone has been investigated through exposure of fresh samples of limestone and marble at monitored sites, through examination of alteration crusts from old buildings and through laboratory experiments. Several factors contribute to gypsum accumulation on carbonate stone. Marble or limestone that is sheltered from direct washing by rain in an urban environment with elevated pollution levels is likely to accumulate a gypsum crust. Crust development may be enhanced if the stone is porous or has an irregular surface area. Gypsum crusts are a surficial alteration feature; gypsum crystals form at the pore opening-air interface, where evaporation is greatest.

  19. Rate of ice accumulation during ice storms

    Energy Technology Data Exchange (ETDEWEB)

    Feknous, N. [SNC-Lavalin, Montreal, PQ (Canada); Chouinard, L. [McGill Univ., Montreal, PQ (Canada); Sabourin, G. [Hydro-Quebec, Montreal, PQ (Canada)

    2005-07-01

    The rate of glaze ice accumulation is the result of a complex process dependent on numerous meteorological and physical factors. The aim of this paper was to estimate the distribution rate of glaze ice accumulation on conductors in southern Quebec for use in the design of mechanical and electrical de-icing devices. The analysis was based on direct observations of ice accumulation collected on passive ice meters. The historical database of Hydro-Quebec, which contains observations at over 140 stations over period of 25 years, was used to compute accumulation rates. Data was processed so that each glaze ice event was numbered in a chronological sequence. Each event consisted of the time series of ice accumulations on each of the 8 cylinders of the ice meters, as well as on 5 of its surfaces. Observed rates were converted to represent the average ice on a 30 mm diameter conductor at 30 m above ground with a span of 300 m. Observations were corrected to account for the water content of the glaze ice as evidenced by the presence of icicles. Results indicated that despite significant spatial variations in the expected severity of ice storms as a function of location, the distribution function for rates of accumulation were fairly similar and could be assumed to be independent of location. It was concluded that the observations from several sites could be combined in order to obtain better estimates of the distribution of hourly rates of ice accumulation. However, the rates were highly variable. For de-icing strategies, it was suggested that average accumulation rates over 12 hour periods were preferable, and that analyses should be performed for other time intervals to account for the variability in ice accumulation rates over time. In addition, accumulation rates did not appear to be highly correlated with average wind speed for maximum hourly accumulation rates. 3 refs., 2 tabs., 10 figs.

  20. Phloem unloading in tomato fruit

    International Nuclear Information System (INIS)

    Damon, S.; Hewitt, J.; Bennett, A.B.

    1986-01-01

    To begin to identify those processes that contribute to the regulation of photosynthate partitioning in tomato fruit the path of phloem unloading in this tissue has been characterized. Assymetrically labelled sucrose ( 3 H-fructosyl sucrose) was applied to source leaves. Following translocation to the fruit the apoplast was sampled. The appearance of assymetric sucrose and 3 H-fructose in the apoplast indicates that phloem unloading is apoplastic and that extracellular invertase is active. Estimation of sucrose, glucose, and fructose concentrations in the apoplast were 1 mM, 40 mM, and 40 mM, respectively. Rates of uptake of sucrose, 1-fluorosucrose, glucose, and fructose across the plasma membrane were similar and non-saturating at physiological concentrations. These results suggest that, although extracellular invertase is present, sucrose hydrolysis is not required for uptake into tomato fruit pericarp cells. 1-fluorosucrose is used to investigate the role of sucrose synthase in hydrolysis of imported photosynthate

  1. Charge accumulation in lossy dielectrics: a review

    DEFF Research Database (Denmark)

    Rasmussen, Jørgen Knøster; McAllister, Iain Wilson; Crichton, George C

    1999-01-01

    At present, the phenomenon of charge accumulation in solid dielectrics is under intense experimental study. Using a field theoretical approach, we review the basis for charge accumulation in lossy dielectrics. Thereafter, this macroscopic approach is applied to planar geometries such that the mat......At present, the phenomenon of charge accumulation in solid dielectrics is under intense experimental study. Using a field theoretical approach, we review the basis for charge accumulation in lossy dielectrics. Thereafter, this macroscopic approach is applied to planar geometries...

  2. Accumulation of metal ions by pectinates

    Science.gov (United States)

    Deiana, S.; Deiana, L.; Palma, A.; Premoli, A.; Senette, C.

    2009-04-01

    The knowledge of the mechanisms which regulate the interactions of metal ions with partially methyl esterified linear polymers of α-1,4 linked D-galacturonic acid units (pectinates), well represented in the root inner and outer apoplasm, is of great relevance to understand the processes which control their accumulation at the soil-root interface as well as their mobilization by plant metabolites. Accumulation of a metal by pectinates can be affected by the presence of other metals so that competition or distribution could be expected depending on the similar or different affinity of the metal ions towards the binding sites, mainly represented by the carboxylate groups. In order to better understand the mechanism of accumulation in the apoplasm of several metal ions, the sorption of Cd(II), Zn(II), Cu(II), Pb(II) and Cr(III) by a Ca-polygalacturonate gel, used as model of the soil-root interface, with a degree of esterification of 18% (PGAE1) and 65% (PGAE2) was studied at pH 3.0, 4.0, 5.0 and 6.0 in the presence of CaCl2 2.5 mM.. The results show that sorption increases with increasing both the initial metal concentration and pH. A similar sorption trend was evidenced for Cu(II) and Pb(II) and for Zn(II) and Cd(II), indicating that the mechanism of sorption for these two ionic couples is quite different. As an example, at pH 6.0 and an initial metal concentration equal to 2.0 mM, the amount of Cu(II) and Pb(II) sorbed was about 1.98 mg-1 of PGAE1 while that of Cd(II) and Zn(II) was about 1.2 mg-1. Cr(III) showed a rather different sorption trend and a much higher amount (2.8 mg-1of PGAE1 at pH 6.0) was recorded. The higher affinity of Cr(III) for the polysaccharidic matrix is attributable to the formation of Cr(III) polynuclear species in solution, as shown by the distribution diagrams obtained through the MEDUSA software. On the basis of these findings, the following affinity towards the PGAE1 can be assessed: Cr(III) > Cu(II) ? Pb(II) > Zn (II) ? Cd

  3. The use of solid sorbents for direct accumulation of organic compounds from water matrices : a review of solid-phase extraction techniques

    NARCIS (Netherlands)

    Liska, I.; Krupcik, J.; Leclercq, P.A.

    1989-01-01

    The main principles of solid-phase extraction techniques are reviewed in this paper. Various solid sorbents can be used as a suitable trap for direct accumulation of organic compounds from aqueous solutions. The trapped analytes can be desorbed by elution with suitably chosen liquid phases. These

  4. Phytoremediation of Heavy Metals in Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Felix Aibuedefe AISIEN

    2010-12-01

    Full Text Available One of the major environmental problems is the pollution of water and soil by toxic heavy metals. This study investigated the phytoremediation potential of water hyacinth, for the removal of cadmium (Cd, lead (Pb and zinc (Zn. Water hyacinths were cultured in bore-hole water, supplemented with 5mg/l of Zn and Pb and 1mg/l of Cd at pH 4.5, 6.8 and 8.5. The plants were separately harvested each week for six weeks. The results showed that removal of these metals from solution was fast especially in the first two weeks, after which it became gradual till saturation point was reached. The accumulation of Cd and Zn in leaves and roots increased with increase in pH. The highest accumulation was in the roots with metal concentration of 4870mg/kg, 4150mg/kg and 710mg/kg for Zn, Pb and Cd respectively at pH 8.5. The maximum values of bioconcentration factor (BCF for Zn, Pb and Cd were 1674, 1531 and 1479 respectively, suggesting that water hyacinth was good accumulator of Zn, Pb and Cd, and could be used to treat industrial wastewater contaminated with heavy metals such as Zn, Pb and Cd.

  5. ACCUMULATION AND CONSUMPTION IN MICROECONOMIC SYSTEM

    Directory of Open Access Journals (Sweden)

    Serghey A. Amelkin

    2004-12-01

    Full Text Available Two main processes are common for an economic system. They are consumption and accumulation. The first one is described by utility function, either cardinal or ordinal one. The mathematical model for accumulation process can be constructed using wealth function introduced within the frame of irreversible microeconomics. Characteristics of utility and wealth functions are compared and a problem of extreme performance of resources exchange process is solved for a case when both the consumption and accumulation exist.

  6. Influence of lead on atrazine uptake by rice (Oryza sativa L.) seedlings from nutrient solution.

    Science.gov (United States)

    Su, Yu-Hong; Zhu, Yong-Guan

    2005-01-01

    Atrazine is a widely used herbicide, and its persistence in soil and water causes environmental concerns. In the past, plant uptake processes are mainly investigated for single contaminants. However, in many cases, contaminants co-exist in environmental matrix, such as soil, and plant uptake of one contaminant may be influenced by its co-existing ones. The uptake of atrazine by rice seedlings (Oryza sativa L.) from nutrient solution through the roots was investigated in a solution culture, over an exposure period of 4 weeks. Atrazine accumulation in plant tissues was determined by gas chromatography, and lead was determined using atomic absorption spectrometry. With different ratios of atrazine and Pb2+ concentrations in solution, the observed atrazine concentrations in shoots and roots varied significantly. In atrazine-Pb2+ mixture systems, the added Pb2+ either increased or decreased the concentrations or BCFs of atrazine in seedlings (relative to those without Pb2+), depending on the atrazine-Pb2+ ratio in nutrient solution. The enhanced atrazine uptake results presumably from atrazine-Pb2+ complex formation. The reduced atrazine uptake, which occurred mainly at high atrazine concentrations, is attributed to atrazine toxicity that inhibited seedling growth and transpiration. The formation of atrazine-Pb2+ complex both in the solution and within plant tissues may affect the accumulation of both contaminants by rice plants.

  7. Compartmentation of metals in foliage of Populus tremula grown on soils with mixed contamination. I. From the tree crown to leaf cell level

    International Nuclear Information System (INIS)

    Vollenweider, Pierre; Menard, Terry; Guenthardt-Goerg, Madeleine S.

    2011-01-01

    In order to achieve efficient phytoextraction of heavy metals using trees, the metal allocation to aboveground tissues needs to be characterised. In his study, the distribution of heavy metals, macro- and micronutrients and the metal micro-localisation as a function of the leaf position and heavy metal treatment were analysed in poplars grown on soil with mixed metal contamination. Zinc was the most abundant contaminant in both soil and foliage and, together with cadmium, was preferentially accumulated in older foliage whereas excess copper and lead were not translocated. Changes in other element concentrations indicated an acceleration in aging as a consequence of the metal treatment. Excess zinc was irregularly accumulated inside leaf tissues, tended to saturate the veins and was more frequently stored in cell symplast than apoplast. Storage compartments including metabolically safe and sensitive subcellular sites resulted in sizable metal accumulation as well as stress reactions. - Within foliage of poplars growing on contaminated soils, Zinc was stored at metabolically safe as well as sensitive subcellular sites, ensuring sizable bioaccumulation but also causing injuries.

  8. Compartmentation of metals in foliage of Populus tremula grown on soils with mixed contamination. I. From the tree crown to leaf cell level

    Energy Technology Data Exchange (ETDEWEB)

    Vollenweider, Pierre, E-mail: pierre.vollenweider@wsl.c [Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zuercherstrasse 111, 8903 Birmensdorf (Switzerland); Menard, Terry; Guenthardt-Goerg, Madeleine S. [Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zuercherstrasse 111, 8903 Birmensdorf (Switzerland)

    2011-01-15

    In order to achieve efficient phytoextraction of heavy metals using trees, the metal allocation to aboveground tissues needs to be characterised. In his study, the distribution of heavy metals, macro- and micronutrients and the metal micro-localisation as a function of the leaf position and heavy metal treatment were analysed in poplars grown on soil with mixed metal contamination. Zinc was the most abundant contaminant in both soil and foliage and, together with cadmium, was preferentially accumulated in older foliage whereas excess copper and lead were not translocated. Changes in other element concentrations indicated an acceleration in aging as a consequence of the metal treatment. Excess zinc was irregularly accumulated inside leaf tissues, tended to saturate the veins and was more frequently stored in cell symplast than apoplast. Storage compartments including metabolically safe and sensitive subcellular sites resulted in sizable metal accumulation as well as stress reactions. - Within foliage of poplars growing on contaminated soils, Zinc was stored at metabolically safe as well as sensitive subcellular sites, ensuring sizable bioaccumulation but also causing injuries.

  9. Features of accumulation of radiation defects in metal with impurity

    International Nuclear Information System (INIS)

    Iskakov, B.M.

    2002-01-01

    The processes of accumulation and annealing of radiation defects in solids are being studied for the last fifty years quite intensively. Many regularities of these processes are fixed, but there are more unsolved problems. The computer simulation is one of the effective tools in finding the mechanisms of accumulation and annealing of radiation defects in solids. The numerical solution of the system of the differential equations by means of computers describing kinetics of accumulation of radiation point defects in metals with impurity, has allowed to receive a number of new outcomes. It was revealed, that a determinative factor influential in concentration of point defects (vacancies and interstitial atoms), formed during an exposure of metal, is the correlation a speed of Frenkel twins recombination, the capture of defects by impurity atoms and absorption of defects by other drainage, for example by dislocations. If the speed of capture of interstitial atoms by impurity atoms for two - three order is lower than the recombination speed of Frenkel twins and on two - three order exceeds the speed of capture of vacancies by impurity atoms, the concentration of interstitial atoms within the first seconds of an exposure passes through a maximum, then quickly decreases in some times and after that starts slowly to grow. The change of concentration of interstitial atoms in an initial period of an exposure does not influence on the change of a vacancy concentration. Within the whole period of an exposure, during which the concentration of interstitial atoms achieves a maximum and then is reduced, the vacancy concentration is steadily enlarged. However subsequent sluggish rise of concentration of interstitial atoms during an exposure is followed by the decrease of the vacancy concentration. The most remarkable feature of the kinetics of accumulation of interstitial atoms in metals with impurity is the presence of two extremum on curve dependence of interstitial atoms on a

  10. Accumulation of MRI contrast agents in malignant fibrous histiocytoma for gadolinium neutron capture therapy

    International Nuclear Information System (INIS)

    Fujimoto, T.; Ichikawa, H.; Akisue, T.; Fujita, I.; Kishimoto, K.; Hara, H.; Imabori, M.; Kawamitsu, H.; Sharma, P.; Brown, S.C.; Moudgil, B.M.; Fujii, M.; Yamamoto, T.; Kurosaka, M.; Fukumori, Y.

    2009-01-01

    Neutron-capture therapy with gadolinium (Gd-NCT) has therapeutic potential, especially that gadolinium is generally used as a contrast medium in magnetic resonance imaging (MRI). The accumulation of gadolinium in a human sarcoma cell line, malignant fibrosis histiocytoma (MFH) Nara-H, was visualized by the MRI system. The commercially available MRI contrast medium Gd-DTPA (Magnevist, dimeglumine gadopentetate aqueous solution) and the biodegradable and highly gadopentetic acid (Gd-DTPA)-loaded chitosan nanoparticles (Gd-nanoCPs) were prepared as MRI contrast agents. The MFH cells were cultured and collected into three falcon tubes that were set into the 3-tesra MRI system to acquire signal intensities from each pellet by the spin echo method, and the longitudinal relaxation time (T1) was calculated. The amount of Gd in the sample was measured by inductively coupled plasma atomic emission spectrography (ICP-AES). The accumulation of gadolinium in cells treated with Gd-nanoCPs was larger than that in cells treated with Gd-DTPA. In contrast, and compared with the control, Gd-DTPA was more effective than Gd-nanoCPs in reducing T1, suggesting that the larger accumulation exerted the adverse effect of lowering the enhancement of MRI. Further studies are warranted to gain insight into the therapeutic potential of Gd-NCT.

  11. Vegetation pattern and heavy metal accumulation at a mine tailing at Gyöngyösoroszi, hungary.

    Science.gov (United States)

    Tamás, János; Kovács, Alza

    2005-01-01

    Vegetation at an abandoned heavy metal bearing mine tailing may have multifunctional roles such as modification of water balance, erosion control and landscape rehabilitation. Research on the vegetation of mine tailings can provide useful information on tolerance, accumulation and translocation properties of species potentially applicable at moderately contaminated sites. Analyses of the relationship between heavy metal content (Pb, Zn and Cu) and vegetation in a mine tailing were carried out. These analyses included: (1) spatial analysis of relationship among heavy metal distribution, pH and vegetation patterns, and (2) analysis of heavy metal accumulation and translocation in some plant species. Presence of vegetation was found to be significantly dependent on pH value, which confirms that phytotoxicity is a function of element concentration in solution, which is primarily controlled by pH value in mine tailings. Among the most abundant plant species, dewberry (Rubus caesius), vipersbugloss (Echium vulgare), scarlet pimpernel (Anagallis arvensis) and narrowleaf plantain (Plantago lanceolata) accumulate significant amounts of Pb, Cu and Zn, while in the case of annual bluegrass (Poa annua) only Pb can be measured in elevated contents. Considering the translocation features, scarlet pimpernel, narrowleaf plantain, and dewberry accumulate heavy metals primarily in their roots, while heavy metal concentration in vipersbugloss and annual bluegrass is higher in the shoots.

  12. Silicon Promotes Exodermal Casparian Band Formation in Si-Accumulating and Si-Excluding Species by Forming Phenol Complexes.

    Directory of Open Access Journals (Sweden)

    Alexander T Fleck

    Full Text Available We studied the effect of Silicon (Si on Casparian band (CB development, chemical composition of the exodermal CB and Si deposition across the root in the Si accumulators rice and maize and the Si non-accumulator onion. Plants were cultivated in nutrient solution with and without Si supply. The CB development was determined in stained root cross-sections. The outer part of the roots containing the exodermis was isolated after enzymatic treatment. The exodermal suberin was transesterified with MeOH/BF3 and the chemical composition was measured using gas chromatography-mass spectroscopy (GC-MS and flame ionization detector (GC-FID. Laser ablation-inductively coupled plasma-mass spectroscopy (LA-ICP-MS was used to determine the Si deposition across root cross sections. Si promoted CB formation in the roots of Si-accumulator and Si non-accumulator species. The exodermal suberin was decreased in rice and maize due to decreased amounts of aromatic suberin fractions. Si did not affect the concentration of lignin and lignin-like polymers in the outer part of rice, maize and onion roots. The highest Si depositions were found in the tissues containing CB. These data along with literature were used to suggest a mechanism how Si promotes the CB development by forming complexes with phenols.

  13. A MODEL OF ECONOMIC GROWTH WITH PUBLIC FINANCE: DYNAMICS AND ANALYTIC SOLUTION

    Directory of Open Access Journals (Sweden)

    Oliviero Antonio Carboni

    2013-01-01

    Full Text Available This paper studies the equilibrium dynamics of a growth model with public finance where two different allocations of public resources are considered. The model simultaneously determines the optimal shares of consumption, capital accumulation, taxes and composition of the two different public expenditures which maximize a representative household's lifetime utilities in a centralized economy. The analysis supplies a closed form solution. Moreover, with one restriction on the parameters ( we fully determine the solutions path for all variables of the model and determine the conditions for balanced growth.

  14. The positron accumulator ring for the APS

    International Nuclear Information System (INIS)

    Crosbie, E.A.

    1989-01-01

    The Positron Accumulator Ring (PAR) is designed to accumulate and damp positrons from the 450-MeV linac during the 0.5-s cycle time of the injector synchrotron for the APS 7-GeV storage ring. During 0.4 s of each synchrotron cycle, up to 24 linac pulses are injected into the horizontal phase space of the PAR at a 60-Hz rate. Each injected pulse occupies about 1.3 of the circumference of the accumulator ring. After 0.1 s for longitudinal damping, the single accumulated bunch is transferred to one of the 353-MHz buckets of the injector synchrotron RF system. The bunch is accelerated to 7 GeV and transferred to the storage ring, while the PAR accumulates the next bunch of positrons. 2 refs., 3 figs., 2 tabs

  15. The positron accumulator ring for the APS

    International Nuclear Information System (INIS)

    Crosbie, E.A.

    1989-01-01

    The Positron Accumulator Ring (PAR) is designed to accumulate and damp positrons from the 450-MeV linac during the 0.5-s cycle time of the injector synchrotron for the APS 7-GeV storage ring. During 0.4 s of each synchrotron cycle, up to 24 linac pulses are injected into the horizontal phase space of the PAR at a 60-Hz rate. Each injected pulse occupies about 1/3 of the circumference of the accumulator ring. After 0.1 s for longitudinal damping, the single accumulated bunch is transferred to one of the 353-MHz buckets of the injector synchrotron RF system. The bunch is accelerated to 7 GeV and transferred to the storage ring, while the PAR accumulates the next bunch of positrons. 2 refs., 3 figs., 2 tabs

  16. Accumulation of nickel in transgenic tobacco

    Science.gov (United States)

    Sidik, Nik Marzuki; Othman, Noor Farhan

    2013-11-01

    The accumulation of heavy metal Ni in the roots and leaves of four T1 transgenic lines of tobacco (T(1)20E, T(1)24C, T(1)18B1 and T(1)20B) expressing eiMT1 from E.indica was assessed. The aim of the study was to investigate the level of Ni accumulation in the leaves and roots of each transgenic lines and to evaluate the eligibility of the plants to be classified as a phytoremediation agent. All of the transgenic lines showed different ability in accumulating different metals and has translocation factor (TF) less than 1 (TFtransgenic lines, transgenic line T(1)24C showed the highest accumulation of Ni (251.9 ± 0.014 mg/kg) and the lowest TF value (TFT(1)24C=0.0875) at 60 ppm Ni.

  17. Geochemistry Model Validation Report: External Accumulation Model

    International Nuclear Information System (INIS)

    Zarrabi, K.

    2001-01-01

    The purpose of this Analysis and Modeling Report (AMR) is to validate the External Accumulation Model that predicts accumulation of fissile materials in fractures and lithophysae in the rock beneath a degrading waste package (WP) in the potential monitored geologic repository at Yucca Mountain. (Lithophysae are voids in the rock having concentric shells of finely crystalline alkali feldspar, quartz, and other materials that were formed due to entrapped gas that later escaped, DOE 1998, p. A-25.) The intended use of this model is to estimate the quantities of external accumulation of fissile material for use in external criticality risk assessments for different types of degrading WPs: U.S. Department of Energy (DOE) Spent Nuclear Fuel (SNF) codisposed with High Level Waste (HLW) glass, commercial SNF, and Immobilized Plutonium Ceramic (Pu-ceramic) codisposed with HLW glass. The scope of the model validation is to (1) describe the model and the parameters used to develop the model, (2) provide rationale for selection of the parameters by comparisons with measured values, and (3) demonstrate that the parameters chosen are the most conservative selection for external criticality risk calculations. To demonstrate the applicability of the model, a Pu-ceramic WP is used as an example. The model begins with a source term from separately documented EQ6 calculations; where the source term is defined as the composition versus time of the water flowing out of a breached waste package (WP). Next, PHREEQC, is used to simulate the transport and interaction of the source term with the resident water and fractured tuff below the repository. In these simulations the primary mechanism for accumulation is mixing of the high pH, actinide-laden source term with resident water; thus lowering the pH values sufficiently for fissile minerals to become insoluble and precipitate. In the final section of the model, the outputs from PHREEQC, are processed to produce mass of accumulation

  18. Impact of Selenium Supplementation on Growth and Selenium Accumulation on Spinach (Spinacia oleracea L.) Plants

    OpenAIRE

    Azadeh SAFFARYAZDI; Mehrdad LAHOUTI; Ali GANJEALI; Hassan BAYAT

    2012-01-01

    Selenium (Se) has been proved to be an essential element for humans and animals. However, less is known about its effects on plants. A hydroponic experiment was carried out to investigate the effects of selenium on growth, selenium accumulation and some physiological characteristics of spinach (Spinacia oleracea L. cv. �Missouri�) plants. Plants were grown in Hoagland nutrient solution amended with sodium selenite at 0 (control), 1, 2, 4, 6 and 10 mg.L-1 for 28 days. Growth parameters like sh...

  19. A model of accumulation of radionuclides in biosphere originating from groundwater contamination

    International Nuclear Information System (INIS)

    Gaerdenaes, Annemieke; Jansson, Per-Erik; Karlberg, Louise

    2006-03-01

    The objective of this study is to introduce a module in CoupModel describing the transport and accumulation in the biosphere of a radionuclide originating from a ground water contamination. Two model approaches describing the plant uptake of a radionuclide were included, namely passive and active uptake. Passive uptake means in this study that the root uptake rate of a radionuclide is governed by water uptake. Normal mechanism for the passive water uptake is the convective flux of water from the soil to the plant. An example of element taken up passively is Ca. Active plant uptake is in this model defined as the root uptake rate of a radionuclide that is governed by carbon assimilation i.e. photosynthesis and plant growth. The actively taken up element can for example be an element essential to plant, but not available in high enough concentration by passive uptake alone, like the major nutrients N and P or an element that very well resembles a plant nutrient, like Cs resembles K. Active uptake of trace element may occur alone or in addition to passive uptake. Normal mechanism for the active uptake is molecular diffusion from the soil solution to the roots or via any other organism living in symbiosis with the roots like the mycorrhiza. Also a model approach describing adsorption was introduced. CoupModel dynamically couples and simulates the flows of water, heat, carbon and nitrogen in the soil/plant/atmosphere system. Any number of plants may be defined and are divided into roots, leaves, stem and grain. The soil is considered in one vertical profile that may be represented into a maximum of 100 layers. The model is the windows-successor and integrated version of the DOS-models SOIL and SOILN, which have been widely used on different ecosystems and climate regions during 25 years time period. To this soil/plant/atmosphere model were introduced a module describing accumulation of a radionuclide in the biosphere originating from groundwater contamination. The

  20. A model of accumulation of radionuclides in biosphere originating from groundwater contamination

    Energy Technology Data Exchange (ETDEWEB)

    Gaerdenaes, Annemieke [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Soil Sciences; Jansson, Per-Erik; Karlberg, Louise [Royal Inst. of Technology, Stockholm (Sweden). Dept. Land and Water Resources

    2006-03-15

    The objective of this study is to introduce a module in CoupModel describing the transport and accumulation in the biosphere of a radionuclide originating from a ground water contamination. Two model approaches describing the plant uptake of a radionuclide were included, namely passive and active uptake. Passive uptake means in this study that the root uptake rate of a radionuclide is governed by water uptake. Normal mechanism for the passive water uptake is the convective flux of water from the soil to the plant. An example of element taken up passively is Ca. Active plant uptake is in this model defined as the root uptake rate of a radionuclide that is governed by carbon assimilation i.e. photosynthesis and plant growth. The actively taken up element can for example be an element essential to plant, but not available in high enough concentration by passive uptake alone, like the major nutrients N and P or an element that very well resembles a plant nutrient, like Cs resembles K. Active uptake of trace element may occur alone or in addition to passive uptake. Normal mechanism for the active uptake is molecular diffusion from the soil solution to the roots or via any other organism living in symbiosis with the roots like the mycorrhiza. Also a model approach describing adsorption was introduced. CoupModel dynamically couples and simulates the flows of water, heat, carbon and nitrogen in the soil/plant/atmosphere system. Any number of plants may be defined and are divided into roots, leaves, stem and grain. The soil is considered in one vertical profile that may be represented into a maximum of 100 layers. The model is the windows-successor and integrated version of the DOS-models SOIL and SOILN, which have been widely used on different ecosystems and climate regions during 25 years time period. To this soil/plant/atmosphere model were introduced a module describing accumulation of a radionuclide in the biosphere originating from groundwater contamination. The

  1. Accumulation of Radiocesium in Eleutherococcus sciadophylloides

    Energy Technology Data Exchange (ETDEWEB)

    Sugiura, Y.; Takenaka, C.; Kanasashi, T. [Graduate School of Bioagricultural Sciences, Nagoya University, 464-8601, Nagoya City, Aichi Prefecture (Japan); Deguchi, S. [School of Agricultural Sciences, Nagoya University, Nagoya City, Aichi Prefecture, 464-8601 (Japan); Matsuda, Y. [Graduate School of Bioresources, Mie University, Tsu City, Mie Prefecture, 514-0102 (Japan); Ozawa, H. [Fukushima Prefectural Forestry Research Centre, Koriyama City Fukushima Prefecture, 963-0112 (Japan)

    2014-07-01

    1. Introduction: After Fukushima Daiichi Nuclear Power Plant accident, radiocesium ({sup 137}Cs) had deposited on forests in Fukushima Prefecture. In order to comprehend radiocesium circulation in forest ecosystem, it is important to understand about properties of {sup 137}Cs accumulation of each plant species. In addition, {sup 137}Cs accumulator plants would be candidates of phyto-remediation, which is a remediation method using plants to remove pollutants from environment. We aimed to find {sup 137}Cs accumulator plants and to clarify the accumulate mechanisms. 2. Materials and Methods: We collected soil and plant samples at 22 points in Fukushima Prefecture more than once a year from May 2011 to October 2013. Surface (0-5 cm) soils were collected at the same site as the plant sampling. The soil samples were air-dried for 2-3 weeks and then passed through a 2 mm sieve. Foliar samples were washed with tap water to remove soil particles and rinsed with deionized water for {sup 137}Cs and other elements analysis. The samples were dried at 80 deg. C for 48 hr and ground with a mill mixer. {sup 137}Cs activities in soil and plant samples were determined by means of high-purity Ge detector (HPGe). The elements concentrations of the plant samples were determined by inductively coupled plasma mass spectrometry (ICP-MS) after wet digestion with HNO{sub 3}. 3. Results and Discussion: As a whole trend, evergreen tree species such as Camellia japonica and Cryptomeria japonica contained {sup 137}Cs at high concentration due to the deposited {sup 137}Cs on old leaves and foliar absorption. The activities in leaves of deciduous tree species were lower than those in evergreen trees. However, we confirmed that a deciduous tree species, Eleutherococcus sciadophylloides, collected in 2012 and 2013 accumulated {sup 137}Cs, whereas that collected in 2011 did not accumulate {sup 137}Cs. The {sup 137}Cs concentration of E. sciadophylloides in 2012 and 2013 were higher than those of

  2. Free ionic nickel accumulation and localization in the freshwater zooplankter, Daphnia magna

    International Nuclear Information System (INIS)

    Hall, T.M.

    1982-01-01

    The processes which lead to the accumulation of free ionic nickel (radioactive) from solution by Daphnia magna were studied and incorporated into a model which describes accummulation at different concentrations. Adsorption proved to be a relatively small component of nickel accummulation. The accummulation rate eventually approached zero, which represented an equilibrium between uptake and loss of nickel. However, elimination experiments did reveal a pool of relatively static nickel. The appearance and distribution of nickel within five body parts (body fluid, carapace, gut, filtering appendages, and eggs) of D. magna supported the accummulation data and added to the understanding of the pathways of nickel through the organism

  3. Accumulation and translocation of K+, Na+ and Ca2+ supplied to the different root zones of corn seedlings

    International Nuclear Information System (INIS)

    Marschner, H.; Richter, Ch.

    1973-01-01

    In various distances from the tip of the primary root of 9 days old corn seedlings nutrient solution labelled with 42 K, 22 Na or 45 Ca was supplied to a 3 cm section of the root. The remainder of the root system was supplied with an identical nutrient solution but non-labelled. After 24 hours the roots were segmented and analysed for their content of 42 K, 22 Na or 45 Ca. From the treated zone K + was not only translocated in direction of the shoot but also to a high degree in direction of the root tip where a pronounced accumulation of K + was evident. In contrast to this most of the Na + , which was taken up, was accumulated in the treated zone, whereas the translocation in direction of the shoot was restricted; some translocation in direction of the root tip was detectable. The accumulation of Ca 2+ in the treated zone was less pronounced, most of the Ca 2+ was translocated to the shoot. There was no translocation of Ca 2+ in direction of the root tip (phloem transport). Supply of the same ion to the remainder of the root system scarcely affected uptake and translocation of this ion from the treated zone; however, in the presence of K + in the external solution pronounced exchange reactions and efflux of K + took place. When K + and Na + were simultaneously present in the treated zone the uptake of Na + was strongly depressed; uptake and translocation of Na + were stimulated however, when K + was supplied only to the remainder of the root system. When K + , Na + or Ca 2+ were supplied to different root zones in the region from 0-18 cm behind the root tip, in these fast growing roots the total uptake was the same in a range of 3-18 cm behind the tip. In the tip zone (0-3 cm) however, the uptake of K + was lower and the uptake of Ca 2+ was higher than in the other root zones. For all 3 cations with increasing distance from the root tip, the accumulation in the treated zone decreased and the translocation from this zone in direction of the shoot increased. The

  4. Rock bed heat accumulators. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Riaz, M.

    1977-12-01

    The principal objectives of the research program on rock bed heat accumulators (or RBHA) are: (1) to investigate the technical and economic feasibility of storing large amounts of thermal energy (in the tens of MWt range) at high temperature (up to 500/sup 0/C) over extended periods of time (up to 6 months) using native earth or rock materials; (2) to conduct studies to establish the performance characteristics of large rock bed heat accumulators at various power and temperature levels compatible with thermal conversion systems; and (3) to assess the materials and environmental problems associated with the operation of such large heat accumulators. Results of the study indicate that rock bed heat accumulators for seasonal storage are both technically and economically feasible, and hence could be exploited in various applications in which storage plays an essential role such as solar power and total energy systems, district and cogeneration heating systems.

  5. Mechanisms of Fe biofortification and mitigation of Cd accumulation in rice (Oryza sativa L.) grown hydroponically with Fe chelate fertilization.

    Science.gov (United States)

    Chen, Zhe; Tang, Ye-Tao; Zhou, Can; Xie, Shu-Ting; Xiao, Shi; Baker, Alan J M; Qiu, Rong-Liang

    2017-05-01

    Cadmium contaminated rice from China has become a global food safety issue. Some research has suggested that chelate addition to substrates can affect metal speciation and plant metal content. We investigated the mitigation of Cd accumulation in hydroponically-grown rice supplied with EDTANa 2 Fe(II) or EDDHAFe(III). A japonica rice variety (Nipponbare) was grown in modified Kimura B solution containing three concentrations (0, 10, 100 μΜ) of the iron chelates EDTANa 2 Fe(II) or EDDHAFe(III) and 1 μΜ Cd. Metal speciation in solution was simulated by Geochem-EZ; growth and photosynthetic efficiency of rice were evaluated, and accumulation of Cd and Fe in plant parts was determined. Net Cd fluxes in the meristematic zone, growth zone, and maturation zone of roots were monitored by a non-invasive micro-test technology. Expression of Fe- and Cd-related genes in Fe-sufficient or Fe-deficient roots and leaves were studied by QRT-PCR. Compared to Fe deficiency, a sufficient or excess supply of Fe chelates significantly enhanced rice growth by elevating photosynthetic efficiency. Both Fe chelates increased the Fe content and decreased the Cd content of rice organs, except for the Cd content of roots treated with excess EDDHAFe(III). Compared to EDDHAFe(III), EDTANa 2 Fe(II) exhibited better mitigation of Cd accumulation in rice by generating the EDTANa 2 Cd complex in solution, decreasing net Cd influx and increasing net Cd efflux in root micro-zones. Application of EDTANa 2 Fe(II) and EDDHAFe(III) also reduced Cd accumulation in rice by inhibiting expression of genes involved in transport of Fe and Cd in the xylem and phloem. The 'win-win' situation of Fe biofortification and Cd mitigation in rice was achieved by application of Fe chelates. Root-to-stem xylem transport of Cd and redistribution of Cd in leaves by phloem transport can be regulated in rice through the use of Fe chelates that influence Fe availability and Fe-related gene expression. Fe fertilization

  6. Aflatoxin Accumulation in a Maize Diallel Cross

    Directory of Open Access Journals (Sweden)

    W. Paul Williams

    2015-06-01

    Full Text Available Aflatoxins, produced by the fungus Aspergillus flavus, occur naturally in maize. Contamination of maize grain with aflatoxin is a major food and feed safety problem and greatly reduces the value of the grain. Plant resistance is generally considered a highly desirable approach to reduction or elimination of aflatoxin in maize grain. In this investigation, a diallel cross was produced by crossing 10 inbred lines with varying degrees of resistance to aflatoxin accumulation in all possible combinations. Three lines that previously developed and released as sources of resistance to aflatoxin accumulation were included as parents. The 10 parental inbred lines and the 45 single crosses making up the diallel cross were evaluated for aflatoxin accumulation in field tests conducted in 2013 and 2014. Plants were inoculated with an A. flavus spore suspension seven days after silk emergence. Ears were harvested approximately 60 days later and concentration of aflatoxin in the grain determined. Parental inbred lines Mp717, Mp313E, and Mp719 exhibited low levels (3–12 ng/g of aflatoxin accumulation. In the diallel analysis, both general and specific combining ability were significant sources of variation in the inheritance of resistance to aflatoxin accumulation. General combining ability effects for reduced aflatoxin accumulation were greatest for Mp494, Mp719, and Mp717. These lines should be especially useful in breeding for resistance to aflatoxin accumulation. Breeding strategies, such as reciprocal recurrent selection, would be appropriate.

