WorldWideScience

Sample records for apomictic polyploid hawkweeds

  1. Evolution of apomixis loci in Pilosella and Hieracium (Asteraceae) inferred from the conservation of apomixis-linked markers in natural and experimental populations

    Science.gov (United States)

    Hand, M L; Vít, P; Krahulcová, A; Johnson, S D; Oelkers, K; Siddons, H; Chrtek, J; Fehrer, J; Koltunow, A M G

    2015-01-01

    The Hieracium and Pilosella (Lactuceae, Asteraceae) genera of closely related hawkweeds contain species with two different modes of gametophytic apomixis (asexual seed formation). Both genera contain polyploid species, and in wild populations, sexual and apomictic species co-exist. Apomixis is known to co-exist with sexuality in apomictic Pilosella individuals, however, apomictic Hieracium have been regarded as obligate apomicts. Here, a developmental analysis of apomixis within 16 Hieracium species revealed meiosis and megaspore tetrad formation in 1 to 7% of ovules, for the first time indicating residual sexuality in this genus. Molecular markers linked to the two independent, dominant loci LOSS OF APOMEIOSIS (LOA) and LOSS OF PARTHENOGENESIS (LOP) controlling apomixis in Pilosella piloselloides subsp. praealta were screened across 20 phenotyped Hieracium individuals from natural populations, and 65 phenotyped Pilosella individuals from natural and experimental cross populations, to examine their conservation, inheritance and association with reproductive modes. All of the tested LOA and LOP-linked markers were absent in the 20 Hieracium samples irrespective of their reproductive mode. Within Pilosella, LOA and LOP-linked markers were essentially absent within the sexual plants, although they were not conserved in all apomictic individuals. Both loci appeared to be inherited independently, and evidence for additional genetic factors influencing quantitative expression of LOA and LOP was obtained. Collectively, these data suggest independent evolution of apomixis in Hieracium and Pilosella and are discussed with respect to current knowledge of the evolution of apomixis. PMID:25026970

  2. 75 FR 64984 - Availability of an Environmental Assessment for a Biological Control Agent for Hawkweeds

    Science.gov (United States)

    2010-10-21

    ... hawkweed gall wasp, Aulacidea subterminalis, into the continental United States as a biological control... United States for the biological control of hawkweeds (Hieracium pilosella, H. aurantiacum, H... control, and the use of biological control organisms. The use of herbicides, while effective, is limited...

  3. Sexy males and sexless females: the origin of triploid apomicts.

    Science.gov (United States)

    Muralidhar, P; Haig, D

    2017-05-01

    Apomixis and polyploidy are closely associated in angiosperms, but the evolutionary reason for this association is unknown. Taraxacum officinale, the common dandelion, exists both as diploid sexuals and triploid apomicts. Here, in the context of T. officinale, we provide a model of the evolution of triploid apomicts from diploid sexuals. We posit an apomictic allele that arrests female meiosis in diploids, so that the plant produces diploid egg cells that can develop without fertilization, but haploid pollen. We propose occasional fertilization of diploid egg cells by haploid pollen, resulting in triploid apomicts that produce triploid egg cells but largely nonfunctional pollen. The irreversibility of this process renders diploid partial apomicts evolutionarily short-lived, and results in fixation of triploid apomicts except when they suffer extreme selective disadvantages. Our model can account for the high genetic diversity found in T. officinale triploid populations, because recombinant haploid pollen produced by diploids allows the apomictic allele to spread onto many genetic backgrounds. This leads to multiple clonal lineages in the newly apomictic population, and thereby alleviates some of the usual pitfalls of asexual reproduction.

  4. Somatically segregating clone of apomictic maize-tripsacum hybrid

    International Nuclear Information System (INIS)

    Yudin, B.F.; Lukina, L.A.

    1988-01-01

    The results of further study on clone AM-5, isolated in the progeny of γ-irradiated plants of the apomictic hybrid of maize with tripsacum (2n = 38) are reported. The variegated-leaf seedlings of the clone segregate somatically and produce variegated, mottled, green (phenotypically normal) plants in different ratios in the apomictic progenies. The variegated, and to a lesser degree, green segregants segregate further. The mottled apomictics as well as mottled branches of variegated seedlings maintain their phenotype on transplantation, however, these is a progressive enhancement of the characters of vegetative lethality. Lethals of two extra maize genomes to the AM-5 nucleus does not affect significantly the scope and nature of segregation. At the same time, the loss of tripsacum genome restores normal phenotype. Clone AM-5 is an example of hybrid apomictic form causing significant morphological variability, which is, nevertheless, not related with apomictic and reversion to the sexual process

  5. Apomictic frequency in sorghum R473

    International Nuclear Information System (INIS)

    Reddy, C.S.; Schertz, K.F.; Bashaw, E.C.

    1980-01-01

    Apomixis has been reported in a few lines of sorghum, among them R473 which was originally reported to be an obligate apomict. Although this line has multiple embryo sacs, the frequency of apomictic seed formation has not been determined because a progeny test has not been possible. R473 does not cross as a female with other lines except when its own pollen is present. In the present study mutations were induced in R473 by hydrazine and irradiation. Crosses were made between male-sterile mutants as females and normal R473 as males. Plants of R473 produced F 1 hybrids sexually, thus indicating that they were not obligate apomicts. These F 1 's also reproduced sexually, as indicated by segregation for male sterility and male fertility in F 2 progenies. (orig.)

  6. Molecular markers shared by diverse apomictic Pennisetum species.

    Science.gov (United States)

    Lubbers, E L; Arthur, L; Hanna, W W; Ozias-Akins, P

    1994-11-01

    Two molecular markers, a RAPD (randomly amplified polymorphic DNA) and a RFLP/STS (restriction fragment length polymorphism/sequence-tagged site), previously were found associated with apomictic reproductive behavior in a backcross population produced to transfer apomixis from Pennisetum squamulatum to pearl millet. The occurrence of these molecular markers in a range of 29 accessions of Pennisetum comprising 11 apomictic and 8 sexual species was investigated. Both markers were specific for apomictic species in Pennisetum. The RFLP/STS marker, UGT 197, was found to be associated with all taxa that displayed apomictic reproductive behavior except those in section Brevivalvula. Neither UGT197 nor the cloned RAPD fragment OPC-04600 hybridized with any sexually reproducing representatives of the genus. The cloned C04600 was associated with 3 of the 11 apomictic species, P. ciliare, P. massaicum, and P. squamulatum. UGT197 was more consistently associated with apomictic reproductive behavior than OPC04600 or cloned C04600, thus it could be inferred that UGT197 is more closely linked to the gene(s) for apomixis than the cloned C04600. The successful use of these probes to survey other Pennisetum species indicates that apomixis is a trait that can be followed across species by using molecular means. This technique of surveying species within a genus will be useful in determining the relative importance of newly isolated markers and may facilitate the identification of the apomixis gene(s).

  7. Induced mutations in apomictic variety of maize-tripsacum hybrid

    International Nuclear Information System (INIS)

    Yudin, B.F.; Lukina, L.A.

    1983-01-01

    Three generations of six mutants obtained by γ- and x-irradiation of seeds of highly apomictic variety of 38 chromosome maize-tripsacum hybrid have been studied. Radiomutants detected in M 2 preserved the mother type and constance in M 3 and M 4 . One of the mutants, as an exception, manifested somatic splitting, which resulted in the appearance of a new apomictic clone. Irradiation and mutation in some cases were accompanied by the appearance of seedlings with high chromosome numbers in mutant posterity, including apomicts with doubled number of chromosomes, as well as the increase of total part of sexual reproduction; the latter circumstance is considered as a result of modificator balance change caused by treatments. Doubling of chromosome number in 38-chromosome apomicts, according to preliminary data, does not affect significantly the way of reproduction; 76-chromosome forms preserve a high degree of a regular apomixis

  8. Apomictic parthenogenesis in a parasitoid wasp Meteorus pulchricornis, uncommon in the haplodiploid order Hymenoptera.

    Science.gov (United States)

    Tsutsui, Y; Maeto, K; Hamaguchi, K; Isaki, Y; Takami, Y; Naito, T; Miura, K

    2014-06-01

    Although apomixis is the most common form of parthenogenesis in diplodiploid arthropods, it is uncommon in the haplodiploid insect order Hymenoptera. We found a new type of spontaneous apomixis in the Hymenoptera, completely lacking meiosis and the expulsion of polar bodies in egg maturation division, on the thelytokous strain of a parasitoid wasp Meteorus pulchricornis (Wesmael) (Braconidae, Euphorinae) on pest lepidopteran larvae Spodoptera litura (Fabricius) (Noctuidae). The absence of the meiotic process was consistent with a non-segregation pattern in the offspring of heterozygous females, and no positive evidence was obtained for the induction of thelytoky by any bacterial symbionts. We discuss the conditions that enable the occurrence of such rare cases of apomictic thelytoky in the Hymenoptera, suggesting the significance of fixed heterosis caused by hybridization or polyploidization, symbiosis with bacterial agents, and occasional sex. Our finding will encourage further genetic studies on parasitoid wasps to use asexual lines more wisely for biological control.

  9. Isolation of candidate genes for apomictic development in buffelgrass (Pennisetum ciliare).

    Science.gov (United States)

    Singh, Manjit; Burson, Byron L; Finlayson, Scott A

    2007-08-01

    Asexual reproduction through seeds, or apomixis, is a process that holds much promise for agricultural advances. However, the molecular mechanisms underlying apomixis are currently poorly understood. To identify genes related to female gametophyte development in apomictic ovaries of buffelgrass (Pennisetum ciliare (L.) Link), Suppression Subtractive Hybridization of ovary cDNA with leaf cDNA was performed. Through macroarray screening of subtracted cDNAs two genes were identified, Pca21 and Pca24, that showed differential expression between apomictic and sexual ovaries. Sequence analysis showed that both Pca21 and Pca24 are novel genes not previously characterized in plants. Pca21 shows homology to two wheat genes that are also expressed during reproductive development. Pca24 has similarity to coiled-coil-helix-coiled-coil-helix (CHCH) domain containing proteins from maize and sugarcane. Northern blot analysis revealed that both of these genes are expressed throughout female gametophyte development in apomictic ovaries. In situ hybridizations localized the transcript of these two genes to the developing embryo sacs in the apomictic ovaries. Based on the expression patterns it was concluded that Pca21 and Pca24 likely play a role during apomictic development in buffelgrass.

  10. Intra-individual polymorphism in diploid and apomictic polyploid hawkweeds (Hieracium, Lactuceae, Asteraceae): disentangling phylogenetic signal, reticulation, and noise

    Czech Academy of Sciences Publication Activity Database

    Fehrer, Judith; Krak, Karol; Chrtek, Jindřich

    -, č. 9 (2009), s. 239 ISSN 1471-2148 R&D Projects: GA ČR GA206/05/0657 Institutional research plan: CEZ:AV0Z60050516 Keywords : Hieracium * reticulation * evolution Subject RIV: EF - Botanics Impact factor: 4.294, year: 2009 http://www.biomedcentral.com/1471-2148/9/239

  11. Competition between meiotic and apomictic pathways during ovule and seed development results in clonality.

    Science.gov (United States)

    Hojsgaard, Diego H; Martínez, Eric J; Quarin, Camilo L

    2013-01-01

    Meiotic and apomictic reproductive pathways develop simultaneously in facultative aposporous species, and compete to form a seed as a final goal. This developmental competition was evaluated in tetraploid genotypes of Paspalum malacophyllum in order to understand the low level of sexuality in facultative apomictic populations. Cyto-embryology on ovules, flow cytometry on seeds and progeny tests by DNA fingerprinting were used to measure the relative incidence of each meiotic or apomictic pathway along four different stages of the plant's life cycle, namely the beginning and end of gametogenesis, seed formation and adult offspring. A high variation in the frequencies of sexual and apomictic pathways occurred at the first two stages. A trend of radical decline in realized sexuality was then observed. Sexual and apomictic seeds were produced, but the efficiency of the sexual pathway dropped drastically, and exclusively clonal offspring remained. Both reproductive pathways are unstable at the beginning of development, and only the apomictic one remains functional. Key factors reducing sexuality are the faster growth and parthenogenetic development in the aposporous pathway, and an (epi)genetically negative background related to the extensive gene de-regulation pattern responsible for apomixis. The effects of inbreeding depression during post-fertilization development may further decrease the frequency of effective sexuality. No claim to original US government works. New Phytologist © 2012 New Phytologist Trust.

  12. Transgenerational effects of stress exposure on offspring phenotypes in apomictic dandelion.

    Directory of Open Access Journals (Sweden)

    Koen J F Verhoeven

    Full Text Available Heritable epigenetic modulation of gene expression is a candidate mechanism to explain parental environmental effects on offspring phenotypes, but current evidence for environment-induced epigenetic changes that persist in offspring generations is scarce. In apomictic dandelions, exposure to various stresses was previously shown to heritably alter DNA methylation patterns. In this study we explore whether these induced changes are accompanied by heritable effects on offspring phenotypes. We observed effects of parental jasmonic acid treatment on offspring specific leaf area and on offspring interaction with a generalist herbivore; and of parental nutrient stress on offspring root-shoot biomass ratio, tissue P-content and leaf morphology. Some of the effects appeared to enhance offspring ability to cope with the same stresses that their parents experienced. Effects differed between apomictic genotypes and were not always consistently observed between different experiments, especially in the case of parental nutrient stress. While this context-dependency of the effects remains to be further clarified, the total set of results provides evidence for the existence of transgenerational effects in apomictic dandelions. Zebularine treatment affected the within-generation response to nutrient stress, pointing at a role of DNA methylation in phenotypic plasticity to nutrient environments. This study shows that stress exposure in apomictic dandelions can cause transgenerational phenotypic effects, in addition to previously demonstrated transgenerational DNA methylation effects.

  13. Transgenerational effects of stress exposure on offspring phenotypes in apomictic dandelion.

    Science.gov (United States)

    Verhoeven, Koen J F; van Gurp, Thomas P

    2012-01-01

    Heritable epigenetic modulation of gene expression is a candidate mechanism to explain parental environmental effects on offspring phenotypes, but current evidence for environment-induced epigenetic changes that persist in offspring generations is scarce. In apomictic dandelions, exposure to various stresses was previously shown to heritably alter DNA methylation patterns. In this study we explore whether these induced changes are accompanied by heritable effects on offspring phenotypes. We observed effects of parental jasmonic acid treatment on offspring specific leaf area and on offspring interaction with a generalist herbivore; and of parental nutrient stress on offspring root-shoot biomass ratio, tissue P-content and leaf morphology. Some of the effects appeared to enhance offspring ability to cope with the same stresses that their parents experienced. Effects differed between apomictic genotypes and were not always consistently observed between different experiments, especially in the case of parental nutrient stress. While this context-dependency of the effects remains to be further clarified, the total set of results provides evidence for the existence of transgenerational effects in apomictic dandelions. Zebularine treatment affected the within-generation response to nutrient stress, pointing at a role of DNA methylation in phenotypic plasticity to nutrient environments. This study shows that stress exposure in apomictic dandelions can cause transgenerational phenotypic effects, in addition to previously demonstrated transgenerational DNA methylation effects.

  14. De novo transcriptome sequencing and assembly from apomictic and sexual Eragrostis curvula genotypes.

    Directory of Open Access Journals (Sweden)

    Ingrid Garbus

    Full Text Available A long-standing goal in plant breeding has been the ability to confer apomixis to agriculturally relevant species, which would require a deeper comprehension of the molecular basis of apomictic regulatory mechanisms. Eragrostis curvula (Schrad. Nees is a perennial grass that includes both sexual and apomictic cytotypes. The availability of a reference transcriptome for this species would constitute a very important tool toward the identification of genes controlling key steps of the apomictic pathway. Here, we used Roche/454 sequencing technologies to generate reads from inflorescences of E. curvula apomictic and sexual genotypes that were de novo assembled into a reference transcriptome. Near 90% of the 49568 assembled isotigs showed sequence similarity to sequences deposited in the public databases. A gene ontology analysis categorized 27448 isotigs into at least one of the three main GO categories. We identified 11475 SSRs, and several of them were assayed in E curvula germoplasm using SSR-based primers, providing a valuable set of molecular markers that could allow direct allele selection. The differential contribution to each library of the spliced forms of several transcripts revealed the existence of several isotigs produced via alternative splicing of single genes. The reference transcriptome presented and validated in this work will be useful for the identification of a wide range of gene(s related to agronomic traits of E. curvula, including those controlling key steps of the apomictic pathway in this species, allowing the extrapolation of the findings to other plant species.

  15. Intraspecific ecological niche divergence and reproductive shifts foster cytotype displacement and provide ecological opportunity to polyploids.

    Science.gov (United States)

    Karunarathne, Piyal; Schedler, Mara; Martínez, Eric J; Honfi, Ana I; Novichkova, Anastasiia; Hojsgaard, Diego

    2018-05-11

    Niche divergence between polyploids and their lower ploidy progenitors is one of the primary mechanisms fostering polyploid establishment and adaptive divergence. However, within-species chromosomal and reproductive variability have usually been neglected in community ecology and biodiversity analyses even though they have been recognized to play a role in the adaptive diversification of lineages. We used Paspalum intermedium, a grass species with diverging genetic systems (diploidy vs. autopolyploidy, allogamy vs. autogamy and sexuality vs. apomixis), to recognize the causality of biogeographic patterns, adaptation and ecological flexibility of cytotypes. Chromosome counts and flow cytometry were used to characterize within-species genetic systems diversity. Environmental niche modelling was used to evaluate intraspecific ecological attributes associated with environmental and climatic factors and to assess correlations among ploidy, reproductive modes and ecological conditions ruling species' population dynamics, range expansion, adaptation and evolutionary history. Two dominant cytotypes non-randomly distributed along local and regional geographical scales displayed niche differentiation, a directional shift in niche optima and signs of disruptive selection on ploidy-related ecological aptitudes for the exploitation of environmental resources. Ecologically specialized allogamous sexual diploids were found in northern areas associated with higher temperature, humidity and productivity, while generalist autogamous apomictic tetraploids occurred in southern areas, occupying colder and less productive environments. Four localities with a documented shift in ploidy and four mixed populations in a zone of ecological transition revealed an uneven replacement between cytotypes. Polyploidy and contrasting reproductive traits between cytotypes have promoted shifts in niche optima, and increased ecological tolerance and niche divergence. Ecologically specialized diploids

  16. Spontaneous polyploidization in cucumber.

    Science.gov (United States)

    Ramírez-Madera, Axel O; Miller, Nathan D; Spalding, Edgar P; Weng, Yiqun; Havey, Michael J

    2017-07-01

    This is the first quantitative estimation of spontaneous polyploidy in cucumber and we detected 2.2% polyploids in a greenhouse study. We provide evidence that polyploidization is consistent with endoreduplication and is an on-going process during plant growth. Cucumber occasionally produces polyploid plants, which are problematic for growers because these plants produce misshaped fruits with non-viable seeds. In this study, we undertook the first quantitative study to estimate the relative frequency of spontaneous polyploids in cucumber. Seeds of recombinant inbred lines were produced in different environments, plants were grown in the field and greenhouse, and flow cytometry was used to establish ploidies. From 1422 greenhouse-grown plants, the overall relative frequency of spontaneous polyploidy was 2.2%. Plants possessed nuclei of different ploidies in the same leaves (mosaic) and on different parts of the same plant (chimeric). Our results provide evidence of endoreduplication and polysomaty in cucumber, and that it is an on-going and dynamic process. There was a significant effect (p = 0.018) of seed production environment on the occurrence of polyploid plants. Seed and seedling traits were not accurate predictors of eventual polyploids, and we recommend that cucumber producers rogue plants based on stature and leaf serration to remove potential polyploids.

  17. Physiological significance of polyploidization in mammalian cells.

    Science.gov (United States)

    Pandit, Shusil K; Westendorp, Bart; de Bruin, Alain

    2013-11-01

    Programmed polyploidization occurs in all mammalian species during development and aging in selected tissues, but the biological properties of polyploid cells remain obscure. Spontaneous polyploidization arises during stress and has been observed in a variety of pathological conditions, such as cancer and degenerative diseases. A major challenge in the field is to test the predicted functions of polyploidization in vivo. However, recent genetic mouse models with diminished polyploidization phenotypes represent novel, powerful tools to unravel the biological function of polyploidization. Contrary to a longstanding hypothesis, polyploidization appears to not be required for differentiation and has no obvious impact on proliferation. Instead, polyploidization leads to increased cell size and genetic diversity, which could promote better adaptation to chronic injury or stress. We discuss here the consequences of reducing polyploidization in mice and review which stress responses and molecular signals trigger polyploidization during development and disease. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Functional reprogramming of polyploidization in megakaryocytes.

    Science.gov (United States)

    Trakala, Marianna; Rodríguez-Acebes, Sara; Maroto, María; Symonds, Catherine E; Santamaría, David; Ortega, Sagrario; Barbacid, Mariano; Méndez, Juan; Malumbres, Marcos

    2015-01-26

    Polyploidization is a natural process that frequently accompanies differentiation; its deregulation is linked to genomic instability and cancer. Despite its relevance, why cells select different polyploidization mechanisms is unknown. Here we report a systematic genetic analysis of endomitosis, a process in which megakaryocytes become polyploid by entering mitosis but aborting anaphase. Whereas ablation of the APC/C cofactor Cdc20 results in mitotic arrest and severe thrombocytopenia, lack of the kinases Aurora-B, Cdk1, or Cdk2 does not affect megakaryocyte polyploidization or platelet levels. Ablation of Cdk1 forces a switch to endocycles without mitosis, whereas polyploidization in the absence of Cdk1 and Cdk2 occurs in the presence of aberrant re-replication events. Importantly, ablation of these kinases rescues the defects in Cdc20 null megakaryocytes. These findings suggest that endomitosis can be functionally replaced by alternative polyploidization mechanisms in vivo and provide the cellular basis for therapeutic approaches aimed to discriminate mitotic and polyploid cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. DNA damage and polyploidization.

    Science.gov (United States)

    Chow, Jeremy; Poon, Randy Y C

    2010-01-01

    A growing body of evidence indicates that polyploidization triggers chromosomal instability and contributes to tumorigenesis. DNA damage is increasingly being recognized for its roles in promoting polyploidization. Although elegant mechanisms known as the DNA damage checkpoints are responsible for halting the cell cycle after DNA damage, agents that uncouple the checkpoints can induce unscheduled entry into mitosis. Likewise, defects of the checkpoints in several disorders permit mitotic entry even in the presence of DNA damage. Forcing cells with damaged DNA into mitosis causes severe chromosome segregation defects, including lagging chromosomes, chromosomal fragments and chromosomal bridges. The presence of these lesions in the cleavage plane is believed to abort cytokinesis. It is postulated that if cytokinesis failure is coupled with defects of the p53-dependent postmitotic checkpoint pathway, cells can enter S phase and become polyploids. Progress in the past several years has unraveled some of the underlying principles of these pathways and underscored the important role of DNA damage in polyploidization. Furthermore, polyploidization per se may also be an important determinant of sensitivity to DNA damage, thereby may offer an opportunity for novel therapies.

  20. Polyploidization of liver cells.

    Science.gov (United States)

    Celton-Morizur, Séverine; Desdouets, Chantal

    2010-01-01

    Eukaryotic organisms usually contain a diploid complement of chromosomes. However, there are a number of exceptions. Organisms containing an increase in DNA content by whole number multiples of the entire set of chromosomes are defined as polyploid. Cells that contain more than two sets of chromosomes were first observed in plants about a century ago and it is now recognized that polyploidy cells form in many eukaryotes under a wide variety of circumstance. Although it is less common in mammals, some tissues, including the liver, show a high percentage of polyploid cells. Thus, during postnatal growth, the liver parenchyma undergoes dramatic changes characterized by gradual polyploidization during which hepatocytes of several ploidy classes emerge as a result of modified cell-division cycles. This process generates the successive appearance of tetraploid and octoploid cell classes with one or two nuclei (mononucleated or binucleated). Liver cells polyploidy is generally considered to indicate terminal differentiation and senescence and to lead both to the progressive loss of cell pluripotency and a markedly decreased replication capacity. In adults, liver polyploidization is differentially regulated upon loss of liver mass and liver damage. Interestingly, partial hepatectomy induces marked cell proliferation followed by an increase in liver ploidy. In contrast, during hepatocarcinoma (HCC), growth shifts to a nonpolyploidizing pattern and expansion of the diploid hepatocytes population is observed in neoplastic nodules. Here we review the current state of understanding about how polyploidization is regulated during normal and pathological liver growth and detail by which mechanisms hepatocytes become polyploid.

  1. Sexual Hieracium pilosella plants are better inter-specific, while apomictic plants are better intra-specific competitors

    OpenAIRE

    Sailer, Christian; Schmid, Bernhard; Stöcklin, Jürg; Grossniklaus, Ueli

    2014-01-01

    Apomixis, asexual reproduction through seeds, occurs in over 40 plant families. This widespread phenomenon can lead to the fixation of successful genotypes, resulting in a fitness advantage. On the other hand, apomicts are expected to lose their fitness advantage if the environment changes because of their limited evolutionary potential, which is due to low genetic variability and the potential accumulation of deleterious somatic mutations. Nonetheless, some apomicts have been extremely succe...

  2. Transgenerational effects of stress exposure on offspring phenotypes in apomictic dandelion

    NARCIS (Netherlands)

    Verhoeven, K.J.F.; Van Gurp, T.P.

    2012-01-01

    Heritable epigenetic modulation of gene expression is a candidate mechanism to explain parental environmental effects on offspring phenotypes, but current evidence for environment-induced epigenetic changes that persist in offspring generations is scarce. In apomictic dandelions, exposure to various

  3. Transgenerational Effects of Stress Exposure on Offspring Phenotypes in Apomictic Dandelion

    NARCIS (Netherlands)

    Verhoeven, K.J.F.; Gurp, van T.P.

    2012-01-01

    Heritable epigenetic modulation of gene expression is a candidate mechanism to explain parental environmental effects on offspring phenotypes, but current evidence for environment-induced epigenetic changes that persist in offspring generations is scarce. In apomictic dandelions, exposure to various

  4. Polyploidization in liver tissue.

    Science.gov (United States)

    Gentric, Géraldine; Desdouets, Chantal

    2014-02-01

    Polyploidy (alias whole genome amplification) refers to organisms containing more than two basic sets of chromosomes. Polyploidy was first observed in plants more than a century ago, and it is known that such processes occur in many eukaryotes under a variety of circumstances. In mammals, the development of polyploid cells can contribute to tissue differentiation and, therefore, possibly a gain of function; alternately, it can be associated with development of disease, such as cancer. Polyploidy can occur because of cell fusion or abnormal cell division (endoreplication, mitotic slippage, or cytokinesis failure). Polyploidy is a common characteristic of the mammalian liver. Polyploidization occurs mainly during liver development, but also in adults with increasing age or because of cellular stress (eg, surgical resection, toxic exposure, or viral infections). This review will explore the mechanisms that lead to the development of polyploid cells, our current state of understanding of how polyploidization is regulated during liver growth, and its consequence on liver function. Copyright © 2014 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  5. Selection of reference genes for quantitative real-time PCR expression studies of microdissected reproductive tissues in apomictic and sexual Boechera

    Directory of Open Access Journals (Sweden)

    Amiteye Samuel

    2011-08-01

    Full Text Available Abstract Background Apomixis, a natural form of asexual seed production in plants, is considered to have great biotechnological potential for agriculture. It has been hypothesised that de-regulation of the sexual developmental pathway could trigger apomictic reproduction. The genus Boechera represents an interesting model system for understanding apomixis, having both sexual and apomictic genotypes at the diploid level. Quantitative qRT-PCR is the most extensively used method for validating genome-wide gene expression analyses, but in order to obtain reliable results, suitable reference genes are necessary. In this work we have evaluated six potential reference genes isolated from a 454 (FLX derived cDNA library of Boechera. RNA from live microdissected ovules and anthers at different developmental stages, as well as vegetative tissues of apomictic and sexual Boechera, were used to validate the candidates. Results Based on homologies with Arabidopsis, six genes were selected from a 454 cDNA library of Boechera: RPS18 (Ribosomal sub protein 18, Efalpha1 (Elongation factor 1 alpha, ACT 2 (Actin2, UBQ (polyubiquitin, PEX4 (Peroxisomal ubiquitin conjugating enzyme and At1g09770.1 (Arabidopsis thaliana cell division cycle 5. Total RNA was extracted from 17 different tissues, qRT-PCRs were performed, and raw Ct values were analyzed for primer efficiencies and gene ratios. The geNorm and normFinder applications were used for selecting the most stable genes among all tissues and specific tissue groups (ovule, anthers and vegetative tissues in both apomictic and sexual plants separately. Our results show that BoechRPS18, BoechEfα1, BoechACT2 and BoechUBQ were the most stable genes. Based on geNorm, the combinations of BoechRPS18 and BoechEfα1 or BoechUBQ and BoechEfα1 were the most stable in the apomictic plant, while BoechRPS18 and BoechACT2 or BoechUBQ and BoechACT2 performed best in the sexual plant. When subgroups of tissue samples were analyzed

  6. Quantitative variation for apomictic reproduction in the genus Boechera (Brassicaceae)

    NARCIS (Netherlands)

    Aliyu, O.M.; Schranz, M.E.; Sharbel, T.F.

    2010-01-01

    • Premise of the study: The evolution of asexual seed production (apomixis) from sexual relatives is a great enigma of plant biology. The genus Boechera is ideal for studying apomixis because of its close relation to Arabidopsis and the occurrence of sexual and apomictic species at low ploidy levels

  7. Comparative gene expression in sexual and apomictic ovaries of Pennisetum ciliare (L.) Link.

    Science.gov (United States)

    Vielle-Calzada, J P; Nuccio, M L; Budiman, M A; Thomas, T L; Burson, B L; Hussey, M A; Wing, R A

    1996-12-01

    Limited emphasis has been given to the molecular study of apomixis, an asexual method of reproduction where seeds are produced without fertilization. Most buffelgrass (Pennisetum ciliare (L.) Link syn = Cenchrus ciliaris L.) genotypes reproduce by obligate apomixis (apospory); however, rare sexual plants have been recovered. A modified differential display procedure was used to compare gene expression in unpollinated ovaries containing ovules with either sexual or apomictic female gametophytes. The modification incorporated end-labeled poly(A)+ anchored primers as the only isotopic source, and was a reliable and consistent approach for detecting differentially displayed transcripts. Using 20 different decamers and two anchor primers, 2268 cDNA fragments between 200 and 600 bp were displayed. From these, eight reproducible differentially displayed cDNAs were identified and cloned. Based on northern analysis, one cDNA was detected in only the sexual ovaries, two cDNAs in only apomictic ovaries and one cDNA was present in both types of ovaries. Three fragments could not be detected and one fragment was detected in ovaries, stems, and leaves. Comparison of gene expression during sexual and apomictic development in buffelgrass represents a new model system and a strategy for investigating female reproductive development in the angiosperms.

  8. Analysis of conserved microRNAs in floral tissues of sexual and apomictic Boechera species

    Directory of Open Access Journals (Sweden)

    Vogel Heiko

    2011-10-01

    Full Text Available Abstract Background Apomixis or asexual seed formation represents a potentially important agronomic trait whose introduction into crop plants could be an effective way to fix and perpetuate a desirable genotype through successive seed generations. However, the gene regulatory pathways underlying apomixis remain unknown. In particular, the potential function of microRNAs, which are known to play crucial roles in many aspects of plant growth and development, remains to be determined with regards to the switch from sexual to apomictic reproduction. Results Using bioinformatics and microarray validation procedures, 51 miRNA families conserved among angiosperms were identified in Boechera. Microarray assay confirmed 15 of the miRNA families that were identified by bioinformatics techniques. 30 cDNA sequences representing 26 miRNAs could fold back into stable pre-miRNAs. 19 of these pre-miRNAs had miRNAs with Boechera-specific nucleotide substitutions (NSs. Analysis of the Gibbs free energy (ΔG of these pre-miRNA stem-loops with NSs showed that the Boechera-specific miRNA NSs significantly (p ≤ 0.05 enhance the stability of stem-loops. Furthermore, six transcription factors, the Squamosa promoter binding protein like SPL6, SPL11 and SPL15, Myb domain protein 120 (MYB120, RELATED TO AP2.7 DNA binding (RAP2.7, TOE1 RAP2.7 and TCP family transcription factor 10 (TCP10 were found to be expressed in sexual or apomictic ovules. However, only SPL11 showed differential expression with significant (p ≤ 0.05 up-regulation at the megaspore mother cell (MMC stage of ovule development in apomictic genotypes. Conclusions This study constitutes the first extensive insight into the conservation and expression of microRNAs in Boechera sexual and apomictic species. The miR156/157 target squamosa promoter binding protein-like 11 (SPL11 was found differentially expressed with significant (p ≤ 0.05 up-regulation at the MMC stage of ovule development in apomictic

  9. Harnessing apomictic reproduction in grasses: what we have learned from Paspalum

    Science.gov (United States)

    Ortiz, Juan Pablo A.; Quarin, Camilo L.; Pessino, Silvina C.; Acuña, Carlos; Martínez, Eric J.; Espinoza, Francisco; Hojsgaard, Diego H.; Sartor, Maria E.; Cáceres, Maria E.; Pupilli, Fulvio

    2013-01-01

    Background Apomixis is an alternative route of plant reproduction that produces individuals genetically identical to the mother plant through seeds. Apomixis is desirable in agriculture, because it guarantees the perpetuation of superior genotypes (i.e. heterotic hybrid seeds) by self-seeding without loss of hybrid vigour. The Paspalum genus, an archetypal model system for mining apomixis gene(s), is composed of about 370 species that have extremely diverse reproductive systems, including self-incompatibility, self-fertility, full sexual reproduction, and facultative or obligate apomixis. Barriers to interspecific hybridization are relaxed in this genus, allowing the production of new hybrids from many different parental combinations. Paspalum is also tolerant to various parental genome contributions to the endosperm, allowing analyses of how sexually reproducing crop species might escape from dosage effects in the endosperm. Scope In this article, the available literature characterizing apomixis in Paspalum spp. and its use in breeding is critically reviewed. In particular, a comparison is made across species of the structure and function of the genomic region controlling apomixis in order to identify a common core region shared by all apomictic Paspalum species and where apomixis genes are likely to be localized. Candidate genes are discussed, either as possible genetic determinants (including homologs to signal transduction and RNA methylation genes) or as downstream factors (such as cell-to-cell signalling and auxin response genes) depending, respectively, on their co-segregation with apomixis or less. Strategies to validate the role of candidate genes in apomictic process are also discussed, with special emphasis on plant transformation in natural apomictic species. PMID:23864004

  10. The Analysis of Polyploid Genetic Data.

    Science.gov (United States)

    Meirmans, Patrick G; Liu, Shenglin; van Tienderen, Peter H

    2018-03-16

    Though polyploidy is an important aspect of the evolutionary genetics of both plants and animals, the development of population genetic theory of polyploids has seriously lagged behind that of diploids. This is unfortunate since the analysis of polyploid genetic data-and the interpretation of the results-requires even more scrutiny than with diploid data. This is because of several polyploidy-specific complications in segregation and genotyping such as tetrasomy, double reduction, and missing dosage information. Here, we review the theoretical and statistical aspects of the population genetics of polyploids. We discuss several widely used types of inferences, including genetic diversity, Hardy-Weinberg equilibrium, population differentiation, genetic distance, and detecting population structure. For each, we point out how the statistical approach, expected result, and interpretation differ between different ploidy levels. We also discuss for each type of inference what biases may arise from the polyploid-specific complications and how these biases can be overcome. From our overview, it is clear that the statistical toolbox that is available for the analysis of genetic data is flexible and still expanding. Modern sequencing techniques will soon be able to overcome some of the current limitations to the analysis of polyploid data, though the techniques are lagging behind those available for diploids. Furthermore, the availability of more data may aggravate the biases that can arise, and increase the risk of false inferences. Therefore, simulations such as we used throughout this review are an important tool to verify the results of analyses of polyploid genetic data.

  11. The Analysis of Polyploid Genetic Data

    NARCIS (Netherlands)

    Meirmans, P.G.; Liu, S.; van Tienderen, P.H.

    2018-01-01

    Though polyploidy is an important aspect of the evolutionary genetics of both plants and animals, the development of population genetic theory of polyploids has seriously lagged behind that of diploids. This is unfortunate since the analysis of polyploid genetic data—and the interpretation of the

  12. Hepatocyte polyploidization and its association with pathophysiological processes.

    Science.gov (United States)

    Wang, Min-Jun; Chen, Fei; Lau, Joseph T Y; Hu, Yi-Ping

    2017-05-18

    A characteristic cellular feature of the mammalian liver is the progressive polyploidization of the hepatocytes, where individual cells acquire more than two sets of chromosomes. Polyploidization results from cytokinesis failure that takes place progressively during the course of postnatal development. The proportion of polyploidy also increases with the aging process or with cellular stress such as surgical resection, toxic stimulation, metabolic overload, or oxidative damage, to involve as much as 90% of the hepatocytes in mice and 40% in humans. Hepatocyte polyploidization is generally considered an indicator of terminal differentiation and cellular senescence, and related to the dysfunction of insulin and p53/p21 signaling pathways. Interestingly, the high prevalence of hepatocyte polyploidization in the aged mouse liver can be reversed when the senescent hepatocytes are serially transplanted into young mouse livers. Here we review the current knowledge on the mechanism of hepatocytes polyploidization during postnatal growth, aging, and liver diseases. The biologic significance of polyploidization in senescent reversal, within the context of new ways to think of liver aging and liver diseases is considered.

  13. Tools for Genetic Studies in Experimental Populations of Polyploids

    Directory of Open Access Journals (Sweden)

    Peter M. Bourke

    2018-04-01

    Full Text Available Polyploid organisms carry more than two copies of each chromosome, a condition rarely tolerated in animals but which occurs relatively frequently in the plant kingdom. One of the principal challenges faced by polyploid organisms is to evolve stable meiotic mechanisms to faithfully transmit genetic information to the next generation upon which the study of inheritance is based. In this review we look at the tools available to the research community to better understand polyploid inheritance, many of which have only recently been developed. Most of these tools are intended for experimental populations (rather than natural populations, facilitating genomics-assisted crop improvement and plant breeding. This is hardly surprising given that a large proportion of domesticated plant species are polyploid. We focus on three main areas: (1 polyploid genotyping; (2 genetic and physical mapping; and (3 quantitative trait analysis and genomic selection. We also briefly review some miscellaneous topics such as the mode of inheritance and the availability of polyploid simulation software. The current polyploid analytic toolbox includes software for assigning marker genotypes (and in particular, estimating the dosage of marker alleles in the heterozygous condition, establishing chromosome-scale linkage phase among marker alleles, constructing (short-range haplotypes, generating linkage maps, performing genome-wide association studies (GWAS and quantitative trait locus (QTL analyses, and simulating polyploid populations. These tools can also help elucidate the mode of inheritance (disomic, polysomic or a mixture of both as in segmental allopolyploids or reveal whether double reduction and multivalent chromosomal pairing occur. An increasing number of polyploids (or associated diploids are being sequenced, leading to publicly available reference genome assemblies. Much work remains in order to keep pace with developments in genomic technologies. However, such

  14. Tools for Genetic Studies in Experimental Populations of Polyploids.

    Science.gov (United States)

    Bourke, Peter M; Voorrips, Roeland E; Visser, Richard G F; Maliepaard, Chris

    2018-01-01

    Polyploid organisms carry more than two copies of each chromosome, a condition rarely tolerated in animals but which occurs relatively frequently in the plant kingdom. One of the principal challenges faced by polyploid organisms is to evolve stable meiotic mechanisms to faithfully transmit genetic information to the next generation upon which the study of inheritance is based. In this review we look at the tools available to the research community to better understand polyploid inheritance, many of which have only recently been developed. Most of these tools are intended for experimental populations (rather than natural populations), facilitating genomics-assisted crop improvement and plant breeding. This is hardly surprising given that a large proportion of domesticated plant species are polyploid. We focus on three main areas: (1) polyploid genotyping; (2) genetic and physical mapping; and (3) quantitative trait analysis and genomic selection. We also briefly review some miscellaneous topics such as the mode of inheritance and the availability of polyploid simulation software. The current polyploid analytic toolbox includes software for assigning marker genotypes (and in particular, estimating the dosage of marker alleles in the heterozygous condition), establishing chromosome-scale linkage phase among marker alleles, constructing (short-range) haplotypes, generating linkage maps, performing genome-wide association studies (GWAS) and quantitative trait locus (QTL) analyses, and simulating polyploid populations. These tools can also help elucidate the mode of inheritance (disomic, polysomic or a mixture of both as in segmental allopolyploids) or reveal whether double reduction and multivalent chromosomal pairing occur. An increasing number of polyploids (or associated diploids) are being sequenced, leading to publicly available reference genome assemblies. Much work remains in order to keep pace with developments in genomic technologies. However, such technologies

  15. Decidual cell polyploidization necessitates mitochondrial activity.

    Directory of Open Access Journals (Sweden)

    Xinghong Ma

    Full Text Available Cellular polyploidy has been widely reported in nature, yet its developmental mechanism and function remain poorly understood. In the present study, to better define the aspects of decidual cell polyploidy, we isolated pure polyploid and non-polyploid decidual cell populations from the in vivo decidual bed. Three independent RNA pools prepared for each population were then subjected to the Affymetrix gene chip analysis for the whole mouse genome transcripts. Our data revealed up-regulation of 1015 genes and down-regulation of 1207 genes in the polyploid populations, as compared to the non-polyploid group. Comparative RT-PCR and in situ hybridization results indeed confirmed differential expressional regulation of several genes between the two populations. Based on functional enrichment analyses, up-regulated polyploidy genes appeared to implicate several functions, which primarily include cell/nuclear division, ATP binding, metabolic process, and mitochondrial activity, whereas that of down-regulated genes primarily included apoptosis and immune processes. Further analyses of genes that are related to mitochondria and bi-nucleation showed differential and regional expression within the decidual bed, consistent with the pattern of polyploidy. Consistently, studies revealed a marked induction of mitochondrial mass and ATP production in polyploid cells. The inhibition of mitochondrial activity by various pharmacological inhibitors, as well as by gene-specific targeting using siRNA-mediated technology showed a dramatic attenuation of polyploidy and bi-nucleation development during in vitro stromal cell decidualization, suggesting mitochondria play a major role in positive regulation of decidual cell polyploidization. Collectively, analyses of unique polyploidy markers and molecular signaling networks may be useful to further characterize functional aspects of decidual cell polyploidy at the site of implantation.

  16. Molecular Tools for Exploring Polyploid Genomes in Plants

    Directory of Open Access Journals (Sweden)

    Domenico Carputo

    2012-08-01

    Full Text Available Polyploidy is a very common phenomenon in the plant kingdom, where even diploid species are often described as paleopolyploids. The polyploid condition may bring about several advantages compared to the diploid state. Polyploids often show phenotypes that are not present in their diploid progenitors or exceed the range of the contributing species. Some of these traits may play a role in heterosis or could favor adaptation to new ecological niches. Advances in genomics and sequencing technology may create unprecedented opportunities for discovering and monitoring the molecular effects of polyploidization. Through this review, we provide an overview of technologies and strategies that may allow an in-depth analysis of polyploid genomes. After introducing some basic aspects on the origin and genetics of polyploids, we highlight the main tools available for genome and gene expression analysis and summarize major findings. In the last part of this review, the implications of next generation sequencing are briefly discussed. The accumulation of knowledge on polyploid formation, maintenance, and divergence at whole-genome and subgenome levels will not only help plant biologists to understand how plants have evolved and diversified, but also assist plant breeders in designing new strategies for crop improvement.

  17. Adhesion signaling promotes protease‑driven polyploidization of glioblastoma cells.

    Science.gov (United States)

    Mercapide, Javier; Lorico, Aurelio

    2014-11-01

    An increase in ploidy (polyploidization) causes genomic instability in cancer. However, the determinants for the increased DNA content of cancer cells have not yet been fully elucidated. In the present study, we investigated whether adhesion induces polyploidization in human U87MG glioblastoma cells. For this purpose, we employed expression vectors that reported transcriptional activation by signaling networks implicated in cancer. Signaling activation induced by intercellular integrin binding elicited both extracellular signal‑regulated kinase (ERK) and Notch target transcription. Upon the prolonged activation of both ERK and Notch target transcription induced by integrin binding to adhesion protein, cell cultures accumulated polyploid cells, as determined by cell DNA content distribution analysis and the quantification of polynucleated cells. This linked the transcriptional activation induced by integrin adhesion to the increased frequency of polyploidization. Accordingly, the inhibition of signaling decreased the extent of polyploidization mediated by protease‑driven intracellular invasion. Therefore, the findings of this study indicate that integrin adhesion induces polyploidization through the stimulation of glioblastoma cell invasiveness.

  18. Myocardial Polyploidization Creates a Barrier to Heart Regeneration in Zebrafish.

    Science.gov (United States)

    González-Rosa, Juan Manuel; Sharpe, Michka; Field, Dorothy; Soonpaa, Mark H; Field, Loren J; Burns, Caroline E; Burns, C Geoffrey

    2018-02-26

    Correlative evidence suggests that polyploidization of heart muscle, which occurs naturally in post-natal mammals, creates a barrier to heart regeneration. Here, we move beyond a correlation by demonstrating that experimental polyploidization of zebrafish cardiomyocytes is sufficient to suppress their proliferative potential during regeneration. Initially, we determined that zebrafish myocardium becomes susceptible to polyploidization upon transient cytokinesis inhibition mediated by dominant-negative Ect2. Using a transgenic strategy, we generated adult animals containing mosaic hearts composed of differentially labeled diploid and polyploid-enriched cardiomyocyte populations. Diploid cardiomyocytes outcompeted their polyploid neighbors in producing regenerated heart muscle. Moreover, hearts composed of equivalent proportions of diploid and polyploid cardiomyocytes failed to regenerate altogether, demonstrating that a critical percentage of diploid cardiomyocytes is required to achieve heart regeneration. Our data identify cardiomyocyte polyploidization as a barrier to heart regeneration and suggest that mobilizing rare diploid cardiomyocytes in the human heart will improve its regenerative capacity. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Haplotype-Based Genotyping in Polyploids

    Directory of Open Access Journals (Sweden)

    Josh P. Clevenger

    2018-04-01

    Full Text Available Accurate identification of polymorphisms from sequence data is crucial to unlocking the potential of high throughput sequencing for genomics. Single nucleotide polymorphisms (SNPs are difficult to accurately identify in polyploid crops due to the duplicative nature of polyploid genomes leading to low confidence in the true alignment of short reads. Implementing a haplotype-based method in contrasting subgenome-specific sequences leads to higher accuracy of SNP identification in polyploids. To test this method, a large-scale 48K SNP array (Axiom Arachis2 was developed for Arachis hypogaea (peanut, an allotetraploid, in which 1,674 haplotype-based SNPs were included. Results of the array show that 74% of the haplotype-based SNP markers could be validated, which is considerably higher than previous methods used for peanut. The haplotype method has been implemented in a standalone program, HAPLOSWEEP, which takes as input bam files and a vcf file and identifies haplotype-based markers. Haplotype discovery can be made within single reads or span paired reads, and can leverage long read technology by targeting any length of haplotype. Haplotype-based genotyping is applicable in all allopolyploid genomes and provides confidence in marker identification and in silico-based genotyping for polyploid genomics.

  20. E2F8 is essential for polyploidization in mammalian cells.

    Science.gov (United States)

    Pandit, Shusil K; Westendorp, Bart; Nantasanti, Sathidpak; van Liere, Elsbeth; Tooten, Peter C J; Cornelissen, Peter W A; Toussaint, Mathilda J M; Lamers, Wouter H; de Bruin, Alain

    2012-11-01

    Polyploidization is observed in all mammalian species and is a characteristic feature of hepatocytes, but its molecular mechanism and biological significance are unknown. Hepatocyte polyploidization in rodents occurs through incomplete cytokinesis, starts after weaning and increases with age. Here, we show in mice that atypical E2F8 is induced after weaning and required for hepatocyte binucleation and polyploidization. A deficiency in E2f8 led to an increase in the expression level of E2F target genes promoting cytokinesis and thereby preventing polyploidization. In contrast, loss of E2f1 enhanced polyploidization and suppressed the polyploidization defect of hepatocytes deficient for atypical E2Fs. In addition, E2F8 and E2F1 were found on the same subset of target promoters. Contrary to the long-standing hypothesis that polyploidization indicates terminal differentiation and senescence, we show that prevention of polyploidization through inactivation of atypical E2Fs has, surprisingly, no impact on liver differentiation, zonation, metabolism and regeneration. Together, these results identify E2F8 as a repressor and E2F1 as an activator of a transcriptional network controlling polyploidization in mammalian cells.

  1. On the mechanisms of induction of the cells polyploidization

    International Nuclear Information System (INIS)

    Kair, M.B.; Gil'yano, N.Ya.; Malinovskij, O.V.

    1992-01-01

    In rats liver hepatocytes two mechanisms of polyploidization, induced by ionizing radiation have been shown; polyploidization of cells takes place in the result of mitosis blocking, whereas during the irradiation by dense ionizing radiation polyploidization is realized at the expense of cells confluence. It is supposed that in case of polyploidization induction by dense ionizing radiation the target is the cellular membrane. The evidence of this suggestion has been recorded.Induction of hepatocytes confluence by neutrons with various energies, as well as age dependent changes in the effect of hepatocytes confluence, induced by neutrons were obtained. (author). 7 refs., 6 figs

  2. Atypical E2f functions are critical for pancreas polyploidization

    NARCIS (Netherlands)

    Matondo, Ramadhan B; Moreno, Eva; Toussaint, Mathilda J M; Tooten, Peter C J; van Essen, Saskia C; van Liere, Elsbeth A; Youssef, Sameh A; Bongiovanni, Laura; de Bruin, Alain

    2018-01-01

    The presence of polyploid cells in the endocrine and exocrine pancreas has been reported for four decades. In rodents, pancreatic polyploidization is initiated after weaning and the number of polyploid cells increases with age. Surprisingly the molecular regulators and biological functions of

  3. MicroRNA-122 regulates polyploidization in the murine liver.

    Science.gov (United States)

    Hsu, Shu-Hao; Delgado, Evan R; Otero, P Anthony; Teng, Kun-Yu; Kutay, Huban; Meehan, Kolin M; Moroney, Justin B; Monga, Jappmann K; Hand, Nicholas J; Friedman, Joshua R; Ghoshal, Kalpana; Duncan, Andrew W

    2016-08-01

    A defining feature of the mammalian liver is polyploidy, a numerical change in the entire complement of chromosomes. The first step of polyploidization involves cell division with failed cytokinesis. Although polyploidy is common, affecting ∼90% of hepatocytes in mice and 50% in humans, the specialized role played by polyploid cells in liver homeostasis and disease remains poorly understood. The goal of this study was to identify novel signals that regulate polyploidization, and we focused on microRNAs (miRNAs). First, to test whether miRNAs could regulate hepatic polyploidy, we examined livers from Dicer1 liver-specific knockout mice, which are devoid of mature miRNAs. Loss of miRNAs resulted in a 3-fold reduction in binucleate hepatocytes, indicating that miRNAs regulate polyploidization. Second, we surveyed age-dependent expression of miRNAs in wild-type mice and identified a subset of miRNAs, including miR-122, that is differentially expressed at 2-3 weeks, a period when extensive polyploidization occurs. Next, we examined Mir122 knockout mice and observed profound, lifelong depletion of polyploid hepatocytes, proving that miR-122 is required for complete hepatic polyploidization. Moreover, the polyploidy defect in Mir122 knockout mice was ameliorated by adenovirus-mediated overexpression of miR-122, underscoring the critical role miR-122 plays in polyploidization. Finally, we identified direct targets of miR-122 (Cux1, Rhoa, Iqgap1, Mapre1, Nedd4l, and Slc25a34) that regulate cytokinesis. Inhibition of each target induced cytokinesis failure and promoted hepatic binucleation. Among the different signals that have been associated with hepatic polyploidy, miR-122 is the first liver-specific signal identified; our data demonstrate that miR-122 is both necessary and sufficient in liver polyploidization, and these studies will serve as the foundation for future work investigating miR-122 in liver maturation, homeostasis, and disease. (Hepatology 2016

  4. Atypical E2f functions are critical for pancreas polyploidization.

    Science.gov (United States)

    Matondo, Ramadhan B; Moreno, Eva; Toussaint, Mathilda J M; Tooten, Peter C J; van Essen, Saskia C; van Liere, Elsbeth A; Youssef, Sameh A; Bongiovanni, Laura; de Bruin, Alain

    2018-01-01

    The presence of polyploid cells in the endocrine and exocrine pancreas has been reported for four decades. In rodents, pancreatic polyploidization is initiated after weaning and the number of polyploid cells increases with age. Surprisingly the molecular regulators and biological functions of polyploidization in the pancreas are still unknown. We discovered that atypical E2f activity is essential for polyploidization in the pancreas, using an inducible Cre/LoxP approach in new-born mice to delete ubiquitously the atypical E2f transcription factors, E2f7 and E2f8. In contrast to its critical role in embryonic survival, conditional deletion of both of both atypical E2fs in newborn mice had no impact on postnatal survival and mice lived until old age. However, deficiency of E2f7 or E2f8 alone was sufficient to suppress polyploidization in the pancreas and associated with only a minor decrease in blood serum levels of glucose, insulin, amylase and lipase under 4 hours starvation condition compared to wildtype littermates. In mice with fewer pancreatic polyploid cells that were fed ad libitum, no major impact on hormones or enzymes levels was observed. In summary, we identified atypical E2fs to be essential for polyploidization in the pancreas and discovered that postnatal induced loss of both atypical E2fs in many organs is compatible with life until old age.

  5. Atypical E2f functions are critical for pancreas polyploidization.

    Directory of Open Access Journals (Sweden)

    Ramadhan B Matondo

    Full Text Available The presence of polyploid cells in the endocrine and exocrine pancreas has been reported for four decades. In rodents, pancreatic polyploidization is initiated after weaning and the number of polyploid cells increases with age. Surprisingly the molecular regulators and biological functions of polyploidization in the pancreas are still unknown. We discovered that atypical E2f activity is essential for polyploidization in the pancreas, using an inducible Cre/LoxP approach in new-born mice to delete ubiquitously the atypical E2f transcription factors, E2f7 and E2f8. In contrast to its critical role in embryonic survival, conditional deletion of both of both atypical E2fs in newborn mice had no impact on postnatal survival and mice lived until old age. However, deficiency of E2f7 or E2f8 alone was sufficient to suppress polyploidization in the pancreas and associated with only a minor decrease in blood serum levels of glucose, insulin, amylase and lipase under 4 hours starvation condition compared to wildtype littermates. In mice with fewer pancreatic polyploid cells that were fed ad libitum, no major impact on hormones or enzymes levels was observed. In summary, we identified atypical E2fs to be essential for polyploidization in the pancreas and discovered that postnatal induced loss of both atypical E2fs in many organs is compatible with life until old age.

  6. Oxidative stress promotes pathologic polyploidization in nonalcoholic fatty liver disease.

    Science.gov (United States)

    Gentric, Géraldine; Maillet, Vanessa; Paradis, Valérie; Couton, Dominique; L'Hermitte, Antoine; Panasyuk, Ganna; Fromenty, Bernard; Celton-Morizur, Séverine; Desdouets, Chantal

    2015-03-02

    Polyploidization is one of the most dramatic changes that can occur in the genome. In the liver, physiological polyploidization events occur during both liver development and throughout adult life. Here, we determined that a pathological polyploidization takes place in nonalcoholic fatty liver disease (NAFLD), a widespread hepatic metabolic disorder that is believed to be a risk factor for hepatocellular carcinoma (HCC). In murine models of NAFLD, the parenchyma of fatty livers displayed alterations of the polyploidization process, including the presence of a large proportion of highly polyploid mononuclear cells, which are rarely observed in normal hepatic parenchyma. Biopsies from patients with nonalcoholic steatohepatitis (NASH) revealed the presence of alterations in hepatocyte ploidy compared with tissue from control individuals. Hepatocytes from NAFLD mice revealed that progression through the S/G2 phases of the cell cycle was inefficient. This alteration was associated with activation of a G2/M DNA damage checkpoint, which prevented activation of the cyclin B1/CDK1 complex. Furthermore, we determined that oxidative stress promotes the appearance of highly polyploid cells, and antioxidant-treated NAFLD hepatocytes resumed normal cell division and returned to a physiological state of polyploidy. Collectively, these findings indicate that oxidative stress promotes pathological polyploidization and suggest that this is an early event in NAFLD that may contribute to HCC development.

  7. Megakaryocyte polyploidization is associated with decreased expression of polo-like kinase (PLK).

    Science.gov (United States)

    Yagi, M; Roth, G J

    2006-09-01

    During differentiation, megakaryocytes (MK), the bone marrow precursors of circulating blood platelets, undergo polyploidization, repeated rounds of DNA replication without cell division. Mature normal MK may contain a DNA content of up to 128N, in contrast to normal diploid (2N) cells. The extent of polyploidy may influence the number of platelets produced by the MK. Therefore, understanding the molecular mechanisms regulating polyploidization could identify events involved in controlling both cell division and thrombopoiesis. We investigated the expression of several proteins involved in mitosis in cultured mouse MK, and tested the effect of expression on polyploidization. Western blot and immunofluorescent analyses were used to assess expression of cell cycle proteins in cultured MK. Populations of polyploidizing MK were separated on the basis of DNA content by flow cytometry. The gene encoding mouse polo-like kinase 1 (PLK-1) was introduced into MK by retroviral transduction, and its effects measured by flow cytometry. Polyploid mouse MK expressed lower levels of two proteins, p55CDC and PLK-1, whose activity is necessary for cell cycle progression and completion of mitosis. Comparison of sorted 2N/4N and polyploid MK indicated that PLK-1 expression was absent in polyploid MK, while expression of other cell cycle proteins was similar in both populations. Forced expression of PLK-1 during MK differentiation was associated with decreased polyploidization. These experiments suggest that PLK-1 is an important regulator of polyploidization in differentiating MK.

  8. Polyploid response of Artemisia annua L. to colchicine treatment

    Science.gov (United States)

    Yunus, A.; Parjanto; Samanhudi; Hikam, M. P.; Widyastuti, Y.

    2018-03-01

    Artemisia (Artemisia annua) is a a medicinal herb originated from Asia, its contains Artemisinin for malaria (caused by Plasmodium falciparum) treatment. Artemisinin content in A. annua are relatively low, ranging from 0.01% -0.5%. In order to increase the Artemisinin content, polyploid induction could be one effort to be done. For that, this experiment aims to examine the effect of colchicine on morphological characteristics and the induction of polyploidization in Artemisia plants. Polyploid induction on Artemisia annua L. seeds was performed by soaking the Artemisia seeds in colchicine (0%, 0,05%, 0,1% and 0,2%; concentration based) for 2 hours. The experimental design was Completely Randomized Design, one factor, 4 colchicine treatments and in each treatment 7 replicate. The results showed that polyploid occur in plants treated with 0.05% colchicine concentration and its morphological characteristic are 89.4 cm height, 30 branches, 15.9 CCI chlorophyll content, 0.78 cm stem diameter, and chromosome number 2n = 27. In the stomata density of polyploid plants (treated by 0.05% colchicine) was 130 number/mm2 with stomata diameter of 22.8 μm.

  9. Megakaryocyte and polyploidization.

    Science.gov (United States)

    Mazzi, Stefania; Lordier, Larissa; Debili, Najet; Raslova, Hana; Vainchenker, William

    2018-01-01

    In mammals, platelets are produced in the blood by cytoplasmic fragmentation of megakaryocytes (MKs). Platelet production is thus dependent on both the MK number and size. During differentiation, MKs switch from a division by mitosis to polyploidization by endomitosis to increase their size. The endomitotic process includes several successive rounds of DNA replication with an entry in mitosis with a failure in late cytokinesis and a defect in karyokinesis. This leads to a giant cell with a modal ploidy at 16N and one multilobulated nucleus. The entire genome is duplicated several times and all alleles remain functional producing a hypermetabolic cell. A defect in abscission explains the cytokinesis failure and is related to an altered accumulation of actomyosin at the cleavage furrow as a consequence of both a low local RhoA activity and silencing of the MYH10 gene. This mechanism is regulated by transcription factors that govern differentiation explaining the intricacies of both processes. However, the endomitotic cell cycle regulation is still incompletely understood, particularly mitosis entry, escape to the tetraploid checkpoint, and defect in karyokinesis. Polyploidization is regulated during ontogeny, the first embryonic MKs being 2N. The molecular mechanism of this embryo-fetal/adult transition is beginning to be understood. In physiological conditions, MK ploidy is increased by an enhanced platelet demand through the thrombopoietin/myeloproliferative leukemia axis. In numerous hematologic malignancies, MK ploidy decreases, but it is always associated with a defect in MK differentiation. It has been proposed that polyploidization induction could be a treatment for some malignant MK disorders. Copyright © 2018 ISEH – Society for Hematology and Stem Cells. Published by Elsevier Inc. All rights reserved.

  10. Whole-body γ-irradiation decelerates rat hepatocyte polyploidization.

    Science.gov (United States)

    Ikhtiar, Adnan M

    2015-07-01

    To characterize hepatocyte polyploidization induced by intermediate dose of γ-ray. Male Wistar strain rats were whole-body irradiated (WBI) with 2 Gy of γ-ray at the age of 1 month, and 5-6 rats were sacrificed monthly at 0-25 months after irradiation. The nuclear DNA content of individual hepatocytes was measured by flow cytometry, then hepatocytes were classified into various ploidy classes. Survival percentage, after exposure up to the end of the study, did not indicate any differences between the irradiated groups and controls. The degree of polyploidization in hepatocytes of irradiated rats, was significantly lower than that for the control after 1 month of exposure, and it continued to be lower after up to 8 months. Thereafter, the degree of polyploidization in the irradiated group slowly returned to the control level when the irradiated rats reached the age of 10 months. Intermediate dose of ionizing radiation, in contrast to high doses, decelerate hepatocyte polyploidization, which may coincides with the hypothesis of the beneficial effects of low doses of ionizing radiation.

  11. Dietary regulation of hypodermal polyploidization in C. elegans.

    Science.gov (United States)

    Tain, Luke S; Lozano, Encarnación; Sáez, Alberto G; Leroi, Armand M

    2008-03-12

    Dietary restriction (DR) results in increased longevity, reduced fecundity and reduced growth in many organisms. Though many studies have examined the effects of DR on longevity and fecundity, few have investigated the effects on growth. Here we use Caenorhabditis elegans to determine the mechanisms that regulate growth under DR. We show that rather than a reduction in cell number, decreased growth in wild type C. elegans under DR is correlated with lower levels of hypodermal polyploidization. We also show that mutants lacking wild type sensory ciliated neurons are small, exhibit hypo-polyploidization and more importantly, when grown under DR, reduce their levels of endoreduplication to a lesser extent than wild type, suggesting that these neurons are required for the regulation of hypodermal polyploidization in response to DR. Similarly, we also show that the cGMP-dependent protein kinase EGL-4 and the SMA/MAB signalling pathway regulate polyploidization under DR. We show C. elegans is capable of actively responding to food levels to regulate adult ploidy. We suggest this response is dependent on the SMA/MAB signalling pathway.

  12. DNA Damage Signaling Instructs Polyploid Macrophage Fate in Granulomas

    DEFF Research Database (Denmark)

    Herrtwich, Laura; Nanda, Indrajit; Evangelou, Konstantinos

    2016-01-01

    to a chronic stimulus, though critical for disease outcome, have not been defined. Here, we delineate a macrophage differentiation pathway by which a persistent Toll-like receptor (TLR) 2 signal instructs polyploid macrophage fate by inducing replication stress and activating the DNA damage response. Polyploid...

  13. Relevance of sexual polyploidization for crop improvement - A review

    NARCIS (Netherlands)

    Ramanna, M.S.; Jacobsen, E.

    2003-01-01

    Colchicine induced polyploids have not directly contributed for crop improvement in the past. On the other hand, the so-called natural polyploids, derived from the functioning of numerically unreduced (2n) gametes have been shown to be more relevant for crop improvement in many cases. Different

  14. Propagule pressure, genetic structure, and geographic origins of Chondrilla juncea (Asteraceae): An apomictic invader on three continents

    Science.gov (United States)

    Assessing the propagule pressure and geographic origins of invasive populations using molecular markers provides insights into the invasion process. Rush skeletonweed (Chondrilla juncea) is an apomictic perennial plant that is invasive in Australia, Argentina, Canada and the USA. Invasive biotypes...

  15. Dietary regulation of hypodermal polyploidization in C. elegans

    Directory of Open Access Journals (Sweden)

    Lozano Encarnación

    2008-03-01

    Full Text Available Abstract Background Dietary restriction (DR results in increased longevity, reduced fecundity and reduced growth in many organisms. Though many studies have examined the effects of DR on longevity and fecundity, few have investigated the effects on growth. Results Here we use Caenorhabditis elegans to determine the mechanisms that regulate growth under DR. We show that rather than a reduction in cell number, decreased growth in wild type C. elegans under DR is correlated with lower levels of hypodermal polyploidization. We also show that mutants lacking wild type sensory ciliated neurons are small, exhibit hypo-polyploidization and more importantly, when grown under DR, reduce their levels of endoreduplication to a lesser extent than wild type, suggesting that these neurons are required for the regulation of hypodermal polyploidization in response to DR. Similarly, we also show that the cGMP-dependent protein kinase EGL-4 and the SMA/MAB signalling pathway regulate polyploidization under DR. Conclusion We show C. elegans is capable of actively responding to food levels to regulate adult ploidy. We suggest this response is dependent on the SMA/MAB signalling pathway.

  16. Polyploidization of glia in neural development links tissue growth to blood-brain barrier integrity.

    Science.gov (United States)

    Unhavaithaya, Yingdee; Orr-Weaver, Terry L

    2012-01-01

    Proper development requires coordination in growth of the cell types composing an organ. Many plant and animal cells are polyploid, but how these polyploid tissues contribute to organ growth is not well understood. We found the Drosophila melanogaster subperineurial glia (SPG) to be polyploid, and ploidy is coordinated with brain mass. Inhibition of SPG polyploidy caused rupture of the septate junctions necessary for the blood-brain barrier. Thus, the increased SPG cell size resulting from polyploidization is required to maintain the SPG envelope surrounding the growing brain. Polyploidization likely is a conserved strategy to coordinate tissue growth during organogenesis, with potential vertebrate examples.

  17. Hepatocyte polyploidization and its association with pathophysiological processes

    OpenAIRE

    Wang, Min-Jun; Chen, Fei; Lau, Joseph T Y; Hu, Yi-Ping

    2017-01-01

    A characteristic cellular feature of the mammalian liver is the progressive polyploidization of the hepatocytes, where individual cells acquire more than two sets of chromosomes. Polyploidization results from cytokinesis failure that takes place progressively during the course of postnatal development. The proportion of polyploidy also increases with the aging process or with cellular stress such as surgical resection, toxic stimulation, metabolic overload, or oxidative damage, to involve as ...

  18. Coexistence and performance of diploid and polyploid Acacia senegal (L.) Willd

    DEFF Research Database (Denmark)

    Diallo, Adja Madjiguene

    ). Sibling relationship among and between trees from the different open pollinated progenies was tested by application of genetic markers to support the quantitative genetic analysis. The results suggested different mating systems in diploid and polyploids, and this complicated the quantitative genetic...... natural sites with different rainfall and salinity showed no simple geographical pattern in the frequency of polyploids. However, salinity was found to be positively correlated with frequency of polyploids. Analysis of population differentiation between cytotypes compared to genetic relationship among...... populations within cytotypes revealed that the studied polyploid populations were more differentiated than diploid ones. The analysis of genetic relationships further suggest multiple origins of polyploid A. senegal and provide novel information for understanding the evolutionary history of the recently...

  19. Polyploidization increases meiotic recombination frequency in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Rehmsmeier Marc

    2011-04-01

    Full Text Available Abstract Background Polyploidization is the multiplication of the whole chromosome complement and has occurred frequently in vascular plants. Maintenance of stable polyploid state over generations requires special mechanisms to control pairing and distribution of more than two homologous chromosomes during meiosis. Since a minimal number of crossover events is essential for correct chromosome segregation, we investigated whether polyploidy has an influence on the frequency of meiotic recombination. Results Using two genetically linked transgenes providing seed-specific fluorescence, we compared a high number of progeny from diploid and tetraploid Arabidopsis plants. We show that rates of meiotic recombination in reciprocal crosses of genetically identical diploid and autotetraploid Arabidopsis plants were significantly higher in tetraploids compared to diploids. Although male and female gametogenesis differ substantially in meiotic recombination frequency, both rates were equally increased in tetraploids. To investigate whether multivalent formation in autotetraploids was responsible for the increased recombination rates, we also performed corresponding experiments with allotetraploid plants showing strict bivalent pairing. We found similarly increased rates in auto- and allotetraploids, suggesting that the ploidy effect is independent of chromosome pairing configurations. Conclusions The evolutionary success of polyploid plants in nature and under domestication has been attributed to buffering of mutations and sub- and neo-functionalization of duplicated genes. Should the data described here be representative for polyploid plants, enhanced meiotic recombination, and the resulting rapid creation of genetic diversity, could have also contributed to their prevalence.

  20. Phylogenetic evidence for cladogenetic polyploidization in land plants.

    Science.gov (United States)

    Zhan, Shing H; Drori, Michal; Goldberg, Emma E; Otto, Sarah P; Mayrose, Itay

    2016-07-01

    Polyploidization is a common and recurring phenomenon in plants and is often thought to be a mechanism of "instant speciation". Whether polyploidization is associated with the formation of new species (cladogenesis) or simply occurs over time within a lineage (anagenesis), however, has never been assessed systematically. We tested this hypothesis using phylogenetic and karyotypic information from 235 plant genera (mostly angiosperms). We first constructed a large database of combined sequence and chromosome number data sets using an automated procedure. We then applied likelihood models (ClaSSE) that estimate the degree of synchronization between polyploidization and speciation events in maximum likelihood and Bayesian frameworks. Our maximum likelihood analysis indicated that 35 genera supported a model that includes cladogenetic transitions over a model with only anagenetic transitions, whereas three genera supported a model that incorporates anagenetic transitions over one with only cladogenetic transitions. Furthermore, the Bayesian analysis supported a preponderance of cladogenetic change in four genera but did not support a preponderance of anagenetic change in any genus. Overall, these phylogenetic analyses provide the first broad confirmation that polyploidization is temporally associated with speciation events, suggesting that it is indeed a major speciation mechanism in plants, at least in some genera. © 2016 Botanical Society of America.

  1. Polyploidization facilitates biotechnological in vitro techniques in the genus Cucumis.

    Science.gov (United States)

    Skálová, Dagmar; Ondřej, Vladan; Doležalová, Ivana; Navrátilová, Božena; Lebeda, Aleš

    2010-01-01

    Prezygotic interspecific crossability barrier in the genus Cucumis is related to the ploidy level of the species (cucumber (C. sativus), x = 7; muskmelon (C. melo) and wild Cucumis species, x = 12). Polyploidization of maternal plants helps hybridization among other Cucumis species by overcoming prezygotic genetic barriers. The main objective of this paper is to compare the results of several methods supporting interspecific crosses in cucumber without and with polyploidization (comparison between diploid (2x) and mixoploid (2x/4x) cucumber maternal plants). Mixoploid plants were obtained after in vivo and in vitro polyploidization by colchicine and oryzalin. Ploidy level was estimated by flow cytometry. Embryo rescue, in vitro pollination, and isolation of mesophyll protoplast were tested and compared. Positive effect of polyploidization was observed during all experiments presented by higher regeneration capacity of cultivated mixoploid cucumber embryos, ovules, and protoplasts. Nevertheless, the hybrid character of putative hybrid accessions obtained after cross in vivo and in vitro pollination was not confirmed.

  2. Megakaryocyte Polyploidization and Proplatelet Formation in Low-Attachment Conditions.

    Science.gov (United States)

    Schlinker, Alaina C; Duncan, Mark T; DeLuca, Teresa A; Whitehead, David C; Miller, William M

    2016-07-15

    In vitro -derived platelets (PLTs), which could provide an alternative source of PLTs for patient transfusions, are formed from polyploid megakaryocytes (MKs) that extend long cytoplasmic projections, termed proplatelets (proPLTs). In this study, we compared polyploidization and proPLT formation (PPF) of MKs cultured on surfaces that either promote or inhibit protein adsorption and subsequent cell adhesion. A megakaryoblastic cell line exhibited increased polyploidization and arrested PPF on a low-attachment surface. Primary human MKs also showed low levels of PPF on the same surface, but no difference in ploidy. Importantly, both cell types exhibited accelerated PPF after transfer to a surface that supports attachment, suggesting that pre-culture on a non-adhesive surface may facilitate synchronization of PPF and PLT generation in culture.

  3. E2F8 is essential for polyploidization in mammalian cells

    NARCIS (Netherlands)

    Pandit, Shusil K.; Westendorp, Bart; Nantasanti, Sathidpak; van Liere, Elsbeth; Tooten, Peter C. J.; Cornelissen, Peter W. A.; Toussaint, Mathilda J. M.; Lamers, Wouter H.; de Bruin, Alain

    2012-01-01

    Polyploidization is observed in all mammalian species and is a characteristic feature of hepatocytes, but its molecular mechanism and biological significance are unknown. Hepatocyte polyploidization in rodents occurs through incomplete cytokinesis, starts after weaning and increases with age. Here,

  4. Optimizing megakaryocyte polyploidization by targeting multiple pathways of cytokinesis.

    Science.gov (United States)

    Avanzi, Mauro P; Chen, Amanda; He, Wu; Mitchell, W Beau

    2012-11-01

    Large-scale in vitro production of platelets (PLTs) from cord blood stem cells is one goal of stem cell research. One step toward this goal will be to produce polyploid megakaryocytes capable of releasing high numbers of PLTs. Megakaryocyte polyploidization requires distinct cytoskeletal and cellular mechanisms, including actin polymerization, myosin activation, microtubule formation, and increased DNA production. In this study we variably combined inhibition of these principal mechanisms of cytokinesis with the goal of driving polyploidization in megakaryocytes. Megakaryocytes were derived from umbilical cord blood and cultured with reagents that inhibit distinct mechanisms of cytokinesis: Rho-Rock inhibitor (RRI), Src inhibitor (SI), nicotinamide (NIC), aurora B inhibitor (ABI), and myosin light chain kinase inhibitor (MLCKI). Combinations of reagents were used to determine their interactions and to maximize megakaryocyte ploidy. Treatment with RRI, NIC, SI, and ABI, but not with MLCKI, increased the final ploidy and RRI was the most effective single reagent. RRI and MLCKI, both inhibitors of MLC activation, resulted in opposite ploidy outcomes. Combinations of reagents also increased ploidy and the use of NIC, SI, and ABI was as effective as RRI alone. Addition of MLCKI to NIC, SI, and ABI reached the highest level of polyploidization. Megakaryocyte polyploidization results from modulation of a combination of distinct cytokinesis pathways. Reagents targeting distinct cytoskeletal pathways produced additive effects in final megakaryocyte ploidy. The RRI, however, showed no additive effect but produced a high final ploidy due to overlapping inhibition of multiple cytokinesis pathways. © 2012 American Association of Blood Banks.

  5. X-ray induced polyploidization in the male germline cells of Poekilocerus pictus (acrididoidea : orthopta)

    International Nuclear Information System (INIS)

    Gururaj, M.E.; Rajasekarasetty, M.R.