  7. The mechanism of metal nanoparticle formation in plants: limits on accumulation

    Energy Technology Data Exchange (ETDEWEB)

    Haverkamp, R. G., E-mail: r.haverkamp@massey.ac.nz; Marshall, A. T. [Massey University, School of Engineering and Advanced Technology (New Zealand)

    2009-08-15

    Metal nanoparticles have many potential technological applications. Biological routes to the synthesis of these particles have been proposed including production by vascular plants, known as phytoextraction. While many studies have looked at metal uptake by plants, particularly with regard to phytoremediation and hyperaccumulation, few have distinguished between metal deposition and metal salt accumulation. This work describes the uptake of AgNO{sub 3}, Na{sub 3}Ag(S{sub 2}O{sub 3}){sub 2}, and Ag(NH{sub 3}){sub 2}NO{sub 3} solutions by hydroponically grown Brassica juncea and the quantitative measurement of the conversion of these salts to silver metal nanoparticles. Using X-ray absorption near edge spectroscopy (XANES) to determine the metal speciation within the plants, combined with atomic absorption spectroscopy (AAS) for total Ag, the quantity of reduction of Ag{sup I} to Ag{sup 0} is reported. Transmission electron microscopy (TEM) showed Ag particles of 2-35 nm. The factors controlling the amount of silver accumulated are revealed. It is found that there is a limit on the amount of metal nanoparticles that may be deposited, of about 0.35 wt.% Ag on a dry plant basis, and that higher levels of silver are obtained only by the concentration of metal salts within the plant, not by deposition of metal. The limit on metal nanoparticle accumulation, across a range of metals, is proposed to be controlled by the total reducing capacity of the plant for the reduction potential of the metal species and limited to reactions occurring at an electrochemical potential greater than 0 V (verses the standard hydrogen electrode).

  8. Photochemical oxidation of americium(3) in bicarbonate-carbonate solutions saturated with N2O

    International Nuclear Information System (INIS)

    Shilov, V.P.; Yusov, A.B.

    1993-01-01

    The influence of UV radiation on 1.1x10 -4 mol/l Am(3) in bicarbonate-carbonate solutions of sodium and potassium saturated with N 2 O was studied by spectrographic method. In all the cases Am(4) was formed as a primary product. Initial rate of Am(4) accumulation remains stable in solutions up to HCO 3 - or HCO 3 - +CO 3 2- concentration of approximately 1.5 mol/l, but it decreases in case of their higher concentration. In solutions with pH 8.4-10 Am(4) disproportionates at a slow rate and the method suggested permits attaining practically 100% yield of it

  9. Seasonal patterns of ascorbate in the needles of Scots Pine (Pinus sylvestris L.) trees: Correlation analyses with atmospheric O3 and NO2 gas mixing ratios and meteorological parameters

    International Nuclear Information System (INIS)

    Haberer, Kristine; Jaeger, Lutz; Rennenberg, Heinz

    2006-01-01

    In the present field study the role of ascorbate in scavenging the harmful atmospheric trace gases O 3 and NO 2 was examined. For this purpose ascorbate contents were determined in needles of adult Scots pine trees (Pinus sylvestris L.) during three consecutive years. Ascorbate contents were correlated with ambient tropospheric O 3 and NO 2 concentrations and with meteorological parameters. The results showed a strong correlation of atmospheric O 3 but not of atmospheric NO 2 concentrations with the apoplastic content of ascorbate during the seasonal course. Ascorbate contents in needle extracts did not correlate with ambient trace gas concentrations. In the apoplastic space, but not in needle extracts ascorbate contents correlate highly significantly with global radiation. From these results it is assumed that apoplastic ascorbate in Scots pine needles is adapted to the actual atmospheric O 3 concentration to mediate immediate detoxification of O 3 , while the atmospheric O 3 concentration itself is largely dependent on light intensity. - Contents of apoplastic but not symplastic ascorbate correlate significantly with atmospheric ozone concentrations

  10. Factors influencing the cardiac MIBG accumulation

    International Nuclear Information System (INIS)

    Takatsu, Hisato; Fujiwara, Hisayoshi

    1997-01-01

    Following factors possibly influencing the cardiac MIBG accumulation were examined mainly in mice. 1. The specific activity of the MIBG (meta-iodo-benzyl guanidine) on the neuronal and non-neuronal fractions. 2. Motor restriction stress on MIBG accumulation and washout. 3. Loading and restriction of sodium chloride on the accumulation and effect of suppression of renin-angiotensin system. 4. Examinations in Dahl rats. 125I- or 131I-MIBG was intravenously administered to mice at 74 kBq. At 30 min or 4 hr after administration, mice were sacrificed and their left ventricles were dissected out for measurement of radioactivity in a liquid scintillation counter. Salt-sensitive and -resistant Dahl rats were given with 37 MBq of 123I-MIBG and cardiac radioactivity was measured externally for calculation of washout. Factors examined were found highly correlated with the accumulation of MIBG and measurement of its washout was considered useful for evaluating sympathetic activity. (K.H.)

  11. Selenium accumulation by plants.

    Science.gov (United States)

    White, Philip J

    2016-02-01

    Selenium (Se) is an essential mineral element for animals and humans, which they acquire largely from plants. The Se concentration in edible plants is determined by the Se phytoavailability in soils. Selenium is not an essential element for plants, but excessive Se can be toxic. Thus, soil Se phytoavailability determines the ecology of plants. Most plants cannot grow on seleniferous soils. Most plants that grow on seleniferous soils accumulate plant species have evolved tolerance to Se, and commonly accumulate tissue Se concentrations >100 mg Se kg(-1) dry matter. These plants are considered to be Se accumulators. Some species can even accumulate Se concentrations of 1000-15 000 mg Se kg(-1 )dry matter and are called Se hyperaccumulators. This article provides an overview of Se uptake, translocation and metabolism in plants and highlights the possible genetic basis of differences in these between and within plant species. The review focuses initially on adaptations allowing plants to tolerate large Se concentrations in their tissues and the evolutionary origin of species that hyperaccumulate Se. It then describes the variation in tissue Se concentrations between and within angiosperm species and identifies genes encoding enzymes limiting the rates of incorporation of Se into organic compounds and chromosomal loci that might enable the development of crops with greater Se concentrations in their edible portions. Finally, it discusses transgenic approaches enabling plants to tolerate greater Se concentrations in the rhizosphere and in their tissues. The trait of Se hyperaccumulation has evolved several times in separate angiosperm clades. The ability to tolerate large tissue Se concentrations is primarily related to the ability to divert Se away from the accumulation of selenocysteine and selenomethionine, which might be incorporated into non-functional proteins, through the synthesis of less toxic Se metabilites. There is potential to breed or select crops

  12. HORMONAL REGULATION OF SELENIUM ACCUMULATION BY PLANTS

    Directory of Open Access Journals (Sweden)

    N. A. Golubkina

    2015-01-01

    Full Text Available Hormonal regulation is considered to be a unique mechanism controlling growth and development of living organism. The review discusses the correlations between pant hormonal status of non-accumulators and hyper-accumulators of Se with the accumulation levels of this microelement. The phenomenon of stimulation and redistribution of selenium as a result of phytohormone treatment, the peculiarities of phytohormones effect among different species and cultivars, and influence of plant sexualization on selenium accumulation are described in article. Data of hormonal regulation of selenium level for spinach, garlic, perennial onion, Brassica chinenesis and Valeriana officialis are presented in the review.

  13. Uncertainty on Fatigue Damage Accumulation for Composite Materials

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Sørensen, John Dalsgaard

    2009-01-01

    In the present paper stochastic models for fatigue damage accumulation for composite materials are presented based on public available constant and variable amplitude fatigue tests. The methods used for estimating the SN-curve and accumulated fatigue damage are presented.......In the present paper stochastic models for fatigue damage accumulation for composite materials are presented based on public available constant and variable amplitude fatigue tests. The methods used for estimating the SN-curve and accumulated fatigue damage are presented....

  14. Abscisic acid alleviates iron deficiency by promoting root iron reutilization and transport from root to shoot in Arabidopsis.

    Science.gov (United States)

    Lei, Gui Jie; Zhu, Xiao Fang; Wang, Zhi Wei; Dong, Fang; Dong, Ning Yu; Zheng, Shao Jian

    2014-04-01

    Abscisic acid (ABA) has been demonstrated to be involved in iron (Fe) homeostasis, but the underlying mechanism is largely unknown. Here, we found that Fe deficiency induced ABA accumulation rapidly (within 6 h) in the roots of Arabidopsis. Exogenous ABA at 0.5 μM decreased the amount of root apoplastic Fe bound to pectin and hemicellulose, and increased the shoot Fe content significantly, thus alleviating Fe deficiency-induced chlorosis. Exogenous ABA promoted the secretion of phenolics to release apoplastic Fe and up-regulated the expression of AtNRAMP3 to enhance reutilization of Fe stored in the vacuoles, leading to a higher level of soluble Fe and lower ferric-chelate reductase (FCR) activity in roots. Treatment with ABA also led to increased Fe concentrations in the xylem sap, partially because of the up-regulation of AtFRD3, AtYSL2 and AtNAS1, genes related to long-distance transport of Fe. Exogenous ABA could not alleviate the chlorosis of abi5 mutant resulting from the significantly low expression of AtYSL2 and low transport of Fe from root to shoot. Taken together, our data support the conclusion that ABA is involved in the reutilization and transport of Fe from root to shoot under Fe deficiency conditions in Arabidopsis. © 2013 John Wiley & Sons Ltd.

  15. Accumulation by Conservation

    NARCIS (Netherlands)

    Büscher, Bram; Fletcher, Robert

    2015-01-01

    Following the financial crisis and its aftermath, it is clear that the inherent contradictions of capitalist accumulation have become even more intense and plunged the global economy into unprecedented turmoil and urgency. Governments, business leaders and other elite agents are frantically

  16. Accumulation by Conservation

    NARCIS (Netherlands)

    Büscher, Bram; Fletcher, Robert

    2014-01-01

    Following the financial crisis and its aftermath, it is clear that the inherent contradictions of capitalist accumulation have become even more intense and plunged the global economy into unprecedented turmoil and urgency. Governments, business leaders and other elite agents are frantically

  17. The simulation of solute transport: An approach free of numerical dispersion

    International Nuclear Information System (INIS)

    Carrera, J.; Melloni, G.

    1987-01-01

    The applicability of most algorithms for simulation of solute transport is limited either by instability or by numerical dispersion, as seen by a review of existing methods. A new approach is proposed that is free of these two problems. The method is based on the mixed Eulerian-Lagrangian formulation of the mass-transport problem, thus ensuring stability. Advection is simulated by a variation of reverse-particle tracking that avoids the accumulation of interpolation errors, thus preventing numerical dispersion. The algorithm has been implemented in a one-dimensional code. Excellent results are obtained, in comparison with an analytical solution. 36 refs., 14 figs., 1 tab

  18. Heavy metal accumulation by carrageenan and agar producing algae

    Energy Technology Data Exchange (ETDEWEB)

    Burdin, K.S. [Moscow State Univ. (Russian Federation). Faculty of Biology; Bird, K.T. [North Carolina Univ., Wilmington, NC (United States). Center for Marine Science Research

    1994-09-01

    The accumulation of six heavy metals Cu, Cd, Ni, Zn, Mn and Pb was measured in living and lzophilized algal thalli. The agar producing algae were Gracilaria tikvahiae and Gelidium pusillum. The carrageenan producing macroalgae were Agardhiella subulata and the gametophyte and tetrasporophyte phases of Chondrus crispus. These produce primarily iota, kappa and lambda carrageenans, respectively. At heavy metal concentrations of 0.5 mg L{sup -1}, living thalli of Gracilaria tikvahiae generally showed the greatest amount of accumulation of the 6 heavy metals tested. The accumulation of Pb was greater in the living thalli of all four species than in the lyophilized thalli. Except for Agardhiella subulata, lyophilized thalli showed greater accumulation of Ni, Cu and Zn. There was no difference in heavy metal accumulation between living and lyophilized thalli in the accumulation of Cd. Manganese showed no accumulation at the tested concentration. There did not appear to be a relationship between algal hydrocolloid characteristics and the amounts of heavy metals accumulated. (orig.)

  19. The pH profile for acid-induced elongation of coleoptile and epicotyl sections is consistent with the acid-growth theory

    Science.gov (United States)

    Cleland, R. E.; Buckley, G.; Nowbar, S.; Lew, N. M.; Stinemetz, C.; Evans, M. L.; Rayle, D. L.

    1991-01-01

    The acid-growth theory predicts that a solution with a pH identical to that of the apoplast of auxin-treated tissues (4.5.-5.0) should induce elongation at a rate comparable to that of auxin. Different pH profiles for elongation have been obtained, however, depending on the type of pretreatment between harvest of the sections and the start of the pH-incubations. To determine the acid sensitivity under in vivo conditions, oat (Avena sativa L.) coleoptile, maize (Zea mays L.) coleoptile and pea (Pisum sativum L.) epicotyl sections were abraded so that exogenous buffers could penetrate the free space, and placed in buffered solutions of pH 3.5-6.5 without any preincubation. The extension, without auxin, was measured over the first 3 h. Experiments conducted in three laboratories produced similar results. For all three species, sections placed in buffer without pretreatment elongated at least threefold faster at pH 5.0 than at 6.0 or 6.5, and the rate elongation at pH 5.0 was comparable to that induced by auxin. Pretreatment of abraded sections with pH-6.5 buffer or distilled water adjusted to pH 6.5 or above gave similar results. We conclude that the pH present in the apoplast of auxin-treated coleoptile and stems is sufficiently low to account for the initial growth response to auxin.

  20. Plastids and Carotenoid Accumulation.

    Science.gov (United States)

    Li, Li; Yuan, Hui; Zeng, Yunliu; Xu, Qiang

    Plastids are ubiquitously present in plants and are the organelles for carotenoid biosynthesis and storage. Based on their morphology and function, plastids are classified into various types, i.e. proplastids, etioplasts, chloroplasts, amyloplasts, and chromoplasts. All plastids, except proplastids, can synthesize carotenoids. However, plastid types have a profound effect on carotenoid accumulation and stability. In this chapter, we discuss carotenoid biosynthesis and regulation in various plastids with a focus on carotenoids in chromoplasts. Plastid transition related to carotenoid biosynthesis and the different capacity of various plastids to sequester carotenoids and the associated effect on carotenoid stability are described in light of carotenoid accumulation in plants.

  1. Heat and cold accumulators in vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Kauranen, P.; Wikstroem, L. (VTT Technical Research Centre of Finland, Advanced Materials, Tampere (Finland)); Heikkinen, J. (VTT Technical Research Centre of Finland, Building Services and Indoor Environment, Espoo (Finland)); Laurikko, J.; Elonen, T. (VTT Technical Research Centre of Finland, Emission Control, Espoo (Finland)); Seppaelae, A. (Helsinki Univ. of Technology, Applied Thermodynamics, Espoo (Finland)). Email: ari.seppala@tkk.fi

    2009-07-01

    Phase Change Material (PCM) based heat and cold accumulators have been tailored for transport applications including a mail delivery van as well as the cold chains of foodstuff and blood products. The PCMs can store relative large amount of thermal energy in a narrow temperature interval as latent heat of fusion of their melting and crystallization processes. Compact heat and cold accumulators can be designed using PCMs. The aim of the project has been to reduce the exhaust gas and noise emissions and improve the fuel economy of the transport systems and to improve the reliability of the cold chains studied by storing thermal energy in PCM accumulators. (orig.)

  2. Investigation of the gallium-67 citrate hilar accumulation

    International Nuclear Information System (INIS)

    Suto, Yuji

    1987-01-01

    To study the 67 Ga hilar accumulation, author quantitatively analyzed 67 Ga scintigrams of patients having no chest disease and normal chest roentgenograms. Relationship between hilar accumulation and smoking was quantitatively and experimentally studied. The conclusions were as follows: 1. There was significant relationship between smoking and 67 Ga hilar accumulation but there was no significant relationship between aging and the hilar accumulation. 2. The 67 Ga uptake of the hilar lymph node of smoked rat was higher than that of control group on microautoradiogram. The histological finding of the hilar lymph node of smoked rat was sinus histiocytosis. 3. Activated histiocytosis of hilar lymphatic sinus by some factors including smoking seemed to be responsible for 67 Ga hilar accumulation, of which mechanism was unknown. (author)

  3. Deep subsurface drip irrigation using coal-bed sodic water: part I. water and solute movement

    Science.gov (United States)

    Bern, Carleton R.; Breit, George N.; Healy, Richard W.; Zupancic, John W.; Hammack, Richard

    2013-01-01

    Water co-produced with coal-bed methane (CBM) in the semi-arid Powder River Basin of Wyoming and Montana commonly has relatively low salinity and high sodium adsorption ratios that can degrade soil permeability where used for irrigation. Nevertheless, a desire to derive beneficial use from the water and a need to dispose of large volumes of it have motivated the design of a deep subsurface drip irrigation (SDI) system capable of utilizing that water. Drip tubing is buried 92 cm deep and irrigates at a relatively constant rate year-round, while evapotranspiration by the alfalfa and grass crops grown is seasonal. We use field data from two sites and computer simulations of unsaturated flow to understand water and solute movements in the SDI fields. Combined irrigation and precipitation exceed potential evapotranspiration by 300-480 mm annually. Initially, excess water contributes to increased storage in the unsaturated zone, and then drainage causes cyclical rises in the water table beneath the fields. Native chloride and nitrate below 200 cm depth are leached by the drainage. Some CBM water moves upward from the drip tubing, drawn by drier conditions above. Chloride from CBM water accumulates there as root uptake removes the water. Year over year accumulations indicated by computer simulations illustrate that infiltration of precipitation water from the surface only partially leaches such accumulations away. Field data show that 7% and 27% of added chloride has accumulated above the drip tubing in an alfalfa and grass field, respectively, following 6 years of irrigation. Maximum chloride concentrations in the alfalfa field are around 45 cm depth but reach the surface in parts of the grass field, illustrating differences driven by crop physiology. Deep SDI offers a means of utilizing marginal quality irrigation waters and managing the accumulation of their associated solutes in the crop rooting zone.

  4. Street floods in Metro Manila and possible solutions.

    Science.gov (United States)

    Lagmay, Alfredo Mahar; Mendoza, Jerico; Cipriano, Fatima; Delmendo, Patricia Anne; Lacsamana, Micah Nieves; Moises, Marc Anthony; Pellejera, Nicanor; Punay, Kenneth Niño; Sabio, Glenn; Santos, Laurize; Serrano, Jonathan; Taniza, Herbert James; Tingin, Neil Eneri

    2017-09-01

    Urban floods from thunderstorms cause severe problems in Metro Manila due to road traffic. Using Light Detection and Ranging (LiDAR)-derived topography, flood simulations and anecdotal reports, the root of surface flood problems in Metro Manila is identified. Majority of flood-prone areas are along the intersection of creeks and streets located in topographic lows. When creeks overflow or when rapidly accumulated street flood does not drain fast enough to the nearest stream channel, the intersecting road also gets flooded. Possible solutions include the elevation of roads or construction of well-designed drainage structures leading to the creeks. Proposed solutions to the flood problem of Metro Manila may avoid paralyzing traffic problems due to short-lived rain events, which according to Japan International Cooperation Agency (JICA) cost the Philippine economy 2.4billionpesos/day. Copyright © 2017. Published by Elsevier B.V.

  5. A cell wall-bound adenosine nucleosidase is involved in the salvage of extracellular ATP in Solanum tuberosum.

    Science.gov (United States)

    Riewe, David; Grosman, Lukasz; Fernie, Alisdair R; Zauber, Henrik; Wucke, Cornelia; Geigenberger, Peter

    2008-10-01

    Extracellular ATP (eATP) has recently been demonstrated to play a crucial role in plant development and growth. To investigate the fate of eATP within the apoplast, we used intact potato (Solanum tuberosum) tuber slices as an experimental system enabling access to the apoplast without interference of cytosolic contamination. (i) Incubation of intact tuber slices with ATP led to the formation of ADP, AMP, adenosine, adenine and ribose, indicating operation of apyrase, 5'-nucleotidase and nucleosidase. (ii) Measurement of apyrase, 5'-nucleotidase and nucleosidase activities in fractionated tuber tissue confirmed the apoplastic localization for apyrase and phosphatase in potato and led to the identification of a novel cell wall-bound adenosine nucleosidase activity. (iii) When intact tuber slices were incubated with saturating concentrations of adenosine, the conversion of adenosine into adenine was much higher than adenosine import into the cell, suggesting a potential bypass of adenosine import. Consistent with this, import of radiolabeled adenine into tuber slices was inhibited when ATP, ADP or AMP were added to the slices. (iv) In wild-type plants, apyrase and adenosine nucleosidase activities were found to be co-regulated, indicating functional linkage of these enzymes in a shared pathway. (v) Moreover, adenosine nucleosidase activity was reduced in transgenic lines with strongly reduced apoplastic apyrase activity. When taken together, these results suggest that a complete ATP salvage pathway is present in the apoplast of plant cells.

  6. Accumulation, distribution and toxicological effects induced by chromium on the development of mangrove plant Kandelia candel (L. Druce

    Directory of Open Access Journals (Sweden)

    Kazi Shakila Islam

    2009-04-01

    Full Text Available A study was performed for investigating accumulation, distribution and toxicological effects induced by chromium (Cr on the development of the mangrove seedling Kandelia candel (L. Druce. Seedlings treated with increasing concentrations of CrCl3 solution (0, 0.5, 1, 1.5, 2, 2.5, 3 mg L-1, respectively were grown in a basic nutrient solution for three months. The five month old seedlings were harvested for the experiment. This study showed that Cr treatment significantly decreased growth of K. candel in terms of seedling height, leaf number and total biomass. At the highest 3 mg L-1 Cr exposure, there was a 34.47% decrease in final seedling height, 68.95% decrease in leaf number and a 60.65% decrease in total biomass. The present study demonstrates that Cr accumulation ability of K. candel seedlings increased with the increase of treatment strength up to certain level. The concentrations of Cr in root, hypocotyl, stem and leaf ranged from 22.87 to 1.43 mg kg-1, 1.30 to 0.68 mg kg-1, 2.42 to 0.91 mg kg-1, and 1.74 to 0.74 mg kg-1, respectively. When comparing Cr concentration in different plant parts with respect to their controls, the results showed that treated plant root bioaccumulated high amounts of Cr. Almost 80% of Cr was accumulated mainly in roots. The distribution pattern of Cr in K. candel was Root > Stem > Leaf > Hypocotyl. Our findings indicated that the high concentration of Cr supply may interfere with several metabolic processes of seedlings, causing toxicity to plants as exhibited by chlorosis, necrosis, and finally, plant death.

  7. Dynamically accumulated dose and 4D accumulated dose for moving tumors

    International Nuclear Information System (INIS)

    Li Heng; Li Yupeng; Zhang Xiaodong; Li Xiaoqiang; Liu Wei; Gillin, Michael T.; Zhu, X. Ronald

    2012-01-01

    Purpose: The purpose of this work was to investigate the relationship between dynamically accumulated dose (dynamic dose) and 4D accumulated dose (4D dose) for irradiation of moving tumors, and to quantify the dose uncertainty induced by tumor motion. Methods: The authors established that regardless of treatment modality and delivery properties, the dynamic dose will converge to the 4D dose, instead of the 3D static dose, after multiple deliveries. The bounds of dynamic dose, or the maximum estimation error using 4D or static dose, were established for the 4D and static doses, respectively. Numerical simulations were performed (1) to prove the principle that for each phase, after multiple deliveries, the average number of deliveries for any given time converges to the total number of fractions (K) over the number of phases (N); (2) to investigate the dose difference between the 4D and dynamic doses as a function of the number of deliveries for deliveries of a “pulsed beam”; and (3) to investigate the dose difference between 4D dose and dynamic doses as a function of delivery time for deliveries of a “continuous beam.” A Poisson model was developed to estimate the mean dose error as a function of number of deliveries or delivered time for both pulsed beam and continuous beam. Results: The numerical simulations confirmed that the number of deliveries for each phase converges to K/N, assuming a random starting phase. Simulations for the pulsed beam and continuous beam also suggested that the dose error is a strong function of the number of deliveries and/or total deliver time and could be a function of the breathing cycle, depending on the mode of delivery. The Poisson model agrees well with the simulation. Conclusions: Dynamically accumulated dose will converge to the 4D accumulated dose after multiple deliveries, regardless of treatment modality. Bounds of the dynamic dose could be determined using quantities derived from 4D doses, and the mean dose

  8. Plastic accumulation in the Mediterranean sea.

    Directory of Open Access Journals (Sweden)

    Andrés Cózar

    Full Text Available Concentrations of floating plastic were measured throughout the Mediterranean Sea to assess whether this basin can be regarded as a great accumulation region of plastic debris. We found that the average density of plastic (1 item per 4 m2, as well as its frequency of occurrence (100% of the sites sampled, are comparable to the accumulation zones described for the five subtropical ocean gyres. Plastic debris in the Mediterranean surface waters was dominated by millimeter-sized fragments, but showed a higher proportion of large plastic objects than that present in oceanic gyres, reflecting the closer connection with pollution sources. The accumulation of floating plastic in the Mediterranean Sea (between 1,000 and 3,000 tons is likely related to the high human pressure together with the hydrodynamics of this semi-enclosed basin, with outflow mainly occurring through a deep water layer. Given the biological richness and concentration of economic activities in the Mediterranean Sea, the affects of plastic pollution on marine and human life are expected to be particularly frequent in this plastic accumulation region.

  9. Plastic Accumulation in the Mediterranean Sea

    KAUST Repository

    Có zar, André s; Sanz-Martí n, Marina; Martí , Elisa; Gonzá lez-Gordillo, J. Ignacio; Ubeda, Bá rbara; Gá lvez, José Á .; Irigoien, Xabier; Duarte, Carlos M.

    2015-01-01

    Concentrations of floating plastic were measured throughout the Mediterranean Sea to assess whether this basin can be regarded as a great accumulation region of plastic debris. We found that the average density of plastic (1 item per 4 m2), as well as its frequency of occurrence (100% of the sites sampled), are comparable to the accumulation zones described for the five subtropical ocean gyres. Plastic debris in the Mediterranean surface waters was dominated by millimeter-sized fragments, but showed a higher proportion of large plastic objects than that present in oceanic gyres, reflecting the closer connection with pollution sources. The accumulation of floating plastic in the Mediterranean Sea (between 1,000 and 3,000 tons) is likely related to the high human pressure together with the hydrodynamics of this semi-enclosed basin, with outflow mainly occurring through a deep water layer. Given the biological richness and concentration of economic activities in the Mediterranean Sea, the affects of plastic pollution on marine and human life are expected to be particularly frequent in this plastic accumulation region.

  10. Plastic Accumulation in the Mediterranean Sea

    KAUST Repository

    Cózar, Andrés

    2015-04-01

    Concentrations of floating plastic were measured throughout the Mediterranean Sea to assess whether this basin can be regarded as a great accumulation region of plastic debris. We found that the average density of plastic (1 item per 4 m2), as well as its frequency of occurrence (100% of the sites sampled), are comparable to the accumulation zones described for the five subtropical ocean gyres. Plastic debris in the Mediterranean surface waters was dominated by millimeter-sized fragments, but showed a higher proportion of large plastic objects than that present in oceanic gyres, reflecting the closer connection with pollution sources. The accumulation of floating plastic in the Mediterranean Sea (between 1,000 and 3,000 tons) is likely related to the high human pressure together with the hydrodynamics of this semi-enclosed basin, with outflow mainly occurring through a deep water layer. Given the biological richness and concentration of economic activities in the Mediterranean Sea, the affects of plastic pollution on marine and human life are expected to be particularly frequent in this plastic accumulation region.

  11. Plastic accumulation in the Mediterranean sea.

    Science.gov (United States)

    Cózar, Andrés; Sanz-Martín, Marina; Martí, Elisa; González-Gordillo, J Ignacio; Ubeda, Bárbara; Gálvez, José Á; Irigoien, Xabier; Duarte, Carlos M

    2015-01-01

    Concentrations of floating plastic were measured throughout the Mediterranean Sea to assess whether this basin can be regarded as a great accumulation region of plastic debris. We found that the average density of plastic (1 item per 4 m2), as well as its frequency of occurrence (100% of the sites sampled), are comparable to the accumulation zones described for the five subtropical ocean gyres. Plastic debris in the Mediterranean surface waters was dominated by millimeter-sized fragments, but showed a higher proportion of large plastic objects than that present in oceanic gyres, reflecting the closer connection with pollution sources. The accumulation of floating plastic in the Mediterranean Sea (between 1,000 and 3,000 tons) is likely related to the high human pressure together with the hydrodynamics of this semi-enclosed basin, with outflow mainly occurring through a deep water layer. Given the biological richness and concentration of economic activities in the Mediterranean Sea, the affects of plastic pollution on marine and human life are expected to be particularly frequent in this plastic accumulation region.

  12. Plastic Accumulation in the Mediterranean Sea

    Science.gov (United States)

    Cózar, Andrés; Sanz-Martín, Marina; Martí, Elisa; González-Gordillo, J. Ignacio; Ubeda, Bárbara; Gálvez, José Á.; Irigoien, Xabier; Duarte, Carlos M.

    2015-01-01

    Concentrations of floating plastic were measured throughout the Mediterranean Sea to assess whether this basin can be regarded as a great accumulation region of plastic debris. We found that the average density of plastic (1 item per 4 m2), as well as its frequency of occurrence (100% of the sites sampled), are comparable to the accumulation zones described for the five subtropical ocean gyres. Plastic debris in the Mediterranean surface waters was dominated by millimeter-sized fragments, but showed a higher proportion of large plastic objects than that present in oceanic gyres, reflecting the closer connection with pollution sources. The accumulation of floating plastic in the Mediterranean Sea (between 1,000 and 3,000 tons) is likely related to the high human pressure together with the hydrodynamics of this semi-enclosed basin, with outflow mainly occurring through a deep water layer. Given the biological richness and concentration of economic activities in the Mediterranean Sea, the affects of plastic pollution on marine and human life are expected to be particularly frequent in this plastic accumulation region. PMID:25831129

  13. Influence of ethyl-trinexapac on 15N accumulation and distribution and on highland rice yield

    International Nuclear Information System (INIS)

    Alvarez, Rita de Cassia Felix; Crusciol, Carlos Alexandre Costa; Alvarez, Angela Cristina Camarim; Trivelin, Paulo Cesar Ocheuze; Rodrigues, Joao Domingos

    2007-01-01

    The high rice grain yields ensured by sprinkler irrigation have encouraged the use of higher fertilizer doses, mainly the nitrogen fertilizers. However, an improper management of nitrogen fertilization may result in plant lodging. Application of plant regulators may redirect assimilates to grain production while limiting the vegetative growth. This study aimed to: evaluate the influence of the growth regulator Ethyl-trinexapac on plant growth parameters and on 15 N accumulation and distribution in the whole plant and plant components, and determine the contribution of nitrogen taken up in different developmental stages in panicle formation, yield components and rice yield. The experiment was carried out under controlled greenhouse conditions. The treatments consisted of application or not of a plant growth regulator (0 and 200 g active ingredient ha-1 of ethyl-trinexapac) at four plant development stages (beginning to end of tillering; end of tillering and flower differentiation; flower differentiation to flowering; flowering until physiological maturation). The experimental design was arranged in random blocks, in a 2 x 4 factorial scheme, with three replications. The plants were placed in a group of 48 pots. In a group of 24 pots with nutrient solution containing 15 NH 4 SO 4 , plants were collected and separated in parts in the beginning of each pre-established plant development stage and at the end of each stage. In a second group (24 pots), pre-labeled plants were left to grow in nutrient solution with 14 NH 4 SO 4 and harvested at the end of each cycle in order to access 15 N redistribution.. The growth regulator reduced plant height and 15 N accumulation in the panicle and promoted redistribution of the absorbed 15 N, and increased accumulated 15 N in root, stem+sheats and leaves. The contribution of absorbed 15 N to panicle formation in each stage increased with the plant development, though in a lower proportion in the presence of the growth regulator

  14. Accumulation Characteristics of Pb by Zea Mays of Different Genotyoes

    Directory of Open Access Journals (Sweden)

    QIN Rong-lin

    2016-05-01

    Full Text Available To determine the characteristics of lead(Pb accumulation by different maize genotypes, two low accumulation genotypes(Quchen 11, Quchen 3 and two high accumulation maize genotypes(Jingfeng 8, Xuyu 1446 were used in a field experiment under Pb stress(2 000 mg·kg-1. The following parameters were measured including the change of plant biomass , Pb contents in different plant parts, total Pb uptake,Pb accumulation and translocation of different maize varieties,soil pH value and available Pb contents in soils. The results showed that: (1Compared with the control, the Pb stress caused a decrease at differnet levels on the biomass of roots, stems, leaves and grains of the four maize genotypes. The plant biomass decreased by 9.65%~20.46%. And the decrease level on the plant biomass of the low accumulation maize genotypes was less than the high accumulation maize genotypes. (2The Pb contents were found highest in the roots(95.39~121.02 mg·kg-1, followed by the leaves(25.56~43.21 mg·kg-1 and stems(14.06~25.41 mg·kg-1, and lest in the grains(2.52~5.38 mg·kg-1. Moreover, the Pb contents in roots were higher of low accumulation maize genotypes than high accumulation maize genotypes. In contrast, the Pb contents in the stems, leaves and grains were less of the low accumulation maize genotypes than the high accumulation maize genotypes. The total Pb accumulation of maize was 4.46~7.94 mg per plant, and which was significant less of the low accumulation maize genotypes than the high accumulation maize genotypes. (3For the four maize genotypes, both the accumulation factor and translocation factor of Pb were less than 1, and were smaller of the low accumulation maize genotypes than the high accumulation maize genotypes. (4The pH values in soils were 6.60~6.82, which were significant higher of the low accumulation maize genotypes than the high accumulation maize genotypes, the available Pb contents in soils were 969.86~1 116.15 mg·kg-1。

  15. Creation / accumulation city

    NARCIS (Netherlands)

    Doevendans, C.H.; Schram, A.L.

    2005-01-01

    A distinction between basic archetypes of urban form was made by Bruno Fortier: the accumulation city as opposed to the creation city. These archetypes derive from archaeology - being based on the Roman and the Egyptian city - but are interpreted as morphological paradigms, as a set of assumptions

  16. Low Resolution Structure of RAR1-GST-Tag Fusion Protein in Solution

    International Nuclear Information System (INIS)

    Taube, M.; Kozak, M.; Jarmolowski, A.

    2010-01-01

    RAR1 is a protein required for resistance mediated by many R genes and function upstream of signaling pathways leading to H 2 O 2 accumulation. The structure and conformation of RAR1-GST-Tag fusion protein from barley (Hordeum vulgare) in solution was studied by the small angle scattering of synchrotron radiation. It was found that the dimer of RAR1-GST-Tag protein is characterized in solution by radius of gyration R G = 6.19 nm and maximal intramolecular vector D max = 23 nm. On the basis of the small angle scattering of synchrotron radiation SAXS data two bead models obtained by ab initio modeling are proposed. Both models show elongated conformations. We also concluded that molecules of fusion protein form: dimers in solution via interaction of GST domains. (authors)

  17. Prosopis juliflora--a green solution to decontaminate heavy metal (Cu and Cd) contaminated soils.

    Science.gov (United States)

    Senthilkumar, P; Prince, W S P M; Sivakumar, S; Subbhuraam, C V

    2005-09-01

    Soil and plant samples (root and shoot) of Prosopis juliflora were collected in the vicinity of metal based foundry units in Coimbatore and assessed for their heavy metal content (Cu and Cd) to ascertain the use of P. juliflora as a green solution to decontaminate soils contaminated with Cu and Cd. The results showed that Cu and Cd content was much higher in plant components compared to their extractable level in the soil. Furthermore, there exist a strong correlation between the distance of the sources of industrial units and accumulation of heavy metals in plants. Accumulation of Cd in roots is comparatively higher than that of shoots. However, in case of Cu no such clear trend is seen. Considering the accumulation efficiency and tolerance of P. juliflora to Cd and Cu, this plant can be explored further for the decontamination of metal polluted soils. On the other hand, in view of heavy metal accumulate the practice of providing foliage and pods as fodder for live stock should be avoided.

  18. Low-molecular-weight organic acids correlate with cultivar variation in ciprofloxacin accumulation in Brassica parachinensis L.

    Science.gov (United States)

    Zhao, Hai-Ming; Xiang, Lei; Wu, Xiao-Lian; Jiang, Yuan-Neng; Li, Hui; Li, Yan-Wen; Cai, Quan-Ying; Mo, Ce-Hui; Liu, Jie-Sheng; Wong, Ming-Hung

    2017-08-31

    To understand the mechanism controlling cultivar differences in the accumulation of ciprofloxacin (CIP) in Chinese flowering cabbage (Brassica parachinensis L.), low-molecular-weight organic acids (LMWOAs) secreted from the roots of high- and low-CIP cultivars (Sijiu and Cutai, respectively) and their effects on the bioavailability of CIP in soil were investigated. Significant differences in the content of LMWOAs (especially maleic acid) between the two cultivars played a key role in the variation in CIP accumulation. Based on the Freundlich sorption coefficient (K f ) and distribution coefficient (K d ), the presence of LMWOAs reduced the CIP sorption onto soil particles, and higher concentrations of LMWOAs led to less CIP sorption onto soil. On the other hand, LMWOAs enhanced CIP desorption by lowering the solution pH, which changed the surface charge of soil particles and the degree of CIP ionization. LMWOAs promoted CIP desorption from soil by breaking cation bridges and dissolving metal cations, particularly Cu 2+ . These results implied that the LMWOAs (mainly maleic acid) secreted from Sijiu inhibited CIP sorption onto soil and improved CIP desorption from soil to a greater extent than those secreted from Cutai, resulting in higher bioavailability of CIP and more uptake and accumulation of CIP in the former.

  19. Mechanisms of thallium-201 accumulation to thyroid gland

    International Nuclear Information System (INIS)

    Kishida, Toshihiro

    1987-01-01

    In this study 91 patients with goiter were scintigraphed for the duration of 84 minutes after intravenous administration of thallium-201 by digital γ camera lined to computer data system. Regions of interest (ROIs) were assigned for thyroid tumor, normal thyroid and back ground, and time-activity curves (TACs) were generated from these ROIs. Na + , K + -ATPase activity of microsome fraction from thyroid tumor and the normal thyroid glands was determined. The first 15 minutes accumulation of each ROI was determined as the early accumulation of thallium-201 for tumor and the normal thyroid glands. Papillary and follicular carcinomas, showing the high accumulation of thallium-201, had high activity of Na + , K + -ATPase. Microfollicular adenomas had high activity of Na + , K + -ATPase and demonstrated intense accumulation of thallium-201. However, colloid adenoma had a similar level of Na + , K + -ATPase activity to that of the normal thyroid glands and did not demonstrate radionuclide accumulation. Consequently, radionuclide accumulation in thallium-201 thyroid scintigraphy was closely correlated to Na + , K + -ATPase activity of thyroid tumor. Thyroid blood flow was measured by hydrogen gas clearance method. Thyroid blood flow of papillary carcinoma was smaller, as compared with normal thyroid blood flow. TAC of papillary carcinoma showed flattening. Thallium-201 accumulation in early image was also found to correspond to thyroid blood flow. From this study we can conclude that mechanisms of thallium-201 accumulation in a thyroid tumor depends on Na + , K + -ATPase activity and thyroid blood flow. Washout of TAC in thallium-201 scintigraphy appears dependent on blood flow of a thyroid nodule. (author)

  20. Behaviour of radioactive and stable isotopes of calcium in the soil-solution-plant system at different soil humidity

    International Nuclear Information System (INIS)

    Karavaeva, E.N.; Molchanova, I.V.

    1976-01-01

    The results of experiments performed to study the behaviour of radioactive and stable isotopes of Ca in soil - solution - plant system at different soil moistening are given. The experiments have been conducted in culture pans with two soils: soddy-meadow and soddy-podzolic differing in a number of physico-chemical properties. The solution of radioactive Ca( 45 CaCl 2 ) has been applied to soddy-meadow soil at the rate of 0.2 μcurie/kg, and to soddy-podzolic soil - at the rate of 0.1 μcurie/kg. The distribution and accumulation coefficients are estimated by the ratio to the total content of stable Ca and 45 Ca in soil. A direct relationship between distribution coefficients and the rate of soil moistening is observed. It has been established that 45 Ca and the natural stable isotopes of Ca applied to the soil differ in the type of distribution in soil - soil solution system and in accumulation by plants. However, a great similarity has been observed in behaviour of radioactive and stable isotopes of Ca depending on soil moistening

  1. Microbial accumulation of uranium, radium, and cesium

    International Nuclear Information System (INIS)

    Strandberg, G.W.; Shumate, S.E. II; Parrott, J.R. Jr.; North, S.E.

    1981-05-01

    Diverse microbial species varied considerably in their ability to accumulate uranium, cesium, and radium. Mechanistic differences in uranium uptake by Saccharomyces cerevisiae and Pseudomonas aeruginosa were indicated. S. serevisiae exhibited a slow (hours) surface accumulation of uranium which was subject to environmental factors, while P. aeruginosa accumulated uranium rapidly (minutes) as dense intracellular deposits and did not appear to be affected by environmental parameters. Metabolism was not required for uranium uptake by either organism. Cesium and radium were concentrated to a considerably lesser extent than uranium by the several species tested

  2. Experimental Methods to Estimate Accumulated Solids in Nuclear Waste Tanks - 13313

    Energy Technology Data Exchange (ETDEWEB)

    Duignan, Mark R.; Steeper, Timothy J.; Steimke, John L. [Savannah River Nuclear Solutions, Savannah River National Laboratory, Aiken, SC 29808 (United States)

    2013-07-01

    The Department of Energy has a large number of nuclear waste tanks. It is important to know if fissionable materials can concentrate when waste is transferred from staging tanks prior to feeding waste treatment plants. Specifically, there is a concern that large, dense particles, e.g., plutonium containing, could accumulate in poorly mixed regions of a blend tank heel for tanks that employ mixing jet pumps. At the request of the DOE Hanford Tank Operations Contractor, Washington River Protection Solutions, the Engineering Development Laboratory of the Savannah River National Laboratory performed a scouting study in a 1/22-scale model of a waste tank to investigate this concern and to develop measurement techniques that could be applied in a more extensive study at a larger scale. Simulated waste tank solids and supernatant were charged to the test tank and rotating liquid jets were used to remove most of the solids. Then the volume and shape of the residual solids and the spatial concentration profiles for the surrogate for plutonium were measured. This paper discusses the overall test results, which indicated heavy solids only accumulate during the first few transfer cycles, along with the techniques and equipment designed and employed in the test. Those techniques include: - Magnetic particle separator to remove stainless steel solids, the plutonium surrogate from a flowing stream. - Magnetic wand used to manually remove stainless steel solids from samples and the tank heel. - Photographs were used to determine the volume and shape of the solids mounds by developing a composite of topographical areas. - Laser range finders to determine the volume and shape of the solids mounds. - Core sampler to determine the stainless steel solids distribution within the solids mounds. - Computer driven positioner that placed the laser range finders and the core sampler over solids mounds that accumulated on the bottom of a scaled staging tank in locations where jet velocities

  3. Evaluation of two models for predicting elemental accumulation by arthropods

    International Nuclear Information System (INIS)

    Webster, J.R.; Crossley, D.A. Jr.

    1978-01-01

    Two different models have been proposed for predicting elemental accumulation by arthropods. Parameters of both models can be quantified from radioisotope elimination experiments. Our analysis of the 2 models shows that both predict identical elemental accumulation for a whole organism, though differing in the accumulation in body and gut. We quantified both models with experimental data from 134 Cs and 85 Sr elimination by crickets. Computer simulations of radioisotope accumulation were then compared with actual accumulation experiments. Neither model showed exact fit to the experimental data, though both showed the general pattern of elemental accumulation

  4. Study on accumulation mechanism for heavy metal in hyper-accumulating plants by synchrotron radiation x-ray analysis

    International Nuclear Information System (INIS)

    Hokura, Akiko; Kitajima, Nobuyuki; Terada, Yasuko; Nakai, Izumi

    2010-01-01

    Some plants accumulate heavy metal elements such as As, Cd, and Pb, etc., and these plants have been focused on from the perspective of their application to phytoremediation. In order to understand the accumulation mechanism, the distribution and the chemical form of heavy metal should be revealed at cellular level. Here, we have introduced the recent works regarding arsenic hyperaccumulating fern (Pteris vittata L.) and cadmium hyperaccumulating plant (Arabidopsis halleri ssp. gemmifera). A combination of μ-XRF and μ-XANES techniques excited by high-energy X-ray microbeam with 1 μm resolution has proved to be an indispensable tool for the study of Cd accumulation in biological samples on a cellular scale. The sample-preparation techniques were also summarized. (author)

  5. In Vivo Inhibition of Lipid Accumulation in Caenorhabditis elegans

    Science.gov (United States)

    Sulistiyani; Purwakusumah, E. P.; Andrianto, D.

    2017-03-01

    This is a preliminary research report on the use of Caenorhabditis elegans as a model to establish anti-obesity screening assay of the natural plant resources. Nematode C. elegans has been used as experimental animal model for understanding lipid accumulation. The objective of this research was to investigate the effect of selected plant extracts on lipid accumulation in C. elegans. Currently no report could be found regarding lipid accumulation in C.elegans treated with ethanolic leaf extracts of jabon merah (Anthocephalus macrophyllus), jati belanda (Guazuma ulmifolia), and Mindi (Melia Azedarach) plants. Lipid accumulation was determined qualitatively using lipid staining method and quantitatively by colorimetry using sulpho-phospho-vanillin reagent. Data showed that lipid accumulation was inhibited up to 72% by extract of M. azedarach, about 35% by both of A. macrophyllus and G. ulmifolia extracts, and up to 25% by orlistat (a synthetic slimming drug). Ethanolic extract of A. macrophyllus, G. ulmifolia, and M. azedarach leaves were shown to inhibit lipid accumulation in C. elegans and M. azedarach leaves extracts was the most effective inhibitor. C.elegans were shown to be an effective model for in vivo lipid accumulation mechanism and potential to be used as a rapid screening assay for bioactive compounds with lipid accumulation inhibitory activity.

  6. Apparently normal accumulation in the patellae on bone scintigraphy

    International Nuclear Information System (INIS)

    Kato, Katsuhiko; Ikeda, Mitsuru; Tadokoro, Masanori; Yoshida, Kiyo; Kobayashi, Hidetoshi; Ishigaki, Takeo

    1997-01-01

    In the present study, we examined the influences of gender and ages on accumulation in the patellae on scintigram. The subjects were 828 patients who underwent bone scintigraphy during the past one and half years at the Department of Radiology, Nagoya University Hospital. Patients younger than 20 years old and those with abnormality of the patellae were excluded. The degree of accumulation in the patellae was evaluated using the A-P whole body scintigraphy in comparison with accumulation at the diaphysis of the femur and classified to two categories, ''Positive'' (higher accumulation than that of the diaphysis of the femur) and ''Negative'' (equal or lower than that of the diaphysis of the femur). In general, the degree of accumulation was higher in females than in males. In both males and females, the degree of accumulation increased with age. A difference between the two sides in the degree of accumulation in the patellae was observed in 32% of subjects. The results of this study may serve as basic data for the interpretation of bone scintigrams. (author)

  7. Carbon accumulation in pristine and drained mires

    Energy Technology Data Exchange (ETDEWEB)

    Maekilae, M.

    2011-07-01

    The carbon accumulation of 73 peat columns from 48 pristine and drained mires was investigated using a total of 367 dates and age-depth models derived from bulk density measurements. Peat columns were collected from mires of varying depth, age, degree of natural state and nutrient conditions in aapa mire and raised bog regions and coastal mires from southern and central Finland and Russian Karelia. Particular attention was paid to the accumulation of carbon over the last 300 years, as this period encompasses the best estimates of the oxic layer (acrotelm) age across the range of sites investigated. In general, drained mires are initially more nutrient-rich than pristine mires. Organic matter decomposes more rapidly at drained sites than at pristine sites, resulting in thinner peat layers and carbon accumulation but a higher dry bulk density and carbon content. The average carbon accumulation was calculated as 24.0 g m-2 yr-1 at pristine sites and 19.4 g m-2 yr-1 at drained sites, while for peat layers younger than 300 years the respective figures were 45.3 and 34.5 g m-2 yr-1 at pristine and drained sites. For the <300-year-old peat layers studied here, the average thickness was 19 cm less and the carbon accumulation rate 10.8 g m-2 yr-1 lower in drained areas than in pristine areas. The amount carbon accumulation of surface peat layers depends upon the mire site type, vegetation and natural state; variations reflect differences in plant communities as well as factors that affect biomass production and decay rates. The highest accumulation rates and thus carbon binding for layers younger than 300 years were measured in the ombrotrophic mire site types (Sphagnum fuscum bog and Sphagnum fuscum pine bog), and the second highest rates in wet, treeless oligotrophic and minerotrophic mire site types. The lowest values of carbon accumulation over the last 300 years were obtained for the most transformed, sparsely forested and forested mire site types, where the water

  8. Nectar resorption in flowers of Sinapis alba L., Brassicaceae and Platanthera chlorantha Custer (Rchb.), Orchidaceae

    International Nuclear Information System (INIS)

    Masierowska, M.L.; Stpiczynska, M.

    2005-01-01

    Full text: In the flowers of Sinapis alba nectar is secreted by two pairs of nectaries and accumulated as drops between filaments and in the cavity of sepals whereas in Platanthera chlorantha nectar is produced and accumulated within a spur. Previous studies of these species revealed that after a period of secretion and cessation, rapid nectar resorption occurs. The aim of this study was the observation of nectar resorption by the nectaries using radiolabelled sucrose. During the peak of secretion the nectar accumulated in unpollinated flowers was replaced with the same volume of labelled sucrose and after 12-48 hrs of incubation, at the resorption phase, parts of S. alba flowers with nectaries as well as fragments of P. chlorantha spur were sampled and fixed for microautoradiographic studies. In S. alba the presence of [ 14 C(U)] sucrose was detected at the base of nectaries, in phloem elements of main vascular strands supplying glands, whereas both epidermis and nectary parenchyma showed no traces of radiolabelled sugars. In P. chlorantha the presence of labelled sucrose was stated mainly in the walls of nectary cells, which indicate an apoplastic route of reabsorbed nectar. (author)

  9. WEALTH TAXATION AND WEALTH ACCUMULATION

    DEFF Research Database (Denmark)

    Jakobsen, Katrine Marie Tofthøj; Jakobsen, Kristian Thor; Kleven, Henrik

    Using administrative wealth records from Denmark, we study the effects of wealth taxes on wealth accumulation. Denmark used to impose one of the world's highest marginal tax rates on wealth, but this tax was drastically reduced and ultimately abolished between 1989 and 1997. Due to the specific d...... on wealth accumulation. Our simulations show that the long-run elasticity of wealth with respect to the net-of-tax return is sizeable at the top of distribution. Our paper provides the type of evidence needed to assess optimal capital taxation.......Using administrative wealth records from Denmark, we study the effects of wealth taxes on wealth accumulation. Denmark used to impose one of the world's highest marginal tax rates on wealth, but this tax was drastically reduced and ultimately abolished between 1989 and 1997. Due to the specific...... design of the wealth tax, these changes provide a compelling quasi-experiment for understanding behavioral responses among the wealthiest segments of the population. We find clear reduced-form effects of wealth taxes in the short and medium run, with larger effects on the very wealthy than...

  10. Biosynthesis of compatible solutes in rhizobial strains isolated from Phaseolus vulgaris nodules in Tunisian fields

    Directory of Open Access Journals (Sweden)

    Nieto Joaquín J

    2010-07-01

    Full Text Available Abstract Background Associated with appropriate crop and soil management, inoculation of legumes with microbial biofertilizers can improve food legume yield and soil fertility and reduce pollution by inorganic fertilizers. Rhizospheric bacteria are subjected to osmotic stress imposed by drought and/or NaCl, two abiotic constraints frequently found in semi-arid lands. Osmostress response in bacteria involves the accumulation of small organic compounds called compatible solutes. Whereas most studies on rhizobial osmoadaptation have focussed on the model species Sinorhizobium meliloti, little is known on the osmoadaptive mechanisms used by native rhizobia, which are good sources of inoculants. In this work, we investigated the synthesis and accumulations of compatible solutes by four rhizobial strains isolated from root nodules of Phaseolus vulgaris in Tunisia, as well as by the reference strain Rhizobium tropici CIAT 899T. Results The most NaCl-tolerant strain was A. tumefaciens 10c2, followed (in decreasing order by R. tropici CIAT 899, R. leguminosarum bv. phaseoli 31c3, R. etli 12a3 and R. gallicum bv. phaseoli 8a3. 13C- and 1H-NMR analyses showed that all Rhizobium strains synthesized trehalose whereas A. tumefaciens 10c2 synthesized mannosucrose. Glutamate synthesis was also observed in R. tropici CIAT 899, R. leguminosarum bv. phaseoli 31c3 and A. tumefaciens 10c2. When added as a carbon source, mannitol was also accumulated by all strains. Accumulation of trehalose in R. tropici CIAT 899 and of mannosucrose in A. tumefaciens 10c2 was osmoregulated, suggesting their involvement in osmotolerance. The phylogenetic analysis of the otsA gene, encoding the trehalose-6-phosphate synthase, suggested the existence of lateral transfer events. In vivo 13C labeling experiments together with genomic analysis led us to propose the uptake and conversion pathways of different carbon sources into trehalose. Collaterally, the β-1,2-cyclic glucan from R

  11. Placental passage of rose bengal 131I, its accumulation in the fetus and its distribution in the organs of the female mice

    International Nuclear Information System (INIS)

    Sudarwati, S.; Sutasurya, L.A.

    1977-01-01

    Female mice of various gestation periods were injected intraperitoneally with 0.25-0.5O ml of rose bengal 131 I with the activity between 225-250 μCi. A group was administered with Lugol's solution one day before treatment. Accumulation of radio-rose bengal in the fetuses started at the eleventh day and great increase occured at the seventeenth day of gestation till birth. Acculmulations in both fetal and female mice's thyroids could be prevented by administering Lugol's solution before treatment, and the second target of the labelled compound after the thyroid gland was liver. (author)

  12. Selenium accumulation by plants

    Science.gov (United States)

    White, Philip J.

    2016-01-01

    Background Selenium (Se) is an essential mineral element for animals and humans, which they acquire largely from plants. The Se concentration in edible plants is determined by the Se phytoavailability in soils. Selenium is not an essential element for plants, but excessive Se can be toxic. Thus, soil Se phytoavailability determines the ecology of plants. Most plants cannot grow on seleniferous soils. Most plants that grow on seleniferous soils accumulate 100 mg Se kg–1 dry matter. These plants are considered to be Se accumulators. Some species can even accumulate Se concentrations of 1000–15 000 mg Se kg–1 dry matter and are called Se hyperaccumulators. Scope This article provides an overview of Se uptake, translocation and metabolism in plants and highlights the possible genetic basis of differences in these between and within plant species. The review focuses initially on adaptations allowing plants to tolerate large Se concentrations in their tissues and the evolutionary origin of species that hyperaccumulate Se. It then describes the variation in tissue Se concentrations between and within angiosperm species and identifies genes encoding enzymes limiting the rates of incorporation of Se into organic compounds and chromosomal loci that might enable the development of crops with greater Se concentrations in their edible portions. Finally, it discusses transgenic approaches enabling plants to tolerate greater Se concentrations in the rhizosphere and in their tissues. Conclusions The trait of Se hyperaccumulation has evolved several times in separate angiosperm clades. The ability to tolerate large tissue Se concentrations is primarily related to the ability to divert Se away from the accumulation of selenocysteine and selenomethionine, which might be incorporated into non-functional proteins, through the synthesis of less toxic Se metabilites. There is potential to breed or select crops with greater Se concentrations in their edible tissues, which

  13. Noncondensable gas accumulation phenomena in nuclear power plant piping

    International Nuclear Information System (INIS)

    Yamamoto, Yasushi; Aoki, Kazuyoshi; Sato, Teruaki; Shida, Akira; Ichikawa, Nagayoshi; Nishikawa, Akira; Inagaki, Tetsuhiko

    2011-01-01

    In the case of the boiling water reactor, hydrogen and oxygen slightly exist in the main steam, because these noncondensable gases are generated by the radiolytic decomposition of the reactor water. BWR plants have taken measures to prevent noncondensable gas accumulation. However, in 2001, the detonation of noncondensable gases occurred at Hamaoka-1 and Brunsbuttel, resulting in ruptured piping. The accumulation phenomena of noncondensable gases in BWR closed piping must be investigated and understood in order to prevent similar events from occurring in the future. Therefore, an experimental study on noncondensable gas accumulation was carried out. The piping geometries for testing were classified and modeled after the piping of actual BWR plants. The test results showed that 1) noncondensable gases accumulate in vertical piping, 2) it is hard for noncondensable gases to accumulate in horizontal piping, and 3) noncondensable gases accumulate under low-pressure conditions. A simple accumulation analysis method was proposed. To evaluate noncondensable gas accumulation phenomena, the three component gases were treated as a mixture. It was assumed that the condensation amount of the vapor is small, because the piping is certainly wrapped with heat insulation material. Moreover, local thermal equilibrium was assumed. This analysis method was verified using the noncondensable gas accumulation test data on branch piping with a closed top. Moreover, an experimental study on drain trap piping was carried out. The test results showed that the noncondensable gases dissolved in the drain water were discharged from the drain trap, and Henry's law could be applied to evaluate the amount of dissolved noncondensable gases in the drain water. (author)

  14. Local and accumulated truncation errors in a class of perturbative numerical methods

    International Nuclear Information System (INIS)

    Adam, G.; Adam, S.; Corciovei, A.

    1980-01-01

    The approach to the solution of the radial Schroedinger equation using piecewise perturbative theory with a step function reference potential leads to a class of powerful numerical methods, conveniently abridged as SF-PNM(K), where K denotes the order at which the perturbation series was truncated. In the present paper rigorous results are given for the local truncation errors and bounds are derived for the accumulated truncated errors associated to SF-PNM(K), K = 0, 1, 2. They allow us to establish the smoothness conditions which have to be fulfilled by the potential in order to ensure a safe use of SF-PNM(K), and to understand the experimentally observed behaviour of the numerical results with the step size h. (author)

  15. Tracking of pigment accumulation and secretion in extractive fermentation of Monascus anka GIM 3.592.

    Science.gov (United States)

    Chen, Gong; Bei, Qi; Huang, Tao; Wu, Zhenqiang

    2017-10-04

    Monascus pigments are promising sources for food and medicine due to their natural food-coloring functions and pharmaceutical values. The innovative technology of extractive fermentation is used to promote pigment productivity, but reports of pigment trans-membrane secretion mechanism are rare. In this study, tracking of pigment accumulation and secretion in extractive fermentation of Monascus anka GIM 3.592 was investigated. The increased vacuole size in mycelia correlated with fluorescence intensity (r > 0.85, p fermentation and batch fermentation, a threefold decrease in the NAD + /NADH ratio in mycelia and a more than 200-fold increase in glucose-6-phosphate dehydrogenase (G6PDH) activity in extracellular broth occurred, further suggesting that a reduction reaction for pigment conversion from orange pigments to yellow pigments occurred in non-aqueous phase solution. A putative model was established to track the localization of Monascus pigment accumulation and its trans-membrane secretion in extractive fermentation. This finding provides a theoretical explanation for microbial extractive fermentation of Monascus pigments, as well as other non-water-soluble products.

  16. Development of technology for the process of neutralization of pickling solution of metallurgical production

    Directory of Open Access Journals (Sweden)

    Lamzina I.V.

    2016-12-01

    Full Text Available The leading branch of territorial-production complex of Russia - mechanical engineering. Companies of the industry throw dirt in the form of used organic solvents, toxic compounds of metals with waste galvanic and etching solutions, cutting fluids (coolant and emulsions. you need to create complex regeneration treatment system of the most valuable components for these liquids. Reset electroplating and etching solutions can lead to the accumulation of heavy metals in the bio-organisms of the coastal zone and to enter them through the food chain to humans. To prevent contamination, a scheme neutralizing acid waste, accompanied by a reduction in the hazard class of the etching solution to IV class with the ability to accommodate long-term storage solid industrial waste in landfills.

  17. The impact of EDTA on lead distribution and speciation in the accumulator Sedum alfredii by synchrotron X-ray investigation

    International Nuclear Information System (INIS)

    Tian Shengke; Lu Lingli; Yang Xiaoe; Huang Huagang; Brown, Patrick; Labavitch, John; Liao Haibing; He Zhenli

    2011-01-01

    The in vivo localization and speciation of lead (Pb) in tissues of the accumulator Sedum alfredii grown in EDTA-Pb and Pb(NO 3 ) 2 was studied by synchrotron X-ray investigation. The presence of EDTA-Pb in solution resulted in a significant reduction of Pb accumulation in S. alfredii. Lead was preferentially localized in the vascular bundles regardless of treatments but the intensities of Pb were lower in the plants treated with EDTA. Lead was predominantly presented as a Pb-cell wall complex in the plants regardless of its supply form. However, a relatively high proportion of Pb was observed as Pb-EDTA complex when the plant was treated with EDTA-Pb, but as a mixture of Pb 3 (PO 4 ) 2 , Pb-malic, and Pb-GSH when cultured with ionic Pb. These results suggest that EDTA does not increase the internal mobility of Pb, although the soluble Pb-EDTA complex could be transported and accumulated within the plants of S. alfredii. - Research highlights: → The plants of S. alfredii are less effective in taking up Pb from the EDTA-Pb medium. → Pb is mainly localized in the vascular bundles and probably as Pb-cell wall complex. → EDTA does not increase the internal mobility of Pb within the plants of S. alfredii. → The Pb-EDTA complex could be transported and accumulated within the plants. - The plants of S. alfredii are able to transport and accumulate the Pb-EDTA complex, but are less effective in taking up Pb from the EDTA-Pb medium.

  18. The impact of EDTA on lead distribution and speciation in the accumulator Sedum alfredii by synchrotron X-ray investigation

    Energy Technology Data Exchange (ETDEWEB)

    Tian Shengke [MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310029 (China); Lu Lingli, E-mail: linglilulu@gmail.com [MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310029 (China); Yang Xiaoe, E-mail: xyang571@yahoo.com [MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310029 (China); Huang Huagang [MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310029 (China); Brown, Patrick; Labavitch, John [Department of Plant Sciences, University of California, Davis, CA 95616 (United States); Liao Haibing [MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310029 (China); He Zhenli [University of Florida, Institute of Food and Agricultural Sciences, Indian River Research and Education Center, Fort Pierce, FL 34945 (United States)

    2011-03-15

    The in vivo localization and speciation of lead (Pb) in tissues of the accumulator Sedum alfredii grown in EDTA-Pb and Pb(NO{sub 3}){sub 2} was studied by synchrotron X-ray investigation. The presence of EDTA-Pb in solution resulted in a significant reduction of Pb accumulation in S. alfredii. Lead was preferentially localized in the vascular bundles regardless of treatments but the intensities of Pb were lower in the plants treated with EDTA. Lead was predominantly presented as a Pb-cell wall complex in the plants regardless of its supply form. However, a relatively high proportion of Pb was observed as Pb-EDTA complex when the plant was treated with EDTA-Pb, but as a mixture of Pb{sub 3}(PO{sub 4}){sub 2}, Pb-malic, and Pb-GSH when cultured with ionic Pb. These results suggest that EDTA does not increase the internal mobility of Pb, although the soluble Pb-EDTA complex could be transported and accumulated within the plants of S. alfredii. - Research highlights: > The plants of S. alfredii are less effective in taking up Pb from the EDTA-Pb medium. > Pb is mainly localized in the vascular bundles and probably as Pb-cell wall complex. > EDTA does not increase the internal mobility of Pb within the plants of S. alfredii. > The Pb-EDTA complex could be transported and accumulated within the plants. - The plants of S. alfredii are able to transport and accumulate the Pb-EDTA complex, but are less effective in taking up Pb from the EDTA-Pb medium.

  19. Zinc distribution and speciation in Arabidopsis halleri x Arabidops is lyrata progenies presenting various zinc accumulation capacities

    Energy Technology Data Exchange (ETDEWEB)

    Sarret, Geraldine; Willems, Glenda; Isaure, Marie-Pierre; Marcus, Matthew A.; Fakra, Sirine C.; Frerot, Helene; Pairis, Sebastien; Geoffroy, Nicolas; Manceau, Alain; Saumitou-Laprade, Pierre

    2010-04-08

    - The purpose of this study was to investigate the relationship between the chemical form and localization of zinc (Zn) in plant leaves and their Zn accumulationcapacity. - An interspecific cross between Arabidopsis halleri sp. halleri and Arabidopsis lyrata sp. petrea segregating for Zn accumulation was used. Zinc (Zn) speciation and Zn distribution in the leaves of the parent plants and of selected F1 and F2 progenies were investigated by spectroscopic and microscopic techniques and chemical analyses. - A correlation was observed between the proportion of Zn being in octahedral coordination complexed to organic acids and free in solution (Zn?OAs + Znaq) and Zn content in the leaves. This pool varied between 40percent and 80percent of total leaf Zn depending on the plant studied. Elemental mapping of the leaves revealed different Zn partitioning between the veins and the leaf tissue. The vein : tissue fluorescence ratio was negatively correlated with Zn accumulation. - The higher proportion of Zn?OAs + Znaq and the depletion of the veins in the stronger accumulators are attributed to a higher xylem unloading and vacuolar sequestration in the leaf cells. Elemental distributions in the trichomes were also investigated, and results support the role of carboxyl and⁄ or hydroxyl groups as major Zn ligands in these cells.

  20. Correlation between visceral fat accumulation, leptin and eating disorder in peritoneal dialysis patients

    International Nuclear Information System (INIS)

    Mochizuki, Takahiro; Kojima, Chiari; Oishi, Tetsuya; Takahashi, Motohiro

    2003-01-01

    Eating disorder may be a major factor for protein-energy malnutrition occurs in patients with chronic renal failure (CRF). Some peritoneal dialysis (PD) patients demonstrate eating disorder in association with massive visceral fat accumulation. Markedly elevated leptin levels have been documented in CRF patients, especially in those who are treated with PD. Leptin is secreted by adipocytes, regulates both body composition and appetite behavior. This study evaluated the correlation between visceral fat accumulation, leptin and eating disorder in PD patients. Plasma leptin, albumin, insulin-like growth factor-1 (IGF-1), normalized protein catabolic rate (nPCR), C-reactive protein (CRP) and body composition were measured in 46 PD patients (27 males and 19 females; median age 62.7 years). Computed tomography was used for determination of visceral fat area (VFA) and subcutaneous fat area (SFA), at the initial state and during PD. The VFA and the SFA increased during PD treatment, and the ratio of increase in each fat area was significantly higher in VFA than in SFA (1.47±0.63 vs. 1.23±0.41 p<0.01, respectively). Serum leptin elevated (19.5±21.9 ng/mL), and correlated significantly with the percentage of body fat (r=0.584), body mass index (BMI: r=0.574), VFA (r=0.476) and SFA (r=0.684). Dietary intake correlated inversely with the visceral fat mass, and the low nPCR group had a higher VFA/BMI ratio (p<0.05). A negative correlation was found between nPCR and either serum leptin (r=-0.52), leptin/BMI (r=-0.44), or CRP (r=-0.55). Our data suggest that visceral fat accumulation and hyperleptinemia in PD patients are closely associated with eating disorder. Therefore, a new peritoneal solution containing an alternative osmotic agent instead of glucose may be useful to prevent accumulation of visceral fat in PD patients. (author)

  1. Semianalytical solutions of radioactive or reactive tracer transport in layered fractured media

    International Nuclear Information System (INIS)

    Moridis, G.J.; Bodvarsson, G.S.

    2001-01-01

    In this paper, semianalytical solutions are developed for the problem of transport of radioactive or reactive tracers (solutes or colloids) through a layered system of heterogeneous fractured media with misaligned fractures. The tracer transport equations in the matrix account for (a) diffusion, (b) surface diffusion (for solutes only), (c) mass transfer between the mobile and immobile water fractions, (d) linear kinetic or equilibrium physical, chemical, or combined solute sorption or colloid filtration, and (e) radioactive decay or first order chemical reactions. Any number of radioactive decay daughter products (or products of a linear, first-order reaction chain) can be tracked. The tracer-transport equations in the fractures account for the same processes, in addition to advection and hydrodynamic dispersion. Additionally, the colloid transport equations account for straining and velocity adjustments related to the colloidal size. The solutions, which are analytical in the Laplace space, are numerically inverted to provide the solution in time and can accommodate any number of fractured and/or porous layers. The solutions are verified using analytical solutions for limiting cases of solute and colloid transport through fractured and porous media. The effect of important parameters on the transport of 3 H, 237 Np and 239 Pu (and its daughters) is investigated in several test problems involving layered geological systems of varying complexity. 239 Pu colloid transport problems in multilayered systems indicate significant colloid accumulations at straining interfaces but much faster transport of the colloid than the corresponding strongly sorbing solute species

  2. 26 CFR 1.1368-2 - Accumulated adjustments account (AAA).

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 11 2010-04-01 2010-04-01 true Accumulated adjustments account (AAA). 1.1368-2... adjustments account (AAA). (a) Accumulated adjustments account—(1) In general. The accumulated adjustments account is an account of the S corporation and is not apportioned among shareholders. The AAA is relevant...

  3. Performance Comparisons of Improved Regular Repeat Accumulate (RA and Irregular Repeat Accumulate (IRA Turbo Decoding

    Directory of Open Access Journals (Sweden)

    Ahmed Abdulkadhim Hamad

    2017-08-01

    Full Text Available In this paper, different techniques are used to improve the turbo decoding of regular repeat accumulate (RA and irregular repeat accumulate (IRA codes. The adaptive scaling of a-posteriori information produced by Soft-output Viterbi decoder (SOVA is proposed. The encoded pilots are another scheme that applied for short length RA codes. This work also suggests a simple and a fast method to generate a random interleaver having a free 4 cycle Tanner graph. Progressive edge growth algorithm (PEG is also studied and simulated to create the Tanner graphs which have a great girth.

  4. Manganese accumulation in the brain: MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Uchino, A.; Nomiyama, K.; Takase, Y.; Nakazono, T.; Nojiri, J.; Kudo, S. [Saga Medical School, Department of Radiology, Saga (Japan); Noguchi, T. [Kyushu University, Department of Clinical Radiology, Graduate School of Medicine, Fukuoka (Japan)

    2007-09-15

    Manganese (Mn) accumulation in the brain is detected as symmetrical high signal intensity in the globus pallidi on T1-weighted MR images without an abnormal signal on T2-weighted images. In this review, we present several cases of Mn accumulation in the brain due to acquired or congenital diseases of the abdomen including hepatic cirrhosis with a portosystemic shunt, congenital biliary atresia, primary biliary cirrhosis, congenital intrahepatic portosystemic shunt without liver dysfunction, Rendu-Osler-Weber syndrome with a diffuse intrahepatic portosystemic shunt, and patent ductus venosus. Other causes of Mn accumulation in the brain are Mn overload from total parenteral nutrition and welding-related Mn intoxication. (orig.)

  5. Simulation and experiemntal study on damper by accumulator

    International Nuclear Information System (INIS)

    Wang Xiaobin; Zhou Yong; Chen Wuxing; Hu Junhua

    2010-01-01

    In order to prevent stressing penstocks broken by earthquake or other shock waves, dampers are used widely in nuclear power plant or pipelines transporting radioactive material. A new-style damper by accumulator is introduced. Inside the damper an accumulator is installed, the outward corrugated tubes are added outside the piston rod. So it has advantages of small volume, no oil leakage. The simulation and experimental research show that if the clearance between the piston and cylinder, the spring stiffness of accumulator or the throttle valve size is varied, the dynamic performance of the impact displacement, resistance in low velocity and lock-up velocity of dampe would be influenced. The support of nuclear classified pipelines can be satisfied by using this new-style accumulator damper. (authors)

  6. Comparative enzymology of the adenosine triphosphate sulfurylases from leaf tissue of selenium-accumulator and non-accumulator plants

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, W H; Anderson, J W

    1974-01-01

    ATP sulfurylases were partially purified (20-40-fold) from leaf tissue of Astragalus bisulcatus, Astragalus racemosus (selenium-accumulator species) and Astragalus hamosus and Astragalus sinicus (non-accumulator species). Activity was measured by sulfate-dependent PP/sub 1/-ATP exchange. The enzymes were separated from pyrophosphatase and adenosine triphosphatase activities. The properties of the Astragalus ATP sulfurylases were similar to the spinach enzyme. The ATP sulfurylases from both selenium-accumulator and non-accumulator species catalyzed selenate-dependent PP/sub 1/-ATP exchange; selenate competed with sulfate. The ratio of V(selenate)/V(sulfate) and K/sub m/ (selenate)/K/sub m/(sulfate) was approximately the same for the enzyme from each species. Sulfate-dependent PP/sub 1/-ATP exchange was inhibited by ADP, chlorate and nitrate. The kinetics of the inhibition for each enzyme were consistent with an ordered reaction mechanisms, in which ATP is the first substrate to react with the enzyme and PP/sub 1/ is the first product released. Synthesis of adenosine 5'-(/sup 35/S)sulfatophosphate from (/sup 35/S)sulfate was demonstrated by coupling the Astrgalus ATP sulfurylases with Mg/sup 2 +/-dependent pyrophosphatase; the reaction was inhibited by selenate. An analogous reaction using (/sup 75/Se)selenate as substrate could not be demonstrated.

  7. Mechanisms of intrahepatic triglyceride accumulation

    Science.gov (United States)

    Ress, Claudia; Kaser, Susanne

    2016-01-01

    Hepatic steatosis defined as lipid accumulation in hepatocytes is very frequently found in adults and obese adolescents in the Western World. Etiologically, obesity and associated insulin resistance or excess alcohol intake are the most frequent causes of hepatic steatosis. However, steatosis also often occurs with chronic hepatitis C virus (HCV) infection and is also found in rare but potentially life-threatening liver diseases of pregnancy. Clinical significance and outcome of hepatic triglyceride accumulation are highly dependent on etiology and histological pattern of steatosis. This review summarizes current concepts of pathophysiology of common causes of hepatic steatosis, including non-alcoholic fatty liver disease (NAFLD), alcoholic fatty liver disease, chronic HCV infections, drug-induced forms of hepatic steatosis, and acute fatty liver of pregnancy. Regarding the pathophysiology of NAFLD, this work focuses on the close correlation between insulin resistance and hepatic triglyceride accumulation, highlighting the potential harmful effects of systemic insulin resistance on hepatic metabolism of fatty acids on the one side and the role of lipid intermediates on insulin signalling on the other side. Current studies on lipid droplet morphogenesis have identified novel candidate proteins and enzymes in NAFLD. PMID:26819531

  8. Studies on bio-accumulation of 51Cr by Piper Nigrum

    International Nuclear Information System (INIS)

    Ghosh, Kalpita; Nayak, Dalia; Lahiri, Susanta

    2007-01-01

    The present study is performed to accumulate 51 Cr(III) and 51 Cr(VI) using the alkaloid piperine, derived from the fruits of Piper nigrum (Family Piperaceae) as well as by the fruit commonly known as black pepper by radiometric technique. The pH dependence and the effect of concentration of chromium on the accumulation have also been examined. The maximum accumulation (52%) of Cr(III) is found by black pepper at pH 4 whereas piperine shows slight accumulation at this condition. Accumulation of Cr(VI) by black pepper is negligible. (author)

  9. Flavonoid accumulation patterns of transparent testa mutants of arabidopsis

    Science.gov (United States)

    Peer, W. A.; Brown, D. E.; Tague, B. W.; Muday, G. K.; Taiz, L.; Murphy, A. S.