    1977-01-01

    After the irradiation of male germline cells of Poekilocerus pictus with 20r, 40r, 80r, 120r doses of X-rays, both first and second meiotic polyploid cells were recovered. While various degrees of polyploidy were encountered in first meiotic cells, second meiotic polyploid cells, second meitoic polyploid cells contained diploid number of half bivalents only. The former never progressed beyond leptotene and showed symptoms of degeneration. Among the latter, a few cells showed either emainingative tendencies like uncoiling and stickiness or failure of cellsted meiosis successfully. It has been shown that the dicentric bridges and/or laggards in anaphase-I interfere with the elongation and regression of the spindle, thereby giving rise to metaphase-II polyploid cells through restitution. The possible role of fragmentation of chromosomes in decreasing the incidence of metaphase-II polyploid cells at higher doses of irradiation and the causes for the differential fate of the first and second meiotic polyploid cells have been discussed. (author)

  6. Phylogenetic Structure of Plant Communities: Are Polyploids Distantly Related to Co-occurring Diploids?

    Directory of Open Access Journals (Sweden)

    Michelle L. Gaynor

    2018-04-01

    Full Text Available Polyploidy is widely acknowledged to have played an important role in the evolution and diversification of vascular plants. However, the influence of genome duplication on population-level dynamics and its cascading effects at the community level remain unclear. In part, this is due to persistent uncertainties over the extent of polyploid phenotypic variation, and the interactions between polyploids and co-occurring species, and highlights the need to integrate polyploid research at the population and community level. Here, we investigate how community-level patterns of phylogenetic relatedness might influence escape from minority cytotype exclusion, a classic population genetics hypothesis about polyploid establishment, and population-level species interactions. Focusing on two plant families in which polyploidy has evolved multiple times, Brassicaceae and Rosaceae, we build upon the hypothesis that the greater allelic and phenotypic diversity of polyploids allow them to successfully inhabit a different geographic range compared to their diploid progenitor and close relatives. Using a phylogenetic framework, we specifically test (1 whether polyploid species are more distantly related to diploids within the same community than co-occurring diploids are to one another, and (2 if polyploid species tend to exhibit greater ecological success than diploids, using species abundance in communities as an indicator of successful establishment. Overall, our results suggest that the effects of genome duplication on community structure are not clear-cut. We find that polyploid species tend to be more distantly related to co-occurring diploids than diploids are to each other. However, we do not find a consistent pattern of polyploid species being more abundant than diploid species, suggesting polyploids are not uniformly more ecologically successful than diploids. While polyploidy appears to have some important influences on species co-occurrence in

  7. Identification of regulators of polyploidization presents therapeutic targets for treatment of AMKL.

    Science.gov (United States)

    Wen, Qiang; Goldenson, Benjamin; Silver, Serena J; Schenone, Monica; Dancik, Vlado; Huang, Zan; Wang, Ling-Zhi; Lewis, Timothy A; An, W Frank; Li, Xiaoyu; Bray, Mark-Anthony; Thiollier, Clarisse; Diebold, Lauren; Gilles, Laure; Vokes, Martha S; Moore, Christopher B; Bliss-Moreau, Meghan; Verplank, Lynn; Tolliday, Nicola J; Mishra, Rama; Vemula, Sasidhar; Shi, Jianjian; Wei, Lei; Kapur, Reuben; Lopez, Cécile K; Gerby, Bastien; Ballerini, Paola; Pflumio, Francoise; Gilliland, D Gary; Goldberg, Liat; Birger, Yehudit; Izraeli, Shai; Gamis, Alan S; Smith, Franklin O; Woods, William G; Taub, Jeffrey; Scherer, Christina A; Bradner, James E; Goh, Boon-Cher; Mercher, Thomas; Carpenter, Anne E; Gould, Robert J; Clemons, Paul A; Carr, Steven A; Root, David E; Schreiber, Stuart L; Stern, Andrew M; Crispino, John D

    2012-08-03

    The mechanism by which cells decide to skip mitosis to become polyploid is largely undefined. Here we used a high-content image-based screen to identify small-molecule probes that induce polyploidization of megakaryocytic leukemia cells and serve as perturbagens to help understand this process. Our study implicates five networks of kinases that regulate the switch to polyploidy. Moreover, we find that dimethylfasudil (diMF, H-1152P) selectively increased polyploidization, mature cell-surface marker expression, and apoptosis of malignant megakaryocytes. An integrated target identification approach employing proteomic and shRNA screening revealed that a major target of diMF is Aurora kinase A (AURKA). We further find that MLN8237 (Alisertib), a selective inhibitor of AURKA, induced polyploidization and expression of mature megakaryocyte markers in acute megakaryocytic leukemia (AMKL) blasts and displayed potent anti-AMKL activity in vivo. Our findings provide a rationale to support clinical trials of MLN8237 and other inducers of polyploidization and differentiation in AMKL. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. PCR-mediated recombination in amplification products derived from polyploid cotton.

    Science.gov (United States)

    Richard C. Cronn; M. Cedroni; T. Haselkorn; C. Grover; Jonathan F. Wendel

    2002-01-01

    PCR recombination describes a process of in vitro chimera formation from non-identical templates. The key requirements of this process is the inclusion of two partially homologous templates in one reaction, a condition met when amplifying any locus from polyploid organisms and members of multigene families from diploid organisms. Because polyploids possess two or more...

  9. Akt1/PKB upregulation leads to vascular smooth muscle cell hypertrophy and polyploidization

    Science.gov (United States)

    Hixon, Mary L.; Muro-Cacho, Carlos; Wagner, Mark W.; Obejero-Paz, Carlos; Millie, Elise; Fujio, Yasushi; Kureishi, Yasuko; Hassold, Terry; Walsh, Kenneth; Gualberto, Antonio

    2000-01-01

    Vascular smooth muscle cells (VSMCs) at capacitance arteries of hypertensive individuals and animals undergo marked age- and blood pressure–dependent polyploidization and hypertrophy. We show here that VSMCs at capacitance arteries of rat models of hypertension display high levels of Akt1/PKB protein and activity. Gene transfer of Akt1 to VSMCs isolated from a normotensive rat strain was sufficient to abrogate the activity of the mitotic spindle cell–cycle checkpoint, promoting polyploidization and hypertrophy. Furthermore, the hypertrophic agent angiotensin II induced VSMC polyploidization in an Akt1-dependent manner. These results demonstrate that Akt1 regulates ploidy levels in VSMCs and contributes to vascular smooth muscle polyploidization and hypertrophy during hypertension. PMID:11032861

  10. Involvement of atypical transcription factor E2F8 in the polyploidization during mouse and human decidualization.

    Science.gov (United States)

    Qi, Qian-Rong; Zhao, Xu-Yu; Zuo, Ru-Juan; Wang, Tong-Song; Gu, Xiao-Wei; Liu, Ji-Long; Yang, Zeng-Ming

    2015-01-01

    Polyploid decidual cells are specifically differentiated cells during mouse uterine decidualization. However, little is known about the regulatory mechanism and physiological significance of polyploidization in pregnancy. Here we report a novel role of E2F8 in the polyploidization of decidual cells in mice. E2F8 is highly expressed in decidual cells and regulated by progesterone through HB-EGF/EGFR/ERK/STAT3 signaling pathway. E2F8 transcriptionally suppresses CDK1, thus triggering the polyploidization of decidual cells. E2F8-mediated polyploidization is a response to stresses which are accompanied by decidualization. Interestingly, polyploidization is not detected during human decidualization with the down-regulation of E2F8, indicating differential expression of E2F8 may lead to the difference of decidual cell polyploidization between mice and humans.

  11. Integrative screening approach identifies regulators of polyploidization and targets for acute megakaryocytic leukemia

    Science.gov (United States)

    Wen, Qiang; Goldenson, Benjamin; Silver, Serena J.; Schenone, Monica; Dancik, Vladimir; Huang, Zan; Wang, Ling-Zhi; Lewis, Timothy; An, W. Frank; Li, Xiaoyu; Bray, Mark-Anthony; Thiollier, Clarisse; Diebold, Lauren; Gilles, Laure; Vokes, Martha S.; Moore, Christopher B.; Bliss-Moreau, Meghan; VerPlank, Lynn; Tolliday, Nicola J.; Mishra, Rama; Vemula, Sasidhar; Shi, Jianjian; Wei, Lei; Kapur, Reuben; Lopez, Cécile K.; Gerby, Bastien; Ballerini, Paola; Pflumio, Francoise; Gilliland, D. Gary; Goldberg, Liat; Birger, Yehudit; Izraeli, Shai; Gamis, Alan S.; Smith, Franklin O.; Woods, William G.; Taub, Jeffrey; Scherer, Christina A.; Bradner, James; Goh, Boon-Cher; Mercher, Thomas; Carpenter, Anne E.; Gould, Robert J.; Clemons, Paul A.; Carr, Steven A.; Root, David E.; Schreiber, Stuart L.; Stern, Andrew M.; Crispino, John D.

    2012-01-01

    Summary The mechanism by which cells decide to skip mitosis to become polyploid is largely undefined. Here we used a high-content image-based screen to identify small-molecule probes that induce polyploidization of megakaryocytic leukemia cells and serve as perturbagens to help understand this process. We found that dimethylfasudil (diMF, H-1152P) selectively increased polyploidization, mature cell-surface marker expression, and apoptosis of malignant megakaryocytes. A broadly applicable, highly integrated target identification approach employing proteomic and shRNA screening revealed that a major target of diMF is Aurora A kinase (AURKA), which has not been studied extensively in megakaryocytes. Moreover, we discovered that MLN8237 (Alisertib), a selective inhibitor of AURKA, induced polyploidization and expression of mature megakaryocyte markers in AMKL blasts and displayed potent anti-AMKL activity in vivo. This research provides the rationale to support clinical trials of MLN8237 and other inducers of polyploidization in AMKL. Finally, we have identified five networks of kinases that regulate the switch to polyploidy. PMID:22863010

  12. Clonal evolution through loss of chromosomes and subsequent polyploidization in chondrosarcoma.

    Directory of Open Access Journals (Sweden)

    Linda Olsson

    Full Text Available Near-haploid chromosome numbers have been found in less than 1% of cytogenetically reported tumors, but seem to be more common in certain neoplasms including the malignant cartilage-producing tumor chondrosarcoma. By a literature survey of published karyotypes from chondrosarcomas we could confirm that loss of chromosomes resulting in hyperhaploid-hypodiploid cells is common and that these cells may polyploidize. Sixteen chondrosarcomas were investigated by single nucleotide polymorphism (SNP array and the majority displayed SNP patterns indicative of a hyperhaploid-hypodiploid origin, with or without subsequent polyploidization. Except for chromosomes 5, 7, 19, 20 and 21, autosomal loss of heterozygosity was commonly found, resulting from chromosome loss and subsequent duplication of monosomic chromosomes giving rise to uniparental disomy. Additional gains, losses and rearrangements of genetic material, and even repeated rounds of polyploidization, may affect chondrosarcoma cells resulting in highly complex karyotypes. Loss of chromosomes and subsequent polyploidization was not restricted to a particular chondrosarcoma subtype and, although commonly found in chondrosarcoma, binucleated cells did not seem to be involved in these events.

  13. Clonal evolution through loss of chromosomes and subsequent polyploidization in chondrosarcoma.

    Science.gov (United States)

    Olsson, Linda; Paulsson, Kajsa; Bovée, Judith V M G; Nord, Karolin H

    2011-01-01

    Near-haploid chromosome numbers have been found in less than 1% of cytogenetically reported tumors, but seem to be more common in certain neoplasms including the malignant cartilage-producing tumor chondrosarcoma. By a literature survey of published karyotypes from chondrosarcomas we could confirm that loss of chromosomes resulting in hyperhaploid-hypodiploid cells is common and that these cells may polyploidize. Sixteen chondrosarcomas were investigated by single nucleotide polymorphism (SNP) array and the majority displayed SNP patterns indicative of a hyperhaploid-hypodiploid origin, with or without subsequent polyploidization. Except for chromosomes 5, 7, 19, 20 and 21, autosomal loss of heterozygosity was commonly found, resulting from chromosome loss and subsequent duplication of monosomic chromosomes giving rise to uniparental disomy. Additional gains, losses and rearrangements of genetic material, and even repeated rounds of polyploidization, may affect chondrosarcoma cells resulting in highly complex karyotypes. Loss of chromosomes and subsequent polyploidization was not restricted to a particular chondrosarcoma subtype and, although commonly found in chondrosarcoma, binucleated cells did not seem to be involved in these events.

  14. RUNX1-induced silencing of non-muscle myosin heavy chain IIB contributes to megakaryocyte polyploidization.

    Science.gov (United States)

    Lordier, Larissa; Bluteau, Dominique; Jalil, Abdelali; Legrand, Céline; Pan, Jiajia; Rameau, Philippe; Jouni, Dima; Bluteau, Olivier; Mercher, Thomas; Leon, Catherine; Gachet, Christian; Debili, Najet; Vainchenker, William; Raslova, Hana; Chang, Yunhua

    2012-03-06

    Megakaryocytes are unique mammalian cells that undergo polyploidization (endomitosis) during differentiation, leading to an increase in cell size and protein production that precedes platelet production. Recent evidence demonstrates that endomitosis is a consequence of a late failure in cytokinesis associated with a contractile ring defect. Here we show that the non-muscle myosin IIB heavy chain (MYH10) is expressed in immature megakaryocytes and specifically localizes in the contractile ring. MYH10 downmodulation by short hairpin RNA increases polyploidization by inhibiting the return of 4N cells to 2N, but other regulators, such as of the G1/S transition, might regulate further polyploidization of the 4N cells. Conversely, re-expression of MYH10 in the megakaryocytes prevents polyploidization and the transition of 2N to 4N cells. During polyploidization, MYH10 expression is repressed by the major megakaryocyte transcription factor RUNX1. Thus, RUNX1-mediated silencing of MYH10 is required for the switch from mitosis to endomitosis, linking polyploidization with megakaryocyte differentiation.

  15. Downregulation of an Aim-1 Kinase Couples with Megakaryocytic Polyploidization of Human Hematopoietic Cells

    Science.gov (United States)

    Kawasaki, Akira; Matsumura, Itaru; Miyagawa, Jun-ichiro; Ezoe, Sachiko; Tanaka, Hirokazu; Terada, Yasuhiko; Tatsuka, Masaaki; Machii, Takashi; Miyazaki, Hiroshi; Furukawa, Yusuke; Kanakura, Yuzuru

    2001-01-01

    During the late phase of megakaryopoiesis, megakaryocytes undergo polyploidization, which is characterized by DNA duplication without concomitant cell division. However, it remains unknown by which mechanisms this process occurs. AIM-1 and STK15 belong to the Aurora/increase-in-ploidy (Ipl)1 serine/threonine kinase family and play key roles in mitosis. In a human interleukin-3–dependent cell line, F-36P, the expressions of AIM-1 and STK15 mRNA were specifically observed at G2/M phase of the cell cycle during proliferation. In contrast, the expressions of AIM-1 and STK15 were continuously repressed during megakaryocytic polyploidization of human erythro/megakaryocytic cell lines (F-36P, K562, and CMK) treated with thrombopoietin, activated ras (H-rasG12V), or phorbol ester. Furthermore, their expressions were suppressed during thrombopoietin-induced polyploidization of normal human megakaryocytes. Activation of AIM-1 by the induced expression of AIM-1(wild-type) canceled TPA-induced polyploidization of K562 cells significantly, whereas that of STK15 did not. Moreover, suppression of AIM-1 by the induced expression of AIM-1 (K/R, dominant-negative type) led to polyploidization in 25% of K562 cells, whereas STK15(K/R) showed no effect. Also, the induced expression of AIM-1(K/R) in CMK cells provoked polyploidization up to 32N. These results suggested that downregulation of AIM-1 at M phase may be involved in abortive mitosis and polyploid formation of megakaryocytes. PMID:11266445

  16. Polyploidization and cell fusion contribute to wound healing in the adult Drosophila epithelium.

    Science.gov (United States)

    Losick, Vicki P; Fox, Donald T; Spradling, Allan C

    2013-11-18

    Reestablishing epithelial integrity and biosynthetic capacity is critically important following tissue damage. The adult Drosophila abdominal epithelium provides an attractive new system to address how postmitotic diploid cells contribute to repair. Puncture wounds to the adult Drosophila epidermis close initially by forming a melanized scab. We found that epithelial cells near the wound site fuse to form a giant syncytium, which sends lamellae under the scab to re-epithelialize the damaged site. Other large cells arise more peripherally by initiating endocycles and becoming polyploid, or by cell fusion. Rac GTPase activity is needed for syncytium formation, while the Hippo signaling effector Yorkie modulates both polyploidization and cell fusion. Large cell formation is functionally important because when both polyploidization and fusion are blocked, wounds do not re-epithelialize. Our observations indicate that cell mass lost upon wounding can be replaced by polyploidization instead of mitotic proliferation. We propose that large cells generated by polyploidization or cell fusion are essential because they are better able than diploid cells to mechanically stabilize wounds, especially those containing permanent acellular structures, such as scar tissue. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Involvement of Receptor Activator of Nuclear Factor-κB Ligand (RANKL)-induced Incomplete Cytokinesis in the Polyploidization of Osteoclasts*

    Science.gov (United States)

    Takegahara, Noriko; Kim, Hyunsoo; Mizuno, Hiroki; Sakaue-Sawano, Asako; Miyawaki, Atsushi; Tomura, Michio; Kanagawa, Osami; Ishii, Masaru; Choi, Yongwon

    2016-01-01

    Osteoclasts are specialized polyploid cells that resorb bone. Upon stimulation with receptor activator of nuclear factor-κB ligand (RANKL), myeloid precursors commit to becoming polyploid, largely via cell fusion. Polyploidization of osteoclasts is necessary for their bone-resorbing activity, but the mechanisms by which polyploidization is controlled remain to be determined. Here, we demonstrated that in addition to cell fusion, incomplete cytokinesis also plays a role in osteoclast polyploidization. In in vitro cultured osteoclasts derived from mice expressing the fluorescent ubiquitin-based cell cycle indicator (Fucci), RANKL induced polyploidy by incomplete cytokinesis as well as cell fusion. Polyploid cells generated by incomplete cytokinesis had the potential to subsequently undergo cell fusion. Nuclear polyploidy was also observed in osteoclasts in vivo, suggesting the involvement of incomplete cytokinesis in physiological polyploidization. Furthermore, RANKL-induced incomplete cytokinesis was reduced by inhibition of Akt, resulting in impaired multinucleated osteoclast formation. Taken together, these results reveal that RANKL-induced incomplete cytokinesis contributes to polyploidization of osteoclasts via Akt activation. PMID:26670608

  18. Docetaxel-induced polyploidization may underlie chemoresistance and disease relapse.

    Science.gov (United States)

    Ogden, Angela; Rida, Padmashree C G; Knudsen, Beatrice S; Kucuk, Omer; Aneja, Ritu

    2015-10-28

    Although docetaxel significantly improves survival in a variety of malignancies, its clinical utility is severely restricted by acquired chemoresistance and disease relapse. To uncover the mechanisms underlying these all too common occurrences, an abundance of research has focused on mutations and gene expression patterns; however, these findings are yet to translate into improved outcomes for patients being administered this drug. These analyses have overlooked a promising lead in the quest to discern key mediators of resistance and relapse following docetaxel therapy: polyploidization. This process is manifested following docetaxel-mediated mitotic arrest by the appearance of giant, multinucleated cells, which slipped from mitosis without undergoing cytokinesis. Polyploid cells generally possess supernumerary centrosomes, are chromosomally instable, and resist chemotherapy. We thus suspect that chemoresistance and relapse following treatment with docetaxel might be combatted by co-administration of centrosome declustering drugs, which could selectively destroy polyploid cells given that normal cells do not possess amplified centrosomes, an intriguing paradigm that warrants further investigation. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. Hepatocytes polyploidization and cell cycle control in liver physiopathology.

    Science.gov (United States)

    Gentric, Géraldine; Desdouets, Chantal; Celton-Morizur, Séverine

    2012-01-01

    Most cells in mammalian tissues usually contain a diploid complement of chromosomes. However, numerous studies have demonstrated a major role of "diploid-polyploid conversion" during physiopathological processes in several tissues. In the liver parenchyma, progressive polyploidization of hepatocytes takes place during postnatal growth. Indeed, at the suckling-weaning transition, cytokinesis failure events induce the genesis of binucleated tetraploid liver cells. Insulin signalling, through regulation of the PI3K/Akt signalling pathway, is essential in the establishment of liver tetraploidization by controlling cytoskeletal organisation and consequently mitosis progression. Liver cell polyploidy is generally considered to indicate terminal differentiation and senescence, and both lead to a progressive loss of cell pluripotency associated to a markedly decreased replication capacity. Although adult liver is a quiescent organ, it retains a capacity to proliferate and to modulate its ploidy in response to various stimuli or aggression (partial hepatectomy, metabolic overload (i.e., high copper and iron hepatic levels), oxidative stress, toxic insult, and chronic hepatitis etc.). Here we review the mechanisms and functional consequences of hepatocytes polyploidization during normal and pathological liver growth.

  20. Hepatocytes Polyploidization and Cell Cycle Control in Liver Physiopathology

    Directory of Open Access Journals (Sweden)

    Géraldine Gentric

    2012-01-01

    Full Text Available Most cells in mammalian tissues usually contain a diploid complement of chromosomes. However, numerous studies have demonstrated a major role of “diploid-polyploid conversion” during physiopathological processes in several tissues. In the liver parenchyma, progressive polyploidization of hepatocytes takes place during postnatal growth. Indeed, at the suckling-weaning transition, cytokinesis failure events induce the genesis of binucleated tetraploid liver cells. Insulin signalling, through regulation of the PI3K/Akt signalling pathway, is essential in the establishment of liver tetraploidization by controlling cytoskeletal organisation and consequently mitosis progression. Liver cell polyploidy is generally considered to indicate terminal differentiation and senescence, and both lead to a progressive loss of cell pluripotency associated to a markedly decreased replication capacity. Although adult liver is a quiescent organ, it retains a capacity to proliferate and to modulate its ploidy in response to various stimuli or aggression (partial hepatectomy, metabolic overload (i.e., high copper and iron hepatic levels, oxidative stress, toxic insult, and chronic hepatitis etc.. Here we review the mechanisms and functional consequences of hepatocytes polyploidization during normal and pathological liver growth.

  1. Involvement of Receptor Activator of Nuclear Factor-κB Ligand (RANKL)-induced Incomplete Cytokinesis in the Polyploidization of Osteoclasts.

    Science.gov (United States)

    Takegahara, Noriko; Kim, Hyunsoo; Mizuno, Hiroki; Sakaue-Sawano, Asako; Miyawaki, Atsushi; Tomura, Michio; Kanagawa, Osami; Ishii, Masaru; Choi, Yongwon

    2016-02-12

    Osteoclasts are specialized polyploid cells that resorb bone. Upon stimulation with receptor activator of nuclear factor-κB ligand (RANKL), myeloid precursors commit to becoming polyploid, largely via cell fusion. Polyploidization of osteoclasts is necessary for their bone-resorbing activity, but the mechanisms by which polyploidization is controlled remain to be determined. Here, we demonstrated that in addition to cell fusion, incomplete cytokinesis also plays a role in osteoclast polyploidization. In in vitro cultured osteoclasts derived from mice expressing the fluorescent ubiquitin-based cell cycle indicator (Fucci), RANKL induced polyploidy by incomplete cytokinesis as well as cell fusion. Polyploid cells generated by incomplete cytokinesis had the potential to subsequently undergo cell fusion. Nuclear polyploidy was also observed in osteoclasts in vivo, suggesting the involvement of incomplete cytokinesis in physiological polyploidization. Furthermore, RANKL-induced incomplete cytokinesis was reduced by inhibition of Akt, resulting in impaired multinucleated osteoclast formation. Taken together, these results reveal that RANKL-induced incomplete cytokinesis contributes to polyploidization of osteoclasts via Akt activation. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Experimental Evolution Reveals Interplay between Sch9 and Polyploid Stability in Yeast.

    Directory of Open Access Journals (Sweden)

    Yi-Jin Lu

    2016-11-01

    Full Text Available Polyploidization has crucial impacts on the evolution of different eukaryotic lineages including fungi, plants and animals. Recent genome data suggest that, for many polyploidization events, all duplicated chromosomes are maintained and genome reorganizations occur much later during evolution. However, newly-formed polyploid genomes are intrinsically unstable and often quickly degenerate into aneuploidy or diploidy. The transition between these two states remains enigmatic. In this study, laboratory evolution experiments were conducted to investigate this phenomenon. We show that robust tetraploidy is achieved in evolved yeast cells by increasing the abundance of Sch9-a protein kinase activated by the TORC1 (Target of Rapamycin Complex 1 and other signaling pathways. Overexpressing SCH9, but not TOR1, allows newly-formed tetraploids to exhibit evolved phenotypes and knocking out SCH9 diminishes the evolved phenotypes. Furthermore, when cells were challenged with conditions causing ancestral cells to evolve aneuploidy, tetraploidy was maintained in the evolved lines. Our results reveal a determinant role for Sch9 during the early stage of polyploid evolution.

  3. Aurora B is dispensable for megakaryocyte polyploidization, but contributes to the endomitotic process.

    Science.gov (United States)

    Lordier, Larissa; Chang, Yunhua; Jalil, Abdelali; Aurade, Frédéric; Garçon, Loïc; Lécluse, Yann; Larbret, Frédéric; Kawashima, Toshiyuki; Kitamura, Toshio; Larghero, Jérôme; Debili, Najet; Vainchenker, William

    2010-09-30

    Polyploidization of megakaryocytes (MKs), the platelet precursors, occurs by endomitosis, a mitotic process that fails at late stages of cytokinesis. Expression and function of Aurora B kinase during endomitosis remain controversial. Here, we report that Aurora B is normally expressed during the human MK endomitotic process. Aurora B localized normally in the midzone or midbody during anaphase and telophase in low ploidy megakaryocytes and in up to 16N rare endomitotic MKs was observed. Aurora B was also functional during cytokinesis as attested by phosphorylation of both its activation site and MgcRacGAP, its main substrate. However, despite its activation, Aurora B did not prevent furrow regression. Inhibition of Aurora B by AZD1152-HQPA decreased cell cycle entry both in 2N to 4N and polyploid MKs and induced apoptosis mainly in 2N to 4N cells. In both MK classes, AZD1152-HQPA induced p53 activation and retinoblastoma hypophosphorylation. Resistance of polyploid MKs to apoptosis correlated to a high BclxL level. Aurora B inhibition did not impair MK polyploidization but profoundly modified the endomitotic process by inducing a mis-segregation of chromosomes and a mitotic failure in anaphase. This indicates that Aurora B is dispensable for MK polyploidization but is necessary to achieve a normal endomitotic process.

  4. Intergenomic rearrangements after polyploidization of Kengyilia thoroldiana (Poaceae: Triticeae) affected by environmental factors.

    Science.gov (United States)

    Wang, Qiuxia; Liu, Huitao; Gao, Ainong; Yang, Xinming; Liu, Weihua; Li, Xiuquan; Li, Lihui

    2012-01-01

    Polyploidization is a major evolutionary process. Approximately 70-75% species of Triticeae (Poaceae) are polyploids, involving 23 genomes. To investigate intergenomic rearrangements after polyploidization of Triticeae species and to determine the effects of environmental factors on them, nine populations of a typical polyploid Triticeae species, Kengyilia thoroldiana (Keng) J.L.Yang et al. (2n = 6x = 42, StStPPYY), collected from different environments, were studied using genome in situ hybridization (GISH). We found that intergenomic rearrangements occurred between the relatively large P genome and the small genomes, St (8.15%) and Y (22.22%), in polyploid species via various types of translocations compared to their diploid progenitors. However, no translocation was found between the relatively small St and Y chromosomes. Environmental factors may affect rearrangements among the three genomes. Chromosome translocations were significantly more frequent in populations from cold alpine and grassland environments than in populations from valley and lake-basin habitats (P<0.05). The relationship between types of chromosome translocations and altitude was significant (r = 0.809, P<0.01). Intergenomic rearrangements associated with environmental factors and genetic differentiation of a single basic genome should be considered as equally important genetic processes during species' ecotype evolution.

  5. Intergenomic rearrangements after polyploidization of Kengyilia thoroldiana (Poaceae: Triticeae affected by environmental factors.

    Directory of Open Access Journals (Sweden)

    Qiuxia Wang

    Full Text Available Polyploidization is a major evolutionary process. Approximately 70-75% species of Triticeae (Poaceae are polyploids, involving 23 genomes. To investigate intergenomic rearrangements after polyploidization of Triticeae species and to determine the effects of environmental factors on them, nine populations of a typical polyploid Triticeae species, Kengyilia thoroldiana (Keng J.L.Yang et al. (2n = 6x = 42, StStPPYY, collected from different environments, were studied using genome in situ hybridization (GISH. We found that intergenomic rearrangements occurred between the relatively large P genome and the small genomes, St (8.15% and Y (22.22%, in polyploid species via various types of translocations compared to their diploid progenitors. However, no translocation was found between the relatively small St and Y chromosomes. Environmental factors may affect rearrangements among the three genomes. Chromosome translocations were significantly more frequent in populations from cold alpine and grassland environments than in populations from valley and lake-basin habitats (P<0.05. The relationship between types of chromosome translocations and altitude was significant (r = 0.809, P<0.01. Intergenomic rearrangements associated with environmental factors and genetic differentiation of a single basic genome should be considered as equally important genetic processes during species' ecotype evolution.

  6. A decrease in cyclin B1 levels leads to polyploidization in DNA damage-induced senescence.

    Science.gov (United States)

    Kikuchi, Ikue; Nakayama, Yuji; Morinaga, Takao; Fukumoto, Yasunori; Yamaguchi, Naoto

    2010-05-04

    Adriamycin, an anthracycline antibiotic, has been used for the treatment of various types of tumours. Adriamycin induces at least two distinct types of growth repression, such as senescence and apoptosis, in a concentration-dependent manner. Cellular senescence is a condition in which cells are unable to proliferate further, and senescent cells frequently show polyploidy. Although abrogation of cell division is thought to correlate with polyploidization, the mechanisms underlying induction of polyploidization in senescent cells are largely unclear. We wished, therefore, to explore the role of cyclin B1 level in polyploidization of Adriamycin-induced senescent cells. A subcytotoxic concentration of Adriamycin induced polyploid cells having the features of senescence, such as flattened and enlarged cell shape and activated beta-galactosidase activity. In DNA damage-induced senescent cells, the levels of cyclin B1 were transiently increased and subsequently decreased. The decrease in cyclin B1 levels occurred in G2 cells during polyploidization upon treatment with a subcytotoxic concentration of Adriamycin. In contrast, neither polyploidy nor a decrease in cyclin B1 levels was induced by treatment with a cytotoxic concentration of Adriamycin. These results suggest that a decrease in cyclin B1 levels is induced by DNA damage, resulting in polyploidization in DNA damage-induced senescence.

  7. The functional relevance of polyploidization in the skin.

    Science.gov (United States)

    Trakala, Marianna; Malumbres, Marcos

    2014-02-01

    Cell proliferation and differentiation are tightly coupled through the regulation of the cell division cycle. To preserve specific functional properties in differentiated cells, distinct variants of the basic mitotic cell cycle are used in various mammalian tissues, leading to the formation of polyploid cells. In this issue of Experimental Dermatology, Gandarillas and Freije discuss the evidences for polyploidization in keratinocytes, a process whose physiological relevance is now becoming evident. A better evaluation of these unconventional cell cycles is required not only to improve our understanding of the development and structure of the epidermis but also for future therapies against skin diseases. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Development and Applications of a High Throughput Genotyping Tool for Polyploid Crops: Single Nucleotide Polymorphism (SNP Array

    Directory of Open Access Journals (Sweden)

    Qian You

    2018-02-01

    Full Text Available Polypoid species play significant roles in agriculture and food production. Many crop species are polyploid, such as potato, wheat, strawberry, and sugarcane. Genotyping has been a daunting task for genetic studies of polyploid crops, which lags far behind the diploid crop species. Single nucleotide polymorphism (SNP array is considered to be one of, high-throughput, relatively cost-efficient and automated genotyping approaches. However, there are significant challenges for SNP identification in complex, polyploid genomes, which has seriously slowed SNP discovery and array development in polyploid species. Ploidy is a significant factor impacting SNP qualities and validation rates of SNP markers in SNP arrays, which has been proven to be a very important tool for genetic studies and molecular breeding. In this review, we (1 discussed the pros and cons of SNP array in general for high throughput genotyping, (2 presented the challenges of and solutions to SNP calling in polyploid species, (3 summarized the SNP selection criteria and considerations of SNP array design for polyploid species, (4 illustrated SNP array applications in several different polyploid crop species, then (5 discussed challenges, available software, and their accuracy comparisons for genotype calling based on SNP array data in polyploids, and finally (6 provided a series of SNP array design and genotype calling recommendations. This review presents a complete overview of SNP array development and applications in polypoid crops, which will benefit the research in molecular breeding and genetics of crops with complex genomes.

  9. Polyploidization mechanisms: temperature environment can induce diploid gamete formation in Rosa sp.

    Science.gov (United States)

    Pécrix, Yann; Rallo, Géraldine; Folzer, Hélène; Cigna, Mireille; Gudin, Serge; Le Bris, Manuel

    2011-06-01

    Polyploidy is an important evolutionary phenomenon but the mechanisms by which polyploidy arises still remain underexplored. There may be an environmental component to polyploidization. This study aimed to clarify how temperature may promote diploid gamete formation considered an essential element for sexual polyploidization. First of all, a detailed cytological analysis of microsporogenesis and microgametogenesis was performed to target precisely the key developmental stages which are the most sensitive to temperature. Then, heat-induced modifications in sporad and pollen characteristics were analysed through an exposition of high temperature gradient. Rosa plants are sensitive to high temperatures with a developmental sensitivity window limited to meiosis. Moreover, the range of efficient temperatures is actually narrow. 36 °C at early meiosis led to a decrease in pollen viability, pollen ectexine defects but especially the appearance of numerous diploid pollen grains. They resulted from dyads or triads mainly formed following heat-induced spindle misorientations in telophase II. A high temperature environment has the potential to increase gamete ploidy level. The high frequencies of diplogametes obtained at some extreme temperatures support the hypothesis that polyploidization events could have occurred in adverse conditions and suggest polyploidization facilitating in a global change context.

  10. Evolutionarily advanced ant farmers rear polyploid fungal crops

    DEFF Research Database (Denmark)

    Kooij, Pepijn Wilhelmus; Aanen, D.K.; Schiøtt, Morten

    2015-01-01

    to be lowly and facultatively polyploid (just over two haplotypes on average), whereas Atta and Acromyrmex symbionts are highly and obligatorily polyploid (ca. 5-7 haplotypes on average). This stepwise transition appears analogous to ploidy variation in plants and fungi domesticated by humans and in fungi...... the number of nuclei per fungal cell for 42 symbionts reared by 14 species of Panamanian fungus-growing ants. This showed that domesticated symbionts of higher attine ants are polykaryotic with 7-17 nuclei per cell, whereas nonspecialized crops of lower attines are dikaryotic similar to most free...... domesticated by termites and plants, where gene or genome duplications were typically associated with selection for higher productivity, but allopolyploid chimerism was incompatible with sexual reproduction....

  11. Liver physiological polyploidization: MicroRNA-122 a key regulator.

    Science.gov (United States)

    Celton-Morizur, Séverine; Desdouets, Chantal

    2017-03-01

    Polyploidy is defined as an increase in genome DNA content and is observed in all mammalian species. Polyploidy is a common characteristic of hepatocytes. Polyploidization occurs mainly during liver development, but also in adults with increasing age or due to cellular stress. During liver development, hepatocytes polyploidization occurs through cytokinesis failure leading to the genesis of binucleate hepatocytes. Recently, Hsu et al. demonstrated that miR-122 is a key regulator of hepatic binucleation. In fact, during liver development, miR-122 directly antagonizes procytokinesis targets and thus induces cytokinesis failure leading to the genesis of binucleate hepatocytes. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  12. Use of the SSLP-based method for detection of rare apomictic events in a sexual AtSERK1 transgenic Arabidopsis population

    NARCIS (Netherlands)

    Kantama, L.; Lambert, J.M.; Hu, H.; Jong, de H.; Vries, de S.C.; Russinova, E.

    2006-01-01

    Here we present a screening method to evaluate the potential of genes to transfer aspects of apomixis into sexual crop plants. Based on the assumption that an apomictic progeny is an exact genetic replica of the mother plant we employed a set of single sequence length polymorphism (SSLP) markers to

  13. The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes

    Science.gov (United States)

    Liu, Shengyi; Liu, Yumei; Yang, Xinhua; Tong, Chaobo; Edwards, David; Parkin, Isobel A. P.; Zhao, Meixia; Ma, Jianxin; Yu, Jingyin; Huang, Shunmou; Wang, Xiyin; Wang, Junyi; Lu, Kun; Fang, Zhiyuan; Bancroft, Ian; Yang, Tae-Jin; Hu, Qiong; Wang, Xinfa; Yue, Zhen; Li, Haojie; Yang, Linfeng; Wu, Jian; Zhou, Qing; Wang, Wanxin; King, Graham J; Pires, J. Chris; Lu, Changxin; Wu, Zhangyan; Sampath, Perumal; Wang, Zhuo; Guo, Hui; Pan, Shengkai; Yang, Limei; Min, Jiumeng; Zhang, Dong; Jin, Dianchuan; Li, Wanshun; Belcram, Harry; Tu, Jinxing; Guan, Mei; Qi, Cunkou; Du, Dezhi; Li, Jiana; Jiang, Liangcai; Batley, Jacqueline; Sharpe, Andrew G; Park, Beom-Seok; Ruperao, Pradeep; Cheng, Feng; Waminal, Nomar Espinosa; Huang, Yin; Dong, Caihua; Wang, Li; Li, Jingping; Hu, Zhiyong; Zhuang, Mu; Huang, Yi; Huang, Junyan; Shi, Jiaqin; Mei, Desheng; Liu, Jing; Lee, Tae-Ho; Wang, Jinpeng; Jin, Huizhe; Li, Zaiyun; Li, Xun; Zhang, Jiefu; Xiao, Lu; Zhou, Yongming; Liu, Zhongsong; Liu, Xuequn; Qin, Rui; Tang, Xu; Liu, Wenbin; Wang, Yupeng; Zhang, Yangyong; Lee, Jonghoon; Kim, Hyun Hee; Denoeud, France; Xu, Xun; Liang, Xinming; Hua, Wei; Wang, Xiaowu; Wang, Jun; Chalhoub, Boulos; Paterson, Andrew H

    2014-01-01

    Polyploidization has provided much genetic variation for plant adaptive evolution, but the mechanisms by which the molecular evolution of polyploid genomes establishes genetic architecture underlying species differentiation are unclear. Brassica is an ideal model to increase knowledge of polyploid evolution. Here we describe a draft genome sequence of Brassica oleracea, comparing it with that of its sister species B. rapa to reveal numerous chromosome rearrangements and asymmetrical gene loss in duplicated genomic blocks, asymmetrical amplification of transposable elements, differential gene co-retention for specific pathways and variation in gene expression, including alternative splicing, among a large number of paralogous and orthologous genes. Genes related to the production of anticancer phytochemicals and morphological variations illustrate consequences of genome duplication and gene divergence, imparting biochemical and morphological variation to B. oleracea. This study provides insights into Brassica genome evolution and will underpin research into the many important crops in this genus. PMID:24852848

  14. 76 FR 13597 - Availability of an Environmental Assessment and Finding of No Significant Impact for a Biological...

    Science.gov (United States)

    2011-03-14

    ... Significant Impact for a Biological Control Agent for Hawkweeds AGENCY: Animal and Plant Health Inspection... States as a biological control agent to reduce the severity of infestations of hawkweeds (Hieracium spp..., into the continental United States for the biological control of hawkweeds (Hieracium pilosella, H...

  15. Chromosome studies and genetic analysis of natural and synthetic apomictic model species

    NARCIS (Netherlands)

    Kantama, L.

    2005-01-01

    Some plants have gained the ability to produce seed without fertilisation. This alternative to sexual reproduction, known as apomixis occurs most frequently in species of the families of the grasses, roses and composites, and mostly in polyploids and is considered one of the ways to escape from

  16. Divergences in hydraulic architecture form an important basis for niche differentiation between diploid and polyploid Betula species in NE China.

    Science.gov (United States)

    Zhang, Wei-Wei; Song, Jia; Wang, Miao; Liu, Yan-Yan; Li, Na; Zhang, Yong-Jiang; Holbrook, N Michele; Hao, Guang-You

    2017-05-01

    Habitat differentiation between polyploid and diploid plants are frequently observed, with polyploids usually occupying more stressed environments. In woody plants, polyploidization can greatly affect wood characteristics but knowledge of its influences on xylem hydraulics is scarce. The four Betula species in NE China, representing two diploids and two polyploids with obvious habitat differentiation, provide an exceptional study system for investigating the impact of polyploidization on environmental adaptation of trees from the point view of xylem hydraulics. To test the hypothesis that changes in hydraulic architecture play an important role in determining their niche differentiation, we measured wood structural traits at both the tissue and pit levels and quantified xylem water transport efficiency and safety in these species. The two polyploids had significantly larger hydraulic weighted mean vessel diameters than the two diploids (45.1 and 45.5 vs 25.9 and 24.5 μm) although the polyploids are occupying more stressed environments. As indicated by more negative water potentials corresponding to 50% loss of stem hydraulic conductivities, the two polyploids exhibited significantly higher resistance to drought-induced embolism than the two diploids (-5.23 and -5.05 vs -3.86 and -3.13 MPa) despite their larger vessel diameters. This seeming discrepancy is reconciled by distinct characteristics favoring greater embolism resistance at the pit level in the two polyploid species. Our results showed clearly that the two polyploid species have remarkably different pit-level anatomical traits favoring greater hydraulic safety than their congeneric diploid species, which have likely contributed to the abundance of polyploid birches in more stressed habitats; however, less porous inter-conduit pits together with a reduced leaf to sapwood area may have compromised their competitiveness under more favorable conditions. Contrasts in hydraulic architecture between diploid and

  17. Evolutionary dynamics of 3D genome architecture following polyploidization in cotton.

    Science.gov (United States)

    Wang, Maojun; Wang, Pengcheng; Lin, Min; Ye, Zhengxiu; Li, Guoliang; Tu, Lili; Shen, Chao; Li, Jianying; Yang, Qingyong; Zhang, Xianlong

    2018-02-01

    The formation of polyploids significantly increases the complexity of transcriptional regulation, which is expected to be reflected in sophisticated higher-order chromatin structures. However, knowledge of three-dimensional (3D) genome structure and its dynamics during polyploidization remains poor. Here, we characterize 3D genome architectures for diploid and tetraploid cotton, and find the existence of A/B compartments and topologically associated domains (TADs). By comparing each subgenome in tetraploids with its extant diploid progenitor, we find that genome allopolyploidization has contributed to the switching of A/B compartments and the reorganization of TADs in both subgenomes. We also show that the formation of TAD boundaries during polyploidization preferentially occurs in open chromatin, coinciding with the deposition of active chromatin modification. Furthermore, analysis of inter-subgenomic chromatin interactions has revealed the spatial proximity of homoeologous genes, possibly associated with their coordinated expression. This study advances our understanding of chromatin organization in plants and sheds new light on the relationship between 3D genome evolution and transcriptional regulation.

  18. A criticism of the value of midparent in polyploidization.

    Science.gov (United States)

    Gianinetti, A

    2013-11-01

    The hypothesis of genetic additivity states that the effects of different alleles, or different genes, add up to produce the phenotype. When considering the F1 progeny of a cross, the hypothesis of additivity of the genetic dosages provided by the parents is tested against the mid-parent value (MPV), which is the average of parental phenotypes and represents the reference value for genetic additivity. Non-additive effects (genetic interactions) are typically measured as deviations from MPV. Recently, however, the use of MPV has been directly transposed to the study of genetic additivity in newly synthesized plant polyploids, assuming that they should as well display mid-parent expression patterns for additive traits. It is shown here that this direct transposition is incorrect. It is suggested that, in neo-polyploids, mid-parent expression has to be reconsidered in terms of reduced genetic additivity. Homeostatic mechanisms are deemed to be the obvious ones responsible for this effect. Genomes are therefore ruled by negative epistasis, and heterosis in allopolyploids is due to a decreased interaction of the parental repressive systems. It is contended that focalizing on the right perspective has relevant theoretical consequences and makes the studies of neo-polyploids very important for our understanding of how genomes work.

  19. Sexual polyploidization in plants--cytological mechanisms and molecular regulation.

    Science.gov (United States)

    De Storme, Nico; Geelen, Danny

    2013-05-01

    In the plant kingdom, events of whole genome duplication or polyploidization are generally believed to occur via alterations of the sexual reproduction process. Thereby, diploid pollen and eggs are formed that contain the somatic number of chromosomes rather than the gametophytic number. By participating in fertilization, these so-called 2n gametes generate polyploid offspring and therefore constitute the basis for the establishment of polyploidy in plants. In addition, diplogamete formation, through meiotic restitution, is an essential component of apomixis and also serves as an important mechanism for the restoration of F1 hybrid fertility. Characterization of the cytological mechanisms and molecular factors underlying 2n gamete formation is therefore not only relevant for basic plant biology and evolution, but may also provide valuable cues for agricultural and biotechnological applications (e.g. reverse breeding, clonal seeds). Recent data have provided novel insights into the process of 2n pollen and egg formation and have revealed multiple means to the same end. Here, we summarize the cytological mechanisms and molecular regulatory networks underlying 2n gamete formation, and outline important mitotic and meiotic processes involved in the ectopic induction of sexual polyploidization. © 2013 Ghent University. New Phytologist © 2013 New Phytologist Trust.

  20. Polyploidization in Heuchera cylindrica (Saxifragaceae) did not result in a shift in climatic requirements.

    Science.gov (United States)

    Godsoe, William; Larson, Megan A; Glennon, Kelsey L; Segraves, Kari A

    2013-03-01

    Polyploidization is a key factor involved in the diversification of plants. Although polyploids are commonly found, there remains controversy on the mechanisms that lead to their successful establishment. One major problem that has been identified is that newly formed polyploids lack mates of the appropriate ploidy level and may experience severely reduced fertility due to nonproductive intercytotype crosses. Niche differentiation has been proposed as a primary mechanism that can alleviate this reproductive disadvantage and facilitate polyploid establishment. Here we test whether the establishment of tetraploid cytotypes of Heuchera cylindrica (Saxifragaceae) is consistent with climatic niche differentiation. • We use a combination of field surveys, flow cytometry and species distribution models to: (1) examine the distribution of diploid and tetraploid cytotypes; and (2) determine whether tetraploid Heuchera cylindrica occupy climates that differ from those of its diploid progenitors. • The geographic distributions of diploid and tetraploid cytotypes are largely allopatric as an extensive survey of 636 plants from 43 locations failed to detect any populations with both cytotypes. Although diploids and tetraploids occur in different geographic areas, polyploid Heuchera cylindrica occur almost exclusively in environments that are predicted to be suitable to diploid populations. • Climatic niche differentiation does not explain the geographic distribution of tetraploid Heuchera cylindrica. We propose instead that tetraploid lineages were able to establish by taking advantage of glacial retreat and expanding into previously unoccupied sites.

  1. S6K1 is involved in polyploidization through its phosphorylation at Thr421/Ser424.

    Science.gov (United States)

    Ma, Dongchu; Yu, Huiying; Lin, Di; Sun, Yinghui; Liu, Liping; Liu, Yage; Dai, Bing; Chen, Wei; Cao, Jianping

    2009-04-01

    Studies on polyploidization of megakaryocytes have been hampered by the lack of synchronized polyploid megakaryocytes. In this study, a relatively synchronized polyploid cell model was successfully established by employing Dami cells treated with nocodazole. In nocodazole-induced cells, cyclin B expression oscillated normally as in diploid cells and polyploid megakaryocytes. By using the nocodazole-induced Dami cell model, we found that 4E-BP1 and Thr421/Ser424 of ribosomal S6 kinase 1(S6K1) were phosphorylated mostly at M-phase in cytoplasm and oscillated in nocodazole-induced polyploid Dami cells, concomitant with increased expression of p27 and cyclin D3. However, phosphorylation of 4E-BP1 and S6K1 on Thr421/Ser424 was significantly decreased in differentiated Dami cells induced by phorbol 12-myristate 13-acetate (PMA), concomitant with increased expression of cyclin D1 and p21 and cyclin D3. Overexpression of the kinase dead form of S6K1 containing the mutation Lys 100 --> Gln in PMA-induced Dami cells increased ploidy whereas overexpression of rapamycin-resistant form of S6K1 containing the mutations Thr421 --> Glu and Ser424 --> Asp significantly dephosphorylated 4E-BP1 and reduced expression of cyclin D1, cyclin D3, p21 and p27, and slightly decreased the ploidy of PMA-induced Dami cells, compared with treatment with PMA alone. Moreover, overexpression of rapamycin-resistant form of S6K1 significantly reversed polyploidization of nocodazole-induced Dami cells. Furthermore, MAP (a novel compound synthesized recently) partly blocked the phosphorylation of S6K1 on Thr421/Ser424 and decreased the expression of p27 and polyploidization in nocodazole-induced Dami cells. Taken together, these data suggested that S6K1/4E-BP1 pathway may play an important role in polyploidization of megakaryocytes. (c) 2008 Wiley-Liss, Inc.

  2. Thrombopoietin-induced Polyploidization of Bone Marrow Megakaryocytes Is Due to a Unique Regulatory Mechanism in Late Mitosis

    Science.gov (United States)

    Nagata, Yuka; Muro, Yoshinao; Todokoro, Kazuo

    1997-01-01

    Megakaryocytes undergo a unique differentiation program, becoming polyploid through repeated cycles of DNA synthesis without concomitant cell division. However, the mechanism underlying this polyploidization remains totally unknown. It has been postulated that polyploidization is due to a skipping of mitosis after each round of DNA replication. We carried out immunohistochemical studies on mouse bone marrow megakaryocytes during thrombopoietin- induced polyploidization and found that during this process megakaryocytes indeed enter mitosis and progress through normal prophase, prometaphase, metaphase, and up to anaphase A, but not to anaphase B, telophase, or cytokinesis. It was clearly observed that multiple spindle poles were formed as the polyploid megakaryocytes entered mitosis; the nuclear membrane broke down during prophase; the sister chromatids were aligned on a multifaced plate, and the centrosomes were symmetrically located on either side of each face of the plate at metaphase; and a set of sister chromatids moved into the multiple centrosomes during anaphase A. We further noted that the pair of spindle poles in anaphase were located in close proximity to each other, probably because of the lack of outward movement of spindle poles during anaphase B. Thus, the reassembling nuclear envelope may enclose all the sister chromatids in a single nucleus at anaphase and then skip telophase and cytokinesis. These observations clearly indicate that polyploidization of megakaryocytes is not simply due to a skipping of mitosis, and that the megakaryocytes must have a unique regulatory mechanism in anaphase, e.g., factors regulating anaphase such as microtubule motor proteins might be involved in this polyploidization process. PMID:9334347

  3. Comparative transmission genetics of introgressed chromatin in Gossypium (cotton) polyploids.

    Science.gov (United States)

    Waghmare, Vijay N; Rong, Junkang; Rogers, Carl J; Bowers, John E; Chee, Peng W; Gannaway, John R; Katageri, Ishwarappa; Paterson, Andrew H

    2016-04-01

    Introgression is widely acknowledged as a potential source of valuable genetic variation, and growing effort is being invested in analysis of interspecific crosses conferring transgressive variation. Experimental backcross populations provide an opportunity to study transmission genetics following interspecific hybridization, identifying opportunities and constraints to introgressive crop improvement. The evolutionary consequences of introgression have been addressed at the theoretical level, however, issues related to levels and patterns of introgression among (plant) species remain inadequately explored, including such factors as polyploidization, subgenome interaction inhabiting a common nucleus, and the genomic distribution and linkage relationships of introgressant alleles. We analyze introgression into the polyploid Gossypium hirsutum (upland cotton) from its sister G. tomentosum and compare the level and pattern with that of G. barbadense representing a different clade tracing to the same polyploidization. Across the genome, recurrent backcrossing to Gossypium hirsutum yielded only one-third of the expected average frequency of the G. tomentosum allele, although one unusual region showed preferential introgression. Although a similar rate of introgression is found in the two subgenomes of polyploid (AtDt) G. hirsutum, a preponderance of multilocus interactions were largely within the Dt subgenome. Skewed G. tomentosum chromatin transmission is polymorphic among two elite G. hirsutum genotypes, which suggests that genetic background may profoundly affect introgression of particular chromosomal regions. Only limited correspondence is found between G. hirsutum chromosomal regions that are intolerant to introgression from the two species, G. barbadense and G. tomentosum, concentrated near possible inversion polymorphisms. Complex transmission of introgressed chromatin highlights the challenges to utilization of exotic germplasm in crop improvement. © 2016

  4. Molecular genetic features of polyploidization and aneuploidization reveal unique patterns for genome duplication in diploid Malus.

    Directory of Open Access Journals (Sweden)

    Michael J Considine

    Full Text Available Polyploidization results in genome duplication and is an important step in evolution and speciation. The Malus genome confirmed that this genus was derived through auto-polyploidization, yet the genetic and meiotic mechanisms for polyploidization, particularly for aneuploidization, are unclear in this genus or other woody perennials. In fact the contribution of aneuploidization remains poorly understood throughout Plantae. We add to this knowledge by characterization of eupolyploidization and aneuploidization in 27,542 F₁ seedlings from seven diploid Malus populations using cytology and microsatellite markers. We provide the first evidence that aneuploidy exceeds eupolyploidy in the diploid crosses, suggesting aneuploidization is a leading cause of genome duplication. Gametes from diploid Malus had a unique combinational pattern; ova preserved euploidy exclusively, while spermatozoa presented both euploidy and aneuploidy. All non-reduced gametes were genetically heterozygous, indicating first-division restitution was the exclusive mode for Malus eupolyploidization and aneuploidization. Chromosome segregation pattern among aneuploids was non-uniform, however, certain chromosomes were associated for aneuploidization. This study is the first to provide molecular evidence for the contribution of heterozygous non-reduced gametes to fitness in polyploids and aneuploids. Aneuploidization can increase, while eupolyploidization may decrease genetic diversity in their newly established populations. Auto-triploidization is important for speciation in the extant Malus. The features of Malus polyploidization confer genetic stability and diversity, and present heterozygosity, heterosis and adaptability for evolutionary selection. A protocol using co-dominant markers was proposed for accelerating apple triploid breeding program. A path was postulated for evolution of numerically odd basic chromosomes. The model for Malus derivation was considerably revised

  5. Molecular genetic features of polyploidization and aneuploidization reveal unique patterns for genome duplication in diploid Malus.

    Science.gov (United States)

    Considine, Michael J; Wan, Yizhen; D'Antuono, Mario F; Zhou, Qian; Han, Mingyu; Gao, Hua; Wang, Man

    2012-01-01

    Polyploidization results in genome duplication and is an important step in evolution and speciation. The Malus genome confirmed that this genus was derived through auto-polyploidization, yet the genetic and meiotic mechanisms for polyploidization, particularly for aneuploidization, are unclear in this genus or other woody perennials. In fact the contribution of aneuploidization remains poorly understood throughout Plantae. We add to this knowledge by characterization of eupolyploidization and aneuploidization in 27,542 F₁ seedlings from seven diploid Malus populations using cytology and microsatellite markers. We provide the first evidence that aneuploidy exceeds eupolyploidy in the diploid crosses, suggesting aneuploidization is a leading cause of genome duplication. Gametes from diploid Malus had a unique combinational pattern; ova preserved euploidy exclusively, while spermatozoa presented both euploidy and aneuploidy. All non-reduced gametes were genetically heterozygous, indicating first-division restitution was the exclusive mode for Malus eupolyploidization and aneuploidization. Chromosome segregation pattern among aneuploids was non-uniform, however, certain chromosomes were associated for aneuploidization. This study is the first to provide molecular evidence for the contribution of heterozygous non-reduced gametes to fitness in polyploids and aneuploids. Aneuploidization can increase, while eupolyploidization may decrease genetic diversity in their newly established populations. Auto-triploidization is important for speciation in the extant Malus. The features of Malus polyploidization confer genetic stability and diversity, and present heterozygosity, heterosis and adaptability for evolutionary selection. A protocol using co-dominant markers was proposed for accelerating apple triploid breeding program. A path was postulated for evolution of numerically odd basic chromosomes. The model for Malus derivation was considerably revised. Impacts of

  6. Untangling nucleotide diversity and evolution of the H genome in polyploid Hordeum and Elymus species based on the single copy of nuclear gene DMC1.

    Directory of Open Access Journals (Sweden)

    Dongfa Sun

    Full Text Available Numerous hybrid and polypoid species are found within the Triticeae. It has been suggested that the H subgenome of allopolyploid Elymus (wheatgrass species originated from diploid Hordeum (barley species, but the role of hybridization between polyploid Elymus and Hordeum has not been studied. It is not clear whether gene flow across polyploid Hordeum and Elymus species has occurred following polyploid speciation. Answering these questions will provide new insights into the formation of these polyploid species, and the potential role of gene flow among polyploid species during polyploid evolution. In order to address these questions, disrupted meiotic cDNA1 (DMC1 data from the allopolyploid StH Elymus are analyzed together with diploid and polyploid Hordeum species. Phylogenetic analysis revealed that the H copies of DMC1 sequence in some Elymus are very close to the H copies of DMC1 sequence in some polyploid Hordeum species, indicating either that the H genome in theses Elymus and polyploid Hordeum species originated from same diploid donor or that gene flow has occurred among them. Our analysis also suggested that the H genomes in Elymus species originated from limited gene pool, while H genomes in Hordeum polyploids have originated from broad gene pools. Nucleotide diversity (π of the DMC1 sequences on H genome from polyploid species (π = 0.02083 in Elymus, π = 0.01680 in polyploid Hordeum is higher than that in diploid Hordeum (π = 0.01488. The estimates of Tajima's D were significantly departure from the equilibrium neutral model at this locus in diploid Hordeum species (P<0.05, suggesting an excess of rare variants in diploid species which may not contribute to the origination of polyploids. Nucleotide diversity (π of the DMC1 sequences in Elymus polyploid species (π = 0.02083 is higher than that in polyploid Hordeum (π = 0.01680, suggesting that the degree of relationships between two parents of a polyploid might be a factor

  7. Involvement of atypical transcription factor E2F8 in the polyploidization during mouse and human decidualization

    OpenAIRE

    Qi, Qian-Rong; Zhao, Xu-Yu; Zuo, Ru-Juan; Wang, Tong-Song; Gu, Xiao-Wei; Liu, Ji-Long; Yang, Zeng-Ming

    2015-01-01

    Polyploid decidual cells are specifically differentiated cells during mouse uterine decidualization. However, little is known about the regulatory mechanism and physiological significance of polyploidization in pregnancy. Here we report a novel role of E2F8 in the polyploidization of decidual cells in mice. E2F8 is highly expressed in decidual cells and regulated by progesterone through HB-EGF/EGFR/ERK/STAT3 signaling pathway. E2F8 transcriptionally suppresses CDK1, thus triggering the polypl...

  8. Bcl-XL represents a druggable molecular vulnerability during aurora B inhibitor-mediated polyploidization.

    Science.gov (United States)

    Shah, O Jameel; Lin, Xiaoyu; Li, Leiming; Huang, Xiaoli; Li, Junling; Anderson, Mark G; Tang, Hua; Rodriguez, Luis E; Warder, Scott E; McLoughlin, Shaun; Chen, Jun; Palma, Joann; Glaser, Keith B; Donawho, Cherrie K; Fesik, Stephen W; Shen, Yu

    2010-07-13

    Aurora kinase B inhibitors induce apoptosis secondary to polyploidization and have entered clinical trials as an emerging class of neocytotoxic chemotherapeutics. We demonstrate here that polyploidization neutralizes Mcl-1 function, rendering cancer cells exquisitely dependent on Bcl-XL/-2. This "addiction" can be exploited therapeutically by combining aurora kinase inhibitors and the orally bioavailable BH3 mimetic, ABT-263, which inhibits Bcl-XL, Bcl-2, and Bcl-w. The combination of ABT-263 with aurora B inhibitors produces a synergistic loss of viability in a range of cell lines of divergent tumor origin and exhibits more sustained tumor growth inhibition in vivo compared with aurora B inhibitor monotherapy. These data demonstrate that Bcl-XL/-2 is necessary to support viability during polyploidization in a variety of tumor models and represents a druggable molecular vulnerability with potential therapeutic utility.

  9. True polyploid meiosis in the human male.

    Science.gov (United States)

    Pearson, Peter L; Madan, Kamlesh

    2018-05-21

    Polyploidy does not usually occur in germinal cells of mammals and other higher vertebrates. We describe a unique example of mosaic autotetraploidy in the meiosis of a human male. Although the original observations were made in the late 1960s, we did not publish them at that time, because we expected to detect further examples that could be described together. However, this did not occur and we have now decided to make the observations available to demonstrate that polyploidy in mammalian male meiosis can arise at a higher frequency than expected by random polyploidization of individual meiotic cells, by either DNA duplication or cell fusion prior to synapsis. This is the first description of a population of primary spermatocytes exhibiting multivalent formation at leptotene /diakinesis in human spermatogenesis, with ring, chain, frying pan and other types of quadrivalents, typical of autotetraploidy. As many of the polyploid configurations showed apoptotic breakdown, it is likely that diploid and/or aneuploid spermatozoa would have rarely or never resulted from this mosaic autotetraploid meiosis.

  10. Progenitor-derivative relationships of Hordeum polyploids (Poaceae, Triticeae inferred from sequences of TOPO6, a nuclear low-copy gene region.

    Directory of Open Access Journals (Sweden)

    Jonathan Brassac

    Full Text Available Polyploidization is a major mechanism of speciation in plants. Within the barley genus Hordeum, approximately half of the taxa are polyploids. While for diploid species a good hypothesis of phylogenetic relationships exists, there is little information available for the polyploids (4×, 6× of Hordeum. Relationships among all 33 diploid and polyploid Hordeum species were analyzed with the low-copy nuclear marker region TOPO6 for 341 Hordeum individuals and eight outgroup species. PCR products were either directly sequenced or cloned and on average 12 clones per individual were included in phylogenetic analyses. In most diploid Hordeum species TOPO6 is probably a single-copy locus. Most sequences found in polyploid individuals phylogenetically cluster together with sequences derived from diploid species and thus allow the identification of parental taxa of polyploids. Four groups of sequences occurring only in polyploid taxa are interpreted as footprints of extinct diploid taxa, which contributed to allopolyploid evolution. Our analysis identifies three key species involved in the evolution of the American polyploids of the genus. (i All but one of the American tetraploids have a TOPO6 copy originating from the Central Asian diploid H. roshevitzii, the second copy clustering with different American diploid species. (ii All hexaploid species from the New World have a copy of an extinct close relative of H. californicum and (iii possess the TOPO6 sequence pattern of tetraploid H. jubatum, each with an additional copy derived from different American diploids. Tetraploid H. bulbosum is an autopolyploid, while the assumed autopolyploid H. brevisubulatum (4×, 6× was identified as allopolyploid throughout most of its distribution area. The use of a proof-reading DNA polymerase in PCR reduced the proportion of chimerical sequences in polyploids in comparison to Taq polymerase.

  11. Ecological niche differentiation of polyploidization is not supported by environmental differences among species in a cosmopolitan grass genus.

    Science.gov (United States)

    Visser, Vernon; Molofsky, Jane

    2015-01-01

    Polyploidization frequently results in the creation of new plant species, the establishment of which is thought to often be facilitated by ecological niche differentiation from the diploid species. We tested this hypothesis using the cosmopolitan grass genus Phalaris (Poaceae), consisting of 19 species that range from diploid to tetraploid to hexaploid. Specifically, we tested whether (1) polyploids occupy more extreme environments and/or (2) have broader niche breadths and/or (3) whether the polyploid species' distributions indicate a niche shift from diploid species.• We employed a bootstrapping approach using distribution data for each species and eight environmental variables to investigate differences between species in the means, extremes, and breadths of each environmental variable. We used a kernel smoothing technique to quantify niche overlap between species.• Although we found some support for the three hypotheses for a few diploid-polyploid pairs and for specific environmental variables, none of these hypotheses were generally supported.• Our results suggest that these commonly held hypotheses about the effects of polyploidization on ecological distributions are not universally applicable. Correlative biogeographic studies like ours provide a necessary first step for suggesting specific hypotheses that require experimental verification. A combination of genetic, physiological, and ecological studies will be required to achieve a better understanding of the role of polyploidization in niche evolution. © 2015 Botanical Society of America, Inc.

  12. Cyclin D-Cdk4 is regulated by GATA-1 and required for megakaryocyte growth and polyploidization.

    Science.gov (United States)

    Muntean, Andrew G; Pang, Liyan; Poncz, Mortimer; Dowdy, Steven F; Blobel, Gerd A; Crispino, John D

    2007-06-15

    Endomitosis is a unique form of cell cycle used by megakaryocytes, in which the latter stages of mitosis are bypassed so that the cell can increase its DNA content and size. Although several transcription factors, including GATA-1 and RUNX-1, have been implicated in this process, the link between transcription factors and polyploidization remains undefined. Here we show that GATA-1-deficient megakaryocytes, which display reduced size and polyploidization, express nearly 10-fold less cyclin D1 and 10-fold increased levels of p16 compared with their wild-type counterparts. We further demonstrate that cyclin D1 is a direct GATA-1 target in megakaryocytes, but not erythroid cells. Restoration of cyclin D1 expression, when accompanied by ectopic overexpression of its partner Cdk4, resulted in a dramatic increase in megakaryocyte size and DNA content. However, terminal differentiation was not rescued. Of note, polyploidization was only modestly reduced in cyclin D1-deficient mice, likely due to compensation by elevated cyclin D3 expression. Finally, consistent with an additional defect conferred by increased levels of p16, inhibition of cyclin D-Cdk4 complexes with a TAT-p16 fusion peptide significantly blocked polyploidization of wild-type megakaryocytes. Together, these data show that GATA-1 controls growth and polyploidization by regulating cyclin D-Cdk4 kinase activity.

  13. Cyclin D–Cdk4 is regulated by GATA-1 and required for megakaryocyte growth and polyploidization

    Science.gov (United States)

    Muntean, Andrew G.; Pang, Liyan; Poncz, Mortimer; Dowdy, Steven F.; Blobel, Gerd A.

    2007-01-01

    Endomitosis is a unique form of cell cycle used by megakaryocytes, in which the latter stages of mitosis are bypassed so that the cell can increase its DNA content and size. Although several transcription factors, including GATA-1 and RUNX-1, have been implicated in this process, the link between transcription factors and polyploidization remains undefined. Here we show that GATA-1–deficient megakaryocytes, which display reduced size and polyploidization, express nearly 10-fold less cyclin D1 and 10-fold increased levels of p16 compared with their wild-type counterparts. We further demonstrate that cyclin D1 is a direct GATA-1 target in megakaryocytes, but not erythroid cells. Restoration of cyclin D1 expression, when accompanied by ectopic overexpression of its partner Cdk4, resulted in a dramatic increase in megakaryocyte size and DNA content. However, terminal differentiation was not rescued. Of note, polyploidization was only modestly reduced in cyclin D1–deficient mice, likely due to compensation by elevated cyclin D3 expression. Finally, consistent with an additional defect conferred by increased levels of p16, inhibition of cyclin D-Cdk4 complexes with a TAT-p16 fusion peptide significantly blocked polyploidization of wild-type megakaryocytes. Together, these data show that GATA-1 controls growth and polyploidization by regulating cyclin D-Cdk4 kinase activity. PMID:17317855

  14. Synthetic polyploids of Tragopogon miscellus and T. mirus (Asteraceae): 60 Years after Ownbey's discovery.

    Science.gov (United States)

    Tate, Jennifer A; Symonds, V Vaughan; Doust, Andrew N; Buggs, Richard J A; Mavrodiev, Evgeny; Majure, Lucas C; Soltis, Pamela S; Soltis, Douglas E

    2009-05-01

    In plants, polyploidy has been a significant evolutionary force on both recent and ancient time scales. In 1950, Ownbey reported two newly formed Tragopogon allopolyploids in the northwestern United States. We have made the first synthetic lines of T. mirus and T. miscellus using T. dubius, T. porrifolius, and T. pratensis as parents and colchicine treatment of F(1) hybrids. We also produced allotetraploids between T. porrifolius and T. pratensis, which are not known from nature. We report on the crossability between the diploids, as well as the inflorescence morphology, pollen size, meiotic behavior, and fertility of the synthetic polyploids. Morphologically, the synthetics resemble the natural polyploids with short- and long-liguled forms of T. miscellus resulting when T. pratensis and T. dubius are reciprocally crossed. Synthetic T. mirus was also formed reciprocally, but without any obvious morphological differences resulting from the direction of the cross. Of the 27 original crosses that yielded 171 hybrid individuals, 18 of these lineages have persisted to produce 386 S(1) progeny; each of these lineages has produced S(2) seed that are viable. The successful generation of these synthetic polyploids offers the opportunity for detailed comparative studies of natural and synthetic polyploids within a nonmodel system.

  15. Wound-Induced Polyploidization: Regulation by Hippo and JNK Signaling and Conservation in Mammals.

    Science.gov (United States)

    Losick, Vicki P; Jun, Albert S; Spradling, Allan C

    2016-01-01

    Tissue integrity and homeostasis often rely on the proliferation of stem cells or differentiated cells to replace lost, aged, or damaged cells. Recently, we described an alternative source of cell replacement- the expansion of resident, non-dividing diploid cells by wound-induced polyploidization (WIP). Here we show that the magnitude of WIP is proportional to the extent of cell loss using a new semi-automated assay with single cell resolution. Hippo and JNK signaling regulate WIP; unexpectedly however, JNK signaling through AP-1 limits rather than stimulates the level of Yki activation and polyploidization in the Drosophila epidermis. We found that polyploidization also quantitatively compensates for cell loss in a mammalian tissue, mouse corneal endothelium, where increased cell death occurs with age in a mouse model of Fuchs Endothelial Corneal Dystrophy (FECD). Our results suggest that WIP is an evolutionarily conserved homeostatic mechanism that maintains the size and synthetic capacity of adult tissues.

  16. HANDS: a tool for genome-wide discovery of subgenome-specific base-identity in polyploids.

    KAUST Repository

    Mithani, Aziz; Belfield, Eric J; Brown, Carly; Jiang, Caifu; Leach, Lindsey J; Harberd, Nicholas P

    2013-01-01

    The analysis of polyploid genomes is problematic because homeologous subgenome sequences are closely related. This relatedness makes it difficult to assign individual sequences to the specific subgenome from which they are derived, and hinders the development of polyploid whole genome assemblies.We here present a next-generation sequencing (NGS)-based approach for assignment of subgenome-specific base-identity at sites containing homeolog-specific polymorphisms (HSPs): 'HSP base Assignment using NGS data through Diploid Similarity' (HANDS). We show that HANDS correctly predicts subgenome-specific base-identity at >90% of assayed HSPs in the hexaploid bread wheat (Triticum aestivum) transcriptome, thus providing a substantial increase in accuracy versus previous methods for homeolog-specific base assignment.We conclude that HANDS enables rapid and accurate genome-wide discovery of homeolog-specific base-identity, a capability having multiple applications in polyploid genomics.

  17. HANDS: a tool for genome-wide discovery of subgenome-specific base-identity in polyploids.

    KAUST Repository

    Mithani, Aziz

    2013-09-24

    The analysis of polyploid genomes is problematic because homeologous subgenome sequences are closely related. This relatedness makes it difficult to assign individual sequences to the specific subgenome from which they are derived, and hinders the development of polyploid whole genome assemblies.We here present a next-generation sequencing (NGS)-based approach for assignment of subgenome-specific base-identity at sites containing homeolog-specific polymorphisms (HSPs): \\'HSP base Assignment using NGS data through Diploid Similarity\\' (HANDS). We show that HANDS correctly predicts subgenome-specific base-identity at >90% of assayed HSPs in the hexaploid bread wheat (Triticum aestivum) transcriptome, thus providing a substantial increase in accuracy versus previous methods for homeolog-specific base assignment.We conclude that HANDS enables rapid and accurate genome-wide discovery of homeolog-specific base-identity, a capability having multiple applications in polyploid genomics.

  18. TGFbeta Induces Binucleation/Polyploidization in Hepatocytes through a Src-Dependent Cytokinesis Failure.

    Science.gov (United States)

    De Santis Puzzonia, Marco; Cozzolino, Angela Maria; Grassi, Germana; Bisceglia, Francesca; Strippoli, Raffaele; Guarguaglini, Giulia; Citarella, Franca; Sacchetti, Benedetto; Tripodi, Marco; Marchetti, Alessandra; Amicone, Laura

    2016-01-01

    In all mammals, the adult liver shows binucleated as well as mononucleated polyploid hepatocytes. The hepatic polyploidization starts after birth with an extensive hepatocyte binucleation and generates hepatocytes of several ploidy classes. While the functional significance of hepatocyte polyploidy is becoming clearer, how it is triggered and maintained needs to be clarified. Aim of this study was to identify a major inducer of hepatocyte binucleation/polyploidization and the cellular and molecular mechanisms involved. We found that, among several cytokines analyzed, known to be involved in early liver development and/or mass control, TGFbeta1 was capable to induce, together with the expected morphological changes, binucleation in hepatocytes in culture. Most importantly, the pharmacological inhibition of TGFbeta signaling in healthy mice during weaning, when the physiological binucleation occurs, induced a significant decrease of hepatocyte binucleation rate, without affecting cell proliferation and hepatic index. The TGFbeta-induced hepatocyte binucleation resulted from a cytokinesis failure, as assessed by video microscopy, and is associated with a delocalization of the cytokinesis regulator RhoA-GTPase from the mid-body of dividing cells. The use of specific chemical inhibitors demonstrated that the observed events are Src-dependent. Finally, the restoration of a fully epithelial phenotype by TGFbeta withdrawal gave rise to a cell progeny capable to maintain the polyploid state. In conclusion, we identified TGFbeta as a major inducer of hepatocyte binucleation both in vitro and in vivo, thus ascribing a novel role to this pleiotropic cytokine. The production of binucleated/tetraploid hepatocytes is due to a cytokinesis failure controlled by the molecular axis TGFbeta/Src/RhoA.

  19. H-PoP and H-PoPG: heuristic partitioning algorithms for single individual haplotyping of polyploids.

    Science.gov (United States)

    Xie, Minzhu; Wu, Qiong; Wang, Jianxin; Jiang, Tao

    2016-12-15

    Some economically important plants including wheat and cotton have more than two copies of each chromosome. With the decreasing cost and increasing read length of next-generation sequencing technologies, reconstructing the multiple haplotypes of a polyploid genome from its sequence reads becomes practical. However, the computational challenge in polyploid haplotyping is much greater than that in diploid haplotyping, and there are few related methods. This article models the polyploid haplotyping problem as an optimal poly-partition problem of the reads, called the Polyploid Balanced Optimal Partition model. For the reads sequenced from a k-ploid genome, the model tries to divide the reads into k groups such that the difference between the reads of the same group is minimized while the difference between the reads of different groups is maximized. When the genotype information is available, the model is extended to the Polyploid Balanced Optimal Partition with Genotype constraint problem. These models are all NP-hard. We propose two heuristic algorithms, H-PoP and H-PoPG, based on dynamic programming and a strategy of limiting the number of intermediate solutions at each iteration, to solve the two models, respectively. Extensive experimental results on simulated and real data show that our algorithms can solve the models effectively, and are much faster and more accurate than the recent state-of-the-art polyploid haplotyping algorithms. The experiments also show that our algorithms can deal with long reads and deep read coverage effectively and accurately. Furthermore, H-PoP might be applied to help determine the ploidy of an organism. https://github.com/MinzhuXie/H-PoPG CONTACT: xieminzhu@hotmail.comSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. Self-sterility in the hexaploid Handroanthus serratifolius (Bignoniaceae, the national flower of Brazil

    Directory of Open Access Journals (Sweden)

    Mariana Ferreira Alves

    2013-12-01

    Full Text Available Polyploidization is common among angiosperms and might induce typically allogamous plants to become autogamous (self-compatible, relying on sexual self-fertilization or apomictic (achieving asexual reproduction through seeds. This work aimed to determine whether neopolyploidy leads to the breakdown of the self-incompatibility system in the hexaploid non-apomictic species Handroanthus serratifolius (Vahl S. Grose, through analyses of its floral biology, pollination biology and breeding system. Although anthesis lasted for three days, increasing the overall floral display, receptivity decreased as of the second day. Centridini and Euglossini bees were the main pollinators, and low nectar availability (1.95 ± 1.91 µl/flower might have obliged them to visit multiple flowers. We observed low reproductive efficacy. That might be explained by self-sterility and by the great number of flowers per individual, which could increase the frequency of geitonogamy. Ovule penetration by the pollen tubes in self-pollinated pistils with posterior abscission indicated late-acting self-incompatibility in H. serratifolius, as observed in other diploid Bignoniaceae species, although inbreeding depression cannot be excluded. The self-sterility found in the monoembryonic, hexaploid individuals studied here contrasts with the results for other neopolyploid Handroanthus and Anemopaegma species, which are often autogamous and apomictic. Our results suggest that neopolyploidy is not the main factor leading to self-fertility in Handroanthus.

  1. TGFbeta Induces Binucleation/Polyploidization in Hepatocytes through a Src-Dependent Cytokinesis Failure.

    Directory of Open Access Journals (Sweden)

    Marco De Santis Puzzonia

    Full Text Available In all mammals, the adult liver shows binucleated as well as mononucleated polyploid hepatocytes. The hepatic polyploidization starts after birth with an extensive hepatocyte binucleation and generates hepatocytes of several ploidy classes. While the functional significance of hepatocyte polyploidy is becoming clearer, how it is triggered and maintained needs to be clarified. Aim of this study was to identify a major inducer of hepatocyte binucleation/polyploidization and the cellular and molecular mechanisms involved. We found that, among several cytokines analyzed, known to be involved in early liver development and/or mass control, TGFbeta1 was capable to induce, together with the expected morphological changes, binucleation in hepatocytes in culture. Most importantly, the pharmacological inhibition of TGFbeta signaling in healthy mice during weaning, when the physiological binucleation occurs, induced a significant decrease of hepatocyte binucleation rate, without affecting cell proliferation and hepatic index. The TGFbeta-induced hepatocyte binucleation resulted from a cytokinesis failure, as assessed by video microscopy, and is associated with a delocalization of the cytokinesis regulator RhoA-GTPase from the mid-body of dividing cells. The use of specific chemical inhibitors demonstrated that the observed events are Src-dependent. Finally, the restoration of a fully epithelial phenotype by TGFbeta withdrawal gave rise to a cell progeny capable to maintain the polyploid state. In conclusion, we identified TGFbeta as a major inducer of hepatocyte binucleation both in vitro and in vivo, thus ascribing a novel role to this pleiotropic cytokine. The production of binucleated/tetraploid hepatocytes is due to a cytokinesis failure controlled by the molecular axis TGFbeta/Src/RhoA.

  2. Sexual Polyploidization in Medicago sativa L.: Impact on the Phenotype, Gene Transcription, and Genome Methylation.

    Science.gov (United States)

    Rosellini, Daniele; Ferradini, Nicoletta; Allegrucci, Stefano; Capomaccio, Stefano; Zago, Elisa Debora; Leonetti, Paola; Balech, Bachir; Aversano, Riccardo; Carputo, Domenico; Reale, Lara; Veronesi, Fabio

    2016-04-07

    Polyploidization as the consequence of 2n gamete formation is a prominent mechanism in plant evolution. Studying its effects on the genome, and on genome expression, has both basic and applied interest. We crossed two diploid (2n = 2x = 16) Medicago sativa plants, a subsp. falcata seed parent, and a coerulea × falcata pollen parent that form a mixture of n and 2n eggs and pollen, respectively. Such a cross produced full-sib diploid and tetraploid (2n = 4x = 32) hybrids, the latter being the result of bilateral sexual polyploidization (BSP). These unique materials allowed us to investigate the effects of BSP, and to separate the effect of intraspecific hybridization from those of polyploidization by comparing 2x with 4x full sib progeny plants. Simple sequence repeat marker segregation demonstrated tetrasomic inheritance for all chromosomes but one, demonstrating that these neotetraploids are true autotetraploids. BSP brought about increased biomass, earlier flowering, higher seed set and weight, and larger leaves with larger cells. Microarray analyses with M. truncatula gene chips showed that several hundred genes, related to diverse metabolic functions, changed their expression level as a consequence of polyploidization. In addition, cytosine methylation increased in 2x, but not in 4x, hybrids. Our results indicate that sexual polyploidization induces significant transcriptional novelty, possibly mediated in part by DNA methylation, and phenotypic novelty that could underpin improved adaptation and reproductive success of tetraploid M. sativa with respect to its diploid progenitor. These polyploidy-induced changes may have promoted the adoption of tetraploid alfalfa in agriculture. Copyright © 2016 Rosellini et al.

  3. Sexual Polyploidization in Medicago sativa L.: Impact on the Phenotype, Gene Transcription, and Genome Methylation

    Directory of Open Access Journals (Sweden)

    Daniele Rosellini

    2016-04-01

    Full Text Available Polyploidization as the consequence of 2n gamete formation is a prominent mechanism in plant evolution. Studying its effects on the genome, and on genome expression, has both basic and applied interest. We crossed two diploid (2n = 2x = 16 Medicago sativa plants, a subsp. falcata seed parent, and a coerulea × falcata pollen parent that form a mixture of n and 2n eggs and pollen, respectively. Such a cross produced full-sib diploid and tetraploid (2n = 4x = 32 hybrids, the latter being the result of bilateral sexual polyploidization (BSP. These unique materials allowed us to investigate the effects of BSP, and to separate the effect of intraspecific hybridization from those of polyploidization by comparing 2x with 4x full sib progeny plants. Simple sequence repeat marker segregation demonstrated tetrasomic inheritance for all chromosomes but one, demonstrating that these neotetraploids are true autotetraploids. BSP brought about increased biomass, earlier flowering, higher seed set and weight, and larger leaves with larger cells. Microarray analyses with M. truncatula gene chips showed that several hundred genes, related to diverse metabolic functions, changed their expression level as a consequence of polyploidization. In addition, cytosine methylation increased in 2x, but not in 4x, hybrids. Our results indicate that sexual polyploidization induces significant transcriptional novelty, possibly mediated in part by DNA methylation, and phenotypic novelty that could underpin improved adaptation and reproductive success of tetraploid M. sativa with respect to its diploid progenitor. These polyploidy-induced changes may have promoted the adoption of tetraploid alfalfa in agriculture.

  4. Transient Activation of Apomixis in Sexual Neotriploids May Retain Genomically Altered States and Enhance Polyploid Establishment

    Directory of Open Access Journals (Sweden)

    Diego Hojsgaard

    2018-02-01

    Full Text Available Polyploid genomes evolve and follow a series of dynamic transfigurations along with adaptation and speciation. The initial formation of a new polyploid individual within a diploid population usually involves a triploid bridge, a two-step mechanism of cell fusions between ubiquitous (reduced and rare (unreduced gametes. The primary fusion event creates an intermediate triploid individual with unbalanced genome sets, a situation of genomic-shock characterized by gene expression dysregulation, high dosage sensitivity, disturbed cell divisions, and physiological and reproductive attributes drastically altered. This near-sterile neotriploid must produce (even eupolyploids through secondary fusion events to restore genome steadiness, meiotic balance, and fertility required for the demographic establishment of a nascent lineage. Natural conditions locate several difficulties to polyploid establishment, including the production of highly unbalanced and rarely unreduced (euploid gametes, frequency-dependent disadvantages (minority cytotype exclusion, severe fitness loss, and ecological competition with diploid parents. Persistence and adaptation of neopolyploids depend upon genetic and phenotypic novelty coupled to joint selective forces that preserve shock-induced genomic changes (subgenome homeolog partitioning and drive meiotic (reproductive stabilization and ecological diversification. Thus, polyploid establishment through the triploid bridge is a feasible but not ubiquitous process that requires a number of low-probability events and singular circumstances. Yet, frequencies of polyploids suggest that polyploid establishment is a pervasive process. To explain this disparity, and supported in experimental evidence, I propose that situations like hybridization and ploidy-state transitions associated to genomic shock and substantial developmental alterations can transiently activate apomixis as a mechanism to halt genomic instability and cancel factors

  5. Complete chloroplast genomes from apomictic Taraxacum (Asteraceae): Identity and variation between three microspecies

    Science.gov (United States)

    Majeský, Ľuboš; Schwarzacher, Trude; Gornall, Richard; Heslop-Harrison, Pat

    2017-01-01

    Chloroplast DNA sequences show substantial variation between higher plant species, and less variation within species, so are typically excellent markers to investigate evolutionary, population and genetic relationships and phylogenies. We sequenced the plastomes of Taraxacum obtusifrons Markl. (O978); T. stridulum Trávniček ined. (S3); and T. amplum Markl. (A978), three apomictic triploid (2n = 3x = 24) dandelions from the T. officinale agg. We aimed to characterize the variation in plastomes, define relationships and correlations with the apomictic microspecies status, and refine placement of the microspecies in the evolutionary or phylogenetic context of the Asteraceae. The chloroplast genomes of accessions O978 and S3 were identical and 151,322 bp long (where the nuclear genes are known to show variation), while A978 was 151,349 bp long. All three genomes contained 135 unique genes, with an additional copy of the trnF-GGA gene in the LSC region and 20 duplicated genes in the IR region, along with short repeats, the typical major Inverted Repeats (IR1 and IR2, 24,431bp long), and Large and Small Single Copy regions (LSC 83,889bp and SSC 18,571bp in O978). Between the two Taraxacum plastomes types, we identified 28 SNPs. The distribution of polymorphisms suggests some parts of the Taraxacum plastome are evolving at a slower rate. There was a hemi-nested inversion in the LSC region that is common to Asteraceae, and an SSC inversion from ndhF to rps15 found only in some Asteraceae lineages. A comparative repeat analysis showed variation between Taraxacum and the phylogenetically close genus Lactuca, with many more direct repeats of 40bp or more in Lactuca (1% larger plastome than Taraxacum). When individual genes and non-coding regions were for Asteraceae phylogeny reconstruction, not all showed the same evolutionary scenario suggesting care is needed for interpretation of relationships if a limited number of markers are used. Studying genotypic diversity in

  6. Tempo and mode of recurrent polyploidization in the Carassius auratus species complex (Cypriniformes, Cyprinidae).

    Science.gov (United States)

    Luo, J; Gao, Y; Ma, W; Bi, X-y; Wang, S-y; Wang, J; Wang, Y-q; Chai, J; Du, R; Wu, S-f; Meyer, A; Zan, R-g; Xiao, H; Murphy, R W; Zhang, Y-p

    2014-04-01

    Polyploidization is an evolutionarily rare but important mechanism in both plants and animals because it increases genetic diversity. Goldfish of the Carassius auratus species complex can be tetraploids, hexaploids and octaploids. Polyploidization events have occurred repeatedly in goldfish, yet the extent of this phenomenon and its phyletic history are poorly understood. We explore the origin, tempo and frequency of polyploidization in Chinese and Japanese goldfish using both mitochondrial (mtDNA) and nuclear DNA sequences from up to 1202 individuals including the outgroup taxon, Cyprinus carpio. Analyses of de novo nuclear gene data resolve two clusters of alleles and the pattern supports the prior hypothesis of an ancient allotetraploidization for Carassius. Alleles shared by tetraploid and hexaploid individuals indicate recent autoploidizations within the C. auratus complex. Sympatric tetraploids and hexaploids share mtDNA haplotypes and these frequently occur independently within six well-supported lineages and sublineages on a small spatial scale. Gene flow estimates (Fst values) indicate that hexaploids differ only slightly from sympatric tetraploids, if at all. In contrast, allopatric populations of tetraploids and hexaploids differ from one another to a far greater extent. Gene flow between sampled localities appears to be limited. Coalescence-based time estimations for hexaploids reveal that the oldest lineage within any sampled locality is around one million years old, which is very young. Sympatric, recurrent autoploidization occurs in all sampled populations of the C. auratus complex. Goldfish experience polyploidization events more frequently than any other vertebrate.

  7. Production of polyploids from cultured shoot tips of Eucalyptus ...

    African Journals Online (AJOL)

    Polyploids from cultured shoot tips of Eucalyptus globulus were produced by treatment with colchicine. Results showed that the combination of 0.5% colchicine and treating multiple shoot clumps for 4 days was the most appropriate conditions for E. globulus polyploidy induction and the effect of the use of multiple shoot ...

  8. Ribosomal DNA, heterochromatin, and correlation with genome size in diploid and polyploid North American endemic sagebrushes (Artemisia, Asteraceae)

    Science.gov (United States)

    Sonia Garcia; Teresa Garnatje; Jaume Pellicer; E. Durant McArthur; Sonja Siljak-Yakovlev; Joan Valles

    2009-01-01

    Subgenus Tridentatae (Artemisia, Asteraceae) can be considered a polyploid complex. Both polyploidy and hybridization have been documented in the Tridentatae. Fluorescent in situ hybridization (FISH) and fluorochrome banding were used to detect and analyze ribosomal DNA changes linked to polyploidization in this group by studying four diploidpolyploid species pairs. In...

  9. Genetic similarity of polyploids - A new version of the computer program POPDIST (ver. 1.2.0) considers intraspecific genetic differentiation

    DEFF Research Database (Denmark)

    Tomiuk, Jürgen; Guldbrandtsen, Bernt; Loeschcke, Volker

    2009-01-01

    For evolutionary studies of polyploid species estimates of the genetic identity between species with different degrees of ploidy are particularly required because gene counting in samples of polyploid individuals often cannot be done, e.g., in triploids the phenotype AB can be genotypically either...... ABB or AAB. We recently suggested a genetic distance measure that is based on phenotype counting and made available the computer program POPDIST. The program provides maximum-likelihood estimates of the genetic identities and distances between polyploid populations, but this approach...

  10. Whole-body X-irradiation of mice accelerates polyploidization of hepatocytes

    International Nuclear Information System (INIS)

    Shima, A.; Egami, N.

    1985-01-01

    Male C57BL/6 mice were whole-body irradiated with 4.75 gy of X-rays at the age of 2 months and killed at 2, 6, 12 and 19 months after irradiation. The percentage survival began to decline earlier and faster in the irradiated group than the controls up to 19 months after exposure when the study was terminated. The nuclear DNA content of individual hepatocytes was measured by a Feulgen-DNA microfluorometric method, and hepatocytes were classified into various ploidy classes. In the irradiated mice, the degree of polyploidization was significantly higher than the controls by 2 months after exposure and steadily increased up to 6 months after exposure. Thereafter, however, a slow return to the control level was found up to 19 months after irradiation. These results appear to support a hypothesis that radiation accelerates the ageing process as judged from hepatocyte polyploidization. (author)

  11. Rho kinase inhibition drives megakaryocyte polyploidization and proplatelet formation through MYC and NFE2 downregulation.

    Science.gov (United States)

    Avanzi, Mauro P; Goldberg, Francine; Davila, Jennifer; Langhi, Dante; Chiattone, Carlos; Mitchell, William Beau

    2014-03-01

    The processes of megakaryocyte polyploidization and demarcation membrane system (DMS) formation are crucial for platelet production, but the mechanisms controlling these processes are not fully determined. Inhibition of Rho kinase (ROCK) signalling leads to increased polyploidization in umbilical cord blood-derived megakaryocytes. To extend these findings we determined the effect of ROCK inhibition on development of the DMS and on proplatelet formation. The underlying mechanisms were explored by analysing the effect of ROCK inhibition on the expression of MYC and NFE2, which encode two transcription factors critical for megakaryocyte development. ROCK inhibition promoted DMS formation, and increased proplatelet formation and platelet release. Rho kinase inhibition also downregulated MYC and NFE2 expression in mature megakaryocytes, and this down-regulation correlated with increased proplatelet formation. Our findings suggest a model whereby ROCK inhibition drives polyploidization, DMS growth and proplatelet formation late in megakaryocyte maturation through downregulation of MYC and NFE2 expression. © 2014 John Wiley & Sons Ltd.

  12. Polyploidization of rat hepatocytes due to cell fusion under the effect of radiation of different let

    International Nuclear Information System (INIS)

    Gil'yano, N.Ya.; Malinovskij, O.V.; Khair, M.B.; Baldychev, A.S.; Smolin, V.A.

    1988-01-01

    The method of flow cytometry was used to study polyploidization of hepatocytes following X-, γ-, and neutron-irradiation. Ionizing radiation was shown to induce cell polyploidization by two different ways: (1) cells and nuclei fusion, and (2) restriction of mitosis after DNA replication. RBE of 14 MeV neutrons with respect to fusion was about 5x10 3 . With neutron irradiation, the densitivity of cells by fusion was not lower than that by chromosome mutations

  13. A statistical design for testing apomictic diversification through linkage analysis.

    Science.gov (United States)

    Zeng, Yanru; Hou, Wei; Song, Shuang; Feng, Sisi; Shen, Lin; Xia, Guohua; Wu, Rongling

    2014-03-01

    The capacity of apomixis to generate maternal clones through seed reproduction has made it a useful characteristic for the fixation of heterosis in plant breeding. It has been observed that apomixis displays pronounced intra- and interspecific diversification, but the genetic mechanisms underlying this diversification remains elusive, obstructing the exploitation of this phenomenon in practical breeding programs. By capitalizing on molecular information in mapping populations, we describe and assess a statistical design that deploys linkage analysis to estimate and test the pattern and extent of apomictic differences at various levels from genotypes to species. The design is based on two reciprocal crosses between two individuals each chosen from a hermaphrodite or monoecious species. A multinomial distribution likelihood is constructed by combining marker information from two crosses. The EM algorithm is implemented to estimate the rate of apomixis and test its difference between two plant populations or species as the parents. The design is validated by computer simulation. A real data analysis of two reciprocal crosses between hickory (Carya cathayensis) and pecan (C. illinoensis) demonstrates the utilization and usefulness of the design in practice. The design provides a tool to address fundamental and applied questions related to the evolution and breeding of apomixis.

  14. Polyploidization of rat hepatocytes due to cell fusion under the effect of radiation of different LET

    International Nuclear Information System (INIS)

    Khair, M.; Gil'yano, N.Ya.; Malinovskij, O.V.; Smolin, V.A.

    1991-01-01

    The method of flow cytometry was used to study polyploidization of hepatocytes following X-, γ-, and neutron-irradiation. Ionizing radiation was shown to induce cell polyploidization by two different ways: (1) cells and nuclei fusion, and (2) restriction of mitosis after DNA replication. RBE of 14 MeV neutrons with respect to fusion was about 5x10 3 . With neutron irradiation, the sensitivity of cells by fusion was not lower than that by chromosome mutations. (author). 6 refs., 6 figs

  15. Estrogen promotes megakaryocyte polyploidization via estrogen receptor beta-mediated transcription of GATA1.

    Science.gov (United States)

    Du, C; Xu, Y; Yang, K; Chen, S; Wang, X; Wang, S; Wang, C; Shen, M; Chen, F; Chen, M; Zeng, D; Li, F; Wang, T; Wang, F; Zhao, J; Ai, G; Cheng, T; Su, Y; Wang, J

    2017-04-01

    Estrogen is reported to be involved in thrombopoiesis and the disruption of its signaling may cause myeloproliferative disease, yet the underlying mechanisms remain largely unknown. GATA-binding factor 1 (GATA1) is a key regulator of megakaryocyte (MK) differentiation and its deficiency will lead to megakaryoblastic leukemia. Here we show that estrogen can dose-dependently promote MK polyploidization and maturation via activation of estrogen receptor beta (ERβ), accompanied by a significant upregulation of GATA1. Chromatin immunoprecipitation and a dual luciferase assay demonstrate that ERβ can directly bind the promoter region of GATA1 and activate its transcription. Steroid receptor coactivator 3 (SRC3) is involved in ERβ-mediated GATA1 transcription. The deficiency of ERβ or SRC3, similar to the inhibition of GATA1, leads to the impediment of estrogen-induced MK polyploidization and platelet production. Further investigations reveal that signal transducer and activator of transcription 1 signaling pathway downstream of GATA1 has a crucial role in estrogen-induced MK polyploidization, and ERβ-mediated GATA1 upregulation subsequently enhances nuclear factor erythroid-derived 2 expression, thereby promoting proplatelet formation and platelet release. Our study provides a deep insight into the molecular mechanisms of estrogen signaling in regulating thrombopoiesis and the pathogenesis of ER deficiency-related leukemia.

  16. Small Molecule Supplements Improve Cultured Megakaryocyte Polyploidization by Modulating Multiple Cell Cycle Regulators.

    Science.gov (United States)

    Zou, Xiaojing; Qu, Mingyi; Fang, Fang; Fan, Zeng; Chen, Lin; Yue, Wen; Xie, Xiaoyan; Pei, Xuetao

    2017-01-01

    Platelets (PLTs) are produced by megakaryocytes (MKs) that completed differentiation and endomitosis. Endomitosis is an important process in which the cell replicates its DNA without cytokinesis and develops highly polyploid MK. In this study, to gain a better PLTs production, four small molecules (Rho-Rock inhibitor (RRI), nicotinamide (NIC), Src inhibitor (SI), and Aurora B inhibitor (ABI)) and their combinations were surveyed as MK culture supplements for promoting polyploidization. Three leukemia cell lines as well as primary mononuclear cells were chosen in the function and mechanism studies of the small molecules. In an optimal culture method, cells were treated with different small molecules and their combinations. The impact of the small molecules on megakaryocytic surface marker expression, polyploidy, proliferation, and apoptosis was examined for the best MK polyploidization supplement. The elaborate analysis confirmed that the combination of SI and RRI together with our MK induction system might result in efficient ploidy promotion. Our experiments demonstrated that, besides direct downregulation on the expression of cytoskeleton protein actin, SI and RRI could significantly enhance the level of cyclins through the suppression of p53 and p21. The verified small molecule combination might be further used in the in vitro PLT manufacture and clinical applications.

  17. Small Molecule Supplements Improve Cultured Megakaryocyte Polyploidization by Modulating Multiple Cell Cycle Regulators

    Directory of Open Access Journals (Sweden)

    Xiaojing Zou

    2017-01-01

    Full Text Available Platelets (PLTs are produced by megakaryocytes (MKs that completed differentiation and endomitosis. Endomitosis is an important process in which the cell replicates its DNA without cytokinesis and develops highly polyploid MK. In this study, to gain a better PLTs production, four small molecules (Rho-Rock inhibitor (RRI, nicotinamide (NIC, Src inhibitor (SI, and Aurora B inhibitor (ABI and their combinations were surveyed as MK culture supplements for promoting polyploidization. Three leukemia cell lines as well as primary mononuclear cells were chosen in the function and mechanism studies of the small molecules. In an optimal culture method, cells were treated with different small molecules and their combinations. The impact of the small molecules on megakaryocytic surface marker expression, polyploidy, proliferation, and apoptosis was examined for the best MK polyploidization supplement. The elaborate analysis confirmed that the combination of SI and RRI together with our MK induction system might result in efficient ploidy promotion. Our experiments demonstrated that, besides direct downregulation on the expression of cytoskeleton protein actin, SI and RRI could significantly enhance the level of cyclins through the suppression of p53 and p21. The verified small molecule combination might be further used in the in vitro PLT manufacture and clinical applications.

  18. Haplotype assembly in polyploid genomes and identical by descent shared tracts.

    Science.gov (United States)

    Aguiar, Derek; Istrail, Sorin

    2013-07-01

    Genome-wide haplotype reconstruction from sequence data, or haplotype assembly, is at the center of major challenges in molecular biology and life sciences. For complex eukaryotic organisms like humans, the genome is vast and the population samples are growing so rapidly that algorithms processing high-throughput sequencing data must scale favorably in terms of both accuracy and computational efficiency. Furthermore, current models and methodologies for haplotype assembly (i) do not consider individuals sharing haplotypes jointly, which reduces the size and accuracy of assembled haplotypes, and (ii) are unable to model genomes having more than two sets of homologous chromosomes (polyploidy). Polyploid organisms are increasingly becoming the target of many research groups interested in the genomics of disease, phylogenetics, botany and evolution but there is an absence of theory and methods for polyploid haplotype reconstruction. In this work, we present a number of results, extensions and generalizations of compass graphs and our HapCompass framework. We prove the theoretical complexity of two haplotype assembly optimizations, thereby motivating the use of heuristics. Furthermore, we present graph theory-based algorithms for the problem of haplotype assembly using our previously developed HapCompass framework for (i) novel implementations of haplotype assembly optimizations (minimum error correction), (ii) assembly of a pair of individuals sharing a haplotype tract identical by descent and (iii) assembly of polyploid genomes. We evaluate our methods on 1000 Genomes Project, Pacific Biosciences and simulated sequence data. HapCompass is available for download at http://www.brown.edu/Research/Istrail_Lab/. Supplementary data are available at Bioinformatics online.

  19. Re-annotation of the physical map of Glycine max for polyploid-like regions by BAC end sequence driven whole genome shotgun read assembly

    Directory of Open Access Journals (Sweden)

    Shultz Jeffry

    2008-07-01

    Full Text Available Abstract Background Many of the world's most important food crops have either polyploid genomes or homeologous regions derived from segmental shuffling following polyploid formation. The soybean (Glycine max genome has been shown to be composed of approximately four thousand short interspersed homeologous regions with 1, 2 or 4 copies per haploid genome by RFLP analysis, microsatellite anchors to BACs and by contigs formed from BAC fingerprints. Despite these similar regions,, the genome has been sequenced by whole genome shotgun sequence (WGS. Here the aim was to use BAC end sequences (BES derived from three minimum tile paths (MTP to examine the extent and homogeneity of polyploid-like regions within contigs and the extent of correlation between the polyploid-like regions inferred from fingerprinting and the polyploid-like sequences inferred from WGS matches. Results Results show that when sequence divergence was 1–10%, the copy number of homeologous regions could be identified from sequence variation in WGS reads overlapping BES. Homeolog sequence variants (HSVs were single nucleotide polymorphisms (SNPs; 89% and single nucleotide indels (SNIs 10%. Larger indels were rare but present (1%. Simulations that had predicted fingerprints of homeologous regions could be separated when divergence exceeded 2% were shown to be false. We show that a 5–10% sequence divergence is necessary to separate homeologs by fingerprinting. BES compared to WGS traces showed polyploid-like regions with less than 1% sequence divergence exist at 2.3% of the locations assayed. Conclusion The use of HSVs like SNPs and SNIs to characterize BACs wil improve contig building methods. The implications for bioinformatic and functional annotation of polyploid and paleopolyploid genomes show that a combined approach of BAC fingerprint based physical maps, WGS sequence and HSV-based partitioning of BAC clones from homeologous regions to separate contigs will allow reliable de

  20. Induction of hepatocyte polyploidization in rats of different age by ionizing radiation of different LET

    International Nuclear Information System (INIS)

    Gil'yano, N.Ya.; Malinovskij, O.V.; Khair, M.B.

    1992-01-01

    A decrease in the effectiveness of neutron-irradiation with respect to fusion of nonproliferating hepatocytes of animals with age was shown by the method of flow cytometry. There was an inverse relationship between the effectiveness of induction of non-proliferating hepatocytes fusion and neutron energy. The process of hepatocyte fusion induced by neutrons was inhibited by uranyl acetate. No age-dependent changes were noted in the induction of polyploidization of proliferating hepatocytes by sparsely ionizing radiation. A hypothesis is proposed concerning a membrane nature of the target responsible for hepatocyte polyploidization induced by densely ionizing radiation. (authors). 8 refs., 4 figs., 5 tabs

  1. Induction of hepatocyte polyploidization in rats of different age by ionizing radiation of different LET

    International Nuclear Information System (INIS)

    Gil'yano, N.Ya.; Malinovskij, O.V.; Khair, M.B.

    1990-01-01

    A decrease in the effectiveness of neutron-irradiation with respect to fusion of nonproliferating hepatocytes of animals with age was shown by the method of flow cytometry. There was an inverse relationship between the effectiveness of induction of non-proliferating hepatocytes fusion and neutron energy. The process of hepatocyte fusion induced by neutrons was inhibited by uranyl acetate. No age-dependent changes were noted in the induction of polyploidization of proliferating hepatocytes by sparsely ionizing radiation. A hypothesis is proposed concerning a membrane nature of the target responsible for hepatocyte polyploidization induced by densely ionizing radiation

  2. Phosphorylation of ribosomal protein S6 kinase 1 at Thr421/Ser424 and dephosphorylation at Thr389 regulates SP600125-induced polyploidization of megakaryocytic cell lines.

    Science.gov (United States)

    Li, Chang-Ling; Yang, Jin-Gang; Lin, Di; Zhao, Yong-Shan; Liu, Shuo; Xing, Si-Ning; Zhao, Song; Chen, Cong-Qin; Jiang, Zhi-Ming; Pu, Fei-Fei; Cao, Jian-Ping; Ma, Dong-Chu

    2014-01-01

    Megakaryocytes (MKs) are one of the few cell types that become polyploid; however, the mechanisms by which these cells are designated to become polyploid are not fully understood. In this investigation, we successfully established two relatively synchronous polyploid cell models by inducing Dami and CMK cells with SP600125. We found that SP600125 induced the polyploidization of Dami and CMK cells, concomitant with the phosphorylation of ribosomal protein S6 kinase 1 (S6K1) at Thr421/Ser424 and dephosphorylation at Thr389. The polyploidization was partially blocked by H-89, a cAMP-dependent protein kinase (PKA) inhibitor, through direct binding to S6K1, leading to dephosphorylation at Thr421/Ser424 and phosphorylation at Thr389, independent of PKA. Overexpression of a rapamycin-resistant mutant of S6K1 further enhanced the inhibitory effect of LY294002 on the SP600125-induced polyploidization of Dami and CMK cells. SP600125 also induced the polyploidization of Meg-01 cells, which are derived from a patient with chronic myelogenous leukemia, without causing a significant change in S6K1 phosphorylation. Additionally, SP600125 induced the polyploidization of HEL cells, which are derived from a patient with erythroleukemia, and phosphorylation at Thr389 of S6K1 was detected. However, the polyploidization of both Meg-01 cells and HEL cells as a result of SP600125 treatment was lower than that of SP600125-induced Dami and CMK cells, and it was not blocked by H-89 despite the increased phosphorylation of S6K1 at Thr389 in both cell lines in response to H-89. Given that the Dami and CMK cell lines were derived from patients with acute megakaryocytic leukemia (AMKL) and expressed high levels of platelet-specific antigens, our data suggested that SP600125-induced polyploidization is cell-type specific, that these cell lines were more differentiated, and that phosphorylation at Thr421/Ser424 and dephosphorylation at Thr389 of S6K1 may play an important role in the SP600125

  3. Phosphorylation of ribosomal protein S6 kinase 1 at Thr421/Ser424 and dephosphorylation at Thr389 regulates SP600125-induced polyploidization of megakaryocytic cell lines.

    Directory of Open Access Journals (Sweden)

    Chang-Ling Li

    Full Text Available Megakaryocytes (MKs are one of the few cell types that become polyploid; however, the mechanisms by which these cells are designated to become polyploid are not fully understood. In this investigation, we successfully established two relatively synchronous polyploid cell models by inducing Dami and CMK cells with SP600125. We found that SP600125 induced the polyploidization of Dami and CMK cells, concomitant with the phosphorylation of ribosomal protein S6 kinase 1 (S6K1 at Thr421/Ser424 and dephosphorylation at Thr389. The polyploidization was partially blocked by H-89, a cAMP-dependent protein kinase (PKA inhibitor, through direct binding to S6K1, leading to dephosphorylation at Thr421/Ser424 and phosphorylation at Thr389, independent of PKA. Overexpression of a rapamycin-resistant mutant of S6K1 further enhanced the inhibitory effect of LY294002 on the SP600125-induced polyploidization of Dami and CMK cells. SP600125 also induced the polyploidization of Meg-01 cells, which are derived from a patient with chronic myelogenous leukemia, without causing a significant change in S6K1 phosphorylation. Additionally, SP600125 induced the polyploidization of HEL cells, which are derived from a patient with erythroleukemia, and phosphorylation at Thr389 of S6K1 was detected. However, the polyploidization of both Meg-01 cells and HEL cells as a result of SP600125 treatment was lower than that of SP600125-induced Dami and CMK cells, and it was not blocked by H-89 despite the increased phosphorylation of S6K1 at Thr389 in both cell lines in response to H-89. Given that the Dami and CMK cell lines were derived from patients with acute megakaryocytic leukemia (AMKL and expressed high levels of platelet-specific antigens, our data suggested that SP600125-induced polyploidization is cell-type specific, that these cell lines were more differentiated, and that phosphorylation at Thr421/Ser424 and dephosphorylation at Thr389 of S6K1 may play an important role in

  4. Differential contributions to the transcriptome of duplicated genes in response to abiotic stresses in natural and synthetic polyploids.

    Science.gov (United States)

    Dong, Shaowei; Adams, Keith L

    2011-06-01

    Polyploidy has occurred throughout plant evolution and can result in considerable changes to gene expression when it takes place and over evolutionary time. Little is known about the effects of abiotic stress conditions on duplicate gene expression patterns in polyploid plants. We examined the expression patterns of 60 duplicated genes in leaves, roots and cotyledons of allotetraploid Gossypium hirsutum in response to five abiotic stress treatments (heat, cold, drought, high salt and water submersion) using single-strand conformation polymorphism assays, and 20 genes in a synthetic allotetraploid. Over 70% of the genes showed stress-induced changes in the relative expression levels of the duplicates under one or more stress treatments with frequent variability among treatments. Twelve pairs showed opposite changes in expression levels in response to different abiotic stress treatments. Stress-induced expression changes occurred in the synthetic allopolyploid, but there was little correspondence in patterns between the natural and synthetic polyploids. Our results indicate that abiotic stress conditions can have considerable effects on duplicate gene expression in a polyploid, with the effects varying by gene, stress and organ type. Differential expression in response to environmental stresses may be a factor in the preservation of some duplicated genes in polyploids. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.

  5. Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres

    Science.gov (United States)

    Emergent phenotypes are common in polyploids relative to their diploid progenitors, a phenomenon exemplified by spinnable cotton fibers. Following 15-18 fold paleopolyploidy, allopolyploidy 1-2 million years ago reunited divergent Gossypium genomes, imparting new combinatorial complexity that might ...

  6. Transcriptome and metabolome of synthetic Solanum autotetraploids reveal key genomic stress events following polyploidization.

    Science.gov (United States)

    Fasano, Carlo; Diretto, Gianfranco; Aversano, Riccardo; D'Agostino, Nunzio; Di Matteo, Antonio; Frusciante, Luigi; Giuliano, Giovanni; Carputo, Domenico

    2016-06-01

    Polyploids are generally classified as autopolyploids, derived from a single species, and allopolyploids, arising from interspecific hybridization. The former represent ideal materials with which to study the consequences of genome doubling and ascertain whether there are molecular and functional rules operating following polyploidization events. To investigate whether the effects of autopolyploidization are common to different species, or if species-specific or stochastic events are prevalent, we performed a comprehensive transcriptomic and metabolomic characterization of diploids and autotetraploids of Solanum commersonii and Solanum bulbocastanum. Autopolyploidization remodelled the transcriptome and the metabolome of both species. In S. commersonii, differentially expressed genes (DEGs) were highly enriched in pericentromeric regions. Most changes were stochastic, suggesting a strong genotypic response. However, a set of robustly regulated transcripts and metabolites was also detected, including purine bases and nucleosides, which are likely to underlie a common response to polyploidization. We hypothesize that autopolyploidization results in nucleotide pool imbalance, which in turn triggers a genomic shock responsible for the stochastic events observed. The more extensive genomic stress and the higher number of stochastic events observed in S. commersonii with respect to S. bulbocastanum could be the result of the higher nucleoside depletion observed in this species. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  7. BMS-777607 promotes megakaryocytic differentiation and induces polyploidization in the CHRF-288-11 cells.

    Science.gov (United States)

    Nurhayati, Retno Wahyu; Ojima, Yoshihiro; Taya, Masahito

    2015-04-01

    Introduction of a polyploidy inducer is a promising strategy to achieve a high level of polyploidization during megakaryocytic (MK) differentiation. Here, we report that a multi-kinase inhibitor, BMS-777607, is a potent polyploidy inducer for elevating high ploidy cell formation in the MK-differentiated CHRF-288-11 (CHRF) cells. Our result showed that BMS-777607 strongly inhibited cell division without affecting cell viability when detected at day 1 after treatment. As a consequence, the high ploidy (≥8N) cells were accumulated in culture for 8 days, with an increase from 16.2 to 75.2 % of the total cell population. The elevated polyploidization was accompanied by the increased expression level of MK marker, CD41 (platelet glycoprotein IIb/IIIa, GPIIb/IIIa), suggesting that BMS-777607 promoted both polyploidization and commitment of MK-differentiated CHRF cells. Platelet-like fragments (PFs) were released by mature CHRF cells. Based on a flow cytometry assay, it was found that the PFs produced from BMS-777607-treated cells tended to have larger size and higher expression of GPIIb/IIIa, a receptor for platelet adhesion. Taken together, these results suggested that BMS-777607 promoted MK differentiation of CHRF cells and increased the functional property of platelet-like fragments.

  8. Polyploidization on SK-N-MC human neuroblastoma cells infected with herpes simplex virus 1.

    Science.gov (United States)

    Karalyan, Zaven; Izmailyan, Roza; Karalova, Elena; Abroyan, Liana; Hakobyan, Lina; Avetisyan, Aida; Semerjyan, Zara

    2016-01-01

    Polyploidization is one of the most dramatic changes occurring within cell genome owing to various reasons including under many viral infections. We examined the impact of herpes simplex virus-1 (HSV-1) on SK-N-MC human neuroblastoma cell line. The infected cells were followed from 6 hours up to 96 hours post infection (hpi). A large number of polyploid cells with giant nuclei was observed under the influence of HSV-1 at 24 hpi with the DNA content of 32c to 64c or more, in comparison with control SK-N-MC cells that were characterized by relatively moderate values of ploidy, i.e. 8с to 16с (where 1c is the haploid amount of nuclear DNA found in normal diploid populations in G0/G1). After 48-96 hpi, the population of polyploid cells with giant nuclei decreased to the benchmark level. The SK-NMC cells infected with HSV-1 for 24 hours were stained with gallocyanine and monitored for cytological features. The infected cells underwent virus induced cellcell and nuclei fusion with the formation of dense nuclei syncytium. The metabolic activity of HSV-1 infected cells was higher in both nuclei and nucleoli when compared to control cells.

  9. polymapR - linkage analysis and genetic map construction from F1 populations of outcrossing polyploids.

    Science.gov (United States)

    Bourke, Peter M; van Geest, Geert; Voorrips, Roeland E; Jansen, Johannes; Kranenburg, Twan; Shahin, Arwa; Visser, Richard G F; Arens, Paul; Smulders, Marinus J M; Maliepaard, Chris

    2018-05-02

    Polyploid species carry more than two copies of each chromosome, a condition found in many of the world's most important crops. Genetic mapping in polyploids is more complex than in diploid species, resulting in a lack of available software tools. These are needed if we are to realise all the opportunities offered by modern genotyping platforms for genetic research and breeding in polyploid crops. polymapR is an R package for genetic linkage analysis and integrated genetic map construction from bi-parental populations of outcrossing autopolyploids. It can currently analyse triploid, tetraploid and hexaploid marker datasets and is applicable to various crops including potato, leek, alfalfa, blueberry, chrysanthemum, sweet potato or kiwifruit. It can detect, estimate and correct for preferential chromosome pairing, and has been tested on high-density marker datasets from potato, rose and chrysanthemum, generating high-density integrated linkage maps in all of these crops. polymapR is freely available under the general public license from the Comprehensive R Archive Network (CRAN) at http://cran.r-project.org/package=polymapR. Chris Maliepaard chris.maliepaard@wur.nl or Roeland E. Voorrips roeland.voorrips@wur.nl. Supplementary data are available at Bioinformatics online.

  10. Artificially induced polyploidization in Humulus lupulus L. and its effect on morphological and chemical traits.

    Science.gov (United States)

    Trojak-Goluch, Anna; Skomra, Urszula

    2013-12-01

    Chemically induced polyploids were obtained by the colchicine treatment of shoot tips of Humulus lupulus L. 'Sybilla'. Flow cytometry revealed that most of the treatments resulted in the production of tetraploids. The highest number of tetraploids was obtained when explants were immersed in 0.05% colchicine for 48 h. A field experiment was conducted to compare diploid and tetraploid plants and assess the effect of genome polyploidization on the morphological and chemical characteristics. Tetraploids showed significant differences in relation to diploids. They had thinner and shorter shoots. The influence of chromosome doubling was also reflected in the length, width and area of leaves. The length of female flowers in the tetraploids was significantly shorter than that observed in diploids. Tetraploids produced a diverse number of lupuline glands that were almost twice as large as those observed in diploids. The most distinct effect of genome polyploidization was a significant increase in the weight of cones and spindles. Contents of major chemical constituents of hop cones was little affected by ploidy level. Total essential oils were significantly lower than those in diploids. However there was a significant increase in the proportion of humulene, caryophyllene and farnesene, oils desired by the brewing industry.

  11. The Role of Polyploidization and Interspecific Hybridization in the Breeding of Ornamental Crops

    NARCIS (Netherlands)

    Marasek-Ciolakowska, A.; Arens, P.F.P.; Tuyl, van J.M.

    2016-01-01

    Polyploidy and hybridisation are critical processes in plant evolution and speciation. Many current agricultural crops are either natural or agricultural hybrids or polyploids, including potato, sugarcane, wheat, strawberries, and banana. There is a great deal of potential to utilise these natural

  12. Synergistic effect of hydrogen peroxide on polyploidization during the megakaryocytic differentiation of K562 leukemia cells by PMA.

    Science.gov (United States)

    Ojima, Yoshihiro; Duncan, Mark Thompson; Nurhayati, Retno Wahyu; Taya, Masahito; Miller, William Martin

    2013-08-15

    The human myelogenous cell line, K562 has been extensively used as a model for the study of megakaryocytic (MK) differentiation, which could be achieved by exposure to phorbol 12-myristate 13-acetate (PMA). In this study, real-time PCR analysis revealed that the expression of catalase (cat) was significantly repressed during MK differentiation of K562 cells induced by PMA. In addition, PMA increased the intracellular reactive oxygen species (ROS) concentration, suggesting that ROS was a key factor for PMA-induced differentiation. PMA-differentiated K562 cells were exposed to hydrogen peroxide (H2O2) to clarify the function of ROS during MK differentiation. Interestingly, the percentage of high-ploidy (DNA content >4N) cells with H2O2 was 34.8±2.3% at day 9, and was 70% larger than that without H2O2 (21.5±0.8%). Further, H2O2 addition during the first 3 days of PMA-induced MK differentiation had the greatest effect on polyploidization. In an effort to elucidate the mechanisms of enhanced polyploidization by H2O2, the BrdU assay clearly indicated that H2O2 suppressed the division of 4N cells into 2N cells, followed by the increased polyploidization of K562 cells. These findings suggest that the enhancement in polyploidization mediated by H2O2 is due to synergistic inhibition of cytokinesis with PMA. Although H2O2 did not increase ploidy during the MK differentiation of primary cells, we clearly observed that cat expression was repressed in both immature and mature primary MK cells, and that treatment with the antioxidant N-acetylcysteine effectively blocked and/or delayed the polyploidization of immature MK cells. Together, these findings suggest that MK cells are more sensitive to ROS levels during earlier stages of maturation. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Wheat hybridization and polyploidization results in deregulation of small RNAs.

    Science.gov (United States)

    Kenan-Eichler, Michal; Leshkowitz, Dena; Tal, Lior; Noor, Elad; Melamed-Bessudo, Cathy; Feldman, Moshe; Levy, Avraham A

    2011-06-01

    Speciation via interspecific or intergeneric hybridization and polyploidization triggers genomic responses involving genetic and epigenetic alterations. Such modifications may be induced by small RNAs, which affect key cellular processes, including gene expression, chromatin structure, cytosine methylation and transposable element (TE) activity. To date, the role of small RNAs in the context of wide hybridization and polyploidization has received little attention. In this work, we performed high-throughput sequencing of small RNAs of parental, intergeneric hybrid, and allopolyploid plants that mimic the genomic changes occurring during bread wheat speciation. We found that the percentage of small RNAs corresponding to miRNAs increased with ploidy level, while the percentage of siRNAs corresponding to TEs decreased. The abundance of most miRNA species was similar to midparent values in the hybrid, with some deviations, as seen in overrepresentation of miR168, in the allopolyploid. In contrast, the number of siRNAs corresponding to TEs strongly decreased upon allopolyploidization, but not upon hybridization. The reduction in corresponding siRNAs, together with decreased CpG methylation, as shown here for the Veju element, represent hallmarks of TE activation. TE-siRNA downregulation in the allopolyploid may contribute to genome destabilization at the initial stages of speciation. This phenomenon is reminiscent of hybrid dysgenesis in Drosophila.

  14. Multiple Polyploidization Events across Asteraceae with Two Nested Events in the Early History Revealed by Nuclear Phylogenomics.

    Science.gov (United States)

    Huang, Chien-Hsun; Zhang, Caifei; Liu, Mian; Hu, Yi; Gao, Tiangang; Qi, Ji; Ma, Hong

    2016-11-01

    Biodiversity results from multiple evolutionary mechanisms, including genetic variation and natural selection. Whole-genome duplications (WGDs), or polyploidizations, provide opportunities for large-scale genetic modifications. Many evolutionarily successful lineages, including angiosperms and vertebrates, are ancient polyploids, suggesting that WGDs are a driving force in evolution. However, this hypothesis is challenged by the observed lower speciation and higher extinction rates of recently formed polyploids than diploids. Asteraceae includes about 10% of angiosperm species, is thus undoubtedly one of the most successful lineages and paleopolyploidization was suggested early in this family using a small number of datasets. Here, we used genes from 64 new transcriptome datasets and others to reconstruct a robust Asteraceae phylogeny, covering 73 species from 18 tribes in six subfamilies. We estimated their divergence times and further identified multiple potential ancient WGDs within several tribes and shared by the Heliantheae alliance, core Asteraceae (Asteroideae-Mutisioideae), and also with the sister family Calyceraceae. For two of the WGD events, there were subsequent great increases in biodiversity; the older one proceeded the divergence of at least 10 subfamilies within 10 My, with great variation in morphology and physiology, whereas the other was followed by extremely high species richness in the Heliantheae alliance clade. Our results provide different evidence for several WGDs in Asteraceae and reveal distinct association among WGD events, dramatic changes in environment and species radiations, providing a possible scenario for polyploids to overcome the disadvantages of WGDs and to evolve into lineages with high biodiversity. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  15. Massive expansion and differential evolution of small heat shock proteins with wheat (Triticum aestivum L.) polyploidization.

    Science.gov (United States)

    Wang, Xiaoming; Wang, Ruochen; Ma, Chuang; Shi, Xue; Liu, Zhenshan; Wang, Zhonghua; Sun, Qixin; Cao, Jun; Xu, Shengbao

    2017-05-31

    Wheat (Triticum aestivum), one of the world's most important crops, is facing unprecedented challenges due to global warming. To evaluate the gene resources for heat adaptation in hexaploid wheat, small heat shock proteins (sHSPs), the key plant heat protection genes, were comprehensively analysed in wheat and related species. We found that the sHSPs of hexaploid wheat were massively expanded in A and B subgenomes with intrachromosomal duplications during polyploidization. These expanded sHSPs were under similar purifying selection and kept the expressional patterns with the original copies. Generally, a strong purifying selection acted on the α-crystallin domain (ACD) and theoretically constrain conserved function. Meanwhile, weaker purifying selection and strong positive selection acted on the N-terminal region, which conferred sHSP flexibility, allowing adjustments to a wider range of substrates in response to genomic and environmental changes. Notably, in CI, CV, ER, MI and MII subfamilies, gene duplications, expression variations and functional divergence occurred before wheat polyploidization. Our results indicate the massive expansion of active sHSPs in hexaploid wheat may also provide more raw materials for evolving functional novelties and generating genetic diversity to face future global climate changes, and highlight the expansion of stress response genes with wheat polyploidization.

  16. Polyploidization delay in rat hepatocytes under liver growth inhibition by hypokinesia

    Science.gov (United States)

    Faktor, V. M.; Malyutin, V. F.; Li, S. Y.; Brodskiy, V. Y.

    1981-01-01

    A study of young rats, weighing 55 to 59 g, after being for 10 days in conditions of limited mobility, shows a retardation of body growth as well as that of liver growth. The decrease in the rate of growth is accompanied by a reduction of cell proliferation and by delay polyploidization of hepatocytes in the liver of experimental rats. The materials, methods, and results of research are discussed.

  17. The aryl hydrocarbon receptor (AHR) transcription factor regulates megakaryocytic polyploidization.

    Science.gov (United States)

    Lindsey, Stephan; Papoutsakis, Eleftherios T

    2011-02-01

    We propose that the aryl hydrocarbon receptor (AHR) is a novel transcriptional regulator of megakaryopoietic polyploidization. Functional evidence was obtained that AHR impacts in vivo megakaryocytic differentiation and maturation; compared to wild-type mice, AHR-null mice had lower platelet counts, fewer numbers of newly synthesized platelets, increased bleeding times and lower-ploidy megakaryocytes (Mks). AHR mRNA increased 3·6-fold during ex vivo megakaryocytic differentiation, but reduced or remained constant during parallel isogenic granulocytic or erythroid differentiation. We interrogated the role of AHR in megakaryopoiesis using a validated Mk model of megakaryopoiesis, the human megakaryoblastic leukaemia CHRF cell line. Upon CHRF Mk differentiation, AHR mRNA and protein levels increased, AHR protein shifted from the cytoplasm to the nucleus and AHR binding to its consensus DNA binding sequence increased. Protein and mRNA levels of the AHR transcriptional target HES1 also increased. Mk differentiation of CHRF cells where AHR or HES1 was knocked-down using RNAi resulted in lower ploidy distributions and cells that were incapable of reaching ploidy classes ≥16n. AHR knockdown also resulted in increased DNA synthesis of lower ploidy cells, without impacting apoptosis. Together, these data support a role for AHR in Mk polyploidization and in vivo platelet function, and warrant further detailed investigations. © 2011 Blackwell Publishing Ltd.

  18. The Evolutionary History Of The White-Rayed Species Of Melampodium (Asteraceae) Involved Multiple Cycles Of Hybridization And Polyploidization1

    Science.gov (United States)

    Rebernig, Carolin A.; Weiss-Schneeweiss, Hanna; Blöch, Cordula; Turner, Barbara; Stuessy, Tod F.; Obermayer, Renate; Villaseñor, Jose L.; Schneeweiss, Gerald M.

    2014-01-01

    Premise of the study Polyploidy plays an important role in race differentiation and eventually speciation. Underlying mechanisms include chromosomal and genomic changes facilitating reproductive isolation and/or stabilization of hybrids. A prerequisite for studying these processes is a sound knowledge on the origin of polyploids. A well-suited group for studying polyploid evolution consists of the three species of Melampodium ser. Leucantha (Asteraceae): M. argophyllum, M. cinereum, and M. leucanthum. Methods The origin of polyploids was inferred using network and tree-based phylogenetic analyses of several plastid and nuclear DNA sequences and of fingerprint data (AFLP). Genome evolution was assessed via genome size measurements, karyotype analysis, and in situ hybridization of ribosomal DNA. Key results Tetraploid cytotypes of the phylogenetically distinct M. cinereum and M. leucanthum had, compared to the diploid cytotypes, doubled genome sizes and no evidence of gross chromosomal rearrangements. Hexaploid M. argophyllum constituted a separate lineage with limited intermixing with the other species, except in analyses from nuclear ITS. Its genome size was lower than expected if M. cinereum and/or M. leucanthum were involved in its origin, and no chromosomal rearrangements were evident. Conclusions Polyploids in M. cinereum and M. leucanthum are of recent autopolyploid origin in line with the lack of significant genomic changes. Hexaploid M. argophyllum also appears to be of autopolyploid origin against the previous hypothesis of an allopolyploid origin involving the other two species, but some gene flow with the other species in early phases of differentiation cannot be excluded. PMID:22645096

  19. Transcriptome-derived evidence supports recent polyploidization and a major phylogeographic division in Trithuria submersa (Hydatellaceae, Nymphaeales).

    Science.gov (United States)

    Marques, Isabel; Montgomery, Sean A; Barker, Michael S; Macfarlane, Terry D; Conran, John G; Catalán, Pilar; Rieseberg, Loren H; Rudall, Paula J; Graham, Sean W

    2016-04-01

    Relatively little is known about species-level genetic diversity in flowering plants outside the eudicots and monocots, and it is often unclear how to interpret genetic patterns in lineages with whole-genome duplications. We addressed these issues in a polyploid representative of Hydatellaceae, part of the water-lily order Nymphaeales. We examined a transcriptome of Trithuria submersa for evidence of recent whole-genome duplication, and applied transcriptome-derived microsatellite (expressed-sequence tag simple-sequence repeat (EST-SSR)) primers to survey genetic variation in populations across its range in mainland Australia. A transcriptome-based Ks plot revealed at least one recent polyploidization event, consistent with fixed heterozygous genotypes representing underlying sets of homeologous loci. A strong genetic division coincides with a trans-Nullarbor biogeographic boundary. Patterns of 'allelic' variation (no more than two variants per EST-SSR genotype) and recently published chromosomal evidence are consistent with the predicted polyploidization event and substantial homozygosity underlying fixed heterozygote SSR genotypes, which in turn reflect a selfing mating system. The Nullarbor Plain is a barrier to gene flow between two deep lineages of T. submersa that may represent cryptic species. The markers developed here should also be useful for further disentangling species relationships, and provide a first step towards future genomic studies in Trithuria. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  20. Carboxyl-terminal-dependent recruitment of nonmuscle myosin II to megakaryocyte contractile ring during polyploidization.

    Science.gov (United States)

    Badirou, Idinath; Pan, Jiajia; Legrand, Céline; Wang, Aibing; Lordier, Larissa; Boukour, Siham; Roy, Anita; Vainchenker, William; Chang, Yunhua

    2014-10-16

    Endomitosis is a unique megakaryocyte (MK) differentiation process that is the consequence of a late cytokinesis failure associated with a contractile ring defect. Evidence from in vitro studies has revealed the distinct roles of 2 nonmuscle myosin IIs (NMIIs) on MK endomitosis: only NMII-B (MYH10), but not NMII-A (MYH9), is localized in the MK contractile ring and implicated in mitosis/endomitosis transition. Here, we studied 2 transgenic mouse models in which nonmuscle myosin heavy chain (NMHC) II-A was genetically replaced either by II-B or by a chimeric NMHCII that combined the head domain of II-A with the rod and tail domains of II-B. This study provides in vivo evidence on the specific role of NMII-B on MK polyploidization. It demonstrates that the carboxyl-terminal domain of the heavy chains determines myosin II localization to the MK contractile ring and is responsible for the specific role of NMII-B in MK polyploidization.

  1. Genomic and transcriptomic alterations following intergeneric hybridization and polyploidization in the Chrysanthemum nankingense×Tanacetum vulgare hybrid and allopolyploid (Asteraceae).

    Science.gov (United States)

    Qi, Xiangyu; Wang, Haibin; Song, Aiping; Jiang, Jiafu; Chen, Sumei; Chen, Fadi

    2018-01-01

    Allopolyploid formation involves two major events: interspecific hybridization and polyploidization. A number of species in the Asteraceae family are polyploids because of frequent hybridization. The effects of hybridization on genomics and transcriptomics in Chrysanthemum nankingense×Tanacetum vulgare hybrids have been reported. In this study, we obtained allopolyploids by applying a colchicine treatment to a synthesized C. nankingense × T. vulgare hybrid. Sequence-related amplified polymorphism (SRAP), methylation-sensitive amplification polymorphism (MSAP), and high-throughput RNA sequencing (RNA-Seq) technologies were used to investigate the genomic, epigenetic, and transcriptomic alterations in both the hybrid and allopolyploids. The genomic alterations in the hybrid and allopolyploids mainly involved the loss of parental fragments and the gain of novel fragments. The DNA methylation level of the hybrid was reduced by hybridization but was restored somewhat after polyploidization. There were more significant differences in gene expression between the hybrid/allopolyploid and the paternal parent than between the hybrid/allopolyploid and the maternal parent. Most differentially expressed genes (DEGs) showed down-regulation in the hybrid/allopolyploid relative to the parents. Among the non-additive genes, transgressive patterns appeared to be dominant, especially repression patterns. Maternal expression dominance was observed specifically for down-regulated genes. Many methylase and methyltransferase genes showed differential expression between the hybrid and parents and between the allopolyploid and parents. Our data indicate that hybridization may be a major factor affecting genomic and transcriptomic changes in newly formed allopolyploids. The formation of allopolyploids may not simply be the sum of hybridization and polyploidization changes but also may be influenced by the interaction between these processes.

  2. [SP600125-induced polyploidization of megakaryocytic leukemia cell lines by ribosomal protein S6 kinase 1 depends on the degree of cell differentiation].

    Science.gov (United States)

    Wang, Lili; Yang, Jingang; Li, Changling; Xing, Sining; Yu, Ying; Liu, Shuo; Zhao, Song; Ma, Dongchu

    2016-10-01

    Objective To investigate regulatory role of ribosomal protein S6 kinase 1 (S6K1) in the polyploidization of different megakaryocytic leukemia cell lines at the different differentiation stages. Methods Megakaryocytic leukemia cell lines (Dami, Meg-01 and HEL cells) were induced towards polyploidization by SP600125, a c-Jun N-terminal kinase (JNK) inhibitor. The SP600125-inducing process was blocked by H-89, a cAMP-dependent protein kinase (PKA) inhibitor. The phenotype (CD41a, CD42a and CD42b) and DNA ploidy were detected by flow cytometry. The expression and phosphorylation of S6K1 and related proteins were detected by Western blotting. Results SP600125 induced polyploidization and increased the phosphorylation of eukaryotic initiation factor 4E binding protein 1 (4E-BP1) in Dami, Meg-01 and HEL cells. However, the effect of SP600125 on polyploidization of the three cell lines was different, with the strongest effect on Dami cells and the weakest on Meg-01 cells. Moreover, SP600125 increased the phosphorylation of S6K1 Thr421/Ser424 and decreased the phosphorylation of Thr389 in Dami cells. However, it only increased the phosphorylation of Thr389 in HEL cells and had no effect on the phosphorylation of S6K1 in Meg-01 cells. Interestingly, H-89 only partially blocked the polyploidization of Dami cells, although it decreased the phosphorylation of 4E-BP1 in all SP600125-induced three cell lines. Noticeably, H-89 decreased the phosphorylation of S6K1 Thr421/Ser424 and increased the phosphorylation of Thr389 in Dami cells. However, H-89 had no effect on the phosphorylation of Thr421/Ser424, although it increased the phosphorylation of Thr389 in Meg-01 and HEL cells. Phenotypic analysis showed that the three cell lines were at different levels of differentiation in megakaryocytic lineage, with the highest differentiation in Dami and the lowest in Meg-01 cells. Conclusion SP600125-induced polyploidization of megakaryocytic leukemia cell lines is dependent on the effect

  3. Frequency of polyploid cells in the bone marrow of rats fed irradiated wheat

    International Nuclear Information System (INIS)

    George, K.P.; Chaubey, R.C.; Sundaram, K.; Gopal-Ayengar, A.R.

    1976-01-01

    Diets containing different proportions of non-irradiated or irradiated wheat were fed to Wistar rats for 1 or 6 wk. Cytological analysis of the bone marrow showed no significant difference in the frequency of polyploid cells in the rats fed non-irradiated or irradiated wheat diets, even when the treated wheat was fed to the rats within 24 hr of irradiation. (author)

  4. TaGW2, a Good Reflection of Wheat Polyploidization and Evolution.

    Science.gov (United States)

    Qin, Lin; Zhao, Junjie; Li, Tian; Hou, Jian; Zhang, Xueyong; Hao, Chenyang

    2017-01-01

    Hexaploid wheat consists of three subgenomes, namely, A, B, and D. These well-characterized ancestral genomes also exist at the diploid and tetraploid levels, thereby rendering wheat as a good model species for studying polyploidization. Here, we performed intra- and inter-species comparative analyses of wheat and its relatives to dissect polymorphism and differentiation of the TaGW2 genes. Our results showed that genetic diversity of TaGW2 decreased with progression from the diploids to tetraploids and hexaploids. The strongest selection occurred in the promoter regions of TaGW2-6A and TaGW2-6B . Phylogenetic trees clearly indicated that Triticum urartu and Ae. speltoides were the donors of the A and B genomes in tetraploid and hexaploid wheats. Haplotypes detected among hexaploid genotypes traced back to the tetraploid level. Fst and π values revealed that the strongest selection on TaGW2 occurred at the tetraploid level rather than in hexaploid wheat. This infers that grain size enlargement, especially increased kernel width, mainly occurred in tetraploid genotypes. In addition, relative expression levels of TaGW2s significantly declined from the diploid level to tetraploids and hexaploids, further indicating that these genes negatively regulate kernel size. Our results also revealed that the polyploidization events possibly caused much stronger differentiation than domestication and breeding.

  5. Five nuclear loci resolve the polyploid history of switchgrass (Panicum virgatum L. and relatives.

    Directory of Open Access Journals (Sweden)

    Jimmy K Triplett

    Full Text Available Polyploidy poses challenges for phylogenetic reconstruction because of the need to identify and distinguish between homoeologous loci. This can be addressed by use of low copy nuclear markers. Panicum s.s. is a genus of about 100 species in the grass tribe Paniceae, subfamily Panicoideae, and is divided into five sections. Many of the species are known to be polyploids. The most well-known of the Panicum polyploids are switchgrass (Panicum virgatum and common or Proso millet (P. miliaceum. Switchgrass is in section Virgata, along with P. tricholaenoides, P. amarum, and P. amarulum, whereas P. miliaceum is in sect. Panicum. We have generated sequence data from five low copy nuclear loci and two chloroplast loci and have clarified the origin of P. virgatum. We find that all members of sects. Virgata and Urvilleana are the result of diversification after a single allopolyploidy event. The closest diploid relatives of switchgrass are in sect. Rudgeana, native to Central and South America. Within sections Virgata and Urvilleana, P. tricholaenoides is sister to the remaining species. Panicum racemosum and P. urvilleanum form a clade, which may be sister to P. chloroleucum. Panicum amarum, P. amarulum, and the lowland and upland ecotypes of P. virgatum together form a clade, within which relationships are complex. Hexaploid and octoploid plants are likely allopolyploids, with P. amarum and P. amarulum sharing genomes with P. virgatum. Octoploid P. virgatum plants are formed via hybridization between disparate tetraploids. We show that polyploidy precedes diversification in a complex set of polyploids; our data thus suggest that polyploidy could provide the raw material for diversification. In addition, we show two rounds of allopolyploidization in the ancestry of switchgrass, and identify additional species that may be part of its broader gene pool. This may be relevant for development of the crop for biofuels.

  6. Elucidating polyploidization of bermudagrasses as assessed by organelle and nuclear DNA markers.

    Science.gov (United States)

    Gulsen, Osman; Ceylan, Ahmet

    2011-12-01

    Clarification of relationships among ploidy series of Cynodon accessions could be beneficial to bermudagrass breeding programs, and would enhance our understanding of the evolutionary biology of this warm season grass species. This study was initiated to elucidate polyploidization among Cynodon accessions with different ploidy series collected from Turkey based on chloroplast and nuclear DNA. Forty Cynodon accessions including 7 diploids, 3 triploids, 10 tetraploids, 11 pentaploids, and 9 hexaploids were analyzed using chloroplast DNA restriction fragment-length polymorphism (cpDNA RFLP), chloroplast DNA simple sequence repeat (cpDNA SSR), and nuclear DNA markers based on neighbor-joining (NJ) and principle component analyses (PCA). All three-marker systems with two statistical algorithms clustered the diploids apart from the other ploidy levels. Assuming autopolyploidy, spontaneous polyploidization followed by rapid diversification among the higher ploidy levels than the diploids is likely in Cynodon's evolution. Few tetraploid and hexaploid accessions were clustered with or closely to the group of diploids, supporting the hypothesis above. Eleven haplotypes as estimated by cpDNA RFLP and SSR markers were detected. This study indicated that the diploids had different organelle genome from the rest of the ploidy series and provided valuable insight into relationships among ploidy series of Cynodon accessions based on cp and nuclear DNAs.

  7. Cholesterol is essential for mitosis progression and its deficiency induces polyploid cell formation

    International Nuclear Information System (INIS)

    Fernandez, Carlos; Lobo, Maria del Val T.; Gomez-Coronado, Diego; Lasuncion, Miguel A.

    2004-01-01

    As an essential component of mammalian cell membranes, cells require cholesterol for proliferation, which is either obtained from plasma lipoproteins or synthesized intracellularly from acetyl-CoA. In addition to cholesterol, other non-sterol mevalonate derivatives are necessary for DNA synthesis, such as the phosphorylated forms of isopentane, farnesol, geranylgeraniol, and dolichol. The aim of the present study was to elucidate the role of cholesterol in mitosis. For this, human leukemia cells (HL-60) were incubated in a cholesterol-free medium and treated with SKF 104976, which inhibits cholesterol biosynthesis by blocking sterol 14α-demethylase, and the expression of relevant cyclins in the different phases of the cell cycle was analyzed by flow cytometry. Prolonged cholesterol starvation induced the inhibition of cytokinesis and the formation of polyploid cells, which were multinucleated and had mitotic aberrations. Supplementing the medium with cholesterol completely abolished these effects, demonstrating they were specifically due to cholesterol deficiency. This is the first evidence that cholesterol is essential for mitosis completion and that, in the absence of cholesterol, the cells fail to undergo cytokinesis, entered G1 phase at higher DNA ploidy (tetraploidy), and then progressed through S (rereplication) into G2, generating polyploid cells

  8. Species-Level Phylogeny and Polyploid Relationships in Hordeum (Poaceae) Inferred by Next-Generation Sequencing and In Silico Cloning of Multiple Nuclear Loci.

    Science.gov (United States)

    Brassac, Jonathan; Blattner, Frank R

    2015-09-01

    Polyploidization is an important speciation mechanism in the barley genus Hordeum. To analyze evolutionary changes after allopolyploidization, knowledge of parental relationships is essential. One chloroplast and 12 nuclear single-copy loci were amplified by polymerase chain reaction (PCR) in all Hordeum plus six out-group species. Amplicons from each of 96 individuals were pooled, sheared, labeled with individual-specific barcodes and sequenced in a single run on a 454 platform. Reference sequences were obtained by cloning and Sanger sequencing of all loci for nine supplementary individuals. The 454 reads were assembled into contigs representing the 13 loci and, for polyploids, also homoeologues. Phylogenetic analyses were conducted for all loci separately and for a concatenated data matrix of all loci. For diploid taxa, a Bayesian concordance analysis and a coalescent-based dated species tree was inferred from all gene trees. Chloroplast matK was used to determine the maternal parent in allopolyploid taxa. The relative performance of different multilocus analyses in the presence of incomplete lineage sorting and hybridization was also assessed. The resulting multilocus phylogeny reveals for the first time species phylogeny and progenitor-derivative relationships of all di- and polyploid Hordeum taxa within a single analysis. Our study proves that it is possible to obtain a multilocus species-level phylogeny for di- and polyploid taxa by combining PCR with next-generation sequencing, without cloning and without creating a heavy load of sequence data. © The Author(s) 2015. Published by Oxford University Press, on behalf of the Society of Systematic Biologists.

  9. Karyotypic changes through dysploidy persist longer over evolutionary time than polyploid changes.

    Directory of Open Access Journals (Sweden)

    Marcial Escudero

    Full Text Available Chromosome evolution has been demonstrated to have profound effects on diversification rates and speciation in angiosperms. While polyploidy has predated some major radiations in plants, it has also been related to decreased diversification rates. There has been comparatively little attention to the evolutionary role of gains and losses of single chromosomes, which may or not entail changes in the DNA content (then called aneuploidy or dysploidy, respectively. In this study we investigate the role of chromosome number transitions and of possible associated genome size changes in angiosperm evolution. We model the tempo and mode of chromosome number evolution and its possible correlation with patterns of cladogenesis in 15 angiosperm clades. Inferred polyploid transitions are distributed more frequently towards recent times than single chromosome gains and losses. This is likely because the latter events do not entail changes in DNA content and are probably due to fission or fusion events (dysploidy, as revealed by an analysis of the relationship between genome size and chromosome number. Our results support the general pattern that recently originated polyploids fail to persist, and suggest that dysploidy may have comparatively longer-term persistence than polyploidy. Changes in chromosome number associated with dysploidy were typically observed across the phylogenies based on a chi-square analysis, consistent with these changes being neutral with respect to diversification.

  10. Halophilic archaea cultivated from surface sterilized middle-late eocene rock salt are polyploid.

    Directory of Open Access Journals (Sweden)

    Salla T Jaakkola

    Full Text Available Live bacteria and archaea have been isolated from several rock salt deposits of up to hundreds of millions of years of age from all around the world. A key factor affecting their longevity is the ability to keep their genomic DNA intact, for which efficient repair mechanisms are needed. Polyploid microbes are known to have an increased resistance towards mutations and DNA damage, and it has been suggested that microbes from deeply buried rock salt would carry several copies of their genomes. Here, cultivable halophilic microbes were isolated from a surface sterilized middle-late Eocene (38-41 million years ago rock salt sample, drilled from the depth of 800 m at Yunying salt mine, China. Eight unique isolates were obtained, which represented two haloarchaeal genera, Halobacterium and Halolamina. We used real-time PCR to show that our isolates are polyploid, with genome copy numbers of 11-14 genomes per cell in exponential growth phase. The ploidy level was slightly downregulated in stationary growth phase, but the cells still had an average genome copy number of 6-8. The polyploidy of halophilic archaea living in ancient rock salt might be a factor explaining how these organisms are able to overcome the challenge of prolonged survival during their entombment.

  11. Number of nucleoli in diploids and polyploids of the genus Achillea L.

    Directory of Open Access Journals (Sweden)

    Janina Dąbrowska

    2014-01-01

    Full Text Available Nucleoli were counted in 9228 interphase nuclei of the apical root meristem of 40 Achillea L. taxa (di-, tetra-. hexa- and octoploids. It was established that the distribution of nucleoli number in an interphase nucleus can be used as a rough practical indicator to distinguish between diploids and polyploids. The highest number of nucleoli (12 was found in an octoploid Achillea pannonica, but only in a small percentage of the nuclei (0.3% out of 283 nuclei.

  12. Epigenetic contribution to successful polyploidizations: variation in global cytosine methylation along an extensive ploidy series in Dianthus broteri (Caryophyllaceae).

    Science.gov (United States)

    Alonso, Conchita; Balao, Francisco; Bazaga, Pilar; Pérez, Ricardo

    2016-11-01

    Polyploidization is a significant evolutionary force in plants which involves major genomic and genetic changes, frequently regulated by epigenetic factors. We explored whether natural polyploidization in Dianthus broteri complex resulted in substantial changes in global DNA cytosine methylation associated to ploidy. Global cytosine methylation was estimated by high-performance liquid chromatography (HPLC) in 12 monocytotypic populations with different ploidies (2×, 4×, 6×, 12×) broadly distributed within D. broteri distribution range. The effects of ploidy level and local variation on methylation were assessed by generalized linear mixed models (GLMMs). Dianthus broteri exhibited a higher methylation percent (˜33%) than expected by its monoploid genome size and a large variation among study populations (range: 29.3-35.3%). Global methylation tended to increase with ploidy but did not significantly differ across levels due to increased variation within the highest-order polyploidy categories. Methylation varied more among hexaploid and dodecaploid populations, despite such cytotypes showing more restricted geographic location and increased genetic relatedness than diploids and tetraploids. In this study, we demonstrate the usefulness of an HPLC method in providing precise and genome reference-free global measure of DNA cytosine methylation, suitable to advance current knowledge of the roles of this epigenetic mechanism in polyploidization processes. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  13. Akt1/PKB upregulation leads to vascular smooth muscle cell hypertrophy and polyploidization

    OpenAIRE

    Hixon, Mary L.; Muro-Cacho, Carlos; Wagner, Mark W.; Obejero-Paz, Carlos; Millie, Elise; Fujio, Yasushi; Kureishi, Yasuko; Hassold, Terry; Walsh, Kenneth; Gualberto, Antonio

    2000-01-01

    Vascular smooth muscle cells (VSMCs) at capacitance arteries of hypertensive individuals and animals undergo marked age- and blood pressure–dependent polyploidization and hypertrophy. We show here that VSMCs at capacitance arteries of rat models of hypertension display high levels of Akt1/PKB protein and activity. Gene transfer of Akt1 to VSMCs isolated from a normotensive rat strain was sufficient to abrogate the activity of the mitotic spindle cell–cycle checkpoint, promoting polyploidizati...

  14. Sorting duplicated loci disentangles complexities of polyploid genomes masked by genotyping by sequencing

    DEFF Research Database (Denmark)

    Limborg, Morten; Seeb, Lisa W.; Seeb, J. E.

    2016-01-01

    Many plants and animals of polyploid origin are currently enjoying a genomics explosion enabled by modern sequencing and genotyping technologies. However, routine filtering of duplicated loci in most studies using genotyping by sequencing introduces an unacceptable, but often overlooked, bias when...... particularly stress the sometimes overlooked fact that basing genomic studies on dense maps provides value added in the form of locating and annotating outlier loci or colocating outliers into islands of divergenc...

  15. [Protein kinase A inhibitor H-89 blocks polyploidization of SP600125-induced CMK cells by regulating phosphorylation of ribosomal protein S6 kinase 1].

    Science.gov (United States)

    Zhao, Song; Yang, Jingang; Li, Changling; Xing, Sining; Yu, Ying; Liu, Shuo; Pu, Feifei; Ma, Dongchu

    2016-10-01

    Objective To investigate the regulatory effect of post-translation modification of ribosomal protein S6 kinase 1 (S6K1) on the polyploidization of megakaryocytes. Methods SP600125, a c-Jun N-terminal kinase (JNK) inhibitor, and H-89, a cAMP-dependent protein kinase (PKA) inhibitor, were used to treat CMK cells separately or in combination. With propidium iodide (PI) to dye DNA in the treated cells, the relative DNA content was detected by flow cytometry, and then the DNA polyploidy was analyzed. The change of expression and phosphorylation of ribosomal protein S6 kinase 1 (S6K1), an important mammalian target of rapamycin (mTOR) downstream target molecule, was analyzed by Western blotting. Molecular docking study and kinase activity assay were performed to analyze the combination of H-89 with S6K1 and the effect of H-89 on the activity of S6K1 kinase. Results SP600125 induced CMK cell polyploidization in a time-dependent and dose-dependent manner. At the same time, it increased the phosphorylation of S6K1 at Thr421/Ser424 and decreased the phosphorylation of S6K1 at Thr389. H-89 not only blocked polyploidization, but also decreased the phosphorylation of S6K1 at Thr421/Ser424 and increased the phosphorylation of S6K1 at Thr389. Molecular docking and kinase activity assay showed that H-89 occupied the ATP binding sites of S6K1 and inhibited its activity. Noticeably, both H-89 and SP600125 inhibited the activity of PKA. Moreover, the two drugs further inhibited the activity of PKA when used together. Therefore, these data indicated that H-89 blocked the SP600125-induced polyploidization of CMK cells mainly by changing S6K1 phosphorylation state, rather than its inhibitory effect on PKA. Conclusion H-89 can block the polyploidization of SP600125-induced CMK cells by regulating S6K1 phosphorylation state.

  16. Inference of haplotypic phase and missing genotypes in polyploid organisms and variable copy number genomic regions

    Directory of Open Access Journals (Sweden)

    Balding David J

    2008-12-01

    Full Text Available Abstract Background The power of haplotype-based methods for association studies, identification of regions under selection, and ancestral inference, is well-established for diploid organisms. For polyploids, however, the difficulty of determining phase has limited such approaches. Polyploidy is common in plants and is also observed in animals. Partial polyploidy is sometimes observed in humans (e.g. trisomy 21; Down's syndrome, and it arises more frequently in some human tissues. Local changes in ploidy, known as copy number variations (CNV, arise throughout the genome. Here we present a method, implemented in the software polyHap, for the inference of haplotype phase and missing observations from polyploid genotypes. PolyHap allows each individual to have a different ploidy, but ploidy cannot vary over the genomic region analysed. It employs a hidden Markov model (HMM and a sampling algorithm to infer haplotypes jointly in multiple individuals and to obtain a measure of uncertainty in its inferences. Results In the simulation study, we combine real haplotype data to create artificial diploid, triploid, and tetraploid genotypes, and use these to demonstrate that polyHap performs well, in terms of both switch error rate in recovering phase and imputation error rate for missing genotypes. To our knowledge, there is no comparable software for phasing a large, densely genotyped region of chromosome from triploids and tetraploids, while for diploids we found polyHap to be more accurate than fastPhase. We also compare the results of polyHap to SATlotyper on an experimentally haplotyped tetraploid dataset of 12 SNPs, and show that polyHap is more accurate. Conclusion With the availability of large SNP data in polyploids and CNV regions, we believe that polyHap, our proposed method for inferring haplotypic phase from genotype data, will be useful in enabling researchers analysing such data to exploit the power of haplotype-based analyses.

  17. Induced polyploidization in Brassica campestris L. (Brassicaceae).

    Science.gov (United States)

    Kumar, G; Dwivedi, K

    2014-01-01

    Present experimental design has been made up to obtain crop with higher ploidy level via synthetic polyploidization. Since ploidy manipulation is generally associated with the obtainment of some increased enviable traits of the crop and also provides them greater adaptability to unfavorable or harsh circumstances as compared to its diploids counterparts. Thus, herein present research autotetraploids of Brassica campestris L. have been lucratively achieved by the application of colchicine. Two methods of treatment were utilized i.e. seed treatment and seedling treatment. No polyploidy could be obtained through seed treatment while seedling treatment responded well towards polyploidy. However, the status of autotetraploidy has been confirmed by cytomorphological investigations of treated plants as against its diploids counterparts. For the purpose, morphological parameters such as increased stomata size, pollen diameter, flower size, reproductive organs whereas reduction in plant height, leaf length, leaf breadth, stomata frequency, number of flowers/inflorescence etc. were appraised. Further, cytological observations were made that had clearly revealed the doubling of genome in the autotetraploids as compared to diploids. Meanwhile, pollen fertility and size of pollen grains were evaluated as well.

  18. Comparative proteomic study on Brassica hexaploid and its parents provides new insights into the effects of polyploidization.

    Science.gov (United States)

    Shen, Yanyue; Zhang, Yu; Zou, Jun; Meng, Jinling; Wang, Jianbo

    2015-01-01

    Polyploidy has played an important role in promoting plant evolution through genomic merging and doubling. Although genomic and transcriptomic changes have been observed in polyploids, the effects of polyploidization on proteomic divergence are poorly understood. In this study, we reported quantitative analysis of proteomic changes in leaves of Brassica hexaploid and its parents using isobaric tags for relative and absolute quantitation (iTRAQ) coupled with mass spectrometry. A total of 2044 reproducible proteins were quantified by at least two unique peptides. We detected 452 proteins differentially expressed between Brassica hexaploid and its parents, and 100 proteins were non-additively expressed in Brassica hexaploid, which suggested a trend of non-additive protein regulation following genomic merger and doubling. Functional categories of cellular component biogenesis, immune system process, and response to stimulus, were significantly enriched in non-additive proteins, probably providing a driving force for variation and adaptation in allopolyploids. In particular, majority of the total 452 differentially expressed proteins showed expression level dominance of one parental expression, and there was an expression level dominance bias toward the tetraploid progenitor. In addition, the percentage of differentially expressed proteins that matched previously reported differentially genes were relatively low. This study aimed to get new insights into the effects of polyploidization on proteomic divergence. Using iTRAQ LC-MS/MS technology, we identified 452 differentially expressed proteins between allopolyploid and its parents which involved in response to stimulus, multi-organism process, and immune system process, much more than previous studies using 2-DE coupled with mass spectrometry technology. Therefore, our manuscript represents the most comprehensive analysis of protein profiles in allopolyploid and its parents, which will lead to a better understanding of

  19. Polyploid tumour cells elicit paradiploid progeny through depolyploidizing divisions and regulated autophagic degradation.