    2001-01-01

    Flavonoids have been implicated in the regulation of auxin movements in Arabidopsis. To understand when and where flavonoids may be acting to control auxin movement, the flavonoid accumulation pattern was examined in young seedlings and mature tissues of wild-type Arabidopsis. Using a variety of biochemical and visualization techniques, flavonoid accumulation in mature plants was localized in cauline leaves, pollen, stigmata, and floral primordia, and in the stems of young, actively growing inflorescences. In young Landsberg erecta seedlings, aglycone flavonols accumulated developmentally in three regions, the cotyledonary node, the hypocotyl-root transition zone, and the root tip. Aglycone flavonols accumulated at the hypocotyl-root transition zone in a developmental and tissue-specific manner with kaempferol in the epidermis and quercetin in the cortex. Quercetin localized subcellularly in the nuclear region, plasma membrane, and endomembrane system, whereas kaempferol localized in the nuclear region and plasma membrane. The flavonoid accumulation pattern was also examined in transparent testa mutants blocked at different steps in the flavonoid biosynthesis pathway. The transparent testa mutants were shown to have precursor accumulation patterns similar to those of end product flavonoids in wild-type Landsberg erecta, suggesting that synthesis and end product accumulation occur in the same cells.

  10. Unknown and abnormal accumulation in the chest in bone scintigraphy

    International Nuclear Information System (INIS)

    Maruyama, Toshiaki; Takeuchi, Masashi; Tokunaga, Koji; Maeda, Yoichi; Hasegawa, Kazuhiko.

    1979-01-01

    In scintigraphies of forty patients with hemiplegia following appoplexia, focal abnormal accumulations in the chest region were seen in bone scintigraphies of four patients. These hot accumulations could be neither rib fracture, rib metastases, nor abnormal calcium accumulation. A mechanism of these accumulation remains to undicided. We believe that this phenomena is related to abnormal bone metabolism in hemiplegial condition. (author)

  11. Electrochemical Preparation of Polyaniline Nanowires with the Used Electrolyte Solution Treated with the Extraction Process and Their Electrochemical Performance

    OpenAIRE

    Ying Wu; Jixiao Wang; Bin Ou; Song Zhao; Zhi Wang; Shichang Wang

    2018-01-01

    Electrochemical polymerization of aniline is one of the most promising methods to prepare polyaniline (PANI) materials. However, during this process, the electrolyte solution must be replaced after electropolymerization of a certain time because of the generation and the accumulation of the by-products, which have significant effects on the morphology, purity and properties of PANI products. Treatment and recycling of the used electrolyte solution are worthwhile to study to reduce the high tr...

  12. Organic carbon accumulation in Brazilian mangal sediments

    Science.gov (United States)

    Sanders, Christian J.; Smoak, Joseph M.; Sanders, Luciana M.; Sathy Naidu, A.; Patchineelam, Sambasiva R.

    2010-12-01

    This study reviews the organic carbon (OC) accumulation rates in mangrove forests, margins and intertidal mudflats in geographically distinct areas along the Brazilian coastline (Northeastern to Southern). Our initial results indicate that the mangrove forests in the Northeastern region of Brazil are accumulating more OC (353 g/m 2/y) than in the Southeastern areas (192 g/m 2/y) being that the sediment accumulation rates, 2.8 and 2.5 mm/y, and OC content ˜7.1% and ˜5.8% (dry sediment weight) were contributing factors to the discrepancies between the forests. The intertidal mudflats on the other hand showed substantially greater OC accumulation rates, sedimentation rates and content 1129 g/m 2/y and 234 g/m 2/y; 7.3 and 3.4 mm/y; 10.3% and ˜2.7% (OC of dry sediment weight content), respectively, in the Northeastern compared to the Southeastern region. Mangrove forests in the South-Southeastern regions of Brazil may be more susceptible to the rising sea level, as they are geographically constricted by the vast mountain ranges along the coastline.

  13. A newly found cadmium accumulator-Taraxacum mongolicum

    International Nuclear Information System (INIS)

    Wei Shuhe; Zhou Qixing; Mathews, Shiny

    2008-01-01

    Identification of hyperaccumulator and accumulator is still key step of phytoextracting-contaminated soils by heavy metals. In a former published experiment, Taraxacum mongolicum showed basic characteristics of hyperaccumulators. In order to confirm if this plant was a Cd-hyperaccumulator, concentration gradient experiment and sample-analyzing experiments were designed and performed. The results showed that Cd enrichment factor and Cd transformation factor of T. mongolicum were all higher than 1 in concentration gradient experiment. The shoot biomasses did not reduced significantly (p -1 Cd spiked into soil. However, Cd concentration in shoot of T. mongolicum was not higher than 100 mg kg -1 the minimum a Cd-hyperaccumulator should have under the conditions of any concentration level of Cd spiked. Thus, T. mongolicum should be a Cd-accumulator. In the sample-analyzing experiments settled in a Pb-Zn mine area and Shenyang wastewater irrigation region, T. mongolicum also showed that Cd-accumulator characteristics. Based on these results, T. mongolicum could be identified as a Cd-accumulator, which may have important implication in plant physiology and gene engineering

  14. Stabilization of Pb(II) accumulated in biomass through phosphate-pretreated pyrolysis at low temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Li, Saijun; Zhang, Tao; Li, Jianfa, E-mail: ljf@usx.edu.cn; Shi, Lingna; Zhu, Xiaoxiao; Lü, Jinhong; Li, Yimin

    2017-02-15

    Highlights: • Phosphate-pretreated pyrolysis can stabilize Pb(II) accumulated in biomass. • More than 95% of Pb(II) in celery and wood biomass was stabilized. • Pb from biomass was almost totally retained in char. • Most Pb was transformed into phosphates according to XRD and SEM/EDX analyses. - Abstract: The remediation of heavy metal-contaminated soil and water using plant biomass is considered to be a green technological approach, although the harmless disposal of biomass accumulated with heavy metals remains a challenge. A potential solution to this problem explored in this work involves combining phosphate pretreatment with pyrolysis. Pb(II) was accumulated in celery biomass with superior sorption capacity and also in ordinary wood biomass through biosorption. The Pb(II)-impregnated biomass was then pretreated with phosphoric acid or calcium dihydrogen phosphate (CaP) and pyrolyzed at 350 or 450 °C. Pb(II) from biomass was in turn almost totally retained in chars, and the percentage of DTPA-extractable Pb(II) was reduced to less than 5% of total Pb(II) in chars through CaP pretreatment. Pb(II) stabilization was further confirmed through a sequential extraction test, which showed that more than 95% of Pb(II) was converted into stable species composed mainly of lead phosphates according to X-ray diffraction (XRD) and scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM/EDX) analyses. Overall, phosphate-pretreated pyrolysis can stabilize both Pb(II) and degradable biomass, so as to control efficiently the hazards of heavy metal-contaminated biomass.

  15. Arsenic Accumulation in Rice and Probable Mitigation Approaches: A Review

    Directory of Open Access Journals (Sweden)

    Anindita Mitra

    2017-10-01

    Full Text Available According to recent reports, millions of people across the globe are suffering from arsenic (As toxicity. Arsenic is present in different oxidative states in the environment and enters in the food chain through soil and water. In the agricultural field, irrigation with arsenic contaminated water, that is, having a higher level of arsenic contamination on the top soil, which may affects the quality of crop production. The major crop like rice (Oryza sativa L. requires a considerable amount of water to complete its lifecycle. Rice plants potentially accumulate arsenic, particularly inorganic arsenic (iAs from the field, in different body parts including grains. Different transporters have been reported in assisting the accumulation of arsenic in plant cells; for example, arsenate (AsV is absorbed with the help of phosphate transporters, and arsenite (AsIII through nodulin 26-like intrinsic protein (NIP by the silicon transport pathway and plasma membrane intrinsic protein aquaporins. Researchers and practitioners are trying their level best to mitigate the problem of As contamination in rice. However, the solution strategies vary considerably with various factors, such as cultural practices, soil, water, and environmental/economic conditions, etc. The contemporary work on rice to explain arsenic uptake, transport, and metabolism processes at rhizosphere, may help to formulate better plans. Common agronomical practices like rain water harvesting for crop irrigation, use of natural components that help in arsenic methylation, and biotechnological approaches may explore how to reduce arsenic uptake by food crops. This review will encompass the research advances and practical agronomic strategies on arsenic contamination in rice crop.

  16. An examination on the correction of attenuation for calculating the renal RI accumulation

    International Nuclear Information System (INIS)

    Onoue, Koichi; Tachibana, Keizo; Maeda, Yoshihiro; Yanoo, Sanae; Morishita, Etsuko; Kawanaka, Masahiro; Kashiwagi, Toru; Fukuchi, Minoru

    1999-01-01

    An examination was made on the attenuation coefficients for calculation of true renal accumulation rate together with the precision of measurement of depth in the kidney. Kidney phantom for attenuation coefficients was a 20 x 20 cm cube where water was filled and radioactivity source of 99m Tc was placed at various depths. Radioactivity was measured by four kinds of scinti-camera with the collimator LEGP and LEHR. The phantom for radioactivity accumulation in the kidney was a 10 x 5 x 1, 3 or 5 cm box where 99m Tc solution of the standard 30 MBq was filled, and subjected to radioactivity measurement from various angles. Phantom radioactivity was found corrected by the effective attenuation coefficient, 0.131 cm, within the range of 98-114% of the standard counts. The precision of measurement of the depth was examined in sideways scintigrams obtained in clinical practice and was found to have the deviation of 1.1 cm as the mean of maximum ones and the variation coefficient of 7.1%. Measured depth was found to be well correlated with estimated ones by the method of Tonnesen or Ito which had the maximum deviation of 5.4 or 3.5 cm, respectively. (K.H.)

  17. Plastic Accumulation in the Mediterranean Sea

    OpenAIRE

    C?zar, Andr?s; Sanz-Mart?n, Marina; Mart?, Elisa; Gonz?lez-Gordillo, J. Ignacio; Ubeda, B?rbara; G?lvez, Jos? ?.; Irigoien, Xabier; Duarte, Carlos M.

    2015-01-01

    Copyright: © 2015 Cózar et al. Concentrations of floating plastic were measured throughout the Mediterranean Sea to assess whether this basin can be regarded as a great accumulation region of plastic debris. We found that the average density of plastic (1 item per 4 m2), as well as its frequency of occurrence (100% of the sites sampled), are comparable to the accumulation zones described for the five subtropical ocean gyres. Plastic debris in the Mediterranean surface waters was dominated by ...

  18. Nickel accumulation and storage in bradyrhizobium japonicum

    International Nuclear Information System (INIS)

    Maier, R.J.; Pihl, T.D.; Stults, L.; Sray, W.

    1990-01-01

    Hydrogenase-depressed (chemolithotrophic growth conditions) and heterotrophically grown cultures of Bradyrhizobium japonicum accumulated nickel about equally over a 3-h period. Both types of cultures accumulated nickel primarily in a form that was not exchangeable with NiCl 2 , and they accumulated much more Ni than would be needed for the Ni-containing hydrogenase. The nickel accumulated by heterotrophically incubated cultures could later be mobilized to allow active hydrogenase synthesis during derepression in the absence of nickel, while cells both grown with Ni and the derepressed without nickel had low hydrogenase activities. The level of activity in cells grown with Ni and then derepressed without nickel was about the same as that in cultures derepressed in the presence of nickel. The Ni accumulated by heterotrophically grown cultures was associated principally with soluble proteins rather than particulate material, and this Ni was not lost upon dialyzing an extract containing the soluble proteins against either Ni-containing or EDTA-containing buffer. However, this Ni was lost upon pronase or low pH treatments. The soluble Ni-binding proteins were partially purified by gel filtration and DEAE chromatography. They were not antigenically related to hydrogenase peptides. Much of the 63 Ni eluted as a single peak of 48 kilodaltons. Experiments involving immunuprecipitation of 63 Ni-containing hydrogenase suggested that the stored source of Ni in heterotrophic cultures that could later be mobilized into hydrogenase resided in the nonexchangeable Ni-containing fraction rather than in loosely bound or ionic forms

  19. Rabbit blastocysts accumulate [3H]prostaglandins in vitro

    International Nuclear Information System (INIS)

    Jones, M.A.; Harper, M.J.

    1984-01-01

    Rabbit blastocysts obtained on days 5, 6, and 6.8 of pregnancy were incubated in vitro in Tyrode's buffer with 3 H-labeled prostaglandins (PGs). Accumulation of PGs was studied, using Whatman GF/F filters to separate bound and free ligands. The uptake and efflux of [ 3 H]PGs were studied as a function of PG type, incubation time, temperature, and effect of metabolic inhibitors as well as age and number of blastocysts. Blastocysts of the same age accumulated approximately the same amount of [ 3 H]PGE2 and [ 3 H]PGF2 alpha from their environment; however, there was no apparent saturation over a PG concentration range of 1-1000 nM. Both the uptake and efflux of PG were age dependent, with older blastocysts accumulating more PGs. Approximately 90% of the [ 3 H]PGs appear to be transported into the blastocoelic fluid, with little PG remaining in the blastomeres. PG accumulation was relatively insensitive to azide, ouabain, cyanide, or bromcresol green, but was affected by incubation at 0 C or the addition of indomethacin (10 micrograms/ml). No catabolism of the accumulated PGs was observed. The release of PGE2 in general did not differ from that of PGF2 alpha, except on day 6.8 of pregnancy when PGE2 was released more rapidly than on day 6. The authors conclude that rabbit blastocysts can accumulate PGs from their environment, which may imply a storage potential in the blastocyst and release before implantation

  20. A Closed-Form Solution for Robust Portfolio Selection with Worst-Case CVaR Risk Measure

    Directory of Open Access Journals (Sweden)

    Le Tang

    2014-01-01

    Full Text Available With the uncertainty probability distribution, we establish the worst-case CVaR (WCCVaR risk measure and discuss a robust portfolio selection problem with WCCVaR constraint. The explicit solution, instead of numerical solution, is found and two-fund separation is proved. The comparison of efficient frontier with mean-variance model is discussed and finally we give numerical comparison with VaR model and equally weighted strategy. The numerical findings indicate that the proposed WCCVaR model has relatively smaller risk and greater return and relatively higher accumulative wealth than VaR model and equally weighted strategy.

  1. Sucrose accumulation in watermelon fruits: genetic variation and biochemical analysis.

    Science.gov (United States)

    Yativ, Merav; Harary, Idan; Wolf, Shmuel

    2010-05-15

    Sugar accumulation, the key process determining fruit quality, is controlled by both the translocation of sugars and their metabolism in developing fruits. Sugar composition in watermelon, as in all cucurbit fruits, includes sucrose, fructose and glucose. The proportions of these three sugars are determined primarily by three enzyme families: invertases, sucrose synthases (SuSys) and sucrose phosphate synthases (SPSs). The goal of the present research was to explore the process of sugar metabolism in watermelon fruits. Crosses between the domestic watermelon (Citrullus lanatus) and three wild species provided a wide germplasm to explore genetic variability in sugar composition and metabolism. This survey demonstrated great genetic variability in sugar content and in the proportions of sucrose, glucose and fructose in mature fruits. Genotypes accumulating high and low percentage of sucrose provided an experimental system to study sugar metabolism in developing fruits. Insoluble invertase activity was high and constant throughout fruit development in control lines and in genotypes accumulating low levels of sucrose, while in genotypes accumulating high levels of sucrose, activity declined sharply 4 weeks after pollination. Soluble acid invertase activity was significantly lower in genotypes accumulating high levels of sucrose than in low-sucrose-accumulating genotypes. Conversely, activities of SuSy and SPS were higher in the high-sucrose-accumulating genotypes. The present results establish that, within the genus Citrullus, there are genotypes that accumulate a high percentage of sucrose in the fruit, while others accumulate high percentages of glucose and fructose. The significant negative correlation between insoluble invertase activity and fruit sucrose level suggests that sucrose accumulation is affected by both phloem unloading and sugar metabolism. (c) 2009 Elsevier GmbH. All rights reserved.

  2. Selenium accumulation in plants--phytotechnological applications and ecological implications.

    Science.gov (United States)

    Valdez Barillas, José Rodolfo; Quinn, Colin F; Pilon-Smits, Elizabeth A H

    2011-01-01

    Selenium (Se) is an essential trace element for many organisms including humans, yet toxic at higher levels. Both Se deficiency and toxicity are problems worldwide. Since plants readily accumulate and volatilize Se, they may be used both as a source of dietary Se and for removing excess Se from the environment. Plant species differ in their capacity to metabolize and accumulate Se, from non-Se accumulators ( 1,000 mg Se/kg DW). Here we review plant mechanisms of Se metabolism in these various plant types. We also summarize results from genetic engineering that have led to enhanced plant Se accumulation, volatilization, and/or tolerance, including field studies. Before using Se-accumulating plants at a large scale we need to evaluate the ecological implications. Research so far indicates that plant Se accumulation significantly affects the plant's ecological interactions below and above ground. Selenium canprotect plants from fungal pathogens and from a variety of invertebrate and vertebrate herbivores, due to both deterrence and toxicity. However, specialist (Se-tolerant herbivores), detritivores and endophytes appear to utilize Se hyperaccumulator plants as a resource. These findings are relevant for managing phytoremediation of Se and similar elements.

  3. Implications of metal accumulation mechanisms to phytoremediation.

    Science.gov (United States)

    Memon, Abdul R; Schröder, Peter

    2009-03-01

    Trace elements (heavy metals and metalloids) are important environmental pollutants, and many of them are toxic even at very low concentrations. Pollution of the biosphere with trace elements has accelerated dramatically since the Industrial Revolution. Primary sources are the burning of fossil fuels, mining and smelting of metalliferous ores, municipal wastes, agrochemicals, and sewage. In addition, natural mineral deposits containing particularly large quantities of heavy metals are found in many regions. These areas often support characteristic plant species thriving in metal-enriched environments. Whereas many species avoid the uptake of heavy metals from these soils, some of them can accumulate significantly high concentrations of toxic metals, to levels which by far exceed the soil levels. The natural phenomenon of heavy metal tolerance has enhanced the interest of plant ecologists, plant physiologists, and plant biologists to investigate the physiology and genetics of metal tolerance in specialized hyperaccumulator plants such as Arabidopsis halleri and Thlaspi caerulescens. In this review, we describe recent advances in understanding the genetic and molecular basis of metal tolerance in plants with special reference to transcriptomics of heavy metal accumulator plants and the identification of functional genes implied in tolerance and detoxification. Plants are susceptible to heavy metal toxicity and respond to avoid detrimental effects in a variety of different ways. The toxic dose depends on the type of ion, ion concentration, plant species, and stage of plant growth. Tolerance to metals is based on multiple mechanisms such as cell wall binding, active transport of ions into the vacuole, and formation of complexes with organic acids or peptides. One of the most important mechanisms for metal detoxification in plants appears to be chelation of metals by low-molecular-weight proteins such as metallothioneins and peptide ligands, the phytochelatins. For

  4. Comparative radiosensitivity of amino acids during γ-radiolysis in aqueous solutions

    International Nuclear Information System (INIS)

    Duzhenkova, N.A.; Savich, A.V.

    1977-01-01

    The radiosensitivity of amino acids contained in proteins has been compared. The γ-radiolysis of aqueous solutions of amino acids has studied over a wide range of concentrations in the presence of air, the dose rate being 60 rad/sec, and the dose, 100 krad. Radiation-chemical yields of amino acid decay and ammonia accumulation are given. An increase in yields with amino acid concentration has been established. Assumptions concerning some peculiarities of the amino acid decay mechanism are made

  5. Exact error estimation for solutions of nuclide chain equations

    International Nuclear Information System (INIS)

    Tachihara, Hidekazu; Sekimoto, Hiroshi

    1999-01-01

    The exact solution of nuclide chain equations within arbitrary figures is obtained for a linear chain by employing the Bateman method in the multiple-precision arithmetic. The exact error estimation of major calculation methods for a nuclide chain equation is done by using this exact solution as a standard. The Bateman, finite difference, Runge-Kutta and matrix exponential methods are investigated. The present study confirms the following. The original Bateman method has very low accuracy in some cases, because of large-scale cancellations. The revised Bateman method by Siewers reduces the occurrence of cancellations and thereby shows high accuracy. In the time difference method as the finite difference and Runge-Kutta methods, the solutions are mainly affected by the truncation errors in the early decay time, and afterward by the round-off errors. Even though the variable time mesh is employed to suppress the accumulation of round-off errors, it appears to be nonpractical. Judging from these estimations, the matrix exponential method is the best among all the methods except the Bateman method whose calculation process for a linear chain is not identical with that for a general one. (author)

  6. Bicarbonate trigger for inducing lipid accumulation in algal systems

    Science.gov (United States)

    Gardner, Robert; Peyton, Brent; Cooksey, Keith E.

    2015-08-04

    The present invention provides bicarbonate containing and/or bicarbonate-producing compositions and methods to induce lipid accumulation in an algae growth system, wherein the algae growth system is under light-dark cycling condition. By adding said compositions at a specific growth stage, said methods lead to much higher lipid accumulation and/or significantly reduced total time required for accumulating lipid in the algae growth system.

  7. NUTRIENTS ACCUMULATION IN FRUITS OF BERRY SPECIES

    Directory of Open Access Journals (Sweden)

    Sava Parascovia

    2015-12-01

    Full Text Available As a result of observations and biochemical analysis of the berries made during the years 2013-2014 in Republic of Moldova, it was found that bacciferous species included in the study had a wide spectrum of colors, from white, orange, red to blue and black. The possibility to extend the consumption of fresh berries is because these species ripen in series starting with honeysuckle in May, then one by one until September: strawberry, raspberry, currant, gooseberry, barberry, jostaberry, blueberry, sea buckthorn, blackberry, chokeberry, guilder rose. Chokeberries accumulated the highest average amount of soluble solids - 18.02%, jostaberries highlighted with the highest average amount of accumulated sugars - 9.56%. Red currant highlighted with the highest acidity - 5.22%, while blueberries with low acidity - 1.43%. Rosehip has accumulated the highest average amount of tannins and coloring substances - 546.65 mg%. Rosehip berries accumulated the highest amount of vitamin C average - 292.38 mg%, the black currant - 179.69 mg%, jostaberry - 112.86 mg%, and sea buckthorn - 96.7 mg%. The highest average values of the coefficient sugar / acid certifying good qualities were found in: blueberries - 4.39, guelder rose - 3.93, gooseberry - 3.55.

  8. Characterization of accumulated precipitates during subsurface iron removal

    International Nuclear Information System (INIS)

    Halem, Doris van; Vet, Weren de; Verberk, Jasper; Amy, Gary; Dijk, Hans van

    2011-01-01

    Research highlights: → Accumulated iron was not found to clog the well or aquifer after 12 years of subsurface iron removal. → 56-100% of accumulated iron hydroxides were found to be crystalline. → Subsurface iron removal favoured certain soil layers, either due to hydraulics or mineralogy. → Other groundwater constituents, such as manganese and arsenic were found to co-accumulate with iron. - Abstract: The principle of subsurface iron removal for drinking water supply is that aerated water is periodically injected into the aquifer through a tube well. On its way into the aquifer, the injected O 2 -rich water oxidizes adsorbed Fe 2+ , creating a subsurface oxidation zone. When groundwater abstraction is resumed, the soluble Fe 2+ is adsorbed and water with reduced Fe concentrations is abstracted for multiple volumes of the injection water. In this article, Fe accumulation deposits in the aquifer near subsurface treatment wells were identified and characterized to assess the sustainability of subsurface iron removal regarding clogging of the aquifer and the potential co-accumulation of other groundwater constituents, such as As. Chemical extraction of soil samples, with Acid-Oxalate and HNO 3 , showed that Fe had accumulated at specific depths near subsurface iron removal wells after 12 years of operation. Whether it was due to preferred flow paths or geochemical mineralogy conditions; subsurface iron removal clearly favoured certain soil layers. The total Fe content increased between 11.5 and 390.8 mmol/kg ds in the affected soil layers, and the accumulated Fe was found to be 56-100% crystalline. These results suggest that precipitated amorphous Fe hydroxides have transformed to Fe hydroxides of higher crystallinity. These crystalline, compact Fe hydroxides have not noticeably clogged the investigated well and/or aquifer between 1996 and 2008. The subsurface iron removal wells even need less frequent rehabilitation, as drawdown increases more slowly than in

  9. Asynchronous accumulation of lettuce infectious yellows virus RNAs 1 and 2 and identification of an RNA 1 trans enhancer of RNA 2 accumulation.

    Science.gov (United States)

    Yeh, H H; Tian, T; Rubio, L; Crawford, B; Falk, B W

    2000-07-01

    Time course and mutational analyses were used to examine the accumulation in protoplasts of progeny RNAs of the bipartite Crinivirus, Lettuce infectious yellow virus (LIYV; family Closteroviridae). Hybridization analyses showed that simultaneous inoculation of LIYV RNAs 1 and 2 resulted in asynchronous accumulation of progeny LIYV RNAs. LIYV RNA 1 progeny genomic and subgenomic RNAs could be detected in protoplasts as early as 12 h postinoculation (p.i.) and accumulated to high levels by 24 h p.i. The LIYV RNA 1 open reading frame 2 (ORF 2) subgenomic RNA was the most abundant of all LIYV RNAs detected. In contrast, RNA 2 progeny were not readily detected until ca. 36 h p.i. Mutational analyses showed that in-frame stop codons introduced into five of seven RNA 2 ORFs did not affect accumulation of progeny LIYV RNA 1 or RNA 2, confirming that RNA 2 does not encode proteins necessary for LIYV RNA replication. Mutational analyses also supported that LIYV RNA 1 encodes proteins necessary for replication of LIYV RNAs 1 and 2. A mutation introduced into the LIYV RNA 1 region encoding the overlapping ORF 1B and ORF 2 was lethal. However, mutations introduced into only LIYV RNA 1 ORF 2 resulted in accumulation of progeny RNA 1 near or equal to wild-type RNA 1. In contrast, the RNA 1 ORF 2 mutants did not efficiently support the trans accumulation of LIYV RNA 2. Three distinct RNA 1 ORF 2 mutants were analyzed and all exhibited a similar phenotype for progeny LIYV RNA accumulation. These data suggest that the LIYV RNA 1 ORF 2 encodes a trans enhancer for RNA 2 accumulation.

  10. Evidence accumulator or decision threshold - which cortical mechanism are we observing?

    Directory of Open Access Journals (Sweden)

    Patrick eSimen

    2012-06-01

    Full Text Available Most psychological models of perceptual decision making are of the accumulation-to-threshold variety. The neural basis of accumulation in parietal and prefrontal cortex is therefore a topic of great interest in neuroscience. In contrast, threshold mechanisms have received less attention, and their neural basis has usually been sought in subcortical structures. Here I analyze a model of a decision threshold that can be implemented in the same cortical areas as evidence accumulators, and whose behavior bears on two open questions in decision neuroscience: 1 When ramping activity is observed in a brain region during decision making, does it reflect evidence accumulation? 2 Are changes in speed-accuracy tradeoffs and response biases more likely to be achieved by changes in thresholds, or in accumulation rates and starting points? The analysis suggests that task-modulated ramping activity, by itself, is weak evidence that a brain area mediates evidence accumulation as opposed to threshold readout; and that signs of modulated accumulation are as likely to indicate threshold adaptation as adaptation of starting points and accumulation rates. These conclusions imply that how thresholds are modeled can dramatically impact accumulator-based interpretations of this data.

  11. Thermal energy accumulators. A bibliographical study

    International Nuclear Information System (INIS)

    Charlety, Paul

    1971-01-01

    Energy storage is a challenge, notably for spacecraft, submarines and non-polluting automotive vehicles. After a comparison of mass energies of different principles of energy accumulation (magnetic, electrostatic, solid elasticity, kinetic energy, gaseous elasticity, electro-chemistry, sensitive heat, freezing heat, fuels, radioactivity, nuclear fission or fusion, mass energy), the author discusses the choice of thermal storage, presents the main bodies used for thermal energy accumulation (molten salts such as lithium hydride or lithium salt eutectics, or other compounds such as alumina, paraffins), and gives an overview of the main theoretical problems [fr

  12. Guidelines for Waste Accumulation Areas (WAAs) at LBL. Revision 1

    International Nuclear Information System (INIS)

    1994-01-01

    The purpose of this document is to set conditions for establishing and containing areas for the accumulation of hazardous waste at LBL. Areas designed for accumulation of these wastes for up to 90 days in quantities greater than 55 gallons (208 liters) of hazardous waste, one quart (0.946 liter) of extremely hazardous waste, or one quart (0.946 liter) of acutely hazardous waste are called Waste Accumulation Areas (WAAs). Areas designed for accumulation of wastes in smaller amounts are called Satellite Accumulation Areas (SAAs). This document provides guidelines for employee and organizational responsibilities for WAAs, constructing a WAA, storing waste in a WAA, operating and maintaining a WAA, and responding to spills in a WAA

  13. Mercury and Cyanide Contaminations in Gold Mine Environment and Possible Solution of Cleaning Up by Using Phytoextraction

    Directory of Open Access Journals (Sweden)

    NURIL HIDAYATI

    2009-09-01

    Full Text Available Water contamination with heavy metals, mainly mercury and cyanide (CN due to small scale of public mines and large scale of industrial mines have been in concern to residents around the area. Surveys of heavy metal contamination in aquatic environments, such as rivers and paddy fields over two gold mine areas in West Jawa were conducted and possible solution of using indigenous plants for phytoremediation was studied. The results showed that most of the rivers and other aquatic environments were affected by gold mine activities. Rivers, ponds, and paddy fields around illegal public mines were mostly contaminated by mercury in considerably high levels, such as paddy fields in two locations (Nunggul and Leuwijamang, Pongkor were contaminated up to 22.68 and 7.73 ppm of Hg, respectively. Whereas rivers located around large scale industrial mines were contaminated by CN. Possible solution of cleaning up by using green technology of phytoremediation was examined. Some plant species grew in the contaminated sites showed high tolerance and potentially effective in accumulating cyanide or mercury in their roots and above ground portions. Lindernia crustacea (L. F.M., Digitaria radicosa (Presl Miq, Paspalum conjugatum, Cyperus kyllingia accumulated 89.13, 50.93, 1.78, and 0.77 ppm of Hg, respectively. Whereas, Paspalum conjugatum, Cyperus kyllingia accumulated 16.52 and 33. 16 ppm of CN respectively.

  14. Design and evaluation of a heat exchanger that uses paraffin wax and recycled materials as solar energy accumulator

    International Nuclear Information System (INIS)

    Reyes, Alejandro; Negrete, Daniela; Mahn, Andrea; Sepúlveda, Francisco

    2014-01-01

    Highlights: • Thermal conductivity of paraffin wax was improved with aluminum wool. • Aluminum wool surrounding the cans favored the energy recuperation from the wax. • The heat exchanger accumulated 3000 kJ energy. • The accumulated energy can be easily increased with larger units. • COMSOL simulated adequately the energy removal process from the cans. - Abstract: Soft drink cans filled with paraffin wax mixed with 5% w/w aluminum wool, obtained from disposable cans, doubled the thermal conductivity of cans filled only with paraffin wax. Thermal conductivity of the systems was determined by two ways: directly using a thermal conductivimeter, and indirectly based on temperature profiles and on the analytical solution of a cylinder. We designed, built and evaluated a heat exchanger for solar energy accumulation, composed by 48 disposable soft drink cans filled with a total of 9.5 kg of paraffin wax mixed with 5% w/w aluminum wool. In sunny days, the wax melted completely in 3 h. The accumulated energy of 3000 kJ, allowed increasing the temperature of 3.5 m 3 /h air flow rate from 20 to 40 °C during a period of 2 h. This application will allow extending the use of solar energy in drying processes or could be used as household calefaction system. The progress of the phase change front in time during the energy discharge period was simulated with COMSOL, whereas the effect of the number of cans and thermal conductivity of the paraffin wax on the air temperature increase was simulated with MATLAB

  15. Annual Greenland Accumulation Rates (2009-2012) from Airborne Snow Radar

    Science.gov (United States)

    Koenig, Lora S.; Ivanoff, Alvaro; Alexander, Patrick M.; MacGregor, Joseph A.; Fettweis, Xavier; Panzer, Ben; Paden, John D.; Forster, Richard R.; Das, Indrani; McConnell, Joseph R.; hide

    2016-01-01

    Contemporary climate warming over the Arctic is accelerating mass loss from the Greenland Ice Sheet through increasing surface melt, emphasizing the need to closely monitor its surface mass balance in order to improve sea-level rise predictions. Snow accumulation is the largest component of the ice sheet's surface mass balance, but in situ observations thereof are inherently sparse and models are difficult to evaluate at large scales. Here, we quantify recent Greenland accumulation rates using ultra-wideband (2-6.5 gigahertz) airborne snow radar data collected as part of NASA's Operation IceBridge between 2009 and 2012. We use a semi-automated method to trace the observed radiostratigraphy and then derive annual net accumulation rates for 2009-2012. The uncertainty in these radar-derived accumulation rates is on average 14 percent. A comparison of the radarderived accumulation rates and contemporaneous ice cores shows that snow radar captures both the annual and longterm mean accumulation rate accurately. A comparison with outputs from a regional climate model (MAR - Modele Atmospherique Regional for Greenland and vicinity) shows that this model matches radar-derived accumulation rates in the ice sheet interior but produces higher values over southeastern Greenland. Our results demonstrate that snow radar can efficiently and accurately map patterns of snow accumulation across an ice sheet and that it is valuable for evaluating the accuracy of surface mass balance models.

  16. 47 CFR 36.503 - Accumulated depreciation-Account 3100.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Accumulated depreciation-Account 3100. 36.503 Section 36.503 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES... Accumulated depreciation—Account 3100. (a) Amounts recorded in this account shall be separated on the basis of...

  17. The role of silicon in higher plants under salinity and drought stress

    Directory of Open Access Journals (Sweden)

    Devrim Coskun

    2016-07-01

    Full Text Available Although deemed a non-essential mineral nutrient, silicon (Si is clearly beneficial to plant growth and development, particularly under stress conditions, including salinity and drought. Here, we review recent research on the physiological, biochemical, and molecular mechanisms underlying Si-induced alleviation of osmotic and ionic stresses associated with salinity and drought. We distinguish between changes observed in the apoplast (i.e. suberization, lignification, and silicification of the extracellular matrix; transpirational bypass flow of solutes and water, and those of the symplast (i.e. transmembrane transport of solutes and water; gene expression; oxidative stress; metabolism, and discuss these features in the context of Si biogeochemistry and bioavailability in agricultural soils, evaluating the prospect of using Si fertilization to increase crop yield and stress tolerance under salinity and drought conditions.

  18. Accumulation of BSA in Packed-bed Microfluidics

    Science.gov (United States)

    Summers, Samantha; Hu, Chuntian; Hartman, Ryan

    2012-11-01

    Alzheimers and Parkinsons are two diseases that are associated with protein deposition in the brain, causing loss of either cognitive or muscle functioning. Protein deposition diseases are considered progressive diseases since the continual aggregation of protein causes the patient's symptoms to slowly worsen over time. There are currently no known means of treatment for protein deposition diseases. Our goal is to understand the potential for packed-bed microfluidics to study protein accumulation. Measurement of the resistance to flow through micro-scale packed-beds is critical to understanding the process of protein accumulation. Aggregation in bulk is fundamentally different from accumulation on surfaces. Our study attempts to distinguish between either mechanism. The results from our experiments involving protein injection through a microfluidic system will be presented and discussed. Funding received by NSF REU Grant 1062611.

  19. Variations in metal tolerance and accumulation in three hydroponically cultivated varieties of Salix integra treated with lead.

    Directory of Open Access Journals (Sweden)

    Shufeng Wang

    Full Text Available Willow species have been suggested for use in the remediation of contaminated soils due to their high biomass production, fast growth, and high accumulation of heavy metals. The tolerance and accumulation of metals may vary among willow species and varieties, and the assessment of this variability is vital for selecting willow species/varieties for phytoremediation applications. Here, we examined the variations in lead (Pb tolerance and accumulation of three cultivated varieties of Salix integra (Weishanhu, Yizhibi and Dahongtou, a shrub willow native to northeastern China, using hydroponic culture in a greenhouse. In general, the tolerance and accumulation of Pb varied among the three willow varieties depending on the Pb concentration. All three varieties had a high tolerance index (TI and EC50 value (the effective concentration of Pb in the nutrient solution that caused a 50% inhibition on biomass production, but a low translocation factor (TF, indicating that Pb sequestration is mainly restricted in the roots of S. integra. Among the three varieties, Dahogntou was more sensitive to the increased Pb concentration than the other two varieties, with the lowest EC50 and TI for root and above-ground tissues. In this respect, Weishanhu and Yizhibi were more suitable for phytostabilization of Pb-contaminated soils. However, our findings also indicated the importance of considering the toxicity symptoms when selecting willow varieties for the use of phytoremediation, since we also found that the three varieties revealed various toxicity symptoms of leaf wilting, chlorosis and inhibition of shoot and root growth under the higher Pb concentrations. Such symptoms could be considered as a supplementary index in screening tests.