    Science.gov (United States)

    Erenpreisa, Jekaterina; Salmina, Kristine; Huna, Anda; Kosmacek, Elizabeth A; Cragg, Mark S; Ianzini, Fiorenza; Anisimov, Alim P

    2011-07-01

    'Neosis' describes the process whereby p53 function-deficient tumour cells undergo self-renewal after genotoxic damage apparently via senescing ETCs (endopolyploid tumour cells). We previously reported that autophagic digestion and extrusion of DNA occurs in ETC and subsequently revealed that self-renewal transcription factors are also activated under these conditions. Here, we further studied this phenomenon in a range of cell lines after genotoxic damage induced by gamma irradiation, ETO (etoposide) or PXT (paclitaxel) treatment. These experiments revealed that chromatin degradation by autophagy was compatible with continuing mitotic activity in ETC. While the actively polyploidizing primary ETC produced early after genotoxic insult activated self-renewal factors throughout the polygenome, the secondary ETC restored after failed multipolar mitosis underwent subnuclei differentiation. As such, only a subset of subnuclei continued to express OCT4 and NANOG, while those lacking these factors stopped DNA replication and underwent degradation and elimination through autophagy. The surviving subnuclei sequestered nascent cytoplasm to form subcells, while being retained within the confines of the old ETC. Finally, the preformed paradiploid subcells became released from their linking chromosome bridges through autophagy and subsequently began cell divisions. These data show that 'neotic' ETC resulting from genotoxically damaged p53 function-deficient tumour cells develop through a heteronuclear system differentiating the polyploid genome into rejuvenated 'viable' subcells (which provide mitotically propagating paradiploid descendents) and subnuclei, which become degraded and eliminated by autophagy. The whole process reduces aneuploidy in descendants of ETC.

  20. Dataset of the HOX1 gene sequences of the wheat polyploids and their diploid relatives

    Directory of Open Access Journals (Sweden)

    Andrey B. Shcherban

    2018-02-01

    Full Text Available The TaHOX-1 gene of common wheat Triticum aestivum L. (BAD-genome encodes transcription factor (HD-Zip I which is characterized by the presence of a DNA-binding homeodomain (HD with an adjacent Leucine zipper (LZ motif. This gene can play a role in adapting plant to a variety of abiotic stresses, such as drought, cold, salinity etc., which strongly affect wheat production. However, it's both functional role in stress resistance and divergence during wheat evolution has not yet been elucidated. This data in brief article is associated with the research paper “Structural and functional divergence of homoeologous copies of the TaHOX-1 gene in polyploid wheats and their diploid ancestors”. The data set represents a recent survey of the primary HOX-1 gene sequences isolated from the first wheat allotetraploids (BA-genome and their corresponding Triticum and Aegilops diploid relatives. Specifically, we provide detailed information about the HOX-1 nucleotide sequences of the promoter region and both nucleotide and amino acid sequences of the gene. The sequencing data used here is available at DDBJ/EMBL/GenBank under the accession numbers MG000630-MG000698. Keywords: Wheat, Polyploid, HOX-1 gene, Homeodomain, Transcription factor, Promoter, Triticum, Aegilops

  1. Construction of a plant-transformation-competent BIBAC library and genome sequence analysis of polyploid Upland cotton (Gossypium hirsutum L.)

    Science.gov (United States)

    Cotton is a world’s leading crop important to the world’s textile and energy industries, and a model species for studies of plant polyploidization, cellulose biosynthesis and cell wall biogenesis. Here, we report the construction and extensive analysis of a binary bacterial artificial chromosome (BI...

  2. The Variable Effect of Polyploidization on the Phenotype in Escallonia.

    Science.gov (United States)

    Denaeghel, Hanne E R; Van Laere, Katrijn; Leus, Leen; Lootens, Peter; Van Huylenbroeck, Johan; Van Labeke, Marie-Christine

    2018-01-01

    To induce new variation within the Escallonia genus, chromosome doubling was performed in E. rubra, E. rosea , and E. illinita , three important species within this genus of mainly evergreen woody ornamental species. Obtained tetraploids and diploid controls were analyzed for rooting capacity, leaf and flower characteristics, and plant architecture using image analysis and cold tolerance. In the present study, a breeders' collection of 23 accessions was characterized cytogenetically and described morphologically. All analyzed species and cultivars were diploid (2n = 2x = 24), with exception of E. pendula , a tetraploid. Today, breeding in Escallonia is limited to lucky finds in seedling populations and few efforts in interspecific hybridization. Three selected Escallonia species underwent an in vitro chromosome doubling with both oryzalin and trifluralin applied as either a continuous or shock treatment. The treatments successfully induced polyploids in all three species. Image analysis revealed that tetraploid E. rosea had decreased shoot length (from 3.8 to 1.3 cm), higher circularity and more dense growth habit compared to diploids. No significant changes in cold tolerance were seen. Tetraploid E. illinita did not differ in shoot length, but an increased outgrowth of axillary buds on the main axis led to denser plants. For tetraploid E. rubra , an increase in plant height (from 4.9 to 5.5 cm) was observed together with a large decrease in circularity and density due to a more polar outgrowth of branches on the main axis. E. rubra tetraploids bore larger flowers than diploids and had an increased cold tolerance (from -7.7 to -11.8°C). Leaf width and area of tetraploids increased for both E. illinita and E. rubra , while a decrease was seen in E. rosea genotypes. For all three species, the rooting capacity of the tetraploids did not differ from the diploids. We conclude that the effect of polyploidization on Escallonia was highly variable and species dependent.

  3. Leaf transcriptome of two highly divergent genotypes of Urochloa humidicola (Poaceae), a tropical polyploid forage grass adapted to acidic soils and temporary flooding areas.

    Science.gov (United States)

    Vigna, Bianca Baccili Zanotto; de Oliveira, Fernanda Ancelmo; de Toledo-Silva, Guilherme; da Silva, Carla Cristina; do Valle, Cacilda Borges; de Souza, Anete Pereira

    2016-11-11

    Urochloa humidicola (Koronivia grass) is a polyploid (6x to 9x) species that is used as forage in the tropics. Facultative apospory apomixis is present in most of the genotypes of this species, although one individual has been described as sexual. Molecular studies have been restricted to molecular marker approaches for genetic diversity estimations and linkage map construction. The objectives of the present study were to describe and compare the leaf transcriptome of two important genotypes that are highly divergent in terms of their phenotypes and reproduction modes: the sexual BH031 and the aposporous apomictic cultivar BRS Tupi. We sequenced the leaf transcriptome of Koronivia grass using an Illumina GAIIx system, which produced 13.09 Gb of data that consisted of 163,575,526 paired-end reads between the two libraries. We de novo-assembled 76,196 transcripts with an average length of 1,152 bp and filtered 35,093 non-redundant unigenes. A similarity search against the non-redundant National Center of Biotechnology Information (NCBI) protein database returned 65 % hits. We annotated 24,133 unigenes in the Phytozome database and 14,082 unigenes in the UniProtKB/Swiss-Prot database, assigned 108,334 gene ontology terms to 17,255 unigenes and identified 5,324 unigenes in 327 known metabolic pathways. Comparisons with other grasses via a reciprocal BLAST search revealed a larger number of orthologous genes for the Panicum species. The unigenes were involved in C4 photosynthesis, lignocellulose biosynthesis and flooding stress responses. A search for functional molecular markers revealed 4,489 microsatellites and 560,298 single nucleotide polymorphisms (SNPs). A quantitative real-time PCR analysis validated the RNA-seq expression analysis and allowed for the identification of transcriptomic differences between the two evaluated genotypes. Moreover, 192 unannotated sequences were classified as containing complete open reading frames, suggesting that the new

  4. Hybridization among distantly related species: Examples from the polyploid genus Curcuma (Zingiberaceae).

    Science.gov (United States)

    Záveská, Eliška; Fér, Tomáš; Šída, Otakar; Marhold, Karol; Leong-Škorničková, Jana

    2016-07-01

    Discerning relationships among species evolved by reticulate and/or polyploid evolution is not an easy task, although it is widely discussed. The economically important genus Curcuma (ca. 120 spp.; Zingiberaceae), broadly distributed in tropical SE Asia, is a particularly interesting example of a group of palaeopolyploid origin whose evolution is driven mainly by hybridization and polyploidization. Although a phylogeny and a new infrageneric classification of Curcuma, based on commonly used molecular markers (ITS and cpDNA), have recently been proposed, significant evolutionary questions remain unresolved. We applied a multilocus approach and a combination of modern analytical methods to this genus to distinguish causes of gene tree incongruence and to identify hybrids and their parental species. Five independent regions of nuclear DNA (DCS, GAPDH, GLOBOSA3, LEAFY, ITS) and four non-coding cpDNA regions (trnL-trnF, trnT-trnL, psbA-trnH and matK), analysed as a single locus, were employed to construct a species tree and hybrid species trees using (*)BEAST and STEM-hy. Detection of hybridogenous species in the dataset was also conducted using the posterior predictive checking approach as implemented in JML. The resulting species tree outlines the relationships among major evolutionary lineages within Curcuma, which were previously unresolved or which conflicted depending upon whether they were based on ITS or cpDNA markers. Moreover, by using the additional markers in tests of plausible topologies of hybrid species trees for C. vamana, C. candida, C. roscoeana and C. myanmarensis suggested by previous molecular and morphological evidence, we found strong evidence that all the species except C. candida are of subgeneric hybrid origin. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. A segment of the apospory-specific genomic region is highly microsyntenic not only between the apomicts Pennisetum squamulatum and buffelgrass, but also with a rice chromosome 11 centromeric-proximal genomic region.

    Science.gov (United States)

    Gualtieri, Gustavo; Conner, Joann A; Morishige, Daryl T; Moore, L David; Mullet, John E; Ozias-Akins, Peggy

    2006-03-01

    Bacterial artificial chromosome (BAC) clones from apomicts Pennisetum squamulatum and buffelgrass (Cenchrus ciliaris), isolated with the apospory-specific genomic region (ASGR) marker ugt197, were assembled into contigs that were extended by chromosome walking. Gene-like sequences from contigs were identified by shotgun sequencing and BLAST searches, and used to isolate orthologous rice contigs. Additional gene-like sequences in the apomicts' contigs were identified by bioinformatics using fully sequenced BACs from orthologous rice contigs as templates, as well as by interspecies, whole-contig cross-hybridizations. Hierarchical contig orthology was rapidly assessed by constructing detailed long-range contig molecular maps showing the distribution of gene-like sequences and markers, and searching for microsyntenic patterns of sequence identity and spatial distribution within and across species contigs. We found microsynteny between P. squamulatum and buffelgrass contigs. Importantly, this approach also enabled us to isolate from within the rice (Oryza sativa) genome contig Rice A, which shows the highest microsynteny and is most orthologous to the ugt197-containing C1C buffelgrass contig. Contig Rice A belongs to the rice genome database contig 77 (according to the current September 12, 2003, rice fingerprint contig build) that maps proximal to the chromosome 11 centromere, a feature that interestingly correlates with the mapping of ASGR-linked BACs proximal to the centromere or centromere-like sequences. Thus, relatedness between these two orthologous contigs is supported both by their molecular microstructure and by their centromeric-proximal location. Our discoveries promote the use of a microsynteny-based positional-cloning approach using the rice genome as a template to aid in constructing the ASGR toward the isolation of genes underlying apospory.

  6. Polyploidization of murine mesenchymal cells is associated with suppression of the long noncoding RNA H19 and reduced tumorigenicity.

    Science.gov (United States)

    Shoshani, Ofer; Massalha, Hassan; Shani, Nir; Kagan, Sivan; Ravid, Orly; Madar, Shalom; Trakhtenbrot, Luba; Leshkowitz, Dena; Rechavi, Gideon; Zipori, Dov

    2012-12-15

    Mesenchymal stromal cells (MSC) are used extensively in clinical trials; however, the possibility that MSCs have a potential for malignant transformation was raised. We examined the genomic stability versus the tumor-forming capacity of multiple mouse MSCs. Murine MSCs have been shown to be less stable and more prone to malignant transformation than their human counterparts. A large series of independently isolated MSC populations exhibited low tumorigenic potential under syngeneic conditions, which increased in immunocompromised animals. Unexpectedly, higher ploidy correlated with reduced tumor-forming capacity. Furthermore, in both cultured MSCs and primary hepatocytes, polyploidization was associated with a dramatic decrease in the expression of the long noncoding RNA H19. Direct knockdown of H19 expression in diploid cells resulted in acquisition of polyploid cell traits. Moreover, artificial tetraploidization of diploid cancer cells led to a reduction of H19 levels, as well as to an attenuation of the tumorigenic potential. Polyploidy might therefore serve as a protective mechanism aimed at reducing malignant transformation through the involvement of the H19 regulatory long noncoding RNA.

  7. A New Perspective on Polyploid Fragaria (Strawberry) Genome Composition Based on Large-Scale, Multi-Locus Phylogenetic Analysis

    OpenAIRE

    Yang, Yilong; Davis, Thomas M

    2017-01-01

    Abstract The subgenomic compositions of the octoploid (2n = 8× = 56) strawberry (Fragaria) species, including the economically important cultivated species Fragaria x ananassa, have been a topic of long-standing interest. Phylogenomic approaches utilizing next-generation sequencing technologies offer a new window into species relationships and the subgenomic compositions of polyploids. We have conducted a large-scale phylogenetic analysis of Fragaria (strawberry) species using the Fluidigm Ac...

  8. A Segment of the Apospory-Specific Genomic Region Is Highly Microsyntenic Not Only between the Apomicts Pennisetum squamulatum and Buffelgrass, But Also with a Rice Chromosome 11 Centromeric-Proximal Genomic Region1[W

    Science.gov (United States)

    Gualtieri, Gustavo; Conner, Joann A.; Morishige, Daryl T.; Moore, L. David; Mullet, John E.; Ozias-Akins, Peggy

    2006-01-01

    Bacterial artificial chromosome (BAC) clones from apomicts Pennisetum squamulatum and buffelgrass (Cenchrus ciliaris), isolated with the apospory-specific genomic region (ASGR) marker ugt197, were assembled into contigs that were extended by chromosome walking. Gene-like sequences from contigs were identified by shotgun sequencing and BLAST searches, and used to isolate orthologous rice contigs. Additional gene-like sequences in the apomicts' contigs were identified by bioinformatics using fully sequenced BACs from orthologous rice contigs as templates, as well as by interspecies, whole-contig cross-hybridizations. Hierarchical contig orthology was rapidly assessed by constructing detailed long-range contig molecular maps showing the distribution of gene-like sequences and markers, and searching for microsyntenic patterns of sequence identity and spatial distribution within and across species contigs. We found microsynteny between P. squamulatum and buffelgrass contigs. Importantly, this approach also enabled us to isolate from within the rice (Oryza sativa) genome contig Rice A, which shows the highest microsynteny and is most orthologous to the ugt197-containing C1C buffelgrass contig. Contig Rice A belongs to the rice genome database contig 77 (according to the current September 12, 2003, rice fingerprint contig build) that maps proximal to the chromosome 11 centromere, a feature that interestingly correlates with the mapping of ASGR-linked BACs proximal to the centromere or centromere-like sequences. Thus, relatedness between these two orthologous contigs is supported both by their molecular microstructure and by their centromeric-proximal location. Our discoveries promote the use of a microsynteny-based positional-cloning approach using the rice genome as a template to aid in constructing the ASGR toward the isolation of genes underlying apospory. PMID:16415213

  9. Comparative inference of duplicated genes produced by polyploidization in soybean genome.

    Science.gov (United States)

    Yang, Yanmei; Wang, Jinpeng; Di, Jianyong

    2013-01-01

    Soybean (Glycine max) is one of the most important crop plants for providing protein and oil. It is important to investigate soybean genome for its economic and scientific value. Polyploidy is a widespread and recursive phenomenon during plant evolution, and it could generate massive duplicated genes which is an important resource for genetic innovation. Improved sequence alignment criteria and statistical analysis are used to identify and characterize duplicated genes produced by polyploidization in soybean. Based on the collinearity method, duplicated genes by whole genome duplication account for 70.3% in soybean. From the statistical analysis of the molecular distances between duplicated genes, our study indicates that the whole genome duplication event occurred more than once in the genome evolution of soybean, which is often distributed near the ends of chromosomes.

  10. Novel functions for atypical E2Fs, E2F7 and E2F8, in polyploidization and liver cancer

    NARCIS (Netherlands)

    Pandit, Shusil Kumar

    2014-01-01

    Atypical E2F transcription factors, E2F7 and E2F8, function as transcriptional repressors of E2F target genes and are crucial for controlling the cell proliferation. In this thesis, we reveal that these two factors are crucial for liver cell polyploidization, embryonic development and prevention of

  11. Bone marrow niche-inspired, multiphase expansion of megakaryocytic progenitors with high polyploidization potential.

    Science.gov (United States)

    Panuganti, Swapna; Papoutsakis, Eleftherios T; Miller, William M

    2010-10-01

    Megakaryopoiesis encompasses hematopoietic stem and progenitor cell (HSPC) commitment to the megakaryocytic cell (Mk) lineage, expansion of Mk progenitors and mature Mks, polyploidization and platelet release. pH and pO2 increase from the endosteum to sinuses, and different cytokines are important for various stages of differentiation. We hypothesized that mimicking the changing conditions during Mk differentiation in the bone marrow would facilitate expansion of progenitors that could generate many high-ploidy Mks. CD34+ HSPCs were cultured at pH 7.2 and 5% O2 with stem cell factor (SCF), thrombopoietin (Tpo) and all combinations of Interleukin (IL)-3, IL-6, IL-11 and Flt-3 ligand to promote Mk progenitor expansion. Cells cultured with selected cytokines were shifted to pH 7.4 and 20% O2 to generate mature Mks, and treated with nicotinamide (NIC) to enhance polyploidization. Using Tpo + SCF + IL-3 + IL-11, we obtained 3.5 CD34+ CD41+ Mk progenitors per input HSPC, while increasing purity from 1% to 17%. Cytokine cocktails with IL-3 yielded more progenitors and mature Mks, although the purities were lower. Mk production was much greater at higher pH and pO2. Although fewer progenitors were present, shifting to 20% O2 /pH 7.4 at day 5 (versus days 7 or 9) yielded the greatest mature Mk production, 14 per input HSPC. NIC more than doubled the percentage of high-ploidy Mks to 40%. We obtained extensive Mk progenitor expansion, while ensuring that the progenitors could produce high-ploidy Mks. We anticipate that subsequent optimization of cytokines for mature Mk production and delayed NIC addition will greatly increase high-ploidy Mk production.

  12. Propagule pressure, genetic structure, and geographic origins of Chondrilla juncea (Asteraceae): an apomictic invader on three continents.

    Science.gov (United States)

    Gaskin, John F; Schwarzländer, Mark; Kinter, C Lynn; Smith, James F; Novak, Stephen J

    2013-09-01

    Assessing propagule pressure and geographic origins of invasive species provides insight into the invasion process. Rush skeletonweed (Chondrilla juncea; Asteraceae) is an apomictic, perennial plant that is invasive in Australia, South America (Argentina), and North America (Canada and the United States). This study comprehensively compares propagule pressure and geographic structure of genotypes to improve our understanding of a clonal invasion and enhance management strategies. • We analyzed 1056 native range plants from Eurasia and 1156 plants from three invaded continents using amplified fragment length polymorphism (AFLP) techniques. We used measures of diversity (Simpson's D) and evenness (E), analysis of molecular variance, and Mantel tests to compare invasions, and genotype similarity to determine origins of invasive genotypes. • We found 682 unique genotypes in the native range, but only 13 in the invaded regions. Each invaded region contained distinct AFLP genotypes, suggesting independent introduction events, probably with different geographic origins. Relatively low propagule pressure was associated with each introduction around the globe, but levels of among-population variation differed. We found exact AFLP genotype matches between the native and invaded ranges for five of the 13 invasive genotypes. • Invasion dynamics can vary across invaded ranges within a species. Intensive sampling for molecular analyses can provide insight for understanding intraspecific invasion dynamics, which can hold significance for the management of plant species, especially by finding origins and distributions of invasive genotypes for classical biological control efforts.

  13. The pachytene checkpoint and its relationship to evolutionary patterns of polyploidization and hybrid sterility.

    Science.gov (United States)

    Li, X C; Barringer, B C; Barbash, D A

    2009-01-01

    Sterility is a commonly observed phenotype in interspecific hybrids. Sterility may result from chromosomal or genic incompatibilities, and much progress has been made toward understanding the genetic basis of hybrid sterility in various taxa. The underlying mechanisms causing hybrid sterility, however, are less well known. The pachytene checkpoint is a meiotic surveillance system that many organisms use to detect aberrant meiotic products, in order to prevent the production of defective gametes. We suggest that activation of the pachytene checkpoint may be an important mechanism contributing to two types of hybrid sterility. First, the pachytene checkpoint may form the mechanistic basis of some gene-based hybrid sterility phenotypes. Second, the pachytene checkpoint may be an important mechanism that mediates chromosomal-based hybrid sterility phenotypes involving gametes with non-haploid (either non-reduced or aneuploid) chromosome sets. Studies in several species suggest that the strength of the pachytene checkpoint is sexually dimorphic, observations that warrant future investigation into whether such variation may contribute to differences in patterns of sterility between male and female interspecific hybrids. In addition, plants seem to lack the pachytene checkpoint, which correlates with increased production of unreduced gametes and a higher incidence of polyploid species in plants versus animals. Although the pachytene checkpoint occurs in many animals and in fungi, at least some of the genes that execute the pachytene checkpoint are different among organisms. This finding suggests that the penetrance of the pachytene checkpoint, and even its presence or absence can evolve rapidly. The surprising degree of evolutionary flexibility in this meiotic surveillance system may contribute to the observed variation in patterns of hybrid sterility and in rates of polyploidization.

  14. Biological effects in natural populations of small rodents in radiocontaminated areas. The frequency of bone marrow polyploid cells in bank voles in different years following the Chernobyl accident

    International Nuclear Information System (INIS)

    Ryabokon', N.I.

    1999-01-01

    On the basis of metaphase analysis results the peculiarities of dynamics of genome mutation frequency (polyploid cells) were studied in bone marrow of bank voles inhibiting the areas with different contamination level due to the Chernobyl accident (8-1526 kBq/m 2 for 137 Cs) in 1986-1991. Unexpectedly high frequencies of polyploid cells exceeding the pre-accidental level by factor of 10 1 -10 3 were recorded in all populations studied. Relationship between the frequency of parameter studied and the concentration of radionuclides incorporated in animal carcasses was proved. Statistically significant rise in the frequency of genome mutations with the time was revealed up to 1991, i.e. approximately to 12-th post-accidental animal generation [ru

  15. [Rat cardiomyocyte remodeling after neonatal cryptosporidiosis. II. Elongation, excessive polyploidization and HIF-1alpha overexpression].

    Science.gov (United States)

    Anatskaia, O V; Sidorenko, N V; Matveev, I V; Kropotov, A V; Vinogradov, A E

    2012-01-01

    Retrospective epidemyological studies evidence that infant diseases leave survivors with an increased susceptibility to cardiovascular diseases in later life. At the same time, the mechanisms of this link remain poorly understood. Based on medical statistics reporting that infectious gastroenteritis is the most common cause of maladies in babies, infants and children, we analysed the effects of moderate cryptosporidial gastroenteritis on the heart and ventricular cardiomyocyte remodelling in rats of the first month of life. The disease was challenged by a worldwide human protozoic pathogen Cryptosporidium parvum (Apicomplexa, Sporozoa). The main symptoms manifested in the growth retardation moderate diarrhea. Using real-time PCR, cytophotometry, confocal microscopy and image analysis, we indicated that cryptosporidiosis was associated, with the atrophy heart and the elongation, narrowing, protein content decrease and hyperpolyploidization of cardiomyocytes and the moderate overexpression of hypoxia inducible factor 1alpha (HIF-1alpha) mRNA. Cardiomyocyte shape remodeling and heart atrophy presented in all age groups. The severity of these changes, hovewer, declined gradually from younger to older groups. In contrast, hyperpolyploidization and HIF-1alpha mRNA overexpression were registered mainly among animals aged between 6 and 13 days, and were barely detected and non-significant in older age groups. In the rat the time period covering 6-13 days after birth is known to coincide with the intensive cardiomyocyte polyploidization and the switch from proliferation to hypertrophy. Thus, our data indicate that neonatal cryptosporidiosis may be potential cardiovascular diseases risk factor and that one of the critical time windows for the growing heart covers the time period when cardiomyocyte undergo polyploidization.

  16. Quantification of ploidy in proteobacteria revealed the existence of monoploid, (mero-oligoploid and polyploid species.

    Directory of Open Access Journals (Sweden)

    Vito Pecoraro

    Full Text Available Bacteria are generally assumed to be monoploid (haploid. This assumption is mainly based on generalization of the results obtained with the most intensely studied model bacterium, Escherichia coli (a gamma-proteobacterium, which is monoploid during very slow growth. However, several species of proteobacteria are oligo- or polyploid, respectively. To get a better overview of the distribution of ploidy levels, genome copy numbers were quantified in four species of three different groups of proteobacteria. A recently developed Real Time PCR approach, which had been used to determine the ploidy levels of halophilic archaea, was optimized for the quantification of genome copy numbers of bacteria. Slow-growing (doubling time 103 minutes and fast-growing (doubling time 25 minutes E. coli cultures were used as a positive control. The copy numbers of the origin and terminus region of the chromosome were determined and the results were in excellent agreement with published data. The approach was also used to determine the ploidy levels of Caulobacter crescentus (an alpha-proteobacterium and Wolinella succinogenes (an epsilon-proteobacterium, both of which are monoploid. In contrast, Pseudomonas putida (a gamma-proteobacterium contains 20 genome copies and is thus polyploid. A survey of the proteobacteria with experimentally-determined genome copy numbers revealed that only three to four of 11 species are monoploid and thus monoploidy is not typical for proteobacteria. The ploidy level is not conserved within the groups of proteobacteria, and there are no obvious correlations between the ploidy levels with other parameters like genome size, optimal growth temperature or mode of life.

  17. Basic chromosome numbers and polyploid levels in some South African and Australian grasses (Poaceae

    Directory of Open Access Journals (Sweden)

    J. J. Spies

    1991-10-01

    Full Text Available Chromosome numbers of 46 specimens of grasses, involving 24 taxa from South Africa and Australia, have been determined during the present study. For the first time chromosome numbers are given for Eragrostis sarmentosa (Thunb. Trin. (n = 20. Panicum aequinerve Nees (n = 18,  Digitaria argyrograpta (Nees Stapf (n = 9 and D. maitlandii Stapf & C.E. Hubb. (n = 9. Additional polyploid levels are described for Diplachne fusca (L. Beauv. ex Roem. & Schult. (n = 10 and Digitaria diagonalis (Nees Stapf var.  diagonalis (n = 9. B-chromosomes were observed in several different specimens. The presence of B-chromosomes often results in abnormal chromosomal behaviour during meiosis.

  18. Apomixis and the problem of obtaining haploids and homozygote diploids in pear (Pyrus communis L.

    Directory of Open Access Journals (Sweden)

    Є. О. Долматов

    2013-02-01

    Full Text Available The article highlights results of research over simulative apomixes in pear and its utilization for obtaining haploids and homozygote diploids. It has been established that over 50% pear varieties with failed remote hybridization are capable of generating seeds of apomictic origin producing diploid plants. Genotypes displaying maximal inclination to apomixes have been singled out. Apomictic pear seedlings obtained from foreign pollination within the limits of the same combination are inherent in profound morphological diversity. Fruit-bearing apomicts originated from one and the same maternal plant differ to the same extent as hybrid seedlings of the same family. Genetic markers have enabled to establish that these are embryo sacs in which meiosis has completed that give rise to apomictic seeds. In vitro method as used for the purpose of increasing apomictic plants output has been illustrated. The greatest induction of apomictic shoots in vitro has been reached by alternation of BAP cytokinin at concentration of 1mg/l and 2 mg/l on the background of GA3 amounting to 1,5 mg/l. Grafting with shoots in vitro on non-sterile rootstocks of pear (Pyrus communis has increased the output of plants up to 80%. A cytological assessment of 9 apomictic samples is provided. The cytological analysis of samples of apomictic forms has certified the presence of simulative haploid parthenogenesis in pear.

  19. Extensive and biased intergenomic nonreciprocal DNA exchanges shaped a nascent polyploid genome, Gossypium (cotton).

    Science.gov (United States)

    Guo, Hui; Wang, Xiyin; Gundlach, Heidrun; Mayer, Klaus F X; Peterson, Daniel G; Scheffler, Brian E; Chee, Peng W; Paterson, Andrew H

    2014-08-01

    Genome duplication is thought to be central to the evolution of morphological complexity, and some polyploids enjoy a variety of capabilities that transgress those of their diploid progenitors. Comparison of genomic sequences from several tetraploid (AtDt) Gossypium species and genotypes with putative diploid A- and D-genome progenitor species revealed that unidirectional DNA exchanges between homeologous chromosomes were the predominant mechanism responsible for allelic differences between the Gossypium tetraploids and their diploid progenitors. Homeologous gene conversion events (HeGCEs) gradually subsided, declining to rates similar to random mutation during radiation of the polyploid into multiple clades and species. Despite occurring in a common nucleus, preservation of HeGCE is asymmetric in the two tetraploid subgenomes. At-to-Dt conversion is far more abundant than the reciprocal, is enriched in heterochromatin, is highly correlated with GC content and transposon distribution, and may silence abundant A-genome-derived retrotransposons. Dt-to-At conversion is abundant in euchromatin and genes, frequently reversing losses of gene function. The long-standing observation that the nonspinnable-fibered D-genome contributes to the superior yield and quality of tetraploid cotton fibers may be explained by accelerated Dt to At conversion during cotton domestication and improvement, increasing dosage of alleles from the spinnable-fibered A-genome. HeGCE may provide an alternative to (rare) reciprocal DNA exchanges between chromosomes in heterochromatin, where genes have approximately five times greater abundance of Dt-to-At conversion than does adjacent intergenic DNA. Spanning exon-to-gene-sized regions, HeGCE is a natural noninvasive means of gene transfer with the precision of transformation, potentially important in genetic improvement of many crop plants. Copyright © 2014 by the Genetics Society of America.

  20. Bone marrow niche-inspired, multi-phase expansion of megakaryocytic progenitors with high polyploidization potential

    Science.gov (United States)

    Panuganti, Swapna; Papoutsakis, Eleftherios T.; Miller, William M.

    2010-01-01

    Background Megakaryopoiesis encompasses hematopoietic stem and progenitor cell (HSPC) commitment to the megakaryocytic cell (Mk) lineage, expansion of Mk progenitors and mature Mks, polyploidization, and platelet release. pH and pO2 increase from the endosteum to sinuses, and different cytokines are important for various stages of differentiation. We hypothesized that mimicking the changing conditions during Mk differentiation in the bone marrow would facilitate expansion of progenitors that could generate many high-ploidy Mks. Methods CD34+ HSPCs were cultured at pH 7.2 and 5% O2 with stem cell factor (SCF), thrombopoietin (Tpo), and all combinations of Interleukin (IL)-3, IL-6, IL-11, and Flt-3 ligand to promote Mk progenitor expansion. Cells cultured with selected cytokines were shifted to pH 7.4 and 20% O2 to generate mature Mks, and treated with nicotinamide to enhance polyploidization. Results Using Tpo+SCF+IL-3+IL-11, we obtained 3.5 CD34+CD41+ Mk progenitors per input HSPC, while increasing purity from 1% to 17%. Cytokine cocktails with IL-3 yielded more progenitors and mature Mks, although the purities were lower. Mk production was much greater at higher pH and pO2. Although fewer progenitors were present, shifting to 20% O2/pH 7.4 at day 5 (versus days 7 or 9) yielded the greatest mature Mk production, 14 per input HSPC. Nicotinamide more than doubled the percentage of high-ploidy Mks to 40%. Discussion We obtained extensive Mk progenitor expansion, while ensuring that the progenitors could produce high-ploidy Mks. We anticipate that subsequent optimization of cytokines for mature Mk production and delayed nicotinamide addition will greatly increase high-ploidy Mk production. PMID:20482285

  1. Construction of a plant-transformation-competent BIBAC library and genome sequence analysis of polyploid Upland cotton (Gossypium hirsutum L.).

    Science.gov (United States)

    Lee, Mi-Kyung; Zhang, Yang; Zhang, Meiping; Goebel, Mark; Kim, Hee Jin; Triplett, Barbara A; Stelly, David M; Zhang, Hong-Bin

    2013-03-28

    Cotton, one of the world's leading crops, is important to the world's textile and energy industries, and is a model species for studies of plant polyploidization, cellulose biosynthesis and cell wall biogenesis. Here, we report the construction of a plant-transformation-competent binary bacterial artificial chromosome (BIBAC) library and comparative genome sequence analysis of polyploid Upland cotton (Gossypium hirsutum L.) with one of its diploid putative progenitor species, G. raimondii Ulbr. We constructed the cotton BIBAC library in a vector competent for high-molecular-weight DNA transformation in different plant species through either Agrobacterium or particle bombardment. The library contains 76,800 clones with an average insert size of 135 kb, providing an approximate 99% probability of obtaining at least one positive clone from the library using a single-copy probe. The quality and utility of the library were verified by identifying BIBACs containing genes important for fiber development, fiber cellulose biosynthesis, seed fatty acid metabolism, cotton-nematode interaction, and bacterial blight resistance. In order to gain an insight into the Upland cotton genome and its relationship with G. raimondii, we sequenced nearly 10,000 BIBAC ends (BESs) randomly selected from the library, generating approximately one BES for every 250 kb along the Upland cotton genome. The retroelement Gypsy/DIRS1 family predominates in the Upland cotton genome, accounting for over 77% of all transposable elements. From the BESs, we identified 1,269 simple sequence repeats (SSRs), of which 1,006 were new, thus providing additional markers for cotton genome research. Surprisingly, comparative sequence analysis showed that Upland cotton is much more diverged from G. raimondii at the genomic sequence level than expected. There seems to be no significant difference between the relationships of the Upland cotton D- and A-subgenomes with the G. raimondii genome, even though G

  2. Depletion of Key Meiotic Genes and Transcriptome-Wide Abiotic Stress Reprogramming Mark Early Preparatory Events Ahead of Apomeiotic Transition

    Directory of Open Access Journals (Sweden)

    Jubin N Shah

    2016-10-01

    Full Text Available Molecular dissection of apomixis - an asexual reproductive mode - is anticipated to solve the enigma of loss of meiotic sex, and to help fixing elite agronomic traits. The Brassicaceae genus Boechera comprises of both sexual and apomictic species, permitting comparative analyses of meiotic circumvention (apomeiosis and parthenogenesis. Whereas previous studies reported local transcriptome changes during these events, it remained unclear whether global changes associated with hybridization, polyploidy and environmental adaptation that arose during evolution of Boechera might hint as (epigenetic regulators of early development prior apomictic initiation. To identify these signatures during vegetative stages, we compared seedling RNA-seq transcriptomes of an obligate triploid apomict and a diploid sexual, both isolated from a drought-prone habitat. Uncovered were several genes differentially expressed between sexual and apomictic seedlings, including homologues of meiotic genes ASYNAPTIC 1 (ASY1 and MULTIPOLAR SPINDLE 1 (MPS1 that were down-regulated in apomicts. An intriguing class of apomict-specific deregulated genes included several NAC transcription factors, homologues of which are known to be transcriptionally reprogrammed during abiotic stress in other plants. Deregulation of both meiotic and stress-response genes during seedling stages might possibly be important in preparation for meiotic circumvention, as similar transcriptional alteration was discernible in apomeiotic floral buds too. Furthermore, we noted that the apomict showed better tolerance to osmotic stress in vitro than the sexual, in conjunction with significant upregulation of a subset of NAC genes. In support of the current model that DNA methylation epigenetically regulates stress, ploidy, hybridization and apomixis, we noted that ASY1, MPS1 and NAC019 homologues were deregulated in Boechera seedlings upon DNA demethylation, and ASY1 in particular seems to be repressed by

  3. Genomic Imprinting Was Evolutionarily Conserved during Wheat Polyploidization.

    Science.gov (United States)

    Yang, Guanghui; Liu, Zhenshan; Gao, Lulu; Yu, Kuohai; Feng, Man; Yao, Yingyin; Peng, Huiru; Hu, Zhaorong; Sun, Qixin; Ni, Zhongfu; Xin, Mingming

    2018-01-01

    Genomic imprinting is an epigenetic phenomenon that causes genes to be differentially expressed depending on their parent of origin. To evaluate the evolutionary conservation of genomic imprinting and the effects of ploidy on this process, we investigated parent-of-origin-specific gene expression patterns in the endosperm of diploid ( Aegilops spp), tetraploid, and hexaploid wheat ( Triticum spp) at various stages of development via high-throughput transcriptome sequencing. We identified 91, 135, and 146 maternally or paternally expressed genes (MEGs or PEGs, respectively) in diploid, tetraploid, and hexaploid wheat, respectively, 52.7% of which exhibited dynamic expression patterns at different developmental stages. Gene Ontology enrichment analysis suggested that MEGs and PEGs were involved in metabolic processes and DNA-dependent transcription, respectively. Nearly half of the imprinted genes exhibited conserved expression patterns during wheat hexaploidization. In addition, 40% of the homoeolog pairs originating from whole-genome duplication were consistently maternally or paternally biased in the different subgenomes of hexaploid wheat. Furthermore, imprinted expression was found for 41.2% and 50.0% of homolog pairs that evolved by tandem duplication after genome duplication in tetraploid and hexaploid wheat, respectively. These results suggest that genomic imprinting was evolutionarily conserved between closely related Triticum and Aegilops species and in the face of polyploid hybridization between species in these genera. © 2018 American Society of Plant Biologists. All rights reserved.

  4. Identification of a potent small molecule capable of regulating polyploidization, megakaryocyte maturation, and platelet production.

    Science.gov (United States)

    Huang, Nick; Lou, Mabel; Liu, Hua; Avila, Cecilia; Ma, Yupo

    2016-12-08

    Megakaryocytic cell maturation involves polyploidization, and megakaryocyte (MK) ploidy correlates with their maturation and platelet production. Retardation of MK maturation is closely associated with poor MK engraftment after cord blood transplantation and neonatal thrombocytopenia. Despite the high prevalence of thrombocytopenia in a range of setting that affect infants to adults, there are still very limited modalities of treatment. Human CD34 + cells were isolated from cord blood or bone marrow samples acquired from consenting patients. Cells were cultured and induced using 616452 and compared to current drugs on the market such as rominplostim or TPO. Ploidy analysis was completed using propidium iodide staining and flow cytometry analysis. Animal studies consisted of transplanting human CD34 + cells into NOD.Cg-Prkdc scid Il2rg tm1Wjl /SzJ mice followed by daily injections of 15 mg/kg of 616452. Within one week of culture, the chemical was able to induce polyploidization, the process required for megakaryocyte maturation with the accumulation of DNA content, to 64 N or greater to achieve a relative adult size. We observed fold increases as high as 200-fold in cells of 16 N or greater compared to un-induced cells with a dose-dependent manner. In addition, MK differentiated in the presence of 616452 demonstrated a more robust capacity of MK differentiation than that of MKs cultured with rominplostim used for adult idiopathic thrombocytopenic purpura (ITP) patients. In mice transplanted with human cord blood, 616452 strikingly enhanced MK reconstitution in the marrow and human peripheral platelet production. The molecular therapeutic actions for this chemical may be through TPO-independent pathways. Our studies may have an important impact on our fundamental understanding of fetal MK biology, the clinical management of thrombocytopenic neonates and leukemic differentiation therapy.

  5. Apospory appears to accelerate onset of meiosis and sexual embryo sac formation in sorghum ovules

    Directory of Open Access Journals (Sweden)

    Elliott Estella

    2011-01-01

    Full Text Available Abstract Background Genetically unreduced (2n embryo sacs (ES form in ovules of gametophytic apomicts, the 2n eggs of which develop into embryos parthenogenetically. In many apomicts, 2n ES form precociously during ovule development. Whether meiosis and sexual ES formation also occur precociously in facultative apomicts (capable of apomictic and sexual reproduction has not been studied. We determined onset timing of meiosis and sexual ES formation for 569 Sorghum bicolor genotypes, many of which produced 2n ES facultatively. Results Genotype differences for onset timing of meiosis and sexual ES formation, relative to ovule development, were highly significant. A major source of variation in timing of sexual germline development was presence or absence of apomictic ES, which formed from nucellar cells (apospory in some genotypes. Genotypes that produced these aposporous ES underwent meiosis and sexual ES formation precociously. Aposporous ES formation was most prevalent in subsp. verticilliflorum and in breeding lines of subsp. bicolor. It was uncommon in land races. Conclusions The present study adds meiosis and sexual ES formation to floral induction, apomictic ES formation, and parthenogenesis as processes observed to occur precociously in apomictic plants. The temporally diverse nature of these events suggests that an epigenetic memory of the plants' apomixis status exists throughout its life cycle, which triggers, during multiple life cycle phases, temporally distinct processes that accelerate reproduction.

  6. Polyploidization without mitosis improves in vivo liver transduction with lentiviral vectors.

    Science.gov (United States)

    Pichard, Virginie; Couton, Dominique; Desdouets, Chantal; Ferry, Nicolas

    2013-02-01

    Lentiviral vectors are efficient gene delivery vehicles for therapeutic and research applications. In contrast to oncoretroviral vectors, they are able to infect most nonproliferating cells. In the liver, induction of cell proliferation dramatically improved hepatocyte transduction using all types of retroviral vectors. However, the precise relationship between hepatocyte division and transduction efficiency has not been determined yet. Here we compared gene transfer efficiency in the liver after in vivo injection of recombinant lentiviral or Moloney murine leukemia viral (MoMuLV) vectors in hepatectomized rats treated or not with retrorsine, an alkaloid that blocks hepatocyte division and induces megalocytosis. Partial hepatectomy alone resulted in a similar increase in hepatocyte transduction using either vector. In retrorsine-treated and partially hepatectomized rats, transduction with MoMuLV vectors dropped dramatically. In contrast, we observed that retrorsine treatment combined with partial hepatectomy increased lentiviral transduction to higher levels than hepatectomy alone. Analysis of nuclear ploidy in single cells showed that a high level of transduction was associated with polyploidization. In conclusion, endoreplication could be exploited to improve the efficiency of liver-directed lentiviral gene therapy.

  7. Meiotic behavior of two polyploid species of genus Pleurodema (Anura: Leiuperidae from central Argentina

    Directory of Open Access Journals (Sweden)

    Nancy E. Salas

    2014-06-01

    Full Text Available Polyploidy is an important evolutionary force but rare in vertebrates. However, in anurans, the genus Pleurodema has polyploid species, two of them tetraploid and one octoploid. The manner in which the chromosomes join in diakinesis can vary among species and, crucially, if they differ in their ploidy levels. In this work, we describe the meiotic configurations in two cryptic species from central Argentina, with different ploidy levels, Pleurodema kriegi (tetraploid and P. cordobae (octoploid. A total of 306 diakineses from 19 individuals were analyzed. In meiosis, P. kriegi form 22 bivalents, whereas P. cordobae exhibits variation in meiotic figures. We discuss the possible allo- and autopolyploid origin of these species, and we consider that the autopolyploid origin of P. cordobae from P. kriegi might be the most feasible.

  8. Gene Conversion in Angiosperm Genomes with an Emphasis on Genes Duplicated by Polyploidization

    Directory of Open Access Journals (Sweden)

    Xi-Yin Wang

    2011-01-01

    Full Text Available Angiosperm genomes differ from those of mammals by extensive and recursive polyploidizations. The resulting gene duplication provides opportunities both for genetic innovation, and for concerted evolution. Though most genes may escape conversion by their homologs, concerted evolution of duplicated genes can last for millions of years or longer after their origin. Indeed, paralogous genes on two rice chromosomes duplicated an estimated 60–70 million years ago have experienced gene conversion in the past 400,000 years. Gene conversion preserves similarity of paralogous genes, but appears to accelerate their divergence from orthologous genes in other species. The mutagenic nature of recombination coupled with the buffering effect provided by gene redundancy, may facilitate the evolution of novel alleles that confer functional innovations while insulating biological fitness of affected plants. A mixed evolutionary model, characterized by a primary birth-and-death process and occasional homoeologous recombination and gene conversion, may best explain the evolution of multigene families.

  9. Cyprininae phylogeny revealed independent origins of the Tibetan Plateau endemic polyploid cyprinids and their diversifications related to the Neogene uplift of the plateau.

    Science.gov (United States)

    Wang, Xuzhen; Gan, Xiaoni; Li, Junbing; Chen, Yiyu; He, Shunping

    2016-11-01

    Origin and diversification of the Tibetan polyploid cyprinids (schizothoracins) may help us to explore relationships between diversification of the cyprinids and the Tibetan Plateau uplift. Cyprininae phylogeny was analyzed using mitochondrial and nuclear DNA sequences to trace origins of polyploidy and diversifications of schizothoracins. Ancestral states reconstruction for ploidy levels indicated that the Cyprininae was diploid origin and the schizothoracin clades tetraploid origins. There were two diversification rate shifts along with diversification of the cyprinine fishes in response to the Tibetan uplift. The unusual diversification shifts were located to branches subtending the clades of Tibetan polyploid cyprinids. Our analyses suggested that (i) phylogeny of Cyprininae recovered two independent origins of the Tibetan polyploidy schizothoracins; (ii) diversifications of the schizothoracins were closely related to the Neogene uplift of the Tibetan plateau in the following ways: the relatively ancient Late Oligocene-Middle Miocene adaptive radiation may be associated with the uplift of the southern Tibet and Himalaya; the Middle Miocene-Early Pleistocene lineage-specific diversification broadly coincident with major phase of the Neogene Tibetan uplift; and the most recent Pleistocene diversification shift in Schizothorax closely coincident with the successive Kunlun-Huanghe and Gonghe movements of the Tibetan uplift and the glaciation-induced climate oscillations on the plateau.

  10. The effect of polyploidization on tree hydraulic functioning.

    Science.gov (United States)

    De Baerdemaeker, Niels J F; Hias, Niek; Van den Bulcke, Jan; Keulemans, Wannes; Steppe, Kathy

    2018-02-01

    Recent research has highlighted the importance of living tissue in wood. Polyploidization can impact amounts and arrangements of living cells in wood, potentially leading to increased drought tolerance. Tetraploid variants were created from the apple cultivar Malus ×domestica 'Gala' (Gala-4x), and their vulnerability to drought-induced cavitation and their hydraulic capacitance were compared to those of their diploid predecessors (Gala-2x). Assuming a positive correlation between polyploidy and drought tolerance, we hypothesized lower vulnerability and higher capacitance for the tetraploid. Vulnerability to drought-induced cavitation and the hydraulic capacitance were quantified through acoustic emission and continuous weighing of shoots during a bench-top dehydration experiment. To underpin the hydraulic trait results, anatomical variables such as vessel area, conduit diameter, cell wall reinforcement, and ray and vessel-associated parenchyma were measured. Vulnerability to drought-induced cavitation was intrinsically equal for both ploidy variants, but Gala-4x proved to be more vulnerable than Gala-2x during the early phase of desiccation as was indicated by its significantly lower air entry value. Higher change in water content of the leafy shoot, higher amount of parenchyma, and larger vessel area and size resulted in a significantly higher hydraulic capacitance and efficiency for Gala-4x compared to Gala-2x. Both ploidy variants were typified as highly sensitive to drought-induced cavitation, with no significant difference in their overall drought vulnerability. But, when water deficit is short and moderate, Gala-4x may delay a drought-induced decrease in performance by trading hydraulic safety for increased release of capacitively stored water from living tissue. © 2018 Botanical Society of America.

  11. Nuclear and plastid haplotypes suggest rapid diploid and polyploid speciation in the N Hemisphere Achillea millefolium complex (Asteraceae

    Directory of Open Access Journals (Sweden)

    Guo Yan-Ping

    2012-01-01

    Full Text Available Abstract Background Species complexes or aggregates consist of a set of closely related species often of different ploidy levels, whose relationships are difficult to reconstruct. The N Hemisphere Achillea millefolium aggregate exhibits complex morphological and genetic variation and a broad ecological amplitude. To understand its evolutionary history, we study sequence variation at two nuclear genes and three plastid loci across the natural distribution of this species complex and compare the patterns of such variations to the species tree inferred earlier from AFLP data. Results Among the diploid species of A. millefolium agg., gene trees of the two nuclear loci, ncpGS and SBP, and the combined plastid fragments are incongruent with each other and with the AFLP tree likely due to incomplete lineage sorting or secondary introgression. In spite of the large distributional range, no isolation by distance is found. Furthermore, there is evidence for intragenic recombination in the ncpGS gene. An analysis using a probabilistic model for population demographic history indicates large ancestral effective population sizes and short intervals between speciation events. Such a scenario explains the incongruence of the gene trees and species tree we observe. The relationships are particularly complex in the polyploid members of A. millefolium agg. Conclusions The present study indicates that the diploid members of A. millefolium agg. share a large part of their molecular genetic variation. The findings of little lineage sorting and lack of isolation by distance is likely due to short intervals between speciation events and close proximity of ancestral populations. While previous AFLP data provide species trees congruent with earlier morphological classification and phylogeographic considerations, the present sequence data are not suited to recover the relationships of diploid species in A. millefolium agg. For the polyploid taxa many hybrid links and

  12. Evolutionary dynamics of the Pgk1 gene in the polyploid genus Kengyilia (Triticeae: Poaceae and its diploid relatives.

    Directory of Open Access Journals (Sweden)

    Xing Fan

    Full Text Available The level and pattern of nucleotide variation in duplicate gene provide important information on the evolutionary history of polyploids and divergent process between homoeologous loci within lineages. Kengyilia is a group of allohexaploid species with the StYP genomic constitutions in the wheat tribe. To investigate the evolutionary dynamics of the Pgk1 gene in Kengyilia and its diploid relatives, three copies of Pgk1 homoeologues were isolated from all sampled hexaploid Kengyilia species and analyzed with the Pgk1 sequences from 47 diploid taxa representing 18 basic genomes in Triticeae. Sequence diversity patterns and genealogical analysis suggested that (1 Kengyilia species from the Central Asia and the Qinghai-Tibetan plateau have independent origins with geographically differentiated P genome donors and diverged levels of nucleotide diversity at Pgk1 locus; (2 a relatively long-time sweep event has allowed the Pgk1 gene within Agropyron to adapt to cold climate triggered by the recent uplifts of the Qinghai-Tibetan Plateau; (3 sweep event and population expansion might result in the difference in the d(N/d(S value of the Pgk1 gene in allopatric Agropyron populations, and this difference may be genetically transmitted to Kengyilia lineages via independent polyploidization events; (4 an 83 bp MITE element insertion has shaped the Pgk1 loci in the P genome lineage with different geographical regions; (5 the St and P genomes in Kengyilia were donated by Pseudoroegneria and Agropyron, respectively, and the Y genome is closely related to the Xp genome of Peridictyon sanctum. The interplay of evolutionary forces involving diverged natural selection, population expansion, and transposable events in geographically differentiated P genome donors could attribute to geographical differentiation of Kengyilia species via independent origins.

  13. Increase of genetic variation in 'Blue Daisy' (Brachycome multifida) by in-vitro mutagenesis and polyploidization

    International Nuclear Information System (INIS)

    Walther, F.; Sauer, A.

    1989-01-01

    'Blue Daisy' was recently introduced from Australia and became a popular ornamental in Europe, but it lacks genetic variation and does not produce seeds under European environment conditions. Thus, the development of new cultivars is handicapped. 'Blue Daisy' is vegetatively propagated by cuttings. Techniques were developed to increase genetic variation by in-vitro mutation induction and polyploidization. For in-vitro propagation nodal segments with one pinnate leaf were placed on MS-medium containing 0.1 mg/l NAA and 2 mg/l BAP (medium 'a') or 2 mg/l IAA and 0.2 mg/l BAP (medium 'b') solidified by 0.6% Oxoid agar. 25 deg C and 16 h illumination (800 lux) resulted in highest propagation rates. After 4 weeks on medium 'b' large numbers of axillary shoots could be cut off and placed for rooting on 1/3 strength MS-medium supplemented with 2 mg/l IAA. Another 3 weeks later plantlets could be transferred into the greenhouse for further cultivation. The chromosome number of B. multifida is 2n=14. Polyploidy was obtained by placing in-vitro derived explants for about 3 weeks on solid MS-medium 'a' containing 0.1% colchicine. The resulting axillary buds were transferred for 3-5 months to medium 'b' for shoot development. After rooting and transfer into the greenhouse polyploidy was first determined by comparison of pollen grains from treated and untreated plants. For confirmation, the number of chromosomes was counted using the orcein-acetic squash method. Two different polyploid types were obtained: one more erect and one more hanging phenotype, both having enlarged leaves and flowers. X-ray doses of 10-50 Gy were applied to freshly cut nodal segments. The explants were placed on solid medium 'b' in petri dishes. Inhibition of shoot development was used as criterium of radiosensitivity. The described procedure of in-vitro propagation of Brachycome during 3 years did not give any somaclonal variant. The shoots developing after application of X-rays were rooted and all

  14. DNA fingerprinting of Kentucky bluegrass cultivars and hybrids

    Science.gov (United States)

    As a high polyploidy, apomictic, self-incompatible, perennial grass, Kentucky bluegrass has such complex genetic architecture that conducting standard Mendelian genetic selection is currently impossible. One large hurdle is the inability to differentiate true hybrids from other apomictic progenies....

  15. Synergistic effects of polyploidization and elicitation on biomass and hyoscyamine content in hairy roots of Datura stramonium

    Directory of Open Access Journals (Sweden)

    Belabbassi, O.

    2016-01-01

    Full Text Available Description of the subject. The hyoscyamine, a tropane alkaloid, widely used in medicine, can be produced from Datura sp. (Solanaceae. However, its content in the spontaneous roots remains low; therefore, hairy roots (HRs were envisaged as a potential alternative to improve its biosynthesis. The hairy roots are characterized by a good genetic stability and a rapid growth. Indeed, Datura stramonium HRs have widely been studied in the perspective of improving the yield of hyoscyamine. This study is part of this same perspective. Objectives. This paper aims to study the effects of polyploidization of HRs induced by colchicine in synergy with elicitation (with acetylsalicylic [ASA] or salicylic acids [SA] on the hyoscyamine content in D. stramonium. Method. Colchicine was applied at different concentrations and periods, on a selected hairy root line (LDS of D. stramonium obtained by infection with Agrobactrium rhizogenes strain A4. The selection of tetraploid HR lines was performed by the cytogenetic analysis using light microscopy. The effect of polyploidization and elicitation was studied on the biomass (dry weight and hyoscyamine content of HRs. Results. The untreated HR line (control shows a diploid level with 2n = 24 chromosomes. However, the HR lines treated with colchicine show, in most cases, an endoreduplication of their genetic material. The survival rate of endoreduplicated lines varies between 30% and 93%, depending on concentration and exposure time to colchicine. Moreover, the tetraploid HR line shows an increase in its biomass and hyoscyamine content in comparison to the diploid HR line (LDS. Further, elicitation of HRs by ASA or AS at the 10-4 M concentration causes a low decrease or increase in dry weight, respectively. However, the same treatments show a significant increase in the yield of hyoscyamine in elicited HR lines. Consequently, our work indicates that the combination of polyploidy and elicitation can lead to significant

  16. Cr(VI) induces DNA damage, cell cycle arrest and polyploidization: a flow cytometric and comet assay study in Pisum sativum.

    Science.gov (United States)

    Rodriguez, Eleazar; Azevedo, Raquel; Fernandes, Pedro; Santos, Conceição

    2011-07-18

    Chromium(VI) is recognized as the most toxic valency of Cr, but its genotoxicity and cytostaticity in plants is still poorly studied. In order to analyze Cr(VI) cyto- and gentotoxicity, Pisum sativum L. plants were grown in soil and watered with solutions with different concentrations of Cr up to 2000 mg/L. After 28 days of exposure, leaves showed no significant variations in either cell cycle dynamics or ploidy level. As for DNA damage, flow cytometric (FCM) histograms showed significant differences in full peak coefficient of variation (FPCV) values, suggesting clastogenicity. This is paralleled by the Comet assay results, showing an increase in DNA damage for 1000 and 2000 mg/L. In roots, exposure to 2000 mg/L resulted in cell cycle arrest at the G(2)/M checkpoint. It was also verified that under the same conditions 40% of the individuals analyzed suffered polyploidization having both 2C and 4C levels. DNA damage analysis by the Comet assay and FCM revealed dose-dependent increases in DNA damage and FPCV. Through this, we have unequivocally demonstrated for the first time in plants that Cr exposure can result in DNA damage, cell cycle arrest, and polyploidization. Moreover, we critically compare the validity of the Comet assay and FCM in evaluating cytogenetic toxicity tests in plants and demonstrate that the data provided by both techniques complement each other and present high correlation levels. In conclusion, the data presented provides new insight on Cr effects in plants in general and supports the use of the parameters tested in this study as reliable endpoints for this metal toxicity in plants. © 2011 American Chemical Society

  17. Sexual polyploidization in red clover Poliploidização sexual em trevo vermelho

    Directory of Open Access Journals (Sweden)

    Carine Simioni

    2006-02-01

    Full Text Available Because sexual polyploidization broadens genetic basis and supply plant breeders with more variability for the selection process, it can be useful in red clover breeding. This paper reports results of three crossing cycles, starting from a parental generation of tetraploid red clover plants (female parent, and diploids from the Quiñiqueli cultivar, selected for production of more than 1% of giant pollen grains (male parent aiming to obtain tetraploid plants to be used in red clover breeding programs. Crosses in the next generations were performed by mutual cross-pollinations. Chromosome number chimerism and high pollen sterility were detected in F1, F2 and F3, but there was a trend towards increasing seed production and seed viability along the generations, probably due to successful competition between fertile and sterile gametes. The identification of fertile triploids, as well as their recurrent formation along the generations, indicates that triploid block is not complete in red clover, and that triploids may be successfully used as a bridge for the production of sexual polyploids.Porque a poliploidização sexual amplia a base genética e proporciona aos melhoristas maior variabilidade para o processo de seleção, ela pode ser uma ferramenta útil ao melhoramento de trevo vermelho. Com o objetivo de obter plantas tetraplóides que possam ser utilizadas em programas de melhoramento de trevo vermelho, este trabalho relata resultados de três ciclos de cruzamentos, partindo de uma população parental de plantas tetraplóides de trevo vermelho, como genitores femininos, e de diplóides da cultivar Quiñiqueli, selecionados para produção de mais de 1% de grãos de pólen gigantes, como genitores masculinos. Nas outras gerações, os cruzamentos foram realizados por polinizações cruzadas mútuas. Quimerismo para número cromossômico e alta esterilidade de pólen foram detectados em F1 , F2 e F3, mas houve uma tendência para aumento da

  18. Evidence of Allopolyploidy in Urochloa humidicola Based on Cytological Analysis and Genetic Linkage Mapping.

    Directory of Open Access Journals (Sweden)

    Bianca B Z Vigna

    Full Text Available The African species Urochloa humidicola (Rendle Morrone & Zuloaga (syn. Brachiaria humidicola (Rendle Schweick. is an important perennial forage grass found throughout the tropics. This species is polyploid, ranging from tetra to nonaploid, and apomictic, which makes genetic studies challenging; therefore, the number of currently available genetic resources is limited. The genomic architecture and evolution of U. humidicola and the molecular markers linked to apomixis were investigated in a full-sib F1 population obtained by crossing the sexual accession H031 and the apomictic cultivar U. humidicola cv. BRS Tupi, both of which are hexaploid. A simple sequence repeat (SSR-based linkage map was constructed for the species from 102 polymorphic and specific SSR markers based on simplex and double-simplex markers. The map consisted of 49 linkage groups (LGs and had a total length of 1702.82 cM, with 89 microsatellite loci and an average map density of 10.6 cM. Eight homology groups (HGs were formed, comprising 22 LGs, and the other LGs remained ungrouped. The locus that controls apospory (apo-locus was mapped in LG02 and was located 19.4 cM from the locus Bh027.c.D2. In the cytological analyses of some hybrids, bi- to hexavalents at diakinesis were observed, as well as two nucleoli in some meiocytes, smaller chromosomes with preferential allocation within the first metaphase plate and asynchronous chromosome migration to the poles during anaphase. The linkage map and the meiocyte analyses confirm previous reports of hybridization and suggest an allopolyploid origin of the hexaploid U. humidicola. This is the first linkage map of an Urochloa species, and it will be useful for future quantitative trait locus (QTL analysis after saturation of the map and for genome assembly and evolutionary studies in Urochloa spp. Moreover, the results of the apomixis mapping are consistent with previous reports and confirm the need for additional studies to search for

  19. Production of a high-efficiency TILLING population through polyploidization.

    Science.gov (United States)

    Tsai, Helen; Missirian, Victor; Ngo, Kathie J; Tran, Robert K; Chan, Simon R; Sundaresan, Venkatesan; Comai, Luca

    2013-04-01

    Targeting Induced Local Lesions in Genomes (TILLING) provides a nontransgenic method for reverse genetics that is widely applicable, even in species where other functional resources are missing or expensive to build. The efficiency of TILLING, however, is greatly facilitated by high mutation density. Species vary in the number of mutations induced by comparable mutagenic treatments, suggesting that genetic background may affect the response. Allopolyploid species have often yielded higher mutation density than diploids. To examine the effect of ploidy, we autotetraploidized the Arabidopsis (Arabidopsis thaliana) ecotype Columbia, whose diploid has been used for TILLING extensively, and mutagenized it with 50 mm ethylmethane sulfonate. While the same treatment sterilized diploid Columbia, the tetraploid M1 plants produced good seed. To determine the mutation density, we searched 528 individuals for induced mutations in 15 genes for which few or no knockout alleles were previously available. We constructed tridimensional pools from the genomic DNA of M2 plants, amplified target DNA, and subjected them to Illumina sequencing. The results were analyzed with an improved version of the mutation detection software CAMBa that accepts any pooling scheme. This small population provided a rich resource with approximately 25 mutations per queried 1.5-kb fragment, including on average four severe missense and 1.3 truncation mutations. The overall mutation density of 19.4 mutations Mb(-1) is 4 times that achieved in the corresponding diploid accession, indicating that genomic redundancy engenders tolerance to high mutation density. Polyploidization of diploids will allow the production of small populations, such as less than 2,000, that provide allelic series from knockout to mild loss of function for virtually all genes.

  20. Segregation analysis of microsatellite (SSR) markers in sugarcane polyploids.

    Science.gov (United States)

    Lu, X; Zhou, H; Pan, Y-B; Chen, C Y; Zhu, J R; Chen, P H; Li, Y-R; Cai, Q; Chen, R K

    2015-12-28

    No information is available on segregation analysis of DNA markers involving both pollen and self-progeny. Therefore, we used capillary electrophoresis- and fluorescence-based DNA fingerprinting together with single pollen collection and polymerase chain reaction (PCR) to investigate simple sequence repeat (SSR) marker segregation among 964 single pollens and 288 self-progenies (S1) of sugarcane cultivar LCP 85-384. Twenty SSR DNA fragments (alleles) were amplified by five polymorphic SSR markers. Only one non-parental SSR allele was observed in 2392 PCRs. SSR allele inheritance was in accordance with Mendelian laws of segregation and independent assortment. Highly significant correlation coefficients were found between frequencies of observed and expected genotypes in pollen and S1 populations. Within the S1 population, the most frequent genotype of each SSR marker was the parental genotype of the same marker. The number of genotypes was higher in pollen than S1 population. PIC values of the five SSR markers were greater in pollen than S1 populations. Eleven of 20 SSR alleles (55%) were segregated in accordance with Mendelian segregation ratios expected from pollen and S1 populations of a 2n = 10x polyploid. Six of 20 SSR alleles were segregated in a 3:1 (presence:absence) ratio and were simplex markers. Four and one alleles were segregated in 77:4 and 143:1 ratios and considered duplex and triplex markers, respectively. Segregation ratios of remaining alleles were unexplainable. The results provide information about selection of crossing parents, estimation of seedling population optimal size, and promotion of efficient selection, which may be valuable for sugarcane breeders.

  1. Chromosomal characterization of the three subgenomes in the polyploids of Hordeum murinum L.: new insight into the evolution of this complex.

    Directory of Open Access Journals (Sweden)

    Ángeles Cuadrado

    Full Text Available Hordeum murinum L. is a species complex composed of related taxa, including the subspecies glaucum, murinum and leporinum. However, the phylogenetic relationships between the different taxa and their cytotypes, and the origin of the polyploid forms, remain points of controversy. The present work reports a comparative karyotype analysis of seven accessions of the H. murinum complex representing all subspecies and cytotypes. The karyotypes were determined by examining the distribution of the repetitive Triticeae DNA sequences pTa71, pTa794, pSc119.2, pAs1 and pHch950, the simple sequence repeats (SSRs (AG10, (AAC5, (AAG5, (ACT5, (ATC5, and (CCCTAAA3 via in situ hybridization. The chromosomes of the three subgenomes involved in the polyploids were identified. All tetraploids of all subspecies shared the same two subgenomes (thus suggesting them to in fact belong to the same taxon, the result of hybridization between two diploid ancestors. One of the subgenomes present in all tetraploids of all subspecies was found to be very similar (though not identical to the chromosome complement of the diploid glaucum. The hexaploid form of leporinum came about through a cross between a tetraploid and a third diploid form. Exclusively bivalent associations among homologous chromosomes were observed when analyzing pollen mother cells of tetraploid taxa. In conclusion, the present results identify all the individual chromosomes within the H. murinum complex, reveal its genome structure and phylogeny, and explain the appearance of the different cytotypes. Three cryptic species are proposed according to ploidy level that may deserve full taxonomic recognition.

  2. The reticulate evolutionary history of the polyploid NW Iberian Leucanthemum pluriflorum clan (Compositae, Anthemideae) as inferred from nrDNA ETS sequence diversity and eco-climatological niche-modelling.

    Science.gov (United States)

    Oberprieler, Christoph; Greiner, Roland; Konowalik, Kamil; Vogt, Robert

    2014-01-01

    The genus Leucanthemum Mill. is a species-rich polyploid complex of southern and central Europe, comprising 41 species with ploidy levels ranging from 2x to 22x. The Leucanthemum pluriflorum clan, a geographically isolated species group of the NW Iberian Peninsula, comprises the diploid L. pluriflorum, the tetraploids Leucanthemumircutianum subsp. pseudosylvaticum and Leucanthemum×corunnense (being a putative hybrid taxon based on a cross between L. pluriflorum and Leucanthemummerinoi), and the two hexaploids Leucanthemumsylvaticum and L. merinoi. In order to reconstruct the evolutionary history of this species group, we analysed sequence variation at the external transcribed spacer region of the nuclear ribosomal repeat (nrDNA ETS) for its members and for a number of other diploid species of Leucanthemum. Our results indicate that there are two major ETS ribotypes present in Leucanthemum, with some of the diploid species fixed for either of the two types and several species (among them L. pluriflorum) exhibiting both types. This polymorphism at the nrDNA ETS locus suggests either gene flow among some of the diploid species (possibly via polyploids) or a homoploid hybrid origin of some of those diploids. Additionally, patterns of ETS ribotype sharing among populations of the four species of the L. pluriflorum clan suggest that the tetraploid L. ircutianum subsp. pseudosylvaticum and the hexaploids L. sylvaticum and L. merinoi have an allopolyploid origin with L. pluriflorum as the maternal parent. Eco-climatological modelling of present and past (last glacial maximum, LGM) distribution areas of the members of the L. pluriflorum clan indicates that the diploid L. pluriflorum may have undergone geographical differentiation into northern (Galician) and southern (central Portuguese) coastal lineages that could account for the two chloroplast haplotype groups observable in the tetra- and hexaploids. Later climatic changes in the Holocene could then have led to the

  3. Diversification of the celiac disease α-gliadin complex in wheat: a 33-mer peptide with six overlapping epitopes, evolved following polyploidization.

    Science.gov (United States)

    Ozuna, Carmen V; Iehisa, Julio C M; Giménez, María J; Alvarez, Juan B; Sousa, Carolina; Barro, Francisco

    2015-06-01

    The gluten proteins from wheat, barley and rye are responsible both for celiac disease (CD) and for non-celiac gluten sensitivity, two pathologies affecting up to 6-8% of the human population worldwide. The wheat α-gliadin proteins contain three major CD immunogenic peptides: p31-43, which induces the innate immune response; the 33-mer, formed by six overlapping copies of three highly stimulatory epitopes; and an additional DQ2.5-glia-α3 epitope which partially overlaps with the 33-mer. Next-generation sequencing (NGS) and Sanger sequencing of α-gliadin genes from diploid and polyploid wheat provided six types of α-gliadins (named 1-6) with strong differences in their frequencies in diploid and polyploid wheat, and in the presence and abundance of these CD immunogenic peptides. Immunogenic variants of the p31-43 peptide were found in most of the α-gliadins. Variants of the DQ2.5-glia-α3 epitope were associated with specific types of α-gliadins. Remarkably, only type 1 α-gliadins contained 33-mer epitopes. Moreover, the full immunodominant 33-mer fragment was only present in hexaploid wheat at low abundance, probably as the result of allohexaploidization events from subtype 1.2 α-gliadins found only in Aegilops tauschii, the D-genome donor of hexaploid wheat. Type 3 α-gliadins seem to be the ancestral type as they are found in most of the α-gliadin-expressing Triticeae species. These findings are important for reducing the incidence of CD by the breeding/selection of wheat varieties with low stimulatory capacity of T cells. Moreover, advanced genome-editing techniques (TALENs, CRISPR) will be easier to implement on the small group of α-gliadins containing only immunogenic peptides. © 2015 Society for Experimental Biology and John Wiley & Sons Ltd.

  4. A next-generation sequencing method for overcoming the multiple gene copy problem in polyploid phylogenetics, applied to Poa grasses

    Directory of Open Access Journals (Sweden)

    Robin Charles

    2011-03-01

    Full Text Available Abstract Background Polyploidy is important from a phylogenetic perspective because of its immense past impact on evolution and its potential future impact on diversification, survival and adaptation, especially in plants. Molecular population genetics studies of polyploid organisms have been difficult because of problems in sequencing multiple-copy nuclear genes using Sanger sequencing. This paper describes a method for sequencing a barcoded mixture of targeted gene regions using next-generation sequencing methods to overcome these problems. Results Using 64 3-bp barcodes, we successfully sequenced three chloroplast and two nuclear gene regions (each of which contained two gene copies with up to two alleles per individual in a total of 60 individuals across 11 species of Australian Poa grasses. This method had high replicability, a low sequencing error rate (after appropriate quality control and a low rate of missing data. Eighty-eight percent of the 320 gene/individual combinations produced sequence reads, and >80% of individuals produced sufficient reads to detect all four possible nuclear alleles of the homeologous nuclear loci with 95% probability. We applied this method to a group of sympatric Australian alpine Poa species, which we discovered to share an allopolyploid ancestor with a group of American Poa species. All markers revealed extensive allele sharing among the Australian species and so we recommend that the current taxonomy be re-examined. We also detected hypermutation in the trnH-psbA marker, suggesting it should not be used as a land plant barcode region. Some markers indicated differentiation between Tasmanian and mainland samples. Significant positive spatial genetic structure was detected at Conclusions Our results demonstrate that 454 sequencing of barcoded amplicon mixtures can be used to reliably sample all alleles of homeologous loci in polyploid species and successfully investigate phylogenetic relationships among

  5. Asymmetric Evolution and Expansion of the NAC Transcription Factor in Polyploidized Cotton

    Directory of Open Access Journals (Sweden)

    Kai Fan

    2018-01-01

    Full Text Available Polyploidy in Gossypium hirsutum conferred different properties from its diploid ancestors under the regulation of transcription factors. The NAC transcription factor is a plant-specific family that can be related to plant growth and development. So far, little is known about the NAC family in cotton. This study identified 495 NAC genes in three cotton species and investigated the evolution and expansion of different genome-derived NAC genes in cotton. We revealed 15 distinct NAC subfamilies in cotton. Different subfamilies had different gene proportions, expansion rate, gene loss rate, and orthologous exchange rate. Paleohexaploidization (35% and cotton-specific decaploidy (32% might have primarily led to the expansion of the NAC family in cotton. Half of duplication events in G. hirsutum were inherited from its diploid ancestor, and others might have occurred after interspecific hybridization. In addition, NAC genes in the At and Dt subgenomes displayed asymmetric molecular evolution, as evidenced by their different gene loss rates, orthologous exchange, evolutionary rates, and expression levels. The dominant duplication event was different during the cotton evolutionary history. Different genome-derived NACs might have interacted with each other, which ultimately resulted in morphogenetic evolution. This study delineated the expansion and evolutionary history of the NAC family in cotton and illustrated the different fates of NAC genes during polyploidization.

  6. Evolution of the apomixis transmitting chromosome in Pennisetum

    Directory of Open Access Journals (Sweden)

    Yamada-Akiyama Hitomi

    2011-10-01

    Full Text Available Abstract Background Apomixis is an intriguing trait in plants that results in maternal clones through seed reproduction. Apomixis is an elusive, but potentially revolutionary, trait for plant breeding and hybrid seed production. Recent studies arguing that apomicts are not evolutionary dead ends have generated further interest in the evolution of asexual flowering plants. Results In the present study, we investigate karyotypic variation in a single chromosome responsible for transmitting apomixis, the Apospory-Specific Genomic Region carrier chromosome, in relation to species phylogeny in the genera Pennisetum and Cenchrus. A 1 kb region from the 3' end of the ndhF gene and a 900 bp region from trnL-F were sequenced from 12 apomictic and eight sexual species in the genus Pennisetum and allied genus Cenchrus. An 800 bp region from the Apospory-Specific Genomic Region also was sequenced from the 12 apomicts. Molecular cytological analysis was conducted in sixteen Pennisetum and two Cenchrus species. Our results indicate that the Apospory-Specific Genomic Region is shared by all apomictic species while it is absent from all sexual species or cytotypes. Contrary to our previous observations in Pennisetum squamulatum and Cenchrus ciliaris, retrotransposon sequences of the Opie-2-like family were not closely associated with the Apospory-Specific Genomic Region in all apomictic species, suggesting that they may have been accumulated after the Apospory-Specific Genomic Region originated. Conclusions Given that phylogenetic analysis merged Cenchrus and newly investigated Pennisetum species into a single clade containing a terminal cluster of Cenchrus apomicts, the presumed monophyletic origin of Cenchrus is supported. The Apospory-Specific Genomic Region likely preceded speciation in Cenchrus and its lateral transfer through hybridization and subsequent chromosome repatterning may have contributed to further speciation in the two genera.

  7. Molecular markers linked to apomixis in Panicum maximum Jacq ...

    African Journals Online (AJOL)

    Panicum maximum Jacq. is an important forage grass of African origin largely used in the tropics. The genetic breeding of this species is based on the hybridization of sexual and apomictic genotypes and selection of apomictic F1 hybrids. The objective of this work was to identify molecular markers linked to apomixis in P.

  8. 多倍化是杂草起源与演化的驱动力%Polyploidization, one of the driving forces for weed origin and evolution

    Institute of Scientific and Technical Information of China (English)

    李君; 强胜

    2012-01-01

    杂草及外来植物入侵给全球经济发展及生态环境都带来了严重危害,研究其起源与演化将有助于它们的管理与控制.多倍化是植物进化的主要驱动力量,然而多倍化在杂草起源与演化中的作用还停留在种类统计以及零碎的研究案例证据上.本文综述了植物多倍体基因组结构及基因表达的研究进展以及染色体加倍后的生态学效应.多倍化促进了基因组水平与表型水平的进化,影响物种或群体生存竞争能力和繁殖扩展能力,提高物种或群体生态适应性.这一遗传过程可能促使外来种在新的生境中的成功入侵进而转变为杂草,并提出重视开展对杂草及外来入侵植物的多倍化研究的设想.%Weeds and alien invasive plants have caused tremendously ecological and socio-economic damages and loses worldwide, therefore,it is important to study origin and evolution of weeds for their effective management. Polyploidy is believed to be the main driving force of plant evolution, however, its playing the role in weeds origin and evolution is poorly understood. In this paper we review the progresses on the polyploid genome structure and gene expression and the ecological consequences of chromosome doubling. The polyploidy promotes the evolution of genomic and phenotype, affects the species survival competition, reproduction and expansion capability, and improves the ecological adaptability. Polyploidization can drive the successful invasion of invasive alien species and consequently evolution into a weed in new habitats. In addition, it is proposed that the research works on invasive alien plants may focus on polyploidization function in weed evolution and alien plant invasion.

  9. The time lag between introduction and escape from cultivation of alien woody plant species decreases with polyploidization

    Directory of Open Access Journals (Sweden)

    M. Brändle

    2012-04-01

    Full Text Available The time between introduction of an alien species and escape from cultivation shows considerable variation among species. One hypothesis to explain this variation of the time lag invokes the evolution of genotypes adapted to the conditions of the new environment. Here, we analyse the variation in time lags among 53 alien woody plant species in Germany. Accounting for the effects of time since introduction, growth form (trees versus shrubs, biogeography and taxonomic isolation (presence or absence of a native congener in the adventive area we found that the time lag decreases with increasing polyploidization. By contrast, the haploid chromosome number was not significantly related to the time lag. These results provide evidence for the hypothesis that recent genome duplication events are important for a fast escape from cultivation of an alien woody plant species. We suggest that a large number of duplicated chromosomes increase the partitioning of the genome and hence the average rate of recombination between loci facilitating the formation of adaptive genotypes.

  10. Target innervation is necessary for neuronal polyploidization in the terrestrial slug Limax.

    Science.gov (United States)

    Matsuo, Ryota; Yamagishi, Miki; Wakiya, Kyoko; Tanaka, Yoko; Ito, Etsuro

    2013-08-01

    The brain of gastropod mollusks contains many giant neurons with polyploid genomic DNAs. Such DNAs are generated through repeated DNA endoreplication during body growth. However, it is not known what triggers DNA endoreplication in neurons. There are two possibilities: (1) DNAs are replicated in response to some unknown molecules in the hemolymph that reflect the nutritive status of the animal; or (2) DNAs are replicated in response to some unknown factors that are retrogradely transported through axons from the innervated target organs. We first tested whether hemolymph with rich nutrition could induce DNA endoreplication. We tested whether the transplanted brain exhibits enhanced DNA endoreplication like an endogenous brain does when transplanted into the homocoel of the body of a slug whose body growth is promoted by an increased food supply. However, no enhancement was observed in the frequency of DNA endoreplication when we compared the transplanted brains in the growth-promoted and growth-suppressed host slugs, suggesting that the humoral environment is irrelevant to triggering the body growth-dependent DNA endoreplication. Next, we tested the requirement of target innervation by surgically dissecting a unilateral posterior pedal nerve of an endogenous brain. Substantially lower number of neurons exhibited DNA endoreplication in the pedal ganglion ipsilateral to the dissected nerve. These results support the view that enhanced DNA endoreplication is mediated by target innervation and is not brought about through the direct effect of humoral factors in the hemolymph during body growth. Copyright © 2013 Wiley Periodicals, Inc.

  11. Mediterranean species of Caulerpa are polyploid with smaller genomes in the invasive ones.

    Directory of Open Access Journals (Sweden)

    Elena Varela-Álvarez

    Full Text Available Caulerpa species are marine green algae, which often act as invasive species with rapid clonal proliferation when growing outside their native biogeographical borders. Despite many publications on the genetics and ecology of Caulerpa species, their life history and ploidy levels are still to be resolved and are the subject of large controversy. While some authors claimed that the thallus found in nature has a haplodiplobiontic life cycle with heteromorphic alternation of generations, other authors claimed a diploid or haploid life cycle with only one generation involved. DAPI-staining with image analysis and microspectrophotometry were used to estimate relative nuclear DNA contents in three species of Caulerpa from the Mediterranean, at individual, population and species levels. Results show that ploidy levels and genome size vary in these three Caulerpa species, with a reduction in genome size for the invasive ones. Caulerpa species in the Mediterranean are polyploids in different life history phases; all sampled C. taxifolia and C. racemosa var. cylindracea were in haplophasic phase, but in C. prolifera, the native species, individuals were found in both diplophasic and haplophasic phases. Different levels of endopolyploidy were found in both C. prolifera and C. racemosa var. cylindracea. Life history is elucidated for the Mediterranean C. prolifera and it is hypothesized that haplophasic dominance in C. racemosa var. cylindracea and C. taxifolia is a beneficial trait for their invasive strategies.

  12. Asymmetric epigenetic modification and elimination of rDNA sequences by polyploidization in wheat.

    Science.gov (United States)

    Guo, Xiang; Han, Fangpu

    2014-11-01

    rRNA genes consist of long tandem repeats clustered on chromosomes, and their products are important functional components of the ribosome. In common wheat (Triticum aestivum), rDNA loci from the A and D genomes were largely lost during the evolutionary process. This biased DNA elimination may be related to asymmetric transcription and epigenetic modifications caused by the polyploid formation. Here, we observed both sets of parental nucleolus organizing regions (NORs) were expressed after hybridization, but asymmetric silencing of one parental NOR was immediately induced by chromosome doubling, and reversing the ploidy status could not reactivate silenced NORs. Furthermore, increased CHG and CHH DNA methylation on promoters was accompanied by asymmetric silencing of NORs. Enrichment of H3K27me3 and H3K9me2 modifications was also observed to be a direct response to increased DNA methylation and transcriptional inactivation of NOR loci. Both A and D genome NOR loci with these modifications started to disappear in the S4 generation and were completely eliminated by the S7 generation in synthetic tetraploid wheat. Our results indicated that asymmetric epigenetic modification and elimination of rDNA sequences between different donor genomes may lead to stable allopolyploid wheat with increased differentiation and diversity. © 2014 American Society of Plant Biologists. All rights reserved.

  13. Enriching ploidy level diversity: the role of apomictic and sexual biotypes of Hieracium subgen. Pilosella (Asteraceae) that coexist in polyploid populations

    Czech Academy of Sciences Publication Activity Database

    Krahulcová, Anna; Rotreklová, O.; Krahulec, František; Rosenbaumová, Radka; Plačková, Ivana

    2009-01-01

    Roč. 44, č. 3 (2009), s. 281-306 ISSN 1211-9520 R&D Projects: GA ČR GA206/07/0059; GA ČR GA206/08/0890 Institutional research plan: CEZ:AV0Z60050516 Keywords : facultative apomixis * genome instability * hybrid swarms * residual sexuality * unreduced gametes Subject RIV: EF - Botanics Impact factor: 1.320, year: 2009

  14. Induction of polyploidization in leukemic cell lines and primary bone marrow by Src kinase inhibitor SU6656

    Science.gov (United States)

    Lannutti, Brian J.; Blake, Noel; Gandhi, Manish J.; Reems, Jo Anna; Drachman, Jonathan G.

    2005-01-01

    Megakaryocytes (MKs) undergo successive rounds of endomitosis during differentiation, resulting in polyploidy (typically, 16-64N). Previous studies have demonstrated that this occurs through an interruption of normal cell cycle progression during anaphase. However, the molecular mechanism(s) controlling this unique process is undefined. In the present report, we examine the effect of an Src kinase inhibitor, SU6656, on thrombopoietin (TPO)-induced growth and differentiation. Remarkably, when SU6656 (2.5 μM) was added to a megakaryocytic cell line, UT-7/TPO, the cells ceased cell division but continued to accumulate DNA by endomitosis. During this interval, CD41 and CD61 expression on the cell surface increased. Similar effects on polyploidization and MK differentiation were seen with expanded primary MKs, bone marrow from 2 patients with myelodysplastic syndrome, and other cell lines with MK potential. Our data suggest that SU6656 might be useful as a differentiation-inducing agent for MKs and is an important tool for understanding the molecular basis of MK endomitosis. PMID:15677565

  15. Change in HER2 (ERBB2) gene status after taxane-based chemotherapy for breast cancer: polyploidization can lead to diagnostic pitfalls with potential impact for clinical management.

    Science.gov (United States)

    Valent, Alexander; Penault-Llorca, Frédérique; Cayre, Anne; Kroemer, Guido

    2013-01-01

    The status of the HER2 (ERBB2) gene in breast cancer is not static and may change among the primary tumor, lymph node metastases, and distant metastases. This status change can be a consequence of the natural evolution of the tumor or can be induced by therapy. The HER2 gene status is, in the majority of cases, established at the moment of diagnosis. After chemotherapy, monitoring HER2 status can be a challenge because of ploidy changes induced by drugs. The cytogeneticist or the pathologist can face real difficulties in distinguishing between a true HER2 amplification and HER2 copy number increase by polyploidization. We performed a HER2 genetic examination by fluorescence in situ hybridization (FISH) of invasive breast cancers before and after taxane treatment. The majority of patients (91%) were HER2-negative both at diagnosis and after treatment. Thirty of 344 patients (9%) whose tumors were initially HER2-negative were found by FISH to have supernumerary HER2 gene copies (up to 15 copies) after neoadjuvant chemotherapy. This HER2 copy increase could not be attributed to true gene amplifications and instead reflected polyploidization events, which presumably affected all chromosomes. Indeed, when we used other FISH probes, we found other gene copy numbers to parallel those of HER2. We recommend careful checking of invasive breast carcinomas by supplementary FISH probes if the copy number of the HER2 gene is >6. This procedure allows the discrimination of specific HER2 gene amplifications and global increases in ploidy. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Compilation of 1987 Annual Reports of the Navy ELF (Extremely Low Frequency) Communications System Ecological Monitoring Program. Volume 3

    Science.gov (United States)

    1988-08-01

    differences between exposure t.Npes. ke examined the .TL log to deterri ne the operational status of the antenna (mi. off. multiple on and offs during the da ...Foliage insects and fruit 14 Fruit 15 Foliage insects and seeds 16 Bark insects 17 Nectar and sap 18 Aquatic vegetation 19 Aquatic invertebrates C. Habitat...Coltsfoot Chamaedaphfle calyculata Petasites palmatus Bear Berry Dandelion Arctostaphylos uva -ursi Taraxacum officinale 122 Hawkweed Hieracium sp. 123

  17. Use of ionizing radiation in grass breeding. II

    International Nuclear Information System (INIS)

    Svetlik, V.; Indruch, I.; Fojtik, A.; Bajer, K.

    1980-01-01

    Ionizing radiation induced sexuality in this apomictic grass. Sexual strains were isolated and selected individuals were crossed. Polycross and recurrent single cross methods allowed restoring apomixis. The resulting apomictic strains showed excellent traits and transgressed hereditary potentials of parental components. The method is described of breeding and the productivity of individual breeding techniques is discussed. It is shown that the number of strains should be reduced and the most productive strains should be used for the formation of synthetic cultivars. (author)

  18. Molecular Evidence for Natural Hybridization between Cotoneaster dielsianus and C. glaucophyllus

    Directory of Open Access Journals (Sweden)

    Mingwan Li

    2017-05-01

    Full Text Available Hybridization accompanied by polyploidization and apomixis has been demonstrated as a driving force in the evolution and speciation of many plants. A good example to study the evolutionary process of hybridization associated with polyploidy and apomixis is the genus Cotoneaster (Rosaceae, which includes approximately 150 species, most of which are polyploid apomicts. In this study, we investigated all Cotoneaster taxa distributed in a small region of Malipo, Yunnan, China. Based on the morphological characteristics, four Cotoneaster taxa were identified and sampled: C. dielsianus, C. glaucophyllus, C. franchetii, and a putative hybrid. Flow cytometry analyses showed that C. glaucophyllus was diploid, while the other three taxa were tetraploid. A total of five low-copy nuclear genes and six chloroplast regions were sequenced to validate the status of the putative hybrid. Sequence analyses showed that C. dielsianus and C. glaucophyllus are distantly related and they could be well separated using totally 50 fixed nucleotide substitutions and four fixed indels at the 11 investigated genes. All individuals of the putative hybrid harbored identical sequences: they showed chromatogram additivity for all fixed differences between C. dielsianus and C. glaucophyllus at the five nuclear genes, and were identical with C. glaucophyllus at the six chloroplast regions. Haplotype analysis revealed that C. dielsianus possessed nine haplotypes for the 11 genes, while C. glaucophyllus had ten, and there were no shared haplotypes between the two species. The putative hybrid harbored two haplotypes for each nuclear gene: one shared with C. dielsianus and the other with C. glaucophyllus. They possessed the same chloroplast haplotype with C. glaucophyllus. Our study provided convincing evidence for natural hybridization between C. dielsianus and C. glaucophyllus, and revealed that all hybrid individuals were derivatives of one initial F1 via apomixes. C. glaucophyllus

  19. The iSelect 9 K SNP analysis revealed polyploidization induced revolutionary changes and intense human selection causing strong haplotype blocks in wheat.

    Science.gov (United States)

    Hao, Chenyang; Wang, Yuquan; Chao, Shiaoman; Li, Tian; Liu, Hongxia; Wang, Lanfen; Zhang, Xueyong

    2017-01-30

    A Chinese wheat mini core collection was genotyped using the wheat 9 K iSelect SNP array. Total 2420 and 2396 polymorphic SNPs were detected on the A and the B genome chromosomes, which formed 878 haplotype blocks. There were more blocks in the B genome, but the average block size was significantly (P polyploidization of wheat (both tetraploidization and hexaploidization) induced revolutionary changes in both the A and the B genomes, with a greater increase of gene diversity compared to their diploid ancestors. Modern breeding has dramatically increased diversity in the gene coding regions, though obvious blocks were formed on most of the chromosomes in both tetraploid and hexaploid wheats. Tag-SNP markers identified in this study can be used for marker assisted selection using haplotype blocks as a wheat breeding strategy. This strategy can also be employed to facilitate genome selection in other self-pollinating crop species.

  20. Genetic and genomic interactions of animals with different ploidy levels.

    Science.gov (United States)

    Bogart, J P; Bi, K

    2013-01-01

    Polyploid animals have independently evolved from diploids in diverse taxa across the tree of life. We review a few polyploid animal species or biotypes where recently developed molecular and cytogenetic methods have significantly improved our understanding of their genetics, reproduction and evolution. Mitochondrial sequences that target the maternal ancestor of a polyploid show that polyploids may have single (e.g. unisexual salamanders in the genus Ambystoma) or multiple (e.g. parthenogenetic polyploid lizards in the genus Aspidoscelis) origins. Microsatellites are nuclear markers that can be used to analyze genetic recombinations, reproductive modes (e.g. Ambystoma) and recombination events (e.g. polyploid frogs such as Pelophylax esculentus). Hom(e)ologous chromosomes and rare intergenomic exchanges in allopolyploids have been distinguished by applying genome-specific fluorescent probes to chromosome spreads. Polyploids arise, and are maintained, through perturbations of the 'normal' meiotic program that would include pre-meiotic chromosome replication and genomic integrity of homologs. When possible, asexual, unisexual and bisexual polyploid species or biotypes interact with diploid relatives, and genes are passed from diploid to polyploid gene pools, which increase genetic diversity and ultimately evolutionary flexibility in the polyploid. When diploid relatives do not exist, polyploids can interact with another polyploid (e.g. species of African Clawed Frogs in the genus Xenopus). Some polyploid fish (e.g. salmonids) and frogs (Xenopus) represent independent lineages whose ancestors experienced whole genome duplication events. Some tetraploid frogs (P. esculentus) and fish (Squaliusalburnoides) may be in the process of becoming independent species, but diploid and triploid forms of these 'species' continue to genetically interact with the comparatively few tetraploid populations. Genetic and genomic interaction between polyploids and diploids is a complex

  1. Ecological range shift in the polyploid members of the South American genus Fosterella (Bromeliaceae).

    Science.gov (United States)

    Paule, Juraj; Wagner, Natascha D; Weising, Kurt; Zizka, Georg

    2017-08-01

    The distribution of polyploidy along a relatively steep Andean elevation and climatic gradient is studied using the genus Fosterella L.B. Sm. (Bromeliaceae) as a model system. Ecological differentiation of cytotypes and the link of polyploidy with historical biogeographic processes such as dispersal events and range shift are assessed. 4',6-Diamidino-2-phenylindole (DAPI) staining of nuclei and flow cytometry were used to estimate the ploidy levels of 159 plants from 22 species sampled throughout the distribution range of the genus. Ecological differentiation among ploidy levels was tested by comparing the sets of climatic variables. Ancestral chromosome number reconstruction was carried out on the basis of a previously generated phylogeographic framework. This study represents the first assessment of intrageneric, intraspecific and partially intrapopulational cytotype diversity in a genus of the Bromeliaceae family. In Fosterella , the occurrence of polyploidy was limited to the phylogenetically isolated penduliflora and rusbyi groups. Cytotypes were found to be ecologically differentiated, showing that polyploids preferentially occupy colder habitats with high annual temperature variability (seasonality). The combined effects of biogeographic history and adaptive processes are presumed to have shaped the current cytotype distribution in the genus. The results provide indirect evidence for both adaptive ecological and non-adaptive historical processes that jointly influenced the cytotype distribution in the predominantly Andean genus Fosterella (Bromeliaceae). The results also exemplify the role of polyploidy as an important driver of speciation in a topographically highly structured and thus climatically diverse landscape. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  2. [Morpho-functional parameters of nucleoli in polyploid mucous and albumen cells of salivary gland in the snail Succinea lauta].

    Science.gov (United States)

    Anisimova, A A; Anisimov, A P

    2005-01-01

    Variation of some characteristics of nucleoli of polyploid mucous and albumen cells was examined in salivary glands of the snail Succinea lauta. The number, total area and Ag-protein content of nucleoli, and DNA content in each nucleus were estimated on squashed preparations incubated with AgNO3, decolorized and then Feulgen stained. The ultrastructure of nucleoli was studied by electron microscopy. Differentiated mucous cells had 4c-8c-16c-32c nuclei; albumen cells had 8c-16c-32c-64c-128c nuclei. The ultrastructure of nucleoli of the two cell types was essentially the same. Normally, a large fibrous to granular zone was observed in the nucleoli, without a clear distinction between fibrous and granular components. At the same time, aggregations of granular matter could be discerned at the periphery of nucleoli. No fibrous centers were observed. Occassionally, nucleolonema-like structures occurred. Normally each nucleolus contacted several chromosomes. On squashed preparations, the least size of nucleoli was 2-3 microm, and the largest size amounted to 14 microm in mucous cells, and to 50-80 microm in albumen cells. The number of nucleoli rose from 1-2 in tetraploid nuclei to 2-3 in 32c-nuclei, and to 5-7 in 128c-nuclei. The disparity between the ploidy levels of nuclei and the numbers of nucleoli may be due, presumably, to aggregation of chromosome NORs. The Ag-protein content in the nucleoli, and the total nucleolar area displayed a strong mutual correlation. Both parameters differed significantly by 1.5-2.2 times in mucous and albumen cells of the same ploidy level. Thus, in albumen and mucous cells the total Ag-protein content in octaploid nuclei was 3.3 and 2.2 relative units (r. u.), respectively. In 16c- and 32c-nuclei of albumen cells, it was 7.6 and 15.1 r. u.; and in the same nuclei of mucous cells--3.8 and 6.8 r. u., respectively. On the whole, in albumen cells, in the course of 4 endocycles (4c-128c), the total Ag-protein content increased by 17 times

  3. Alike but different: the evolution of the Tubifex tubifex species complex (Annelida, Clitellata) through polyploidization.

    Science.gov (United States)

    Marotta, Roberto; Crottini, Angelica; Raimondi, Elena; Fondello, Cristina; Ferraguti, Marco

    2014-04-02

    Tubifex tubifex is a widespread annelid characterized by considerable variability in its taxonomic characteristics and by a mixed reproductive strategy, with both parthenogenesis and biparental reproduction. In a molecular phylogenetic analysis, we detected substantial genetic variability among sympatric Tubifex spp. from the Lambro River (Milano, Italy), which we suggested comprise several cryptic species. To gain insights into the evolutionary events that generated this differentiation, we performed a cytogenetic analysis in parallel with a molecular assay. Approximately 80 cocoons of T. tubifex and T. blanchardi were collected and dissected. For each cocoon, we sequenced a fragment of the 16S rRNA from half of the sibling embryos and karyotyped the other half. To generate a robust phylogeny enabling the reconstruction of the evolutionary processes shaping the diversity of these sympatric lineages, we complemented our original 16S rRNA gene sequences with additional COI sequences. The chromosome number distribution was consistent with the presence of at least six sympatric euploid chromosome complements (one diploid, one triploid, three tetraploids and one hexaploid), as confirmed by a FISH assay performed with an homologous 18S rDNA probe. All the worms with 2n = 50 chromosomes belonged to an already identified sibling species of T. tubifex, T. blanchardi. The six euploid sets were coherently arranged in the phylogeny, with each lineage grouping specimens with the same chromosome complement. These results are compatible with the hypothesis that multiple polyploidization events, possibly enhanced by parthenogenesis, may have driven the evolution of the T. tubifex species complex.

  4. Apparent polyploidization after gamma irradiation: pitfalls in the use of quantitative polymerase chain reaction (qPCR) for the estimation of mitochondrial and nuclear DNA gene copy numbers.

    Science.gov (United States)

    Kam, Winnie W Y; Lake, Vanessa; Banos, Connie; Davies, Justin; Banati, Richard

    2013-05-30

    Quantitative polymerase chain reaction (qPCR) has been widely used to quantify changes in gene copy numbers after radiation exposure. Here, we show that gamma irradiation ranging from 10 to 100 Gy of cells and cell-free DNA samples significantly affects the measured qPCR yield, due to radiation-induced fragmentation of the DNA template and, therefore, introduces errors into the estimation of gene copy numbers. The radiation-induced DNA fragmentation and, thus, measured qPCR yield varies with temperature not only in living cells, but also in isolated DNA irradiated under cell-free conditions. In summary, the variability in measured qPCR yield from irradiated samples introduces a significant error into the estimation of both mitochondrial and nuclear gene copy numbers and may give spurious evidence for polyploidization.

  5. Characterisation of ALS genes in the polyploid species Schoenoplectus mucronatus and implications for resistance management.

    Science.gov (United States)

    Scarabel, Laura; Locascio, Antonella; Furini, Antonella; Sattin, Maurizio; Varotto, Serena

    2010-03-01

    The polyploid weed Schoenoplectus mucronatus (L.) Palla has evolved target-site resistance to ALS-inhibiting herbicides in Italian rice crops. Molecular and genetic characterisation of the resistance mechanism is relevant to the evolution and management of herbicide resistance. The authors aimed (a) to study the organisation of the target-site loci in two field-selected S. mucronatus populations with different cross-resistance patterns, (b) to identify the mutations endowing resistance to ALS inhibitors and determine the role of these mutations by using transgenesis and (c) to analyse the implications for the management of the S. mucronatus populations. Two complete ALS genes (ALS1 and ALS2) having an intron and a third partial intronless ALS gene (ALS3) were identified. The presence of multiple ALS genes was confirmed by Southern blot analyses, and ALS loci were characterised by examining cytosine methylation. In S. mucronatus leaves, the transcripts of ALS1, ALS2 and ALS3 were detected. Two mutations endowing resistance (Pro(197) to His and Trp(574) to Leu) were found in both resistant populations, but at different frequencies. Tobacco plants transformed with the two resistant alleles indicated that the Pro(197)-to-His substitution conferred resistance to SU and TP herbicides, while the allele with the Trp(574)-to-Leu substitution conferred cross-resistance to SU, TP, IMI and PTB herbicides. Schoenoplectus mucronatus has multiple ALS genes characterised by methylated sites that can influence the expression profile. The two mutated alleles proved to be responsible for ALS resistance. At population level, the resistance pattern depends on the frequency of various resistant genotypes, and this influences the efficacy of various ALS-inhibiting herbicides.

  6. Induced mutations in highly heterozygous vegetatively propagated grasses

    International Nuclear Information System (INIS)

    Powell, J.B.

    1976-01-01

    Experience with mutation induction of turf and forage grasses indicates that much progress can be achieved by this method. More than 300 mutations have been produced in our laboratory in the cultivars Tifgreen and Tifdwarf bermudagrass (Cynodon sp.). In the Tifway and Tifcote bermudagrasses we have demonstrated similar mutation responses. The first three clones are triploids and Tifcote is a probable tetraploid. No seeds are set on these clones. Two clones of bermudagrass, Coastal and Coastcross-1, occupy millions of hectares in the USA. Both are mutable and are known to be hybrids with 36 chromosomes. Biotypes of dallisgrass (Paspalum dilatatum Poir.) exist with 40 and 50 chromosomes and reproduce as sexual and obligate apomictic forms. Gamma-ray and thermal-neutron treatment of seed of these biotypes produced mutants that maintained the maternal characteristics in subsequent generations. Bahiagrass (Paspalum notatum Fluegge) also has sexual and apomictic biotypes. Some success was indicated for increased seed set by mutagen treatment. Kentucky bluegrass (Poa pratensis L.) is a facultative apomict with varying numbers of chromosomes in different cultivars. Gamma-ray mutagen treatment of rhizomes produced numerous mutations for plant type and disease reaction. Most mutations perpetuate themselves through the seed. The characteristic in common with all these grasses is their heterozygosity, which is maintained by the vegetative propagation or apomictic mode of reproduction. The experience in using ionizing radiation to induce heritable changes in these vegetatively propagated grasses is one of considerable success. Mutation rates in some of these irradiated grasses exceeded 65% and aberrant plants with characteristics previously never observed were found. Numerous hemizygous and heterozygous loci seem to be a sensitive target for mutagens. (author)

  7. Autumn hawkweed (Hieracium sabaudum) in the Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Bidmanová, P.; Rotreklová, O.; Danihelka, Jiří; Chrtek, Jindřich

    2016-01-01

    Roč. 101, č. 2 (2016), s. 101-158 ISSN 1211-8788 R&D Projects: GA ČR GB14-36079G; GA ČR GAP506/10/1363 Institutional support: RVO:67985939 Keywords : Asteraceae * distribution * central Europe Subject RIV: EF - Botanics

  8. A New Perspective on Polyploid Fragaria (Strawberry) Genome Composition Based on Large-Scale, Multi-Locus Phylogenetic Analysis.

    Science.gov (United States)

    Yang, Yilong; Davis, Thomas M

    2017-12-01

    The subgenomic compositions of the octoploid (2n = 8× = 56) strawberry (Fragaria) species, including the economically important cultivated species Fragaria x ananassa, have been a topic of long-standing interest. Phylogenomic approaches utilizing next-generation sequencing technologies offer a new window into species relationships and the subgenomic compositions of polyploids. We have conducted a large-scale phylogenetic analysis of Fragaria (strawberry) species using the Fluidigm Access Array system and 454 sequencing platform. About 24 single-copy or low-copy nuclear genes distributed across the genome were amplified and sequenced from 96 genomic DNA samples representing 16 Fragaria species from diploid (2×) to decaploid (10×), including the most extensive sampling of octoploid taxa yet reported. Individual gene trees were constructed by different tree-building methods. Mosaic genomic structures of diploid Fragaria species consisting of sequences at different phylogenetic positions were observed. Our findings support the presence in octoploid species of genetic signatures from at least five diploid ancestors (F. vesca, F. iinumae, F. bucharica, F. viridis, and at least one additional allele contributor of unknown identity), and questions the extent to which distinct subgenomes are preserved over evolutionary time in the allopolyploid Fragaria species. In addition, our data support divergence between the two wild octoploid species, F. virginiana and F. chiloensis. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  9. Generation of erythroid cells from polyploid giant cancer cells: re-thinking about tumor blood supply.

    Science.gov (United States)

    Yang, Zhigang; Yao, Hong; Fei, Fei; Li, Yuwei; Qu, Jie; Li, Chunyuan; Zhang, Shiwu

    2018-04-01

    During development and tumor progression, cells need a sufficient blood supply to maintain development and rapid growth. It is reported that there are three patterns of blood supply for tumor growth: endothelium-dependent vessels, mosaic vessels, and vasculogenic mimicry (VM). VM was first reported in highly aggressive uveal melanomas, with tumor cells mimicking the presence and function of endothelial cells forming the walls of VM vessels. The walls of mosaic vessels are randomly lined with both endothelial cells and tumor cells. We previously proposed a three-stage process, beginning with VM, progressing to mosaic vessels, and eventually leading to endothelium-dependent vessels. However, many phenomena unique to VM channel formation remain to be elucidated, such as the origin of erythrocytes before VM vessels connect with endothelium-dependent vessels. In adults, erythroid cells are generally believed to be generated from hematopoietic stem cells in the bone marrow. In contrast, embryonic tissue obtains oxygen through formation of blood islands, which are largely composed of embryonic hemoglobin with a higher affinity with oxygen, in the absence of mature erythrocytes. Recent data from our laboratory suggest that embryonic blood-forming mechanisms also exist in cancer tissue, particularly when these tissues are under environmental stress such as hypoxia. We review the evidence from induced pluripotent stem cells in vitro and in vivo to support this previously underappreciated cell functionality in normal and cancer cells, including the ability to generate erythroid cells. We will also summarize the current understanding of tumor angiogenesis, VM, and our recent work on polyploid giant cancer cells, with emphasis on their ability to generate erythroid cells and their association with tumor growth under hypoxia. An alternative embryonic pathway to obtain oxygen in cancer cells exists, particularly when they are under hypoxic conditions.

  10. Genetic Diversity and Population Structure of Varronia curassavica: A Medicinal Polyploid Species in a Threatened Ecosystem.

    Science.gov (United States)

    Hoeltgebaum, Marcia Patricia; Dos Reis, Maurício Sedrez

    2017-06-01

    Varronia curassavica is an important medicinal species associated with the restinga, one of the most threatened coastal ecosystems of the Atlantic Forest. These circumstances call for studies aimed at estimating effective population size and gene flow to improve conservation efforts. Hence, the present study aimed to characterize the genetic diversity, ploidy level, and population structure of this species in different areas of restinga using microsatellites. Varronia curassavica was characterized as an autotetraploid, with high genetic variability, low divergence, and no significant fixation indices, indicating the absence of, or reduced, inbreeding and genetic drift in the study area. About 44% of the alleles occurred at low frequency in adults of all populations and 41% in the progenies evaluated. Gene flow was high, consistent with outcrossing species with high dispersal capacity (Nm = 4.87). The results showed no tendency toward isolation by distance. The estimated effective size indicates that the populations studied have the potential to ensure conservation of the species in the long term. The genetic variability and population structure of V. curassavica, as determined in this study, could form the foundation for activities directed toward the sustainable use of this resource and its conservation. Even though the restinga ecosystem has suffered dramatic reductions in area, this study provides evidence that this species is resilient to anthropogenic threats to its genetic integrity, since it is a polyploid with self-incompatibility mechanisms that contribute to maintaining high genetic diversity in an panmictic meta-population along the coast of Santa Catarina. © The American Genetic Association 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Analysis of Three Sugarcane Homo/Homeologous Regions Suggests Independent Polyploidization Events of Saccharum officinarum and Saccharum spontaneum.

    Science.gov (United States)

    Vilela, Mariane de Mendonça; Del Bem, Luiz Eduardo; Van Sluys, Marie-Anne; de Setta, Nathalia; Kitajima, João Paulo; Cruz, Guilherme Marcelo Queiroga; Sforça, Danilo Augusto; de Souza, Anete Pereira; Ferreira, Paulo Cavalcanti Gomes; Grativol, Clícia; Cardoso-Silva, Claudio Benicio; Vicentini, Renato; Vincentz, Michel

    2017-02-01

    Whole genome duplication has played an important role in plant evolution and diversification. Sugarcane is an important crop with a complex hybrid polyploid genome, for which the process of adaptation to polyploidy is still poorly understood. In order to improve our knowledge about sugarcane genome evolution and the homo/homeologous gene expression balance, we sequenced and analyzed 27 BACs (Bacterial Artificial Chromosome) of sugarcane R570 cultivar, containing the putative single-copy genes LFY (seven haplotypes), PHYC (four haplotypes), and TOR (seven haplotypes). Comparative genomic approaches showed that these sugarcane loci presented a high degree of conservation of gene content and collinearity (synteny) with sorghum and rice orthologous regions, but were invaded by transposable elements (TE). All the homo/homeologous haplotypes of LFY, PHYC, and TOR are likely to be functional, because they are all under purifying selection (dN/dS ≪ 1). However, they were found to participate in a nonequivalently manner to the overall expression of the corresponding gene. SNPs, indels, and amino acid substitutions allowed inferring the S. officinarum or S. spontaneum origin of the TOR haplotypes, which further led to the estimation that these two sugarcane ancestral species diverged between 2.5 and 3.5 Ma. In addition, analysis of shared TE insertions in TOR haplotypes suggested that two autopolyploidization may have occurred in the lineage that gave rise to S. officinarum, after its divergence from S. spontaneum. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  12. Assembly of the Boechera retrofracta Genome and Evolutionary Analysis of Apomixis-Associated Genes

    Directory of Open Access Journals (Sweden)

    Sergei Kliver

    2018-03-01

    Full Text Available Closely related to the model plant Arabidopsis thaliana, the genus Boechera is known to contain both sexual and apomictic species or accessions. Boechera retrofracta is a diploid sexually reproducing species and is thought to be an ancestral parent species of apomictic species. Here we report the de novo assembly of the B. retrofracta genome using short Illumina and Roche reads from 1 paired-end and 3 mate pair libraries. The distribution of 23-mers from the paired end library has indicated a low level of heterozygosity and the presence of detectable duplications and triplications. The genome size was estimated to be equal 227 Mb. N50 of the assembled scaffolds was 2.3 Mb. Using a hybrid approach that combines homology-based and de novo methods 27,048 protein-coding genes were predicted. Also repeats, transfer RNA (tRNA and ribosomal RNA (rRNA genes were annotated. Finally, genes of B. retrofracta and 6 other Brassicaceae species were used for phylogenetic tree reconstruction. In addition, we explored the histidine exonuclease APOLLO locus, related to apomixis in Boechera, and proposed model of its evolution through the series of duplications. An assembled genome of B. retrofracta will help in the challenging assembly of the highly heterozygous genomes of hybrid apomictic species.

  13. A novel nucleo-cytoplasmic hybrid clone formed via androgenesis in polyploid gibel carp

    Directory of Open Access Journals (Sweden)

    Zhou Li

    2011-03-01

    Full Text Available Abstract Background Unisexual vertebrates have been demonstrated to reproduce by gynogenesis, hybridogenesis, parthenogenesis, or kleptogenesis, however, it is uncertain how the reproduction mode contributes to the clonal diversity. Recently, polyploid gibel carp has been revealed to possess coexisting dual modes of unisexual gynogenesis and sexual reproduction and to have numerous various clones. Using sexual reproduction mating between clone D female and clone A male and subsequent 7 generation multiplying of unisexual gynogenesis, we have created a novel clone strain with more than several hundred millions of individuals. Here, we attempt to identify genetic background of the novel clone and to explore the significant implication for clonal diversity contribution. Methods Several nuclear genome markers and one cytoplasmic marker, the mitochondrial genome sequence, were used to identify the genetic organization of the randomly sampled individuals from different generations of the novel clone. Results Chromosome number, Cot-1 repetitive DNA banded karyotype, microsatellite patterns, AFLP profiles and transferrin alleles uniformly indicated that nuclear genome of the novel clone is identical to that of clone A, and significantly different from that of clone D. However, the cytoplasmic marker, its complete mtDNA genome sequence, is same to that of clone D, and different from that of clone A. Conclusions The present data indicate that the novel clone is a nucleo-cytoplasmic hybrid between the known clones A and D, because it originates from the offspring of gonochoristic sexual reproduction mating between clone D female and clone A male, and contains an entire nuclear genome from the paternal clone A and a mtDNA genome (cytoplasm from the maternal clone D. It is suggested to arise via androgenesis by a mechanism of ploidy doubling of clone A sperm in clone D ooplasm through inhibiting the first mitotic division. Significantly, the selected nucleo

  14. A novel nucleo-cytoplasmic hybrid clone formed via androgenesis in polyploid gibel carp

    Science.gov (United States)

    2011-01-01

    Background Unisexual vertebrates have been demonstrated to reproduce by gynogenesis, hybridogenesis, parthenogenesis, or kleptogenesis, however, it is uncertain how the reproduction mode contributes to the clonal diversity. Recently, polyploid gibel carp has been revealed to possess coexisting dual modes of unisexual gynogenesis and sexual reproduction and to have numerous various clones. Using sexual reproduction mating between clone D female and clone A male and subsequent 7 generation multiplying of unisexual gynogenesis, we have created a novel clone strain with more than several hundred millions of individuals. Here, we attempt to identify genetic background of the novel clone and to explore the significant implication for clonal diversity contribution. Methods Several nuclear genome markers and one cytoplasmic marker, the mitochondrial genome sequence, were used to identify the genetic organization of the randomly sampled individuals from different generations of the novel clone. Results Chromosome number, Cot-1 repetitive DNA banded karyotype, microsatellite patterns, AFLP profiles and transferrin alleles uniformly indicated that nuclear genome of the novel clone is identical to that of clone A, and significantly different from that of clone D. However, the cytoplasmic marker, its complete mtDNA genome sequence, is same to that of clone D, and different from that of clone A. Conclusions The present data indicate that the novel clone is a nucleo-cytoplasmic hybrid between the known clones A and D, because it originates from the offspring of gonochoristic sexual reproduction mating between clone D female and clone A male, and contains an entire nuclear genome from the paternal clone A and a mtDNA genome (cytoplasm) from the maternal clone D. It is suggested to arise via androgenesis by a mechanism of ploidy doubling of clone A sperm in clone D ooplasm through inhibiting the first mitotic division. Significantly, the selected nucleo-cytoplasmic hybrid female

  15. CyclinG1 Amplification Enhances Aurora Kinase Inhibitor-Induced Polyploid Resistance and Inhibition of Bcl-2 Pathway Reverses the Resistance

    Directory of Open Access Journals (Sweden)

    Wenfeng Zhang

    2017-08-01

    Full Text Available Background/Aims: CyclinG1 (CycG1 is frequently overexpressed in solid tumors and overexpression of CycG1 promotes cell survival upon paclitaxel exposure by inducing polyploidy. Whether and how CycG1 regulates polyploidization caused by small molecular targeted inhibitors remains unclear. Methods: Immunohistochemistry and immunoblotting were utilized to examine protein expression. Cell proliferation was measured by ATPlite assay, and cell cycle distribution and apoptosis were measured by flow cytometry and/or DNA fragmentation assays. Results: Overexpression of CycG1 in breast cancer cells caused apoptosis-resistant polyploidy upon treatment with Aurora kinase inhibitor, ZM447439 (ZM. Addition of ABT-263, a small-molecule BH3 mimetic, to ZM, produced a synergistic loss of cell viability with greater sustained tumor growth inhibition in breast cancer cell lines. Decrease of Mcl-1 and increase of NOXA caused by ZM treatment, were responsible for the synergy. Furthermore, CycG1 was highly expressed in Triple-Negative-Breast-Cancer patients treated with paclitaxel and was paralleled by decreased cell survival. Conclusion: CycG1 is a crucial factor in ZM-induced polyploidy resistance, and ABT-263/ZM combination hold therapeutic utility in the CycG1-amplified subset of breast cancer and CycG1, thus, is a promising target in breast cancer.

  16. Neopolyploidy and diversification in Heuchera grossulariifolia.

    Science.gov (United States)

    Oswald, Benjamin P; Nuismer, Scott L

    2011-06-01

    Newly formed polyploid lineages must contend with several obstacles to avoid extinction, including minority cytotype exclusion, competition, and inbreeding depression. If polyploidization results in immediate divergence of phenotypic characters these hurdles may be reduced and establishment made more likely. In addition, if polyploidization alters the phenotypic and genotypic associations between traits, that is, the P and G matrices, polyploids may be able to explore novel evolutionary paths, facilitating their divergence and successful establishment. Here, we report results from a study of the perennial plant Heuchera grossulariifolia in which the phenotypic divergence and changes in phenotypic and genotypic covariance matrices caused by neopolyploidization have been estimated. Our results reveal that polyploidization causes immediate divergence for traits relevant to establishment and results in significant changes in the structure of the phenotypic covariance matrix. In contrast, our results do not provide evidence that polyploidization results in immediate and substantial shifts in the genetic covariance matrix. © 2010 The Author(s). Evolution© 2010 The Society for the Study of Evolution.

  17. Autotetraploid cell Line induced by SP600125 from crucian carp and its developmental potentiality

    Science.gov (United States)

    Zhou, Yonghua; Wang, Mei; Jiang, Minggui; Peng, Liangyue; Wan, Cong; Liu, Jinhui; Liu, Wenbin; Zhao, Rurong; Zhao, Xiaoyang; Hu, Wei; Liu, Shaojun; Xiao, Yamei

    2016-01-01

    Polyploidy has many advantages over diploidy, such as rapid growth, sterility, and disease resistance, and has been extensively applied in agriculture and aquaculture. Though generation of new polyploids via polyploidization has been achieved in plants by different ways, it is comparatively rare in animals. In this article, by a chemical compound, SP600125, polyploidization is induced in fish cells in vitro, and a stable autotetraploid cell line has been generated from diploid fibroblast cells of crucian carp. As a c-Jun N-terminal kinase (Jnk) inhibitor, SP600125 does not function during the induction process of polyploidization. Instead, the p53 signal pathway might be involved. Using the SP600125-induced tetraploid cells and eggs of crucian carp as the donors and recipients, respectively, nuclear transplantation was conducted such that tetraploid embryos were obtained. It suggests that combining polyploidization and the somatic cell nuclear transfer technique (SCNT) is an efficient way to generate polyploidy, and the presented method in this research for generating the tetraploid fish from diploid fish can provide a useful platform for polyploid breeding. PMID:26898354

  18. Phylogenetic analysis of Gossypium L. using restriction fragment length polymorphism of repeated sequences.

    Science.gov (United States)

    Zhang, Meiping; Rong, Ying; Lee, Mi-Kyung; Zhang, Yang; Stelly, David M; Zhang, Hong-Bin

    2015-10-01

    Cotton is the world's leading textile fiber crop and is also grown as a bioenergy and food crop. Knowledge of the phylogeny of closely related species and the genome origin and evolution of polyploid species is significant for advanced genomics research and breeding. We have reconstructed the phylogeny of the cotton genus, Gossypium L., and deciphered the genome origin and evolution of its five polyploid species by restriction fragment analysis of repeated sequences. Nuclear DNA of 84 accessions representing 35 species and all eight genomes of the genus were analyzed. The phylogenetic tree of the genus was reconstructed using the parsimony method on 1033 polymorphic repeated sequence restriction fragments. The genome origin of its polyploids was determined by calculating the diploid-polyploid restriction fragment correspondence (RFC). The tree is consistent with the morphological classification, genome designation and geographic distribution of the species at subgenus, section and subsection levels. Gossypium lobatum (D7) was unambiguously shown to have the highest RFC with the D-subgenomes of all five polyploids of the genus, while the common ancestor of Gossypium herbaceum (A1) and Gossypium arboreum (A2) likely contributed to the A-subgenomes of the polyploids. These results provide a comprehensive phylogenetic tree of the cotton genus and new insights into the genome origin and evolution of its polyploid species. The results also further demonstrate a simple, rapid and inexpensive method suitable for phylogenetic analysis of closely related species, especially congeneric species, and the inference of genome origin of polyploids that constitute over 70 % of flowering plants.

  19. Test for Chemical Induction of Chromosome Aberration in Cultured Chinese Hamster Ovary (CHO) Cells With and Without Metabolic Activation. Test Article: N,N,N’,N’-tetramethyl Ethanediamine (TMEDA)

    Science.gov (United States)

    2008-06-13

    the RCG and/or RMI: ill addition, the percentage of polyploid and endoreduplicated cells was also determined at each concentration. Both the solvent...percentage of polyploid and endoreduplicated cells was also determined at each concentration. The types of chromosome aberrations scored and the...not decipherable. Considered as a single aberration. Severely damaged cell - cell with 10 or more aberrations. Polyploid cells - metaphases with

  20. Epigenetic inheritance in apomictic dandelions

    NARCIS (Netherlands)

    Preite, V.

    2016-01-01

    Epigenetic variation, such as changes in DNA methylations, regulatory small RNAs (sRNAs) and chromatin modifications can be induced by environmental stress. There is increasing information that such induced epigenetic modifications can be transmitted to offspring, potentially mediating adaptive

  1. Origin of triploid Arachis pintoi (Leguminosae) by autopolyploidy evidenced by FISH and meiotic behaviour.

    Science.gov (United States)

    Lavia, Graciela Inés; Ortiz, Alejandra Marcela; Robledo, Germán; Fernández, Aveliano; Seijo, Guillermo

    2011-07-01

    Polyploidy is a dominant feature of flowering-plant genomes, including those of many important crop species. Arachis is a largely diploid genus with just four polyploid species. Two of them are economically important: the cultivated peanut and A. glabrata, a tropical forage crop. Even though it is usually accepted that polyploids within papilionoid legumes have arisen via hybridization and further chromosome doubling, it has been recently suggested that peanut arose through bilateral sexual polyploidization. In this paper, the polyploid nature of the recent, spontaneously originated triploid cytotype of the tropical lucerne, A. pintoi, was analysed, and thereby the mechanism by which polyploids may arise in the genus. Chromosome morphology of 2x and 3x A. pintoi was determined by the Feulgeńs technique and the rDNA sites were mapped by FISH. To investigate whether polyploidization occurred by means of unreduced gametes, a detailed analysis of the microsporogenesis and pollen grains was made. The 2x and 3x plants presented 9m + 1sm and a satellited chromosome type 2 in each haploid genome. Physical mapping revealed a cluster of 18S-26S rDNA, proximally located on chromosome 6, and two 5S rDNA loci on chromosomes 3 and 5. Diploid plants presented 10II in meiosis while trivalents were observed in all triploids, with a maximum of 10III by cell. Diploid A. pintoi produced normal tetrads, but also triads, dyads and monads. Two types of pollen grains were detected: (1) normal-sized with a prolate shape and (2) large ones with a tetrahedral morphology. Karyotype and meiotic analysis demonstrate that the 3x clone of A. pintoi arose by autopolyploidy. The occurrence of unreduced gametes strongly supports unilateral sexual polyploidization as the most probable mechanism that could have led to the origin of the triploid cytotype. This mechanism of polyploidization would probably be one of the most important mechanisms involved in the origin of economically important species

  2. Sibling Rivalry in Myxococcus xanthus Is Mediated by Kin Recognition and a Polyploid Prophage.

    Science.gov (United States)

    Dey, Arup; Vassallo, Christopher N; Conklin, Austin C; Pathak, Darshankumar T; Troselj, Vera; Wall, Daniel

    2016-01-19

    Myxobacteria form complex social communities that elicit multicellular behaviors. One such behavior is kin recognition, in which cells identify siblings via their polymorphic TraA cell surface receptor, to transiently fuse outer membranes and exchange their contents. In addition, outer membrane exchange (OME) regulates behaviors, such as inhibition of wild-type Myxococcus xanthus (DK1622) from swarming. Here we monitored the fate of motile cells and surprisingly found they were killed by nonmotile siblings. The kill phenotype required OME (i.e., was TraA dependent). The genetic basis of killing was traced to ancestral strains used to construct DK1622. Specifically, the kill phenotype mapped to a large "polyploid prophage," Mx alpha. Sensitive strains contained a 200-kb deletion that removed two of three Mx alpha units. To explain these results, we suggest that Mx alpha expresses a toxin-antitoxin cassette that uses the OME machinery of M. xanthus to transfer a toxin that makes the population "addicted" to Mx alpha. Thus, siblings that lost Mx alpha units (no immunity) are killed by cells that harbor the element. To test this, an Mx alpha-harboring laboratory strain was engineered (by traA allele swap) to recognize a closely related species, Myxococcus fulvus. As a result, M. fulvus, which lacks Mx alpha, was killed. These TraA-mediated antagonisms provide an explanation for how kin recognition specificity might have evolved in myxobacteria. That is, recognition specificity is determined by polymorphisms in traA, which we hypothesize were selected for because OME with non-kin leads to lethal outcomes. The transition from single cell to multicellular life is considered a major evolutionary event. Myxobacteria have successfully made this transition. For example, in response to starvation, individual cells aggregate into multicellular fruiting bodies wherein cells differentiate into spores. To build fruits, cells need to recognize their siblings, and in part, this is

  3. Nuclear morphology, polyploidy, and chromatin elimination in tissue culture of Allium fistulosum L.

    Directory of Open Access Journals (Sweden)

    Andrzej Joachimiak

    2011-01-01

    Full Text Available The morphology of cell nuclei in callus obtained from root-tip meristems of Allium fistulosum L. (Monocotyledoneae, Alliaceae was analysed. The most interesting phenomena observed in long-term callus culture were the different mechanisms of cell polyploidization, enlargement of telomeric segments of heterochromatin, and extensive chromatin elimination, associated with instability of nuclei size and DNA content. Protruding heterochromatin "spikes" were observed on the surface of some di- and polyploid nuclei. The presence of these spikes was connected with the formation of small heterochromatic micronuclei frequently found in the cytoplasm. It is suggested that these micronuclei are produced by direct elimination of heterochromatin from the interphase nuclei. Polyploid cells accumulated with each successive cell collection. The ploidy level attained by highly polyploid cells was 15C-220C. The shape of the nuclei and heterochromatin distribution suggest that polyploid nuclei in A. fistulosum tissue culture are produced by endoreduplication and by restitution cycles.

  4. Diversita reprodukčních systémů v rodu Pilosella (chlupáček) a její odraz ve složení populací

    Czech Academy of Sciences Publication Activity Database

    Krahulec, František; Krahulcová, Anna; Rosenbaumová, R.

    2011-01-01

    Roč. 46, Mat.25 (2011), s. 7-19 ISSN 1212-3323 R&D Projects: GA ČR GA206/08/0890 Institutional research plan: CEZ:AV0Z60050516 Keywords : facultative apomicts * hybrid swarms * residual sexuality Subject RIV: EF - Botanics

  5. Induksi Poliploidi Phalaenopsis amabilis (L. Blume dan Phalaenopsis amboinensis J. J. Smith dengan Kolkisin dalam Kultur In Vitro

    Directory of Open Access Journals (Sweden)

    Eka Martha Della Rahayu

    2016-02-01

    Full Text Available ABSTRACTPhalaenopsis amabilis (L. Blume and Phalaenopsis amboinensis J.J. Smith (diploid are important in Phalaenopsis breeding. Polyploid species are needed for crossing with polyploid hybrid varities of Phalaenopsis. The objectives of this study were to obtain effective concentration of colchicine to induce polyploidy and to produce polyploid plantlets of P. amabilis and P. amboinensis. Experiment was arranged in randomized complete block design with one factor, the colchicine concentration. Protocorms of P. amabilis and P. amboinensis were immersed in half strength of Murashige-Skoog (1/2 MS liquid media added with colchicine (0; 0.5; 5; 25; 50, and 75 mg L-1 for 10 days. The results showed that higher concentration of colchicine on both species did not have significant effect on the survival of the plantlets at 24 weeks after treatment. The average number of leaves and roots of colchicine treated planlets from both species were less than the control plantlets. Immersing protocorm in colchicine at concentration of 50 mg L-1 for 10 days was effective in inducing polyploid plantlets of P. amabilis and P. amboinensis with the frequency of 33.3% and 40%, respectively. Polyploid plantlet has larger stomata size and lower stomata density than the diploid ones.Keywords: chromosome number, colchicine, polyploid, protocorm, stomatal density, stomatal size

  6. Critical factors in the establishment of allopolyploids.

    Science.gov (United States)

    Fowler, Norma L; Levin, Donald A

    2016-07-01

    The growth and spread of new polyploid populations have been explained in terms of fitness advantages over their diploid progenitors. However, a fitness advantage is not sufficient to insure the establishment of a polyploid; it must also overcome the obstacles of demographic stochasticity and minority disadvantage. Several studies have addressed the population dynamics of autopolyploids, but the present study is the first to consider allopolyploids, which are affected by more factors than autopolyploids. We constructed a population dynamic model of four types of plants (two parent species, hybrids, allopolyploids) that also included an explicit breeding system. The numbers of plants of each type were the most important factors determining whether the new allopolyploid would become established. More polyploid plants greatly increased the likelihood of polyploid persistence. More plants of the parent species and more hybrids resulted in more polyploids being produced. The model parameters with the most effect on polyploid establishment were potential population size (K), individual plant fecundity, and niche separation (α). The most important breeding system parameters were selfing rates, which mitigated minority disadvantage imposed by pollen limitation. The importance of population sizes, and the parameters that controlled them, in overcoming demographic stochasticity parallels the well-recognized role of propagule pressure in determining the success of invasive species. We modeled the establishment of a new allopolyploid; analogous considerations would affect the establishment of a new autopolyploid. The critical role of population sizes in polyploid establishment should be more widely recognized. © 2016 Botanical Society of America.

  7. Somatic polyploidization and characterization of induced polyploids ...

    African Journals Online (AJOL)

    Rukevwe S. Abraka

    2016-09-21

    Sep 21, 2016 ... 3International Institute of Tropical Agriculture, Ibadan, Oyo State, Nigeria. 4Japan International .... Photos of stomata were taken using a digital camera (DP71, Olympus) attached to the ..... In. Marketing. Opportunities for ...

  8. Capricious, or tied to history’s apron strings? Floristic regions in north-west European brambles (Rubus subgenus Rubus, Rosaceae)

    NARCIS (Netherlands)

    Haveman, R.; Bijlsma, R.J.; Ronde, de I.; Schaminee, J.H.J.

    2016-01-01

    Aim
    To classify and describe distributional patterns in apomictic Rubus subgenus Rubus in north-west Europe and to characterize the major regions by statistically derived character species.

    Location
    North-western Europe, in particular Ireland, the United Kingdom, the Netherlands,

  9. Nuclear-Cytoplasmic male-sterility in diploid dandelions

    NARCIS (Netherlands)

    van der Hulst, R.G.M.; Meirmans, P.; van Tienderen, P.H.; Van Damme, J.M.M.

    2004-01-01

    Male-sterility was found in diploid dandelions from two widely separated populations from France, and its inheritance was analysed by crossing a diploid male-sterile dandelion to diploid sexuals and triploid apomicts. Nuclear genetic variation, found in full-sib families, segregated for

  10. Nuclear-cytoplasmic male-sterility in diploid dandelions

    NARCIS (Netherlands)

    van der Hulst, R.G.M.; Meirmans, P.G.; van Tienderen, P.H.; van Damme, J.M.M.

    2004-01-01

    Male-sterility was found in diploid dandelions from two widely separated populations from France, and its inheritance was analysed by crossing a diploid male-sterile dandelion to diploid sexuals and triploid apomicts. Nuclear genetic variation, found in full-sib families, segregated for male

  11. Development and characterization of nine new microsatellite markers in Taraxacum (Asteraceae).

    NARCIS (Netherlands)

    Vasut, R.; Dijk, P.J.; Falque, M.; Trávnicek, B.; Jong, de J.H.S.G.M.

    2004-01-01

    This study aims at developing and characterizing new microsatellite primer pairs in Taraxacum officinale auct. to produce polymorphic markers for genetical and evolutionary studies on apomixis in this sexual-apomictic complex. A total of 24 diploid plants were tested for allelic polymorphism and

  12. Cytogenetics of a parthenogenetic Arctic species of Micropsectra (Diptera, Chironomidae)

    Science.gov (United States)

    Porter, David L.; Martin, Jon

    2011-01-01

    Abstract Micropsectra sedna (Oliver, 1976) is a parthenogenetic midge from the Canadian Arctic. The parthenogenetic mechanism is apomictic thelytoky, with a restitutional division during oogenesis, as found in other parthenogenetic Chironomidae. It is triploid, with two similar chromosome sets, and the third is relatively dissimilar, pairing little with the diploid set. Two karyotypes were observed: a single individual with eight polytene elements in the salivary glands (3n=12), considered standard, while the majority of larvae showed only seven polytene chromosomes (3n=11). Hybrid speciation is considered likely, although chromosomal recombination following the origin of thelytoky has played some part in karyotype evolution. A single morphologically distinct larva was also found, which might be the donor of the haploid chromosome set. The apomictic restitutional system is compared to that of the other, independently derived, parthenogenetic Chironomids to assess the extent of similarity between species. PMID:24260638

  13. Origin of triploid Arachis pintoi (Leguminosae) by autopolyploidy evidenced by FISH and meiotic behaviour

    Science.gov (United States)

    Lavia, Graciela Inés; Ortiz, Alejandra Marcela; Robledo, Germán; Fernández, Aveliano; Seijo, Guillermo

    2011-01-01

    Background and Aims Polyploidy is a dominant feature of flowering-plant genomes, including those of many important crop species. Arachis is a largely diploid genus with just four polyploid species. Two of them are economically important: the cultivated peanut and A. glabrata, a tropical forage crop. Even though it is usually accepted that polyploids within papilionoid legumes have arisen via hybridization and further chromosome doubling, it has been recently suggested that peanut arose through bilateral sexual polyploidization. In this paper, the polyploid nature of the recent, spontaneously originated triploid cytotype of the tropical lucerne, A. pintoi, was analysed, and thereby the mechanism by which polyploids may arise in the genus. Methods Chromosome morphology of 2x and 3x A. pintoi was determined by the Feulgeńs technique and the rDNA sites were mapped by FISH. To investigate whether polyploidization occurred by means of unreduced gametes, a detailed analysis of the microsporogenesis and pollen grains was made. Key Results The 2x and 3x plants presented 9m + 1sm and a satellited chromosome type 2 in each haploid genome. Physical mapping revealed a cluster of 18S–26S rDNA, proximally located on chromosome 6, and two 5S rDNA loci on chromosomes 3 and 5. Diploid plants presented 10II in meiosis while trivalents were observed in all triploids, with a maximum of 10III by cell. Diploid A. pintoi produced normal tetrads, but also triads, dyads and monads. Two types of pollen grains were detected: (1) normal-sized with a prolate shape and (2) large ones with a tetrahedral morphology. Conclusions Karyotype and meiotic analysis demonstrate that the 3x clone of A. pintoi arose by autopolyploidy. The occurrence of unreduced gametes strongly supports unilateral sexual polyploidization as the most probable mechanism that could have led to the origin of the triploid cytotype. This mechanism of polyploidization would probably be one of the most important mechanisms

  14. Tissue culture-induced genetic and epigenetic alterations in rice pure-lines, F1 hybrids and polyploids.

    Science.gov (United States)

    Wang, Xiaoran; Wu, Rui; Lin, Xiuyun; Bai, Yan; Song, Congdi; Yu, Xiaoming; Xu, Chunming; Zhao, Na; Dong, Yuzhu; Liu, Bao

    2013-05-05

    Genetic and epigenetic alterations can be invoked by plant tissue culture, which may result in heritable changes in phenotypes, a phenomenon collectively termed somaclonal variation. Although extensive studies have been conducted on the molecular nature and spectrum of tissue culture-induced genomic alterations, the issue of whether and to what extent distinct plant genotypes, e.g., pure-lines, hybrids and polyploids, may respond differentially to the tissue culture condition remains poorly understood. We investigated tissue culture-induced genetic and epigenetic alterations in a set of rice genotypes including two pure-lines (different subspecies), a pair of reciprocal F1 hybrids parented by the two pure-lines, and a pair of reciprocal tetraploids resulted from the hybrids. Using two molecular markers, amplified fragment length polymorphism (AFLP) and methylation-sensitive amplified polymorphism (MSAP), both genetic and DNA methylation alterations were detected in calli and regenerants from all six genotypes, but genetic alteration is more prominent than epigenetic alteration. While significant genotypic difference was observed in frequencies of both types of alterations, only genetic alteration showed distinctive features among the three types of genomes, with one hybrid (N/9) being exceptionally labile. Surprisingly, difference in genetic alteration frequencies between the pair of reciprocal F1 hybrids is much greater than that between the two pure-line subspecies. Difference also exists in the pair of reciprocal tetraploids, but is to a less extent than that between the hybrids. The steady-state transcript abundance of genes involved in DNA repair and DNA methylation was significantly altered in both calli and regenerants, and some of which were correlated with the genetic and/or epigenetic alterations. Our results, based on molecular marker analysis of ca. 1,000 genomic loci, document that genetic alteration is the major cause of somaclonal variation in rice

  15. Multiple and asymmetrical origin of polyploid dog rose hybrids (Rosa L. sect. Caninae (DC.) Ser.) involving unreduced gametes.

    Science.gov (United States)

    Herklotz, V; Ritz, C M

    2017-08-01

    Polyploidy and hybridization are important factors for generating diversity in plants. The species-rich dog roses ( Rosa sect. Caninae ) originated by allopolyploidy and are characterized by unbalanced meiosis producing polyploid egg cells (usually 4 x ) and haploid sperm cells (1 x ). In extant natural stands species hybridize spontaneously, but the extent of natural hybridization is unknown. The aim of the study was to document the frequency of reciprocal hybridization between the subsections Rubigineae and Caninae with special reference to the contribution of unreduced egg cells (5 x ) producing 6 x offspring after fertilization with reduced (1 x ) sperm cells. We tested whether hybrids arose by independent multiple events or via a single or few incidences followed by a subsequent spread of hybrids. Population genetics of 45 mixed stands of dog roses across central and south-eastern Europe were analysed using microsatellite markers and flow cytometry. Hybrids were recognized by the presence of diagnostic alleles and multivariate statistics were used to display the relationships between parental species and hybrids. Among plants classified to subsect. Rubigineae , 32 % hybridogenic individuals were detected but only 8 % hybrids were found in plants assigned to subsect. Caninae . This bias between reciprocal crossings was accompanied by a higher ploidy level in Rubigineae hybrids, which originated more frequently by unreduced egg cells. Genetic patterns of hybrids were strongly geographically structured, supporting their independent origin. The biased crossing barriers between subsections are explained by the facilitated production of unreduced gametes in subsect. Rubigineae . Unreduced egg cells probably provide the highly homologous chromosome sets required for correct chromosome pairing in hybrids. Furthermore, the higher frequency of Rubigineae hybrids is probably influenced by abundance effects because the plants of subsect. Caninae are much more abundant

  16. Origins and diversity of rush Skeletonweed (Chondrilla juncea) from three continents

    Science.gov (United States)

    J. Gaskin; C. L. Kinter; M. Schwarzlander; G. P. Markin; S. Novak; J. F. Smith

    2013-01-01

    Rush skeletonweed (Chondrilla juncea L.) is an invasive apomictic perennial plant in Australia, South- and North America, accidentally introduced from Eurasia, which shows differential resistance/tolerance to some herbicides and classical biological control agents. Rush skeletonweed biotypes have been locally described using morphology, phenology, isozyme patterns, and...

  17. Evaluation of SNP Data from the Malus Infinium Array Identifies Challenges for Genetic Analysis of Complex Genomes of Polyploid Origin.

    Directory of Open Access Journals (Sweden)

    Michela Troggio

    Full Text Available High throughput arrays for the simultaneous genotyping of thousands of single-nucleotide polymorphisms (SNPs have made the rapid genetic characterisation of plant genomes and the development of saturated linkage maps a realistic prospect for many plant species of agronomic importance. However, the correct calling of SNP genotypes in divergent polyploid genomes using array technology can be problematic due to paralogy, and to divergence in probe sequences causing changes in probe binding efficiencies. An Illumina Infinium II whole-genome genotyping array was recently developed for the cultivated apple and used to develop a molecular linkage map for an apple rootstock progeny (M432, but a large proportion of segregating SNPs were not mapped in the progeny, due to unexpected genotype clustering patterns. To investigate the causes of this unexpected clustering we performed BLAST analysis of all probe sequences against the 'Golden Delicious' genome sequence and discovered evidence for paralogous annealing sites and probe sequence divergence for a high proportion of probes contained on the array. Following visual re-evaluation of the genotyping data generated for 8,788 SNPs for the M432 progeny using the array, we manually re-scored genotypes at 818 loci and mapped a further 797 markers to the M432 linkage map. The newly mapped markers included the majority of those that could not be mapped previously, as well as loci that were previously scored as monomorphic, but which segregated due to divergence leading to heterozygosity in probe annealing sites. An evaluation of the 8,788 probes in a diverse collection of Malus germplasm showed that more than half the probes returned genotype clustering patterns that were difficult or impossible to interpret reliably, highlighting implications for the use of the array in genome-wide association studies.

  18. Distribution and origin of chromosomal races in the freshwater planarian Dugesia polychroa (Turbellaria : Tricladida)

    NARCIS (Netherlands)

    Beukeboom, Leo W.; Weinzierl, Rolf P.; Reed, Kent M.; Michiels, Nico K.

    1996-01-01

    We present a karyotypic survey of the European freshwater planarian Dugesia polychroa, detailing frequencies of diploid and polyploid forms from 35 localities in seven countries. In this hermaphroditic species, diploids reproduce sexually and polyploids by pseudogamous parthenogenesis. Previous

  19. Polyploidy: adaptation to the genomic environment.

    Science.gov (United States)

    Hollister, Jesse D

    2015-02-01

    Genomic evidence of ancestral whole genome duplication (WGD) and polyploidy is widespread among eukaryotic species, and especially among plants. WGD is thought to provide the raw material for adaptation in the form of duplicated genes, and polyploids are thought to benefit from both physiological and genetic buffering. Comparatively little attention has focused on the genomic challenge of polyploidy, however, although much evidence exists that polyploidy severely perturbs important cellular functions. Here, I review recent progress in the study of the re-establishment of stable meiosis in recently evolved polyploids, focusing on four plant species. This work has yielded an insight into the mechanisms underlying stabilization of genome transmission in polyploids, and is revealing remarkable parallels among diverse taxa. Importantly, these studies also provide a road map for investigating how polyploids respond to the challenge of WGD.

  20. Palynological studies in tribe Chlorideae (Poaceae) from salt range ...

    African Journals Online (AJOL)

    Jane

    2011-08-15

    Aug 15, 2011 ... To determine pollen fertility, acetocarmine and glycerin jelly was used by the modified techniques used by Khan and Stace (1999). Anthers were squashed .... World. Kew bulletin additional series 13, Royal Botanic gardens,. Kew. p. 389. Edeoga HO, Okoli BE (1996). Apomictic behaviour in Costus after C.

  1. Ploidy determination of buffel grass accessions in the USDA National Plant Germplasm System collection by flow cytometry

    Science.gov (United States)

    Buffelgrass [Pennisetum ciliare (L.) Link syn. Cenchrus ciliaris L.] is an important forage and range grass in many of the semi-arid tropical and subtropical regions of the world. The species reproduces primarily by apomixis but it is highly diverse because a wide array of different apomictic ecoty...

  2. Differential Accumulation of Retroelements and Diversification of NB-LRR Disease Resistance Genes in Duplicated Regions Following Polyploidy in the Ancestor of Soybean

    Science.gov (United States)

    The genomes of most flowering plants have undergone polyploidization at some point in their evolution. How such polyploidization events have impacted the subsequent evolution of genome structure is poorly understood. We sequenced two homoeologous regions in soybean (Glycine max), which underwent a...

  3. Effect of phosphorus availability on the selection of species with different ploidy levels and genome sizes in a long-term grassland fertilization experiment.

    Science.gov (United States)

    Šmarda, Petr; Hejcman, Michal; Březinová, Alexandra; Horová, Lucie; Steigerová, Helena; Zedek, František; Bureš, Petr; Hejcmanová, Pavla; Schellberg, Jürgen

    2013-11-01

    Polyploidy and increased genome size are hypothesized to increase organismal nutrient demands, namely of phosphorus (P), which is an essential and abundant component of nucleic acids. Therefore, polyploids and plants with larger genomes are expected to be selectively disadvantaged in P-limited environments. However, this hypothesis has yet to be experimentally tested. We measured the somatic DNA content and ploidy level in 74 vascular plant species in a long-term fertilization experiment. The differences between the fertilizer treatments regarding the DNA content and ploidy level of the established species were tested using phylogeny-based statistics. The percentage and biomass of polyploid species clearly increased with soil P in particular fertilizer treatments, and a similar but weaker trend was observed for the DNA content. These increases were associated with the dominance of competitive life strategy (particularly advantageous in the P-treated plots) in polyploids and the enhanced competitive ability of dominant polyploid grasses at high soil P concentrations, indicating their increased P limitation. Our results verify the hypothesized effect of P availability on the selection of polyploids and plants with increased genome sizes, although the relative contribution of increased P demands vs increased competitiveness as causes of the observed pattern requires further evaluation. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  4. Induction of Tetraploid Male Sterile Tagetes erecta by Colchicine Treatment and Its Application for Interspecific Hybridization

    Directory of Open Access Journals (Sweden)

    Yanhong He

    2016-09-01

    Full Text Available Tagetes erecta is an annual multifunctional plant which can be cultivated under a broad range of climatic conditions. Polyploidization and interspecific hybridization are applied to facilitate breeding cultivars of T. erecta with improved ornamental qualities. Colchicine treatment to the germinating seeds was proved to be a useful tool for chromosome doubling of the male sterile two-type line ‘M525AB’, with the resulting frequency of polyploid seedlings ranging from 88.89% (following 0.05% w/v colchicine applied for a 3–6 h exposure period to a maximum of 100.00% (following 0.1% for 3–6 h, or 0.2% for 3 h. Morphological observation, stomatal size and density analysis, flow cytometric analysis and chromosome counting were conducted to identify the tetraploid plants. Distinctive morphological changes were observed in a notable proportion of polyploid plants. The colchicine-treated polyploid T. erecta plants showed dwarfed and more robust growth, thicker, larger and greener leaves, larger inflorescences and florets. The mutant plants identified through morphological observation all aligned as polyploid plants, thus morphological observation could be an effective method for the detection of polyploidy. The polyploid plants had significant larger stomata size over the abaxial leaf surface, whereas the density of stomata distribution was remarkably reduced. The survival rate of tetraploid cuttings (i.e. 38% was greatly reduced compared to that of diploid plants. The fertility of tetraploid plants was also decreased, as shown by cross-pollination yields. Interspecific hybridizations between colchicine-induced tetraploid plants of a male sterile T. erecta line and the naturally tetraploid fully fertile Tagetes patula species resulted in hybrid progeny. Most of these hybrids displayed the dwarfed growth stature and compact, larger-flower morphology which is the typical ideotype of herbaceous flowers. Thus, polyploidization may be employed

  5. Molecular characterization of vernalization loci VRN1 in wild and cultivated wheats

    Directory of Open Access Journals (Sweden)

    Golovnina Kseniya A

    2010-08-01

    Full Text Available Abstract Background Variability of the VRN1 promoter region of the unique collection of spring polyploid and wild diploid wheat species together with diploid goatgrasses (donor of B and D genomes of polyploid wheats were investigated. Accessions of wild diploid (T. boeoticum, T. urartu and tetraploid (T. araraticum, T. timopheevii species were studied for the first time. Results Sequence analysis indicated great variability in the region from -62 to -221 nucleotide positions of the VRN1 promoter region. Different indels were found within this region in spring wheats. It was shown that VRN1 promoter region of B and G genome can also contain damages such as the insertion of the transposable element. Some transcription factor recognition sites including hybrid C/G-box for TaFDL2 protein known as the VRN1 gene upregulator were predicted inside the variable region. It was shown that deletions leading to promoter damage occurred in diploid and polyploid species independently. DNA transposon insertions first occurred in polyploid species. At the same time, the duplication of the promoter region was observed in A genomes of polyploid species. Conclusions We can conclude that supposed molecular mechanism of the VRN1 gene activating in cultivated diploid wheat species T. monococcum is common also for wild T. boeoticum and was inherited by T. monococcum. The spring polyploids are not related in their origin to spring diploids. The spring T. urartu and goatgrass accessions have another mechanism of flowering activation that is not connected with indels in VRN1 promoter region. All obtained data may be useful for detailed insight into origin of spring wheat forms in evolution and domestication process.

  6. Seeds of doubt: Mendel's choice of Hieracium to study inheritance, a case of right plant, wrong trait.

    Science.gov (United States)

    Bicknell, Ross; Catanach, Andrew; Hand, Melanie; Koltunow, Anna

    2016-12-01

    In this review, we explore Gregor Mendel's hybridization experiments with Hieracium , update current knowledge on apomictic reproduction and describe approaches now being used to develop true-breeding hybrid crops. From our perspective, it is easy to conclude that Gregor Mendel's work on pea was insightful, but his peers clearly did not regard it as being either very convincing or of much importance. One apparent criticism was that his findings only applied to pea. We know from a letter he wrote to Carl von Nägeli, a leading botanist, that he believed he needed to "verify, with other plants, the results obtained with Pisum". For this purpose, Mendel adopted Hieracium subgenus Pilosella, a phenotypically diverse taxon under botanical study at the time. What Mendel could not have known, however, is that the majority of these plants are not sexual plants like pea, but instead are facultatively apomictic. In these forms, the majority of seed arises asexually, and such progeny are, therefore, clones of the maternal parent. Mendel obtained very few hybrids in his Hieracium crosses, yet we calculate that he probably emasculated in excess of 5000 Hieracium florets to even obtain the numbers he did. Despite that effort, he was perplexed by the results, and they ultimately led him to conclude that "the hybrids of Hieracium show a behaviour exactly opposite to those of Pisum". Apomixis is now a topic of intense research interest, and in an ironic twist of history, Hieracium subgenus Pilosella has been developed as a molecular model to study this trait. In this paper, we explore further Mendel's hybridization experiments with Hieracium, update current knowledge on apomictic reproduction and describe approaches now being used to develop true-breeding hybrid crops.

  7. Density-independent mortality and increasing plant diversity are associated with differentiation of Taraxacum officinale into r- and K-strategists.

    Directory of Open Access Journals (Sweden)

    Annett Lipowsky

    Full Text Available Differential selection between clones of apomictic species may result in ecological differentiation without mutation and recombination, thus offering a simple system to study adaptation and life-history evolution in plants.We caused density-independent mortality by weeding to colonizer populations of the largely apomictic Taraxacum officinale (Asteraceae over a 5-year period in a grassland biodiversity experiment (Jena Experiment. We compared the offspring of colonizer populations with resident populations deliberately sown into similar communities. Plants raised from cuttings and seeds of colonizer and resident populations were grown under uniform conditions. Offspring from colonizer populations had higher reproductive output, which was in general agreement with predictions of r-selection theory. Offspring from resident populations had higher root and leaf biomass, fewer flower heads and higher individual seed mass as predicted under K-selection. Plants grown from cuttings and seeds differed to some degree in the strength, but not in the direction, of their response to the r- vs. K-selection regime. More diverse communities appeared to exert stronger K-selection on resident populations in plants grown from cuttings, while we did not find significant effects of increasing species richness on plants grown from seeds.Differentiation into r- and K-strategists suggests that clones with characteristics of r-strategists were selected in regularly weeded plots through rapid colonization, while increasing plant diversity favoured the selection of clones with characteristics of K-strategists in resident populations. Our results show that different selection pressures may result in a rapid genetic differentiation within a largely apomictic species. Even under the assumption that colonizer and resident populations, respectively, happened to be r- vs. K-selected already at the start of the experiment, our results still indicate that the association of these

  8. Density-independent mortality and increasing plant diversity are associated with differentiation of Taraxacum officinale into r- and K-strategists.

    Science.gov (United States)

    Lipowsky, Annett; Roscher, Christiane; Schumacher, Jens; Schmid, Bernhard

    2012-01-01

    Differential selection between clones of apomictic species may result in ecological differentiation without mutation and recombination, thus offering a simple system to study adaptation and life-history evolution in plants. We caused density-independent mortality by weeding to colonizer populations of the largely apomictic Taraxacum officinale (Asteraceae) over a 5-year period in a grassland biodiversity experiment (Jena Experiment). We compared the offspring of colonizer populations with resident populations deliberately sown into similar communities. Plants raised from cuttings and seeds of colonizer and resident populations were grown under uniform conditions. Offspring from colonizer populations had higher reproductive output, which was in general agreement with predictions of r-selection theory. Offspring from resident populations had higher root and leaf biomass, fewer flower heads and higher individual seed mass as predicted under K-selection. Plants grown from cuttings and seeds differed to some degree in the strength, but not in the direction, of their response to the r- vs. K-selection regime. More diverse communities appeared to exert stronger K-selection on resident populations in plants grown from cuttings, while we did not find significant effects of increasing species richness on plants grown from seeds. Differentiation into r- and K-strategists suggests that clones with characteristics of r-strategists were selected in regularly weeded plots through rapid colonization, while increasing plant diversity favoured the selection of clones with characteristics of K-strategists in resident populations. Our results show that different selection pressures may result in a rapid genetic differentiation within a largely apomictic species. Even under the assumption that colonizer and resident populations, respectively, happened to be r- vs. K-selected already at the start of the experiment, our results still indicate that the association of these strategies with

  9. Quantitative investigation of reproduction of gonosomal condensed chromatin during trophoblast cell polyploidization and endoreduplication in the east-european field vole Microtus rossiaemeridionalis

    Directory of Open Access Journals (Sweden)

    Bogdanova Margarita S

    2003-04-01

    Full Text Available Abstract Simultaneous determinations of DNA content in cell nuclei and condensed chromatin bodies formed by heterochromatized regions of sex chromosomes (gonosomal chromatin bodies, GCB have been performed in two trophoblast cell populations of the East-European field vole Microtus rossiaemeridionalis: in the proliferative population of trophoblast cells of the junctional zone of placenta and in the secondary giant trophoblast cells. One or two GCBs have been observed in trophoblast cell nuclei of all embryos studied (perhaps both male and female. In the proliferative trophoblast cell population characterized by low ploidy levels (2–16c and in the highly polyploid population of secondary giant trophoblast cells (32–256c the total DNA content in GCB increased proportionally to the ploidy level. In individual GCBs the DNA content also rose proportionally to the ploidy level in nuclei both with one and with two GCBs in both trophoblast cell populations. Some increase in percentage of nuclei with 2–3 GCBs was shown in nuclei of the placenta junctional zone; this may be accounted for by genome multiplication via uncompleted mitoses. In nuclei of the secondary giant trophoblast cells (16–256c the number of GCBs did not exceed 2, and the fraction of nuclei with two GCBs did not increase, which suggests the polytene nature of sex chromosomes in these cells. In all classes of ploidy the DNA content in trophoblast cell nuclei with the single GCB was lower than in nuclei with two and more GCBs. This can indicate that the single GCB in many cases does not derive from fusion of two GCBs. The measurements in individual GCBs suggest that different heterochromatized regions of the X- and Y-chromosome may contribute in GCB formation.