  20. Variations in Metal Tolerance and Accumulation in Three Hydroponically Cultivated Varieties of Salix integra Treated with Lead

    Science.gov (United States)

    Sun, Haijing; Chen, Yitai; Pan, Hongwei; Yang, Xiaoe; Rafiq, Tariq

    2014-01-01

    Willow species have been suggested for use in the remediation of contaminated soils due to their high biomass production, fast growth, and high accumulation of heavy metals. The tolerance and accumulation of metals may vary among willow species and varieties, and the assessment of this variability is vital for selecting willow species/varieties for phytoremediation applications. Here, we examined the variations in lead (Pb) tolerance and accumulation of three cultivated varieties of Salix integra (Weishanhu, Yizhibi and Dahongtou), a shrub willow native to northeastern China, using hydroponic culture in a greenhouse. In general, the tolerance and accumulation of Pb varied among the three willow varieties depending on the Pb concentration. All three varieties had a high tolerance index (TI) and EC50 value (the effective concentration of Pb in the nutrient solution that caused a 50% inhibition on biomass production), but a low translocation factor (TF), indicating that Pb sequestration is mainly restricted in the roots of S. integra. Among the three varieties, Dahogntou was more sensitive to the increased Pb concentration than the other two varieties, with the lowest EC50 and TI for root and above-ground tissues. In this respect, Weishanhu and Yizhibi were more suitable for phytostabilization of Pb-contaminated soils. However, our findings also indicated the importance of considering the toxicity symptoms when selecting willow varieties for the use of phytoremediation, since we also found that the three varieties revealed various toxicity symptoms of leaf wilting, chlorosis and inhibition of shoot and root growth under the higher Pb concentrations. Such symptoms could be considered as a supplementary index in screening tests. PMID:25268840

  1. Ammonium and hydroxylamine uptake and accumulation in Nitrosomonas

    NARCIS (Netherlands)

    Schmidt, I.; Look, C.; Bock, E.; Jetten, M.S.M.

    2004-01-01

    Starved cells of Nitrosomonas europaea and further ammonia oxidizers were able to rapidly accumulate ammonium and hydroxylamine to an internal concentration of about 1 and 0.8 M, respectively. In kinetic studies, the uptake/accumulation rates for ammonium [3.1 mmol (g protein)(-1) min(-1)] and

  2. Plume residence and toxic material accumulation

    International Nuclear Information System (INIS)

    Spigarelli, S.A.; Holpuch, R.

    1975-01-01

    Increased growth rates and 137 Cs concentrations in plume resident trout are thought to be the result of increased metabolism, food consumption, and activity caused by exposure to increased water temperature and flow in thermal discharges. These exposure conditions could contribute to increased accumulation of biologically active, toxic substances by primary forage and predator fish species in the Great Lakes. Uptake and retention of various toxic substances by predators depend on concentrations in forage species (trophic transfer), ambient water, and point source effluents (direct uptake). Contaminants of immediate concern in Great Lakes systems (e.g., chlorinated hydrocarbons) accumulate in adipose tissue, and body concentrations have been correlated with total lipid content in fish. In addition to direct toxic effects on fish, many lipophilic contaminants are known to cause severe human health problems when ingested at concentrations commonly found in Lake Michigan salmonids. Although power plants may or may not be the direct source of a toxic substance, the thermal discharge environment may contribute to the accumulation of toxic substances in fish and the transfer of these materials to man

  3. Dynamical spin accumulation in large-spin magnetic molecules

    Science.gov (United States)

    Płomińska, Anna; Weymann, Ireneusz; Misiorny, Maciej

    2018-01-01

    The frequency-dependent transport through a nanodevice containing a large-spin magnetic molecule is studied theoretically in the Kondo regime. Specifically, the effect of magnetic anisotropy on dynamical spin accumulation is of primary interest. Such accumulation arises due to finite components of frequency-dependent conductance that are off diagonal in spin. Here, employing the Kubo formalism and the numerical renormalization group method, we demonstrate that the dynamical transport properties strongly depend on the relative orientation of spin moments in electrodes of the device, as well as on intrinsic parameters of the molecule. In particular, the effect of dynamical spin accumulation is found to be greatly affected by the type of magnetic anisotropy exhibited by the molecule, and it develops for frequencies corresponding to the Kondo temperature. For the parallel magnetic configuration of the device, the presence of dynamical spin accumulation is conditioned by the interplay of ferromagnetic-lead-induced exchange field and the Kondo correlations.

  4. Arsenic accumulation and speciation in plants from different habitats

    OpenAIRE

    Bergqvist, Claes; Greger, Maria

    2012-01-01

    This is the postprint version of the article. The published version of the article can be located here: http://www.sciencedirect.com/science/article/pii/S0883292711004914 Understanding As accumulation in plants is necessary in order to alleviate problems with As in the environment and to improve sustainable As phytotechnologies. To find suitable candidates for phytoremediation purposes and to investigate specific accumulation patterns due to growth habitat and plant groups, As accumulation...

  5. Accumulation of platinum group elements by the marine gastropod Littorina littorea

    Energy Technology Data Exchange (ETDEWEB)

    Mulholland, Rachel [School of Geography, Earth and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom); Turner, Andrew, E-mail: aturner@plymouth.ac.uk [School of Geography, Earth and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom)

    2011-04-15

    The accumulation and trophic transfer of the platinum group elements (PGE): Rh, Pd and Pt; have been studied in short-term (5 day) exposures conducted in aquaria containing the marine macroalga, Ulva lactuca, and/or the grazing mollusc, Littorina littorea. Metals added to sea water (to concentrations of 20 {mu}g L{sup -1}) were taken up by U. lactuca in the order Rh, Pt > Pd and by L. littorea in the order Pd {>=} Pt {>=} Rh, with greatest metal accumulation in the latter generally occurring in the visceral complex and kidney. When fed contaminated alga, accumulation of Rh and Pd by L. littorea, relative to total available metal, increased by an order of magnitude, while accumulation of Pt was not readily detected. We conclude that the diet is the most important vector for accumulation of Rh and Pd, while accumulation of Pt appears to proceed mainly from the aqueous phase. - Research highlights: > Platinum group elements are accumulated by, Littorina littorea. > The aqueous phase and diet are important vehicles for Rh and Pd accumulation by the snail. > Grazing molluscs may serve as biomonitors of coastal PGE contamination. - Platinum group elements are accumulated by the marine snail, Littorina littorea, from both the aqueous phase and the diet.

  6. Antiproton Accumulator (AA)

    CERN Multimedia

    Photographic Service

    1980-01-01

    The AA in its final stage of construction, before it disappeared from view under concrete shielding. Antiprotons were first injected, stochastically cooled and accumulated in July 1980. From 1981 on, the AA provided antiprotons for collisions with protons, first in the ISR, then in the SPS Collider. From 1983 on, it also sent antiprotons, via the PS, to the Low-Energy Antiproton Ring (LEAR). The AA was dismantled in 1997 and shipped to Japan.

  7. Renewable Resources, Capital Accumulation, and Economic Growth

    OpenAIRE

    Wei-Bin Zhang

    2011-01-01

    This paper proposes a dynamic economic model with physical capital and renewable resources. Different from most of the neoclassical growth models with renewable resources which are based on microeconomic foundation and neglect physical capital accumulation, this study proposes a growth model with dynamics of renewable resources and physical capital accumulation. The model is a synthesis of the neoclassical growth theory and the traditional dynamic models of renewable resources with an alterna...

  8. Structure and dynamics of particle-accumulation in thermocapillary liquid bridges

    International Nuclear Information System (INIS)

    Kuhlmann, Hendrik C; Mukin, Roman V; Sano, Tomoaki; Ueno, Ichiro

    2014-01-01

    The accumulation of small mono-disperse heavy particles in thermocapillary liquid bridges is investigated experimentally and numerically. We consider particle accumulation near the center of the toroidal vortex, the so-called toroidal core of particles (COP), and the particle-depletion zone near the axis of the liquid bridge. Based on the acceleration and deceleration of the tangential flow along the thermocapillary free surface it is argued that the interaction of the particles with the free surface is of key importance for the fast particle accumulation within a few characteristic momentum diffusion times. The experimentally determined particle-accumulation times are compared with time-scale estimates for accumulation due to either particle free-surface interaction or due to inertia of particles which are heavier than the liquid. We show that the experimental accumulation times are compatible with the accumulation times predicted by the particle–free-surface interaction (PSI) while the time-scale estimates based on the inertia of the particles are too large to explain the fast de-mixing observed in experiments. The shape of the COP resembles certain KAM tori of the incompressible flow of a hydrothermal wave. Two scenarios are proposed to explain the structure and the dynamics of the COP depending on the existence or non-existence of suitable KAM structures. The shape of the experimental particle-depletion zone agrees well with the release surface which is defined by the particle–free-surface interaction process. The favorable comparison of the dynamics and structure of experimental and numerical accumulation patterns provides strong evidence for the existence and relevance of the PSI as the most rapid physical accumulation mechanism. (paper)

  9. 46 CFR 109.575 - Accumulation of liquids on helicopter decks.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Accumulation of liquids on helicopter decks. 109.575... DRILLING UNITS OPERATIONS Miscellaneous § 109.575 Accumulation of liquids on helicopter decks. The master or person in charge shall ensure that no liquids are allowed to accumulate on the helicopter decks. ...

  10. Evidence of lipofuscin accumulation in the deep-water red shrimp Aristaeomorpha foliacea (Risso, 1827

    Directory of Open Access Journals (Sweden)

    V. MEZZASALMA

    2008-12-01

    Full Text Available Lipofuscin, a non-degradable, degenerative fluorescent pigment which accumulates in post-mitotic cells, represents a promising method for ageing marine crustaceans. The presence and accumulation of lipofuscin has been studied in the deep-water red shrimp Aristaeomorpha foliacea (Risso, 1827 to assess its use as a tool for ageing larger (i.e., older specimens and thus improve knowledge of the growth and longevity of this species. Specimens, gathered during experimental trawl surveys carried out in the Strait of Sicily (Mediterranean Sea, were stored directly on-board in 10% buffered formaldehyde solution; their brain was thereafter removed, prepared with various current histological techniques and examined with a binocular microscope. Thin sections of the olfactory lobe cell mass were also analyzed using fluorescence microscopy, and the lipofuscin concentration was measured through image analysis. Various indices were computed for each individual by pooling data from many images: number and coverage of the lipofuscin granules per unit area, and mean individual area of the granules. Lipofuscin was detected in all specimens investigated with characteristics (grain typology and dimension strictly resembling those already described in other crustacean species. The present preliminary results encourage further studies to develop and validate a methodology based on the use of lipofuscin for improving the relative ageing of large A. foliacea shrimps.

  11. Drug accumulation in the presence of the multidrug resistance pump

    DEFF Research Database (Denmark)

    Ayesh, S; Litman, Thomas; Stein, W D

    1997-01-01

    We studied the interaction between the multidrug transporter, P-glycoprotein, and two compounds that interact with it: vinblastine, a classical substrate of the pump, and verapamil, a classical reverser. Steady-state levels of accumulation of these two drugs were determined in a multidrug resistant...... P388 leukemia cell line, P388/ADR. The time course of accumulation of these drugs, and the effect of energy starvation and the presence of chloroquine on the level of their steady-state accumulation were quite disparate. Vinblastine inhibited the accumulation of verapamil whereas it enhanced...

  12. Effect of technetium Tc 99m pertechnetate on bacterial survival in solution

    International Nuclear Information System (INIS)

    Stathis, V.J.; Miller, C.M.; Doerr, G.F.; Coffey, J.L.; Hladik, W.B.

    1983-01-01

    Survival of Staphylococcus epidermidis (10(2) organisms/ml) in solutions containing various levels of radioactivity was assessed. Six test preparations contained nonbacteriostatic 0.9% sodium chloride solution; four of these contained technetium Tc 99m pertechnetate (99mTcO-4) in various quantities (80, 250, 500, and 750 mCi). A fifth contained technetium that had decayed to an essentially nonradioactive form, and a sixth contained 0.9% sodium chloride solution only. Each of the six 20-ml solutions was inoculated with 2 ml of single-strength trypticase soy broth (TSB) containing 10(3) organisms/ml. At various times up to 12 hours after inoculation, 1-ml aliquots of each test solution were withdrawn and passed through 0.22-micron filters, thereby preventing further irradiation of the filtered organisms. The filters were incubated in single-strength TSB at 37 degrees C, and samples were examined for turbidity at 24, 48, and 72 hours. After 24 hours, 25 of the 36 sample tubes showed turbidity; after 48 hours, the turbid samples totaled 28. Bacteria in the two nonradioactive solutions remained viable throughout the 12-hour sampling period. Accumulated doses of radiation obtained in the 250-, 500-, and 750-mCi samples inhibited bacterial growth. To be a valid quality-control measure, sterility monitoring of prepared radiopharmaceutical dosage forms may need to be performed concurrently with their preparation

  13. 5 CFR 630.304 - Accumulation limitation for part-time employees.

    Science.gov (United States)

    2010-01-01

    ... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false Accumulation limitation for part-time... REGULATIONS ABSENCE AND LEAVE Annual Leave § 630.304 Accumulation limitation for part-time employees. A part-time employee may accumulate not more than 240 or 360 hours' annual leave on the same basis that a full...

  14. Salt stress induced ion accumulation, ion homeostasis, membrane ...

    African Journals Online (AJOL)

    Salt stress induced ion accumulation, ion homeostasis, membrane injury and sugar contents in salt-sensitive rice ( Oryza sativa L. spp. indica ) roots under isoosmotic conditions. ... The accumulation of sugars in PT1 roots may be a primary salt-defense mechanism and may function as an osmotic control. Key words: ...

  15. Live imaging of intra- and extracellular pH in plants using pHusion, a novel genetically encoded biosensor

    Science.gov (United States)

    Gjetting, Kisten Sisse Krag; Ytting, Cecilie Karkov; Schulz, Alexander; Fuglsang, Anja Thoe

    2012-01-01

    Changes in pH are now widely accepted as a signalling mechanism in cells. In plants, proton pumps in the plasma membrane and tonoplast play a key role in regulation of intracellular pH homeostasis and maintenance of transmembrane proton gradients. Proton transport in response to external stimuli can be expected to be finely regulated spatially and temporally. With the ambition to follow such changes live, a new genetically encoded sensor, pHusion, has been developed. pHusion is especially designed for apoplastic pH measurements. It was constitutively expressed in Arabidopsis and targeted for expression in either the cytosol or the apoplast including intracellular compartments. pHusion consists of the tandem concatenation of enhanced green fluorescent protein (EGFP) and monomeric red fluorescent protein (mRFP1), and works as a ratiometric pH sensor. Live microscopy at high spatial and temporal resolution is highly dependent on appropriate immobilization of the specimen for microscopy. Medical adhesive often used in such experiments destroys cell viability in roots. Here a novel system for immobilizing Arabidopsis seedling roots for perfusion experiments is presented which does not impair cell viability. With appropriate immobilization, it was possible to follow changes of the apoplastic and cytosolic pH in mesophyll and root tissue. Rapid pH homeostasis upon external pH changes was reflected by negligible cytosolic pH fluctuations, while the apoplastic pH changed drastically. The great potential for analysing pH regulation in a whole-tissue, physiological context is demonstrated by the immediate alkalinization of the subepidermal apoplast upon external indole-3-acetic acid administration. This change is highly significant in the elongation zone compared with the root hair zone and control roots. PMID:22407646

  16. Factors that affect leaf extracellular ascorbic acid content and redox status

    Energy Technology Data Exchange (ETDEWEB)

    Burkey, K.O.; Fiscus, E.L. [North Carolina State Univ., United States dept. og Agriculture-Agricultural Research Service and Dept. of Crop Science, Raleigh, NC (United States); Eason, G. [North Carolina, State Univ., United States Dept. of Plant Pathology, Raleigh, NC (United States)

    2003-01-01

    Leaf ascorbic acid content and redox status were compared in ozone-tolerant (Provider) and ozone-sensitive (S156) genotypes of snap bean (Phaseolus vulgaris L.). Plants were grown in pots for 24 days under charcoal-filtered air (CF) conditions in open-top field chambers and then maintained as CF controls (29 nmol mol{sup 1} ozone) or exposed to elevated ozone (71 nmol mol{sup 1} ozone). Following a 10-day treatment, mature leaves of the same age were harvested early in the morning (06:00-08:00 h) or in the afternoon (13:00-15:00 h) for analysis of ascorbic acid (AA) and dehydroascorbic acid (DHA). Vacuum infiltration methods were used to separate leaf AA into apoplast and symplast fractions. The total ascorbate content [AA + DHA] of leaf tissue averaged 28% higher in Provider relative to S156, and Provider exhibited a greater capacity to maintain [AA + DHA] content under ozone stress. Apoplast [AA + DHA] content was 2-fold higher in tolerant Provider (360 nmol g{sup 1} FW maximum) relative to sensitive S156 (160 nmol g1 FW maximum) regardless of sampling period or treatment, supporting the hypothesis that extracellular AA is a factor in ozone tolerance. Apoplast [AA + DHA] levels were significantly higher in the afternoon than early morning for both genotypes, evidence for short-term regulation of extracellular ascorbate content. Total leaf ascorbate was primarily reduced with AA/[AA + DHA] ratios of 0.81-0.90. In contrast, apoplast AA/[AA + DHA] ratios were 0.01-0.60 and depended on genotype and ozone treatment. Provider exhibited a greater capacity to maintain extracellular AA/[AA + DHA] ratios under ozone stress, suggesting that ozone tolerance is associated with apoplast ascorbate redox status. (au)

  17. Live imaging of intra- and extracellular pH in plants using pHusion, a novel genetically encoded biosensor.

    Science.gov (United States)

    Gjetting, Kisten Sisse Krag; Ytting, Cecilie Karkov; Schulz, Alexander; Fuglsang, Anja Thoe

    2012-05-01

    Changes in pH are now widely accepted as a signalling mechanism in cells. In plants, proton pumps in the plasma membrane and tonoplast play a key role in regulation of intracellular pH homeostasis and maintenance of transmembrane proton gradients. Proton transport in response to external stimuli can be expected to be finely regulated spatially and temporally. With the ambition to follow such changes live, a new genetically encoded sensor, pHusion, has been developed. pHusion is especially designed for apoplastic pH measurements. It was constitutively expressed in Arabidopsis and targeted for expression in either the cytosol or the apoplast including intracellular compartments. pHusion consists of the tandem concatenation of enhanced green fluorescent protein (EGFP) and monomeric red fluorescent protein (mRFP1), and works as a ratiometric pH sensor. Live microscopy at high spatial and temporal resolution is highly dependent on appropriate immobilization of the specimen for microscopy. Medical adhesive often used in such experiments destroys cell viability in roots. Here a novel system for immobilizing Arabidopsis seedling roots for perfusion experiments is presented which does not impair cell viability. With appropriate immobilization, it was possible to follow changes of the apoplastic and cytosolic pH in mesophyll and root tissue. Rapid pH homeostasis upon external pH changes was reflected by negligible cytosolic pH fluctuations, while the apoplastic pH changed drastically. The great potential for analysing pH regulation in a whole-tissue, physiological context is demonstrated by the immediate alkalinization of the subepidermal apoplast upon external indole-3-acetic acid administration. This change is highly significant in the elongation zone compared with the root hair zone and control roots.

  18. Effects of Aluminium Sulfate on Cadmium Accumulation in Rice

    International Nuclear Information System (INIS)

    Khamvarn, Vararas; Boontanon, Narin; Prapagdee, Benjaphorn; Kumsopa, Acharaporn; Boonsirichai, Kanokporn

    2011-06-01

    Full text: Cadmium accumulation in Pathum Thani 1 and Suphan Buri 60 rice cultivars was investigated upon treatment with aluminium sulfate as a precipitant. Rice was grown hydroponically in a medium containing 4 ppm cadmium nitrate with or without 4 ppm aluminium sulfate. Root, stem with leaves and grain samples were collected and analyzed for cadmium content using atomic absorption spectroscopy and inductively coupled plasma atomic emission spectroscopy. Without the addition of aluminium sulfate, Pathum Thani 1 and Suphan Buri 60 accumulated 24.71∫ 3.14 ppm and 34.43 ∫ 4.51 ppm (dry weight of whole plant) of cadmium, respectively. With aluminium sulfate, cadmium accumulation increased to 40.66 ∫ 2.47 ppm and 62.94 ∫ 10.69 ppm, respectively. The addition of aluminium sulfate to the planting medium did not reduce cadmium accumulation but caused the rice to accumulate more cadmium especially in the shoots and grains. This observation might serve as the basis for future research on the management of agricultural areas that are contaminated with cadmium and aluminium

  19. Critical experiments on low enriched uranyl nitrate solution with STACY

    International Nuclear Information System (INIS)

    Miyoshi, Yoshinori

    1996-01-01

    As the STACY started steady operations, systematic criticality data on low enriched uranyl nitrate solution system could be accumulated. Main experimental parameters for the cylindrical tank of 60 cm in diameter were uranium concentration and the reflector condition. Basic data on a simple geometry will be helpful for the validation of the standard criticality safety codes, and for evaluating the safety margin included in the criticality designs. Experiments on the reactivity effects of structural materials such as borated concrete and polyethylene are on schedule next year as the second series of experiments using 10 wt% enriched uranyl solution. Furthermore, neutron interacting experiments with two slab tanks will be performed to investigate the fundamental properties of neutron interaction effects between core tanks. These data will be useful for making more reasonable calculation models and for evaluating the safety margin in the criticality designs for the multiple unit system. (J.P.N.)

  20. Credit Constraints, Political Instability, and Capital Accumulation

    OpenAIRE

    Risto Herrala; Rima Turk-Ariss

    2013-01-01

    We investigate the complex interactions between credit constraints, political instability, and capital accumulation using a novel approach based on Kiyotaki and Moore’s (1997) theoretical framework. Drawing on a unique firm-level data set from Middle-East and North Africa (MENA), empirical findings point to a large and significant effect of credit conditions on capital accumulation and suggest that continued political unrest worsens credit constraints. The results support the view that financ...

  1. Solution NMR Spectroscopy in Target-Based Drug Discovery.

    Science.gov (United States)

    Li, Yan; Kang, Congbao

    2017-08-23

    Solution NMR spectroscopy is a powerful tool to study protein structures and dynamics under physiological conditions. This technique is particularly useful in target-based drug discovery projects as it provides protein-ligand binding information in solution. Accumulated studies have shown that NMR will play more and more important roles in multiple steps of the drug discovery process. In a fragment-based drug discovery process, ligand-observed and protein-observed NMR spectroscopy can be applied to screen fragments with low binding affinities. The screened fragments can be further optimized into drug-like molecules. In combination with other biophysical techniques, NMR will guide structure-based drug discovery. In this review, we describe the possible roles of NMR spectroscopy in drug discovery. We also illustrate the challenges encountered in the drug discovery process. We include several examples demonstrating the roles of NMR in target-based drug discoveries such as hit identification, ranking ligand binding affinities, and mapping the ligand binding site. We also speculate the possible roles of NMR in target engagement based on recent processes in in-cell NMR spectroscopy.

  2. Evaluation of Maize Germplasm for Resistance to Aflatoxin Accumulation

    Directory of Open Access Journals (Sweden)

    Michael H. Blanco

    2012-03-01

    Full Text Available Aflatoxin contamination of maize grain threatens human food and animal feed safety. Breeding for reduced grain aflatoxin accumulation is one of the best strategies presently available to lower grain aflatoxin accumulation. Previously identified sources of germplasm with reduced grain aflatoxin accumulation are excessively tall and late maturing. The objective of this research was to screen germplasm and identify potential sources of aflatoxin resistance. KO679Y and CUBA117:S15-101-001-B-B-B-B inbreds were evaluated for aflatoxin accumulation alongside resistant and susceptible checks with both performing well. These two lines were also evaluated in various crosses. KO679Y performed especially well in crosses with Mp494 and Mp717, resulting in low ear rot and very low aflatoxin levels, but not well in other crosses. A breeding cross including CUBA117:S15-101-001-B-B-B-B as a parent accumulated low levels of aflatoxin both years it was evaluated. Lines resulting from these crosses are being advanced for further evaluation and improvement. KO679Y and CUBA117:S15-101-001-B-B-B-B may prove useful for breeders seeking germplasm sources for ear rot and mycotoxin reduction, especially KO679Y which matures a week earlier and is approximately 25% shorter than current lines resistant to grain aflatoxin accumulation.

  3. Effects of sewage sludge on bio-accumulation of heavy metals in tomato seedlings

    Directory of Open Access Journals (Sweden)

    Nada Elloumi

    2016-12-01

    Full Text Available The proposal to use sewage sludge (SS on agricultural fields as a sustainable way to dispose of the waste is based on its high organic and nutrients content. However, the presence of heavy metals (HMs in sludge can contaminate crops and accumulate in the food chain. The aim of this study was to assess changes in soil fertility, biochemical responses of tomato (Solanum lycopersicum L. cv. Rio Grande seedlings and the availability of HMs with increased rate application of SS (0, 2.5, 5 and 7.5%. Leaf chlorophyll content, nutritional status, proline, membrane peroxidation, stomatal conductance and HM accumulation were investigated. Results showed that the soil pH decreased, whereas soil salinity, organic carbon, total N, available P and exchangeable Na, Ca, K and HM content increased significantly with increasing application rates of SS. Among the three HMs (Zn, Cu and Cr, Zn had the highest capacity for transferring from soil into plants. Low metal translocation was observed from roots to leaves. The 7.5% SS dose decreased biomass production and caused a decline in chlorophyll content and stomatal conductance. However, lipid peroxidation and proline contents increased. Therefore, the use of 2.5 and 5% doses of sewage sludge in agriculture would be an efficient and cost-effective method to restore the fertility of soil and an environment-friendly solution for disposal problems.

  4. Effects of sewage sludge on bio-accumulation of heavy metals in tomato seedlings

    Energy Technology Data Exchange (ETDEWEB)

    Elloumi, N.; Belhaj, D.; Jerbi, B.; Zouari, M.; Kallel, M.

    2016-07-01

    The proposal to use sewage sludge (SS) on agricultural fields as a sustainable way to dispose of the waste is based on its high organic and nutrients content. However, the presence of heavy metals (HMs) in sludge can contaminate crops and accumulate in the food chain. The aim of this study was to assess changes in soil fertility, biochemical responses of tomato (Solanum lycopersicum L. cv. Rio Grande) seedlings and the availability of HMs with increased rate application of SS (0, 2.5, 5 and 7.5%). Leaf chlorophyll content, nutritional status, proline, membrane peroxidation, stomatal conductance and HM accumulation were investigated. Results showed that the soil pH decreased, whereas soil salinity, organic carbon, total N, available P and exchangeable Na, Ca, K and HM content increased significantly with increasing application rates of SS. Among the three HMs (Zn, Cu and Cr), Zn had the highest capacity for transferring from soil into plants. Low metal translocation was observed from roots to leaves. The 7.5% SS dose decreased biomass production and caused a decline in chlorophyll content and stomatal conductance. However, lipid peroxidation and proline contents increased. Therefore, the use of 2.5 and 5% doses of sewage sludge in agriculture would be an efficient and cost-effective method to restore the fertility of soil and an environment-friendly solution for disposal problems.

  5. Topical glycerol monooleate/propylene glycol formulations enhance 5-aminolevulinic acid in vitro skin delivery and in vivo protophorphyrin IX accumulation in hairless mouse skin.

    Science.gov (United States)

    Steluti, Regilene; De Rosa, Fernanda Scarmato; Collett, John; Tedesco, Antônio Cláudio; Bentley, Maria Vitória Lopes Badra

    2005-08-01

    Photodynamic therapy (PDT), a potential therapy for cancer treatment, utilizes exogenously applied or endogenously formed photosensitizers, further activated by light in an appropriate wavelength and dose to induce cell death through free radical formation. 5-Aminolevulinic acid (5-ALA) is a pro-drug which can be converted to the effective photosensitizer, protoporphyrin IX (PpIX). However, the use of 5-ALA in PDT is limited by the low penetration capacity of this highly hydrophilic molecule into appropriate skin layers. In the present study, we propose to increase 5-ALA penetration by using formulations containing glycerol monooleate (GMO), an interesting and useful component of pharmaceutical formulations. Propylene glycol solutions containing different concentrations of GMO significantly increased the in vitro skin permeation/retention of 5-ALA in comparison to control solutions. In vivo studies also showed increased PpIX accumulation in mouse hairless skin, after the use of topical 5-ALA formulations containing GMO in a concentration-dependent manner. The results show that skin 5-ALA penetration and PpIX accumulation, important factors for the success of topical 5-ALA-PDT in skin cancer, are optimized by GMO/propylene glycol formulations.

  6. Hydroponic screening of black locust families for heavy metal tolerance and accumulation.

    Science.gov (United States)

    Župunski, Milan; Borišev, Milan; Orlović, Saša; Arsenov, Danijela; Nikolić, Nataša; Pilipović, Andrej; Pajević, Slobodanka

    2016-01-01

    Present work examines phytoextraction potential of four black locust families (half-sibs 54, 56, 115, and 135) grown hydroponically. Plants were treated with 6 ppm of cadmium (Cd), 100 ppm of nickel (Ni), and 40 ppm of lead (Pb) added in Hoagland nutrient solution, accompanying with simultaneously applied all three metals. Responses to metals exposure among families were different, ranging from severe to slight reduction of root and shoot biomass production of treated plants. Calculated tolerance indices are indicating tested families as highly tolerant (Ti > 60). Family 135 had the lowest tolerance index, pointing that it was highly susceptible to applied metals. Comparing photosynthetic activities of tested families it has been noticed that they were highly sensitive to stress induced by heavy metals. Net photosynthetic rate of nickel treated plants was the most affected by applied concentration. Cadmium and nickel concentrations in stems and leaves of black locust families exceeded 100 mg Cd kg(-1) and 1000 mg Ni kg(-1), in both single and multipollution context. On the contrary, accumulation of lead in above ground biomass was highly affected by multipollution treatment. Tf and BCF significantly varied between investigated treatments and families of black locust. Concerning obtained results of heavy metals accumulation and tolerance of black locust families can be concluded that tested families might be a promising tool for phytoextraction purposes, but it takes to be further confirmed in field trials.

  7. Cadmium remobilization from shoot to grain is related to pH of vascular bundle in rice.

    Science.gov (United States)

    Zhang, Bing-Lin; Ouyang, You-Nan; Xu, Jun-Ying; Liu, Ke

    2018-01-01

    The remobilization of cadmium (Cd) from shoots to grain is the key process to determine the Cd accumulation in grain. The apoplastic pH of plants is an important factor and signal in influencing on plant responding to environmental variation and inorganic elements uptake. It is proposed that pH of rice plants responds and influences on Cd remobilization from shoots to grain when rice is exposed to Cd stress. The results of hydroponic experiment showed that: pH of the rice leaf vascular bundles among 3 cultivars was almost increased, pH value of 1 cultivar was slightly increasing when rice plants were treated with Cd. The decrease degree of H + concentration in leaf vascular bundles was different among cultivars. The cultivar with higher decreasing in H + concentration, showed higher Cd transfer efficiency from shoots to grain. The H + concentration of leaf vascular bundles under normal condition was negatively correlated to cadmium accumulation in leaf. Moreover, pH change was related to Cd accumulation in shots and remobilization from shoots to grain. Uncovering the role of pH response is a key component for the understanding Cd uptake and remobilization mechanism for rice production. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Condutividade elétrica da solução nutritiva e acúmulo de macro e micronutrientes no cultivo de crisântemo Electrical conductivity of nutrient solution on growth and nutrient accumulation in chrysanthemum plants

    Directory of Open Access Journals (Sweden)

    Poliana Rocha D'Almeida Mota

    2013-03-01

    Full Text Available A análise de crescimento com base no acúmulo de fitomassa e na marcha de absorção de nutrientes são importantes para determinar as épocas da maior demanda nutricional, de modo a programar a fertirrigação. Assim, esta pesquisa tem como objetivo determinar o crescimento e o acúmulo de nutrientes em plantas de crisântemo desenvolvidas em diferentes níveis de condutividade elétrica (CE da solução nutritiva. Realizou-se experimento em casa de vegetação, utilizando o delineamento de blocos casualizados com cinco tratamentos e quatro repetições. Os tratamentos corresponderam aos níveis de CE da solução aplicada, com valores de 1,42; 1,65; 1,89; 2,13 e 2,36 dS m¹(fase vegetativa e 1,71; 1,97; 2,28; 2,57 e 2,85 dS m¹(fase de botão. Após o enraizamento das estacas, determinou-se a fitomassa seca da parte aérea e realizou-se a análise química dos macronutrientes e micronutrientes a cada quatorze dias. Os nutrientes tiveram a seguinte ordem de absorção: K>N>Ca>P>Mg>S (1425, 892, 184, 150, 110 e 59 mg planta¹ e Fe>Zn>B>Mn>Cu (2254, 2219, 1725, 1287,210 µg planta¹. Grande parte dos nutrientes tem seu teor aumentado com a elevação do nível da CE da solução, sem que haja efeito salino até a CE de 2,85 dS m¹The study of growth and uptake of nutrients is important to determine the times of increased demand in order to schedule the fertigation. The present research was developed with the objective of evaluating the effects of different levels of electrical conductivity on growth and accumulation of nutrients in chrysanthemum plants under greenhouse conditions. The electri- cal conductivity levels on the applied solution were 1. 42, 1. 65, 1. 89, 2. 13 and 2. 36 dS m¹(bud vegetative stage; 1. 71, 1. 97, 2. 28, 2. 57 and 2. 85 dS m¹(bud stage. The dry mass of the aerial portion of the plant and the contents of macronutrients and micronutrients were determined every 14 days. The nutrient accumulation in chrysanthemum plant

  9. Condutividade elétrica da solução nutritiva e acúmulo de macro e micronutrientes no cultivo de crisântemo Electrical conductivity of nutrient solution on growth and nutrient accumulation in chrysanthemum plants

    Directory of Open Access Journals (Sweden)

    Poliana Rocha D'Almeida Mota

    2013-01-01

    Full Text Available A análise de crescimento com base no acúmulo de fitomassa e na marcha de absorção de nutrientes são importantes para determinar as épocas da maior demanda nutricional, de modo a programar a fertirrigação. Assim, esta pesquisa tem como objetivo determinar o crescimento e o acúmulo de nutrientes em plantas de crisântemo desenvolvidas em diferentes níveis de condutividade elétrica (CE da solução nutritiva. Realizou-se experimento em casa de vegetação, utilizando o delineamento de blocos casualizados com cinco tratamentos e quatro repetições. Os tratamentos corresponderam aos níveis de CE da solução aplicada, com valores de 1,42; 1,65; 1,89; 2,13 e 2,36 dS m¹(fase vegetativa e 1,71; 1,97; 2,28; 2,57 e 2,85 dS m¹(fase de botão. Após o enraizamento das estacas, determinou-se a fitomassa seca da parte aérea e realizou-se a análise química dos macronutrientes e micronutrientes a cada quatorze dias. Os nutrientes tiveram a seguinte ordem de absorção: K>N>Ca>P>Mg>S (1425, 892, 184, 150, 110 e 59 mg planta¹ e Fe>Zn>B>Mn>Cu (2254, 2219, 1725, 1287,210 µg planta¹. Grande parte dos nutrientes tem seu teor aumentado com a elevação do nível da CE da solução, sem que haja efeito salino até a CE de 2,85 dS m¹The study of growth and uptake of nutrients is important to determine the times of increased demand in order to schedule the fertigation. The present research was developed with the objective of evaluating the effects of different levels of electrical conductivity on growth and accumulation of nutrients in chrysanthemum plants under greenhouse conditions. The electri- cal conductivity levels on the applied solution were 1. 42, 1. 65, 1. 89, 2. 13 and 2. 36 dS m¹(bud vegetative stage; 1. 71, 1. 97, 2. 28, 2. 57 and 2. 85 dS m¹(bud stage. The dry mass of the aerial portion of the plant and the contents of macronutrients and micronutrients were determined every 14 days. The nutrient accumulation in chrysanthemum plant

  10. Photo-Oxidative Stress-Driven Mutagenesis and Adaptive Evolution on the Marine Diatom Phaeodactylum tricornutum for Enhanced Carotenoid Accumulation

    Directory of Open Access Journals (Sweden)

    Zhiqian Yi

    2015-09-01

    Full Text Available Marine diatoms have recently gained much attention as they are expected to be a promising resource for sustainable production of bioactive compounds such as carotenoids and biofuels as a future clean energy solution. To develop photosynthetic cell factories, it is important to improve diatoms for value-added products. In this study, we utilized UVC radiation to induce mutations in the marine diatom Phaeodactylum tricornutum and screened strains with enhanced accumulation of neutral lipids and carotenoids. Adaptive laboratory evolution (ALE was also used in parallel to develop altered phenotypic and biological functions in P. tricornutum and it was reported for the first time that ALE was successfully applied on diatoms for the enhancement of growth performance and productivity of value-added carotenoids to date. Liquid chromatography-mass spectrometry (LC-MS was utilized to study the composition of major pigments in the wild type P. tricornutum, UV mutants and ALE strains. UVC radiated strains exhibited higher accumulation of fucoxanthin as well as neutral lipids compared to their wild type counterpart. In addition to UV mutagenesis, P. tricornutum strains developed by ALE also yielded enhanced biomass production and fucoxanthin accumulation under combined red and blue light. In short, both UV mutagenesis and ALE appeared as an effective approach to developing desired phenotypes in the marine diatoms via electromagnetic radiation-induced oxidative stress.