  10. QualitySNP: a pipeline for detecting single nucleotide polymorphisms and insertions/deletions in EST data from diploid and polyploid species

    Directory of Open Access Journals (Sweden)

    Voorrips Roeland E

    2006-10-01

    Full Text Available Abstract Background Single nucleotide polymorphisms (SNPs are important tools in studying complex genetic traits and genome evolution. Computational strategies for SNP discovery make use of the large number of sequences present in public databases (in most cases as expressed sequence tags (ESTs and are considered to be faster and more cost-effective than experimental procedures. A major challenge in computational SNP discovery is distinguishing allelic variation from sequence variation between paralogous sequences, in addition to recognizing sequencing errors. For the majority of the public EST sequences, trace or quality files are lacking which makes detection of reliable SNPs even more difficult because it has to rely on sequence comparisons only. Results We have developed a new algorithm to detect reliable SNPs and insertions/deletions (indels in EST data, both with and without quality files. Implemented in a pipeline called QualitySNP, it uses three filters for the identification of reliable SNPs. Filter 1 screens for all potential SNPs and identifies variation between or within genotypes. Filter 2 is the core filter that uses a haplotype-based strategy to detect reliable SNPs. Clusters with potential paralogs as well as false SNPs caused by sequencing errors are identified. Filter 3 screens SNPs by calculating a confidence score, based upon sequence redundancy and quality. Non-synonymous SNPs are subsequently identified by detecting open reading frames of consensus sequences (contigs with SNPs. The pipeline includes a data storage and retrieval system for haplotypes, SNPs and alignments. QualitySNP's versatility is demonstrated by the identification of SNPs in EST datasets from potato, chicken and humans. Conclusion QualitySNP is an efficient tool for SNP detection, storage and retrieval in diploid as well as polyploid species. It is available for running on Linux or UNIX systems. The program, test data, and user manual are available at

  11. Development of Micro-Scale Assays of Mammary Stem and Progenitor Cells

    Science.gov (United States)

    2008-07-01

    large polyploid nuclei could be found in microchannels which were verified to have more than the typical 2n amount of DNA via quantification of...particular likely is polyploid as well (approximately 8n when the intensity is compared to the normal nuclei), and the extra chromosomes cannot be properly

  12. From Gene Trees to a Dated Allopolyploid Network: Insights from the Angiosperm Genus Viola (Violaceae)

    Science.gov (United States)

    Marcussen, Thomas; Heier, Lise; Brysting, Anne K.; Oxelman, Bengt; Jakobsen, Kjetill S.

    2015-01-01

    Allopolyploidization accounts for a significant fraction of speciation events in many eukaryotic lineages. However, existing phylogenetic and dating methods require tree-like topologies and are unable to handle the network-like phylogenetic relationships of lineages containing allopolyploids. No explicit framework has so far been established for evaluating competing network topologies, and few attempts have been made to date phylogenetic networks. We used a four-step approach to generate a dated polyploid species network for the cosmopolitan angiosperm genus Viola L. (Violaceae Batch.). The genus contains ca 600 species and both recent (neo-) and more ancient (meso-) polyploid lineages distributed over 16 sections. First, we obtained DNA sequences of three low-copy nuclear genes and one chloroplast region, from 42 species representing all 16 sections. Second, we obtained fossil-calibrated chronograms for each nuclear gene marker. Third, we determined the most parsimonious multilabeled genome tree and its corresponding network, resolved at the section (not the species) level. Reconstructing the “correct” network for a set of polyploids depends on recovering all homoeologs, i.e., all subgenomes, in these polyploids. Assuming the presence of Viola subgenome lineages that were not detected by the nuclear gene phylogenies (“ghost subgenome lineages”) significantly reduced the number of inferred polyploidization events. We identified the most parsimonious network topology from a set of five competing scenarios differing in the interpretation of homoeolog extinctions and lineage sorting, based on (i) fewest possible ghost subgenome lineages, (ii) fewest possible polyploidization events, and (iii) least possible deviation from expected ploidy as inferred from available chromosome counts of the involved polyploid taxa. Finally, we estimated the homoploid and polyploid speciation times of the most parsimonious network. Homoploid speciation times were estimated by

  13. Silenced rRNA genes are activated and substitute for partially eliminated active homeologs in the recently formed allotetraploid, Tragopogon mirus (Asteraceae)

    Czech Academy of Sciences Publication Activity Database

    Dobešová, Eva; Malinská, Hana; Matyášek, Roman; Leitch, A. R.; Soltis, D. E.; Kovařík, Aleš

    2015-01-01

    Roč. 114, č. 3 (2015), s. 356-365 ISSN 0018-067X R&D Projects: GA ČR(CZ) GA14-34632S; GA ČR(CZ) GA13-10057S Institutional support: RVO:68081707 Keywords : NUCLEOLAR DOMINANCE * POLYPLOID PLANTS * POLYPLOID PLANTS Subject RIV: BO - Biophysics Impact factor: 3.801, year: 2015

  14. Tetraploid Embryonic Stem Cells Maintain Pluripotency and Differentiation Potency into Three Germ Layers.

    Directory of Open Access Journals (Sweden)

    Hiroyuki Imai

    Full Text Available Polyploid amphibians and fishes occur naturally in nature, while polyploid mammals do not. For example, tetraploid mouse embryos normally develop into blastocysts, but exhibit abnormalities and die soon after implantation. Thus, polyploidization is thought to be harmful during early mammalian development. However, the mechanisms through which polyploidization disrupts development are still poorly understood. In this study, we aimed to elucidate how genome duplication affects early mammalian development. To this end, we established tetraploid embryonic stem cells (TESCs produced from the inner cell masses of tetraploid blastocysts using electrofusion of two-cell embryos in mice and studied the developmental potential of TESCs. We demonstrated that TESCs possessed essential pluripotency and differentiation potency to form teratomas, which differentiated into the three germ layers, including diploid embryonic stem cells. TESCs also contributed to the inner cell masses in aggregated chimeric blastocysts, despite the observation that tetraploid embryos fail in normal development soon after implantation in mice. In TESCs, stability after several passages, colony morphology, and alkaline phosphatase activity were similar to those of diploid ESCs. TESCs also exhibited sufficient expression and localization of pluripotent markers and retained the normal epigenetic status of relevant reprogramming factors. TESCs proliferated at a slower rate than ESCs, indicating that the difference in genomic dosage was responsible for the different growth rates. Thus, our findings suggested that mouse ESCs maintained intrinsic pluripotency and differentiation potential despite tetraploidization, providing insights into our understanding of developmental elimination in polyploid mammals.

  15. Tetraploid Embryonic Stem Cells Maintain Pluripotency and Differentiation Potency into Three Germ Layers.

    Science.gov (United States)

    Imai, Hiroyuki; Kano, Kiyoshi; Fujii, Wataru; Takasawa, Ken; Wakitani, Shoichi; Hiyama, Masato; Nishino, Koichiro; Kusakabe, Ken Takeshi; Kiso, Yasuo

    2015-01-01

    Polyploid amphibians and fishes occur naturally in nature, while polyploid mammals do not. For example, tetraploid mouse embryos normally develop into blastocysts, but exhibit abnormalities and die soon after implantation. Thus, polyploidization is thought to be harmful during early mammalian development. However, the mechanisms through which polyploidization disrupts development are still poorly understood. In this study, we aimed to elucidate how genome duplication affects early mammalian development. To this end, we established tetraploid embryonic stem cells (TESCs) produced from the inner cell masses of tetraploid blastocysts using electrofusion of two-cell embryos in mice and studied the developmental potential of TESCs. We demonstrated that TESCs possessed essential pluripotency and differentiation potency to form teratomas, which differentiated into the three germ layers, including diploid embryonic stem cells. TESCs also contributed to the inner cell masses in aggregated chimeric blastocysts, despite the observation that tetraploid embryos fail in normal development soon after implantation in mice. In TESCs, stability after several passages, colony morphology, and alkaline phosphatase activity were similar to those of diploid ESCs. TESCs also exhibited sufficient expression and localization of pluripotent markers and retained the normal epigenetic status of relevant reprogramming factors. TESCs proliferated at a slower rate than ESCs, indicating that the difference in genomic dosage was responsible for the different growth rates. Thus, our findings suggested that mouse ESCs maintained intrinsic pluripotency and differentiation potential despite tetraploidization, providing insights into our understanding of developmental elimination in polyploid mammals.

  16. A new invasive hawkweed, Hieracium glomeratum (Lactuceae, Asteraceae), in the Pacific Northwest

    Czech Academy of Sciences Publication Activity Database

    Wilson, L. M.; Fehrer, Judith; Bräutigam, S.; Grosskopf, G.

    2006-01-01

    Roč. 84, - (2006), s. 133-142 ISSN 0008-4026 Institutional research plan: CEZ:AV0Z60050516 Keywords : Hieracium * invasives * DNA fingerprinting Subject RIV: EF - Botanics Impact factor: 1.193, year: 2006

  17. Genome-wide analysis of the MADS-box gene family in polyploid cotton (Gossypium hirsutum) and in its diploid parental species (Gossypium arboreum and Gossypium raimondii).

    Science.gov (United States)

    Nardeli, Sarah Muniz; Artico, Sinara; Aoyagi, Gustavo Mitsunori; de Moura, Stéfanie Menezes; da Franca Silva, Tatiane; Grossi-de-Sa, Maria Fatima; Romanel, Elisson; Alves-Ferreira, Marcio

    2018-06-01

    The MADS-box gene family encodes transcription factors that share a highly conserved domain known to bind to DNA. Members of this family control various processes of development in plants, from root formation to fruit ripening. In this work, a survey of diploid (Gossypium raimondii and Gossypium arboreum) and tetraploid (Gossypium hirsutum) cotton genomes found a total of 147, 133 and 207 MADS-box genes, respectively, distributed in the MIKC, Mα, Mβ, Mγ, and Mδ subclades. A comparative phylogenetic analysis among cotton species, Arabidopsis, poplar and grapevine MADS-box homologous genes allowed us to evaluate the evolution of each MADS-box lineage in cotton plants and identify sequences within well-established subfamilies. Chromosomal localization and phylogenetic analysis revealed that G. raimondii and G. arboreum showed a conserved evolution of the MIKC subclade and a distinct pattern of duplication events in the Mα, Mγ and Mδ subclades. Additionally, G. hirsutum showed a combination of its parental subgenomes followed by a distinct evolutionary history including gene gain and loss in each subclade. qPCR analysis revealed the expression patterns of putative homologs in the AP1, AP3, AGL6, SEP4, AGL15, AG, AGL17, TM8, SVP, SOC and TT16 subfamilies of G. hirsutum. The identification of putative cotton orthologs is discussed in the light of evolution and gene expression data from other plants. This analysis of the MADS-box genes in Gossypium species opens an avenue to understanding the origin and evolution of each gene subfamily within diploid and polyploid species and paves the way for functional studies in cotton species. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  18. Morfologi dan Pertumbuhan Planlet Hasil Induksi Poliploidi melalui Perlakuan Kolkisin pada Kuncup Bunga Anggrek Bulan (Phalaenopsis amabilis (L. Blume

    Directory of Open Access Journals (Sweden)

    Tubagus Kiki Kawakibi Azmi

    2016-06-01

    Full Text Available Induction of polyploid gametes is one of useful plant polyploidization methods. Some of its benefits are to obtain triploid and tetraploid progenies at the same time by cross and self pollination. Previous research showed that some morphological characters which could be the indications of polyploidy plantlets before the analysis of chromosome number. Colchicine treatment on flower bud of diploid Phalaenopsis amabilis was conducted to determine the effect of colchicine on flower bud development, plantlets morphology and growth, and potential of polyploidy induction based on plantlets morphology. Colchicine concentrations in the experiment were 0, 50, 500, 1,000, and 2,000 mg L-1, with three days duration of treatments with aluminium foil wraps on flower buds. The results showed that high colchicine concentrations (2,000 mg L-1 inhibited flowers blooming of treated flower buds. Based on morphological characters, plantlets were classified into normal and putative polyploid plantlets. Putative polyploid plantlets from colchicine with the concentration of 50, 500, and 1,000 mg L-1 were 71.2, 86.4, and 100.0% respectively.Keywords: colchicine concentration, morphological characters, normal plantlets, putative polyploidy, reproductive organ

  19. Morphological features of different polyploids for adaptation and molecular characterization of CC-NBS-LRR and LEA gene families in Agave L.

    Science.gov (United States)

    Tamayo-Ordóñez, M C; Rodriguez-Zapata, L C; Narváez-Zapata, J A; Tamayo-Ordóñez, Y J; Ayil-Gutiérrez, B A; Barredo-Pool, F; Sánchez-Teyer, L F

    2016-05-20

    Polyploidy has been widely described in many Agave L. species, but its influence on environmental response to stress is still unknown. With the objective of knowing the morphological adaptations and regulation responses of genes related to biotic (LEA) and abiotic (NBS-LRR) stress in species of Agave with different levels of ploidy, and how these factors contribute to major response of Agave against environmental stresses, we analyzed 16 morphological trials on five accessions of three species (Agave tequilana Weber, Agave angustifolia Haw. and Agave fourcroydes Lem.) with different ploidy levels (2n=2x=60 2n=3x=90, 2n=5x=150, 2n=6x=180) and evaluated the expression of NBS-LRR and LEA genes regulated by biotic and abiotic stress. It was possible to associate some morphological traits (spines, nuclei, and stomata) to ploidy level. The genetic characterization of stress-related genes NBS-LRR induced by pathogenic infection and LEA by heat or saline stresses indicated that amino acid sequence analysis in these genes showed more substitutions in higher ploidy level accessions of A. fourcroydes Lem. 'Sac Ki' (2n=5x=150) and A. angustifolia Haw. 'Chelem Ki' (2n=6x=180), and a higher LEA and NBS-LRR representativeness when compared to their diploid and triploid counterparts. In all studied Agave accessions expression of LEA and NBS-LRR genes was induced by saline or heat stresses or by infection with Erwinia carotovora, respectively. The transcriptional activation was also higher in A. angustifolia Haw. 'Chelem Ki' (2n=6x=180) and A. fourcroydes 'Sac Ki' (2n=5x=150) than in their diploid and triploid counterparts, which suggests higher adaptation to stress. Finally, the diploid accession A. tequilana Weber 'Azul' showed a differentiated genetic profile relative to other Agave accessions. The differences include similar or higher genetic representativeness and transcript accumulation of LEA and NBS-LRR genes than in polyploid (2n=5x=150 and 2n=6x=180) Agave accessions

  20. Alleviation of glucose repression of maltose metabolism by MIG1 disruption in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Klein, Christopher; Olsson, Lisbeth; Rønnow, B.

    1996-01-01

    The MIG1 gene was disrupted in a haploid laboratory strain (B224) and in an industrial polyploid strain (DGI 342) of Saccharomyces cerevisiae. The alleviation of glucose repression of the expression of MAL genes and alleviation of glucose control of maltose metabolism were investigated in batch...... cultivations on glucose-maltose mixtures. In the MIG1-disrupted haploid strain, glucose repression was partly alleviated; i.e., maltose metabolism was initiated at higher glucose concentrations than in the corresponding wild-type strain. In contrast, the polyploid Delta mig1 strain exhibited an even more...... stringent glucose control of maltose metabolism than the corresponding wild-type strain, which could be explained by a more rigid catabolite inactivation of maltose permease, affecting the uptake of maltose. Growth on the glucose-sucrose mixture showed that the polyploid Delta mig1 strain was relieved...

  1. Rapid allopolyploid radiation of moonwort ferns (Botrychium; Ophioglossaceae) revealed by PacBio sequencing of homologous and homeologous nuclear regions.

    Science.gov (United States)

    Dauphin, Benjamin; Grant, Jason R; Farrar, Donald R; Rothfels, Carl J

    2018-03-01

    Polyploidy is a major speciation process in vascular plants, and is postulated to be particularly important in shaping the diversity of extant ferns. However, limitations in the availability of bi-parental markers for ferns have greatly limited phylogenetic investigation of polyploidy in this group. With a large number of allopolyploid species, the genus Botrychium is a classic example in ferns where recurrent polyploidy is postulated to have driven frequent speciation events. Here, we use PacBio sequencing and the PURC bioinformatics pipeline to capture all homeologous or allelic copies of four long (∼1 kb) low-copy nuclear regions from a sample of 45 specimens (25 diploids and 20 polyploids) representing 37 Botrychium taxa, and three outgroups. This sample includes most currently recognized Botrychium species in Europe and North America, and the majority of our specimens were genotyped with co-dominant nuclear allozymes to ensure species identification. We analyzed the sequence data using maximum likelihood (ML) and Bayesian inference (BI) concatenated-data ("gene tree") approaches to explore the relationships among Botrychium species. Finally, we estimated divergence times among Botrychium lineages and inferred the multi-labeled polyploid species tree showing the origins of the polyploid taxa, and their relationships to each other and to their diploid progenitors. We found strong support for the monophyly of the major lineages within Botrychium and identified most of the parental donors of the polyploids; these results largely corroborate earlier morphological and allozyme-based investigations. Each polyploid had at least two distinct homeologs, indicating that all sampled polyploids are likely allopolyploids (rather than autopolyploids). Our divergence-time analyses revealed that these allopolyploid lineages originated recently-within the last two million years-and thus that the genus has undergone a recent radiation, correlated with multiple independent

  2. Nucleotide diversity maps reveal variation in diversity among wheat genomes and chromosomes

    Directory of Open Access Journals (Sweden)

    McGuire Patrick E

    2010-12-01

    Full Text Available Abstract Background A genome-wide assessment of nucleotide diversity in a polyploid species must minimize the inclusion of homoeologous sequences into diversity estimates and reliably allocate individual haplotypes into their respective genomes. The same requirements complicate the development and deployment of single nucleotide polymorphism (SNP markers in polyploid species. We report here a strategy that satisfies these requirements and deploy it in the sequencing of genes in cultivated hexaploid wheat (Triticum aestivum, genomes AABBDD and wild tetraploid wheat (Triticum turgidum ssp. dicoccoides, genomes AABB from the putative site of wheat domestication in Turkey. Data are used to assess the distribution of diversity among and within wheat genomes and to develop a panel of SNP markers for polyploid wheat. Results Nucleotide diversity was estimated in 2114 wheat genes and was similar between the A and B genomes and reduced in the D genome. Within a genome, diversity was diminished on some chromosomes. Low diversity was always accompanied by an excess of rare alleles. A total of 5,471 SNPs was discovered in 1791 wheat genes. Totals of 1,271, 1,218, and 2,203 SNPs were discovered in 488, 463, and 641 genes of wheat putative diploid ancestors, T. urartu, Aegilops speltoides, and Ae. tauschii, respectively. A public database containing genome-specific primers, SNPs, and other information was constructed. A total of 987 genes with nucleotide diversity estimated in one or more of the wheat genomes was placed on an Ae. tauschii genetic map, and the map was superimposed on wheat deletion-bin maps. The agreement between the maps was assessed. Conclusions In a young polyploid, exemplified by T. aestivum, ancestral species are the primary source of genetic diversity. Low effective recombination due to self-pollination and a genetic mechanism precluding homoeologous chromosome pairing during polyploid meiosis can lead to the loss of diversity from large

  3. Phenotype-gene: 57 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available iency during process named polyploidization for AT5G08550 Yoshizumi Takeshi et al. 2006 Oct. Plant Cell 18(1...0):2452-68. http://metadb.riken.jp/db/SciNetS_ria224i/cria224u4ria224u17012601i decreased efficiency during process named polyploidiz...ation http://metadb.riken.jp/db/SciNetS_ria224i/cria224u1ria224u639i AT5G08550

  4. UGbS-Flex, a novel bioinformatics pipeline for imputation-free SNP discovery in polyploids without a reference genome: finger millet as a case study.

    Science.gov (United States)

    Qi, Peng; Gimode, Davis; Saha, Dipnarayan; Schröder, Stephan; Chakraborty, Debkanta; Wang, Xuewen; Dida, Mathews M; Malmberg, Russell L; Devos, Katrien M

    2018-06-15

    Research on orphan crops is often hindered by a lack of genomic resources. With the advent of affordable sequencing technologies, genotyping an entire genome or, for large-genome species, a representative fraction of the genome has become feasible for any crop. Nevertheless, most genotyping-by-sequencing (GBS) methods are geared towards obtaining large numbers of markers at low sequence depth, which excludes their application in heterozygous individuals. Furthermore, bioinformatics pipelines often lack the flexibility to deal with paired-end reads or to be applied in polyploid species. UGbS-Flex combines publicly available software with in-house python and perl scripts to efficiently call SNPs from genotyping-by-sequencing reads irrespective of the species' ploidy level, breeding system and availability of a reference genome. Noteworthy features of the UGbS-Flex pipeline are an ability to use paired-end reads as input, an effective approach to cluster reads across samples with enhanced outputs, and maximization of SNP calling. We demonstrate use of the pipeline for the identification of several thousand high-confidence SNPs with high representation across samples in an F 3 -derived F 2 population in the allotetraploid finger millet. Robust high-density genetic maps were constructed using the time-tested mapping program MAPMAKER which we upgraded to run efficiently and in a semi-automated manner in a Windows Command Prompt Environment. We exploited comparative GBS with one of the diploid ancestors of finger millet to assign linkage groups to subgenomes and demonstrate the presence of chromosomal rearrangements. The paper combines GBS protocol modifications, a novel flexible GBS analysis pipeline, UGbS-Flex, recommendations to maximize SNP identification, updated genetic mapping software, and the first high-density maps of finger millet. The modules used in the UGbS-Flex pipeline and for genetic mapping were applied to finger millet, an allotetraploid selfing species

  5. The Effects of Low LET Radiation and Aging on DNA Content in Rats Hepatocytes

    International Nuclear Information System (INIS)

    Ekhtiar, A. M.

    2004-01-01

    It has been shown that the polyploidization levels in rat's hepatocytes increased with aging. The high LET ionizing radiation also induce cell polyploidization by two different means: cells and nuclei fusion, and mitosis restriction after DNA replication. The purpose of the present study was to determine the kinetic of rat's hepatocytes polyploidization with aging, and the late effects of low doses of gamma irradiation on polyploidization. Two groups of rats were used. Each group composed of 150 four weeks old animals. The first group was served as a control, and the second was irradiated with 4 Gy of gamma irradiation at the age of one month. Of each group, 7-8 animals were monthly scarified (for two years), and their liver tissues were used to obtain cell suspensions which were further fixed in gradual series concentrations of ethanol. After staining with Propidum Iodide PI (10 6 cells per ml of PI used at 10 - 5 M final concentration), the cells were analyzed on a FACS Vantage Flow Cytometer (Becton Dickinson). With the control group, the results showed: 1) A decrease of cell fraction that contained normal diploid until steady level. 2) Biphasic changes of fraction tetraploidy cells (increase until age of 4 month followed by decrease). 3) The fraction of octaploidy cells appeared at age of 3-4 month and increased continuously by the aging. In regard to life-span reductions of irradiated animals, the DNA contents were similar to those in control groups in addition to some variation due to a programmed cell death (Apoptosis) induced by irradiation and regenerations. These variations persisted till the age of 7 month. It was concluded that the level of DNA content might be used to determine the rat's age, and the low LET radiation had no effect on the phenomenon of polyploidization. (author)

  6. Chasing ghosts: allopolyploid origin of Oxyria sinensis (Polygonaceae) from its only diploid congener and an unknown ancestor.

    Science.gov (United States)

    Luo, Xin; Hu, Quanjun; Zhou, Pingping; Zhang, Dan; Wang, Qian; Abbott, Richard J; Liu, Jianquan

    2017-06-01

    Reconstructing the origin of a polyploid species is particularly challenging when an ancestor has become extinct. Under such circumstances, the extinct donor of a genome found in the polyploid may be treated as a 'ghost' species in that its prior existence is recognized through the presence of its genome in the polyploid. In this study, we aimed to determine the polyploid origin of Oxyria sinensis (2n = 40) for which only one congeneric species is known, that is diploid O. digyna (2n = 14). Genomic in situ hybridization (GISH), transcriptome, phylogenetic and demographic analyses, and ecological niche modelling were conducted for this purpose. GISH revealed that O. sinensis comprised 14 chromosomes from O. digyna and 26 chromosomes from an unknown ancestor. Transcriptome analysis indicated that following divergence from O. digyna, involving genome duplication around 12 million years ago (Ma), a second genome duplication occurred approximately 6 Ma to give rise to O. sinensis. Oxyria sinensis was shown to contain homologous gene sequences divergent from those present in O. digyna in addition to a set that clustered with those in O. digyna. Coalescent simulations indicated that O. sinensis expanded its distribution approximately 6-7 Ma, possibly following the second polyploidization event, whereas O. digyna expanded its range much later. It was also indicated that the distributions of both species contracted and re-expanded during the Pleistocene climatic oscillations. Ecological niche modelling similarly suggested that both species experienced changes in their distributional ranges in response to Quaternary climatic changes. The extinction of the unknown 'ghost' tetraploid species implicated in the origin of O. sinensis could have resulted from superior adaptation of O. sinensis to repeated climatic changes in the region where it now occurs. © 2017 John Wiley & Sons Ltd.

  7. Bringing together evolution on serpentine and polyploidy: spatiotemporal history of the diploid-tetraploid complex of Knautia arvensis (Dipsacaceae.

    Directory of Open Access Journals (Sweden)

    Filip Kolář

    Full Text Available Polyploidization is one of the leading forces in the evolution of land plants, providing opportunities for instant speciation and rapid gain of evolutionary novelties. Highly selective conditions of serpentine environments act as an important evolutionary trigger that can be involved in various speciation processes. Whereas the significance of both edaphic speciation on serpentine and polyploidy is widely acknowledged in plant evolution, the links between polyploid evolution and serpentine differentiation have not yet been examined. To fill this gap, we investigated the evolutionary history of the perennial herb Knautia arvensis (Dipsacaceae, a diploid-tetraploid complex that exhibits an intriguing pattern of eco-geographic differentiation. Using plastid DNA sequencing and AFLP genotyping of 336 previously cytotyped individuals from 40 populations from central Europe, we unravelled the patterns of genetic variation among the cytotypes and the edaphic types. Diploids showed the highest levels of genetic differentiation, likely as a result of long term persistence of several lineages in ecologically distinct refugia and/or independent immigration. Recurrent polyploidization, recorded in one serpentine island, seems to have opened new possibilities for the local serpentine genotype. Unlike diploids, the serpentine tetraploids were able to escape from the serpentine refugium and spread further; this was also attributable to hybridization with the neighbouring non-serpentine tetraploid lineages. The spatiotemporal history of K. arvensis allows tracing the interplay of polyploid evolution and ecological divergence on serpentine, resulting in a complex evolutionary pattern. Isolated serpentine outcrops can act as evolutionary capacitors, preserving distinct karyological and genetic diversity. The serpentine lineages, however, may not represent evolutionary 'dead-ends' but rather dynamic systems with a potential to further influence the surrounding

  8. Measuring stress-induced DNA methylation in apomictic Dandelions

    NARCIS (Netherlands)

    Gurp, van Thomas P.

    2017-01-01

    The success or continuous existence of species requires continuous adaptation to changes in the environment to survive and contribute offspring to the next generation. Selection acts on the phenotype, which is in turn determined by the complex interplay of genetic, epigenetic and environmental

  9. Comparative analysis reveals that polyploidy does not decelerate diversification in fish.

    Science.gov (United States)

    Zhan, S H; Glick, L; Tsigenopoulos, C S; Otto, S P; Mayrose, I

    2014-02-01

    While the proliferation of the species-rich teleost fish has been ascribed to an ancient genome duplication event at the base of this group, the broader impact of polyploidy on fish evolution and diversification remains poorly understood. Here, we investigate the association between polyploidy and diversification in several fish lineages: the sturgeons (Acipenseridae: Acipenseriformes), the botiid loaches (Botiidae: Cypriniformes), Cyprininae fishes (Cyprinidae: Cypriniformes) and the salmonids (Salmonidae: Salmoniformes). Using likelihood-based evolutionary methodologies, we co-estimate speciation and extinction rates associated with polyploid vs. diploid fish lineages. Family-level analysis of Acipenseridae and Botiidae revealed no significant difference in diversification rates between polyploid and diploid relatives, while analysis of the subfamily Cyprininae revealed higher polyploid diversification. Additionally, order-level analysis of the polyploid Salmoniformes and its diploid sister clade, the Esociformes, did not support a significantly different net diversification rate between the two groups. Taken together, our results suggest that polyploidy is generally not associated with decreased diversification in fish - a pattern that stands in contrast to that previously observed in plants. While there are notable differences in the time frame examined in the two studies, our results suggest that polyploidy is associated with different diversification patterns in these two major branches of the eukaryote tree of life. © 2014 The Authors. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.

  10. Modification of chromosomal aberration and polyploidy by combined treatment with x-rays and colchicine in Trichosanthes anguina

    International Nuclear Information System (INIS)

    Datta, S.K.; Basu, R.K.

    1978-01-01

    Mitosis in root tip cells of T. anguina after treatment of seeds with X-rays, colchicine and in combination of the two was studied. X-irradiation resulted in cells with chromosomal aberrations, which increased with increase in doses. With increase in colchicine concentrations there was decrease in diploid cells with consequent increase in polyploid cells. Post-irradiation colchicine treatment resulted in both aberrant and polyploid cells but their frequencies were less than separate treatment with X-rays and colchicine respectively. (author)

  11. Assessment of single and combined X-ray and colchicine treatment on Trichosanthes anguina L

    International Nuclear Information System (INIS)

    Datta, S.K.

    1992-01-01

    The results of the present experiment on combined treatment with 18 kR X-rays followed by treatment with 0.25, 0.50 and 1.00 per cent aqueous solution of colchicine on white fruit colour variety of T. anguina have been found to be very interesting. The treatments have led to an increase in surviving plants till maturity, reduction in percentage of pollen mother cells with chromosomal aberrations and increase in pollen fertility. Analysis of root tip mitosis has shown that treatment with X-rays produces dicentric bridge and fragment while only polyploid cells were observed after treatment with colchicine. Combined treatment with X-rays and colchicine, produces both chromosomal aberrations and polyploid cells. Simultaneously, it reduces the percentage of cells with chromosomal aberrations and those with polyploid chromosome numbers. Desirable variability in seed number, seed weight and size, seed oil and punicic acid content were observed in both combined and individual treatment. (author). 6 refs., 3 tabs

  12. Breeding of lilies and tulips—Interspecific hybridization and genetic background—

    Science.gov (United States)

    Marasek-Ciolakowska, Agnieszka; Nishikawa, Tomotaro; Shea, Daniel J.; Okazaki, Keiichi

    2018-01-01

    Lilies and tulips (Liliaceae family) are economically very important ornamental bulbous plants. Here, we summarize major breeding goals, the role of an integrated method of cut-style pollination and fertilization followed by embryo rescue and mitotic and meiotic polyploidization involved in new assortment development. Both crops have been subjected to extensive interspecific hybridization followed by selection. Additionally, spontaneous polyploidization has played a role in their evolution. In lilies, there is a tendency to replace diploids with polyploid cultivars, whereas in tulip a majority of the cultivars that exist today are still diploid except for triploid Darwin hybrid tulips. The introduction of molecular cytogenetic techniques such as genomic in situ hybridization (GISH) permitted the detailed studies of genome composition in lily and tulip interspecific hybrids and to follow the chromosome inheritance in interspecific crosses. In addition, this review presents the latest information on phylogenetic relationship in lily and tulip and recent developments in molecular mapping using different DNA molecular techniques. PMID:29681746

  13. On the road to diploidization? Homoeolog loss in independently formed populations of the allopolyploid Tragopogon miscellus (Asteraceae

    Directory of Open Access Journals (Sweden)

    Soltis Pamela S

    2009-06-01

    Full Text Available Abstract Background Polyploidy (whole-genome duplication is an important speciation mechanism, particularly in plants. Gene loss, silencing, and the formation of novel gene complexes are some of the consequences that the new polyploid genome may experience. Despite the recurrent nature of polyploidy, little is known about the genomic outcome of independent polyploidization events. Here, we analyze the fate of genes duplicated by polyploidy (homoeologs in multiple individuals from ten natural populations of Tragopogon miscellus (Asteraceae, all of which formed independently from T. dubius and T. pratensis less than 80 years ago. Results Of the 13 loci analyzed in 84 T. miscellus individuals, 11 showed loss of at least one parental homoeolog in the young allopolyploids. Two loci were retained in duplicate for all polyploid individuals included in this study. Nearly half (48% of the individuals examined lost a homoeolog of at least one locus, with several individuals showing loss at more than one locus. Patterns of loss were stochastic among individuals from the independently formed populations, except that the T. dubius copy was lost twice as often as T. pratensis. Conclusion This study represents the most extensive survey of the fate of genes duplicated by allopolyploidy in individuals from natural populations. Our results indicate that the road to genome downsizing and ultimate genetic diploidization may occur quickly through homoeolog loss, but with some genes consistently maintained as duplicates. Other genes consistently show evidence of homoeolog loss, suggesting repetitive aspects to polyploid genome evolution.

  14. Short Communication: An apospory-specific genomic region is conserved between Buffelgrass (Cenchrus ciliaris L.) and Pennisetum squamulatum Fresen.

    Science.gov (United States)

    Roche; Cong; Chen; Hanna; Gustine; Sherwood; Ozias-Akins

    1999-07-01

    Twelve molecular markers linked to pseudogamous apospory, a form of gametophytic apomixis, were previously isolated from Pennisetum squamulatum Fresen. No recombination between these markers was found in a segregating population of 397 individuals (Ozias-Akins et al. 1998, Proc. Natl Acad. Sci. USA, 95, 5127-5132). The objective of the present study was to test if these markers were also linked to the aposporous mode of reproduction in two small segregating populations of Cenchrus ciliaris (= Pennisetum ciliare (L.)Link), another apomictic grass species. Among 12 markers (sequence characterized amplified regions, SCARs), six were scored as dominant markers between aposporous and sexual C. ciliaris genotypes (presence/absence, respectively). Five were always linked to apospory and one showed a low level of recombination in 84 progenies. Restriction fragment length polymorphisms (RFLPs) were observed between sexual and apomictic phenotypes for three of the six remaining SCARs from P. squamulatum when used as probes. No recombination was observed in the F1 progenies. Preliminary data from megabase DNA analysis and sequencing in both species indicate that an apospory-specific genomic region (ASGR) is highly conserved between the two species. Although C. ciliaris has a smaller genome size to P. squamulatum, a higher copy number for markers linked to apospory found in the former may impair the progress of positional cloning of gene(s) for apomixis in this species.

  15. Deciphering the complex leaf transcriptome of the allotetraploid species Nicotiana tabacum: a phylogenomic perspective

    Directory of Open Access Journals (Sweden)

    Bombarely Aureliano

    2012-08-01

    Full Text Available Abstract Background Polyploidization is an important mechanism in plant evolution. By analyzing the leaf transcriptomes taken from the allotetraploid Nicotiana tabacum (tobacco and parental genome donors, N. sylvesteris (S-Genome and N. tomentosiformis (T-Genome, a phylogenomic approach was taken to map the fate of homeologous gene pairs in this plant. Results A comparison between the genes present in the leaf transcriptomes of N. tabacum and modern day representatives of its progenitor species demonstrated that only 33% of assembled transcripts could be distinguished based on their sequences. A large majority of the genes (83.6% of the non parent distinguishable and 87.2% of the phylogenetic topology analyzed clusters expressed above background level (more than 5 reads showed similar overall expression levels. Homeologous sequences could be identified for 968 gene clusters, and 90% (6% of all genes of the set maintained expression of only one of the tobacco homeologs. When both homeologs were expressed, only 15% (0.5% of the total showed evidence of differential expression, providing limited evidence of subfunctionalization. Comparing the rate of synonymous nucleotide substitution (Ks and non-synonymous nucleotide substitution (Kn provided limited evidence for positive selection during the evolution of tobacco since the polyploidization event took place. Conclusions Polyploidization is a powerful mechanism for plant speciation that can occur during one generation; however millions of generations may be necessary for duplicate genes to acquire a new function. Analysis of the tobacco leaf transcriptome reveals that polyploidization, even in a young tetraploid such as tobacco, can lead to complex changes in gene expression. Gene loss and gene silencing, or subfunctionalization may explain why both homeologs are not expressed by the associated genes. With Whole Genome Duplication (WGD events, polyploid genomes usually maintain a high percentage of

  16. Proposed megakaryocytic regulon of p53: the genes engaged to control cell cycle and apoptosis during megakaryocytic differentiation

    Science.gov (United States)

    Apostolidis, Pani A.; Lindsey, Stephan; Miller, William M.

    2012-01-01

    During endomitosis, megakaryocytes undergo several rounds of DNA synthesis without division leading to polyploidization. In primary megakaryocytes and in the megakaryocytic cell line CHRF, loss or knock-down of p53 enhances cell cycling and inhibits apoptosis, leading to increased polyploidization. To support the hypothesis that p53 suppresses megakaryocytic polyploidization, we show that stable expression of wild-type p53 in K562 cells (a p53-null cell line) attenuates the cells' ability to undergo polyploidization during megakaryocytic differentiation due to diminished DNA synthesis and greater apoptosis. This suggested that p53's effects during megakaryopoiesis are mediated through cell cycle- and apoptosis-related target genes, possibly by arresting DNA synthesis and promoting apoptosis. To identify candidate genes through which p53 mediates these effects, gene expression was compared between p53 knock-down (p53-KD) and control CHRF cells induced to undergo terminal megakaryocytic differentiation using microarray analysis. Among substantially downregulated p53 targets in p53-KD megakaryocytes were cell cycle regulators CDKN1A (p21) and PLK2, proapoptotic FAS, TNFRSF10B, CASP8, NOTCH1, TP53INP1, TP53I3, DRAM1, ZMAT3 and PHLDA3, DNA-damage-related RRM2B and SESN1, and actin component ACTA2, while antiapoptotic CKS1B, BCL2, GTSE1, and p53 family member TP63 were upregulated in p53-KD cells. Additionally, a number of cell cycle-related, proapoptotic, and cytoskeleton-related genes with known functions in megakaryocytes but not known to carry p53-responsive elements were differentially expressed between p53-KD and control CHRF cells. Our data support a model whereby p53 expression during megakaryopoiesis serves to control polyploidization and the transition from endomitosis to apoptosis by impeding cell cycling and promoting apoptosis. Furthermore, we identify a putative p53 regulon that is proposed to orchestrate these effects. PMID:22548738

  17. Ecological studies of polyploidy in the 100 years following its discovery.

    Science.gov (United States)

    Ramsey, Justin; Ramsey, Tara S

    2014-08-05

    Polyploidy is a mutation with profound phenotypic consequences and thus hypothesized to have transformative effects in plant ecology. This is most often considered in the context of geographical and environmental distributions-as achieved from divergence of physiological and life-history traits-but may also include species interactions and biological invasion. This paper presents a historical overview of hypotheses and empirical data regarding the ecology of polyploids. Early researchers of polyploidy (1910 s-1930 s) were geneticists by training but nonetheless savvy to its phenotypic effects, and speculated on the importance of genome duplication to adaptation and crop improvement. Cytogenetic studies in the 1930 s-1950 s indicated that polyploids are larger (sturdier foliage, thicker stems and taller stature) than diploids while cytogeographic surveys suggested that polyploids and diploids have allopatric or parapatric distributions. Although autopolyploidy was initially regarded as common, influential writings by North American botanists in the 1940 s and 1950 s argued for the principle role of allopolyploidy; according to this view, genome duplication was significant for providing a broader canvas for hybridization rather than for its phenotypic effects per se. The emphasis on allopolyploidy had a chilling effect on nascent ecological work, in part due to taxonomic challenges posed by interspecific hybridization. Nonetheless, biosystematic efforts over the next few decades (1950s-1970s) laid the foundation for ecological research by documenting cytotype distributions and identifying phenotypic correlates of polyploidy. Rigorous investigation of polyploid ecology was achieved in the 1980s and 1990 s by population biologists who leveraged flow cytometry for comparative work in autopolyploid complexes. These efforts revealed multi-faceted ecological and phenotypic differences, some of which may be direct consequences of genome duplication. Several classical

  18. The Red Queen hypothesis and geographical parthenogenesis in the alpine hawkweed Hieracium alpinum (Asteraceae)

    Czech Academy of Sciences Publication Activity Database

    Hartmann, M.; Štefánek, M.; Zdvořák, P.; Heřman, P.; Chrtek, Jindřich; Mráz, P.

    2017-01-01

    Roč. 122, č. 4 (2017), s. 681-696 ISSN 0024-4066 Institutional support: RVO:67985939 Keywords : apomixis * polyploidy * Red Queen hypothesis Subject RIV: EF - Botanics OBOR OECD: Plant sciences, botany Impact factor: 2.288, year: 2016

  19. Uptake and disposition of mirex in hepatocytes and subcellular fractions in CD1 mouse liver

    International Nuclear Information System (INIS)

    Charles, A.K.; Rosenbaum, D.P.; Ashok, L.; Abraham, R.

    1985-01-01

    In vivo uptake and disposition of [ 14 C]mirex by CD1 mouse liver subcellular fractions and cells of different nuclear ploidy were examined following single or multiple doses of mirex injected intraperitoneally. Significant amounts of mirex were rapidly taken up by liver (21-29%), suggesting that liver is one of the primary sites of accumulation of the chemical. Among subcellular fractions, mirex was predominantly distributed in mitochondria and microsomes in the irreversibly bound form (about 20%), although its levels fluctuated considerably with time. Mirex was completely dissociated with trichloroacetic acid treatment from both nuclear and plasma membrane fractions, although the total uptake by these fractions was markedly high. The time course of uptake and concentration-dependent disposition of mirex revealed that polyploid hepatocytes selectively accumulated higher amounts of the chemical (two to three times) compared to diploid hepatocytes. The increased affinity of polyploid cells to mirex may indicate a greater susceptibility of this cell type to the chemical insult and also may suggest a possible early involvement of polyploids in the tumorigenic process in rodent livers

  20. Molecular Phylogeny of Triticum and Aegilops Genera Based on ITS and MATK Sequence Data

    International Nuclear Information System (INIS)

    Dizkirici, A.; Kansu, C.; Onde, S.

    2016-01-01

    Understanding the phylogenetic relationship between Triticum and Aegilops species, which form a vast gene pool of wheat, is very important for breeding new cultivated wheat varieties. In the present study, phylogenetic relationships between Triticum (12 samples from 4 species) and Aegilops (24 samples from 8 species) were investigated using sequences of the nuclear ITS rDNA gene and partial sequences of the matK gene of chloroplast genome. The phylogenetic relationships among species were reconstructed using Maximum Likelihood method. The constructed tree based on the sequences of the nuclear component (ITS) displayed a close relationship between polyploid wheats and Aegilops speltoides species which provided new evidence for the source of the enigmatic B genome donor as Ae. speltoides. Concurrent clustering of Ae. cylindrica and Ae. tauschii and their close positioning to polyploid wheats pointed the source of the D genome as one of these species. As reported before, diploid Triticum species (i.e. T. urartu) were identified as the A genome donors and the positioning of these diploid wheats on the constructed tree are meaningful. The constructed tree based on the chloroplastic matK sequences displayed same relationship between polyploid wheats and Ae. speltoides species providing evidence for the later species being the chloroplast donors for polyploid wheats. Therefore, our results supported the idea of coinheritance of nuclear and chloroplast genomes where Ae. speltoides was the maternal donor. For both trees the remaining Aegilops species produced a distinct cluster whereas with the exception of T. urartu, diploid Triticum species displayed a monophyletic structure. (author)

  1. Use of flow cytometry in research on apomictic plants

    Czech Academy of Sciences Publication Activity Database

    Krahulcová, Anna; Rotreklová, O.

    2010-01-01

    Roč. 82, č. 1 (2010), s. 23-39 ISSN 0032-7786 R&D Projects: GA ČR GA206/07/0059 Institutional research plan: CEZ:AV0Z60050516 Keywords : agamic complexes * cytotape * progeny screening * residual sexuality Subject RIV: EF - Botanics Impact factor: 2.792, year: 2010

  2. Characteristics of the distant effect of γ-irradiation of seeds for diploid and poliploid plants

    International Nuclear Information System (INIS)

    Olimpienko, G.S.; Pavlova, N.A.; Lebedeva, O.N.; Nikolaevskaya, T.S.; Tikhonov, P.V.

    1995-01-01

    In comparative radiobiological and cytogenetic study of three species of grasses (Festuca pratensis Huds., 2x=14, Dactylis glomerata L., 2x=28. Festuca rubra L., 2x=42) it was found that the distant cytogenetic effects of γ-irradiation of seeds were different in diploids and polyploids. The rate of abberant cells was higher in poliploids. The latter is connected with delay of cell division that is unequally expressed for diploids and polyploids. We suggest that cytogenetic effects dependency on division delay and interphase death of cells is spreaded to more than one generation. 7 refs.; 2 figs.; 3 tabs

  3. Hieracium sinoaestivum (Asteraceae, a new species from North China

    Directory of Open Access Journals (Sweden)

    Alexander Sennikov

    2014-06-01

    Full Text Available Hieracium sinoaestivum Sennikov sp. nov. is described as new to science and illustrated. This presumably apomictic species is solely known from two old collections made in a single locality in the Shanxi Province of China. It belongs to the hybridogenous group H. sect. Aestiva (H. sect. Prenanthoidea × H. sect. Umbellata and is most similar to H. veresczaginii from southern Siberia. The new species occurs at low altitudes in the forest belt of Lülian Mts. and belongs to taiga forest elements.

  4. Digital gene expression analysis of gene expression differences within Brassica diploids and allopolyploids.

    Science.gov (United States)

    Jiang, Jinjin; Wang, Yue; Zhu, Bao; Fang, Tingting; Fang, Yujie; Wang, Youping

    2015-01-27

    Brassica includes many successfully cultivated crop species of polyploid origin, either by ancestral genome triplication or by hybridization between two diploid progenitors, displaying complex repetitive sequences and transposons. The U's triangle, which consists of three diploids and three amphidiploids, is optimal for the analysis of complicated genomes after polyploidization. Next-generation sequencing enables the transcriptome profiling of polyploids on a global scale. We examined the gene expression patterns of three diploids (Brassica rapa, B. nigra, and B. oleracea) and three amphidiploids (B. napus, B. juncea, and B. carinata) via digital gene expression analysis. In total, the libraries generated between 5.7 and 6.1 million raw reads, and the clean tags of each library were mapped to 18547-21995 genes of B. rapa genome. The unambiguous tag-mapped genes in the libraries were compared. Moreover, the majority of differentially expressed genes (DEGs) were explored among diploids as well as between diploids and amphidiploids. Gene ontological analysis was performed to functionally categorize these DEGs into different classes. The Kyoto Encyclopedia of Genes and Genomes analysis was performed to assign these DEGs into approximately 120 pathways, among which the metabolic pathway, biosynthesis of secondary metabolites, and peroxisomal pathway were enriched. The non-additive genes in Brassica amphidiploids were analyzed, and the results indicated that orthologous genes in polyploids are frequently expressed in a non-additive pattern. Methyltransferase genes showed differential expression pattern in Brassica species. Our results provided an understanding of the transcriptome complexity of natural Brassica species. The gene expression changes in diploids and allopolyploids may help elucidate the morphological and physiological differences among Brassica species.

  5. Mapping Late Leaf Spot Resistance in Peanut (Arachis hypogaea Using QTL-seq Reveals Markers for Marker-Assisted Selection

    Directory of Open Access Journals (Sweden)

    Josh Clevenger

    2018-02-01

    Full Text Available Late leaf spot (LLS; Cercosporidium personatum is a major fungal disease of cultivated peanut (Arachis hypogaea. A recombinant inbred line population segregating for quantitative field resistance was used to identify quantitative trait loci (QTL using QTL-seq. High rates of false positive SNP calls using established methods in this allotetraploid crop obscured significant QTLs. To resolve this problem, robust parental SNPs were first identified using polyploid-specific SNP identification pipelines, leading to discovery of significant QTLs for LLS resistance. These QTLs were confirmed over 4 years of field data. Selection with markers linked to these QTLs resulted in a significant increase in resistance, showing that these markers can be immediately applied in breeding programs. This study demonstrates that QTL-seq can be used to rapidly identify QTLs controlling highly quantitative traits in polyploid crops with complex genomes. Markers identified can then be deployed in breeding programs, increasing the efficiency of selection using molecular tools.Key Message: Field resistance to late leaf spot is a quantitative trait controlled by many QTLs. Using polyploid-specific methods, QTL-seq is faster and more cost effective than QTL mapping.

  6. The Roles of Telomerase in the Generation of Polyploidy during Neoplastic Cell Growth

    Directory of Open Access Journals (Sweden)

    Agni Christodoulidou

    2013-02-01

    Full Text Available Polyploidy contributes to extensive intratumor genomic heterogeneity that characterizes advanced malignancies and is thought to limit the efficiency of current cancer therapies. It has been shown that telomere deprotection in p53-deficient mouse embryonic fibroblasts leads to high rates of polyploidization. We now show that tumor genome evolution through whole-genome duplication occurs in ∼15% of the karyotyped human neoplasms and correlates with disease progression. In a panel of human cancer and transformed cell lines representing the two known types of genomic instability (chromosomal and microsatellite, as well as the two known pathways of telomere maintenance in cancer (telomerase activity and alternative lengthening of telomeres, telomere dysfunction-driven polyploidization occurred independently of the mutational status of p53. Depending on the preexisting context of telomere maintenance, telomerase activity and its major components, human telomerase reverse transcriptase (hTERT and human telomerase RNA component (hTERC, exert both reverse transcriptase-related (canonical and noncanonical functions to affect tumor genome evolution through suppression or induction of polyploidization. These new findings provide a more complete mechanistic understanding of cancer progression that may, in the future, lead to novel therapeutic interventions.

  7. Formation of diploid and triploid hybrid groupers (hybridization of Epinephelus coioides ♀ × Epinephelus lanceolatus ♂) and their 5S gene analysis.

    Science.gov (United States)

    Huang, Wen; Qin, Qinbo; Yang, Huirong; Li, Shuisheng; Hu, Chaoqun; Wang, Yude; Zhang, Yong; Liu, Shaojun; Lin, Haoran

    2016-10-07

    Interspecies hybridization is widely used to achieve heterosis or hybrid vigor, which has been observed and harnessed by breeders for centuries. Natural allopolyploid hybrids generally exhibit more superior heterosis than both the diploid progenies and their parental species. However, polyploid formation processes have been long ignored, the genetic basis of heterosis in polyploids remains elusive. In the present study, triploid hybrids had been demonstrated to contain two sets of chromosomes from mother species and one set from father species. Cellular polyploidization process in the embryos had been traced. The triploid hybrids might be formed by failure formation of the second polarized genome during the second meiosis stage. Four spindle centers were observed in anaphase stage of the first cell division. Three spindle centers were observed in side of cell plate after the first cell division. The 5S rDNA genes of four types of groupers were cloned and analyzed. The diploid and triploid hybrids had been proved to contain the tandem chimera structures which were recombined by maternal and paternal monomer units. The results indicated that genome re-fusion had occurred in the hybrid progenies. To further elucidate the genetic patterns of diploid and triploid hybrids, fluorescence chromosome location had been carried out, maternal 5S gene (M-386) were used as the probe. The triploid hybrids contained fewer fluorescence loci numbers than the maternal species. The results indicated that participation of paternal 5S gene in the triploid hybrid genome had degraded the match rates of M-386 probe. Our study is the first to investigate the cellular formation processes of natural allopolyploids in hybrid fish, the cellular polyploidization process may be caused by failure formation of the second polarized genome during the meiosis, and our results will provide the molecular basis of hybrid vigor in interspecies hybridization.

  8. Screening of a Brassica napus bacterial artificial chromosome library using highly parallel single nucleotide polymorphism assays

    Science.gov (United States)

    2013-01-01

    Background Efficient screening of bacterial artificial chromosome (BAC) libraries with polymerase chain reaction (PCR)-based markers is feasible provided that a multidimensional pooling strategy is implemented. Single nucleotide polymorphisms (SNPs) can be screened in multiplexed format, therefore this marker type lends itself particularly well for medium- to high-throughput applications. Combining the power of multiplex-PCR assays with a multidimensional pooling system may prove to be especially challenging in a polyploid genome. In polyploid genomes two classes of SNPs need to be distinguished, polymorphisms between accessions (intragenomic SNPs) and those differentiating between homoeologous genomes (intergenomic SNPs). We have assessed whether the highly parallel Illumina GoldenGate® Genotyping Assay is suitable for the screening of a BAC library of the polyploid Brassica napus genome. Results A multidimensional screening platform was developed for a Brassica napus BAC library which is composed of almost 83,000 clones. Intragenomic and intergenomic SNPs were included in Illumina’s GoldenGate® Genotyping Assay and both SNP classes were used successfully for screening of the multidimensional BAC pools of the Brassica napus library. An optimized scoring method is proposed which is especially valuable for SNP calling of intergenomic SNPs. Validation of the genotyping results by independent methods revealed a success of approximately 80% for the multiplex PCR-based screening regardless of whether intra- or intergenomic SNPs were evaluated. Conclusions Illumina’s GoldenGate® Genotyping Assay can be efficiently used for screening of multidimensional Brassica napus BAC pools. SNP calling was specifically tailored for the evaluation of BAC pool screening data. The developed scoring method can be implemented independently of plant reference samples. It is demonstrated that intergenomic SNPs represent a powerful tool for BAC library screening of a polyploid genome

  9. Applications and challenges of next-generation sequencing in Brassica species.

    Science.gov (United States)

    Wei, Lijuan; Xiao, Meili; Hayward, Alice; Fu, Donghui

    2013-12-01

    Next-generation sequencing (NGS) produces numerous (often millions) short DNA sequence reads, typically varying between 25 and 400 bp in length, at a relatively low cost and in a short time. This revolutionary technology is being increasingly applied in whole-genome, transcriptome, epigenome and small RNA sequencing, molecular marker and gene discovery, comparative and evolutionary genomics, and association studies. The Brassica genus comprises some of the most agro-economically important crops, providing abundant vegetables, condiments, fodder, oil and medicinal products. Many Brassica species have undergone the process of polyploidization, which makes their genomes exceptionally complex and can create difficulties in genomics research. NGS injects new vigor into Brassica research, yet also faces specific challenges in the analysis of complex crop genomes and traits. In this article, we review the advantages and limitations of different NGS technologies and their applications and challenges, using Brassica as an advanced model system for agronomically important, polyploid crops. Specifically, we focus on the use of NGS for genome resequencing, transcriptome sequencing, development of single-nucleotide polymorphism markers, and identification of novel microRNAs and their targets. We present trends and advances in NGS technology in relation to Brassica crop improvement, with wide application for sophisticated genomics research into agronomically important polyploid crops.

  10. DNA methylation analysis of allotetraploid hybrids of red crucian carp (Carassius auratus red var. and common carp (Cyprinus carpio L..

    Directory of Open Access Journals (Sweden)

    Jun Xiao

    Full Text Available Hybridization and polyploidization may lead to divergence in adaptation and boost speciation in angiosperms and some lower animals. Epigenetic change plays a significant role in the formation and adaptation of polyploidy. Studies of the effects of methylation on genomic recombination and gene expression in allopolyploid plants have achieved good progress. However, relevant advances in polyploid animals have been relatively slower. In the present study, we used the bisexual, fertile, genetically stable allotetraploid generated by hybridization of Carassius auratus red var. and Cyprinus carpio L. to investigate cytosine methylation level using methylation-sensitive amplification polymorphism (MSAP analysis. We observed 38.31% of the methylation changes in the allotetraploid compared with the parents at 355 randomly selected CCGG sites. In terms of methylation status, these results indicate that the level of methylation modification in the allotetraploid may have increased relative to that in the parents. We also found that the major methylation changes were hypermethylation on some genomic fragments and genes related to metabolism or cell cycle regulation. These results provide circumstantial evidence that DNA methylation might be related to the gene expression and phenotype variation in allotetraploid hybrids. Our study partly fulfils the need for epigenetic research in polyploid animals, and provides evidence for the epigenetic regulation of allopolyploids.

  11. How apomictic taxa are treated in current taxonomy: A review

    Czech Academy of Sciences Publication Activity Database

    Majeský, L.; Krahulec, František; Vašut, R.J.

    2017-01-01

    Roč. 66, č. 5 (2017), s. 1017-1040 ISSN 0040-0262 Institutional support: RVO:67985939 Keywords : apomixis * hybridization * species concept Subject RIV: EF - Botanics OBOR OECD: Plant sciences, botany Impact factor: 2.447, year: 2016

  12. Arthropod fauna recorded in flowers of apomictic Taraxacum section Ruderalia

    Czech Academy of Sciences Publication Activity Database

    Honěk, A.; Martínková, Z.; Skuhrovec, J.; Barták, M.; Bezděk, J.; Bogusch, P.; Hadrava, J.; Hájek, J.; Janšta, P.; Jelínek, J.; Kirschner, Jan; Kubáň, V.; Pekár, S.; Průdek, P.; Štys, P.; Šumpich, J.

    2016-01-01

    Roč. 113, č. 1 (2016), s. 173-183 E-ISSN 1802-8829 Institutional support: RVO:67985939 Keywords : plant-herbivore interactions * arthropods * Taraxacum Subject RIV: EF - Botanics Impact factor: 1.167, year: 2016

  13. Interspecific hybrids between Paspalum plicatulum and P. oteroi: a key tool for forage breeding

    Directory of Open Access Journals (Sweden)

    Patricia Elda Novo

    2016-08-01

    Full Text Available ABSTRACT Grama-tio-pedro (Paspalum oteroi Swallen is a rare stoloniferous grass of the Plicatula group of Paspalum, well adapted to continuous grazing in areas subject to seasonal flooding in the Pantanal region, in central western Brazil. The species is a facultative apomictic (asexual reproduction by seed tetraploid, sporadically cultivated on Pantanal farms, propagated either by cuttings or seed. Due to its potential for extensive cultivation and forage quality, Grama-tio-pedro appears as a candidate for genetic improvement within the Plicatula group through plant breeding. We used a colchicine-induced sexual autotetraploid genotype of P. plicatulum Michx. to obtain interspecific hybrids using the apomictic species, P. oteroi, as pollen donor. The very similar meiotic chromosome behavior observed in both parents, with main quadrivalent and bivalent associations, suggested that P. oteroi is a natural autotetraploid. The hybrids showed less irregular meiotic behavior with fewer quadrivalents and more bivalents than either parent. Fertility among interspecific hybrids varied from complete sterility in some of them to seed productions in others that were approximately twice as much as for either parent. The great variability of seed set performance may well be a drastic genetic consequence of joining two homologous chromosome sets of P. plicatulum together with two homologous sets of P. oteroi that, in turn, have some homeology between them. Most hybrids reproduce by sexual means, thus, they could be used as female parents in backcrosses and in crosses with other species of the Plicatula group for interspecific gene transferring in breeding programs.

  14. Evolutionary consequences of polyploidy in prokaryotes and the origin of mitosis and meiosis.

    Science.gov (United States)

    Markov, Alexander V; Kaznacheev, Ilya S

    2016-06-08

    The origin of eukaryote-specific traits such as mitosis and sexual reproduction remains disputable. There is growing evidence that both mitosis and eukaryotic sex (i.e., the alternation of syngamy and meiosis) may have already existed in the basal eukaryotes. The mating system of the halophilic archaeon Haloferax volcanii probably represents an intermediate stage between typical prokaryotic and eukaryotic sex. H. volcanii is highly polyploid, as well as many other Archaea. Here, we use computer simulation to explore genetic and evolutionary outcomes of polyploidy in amitotic prokaryotes and its possible role in the origin of mitosis, meiosis and eukaryotic sex. Modeling suggests that polyploidy can confer strong short-term evolutionary advantage to amitotic prokaryotes. However, it also promotes the accumulation of recessive deleterious mutations and the risk of extinction in the long term, especially in highly mutagenic environment. There are several possible strategies that amitotic polyploids can use in order to reduce the genetic costs of polyploidy while retaining its benefits. Interestingly, most of these strategies resemble different components or aspects of eukaryotic sex. They include asexual ploidy cycles, equalization of genome copies by gene conversion, high-frequency lateral gene transfer between relatives, chromosome exchange coupled with homologous recombination, and the evolution of more accurate chromosome distribution during cell division (mitosis). Acquisition of mitosis by an amitotic polyploid results in chromosome diversification and specialization. Ultimately, it transforms a polyploid cell into a functionally monoploid one with multiple unique, highly redundant chromosomes. Specialization of chromosomes makes the previously evolved modes of promiscuous chromosome shuffling deleterious. This can result in selective pressure to develop accurate mechanisms of homolog pairing, and, ultimately, meiosis. Emergence of mitosis and the first

  15. The effect of sub-lethal doses on the ploidy level in rats hepatocytes with aging

    International Nuclear Information System (INIS)

    Ekhtiar, A. M.

    2004-11-01

    It has been shown that the polyploidization levels in rat's hepatocytes increased with aging. The high LET ionizing radiation also induce cell polyploidization by two different means: cells and nuclei fusion, and mitosis restriction after DNA replication. The purpose of the present study was to determine the kinetic of rat's hepatocytes polyploidization with ageing, and the late effects of low doses of gamma irradiation on polyploidization. To this end, three groups of rats were used. Each group composed of 175 four weeks old animals. The first was served as a control, the second and the third groups were irradiated with 4 and 2 Gy respectively, of gamma irradiation at the age of one month. Of each group, 7-8 animals were monthly scarified (for two years), and their liver tissues were used to obtain cell suspensions which were further fixed in gradual series concentrations of ethanol. After staining with Propidum Iodide 'PI' (10 6 cells per ml of PI used at 10 - 5 M final concentration), the cells were analyzed on a FACS Vantage Flow Cytometer (Becton Dickinson). In the control, the results showed: 1) A decrease of cell fraction that contained normal diploid until steady level. 2) Biphasic changes of fraction tetraploidy cells (increase until age of 4 month followed by decrease). 3) The fraction of octaploidy cells appeared at age of 3-4 month and increased continuously with the aging. In accompanied to life-span reductions of 4 Gy irradiated animals, the DNA contents were similar to those in control groups in addition to some quantities variation due to a programmed cell death (Apoptosis) induced by irradiation and regenerations. These variations persisted till the age of 7 month, in additional to reduce the spin-life of irradiated animals. The irradiation with 2 Gy induced some quantities variation in comparison with nonirradiated group, appeared in the reduction of rate conversion from one ploidy class to another, and in shift with 2-3 months of the second pike

  16. Epigenomics: dissecting hybridization and polyploidization.

    Science.gov (United States)

    Jackson, Scott A

    2017-06-19

    Epigenetic profiling in diploid, allopolyploid, and domesticated cotton shows that despite most DNA methylation being conserved and stably inherited, alterations likely due to hybridization and domestication affect gene expression.

  17. THE ROLE OF POLYPLOIDY IN ADAPTATION AND SETTLING OF STEPPE SHRUBS IN CENTRAL ASIA

    Directory of Open Access Journals (Sweden)

    Natalia V Ekimova

    2011-03-01

    Full Text Available Chromosome numbers for some species of Central Asia steppe shrubs are given: Rhamnus erythroxylon Pall. (Rhamnaceae, Caragana buriatica Peschk. (Fabaceae, Amygdalus pedunculata Pall., Armeniaca sibirica (L. Lam. (Rosaceae, Atraphaxis pungens (Bieb. Jaub. et Spach. and A. frutescens (L. C. Koch (Polygonaceae. Chromosome numbers of some species were determined for the first time. Comparative analysis of adaptive properties of polyploid and diploid species has been conducted. It was established that natural polyploids are more adaptive to existence in extreme conditions. They possess by high potential for survival and characterized by more high level of intraspecific polymorphism, abundant flowering and fruitification, ability of propagate both generative and vegetative means, high seed germination.

  18. Poliploidização em berinjela (Solanum melongena L.: II - Observações em plantas resultantes de tratamentos com colquicina Polyploidization in egg-plant (Solanum melongena L.: II - Observation in plants resulting from colchicine treatments

    Directory of Open Access Journals (Sweden)

    Dixier M. Medina

    1972-01-01

    Full Text Available As observações de diversos caracteres morfológicos em plantas de berinjela (Solatium melongena L. provenientes de tratamentos com colquicina levaram à separação de razoável número de possíveis poliplóides. O número de cromossomos determinado em células-mães de pólen revelou a existência de plantas tetraplóides e plantas quiméricas, além das normais diplóides. Numa amostra representando os diferentes tratamentos, encontrou-se uma associação quase perfeita entre a natureza tetraplóide ou quimérica da planta e a irregularidade do tamanho do pólen; tal associação não foi encontrada quando se analisou a quantidade de pólen vazio. Os frutos tetraplóides obtidos produziram sementes maiores e em número bem menor que os diplóides de pesos equivalentes.The observations on several morphological characteristics made on plants derived from treatments of seed with colchicine in the egg-plant (Solatium melongena L. led to separation of a reasonable number of possible polyploids. Chromosome number determined in P.M.C. indicated the existence of tetraploid plants, chimeric plants at level 24-48 and at level 48-96 beside the diploid normal ones. In a certain number of plants representing the different treatments, it was found an almost perfect association between tetraploidy and chimeric condition of the plants at one side and irregular size of the pollen at the other side; such an association was not found when the amount of empty pollen was analysed. The tetraploid fruits produced low number of seeds which were not uniform in size but were larger and in general heavier than the diploid ones.

  19. Incongruent plastid and nuclear DNA phylogenies reveal ancient intergeneric hybridization in Pilosella hawkweeds (Hieracium, Cichorieae, Asteraceae)

    Czech Academy of Sciences Publication Activity Database

    Fehrer, Judith; Gemeinholzer, B.; Chrtek, Jindřich; Bräutigam, S.

    2007-01-01

    Roč. 42, - (2007), s. 347-361 ISSN 1055-7903 R&D Projects: GA MŽP SE/610/3/00 Institutional research plan: CEZ:AV0Z60050516 Keywords : molecular phylogeny * Hieracium * chloroplast capture Subject RIV: EF - Botanics Impact factor: 3.994, year: 2007

  20. Ancient hybridizations among the ancestral genomes of bread wheat

    Czech Academy of Sciences Publication Activity Database

    Marcussen, T.; Sandve, S. R.; Heier, L.; Spannagl, M.; Pfeifer, M.; Rogers, J.; Doležel, Jaroslav; Pozniak, C.; Eversole, K.; Feuillet, C.; Gill, B.; Friebe, B.; Lukaszewski, A.J.; Sourdille, P.; Endo, T. R.; Kubaláková, Marie; Čihalíková, Jarmila; Dubská, Zdeňka; Vrána, Jan; Šperková, Romana; Šimková, Hana; Febrer, M.; Clissold, L.; Jakobsen, K. S.; Wulff, B.H.; Steuernagel, B.; Mayer, K. F. X.; Olsen, O.A.

    2014-01-01

    Roč. 345, č. 6194 (2014) ISSN 0036-8075 Institutional support: RVO:61389030 Keywords : POLYPLOID WHEAT * HYBRID SPECIATION * AEGILOPS-TAUSCHII Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 33.611, year: 2014

  1. Karyotype Stability and Unbiased Fractionation in the Paleo-Allotetraploid Cucurbita Genomes.

    Science.gov (United States)

    Sun, Honghe; Wu, Shan; Zhang, Guoyu; Jiao, Chen; Guo, Shaogui; Ren, Yi; Zhang, Jie; Zhang, Haiying; Gong, Guoyi; Jia, Zhangcai; Zhang, Fan; Tian, Jiaxing; Lucas, William J; Doyle, Jeff J; Li, Haizhen; Fei, Zhangjun; Xu, Yong

    2017-10-09

    The Cucurbita genus contains several economically important species in the Cucurbitaceae family. Here, we report high-quality genome sequences of C. maxima and C. moschata and provide evidence supporting an allotetraploidization event in Cucurbita. We are able to partition the genome into two homoeologous subgenomes based on different genetic distances to melon, cucumber, and watermelon in the Benincaseae tribe. We estimate that the two diploid progenitors successively diverged from Benincaseae around 31 and 26 million years ago (Mya), respectively, and the allotetraploidization happened at some point between 26 Mya and 3 Mya, the estimated date when C. maxima and C. moschata diverged. The subgenomes have largely maintained the chromosome structures of their diploid progenitors. Such long-term karyotype stability after polyploidization has not been commonly observed in plant polyploids. The two subgenomes have retained similar numbers of genes, and neither subgenome is globally dominant in gene expression. Allele-specific expression analysis in the C. maxima × C. moschata interspecific F 1 hybrid and their two parents indicates the predominance of trans-regulatory effects underlying expression divergence of the parents, and detects transgressive gene expression changes in the hybrid correlated with heterosis in important agronomic traits. Our study provides insights into polyploid genome evolution and valuable resources for genetic improvement of cucurbit crops. Copyright © 2017 The Author. Published by Elsevier Inc. All rights reserved.

  2. Complex cytogeographical patterns reveal a dynamic tetraploid–octoploid contact zone

    Science.gov (United States)

    Castro, Mariana; Castro, Sílvia; Figueiredo, Albano; Husband, Brian; Loureiro, João

    2018-01-01

    Abstract The distribution of cytotypes in mixed-ploidy species is crucial for evaluating ecological processes involved in the establishment and evolution of polyploid taxa. Here, we use flow cytometry and chromosome counts to explore cytotype diversity and distributions within a tetraploid–octoploid contact zone. We then use niche modelling and ploidy seed screening to assess the roles of niche differentiation among cytotypes and reproductive interactions, respectively, in promoting cytotype coexistence. Two cytotypes, tetraploids and octoploids, were dominant within the contact zone. They were most often distributed parapatrically or allopatrically, resulting in high geographic isolation. Still, 16.7 % of localities comprised two or more cytotypes, including the intermediate hexaploid cytotype. Tetraploids and octoploids had high environmental niche overlap and associated with similar climatic environments, suggesting they have similar ecological requirements. Given the geographical separation and habitat similarity among cytotypes, mixed-ploidy populations may be transitional and subject to the forces of minority cytotype exclusion which lead to pure-ploidy populations. However, seed ploidy analysis suggests that strong reproductive barriers may enforce assortative mating which favours stable cytotype coexistence. High cytogenetic diversity detected in the field suggests that unreduced gamete formation and hybridization events seem frequent in the studied polyploid complex and might be involved with the recurrent polyploid formation, governing, as well, the gene flow between cytogenetic entities. PMID:29593853

  3. Recombinants from the crosses between amphidiploid and cultivated peanut (Arachis hypogaea for pest-resistance breeding programs.

    Directory of Open Access Journals (Sweden)

    Ailton Ferreira de Paula

    Full Text Available Peanut is a major oilseed crop worldwide. In the Brazilian peanut production, silvering thrips and red necked peanut worm are the most threatening pests. Resistant varieties are considered an alternative to pest control. Many wild diploid Arachis species have shown resistance to these pests, and these can be used in peanut breeding by obtaining hybrid of A and B genomes and subsequent polyploidization with colchicine, resulting in an AABB amphidiploid. This amphidiploid can be crossed with cultivated peanut (AABB to provide genes of interest to the cultivar. In this study, the sterile diploid hybrids from A. magna V 13751 and A. kempff-mercadoi V 13250 were treated with colchicine for polyploidization, and the amphidiploids were crossed with A. hypogaea cv. IAC OL 4 to initiate the introgression of the wild genes into the cultivated peanut. The confirmation of the hybridity of the progenies was obtained by: (1 reproductive characterization through viability of pollen, (2 molecular characterization using microsatellite markers and (3 morphological characterization using 61 morphological traits with principal component analysis. The diploid hybrid individual was polyploidized, generating the amphidiploid An 13 (A. magna V 13751 x A. kempff-mercadoi V 132504x. Four F1 hybrid plants were obtained from IAC OL 4 × An 13, and 51 F2 seeds were obtained from these F1 plants. Using reproductive, molecular and morphological characterizations, it was possible to distinguish hybrid plants from selfed plants. In the cross between A. hypogaea and the amphidiploid, as the two parents are polyploid, the hybrid progeny and selves had the viability of the pollen grains as high as the parents. This fact turns the use of reproductive characteristics impossible for discriminating, in this case, the hybrid individuals from selfing. The hybrids between A. hypogaea and An 13 will be used in breeding programs seeking pest resistance, being subjected to successive

  4. CDK1 inhibition facilitates formation of syncytiotrophoblasts and expression of human Chorionic Gonadotropin

    KAUST Repository

    Ullah, Rahim; Dar, Saira; Ahmad, Tanvir; de Renty, Christelle; Usman, Mohammad; DePamphilis, Melvin L.; Faisal, Amir; Shahzad-ul-Hussan, Syed; Ullah, Zakir

    2018-01-01

    The human placental syncytiotrophoblast (STB) cells play essential roles in embryo implantation and nutrient exchange between the mother and the fetus. STBs are polyploid which are formed by fusion of diploid cytotrophoblast (CTB) cells

  5. O původu a hybridizaci polyploidních pýrů - na stopě netušených předků

    Czech Academy of Sciences Publication Activity Database

    Mahelka, Václav

    2013-01-01

    Roč. 61, č. 4 (2013), s. 149-153 ISSN 0044-4812 R&D Projects: GA ČR GA13-04454S Institutional support: RVO:67985939 Keywords : hybridization * polyploidization * Triticeae Subject RIV: EF - Botanics

  6. Dataset of Fourier transform-infrared coupled with chemometric analysis used to distinguish accessions of Garcinia mangostana L. in Peninsular Malaysia

    Directory of Open Access Journals (Sweden)

    Sri A’jilah Samsir

    2016-09-01

    Full Text Available In this dataset, we distinguish 15 accessions of Garcinia mangostana from Peninsular Malaysia using Fourier transform-infrared spectroscopy coupled with chemometric analysis. We found that the position and intensity of characteristic peaks at 3600–3100 cm−1 in IR spectra allowed discrimination of G. mangostana from different locations. Further principal component analysis (PCA of all the accessions suggests the two main clusters were formed: samples from Johor, Melaka, and Negeri Sembilan (South were clustered together in one group while samples from Perak, Kedah, Penang, Selangor, Kelantan, and Terengganu (North and East Coast were in another clustered group. Keywords: Apomictic, Mangosteen, Fourier Transformed-Infrared, Peninsular Malaysia

  7. Have necrohormones a role in embryogenesis?

    Directory of Open Access Journals (Sweden)

    P. R. Bell

    2014-01-01

    Full Text Available The recognition of apoptosis (programmed cell death as an accompaniment of normal development, the products released by the protoplasts undergoing self-destruction being utilized by adjacent living cells, stimulates renewed interest in Haberlandt's concept of "necrohormones" playing a role in apomictic reproduction. Recent work on somatic embryogenesis in carrot shows that regular death of certain cells in embryogenic cultures satifies the criteria of apoptosis. Similar observations have been made with embryogenic cultures of Picea abies. Haberlandt's claim that cell death induced by injury adjacent to an ovule in Oenothera could lead to parthenogenesis, despite conflicting evidence from later experimenters, is worthy of reexamination.

  8. Characterization of genomic sequence of a drought-resistant gene ...

    Indian Academy of Sciences (India)

    to study the genomics of polyploid plants, as most pro- genitors have been ... had been shown to constitute significant stress in pilot exper- iments. Untreated ... Southern blotting, real-time quantitative PCR and total soluble sugar analysis.

  9. The epigenetic footprint of poleward range-expanding plants in apomictic dandelions

    NARCIS (Netherlands)

    Preite, V.; Snoek, L.B.; Oplaat, C.; Biere, A.; Putten, van der W.H.; Verhoeven, K.J.F.

    2015-01-01

    Epigenetic modifications, such as DNA methylation variation, can generate heritable phenotypic variation independent of the underlying genetic code. However, epigenetic variation in natural plant populations is poorly documented and little understood. Here, we test if northward range expansion of

  10. Linkage mapping reveals strong chiasma interference in Sockeye salmon: Implications for interpreting genomic data

    DEFF Research Database (Denmark)

    Limborg, Morten; Waples, Ryan K; Allendorf, Fred W

    2015-01-01

    Meiotic recombination is fundamental for generating new genetic variation and for securing proper disjunction. Further, recombination plays an essential role during the rediploidization process of polyploid-origin genomes because crossovers between pairs of homeologous chromosomes retain duplicat...

  11. Differential expression of photosynthesis-related genes in pentaploid interspecific hybrid and its decaploid of Fragaria spp.

    Science.gov (United States)

    Wang, Tao; Huang, Dongya; Chen, Baoyu; Mao, Nini; Qiao, Yushan; Ji, Muxiang

    2018-03-01

    Polyploidization always induces a series of changes in genome, transcriptome and epigenetics, of which changes in gene expression are the immediate causes of genotype alterations of polyploid plants. In our previous study on strawberry polyploidization, genes related to photosynthesis were found to undergo changes in gene expression and DNA methylation. Therefore, we chose 11 genes that were closely related to plant photosynthesis and analysed their expression during strawberry hybridization and chromosome doubling. Most genes of pentaploids showed expression levels between parents and were more similar to F. × ananassa. Gene expression levels of decaploids were higher than those of pentaploids and F. × ananassa. Different types of photosynthesis-related genes responded differently to hybridization and chromosome doubling. Chloroplast genes and regulatory genes showed complex responses. Structural genes of the photosynthetic system were expressed at a constant level and displayed a clear dosage effect. The methylation levels of one CG site on SIGE, which regulates expression of chloroplast genes, were negatively correlated with gene expression. In pentaploids and decaploids, more transcripts were from F. × ananassa than from F. viridis. The ratio of transcripts from from F. × ananassa to those from F. viridis was close to the ratio (4:1) of the genome of F. × ananassa to that of F. viridis in pentaploids and decaploids, but there were also some exceptions with obvious deviation.