  11. The theory and experiment of solute migration caused by excited state absorptions

    International Nuclear Information System (INIS)

    Xiao, Jin; Ying-Lin, Song; Yu-Xiao, Wang; Min, Shui; Chang-Wei, Li; Jun-Yi, Yang; Xue-Ru, Zhang; Kun, Yang

    2010-01-01

    Nonsymmetrical transition from reverse-saturable absorption (RSA) to saturable absorption (SA) caused by excited state absorption induced mass transport of the CuPcTs dissolved in dimethyl sulfoxide is observed in an open aperture Z-scan experiment with a 21-ps laser pulse. The nonsymmetrical transition from RSA to SA is ascribed neither to saturation of excited state absorption nor to thermal induced mass transport, the so-called Soret effect. In our consideration, strong nonlinear absorption causes the rapid accumulation of the non-uniform kinetic energy of the solute molecules. The non-uniform kinetic field in turn causes the migration of the solute molecules. Additionally, an energy-gradient-induced mass transport theory is presented to interpret the experimental results, and the theoretical calculations are also taken to fit our experimental results. (classical areas of phenomenology)

  12. Ordinary differential equation for local accumulation time.

    Science.gov (United States)

    Berezhkovskii, Alexander M

    2011-08-21

    Cell differentiation in a developing tissue is controlled by the concentration fields of signaling molecules called morphogens. Formation of these concentration fields can be described by the reaction-diffusion mechanism in which locally produced molecules diffuse through the patterned tissue and are degraded. The formation kinetics at a given point of the patterned tissue can be characterized by the local accumulation time, defined in terms of the local relaxation function. Here, we show that this time satisfies an ordinary differential equation. Using this equation one can straightforwardly determine the local accumulation time, i.e., without preliminary calculation of the relaxation function by solving the partial differential equation, as was done in previous studies. We derive this ordinary differential equation together with the accompanying boundary conditions and demonstrate that the earlier obtained results for the local accumulation time can be recovered by solving this equation. © 2011 American Institute of Physics

  13. Accumulation of carbon in northern mire ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Tolonen, K; Turunen, J; Alm, J [Joensuu Univ. (Finland). Dept. of Biology; Korhola, A [Helsinki Univ. (Finland). Lab. of Physical Geography; Jungner, H [Helsinki Univ. (Finland). Dating Lab.; Vasander, H [Helsinki Univ. (Finland). Dept. of Forest Ecology

    1997-12-31

    The basic feature in the functional ecology of any mire ecosystem is retardation of the effective decay of organic material resulting in a conspicuous accumulation of plant debris as peat overtime. The carbon accumulation process is slow, and climatic change may have an impact on the carbon cycle of peatlands, therefore, it has been of interest to study the rate of carbon accumulation by geological methods from dated peat strata. The approach is hampered by several facts. First, the mires vary enormously as to their vegetation and hydrology and hence their production and decay properties. It follows that a great number of study sites are needed. Second, the peat in mires expands both vertically and laterally, and this requires a spatial reconstruction of carbon accumulation within a mire basin. Third, simple geological methods cannot account for the actual rate of carbon accumulation in peat, and finally, an additional carbon sink in the mire ecosystems can be the mineral subsoil beneath peat. The proposed warming will perhaps shift northwards the existing climatic mire regimes and, thus, the northern aapa fens will change to Sphagnum bogs that are more effective in sequestering carbon, but distinctly less effective in their CH{sub 4} and N{sub 2}O emanation. The role of mire fires in more remote northern areas may then become another important factor. The answer to the important question of future total sequestration of carbon to peatlands depends on the precipitation and its seasonal distribution pattern. Most climatic scenarios predict a decrease in the evaporation surplus during the summer at northern regions. Presumably, the consequent lowering of the water table would improve growth of forest on mires and simultaneously decrease the methane fluxes from peat. The combined net effect could be a clear restraining of the radiative forcing

  14. Accumulation of carbon in northern mire ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Tolonen, K.; Turunen, J.; Alm, J. [Joensuu Univ. (Finland). Dept. of Biology; Korhola, A. [Helsinki Univ. (Finland). Lab. of Physical Geography; Jungner, H. [Helsinki Univ. (Finland). Dating Lab.; Vasander, H. [Helsinki Univ. (Finland). Dept. of Forest Ecology

    1996-12-31

    The basic feature in the functional ecology of any mire ecosystem is retardation of the effective decay of organic material resulting in a conspicuous accumulation of plant debris as peat overtime. The carbon accumulation process is slow, and climatic change may have an impact on the carbon cycle of peatlands, therefore, it has been of interest to study the rate of carbon accumulation by geological methods from dated peat strata. The approach is hampered by several facts. First, the mires vary enormously as to their vegetation and hydrology and hence their production and decay properties. It follows that a great number of study sites are needed. Second, the peat in mires expands both vertically and laterally, and this requires a spatial reconstruction of carbon accumulation within a mire basin. Third, simple geological methods cannot account for the actual rate of carbon accumulation in peat, and finally, an additional carbon sink in the mire ecosystems can be the mineral subsoil beneath peat. The proposed warming will perhaps shift northwards the existing climatic mire regimes and, thus, the northern aapa fens will change to Sphagnum bogs that are more effective in sequestering carbon, but distinctly less effective in their CH{sub 4} and N{sub 2}O emanation. The role of mire fires in more remote northern areas may then become another important factor. The answer to the important question of future total sequestration of carbon to peatlands depends on the precipitation and its seasonal distribution pattern. Most climatic scenarios predict a decrease in the evaporation surplus during the summer at northern regions. Presumably, the consequent lowering of the water table would improve growth of forest on mires and simultaneously decrease the methane fluxes from peat. The combined net effect could be a clear restraining of the radiative forcing

  15. The distribution and phylogeny of aluminium accumulating plants in the Ericales

    NARCIS (Netherlands)

    Jansen, S.; Watanabe, T.; Caris, P.; Geuten, K.; Lens, F.; Pyck, N.; Smets, E.

    2004-01-01

    The distribution of aluminium (Al) accumulation in the Ericales is surveyed, based on semi-quantitative tests of 114 species and literature data. Al accumulation mainly characterises the families Diapensiaceae, Pentaphylacaceae, Symplocaceae, Ternstroemiaceae, and Theaceae. Al accumulation is

  16. Trace organic solutes in closed-loop forward osmosis applications: influence of membrane fouling and modeling of solute build-up.

    Science.gov (United States)

    D'Haese, Arnout; Le-Clech, Pierre; Van Nevel, Sam; Verbeken, Kim; Cornelissen, Emile R; Khan, Stuart J; Verliefde, Arne R D

    2013-09-15

    In this study, trace organics transport in closed-loop forward osmosis (FO) systems was assessed. The FO systems considered, consisted of an FO unit and a nanofiltration (NF) or reverse osmosis (RO) unit, with the draw solution circulating between both units. The rejection of trace organics by FO, NF and RO was tested. It was found that the rejection rates of FO were generally comparable with NF and lower than RO rejection rates. To assess the influence of fouling in FO on trace organics rejection, FO membranes were fouled with sodium alginate, bovine serum albumin or by biofilm growth, after which trace organics rejection was tested. A negative influence of fouling on FO rejection was found which was limited in most cases, while it was significant for some compounds such as paracetamol and naproxen, indicating specific compound-foulant interactions. The transport mechanism of trace organics in FO was tested, in order to differentiate between diffusive and convective transport. The concentration of trace organics in the final product water and the build-up of trace organics in the draw solution were modeled assuming the draw solution was reconcentrated by NF/RO and taking into account different transport mechanisms for the FO membrane and different rejection rates by NF/RO. Modeling results showed that if the FO rejection rate is lower than the RO rejection rate (as is the case for most compounds tested), the added value of the FO-RO cycle compared to RO only at steady-state was small for diffusively and negative for convectively transported trace organics. Modeling also showed that trace organics accumulate in the draw solution. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. The accumulation of metals in lichens

    Directory of Open Access Journals (Sweden)

    Smaranda Mâșu

    2017-05-01

    Full Text Available The capacity to accumulate metal in the lichen communities has been used to identify the level of air pollution due road traffic. Several analyses have been conducted in the study, on tissue from lichens collected from six areas: the park of a town, various sites on the town’s freeway and on a county road segment with moderate traffic. The analyzed lichens were from the Parmelia spp. species which grow naturally on trees found in borderline lanes of motorways. Based on the degree of heavy metal accumulation such as Cd, Cr, Cu, Fe Mn, Pb, Ni and Zn in the Parmelia spp. lichens, a correlation has been made, with the road traffic. According to the metal bioaccumulation degree in lichens tissue, it has been established that the sources such as traffic from the outskirts of cities, from the perimeter of gas stations and of county roads continuously spread products which contain these elements, into the atmosphere. The fast information regarding the quality of the air in the environment allows the use of lichens as organism which can indicate environmental conditions and their modification by accumulating substances.

  18. Salt-stimulation of caesium accumulation in the euryhaline green microalga Chlorella salina: potential relevance to the development of a biological Cs-removal process

    Energy Technology Data Exchange (ETDEWEB)

    Avery, S. V.; Codd, G. A.; Gadd, G. M. [Department of Biological Sciences, University of Dundee, Dundee DD1 4HN (United Kingdom)

    1993-07-01

    Accumulation of Cs{sup +} by Chlorella salina was 28-fold greater in cells incubated in the presence than in the absence of 0.5 M-NaCl. An approximate 70% removal of external Cs{sup +} resulted after 15 h incubation of cells with 50 μ;M-CsCl and 0.5 M-NaCl. LiCl also had a stimulatory effect on Cs{sup +} uptake, although mannitol did not. Cs{sup +} influx increased with increasing external NaCl concentration and was maximal between 25-500 mM-NaCl at approximately 4 nmol Cs{sup +} h−1 (10{sup 6} cells){sup −1}. Little effect on Cs{sup +} uptake resulted from the presence of Mg{sup 2+} or Ca{sup 2+} or from varying the external pH, and Cs{sup +} was relatively non-toxic towards C. salina. At increasing cell densities (from 4 × 10{sup 5} to 1 × 10{sup 7} cells ml{sup +1}), decreasing amounts of Cs{sup +} were accumulated per cell although the rate of Cs{sup +} removal from the external medium was still greatest at the higher cell densities examined. Freely suspended C. salina and cell-loaded alginate microbeads accumulated similar levels of Cs{sup +}, however, 46% of total Cs{sup +} uptake was attributable to the calcium-alginate matrix in the latter case. When Cs{sup +}-loaded cells were subjected to hypoosmotic shock, loss of cellular Cs{sup +} occurred allowing easy Cs{sup +} recovery. This loss exceeded 90% of cellular Cs{sup +} when cells were washed with solutions containing ≤ 50 mM-NaCl between consecutive Cs{sup +} uptake periods; these cells subsequently lost their ability to accumulate large amounts of Cs{sup +}. Maximal Cs{sup +} uptake (approximately 85.1% removal after three 15 h incubations) occurred when cells were washed with a solution containing 500 mM-NaCl and 200 mM-KCl between incubations. The relevance of these results to the possible use of C. salina in a salt-dependent biological Cs-removal process is discussed. (author)

  19. A Dextral Primary Progressive Aphasia Patient with Right Dominant Hypometabolism and Tau Accumulation and Left Dominant Amyloid Accumulation

    Directory of Open Access Journals (Sweden)

    Young Kyoung Jang

    2016-04-01

    Full Text Available Background: Primary progressive aphasia (PPA is a degenerative disease that presents as progressive decline of language ability with preservation of other cognitive functions in the early stages. Three subtypes of PPA are known: progressive nonfluent aphasia, semantic dementia, and logopenic aphasia (LPA. Patients and Methods: We report the case of a 77-year-old patient with PPA whose clinical findings did not correspond to the three subtypes but mainly fit LPA. Unlike other LPA patients, however, this patient showed a right hemisphere predominant glucose hypometabolism and tau accumulation and a left hemisphere predominant amyloid deposition. The right-handed patient presented with comprehension difficulty followed by problems naming familiar objects. This isolated language problem had deteriorated rapidly for 2 years, followed by memory difficulties and impairment of daily activities. Using a Korean version of the Western Aphasia Battery, aphasia was consistent with a severe form of Wernicke's aphasia. According to the brain magnetic resonance imaging and 18F-fludeoxyglucose positron emission tomography results, right hemisphere atrophy and hypometabolism, more predominant on the right hemisphere than the left, were apparent despite the fact that Edinburgh Handedness Questionnaire scores indicated strong right-handedness. On Pittsburgh compound B-PET, amyloid accumulation was asymmetrical with the left hemisphere being more predominant than the right, whereas 18F-T807-PET showed a right dominant tau accumulation. Conclusions: This is the first report of atypical PPA, in which the patient exhibited crossed aphasia and asymmetrical amyloid accumulation.

  20. Global warming precipitation accumulation increases above the current-climate cutoff scale.

    Science.gov (United States)

    Neelin, J David; Sahany, Sandeep; Stechmann, Samuel N; Bernstein, Diana N

    2017-02-07

    Precipitation accumulations, integrated over rainfall events, can be affected by both intensity and duration of the storm event. Thus, although precipitation intensity is widely projected to increase under global warming, a clear framework for predicting accumulation changes has been lacking, despite the importance of accumulations for societal impacts. Theory for changes in the probability density function (pdf) of precipitation accumulations is presented with an evaluation of these changes in global climate model simulations. We show that a simple set of conditions implies roughly exponential increases in the frequency of the very largest accumulations above a physical cutoff scale, increasing with event size. The pdf exhibits an approximately power-law range where probability density drops slowly with each order of magnitude size increase, up to a cutoff at large accumulations that limits the largest events experienced in current climate. The theory predicts that the cutoff scale, controlled by the interplay of moisture convergence variance and precipitation loss, tends to increase under global warming. Thus, precisely the large accumulations above the cutoff that are currently rare will exhibit increases in the warmer climate as this cutoff is extended. This indeed occurs in the full climate model, with a 3 °C end-of-century global-average warming yielding regional increases of hundreds of percent to >1,000% in the probability density of the largest accumulations that have historical precedents. The probabilities of unprecedented accumulations are also consistent with the extension of the cutoff.

  1. Global warming precipitation accumulation increases above the current-climate cutoff scale

    Science.gov (United States)

    Sahany, Sandeep; Stechmann, Samuel N.; Bernstein, Diana N.

    2017-01-01

    Precipitation accumulations, integrated over rainfall events, can be affected by both intensity and duration of the storm event. Thus, although precipitation intensity is widely projected to increase under global warming, a clear framework for predicting accumulation changes has been lacking, despite the importance of accumulations for societal impacts. Theory for changes in the probability density function (pdf) of precipitation accumulations is presented with an evaluation of these changes in global climate model simulations. We show that a simple set of conditions implies roughly exponential increases in the frequency of the very largest accumulations above a physical cutoff scale, increasing with event size. The pdf exhibits an approximately power-law range where probability density drops slowly with each order of magnitude size increase, up to a cutoff at large accumulations that limits the largest events experienced in current climate. The theory predicts that the cutoff scale, controlled by the interplay of moisture convergence variance and precipitation loss, tends to increase under global warming. Thus, precisely the large accumulations above the cutoff that are currently rare will exhibit increases in the warmer climate as this cutoff is extended. This indeed occurs in the full climate model, with a 3 °C end-of-century global-average warming yielding regional increases of hundreds of percent to >1,000% in the probability density of the largest accumulations that have historical precedents. The probabilities of unprecedented accumulations are also consistent with the extension of the cutoff. PMID:28115693

  2. Far-Field Accumulation of Fissile Material From Waste Packages Containing Plutonium Disposition Waste Form

    International Nuclear Information System (INIS)

    J.P. Nicot

    2000-01-01

    The objective of this calculation is to estimate the quantity of fissile material that could accumulate in fractures in the rock beneath plutonium-ceramic (Pu-ceramic) and Mixed-Oxide (MOX) waste packages (WPs) as they degrade in the potential monitored geologic repository at Yucca Mountain. This calculation is to feed another calculation (Ref. 31) computing the probability of criticality in the systems described in Section 6 and then ultimately to a more general report on the impact of plutonium on the performance of the proposed repository (Ref. 32), both developed concurrently to this work. This calculation is done in accordance with the development plan TDP-DDC-MD-000001 (Ref. 9), item 5. The original document described in item 5 has been split into two documents: this calculation and Ref. 4. The scope of the calculation is limited to only very low flow rates because they lead to the most conservative cases for Pu accumulation and more generally are consistent with the way the effluent from the WP (called source term in this calculation) was calculated (Ref. 4). Ref. 4 (''In-Drift Accumulation of Fissile Material from WPs Containing Plutonium Disposition Waste Forms'') details the evolution through time (breach time is initial time) of the chemical composition of the solution inside the WP as degradation of the fuel and other materials proceed. It is the chemical solution used as a source term in this calculation. Ref. 4 takes that same source term and reacts it with the invert; this calculation reacts it with the rock. In addition to reactions with the rock minerals (that release Si and Ca), the basic mechanisms for actinide precipitation are dilution and mixing with resident water as explained in Section 2.1.4. No other potential mechanism such as flow through a reducing zone is investigated in this calculation. No attempt was made to use the effluent water from the bottom of the invert instead of using directly the effluent water from the WP. This

  3. Carbon accumulation in peatlands of West Siberia over the last 2000 years

    Science.gov (United States)

    Beilman, David W.; MacDonald, Glen M.; Smith, Laurence C.; Reimer, Paula J.

    2009-03-01

    We use a network of cores from 77 peatland sites to determine controls on peat C content and peat C accumulation over the last 2000 years (since 2 ka) across Russia's West Siberian Lowland (WSL), the world's largest wetland region. Our results show a significant influence of fossil plant composition on peat C content, with peats dominated by Sphagnum having a lower C content. Radiocarbon-derived C accumulation since 2 ka at 23 sites is highly variable from site to site, but displays a significant N-S trend of decreasing accumulation at higher latitudes. Northern WSL peatlands show relatively small C accumulation of 7 to 35 kg C m-2 since 2 ka. In contrast, peatlands south of 60°N show larger accumulation of 42 to 88 kg C m-2. Carbon accumulation since 2 ka varies significantly with modern mean annual air temperature, with maximum C accumulation found between -1 and 0°C. Rates of apparent C accumulation since 2 ka show no significant relationship to long-term Holocene averages based on total C accumulation. A GIS-based extrapolation of our site data suggests that a substantial amount (˜40%) of total WSL peat C has accumulated since 2 ka, with much of this accumulation south of 60°N. The large peatlands in the southern WSL may be an important component of the Eurasian terrestrial C sink, and future warming could result in a shift northward in long-term WSL C sequestration.

  4. Shifts in Summertime Precipitation Accumulation Distributions over the US

    Science.gov (United States)

    Martinez-Villalobos, C.; Neelin, J. D.

    2017-12-01

    Precipitation accumulations, i.e., the amount of precipitation integrated over the course of an event, is a variable with both important physical and societal implications. Previous observational studies show that accumulation distributions have a characteristic shape, with an approximately power law decrease at first, followed by a sharp decrease at a characteristic large event cutoff scale. This cutoff scale is important as it limits the biggest accumulation events. Stochastic prototypes show that the resulting distributions, and importantly the large event cutoff scale, can be understood as a result of the interplay between moisture loss by precipitation and changes in moisture sinks/sources due to fluctuations in moisture divergence over the course of a precipitation event. The strength of this fluctuating moisture sink/source term is expected to increase under global warming, with both theory and climate model simulations predicting a concomitant increase in the large event cutoff scale. This cutoff scale increase has important consequences as it implies an approximately exponential increase for the largest accumulation events. Given its importance, in this study we characterize and track changes in the distribution of precipitation events accumulations over the contiguous US. Accumulation distributions are calculated using hourly precipitation data from 1700 stations, covering the 1974-2013 period over May-October. The resulting distributions largely follow the aforementioned shape, with individual cutoff scales depending on the local climate. An increase in the large event cutoff scale over this period is observed over several regions over the US, most notably over the eastern third of the US. In agreement with the increase in the cutoff, almost exponential increases in the highest accumulation percentiles occur over these regions, with increases in the 99.9 percentile in the Northeast of 70% for example. The relationship to changes in daily precipitation

  5. Phytomass production and nutrient accumulation by green manure species

    Directory of Open Access Journals (Sweden)

    José Carlos Soares Mangaravite

    2014-10-01

    Full Text Available Green manuring is recognized as a viable alternative to improve nutrient cycling in soils. The aim of this study was to evaluate the phytomass production and nutrient accumulation in shoots of the summer green manures jack bean [Canavalia ensiformis (L. DC.], dwarf pigeon pea (Cajanus cajanvar var. Flavus DC., dwarf mucuna [Mucuna deeringiana (Bort Merr] and sunn hemp (Crotalaria juncea L., under nitrogen fertilization and/or inoculation with N-fixing bacteria. A split plot design was arranged with the four Fabaceae species as main plots and nitrogen fertilization (with and without and inoculation with diazotrophic bacteria (with and without as the subplots, in a 2² factorial. The experiment was arranged as a randomized complete block design with four replications. In the conditions of this trial, the sunn hemp had the highest production of shoot phytomass (12.4 Mg ha-1 and nutrient accumulation, while the dwarf mucuna had the lowest production of shoot phytomass (3.9 Mg ha-1 and nutrient accumulation. The results showed no effect of nitrogen fertilization or inoculation with N-fixing bacteria on the production of shoot phytomass and nutrient accumulation, except for inoculation without nitrogen fertilization, resulting in greater P accumulation (p <0.05 in the sunn hemp and greater Zn and Mn accumulation in the dwarf mucuna. These findings indicate that N fertilization or inoculation with N2-fixing bacteria for Fabaceae are low efficiency practices in the edaphoclimatic conditions of this study.

  6. Skeletal muscle apolipoprotein B expression reduces muscular triglyceride accumulation

    DEFF Research Database (Denmark)

    Bartels, Emil D; Ploug, Thorkil; Størling, Joachim

    2014-01-01

    Abstract Background. Lipid accumulation in skeletal muscle is associated with impaired insulin sensitivity in type 2 diabetes. In cardiac myocytes, lipoprotein secretion controlled by apolipoproteinB (apoB) and microsomal triglyceride transfer protein (MTP) affects lipid homeostasis. Design. In t...... accumulation and attenuates peripheral insulin resistance in obese mice........ In this study, we investigated whether expression of a human apoB transgene affects triglyceride accumulation and insulin sensitivity in skeletal muscle in fat fed obese mice. Results. Expression of apoB and MTP mRNA and the human apoB transgene was seen in skeletal muscle of the transgene mice. Human apo......Abstract Background. Lipid accumulation in skeletal muscle is associated with impaired insulin sensitivity in type 2 diabetes. In cardiac myocytes, lipoprotein secretion controlled by apolipoproteinB (apoB) and microsomal triglyceride transfer protein (MTP) affects lipid homeostasis. Design...

  7. Accumulation of fluoride by plants and vegetables

    International Nuclear Information System (INIS)

    Njenga, L.W.; Kariuki, D.N.

    1994-01-01

    Fluoride in plant and vegetable samples has been determined using ion selective electrode. The analysis was carried out after ashing the sample on an open flame, adding perchloric acid and allowing the hydrogen fluoride to diffuse into sodium hydroxide layer.The results obtained show that kale and pumpkins can accumulate more than ten times their normal values of fluoride while plants were found to accumulate upto 100μg/g fluoride when exposed to highlevels of fluoride in water or soil. (author)

  8. Accumulation of sunscreen in human skin after daily applications

    DEFF Research Database (Denmark)

    Bodekær, Mette; Akerström, Ulf; Wulf, Hans Christian

    2012-01-01

    Sunscreen applied to the skin provides a considerable sun protection factor (SPF) even after 8 h. Sunscreen use for consecutive days may therefore result in an accumulation of the product. This study investigated the consequences of accumulation for SPF....

  9. Cd Toxicity and Accumulation in Rice Plants Vary with Soil Nitrogen Status and Their Genotypic Difference can be Partly Attributed to Nitrogen Uptake Capacity

    Directory of Open Access Journals (Sweden)

    Qin DU

    2009-12-01

    Full Text Available Two indica rice genotypes, viz. Milyang 46 and Zhenshan 97B differing in Cd accumulation and tolerance were used as materials in a hydroponic system consisting of four Cd levels (0, 0.1, 1.0 and 5.0 µmol/L and three N levels (23.2, 116.0 and 232.0 mg/L to study the effects of nitrogen status and nitrogen uptake capacity on Cd accumulation and tolerance in rice plants. N-efficient rice genotype, Zhenshan 97B, accumulated less Cd and showed higher Cd tolerance than N-inefficient rice genotype, Milyang 46. There was consistency between nitrogen uptake capacity and Cd tolerance in rice plants. Increase of N level in solution slightly increased Cd concentration in shoots but significantly increased in roots of both genotypes. Compared with the control at low N level, Cd tolerance in both rice genotypes could be significantly enhanced under normal N level, but no significant difference was observed between the Cd tolerances under normal N (116.0 mg/L and high N (232.0 mg/L conditions. The result proved that genotypic differences in Cd accumulation and toxicity could be, at least in part, attributed to N uptake capacity in rice plants.

  10. 47 CFR 32.3200 - Accumulated depreciation-held for future telecommunications use.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Accumulated depreciation-held for future... Balance Sheet Accounts § 32.3200 Accumulated depreciation—held for future telecommunications use. (a) This account shall include the accumulated depreciation associated with the investment contained in Account...

  11. Theoretical-probability evaluation of the fire hazard of coal accumulations

    Energy Technology Data Exchange (ETDEWEB)

    Sikora, F F

    1978-01-01

    An evaluation is suggested for the fire hazard of coal accumulations, based on determining the probability of an endogenic fire. This probability is computed by using the statistical characteristics of the temperature distribution of spontaneous heating in large accumulations, and the criteria of Gluzberg's fire hazard that is determined by the coal's physico-chemical properties, oxygen concentration, and the size of the accumulations. 4 references.

  12. Selenium accumulation in the cockle Anadara trapezia

    International Nuclear Information System (INIS)

    Jolley, Dianne F.; Maher, William A.; Kyd, Jennelle

    2004-01-01

    An extensive study on Se accumulation in a population of Anadara trapezia from a marine lake is reported. The effects of organism mass, gender, reproductive cycle, and season on Se accumulation and tissue distribution were investigated. Analyses showed that gender and reproductive cycle had no significant effect on Se accumulation. A. trapezia showed a strong positive correlation between Se burden and tissue mass. Constant Se concentrations were observed within individual populations but varied spatially with sediment Se concentrations. Se concentrations in tissues decreased from gills > gonad/intestine > mantle > muscle > foot, which remained constant over 12 months, however, significantly lower concentrations were observed in the summer compared to winter. A. trapezia is a good biomonitor for Se, as gender and size do not effect concentration, however, season of collection must be reported if changes in Se bioavailability are to be identified in short term studies, or during intersite comparisons. - Capsule: The marine bivalve Anadara trapezia is a good bioindicator for marine selenium contamination

  13. Ethambutol neutralizes lysosomes and causes lysosomal zinc accumulation.

    Science.gov (United States)

    Yamada, Daisuke; Saiki, Shinji; Furuya, Norihiko; Ishikawa, Kei-Ichi; Imamichi, Yoko; Kambe, Taiho; Fujimura, Tsutomu; Ueno, Takashi; Koike, Masato; Sumiyoshi, Katsuhiko; Hattori, Nobutaka

    2016-02-26

    Ethambutol is a common medicine used for the treatment of tuberculosis, which can have serious side effects, such as retinal and liver dysfunction. Although ethambutol has been reported to impair autophagic flux in rat retinal cells, the precise molecular mechanism remains unclear. Using various mammalian cell lines, we showed that ethambutol accumulated in autophagosomes and vacuolated lysosomes, with marked Zn(2+) accumulation. The enlarged lysosomes were neutralized and were infiltrated with Zn(2+) accumulations in the lysosomes, with simultaneous loss of acidification. These results suggest that EB neutralizes lysosomes leading to insufficient autophagy, implying that some of the adverse effects associated with EB in various organs may be of this mechanism. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Accumulation and loss of technetium by macrophytic algae

    International Nuclear Information System (INIS)

    Benco, C.; Cannarsa, S.; Ceppodomo, I.; Zattera, A.

    1986-01-01

    Preliminary results are presented of a study of the accumulation of Tc by four species of brown algae (Sargassum vulgare, Cystoseira complexa, Dictyopteris membranacea, Dictyota dichotama implexa) and one species of green algae (Chlorophyta, Ulva rigida). With the exception of Cystoseira complexa, the accumulation was very rapid, and concentration factors decreased from Sargassum vulgare to Ulva rigida. Young stipes of Cystoseira complexa concentrated twice as much more Tc than cylindrical main axes. Attempts were made to understand the mechanism of Tc accumulation by brown seaweed. Fucoidan, a pool of high molecular weight polysaccharides extracted from Fucus sp. was put with sup(95m)Tc in seawater for 48 h and then dialysed, but no activity was retained by Fucoidan. (UK)

  15. 40 CFR 86.000-26 - Mileage and service accumulation; emission measurements.

    Science.gov (United States)

    2010-07-01

    ... accumulated the mileage the manufacturer chose to accumulate on the test vehicle. Fuel economy data generated... determines. Unless the Administrator approves a manufacturer's request to develop specific deterioration... accumulation method is developed by the manufacturer to be consistent with good engineering practice and to...

  16. Accumulation of catechins in tea in relation to accumulation of mRNA from genes involved in catechin biosynthesis.

    Science.gov (United States)

    Eungwanichayapant, P D; Popluechai, S

    2009-02-01

    Catechins are a group of polyphenols found in tea (Camellia sinensis var. sinensis) at high levels. They are beneficial for health. From the study on accumulation of catechins in shoots and mature leaves of a tea cultivar, Oolong No. 17, using high-performance liquid chromatography (HPLC), it was found that the amounts of most catechins in the shoots were higher than those in the mature leaves, with an exception of catechins gallate (CG) that was found in trace amounts in both the shoots and mature leaves. mRNA accumulation of genes involved in catechin synthesis was studied using reverse transcriptase-polymerase chain reaction (RT-PCR). The results showed that the mRNA accumulation of the genes were higher in the shoots than in the mature leaves. These genes included genes of phenylalanine ammonia-lyase 1 (PAL1; EC 4.3.1.5), chalcone synthase (CHS; EC 2.3.1.74), dihydroflavonol 4-reductase (DFR; EC 1.1.1.219), leucoanthocyanidin reductase (LCR; EC 1.17.1.3), and flavanone 3-hydroxylase (F3H; EC 1.14.11.9).

  17. Solute accumulation and elastic modulus changes in six radiata pine breeds exposed to drought.

    Science.gov (United States)

    De Diego, N; Sampedro, M C; Barrio, R J; Saiz-Fernández, I; Moncaleán, P; Lacuesta, M

    2013-01-01

    Drought is one of the main abiotic factors that determine forest species growth, survival and productivity. For this reason, knowledge of plant drought response and the identification of physiological traits involved in stress tolerance will be of interest to breeding programs. In this work, several Pinus radiata D. Don breeds from different geographical origins were evaluated along a water stress period (4 weeks) and subsequent rewatering (1 week), showing different responses among them. Leaf water potential (Ψ(leaf)) and osmotic potential decreases were accompanied by a variation in the total relative water content (RWC, %). The most tolerant breeds presented the lowest leaf water potential and RWC at turgor loss point, and showed the lowest elastic modulus (ε) values. A high ε value was a characteristic of a less-drought-tolerant plant and was related to membrane alterations (high electrolyte leakage percentages) that could favor cell water loss. Of the group of solutes that contributed to osmotic adjustment, soluble carbohydrates were the most abundant, although stressed plants also increased their content of free amino acids [mainly proline (Pro) and glutamic acid (Glu), and γ-aminobutyric acid (GABA)] and free polyamines. In addition, the most sensitive breeds had a higher GABA/Glu ratio. After rewatering, Pro and GABA were higher in rehydrated plants than in controls.

  18. Cadmium accumulation and strategies to avoid its toxicity in roots of the citrus rootstock Citrumelo

    International Nuclear Information System (INIS)

    Podazza, Griselda; Arias, Marta; Prado, Fernando E.

    2012-01-01

    Highlights: ► Cd induces oxidative stress, increasing the H 2 O 2 and O 2 · − generation. ► SOD, G-POD, CAT activities are enhanced by Cd. ► G-POD activity participates in Cd-induced lignin synthesis. ► Cd mainly accumulates in exodermis and vascular cylinder. ► Cd is mostly immobilized in roots, limiting its transport to aerial parts. - Abstract: In order to assess implications of Cd-induced oxidative stress in roots of the citrus rootstock Citrumelo, seedlings were hydroponically exposed to two relatively realistic Cd concentrations during 7 days. Our results showed that increasing Cd concentrations in external solution were associated with higher Cd accumulations in roots. At 5 μM Cd the accumulation of Cd in roots was over 70-f higher than in aerial part (stem + leaves). Malondialdehyde (MDA), superoxide radical (O 2 · − ), hydrogen peroxide (H 2 O 2 ) and lipoxygenase activity (LOX) increased in Cd-exposed roots, suggesting a metal-induced oxidative stress. The Cd treatment enhanced the activity of antioxidant enzymes superoxide dismutase (SOD), catalase (CAT) and guaiacol-type peroxidase (G-POD), as well as the content of secondary metabolites i.e. soluble phenolics (SPs) and lignin. Histochemical analyses of roots showed that Cd, H 2 O 2 , (O 2 · − ), lignin and G-POD displayed a similar location pattern. Almost all analyzed parameters showed a similar dynamic tendency with increases under 5 μM Cd followed by decreases under 10 μM Cd, suggesting that a complex coordinated Cd-defensive mechanism is operating in Citrumelo roots exposed to environmental realistic Cd concentrations.

  19. Arsenic accumulation by edible aquatic macrophytes.

    Science.gov (United States)

    Falinski, K A; Yost, R S; Sampaga, E; Peard, J

    2014-01-01

    Edible aquatic macrophytes grown in arsenic (As)-contaminated soil and sediment were investigated to determine the extent of As accumulation and potential risk to humans when consumed. Nasturtium officinale (watercress) and Diplazium esculentum (warabi) are two aquatic macrophytes grown and consumed in Hawaii. Neither has been assessed for potential to accumulate As when grown in As-contaminated soil. Some former sugarcane plantation soils in eastern Hawaii have been shown to have concentrations of total As over 500 mg kg(-1). It was hypothesized that both species will accumulate more As in contaminated soils than in non-contaminated soils. N. officinale and D. esculentum were collected in areas with and without As-contaminated soil and sediment. High soil As concentrations averaged 356 mg kg(-1), while low soil As concentrations were 0.75 mg kg(-1). Average N. officinale and D. esculentum total As concentrations were 0.572 mg kg(-1) and 0.075 mg kg(-1), respectively, corresponding to hazard indices of 0.12 and 0.03 for adults. Unlike previous studies where watercress was grown in As-contaminated water, N. officinale did not show properties of a hyperaccumulator, yet plant concentrations in high As areas were more than double those in low As areas. There was a slight correlation between high total As in sediment and soil and total As concentrations in watercress leaves and stems, resulting in a plant uptake factor of 0.010, an order of magnitude higher than previous studies. D. esculentum did not show signs of accumulating As in the edible fiddleheads. Hawaii is unique in having volcanic ash soils with extremely high sorption characteristics of As and P that limit release into groundwater. This study presents a case where soils and sediments were significantly enriched in total As concentration, but the water As concentration was below detection limits. © 2013 Published by Elsevier Inc.

  20. Multiple anatomy optimization of accumulated dose

    International Nuclear Information System (INIS)

    Watkins, W. Tyler; Siebers, Jeffrey V.; Moore, Joseph A.; Gordon, James; Hugo, Geoffrey D.

    2014-01-01

    Purpose: To investigate the potential advantages of multiple anatomy optimization (MAO) for lung cancer radiation therapy compared to the internal target volume (ITV) approach. Methods: MAO aims to optimize a single fluence to be delivered under free-breathing conditions such that the accumulated dose meets the plan objectives, where accumulated dose is defined as the sum of deformably mapped doses computed on each phase of a single four dimensional computed tomography (4DCT) dataset. Phantom and patient simulation studies were carried out to investigate potential advantages of MAO compared to ITV planning. Through simulated delivery of the ITV- and MAO-plans, target dose variations were also investigated. Results: By optimizing the accumulated dose, MAO shows the potential to ensure dose to the moving target meets plan objectives while simultaneously reducing dose to organs at risk (OARs) compared with ITV planning. While consistently superior to the ITV approach, MAO resulted in equivalent OAR dosimetry at planning objective dose levels to within 2% volume in 14/30 plans and to within 3% volume in 19/30 plans for each lung V20, esophagus V25, and heart V30. Despite large variations in per-fraction respiratory phase weights in simulated deliveries at high dose rates (e.g., treating 4/10 phases during single fraction beams) the cumulative clinical target volume (CTV) dose after 30 fractions and per-fraction dose were constant independent of planning technique. In one case considered, however, per-phase CTV dose varied from 74% to 117% of prescription implying the level of ITV-dose heterogeneity may not be appropriate with conventional, free-breathing delivery. Conclusions: MAO incorporates 4DCT information in an optimized dose distribution and can achieve a superior plan in terms of accumulated dose to the moving target and OAR sparing compared to ITV-plans. An appropriate level of dose heterogeneity in MAO plans must be further investigated

  1. Multiple anatomy optimization of accumulated dose

    Energy Technology Data Exchange (ETDEWEB)

    Watkins, W. Tyler, E-mail: watkinswt@virginia.edu; Siebers, Jeffrey V. [Department of Radiation Oncology, University of Virginia, Charlottesville, Virginia 22908 and Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia 23298 (United States); Moore, Joseph A. [Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland 21231 and Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia 23298 (United States); Gordon, James [Henry Ford Health System, Detroit, Michigan 48202 and Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia 23298 (United States); Hugo, Geoffrey D. [Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia 23298 (United States)

    2014-11-01

    Purpose: To investigate the potential advantages of multiple anatomy optimization (MAO) for lung cancer radiation therapy compared to the internal target volume (ITV) approach. Methods: MAO aims to optimize a single fluence to be delivered under free-breathing conditions such that the accumulated dose meets the plan objectives, where accumulated dose is defined as the sum of deformably mapped doses computed on each phase of a single four dimensional computed tomography (4DCT) dataset. Phantom and patient simulation studies were carried out to investigate potential advantages of MAO compared to ITV planning. Through simulated delivery of the ITV- and MAO-plans, target dose variations were also investigated. Results: By optimizing the accumulated dose, MAO shows the potential to ensure dose to the moving target meets plan objectives while simultaneously reducing dose to organs at risk (OARs) compared with ITV planning. While consistently superior to the ITV approach, MAO resulted in equivalent OAR dosimetry at planning objective dose levels to within 2% volume in 14/30 plans and to within 3% volume in 19/30 plans for each lung V20, esophagus V25, and heart V30. Despite large variations in per-fraction respiratory phase weights in simulated deliveries at high dose rates (e.g., treating 4/10 phases during single fraction beams) the cumulative clinical target volume (CTV) dose after 30 fractions and per-fraction dose were constant independent of planning technique. In one case considered, however, per-phase CTV dose varied from 74% to 117% of prescription implying the level of ITV-dose heterogeneity may not be appropriate with conventional, free-breathing delivery. Conclusions: MAO incorporates 4DCT information in an optimized dose distribution and can achieve a superior plan in terms of accumulated dose to the moving target and OAR sparing compared to ITV-plans. An appropriate level of dose heterogeneity in MAO plans must be further investigated.

  2. Multiple anatomy optimization of accumulated dose.

    Science.gov (United States)

    Watkins, W Tyler; Moore, Joseph A; Gordon, James; Hugo, Geoffrey D; Siebers, Jeffrey V

    2014-11-01

    To investigate the potential advantages of multiple anatomy optimization (MAO) for lung cancer radiation therapy compared to the internal target volume (ITV) approach. MAO aims to optimize a single fluence to be delivered under free-breathing conditions such that the accumulated dose meets the plan objectives, where accumulated dose is defined as the sum of deformably mapped doses computed on each phase of a single four dimensional computed tomography (4DCT) dataset. Phantom and patient simulation studies were carried out to investigate potential advantages of MAO compared to ITV planning. Through simulated delivery of the ITV- and MAO-plans, target dose variations were also investigated. By optimizing the accumulated dose, MAO shows the potential to ensure dose to the moving target meets plan objectives while simultaneously reducing dose to organs at risk (OARs) compared with ITV planning. While consistently superior to the ITV approach, MAO resulted in equivalent OAR dosimetry at planning objective dose levels to within 2% volume in 14/30 plans and to within 3% volume in 19/30 plans for each lung V20, esophagus V25, and heart V30. Despite large variations in per-fraction respiratory phase weights in simulated deliveries at high dose rates (e.g., treating 4/10 phases during single fraction beams) the cumulative clinical target volume (CTV) dose after 30 fractions and per-fraction dose were constant independent of planning technique. In one case considered, however, per-phase CTV dose varied from 74% to 117% of prescription implying the level of ITV-dose heterogeneity may not be appropriate with conventional, free-breathing delivery. MAO incorporates 4DCT information in an optimized dose distribution and can achieve a superior plan in terms of accumulated dose to the moving target and OAR sparing compared to ITV-plans. An appropriate level of dose heterogeneity in MAO plans must be further investigated.

  3. Chronology of p53 protein accumulation in gastric carcinogenesis

    NARCIS (Netherlands)

    Craanen, M. E.; Blok, P.; Dekker, W.; Offerhaus, G. J.; Tytgat, G. N.

    1995-01-01

    p53 Protein accumulation in early gastric carcinoma was studied in relation to the histological type (Lauren classification) and the type of growth pattern, including the chronology of p53 protein accumulation during carcinogenesis. Forty five, paraffin embedded gastrectomy specimens from early

  4. Influence of land use on phytomass accumulation in Highland ...

    African Journals Online (AJOL)

    Transformation of indigenous vegetation for production purposes impacts negatively on biodiversity but does this necessarily equate with a decrease in phytomass accumulation, which may influence carbon sequestration? Phytomass accumulation was studied for common land covers of beef ranching or dairy farming ...

  5. Flow field induced particle accumulation inside droplets in rectangular channels.

    Science.gov (United States)

    Hein, Michael; Moskopp, Michael; Seemann, Ralf

    2015-07-07

    Particle concentration is a basic operation needed to perform washing steps or to improve subsequent analysis in many (bio)-chemical assays. In this article we present field free, hydrodynamic accumulation of particles and cells in droplets flowing within rectangular micro-channels. Depending on droplet velocity, particles either accumulate at the rear of the droplet or are dispersed over the entire droplet cross-section. We show that the observed particle accumulation behavior can be understood by a coupling of particle sedimentation to the internal flow field of the droplet. The changing accumulation patterns are explained by a qualitative change of the internal flow field. The topological change of the internal flow field, however, is explained by the evolution of the droplet shape with increasing droplet velocity altering the friction with the channel walls. In addition, we demonstrate that accumulated particles can be concentrated, removing excess dispersed phase by splitting the droplet at a simple channel junction.

  6. Selective enhancement of boron accumulation with boron-entrapped water-in-oil-water emulsion in VX-2 rabbit hepatic cancer model for BNCT

    International Nuclear Information System (INIS)

    Yanagie, Hironobu; Higashi, Shushi; Ikushima, Ichiro

    2006-01-01

    Tumor cell destruction in boron neutron-capture therapy (BNCT) is due to the nuclear reaction between 10 B and thermal neutrons. It is necessary for effective BNCT therapy to accumulate 10 B atoms in the tumor cells without affecting adjacent healthy cells. Water-in-oil-water (WOW) emulsion was used as the carrier of anti-cancer agents on arterial injections in clinical cancer treatment. In this study, we prepared 10 BSH entrapped WOW emulsion for selective arterial infusion for the treatment of hepatocellular carcinoma. WOW emulsion was administrated by arterial injections via proper hepatic artery. The anti-tumor activity of the emulsion was compared with 10 BSH-Lipiodol mix emulsion or 10 BSH solutions on VX-2 rabbit hepatic tumor models. The 10 B concentrations in VX-2 tumor on delivery with WOW emulsion was superior to those by conventional lipiodol mix emulsion. Electro-microscopic figures of WOW emulsion delineated the accumulation of fat droplets of WOW emulsion in the tumor site, but there was no accumulation of fat droplets in lipiodol emulsion. These results indicate that 10 B entrapped WOW emulsion is most useful carrier for arterial delivery of boron agents on BNCT to cancer. (author)

  7. A Transformational Approach to Parametric Accumulated-Cost Static Profiling

    DEFF Research Database (Denmark)

    Haemmerlé, Rémy; López García, Pedro; Liqat, Umer

    2016-01-01

    Traditional static resource analyses estimate the total resource usage of a program, without executing it. In this paper we present a novel resource analysis whose aim is instead the static profiling of accumulated cost, i.e., to discover, for selected parts of the program, an estimate or bound...... of the resource usage accumulated in each of those parts. Traditional resource analyses are parametric in the sense that the results can be functions on input data sizes. Our static profiling is also parametric, i.e., our accumulated cost estimates are also parameterized by input data sizes. Our proposal is based...... on the concept of cost centers and a program transformation that allows the static inference of functions that return bounds on these accumulated costs depending on input data sizes, for each cost center of interest. Such information is much more useful to the software developer than the traditional resource...

  8. Cultivar variation in silicon accumulation and distribution in Petunia ×hybrida

    Science.gov (United States)

    Silicon (Si) is a plant-beneficial element that can alleviate the effects of abiotic and biotic stress. Plants are typically classified as Si accumulators or non-accumulators based on foliar Si concentrations (= 1% Si on a dry weight basis for accumulators). Based on this definition, most greenhou...

  9. Accumulation of 65Zn by octopus Octopus vulgaris

    International Nuclear Information System (INIS)

    Ueda, Taiji; Nakahara, Motokazu; Nakamura, Ryoichi; Suzuki, Yuzuru; Shimizu, Chiaki.

    1985-01-01

    In order to aim the prevention of the radiation hazard to human beings through sea food, the accumulation and excretion of 65 Zn by octopus Octopus vulgaris was examined by the radioisotope tracer experiment. The concentration factor of 65 Zn for whole body of the octopus that take up the nuclide from sea water and food was estimated as 9,900, by assuming that the octopus feeds on clams alone. In that case the contribution of food was about twenty times greater than that of sea water on the accumulation of the nuclide. The biological half-life of 65 Zn accumulated through sea water was 74 days. High accumulation of 65 Zn in the branchial heart of the octopus, as in the case of Co, was not observed. In the liver, 65 Zn combined with three constituents which have a molecular weight of more than 80,000, 7,000 - 8,000 and less than 5,000. In the kidney, 65 Zn combined with three constituents of a molecular weight of more than 80,000, 10,000 - 20,000 and less than 5,000. (author)

  10. [Dissolved aluminum and organic carbon in soil solution under six tree stands in Lushan forest ecosystems].

    Science.gov (United States)

    Wang, Lianfeng; Pan, Genxing; Shi, Shengli; Zhang, Lehua; Huang, Mingxing

    2003-10-01

    Different depths of soils under 6 tree stands in Lushan Botany Garden were sampled and water-digested at room temperature. The dissolved aluminum and organic carbon were then determined by colorimetry, using 8-hydroxylquilin and TOC Analyzer, respectively. The results indicated that even derived from a naturally identical soil type, the test soils exhibited a diverse solution chemistry, regarding with the Al speciation. The soil solutions under Japanese cedar, giant arborvitae and tea had lower pH values and higher contents of soluble aluminum than those under Giant dogwood, azalea and bamboo. Under giant arborvitae, the lowest pH and the highest content of total soluble aluminum and monomeric aluminum were found in soil solution. There was a significant correlation between soluble aluminum and DOC, which tended to depress the accumulation of toxic monomeric aluminum. The 6 tree stands could be grouped into 2 categories of solution chemistry, according to aluminum mobilization.

  11. The future of the antiproton accumulator

    International Nuclear Information System (INIS)

    Autin, B.

    1983-01-01

    When the Antiproton Accumulator was designed in 1977, it was considered as an element of the high energy proton-antiproton collision experiments in the CERN Super Proton Synchrotron. Since that time, antiproton physics has become more and more popular: a second experimental area was built in the SPS, the Intersecting Storage Rings started a special antiproton programme and a considerable interest has bloomed in the energy range of nuclear physics with the LEAR machine. Moreover, any projection on hadron physics in the coming years shows an insatiable appetite of experimentalists for more antiprotons. Therefore, basic studies have been pursued since the beginning of last year to transform the accumulator into an abundant source of antiprotons

  12. Effect of solute segregation on thermal creep in dilute nanocyrstalline Cu alloys

    International Nuclear Information System (INIS)

    Schäfer, Jonathan; Ashkenazy, Yinon; Albe, Karsten; Averback, Robert S

    2012-01-01

    Highlights: ► Segregating solutes lower the grain boundary free volume in nanocrystalline Cu. ► Lower free volume leads to reduced atomic mobility and higher creep resistance. ► Increase in creep resistance scales with atomic size of segregating solutes. ► Atomic processes in boundaries are similar to the ones in amorphous material. - Abstract: The effect of solute segregation on thermal creep in dilute nanocrystalline alloys (Cu–Nb, Cu–Fe, Cu–Zr) was studied at elevated temperatures using molecular dynamics simulations. A combined Monte-Carlo and molecular dynamics simulation technique was first used to equilibrate the distribution of segregating solutes. Then the creep rates of the diluted Cu samples were measured as functions of temperature, composition, load and accumulated strain. In Cu–Nb samples, the creep rates were observed to increase initially with strain, but then saturate at a value close to that obtained for alloys prepared by randomly locating the solute in the grain boundaries. This behavior is attributed to an increase in grain boundary volume and energy with added chemical disorder. At high temperatures, the apparent activation energy for creep was anomalously high, 3 eV, but only 0.3 eV at lower temperatures. This temperature dependence is found to correlate with atomic mobilities in bulk Cu–Nb glasses. Calculations of creep in nanocrystalline Cu alloys containing other solutes, Fe and Zr, show that the suppression of creep rate scales with their atomic volumes when dissolved in Cu.

  13. Simple non-invasive assessment of advanced glycation endproduct accumulation

    NARCIS (Netherlands)

    Meerwaldt, R; Graaff, R; Links, TP; Jager, JJ; Alderson, NL; Thorpe, [No Value; Baynes, JW; Gans, ROB; Smit, AJ

    Aims/hypothesis. The accumulation of AGE is thought to play a role in the pathogenesis of chronic complications of diabetes mellitus and renal failure. All current measurements of AGE accumulation require invasive sampling. We exploited the fact that several AGE exhibit autofluorescence to develop a

  14. Surface-atmosphere decoupling limits accumulation at Summit, Greenland.

    Science.gov (United States)

    Berkelhammer, Max; Noone, David C; Steen-Larsen, Hans Christian; Bailey, Adriana; Cox, Christopher J; O'Neill, Michael S; Schneider, David; Steffen, Konrad; White, James W C

    2016-04-01

    Despite rapid melting in the coastal regions of the Greenland Ice Sheet, a significant area (~40%) of the ice sheet rarely experiences surface melting. In these regions, the controls on annual accumulation are poorly constrained owing to surface conditions (for example, surface clouds, blowing snow, and surface inversions), which render moisture flux estimates from myriad approaches (that is, eddy covariance, remote sensing, and direct observations) highly uncertain. Accumulation is partially determined by the temperature dependence of saturation vapor pressure, which influences the maximum humidity of air parcels reaching the ice sheet interior. However, independent proxies for surface temperature and accumulation from ice cores show that the response of accumulation to temperature is variable and not generally consistent with a purely thermodynamic control. Using three years of stable water vapor isotope profiles from a high altitude site on the Greenland Ice Sheet, we show that as the boundary layer becomes increasingly stable, a decoupling between the ice sheet and atmosphere occurs. The limited interaction between the ice sheet surface and free tropospheric air reduces the capacity for surface condensation to achieve the rate set by the humidity of the air parcels reaching interior Greenland. The isolation of the surface also acts to recycle sublimated moisture by recondensing it onto fog particles, which returns the moisture back to the surface through gravitational settling. The observations highlight a unique mechanism by which ice sheet mass is conserved, which has implications for understanding both past and future changes in accumulation rate and the isotopic signal in ice cores from Greenland.

  15. Association of postfire peat accumulation and microtopography in boreal bogs

    Energy Technology Data Exchange (ETDEWEB)

    Benscoter, B.W.; Vitt, D.H. [Southern Illinois Univ., Carbondale, IL (United States). Dept. of Plant Biology; Wieder, R.K. [Villanova Univ., Villanova, PA (United States). Dept. of Biology

    2005-09-01

    Fire impacts peatland species composition by differentially removing vegetation and resetting succession, which results in peat accumulation changes. A study of peat accumulation and microtopography in 2 burned bogs in Alberta was presented in this paper. Measurements of current and historic microtopography were made, and cores were collected along the gradient to identify the depth of peat accumulated since fires, as well as to assess its properties. It was observed that current microtopography was significant and correlated with the immediate post-fire surface relief. Differences in the magnitude of variability between sites suggested that differential rates of growth between features were exacerbated between sites and reflected in bog microtopography. Rates of organic matter accumulation ranged from 156 to 257 g/m{sup 2} per year, and were elevated but comparable to recent published rates. It was noted that organic matter content and accumulation rates were greater for hummocks than hollows at the Athabasca bog, but the difference between features diminished at Sinkhole Lake. It was concluded that the pattern and properties of peat accumulation and microtopography post-fire is topographical, and hence species dependent. Rates of change are dependent on fire severity and its effect on vegetation composition and succession. 33 refs., 4 figs.

  16. Deleterious effects of neuronal accumulation of glycogen in flies and mice.

    Science.gov (United States)

    Duran, Jordi; Tevy, María Florencia; Garcia-Rocha, Mar; Calbó, Joaquim; Milán, Marco; Guinovart, Joan J

    2012-08-01

    Under physiological conditions, most neurons keep glycogen synthase (GS) in an inactive form and do not show detectable levels of glycogen. Nevertheless, aberrant glycogen accumulation in neurons is a hallmark of patients suffering from Lafora disease or other polyglucosan disorders. Although these diseases are associated with mutations in genes involved in glycogen metabolism, the role of glycogen accumulation remains elusive. Here, we generated mouse and fly models expressing an active form of GS to force neuronal accumulation of glycogen. We present evidence that the progressive accumulation of glycogen in mouse and Drosophila neurons leads to neuronal loss, locomotion defects and reduced lifespan. Our results highlight glycogen accumulation in neurons as a direct cause of neurodegeneration. Copyright © 2012 EMBO Molecular Medicine.

  17. Accumulation of cobalt by cephalopods

    International Nuclear Information System (INIS)

    Nakahara, Motokazu

    1981-01-01

    Accumulation of cobalt by cephalopod mollusca was investigated by radiotracer experiments and elemental analysis. In the radiotracer experiments, Octopus vulgaris took up cobalt-60 from seawater fairly well and the concentration of the nuclide in whole body attained about 150 times the level of seawater at 25th day at 20 0 C. Among the tissues and organs measured, branchial heart which is the specific organ of cephalopods showed the highest affinity for the nuclide. The organ accumulated about 50% of the radioactivity in whole body in spite of its little mass as 0.2% of total body weight. On the other hand, more than 90% of the radioactivity taken up from food (soft parts of Gomphina melanaegis labelled with cobalt-60 previously in an aquarium) was accumulated in liver at 3rd day after the single administration and then the radioactivity in the liver seemed to be distributed to other organs and tissues. The characteristic elution profiles of cobalt-60 was observed for each of the organs and tissues in Sephadex gel-filtration experiment. It was confirmed by the gel-filtration that most of cobalt-60 in the branchial heart was combined with the constituents of low molecular weights. The average concentration of stable cobalt in muscle of several species of cephalopods was 5.3 +- 3.0 μg/kg wet and it was almost comparable to the fish muscle. On the basis of soft parts, concentration of the nuclide closed association among bivalve, gastropod and cephalopod except squid that gave lower values than the others. (author)

  18. [Evaluation of soil heavy metals accumulation in the fast economy development region].

    Science.gov (United States)

    Zhong, Xian-Lan; Zhou, Sheng-Lu; Li, Jiang-Tao; Zhao, Qi-Guo

    2010-06-01

    Evaluation of soil heavy metals accumulation was studied in Kunshan City, a typical region of the fast economy development region in China. 126 soil samples were collected and analyzed, and evaluation indexes of soil heavy metal accumulation, which including total concentration of soil heavy metal index (THMI), soil available heavy metal index (AHMI) and fractionation of soil heavy metal index (FHMI), were established, and the heavy metal accumulation conditions of soil in this region were also discussed. Results showed as follows: the spatial variability of THMI was relative lower, with a mean value of 42.57%, whereas strong variability was found in AHMI and FHMI (especially active fraction of soil heavy metals), with the average value of 82.75% and 77.83%, respectively. Judging by each index reference standard of C Horizon, THMI was low-grade with a mean value of 1.01, while the AHMI and FHMI reached to medium accumulation and serious accumulation, with the average values of 2.46 and 4.32, respectively. The synthetic accumulation index of soil heavy metals (SHMI) was 2.56, reaching to medium grade level and with strong variability. 21.54% land area was in low-grade accumulation and 54.70% land area was in medium grade accumulation, while 23.76% land area was in serious accumulation under SHMI evaluation system. All the accumulation evaluation indexes in livestock breeding zone were the lowest, while the indexes in the smelting and plating zone were the highest, but the indexes difference between two zones were unobvious. There were markedly differences in soil types, which the accumulation indexes in Wushan soil were significantly higher than those in Huangni soil and Qingni soil.

  19. Lead Tolerance and Accumulation in White Poplar Cultivated In Vitro

    Directory of Open Access Journals (Sweden)

    Branislav Kovačević

    2013-06-01

    Full Text Available Background and Purpose: This paper analyses the lead tolerance and accumulation in white poplar genotypes in vitro, in order to optimize genotype evaluation and other procedures in their implementation in phytoremediation projects and landscaping in areas endangered by lead accumulation. Material and Methods: The lead tolerance and accumulation of five white poplar genotypes after 35 days in vitro cultivation on media supplemented with lead was examined. The following Pb(NO32 concentrations were used: 0, 10-6, 10-5, 10-4 and 10-3 M. Tolerance analysis (described by tolerance indices was based on morphological parameters, biomass accumulation and the content of photosynthetic pigments, while lead accumulation was described by shoot lead accumulation and shoot lead content. Results and Conclusions: The chosen lead concentrations appeared not to be lethal. Moreover, the obtained results showed that the tested lead concentrations had a positive effect on: number of formed roots, shoot moisture content and shoot height. The best differentiation among the examined genotypes was gained by the tolerance index based on the shoot height on 10-4 M Pb(NO32. The shoot lead accumulation and shoot lead content significantly increased on 10-4 and 10-3 M Pb(NO32 media. Thus, the concentration of 10-4 M Pb(NO32 is recommended for further research. Two examined genotypes of horticultural value (LCM and LBM achieved a significantly higher lead shoot content compared to the wide spread genotype “Villafranca” (almost 200% and 125% higher, respectively.

  20. Potassium accumulation by the glial membrane pump as revealed by membrane potential recording from isolated rabbit retinal Müller cells.

    Science.gov (United States)

    Reichenbach, A; Nilius, B; Eberhardt, W

    1986-01-30

    Müller (glial) cells were isolated from rabbit retinae by papaine and mechanical dissociation. In a special perfusion chamber, the cells were penetrated with a recording electrode. When high-K+ solutions were applied into the environment of the cells by means of a second micropipette, the cell membrane depolarized strongly. During prolonged application of high-K+ solutions, however, there occurred a marked repolarization, and after cessation of high-K+ application, a strong hyperpolarization was observed. Both effects disappeared under the influence of ouabain, suggesting the accumulation of intracellular K+ by an active membrane pump. The data were used for calculation of the membrane's Na+:K+ permeability ratio, the intracellular K+ concentration, the pump rate and the mean pump site density. The calculated values are in good agreement with published data from mammalian astrocytes and are compared with those from amphibian Müller cells.

  1. Accumulation and management in global historical perspective: An introduction

    NARCIS (Netherlands)

    Roberts, Lissa L.

    2014-01-01

    This essay introduces a special issue dedicated to the theme ‘accumulation and management in global historical perspective’. The concepts and practices of accumulation and management are explored in ways that work to de-center the history of science and empire. Particular attention is paid to four

  2. Growth and ion accumulation in dwarf cashew plants at different times of salinity exposure

    Directory of Open Access Journals (Sweden)

    Valdineia Soares Freitas

    2013-12-01

    Full Text Available This work aimed to evaluate the influence of salt stress exposition on growth and ion accumulation in dwarf cashew plants. For this purpose, cashew nuts (CCP 06 clone were sown in plastic trays containing vermiculite moistened with nutrient solution containing NaCl with electrical conductivities ranging from 0.0 to 18.0 dS m-1. Plants were harvested after 30 and 60 days under salt stress. It was determined the shoot dry masses (SDM and root (RDM, the SDM/RDM ratio, Na+, K+, Cl- and NO3 - contents and the Na+ and Cl- fluxes for whole plant in the period between two times of exposure to salt stress. The cashew growth was affected by salinity and by the exposure time to this stress, and the plants subjected to 60 days of stress were the most affected by NaCl. The Na+ and Cl- contents increased in all plant tissues, while the NO3 - content was reduced and K+ content has not changed by salinity. The Na+ and Cl-fluxes increased with salinity; however Cl- seemed to be more harmful to plants, since this ion has been absorbed in a higher ratio than Na+. The growth reduction in dwarf cashew is intensified when exposure to salt stress is longer and it is more associated with uptake and excessive accumulation of Cl- than Na+.

  3. Optimum combination of water drainage, water supply and eco-environment protection in coal-accumulated basin of North China

    Institute of Scientific and Technical Information of China (English)

    武强; 董东林; 石占华; 武雄; 孙卫东; 叶责钧; 李树文; 刘金韬

    2000-01-01

    The conflict among water drainage, water supply and eco-environment protection is getting more and more serious due to the irrational drainage and exploitation of ground water resources in coal-accumulated basins of North China. Efficient solutions to the conflict are to maintain long-term dynamic balance between input and output of the ground water basins, and to try to improve resourcification of the mine water. All solutions must guarantee the eco-environment quality. This paper presents a new idea of optimum combination of water drainage, water supply and eco-environment protection so as to solve the problem of unstable mine water supply, which is caused by the changeable water drainage for the whole combination system. Both the management of hydraulic techniques and constraints in economy, society, ecology, environment, industrial structural adjustments and sustainable developments have been taken into account. Since the traditional and separate management of different departments of water drainage,

  4. LIPID ACCUMULATION OF CHLORELLA VULGARIS UNDER DIFFERENT PHOSPHATE CONCENTRATIONS

    Directory of Open Access Journals (Sweden)

    Magdalena Karolina Rokicka

    2017-04-01

    Full Text Available The cultivation and utilization of microalgae is now a intensively developing area of research. Some species of microalgae, under appropriate conditions, accumulate large amounts of lipids in the cells. This lipids have a suitable profile of fatty acids for biodiesel production. The culture of microalgae for lipids accumulation should be performed in certain physicochemical conditions. The aim of the study was to determine the effect of variable ortophophates concentrations in the culture medium for lipids accumulation of microalgae Chlorella vulgaris and to determine of parameters of the phosphoric shock in the medium. The study confirmed the possibility of the use of the phosphoric shock in the medium to maximize lipids accumulation by the microalgae Chlorella vulgaris. In the study, 45.23% of the oil was obtained from the biomass from the culture with phosphoric shock in the medium and 18% less of the oil was obtained from the biomass from the standard culture.

  5. Effects of Clinoptilolite on Copper Accumulation of Oreochromis niloticus

    Directory of Open Access Journals (Sweden)

    Nuray Çiftçi

    2018-05-01

    Full Text Available The copper accumulation in liver and gill tissues of Oreochromis niloticus, exposed to 2 ppm Cu and 1g/L clinoptilolite singly and to the same concentrations of their mixture over 24, 48, 72 and 96 hours was studied. ICP-AES spectrophotometer techniques were applied in determining tissue copper levels. Statistical evaluation of the experimental data was carried out by Student Newman Keul’s procedure. No mortality was observed during the experiments. Copper accumulation was lower in metal-clinoptilolite mixture group than metal singly group in gill tissue while no accumulation in both experimental groups in liver tissue (P<0.05. In addition, the copper level in the liver was lower in all experimental groups than in the control (P<0.05. Low Cu accumulation in gill tissue exposed in mixture groups can be explained by copper adsorption with chelating agent. The decrease of Cu reserves in the liver can be expressed by increase of copper-containing enzyme and protein synthesis.

  6. A summary of data on accumulated occupational radiation doses among Canadian workers

    International Nuclear Information System (INIS)

    Sont, W.N.

    1994-01-01

    This paper is based on work done on accumulated career doses. The data are taken from the National Dose Registry and consist of accumulated doses to the monitored workforce from the years 1970, 1975, 1980, 1985, and 1990. Four broad occupational categories are analyzed: medicine, nuclear power, uranium processing (including mining, milling, refining, and fuel fabrication), and industry. Two- and three-dimensional bar charts are used to display workforce sizes, collective accumulated doses, and average accumulated doses over time, broken down by career start. Lognormal plots are used to show the distribution of accumulated doses. Many trends are as could be expected, and some of those may be used for construction of statistical models for career-dose accumulation. The size and accumulated career doses in the workforces of the uranium processing category do not vary regularly with time, and in this case modeling is likely to be difficult. 5 refs., 16 figs., 1 tab

  7. Accumulation of metabolites during bacterial degradation of PAH-mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Vila, J.; Lopez, Z.; Bauza, J.I. [Universitat de Barcelona (Spain). Department de Microbiologia; Minguillon, C. [Parc Cientific de Barcelona (ES). Institut de Recerca de Barcelona (IRB-PCB); Grifoll, M.

    2003-07-01

    In a previous work we identified a number of metabolites accumulated during growth in pyrene by Mycobacterium sp. AP1, and proposed a metabolic pathway for pyrene utilization. In order to confirm and complete this pathway we have isolated and identified the pyrene-degrading strains Mycobacterium sp. PGP2, CP1 and CP2. During growth on pyrene, strains AP1, PGP2, CP1 and CP2 accumulated 4,5-cis-pyrene-dihydrodiol, 4,5-phenanthrene dicarboxylic acid, 4-phenanthrene carboxylic acid, 3,4-dihydroxy-3-hydrophenanthrene-4-carboxylic acid, phthalic acid, and 6,6'-dihydroxy-2,2'-biphenyl dicarboxylic acid. Strains AP1, PGP2, CP1 and CP2 also grew on fluoranthene accumulating acenaphthenone, naphthalene-1,8-dicarboxylic acid, 9-fluorenone-1-carboxylic acid, Z-9-carboxymethylenefluorene-1-carboxylic acid and benzene-1,2,3-tricarboxylic acid. Similar metabolites were produced during growth onf fluoranthene by the Gram-positive strains CFt2 and CFt6, isolated by their capability of using this PAH as a sole source of carbon and energy. These fluoranthene-degrading strains also accumulated cis-1,9a-dihydroxy-1-hydrofluorene-9-one-8-carboxylic acid. In addition to pyrene and fluoranthene, all pyrene-degrading utilized phenanthrene as a sole source of carbon and energy, while the fluoranthene-degrading strains were unable to utilize pyrene or phenanthrene. Mycobacterium sp. AP1 acted on a wide range of PAHs, accumulating aromatic dicarboxylic acids, hydroxyacids, and ketones resulting from dioxygenation and ortho-cleavage, dioxygenation and meta-cleavage, and monooxygenation reactions. In cultures of strains AP1 and CP1 with a defined PAH-mixture only 20% removal of the parent compounds was observed. Analysis of acidic extracts showed the accumulation of the anticipated aromatic acids, suggesting that accumulation of acidic compounds could prevent further degradation of the mixture. Those results led us to isolation of strains DF11 and OH3, able to grow on the selected

  8. Effect of Hydraulic Accumulator on Pressure Surge of a Hydrostatic Transmission System

    Science.gov (United States)

    Kumar, Ajit; Das, Jayanta; Dasgupta, Kabir; Barnwal, Manish Kumar

    2018-04-01

    Hydraulic power system is generally used in off-road vehicles for power transmission such as Heavy Earth Moving Machineries (HEMM). Their energy efficiency and unsubstantial failure becomes an extensive subject of analysis. Various arrangements in the system are compassed along with the utilization of some appropriate components. Application of a hydraulic accumulator is one among them. Benefits of accumulator is its multi-purpose usages like energy saving and pressure surge damping. This paper deals with the control of pressure surges in the hydraulic system and energy saving from the surges by using accumulator. For this purpose, the simulation of the hydraulic system is done in MATLAB/SimulinkR environment and an external disturbance is introduced to generate the pressure surge. The surge absorptivity of the accumulator is studied for different sizes at different pre-charged conditions of the accumulator. The discharge characteristics of different sized accumulators are also analyzed in this paper. It is observed that the ability to absorb the surge and stabilize the system is high in the smaller capacity accumulator. However the energy delivery time of larger sized accumulator is high.

  9. Effect of ultraviolet B irradiation on accumulation of catechins in tea ...

    African Journals Online (AJOL)

    Effect of UV-B irradiation time on accumulation of foliar catechins in two tea cultivars was investigated. Low influence rate and short term irradiation of UV-B stimulated accumulation of major tea catechins, resulting in an increase in level of total catechins. Excessive irradiation of UV-B supressed the accumulation of tea ...

  10. Relationship between accumulation of rare earth element in tumor and ionic radius

    Energy Technology Data Exchange (ETDEWEB)

    Kataoka, N [Kanazawa Univ. (Japan). School of Medicine

    1975-02-01

    The accumulation of rare earth elements in the different organs of Ehrlich's tumor-bearing mice at 48 hours after intraperitoneal administration was measured by a Ge(Li) semiconductor detector. Accumulation of all the rare earth elements was the highest in the pancreas. Accumulation of /sup 152/Eu in the different organs of Ehrlich's tumor-bearing mice was very high. The accumulation of rare earth elements in Ehrlich's tumor was lower than the accumulation of /sup 67/Ga and /sup 46/Sc. The tumor-organ concentration ratio of rare earth elements was remarkably lower than the accumulation of /sup 67/Ga and /sup 46/Sc. However, the accumulation of /sup 152/Eu in Ehrlich's tumor was somewhat higher than that of /sup 67/Ga. The relationship between the accumulation and the carrier content was examined. The lower the carrier content was, the higher was the accumulation in different organs. However, the carrier effect of rare earth on the uptake in different organs elements was slight. The author postulated that the elements in which the ionic radius is similar to that of Mg(0.62 A) or Ca(0.99 A) are abundant in the tumor cell membrane, and they might pass through the tumor cell membrane much more easily than would the other elements. However, the result was negative.

  11. PIXE study on arsenic accumulation by a fern. Pteris vittata

    International Nuclear Information System (INIS)

    Yamazaki, H.; Ishii, K.; Matsuyama, S.

    2010-01-01

    Pteris vittata is a fern reported to be an arsenic hyper-accumulator. To develop the practical application of the fern to a phytoremediation technique, it is necessary to explicate the effective accumulation mechanism. In this study, the arsenic distribution and the elemental correlation in the cellular level were examined in the fronds supplied with arsenate and arsenite separately via xylem vessel using an in-air micro-PIXE system at Tohoku University. The difference in transportation rate between arsenate and arsenite as well as the translocation of elements necessary for plant metabolism was revealed in different tissues of the fronds accumulating arsenic in high concentration. Hence, the in-air micro-PIXE analysis is an effective measure for undertaking phytoremediation research of hyper-accumulator plants. (author)

  12. INAA study of sorption U from technological solution by different microorganisms

    International Nuclear Information System (INIS)

    Mukhamedshina, N.M.; Mirsagatova, A.A.; Bekmukhamedova, N.K.; Khamidova, Kh.M.; Rakhimova, M.S.

    2004-01-01

    Full text: The capacity of microorganisms to accumulate metal ions can be used for the extraction of metals from technological solutions. The aim of this INAA study is to investigate the extraction U from technological solutions by different microorganisms- actinomycetes, Aspergillus niger and Acremonium sp10 cultures and to search more effective biosorbents of U among them. INAA is more available and cheap method for us also it has high enough sensitivity and allows to avoid exposing the bacteria to radioactive metals. Atomic absorptive analyzer is more suitable for the determination of impurities in solutions, but it is expensive and not available for us. Biomasses of microorganisms (1 g of each) were tested for their U sorption capacity from a technological solution of U-production, containing 71.1 mg/l ions U (initial solution diluted 10 times). The interaction between biomass and solutions lasted for 15 min. The flask with the solution was placed on a horizontal shaker (180 rpm) for 15 min and was then centrifuged. Then the amount U not sorted by the microorganisms was measured from the over-sedimentary solution (decantation). After sorption, 0.1 ml aliquots of the decantation were dropped on strips of ash free filter paper. The strips (samples) were dried, wrapped in the aluminum packets and placed in a container for irradiation in nuclear reactor. The U samples were irradiated for 5 at the fission neutron flux density of 5.3·10 13 cm -2 s -1 . The U content was calculated from the gamma-line (228.2 keV, 277.8 keV) intensities of radionuclide 239Np Uncertainty the U determining (relative standard deviation) was 2-3 %. Is shown, that the most effective sorbents of U from technological solutions are some strains of actinomycetes (98,0%) and microscopical fungus Acremonium sp10 (98, 3%).The optimal temperature solution was from of 23.5 o to 42.0 o and optimal pH was 8,3

  13. Determination of nitric acid in highly radioactive solutions by the method of coulometric titration

    International Nuclear Information System (INIS)

    Gromov, V.S.; Kuperman, A.Ya.; Smirnov, Yu.A.