  12. Evolution of rDNA in Nicotiana Allopolyploids: A Potential Link between rDNA Homogenization and Epigenetics

    Science.gov (United States)

    Kovarik, Ales; Dadejova, Martina; Lim, Yoong K.; Chase, Mark W.; Clarkson, James J.; Knapp, Sandra; Leitch, Andrew R.

    2008-01-01

    Background The evolution and biology of rDNA have interested biologists for many years, in part, because of two intriguing processes: (1) nucleolar dominance and (2) sequence homogenization. We review patterns of evolution in rDNA in the angiosperm genus Nicotiana to determine consequences of allopolyploidy on these processes. Scope Allopolyploid species of Nicotiana are ideal for studying rDNA evolution because phylogenetic reconstruction of DNA sequences has revealed patterns of species divergence and their parents. From these studies we also know that polyploids formed over widely different timeframes (thousands to millions of years), enabling comparative and temporal studies of rDNA structure, activity and chromosomal distribution. In addition studies on synthetic polyploids enable the consequences of de novo polyploidy on rDNA activity to be determined. Conclusions We propose that rDNA epigenetic expression patterns established even in F1 hybrids have a material influence on the likely patterns of divergence of rDNA. It is the active rDNA units that are vulnerable to homogenization, which probably acts to reduce mutational load across the active array. Those rDNA units that are epigenetically silenced may be less vulnerable to sequence homogenization. Selection cannot act on these silenced genes, and they are likely to accumulate mutations and eventually be eliminated from the genome. It is likely that whole silenced arrays will be deleted in polyploids of 1 million years of age and older. PMID:18310159

  13. Simultaneous Assessment of Cardiomyocyte DNA Synthesis and Ploidy: A Method to Assist Quantification of Cardiomyocyte Regeneration and Turnover.

    Science.gov (United States)

    Richardson, Gavin D

    2016-05-23

    Although it is accepted that the heart has a limited potential to regenerate cardiomyocytes following injury and that low levels of cardiomyocyte turnover occur during normal ageing, quantification of these events remains challenging. This is in part due to the rarity of the process and the fact that multiple cellular sources contribute to myocardial maintenance. Furthermore, DNA duplication within cardiomyocytes often leads to a polyploid cardiomyocyte and only rarely leads to new cardiomyocytes by cellular division. In order to accurately quantify cardiomyocyte turnover discrimination between these processes is essential. The protocol described here employs long term nucleoside labeling in order to label all nuclei which have arisen as a result of DNA replication and cardiomyocyte nuclei identified by utilizing nuclei isolation and subsequent PCM1 immunolabeling. Together this allows the accurate and sensitive identification of the nucleoside labeling of the cardiomyocyte nuclei population. Furthermore, 4',6-diamidino-2-phenylindole labeling and analysis of nuclei ploidy, enables the discrimination of neo-cardiomyocyte nuclei from nuclei which have incorporated nucleoside during polyploidization. Although this method cannot control for cardiomyocyte binucleation, it allows a rapid and robust quantification of neo-cardiomyocyte nuclei while accounting for polyploidization. This method has a number of downstream applications including assessing the potential therapeutics to enhance cardiomyocyte regeneration or investigating the effects of cardiac disease on cardiomyocyte turnover and ploidy. This technique is also compatible with additional downstream immunohistological techniques, allowing quantification of nucleoside incorporation in all cardiac cell types.

  14. Comparative cytogenetic analysis of diploid and hexaploid Chenopodium album Agg

    Directory of Open Access Journals (Sweden)

    Bożena Kolano

    2011-01-01

    Full Text Available Two cytotypes of Chenopodium album, diploid (2n=2x=18 and hexaploid (2n=6x=54, were analysed using flow cytometry and a FISH experiment. The genome size was indicated as 1.795 pg for the diploid and 3.845 pg for the hexaploid plants which suggested genome downsizing in the evolution of hexaploid cytotype. Double FISH with 25S rDNA and 5S rDNA allowed three to five homologue chromosome pairs to be distinguished depending on the cytotype. The Variation in size and number of rDNA sites between the polyploid C. album and its putative diploid ancestor indicated that rDNA loci underwent rearrangements after polyploidization. Flow cytometry measurements of the relative nuclear DNA content in the somatic tissue of C. album revealed extensive endopolyploidization resulting in tissues comprising a mixture of cells with a different DNA content (from 2C to 32C in varying proportions. The pattern of endopolyploidy was characteristic for the developmental stage of the plant and for the individual organ. Polysomaty was not observed in the embryo tissues however endopolyploidization had taken place in most tested organs of seedlings. The endopolyploidy in diploid and hexaploid C. album was compared to find any relationship between the pattern of polysomaty and polyploidy level in this species. This revealed that polyploid plants showed a decline in the number of endocycles as well as in the frequency of endopolyploidy cells compared to diploid plants.

  15. Differential Transcriptome Analysis between Paulownia fortunei and Its Synthesized Autopolyploid

    Directory of Open Access Journals (Sweden)

    Xiaoshen Zhang

    2014-03-01

    Full Text Available Paulownia fortunei is an ecologically and economically important tree species that is widely used as timber and chemical pulp. Its autotetraploid, which carries a number of valuable traits, was successfully induced with colchicine. To identify differences in gene expression between P. fortunei and its synthesized autotetraploid, we performed transcriptome sequencing using an Illumina Genome Analyzer IIx (GAIIx. About 94.8 million reads were generated and assembled into 383,056 transcripts, including 18,984 transcripts with a complete open reading frame. A conducted Basic Local Alignment Search Tool (BLAST search indicated that 16,004 complete transcripts had significant hits in the National Center for Biotechnology Information (NCBI non-redundant database. The complete transcripts were given functional assignments using three public protein databases. One thousand one hundred fifty eight differentially expressed complete transcripts were screened through a digital abundance analysis, including transcripts involved in energy metabolism and epigenetic regulation. Finally, the expression levels of several transcripts were confirmed by quantitative real-time PCR. Our results suggested that polyploidization caused epigenetic-related changes, which subsequently resulted in gene expression variation between diploid and autotetraploid P. fortunei. This might be the main mechanism affected by the polyploidization. Our results represent an extensive survey of the P. fortunei transcriptome and will facilitate subsequent functional genomics research in P. fortunei. Moreover, the gene expression profiles of P. fortunei and its autopolyploid will provide a valuable resource for the study of polyploidization.

  16. Cytonuclear Coordination Is Not Immediate upon Allopolyploid Formation in Tragopogon miscellus (Asteraceae) Allopolyploids

    Science.gov (United States)

    Sehrish, Tina; Symonds, V. Vaughan; Soltis, Douglas E.; Soltis, Pamela S.; Tate, Jennifer A.

    2015-01-01

    Allopolyploids, formed by hybridization and chromosome doubling, face the immediate challenge of having duplicated nuclear genomes that interact with the haploid and maternally inherited cytoplasmic (plastid and mitochondrial) genomes. Most of our knowledge of the genomic consequences of allopolyploidy has focused on the fate of the duplicated nuclear genes without regard to their potential interactions with cytoplasmic genomes. As a step toward understanding the fates of nuclear-encoded subunits that are plastid-targeted, here we examine the retention and expression of the gene encoding the small subunit of Ribulose-1, 5-bisphosphate carboxylase/oxygenase (Rubisco; rbcS) in multiple populations of allotetraploid Tragopogon miscellus (Asteraceae). These polyploids formed recently (~80 years ago) and repeatedly from T. dubius and T. pratensis in the northwestern United States. Examination of 79 T. miscellus individuals from 10 natural populations, as well as 25 synthetic allotetraploids, including reciprocally formed plants, revealed a low percentage of naturally occurring individuals that show a bias in either gene (homeolog) loss (12%) or expression (16%), usually toward maintaining the maternal nuclear copy of rbcS. For individuals showing loss, seven retained the maternally derived rbcS homeolog only, while three had the paternally derived copy. All of the synthetic polyploid individuals examined (S0 and S1 generations) retained and expressed both parental homeologs. These results demonstrate that cytonuclear coordination does not happen immediately upon polyploid formation in Tragopogon miscellus. PMID:26646761

  17. Retrotransposon Proliferation Coincident with the Evolution of Dioecy in Asparagus.

    Science.gov (United States)

    Harkess, Alex; Mercati, Francesco; Abbate, Loredana; McKain, Michael; Pires, J Chris; Sala, Tea; Sunseri, Francesco; Falavigna, Agostino; Leebens-Mack, Jim

    2016-09-08

    Current phylogenetic sampling reveals that dioecy and an XY sex chromosome pair evolved once, or possibly twice, in the genus Asparagus Although there appear to be some lineage-specific polyploidization events, the base chromosome number of 2n = 2× = 20 is relatively conserved across the Asparagus genus. Regardless, dioecious species tend to have larger genomes than hermaphroditic species. Here, we test whether this genome size expansion in dioecious species is related to a polyploidization and subsequent chromosome fusion, or to retrotransposon proliferation in dioecious species. We first estimate genome sizes, or use published values, for four hermaphrodites and four dioecious species distributed across the phylogeny, and show that dioecious species typically have larger genomes than hermaphroditic species. Utilizing a phylogenomic approach, we find no evidence for ancient polyploidization contributing to increased genome sizes of sampled dioecious species. We do find support for an ancient whole genome duplication (WGD) event predating the diversification of the Asparagus genus. Repetitive DNA content of the four hermaphroditic and four dioecious species was characterized based on randomly sampled whole genome shotgun sequencing, and common elements were annotated. Across our broad phylogenetic sampling, Ty-1 Copia retroelements, in particular, have undergone a marked proliferation in dioecious species. In the absence of a detectable WGD event, retrotransposon proliferation is the most likely explanation for the precipitous increase in genome size in dioecious Asparagus species. Copyright © 2016 Harkess et al.

  18. Nuclear ploidy of neonatal rat livers: effects of two hepatic carcinogens (mirex and dimethylnitrosamine)

    International Nuclear Information System (INIS)

    Carlson, J.; Abraham, R.

    1985-01-01

    The effect of two hepatic carcinogens, dimethylnitrosamine (DMN) (genotoxic) and mirex (epigenetic), on polyploidization in 12-d-old neonatal rats was investigated by Coulter counteranalysis and [ 3 H] thymidine uptake in isolated hepatic nuclear classes. DMN disturbed the normal ploidy development in the neonatal liver and the proportion of nuclei in the ploidy classes by inducing the premature formation of a significant population of tetraploids with a concommitant reduction in diploids. A great proportion of the replicative activity was present in tetraploid nuclei as measured by the incorporation of [ 3 H] thymidine. The labeling index and number of mitoses were also increased. In contrast to DMN, mirex had no influence on polyploidization. The neonatal rats used in these studies thus offer an opportunity to investigate in vivo the mode of action of genotoxic versus epigenetic compounds with reference to their effect on DNA

  19. Variation in ploidy level and phenology can result in large and unexpected differences in demography and climatic sensitivity between closely related ferns.

    NARCIS (Netherlands)

    Groot, de G.A.; Zuidema, P.A.; Groot, H.; During, H.J.

    2012-01-01

    • Premise of the study: Current environmental changes may affect the dynamics and viability of plant populations. This environmental sensitivity may differ between species of different ploidy level because polyploidization can influence life history traits. We compared the demography and climatic

  20. Is hybridization involved in the evolution of the Chenopodium album aggregate? An analysis based on chromosome counts and genome size estimation

    Czech Academy of Sciences Publication Activity Database

    Mandák, Bohumil; Trávníček, Pavel; Paštová, Ladislava; Kořínková, Dana

    2012-01-01

    Roč. 270, č. 7 (2012), s. 530-540 ISSN 0367-2530 R&D Projects: GA ČR GA206/09/1126 Institutional support: RVO:67985939 Keywords : Chenopodium * hybridization * polyploidization Subject RIV: EF - Botanics Impact factor: 1.716, year: 2012

  1. Characterization of the acetohydroxyacid synthase multigene family in the tetraploide plant Chenopodium quinoa

    Directory of Open Access Journals (Sweden)

    Camilo Mestanza

    2015-11-01

    Conclusions: The presence of multiple copies of the gene AHAS shows that gene duplication is a common feature in polyploid species during evolution. In addition, to our knowledge, this is the first report of the interaction of sub-genomes in quinoa.

  2. Gene discovery and molecular marker development, based on high-throughput transcript sequencing of Paspalum dilatatum Poir.

    Directory of Open Access Journals (Sweden)

    Andrea Giordano

    Full Text Available BACKGROUND: Paspalum dilatatum Poir. (common name dallisgrass is a native grass species of South America, with special relevance to dairy and red meat production. P. dilatatum exhibits higher forage quality than other C4 forage grasses and is tolerant to frost and water stress. This species is predominantly cultivated in an apomictic monoculture, with an inherent high risk that biotic and abiotic stresses could potentially devastate productivity. Therefore, advanced breeding strategies that characterise and use available genetic diversity, or assess germplasm collections effectively are required to deliver advanced cultivars for production systems. However, there are limited genomic resources available for this forage grass species. RESULTS: Transcriptome sequencing using second-generation sequencing platforms has been employed using pooled RNA from different tissues (stems, roots, leaves and inflorescences at the final reproductive stage of P. dilatatum cultivar Primo. A total of 324,695 sequence reads were obtained, corresponding to c. 102 Mbp. The sequences were assembled, generating 20,169 contigs of a combined length of 9,336,138 nucleotides. The contigs were BLAST analysed against the fully sequenced grass species of Oryza sativa subsp. japonica, Brachypodium distachyon, the closely related Sorghum bicolor and foxtail millet (Setaria italica genomes as well as against the UniRef 90 protein database allowing a comprehensive gene ontology analysis to be performed. The contigs generated from the transcript sequencing were also analysed for the presence of simple sequence repeats (SSRs. A total of 2,339 SSR motifs were identified within 1,989 contigs and corresponding primer pairs were designed. Empirical validation of a cohort of 96 SSRs was performed, with 34% being polymorphic between sexual and apomictic biotypes. CONCLUSIONS: The development of genetic and genomic resources for P. dilatatum will contribute to gene discovery and expression

  3. The Full Breadth of Mendel's Genetics.

    Science.gov (United States)

    van Dijk, Peter J; Ellis, T H Noel

    2016-12-01

    Gregor Mendel's "Experiments on Plant Hybrids" (1865/1866), published 150 years ago, is without doubt one of the most brilliant works in biology. Curiously, Mendel's later studies on Hieracium (hawkweed) are usually seen as a frustrating failure, because it is assumed that they were intended to confirm the segregation ratios he found in Pisum Had this been his intention, such a confirmation would have failed, since, unknown to Mendel, Hieracium species mostly reproduce by means of clonal seeds (apomixis). Here we show that this assumption arises from a misunderstanding that could be explained by a missing page in Mendel's first letter to Carl Nägeli. Mendel's writings clearly indicate his interest in "constant hybrids," hybrids which do not segregate, and which were "essentially different" from "variable hybrids" such as in Pisum After the Pisum studies, Mendel worked mainly on Hieracium for 7 years where he found constant hybrids and some great surprises. He also continued to explore variable hybrids; both variable and constant hybrids were of interest to Mendel with respect to inheritance and to species evolution. Mendel considered that their similarities and differences might provide deep insights and that their differing behaviors were "individual manifestations of a higher more fundamental law." Copyright © 2016 van Dijk and Ellis.

  4. Changes in genomic methylation patterns during the formation of triploid asexual dandelion lineages

    NARCIS (Netherlands)

    Verhoeven, K.J.F.; Van Dijk, P.J.; Biere, A.

    2010-01-01

    DNA methylation is an epigenetic mechanism that has the potential to affect plant phenotypes and that is responsive to environmental and genomic stresses such as hybridization and polyploidization. We explored de novo methylation variation that arises during the formation of triploid asexual

  5. Combined array-comparative genomic hybridization and single-nucleotide polymorphism-loss of heterozygosity analysis reveals complex changes and multiple forms of chromosomal instability in colorectal cancers

    DEFF Research Database (Denmark)

    Gaasenbeek, Michelle; Howarth, Kimberley; Rowan, Andrew J

    2006-01-01

    Cancers with chromosomal instability (CIN) are held to be aneuploid/polyploid with multiple large-scale gains/deletions, but the processes underlying CIN are unclear and different types of CIN might exist. We investigated colorectal cancer cell lines using array-comparative genomic hybridization...

  6. Phylogenetic relationships among Maloideae species

    Science.gov (United States)

    The Maloideae is a highly diverse sub-family of the Rosaceae containing several agronomically important species (Malus sp. and Pyrus sp.) and their wild relatives. Previous phylogenetic work within the group has revealed extensive intergeneric hybridization and polyploidization. In order to develop...

  7. PollenCALC: Software for estimation of pollen compatibility of self-incompatible allo- and autotetraploid species

    DEFF Research Database (Denmark)

    Aguirre, Andrea A; Wollenweber, Bernd; Frei, Ursula K

    2012-01-01

    available for predicting pollen haplotype frequencies and pollen compatibility in tetraploid species. Results PollenCALC is a software tool written in C++ programming language that can predict pollen compatibility percentages for polyploid species with a two-locus (S, Z) self-incompatibility system...

  8. Comparative Transcriptomics in the Triticeae

    Science.gov (United States)

    Barley and particularly wheat are two grass species of immense agricultural importance. In spite of polyploidization events within the latter, studies have shown that genotypically and phenotypically these species are very closely related and, indeed, fertile hybrids can be created by interbreeding...

  9. Tangled trios? Characterizing a hybrid zone in Castilleja (Orobanchaceae)

    Science.gov (United States)

    Erika l. Hersch-Green; Richard. Cronn

    2009-01-01

    Hybridization and polyploidization are exceedingly important processes because both influence the ecological envelope and evolutionary trajectory of land plants. These processes are frequently invoked for Castilleja (Indian paintbrushes) as contributors to morphological and genetic novelty and as complicating factors in species delimitations. Here...

  10. The effects of inheritance in tetraploids on genetic diversity and population divergence

    NARCIS (Netherlands)

    Meirmans, P.G.; van Tienderen, P.H.

    2013-01-01

    Polyploids are traditionally classified into allopolyploids and autopolyploids, based on their evolutionary origin and their disomic or multisomic mode of inheritance. Over the past decade it has become increasingly clear that there is a continuum between disomic and multisomic inheritance, with the

  11. Mutagenic Effect of Diethyl Sulphate (DES) on the Chromosomes of ...

    African Journals Online (AJOL)

    The effect was drastic on structure & morphology of the meiotic chromosomes. Many structural, physiological and numerical aberrations were observed and documented. Certain numerical changes such as induction of polyploids were attributed to the improvements observed in the expression of commercial characters in ...

  12. Determination of ploidy level and isolation of genes encoding acetyl-CoA carboxylase in Japanese Foxtail (Alopecurus japonicus.

    Directory of Open Access Journals (Sweden)

    Hongle Xu

    Full Text Available Ploidy level is important in biodiversity studies and in developing strategies for isolating important plant genes. Many herbicide-resistant weed species are polyploids, but our understanding of these polyploid weeds is limited. Japanese foxtail, a noxious agricultural grass weed, has evolved herbicide resistance. However, most studies on this weed have ignored the fact that there are multiple copies of target genes. This may complicate the study of resistance mechanisms. Japanese foxtail was found to be a tetraploid by flow cytometer and chromosome counting, two commonly used methods in the determination of ploidy levels. We found that there are two copies of the gene encoding plastidic acetyl-CoA carboxylase (ACCase in Japanese foxtail and all the homologous genes are expressed. Additionally, no difference in ploidy levels or ACCase gene copy numbers was observed between an ACCase-inhibiting herbicide-resistant and a herbicide-sensitive population in this study.

  13. Effects of feeding irradiated wheat to malnourished children

    International Nuclear Information System (INIS)

    Bhaskaram, C.; Sadasivan, G.

    1975-01-01

    Fifteen children suffering from severe protein-calorie malnutrition were divided into three groups of five each and received diets containing either unirradiated, freshly irradiated, or stored irradiated wheat. All the children were hospitalized for a period of 6 weeks and leukocyte cultures were done initially and at intervals of 2 weeks. Children receiving freshly irradiated wheat developed polyploid cells and certain abnormal cells in increasing number as the duration of feeding increased and showed a gradual reversal to basal level of nil after withdrawal of irradiated wheat. In marked contrast, none of the children fed unirradiated diet developed any abnormal cells while children fed stored irradiated wheat showed polyploid and abnormal cells in significantly decreased numbers. Though the biological significance of polyploidy is not clear, its association with malignancy makes it imperative that the wholesomeness of irradiated wheat for human consumption be very carefully assessed. (U.S.)

  14. Expression of Caspase-3, P53 in EL-4 cells induced by ionizing radiation and its biological implications

    International Nuclear Information System (INIS)

    Ju Guizhi; Shen Bo; Sun Shilong; Yan Fengqin; Fu Shibo; Li Pengwu

    2006-01-01

    Objective: To investigate the effect of ionizing radiation on the expressions of Caspase-3 and P53 proteins in EL-4 cells and its implications in the induction of apoptosis and polyploid cells. Methods: EL- 4 cells were irradiated with 4.0 Gy X-rays (180 kV, 15 mA, 0.287 Gy/min). Fluorescent staining and flow cytometry analysis were used to measure protein expression, apoptosis and polyploid cells. Results: It was found that the expression of Caspase-3 protein was increased significantly at 8 h and 12 h after the irradiation compared with sham-irradiated control (P<0.05), and the expression of P53 protein was also increased significantly at 2,4,8,12 and 24 h after the irradiation compared with sham-irradiated control (P<0.05 or P<0.01). The results showed that apoptosis of EL-4 cells was increased significantly at 2,4,8,12,24,48, and 72 h after 4.0 Gy irradiation compared with sham-irradiated control (P<0.05 or P<0.01 or P<0.001). However, no significant change in the number of polyploidy cells was found during the period from 2 to 48 h after the irradiation with 4.0 Gy X-rays. Conclusions: It is indicated that the expressions of Caspase-3 and P53 protein in EL-4 cells can be induced by ionizing radiation, and play an important role in the induction of apoptosis; the molecular pathway for polyploid formation might be P53-independent. (authors)

  15. Transgene-induced gene silencing is not affected by a change in ploidy level.

    Directory of Open Access Journals (Sweden)

    Daniela Pignatta

    Full Text Available BACKGROUND: Whole genome duplication, which results in polyploidy, is a common feature of plant populations and a recurring event in the evolution of flowering plants. Polyploidy can result in changes to gene expression and epigenetic instability. Several epigenetic phenomena, occurring at the transcriptional or post-transcriptional level, have been documented in allopolyploids (polyploids derived from species hybrids of Arabidopsis thaliana, yet findings in autopolyploids (polyploids derived from the duplication of the genome of a single species are limited. Here, we tested the hypothesis that an increase in ploidy enhances transgene-induced post-transcriptional gene silencing using autopolyploids of A. thaliana. METHODOLOGY/PRINCIPAL FINDINGS: Diploid and tetraploid individuals of four independent homozygous transgenic lines of A. thaliana transformed with chalcone synthase (CHS inverted repeat (hairpin constructs were generated. For each line diploids and tetraploids were compared for efficiency in post-transcriptional silencing of the endogenous CHS gene. The four lines differed substantially in their silencing efficiency. Yet, diploid and tetraploid plants derived from these plants and containing therefore identical transgene insertions showed no difference in the efficiency silencing CHS as assayed by visual scoring, anthocyanin assays and quantification of CHS mRNA. CONCLUSIONS/SIGNIFICANCE: Our results in A. thaliana indicated that there is no effect of ploidy level on transgene-induced post-transcriptional gene silencing. Our findings that post-transcriptional mechanisms were equally effective in diploids and tetraploids supports the use of transgene-driven post-transcriptional gene silencing as a useful mechanism to modify gene expression in polyploid species.

  16. Comparison of leaf proteomes of cassava (Manihot esculenta Crantz cultivar NZ199 diploid and autotetraploid genotypes.

    Directory of Open Access Journals (Sweden)

    Feifei An

    Full Text Available Cassava polyploid breeding has drastically improved our knowledge on increasing root yield and its significant tolerance to stresses. In polyploid cassava plants, increases in DNA content highly affect cell volumes and anatomical structures. However, the mechanism of this effect is poorly understood. The purpose of the present study was to compare and validate the changes between cassava cultivar NZ199 diploid and autotetraploid at proteomic levels. The results showed that leaf proteome of cassava cultivar NZ199 diploid was clearly differentiated from its autotetraploid genotype using 2-DE combined MS technique. Sixty-five differential protein spots were seen in 2-DE image of autotetraploid genotype in comparison with that of diploid. Fifty-two proteins were identified by MALDI-TOF-MS/MS, of which 47 were up-regulated and 5 were down-regulated in autotetraploid genotype compared with diploid genotype. The classified functions of 32 up-regulated proteins were associated with photosynthesis, defense system, hydrocyanic acid (HCN metabolism, protein biosynthesis, chaperones, amino acid metabolism and signal transduction. The remarkable variation in photosynthetic activity, HCN content and resistance to salt stress between diploid and autotetraploid genotypes is closely linked with expression levels of proteomic profiles. The analysis of protein interaction networks indicated there are direct interactions between the 15 up-regulation proteins involved in the pathways described above. This work provides an insight into understanding the protein regulation mechanism of cassava polyploid genotype, and gives a clue to improve cassava polyploidy breeding in increasing photosynthesis and resistance efficiencies.

  17. Genome-size variation in switchgrass (Panicum virgatum): flow cytometry and cytology reveal rampant aneuploidy

    Science.gov (United States)

    Switchgrass (Panicum virgatum L.), a native perennial dominant of the prairies of North America, has been targeted as a model herbaceous species for biofeedstock development. A flow-cytometric survey of a core set of 11 primarily upland polyploid switchgrass accessions indicated that there was con...

  18. Flow cytometry determination of ploidy level in winged bean ...

    African Journals Online (AJOL)

    Ploidy determination and mutation breeding of crop plants are inseparable twins given that mutation breeding is hinged majorly on polyploidization of crop's chromosome number. The present research was aimed at determining the ploidy level of 20 accessions of winged bean (Psophoscarpus tetragonolobus) using known ...

  19. Interspecific hybridization in the genus Hieracium (s. str.) – evidence for bidirectional gene flow and spontaneous allopolyploidization

    Czech Academy of Sciences Publication Activity Database

    Mráz, P.; Chrtek, Jindřich; Fehrer, Judith

    2011-01-01

    Roč. 293, 1-4 (2011), s. 237-245 ISSN 0378-2697 R&D Projects: GA ČR GAP506/10/1363 Institutional research plan: CEZ:AV0Z60050516 Keywords : additive polymorphism * hybridization * polyploidization Subject RIV: EF - Botanics Impact factor: 1.335, year: 2011

  20. Advances in Arachis genomics for peanut improvement

    Science.gov (United States)

    Peanut genomics is very challenging due to its inherent problem of genetic architecture. Blockage of gene flow from diploid wild relatives to tetraploid cultivated peanut, recent polyploidization combined with self pollination and narrow genetic base of primary gene pool resulted in low genetic dive...

  1. M7 germplasm release: A tetraploid clone derived from Solanum infundibuliforme for use in expanding the germplasm base for french fry processing

    Science.gov (United States)

    A new source of russet germplasm has been identified as a parent for processing and fresh market breeding programs. It was derived via bilateral sexual polyploidization following a cross between a diploid cultivated potato and the diploid wild species Solanum infundibuliforme. This clone, designated...

  2. Genomic Variance Estimation Based on Genotyping-by-Sequencing with Different Coverage in Perennial Ryegrass

    DEFF Research Database (Denmark)

    Ashraf, Bilal; Fé, Dario; Jensen, Just

    2014-01-01

    at each SNP in family pools or polyploids. There are, however, several statistical challenges associated with this method, including low sequencing depth and missing values. Low sequencing depth results in inaccuracies in estimates of allele frequencies for each SNP. In this work we have focused...

  3. Solanaceae

    African Journals Online (AJOL)

    GRACE

    2006-05-02

    May 2, 2006 ... centromeric positions and arm lengths. Meiotic behaviour of the chromosomes involved a combination of bivalent and multivalent associations especially at the polyploid levels. The significance of this work in the understanding of cytogenetic behaviour of plants and crop improvement efforts are discussed.

  4. Genetic modification of Arachis hypogaea for quality traits

    Science.gov (United States)

    TILLING, targeting induced local lesions in genomes, combines conventional mutagenesis with targeted screening of known genes. Advantages are that a series of alleles can be recovered to assist with functional analysis, and mutations can be identified in polyploids where a phenotype is likely to be...

  5. Physiological and fitness differences between cytotypes vary with stress in a grassland perennial herb

    Czech Academy of Sciences Publication Activity Database

    Pavlíková, Z.; Holá, D.; Vlasáková, Blanka; Procházka, T.; Münzbergová, Zuzana

    2017-01-01

    Roč. 12, č. 11 (2017), s. 1-22, č. článku e0188795. E-ISSN 1932-6203 Institutional support: RVO:67985939 Keywords : Knautia arvensis * polyploid * stress conditions Subject RIV: EF - Botanics OBOR OECD: Plant sciences, botany Impact factor: 2.806, year: 2016

  6. Reproduction: Plant Parentage à Trois.

    Science.gov (United States)

    Dresselhaus, Thomas; Johnson, Mark A

    2018-01-08

    Blocks to polyspermy are thought to be universally adaptive because they prevent lethal genome imbalance and chromosome segregation defects. However, two recent reports show that plants with two male parents are viable and could contribute significantly to polyploid speciation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Dose-dependent effect of 17 beta-estradiol determined by growth curves and flow cytometric DNA analysis of a human breast carcinoma (T61) grown in nude mice

    DEFF Research Database (Denmark)

    Brünner, N; Spang-Thomsen, M; Vindeløv, L

    1985-01-01

    fraction of polyploid cells. The results suggest that estradiol induces a dose-dependent cell killing effect in the T61 human breast carcinoma. The correlation between the treatment-induced growth delay and the effect on the cell cycle distribution indicates that the changes in the cell cycle...

  8. Development and characterization of BAC-end sequence derived SSRs, and their incorporation into a new higher density genetic map for cultivated peanut (Arachis hypogaea L.)

    Science.gov (United States)

    Cultivated peanut (Arachis hypogaea L.) is an important crop worldwide, valued for its edible oil and digestible protein. It has a very narrow genetic base that may well derive from a relatively recent single polyploidization event. Accordingly molecular markers have low levels of polymorphism and t...

  9. Effect of 17 beta-oestradiol on growth curves and flow cytometric DNA distribution of two human breast carcinomas grown in nude mice

    DEFF Research Database (Denmark)

    Brünner, N; Spang-Thomsen, M; Vindeløv, L

    1983-01-01

    distribution could be demonstrated following the treatment. The results indicate that the oestradiol-induced cell kill could be explained to some extent by the induction of polyploid cells, which eventually die. Since the cell cycle changes monitored by FCM in the receptor-positive breast carcinoma appeared...

  10. Development and integration of an SSR-based molecular identity database into sugarcane breeding program

    Science.gov (United States)

    Sugarcane breeding is very difficult and it takes 12 to 14 years to develop a new cultivar for commercial production. This is because sugarcane varieties are highly polyploid, inter-specific hybrids with 100 to 130 chromosomes that may vary across geographical areas. Other obstacles/constraints incl...

  11. Study of quantitative genetics of gum arabic production complicated by variability in ploidy level of Acacia senegal (L.) Willd

    DEFF Research Database (Denmark)

    Diallo, Adja Madjiguene; Nielsen, Lene Rostgaard; Hansen, Jon Kehlet

    2015-01-01

    Gum arabic is an important international commodity produced by trees of Acacia senegal across Sahelian Africa, but documented results of breeding activities are limited. The objective of this study was to provide reliable estimates of quantitative genetic parameters in order to shed light on the ...... stress the importance of testing ploidy levels of selected material and use of genetic markers to qualify the assumptions in the quantitative genetic analysis....... that progenies consisted of both diploid and polyploid trees, and growth, gum yield, and gum quality varied substantially among ploidy level, populations, and progenies. Analysis of molecular variance and estimates of outcrossing rate supported that trees within open-pollinated families of diploids were half...... sibs, while the open-pollinated families of polyploids showed low variation within families. The difference in sibling relationship observed between ploidy levels complicated estimation of genetic parameters. However, based on the diploid trees, we conclude that heritability in gum arabic production...

  12. Aberrant Classopollis pollen reveals evidence for unreduced (2n) pollen in the conifer family Cheirolepidiaceae during the Triassic–Jurassic transition

    Science.gov (United States)

    Kürschner, Wolfram M.; Batenburg, Sietske J.; Mander, Luke

    2013-01-01

    Polyploidy (or whole-genome doubling) is a key mechanism for plant speciation leading to new evolutionary lineages. Several lines of evidence show that most species among flowering plants had polyploidy ancestry, but it is virtually unknown for conifers. Here, we study variability in pollen tetrad morphology and the size of the conifer pollen type Classopollis extracted from sediments of the Triassic–Jurassic transition, 200 Ma. Classopollis producing Cheirolepidiaceae were one of the most dominant and diverse groups of conifers during the Mesozoic. We show that aberrant pollen Classopollis tetrads, triads and dyads, and the large variation in pollen size indicates the presence of unreduced (2n) pollen, which is one of the main mechanisms in modern polyploid formation. Polyploid speciation may explain the high variability of growth forms and adaptation of these conifers to different environments and their resistance to extreme growth conditions. We suggest that polyploidy may have also reduced the extinction risk of these conifers during the End-Triassic biotic crisis. PMID:23926159

  13. Homoeologous Recombination of the V1r1-V1r2 Gene Cluster of Pheromone Receptors in an Allotetraploid Lineage of Teleosts

    Directory of Open Access Journals (Sweden)

    Lei Zhong

    2017-11-01

    Full Text Available In contrast to other olfactory receptor families that exhibit frequent lineage-specific expansions, the vomeronasal type 1 receptor (V1R family exhibits a canonical six-member repertoire in teleosts. V1r1 and V1r2 are present in no more than one copy in all examined teleosts, including salmons, which are ancient polyploids, implying strict evolutionary constraints. However, recent polyploids have not been examined. Here, we identified a young allotetraploid lineage of weatherfishes and investigated their V1r1-V1r2 cluster. We found a novel pattern that the parental V1r1-V1r2 clusters had recombined in the tetraploid genome and that the recombinant was nearly fixed in the tetraploid population. Subsequent analyses suggested strong selective pressure, for both a new combination of paralogs and homogeneity among gene duplicates, acting on the V1r1-V1r2 pair.

  14. Genome size variation in the genus Avena.

    Science.gov (United States)

    Yan, Honghai; Martin, Sara L; Bekele, Wubishet A; Latta, Robert G; Diederichsen, Axel; Peng, Yuanying; Tinker, Nicholas A

    2016-03-01

    Genome size is an indicator of evolutionary distance and a metric for genome characterization. Here, we report accurate estimates of genome size in 99 accessions from 26 species of Avena. We demonstrate that the average genome size of C genome diploid species (2C = 10.26 pg) is 15% larger than that of A genome species (2C = 8.95 pg), and that this difference likely accounts for a progression of size among tetraploid species, where AB genome configuration had similar genome sizes (average 2C = 25.74 pg). Genome size was mostly consistent within species and in general agreement with current information about evolutionary distance among species. Results also suggest that most of the polyploid species in Avena have experienced genome downsizing in relation to their diploid progenitors. Genome size measurements could provide additional quality control for species identification in germplasm collections, especially in cases where diploid and polyploid species have similar morphology.

  15. Male sterility in plants. Induction, isolation and utilization

    International Nuclear Information System (INIS)

    Driscoll, C.J.; Barlow, K.K.

    1976-01-01

    Both induced and spontaneously arising male sterility mutants exist in a number of important plant species. These mutants are somewhat unique in that they effect procedures for breeding improved varieties. They allow for the possibility of easily obtaining large numbers of hybrids, population breeding systems and the production of hybrid varieties. These mutants are normally classified as cytoplasmic mutants or chromosomal mutants, the latter also being referred to as nuclear or genic mutants. Specific examples of these types of sterility are examined in relation to the breeding system of the species and their potential use for varietal development. Male sterility in diploid and polyploid species is compared, with reference to gene duplication in polyploids. The mechanism of male sterility is examined in the various species at the anatomical and biochemical levels. Methods of isolating male sterility mutants are compared and a specific example is outlined for hexaploid wheat. Future use of male sterility mutants for improving varieties of various crops is examined. (author)

  16. CERT depletion predicts chemotherapy benefit and mediates cytotoxic and polyploid‐specific cancer cell death through autophagy induction

    DEFF Research Database (Denmark)

    Lee, Alvin J. X.; Roylance, Rebecca; Sander, Jil

    2012-01-01

    cell microscopy analysis revealed that CERT depletion induces LAMP2‐dependent death of polyploid cells following exit from mitosis in the presence of paclitaxel. We find that CERT is relatively over‐expressed in HER2+ breast cancer and CERT protein expression acts as an independent prognostic variable...

  17. Ploidy and genome composition of Musa germplasm at the ...

    African Journals Online (AJOL)

    GRACE

    2006-07-03

    Jul 3, 2006 ... Musa spp (bananas and plantains) constitute a hybrid-polyploid complex and are classified according to different genome compositions such as AA, BB, AB, AAA, AAB, ABB, AAAA, ABBB, AAAB and. AABB. Knowledge of ploidy and exact genome compositions of the parental material is essential for.

  18. A high-quality carrot genome assembly provides new insights into carotenoid accumulation and asterid genome evolution

    Science.gov (United States)

    We report a chromosome-scale assembly and analysis of the Daucus carota genome, an important source of provitamin A in the human diet and the first sequenced genome among members of the Euasterid II clade. We characterized two new polyploidization events, both occurring after the divergence of carro...

  19. Deep sequencing of amplicons reveals widespread intraspecific hybridization and multiple origins of polyploidy in big sagebrush (Artemisia tridentata, Asteraceae)

    Science.gov (United States)

    Bryce A. Richardson; Justin T. Page; Prabin Bajgain; Stewart C. Sanderson; Joshua A. Udall

    2012-01-01

    Premise of the study: Hybridization has played an important role in the evolution and ecological adaptation of diploid and polyploid plants. Artemisia tridentata (Asteraceae) tetraploids are extremely widespread and of great ecological importance. These tetraploids are often taxonomically identified as A. tridentata subsp. wyomingensis or as autotetraploids of diploid...

  20. Cytogenetic studies on some Nigerian species of Solanum L ...

    African Journals Online (AJOL)

    Cytogenetic studies to determine the chromosome number, structure and behaviour of some species of Solanum in Nigeria were carried out. Attempt was also made to induce polyploidy in the species. Comparative analysis of the cytological behaviour of the diploid and polyploid cytotypes was made. The studies show that ...

  1. Herbicide resistance-endowing ACCase gene mutations in hexaploid wild oat (Avena fatua): insights into resistance evolution in a hexaploid species

    Science.gov (United States)

    Yu, Q; Ahmad-Hamdani, M S; Han, H; Christoffers, M J; Powles, S B

    2013-01-01

    Many herbicide-resistant weed species are polyploids, but far too little about the evolution of resistance mutations in polyploids is understood. Hexaploid wild oat (Avena fatua) is a global crop weed and many populations have evolved herbicide resistance. We studied plastidic acetyl-coenzyme A carboxylase (ACCase)-inhibiting herbicide resistance in hexaploid wild oat and revealed that resistant individuals can express one, two or three different plastidic ACCase gene resistance mutations (Ile-1781-Leu, Asp-2078-Gly and Cys-2088-Arg). Using ACCase resistance mutations as molecular markers, combined with genetic, molecular and biochemical approaches, we found in individual resistant wild-oat plants that (1) up to three unlinked ACCase gene loci assort independently following Mendelian laws for disomic inheritance, (2) all three of these homoeologous ACCase genes were transcribed, with each able to carry its own mutation and (3) in a hexaploid background, each individual ACCase resistance mutation confers relatively low-level herbicide resistance, in contrast to high-level resistance conferred by the same mutations in unrelated diploid weed species of the Poaceae (grass) family. Low resistance conferred by individual ACCase resistance mutations is likely due to a dilution effect by susceptible ACCase expressed by homoeologs in hexaploid wild oat and/or differential expression of homoeologous ACCase gene copies. Thus, polyploidy in hexaploid wild oat may slow resistance evolution. Evidence of coexisting non-target-site resistance mechanisms among wild-oat populations was also revealed. In all, these results demonstrate that herbicide resistance and its evolution can be more complex in hexaploid wild oat than in unrelated diploid grass weeds. Our data provide a starting point for the daunting task of understanding resistance evolution in polyploids. PMID:23047200

  2. Evolution in African tropical trees displaying ploidy-habitat association: The genus Afzelia (Leguminosae).

    Science.gov (United States)

    Donkpegan, Armel S L; Doucet, Jean-Louis; Migliore, Jérémy; Duminil, Jérôme; Dainou, Kasso; Piñeiro, Rosalía; Wieringa, Jan J; Champluvier, Dominique; Hardy, Olivier J

    2017-02-01

    Polyploidy has rarely been documented in rain forest trees but it has recently been found in African species of the genus Afzelia (Leguminosae), which is composed of four tetraploid rain forest species and two diploid dry forest species. The genus Afzelia thus provides an opportunity to examine how and when polyploidy and habitat shift occurred in Africa, and whether they are associated. In this study, we combined three plastid markers (psbA, trnL, ndhF), two nuclear markers (ribosomal ITS and the single-copy PEPC E7 gene), plastomes (obtained by High Throughput Sequencing) and morphological traits, with an extensive taxonomic and geographic sampling to explore the evolutionary history of Afzelia. Both nuclear DNA and morphological vegetative characters separated diploid from tetraploid lineages. Although the two African diploid species were well differentiated genetically and morphologically, the relationships among the tetraploid species were not resolved. In contrast to the nuclear markers, plastid markers revealed that one of the diploid species forms a well-supported clade with the tetraploids, suggesting historical hybridisation, possibly in relation with genome duplication (polyploidization) and habitat shift from dry to rain forests. Molecular dating based on fossil-anchored gene phylogenies indicates that extant Afzelia started diverging c. 14.5 or 20Ma while extant tetraploid species started diverging c. 7.0 or 9.4Ma according to plastid and nuclear DNA, respectively. Additional studies of tropical polyploid plants are needed to assess whether the ploidy-habitat association observed in African Afzelia would reflect a role of polyploidization in niche divergence in the tropics. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Conditions in home and transplant soils have differential effects on the performance of diploid and allotetraploid anthericum species.

    Directory of Open Access Journals (Sweden)

    Lucie Černá

    Full Text Available Due to increased levels of heterozygosity, polyploids are expected to have a greater ability to adapt to different environments than their diploid ancestors. While this theoretical pattern has been suggested repeatedly, studies comparing adaptability to changing conditions in diploids and polyploids are rare. The aim of the study was to determine the importance of environmental conditions of origin as well as target conditions on performance of two Anthericum species, allotetraploid A. liliago and diploid A. ramosum and to explore whether the two species differ in the ability to adapt to these environmental conditions. Specifically, we performed a common garden experiment using soil from 6 localities within the species' natural range, and we simulated the forest and open environments in which they might occur. We compared the performance of diploid A. ramosum and allotetraploid A. liliago originating from different locations in the different soils. The performance of the two species was not affected by simulated shading but differed strongly between the different target soils. Growth of the tetraploids was not affected by the origin of the plants. In contrast, diploids from the most nutrient poor soil performed best in the richest soil, indicating that diploids from deprived environments have an increased ability to acquire nutrients when available. They are thus able to profit from transfer to novel nutrient rich environments. Therefore, the results of the study did not support the general expectation that the polyploids should have a greater ability than the diploids to adapt to a wide range of conditions. In contrast, the results are in line with the observation that diploids occupy a wider range of environments than the allotetraploids in our system.

  4. The effect of γ-irradiation on the toxicity of malathion in V79 hamster cells and Molt-4 human lymphocytes

    International Nuclear Information System (INIS)

    Szekely, J.G.; Goodwin, M.; Delaney, S.

    1992-01-01

    There is a growing interest in irradiation of food and agricultural products for insect disinfestation, sprout inhibition, delayed ripening and the reduction of microbiological loads. Irradiation to a maximum dose of 10 kGy is recognized as safe by national and international regulatory agencies. To address the question, whether irradiation of pesticide residues might produce radiation products that were less or more toxic than the original pesticide, effects were observed of 10 kGy of γ-radiation on malathion as measured by sister-chromatid exchange (SCE), micronuclei formation, cell survival, growth rate and polyploid formation. No significant differences were found between effects of irradiated and unirradiated malathion on any of these end- points. Polyploid formation was the most dramatic effect of both irradiated and control malathion on V79 Chinese hamster cells. Cell survival, polyploid formation and growth rate were slightly better in cells treated with irradiated malathion. In Molt-4 human lymphocyte cell, micronuclei formation was not affected by unirradiated or irradiated malathion. Compared to malathion alone, the lack of such biological effects indicates that none of the presumed radiation-induced breakdown products increased or decreased the endpoints studied. The number of SCE was consistently, but not significantly, higher in cells treated with irradiated malathion. There were no significant differences in cell survival or micronucleus formation in the human lymphocyte cell line Molt-4 treated with irradiated or control malathion. Thus, the irradiation of the pesticide malathion to 10 kGy, a recommended upper dose for most food irradiations, does not significantly alter its toxicity in these in vitro systems. (author). 23 refs.; 4 figs.; 3 tabs

  5. Variations in 5S rDNAs in diploid and tetraploid offspring of red crucian carp × common carp.

    Science.gov (United States)

    Ye, Lihai; Zhang, Chun; Tang, Xiaojun; Chen, Yiyi; Liu, Shaojun

    2017-08-08

    The allotetraploid hybrid fish (4nAT) that was created in a previous study through an intergeneric cross between red crucian carp (Carassius auratus red var., ♀) and common carp (Cyprinus carpio L., ♂) provided an excellent platform to investigate the effect of hybridization and polyploidization on the evolution of 5S rDNA. The 5S rDNAs of paternal common carp were made up of a coding sequence (CDS) and a non-transcribed spacer (NTS) unit, and while the 5S rDNAs of maternal red crucian carp contained a CDS and a NTS unit, they also contained a variable number of interposed regions (IPRs). The CDSs of the 5S rDNAs in both parental fishes were conserved, while their NTS units seemed to have been subjected to rapid evolution. The diploid hybrid 2nF 1 inherited all the types of 5S rDNAs in both progenitors and there were no signs of homeologous recombination in the 5S rDNAs of 2nF 1 by sequencing of PCR products. We obtained two segments of 5S rDNA with a total length of 16,457 bp from allotetraploid offspring 4nAT through bacterial artificial chromosome (BAC) sequencing. Using this sequence together with the 5S rDNA sequences amplified from the genomic DNA of 4nAT, we deduced that the 5S rDNAs of 4nAT might be inherited from the maternal progenitor red crucian carp. Additionally, the IPRs in the 5S rDNAs of 4nAT contained A-repeats and TA-repeats, which was not the case for the IPRs in the 5S rDNAs of 2nF 1 . We also detected two signals of a 200-bp fragment of 5S rDNA in the chromosomes of parental progenitors and hybrid progenies by fluorescence in situ hybridization (FISH). We deduced that during the evolution of 5S rDNAs in different ploidy hybrid fishes, interlocus gene conversion events and tandem repeat insertion events might occurred in the process of polyploidization. This study provided new insights into the relationship among the evolution of 5S rDNAs, hybridization and polyploidization, which were significant in clarifying the genome evolution of

  6. A quantitative study of the second meiotic metaphase in male mice (Mus musculus).

    Science.gov (United States)

    Beatty, R A; Lim, M C; Coulter, V J

    1975-01-01

    Over 11,000 second meiotic metaphase spreads stained for the pericentromeric region have been studied quantitatively in male mice of 14 strains. The sex-chromosome constitution of a cell could be judged objectively if X and Y chromosomes and ploidy were all scored. A bias arose if only Y chromosomes and ploidy were scored but could be corrected statistically. There was no sign of other forms of bias. The original contiguity of X and Y second metaphases in vivo was very occasionally evident in the preparations. Most of the subhaploid aneuploid counts were assumed to be artifactual. The incidence of truly aneuploid second metaphases in 13 strains was estimated as 0.38+/-0.12%. The estimated average rate per chromosome was 0.019+/-0.006%, with a comparable order of magnitude for the sex chromosomes alone. Simultaneous aneuploidy of two or more chromosomes of the haploid set was estimated to be very rare. Of the spreads from 13 strains, 9.6% were polyploid (2N, 3N, 4N) and showed most of the possible combinations of sex chromosomes. Nearly all the polyploid spreads were considered to arise by artifactual cell fusion at the time of second metaphase during the preparative technique, especially of the X and Y daughter-cell products of the first meiotic division. Other modes of origin (true polyploidy, accidental superposition of cells during preparation) were unlikely. The data could be accommodated by a statistical model with only four parameters. It allowed for artifactual fusion mainly between daughter cells but also between non-daughter cells, bias in one scoring method, and bias in the numbers of cells with given ploidy successfully mounted. Current techniques of chromosome preparation were thought to be wholly unsuitable for the recognition of true polyploidy. The artifactual origin of polyploid spreads was borne out by an absence of polyploid spermatozoa in 14 strains. There appeared to be a virtually constant transmission rate of paternal X and Y chromosomes from

  7. Meiotic analysis and FISH with rDNA and rice BAC probes of the Thai KPS 01-01-25 sugarcane cultivar

    NARCIS (Netherlands)

    Thumjamras, Sarut; Iamtham, Siriluck; Prammanee, Siripatr; Jong, de Hans

    2016-01-01

    The interspecific sugarcane hybrid “KPS 01-01-25” is one of Thailand’s most successful cultivars, but its genetics and genomic constitution are greatly complicated due to the highly polyploid nature of this crop. Here we analyzed the crop’s karyotype, studied chromosome pairing at meiosis I and

  8. Phylogenetic relationships of the algae scraping cyprinid genus Capoeta (Teleostei: Cyprinidae)

    Czech Academy of Sciences Publication Activity Database

    Levin, B. A.; Freyhof, J.; Lajbner, Zdeněk; Perea, S.; Abdoli, A.; Gaffaroglu, M.; Özulog, M.; Rubeyan, H.R.; Salnikov, V.B.; Doadrio, I.

    2012-01-01

    Roč. 62, č. 1 (2012), s. 542-549 ISSN 1055-7903 R&D Projects: GA MŠk LC06073 Institutional research plan: CEZ:AV0Z50450515 Keywords : Cyprinidae * Phylogeny * Polyploid barbini Subject RIV: EH - Ecology, Behaviour Impact factor: 4.066, year: 2012 http://www.sciencedirect.com/science/article/pii/S1055790311003940

  9. Inbreeding depression in selfs of redwood

    Science.gov (United States)

    W. J. Libby; B. G. McCutchan; C. I. Millar

    1981-01-01

    Given the polyploid chromosome constitution of Sequoia sempervirens, there was reason to question whether it would exhibit inbreeding depression. Preliminary results from studies of self and related outcross families are reported as a guide to the selection of trees for redwood seed orchards and breeding-orchards. The data indicate that, compared to...

  10. Development, genetic mapping and QTL association of cotton PHYA, PHYB, and HY5-specific CAPS and dCAPS markers

    Science.gov (United States)

    Among SNP markers that become increasingly valuable in molecular breeding of crop plants are the CAP and dCAP markers derived from the genes of interest. To date, the number of such gene-based markers is small in polyploid crop plants such as tetraploid cotton that has A and D subgenomes. The obje...

  11. Gene expression in a paleopolyploid: a transcriptome resource for the ciliate Paramecium tetraurelia

    Directory of Open Access Journals (Sweden)

    Kapusta Aurélie

    2010-10-01

    Full Text Available Abstract Background The genome of Paramecium tetraurelia, a unicellular model that belongs to the ciliate phylum, has been shaped by at least 3 successive whole genome duplications (WGD. These dramatic events, which have also been documented in plants, animals and fungi, are resolved over evolutionary time by the loss of one duplicate for the majority of genes. Thanks to a low rate of large scale genome rearrangement in Paramecium, an unprecedented large number of gene duplicates of different ages have been identified, making this organism an outstanding model to investigate the evolutionary consequences of polyploidization. The most recent WGD, with 51% of pre-duplication genes still in 2 copies, provides a snapshot of a phase of rapid gene loss that is not accessible in more ancient polyploids such as yeast. Results We designed a custom oligonucleotide microarray platform for P. tetraurelia genome-wide expression profiling and used the platform to measure gene expression during 1 the sexual cycle of autogamy, 2 growth of new cilia in response to deciliation and 3 biogenesis of secretory granules after massive exocytosis. Genes that are differentially expressed during these time course experiments have expression patterns consistent with a very low rate of subfunctionalization (partition of ancestral functions between duplicated genes in particular since the most recent polyploidization event. Conclusions A public transcriptome resource is now available for Paramecium tetraurelia. The resource has been integrated into the ParameciumDB model organism database, providing searchable access to the data. The microarray platform, freely available through NimbleGen Systems, provides a robust, cost-effective approach for genome-wide expression profiling in P. tetraurelia. The expression data support previous studies showing that at short evolutionary times after a whole genome duplication, gene dosage balance constraints and not functional change are

  12. Gene-Tree Reconciliation with MUL-Trees to Resolve Polyploidy Events.

    Science.gov (United States)

    Gregg, W C Thomas; Ather, S Hussain; Hahn, Matthew W

    2017-11-01

    Polyploidy can have a huge impact on the evolution of species, and it is a common occurrence, especially in plants. The two types of polyploids-autopolyploids and allopolyploids-differ in the level of divergence between the genes that are brought together in the new polyploid lineage. Because allopolyploids are formed via hybridization, the homoeologous copies of genes within them are at least as divergent as orthologs in the parental species that came together to form them. This means that common methods for estimating the parental lineages of allopolyploidy events are not accurate, and can lead to incorrect inferences about the number of gene duplications and losses. Here, we have adapted an algorithm for topology-based gene-tree reconciliation to work with multi-labeled trees (MUL-trees). By definition, MUL-trees have some tips with identical labels, which makes them a natural representation of the genomes of polyploids. Using this new reconciliation algorithm we can: accurately place allopolyploidy events on a phylogeny, identify the parental lineages that hybridized to form allopolyploids, distinguish between allo-, auto-, and (in most cases) no polyploidy, and correctly count the number of duplications and losses in a set of gene trees. We validate our method using gene trees simulated with and without polyploidy, and revisit the history of polyploidy in data from the clades including both baker's yeast and bread wheat. Our re-analysis of the yeast data confirms the allopolyploid origin and parental lineages previously identified for this group. The method presented here should find wide use in the growing number of genomes from species with a history of polyploidy. [Polyploidy; reconciliation; whole-genome duplication.]. © The Author(s) 2017. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Transposable element distribution, abundance and role in genome size variation in the genus Oryza.

    Science.gov (United States)

    Zuccolo, Andrea; Sebastian, Aswathy; Talag, Jayson; Yu, Yeisoo; Kim, HyeRan; Collura, Kristi; Kudrna, Dave; Wing, Rod A

    2007-08-29

    The genus Oryza is composed of 10 distinct genome types, 6 diploid and 4 polyploid, and includes the world's most important food crop - rice (Oryza sativa [AA]). Genome size variation in the Oryza is more than 3-fold and ranges from 357 Mbp in Oryza glaberrima [AA] to 1283 Mbp in the polyploid Oryza ridleyi [HHJJ]. Because repetitive elements are known to play a significant role in genome size variation, we constructed random sheared small insert genomic libraries from 12 representative Oryza species and conducted a comprehensive study of the repetitive element composition, distribution and phylogeny in this genus. Particular attention was paid to the role played by the most important classes of transposable elements (Long Terminal Repeats Retrotransposons, Long interspersed Nuclear Elements, helitrons, DNA transposable elements) in shaping these genomes and in their contributing to genome size variation. We identified the elements primarily responsible for the most strikingly genome size variation in Oryza. We demonstrated how Long Terminal Repeat retrotransposons belonging to the same families have proliferated to very different extents in various species. We also showed that the pool of Long Terminal Repeat Retrotransposons is substantially conserved and ubiquitous throughout the Oryza and so its origin is ancient and its existence predates the speciation events that originated the genus. Finally we described the peculiar behavior of repeats in the species Oryza coarctata [HHKK] whose placement in the Oryza genus is controversial. Long Terminal Repeat retrotransposons are the major component of the Oryza genomes analyzed and, along with polyploidization, are the most important contributors to the genome size variation across the Oryza genus. Two families of Ty3-gypsy elements (RIRE2 and Atlantys) account for a significant portion of the genome size variations present in the Oryza genus.

  14. Cytological techniques to analyze meiosis in Arabidopsis arenosa for investigating adaptation to polyploidy.

    Science.gov (United States)

    Higgins, James D; Wright, Kevin M; Bomblies, Kirsten; Franklin, F Chris H

    2014-01-01

    Arabidopsis arenosa is a close relative of the model plant A. thaliana, and exists in nature as stable diploid and autotetraploid populations. Natural tetraploids have adapted to whole genome duplication and do not commonly show meiotic errors such as multivalent and univalent formation, which can lead to chromosome non-disjunction and reduced fertility. A genome scan for genes strongly differentiated between diploid and autotetraploid A. arenosa identified a subset of meiotic genes that may be responsible for adaptation to polyploid meiosis. To investigate the mechanisms by which A. arenosa adapted to its polyploid state, and the functionality of the identified potentially adaptive polymorphisms, a thorough cytological analysis is required. Therefore, in this chapter we describe methods and techniques to analyze male meiosis in A. arenosa, including optimum plant growth conditions, and immunocytological and cytological approaches developed with the specific purpose of understanding meiotic adaptation in an autotetraploid. In addition we present a meiotic cytological atlas to be used as a reference for particular stages and discuss observations arising from a comparison of meiosis between diploid and autotetraploid A. arenosa.

  15. Expression of HPV16 E5 produces enlarged nuclei and polyploidy through endoreplication

    International Nuclear Information System (INIS)

    Hu Lulin; Potapova, Tamara A.; Li Shibo; Rankin, Susannah; Gorbsky, Gary J.; Angeletti, Peter C.; Ceresa, Brian P.

    2010-01-01

    Anogenital cancers and head and neck cancers are causally associated with infection by high-risk human papillomavirus (HPV). The mechanism by which high-risk HPVs contribute to oncogenesis is poorly understood. HPV16 encodes three genes (HPV16 E5, E6, and E7) that can transform cells when expressed independently. HPV16 E6 and E7 have well-described roles causing genomic instability and unregulated cell cycle progression. The role of HPV16 E5 in cell transformation remains to be elucidated. Expression of HPV16 E5 results in enlarged, polyploid nuclei that are dependent on the level and duration of HPV16 E5 expression. Live cell imaging data indicate that these changes do not arise from cell-cell fusion or failed cytokinesis. The increase in nuclear size is a continual process that requires DNA synthesis. We conclude that HPV16 E5 produces polyploid cells by endoreplication. These findings provide insight into how HPV16 E5 can contribute to cell transformation.

  16. Genome-size Variation in Switchgrass (Panicum virgatum: Flow Cytometry and Cytology Reveal Rampant Aneuploidy

    Directory of Open Access Journals (Sweden)

    Denise E. Costich

    2010-11-01

    Full Text Available Switchgrass ( L., a native perennial dominant of the prairies of North America, has been targeted as a model herbaceous species for biofeedstock development. A flow-cytometric survey of a core set of 11 primarily upland polyploid switchgrass accessions indicated that there was considerable variation in genome size within each accession, particularly at the octoploid (2 = 8 = 72 chromosome ploidy level. Highly variable chromosome counts in mitotic cell preparations indicated that aneuploidy was more common in octoploids (86.3% than tetraploids (23.2%. Furthermore, the incidence of hyper- versus hypoaneuploidy is equivalent in tetraploids. This is clearly not the case in octoploids, where close to 90% of the aneuploid counts are lower than the euploid number. Cytogenetic investigation using fluorescent in situ hybridization (FISH revealed an unexpected degree of variation in chromosome structure underlying the apparent genomic instability of this species. These results indicate that rapid advances in the breeding of polyploid biofuel feedstocks, based on the molecular-genetic dissection of biomass characteristics and yield, will be predicated on the continual improvement of our understanding of the cytogenetics of these species.

  17. Chromosome studies on bone marrow cells of chinese hamsters fed a radiosterilized diet

    International Nuclear Information System (INIS)

    Renner, H.W.

    1977-01-01

    Metaphase preparations of chromosomes from bone marrow cells of Chinese hamsters were examined for mutagenic effects following the feeding of a radiosterilized diet. No increase in the incidence of structural chromosomal aberrations was observed. As far as numerical aberrations were concerned, the proportion of cells with polyploidy increased to between 4 to 5 times the control level, irrespective of the moisture content of the diet. This polyploidy effect occurred very early, being detectable within 24 h, if the diet fed had been irradiated with an absorbed dose of 4.5x10 6 rad. The incidence of polyploidy remained below 0.5%, however, nor did it rise with higher radiation doses. When the feeding of the irradiated diet was stopped, the proportion of polyploid cells returned to the control level within a maximum of 6 weeks. If the diet was stored (initially) for 6 weeks following irradiation before being fed to the animals no increase in the number of polyploid cells was noted. These results are not interpreted as a mutagenic effect of the irradiated diet. (author)

  18. The c-Myc target glycoprotein1balpha links cytokinesis failure to oncogenic signal transduction pathways in cultured human cells.

    Directory of Open Access Journals (Sweden)

    Qian Wu

    2010-05-01

    Full Text Available An increase in chromosome number, or polyploidization, is associated with a variety of biological changes including breeding of cereal crops and flowers, terminal differentiation of specialized cells such as megakaryocytes, cellular stress and oncogenic transformation. Yet it remains unclear how cells tolerate the major changes in gene expression, chromatin organization and chromosome segregation that invariably accompany polyploidization. We show here that cancer cells can initiate increases in chromosome number by inhibiting cell division through activation of glycoprotein1b alpha (GpIbalpha, a component of the c-Myc signaling pathway. We are able to recapitulate cytokinesis failure in primary cells by overexpression of GpIbalpha in a p53-deficient background. GpIbalpha was found to localize to the cleavage furrow by microscopy analysis and, when overexpressed, to interfere with assembly of the cellular cortical contraction apparatus and normal division. These results indicate that cytokinesis failure and tetraploidy in cancer cells are directly linked to cellular hyperproliferation via c-Myc induced overexpression of GpIbalpha.

  19. Chromosome duplication in Lolium multiflorum Lam.

    Directory of Open Access Journals (Sweden)

    Roselaine Cristina Pereira

    2014-11-01

    Full Text Available Artificial chromosome duplication of diploid genotypes of Lolium multiflorum (2n=2x=14 is worthy to breeding, and aims to increase the expression of traits with agronomic interest. The purpose of this study was to obtain polyploid plants of L. multiflorum from local diploid populations in order to exploit adaptation and future verification of the effects of polyploidy in agronomic traits. Seedlings were immersed in different colchicine solutions for an exposure time of 3h and 24h. Ploidy determination was made by the DNA content and certified by chromosomes counts. The plants confirmed as tetraploids were placed in a greenhouse, and, at flowering, pollen viability was evaluated, and seeds were harvested to assess the stability of the progenies. The percentage of polyploids obtained was 20%. Pollen viability of the tetraploids generated ranged from 58% to 69%. The tetraploid plants obtained in the experiment generated 164 progenies, of which 109 presented DNA content compatible with the tetraploid level, showing stability of chromosome duplication in the filial generation.

  20. Rapid and Efficient CRISPR/Cas9-Based Mating-Type Switching of Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Ze-Xiong Xie

    2018-01-01

    Full Text Available Rapid and highly efficient mating-type switching of Saccharomyces cerevisiae enables a wide variety of genetic manipulations, such as the construction of strains, for instance, isogenic haploid pairs of both mating-types, diploids and polyploids. We used the CRISPR/Cas9 system to generate a double-strand break at the MAT locus and, in a single cotransformation, both haploid and diploid cells were switched to the specified mating-type at ∼80% efficiency. The mating-type of strains carrying either rod or ring chromosome III were switched, including those lacking HMLα and HMRa cryptic mating loci. Furthermore, we transplanted the synthetic yeast chromosome V to build a haploid polysynthetic chromosome strain by using this method together with an endoreduplication intercross strategy. The CRISPR/Cas9 mating-type switching method will be useful in building the complete synthetic yeast (Sc2.0 genome. Importantly, it is a generally useful method to build polyploids of a defined genotype and generally expedites strain construction, for example, in the construction of fully a/a/α/α isogenic tetraploids.

  1. Semiconservative quasispecies equations for polysomic genomes: The general case

    Science.gov (United States)

    Itan, Eran; Tannenbaum, Emmanuel

    2010-06-01

    This paper develops a formulation of the quasispecies equations appropriate for polysomic, semiconservatively replicating genomes. This paper is an extension of previous work on the subject, which considered the case of haploid genomes. Here, we develop a more general formulation of the quasispecies equations that is applicable to diploid and even polyploid genomes. Interestingly, with an appropriate classification of population fractions, we obtain a system of equations that is formally identical to the haploid case. As with the work for haploid genomes, we consider both random and immortal DNA strand chromosome segregation mechanisms. However, in contrast to the haploid case, we have found that an analytical solution for the mean fitness is considerably more difficult to obtain for the polyploid case. Accordingly, whereas for the haploid case we obtained expressions for the mean fitness for the case of an analog of the single-fitness-peak landscape for arbitrary lesion repair probabilities (thereby allowing for noncomplementary genomes), here we solve for the mean fitness for the restricted case of perfect lesion repair.

  2. Cytological techniques to analyze meiosis in Arabidopsis arenosa for investigating adaptation to polyploidy

    Science.gov (United States)

    Higgins, James D.; Wright, Kevin M.; Bomblies, Kirsten; Franklin, F. Chris H.

    2014-01-01

    Arabidopsis arenosa is a close relative of the model plant A. thaliana, and exists in nature as stable diploid and autotetraploid populations. Natural tetraploids have adapted to whole genome duplication and do not commonly show meiotic errors such as multivalent and univalent formation, which can lead to chromosome non-disjunction and reduced fertility. A genome scan for genes strongly differentiated between diploid and autotetraploid A. arenosa identified a subset of meiotic genes that may be responsible for adaptation to polyploid meiosis. To investigate the mechanisms by which A. arenosa adapted to its polyploid state, and the functionality of the identified potentially adaptive polymorphisms, a thorough cytological analysis is required. Therefore, in this chapter we describe methods and techniques to analyze male meiosis in A. arenosa, including optimum plant growth conditions, and immunocytological and cytological approaches developed with the specific purpose of understanding meiotic adaptation in an autotetraploid. In addition we present a meiotic cytological atlas to be used as a reference for particular stages and discuss observations arising from a comparison of meiosis between diploid and autotetraploid A. arenosa. PMID:24427164

  3. Cytological techniques to analyze meiosis in Arabidopsis arenosa for investigating adaptation to polyploidy

    Directory of Open Access Journals (Sweden)

    James D Higgins

    2014-01-01

    Full Text Available Arabidopsis arenosa is a close relative of the model plant Arabidopsis thaliana, and exists in nature as stable diploid and autotetraploid populations. Natural tetraploids have adapted to whole genome duplication and do not commonly show meiotic errors such as multivalent and univalent formation, which can lead to chromosome non-disjunction and reduced fertility. A genome scan for genes strongly differentiated between diploid and autotetraploid A. arenosa identified a subset of meiotic genes that may be responsible for adaptation to polyploid meiosis. To investigate the mechanisms by which A. arenosa adapted to its polyploid state, and the functionality of the identified potentially adaptive polymorphisms, a thorough cytological analysis is required. Therefore, in this chapter we describe methods and techniques to analyze male meiosis in A. arenosa, including optimum plant growth conditions, and immunocytological and cytological approaches developed with the specific purpose of understanding meiotic adaptation in an autotetraploid. In addition we present a meiotic cytological atlas to be used as a reference for particular stages and discuss observations arising from a comparison of meiosis between diploid and autotetraploid A. arenosa.

  4. A sex-related difference in the hypertrophic versus hyperplastic response of vascular smooth muscle cells to repeated passaging in culture

    Czech Academy of Sciences Publication Activity Database

    Bačáková, Lucie; Pellicciari, C.; Bottone, M. G.; Lisá, Věra; Mareš, Vladislav

    2001-01-01

    Roč. 16, č. 3 (2001), s. 675-684 ISSN 0213-3911 R&D Projects: GA AV ČR IAA7011908 Grant - others:FAR(IT) 1998 Institutional research plan: CEZ:AV0Z5011922 Keywords : rat aortic smooth muscle cells * polyploidization * gender differences Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery Impact factor: 1.859, year: 2001

  5. Rise and Persistence of Animal Polyploidy: Evolutionary Constraints and Potential

    Czech Academy of Sciences Publication Activity Database

    Choleva, Lukáš; Janko, Karel

    2013-01-01

    Roč. 140, 2-4 (2013), s. 151-170 ISSN 1424-8581 R&D Projects: GA ČR GPP506/12/P857; GA ČR GAP506/10/1155; GA ČR GA13-12580S Institutional support: RVO:67985904 Keywords : asexual * clonal * hybrid * polyploidization * sexual Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.905, year: 2013

  6. The asymmetric meiosis in pentaploid dogroses (Rosa sect. Caninae) is associated with a skewed distribution of rRNA gene families in the gametes

    Czech Academy of Sciences Publication Activity Database

    Kovařík, Aleš; Werlemark, G.; Leitch, A.R.; Skalická, Kamila; Lim, Y.K.; Crhák Khaitová, Lucie; Koukalová, Blažena; Nybom, H.

    2008-01-01

    Roč. 101, - (2008), s. 359-367 ISSN 0018-067X R&D Projects: GA ČR(CZ) GA521/07/0116; GA MŠk(CZ) LC06004 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : polyploids * meiosis * rDNA Subject RIV: BO - Biophysics Impact factor: 3.823, year: 2008

  7. Role of parasite load and differential habitat preferences in maintaining the coexistence of sexual and asexual competitors in fish of the Cobitis taenia hybrid complex

    Czech Academy of Sciences Publication Activity Database

    Kotusz, J.; Popiolek, M.; Drozd, P.; de Gelas, K.; Šlechtová, V.; Janko, Karel

    2014-01-01

    Roč. 113, č. 1 (2014), s. 220-235 ISSN 0024-4066 R&D Projects: GA ČR GBP505/12/G112 Institutional support: RVO:68081766 Keywords : diploid-polyploid complexes * European distribution * habitat partitioning * niche shift * parasite-mediated coexistence * Red Queen hypothesis * spined loach * unisexuality Subject RIV: EG - Zoology Impact factor: 2.264, year: 2014

  8. Role of parasite load and differential habitat preferences in maintaining the coexistence of sexual and asexual competitors in fish of the Cobitis taenia hybrid complex

    Czech Academy of Sciences Publication Activity Database

    Kotusz, J.; Popiolek, M.; Drozd, P.; de Gelas, K.; Šlechtová, Věra; Janko, Karel

    2014-01-01

    Roč. 113, č. 1 (2014), s. 220-235 ISSN 0024-4066 R&D Projects: GA ČR GA206/09/1298; GA ČR GBP505/12/G112; GA ČR GA13-12580S Institutional support: RVO:67985904 Keywords : diploid * polyploid complexes * European distribution Subject RIV: EG - Zoology Impact factor: 2.264, year: 2014

  9. Sequencing wheat chromosome arm 7BS delimits the 7BS/4AL translocation and reveals homoeologous gene conservation

    Czech Academy of Sciences Publication Activity Database

    Berkman, P.J.; Skarshewski, A.; Manoli, S.; Lorenc, M. T.; Stiller, J.; Smits, L.; Lai, K.; Cambell, E.; Kubaláková, Marie; Šimková, Hana; Batley, J.; Doležel, Jaroslav; Hernandez, P.; Edwards, D.

    2012-01-01

    Roč. 124, č. 3 (2012), s. 423-432 ISSN 0040-5752 R&D Projects: GA MŠk(CZ) LC06004 Grant - others:GA MŠk(CZ) ED0007/01/01 Program:ED Institutional research plan: CEZ:AV0Z50380511 Keywords : POLYPLOID WHEAT * BIN MAP * BRACHYPODIUM-DISTACHYON Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.658, year: 2012

  10. Dynamics of tandemly repeated DNA sequences during evolution of diploid and tetraploid botiid loaches (Teleostei: Cobitoidea: Botiidae)

    Czech Academy of Sciences Publication Activity Database

    Sember, Alexandr; Bohlen, Jörg; Šlechtová, Vendula; Altmanová, Marie; Pelikánová, Šárka; Ráb, Petr

    2018-01-01

    Roč. 13, č. 3 (2018), č. článku e0195054. E-ISSN 1932-6203 R&D Projects: GA ČR GA13-37277S; GA MŠk EF15_003/0000460 Institutional support: RVO:67985904 Keywords : polyploidization * loach Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Genetics and heredity (medical genetics to be 3) Impact factor: 2.806, year: 2016

  11. Effect of colchicine on mitotic polyploidization and morphological ...

    African Journals Online (AJOL)

    Ajai

    2012-05-15

    May 15, 2012 ... to diseases and insects and reduction in fertility of flowering plants ..... soaking duration was noticed to cause the treated seeds to give low height .... Addison-. Wesley, London. Stadler J, Phillips RL, Leonard M (1989).Mitotic ...

  12. Polyploidization altered gene functions in cotton (Gossypium spp.).

    Science.gov (United States)

    Xu, Zhanyou; Yu, John Z; Cho, Jaemin; Yu, Jing; Kohel, Russell J; Percy, Richard G

    2010-12-16

    Cotton (Gossypium spp.) is an important crop plant that is widely grown to produce both natural textile fibers and cottonseed oil. Cotton fibers, the economically more important product of the cotton plant, are seed trichomes derived from individual cells of the epidermal layer of the seed coat. It has been known for a long time that large numbers of genes determine the development of cotton fiber, and more recently it has been determined that these genes are distributed across At and Dt subgenomes of tetraploid AD cottons. In the present study, the organization and evolution of the fiber development genes were investigated through the construction of an integrated genetic and physical map of fiber development genes whose functions have been verified and confirmed. A total of 535 cotton fiber development genes, including 103 fiber transcription factors, 259 fiber development genes, and 173 SSR-contained fiber ESTs, were analyzed at the subgenome level. A total of 499 fiber related contigs were selected and assembled. Together these contigs covered about 151 Mb in physical length, or about 6.7% of the tetraploid cotton genome. Among the 499 contigs, 397 were anchored onto individual chromosomes. Results from our studies on the distribution patterns of the fiber development genes and transcription factors between the At and Dt subgenomes showed that more transcription factors were from Dt subgenome than At, whereas more fiber development genes were from At subgenome than Dt. Combining our mapping results with previous reports that more fiber QTLs were mapped in Dt subgenome than At subgenome, the results suggested a new functional hypothesis for tetraploid cotton. After the merging of the two diploid Gossypium genomes, the At subgenome has provided most of the genes for fiber development, because it continues to function similar to its fiber producing diploid A genome ancestor. On the other hand, the Dt subgenome, with its non-fiber producing D genome ancestor, provides more transcription factors that regulate the expression of the fiber genes in the At subgenome. This hypothesis would explain previously published mapping results. At the same time, this integrated map of fiber development genes would provide a framework to clone individual full-length fiber genes, to elucidate the physiological mechanisms of the fiber differentiation, elongation, and maturation, and to systematically study the functional network of these genes that interact during the process of fiber development in the tetraploid cottons.

  13. Dissecting black spot resistance in polyploid hybrid roses

    Science.gov (United States)

    Devastating foliar diseases, such as black spot caused by Diplocarpon rosae, pose constant threats to the ornamental quality of outdoor grown roses. Black spot is primarily managed though the use of fungicides, however, there is a high demand for resistant roses which require low chemical inputs. To...

  14. Subgenomic analysis of microRNAs in polyploid wheat

    Czech Academy of Sciences Publication Activity Database

    Kantar, M.; Akpinar, B. A.; Valárik, Miroslav; Lucas, S. J.; Doležel, Jaroslav; Hernandez, P.; Budak, H.

    2012-01-01

    Roč. 12, č. 3 (2012), s. 465-479 ISSN 1438-793X Grant - others:GA MŠk(CZ) ED0007/01/01 Program:ED Institutional research plan: CEZ:AV0Z50380511 Keywords : Triticum aestivum * microRNA * miRNA prediction Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.292, year: 2012

  15. Polyploidization effect in two diploid cotton (Gossypium herbaceum ...

    African Journals Online (AJOL)

    SERVER

    2008-01-18

    Jan 18, 2008 ... 2Department of Biology, Gorgan University of Agricultural Sciences and Natural ... examined the effects of different doses of colchicine on polyploidy ... number of stomata are generally increased in the poly- ... species; one comprising the New World (D-genome ... used for preparation of microscopic slides.

  16. Polyploidization altered gene functions in cotton (Gossypium spp.)

    Science.gov (United States)

    Cotton fibers are seed trichomes derived from individual cells of the epidermal layer of the seed coat. It has been known for a long time that a large set of genes determine the development of cotton fiber, and more recently it has been determined that these genes are distributed across the At and ...

  17. The odds of duplicate gene persistence after polyploidization

    Directory of Open Access Journals (Sweden)

    Chain Frédéric JJ

    2011-12-01

    Full Text Available Abstract Background Gene duplication is an important biological phenomenon associated with genomic redundancy, degeneration, specialization, innovation, and speciation. After duplication, both copies continue functioning when natural selection favors duplicated protein function or expression, or when mutations make them functionally distinct before one copy is silenced. Results Here we quantify the degree to which genetic parameters related to gene expression, molecular evolution, and gene structure in a diploid frog - Silurana tropicalis - influence the odds of functional persistence of orthologous duplicate genes in a closely related tetraploid species - Xenopus laevis. Using public databases and 454 pyrosequencing, we obtained genetic and expression data from S. tropicalis orthologs of 3,387 X. laevis paralogs and 4,746 X. laevis singletons - the most comprehensive dataset for African clawed frogs yet analyzed. Using logistic regression, we demonstrate that the most important predictors of the odds of duplicate gene persistence in the tetraploid species are the total gene expression level and evenness of expression across tissues and development in the diploid species. Slow protein evolution and information density (fewer exons, shorter introns in the diploid are also positively correlated with duplicate gene persistence in the tetraploid. Conclusions Our findings suggest that a combination of factors contribute to duplicate gene persistence following whole genome duplication, but that the total expression level and evenness of expression across tissues and through development before duplication are most important. We speculate that these parameters are useful predictors of duplicate gene longevity after whole genome duplication in other taxa.

  18. Endophytic Bacteria Associated with Hieracium piloselloides: Their Potential for Hydrocarbon-Utilizing and Plant Growth-Promotion.

    Science.gov (United States)

    Pawlik, Małgorzata; Piotrowska-Seget, Zofia

    2015-01-01

    The aim of this study was to assess the potential of 18 crude-oil-degrading endophytic bacteria for removal of hydrocarbons and promotion of plant growth. Strains were isolated from Hieracium piloselloides (tall hawkweed), which grows in soil heavily polluted with petroleum hydrocarbons. Bacteria from the genus Pseudomonas were abundant among the isolates. The potential for hydrocarbon degradation was evaluated by polymerase chain reaction (PCR) analyses of the genes alkB, alkH, C23O, P450, and pah. It was found that 88.89% of the endophytic bacteria contained gene-encoding polycyclic aromatic hydrocarbon (PAH) initial dioxygenase, 61% possessed the 2,3-catechol dioxygenase gene, and 39% of strains that were tested had the cytochrome P-450 hydroxylase gene. All isolates were capable of producing indole-3-acetic acid (1.8-76.4 μg/ml). Only 17% of them were able to produce siderophores, excrete cellulase, and solubilize phosphate. Hydrogen cyanide synthesis occurred in 33% of endophytic bacteria. The 1-aminocyclopropane-1-carboxylate deaminase activity in isolates that were screened was in the range of 2.6 to 74.1 μmol α-ketobutyrate/mg/h. This feature of the bacteria indicated that isolates may enhance the phytoremediation process. Data suggest that crude-oil-degrading endophytic bacteria possess potential to be promising candidates for enhancement of phytoremediation of hydrocarbon-contaminated soil. Further evaluation of these bacteria is needed in order to assess the role played in the degradation of petroleum hydrocarbons.

  19. Tripolar acytokinetic mitosis and formation of feto-maternal syncytia in the bovine placentome: different modes of the generation of multinuclear cells.

    Science.gov (United States)

    Klisch, K; Pfarrer, C; Schuler, G; Hoffmann, B; Leiser, R

    1999-08-01

    The vast majority of trophoblast giant cells in the ruminant placenta are binuclear and are believed to derive from mononuclear trophoblastic cells by a single acytokinetic mitosis. There is no satisfactory explanation for the generation of the small proportion of trophoblast giant cells with one, three, or more nuclei. In this light-and electronmicroscopic study of bovine placentomal tissue from the second half of gestation, developmental stages of the trophoblast giant cells are investigated. Large mitotic figures indicate mitotic polyploidization, which is proposed to be due to two subsequent acytokinetic mitoses. Tripolar mitoses offer an explanation for the development of trinucleate trophoblast giant cells. Measurements of nuclear volumes in a series of semithin sections revealed that three size classes of trophoblast giant cells occur. The approximately doubling of nuclear volume between each class is thought to reflect different levels of DNA content that result from polyploidization in this cell type. Although trinuclear feto-maternal hybrid cells are the standard outcome of the fusion of binuclear trophoblast giant cells with uterine epithelial cells, some syncytia with at least five nuclei were observed in the uterine epithelium.

  20. CLASSICAL AND MOLECULAR CYTOGENETIC STUDIES FOR BREEDING AND SELECTION OF TULIPS

    Directory of Open Access Journals (Sweden)

    Aurel Popescu

    2012-12-01

    Full Text Available Due to their extreme popularity as fresh cut flowers and garden plants, and being used extensively for landscaping, tulips undergone a continuous process of selective breeding. For almost nine decades, classical cytogenetic studies, mainly the chromosome counts, have been an important part in the breeding programme for polyploid tulips. The efficiency of breeding is greatly aided by a thorough knowledge of the occurrence of polyploidy in the plant material. While the traditional cytogenetic approaches are still highly useful in selecting polyploids and aneuploids arising from crosses involving (most often parents of different ploidy or from the material subjected to ploidy manipulation, the new strategies for inducing polyploidy in tulips, either in vivo or in vitro, and advances in molecular cytogenetics are expected to allow a significant increase in breeding efficiency. Together with the shortening of breeding cycle, major genetic improvements could be made for specific traits. In this we review the development of cytogenetic studies in tulips, and the most relevant achievements so far, providing an overview of what we consider to be valuable tools for the processes of selective breeding .

  1. CRISPR-Cas9-Edited Site Sequencing (CRES-Seq): An Efficient and High-Throughput Method for the Selection of CRISPR-Cas9-Edited Clones.

    Science.gov (United States)

    Veeranagouda, Yaligara; Debono-Lagneaux, Delphine; Fournet, Hamida; Thill, Gilbert; Didier, Michel

    2018-01-16

    The emergence of clustered regularly interspaced short palindromic repeats-Cas9 (CRISPR-Cas9) gene editing systems has enabled the creation of specific mutants at low cost, in a short time and with high efficiency, in eukaryotic cells. Since a CRISPR-Cas9 system typically creates an array of mutations in targeted sites, a successful gene editing project requires careful selection of edited clones. This process can be very challenging, especially when working with multiallelic genes and/or polyploid cells (such as cancer and plants cells). Here we described a next-generation sequencing method called CRISPR-Cas9 Edited Site Sequencing (CRES-Seq) for the efficient and high-throughput screening of CRISPR-Cas9-edited clones. CRES-Seq facilitates the precise genotyping up to 96 CRISPR-Cas9-edited sites (CRES) in a single MiniSeq (Illumina) run with an approximate sequencing cost of $6/clone. CRES-Seq is particularly useful when multiple genes are simultaneously targeted by CRISPR-Cas9, and also for screening of clones generated from multiallelic genes/polyploid cells. © 2018 by John Wiley & Sons, Inc. Copyright © 2018 John Wiley & Sons, Inc.

  2. Peculiarities of hydrobiont mutagenesis in complicated ecological areas of the Nemunas river and the Kurshiu marios lagoon

    International Nuclear Information System (INIS)

    Barshiene, J.

    1992-01-01

    Cytogenetic disturbances of Viviparus contectus, Dreisena polymorpha, various bivalves, fish and trematodes species collected from the Nemunas river above Smalininkai, Tilzhe, Rusne, Kurshiu marios lagoon at Nida, Preila, Juodkrante, estuaries of Smiltele (Klaipeda), Vente have been studied. The data show that the highest level of chromosome sets changes was presented at Smalininkai, Vente, Preila and in biotopes of Klaipeda environs. It was marked that 50 % of clams from Smalininkai site were polyploidy and possessed cancer cells in their tissues. The great instability of chromosome sets in snails and unchangeable karyotypes of their parasites were detected. In fish tissues there were 12-21 % of altered cells with aneuploid or polyploid sets. The existence of polyploid, mosaic and hermaphroditic specimens of clams as well as the presence of high amount of cancer cells and mitotic suppression in their tissues, enable to state about complicated ecological zones in the Nemunas river: below Kaunas, Smalininkai, Tilzhe, in the Kurshiu marios lagoon: Vente, environs of Klaipeda and estuaries of the Shventoji river additionally. The highest level of β activity was detected in soft tissues of bivalve specimens containing 24-58 % of hypoploid cells. (author). 5 tabs., 1 fig., 4 refs

  3. Inter- and interspecific serological relationships in Pellia epiphylla complex

    Directory of Open Access Journals (Sweden)

    Aleksandra Wojnicka-Półtorak

    2014-01-01

    Full Text Available Antigenic proteins were used as markers for the study of relationships between three liverwort species from P. epiphylla complex. It has recently been shown that the electrophoretic phenotypes of this species suggested an amphiploid origin of P. borealis. Two sibling species: P. epiphylla -species S and -species N could have probably represented the parental species for P. borealis. We examined three clones of P. borealis from different localities using immunodiffusion. Then we compared them with P. epiphylla species S and N as well as with the mixture of proteins of P. epiphylla S and N samples. The results indicate that polyploid P. borealis shows an identical immunological pattern to that of the mixture of proteins of putative parental species. Only in one case the result resembled much more the pattern of P. epiphylla S proteins. The sibling species P. epiphylla S and N showed antigenic difference but the nature of the differences requires further studies. Antigenic pro-perties of proteins from P. epiphylla S and N and of their allopolyploid - P. borealis, indicated some specifity of the protein spectrum in each of the parental species and intermediate character of proteins in the polyploid forms.

  4. Mimulus peregrinus (Phrymaceae: A new British allopolyploid species

    Directory of Open Access Journals (Sweden)

    Mario Vallejo-Marin

    2012-07-01

    Full Text Available Polyploidization plays an important role in species formation as chromosome doubling results in strong reproductive isolation between derivative and parental taxa. In this note I describe a new species, Mimulus peregrinus (Phrymaceae, which represents the first recorded instance of a new British polyploid species of Mimulus (2n = 6x = 92 that has arisen since the introduction of this genus into the United Kingdom in the 1800’s. M. peregrinus presents floral and vegetative characteristics intermediate between M. guttatus and M. luteus, but can be distinguished from all naturalized British Mimulus species and hybrids based on a combination of reproductive and vegetative traits. M. peregrinus displays high pollen and seed fertility as well as traits usually associated with genome doubling such as increased pollen and stomata size. The intermediate characteristics of M. peregrinus between M. guttatus (2n = 2x = 28 and M. luteus (2n = 4x = 60-62, and its close affinity with the highly sterile, triploid (2n = 3x = 44-45 hybrid taxon M. × robertsii (M. guttatus × M. luteus, suggests that M. peregrinus may constitute an example of recent allopolyploid speciation.

  5. Analysis of gene expression in resynthesized Brassica napus Allopolyploids using arabidopsis 70mer oligo microarrays.

    Directory of Open Access Journals (Sweden)

    Robert T Gaeta

    Full Text Available BACKGROUND: Studies in resynthesized Brassica napus allopolyploids indicate that homoeologous chromosome exchanges in advanced generations (S(5ratio6 alter gene expression through the loss and doubling of homoeologous genes within the rearrangements. Rearrangements may also indirectly affect global gene expression if homoeologous copies of gene regulators within rearrangements have differential affects on the transcription of genes in networks. METHODOLOGY/PRINCIPAL FINDINGS: We utilized Arabidopsis 70mer oligonucleotide microarrays for exploring gene expression in three resynthesized B. napus lineages at the S(0ratio1 and S(5ratio6 generations as well as their diploid progenitors B. rapa and B. oleracea. Differential gene expression between the progenitors and additive (midparent expression in the allopolyploids were tested. The S(5ratio6 lines differed in the number of genetic rearrangements, allowing us to test if the number of genes displaying nonadditive expression was related to the number of rearrangements. Estimates using per-gene and common variance ANOVA models indicated that 6-15% of 26,107 genes were differentially expressed between the progenitors. Individual allopolyploids showed nonadditive expression for 1.6-32% of all genes. Less than 0.3% of genes displayed nonadditive expression in all S(0ratio1 lines and 0.1-0.2% were nonadditive among all S(5ratio6 lines. Differentially expressed genes in the polyploids were over-represented by genes differential between the progenitors. The total number of differentially expressed genes was correlated with the number of genetic changes in S(5ratio6 lines under the common variance model; however, there was no relationship using a per-gene variance model, and many genes showed nonadditive expression in S(0ratio1 lines. CONCLUSIONS/SIGNIFICANCE: Few genes reproducibly demonstrated nonadditive expression among lineages, suggesting few changes resulted from a general response to polyploidization

  6. Phylogeny and evolutionary history of Leymus (Triticeae; Poaceae based on a single-copy nuclear gene encoding plastid acetyl-CoA carboxylase

    Directory of Open Access Journals (Sweden)

    Ding Cun-Bang

    2009-10-01

    Full Text Available Abstract Background Single- and low- copy genes are less likely subject to concerted evolution, thus making themselves ideal tools for studying the origin and evolution of polyploid taxa. Leymus is a polyploid genus with a diverse array of morphology, ecology and distribution in Triticeae. The genomic constitution of Leymus was assigned as NsXm, where Ns was presumed to be originated from Psathyrostachys, while Xm represented a genome of unknown origin. In addition, little is known about the evolutionary history of Leymus. Here, we investigate the phylogenetic relationship, genome donor, and evolutionary history of Leymus based on a single-copy nuclear Acc1 gene. Results Two homoeologues of the Acc1 gene were isolated from nearly all the sampled Leymus species using allele-specific primer and were analyzed with those from 35 diploid taxa representing 18 basic genomes in Triticeae. Sequence diversity patterns and genealogical analysis suggested that (1 Leymus is closely related to Psathyrostachys, Agropyron, and Eremopyrum; (2 Psathyrostachys juncea is an ancestral Ns-genome donor of Leymus species; (3 the Xm genome in Leymus may be originated from an ancestral lineage of Agropyron and Eremopyrum triticeum; (4 the Acc1 sequences of Leymus species from the Qinghai-Tibetan plateau are evolutionarily distinct; (5 North America Leymus species might originate from colonization via the Bering land bridge; (6 Leymus originated about 11-12MYA in Eurasia, and adaptive radiation might have occurred in Leymus during the period of 3.7-4.3 MYA and 1.7-2.1 MYA. Conclusion Leymus species have allopolyploid origin. It is hypothesized that the adaptive radiation of Leymus species might have been triggered by the recent upliftings of the Qinghai-Tibetan plateau and subsequent climatic oscillations. Adaptive radiation may have promoted the rapid speciation, as well as the fixation of unique morphological characters in Leymus. Our results shed new light on our

  7. Niche dynamics of alien species do not differ among sexual and apomictic flowering plants

    Czech Academy of Sciences Publication Activity Database

    Dellinger, A. S.; Essl, F.; Hojsgaard, D.; Kirchheimer, B.; Klatt, S.; Dawson, W.; Pergl, Jan; Pyšek, Petr; van Kleunen, M.; Weber, E.; Winter, M.; Hörandl, E.; Dullinger, S.

    2016-01-01

    Roč. 209, č. 3 (2016), s. 1313-1323 ISSN 0028-646X R&D Projects: GA ČR GB14-36079G Grant - others:AV ČR(CZ) AP1002 Program:Akademická prémie - Praemium Academiae Institutional support: RVO:67985939 Keywords : invasions * GloNAF * apomixis Subject RIV: EF - Botanics Impact factor: 7.330, year: 2016

  8. Cytogenetic evidence for genome elimination during microsporogenesis in interspecific hybrid between Brachiaria ruziziensis and B. brizantha (Poaceae

    Directory of Open Access Journals (Sweden)

    Andréa Beatriz Mendes-Bonato

    2006-01-01

    Full Text Available Microsporogenesis was analyzed in an interspecific hybrid between an artificially tetraploidized sexual accession of Brachiaria ruziziensis (R genome and a natural apomictic tetraploid accession of B. brizantha (B genome. Chromosomes associated predominantly as bivalents. From this phase to the end of meiosis, chromosomes presented irregular segregation and abnormal arrangement in the metaphase plate. During metaphase I, in 27.8% of meiocytes, bivalents were distributed in two metaphase plates. In anaphase I, two distinct and typical bipolar spindles were formed. In 29.7% of pollen mother cells, one genome did not divide synchronically, with chromosomes lagging behind or not segregating at all. The second division was very irregular, resulting in polyads. Based on previous results from analysis of a triploid hybrid between these species, where the R genome was eliminated by asynchrony during meiosis, it is suggested that the laggard genome in this hybrid also belongs to B. ruziziensis.

  9. Meiotic analysis in induced tetraploids of Brachiaria decumbens Stapf

    Directory of Open Access Journals (Sweden)

    Carine Simioni

    2011-01-01

    Full Text Available The meiotic behavior of three tetraploid plants (2n=4x=36 originated from somatic chromosome duplication ofsexually reproducing diploid plants of Brachiaria decumbens was evaluated. All the analyzed plants presented abnormalities relatedto polyploidy, such as irregular chromosome segregation, leading to precocious chromosome migration to the poles and micronucleiduring both meiotic divisions. However, the abnormalities observed did not compromise the meiotic products which were characterizedby regular tetrads and satisfactory pollen fertility varying from 61.36 to 64.86%. Chromosomes paired mostly as bivalents indiakinesis but univalents to tetravalents were also observed. These studies contributed to the choice of compatible fertile sexualgenitors to be crossed to natural tetraploid apomicts in the B. decumbens by identifying abnormalities and verifying pollen fertility.Intraespecific crosses should reduce sterility in the hybrids produced in the breeding program of Brachiaria, a problem observedwith the interspecific hybrids produced so far.

  10. Classification of embryo sacs in the Eragrostis curvula Complex

    Directory of Open Access Journals (Sweden)

    T. B. Vorster

    1984-12-01

    Full Text Available At each of 17 collecting points between Johannesburg and Brits in the Transvaal, three plants which belong to the  Eragrostis curvula Complex were collected and studied. A total o f 3 902 embryo sacs was examined in this sample. Of the embryo sacs examined, 3 306 were apomictic by means of diplospory, whereas 99 were sexual monosporic Polygonum-type embryo sacs. One hundred and nineteen embryo sacs were abnormal or divergent, and 378 were degenerated. There are indications that seasonal climatic fluctuations may be responsible for embryo sacs developing abnormally or degenerating. Simple and multiple correlations confirmed that sexual embryo sacs usually do not develop abnormally or degenerate during the later developmental stages. This finding lends credence to both the system of classification of individual embryo sacs and to the validity of the estimate of the proportion of sexuality of the plants sampled at each sampling point.

  11. Cyto-histological processes during the differentiation of the tapetal cells in the anthers of Anthemis tinctoria L., Erigeron annuus (L. Pers. and E. canadensis L.

    Directory of Open Access Journals (Sweden)

    K. Bijok

    2015-01-01

    Full Text Available Tapetal cells in the anthers of Anthemis tinctoria, Erigeron annus and E. canadensis were uninucleate in the premeiotic stage of the PMC's. Ta-petum differentiation with inhibited cytokinesis took place during the period of meiotic divisions. In E. canadensis both mitoses were normal, wheareas in A. tinctoria and E. canadensis after both first and second mitotic divisions as a result of numerous disturbances polyploid nuclei were formed.

  12. Cytological, molecular mechanisms and temperature stress regulating production of diploid male gametes in Dianthus caryophyllus L.

    Science.gov (United States)

    Zhou, Xuhong; Mo, Xijun; Gui, Min; Wu, Xuewei; Jiang, Yalian; Ma, Lulin; Shi, Ziming; Luo, Ying; Tang, Wenru

    2015-12-01

    In plant evolution, because of its key role in sexual polyploidization or whole genome duplication events, diploid gamete formation is considered as an important component in diversification and speciation. Environmental stress often triggers unreduced gamete production. However, the molecular, cellular mechanisms and adverse temperature regulating diplogamete production in carnation remain poorly understood. Here, we investigate the cytological basis for 2n male gamete formation and describe the isolation and characterization of the first gene, DcPS1 (Dianthus Caryophyllus Parallel Spindle 1). In addition, we analyze influence of temperature stress on diploid gamete formation and transcript levels of DcPS1. Cytological evidence indicated that 2n male gamete formation is attributable to abnormal spindle orientation at male meiosis II. DcPS1 protein is conserved throughout the plant kingdom and carries domains suggestive of a regulatory function. DcPS1 expression analysis show DcPS1 gene probably have a role in 2n pollen formation. Unreduced pollen formation in various cultivation was sensitive to high or low temperature which was probably regulated by the level of DcPS1 transcripts. In a broader perspective, these findings can have potential applications in fundamental polyploidization research and plant breeding programs. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  13. Mutations in AtPS1 (Arabidopsis thaliana parallel spindle 1 lead to the production of diploid pollen grains.

    Directory of Open Access Journals (Sweden)

    Isabelle d'Erfurth

    2008-11-01

    Full Text Available Polyploidy has had a considerable impact on the evolution of many eukaryotes, especially angiosperms. Indeed, most--if not all-angiosperms have experienced at least one round of polyploidy during the course of their evolution, and many important crop plants are current polyploids. The occurrence of 2n gametes (diplogametes in diploid populations is widely recognised as the major source of polyploid formation. However, limited information is available on the genetic control of diplogamete production. Here, we describe the isolation and characterisation of the first gene, AtPS1 (Arabidopsis thaliana Parallel Spindle 1, implicated in the formation of a high frequency of diplogametes in plants. Atps1 mutants produce diploid male spores, diploid pollen grains, and spontaneous triploid plants in the next generation. Female meiosis is not affected in the mutant. We demonstrated that abnormal spindle orientation at male meiosis II leads to diplogamete formation. Most of the parent's heterozygosity is therefore conserved in the Atps1 diploid gametes, which is a key issue for plant breeding. The AtPS1 protein is conserved throughout the plant kingdom and carries domains suggestive of a regulatory function. The isolation of a gene involved in diplogamete production opens the way for new strategies in plant breeding programmes and progress in evolutionary studies.

  14. High-throughput sequencing and mutagenesis to accelerate the domestication of Microlaena stipoides as a new food crop.

    Directory of Open Access Journals (Sweden)

    Frances M Shapter

    Full Text Available Global food demand, climatic variability and reduced land availability are driving the need for domestication of new crop species. The accelerated domestication of a rice-like Australian dryland polyploid grass, Microlaena stipoides (Poaceae, was targeted using chemical mutagenesis in conjunction with high throughput sequencing of genes for key domestication traits. While M. stipoides has previously been identified as having potential as a new grain crop for human consumption, only a limited understanding of its genetic diversity and breeding system was available to aid the domestication process. Next generation sequencing of deeply-pooled target amplicons estimated allelic diversity of a selected base population at 14.3 SNP/Mb and identified novel, putatively mutation-induced polymorphisms at about 2.4 mutations/Mb. A 97% lethal dose (LD₉₇ of ethyl methanesulfonate treatment was applied without inducing sterility in this polyploid species. Forward and reverse genetic screens identified beneficial alleles for the domestication trait, seed-shattering. Unique phenotypes observed in the M2 population suggest the potential for rapid accumulation of beneficial traits without recourse to a traditional cross-breeding strategy. This approach may be applicable to other wild species, unlocking their potential as new food, fibre and fuel crops.

  15. Distribution of 45S rDNA in Modern Rose Cultivars (Rosa hybrida), Rosa rugosa, and Their Interspecific Hybrids Revealed by Fluorescence in situ Hybridization.

    Science.gov (United States)

    Ding, Xiao-Liu; Xu, Ting-Liang; Wang, Jing; Luo, Le; Yu, Chao; Dong, Gui-Min; Pan, Hui-Tang; Zhang, Qi-Xiang

    2016-01-01

    To elucidate the evolutionary dynamics of the location and number of rDNA loci in the process of polyploidization in the genus Rosa, we examined 45S rDNA sites in the chromosomes of 6 modern rose cultivars (R. hybrida), 5 R. rugosa cultivars, and 20 hybrid progenies by fluorescence in situ hybridization. Variation in the number of rDNA sites in parents and their interspecific hybrids was detected. As expected, 4 rDNA sites were observed in the genomes of 4 modern rose cultivars, while 3 hybridization sites were observed in the 2 others. Two expected rDNA sites were found in 2 R. rugosa cultivars, while in the other 3 R. rugosa cultivars 4 sites were present. Among the 20 R. hybrida × R. rugosa offspring, 13 carried the expected number of rDNA sites, and 1 had 6 hybridization sites, which exceeded the expected number by far. The other 6 offspring had either 2 or 3 hybridization sites, which was less than expected. Differences in the number of rDNA loci were observed in interspecific offspring, indicating that rDNA loci exhibit instability after distant hybridization events. Abnormal chromosome pairing may be the main factor explaining the variation in rDNA sites during polyploidization. © 2016 S. Karger AG, Basel.

  16. Phylogeny and biogeography of the genus Stevia (Asteraceae: Eupatorieae): an example of diversification in the Asteraceae in the new world.

    Science.gov (United States)

    Soejima, Akiko; Tanabe, Akifumi S; Takayama, Izumi; Kawahara, Takayuki; Watanabe, Kuniaki; Nakazawa, Miyuki; Mishima, Misako; Yahara, Tetsukazu

    2017-11-01

    The genus Stevia comprises approximately 200 species, which are distributed in North and South America, and are representative of the species diversity of the Asteraceae in the New World. We reconstructed the phylogenetic relationships using sequences of ITS and cpDNA and estimated the divergence times of the major clade of this genus. Our results suggested that Stevia originated in Mexico 7.0-7.3 million years ago (Mya). Two large clades, one with shrub species and another with herb species, were separated at about 6.6 Mya. The phylogenetic reconstruction suggested that an ancestor of Stevia was a small shrub in temperate pine-oak forests and the evolutionary change from a shrub state to a herb state occurred only once. A Brazilian clade was nested in a Mexican herb clade, and its origin was estimated to be 5.2 Mya, suggesting that the migration from North America to South America occurred after the formation of the Isthmus of Panama. The species diversity in Mexico appears to reflect the habitat diversity within the temperate pine-oak forest zone. The presence of many conspecific diploid-polyploid clades in the phylogenetic tree reflects the high frequency of polyploidization among the perennial Stevia species.

  17. The Consequences of Chromosome Segregation Errors in Mitosis and Meiosis

    Directory of Open Access Journals (Sweden)

    Tamara Potapova

    2017-02-01

    Full Text Available Mistakes during cell division frequently generate changes in chromosome content, producing aneuploid or polyploid progeny cells. Polyploid cells may then undergo abnormal division to generate aneuploid cells. Chromosome segregation errors may also involve fragments of whole chromosomes. A major consequence of segregation defects is change in the relative dosage of products from genes located on the missegregated chromosomes. Abnormal expression of transcriptional regulators can also impact genes on the properly segregated chromosomes. The consequences of these perturbations in gene expression depend on the specific chromosomes affected and on the interplay of the aneuploid phenotype with the environment. Most often, these novel chromosome distributions are detrimental to the health and survival of the organism. However, in a changed environment, alterations in gene copy number may generate a more highly adapted phenotype. Chromosome segregation errors also have important implications in human health. They may promote drug resistance in pathogenic microorganisms. In cancer cells, they are a source for genetic and phenotypic variability that may select for populations with increased malignance and resistance to therapy. Lastly, chromosome segregation errors during gamete formation in meiosis are a primary cause of human birth defects and infertility. This review describes the consequences of mitotic and meiotic errors focusing on novel concepts and human health.

  18. Origins of domestication and polyploidy in oca (Oxalis tuberosa; Oxalidaceae). 3. AFLP data of oca and four wild, tuber-bearing taxa.

    Science.gov (United States)

    Emshwiller, Eve; Theim, Terra; Grau, Alfredo; Nina, Victor; Terrazas, Franz

    2009-10-01

    Many crops are polyploids, and it can be challenging to untangle the often complicated history of their origins of domestication and origins of polyploidy. To complement other studies of the origins of polyploidy of the octoploid tuber crop oca (Oxalis tuberosa) that used DNA sequence data and phylogenetic methods, we here compared AFLP data for oca with four wild, tuber-bearing Oxalis taxa found in different regions of the central Andes. Results confirmed the divergence of two use-categories of cultivated oca that indigenous farmers use for different purposes, suggesting the possibility that they might have had separate origins of domestication. Despite previous results with nuclear-encoded, chloroplast-expressed glutamine synthetase suggesting that O. picchensis might be a progenitor of oca, AFLP data of this species, as well as different populations of wild, tuber-bearing Oxalis found in Lima Department, Peru, were relatively divergent from O. tuberosa. Results from all analytical methods suggested that the unnamed wild, tuber-bearing Oxalis found in Bolivia and O. chicligastensis in NW Argentina are the best candidates as the genome donors for polyploid O. tuberosa, but the results were somewhat equivocal about which of these two taxa is the more strongly supported as oca's progenitor.

  19. Sequence diversity and copy number variation of Mutator-like transposases in wheat

    Directory of Open Access Journals (Sweden)

    Nobuaki Asakura

    2008-01-01

    Full Text Available Partial transposase-coding sequences of Mutator-like elements (MULEs were isolated from a wild einkorn wheat, Triticum urartu, by degenerate PCR. The isolated sequences were classified into a MuDR or Class I clade and divided into two distinct subclasses (subclass I and subclass II. The average pair-wise identity between members of both subclasses was 58.8% at the nucleotide sequence level. Sequence diversity of subclass I was larger than that of subclass II. DNA gel blot analysis showed that subclass I was present as low copy number elements in the genomes of all Triticum and Aegilops accessions surveyed, while subclass II was present as high copy number elements. These two subclasses seemed uncapable of recognizing each other for transposition. The number of copies of subclass II elements was much higher in Aegilops with the S, Sl and D genomes and polyploid Triticum species than in diploid Triticum with the A genome, indicating that active transposition occurred in S, Sl and D genomes before polyploidization. DNA gel blot analysis of six species selected from three subfamilies of Poaceae demonstrated that only the tribe Triticeae possessed both subclasses. These results suggest that the differentiation of these two subclasses occurred before or immediately after the establishment of the tribe Triticeae.

  20. Erratic Male Meiosis Resulting in 2n Pollen Grain Formation in a 4x Cytotype (2n=28 of Ranunculus laetus Wall. ex Royle

    Directory of Open Access Journals (Sweden)

    Puneet Kumar

    2012-01-01

    Full Text Available Two accessions were studied for male meiosis in Ranunculus laetus from the cold regions of Northwest Himalayas. One accession showed the presence of 14 bivalents at diakinesis and regular segregation of bivalents at anaphase I which lead to normal tetrad formation with four n microspores and consequently n pollen grains and 100% pollen fertility. Second accession from the same locality revealed the erratic meiosis characterized by the presence of all the 28 chromosomes as univalents in meiocytes at metaphase I. Univalent chromosomes failed to segregate during anaphases and produced restitution nuclei at meiosis I and II. These restitution nuclei resulted into dyads and triads which subsequently produced two types of apparently fertile pollen grains. On the basis of size, the two types of pollen grains were categorized as n (normal reduced and 2n (unreduced, 1.5-times larger than the n pollen grains. The estimated frequency of 2n pollen grains from dyads and triads (61.59% was almost the same as that of the observed one (59.90%, which indicated that 2n pollen grains in R. laetus were the result of dyads and triads. The present paper herein may provide an insight into the mechanisms of the formation of various intraspecific polyploids through sexual polyploidization in R. laetus.

  1. Multiple Origins and Nested Cycles of Hybridization Result in High Tetraploid Diversity in the Monocot Prospero.

    Science.gov (United States)

    Jang, Tae-Soo; Parker, John S; Emadzade, Khatere; Temsch, Eva M; Leitch, Andrew R; Weiss-Schneeweiss, Hanna

    2018-01-01

    Polyploidy is a major driving force in angiosperm evolution, but our understanding of establishment and early diversification processes following allo- vs. auto-polyploidy is limited. An excellent system to address such questions is the monocot plant Prospero autumnale , as it comprises several genomically and chromosomally distinct diploid cytotypes and their auto- and allotetraploid derivatives. To infer origins and evolutionary trajectories of the tetraploids, we use genome size data, in situ hybridization with parental genomic DNAs and specific probes (satDNA, rDNAs), as well as molecular-phylogenetic analyses. Thus, we demonstrate that an astounding range of allotetraploid lineages has been formed recurrently by chromosomal re-patterning, interactions of chromosomally variable parental genomes and nested cycles of extensive hybridization, whereas autotetraploids have originated at least twice and are cytologically stable. During the recurrent formation and establishment across wide geographic areas hybridization in some populations could have inhibited lineage diversification and nascent speciation of such a hybrid swarm. However, cytotypes that became fixed in populations enhanced the potential for species diversification, possibly exploiting the extended allelic base, and fixed heterozygosity that polyploidy confers. The time required for polyploid cytotype fixation may in part reflect the lag phase reported for polyploids between their formation and species diversification.

  2. Multiple Origins and Nested Cycles of Hybridization Result in High Tetraploid Diversity in the Monocot Prospero

    Directory of Open Access Journals (Sweden)

    Tae-Soo Jang

    2018-04-01

    Full Text Available Polyploidy is a major driving force in angiosperm evolution, but our understanding of establishment and early diversification processes following allo- vs. auto-polyploidy is limited. An excellent system to address such questions is the monocot plant Prospero autumnale, as it comprises several genomically and chromosomally distinct diploid cytotypes and their auto- and allotetraploid derivatives. To infer origins and evolutionary trajectories of the tetraploids, we use genome size data, in situ hybridization with parental genomic DNAs and specific probes (satDNA, rDNAs, as well as molecular-phylogenetic analyses. Thus, we demonstrate that an astounding range of allotetraploid lineages has been formed recurrently by chromosomal re-patterning, interactions of chromosomally variable parental genomes and nested cycles of extensive hybridization, whereas autotetraploids have originated at least twice and are cytologically stable. During the recurrent formation and establishment across wide geographic areas hybridization in some populations could have inhibited lineage diversification and nascent speciation of such a hybrid swarm. However, cytotypes that became fixed in populations enhanced the potential for species diversification, possibly exploiting the extended allelic base, and fixed heterozygosity that polyploidy confers. The time required for polyploid cytotype fixation may in part reflect the lag phase reported for polyploids between their formation and species diversification.

  3. Involvement of Disperse Repetitive Sequences in Wheat/Rye Genome Adjustment

    Directory of Open Access Journals (Sweden)

    Manuela Silva

    2012-07-01

    Full Text Available The union of different genomes in the same nucleus frequently results in hybrid genotypes with improved genome plasticity related to both genome remodeling events and changes in gene expression. Most modern cereal crops are polyploid species. Triticale, synthesized by the cross between wheat and rye, constitutes an excellent model to study polyploidization functional implications. We intend to attain a deeper knowledge of dispersed repetitive sequence involvement in parental genome reshuffle in triticale and in wheat-rye addition lines that have the entire wheat genome plus each rye chromosome pair. Through Random Amplified Polymorphic DNA (RAPD analysis with OPH20 10-mer primer we unraveled clear alterations corresponding to the loss of specific bands from both parental genomes. Moreover, the sequential nature of those events was revealed by the increased absence of rye-origin bands in wheat-rye addition lines in comparison with triticale. Remodeled band sequencing revealed that both repetitive and coding genome domains are affected in wheat-rye hybrid genotypes. Additionally, the amplification and sequencing of pSc20H internal segments showed that the disappearance of parental bands may result from restricted sequence alterations and unraveled the involvement of wheat/rye related repetitive sequences in genome adjustment needed for hybrid plant stabilization.

  4. Cytological and genome size data analyzed in a phylogenetic frame: Evolutionary implications concerning Sisyrinchium taxa (Iridaceae: Iridoideae

    Directory of Open Access Journals (Sweden)

    Paula Burchardt

    2018-03-01

    Full Text Available Abstract Sisyrinchium is the largest genus of Iridaceae in the Americas and has the greatest amount of cytological data available. This study aimed at investigating how genomes evolved in this genus. Chromosome number, genome size and altitude from species of sect. Viperella were analyzed in a phylogenetic context. Meiotic and pollen analyses were performed to assess reproductive success of natural populations, especially from those polyploid taxa. Character optimizations revealed that the common ancestor of sect. Viperella was probably diploid (2n = 2x =18 with two subsequent polyplodization events. Total DNA content (2C varied considerably across the phylogeny with larger genomes detected mainly in polyploid species. Altitude also varied across the phylogeny, however no significant relationship was found between DNA content changes and altitude in our data set. All taxa presented regular meiosis and pollen viability (> 87%, except for S. sp. nov. aff. alatum (22.70%, suggesting a recent hybrid origin. Chromosome number is mostly constant within this section and polyploidy is the only source of modification. Although 2C varied considerably among the 20 taxa investigated, the diversity observed cannot be attributed only to polyploidy events because large variations of DNA content were also observed among diploids.

  5. Occurrence of diploid and polyploid microspores in Sorghum bicolor ...

    African Journals Online (AJOL)

    Analysis of 230 pollen mother cells at first metaphase stage showed 73.91% haploid (n=10), 10.43% diploid (n=20), ... Pollen diameters showed that the cytomictic cells differed from the normal cells. These results ... HOW TO USE AJOL.

  6. Ploidy-Dependent Unreductional Meiotic Cell Division in Polyploid Wheat

    Science.gov (United States)

    Meiosis includes one round of DNA replication and two successive nuclear divisions, i.e. meiosis I (reductional) and meiosis II (equational). This specialized cell division reduces chromosomes in half and generates haploid gametes in sexual reproduction of eukaryotes. It ensures faithful transmiss...

  7. Autosomal origin of sex chromosome in a polyploid plant

    Science.gov (United States)

    While theory on sex chromosome evolution is well developed, evidence of the early stages of this process remains elusive, in part because this process unfolded in many animals so long ago. The relatively recent and repeated evolution of separate sexes (dioecy) and sex chromosomes in plants, however,...

  8. The detection, rate and manifestation of residual sexuality in apomictic populations of Pilosella (Asteraceae, Lactuceae)

    Czech Academy of Sciences Publication Activity Database

    Krahulcová, Anna; Rotreklová, O.; Krahulec, František

    2014-01-01

    Roč. 49, č. 2 (2014), s. 239-258 ISSN 1211-9520 R&D Projects: GA ČR GAP506/10/1363 Institutional support: RVO:67985939 Keywords : facultative apomixis * haploid parthenogenesis * interspecific hybridization * Pilosella * residual sexuality Subject RIV: EF - Botanics Impact factor: 1.778, year: 2014

  9. Genetic Map of Mango: A Tool for Mango Breeding

    Directory of Open Access Journals (Sweden)

    David N. Kuhn

    2017-04-01

    Full Text Available Mango (Mangifera indica is an economically and nutritionally important tropical/subtropical tree fruit crop. Most of the current commercial cultivars are selections rather than the products of breeding programs. To improve the efficiency of mango breeding, molecular markers have been used to create a consensus genetic map that identifies all 20 linkage groups in seven mapping populations. Polyembryony is an important mango trait, used for clonal propagation of cultivars and rootstocks. In polyembryonic mango cultivars, in addition to a zygotic embryo, several apomictic embryos develop from maternal tissue surrounding the fertilized egg cell. This trait has been associated with linkage group 8 in our consensus genetic map and has been validated in two of the seven mapping populations. In addition, we have observed a significant association between trait and single nucleotide polymorphism (SNP markers for the vegetative trait of branch habit and the fruit traits of bloom, ground skin color, blush intensity, beak shape, and pulp color.

  10. Metabolic engineering of a haploid strain derived from a triploid industrial yeast for producing cellulosic ethanol.

    Science.gov (United States)

    Kim, Soo Rin; Skerker, Jeffrey M; Kong, In Iok; Kim, Heejin; Maurer, Matthew J; Zhang, Guo-Chang; Peng, Dairong; Wei, Na; Arkin, Adam P; Jin, Yong-Su

    2017-03-01

    Many desired phenotypes for producing cellulosic biofuels are often observed in industrial Saccharomyces cerevisiae strains. However, many industrial yeast strains are polyploid and have low spore viability, making it difficult to use these strains for metabolic engineering applications. We selected the polyploid industrial strain S. cerevisiae ATCC 4124 exhibiting rapid glucose fermentation capability, high ethanol productivity, strong heat and inhibitor tolerance in order to construct an optimal yeast strain for producing cellulosic ethanol. Here, we focused on developing a general approach and high-throughput screening method to isolate stable haploid segregants derived from a polyploid parent, such as triploid ATCC 4124 with a poor spore viability. Specifically, we deleted the HO genes, performed random sporulation, and screened the resulting segregants based on growth rate, mating type, and ploidy. Only one stable haploid derivative (4124-S60) was isolated, while 14 other segregants with a stable mating type were aneuploid. The 4124-S60 strain inherited only a subset of desirable traits present in the parent strain, same as other aneuploids, suggesting that glucose fermentation and specific ethanol productivity are likely to be genetically complex traits and/or they might depend on ploidy. Nonetheless, the 4124-60 strain did inherit the ability to tolerate fermentation inhibitors. When additional genetic perturbations known to improve xylose fermentation were introduced into the 4124-60 strain, the resulting engineered strain (IIK1) was able to ferment a Miscanthus hydrolysate better than a previously engineered laboratory strain (SR8), built by making the same genetic changes. However, the IIK1 strain showed higher glycerol and xylitol yields than the SR8 strain. In order to decrease glycerol and xylitol production, an NADH-dependent acetate reduction pathway was introduced into the IIK1 strain. By consuming 2.4g/L of acetate, the resulting strain (IIK1A

  11. Synthetic Hexaploids Derived from Wild Species Related to Sweet Potato

    OpenAIRE

    SHIOTANI, Itaru; KAWASE, Tsuneo; 塩谷, 格; 川瀬, 恒男

    1987-01-01

    The utilization of germplasm of the wild species in sweet-potato breeding has been conducted for the last three decades. Such attempts brought some remarkable achievments in improving root yield, starch content and resistance to the nematodes of sweet potato. Some wild plants in polyploid series may have many genes potentially important for further improvement of the agronomic traits. However, the genomic relationship between the wild relatives and hexaploid sweet potato (2n=6x=90) has been u...

  12. Effect of gamma irradiation on sex chromatin body appearance and the sex chromosome aberrations in the potato tuber moth, phthorimaea operculella (Lepidoptera: Gelechiidae)

    International Nuclear Information System (INIS)

    Makee, H.

    2007-01-01

    Genetic sexing technique based on the construction of a Balanced Lethal Strain (BLS) has been proposed for Phthorimaea operculella (Zeller). The isolation of female with T(W. Z) translocation is a fundamental step to develop such strain. Gamma irradiation was used to induce the requested translocations. The availability of sex-linked morphological marker is required to facilitate the detection of such mutations. Since a visible sex-linked marker has not been found in P. operculella, therefore main aim of our study was to determine the possibility of using sex heterochromatin body as a marker to identify the required translocated females. The appearance of sex heterochromatin body and the analysis of sex chromosomes in F1 females of irradiated P. operculella females were investigated. The percentage of abnormality in sex heterochromatin body in highly polyploid Malpighian tubule nuclei was increased by increasing the applied dose. Based on the appearance of this body, 3 mutant lines were isolated: elongated, small, fragmented lines. W chromosome was easily distinguished from Z chromosome when the analysis of pachytene sex chromosome bivalents of P. operculella females was carried out. The aberrations involved W chromosome directly influenced the appearance of sex heterochromatin body in highly polyploid somatic cells of the isolated mutant lines. The results showed that sex heterochromatin could be used as sex determination and cytogenetic marker in P. operculella. (Author)

  13. The narrow endemic Norwegian peat moss Sphagnum troendelagicum originated before the last glacial maximum.

    Science.gov (United States)

    Stenøien, H K; Shaw, A J; Stengrundet, K; Flatberg, K I

    2011-02-01

    It is commonly found that individual hybrid, polyploid species originate recurrently and that many polyploid species originated relatively recently. It has been previously hypothesized that the extremely rare allopolyploid peat moss Sphagnum troendelagicum has originated multiple times, possibly after the last glacial maximum in Scandinavia. This conclusion was based on low linkage disequilibrium in anonymous genetic markers within natural populations, in which sexual reproduction has never been observed. Here we employ microsatellite markers and chloroplast DNA (cpDNA)-encoded trnG sequence data to test hypotheses concerning the origin and evolution of this species. We find that S. tenellum is the maternal progenitor and S. balticum is the paternal progenitor of S. troendelagicum. Using various Bayesian approaches, we estimate that S. troendelagicum originated before the Holocene but not before c. 80,000 years ago (median expected time since speciation 40 000 years before present). The observed lack of complete linkage disequilibrium in the genome of this species suggests cryptic sexual reproduction and recombination. Several lines of evidence suggest multiple origins for S. troendelagicum, but a single origin is supported by approximate Bayesian computation analyses. We hypothesize that S. troendelagicum originated in a peat-dominated refugium before last glacial maximum, and subsequently immigrated to central Norway by means of spore flow during the last thousands of years.

  14. Effect of gamma irradiation on sex chromatin body appearance and the sex chromosome aberrations in the potato tuber moth, phthorimaea operculella (Lepidoptera: Gelechiidae)

    International Nuclear Information System (INIS)

    Makee, H.

    2006-05-01

    Genetic sexing technique based on the construction of a Balanced Lethal Strain (BLS) has been proposed for Phthorimaea operculella (Zeller). The isolation of female with T(W; Z) translocation is a fundamental step to develop such strain. Gamma irradiation was used to induce the requested translocations. The availability of sex-linked morphological marker is required to facilitate the detection of such mutations. Since a visible sex-linked marker has not been found in P. operculella, therefore main aim of our study was to determine the possibility of using sex heterochromatin body as a marker to identify the required translocated females. The appearance of sex heterochromatin body and the analysis of sex chromosomes in F1 females of irradiated P. operculella females were investigated. The percentage of abnormality in sex heterochromatin body in highly polyploid Malpighian tubule nuclei was increased by increasing the applied dose. Based on the appearance of this body, 3 mutant lines were isolated: elongated, small, fragmented lines. W chromosome was easily distinguished from Z chromosome when the analysis of pachytene sex chromosome bivalents of P. operculella females was carried out. The aberrations involved W chromosome directly influenced the appearance of sex heterochromatin body in highly polyploid somatic cells of the isolated mutant lines. The results showed that sex heterochromatin could be used as sex determination and cytogenetic marker in P. operculella. (Author)

  15. Reticulate evolution in stick insects: the case of Clonopsis (Insecta Phasmida).

    Science.gov (United States)

    Milani, Liliana; Ghiselli, Fabrizio; Pellecchia, Marco; Scali, Valerio; Passamonti, Marco

    2010-08-25

    Phasmids show noteworthy abilities to overcome species-specific reproductive isolation mechanisms, including hybridization, polyploidy, parthenogenesis, hybridogenesis and androgenesis. From an evolutionary standpoint, such tangled reproductive interactions lead to the complex phyletic relationships known as "reticulate evolution". Moroccan stick insects of the genus Clonopsis include one bisexual (C. felicitatis) and two closely related parthenogenetic forms (C. gallica, C. soumiae), which represent a polyploid series in chromosome number, but with apparent diploid karyotypes. Moreover, two Clonopsis strains of ameiotic males have been described, C. androgenes-35 and C. androgenes-53. As a consequence, Clonopsis stick insects may have experienced complex micro-evolutionary events, which we try to disentangle in this study. Mitochondrial cox2 analysis supports a recent divergence of Clonopsis, while AFLPs evidence genetic differentiation not linked to karyotypes, so that parthenogenetic C. gallica and C. soumiae appear to be a mix of strains of polyphyletic origin rather than single parthenogenetic species. Moreover, an admixed hybrid origin seems to be confirmed for C. androgenes. On the whole, Clonopsis is an intriguing case of reticulate evolution. Actually, complex cladogenetic events should be taken into account to explain the observed genetic structure, including diploidization of polyploid karyotypes, possibly coupled with hybridization and androgenesis. We also proposed a "working hypothesis" to account for the observed data, which deserves further studies, but fits the observed data very well.

  16. The narrow endemic Norwegian peat moss Sphagnum troendelagicum originated before the last glacial maximum

    Science.gov (United States)

    Stenøien, H K; Shaw, A J; Stengrundet, K; Flatberg, K I

    2011-01-01

    It is commonly found that individual hybrid, polyploid species originate recurrently and that many polyploid species originated relatively recently. It has been previously hypothesized that the extremely rare allopolyploid peat moss Sphagnum troendelagicum has originated multiple times, possibly after the last glacial maximum in Scandinavia. This conclusion was based on low linkage disequilibrium in anonymous genetic markers within natural populations, in which sexual reproduction has never been observed. Here we employ microsatellite markers and chloroplast DNA (cpDNA)-encoded trnG sequence data to test hypotheses concerning the origin and evolution of this species. We find that S. tenellum is the maternal progenitor and S. balticum is the paternal progenitor of S. troendelagicum. Using various Bayesian approaches, we estimate that S. troendelagicum originated before the Holocene but not before c. 80 000 years ago (median expected time since speciation 40 000 years before present). The observed lack of complete linkage disequilibrium in the genome of this species suggests cryptic sexual reproduction and recombination. Several lines of evidence suggest multiple origins for S. troendelagicum, but a single origin is supported by approximate Bayesian computation analyses. We hypothesize that S. troendelagicum originated in a peat-dominated refugium before last glacial maximum, and subsequently immigrated to central Norway by means of spore flow during the last thousands of years. PMID:20717162

  17. The Distribution and Habitats of the Pteris fauriei Complex in Taiwan

    Directory of Open Access Journals (Sweden)

    Yao-Moan Huang

    2007-03-01

    Full Text Available Polyploidization is a significant mode of speciation in plants. Polyploids often occupy habitats different from those of their diploid parents. In Taiwan, two varieties of Pteris fauriei, one diploid and one triploid, have been identified. The number of spores per sporangium and the size of spores are reliable indicators of ploidy. Diploid P. fauriei have 64-spore sporangia and the spores are significantly smaller than spores of triploid plants, which have 32-spore sporangia. Based on these findings, the distribution and habitats of the two cytotypes in Taiwan are characterized from both living plants and herbarium specimens. Altogether, 516 live plants from 32 locations and 76 herbarium specimens were analyzed. In general, diploid plants occur in warmer habitats than triploid plants. Diploid plants are widely distributed in Taiwan and nearby islands, but do not occur in central Taiwan nor in the Matsu islands. In contrast, triploid plants are not found in southern tip of Taiwan nor on islands west of central Taiwan. In northern Taiwan and on the west-central islands, diploids grow most often in exposed sites and grasslands. However, in southern Taiwan and islands Lanyu and Lutao, diploids also occur in woodlands. Triploids are restricted to grassland and woodland habitats in Taiwan, but grow in exposed sites, grassland and woodland habitats in Matsu islands. In general, triploids grow at higher elevations than the diploids.

  18. Identifikasi berat, diameter, dan tebal daging buah melon (Cucumis melo L. kultivar action 434 tetraploid akibat perlakuan kolkisin

    Directory of Open Access Journals (Sweden)

    Y. Ulung Anggraito

    2012-02-01

    Full Text Available Indonesian farmers are very dependence on certificated seed from another countries. In the other side the natural resources andmen powers very abundance. For these reason it is properly developed the research in agriculture sector, especially on plants breeding.It can be hoped that in the future the dependence on certificated seed from another countries can be minimized. The objective of thisresearch were: (1 to find out the concentration and dipping period which is effective to induce polyploid in musk melon plant, (2identify the weight, diameter, dan flesh thickness of tetraploid musk melon as result of colchicines treatment. The sample of this researchwas Action 434 musk melon cultivar, product of Chia-Thai Seed, Thailand. The number of sample was 480 plants, which plants on fieldrandomly. There were four colchicines concentration as an independent variable: 0.0%, 0.05%, 0.10% and 0.2%. The dipping periodwere 12, 16, 20, and 24 hours for each concentration respectively. Completely Random Design was used in three replications. Datameasurement were analyzed with Two Way ANOVA, DMRT, and LSD. From this research can be concluded that: (1 0.2 % colchicinesis the most effective concentration to induce polyploid on musk melon, with dipping period effective varied from 16–24 hours, (2 thereare changes in weight, diameter, and flesh thickness characters, with the increased tendency of each character in definite norm.

  19. Survivin and chromosome instability induced by X-irradiation

    International Nuclear Information System (INIS)

    Shen Bo; Ju Guizhi; Liu Yang

    2006-01-01

    Objective: To explore the biological effect of survivin on chromosome instability induced by X-ray irradiation. Methods: Immunocytochemistry was used to detect the expression of sutvivin in HeLa cells. Carrier pSUPER-SVV was transfected into HeLa cells to interfere the expression of survivin. Flow cytometry assay was applied to detect the occurrence of polyploid at 0 h, 4 h, 12 h, and 48 h after the HeLa cells transfected with pSUPER-SVV and irradiated with 4 Gy X-rays irradiation, and compared with the group irradiated with 4 Gy X-rays but no transfection. Results: The expression of survivin was down-regulated by transfecting with small hair RNA, its depression rate was estimated to be about 32.16% at 48 h after transfection. The occurrence of polyploid giant cells was higher in the 4 Gy X-ray irradiated group at 48 h after the irradiation than the control groups (P<0.001). Being expression of survivin interfered, the occurrence at 12 h or 48 h after irradiation, however, was about two times higher than that in the control group. Conclusion: X-ray irradiation can induce chromosome instability in HeLa cells and the effect could be enhanced by interfering the expression of surviving. It was suggested that survivin plays an important role in maintaining the stability of chromosome. (authors)

  20. Genetic instability in nerve sheath cell tumors

    DEFF Research Database (Denmark)

    Rogatto, Silvia Regina; Casartelli, Cacilda; Rainho, Claudia Aparecida

    1995-01-01

    After in vitro culture, we analyzed cytogenetically four acoustic nerve neurinomas, one intraspinal neurinoma and one neurofibroma obtainedfrom unrelated patients. Monosomy of chromosomes 22 and 16 was an abnormality common to all cases, followed in frequency by loss of chromosomes 18 (three cases...... by the presence of polyploid cells with inconsistent abnormalities, endoreduplications and telomeric associations resulting in dicentric chromosomes. It is probable that these cytogenetic abnormalities represent some kind of evolutionary advantage for the in vitro progression of nerve sheath tumors....

  1. A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome

    Czech Academy of Sciences Publication Activity Database

    Mayer, K. F. X.; Rogers, J.; Doležel, Jaroslav; Pozniak, C.; Feuillet, C.; Lukaszewski, A.J.; Sourdille, P.; Kubaláková, Marie; Čihalíková, Jarmila; Dubská, Zdeňka; Vrána, Jan; Šperková, Romana; Šimková, Hana; Choulet, F.; Stein, N.; Praud, S.

    2014-01-01

    Roč. 345, č. 6194 (2014) ISSN 0036-8075 R&D Projects: GA ČR GBP501/12/G090; GA ČR(CZ) GAP501/12/2554; GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : GENE-EXPRESSION * POLYPLOID WHEAT * AEGILOPS-TAUSCHII Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 33.611, year: 2014 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=CCC&DestLinkType=FullRecord&UT=000339400700040

  2. The yield of genome mutations in cells of intact and regenerating rat liver in normal conditions and after γ-irradiation

    International Nuclear Information System (INIS)

    Gil'yano, N.Ya.; Malinovskij, O.V.

    1984-01-01

    A comparative study was made of spontaneus and induced polyploidy in cells of resting and regenerating rat liver. Polyploidy was shown to play a major role in the ontogenesis and during regeneration after partial hepatectomy. An essential difference was revealed in the radiation response of cells of intact and regenerating liver with respect to the yield of polyploid cells. This distinction was referped to different effectiveness of the processes of repair and fixation of radiation damages in the actively proliferating and resting cells

  3. Use of embryogenic cell suspension and meristem-tip cultures for mutation breeding of apomictic Musa species

    International Nuclear Information System (INIS)

    Novak, F.J.; Afza, R.; Duren, M. van

    1990-01-01

    Full text: Breeding by crossing is difficult for banana and plantain. The plants are heterozygous, therefore mutagenic treatment may uncover a recessive allele by mutating or deleting a corresponding dominant allele. Meristem tips were excised from in vitro growing shoots and used for mutation experiments. Induction was carried out by irradiating shoot tips with γ rays and/or by treatment of explants with ethylmethanesulfonate (EMS). Cell suspension was initiated from corm and leaf tissue excised from in vitro grown plantlets. Mutagenised cell suspensions were derived from leaf and corm tissues irradiated with 60 Co γ rays - (10 to 60 Gy, 8 Gy/min). Musa clones exhibited differences in radiosensitivity and post-irradiation recovery. Doses of 20 to 40 Gy seem suitable for mutation induction. The EMS concentration of 25 mM for 4 hours was found effective for isolated shoot tips. Considerable phenotypic variation was observed among plants regenerated from in vitro shoot tips after mutagenic treatment. Leaf and corm explants kept their morphogenic ability in embryogenic cell suspensions after irradiation up to 25 Gy. (author)

  4. Characterizing and identifying black spot resistance genes in polyploid roses

    Science.gov (United States)

    The ornamental quality of outdoor grown roses (Rosa hybrida) is under constant threat from foliar diseases, such as black spot caused by Diplocarpon rosae. Fungicides are primarily used to manage black spot; however, there is a high consumer demand for disease resistant roses which eliminate the nee...

  5. Facts about food irradiation: Genetic studies

    International Nuclear Information System (INIS)

    1991-01-01

    Results published in the mid-1970s from the National Institute of Nutrition (NIN) in India showed increased numbers of polyploid cells in rats, mice, monkeys and malnourished children fed irradiated wheat products. This fact sheet considers the validity of these results. A large number of independent studies have been subsequently performed, and in none of these have results been obtained that support the NIN findings. The conclusion is that there is no evidence to link the consumption of irradiated food with any mutagenic effect. 3 refs

  6. A haplotype specific to North European wheat (Triticum aestivum L.)

    Czech Academy of Sciences Publication Activity Database

    Tsombalova, J.; Karafiátová, Miroslava; Vrána, Jan; Kubaláková, Marie; Peusa, H.; Jakobson, I.; Jarve, M.; Valárik, Miroslav; Doležel, Jaroslav; Jarve, K.

    2017-01-01

    Roč. 64, č. 4 (2017), s. 653-664 ISSN 0925-9864 R&D Projects: GA MŠk(CZ) LO1204; GA ČR(CZ) GA14-07164S Institutional support: RVO:61389030 Keywords : bread wheat * genetic diversity * polyploid wheat * introgression lines * molecular analysis * tetraploid wheat * hexaploid wheat * powdery mildew * spelta l. * map * Common wheat * Triticum aestivum L * Spelt * Triticum spelta L * Chromosome 4A * Zero alleles * Haplotype * Linkage disequilibrium Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Plant sciences, botany Impact factor: 1.294, year: 2016

  7. Homeolog loss and expression changes in natural populations of the recently and repeatedly formed allotetraploid Tragopogon mirus (Asteraceae

    Directory of Open Access Journals (Sweden)

    Soltis Pamela S

    2010-02-01

    Full Text Available Abstract Background Although polyploidy has long been recognized as a major force in the evolution of plants, most of what we know about the genetic consequences of polyploidy comes from the study of crops and model systems. Furthermore, although many polyploid species have formed repeatedly, patterns of genome evolution and gene expression are largely unknown for natural polyploid populations of independent origin. We therefore examined patterns of loss and expression in duplicate gene pairs (homeologs in multiple individuals from seven natural populations of independent origin of Tragopogon mirus (Asteraceae, an allopolyploid that formed repeatedly within the last 80 years from the diploids T. dubius and T. porrifolius. Results Using cDNA-AFLPs, we found differential band patterns that could be attributable to gene silencing, novel expression, and/or maternal/paternal effects between T. mirus and its diploid parents. Subsequent cleaved amplified polymorphic sequence (CAPS analyses of genomic DNA and cDNA revealed that 20 of the 30 genes identified through cDNA-AFLP analysis showed additivity, whereas nine of the 30 exhibited the loss of one parental homeolog in at least one individual. Homeolog loss (versus loss of a restriction site was confirmed via sequencing. The remaining gene (ADENINE-DNA GLYCOSYLASE showed ambiguous patterns in T. mirus because of polymorphism in the diploid parent T. dubius. Most (63.6% of the homeolog loss events were of the T. dubius parental copy. Two genes, NUCLEAR RIBOSOMAL DNA and GLYCERALDEHYDE-3-PHOSPHATE DEHYDROGENASE, showed differential expression of the parental homeologs, with the T. dubius copy silenced in some individuals of T. mirus. Conclusions Genomic and cDNA CAPS analyses indicated that plants representing multiple populations of this young natural allopolyploid have experienced frequent and preferential elimination of homeologous loci. Comparable analyses of synthetic F1 hybrids showed only

  8. Mating system and ploidy influence levels of inbreeding depression in Clarkia (Onagraceae).

    Science.gov (United States)

    Barringer, Brian C; Geber, Monica A

    2008-05-01

    Inbreeding depression is the reduction in offspring fitness associated with inbreeding and is thought to be one of the primary forces selecting against the evolution of self-fertilization. Studies suggest that most inbreeding depression is caused by the expression of recessive deleterious alleles in homozygotes whose frequency increases as a result of self-fertilization or mating among relatives. This process leads to the selective elimination of deleterious alleles such that highly selfing species may show remarkably little inbreeding depression. Genome duplication (polyploidy) has also been hypothesized to influence levels of inbreeding depression, with polyploids expected to exhibit less inbreeding depression than diploids. We studied levels of inbreeding depression in allotetraploid and diploid species of Clarkia (Onagraceae) that vary in mating system (each cytotype was represented by an outcrossing and a selfing species). The outcrossing species exhibited more inbreeding depression than the selfing species for most fitness components and for two different measures of cumulative fitness. In contrast, though inbreeding depression was generally lower for the polyploid species than for the diploid species, the difference was statistically significant only for flower number and one of the two measures of cumulative fitness. Further, we detected no significant interaction between mating system and ploidy in determining inbreeding depression. In sum, our results suggest that a taxon's current mating system is more important than ploidy in influencing levels of inbreeding depression in natural populations of these annual plants.

  9. Cytogenetic analyses of Azadirachtin reveal absence of genotoxicity but marked antiproliferative effects in human lymphocytes and CHO cells in vitro.

    Science.gov (United States)

    Mosesso, Pasquale; Bohm, Lothar; Pepe, Gaetano; Fiore, Mario; Carpinelli, Alice; Gäde, Gerd; Nagini, Siddavaram; Ottavianelli, Alessandro; Degrassi, Francesca

    2012-09-18

    In this work we have examined the genotoxic potential of the bioinsecticide Azadirachtin A (AZA) and its influence on cell proliferation on human lymphocytes and Chinese Hamster ovary (CHO) cells. AZA genotoxicity was assessed by the analysis of chromosomal aberrations and sister chromatid exchanges (SCEs) in the absence and presence of rat liver S9 metabolism. Primary DNA damage was also investigated by means of the comet assay. The results obtained clearly indicate that AZA is not genotoxic in mammalian cells. On the other hand, AZA proved to interfere with cell cycle progression as shown by modulation of frequencies of first (M1) and second division (M2) metaphases detected by 5-Bromo-2'-deoxyuridine labeling. Accumulation of M1 metaphases were more pronounced in human lymphocytes. In the transformed CHO cell line, however, significant increases of multinucleated interphases and polyploid cells were observed at long treatment time. At higher dose-levels, the incidence of polyploidy was close to 100%. Identification of spindle structure and number of centrosomes by fluorescent immunostaining with α- and γ-tubulin antibodies revealed aberrant mitoses exhibiting multipolar spindles with several centrosomal signals. These findings suggest that AZA can act either through a stabilizing activity of microtubules or by inhibition of Aurora A, since both mechanisms are able to generate genetically unstable polyploid cells with multipolar spindles and multinucleated interphases. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  10. Species interactions and plant polyploidy.

    Science.gov (United States)

    Segraves, Kari A; Anneberg, Thomas J

    2016-07-01

    Polyploidy is a common mode of speciation that can have far-reaching consequences for plant ecology and evolution. Because polyploidy can induce an array of phenotypic changes, there can be cascading effects on interactions with other species. These interactions, in turn, can have reciprocal effects on polyploid plants, potentially impacting their establishment and persistence. Although there is a wealth of information on the genetic and phenotypic effects of polyploidy, the study of species interactions in polyploid plants remains a comparatively young field. Here we reviewed the available evidence for how polyploidy may impact many types of species interactions that range from mutualism to antagonism. Specifically, we focused on three main questions: (1) Does polyploidy directly cause the formation of novel interactions not experienced by diploids, or does it create an opportunity for natural selection to then form novel interactions? (2) Does polyploidy cause consistent, predictable changes in species interactions vs. the evolution of idiosyncratic differences? (3) Does polyploidy lead to greater evolvability in species interactions? From the scarce evidence available, we found that novel interactions are rare but that polyploidy can induce changes in pollinator, herbivore, and pathogen interactions. Although further tests are needed, it is likely that selection following whole-genome duplication is important in all types of species interaction and that there are circumstances in which polyploidy can enhance the evolvability of interactions with other species. © 2016 Botanical Society of America.

  11. The house spider genome reveals an ancient whole-genome duplication during arachnid evolution.

    Science.gov (United States)

    Schwager, Evelyn E; Sharma, Prashant P; Clarke, Thomas; Leite, Daniel J; Wierschin, Torsten; Pechmann, Matthias; Akiyama-Oda, Yasuko; Esposito, Lauren; Bechsgaard, Jesper; Bilde, Trine; Buffry, Alexandra D; Chao, Hsu; Dinh, Huyen; Doddapaneni, HarshaVardhan; Dugan, Shannon; Eibner, Cornelius; Extavour, Cassandra G; Funch, Peter; Garb, Jessica; Gonzalez, Luis B; Gonzalez, Vanessa L; Griffiths-Jones, Sam; Han, Yi; Hayashi, Cheryl; Hilbrant, Maarten; Hughes, Daniel S T; Janssen, Ralf; Lee, Sandra L; Maeso, Ignacio; Murali, Shwetha C; Muzny, Donna M; Nunes da Fonseca, Rodrigo; Paese, Christian L B; Qu, Jiaxin; Ronshaugen, Matthew; Schomburg, Christoph; Schönauer, Anna; Stollewerk, Angelika; Torres-Oliva, Montserrat; Turetzek, Natascha; Vanthournout, Bram; Werren, John H; Wolff, Carsten; Worley, Kim C; Bucher, Gregor; Gibbs, Richard A; Coddington, Jonathan; Oda, Hiroki; Stanke, Mario; Ayoub, Nadia A; Prpic, Nikola-Michael; Flot, Jean-François; Posnien, Nico; Richards, Stephen; McGregor, Alistair P

    2017-07-31

    The duplication of genes can occur through various mechanisms and is thought to make a major contribution to the evolutionary diversification of organisms. There is increasing evidence for a large-scale duplication of genes in some chelicerate lineages including two rounds of whole genome duplication (WGD) in horseshoe crabs. To investigate this further, we sequenced and analyzed the genome of the common house spider Parasteatoda tepidariorum. We found pervasive duplication of both coding and non-coding genes in this spider, including two clusters of Hox genes. Analysis of synteny conservation across the P. tepidariorum genome suggests that there has been an ancient WGD in spiders. Comparison with the genomes of other chelicerates, including that of the newly sequenced bark scorpion Centruroides sculpturatus, suggests that this event occurred in the common ancestor of spiders and scorpions, and is probably independent of the WGDs in horseshoe crabs. Furthermore, characterization of the sequence and expression of the Hox paralogs in P. tepidariorum suggests that many have been subject to neo-functionalization and/or sub-functionalization since their duplication. Our results reveal that spiders and scorpions are likely the descendants of a polyploid ancestor that lived more than 450 MYA. Given the extensive morphological diversity and ecological adaptations found among these animals, rivaling those of vertebrates, our study of the ancient WGD event in Arachnopulmonata provides a new comparative platform to explore common and divergent evolutionary outcomes of polyploidization events across eukaryotes.

  12. Microsporogenesis, reproductive behavior, and fertility in five Pennisetum species

    Energy Technology Data Exchange (ETDEWEB)

    Dujardin, M.; Hanna, W.

    1984-01-01

    Microsporogenesis, reproductive behavior, pollen fertility and seed set were studied in Pennisetum basedowii Summerhayes and C. E. Hubbard, 2n=54; P. macrostachyum (Brough.) Trin., 2n=54; P. macrourum Trin., 2n=36; P. polystachion (L.) Schult, 2n=54; and P. squamulatum Fresen 2n=54. Meiosis was regular in P. basedowii with primarily bivalent pairing. As many as 54 univalents were observed at metaphase I in P. macrostachyum. A high frequency of univalents at metaphase I in P. macrourum resulted in lagging chromosomes and micronuclei at anaphase I and telophase I, respectively. Pennisetum polystachion and P. squamulatum showed frequent multivalent chromosome associations. Studies of megasporogenesis and embryo sac development in P. basedowii showed sexual reproduction. Pennisetum macrostachyum was highly male sterile with predominantly aposporous apomictic embryo sac development. Pennisetum macrourum, P. polystachion, and P. squamulatum had only aposporous embryo sac development. Pennisetum macrourum, P. polystachion, and P. squamulatum had only aposporous embryo sac development. Seed propagated progenies of these latter three species were uniform and matromorphic, confirming the obligate apomixis nature.

  13. Apomixis: Engineering the Ability to Harness Hybrid Vigor in Crop Plants.

    Science.gov (United States)

    Conner, Joann A; Ozias-Akins, Peggy

    2017-01-01

    Apomixis, commonly defined as asexual reproduction through seed, is a reproductive trait that occurs in only a few minor crops, but would be highly valuable in major crops. Apomixis results in seed-derived progenies that are genetically identical to their maternal parent. The advantage of apomixis would lie in seed propagation of elite food, feed, and biofuel crops that are heterozygous such as hybrid corn and switchgrass or self-pollinating crops for which no commercial-scale hybrid production system is available. While hybrid plants often outperform parental lines in growth and higher yields, production of hybrid seed is accomplished through carefully controlled, labor intensive crosses. Both small farmers in developing countries who produce their own seed and commercial companies that market hybrid seed could benefit from the establishment of engineered apomixis in plants. In this chapter, we review what has been learned from studying natural apomicts and mutations in sexual plants leading to apomixis-like development, plus discuss how the components of apomixis could be successfully engineered in plants.

  14. In Silico and Fluorescence In Situ Hybridization Mapping Reveals Collinearity between the Pennisetum squamulatum Apomixis Carrier-Chromosome and Chromosome 2 of Sorghum and Foxtail Millet.

    Directory of Open Access Journals (Sweden)

    Sirjan Sapkota

    Full Text Available Apomixis, or clonal propagation through seed, is a trait identified within multiple species of the grass family (Poaceae. The genetic locus controlling apomixis in Pennisetum squamulatum (syn Cenchrus squamulatus and Cenchrus ciliaris (syn Pennisetum ciliare, buffelgrass is the apospory-specific genomic region (ASGR. Previously, the ASGR was shown to be highly conserved but inverted in marker order between P. squamulatum and C. ciliaris based on fluorescence in situ hybridization (FISH and varied in both karyotype and position of the ASGR on the ASGR-carrier chromosome among other apomictic Cenchrus/Pennisetum species. Using in silico transcript mapping and verification of physical positions of some of the transcripts via FISH, we discovered that the ASGR-carrier chromosome from P. squamulatum is collinear with chromosome 2 of foxtail millet and sorghum outside of the ASGR. The in silico ordering of the ASGR-carrier chromosome markers, previously unmapped in P. squamulatum, allowed for the identification of a backcross line with structural changes to the P. squamulatum ASGR-carrier chromosome derived from gamma irradiated pollen.

  15. In Silico and Fluorescence In Situ Hybridization Mapping Reveals Collinearity between the Pennisetum squamulatum Apomixis Carrier-Chromosome and Chromosome 2 of Sorghum and Foxtail Millet.

    Science.gov (United States)

    Sapkota, Sirjan; Conner, Joann A; Hanna, Wayne W; Simon, Bindu; Fengler, Kevin; Deschamps, Stéphane; Cigan, Mark; Ozias-Akins, Peggy

    2016-01-01

    Apomixis, or clonal propagation through seed, is a trait identified within multiple species of the grass family (Poaceae). The genetic locus controlling apomixis in Pennisetum squamulatum (syn Cenchrus squamulatus) and Cenchrus ciliaris (syn Pennisetum ciliare, buffelgrass) is the apospory-specific genomic region (ASGR). Previously, the ASGR was shown to be highly conserved but inverted in marker order between P. squamulatum and C. ciliaris based on fluorescence in situ hybridization (FISH) and varied in both karyotype and position of the ASGR on the ASGR-carrier chromosome among other apomictic Cenchrus/Pennisetum species. Using in silico transcript mapping and verification of physical positions of some of the transcripts via FISH, we discovered that the ASGR-carrier chromosome from P. squamulatum is collinear with chromosome 2 of foxtail millet and sorghum outside of the ASGR. The in silico ordering of the ASGR-carrier chromosome markers, previously unmapped in P. squamulatum, allowed for the identification of a backcross line with structural changes to the P. squamulatum ASGR-carrier chromosome derived from gamma irradiated pollen.

  16. Genetic effects of feeding irradiated wheat to mice

    International Nuclear Information System (INIS)

    Vijayalaxmi

    1976-01-01

    The effects of feeding irradiated wheat in mice on bone marrow and testis chromosomes, germ cell numbers and dominant lethal mutations were investigated. Feeding of freshly irradiated wheat resulted in significantly increased incidence of polyploid cells in bone marrow, aneuploid cells in testis, reduction in number of spermatogonia of types A, B and resting primary spermatocytes as well as a higher mutagenic index. Such a response was not observed when mice were fed stored irradiated wheat. Also there was no difference between the mice fed un-irradiated wheat and stored irradiated wheat. (author)

  17. A High Resolution Radiation Hybrid Map of Wheat Chromosome 4A

    Czech Academy of Sciences Publication Activity Database

    Balcárková, Barbora; Frenkel, Z.; Škopová, Monika; Abrouk, Michael; Kumar, A.; Chao, S.; Kianian, S. F.; Akhunov, E.; Korol, A.; Doležel, Jaroslav; Valárik, Miroslav

    2017-01-01

    Roč. 7, JAN 10 (2017), č. článku 2063. ISSN 1664-462X R&D Projects: GA MŠk(CZ) LO1204; GA ČR(CZ) GA14-07164S Institutional support: RVO:61389030 Keywords : triticum-aestivum l. * bread wheat * high-density * agronomic traits * tetraploid wheat * hexaploid wheat * polyploid wheat * genetic maps * genomes * recombination * endosperm radiation hybrid panel * radiation hybrid map * wheat chromosome 4A * chromosome deletion bin map * Triticum aestivum * SNP iSelect array Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Plant sciences, botany Impact factor: 4.298, year: 2016

  18. Increased transgenerational epigenetic variation, but not predictable epigenetic variants, after environmental exposure in two apomictic dandelion lineages

    NARCIS (Netherlands)

    Preite, Veronica; Oplaat, Carla; Biere, Arjen; Kirschner, Jan; van der Putten, Wim H; Verhoeven, Koen J F

    DNA methylation is one of the mechanisms underlying epigenetic modifications. DNA methylations can be environmentally induced and such induced modifications can at times be transmitted to successive generations. However, it remains speculative how common such environmentally induced

  19. Increased transgenerational epigenetic variation, but not predictable epigenetic variants, after environmental exposure in two apomictic dandelion lineages

    NARCIS (Netherlands)

    Preite, Veronica; Oplaat, Carla; Biere, Arjen; Kirschner, Jan; Putten, van der Wim H.; Verhoeven, Koen J.F.

    2018-01-01

    DNA methylation is one of the mechanisms underlying epigenetic modifications. DNA methylations can be environmentally induced and such induced modifications can at times be transmitted to successive generations. However, it remains speculative how common such environmentally induced

  20. Divergence in eco-physiological responses to drought mirrors the distinct distribution of Chamerion angustifolium cytotypes in the Himalaya–Hengduan Mountains region

    Directory of Open Access Journals (Sweden)

    Wen Guo

    2016-08-01

    Full Text Available Polyploid species generally occupy harsher habitats (characterized by cold, drought and/or high altitude than diploids, but the converse was observed for Chamerion angustifolium, in which diploid plants generally inhabit higher altitudes than their polyploid derivatives. Plants at high altitudes may experience cold-induced water stress, and we therefore examined the physiological responses of diploid and hexaploid C. angustifolium to water stress to better understand the ecological differentiation of plants with different ploidy levels. We conducted a common garden experiment by subjecting seedlings of different ploidy levels to low, moderate and severe water stress. Fourteen indicators of physiological fitness were measured, and the anatomical characteristics of the leaves of each cytotype were determined. Both cytotypes were influenced by drought, and diploids exhibited higher fitness in terms of constant root:shoot ratio (R:S ratio and maximum quantum yield of PSⅡ (Fv/Fm, less reduced maximal photosynthetic rate (Amax, transpiration rate (E, intercellular CO2 concentration (Ci and stomatal conductance (gs, and higher long-term water use efficiency (WUEL under severe water stress than did hexaploids. Analysis of leaf anatomy revealed morphological adjustments for tolerating water deficiency in diploids, in the form of closely packed mesophyll cells and small conduits in the midvein. Our results indicate that diploid C. angustifolium is more tolerant of drought than hexaploid plants, ensuring the successful survival of the diploid at high altitudes. This eco-physiological divergence may facilitate the species with different cytotypes to colonize new and large geographic ranges with heterogeneous environmental conditions.