    1988-01-01

    A procedure, a cell, and an electronic block have been developed for a long-distance determination of nitric acid in highly radioactive industrial solutions by coulometric titration under hot chamber conditions. A solution of a mixture of ammonium and potassium oxalates was used for the background and anoide electrolytes. This solution prevents the hydrolysis of the metal ions and appreciably decreases the rate of accumulation of the acid in the anode chamber of the cell. Titration with 0.1-0.5 A currents is carried out with internal generation of hydroxyl ions. The cell was prepared from a radiation-resistant and transparent material, poly(methyl methacrylate). The anode and cathode chambers were separated by a cellophane membrane, reinforced by a porous glass filter. By using the electronic coulometric block working together with a pH-meter (EV-74 or I-130) and with an automatic titration block (BAT-15), the titration can be carried out automatically, and the determination results can be obtained in a digital form

  14. Simulation of advanced accumulator and its application in CPR1000 LBLOCA analysis

    International Nuclear Information System (INIS)

    Hu, Hongwei; Shan, Jianqiang; Gou, Junli; Cao, Jianhua; Shen, Yonggang; Fu, Xiangang

    2014-01-01

    Highlights: • The analysis model was developed for advanced accumulator. • The sensitivity analysis of each key parameter was performed. • The LBLOCA was analyzed for the CPR1000 with advanced accumulator. • The analysis shows that advanced accumulator can improve CPR1000 safety performance. - Abstract: The advanced accumulator is designed to improve the safety and reliability of CPR1000 by providing a small injection flow to keep the reactor core in flooded condition. Thus, the core still stays in a cooling state without the intervention of low pressure safety injection and the startup grace time of the low pressure safety injection pump can be greatly extended. A new model for the advanced accumulator, which is based on the basic conservation equations, is developed and incorporated into RELAP5/MOD 3.3. The simulation of the advanced accumulator can be carried out and results show that the behavior of the advanced accumulator satisfied its primary design target. There is a large flow in the advanced accumulator at the initial stage. When the accumulator water level is lower than the stand pipe, a vortex appears in the damper, which results in a large pressure drop and a small flow. And then the sensitivity analysis is performed and the major factors which affected the flow rate of the advanced accumulator were obtained, including the damper diameter, the initial volume ratio of the water and the nitrogen and the diameter ratio of the standpipe and the small pipe. Additionally, the primary coolant loop cold leg double-ended guillotine break LBLOCA in CPR1000 with advanced accumulator is analyzed. The results show that the criterion for maximum cladding temperature limit (1477 K) (NRC, 1992) can be met ever with 200 s after the startup of the low pressure safety injection. From this point of view, passive advanced accumulator can strive a longer grace time for LPSI. Thus the reliability, safety and economy of the reactor system can be improved

  15. Abscisic Acid Accumulation by Roots of Xanthium strumarium L. and Lycopersicon esculentum Mill. in Relation to Water Stress.

    Science.gov (United States)

    Cornish, K; Zeevaart, J A

    1985-11-01

    Plants of Xanthium strumarium L. and Lycopersicon esculentum Mill. cv ;Rheinlands Ruhm' were grown in solution culture, and control and steam-girdled intact plants were stressed. Detached roots of both species were stressed to different extents in two ways: (a) either in warm air or, (b) in the osmoticum Aquacide III. The roots of both species produced and accumulated progressively more abscisic acid (ABA), the greater the stress inflicted by either method. ABA-glucose ester levels in Xanthium roots were not affected by water stress and were too low to be the source of the stress-induced ABA. The fact that ABA accumulated in detached roots and in roots of girdled plants proves that ABA was synthesized in the roots and not merely transported from the shoots.Maximum ABA accumulation in detached roots occurred after 60 to 70% loss of fresh weight. In Xanthium roots, ABA levels continued to increase for at least 11 hours, and no catabolism was apparent when stressed roots were immersed in water, although the roots did stop accumulating ABA. When osmotically stressed, Xanthium roots reached a maximum ABA level after 2 hours, but ABA continued to rise in the medium.Under optimal stress conditions, endogenous ABA levels increased 100 times over their prestress values in detached roots of Xanthium, and 15 times in Lycopersicon under nonoptimal stress, when endogenous ABA was expressed as concentrations based on tissue water content. These are much greater relative increases than observed in the leaves (15 times in Xanthium, 3 times in Lycopersicon), although the roots contain substantially less ABA than the leaves in all circumstances. The results suggest that the endogenous level of ABA in roots could rise appreciably prior to leaf wilt, and could modify the plant's water economy before the leaves become stressed.

  16. Hilar accumulation of gallium-67 in patients with normal chest radiographs

    International Nuclear Information System (INIS)

    Hoshi, Hiroaki; Yamada, Hiroki; Kawahira, Kozaburo; Watanabe, Katsushi

    1982-01-01

    Gallium-67 scintigraphy is a useful screening test to detect malignant or inflammatory lesions. However, the accumulations of Gallium-67 in the normal pulmonary hilum are found in some cases. So, 277 cases with Gallium-67 scintigraphy were discussed. The hilar accumulation of Gallium-67 was classified into four grades, namely Grade 0: no Gallium-67 uptake, Grade I: low Gallium-67 uptake, Grade II: moderate Gallium-67 uptake, and Grade III: high Gallium-67 uptake. Gallium-67 uptake was found in 38 of 277 cases (14%). Thirty cases of these were estimated as Grade I (79%). Cases with Grade II were 20.3%, and only two cases were Grade III (0.7%). Gallium-67 accumulation, was bilateral in 28 cases out of 38 and cases with Gallium-67 accumulation increased with age. Twenty five of the 38 cases with Gallium-67 accumulation had such findings as suggesting old pulmonary inflammation though they had no symptoms of respiratory diseases. This study suggests that hilar Gallium-67 accumulation has no correlation with the active inflammation of the lymphnodes. (author)

  17. Influence of quantizing magnetic field and Rashba effect on indium arsenide metal-oxide-semiconductor structure accumulation capacitance

    Science.gov (United States)

    Kovchavtsev, A. P.; Aksenov, M. S.; Tsarenko, A. V.; Nastovjak, A. E.; Pogosov, A. G.; Pokhabov, D. A.; Tereshchenko, O. E.; Valisheva, N. A.

    2018-05-01

    The accumulation capacitance oscillations behavior in the n-InAs metal-oxide-semiconductor structures with different densities of the built-in charge (Dbc) and the interface traps (Dit) at temperature 4.2 K in the magnetic field (B) 2-10 T, directed perpendicular to the semiconductor-dielectric interface, is studied. A decrease in the oscillation frequency and an increase in the capacitance oscillation amplitude are observed with the increase in B. At the same time, for a certain surface accumulation band bending, the influence of the Rashba effect, which is expressed in the oscillations decay and breakdown, is traced. The experimental capacitance-voltage curves are in a good agreement with the numeric simulation results of the self-consistent solution of Schrödinger and Poisson equations in the magnetic field, taking into account the quantization, nonparabolicity of dispersion law, and Fermi-Dirac electron statistics, with the allowance for the Rashba effect. The Landau quantum level broadening in a two-dimensional electron gas (Lorentzian-shaped density of states), due to the electron scattering mechanism, linearly depends on the magnetic field. The correlation between the interface electronic properties and the characteristic scattering times was established.

  18. Cesium accumulation in native trees from the Brazilian Cerrado

    International Nuclear Information System (INIS)

    Franca, E.J.D.; Miranda, M.V.F.E.S.; Santos, T.O.; Cantinha, R.S.; Fernandes, E.A.D.N.

    2016-01-01

    Even considered not essential for plants, cesium may cycle within forest ecosystems. Taking into account the lack of knowledge on the distribution of this chemical element in Brazilian ecosystems, this work encompasses the unexpected cesium accumulation in native plant leaves from Cerradao, a Brazilian hotspot of world biodiversity. Some trees were Cs accumulators, achieving mass fractions in leaves 700 times higher (up to 12.7 mg kg -1 ) when compared to other Brazilian native tree leaves from the Atlantic Forest. In fact, such trace element accumulation in leaves was not previously noticed for Brazilian ecosystems despite the intra- and inter-species variability observed in Cerrado tree leaves. (author)

  19. Interaction between copper and radiocesium in Indian mustard and sunflower grown in the hydroponic solution

    International Nuclear Information System (INIS)

    Shirong Tang; Xiaochang Wang

    2002-01-01

    Both Indian mustard and sunflower were grown in a hydroponic solution treated with different concentration activities of 134 Cs or with different amounts of copper or with both in order to investigate the interaction between copper and radiocesium. It was found that 134 Cs activity concentration applied in the nutrient solution exerted more influence on the uptake and translocation of copper by Indian mustard than by sunflower. Indian mustard grown in hydroponic solution containing certain levels of copper and being treated with higher 134 Cs activity concentration showed higher uptake of copper than sunflower. However, in the case of root copper concentrations, sunflower showed significantly higher copper immobilization by roots than Indian mustard. It was also found that the presence of copper the the hydroponic solution did modify radiocesium uptake by both species. The application of 1 mg/l in the growth medium could greatly increase the uptake of 134 Cs by both species. With 3 mg/l concentration of copper amended to the solution, the accumulation of 134 Cs by both species was decreased compared to the 1 mg/l copper treatment. These lines of evidence show that there is stronger interaction between copper and radiocesium in Indian mustard than in sunflower during the root uptake through nutrient solution. (author)

  20. Continuous treatment process of mercury removal from aqueous solution by growing recombinant E. coli cells and modeling study

    International Nuclear Information System (INIS)

    Deng, X.; Hu, Z.L.; Yi, X.E.

    2008-01-01

    A continuous treatment process was developed to investigate the capability of genetically engineered E. coli to simultaneously accumulate mercuric ions and reproduce itself in a continuous stirred tank reactor (CSTR) system. The influence of dilution rate and initial Hg 2+ concentration on continuous process was evaluated. Results indicated that the recombinant E. coli could effectively accumulate Hg 2+ from aqueous solution with Hg 2+ removal ratio up to about 90%, and propagate its cells at the same time in the continuous treatment system under suitable operational conditions. A kinetic model based on mass balance of Hg 2+ was proposed to simulate the continuous process. The modeling results were in good agreement with the experimental data

  1. Recent increases in sediment and nutrient accumulation in Bear Lake, Utah/Idaho, USA

    Science.gov (United States)

    Smoak, J.M.; Swarzenski, P.W.

    2004-01-01

    This study examines historical changes in sediment and nutrient accumulation rates in Bear Lake along the northeastern Utah/Idaho border, USA. Two sediment cores were dated by measuring excess 210Pb activities and applying the constant rate of supply (CRS) dating model. Historical rates of bulk sediment accumulation were calculated based on the ages within the sediment cores. Bulk sediment accumulation rates increased throughout the last 100 years. According to the CRS model, bulk sediment accumulation rates were TOC) were calculated by multiplying bulk sediment accumulation rates times the concentrations of these nutrients in the sediment. Accumulation rates of TP, TN, TIC, and TOC increased as a consequence of increased bulk sediment accumulation rates after the re-connection of Bear River with Bear Lake.

  2. Smoke Priming, a Potent Protective Agent Against Salinity: Effect on Proline Accumulation, Elemental Uptake, Pigmental Attributes and Protein Banding Patterns of Rice (Oryza Sativa

    Directory of Open Access Journals (Sweden)

    Jamil, Muhammad

    2013-02-01

    Full Text Available The exogenous application of plant derived smoke solution through seed pre treatment is consider to create tolerance in the plant against salinity, for this purpose different dilution of plant derived smoke solution as 1:5000 Buhania, 1:1000 Buhania, 1:1000 Cymbopogon, 1:500 Cymbopogon were used against 0 mM, 50, 100 and 150mM NaCl solution in the medium. The effect was observed on total proline accumulation, heavy metals uptake, photosynthetic pigments and protein polypeptide bands intensity in two rice varieties as Basmati 385 (B-385 and Shaheen Basmati (S. Basmati. Proline concentration increases while chlorophyll “a” chlorophyll “b” and carotene level decreases with increasing salinity. On other hand zinc concentration increases while cadmium and lead concentration decrease in the crop under saline conditions. Intensity of protein polypeptides bands decreases gradually with increasing salinity level but plants from the seeds soaked with smoke solution alleviate the drastic affect of salinity, and intensity of bands is quite good by comparing with non primed seeds. It is concluded that seed priming with plant derived smoke solution show beneficial effect on crop to protect them from salinity.

  3. Mitigation of Cd accumulation in paddy rice (Oryza sativa L.) by Fe fertilization.

    Science.gov (United States)

    Chen, Zhe; Tang, Ye-Tao; Yao, Ai-Jun; Cao, Jian; Wu, Zhuo-Hao; Peng, Zhe-Ran; Wang, Shi-Zhong; Xiao, Shi; Baker, Alan J M; Qiu, Rong-Liang

    2017-12-01

    Cadmium uptake in rice is believed to be mediated by the Fe transport system. Phyto-available Cd can be changed by Fe fertilization of substrates. This work investigated whether and how Fe fertilization affects mitigation of Cd accumulation in paddy rice. A 90-d soil column experiment was conducted to study the change of Cd and Fe availability in soil after Fe fertilization (ionic and chelated Fe). A low-Cd accumulating cultivar (TY116) and a high-Cd accumulating cultivar (JY841) were grown in two Cd-polluted paddy soils amended with chelated Fe fertilizers. Additionally, both cultivars were grown in hydroponics to compare Fe-related gene expression in EDDHAFe-deficient and EDDHAFe-sufficient roots. The column experiment showed that EDTANa 2 Fe(II) and EDDHAFe(III) fertilization had a better mitigation effect on soil Cd availability compared to FeSO 4 ·7H 2 O. Moreover, the field experiment demonstrated that these two chelated fertilizations could reduce Cd concentrations in brown rice by up to 80%. Iron concentrations in the brown rice were elevated by Fe chelates. Compared to EDDHAFe(III), EDTANa 2 Fe(II) fertilization had a stronger mitigation effect by generating more EDTANa 2 Cd(II) in the soil solution to decrease phyto-available Cd in the soil. While EDDHAFe(III) fertilization could increase soil pH and decrease soil Eh which contributed to decreasing phyto-available Cd in a contaminated soil. In the hydroponic experiment, Fe sufficiency significantly reduced Cd concentrations in above-ground organs. In some cases, the expression of OsIRT1, OsNRAMP1 and OsNRAMP5 was inhibited under Fe sufficiency relative to Fe deficiency conditions. These results suggest that mitigation of rice Cd by Fe chelate fertilization results from a decrease in available Cd in substrates and the inhibition of the expression of several Fe-related genes in the IRT and NRAMP families. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. 3He release characteristics of metal tritides and scandium--tritium solid solutions

    International Nuclear Information System (INIS)

    Perkins, W.G.; Kass, W.J.; Beavis, L.C.

    1975-01-01

    Tritides of such metals as scandium, titanium, and erbium are useful materials for determining the effects of helium accumulation in metallic solids, for example, CTR first wall materials. Such effects include lattice strain and gross deformation, as reported elsewhere, which are related to 3 He retention and ultimate release. Long term gas release studies have indicated that, during the early life of a metal ditritide, a large fraction of the 3 He is retained in the solid. At more advanced ages (2 to 4 years, depending on the parent metal), the 3 He release rate becomes comparable to the generation rate. Statistical analysis of the data indicates that the acceleration in 3 He release rate depends on accumulated 3 He concentration rather than strictly on age. 3 He outgassing results are presented for thin films of ScT 2 , TiT 2 , and ErT 2 , and the critical 3 He concentrations are discussed in terms of a percolation model. Phase transformations which occur on tritide formation cast some doubt on the validity of extrapolating results obtained for metal tritides to predictions regarding the accumulation of helium in metals. Scandium is unique among the early transition and rare-earth metals in that the metal exhibits a very high room temperature tritium solubility (T/Sc = 0.4) with no phase transformation. Indeed, even the lattice parameters of the hcp scandium lattice are only minimally changed by tritium solution, and we have succeeded in obtaining single crystal ScT 0 . 3 samples in two crystallographic orientations. Using a very sensitive technique, we have measured 3 He emission from both these samples, as well as from fine-grained thin film scandium-tritium solid solution samples (ScT 0 . 3 - 0 . 4 ). The fine-grained film samples release 3 He at 2 to 3 percent of the generation rate, while the emission rate from the single-crystal samples is approximately 0.05 percent of the generation rate, indicating a strong grain size effect

  5. 3He release characteristics of metal tritides and scandium--tritium solid solutions

    International Nuclear Information System (INIS)

    Perkins, W.G.; Kass, W.J.; Beavis, L.C.

    1976-01-01

    Tritides of such metals as Sc, Ti, and Er are useful materials for determining the effects of He accumulation in metallic solids, for example, CTR first wall materials. Such effects include lattice strain and gross deformation which are related to 3 He retention and ultimate release. Long term gas release studies have indicated that, during the early life of a metal ditritide, a large fraction of the 3 He is retained in the solid. At more advanced ages, the 3 He release rate becomes comparable to the generation rate. Statistical analysis of the data indicates that the acceleration in 3 He release rate depends on accumulated 3 He concentration rather than strictly on age. 3 He outgassing results are presented for thin films of ScT 2 , TiT 2 , and ErT 2 , and the critical 3 He concentrations are discussed in terms of a percolation model. Phase transformations which occur on tritide formation cast some doubt on the validity of extrapolating results obtained for metal tritides to predictions regarding the accumulation of helium in metals. Sc is unique among the early transition and rare-earth metals in that the metal exhibits a very high room temperature T solubility (T/Sc = 0.4) with no phase transformation. Indeed, even the lattice parameters of the hcp Sc lattice are only minimally changed by T solution. Single crystal ScT/sub 0.3/ samples in two crystallographic orientations were obtained. Using a very sensitive technique, 3 He emission was measured from both these samples, as well as from fine-grained thin film Sc--T solid solution samples (ScT/sub 0.3-0.4/). The fine-grained film samples release 3 He at 2-3 percent of the generation rate, while the emission rate from the single-crystal samples is approximately 0.05 percent of the generation rate, indicating a strong grain size effect

  6. Perlite as a carrier of phosphate-accumulating bacteria

    International Nuclear Information System (INIS)

    Ivankovic, T.; Hrenovic, J.; Sekovanic, L.; Tofant, A.

    2009-01-01

    The phosphate (P)-accumulating bacteria are important for biological P removal from wastewater. Currently, attention is being drawn to the immobilisation of desired bacteria on different carriers in order to achieve a better efficiency of the wastewater treatment. In this study, two size fractions (0.1-1 and 0.1-2 mm) of different forms of expanded perlite (original, autoclaved and magnesium-exchanged) were investigates as possible carriers of P accumulating bacterium. (Author)

  7. Accumulation of different visual feature descriptors in a coherent framework

    DEFF Research Database (Denmark)

    Jessen, J.B.; Pilz, F.; Kraft, Dirk

    2011-01-01

    We present a temporal accumulation scheme which disambiguates different kinds of visual 3D descriptors within one coherent framework. The accumulation consists of a twofold process: First, by means of a Bayesian filtering outliers become eliminated and second, the precision of the extracted infor...... information becomes enhanced by means of an unscented Kalman filtering process. It is a particular property of our algorithm to be able to deal with different kinds of visual descriptors by the very same mechanism. We show quantitative and qualitative results.......We present a temporal accumulation scheme which disambiguates different kinds of visual 3D descriptors within one coherent framework. The accumulation consists of a twofold process: First, by means of a Bayesian filtering outliers become eliminated and second, the precision of the extracted...

  8. Theoretical investigation of interaction of sorbitol molecules with alcohol dehydrogenase in aqueous solution using molecular dynamics simulation.

    Science.gov (United States)

    Bahrami, Homayoon; Zahedi, Mansour; Moosavi-Movahedi, Ali Akbar; Azizian, Homa; Amanlou, Massoud

    2011-03-01

    The nature of protein-sorbitol-water interaction in solution at the molecular level, has been investigated using molecular dynamics simulations. In order to do this task, two molecular dynamics simulations of the protein ADH in solution at room temperature have been carried out, one in the presence (about 0.9 M) and another in the absence of sorbitol. The results show that the sorbitol molecules cluster and move toward the protein, and form hydrogen bonds with protein. Also, coating by sorbitol reduces the conformational fluctuations of the protein compared to the sorbitol-free system. Thus, it is concluded that at moderate concentration of sorbitol solution, sorbitol molecules interact with ADH via many H-bonds that prevent the protein folding. In fact, at more concentrated sorbitol solution, water and sorbitol molecules accumulate around the protein surface and form a continuous space-filling network to reduce the protein flexibility. Namely, in such solution, sorbitol molecules can stabilize a misfolded state of ADH, and prevent the protein from folding to its native structure.

  9. Spin-accumulation effect in magnetic nano-bridge

    International Nuclear Information System (INIS)

    Khvalkovskii, A.V.; Zvezdin, A.A.; Zvezdin, K.A.; Pullini, D.; Perlo, P.

    2004-01-01

    Large values of magnetoresistance experimentally observed in magnetic nano-contacts and nano-wires are explained in terms of spin accumulation. The investigation of the spin-accumulation effect in magnetic nano-contacts (Phys. Rev. Lett. 82 (1999) 2923) and nano-bridges (JETP Lett. 75 (10) (2002) 613), which are considered to be very promising for various spintronic applications, is presented. The two-dimensional spin-diffusion problem in a magnetic nano-bridge is solved. Dependences of the specific resistance of the domain wall and of the distribution of non-equilibrium spin density on the nano-bridge geometry and the material parameters are obtained

  10. Far-Field Accumulation of Fissile Material From Waste Packages Containing Plutonium Disposition Waste Form

    Energy Technology Data Exchange (ETDEWEB)

    J.P. Nicot

    2000-09-29

    The objective of this calculation is to estimate the quantity of fissile material that could accumulate in fractures in the rock beneath plutonium-ceramic (Pu-ceramic) and Mixed-Oxide (MOX) waste packages (WPs) as they degrade in the potential monitored geologic repository at Yucca Mountain. This calculation is to feed another calculation (Ref. 31) computing the probability of criticality in the systems described in Section 6 and then ultimately to a more general report on the impact of plutonium on the performance of the proposed repository (Ref. 32), both developed concurrently to this work. This calculation is done in accordance with the development plan TDP-DDC-MD-000001 (Ref. 9), item 5. The original document described in item 5 has been split into two documents: this calculation and Ref. 4. The scope of the calculation is limited to only very low flow rates because they lead to the most conservative cases for Pu accumulation and more generally are consistent with the way the effluent from the WP (called source term in this calculation) was calculated (Ref. 4). Ref. 4 (''In-Drift Accumulation of Fissile Material from WPs Containing Plutonium Disposition Waste Forms'') details the evolution through time (breach time is initial time) of the chemical composition of the solution inside the WP as degradation of the fuel and other materials proceed. It is the chemical solution used as a source term in this calculation. Ref. 4 takes that same source term and reacts it with the invert; this calculation reacts it with the rock. In addition to reactions with the rock minerals (that release Si and Ca), the basic mechanisms for actinide precipitation are dilution and mixing with resident water as explained in Section 2.1.4. No other potential mechanism such as flow through a reducing zone is investigated in this calculation. No attempt was made to use the effluent water from the bottom of the invert instead of using directly the effluent water from the

  11. Identification and Quantitative Assessment of Uremic Solutes as Inhibitors of Renal Organic Anion Transporters, OAT1 and OAT3.

    Science.gov (United States)

    Hsueh, Chia-Hsiang; Yoshida, Kenta; Zhao, Ping; Meyer, Timothy W; Zhang, Lei; Huang, Shiew-Mei; Giacomini, Kathleen M

    2016-09-06

    One of the characteristics of chronic kidney disease (CKD) is the accumulation of uremic solutes in the plasma. Less is known about the effects of uremic solutes on transporters that may play critical roles in pharmacokinetics. We evaluated the effect of 72 uremic solutes on organic anion transporter 1 and 3 (OAT1 and OAT3) using a fluorescent probe substrate, 6-carboxyfluorescein. A total of 12 and 13 solutes were identified as inhibitors of OAT1 and OAT3, respectively. Several of them inhibited OAT1 or OAT3 at clinically relevant concentrations and reduced the transport of other OAT1/3 substrates in vitro. Review of clinical studies showed that the active secretion of most drugs that are known substrates of OAT1/3 deteriorated faster than the renal filtration in CKD. Collectively, these data suggest that through inhibition of OAT1 and OAT3, uremic solutes contribute to the decline in renal drug clearance in patients with CKD.

  12. Lead and zinc accumulation and tolerance in populations of six wetland plants

    Energy Technology Data Exchange (ETDEWEB)

    Deng, H. [Biology Department and Croucher Institute for Environmental Sciences, Hong Kong Baptist University, Kowloon, Hong Kong (China); Department of Environmental Science and Technology, East China Normal University, Shanghai (China); Ye, Z.H. [Biology Department and Croucher Institute for Environmental Sciences, Hong Kong Baptist University, Kowloon, Hong Kong (China); School of Life Sciences, Zhongshan (Sun Yat-sen) University, Guangzhou 510275 (China); Wong, M.H. [Biology Department and Croucher Institute for Environmental Sciences, Hong Kong Baptist University, Kowloon, Hong Kong (China)]. E-mail: mhwong@hkbu.edu.hk

    2006-05-15

    Wetland plants such as Typha latifolia and Phragmites australis have been indicated to show a lack of evolution of metal tolerance in metal-contaminated populations. The aim of the present study is to verify whether other common wetland plants such as Alternanthera philoxeroides and Beckmannia syzigachne, also possess the same characteristics. Lead and zinc tolerances in populations of six species collected from contaminated and clean sites were examined by hydroponics. In general, the contaminated populations did not show higher metal tolerance and accumulation than the controls. Similar growth responses and tolerance indices in the same metal treatment solution between contaminated and control populations suggest that metal tolerance in wetland plants are generally not further evolved by contaminated environment. The reasons may be related to the special root anatomy in wetland plants, the alleviated metal toxicity by the reduced rooting conditions and the relatively high innate metal tolerance in some species. - Populations from metal contaminated sites did not have significantly higher metal tolerance indices.

  13. Lead and zinc accumulation and tolerance in populations of six wetland plants

    International Nuclear Information System (INIS)

    Deng, H.; Ye, Z.H.; Wong, M.H.

    2006-01-01

    Wetland plants such as Typha latifolia and Phragmites australis have been indicated to show a lack of evolution of metal tolerance in metal-contaminated populations. The aim of the present study is to verify whether other common wetland plants such as Alternanthera philoxeroides and Beckmannia syzigachne, also possess the same characteristics. Lead and zinc tolerances in populations of six species collected from contaminated and clean sites were examined by hydroponics. In general, the contaminated populations did not show higher metal tolerance and accumulation than the controls. Similar growth responses and tolerance indices in the same metal treatment solution between contaminated and control populations suggest that metal tolerance in wetland plants are generally not further evolved by contaminated environment. The reasons may be related to the special root anatomy in wetland plants, the alleviated metal toxicity by the reduced rooting conditions and the relatively high innate metal tolerance in some species. - Populations from metal contaminated sites did not have significantly higher metal tolerance indices

  14. Interaction of gypsum with lead in aqueous solutions

    International Nuclear Information System (INIS)

    Astilleros, J.M.; Godelitsas, A.; Rodriguez-Blanco, J.D.; Fernandez-Diaz, L.; Prieto, M.; Lagoyannis, A.; Harissopulos, S.

    2010-01-01

    Sorption processes on mineral surfaces are a critical factor in controlling the distribution and accumulation of potentially harmful metals in the environment. This work investigates the effectiveness of gypsum (CaSO 4 .2H 2 O) to sequester Pb. The interaction of gypsum fragments with Pb-bearing solutions (10, 100 and 1000 mg/L) was monitored by performing macroscopic batch-type experiments conducted at room temperature. The aqueous phase composition was periodically determined by Atomic Absorption Spectrometry (AAS), Ion Chromatography (IC) and Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES). Regardless of the [Pb aq ] initial , a [Pb aq ] final aq ] initial ≥ 100 mg/L and significantly slower (t > 1 week) for [Pb aq ] initial = 10 mg/L. Speciation calculations revealed that after a long time of interaction (1 month), all the solutions reached equilibrium with respect to both gypsum and anglesite. For [Pb aq ] initial ≥ 100 mg/L, sorption takes place mainly via the rapid dissolution of gypsum and the simultaneous formation of anglesite both on the gypsum surface and in the bulk solution. In the case of [Pb aq ] initial = 10 mg/L, no anglesite precipitation was observed, but surface spectroscopy (proton Rutherford Backscattering Spectroscopy, p-RBS) confirmed the formation of Pb-bearing surface layers on the (0 1 0) gypsum surface in this case also. This study shows that the surface of gypsum can play an important role in the attenuation of Pb in contaminated waters.

  15. Regional Antarctic snow accumulation over the past 1000 years

    Directory of Open Access Journals (Sweden)

    E. R. Thomas

    2017-11-01

    Full Text Available Here we present Antarctic snow accumulation variability at the regional scale over the past 1000 years. A total of 79 ice core snow accumulation records were gathered and assigned to seven geographical regions, separating the high-accumulation coastal zones below 2000 m of elevation from the dry central Antarctic Plateau. The regional composites of annual snow accumulation were evaluated against modelled surface mass balance (SMB from RACMO2.3p2 and precipitation from ERA-Interim reanalysis. With the exception of the Weddell Sea coast, the low-elevation composites capture the regional precipitation and SMB variability as defined by the models. The central Antarctic sites lack coherency and either do not represent regional precipitation or indicate the model inability to capture relevant precipitation processes in the cold, dry central plateau. Our results show that SMB for the total Antarctic Ice Sheet (including ice shelves has increased at a rate of 7 ± 0.13 Gt decade−1 since 1800 AD, representing a net reduction in sea level of ∼ 0.02 mm decade−1 since 1800 and ∼ 0.04 mm decade−1 since 1900 AD. The largest contribution is from the Antarctic Peninsula (∼ 75 % where the annual average SMB during the most recent decade (2001–2010 is 123 ± 44 Gt yr−1 higher than the annual average during the first decade of the 19th century. Only four ice core records cover the full 1000 years, and they suggest a decrease in snow accumulation during this period. However, our study emphasizes the importance of low-elevation coastal zones, which have been under-represented in previous investigations of temporal snow accumulation.

  16. Cadmium accumulation and strategies to avoid its toxicity in roots of the citrus rootstock Citrumelo

    Energy Technology Data Exchange (ETDEWEB)

    Podazza, Griselda [Instituto de Ecologia, Fundacion Miguel Lillo, Miguel Lillo 251, CP 4000, Tucuman (Argentina); Arias, Marta [Catedra de Anatomia Vegetal, Facultad de Ciencias Naturales e IML, Miguel Lillo 205, CP 4000, Tucuman (Argentina); Prado, Fernando E., E-mail: prad@arnet.com.ar [Catedra de Fisiologia Vegetal, Facultad de Ciencias Naturales e IML, Miguel Lillo 205, CP 4000, Tucuman (Argentina)

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer Cd induces oxidative stress, increasing the H{sub 2}O{sub 2} and O{sub 2}{center_dot}{sup -} generation. Black-Right-Pointing-Pointer SOD, G-POD, CAT activities are enhanced by Cd. Black-Right-Pointing-Pointer G-POD activity participates in Cd-induced lignin synthesis. Black-Right-Pointing-Pointer Cd mainly accumulates in exodermis and vascular cylinder. Black-Right-Pointing-Pointer Cd is mostly immobilized in roots, limiting its transport to aerial parts. - Abstract: In order to assess implications of Cd-induced oxidative stress in roots of the citrus rootstock Citrumelo, seedlings were hydroponically exposed to two relatively realistic Cd concentrations during 7 days. Our results showed that increasing Cd concentrations in external solution were associated with higher Cd accumulations in roots. At 5 {mu}M Cd the accumulation of Cd in roots was over 70-f higher than in aerial part (stem + leaves). Malondialdehyde (MDA), superoxide radical (O{sub 2}{center_dot}{sup -}), hydrogen peroxide (H{sub 2}O{sub 2}) and lipoxygenase activity (LOX) increased in Cd-exposed roots, suggesting a metal-induced oxidative stress. The Cd treatment enhanced the activity of antioxidant enzymes superoxide dismutase (SOD), catalase (CAT) and guaiacol-type peroxidase (G-POD), as well as the content of secondary metabolites i.e. soluble phenolics (SPs) and lignin. Histochemical analyses of roots showed that Cd, H{sub 2}O{sub 2}, (O{sub 2}{center_dot}{sup -}), lignin and G-POD displayed a similar location pattern. Almost all analyzed parameters showed a similar dynamic tendency with increases under 5 {mu}M Cd followed by decreases under 10 {mu}M Cd, suggesting that a complex coordinated Cd-defensive mechanism is operating in Citrumelo roots exposed to environmental realistic Cd concentrations.

  17. Selective accumulation may account for shellfish-associated viral illness.

    Science.gov (United States)

    Burkhardt, W; Calci, K R

    2000-04-01

    From 1991 through 1998, 1,266 cases of shellfish-related illnesses were attributed to Norwalk-like viruses. Seventy-eight percent of these illnesses occurred following consumption of oysters harvested from the Gulf Coast during the months of November through January. This study investigated the ability of eastern oysters (Crassostrea virginica) to accumulate indicator microorganisms (i.e., fecal coliforms, Escherichia coli, Clostridium perfringens, and F(+) coliphage) from estuarine water. One-week trials over a 1-year period were used to determine if these indicator organisms could provide insight into the seasonal occurrence of these gastrointestinal illnesses. The results demonstrate that oysters preferentially accumulated F(+) coliphage, an enteric viral surrogate, to their greatest levels from late November through January, with a concentration factor of up to 99-fold. However, similar increases in accumulation of the other indicator microorganisms were not observed. These findings suggest that the seasonal occurrence of shellfish-related illnesses by enteric viruses is, in part, the result of seasonal physiological changes undergone by the oysters that affect their ability to accumulate viral particles from estuarine waters.

  18. Solute transport dynamics in small, shallow groundwater-dominated agricultural catchments: insights from a high-frequency, multisolute 10 yr-long monitoring study

    Directory of Open Access Journals (Sweden)

    A. H. Aubert

    2013-04-01

    Full Text Available High-frequency, long-term and multisolute measurements are required to assess the impact of human pressures on water quality due to (i the high temporal and spatial variability of climate and human activity and (ii the fact that chemical solutes combine short- and long-term dynamics. Such data series are scarce. This study, based on an original and unpublished time series from the Kervidy-Naizin headwater catchment (Brittany, France, aims to determine solute transfer processes and dynamics that characterise this strongly human-impacted catchment. The Kervidy-Naizin catchment is a temperate, intensive agricultural catchment, hydrologically controlled by shallow groundwater. Over 10 yr, five solutes (nitrate, sulphate, chloride, and dissolved organic and inorganic carbon were monitored daily at the catchment outlet and roughly every four months in the shallow groundwater. The concentrations of all five solutes showed seasonal variations but the patterns of the variations differed from one solute to another. Nitrate and chloride exhibit rather smooth variations. In contrast, sulphate as well as organic and inorganic carbon is dominated by flood flushes. The observed nitrate and chloride patterns are typical of an intensive agricultural catchment hydrologically controlled by shallow groundwater. Nitrate and chloride originating mainly from organic fertilisers accumulated over several years in the shallow groundwater. They are seasonally exported when upland groundwater connects with the stream during the wet season. Conversely, sulphate as well as organic and inorganic carbon patterns are not specific to agricultural catchments. These solutes do not come from fertilisers and do not accumulate in soil or shallow groundwater; instead, they are biogeochemically produced in the catchment. The results allowed development of a generic classification system based on the specific temporal patterns and source locations of each solute. It also considers the

  19. Effects of potentially acidic air pollutants on the intracellular distribution and transport of plant growth regulators in mesophyll cells of leaves. Consequences on stress- and developmental physiology

    Energy Technology Data Exchange (ETDEWEB)

    Kremer, H.; Pfanz, H.; Hartung, W.

    1987-07-11

    The influence of SO/sub 2/ on the intracellular distribution of abscisic acid (ABA) and indole-acetic acid (IAA) in mesophyll cells of Picea abies, Tsuga americana and Hordeum vulgare was investigated. The compartmentation of ABA and IAA depends on intracellular pH-gradients. The hydrophilic anions ABA and IAA are accumulated in the alkaline cell compartments cytosol and chloroplasts, which act as anion traps for weak acids. Uptake of sulfur dioxide into leaves leads to an acidification of alkaline cell compartments, thus decreasing intracellular pH-gradients. Consequently this results in an increased release of plant growth regulators from the cell interior into the apoplast. Therefore the target cells of plant hormones i.e. meristems and stomates are exposed to altered hormone concentrations. Obviously this influences the regulation of cellular metabolism plant development and growth.

  20. Apolipoprotein E promotes lipid accumulation and differentiation in human adipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Lasrich, Dorothee; Bartelt, Alexander [Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg (Germany); Grewal, Thomas, E-mail: thomas.grewal@sydney.edu.au [Faculty of Pharmacy A15, The University of Sydney, Sydney, NSW 2006 (Australia); Heeren, Joerg, E-mail: heeren@uke.de [Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg (Germany)

    2015-09-10

    Several studies in mice indicate a role for apolipoprotein E (APOE) in lipid accumulation and adipogenic differentiation in adipose tissue. However, little is yet known if APOE functions in a similar manner in human adipocytes. This prompted us to compare lipid loading and expression of adipocyte differentiation markers in APOE-deficient and control adipocytes using the differentiated human mesenchymal stem cell line hMSC-Tert as well as primary human and mouse adipocytes as model systems. Differentiated hMSC-Tert were stably transduced with or without siRNA targeting APOE while murine adipocytes were isolated from wild type and Apoe knockout mice. Human APOE knockdown hMSC-Tert adipocytes accumulated markedly less triglycerides compared to control cells. This correlated with strongly decreased gene expression levels of adipocyte markers such as adiponectin (ADIPOQ) and fatty acid binding protein 4 (FABP4) as well as the key transcription factor driving adipocyte differentiation, peroxisome proliferator activator receptor gamma (PPARG), in particular the PPARG2 isoform. Similarly, differentiation of murine Apoe-deficient adipocytes was characterized by reduced gene expression of Adipoq, Fabp4 and Pparg. Interestingly, incubation of APOE-deficient hMSC-Tert adipocytes with conditioned media from APOE3-overexpressing adipocytes or APOE-containing Very Low Density Lipoprotein (VLDL) partially restored triglyceride accumulation, but were unable to induce adipocyte differentiation, as judged by expression of adipocyte markers. Taken together, depletion of endogenous APOE in human adipocytes severely impairs lipid accumulation, which is associated with an inability to initiate differentiation. - Highlights: • Immortalized human mesenchymal stem cells were used to study adipocyte development. • Knockdown of endogenous APOE lead to impaired lipid accumulation and adipogenesis. • APOE supplementation partially restored lipid accumulation but not differentiation.